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Editorial on the Research Topic

Human factors and cognitive ergonomics in advanced industrial human-
robot interaction
s

1 Introduction

Collaborative robotics is a very promising technology for many industrial processes,
includinge.g.,manufacturing, logistics, or construction.Thisnewtechnologyarealsochanging
the environment for workers in industry. Research on human-robot interaction (HRI) will be
crucial for enhancing the operator’s work conditions and wellbeing, as well as production
performance. In that regard, human factors, with a special emphasis on cognitive ergonomics
are fundamental to implementing safe, fluent, and efficient collaborative applications.

This Research Topic gathers a range of contributions on the study of Human Factors
and Cognitive ergonomics in user-centered and collaborative applications in industrial
settings. Here, we summarize these studies from the perspective of three pivotal areas
impacted by collaborative robotics: workers’ safety, performance, andwellbeing.TheResearch
Topic provides a timely analysis of the changing landscape of industrial HRI as we stand
on the cusp of a new era in industrial automation, defined by the fusion of human
ingenuity and robotic efficiency. The contributions within offer practical insights and
forward-thinking perspectives on how collaborative robotics can transform industrial
workspaces in the future, in addition to reflecting state-of-the-art research in the field.
A different aspect of this intricate relationship is covered by each article in this Research
Topic, from the social and psychological effects of incorporating robots into human-
centered work environments to the complexities of design and implementation. Developing
solutions that are both technologically sophisticated and human-centered requires a
holistic approach, which is crucial for comprehending the complex nature of HRI.
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Before delving into the particulars of each contribution, we
invite the reader to this brief summary, briefly presenting each
contribution to the Research Topic through the lenses of safety,
performance, and wellbeing. We hope that this will support
reflections on the wider societal implications of HRC development,
in addition to their technical and ergonomic aspects. A harmonious
balance between human needs and machine capabilities will be key
to the future of industry.

2 Safety

In the field of Human Factors and Cognitive Ergonomics,
introducing advanced collaborative robotic systems in production
environments necessitates reevaluating safety from different
perspectives, namely safety perceptions of workers, safety behaviours
andmechanical safety. Integrating this technology invarious industrial
environments, such as manufacturing and logistics, prompts a
critical examination of the interplay of the different elements
interacting in the socio-technical system. As with any human-
system interaction in the work context, a more ergonomic and
anthropocentric system (characteristics that can bemeasured through
optimisation of associated cognitive factors) implies greater safety
in terms of prevention and mitigation of potential mechanical risk
(understoodascollisions,crushing,entrapment,etc.)andpsychosocial
risk as defined by Occupational Safety and Health Administration
(OSHA) such as excessive workload, lack of control, job insecurity
or insufficient communication. The present Research Topic includes
diverse studies, each exploring different aspects of safety in human-
robot collaboration.

The contribution by Mirnig et al. constitutes an excellent
opening to the Research Topic. While focusing on automated
material handling vehicles,Mirnig et al. discussmany design aspects
that are applicable also to HRI more broadly, including contextual
factors such as purpose and context of use, and many aspects
of the interaction itself. The study by Onnasch et al. investigates
how directing a worker’s attention to specific targets with gaze
communication can improve safety in human-robot interaction
by, first of all, suggesting how robotic eye design could affect
operator attention and perceived cognitive workload. Furthermore,
the paper indirectly suggests how robotic eyes could potentially
prevent mechanical risks like collisions and entrapments. According
to research, an operator’s situational awareness and capacity to
anticipate and respond to possible hazards are enhanced when
they focus on anthropomorphic robot eyes. This study highlights
anthropomorphism’s contribution to improving operator safety
and attention, leading to safer and more conscious HRIs in
industrial settings. On the effect of anthropomorphic features in
collaborative robots, the paper by Roesler examines the impact of
anthropomorphic versus technical framing of robots on operators’
trust, particularly in the context of robot failures. The study
concludes that although the general levels of trust between
technically framed and anthropomorphically framed robots did
not significantly differ, people perceived the anthropomorphically
framed robots as being more transparent, particularly after
understandable failures. Because it improves operators’ awareness
and skill in anticipating and responding to potential mechanical
risks like collisions or entrapments, this increased perceived

transparency and positive perception in the event of understandable
failures by potentially contributing to increased safety in HRIs. In
a complementary way, Freire et al. also addresses the importance
of safety in human-robot collaboration, but through a different
mechanism. Their proposed cognitive architecture incorporates a
“Socially Adaptive Safety Engine,” which dynamically adjusts safety
parameters like distance and robot speed based on the worker’s
trust level and preferences. While Roesler’s study emphasizes how
transparency in robot behavior following failures can enhance safety,
Freire et al. go further by actively modifying robot behavior in
real-time to adapt to each worker’s trust and comfort, creating
a more personalized and context-sensitive safety environment.
Together, these articles suggest that fostering both transparency
and adaptability in robots—through anthropomorphic design and
context-aware systems—can significantly enhance operator safety
and wellbeing in industrial environments.

In a comprehensive perspective, Heinold et al. discusses various
occupational safety and health (OSH) risks and benefits associated
with the integration of robotic systems in industrial settings. These
include both physical risks, such as collisions and mechanical
failures, and psychosocial risks, including mental stress and job
insecurity, which can arise from the use of advanced robotics in
workplaces. The study also explores opportunities, such as the
potential for reducing physical strain and improving long-term
physical health by automating physically demanding tasks. The
peculiarity of this manuscript lies in its comprehensive analysis
of both physical and psychosocial OSH risks and opportunities,
uniquely incorporating workers’ expectations alongside evidence
from the literature, offering a dual perspective on the safety
implications of HRI. On a similar note, also addressing logistics
and agricultural domains in addition to the manufacturing
one, Pietrantoni et al. investigated experts’ opinions regarding
collaborative robotics safety considerations.Their study emphasized
the critical role of tailored safety protocols, highlighting the need
for advanced collision avoidance systems, failsafe mechanisms,
and emergency stop protocols. Key aspects in agriculture include
stability control and navigation on uneven ground for the safety
and efficiency of workers. This sectoral approach completes the dual
perspective taken by Heinold et al. in that it details how diverse
industrial working contexts require tailor-made safety solutions
to address both physical risks and ergonomic challenges and
further promote the safe integration of robotics into complex work
environments.

The impact of human autonomy and robot work pace on job
quality in collaborative settings is examined by Van Dijk et al..
They find that higher human autonomy levels correlate with lower
perceivedworkloads.The present article generally addresses some of
themainworking conditions leading to psychosocial risks according
to OSHA, namely excessive workloads, lack of involvement in
making decisions that affect the worker, and lack of influence over
the way the job is done. This study shows that increasing human
autonomy and modifying robot work pace can effectively reduce
cognitive and temporal demands on workers. It compares scenarios
of human-led work, fast-paced robot-led work, and slow-paced
robot-led work. According to these results, reducing workload is
linked to a lowermechanical risk because there is a lower probability
of mistakes in HRI. This suggests that such measures optimise
perceived workload and improve safety in collaborative scenarios.
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In the context of an industrial defect inspection task, the article
of Cymek et al. examines the phenomenon of decreased individual
effort and attention in human–robot collaborative tasks. The study
finds that individuals searching for defects with a robot partner
may have been less focused and exerted more mental energy than
those searching alone, who on average, found more defects. Because
less alert workers may be more likely to overlook safety hazards in
their environment. This lower level of attentiveness and operational
performance in human-robot teams affects productivity and may
increase exposure to mechanical risks.

Pluchino et al. examines how collaborative tasks involving robots
affect senior workers’ mental workload. The article’s relevance
is critical, considering that collaborative robotics is one of the
most promising technology for retaining the ageing workforce and
maintaininganappropriatequalityofwork. Itfinds that seniorworkers
haveastrongacceptanceof technologyandpositiveexperiencesduring
increased cognitive demand. As a result of increased mental demand
during dual-task collaboration, the study found that task errors and
duration increased despite these favourable perceptions. This might
have detrimental effects on safety behaviours. While senior workers
are generally open to working with robots, this increased cognitive
workload—as indicatedbyeye trackingandcardiacactivity—indicates
that overburdening from collaboration may result in overwork and
increase the mechanical risks in the workplace.

3 Performance

Forhuman-robot interactiontobeconsideredsuccessful,assessing
and supporting the performance of the system as a whole is of
utmost importance. In fact, one might even say that successful
performance of the system is a necessary requisite when arguing
for its existence. Successful performance can be defined in many
different ways but in essence it is the combination of two things;
doing things accurately (effective), and being efficient while doing it.
In the context of collaborative human-robot settings, this Research
Topic investigates relations between human-factors and performance
in terms of temporal performance and cognitive load (Van Dijk et al.;
Pluchino et al.), collaborative setting and error rate (Cymek et al.), as
well as collaborative setting and perceived workload (Van Dijk et al.).
While all these papers are mentioned above in relation to safety, they
also bring relevant results in relation to performance.

Van Dijk et al. show a positive correlation between temporal
performance and cognitive load, comparing two conditions with a
fast vs. slow scheduling for the HRC setup. Pluchino et al. analyze
the performance in terms of errors and time on task of senior
workers engaged in a sequential collaborative manufacturing task
together with a cobot. A dual task condition where the subjects were
challenged with a secondary mathematical assignment is compared
to a single task (control) condition. Results show that the dual task
condition lead to increases in both errors and time spent on task,
which corresponded with higher levels of perceived mental effort.
However, no differences in perceived performance, as assessed by
the NASA-TLX questionnaire, were found between the conditions.
Cymek et al. compares two versions of an inspection task, one
collaborative where a human operator is working together with a
robot, and one individual where the operator is working alone.
Results show lower performance for the collaborative setting in

terms of fewer identified defects during inspection, indicating an
reduction in cognitive load compared to the individual condition.

As previously discussed, the effects on performance of different
types of collaborative queues are investigated by Onnasch et al.. An
indirect argument ismade for faster reallocationof attention as a result
of naturalistic attentional queues leading to increased performance.
This paper also provides a brief argumentation that some queues used
to improve collaboration, e.g., legible motion, may directly impact
performance in a negative way, while robot eyes does not.

Finally, in their study of technical expert’s opinions of HRC also
mentioned earlier, Pietrantoni et al. found that the introduction of
collaborative robots is expected to bring improved efficiency and
better worker conditions, e.g. as a result of automation of physically
demanding operations.While the participants in the study generally
held a positive attitude towards collaborative robots, the increased
efficiency was also linked to concerns of job displacement and the
need for reskilling.

4 Wellbeing

A key concern of cognitive ergonomics is to reduce negative
effects of work. This also specifically refers to deployed technologies
at the workplace, like advanced robotic systems. However, a truly
human-centered approach to workplace and technology design aims
at developing a person’s personality and fostering individual and
organizational health in its broadest sense. A holistic understanding
of health goes beyond the physical safety of humans, but includes
mental and socialwellbeingof humans. In the ever-evolving landscape
of human-robot interaction, the integration of advanced robotics to
different workplaces, raises critical questions about how the wellbeing
of individualsmightbe affected.ThisResearchTopic includesdifferent
publications, each shedding light on different facets of human-
robot-interaction and its implications for the human experience thus
potentially leading to wellbeing in the long-term.

As mentioned earlier, Heinold et al. address the question which
psycho-social consequences are associated with a close interaction
between humans and robots. By combining scientific perspectives
through a literature review and insights from workers’ expectations,
the study provides a holistic view of the implications of task
automation via robotic systems. The findings highlight the psycho-
social impacts advanced robotics may have on workers. It becomes
clear, that the aspects of task design and function allocation as well
as the specific interactions design of systems as well as operation
and supervision design are relevant sources potentially affecting the
specific user experience and thewellbeing ofworkers in the long run.

When further considering potential psychological effects,
assessing traditional workplace factors can be beneficial. From
human factors research it is well understood, that the level of job
control or autonomy within a given task is a strong determinant
for job quality and wellbeing (Van Der Doef and Maes, 1999). This
also applies to industrial tasks (Rosen and Wischniewski, 2019).
As working tasks are newly allocated between humans and robots,
human autonomy levels can change. The investigation of human
autonomy and robotic work pace by Van Dijk et al. discussed
earlier is also relevant from a wellbeing perspective. The research
underscores the significance of autonomy and work pace in shaping
job quality, emphasizing the importance of designing collaborative
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scenarios that prioritize human autonomy and adjustments to
the robot’s work pace to optimize workload and enhance overall
wellbeing.

Exploring psycho-social effects more on a team level in this
Research Topic is done by Cymek et al..Their contribution focuses on
the well-studied phenomenon of social loafing (Cymek et al.). Using
a visual-search task, the presented study investigates whether reduced
individual effort, the phenomenon in question, which is commonly
observed in human teams, also occurs in human-robot teams. The
findings suggest that working with a robot team partner may lead to
less attentive task execution, highlighting the need to address mental
effort and attention allocation in human-robot collaboration to ensure
optimal performance and, consequently, wellbeing.

A human-centred technology design can contribute to a
positive human-robot interaction and thus ensure a seamless
workflow. One very relevant aspect of robot design which is
touched upon in research is the application of anthropomorphic
design features (Roesler et al., 2021). Two papers of this Research
Topic explore the unique effects of anthropomorphic features
in human-robot-interaction on different aspect of the distinct
interaction quality and user experience. As mentioned earlier,
Onnasch et al. examine how the design of predictive robot
eyes influences human attention. The results indicate that
anthropomorphic features contribute to a smooth interaction
experience. Anthropomorphic robotic eyes trigger reflexive
attention reallocation, hinting at a social and automatic processing
of artificial stimuli, emphasizing the emotional and cognitive
impact of such interactions on wellbeing. Through their analysis
of anthropomorphic framing discussed earlier, Roesler show that
an adequate level of trust within human-robot-interaction is also
an important element contributing to a smooth interaction and a
human-centered design. In this paper the perceived transparency of
anthropomorphic robots emerges as a key factor, underscoring its
role in shaping individuals’ wellbeing.

A novel design approach in order to facilitate socially adaptive
robot behaviour in industrial settings is presented by Freire et al..
The authors present a theoretical cognitive architecture for robotic
actions control, highlighting modules that among others take into
account human preferences and situational awareness and by thus
can adapt to human needs. The presented cognitive architecture
is integrated into a recycling plant use case for disassembly tasks
showcasing the basic functionalities of the systems. In the piloted
use cases, the architecture demonstrated key functionalities, such as
turn-taking, personalized error-handling, adaptive safety measures,
and gesture-based communication, making collaboration smoother
and more efficient. The idea of incorporating human preferences
and adapting to human needs already on a robot control level can
be a promising way to enhance the overall human wellbeing in
human-robot interaction.

5 Conclusion

In conclusion, this topic underscores the importance of
Human Factors and Cognitive Ergonomics in the design and
implementation of advanced industrial HRIs. The integration of
robotics into industrial settings presents both opportunities and
challenges, particularly in enhancing safety, performance, and

worker wellbeing. Collaborative robotics can improve productivity
and alleviate physical strain on workers, but it also raises concerns
about psychosocial risks and job displacement.

The studies included in this Research Topic explore various
dimensions of HRI, from safety concerns such as mechanical and
psychological risks, to the cognitive demands placed on workers
in collaborative environments. It highlights the need for designs
that balance technological advancements with human-centric
approaches, ensuring safety and wellbeing are not compromised in
the pursuit of efficiency.

These papers collectively highlight the elaborate dynamics of
human-robot interaction and its different facets each potentially
contributing to an overall positive and smooth interaction quality
which then eventually is related to an individual’s wellbeing.
These studies emphasize the importance of considering human
factors at different stages, not only the design phase but also the
implementation stage aswell as considering newly designedworking
tasks carefully to ensure a positive impact on individual wellbeing in
the workplace.

Future developments in HRI should prioritize interdisciplinary
collaboration to develop solutions that consider both human
and machine capabilities, promoting an adaptable, efficient, and
safer industrial workspace. As industries evolve, a comprehensive
understanding of the interaction between humans and robots will
be essential for sustainable and productive future workplaces.
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Robots currently provide only a limited amount of information about their future
movements to human collaborators. In human interaction, communication
through gaze can be helpful by intuitively directing attention to specific targets.
Whether and how this mechanism could benefit the interaction with robots and
how a design of predictive robot eyes in general should look like is not well
understood. In a between-subjects design, four different types of eyes were
therefore compared with regard to their attention directing potential: a pair
of arrows, human eyes, and two anthropomorphic robot eye designs. For this
purpose, 39 subjects performed a novel, screen-based gaze cueing task in the
laboratory. Participants’ attention was measured using manual responses and
eye-tracking. Information on the perception of the tested cues was provided
through additional subjective measures. All eye models were overall easy to
read and were able to direct participants’ attention. The anthropomorphic robot
eyes were most efficient at shifting participants’ attention which was revealed
by faster manual and saccadic reaction times. In addition, a robot equipped
with anthropomorphic eyes was perceived as being more competent. Abstract
anthropomorphic robot eyes therefore seem to trigger a reflexive reallocation
of attention. This points to a social and automatic processing of such artificial
stimuli.

KEYWORDS

human-robot interaction (HRI), attentional processes, joint attention,
anthropomorphism, robot design

1 Introduction

Industrial collaborative robots, or cobots for short, interact in direct temporal and
physical proximity with a human partner (Restrepo et al., 2017). The accompanying
elimination of safety barriers creates new requirements for coordination and action
prediction between humans and robots. To date, however, cobots only provide limited
information about future motion sequences, making it a hard task for humans to coordinate
their behavior around the cobot–especially compared to how easy it is for humans to
coordinate their interpersonal behavior. Explicit predictive cues would seem to be a good
idea to make the robot’s movements easier to understand. Yet, compared to social robots or
other service robots, the design space offered by industrial cobots is quite a narrow one, as
it is bounded rather by the specifications of the industrial task, performance metrics and a
functional design, than by the affordances of a fluent human-robot interaction (HRI). If we
want to implement predictive cues, we argue they have to meet at least three requirements.
First, their implementation must not conflict with the robot’s performance: e.g.,
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Faria et al. (2021) proposed a solution to make robotic movements
more legible to the operator, but this was at the expense of extra
costs in motion planning. Second, the predictive cues need to fit
into the functionalist design scope. Thus, a simple, straight forward
approach would come to mind, like the use of arrows on a screen to
indicatemotion intention of amobile robot (Shrestha et al., 2016), or
projected arrows on the ground (Hetherington et al., 2021). Another
design option that has been explored in this regard are moving
lightbands to indicate motion intents of a mobile factory robot
(Bacula et al., 2020). Third, as industrial human-robot coordination
is not the main part of task fulfillment but rather a means to an end,
the predictive cues should trigger resource-efficient mechanisms
that do not require additional cognitive resources (Neider et al.,
2010). This means that humans’ attention shifts required to predict
the robotic motion should happen as effortlessly as possible, i.e.,
automatically (Onuki et al., 2013; Khoramshahi et al., 2016). Arrows
as indicators for robot movements might not fulfill this requirement
as the interpretation of these cues needs an active consideration and
therefore additional cognitive resources.

To find a solution integrating all these requirements, we think
that functional anthropomorphic features, i.e., abstract forms of
anthropomorphism that only aim to mimic certain functional
aspects of human-likeness, are a promising suspect (Onnasch
and Roesler, 2021). One such feature is the attention directing
function of eyes and gaze. In human interaction, eye gaze is a
key mechanism to engage in joint attention, which describes an
automatic reallocation of one’s attention to an object that another
individual is attending to (Shepherd, 2010). This, in turn, enables us
to understand, predict and adapt to the situation. The automaticity
in joint attention is very resource efficient as it does not require an
active interpretation of the directional gaze information and thereby
does not interfere with other cognitively demanding activities.
Accordingly, the implementation of abstract anthropomorphic eyes
into robot design might be a resource efficient option to make robot
movements more predictable. However, there is evidence that only
social stimuli evoke joint attention in contrast to non-social stimuli
like arrows (Ricciardelli et al., 2002; Friesen et al., 2004; Ristic and
Kingstone, 2005). Whether abstract anthropomorphic eyes like
robot eyes, trigger joint attention has therefore been the subject
of several studies, which point to a great potential (Admoni and
Scassellati, 2017). People have no problems reliably following a
robot’s gaze (e.g., Wiese et al., 2018; Onnasch et al., 2022), and use it
to predict target positions before these are verbalized (Boucher et al.,
2012). Even people’s decision-making can be influenced by a robot’s
gaze.Mutlu et al. (2009) and Staudte andCrocker (2008) could show
that although participants were told to only consider verbal cues,
their attention allocation and object selection was biased by a robot
briefly gazing at a certain object. Furthermore, human-like gaze
trajectories implemented on a robot’s display have the potential to
make object handovers of a robotic arm more pleasant and fluid
as well as time-efficient (Moon et al., 2014). Similarly, supportive
gaze has been shown to improve performance in an interactive
map-drawing task and to reduce the cognitive resources required
by the human interaction partner (Skantze et al., 2013). However,
also detrimental effects of robot eyes are possible when the eyes
and according gaze behavior are purely decorative features and do
not correspond to the robot’s motion (Onnasch and Hildebrandt,
2021). In such cases, implementing abstract anthropomorphic eyes

into robot design has the potential to distract people from theirmain
task and to make interaction more difficult instead of supporting
it.

Besides the growing body of evidence showing the effectiveness
(or at least attention-grabbing effect) of robotic gaze, it is still
unclear to what extent it is really automatic, i.e., to what extent
abstract anthropomorphic gaze triggers reflexive attentional shifts.
For example, Admoni et al. (2011) could not find a reflexive cueing
for robotic stimuli. The study used the Posner paradigm (Posner,
1980), an experimental set-up for spatial cueing. Participants had
to look at a fixation cross, which was then replaced by a spatial
cue indicating the position of a subsequently following target
stimulus to which participants had to react by an according key
press as fast as possible (see also Figure 1). Results showed that
participants could infer directional information from the robot’s
gaze, but they did not reflexively reallocate their attention to
the cued position (Admoni et al., 2011). Other studies suggest an
automatic attention cueing of robot gaze (e.g., Boucher et al., 2012).
Specifically, Chaminade and Okka (2013) found that both human
faces and those of a humanoid robot (Nao) led to automatic
attentional shifts, Wiese et al. (2018) showed that eye movements
of a social robot (Meka) triggered automatic attention-directing
effects, and Pérez-Osorio et al. (2018) successfully replicated the
gaze cueing effect using a humanoid robot (iCub). However, it is
noteworthy that none of these studies explored an isolated use
of eye movements, but a more ecologically typical integration of
eye movements, head movements and/or pointing gestures. Some
of them (Admoni et al., 2011; Chamindae and Okka, 2013) did
not seem to use robots with moving or animated eye parts at all.
The specific variance-explaining proportions of gaze thus cannot
be determined. Mutlu et al. (2009) investigated the communication
of behavioral intentions through robotic eyes without any head
movements and found a positive effect of anthropomorphic eyes,
but did not include a non-anthropomorphic control condition.
Accordingly, it remains unclear whether abstract anthropomorphic
robot eyes actually triggered automatic attentional shifts or whether
positive effects were only due to the additional information
compared to an interaction without any cues.

In summary, empirical evidence seems to favor the assumption
of a beneficial effect of abstract anthropomorphic gaze cues.
However, given the methodological characteristics of the existing
research it remains unclear whether, in line with the cooperative
eye hypothesis (Tomasello et al., 2007), eye movements of a robot
are sufficient directional cues without head movements or point
gestures. Further systematic research comparing anthropomorphic
eye stimuli with non-anthropomorphic cue stimuli is therefore
needed. In addition, there is a lack of studies specifically
for the industrial application area and the associated special
requirements mentioned above (functionalist design, straight
forward implementation).

According to these requirements, we investigated in a
previous study directional stimuli differing in their degree of
anthropomorphism to facilitate attentional shifts for the potential
use as robot eyes on an industrial robot (Onnasch et al., 2022). The
online study used a modified version of the spatial cueing paradigm
(Posner, 1980), using either arrows, abstract anthropomorphic eyes
or photographed human eyes as directional stimuli. Attentional
shifts were measured indirectly as the time from the target
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FIGURE 1
Set-up and sequence of events on a given valid trial. (Figure adapted from Onnasch et al., 2022).

onset (in that case the presentation of a single letter) until the
according key press. Results supported the assumption that
abstract anthropomorphic eyes have the potential to facilitate
HRI, as they led to the fastest responses which is indicative for
reflexive gaze cueing. Surprisingly and in contrast to hypotheses,
the human eyes did not evoke reflexive attentional shifts as
evidenced by longer response times. We suspected that the abstract
anthropomorphic eyes elicited the desired effects because they
were sufficiently human-like and at the same time much easier
to perceive than human eyes, with the latter being due to the
abstract anthropomorphic eyes’ design featuring strong contrasts
and clean lines. This is an interesting finding and may prove helpful
for designing better HRI. However, to see whether this is in fact a
solid basis for further conclusions and actions, those unexpected
findings with regard to the superiority of anthropomorphic, non-
human eyes, even in comparison to human eyes, call for a validation.
Especially, because the implementation as an online-study comes
with a lack of control in terms of standardized situational
circumstances and hardware (light conditions, distraction, screen
resolution, …). Moreover, the measurement of attention was only
realized via covert measures in terms of reaction times. Thus,
to further strengthen results and the interpretation that abstract
anthropomorphic eyes induce reflexive gaze cueing, the aim of the
current study was therefore to validate findings of the previous
online study (Onnasch et al., 2022) in a highly controlled laboratory
environment and to further deepen insights by introducing direct
attentional measures via eye-tracking. We investigated how the
design of highly abstract anthropomorphic eyes for a potential use
on a collaborative robot should look like in order to reflexively
trigger attention reallocation to improve the prediction of robot
motion.

2 Materials and methods

The experiment was performed with ethical committee approval
by the Institute of Psychology, Humboldt-Universität zu Berlin, and

in accordance with the Declaration of Helsinki. Informed consent
was obtained from each participant. We preregistered the study at
the Open Science Framework (osf.io/wue6d).

2.1 Participants

A sample size of N = 80 was defined based on an a priori power
analysis using GPower (Faul et al., 2007; Faul et al., 2009). Due to
COVID-19 induced restrictions we had to halve the sample size
and recruited 40 participants via the local online recruiting system
of the Institute of Psychology, Humboldt-Universität zu Berlin.
Participants either received course credit or a €10 compensation
at the end of the experiment. One participant had to be excluded
because of technical issues. We therefore conducted data analysis
with a sample of N = 39 participants with German as native language
or equal language abilities (M = 32.26 years, SD = 10.78 years, 27
females).

2.2 Apparatus and task

The experiment was conducted on a 27″ HD Dell Monitor
(1,920 × 1,080 px) which was positioned at a distance of 67 cm
to a chin rest. The latter was used to minimize artefacts of head
movements for eye-tracking data. The setup was a modified version
of a traditional spatial cueing paradigm (Posner, 1980; Figure 1) and
corresponded to the setup of the previous online study (compare
Onnasch et al., 2022). Each trial began with the presentation of a
fixation cross in the center of a depicted display on the computer
screen (see Figure 1). After 900 ms, a display appeared with a “gaze”
facing to the front. 1,000 ms later the gaze averted to a position
where the target appeared after a stimulus onset asynchrony (SOA)
of 420 ms,. The target disappeared upon participants’ reaction or a
time-out of 2000 ms (description taken from Onnasch et al., 2022).

Figure 1 All central cue stimuli as well as the fixation cross were
displayed at the subjects’ eye level on the screen. The target stimuli
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appeared in a 3D-like image of a room. It seems noteworthy at
this point that we intentionally designed a screen-based experiment
instead of one using a real human-robot interaction. This has been
done not only to exclude any confounding effects that the HRI
might induce, but also to avoid parallax effects by making the angle
between robot eyes and target positions, i.e., the stimulus geometry,
absolutely invariant. Nevertheless, to increase ecological validity,
we modeled the three-dimensional space with target positions in
reference to a physical setup of a sharedworkspacewith an industrial
robot (Sawyer by Rethink Robotics). We measured the distances
between actual target positions, i.e., positions that the robot could
reach with its gripper, the robot’s display, and the human co-
worker. These distances were then scaled down and transferred as
parameters into our model, that used HTML, JavaScript and raster
graphics to render the virtual set-up. Eight different positions were
determined for the target stimuli to appear in the experiment. Six
target positions were located below the display on what appeared
to be a floor (three positions in a front row, three positions in
a back row), two target positions were on the side walls, one
left and one right, each in a centered position. Implementing
eight different target positions represents a significant change
from the experimental gaze cueing setup which is conventionally
distributed between two positions or a maximum of four positions
(e.g., Admoni et al., 2011). This change was deemed necessary to
approximate a real industrial HRI situation, thus further increasing
ecological validity. The size of the frame in which the fixation cross
and cue stimuli were presented centrally covered 7.91° × 4.81° in
angle of view (AOV), which corresponds in its relative dimensions
to the display of a Sawyer robot. The size of the display of the
stimuli in angular degrees was determined approximately oriented
to themean value of previous studies.The cueing stimuli were either
images of human eyes, arrows, or two different versions of abstract
anthropomorphic eyes (pixel, cross). Following classical gaze cueing
tasks, two black sans-serif letters F and T were presented as target
stimuli (e.g., Friesen and Kingstone, 1998). These corresponded to
0.50° AOV in their presented size andwere presented at a distance of
13.40°–22.75° AOV from the center of the fixation cross, depending
on their position in space. The small size of the target stimuli in
combination with the high degree of similarity in the typeface of the
two letters was to ensure that no discrimination of the target stimuli
was possible in the peripheral field of view. It should be necessary to
shift the foveal field of view for task performance in order to trigger
eye movements of the subjects. Table 1 summarizes the information
on the AOV of the respective elements in the experimental
set up.

For recording participants’ manual responses to the cue stimuli,
the Microsoft Xbox Wireless 1708 controller was used. For the
recording of oculomotor movements, the screen-based remote eye
tracker model RED500 from iMotion (Senso-Motoric Instruments
GmbH, SMI) with a sampling rate of 500 Hz was used. The spatial
accuracy of the device amounts to 0.40° for binocular recording,
which was also chosen in this study.

2.3 Design

Two variables were systematically varied in the experiment.
First, the cues were varied between-subject, representing either

FIGURE 2
(A) The four stimulus types, labelled respectively. The top row includes
the human (left) and arrow (right) stimuli. The abstract
anthropomorphic robot eyes are presented in the second row. (B)
Image of the collaborative robot Sawyer used in the questionnaire. In
this case, presented featuring the pixel eye design. (Figure adapted
from Onnasch et al., 2022).

human eyes, abstract anthropomorphic eyes, or arrow stimuli. For
the previous online study, the anthropomorphic eyes were designed
striving for a maximum level of abstraction while retaining the
essential features of the human eye (e.g., visible pupil-sclera size
ratio). This resulted in two different anthropomorphic eye designs,
that were both exploratively compared in the online study and
therefore also implemented in the current laboratory experiment
(cross and pixel design, Figure 2). Second, the trial congruency
was manipulated as a within-subject factor. From a total of 304
trials, the target stimuli appeared at cued locations in 80% of the
trials (240 trials congruent), while in the remaining 20% of trials
the target appeared at uncued locations (64 trials incongruent).
The distribution of congruent and incongruent trials was defined
with a random number generator and was the same in all four
conditions. Overall, this resulted in a 4 (stimulus type) × 2 (trial
congruency) mixed design. In the previous online study, a third
factor was implemented which investigated the impact of paired vs.
single stimulus representations (Onnasch et al., 2022). However, as
this variation did not have an impact on reaction times, we decided
to discard this factor for the follow up study.

TABLE 1 Summary of AOVs of the different elements used in the
experimental set-up.

Element Size in angle of view (AOV)

Frame representing the display 7.91° × 4.81°

Fixation cross 2.60° × 2.60° AOV

Photograph of the human eyes 5.80° × 1.73°

Arrows 1.58° × 1.50° each

Abstract eyes 2.61° × 2.61° each

Letters 0.50°

Distance between letter and fixation cross between 13.40° and 22.75°
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2.4 Dependent measures

2.4.1 Reaction time
We assessed the reaction times as a covert measure of attention

and to evaluate the potential for reflexive cueing of the different
stimuli. Reaction times weremeasured from the target onset to a key
press (F or T) on the controller. We only included trials with correct
answers (e.g., target F, key press F) as incorrect answers could have
biased the results.

2.4.2 Gaze-cueing effect
We calculated the gaze cueing effect (GCE) by subtracting mean

reaction times of congruent trials from the mean reaction times of
incongruent trials.

2.4.3 Saccadic latency
As an overt attentional measure, saccadic latency was measured.

This describes the time elapsing between the appearance of the target
letter and the initiation of the orienting saccade away from the cue
stimulus. It serves as an indicator of attention directing properties
of the cue stimulus and describes how long a disengagement of
attention from the cue stimulus took (e.g., Admoni and Scassellati,
2017). Fixations were detected using a dispersion based algorithm
with 0.5° and 120 ms as spatial and temporal thresholds. Saccade
initiation was defined as the first sample captured outside the
fixation area (Nyström and Holmqvist, 2010).

2.4.4 Social attributes
On an explorative basis, we were further interested in how a

robot having incorporated the stimulus designs would be perceived.
A positive perception of the overall robot design is a crucial
precondition for an implementation of such designs in terms of
user acceptance. Accordingly, we presented the different stimulus
designs as part of an image of an industrial collaborative robot
(Sawyer, Rethink Robotics, Figure 2) and asked participants to fill in
the Robotic Social Attributes Scale (RoSAS; Carpinella et al., 2017).
The RoSAS consists of a total of 18 adjectives and three subscales:
warmth, competence and discomfort. Participants have to indicate
how closely each adjective is associated with the robot image on a
7-point Likert scale from 1 (definitely not associated) to 7 (definitely
associated).

2.5 Procedure

Participants were randomly assigned to one of the four between-
subject conditions. Upon arrival at the lab, participants received
detailed information about the study and data handling. After
giving their informed consent, they received instructions for the
experiment and started with two training sessions that familiarized
them with the task. The first training comprised 12 trials during
which a letter (T or F) appeared centrally on the screen. Participants
were instructed to place their index fingers on the directional pads
of the controller (left shoulder key for F, right shoulder key for T)
and to react upon seeing the letters, using the respective keys. The
letter changed its color from white to green upon correct response

and from white to red, indicating an incorrect reaction.The aim of
this training was to get participants used to the key presses without
having to shift their gaze to the controller. During the 40 trials of
the second training, participants practiced the experimental task.
They were told they would look into a room in which a display was
hanging at the back wall (see Figure 1). The appearance of a fixation
cross started a trial. After each trial an inter-trial interval of 200 ms
elapsed before the next trial began. After completing the second
training, themain test procedure started, consisting of 304 trials.The
training did not include incongruent trials and participants were not
told that there would be incongruent trails during the experiment.
The time course followed in each trial of the second training and the
test procedure is shown in Figure 1. Upon successful completion of
the actual experiment, in a last step, participants were asked to fill
in remaining questionnaires (sociodemographics & RoSAS). Only
for the RoSAS, we presented a contextualized version of the stimulus
design as part of the industrial robot Sawyer (Figure 2).Themain test
(spatial cueing paradigm) was done without depicting a robot but
only a screen featuring the stimulus (Figure 1). The entire procedure
took approximately 45 min.

3 Results

The descriptive data for all three dependent variables are
reported for each stimulus condition in Table 2.

TABLE 2 Means (and SD) in ms for Reaction Time, Saccadic Latency and Gaze
Cueing Effect.

Reaction time N

Cued Uncued

Stimulus type M SD M SD

Arrow 693.57 51,70 823,67 88,24 9

Pixel 683,28 64,83 802,14 66,81 10

Cross 641,82 66,81 781,23 80,00 9

Human 724,90 76,51 900,05 92,37 11

Saccadic Latency N

Cued Uncued

M SD M SD

Arrow 287,38 18,44 282,45 21,56 9

Pixel 267,63 21,53 297,29 21,39 10

Cross 273,37 11,17 283,07 19,46 9

Human 293,44 17,99 293,71 18,05 11

Gaze Cueing Effect N

M SD

Arrow 133,95 45,55 9

Pixel 124,86 45,55 10

Cross 143,83 46,84 9

Human 181,54 61,14 11
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3.1 Reaction time

Results are depicted in Figure 3. Reaction times were longer
in incongruent trials (M = 829.89 ms; SD = 97.95 ms) compared
to congruent trials (M = 687.82 ms; SD = 70.36 ms). This was
supported by a main effect of trial congruency, F (1,70) = 61.91,
p < 0.001, ηp

2 = 0.469.
The data also revealed a significant main effect of stimulus

type, F (3,70) = 11.78, p = 0.001, ηp
2 = 0.200. In congruent

as well as incongruent trials, the human eyes led on average to
the longest reaction times (M = 812.47 ms; SD = 122.00 ms).
The anthropomorphic cross condition elicited the fastest reactions
(M = 711.52 ms; SD = 101.27 ms). No interaction effect was found
(F < 1).

Bonferroni corrected post hoc comparisons showed that only
the anthropomorphic cross design (mean difference −100.95 ms,
p = 0.001) and the pixel design differed significantly from the
human eye stimuli (mean difference −53.85 ms, p = 0.033) whereas
no significant difference emerged between human eyes and arrow
stimuli.

3.2 Gaze-cueing effect

The mean values for the GCE differed gradually, descriptively
decreasing from human stimuli (M = 181.54, SD = 61.14) over
anthropomorphic cross design (M = 143.83, SD = 46.84) and arrows
(M = 133.95, SD = 45.55) to the anthropomorphic pixel condition
(M = 124.86, SD = 45.55). The univariate ANOVA however did

FIGURE 3
Reaction times for cued and uncued trials for the different stimulus type conditions. Error bars represent standard deviations.

FIGURE 4
Saccadic latencies for congruent and incongruent trials for the different stimulus type conditions. Error bars represent standard errors.
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TABLE 3 Cronbach’s alpha, mean ratings (and SD) for the RoSAS.

Warmth Competence Discomfort

Cronbach’s alpha 0.85 0.83 0.90

Stimulus Type M SD M SD M SD N

Arrow 2.00 0.77 4.77 1.14 2.11 0.86 9

Pixel 3.23 1.21 4.15 1.08 2.85 1.52 10

Cross 3.04 0.74 5.61 0.51 2.00 1.27 9

Human 2.79 1.35 4.88 0.95 2.33 1.08 11

not support this descriptive pattern as no significant main effect of
stimulus type was found for GCE, F (3,35) = 2.16, p = 0.110.

3.3 Saccadic latency

Similar to the manual reaction times via key press, human
eyes appeared to produce the longest (visual) reaction times in
both congruency conditions (Figure 4; Mcongruent = 293.44 ms;
SDcongruent = 17.99 ms; Mincongruent = 293.71 ms; SDincongruent =
18.05 ms).The descriptive data of the congruent trials also indicated
the second longest times for the arrow eyes (M = 287.38 ms;
SD = 18.44 ms) and, at some distance, the anthropomorphic
stimuli both followed at about the same level with the lowest
values (Mcross = 273.37 ms; SDcross = 11.17 ms; Mpixel = 267.63 ms;
SDpixel = 21.53 ms). For incongruent trials, the difference between
the arrow condition (M = 282.45 ms; SD = 21.56 ms) and the
abstract anthropomorphic eyes (M = 293.71 ms; SD = 18.05 ms)
appeared less evident. Overall, saccadic latency plausibly appeared
to be independent of trial congruency.

The two-factorial ANOVA did not show a significant impact
of trial congruency on saccadic latencies, F (1,70) = 0.94, p =
0.337, but a significant effect of stimulus type, F (3,70) = 4.40,
p = 0.007, ηp

2 = 0.159. Bonferroni corrected post hoc pairwise
comparisons detailed this effect and revealed significant differences
only between the human stimuli and the anthropomorphic
pixel design (p = 0.006). All other comparisons did not reach
significance.

3.4 Social attributes

Results of the RoSAS are displayed in Table 3. On the warmth
dimension, participants rated the two anthropomorphic stimulus
designs highest while arrows received the overall lowest ratings. The
ANOVA, however, did not reveal significant differences between the
conditions, F (3,35) = 2.33, p = 0.091.

The perceived competence subscale showed substantial
differences for the stimulus designs, F (3,35) = 3.72, p = 0.020, ηp

2 =
0.242. This was due to the high competence ratings of the cross
design. Post hoc tests with Bonferroni correction further showed
a significant difference of this design compared to the pixel design
that was perceived least competent (p = 0.010).

With regard to the perceived discomfort of the overall robot’s
design, the different stimulus types did not significantly change
participants’ perception, F (3,35) = 0.93, p = 0.436.

4 Discussion

This study aimed to validate findings of a previous online
study on the effectiveness of different directional stimuli regarding
reflexive attention allocation (Onnasch et al., 2022) in a highly
controlled laboratory environment and to further deepen insights
by introducing direct attentional measures via eye-tracking. Both
studies investigated how directional stimuli should be designed
for a potential use on a collaborative industrial robot to enable
human interaction partners to predict the robot’s movements in a
cognitively efficient way.

As expected, and in line with the previous online study, a
congruency effect could be demonstrated for all four stimulus types.
Subjects reacted faster to targets that were correctly indicated by the
gaze direction of the stimuli (cued trials) than to those indicated in
the opposite direction (uncued trials). This means that all stimulus
types were essentially able to support the subjects’ attentional
orientation. Such a congruency effect has been demonstrated
several times before for different directional cueing stimuli (e.g.,
Admoni et al., 2011; Chaminade andOkka, 2013;Wiese et al., 2018).

However, a closer look at the reaction times revealed surprising
differences in how efficiently the guidance of the subjects’ attention
could be supported. Whereas no differences emerged for the GCE,
the two abstract anthropomorphic eye designs each resulted in the
shortest reaction times in cued trials. The current findings therefore
support results from the previous online study, which also revealed
the fastest reaction times for the abstract anthropomorphic eyes.
In the current study, these findings were further underlined by
the subjects’ eye movements. For both anthropomorphic stimulus
designs saccadic latencieswere descriptively shorter compared to the
arrows and the human eyes. A significant difference to the human
eye design emerged however, only for the pixel design. Results of
the current and the online study therefore conflict with studies that
consider human eyes to be the strongest stimulus to reflexively direct
the visual attention of an interaction partner due to their biological
and social relevance (Tipper et al., 2008). The results also contradict
studies that observed slower responses in direct comparisons of
human and robotic eyes (Bonmassar et al., 2019).

Also, for the uncued trials, either of the anthropomorphic eye
designs led to shorter reaction times compared to human eyes,
and one of the anthropomorphic designs (cross) produced shorter
saccadic latencies. Hereby results differ from the online study. As
we did not change the stimuli it is hard to explain why the abstract
anthropomorphic eyes supported attentional shifts in both, cued
and uncued trials. This pattern of results is in contrast to the key
mechanism of reflexive gaze cueing, which should always reveal
shorter reaction times in cued trials compared to non-reflexive
gaze cueing, but longer reaction times in invalid trials because of
the higher effort to disengage attention (Ricciardelli et al., 2002;
Friesen et al., 2004; Ristic and Kingstone, 2005). Thus, results still
have to be further validated by future research to see whether
abstract anthropomorphic eyes are the silver bullet in gaze cueing
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inducing only beneficial effects or whether the current results for
the uncued trials do not represent a valid finding.

As was already discussed in more detail for the online study
(Onnasch et al., 2022), the overall slower reactions to the human
stimuli might have been due to a lack of saliency compared to the
other stimuli because they were smaller (although the overall image
size was the same) and less rich in contrast compared to the other
cues. But this seems to be only half of the story, because if this
was the exclusive driving force for the superior processing of the
abstract anthropomorphic eyes then this should have also applied
for the chunky, but purely symbolic arrows. Since this was not the
case, it seems reasonable that the abstract anthropomorphic eyes
combined best of both worlds. The anthropomorphic eye design
triggered a social and therefore reflexive processing of the stimuli
(Tomasello et al., 2007) while at the same time being easier to
perceive than human eyes due the high contrast imagery.

To summarize results on reaction times and saccadic latencies,
the findings are in favor of the abstract anthropomorphic eye
designs as these eye gaze prototypes performed best in the cueing
of attention.

The explorative analyses on the robot’s overall perception with
the according stimulus prototypes favor an anthropomorphic
eye design, too. Whereas no stimulus design discomforted
participants, they attributed more competence to a robot with an
anthropomorphic cross eye design. The perceived warmth of the
robot was not significantly different but again descriptively higher
for the anthropomorphic designs.

A clear limitation of this study is the small sample size.We aimed
at 80 participants for a sufficient statistical power but had to halve the
sample size because of an ongoing lockdown due to the COVID-19
pandemic. Some of the reported results just missed the conventional
level of significance, which could have been a consequence of
the small sample. Further studies are needed to replicate the
current design with sufficient power. Another drawback with regard
to transferability of results is that we used a highly controlled
computer-based paradigm instead of engaging participants in an
interaction with an actual robot. Our results therefore have to be
interpreted as a first step to identify directional stimuli for robot
design that support humans’ smooth attention reallocation in order
to improve coordination inHRI.The current study did not represent
a real human-robot collaboration. Naturalistic follow-up studies
will have to validate the results in a real-world interaction and
investigate whether the benefits of abstract anthropomorphic eyes
persist and effectively ease the prediction of robot movements. In
an actual working situation where people have to focus on other
elements (such as assembly tasks), results may differ significantly
which underlines the importance of more research. Another point
to be considered in future studies is to parametrize and empirically
explore the differences between the stimulus designs to better
understand the underlying mechanisms leading to the observed
effects. Lastly, since the stimulus condition was varied between
subjects, no statement can be made about possible interindividual
differences.

In sum, the current study supported previous findings of the
online study, showing a clear tendency for superior processing
of abstract anthropomorphic eyes. Both of the abstract eye gaze
prototypes performed well in attentional cueing, yet, as the results
were not consistent across all measures, neither of the prototypes

stands out in particular. However, one of the designs received
higher competence ratings, which makes it seem appropriate for
the implementation in work-related settings. These insights on
predictive visual stimuli are a first step to translate basic social
mechanisms into useful design recommendations to ease the
coordination in HRI.
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Anthropomorphic framing and
failure comprehensibility
influence different facets of trust
towards industrial robots

Eileen Roesler*

Department of Psychology, George Mason University, Fairfax, VA, United States

Introduction: Utilizing anthropomorphic features in industrial robots is a
prevalent strategy aimed at enhancing their perception as collaborative team
partners and promoting increased tolerance for failures. Nevertheless, recent
research highlights the presence of potential drawbacks associated with this
approach. It is still widely unknown, how anthropomorphic framing influences
the dynamics of trust especially, in context of different failure experiences.

Method: The current laboratory study wanted to close this research gap.
To do so, fifty-one participants interacted with a robot that was either
anthropomorphically or technically framed. In addition, each robot produced
either a comprehensible or an incomprehensible failure.

Results: The analysis revealed no differences in general trust towards
the technically and anthropomorphically framed robot. Nevertheless, the
anthropomorphic robot was perceived as more transparent than the technical
robot. Furthermore, the robot’s purpose was perceived as more positive after
experiencing a comprehensible failure.

Discussion: The perceived higher transparency of anthropomorphically framed
robots might be a double-edged sword, as the actual transparency did not
differ between both conditions. In general, the results show that it is essential
to consider trust multi-dimensionally, as a uni-dimensional approach which is
often focused on performance might overshadow important facets of trust like
transparency and purpose.

KEYWORDS

human-robot interaction, trust, multi-dimensional trust, anthropomorphism, failure
experience

1 Introduction

Industrial robots are increasingly working hand in hand with their human coworkers.
Hand in hand can be meant literally here, as close collaboration requires physical and
temporal proximity (Onnasch and Roesler, 2021). For efficient collaboration, humans
have to trust the robotic interaction partner (Hancock et al., 2011; Sheridan, 2016). While
human-robot trust research is still an evolving field, trust has been studied extensively in
human-automation and human-human interaction, both fields that are strongly related to
human-robot interaction (HRI) (Lewis et al., 2018). Most theoretical models of trust in
automation as well as trust in humans consider trust as multi-dimensional. For instance, for
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trust in automation, (Lee and See, 2004), performance, purpose, and
process are described as separate dimensions of trust. Even though a
transferability of these dimensions to human-robot trust is assumed
(Lewis et al., 2018), recent research focused on using single-items
of trust (e.g., Salem et al., 2015; Sarkar et al., 2017; Roesler et al.,
2020; Onnasch and Hildebrandt, 2021) or uni-dimensional trust
questionnaires (e.g., Sanders et al., 2019; Kopp et al., 2022). These
approaches are not able to capture different dimensions, and thus
cannot contribute much to a more detailed understanding of the
underlying determinants of trust and trust dynamics in interaction
with robots.

The multi-dimensional trust-in-automation questionnaire
(MTQ) originally proposed by Wiczorek (2011) and translated,
adapted, and validated by Roesler et al. (2022a) might also be
used for investigating trust in HRI. Theoretically, it is based on
the concept of Lee and See (2004) and assesses the dimensions
performance, utility, purpose, and transparency. This allows for
a more fine-grained assessment of trust in order to gain a better
understanding of which trust dimensions are impacted from a
given characteristic of a robot. Factors on part of the robot that
influence trust can be classified as performance- and attribute-based
characteristics (Hancock et al., 2011). In particular, performance-
based factors such as reliability are the largest current influence
on perceived trust in HRI. However, actual reliability is rarely
correctly weighted for the formation of trust (Rieger et al., 2022).
One decisive factor for this discrepancy could be the type of
error experienced in the interaction (Madhavan et al., 2006). In
particular, obvious failures made by a robot might dramatically
reduce trust as expectations are violated (Madhavan et al.,
2006). Based on this easy-error hypothesis in human-automation
interaction, we hypothesized a comparable pattern in HRI. Thus,
we assumed that comprehensible failures that might happen
to humans as well are more forgivable than incomprehensible
failures.

This effect could even be enhanced by one of the
most popular design features in HRI—the application of
anthropomorphic characteristics (Salem et al., 2015; Roesler et al.,
2021). Anthropomorphism by design refers to the incorporation
of human-like qualities and characteristics into the design and
behavior of robots (Fischer, 2021). Anthropomorphic design
extends beyond mere robotic appearances, encompassing elements
such as communication, movement dynamics, and contextual
integration (Onnasch and Roesler, 2021). Different factors
collectively contribute to shaping perceived anthropomorphism of a
robot. Even something subtle like an anthropomorphic framing
of a robot can serve as a trigger that activates human-human
interaction schemes (Onnasch and Roesler, 2019; Kopp et al., 2022).
Due to the activation of humanlike expectations, failures that
might have happened to a human as well [i.e., comprehensible
failures (Madhavan et al., 2006)] could lead to less pronounced trust
decrease in the anthropomorphically compared to the technically
framed robot.

In addition to this presumed positive effect, anthropomorphism
also comes with it potential pitfalls, especially in industrial HRI.
In this application domain, anthropomorphism can undermine
the perceived tool-like character of the robot, which can result in
lower trust and perceived reliability (Roesler et al., 2020; Onnasch
and Hildebrandt, 2021). The results in regard to anthropomorphic

framing are currently mixed in task-related interactions (Onnasch
and Roesler, 2019; Roesler et al., 2020; Kopp et al., 2022). Whereas
studies which combined anthropomorphic framing and appearance
in industrial HRI found negative effects (Onnasch and Roesler,
2019; Roesler et al., 2020), another study which investigated
anthropomorphic framing without an exposure to an industrial
robot found a positive effect on trust (Kopp et al., 2022). However,
thiswas only the case if the anthropomorphic framingwas combined
with a cooperativeness framing (Kopp et al., 2022). As participants
in this study were exposed to an actual robot and no additional
framing in regard to the cooperativeness was given, it might be
assumed that the possible mismatch of appearance, context, and
framing reduces trust (Goetz et al., 2003; Roesler et al., 2022b).
Thus, we hypothesized that anthropomorphic framing of an
industrial robot leads to lower initial and learned trust compared to
technical framing.

To investigate the joint effects of failure comprehensibility and
anthropomorphic framing, we conducted a laboratory experiment.
Participants collaborated with an industrial robot in a collaborative
task. The robot either had an anthropomorphic framing or a
technical framing based onperceived human-likeness framings used
by Kopp et al. (2022). The dynamics of trust were investigated by
measuring trust once initially before the actual collaboration started,
after a period of perfectly reliable robotic performance, and after
the experience of a failure, which was either comprehensible or
incomprehensible.

2 Methods

The experiment was preregistered via the Open Science
Framework (OSF) (https://osf.io/nvmqk) and approved by the local
ethics committee. Also the collected data can be assessed via theOSF
https://osf.io/2vzxj/.

2.1 Participants

The sample consisted of 51 participants (Mage = 26.94; SDage
= 7.72) who were recruited via the participant pool of the local
university and online postings. Of those participants, 50.98% were
female, 47.06% male, and 1.96% non-binary. Participants signed
consent forms at the beginning of the experiment and received five
Euros as compensation at the end of the experiment. Due to time
constraints of the project, we were unable to achieve the intended
sample size as planned and preregistered. Hence, it is crucial to
consider the issue of limited statistical power.

2.2 Task and materials

The aim of the human-robot collaboration was to solve multiple
times a four-disk version of the Tower of Hanoi together with the
industrial robotPanda (Figure 1). In thismathematical game, a stack
of disks has to be moved from the leftmost to the rightmost peg
by carrying only one disk at a time and never dragging a larger
disk on a smaller one in the fewest possible moves. The tower
was situated in front of the robot vis-à-vis the participant. The
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FIGURE 1
Photograph from a participant’s perspective of the shared
human-robot workspace (© W. Richter received via https://
www.tu.berlin/themen/campus-leben/roboter-mit-fehlern).

required movement sequences of the robot were preprogrammed
and included movements in the following chronology. First, the
robot moved toward one peg as a sign to remove the top disk from
this peg. Subsequently, the robot moved toward another peg as a
prompt to place the previously picked disk there. Afterward, the
robot moved back to the resting position to start the next sequence.
The participant’s task was to move the disks by following exactly
the robot’s directives to solve the Tower of Hanoi in an optimal
sequence. Moreover, the participant had the task to monitor the
robot’s behavior by comparing the steps shown by the robot with
an optimal procedure. The participants received a printed copy
of the precise instructions of the Tower of Hanoi as can be seen
on the table in Figure 1. Whenever the robot deviated from the
optimal procedure, the participants needed to intervene by pushing
a (mock-up) emergency button.

2.3 Dependent variables

Single items were used to assess general trust (How much do
you trust the robot?) and reliability (How reliable is the robot?)
both assessed on a scale from 0 to 100. In addition, the MTQ with
four subscales (i.e, performance, utility, purpose, transparency) was
assessed via 16 items (e.g., The way the system works is clear to me.)
on a four-point Likert scale from disagree to agree (Wiczorek, 2011;
Roesler et al., 2022a). Both the German and English versions of the
questionnaire can be accessed through the OSF via https://osf.io/
56cwx/.

To prevent confounding effects of participants’ interindividual
differences we included two control variables. First, the disposition
to trust technology was assessed (Lankton et al., 2015). Second,

we asked participants to fill in a 5-item short version of the
Interindividual Differences in Anthropomorphism Questionnaire
Waytz et al. (2010). The short version comprised solely of items
that directly addressed technological aspects (To what extent does
technology—devices and machines for manufacturing, entertainment,
and productive processes (e.g., cars, computers, television sets)—have
intentions?).

To test whether the manipulation of anthropomorphism
via framing was successful we incorporated a self-constructed
questionnaire with ten items that addressed aspects of
anthropomorphic context (e.g., the character, task, and preferences
of the robot). All items were rated on a 0%–100% human-likeness
scale. The manipulation of failure comprehensibility was checked by
asking the participants to rate on a five-point Likert scale whether
they too could have committed the failure (Roesler et al., 2020).

2.4 Procedure

All participants were randomly assigned to one of the four
conditions and received corresponding written instructions
including the framing of the robot. After filling out the initial
questionnaire compromising single items of trust and perceived
reliability, participants were informed that they will be working
together with the robot for three blocks each including three Towers
of Hanoi. After the first fault-free block, again the single items
of trust and perceived reliability were assessed. The next block
started and in the second block, either a comprehensible failure (i.e.,
showing the wrong position of a disc without the violation of rules)
or an incomprehensible failure (i.e., showing the wrong position of a
disc and breaking the rule of never putting a large disc on a smaller
one) occurred. After the failure experience, participants needed to
push the (mock-up) emergency button.This was done to ensure that
all participants realized the failure. Subsequently, the single items
of trust and perceived reliability, the MTQ, sociodemographics,
control variables, and manipulation checks were measured.
After this, all participants were debriefed and obtained the 5
Euro compensation. The entire experiment lasted approximately
35 min.

2.5 Design

The study consisted of a 2 × 2 × 3 mixed design with the
two between-factors robots framing (anthropomorphic vs technical)
and failure comprehensibility (low vs high) and the within-factor
experience (initial vs pre failure vs post failure).

The different robot framing conditions were implemented via
written instructions (Kopp et al., 2022). In the anthropomorphic
conditions, the robot was framed as a colleague and namedPaul with
humanlike characteristics. In contrast, in the technical conditions,
the framing characterized the robot as a tool with some technical
specifications and the model name PR-5. The framings can also
be accessed via the OSF (https://osf.io/3xgcp). The failures were
represented by wrong instructions on part of the robot. The
comprehensibilitywasmanipulated by the obviousness of the failure.
In incomprehensible conditions, the robot suggested moving a
bigger disk on a smaller one, which is forbidden by the general rules
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of the Tower of Hanoi. In the comprehensible conditions, the robot
suggested a wrong position of a disk without breaking a general
rule.

3 Results

3.1 Control variables

First, the variables regarding the individual differences
concerning attitudes toward technology and tendency to
anthropomorphize were analyzed between the four conditions
using one-way ANOVAs. The analyses revealed no significant
differences between the four groups in the disposition to trust
technology (F(3,47) = 1.25; p = .303), as well as the tendency to
anthropomorphize (F(3,47) = 2.48; p = .072).

3.2 Manipulation check

To investigate whether the manipulations were successful,
independent t-tests were conducted. Surprisingly, the
anthropomorphically framed robot was not perceived as
significantly more anthropomorphic on the self-constructed scale
compared to the technically framed one (t(49) = 0.34; p = .732).
Moreover, the comprehensible and incomprehensible failures did
not lead to a different understandability of the failure (t(49) = −0.96;
p = .341).

3.3 Initial trust

Initial trust and perceived reliability were analyzed in regard
to differences between differently framed robots via independent

t-tests. The analyses revealed neither a difference in general trust
(t(49) = −0.63; p = .529) nor in perceived reliability (t(49) = 1.48;
p = .145) between the framing conditions.

3.4 Learned trust

General trust and perceived reliability were analyzed via
2 × 2 × 2 mixed ANOVAs with the between-factors framing
(anthropomorphic vs technical) and failure comprehensibility
(low vs high) as well as the within-factor failure experience (pre-
vs. post-failure). The analysis of trust revealed only a significant
main effect of failure experience (F(1,47) = 40.73; p < .001)
with higher trust before (M = 84.75; SD = 17.90) compared to
after the failure experience (M = 64.31; SD = 24.65). No further
main or interaction effects were revealed in the analysis (all
ps > .068). A comparable pattern of results was revealed for
perceived reliability. Again, a significant main effect of failure
experience was found (F(1,47) = 71.15; p < .001). Participants
perceived the robot prior failure experience (M = 93.51; SD = 8.94)
as significantly more reliable than after failure experience
(M = 66.16; SD = 23.65). No further effects were revealed
(all ps > .349).

As the MTQ was measured after failure experience 2
× 2 between-factors ANOVAs with the factors framing
(anthropomorphic vs technical) and failure comprehensibility
(low vs high) were used. Neither the analysis of the performance
scale nor the analysis of the utility scale revealed any
significant effects (all ps > .132). However, the analysis of
the purpose scale showed a significant main effect of failure
comprehensibility (F(1,47) = 6.20; p = .016) depicted in Figure 2
(left). Incomprehensible failures (M = 3.05; SD = 0.54) received
significantly lower scores on this scale compared to comprehensible
failures (M = 3.38; SD = 0.35). Moreover, the analysis of the

FIGURE 2
Means, standard errors and exact values of each participant for the type of failure concerning purpose (left) and the framing concerning transparency
(right).
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transparency scale revealed a significant main effect of robot
framing (F(1,47) = 7.08; p = .011) as can be seen in Figure 2
(right). The anthropomorphically framed robot (M = 3.02;
SD = 0.52) was perceived as significantly more transparent than the
technically framed one (M = 2.59; SD = 0.62). No further significant
effects were revealed for the purpose and transparency scale
(all ps > .161).

4 Discussion

The purpose of the presented study was to examine the joint
effects of anthropomorphic robot framing and the experience
of more or less comprehensible failures on human trust in a
realistic industrial human-robot collaboration. Based on previous
research in task-related HRI (Onnasch and Roesler, 2019;
Roesler et al., 2020; Onnasch and Hildebrandt, 2021) it was
assumed that anthropomorphic framing would lead to lower
trust and perceived reliability compared to a technical framing.
The present results were not consistent with this claim, as no
significant differences in initial and learned trust as well as perceived
reliability were revealed. This might be explained by the interplay
of framing and appearance. Earlier studies in industrial HRI
manipulated framing and appearance together (Roesler et al., 2020;
Onnasch and Hildebrandt, 2021). The comparison to the current
results could indicate that the negative effect of the decorative
anthropomorphism in industrial HRI might be mainly attributable
to appearance rather than to framing. In addition, recent research of
Kopp et al. (2022) showed a positive effect of anthropomorphic
framing on trust in industrial HRI if the relation is perceived
as cooperative. Even though it often remains unclear if and why
people perceive the relation to an industrial robot in a cooperative
or competitive manner (Oliveira et al., 2018), our interaction
scenario was designed in a cooperative way. This might explain
why anthropomorphic framing was influencing at least one facet of
trust—transparency.

As anthropomorphism is assumed to activate well-known
human-human interaction scripts, knowledge about the otherwise
highly unknown novel technology is elicited (Epley et al., 2007).The
imputation of human-like functions and behaviors can thus reduce
uncertainty and, in this case, increase perceived transparency. Of
course, this is a double-edged sword, as perceived transparency does
not refer to actual transparency in this case. The illusion of higher
transparency might even lead to unintentional side effects, such as
a wrong mental model of the robot. In terms of future research, it
would be important to consolidate the current findings by further
examining the effect of anthropomorphic framing on transparency.
However, the general effectiveness of framing in regard to human-
robot trust should be interpreted with caution as no significant
results were revealed for general trust and the other subscales of
the MTQ. This pattern of results is consistent with a current meta-
analysis showing no significant effect of context anthropomorphism
for subjective as well as objective outcomes (Roesler et al., 2021).
However, the meta-analysis has shed light on a notable research
gap concerning anthropomorphic context, which has received
comparably less attention than studying the effectiveness of robot
appearances. The findings of this study, coupled with insights from
Kopp et al. (2022) ’s previous work, tentatively suggest a potential

effectiveness of anthropomorphic framing for industrial HRI in
regard to trust. The previous and current results underscore
the necessity for further exploration and empirical investigation
of possible benefits of anthropomorphic framing in industrial
HRI.

Therefore, it might be not surprising that3no interaction
effect of framing and failure comprehensibility was found. The
possible effect might have been covered by the rather non-
salient manipulations of both anthropomorphism and failure
comprehensibility.This assumption is further supported by the non-
significant manipulation checks for both variables. Nonetheless,
the comprehensibility of failures did significantly influence the
perceived purpose of the robot. Purpose refers to motives,
benevolence, and intentions (Lee and See, 2004) and not to
the performance of the interaction partner. This leads to the
assumption that failure number and types affect different facets of
trust.

Both the result that anthropomorphic framing and failure
comprehensibility can affect different dimensions of trust but
not general trust shows the importance to integrate multi-
dimensional approaches to investigate trust in HRI. Uni-
dimensional trust measures most commonly relate to performance
aspects (Roesler et al., 2022b). Even though performance-attributes
of a robot are one of the most important determinants of trust,
they are by far not the only one (Hancock et al., 2011). Therefore,
it is highly relevant to also include trust facets that go beyond
performance. Thus, future research should include a multi-
dimensional view at trust, particularly with novel embodied
technologies like robots.

Although the generality of the current results must be
established by future research, especially with bigger samples sizes
to investigate the joint effect of both factors, the present study has
provided clear support that uni-dimensional trust measurements
might overshadow certain important facets of trust. Not only was
anthropomorphic framing leading to higher transparency compared
to technical framing, but more comprehensible failures to more
perceived purpose of the robot compared to incomprehensible
failures. Furthermore, this research opens up multiple avenues for
future research to investigate more detailed different dimensions of
trust.
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Introduction: Thanks to technological advances, robots are now being used
for a wide range of tasks in the workplace. They are often introduced as team
partners to assist workers. This teaming is typically associated with positive
effects on work performance and outcomes. However, little is known about
whether typical performance-reducing effects that occur in human teams also
occur in human–robot teams. For example, it is not clear whether social loafing,
defined as reduced individual effort on a task performed in a team compared to
a task performed alone, can also occur in human–robot teams.

Methods: We investigated this question in an experimental study in which
participants worked on an industrial defect inspection task that required them to
search for manufacturing defects on circuit boards. One group of participants
worked on the task alone, while the other group worked with a robot team
partner, receiving boards that had already been inspected by the robot. The robot
was quite reliable andmarked defects on the boards before handing themover to
the human. However, it missed 5 defects. The dependent behavioural measures
of interest were effort, operationalised as inspection time and area inspected on
the board, and defect detection performance. In addition, subjects rated their
subjective effort, performance, and perceived responsibility for the task.

Results: Participants in both groups inspected almost the entire board surface,
took their time searching, and rated their subjective effort as high. However,
participants working in a team with the robot found on average 3.3 defects.
People working alone found significantly more defects on these 5 occasions–an
average of 4.2.

Discussion: This suggests that participants may have searched the boards less
attentively when working with a robot team partner. The participants in our study
seemed to have maintained the motor effort to search the boards, but it appears
that the search was carried out with less mental effort and less attention to
the information being sampled. Changes in mental effort are much harder to
measure, but need to be minimised to ensure good performance.

KEYWORDS

human–robot interaction, team effects, motivation, social loafing, quality control,
sequential redundancy
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1 Introduction

Traditionally, robots have worked with little or no interaction
with human colleagues for safety reasons. In the automotive sector,
for example, the payload and speed of large single-arm robots
handling body parts pose a serious risk to humanworkers. However,
there is also an emerging trend to bring humans and robots closer
together, both physically and temporally, offering a wealth of new
applications (Restrepo et al., 2017). This structural shift from a
separate workspace to a shared workspace with cooperative or
collaborative facets resembles a paradigmatic change. While the
human–robot relationship with conventional robots can be well
described as a tool-operator relationship, the relationship with
robots designed to work alongside humans increasingly resembles
that of human teamwork, including its forms of interaction
(Wiltshire et al., 2013; Lewis et al., 2018; Onnasch and Roesler,
2021). Examples of existing human–robot teams can be found
in warehouses, where robots and humans work together to pick
items for shipping, in complex final-assembly tasks in automotive
manufacturing, or in quality control of manufactured goods. While
such human–robot teaming can also help to compensate in sectors
affected by a shortage of human labor (Wisskirchen et al., 2017),
it is most often intended to increase the efficiency and ease of
work for humanworkers (e.g., Lefeber et al., 2017; Neto et al., 2019).
Moreover, some robots are specifically designed to complement
human skills in order to optimize work outcomes (e.g., Wischmann,
2015). An example of such human–robot interaction (HRI) can be
found in the increasingly digitized quality inspection of electronic
components. Here, for example, robotic arms are used to scan welds
and seams with profile sensors to detect cracks or other defects in
the components (e.g., Brito et al., 2020). These systems are getting
better and better, with powerful sensor technology that surpasses
human vision, especially in terms of endurance, but sometimes also
in terms of accuracy. Occasionally, however, these robotic vision
systems can miss the finest cracks or mistake small grains of dust
or oil residue for very fine cracks. These are conditions that humans
can often distinguish relatively well. Using human–robot teams in a
way that exploits the complementary strengths and skills of humans
and robots therefore has great potential for optimizing work results
in this case.

In addition, teamwork can improve work outcomes beyond
simply combining complementary strengths. In human teams,
where more than one person is responsible for completing a task,
several positive effects on individual performance can occur. For
example, people show increased levels of effort and performance
when performing simple and well-trained tasks in the presence
of others compared to when they are alone—a phenomenon
called social facilitation (e.g., Triplett et al., 1898; Zajonc, 1965).
Positive social-competition effects can also enhance performance
in human teams, when individuals want to outperform each other
on tasks where individual contributions to the task are recognizable
(Stroebe et al., 2018). Such performance-enhancing team effects
may also occur in human–robot teams, as it has been found that
humans easily perceive computers as team partners (Nass et al.,
1996) and tend to apply social rules, expectations, and behavioral
patterns from human interaction also to human–computer
interaction (Nass and Moon, 2000), such as gender categorization
(Perugia et al., 2022; Roesler et al., 2022) or the use of forms of

politeness (Liu et al., 2013; Salem et al., 2014; Babel et al., 2022).
There are first studies that have investigated social facilitation in
HRI (e.g., Woods et al., 2005; Riether et al., 2012; Wechsung et al.,
2014; Hertz and Wiese, 2017). For example, Riether et al. (2012)
compared task performance on simple and complex cognitive and
motor tasks between individuals working alone or in the presence
of a human or a robot. The results showed significant evidence for
the predicted social-facilitation effects for both human and robot
presence compared to an alone condition. This research shows that
typical social effects of human groups can indeed occur in HRI as
well.

However, in addition to these positive team effects, there can also
be losses for teams. A well-studied phenomenon in human teams
is social loafing (Latané et al., 1979; Harkins and Szymanski, 1989;
Comer, 1995). It is defined as a lower individual effort on a task
performed in a team than on a task performed alone (Karau and
Williams, 1993). It has been found that this lower effort is not only a
consequence of insufficient team coordination, but also of a change
in motivation in shared task settings (Steiner, 1972; Ingham et al.,
1974). Social loafing is strongly associatedwith a lower identifiability
of individual contributions and reduced evaluation potential in
teamwork, leading to a reduction in motivation (Karau and
Williams, 1993). This effect is further moderated by factors such as
task valence, coworker performance expectations, and uniqueness
of individual task contributions (Karau and Williams, 1993).
Specifically, social loafing is higher when the evaluation potential
is low, when the task has low perceived value, when a coworker
performs well on the task, and when task inputs of the group
members are redundant. Social loafing in human teams occurs
across different task types and group sizes—even in small teams
consisting of only two people (Cymek, 2018; Cymek and Manzey,
2022). For example, in a study by Cymek and Manzey (2022), social
loafing was found when two people double-checked the quality of
chemical products one after the other. When individuals in the
second position in the quality check experienced that the first
person was working almost error-free, they checked the quality less
often over time and therefore missed more undetected defects than
individuals who did the quality check alone. This was expected
because the individual performance of the preceding team partner
was transparent to the person conducting the checks in the second
position, so that the latter’s effort, which is difficult to decipher from
the team’s performance anyway, provided only incremental benefit
to task completion, thus reducing motivation.

The question of whether this tendency to withhold effort during
a collective task with shared output is also relevant to HRI has
not yet received much attention. Of course, social loafing may not
occur in all forms of HRI. Schmidtler et al. (2015) distinguished
three interaction classes of task-related HRI based on working
time, workspace, aim, and contact. Coexistence incorporates only
a minimum of proximity and dependency. It is characterized
by overlapping working time and workspace of the human and
the robot. In such a scenario, social-loafing effects should not
occur because there is no shared task. Cooperation, in contrast, is
additionally characterized by the same aim. Although both parties
do not directly depend on each other because of a strict task
allocation between humans and robots, the completion of the task
by both parties is necessary to achieve the common aim. However,
if the outcome of the task is not directly attributable to a particular
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FIGURE 1
Experimental environment in the team condition. The white square represents the participants mouse while the red square represents a potential error
marked by the robot. In the alone condition, the photo of the robot on the left is missing, the header says “Quality Control”, and the images appear
without any red mark.

group member, then social loafing becomes likely. The same applies
to collaboration scenarios where humans and robots share the same
subgoals and overall goals. When collaborating, both parties are
dependent on each other’s actions and work together to achieve a
common task, which again opens up the potential for social loafing
(Onnasch and Roesler, 2021).

Onnasch and Panayotidis (2020) have already investigated
social-loafing effects in HRI. In this laboratory study, participants
performed a speed-accuracy task once alone (while the robot also
performed the task separately on its own) and once in cooperation
with a human or a robotic team partner. Specifically, participants
had to place a certain number and color of cotton balls in a
gift bag and then place them in a collection box (which was a
shared box in the team settings). According to Nass et al. (1996),
this manipulation should be sufficient to induce team building
in the team conditions, as a simple but credible clarification of
whether one was working alone or together was provided (identity)
and as team partners were informed that they were working
towards a common outcome and would be evaluated together
(interdependence).The authors hypothesized effects of social loafing
in both team conditions, i.e., the collective human–human condition
and the collective human–robot condition, compared to the alone
condition. Furthermore, they assumed that social loafing would
be more pronounced in the human–robot condition than in the
human–human condition due to a reduced sense of being judged
or a pressure to justify their performance level when working
with a robot compared to a human partner (lower evaluation
potential). While there were no differences in performance between
the individual and teamwork conditions for either group in the

objective performance data (number of filled bags per six-minute
trial and number of incorrect filled bags), the subjective data showed
a trend in the hypothesized direction. That is, participants in the
robot-teamwork condition subjectively reported exerting the least
effort compared to participants working with a human or in the solo
condition. The authors suggested that the lack of objective social
loafing could be due to insufficiently sensitive performance variables
or to a low salience of the team setting.

In the current study, we aimed to further investigate the question
of the occurrence of social-loafing effects in human–robot teams.
While social loafing in redundant quality control has already been
demonstrated in humans (Cymek and Manzey, 2022), we wanted to
know whether we would also find social-loafing effects in a quality-
inspection task performed by a human–robot team, similar to the
one described above for electronic components. If social loafing
occurs in such a setting, the expected improvement in outcomes
due to the redundant quality inspection may not materialize. In
our laboratory study, we compared individuals who performed a
quality inspection on circuit boards alone with individuals who
processed them in a team with the industrial robotic arm Panda.
In the latter condition, people performed the quality inspection
after the robot and received the usually correct inspection results
from the robot. In order to complete the task, participants had
to inspect the circuit boards very accurately for defined defects.
We hypothesized that the amount of effort that people put into
the quality inspection, in terms of the area of the board they
searched and the time they spent searching, would be less when
working with the robot than when working alone. This reduced
effort, if present, should also be likely to have a direct effect on the
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FIGURE 2
Overview of the error types. Top left: no error; top right: capacitator error; bottom left: scratch; bottom right: soldering error.

TABLE 1 Number of defects on circuit boards in each group with correctly
marked defects (bold) and unmarked defects (!) by the robot in each block.

Condition block 1 2 3 4

Alone 24 24 24 24

Team 24 24 24 19 & 5!

detection rate of circuit-board defects, which iswhy the performance
of individuals working in teams with the robot should be worse
than that of individuals working alone. Since the individuals
working in a team with the robot experienced that the robot
made few errors (expectation of high co-worker performance),
we assumed that the effort invested should decrease over time
due to the low cost-benefit ratio. The study was preregistered on
the Open Science Framework and the data are available there
(https://osf.io/njz2x/).

2 Materials and methods

2.1 Participants

A total of n = 44 people participated in the study. Based on
a G*Power calculation (Faul et al., 2009), the sample size chosen
should be sufficient to detect large between-subjects effects and

moderate within-subjects and interaction effects in our ANOVAs
(α err prob = 0.05, 1-β err prob = .95). However, two participants
from the team condition had to be excluded from the data analyses
based on prespecified criteria. One did not meet the inclusion
criteria because he regularly worked with electronic workpieces, and
another marked each robot mark on a circuit-board defect with
another mark while not detecting any robot misses, indicating that
she did not understand the experimental task.Thus, the final sample
included in the data analyses consisted of n = 42 participants. Of
these 42 participants, 21 identified themselves as female and 21 as
male. All participants were students, had (corrected-to) good vision,
spoke German at native-speaker level, and ranged in age from 22 to
30 years (M=25.55, SD = 2.12). Participantswere compensatedwith
course credits.

2.2 Task

Subjects completed a visual-search task that simulated the
quality control of circuit boards. Figure 1 shows the user interface of
the experimental program. In the center, sets of four circuit-board
images were displayed at a time. Each of them contained no, one,
or two defects. There were defect capacitors, indicated by a crack in
the top of the capacitor, surface scratches, which could potentially
affect functioning, and soldering faults, which could potentially lead
to short circuits (see Figure 2). The task was to find all of these
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TABLE 2 Operationalization of dependent variables.

Dependent variable Description

Uncovered area Average percentage of image area revealed on each board per block via the computer mouse

Search time Average time spent to examine each board with the computer mouse per block

Detection performance Detection performance was operationalized as the performance in the five trials in which the robot missed defects in the last block

Subjective measures Subjective rating on a 7-point Likert scale ranging from strongly disagree to strongly agree with the statements:

“I put a lot of effort into the visual search.”

“I made a little less effort in the course of the search task.”

“I did a very good job on the search task.”

“I felt responsible for the task.”

defects. The images of the circuit boards were initially blurred. To
judge the images, participants had to reveal parts of the circuit board
step by step. This was done by moving a small, white-framed square
over the images with the mouse. Only the area within the moving
square was sharp and could be evaluated. Participants were told
that the “sharpening tool” would help them to focus during their
visual search. This mouse-over approach made it possible to capture
search behavior and to track how much of the stimulus participants
uncovered. The size of the square was set to 20% of the image width.
On the right side of the user interface, software functions such as
setting a mark (left mouse click), removing a mark (right mouse
click), and proceeding to new images (space bar) were displayed
as reminders. On the left side of the board matrix, a reference
circuit boardwithout defectswas displayed.Theuser interface varied
slightly depending on the condition (team vs. alone). In the team
condition, participants worked sequentially redundant with a robot
that checked the boards first and set red marks around potential
defects (see Figure 1, bottom-left quadrant). In the alone condition,
participants worked in parallel, but independently of Panda, on
different sets of circuit boards and saw no marks. Also, in the team
condition, participants read the header “Double-Check”, whereas in
the alone condition the header said “Quality Control”. Last but not
least, a picture of Panda was displayed on the left side in the team
condition, which was absent in the alone condition.

2.3 Design

The experiment used a 2 (condition) x 4 (block) mixed design.
The first factor was varied between subjects and included two
different conditions: either participants worked alone (while Panda
worked simultaneously on different sets of circuit boards) or in the
second position in sequential redundancy with Panda (where Panda
worked at the first position and checked the circuit boards first).
The second factor block was varied within subjects to investigate
whether checking effort and/or possible social-loafing effects were
influenced by time on task. All participants saw the same 320 images
of scanned circuit boards. These were presented to the participants
in four blocks of 80 images each. Each block contained 24 randomly
distributed defects. In each block, three images contained two
defects and 18 images contained one defect. Participants in the team
setting saw all the defects correctlymarked by Panda in the first three
blocks, but could detect five misses of Panda in the failure block

#4. The design is summarized in Table 1. In total, Panda detected
94.8% of the defects correctly during the experiment. Participants
that worked alone on the task (with Panda working coactively but
independently) did not see any defect marks in any of the four
blocks.

2.4 Dependent variables

We defined four dependent variables: uncovered area, search
time, detection performance, and subjective measures (see Table 2).
The uncovered area is defined as the average percentage of image
area revealed on each board per block. Search time is defined as
the average time spent to examine each board with the computer
mouse per block. Both variables (e.g., uncovered area and search
time) are measures of objective task effort. Detection performance
was operationalized as the performance in the five trials in which
the robot missed defects in the last block. In addition, four
subjective variables were measured with a survey that participants
had to fill in after completing the task. It collected subjective
ratings on a 7-point Likert scale ranging from strongly disagree
to strongly agree. Specifically, participants were asked to rate
how much they agreed with statements such as “I put a lot of
effort into the visual search.” and “I made a little less effort
in the course of the search task.” to learn about the perceived
effort and effort over time. The third item measured subjective
performance (“I did a very good job on the search task.”) and
the final item measured subjective responsibility for the task
(“I felt responsible for the task.”).

2.5 Procedure

The procedure is described in Table 3.

3 Results

3.1 Uncovered area

On average, a large proportion of the images were searched
in both groups and across the blocks. The mean percentage of
uncovered area varied within a narrow range of 87.5%–92.0%. A
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TABLE 3 Procedure.

Description

Study invitation Participants were recruited from a university participant pool. Two separate studies were registered:
a “Human–robot-collaboration study” (team condition) and a “Visual-inspection study” (alone
condition). This was done so that people knew in advance whether or not they would be working
with a robot or not.

Entrance On entering the room, participants walked past Panda’s workstation and sat down at a computer
workstation that was visually separated from the robot by a partition.

Informed consent Participants in each condition were informed about the experimental setting and their task, the
procedure of the test session, and how the data would be kept anonymous. They then gave their
informed consent.

Demographics A short questionnaire asked for basic demographic information (age, sex, vision).

Group manipulation Participants were briefly told that they would be inspecting circuit boards for defects and whether
they would be working in a team with Panda or alone. In the team condition, participants were told
that Panda’s results would be forwarded to them for a double check and that they would need to find
missed defects or deselect incorrect marks placed by the robot if necessary to achieve the best possible
team result. In the alone condition, participants were told that they would be inspecting another set
of circuit boards independently of the robot and that they had to find as many circuit-board defects
as possible.

Panda demonstration and robot workspace Panda was then demonstrated in both conditions. The experimenter briefly showed Panda’s
workstation and participants watched as the robot, holding a webcam in its gripper, (presumably)
photographed and inspected a set of nine circuit boards placed on a tray in front of it. The robot
moved from one board to the next, pausing about 10 cm above each one, pretending to take a picture
of it. After inspecting the last board on a nine-board tray, the experimenter provided the next tray and
the robot moved back to the first board position to begin inspecting the new tray. Two boxes were
placed next to Panda, one of which, according to the label, contained “new” circuit boards that would
be placed in front of Panda during the experiment to be analyzed, and the other of which, according
to the label, would be filled with the “inspected” circuit boards. In addition, a cable connected the
robot to the computer the participant was working on, to make the connection between the two
workstations seem more plausible.

Written illustrated instructions The participants read the illustrated instructions to familiarize themselves with the different types of
defects. They received a printout of a correct circuit board and of three circuit boards showing the
different types of defects. This printout was given to the participants to use it as a reference during the
task.

Training Participants practiced the task briefly.When the participants started training, the robot already started
working on the task to get a head start. Thus, participants in the team condition did not have to wait
for the inspected boards when they later started the experimental blocks. The experimenter stood
next to the robot to supply it with new trays of circuit boards. The continuous supply could be heard
but not seen by the participants.

Comprehension check After the training block, participants had to find and mark one of each defect type on a printout to
show that they understood the task.

Experiment Once the experiment started, participants worked on the task for about 90 min without any feedback
on their performance. However, the robot only took 30 min to scan all 320 circuit boards and was
switched off at the end. After each experimental block, participants were required to take a short
break of at least 1 minute to relax their eyes.

Post-task questionnaire After completing the task, participants completed a post-test survey.

Debriefing Finally, they were debriefed and told thank you and goodbye.

2 × 3 ANOVA was calculated for the percentage of uncovered
area (excluding failure block #4). A highly significant block
effect emerged, F (1.29, 51.63) = 12.66, p < .001, ηp

2 = .24,
as all participants searched a smaller area with increasing time
on task. No effect was found for the factor condition, F (1,
40) = 0.74, p = .395, ηp

2 = .02. As can be seen in Figure 3,
participants working with Panda in a team checked a slightly
smaller proportion of the images descriptively over time compared
to the alone condition. However, the interaction effect of block
and condition was not significant, F (1.29, 51.63) = 1.84, p = .180,
ηp

2 = .04.

3.2 Search time

A further 2 × 3 ANOVA was calculated to analyze the time
spent to search the images. Again, a highly significant effect of the
factor block was found, F (1.17, 46.62) = 65.96, p < .001, ηp

2 = .62.
No significant effect of the factor condition was found, F (1, 40) =
0.14, p = .708, ηp

2 < .01. The interaction was also not significant, F
(1.17, 46.62) = 0.37, p = .578, ηp

2 = .01. Figure 4 shows that mean
search time decreased across the blocks but was at the same level in
both conditions. Participants took approximately 25 min to search
the first block of 80 circuit board images (approximately 19 s per
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FIGURE 3
Means and standard deviations of the uncovered area in both
conditions and across the four blocks.

FIGURE 4
Means and standard deviations of the search time in both conditions
and across the four blocks.

image), 20 min for the second block, and 15 min for the third and
fourth blocks (approximately 11 s per image).

3.3 Detection performance

In block #4, participants in the team condition could potentially
miss five defects that were not marked by Panda. Correct detections
out of these five potential defects were compared between the two
conditions. In the alone condition, the mean detection rate was
M = 4.23 (SD = 0.92), while in the team condition it was M
= 3.30 (SD = 1.59) (see Figure 5). Due to non-normal data and
unequal variance, a U-test was calculated. The results indicated that
participants working in a team with Panda detected significantly
fewer defects than participants working alone, U = 148.5, Z = -1.83,
p = .029, r = .292.

Note that the people working alone also detected 80% of the
defects over the whole experiment (M = 19.27 out of 96). The
proportion of detected defects is thus comparable between the five

FIGURE 5
Means and standard deviations of detected defects in block #4 in both
conditions.

FIGURE 6
Means and standard deviations of subjective ratings in both conditions
on a 7-point Likert scale ranging from strongly disagree (1) to strongly
agree (7).

trials and the detection performance in the overall experiment for
the participants working alone.

3.4 Subjective measures

Simple t-tests were performed on the ratings of each statement.
No significant differences were found, all p > .14. Figure 6 shows that
participants in both conditions strongly agreed that they put a lot of
effort into the visual search task, and that both groups thought they
did a very good job on the task. They also confirmed that they felt
responsible for the task and showed moderate agreement with the
subjective reduction of effort over time.

4 Discussion

As interactions with robots increase, it is important to
understand and predict the consequences of human interactions
with them. Research on social facilitation has already shown that
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team processes that occur in human teams can be transferred to
human–robot interactions and should be taken into account. The
present study investigated whether working with a robot partner
would lead to social-loafing effects. Therefore, an experiment was
conducted in which participants worked either alone or in a team
with a robot on a realistic quality inspection task. Our assumption
was that the amount of effort people put into the quality inspection,
i.e., the area of the board they searched and/or the amount of
time they spent searching, would be lower when working together
with the robot than when working alone on the quality inspection,
similar to findings of redundant quality control in human teams
(Cymek and Manzey, 2022). We also assumed that the individuals
working in a team with the robot would reduce their effort over
time more than the individuals working alone. In case of a more
pronounced effort reduction in the team condition, we assumed
that this could lead to a lower defect-detection performance of this
group.

There were no group differences in the amount of effort invested
in the task for any of the objective measures of effort (i.e., uncovered
area, search time). At first sight, this suggests that social loafing did
not occur in our experiment. Participants in both groups inspected
almost the entire surface of the boards and took their time searching.
Over the course of the experiment, participants in both conditions
uncovered significantly less image area and accelerated their search.
The small decrease in uncovered area may be due to learning that
there were some areas of the board where defects did not occur. The
large decrease in search time can also be explained by a learning
effect. In general, the subjects spent a lot of time searching. In the
beginning, they looked at a single image for an average of 19 s, which
is a very long time.Withmore practice they becamemuch faster, but
still invested about 11 s per image.

The subjective measures of effort were consistent with the
objective measures. Participants in both groups reported that they
put a lot of effort into the task, that they felt responsible for the
task, and that they performed well. In addition, both groups neither
agreed nor disagreed with the statement “I made a little less effort in
the course of the search task”, suggesting that participantswere aware
that they were speeding up their search as time on task increased but
were still quite engaged in the task.

We assumed that a reduction in effortmight have an effect on the
defect-detection performance. Apparently, we found no differences
in our effort measures. However, when we compared detection
performance on the five common occasions to miss a defect (the
five defects in block #4 that were not marked by Panda in the team
condition), we found a significant effect. Participants working alone
detected on average M = 4.23 (SD = 0.92) of these five defects,
whereas in the team condition on average a defect less was detected
(M = 3.30, SD = 1.59). There could be several reasons for this
disassociation of effort and performance measures. First, it could be
that the search speed was too fast to detect the defects. However,
this is unlikely as participants in the alone condition searched at
a similar speed and found most defects during the experiment
(approx. 80% of defects). It could also be that after experiencing a
100% reliable robot for the first three-quarters of the experimental
session, participants in the team condition became less suspicious
during their search in the last block. It seems as if the participants
continued their search routine on the images, as they continued to
look at almost the entire circuit board surface. However, they seem

to have looked for defects less attentively than the participants who
worked alone on the quality inspection.

In the light of these results, we need to consider a phenomenon
from a study on cooperationwith an automated assistance system. In
this study by Manzey et al. (2012), people sampled the information
necessary to detect an error, but still did not find it. They also had
no idea what the information that had been uncovered actually
was. The authors explained this by saying that people looked
at the information but did not really process it consciously—in
other words, they performed a kind of “inattentive processing” in
cooperation with an assistance system. Similar effects have been
found in pilots monitoring flight modes in the cockpit. In a study
by Sarter et al. (2007), most pilots scanned the mode-annunciator
display, but still failed to notice the inappropriateness of the active
mode for the current flight context. The authors concluded that the
experienced pilots did not process the mode changes thoroughly
enough to understand their impact on the behavior of the aircraft.
This kind of looking-but-not-seeing effect could have occurred in
our experiment as well. Looking but not seeing is characterized
by a lower mental engagement and less attentive processing of
sampled information. The participants in our study seemed to have
maintained the motor routine of uncovering the images with the
mouse at a speed that increased slightly over time. So, the motoric
effort did not change, the time spent did also not change between the
groups, but it seems that the search was carried out with less mental
effort and with less attention to the information being sampled. This
kind of mental effort is harder to detect but could be measured in
future studies using EEG measures such as the mental-engagement
index used by Pope et al. (1995).

While Onnasch and Panayotidis (2020) found a tendency for
subjective effort to be lower in human–robot teams, this study found
lower defect-detection performance when working in a team with
a robot. It seems that social loafing is a topic that deserves further
investigation. However, as with human teams, it is not always easy
to detect motivational losses in teams, such as social loafing, in a
laboratory context (Price, 1993), as participants assume that their
behavior is being observed and analyzed. Field studies could be an
option to find larger effects and get a clearer picture of the impact
of social loafing in HRI. It may be that social loafing is more subtle
in the lab than in real life and that effect sizes are smaller in the lab.
We therefore suggest that future studies try to use a larger sample.
In addition, future studies should attempt to replicate our findings
while trying to measure the mental effort involved in processing the
sampled information.

Our study has several limitations. First of all, we chose
an experimental setting that was unlikely to elicit very high
levels of group feeling, as participants worked with Panda while
visually separated by a partition wall and without the need for
communication or direct interaction with the robot. However,
participants were told that they would be working in a team, saw the
robot as it (presumably) inspected a set of circuit boards before they
started their own work on the task, heard the robot’s movements as
they worked, had a picture of the robot displayed on their monitor,
and saw the marks it (presumably) made, thus constantly reminding
participants of the teamwork. Future studies should directlymeasure
the perception of working in a team (e.g., as in Nass et al., 1996) and
could investigate the occurrence of social loafing in low, moderate,
and high team-perception settings.
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Second, social-loafing effects are more difficult to detect when
participants are highly aroused (Price, 1993) or when they feel
that their individual performance is being evaluated (Karau and
Williams, 1993). It is difficult to avoid this completely in a laboratory
experiment. Participants need to feel comfortable, well informed,
and guided throughout the experiment in order to relax during the
test session. Interacting with a friendly and patient experimenter,
reading the written instructions at their own pace, and having the
opportunity to practice and ask questions should have all helped
to reduce participants arousal a bit. In order to reduce the feeling
of being evaluated, we chose a set-up where the experimenter
could not see the participants while they worked. Also, we did
not use eye-tracking, but a more subtle way of measuring where
and for how long attention is distributed using our mouse-over
approach.

Third, in our experiment, Panda did not actually inspect the
circuit boards. To do this, Panda would have needed to be equipped
with some kind of vision-analysis software—perhaps based on
machine learning—to classify the visual input. Machine learning,
such as deep neural networks, are algorithms that can detect patterns
they have previously been trained on. We believe that deep neural
networks might be well suited to detect production errors on circuit
boards. In our setting, we have just claimed that Panda can not
only scan the boards but also analyze them for specific defects.
Our participants, who all had a human-factors background, did not
express any doubts. Although the visual-search task we used seems
suitable formachine-learning applications, we chose toworkwith an
embodied robot team partner. We did so because robots are usually
perceived more as social agents due to their physicality, and various
“social effects” have already been found here (e.g., Woods et al.,
2005; Riether et al., 2012).Therefore, we assume that if there is social
loafing in human–machine interaction, it should be particularly the
case for embodied and autonomous agents. Future studies should
investigate social loafing in interaction with non-embodied AI, as
the effects could in principle also be conceivable here.

Robots are becoming increasingly important in many industries
and can take over more and more tasks. However, they are often not
yet capable of working fully autonomously and without supervision.
For this reason, in many industries and for many tasks, human
supervision or augmentation of the robot’s work will be required
for some time to come. Combining the capabilities of humans and
robots obviously offers many opportunities, but we should also
consider unintended group effects thatmight occur in human–robot
teams. When humans and robots work redundantly on a task, this
can lead to motivational losses for the human team partner and
make effects such as social loafing more likely. Social loafing should
therefore be taken into account.
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Robotic systems are an integral component of today's work place automation,
especially in industrial settings. Due to technological advancements, we see new
forms of human-robot interaction emerge which are related to different OSH
risks and benefits. We present a multifaceted analysis of risks and opportunities
regarding robotic systems in the context of task automation in the industrial
sector. This includes the scientific perspective through literature review as well as
the workers' expectations in form of use case evaluations. Based on the results,
with regards to human-centred workplace design and occupational safety and
health (OSH), implications for the practical application are derived and presented.
For the literature review a selected subset of papers from a systematic review
was extracted. Five systematic reviews and meta-analysis (492 primary studies)
focused on the topic of task automation via robotic systems and OSH. These
were extracted and categorised into physical, psychosocial and organisational
factors based on an OSH-factors framework for advanced robotics developed
for the European Agency for Safety and Health at Work (EU-OSHA). To assess the
workers' perspective, 27workers from three Europeanmanufacturing companies
were asked about their expectations regarding benefits and challenges of robotic
systems at their workplace. The answers were translated and categorised in
accordance with the framework as well. The statements, both from literature
and the survey were then analysed according to the qualitative content analysis,
to gain additional insight into the underlying structure and trends in them. As
a result, new categories were formed deductively. The analysis showed that
the framework is capable to help categorise both findings from literature and
worker survey into basic categories with good interrater reliability. Regarding
the proposed subcategories however, it failed to reflect the complexity of the
workers' expectations. The results of the worker evaluation as well as literature
findings both predominantly highlight the psychosocial impact these systems
may have on workers. Organisational risks or changes are underrepresented in
both groups. Workers' initial expectations lean towards a positive impact.
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1 Introduction

Interactive robotic systems have become a frequent occurrence
in Europe's workplaces over the last years. More and more
workers find themselves working alongside a wide range of robotic
technologies that assist them with their everyday tasks. These tasks
can range from a robotic arm holding a heavy work piece for an
industrial worker, to an automated guided vehicle which navigates
the hospital hallways to deliver medicine (Kyrarini et al., 2021),
tasks in the agricultural sector, like weeding, land preparation
(Benos et al., 2023) or working more closely alongside humans
assisting with the detection of fruit and vegetables, grasping and
detaching (Vasconez et al., 2019). There are also robots working
alongside waiters in restaurants (Lu, Zhang and Zhang, 2021). The
areas of application are ever expanding. This way, robotic systems
have contributed to creating more ergonomic and efficient work
places (Jungmittag and Pesole, 2019). While the percentage of
companies that use robotic systems capable of safe interaction
with human operators is still comparatively low (Hämäläinen, Lanz
and Koskinen, 2018), the International Federation of Robotics
(IFR) reports an increase in annually installed robotic systems for
the sixth year in a row. A trend which they predict to continue
(Müller, 2022). The third European Survey of Enterprises on New
and Emerging Risks (ESENER III) conducted by the European
Agency for Safety and Health reveals that 28% of all human-robot
interaction (HRI) applications were found in the manufacturing
sector (Wischniewski et al., 2021). While other sectors are still
gaging possible applications for these systems, the industrial sector
already uses them actively and expands continuously in their use.

The relationship between occupational health and safety of
workers and robotic systems can be multifaceted and complex.
Industrial robots have traditionally been utilized for physically
demanding tasks that can have negative effects on the health of
a worker and may have a heightened risk of workplace accidents.
Automating these tasks or larger parts of a manufacturing job
through a robotic systemhas benefitedworkers by helping to prevent
injuries (Haddadin et al., 2009) and adverse health effects that arise
from working in hazardous conditions, such as musculoskeletal
disorders caused by repetitive motions (Colim et al., 2020).
However, if the robotic system is not used correctly and necessary
standards for a safe interaction are not upheld, the technology may
increase the risk for accidents (Yang et al., 2022) or introduce new
hazards (Matthias et al., 2011). Even though, modern, interactive
robotic systems are more commonly associated with their potential
to remove workers from hazardous situations, and thus benefiting
their safety and health (Kim et al., 2017), there is growing concern
regarding the potential negative impact of human-machine
interaction on the mental health of workers. Studies suggest
that this relationship could have negative effects on workers'
wellbeing, while also becoming an additional source of stress in
modern manufacturing workplaces (Robelski and Wischniewski,
2018; Körner et al., 2019). The increasing prevalence of robotic
systems as a means of task automation can also increase stress
(Venkataramani et al., 2020) and cause anxiety over potential
job loss (Bhattacharyya, 2023). Moreover, it was found that
implementing a robotic system to a workplace may trigger higher
stress levels during the initial introduction (Wisse and Sleebos,
2016), and spike fear of job loss in the early days (Tuomi et al., 2021).

Both effects seem to subside over time, bringing up the question how
workers expect robotic systems to impact their work, not only in the
short- but also in the long-term.

Evidently, the relationship between robotic automation and
occupational safety and health (OSH) is complex, especially once the
psychosocial implications are considered. While workers may see
some OSH benefits related to automating a task, there may also be
concerns regardingOSH related issues like job loss, the robots' safety
and their effect on workload (Wisse and Sleebos, 2016). The attitude
and expectations of workers towards a technology can be a major
contributor in the success of its implementation. Knowing about
these factors before installing the technology offers the opportunity
to adapt measures to address the mentioned issues. For this reason,
existing studies, theoretical concepts and taxonomies are used in
practical application to assess potential OSH related opportunities
and risks when introducing robotic systems. One recently published
report by EU-OSHA focusses on OSH impacts of advanced robotics
in relation to the (semi-)automation of tasks. The authors of this
report developed an OSH-factors framework for advanced robotics
by defining dimensions that impact OSH during the introduction
and use of robotic systems, as a means to assess possible risks and
opportunities (Rosen et al., 2022).

This article focusses on whether and how these dimensions
apply for the automation of physical task within the manufacturing
industry. This will be assessed by considering both, a subsample of
a systematic literature review as well as results from an evaluation
of workers' expectations within this field. We will analyse to what
extent the OSH related dimensions and effects of robotic systems
according to the OSH-factors framework for advanced robotics
apply for the automation of physical tasks in the manufacturing
sector. Moreover, we give an overview of the workers' long- and
short-term expectations towards the impact of robotic systems
on their work and analyse whether workers primary expectations
towards the system were positive or negative.

2 Industrial human-robot interaction
and OSH

Robots capable working alongside humans are a comparatively
new development, and represent only ion form of human-robot
interaction. Onnasch Roesler, (2021) created a taxonomy to classify
human-robot interaction in three distinct categories: coexistence,
cooperation, collaboration. Coexistence describes an episodic
encounter between humans and robots where the interaction is
limited in terms of time and space, like passing a transport robot
in the hallway. During a cooperation, robotic system and human
worker work towards an overarching common goal. A robotic
system performing a sorting task, while the worker uses the sorted
parts to finish a work piece would be an example for this form
of interaction. Collaboration describes an interaction in which
both human and robot share an overarching task as well as sub-
goals here. Their actions need to be coordinated and assigned
consecutively. Human-robot collaboration is themost complex form
of interaction. Industrial workers are at the forefront of jobs likely
to come in contact with or get automated through robotic systems
(Kadir et al., 2019; Dobra and Dhir, 2020; Gualtieri et al., 2021).
Numerous sources report on robotic automation being used to
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automate tasks in the industrial sector (Gholamian and Ghomi,
2007; Iqbal et al., 2016; Enríquez et al., 2020). This includes tasks
like pick-and-place or sorting tasks, holding work pieces, welding,
assembly, paint spraying, packaging and arranging, cutting, moving,
and sanding (Iqbal et al., 2016) as well as heavy lifting, precise
physical activities and, specifically in a manufacturing context,
the production of small volume assembly items in a high mix
of products/precision works (Krzywdzinski, 2021). Traditionally,
industrial robots operate spatially separated from shop floor
workers. However, modern robotic systems are capable of working
safely and efficiently alongside humans. This has allowed for new
forms of human-robot interaction to arise. Robots which share
an unfenced workspace with humans do require specified safety
standards. Recommendations for collaborative robots (cobots) are
summarized in the technical specification ISO/TS 15066 (Robots
and robotic devices—Collaborative robots) (ISO, 2016).

There is evidence that these technologies impact the
occupational safety and health of industrial workers. Both safety and
efficiency are expected to increase through human-robot interaction
(Gualtieri et al., 2021). Workers benefit from a decrease in physical
strain through the automation of physically demanding tasks and
increased safety of the work environment (Gualtieri et al., 2021).
Recent publications on risk factors for human-robot collaboration
also shine a light on emerging socio-technological risks, as well
as on new ground with robot-centric ethical considerations and
cybersecurity (Brex et al., 2022).

A growing number of workers now find themselves in the
position that a robotic system has recently been introduced to their
work place, or will be in the near future. This naturally triggers
expectations towards the robot and the changes it brings to their
work life. Not only regarding its impact on safety and health but
more broadly speaking, its impact on their work overall, both long-
term and short-term.

2.1 Worker expectations towards robotic
systems

For an effective use it is advisable that a robotic system and
the workers' expectations towards it align. This typically relates
to the robot's features, functionalities or patterns of movement
when it comes to direct interaction (Eyssel et al., 2011). However,
looking at the larger picture, it is very rarely researched what general
expectations there are towards how a robotic system will impact
their workplace. In order to enhance the workplace interaction and
long-term usage of the technology, it is important to consider the
workers' perspectives.This encompasses the expectations of workers
prior to the robot's introduction, which should not be limited
to only its functionalities, but the larger impact that is expected.
Without considering human factors during the implementation,
however, the introduction of such systems tend to fail (Fletcher
and Webb, 2017). Few publications address general expectations
towards robotic systems fromaworkers' perspective, and equally few
investigating the workers' specific expectations towards OSH with
regards to the robotic system (Wurhofer et al., 2015; Aaltonen et al.,
2017; Elprama et al., 2017; Kildal et al., 2018; Willems et al., 2023).
This article is therefore an enrichment to the current scientific
discourse, as industrial workers' expectations were assessed and

analysed using global categories as proposed by the OSH-factors
framework for advanced robotics (Rosen et al., 2022).

One study which does address workers' expectations in the
manufacturing sector is conducted by Wurhofer et al. (2015).
They studied workers' expectations prior to the introduction of
robotic systems to a semi-conductor factory and accompanied the
workers throughout the process. Within their study, statements
of uncertainty as well as scepticism and rejection were the most
frequent. However, positive expectations were also present. While
OSH relevant factors were mentioned, it was not in the foreground
of workers' expectations. These results align with further studies on
the topic.Workers expect interactive robotic systems to lighten their
mental and physical workload (Elprama et al., 2017). Other studies
found, that workers expect physical workload to decrease, and safety
to increase, however, they also expect their workload to increase
along the robot's productivity (Aaltonen et al., 2017; Kildal et al.,
2018). Kildal et al. (2018) asked potential robotic users from robot
related industries for their expectations towards the technology. The
participants expected the impact of robots as a whole to be positive
(productivity, quality, competitiveness, safety, costs and working
conditions).Themost negative expectations were centred on job loss
(Kildal et al., 2018).

Within this limited body of studies, we see that workers tend
to have mixed expectations towards the change robotic systems
might bring. While the physical changes are primarily expected to
be positive, both psychosocial and organisational changes that are
brought up lean towards the negative. Additionally, a varied time
perspective is rarely explored. Instead, in many cases, a timeframe
is not defined and the studies are focusing on the most immediate
expected changes. Incorporating short- and long-term expectations
from workers and interpret them within the dimensions of OSH
impacts in advanced robotics yields an opportunity to broaden the
understanding about the most prevalent factors from a worker's
perspective, in order to facilitate successful long-term use of the
technology.

3 OSH-factors framework for
advanced robotics

To provide meaningful advice for the implementation of robotic
systems in the workplace, all relevant components of a work system
should be considered. This includes the physical and psychosocial
context as well as the social and organisational work environment
(Leka and Jain, 2010). In a recently published report on the OSH
impacts of advanced robotics for the (semi-)automation of tasks,
the authors present an overview of OSH relevant dimensions
(Rosen et al., 2022). They utilize three foundational categories
(physical, psychosocial and organisational) and subdivide them
into eight sub-categories (physical alteration of the workplace,
function allocation, task design, interaction design, operation and
supervision, introduction process, change management, training)
representing areas of OSH relevance in this context (Figure 1).
Based on an extensive literature review, the authors found that
these facets may result in different positive or negative OSH
outcomes. The presented categories may all effect OSH during
the introduction and interaction with the robotic system. The
framework provides a comprehensive categorisation of relevant
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FIGURE 1
EU-OSHA Framework of OSH relevant dimensions for the introduction and use of robotic systems.

aspects and has proven to be an adequate framework to assess OSH
related risks and benefits while taking specific task and technology
characteristics into account. It was created with considerations
regarding automation type as well as relevant OSH characteristics,
in order to suite the automation of tasks through robotic systems.
This sets it apart from non-robot specific OSH frameworks for
the automation of tasks for a wider variety of technologies and
the automation of tasks more generally (e.g., Nickel et al., 2020).
While this framework presents one possible set of categories
to base an analysis on, there are others attempting the same
thing. Berx et al. (2022) also created a categorisation based on
a systematic literature review, which resulted in five overarching
groups (Human, Technology, Collaborative Workspace, Enterprise
and External). Content wise these categories are parallel the OSH-
factors framework by Rosen et al. The category External may be
especially useful, for research that aims to include the wider context
of robot use. The following section provides an overview of the
different dimensions and their subcategories as described in Rosen
et al. framework. These form the foundation of a content analysis on
whether and how the OSH related dimensions and effects of robotic
systems apply for the subset of physical task automation in the
manufacturing sector as well as their suitability to categorise worker
expectations.

3.1 OSH dimensions

3.1.1 Physical
The automation of tasks via robotic systems is especially

associated with changes in the physicality of tasks or the working
environment. Changing a physically straining task to be supported

by a robotic system can impact physical OSH. The actual OSH
benefits and risks that an advanced robot brings to a workplace
is highly dependent on the use case and technology and are not
limited to physical effects. For example, removing a worker from
a dangerous environment does decrease the risk of physical harm,
however it may also lighten the psychological stress associated with
working in a dangerous surrounding.

3.1.1.1 Physical alteration of the workplace
Robotic systems are predominantly used to automate physical

tasks, and thereby change the physical workspace and job demands
of workers (Rosen et al., 2022). Robots may also physically support
workers in tasks that cause repeated physical strain (Kyrarini et al.,
2021), possibly reducing work-related musculoskeletal pain and
injuries. However, the introduction of advanced robotics may also
introduce new OSH risks to a workplace, like collisions. In order
to not introduce new physical risks, contact avoidance measures,
motion planning, and sensor systems play a significant role in
ensuring the operators' safety.

3.1.2 Psychosocial
Psychosocial effects include a range of phenomena relating to a

worker's mental, emotional, or social state. Based on the dimensions
of the OSH-factors framework for advanced robotics (Figure 1),
these four categories are most likely to expect changes due to the
implementation of robotic systems at workplaces. Depending on
how these categories are executed, they may affect workers strongly
on a psychosocial level.

3.1.2.1 Function allocation
Function allocation in task automation involves determining

the division of tasks between humans and robotic systems based
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on the specific task requirements (Robelski and Wischniewski,
2018; Tausch et al., 2020). While static task allocation is a common
approach, as robotic systems become more flexible and capable, task
scheduling becomes more dynamic. The resulting distribution of
tasks holds implications for occupational safety and health regarding
various psychological factors, including but not limited to perceived
process control, mental effort, fairness, task identity, acceptance,
flow, and self-efficacy (Tausch et al., 2020).

3.1.2.2 Task design
Theprocess of function allocation results in direct consequences

for the task design.How a task is designedmay change once a robotic
system is installed in the workplace. If tasks are predominantly
designed around robotic performance and speed, it can result in the
workers' pace being determined by the robotic system. This may
result in negative psychosocial effects, including but not limited
to emotional exhaustion, nervousness, irritability, worse mental
wellbeing, and reduced job satisfaction (Robelski andWischniewski,
2018; Rosen and Wischniewski, 2019). A concern regarding the
introduction of advanced robots into workplaces and the changes
they trigger in task design is possible work intensification, as
described in the Job-Demand-Resources Model (Demerouti et al.,
2001). It might manifest as increased work demands and higher
expectations placed on workers, a quickened work pace or an
increased quantity of work. It may also manifest as reduced
autonomy or the expectation to multitask.

3.1.2.3 Interaction design
The interaction between workers and robotic systems can

influence a number of OSH related factors.This can relate to, among
others, the way they handle interaction, as well as how transparent
and comprehensive the interaction is perceived by the user. Another
aspect of interaction design that needs to be considered in HRI,
is the transparency of the system. When transparency is lacking
and the operator is left without the necessary information to follow
the underlying reasoning, a robot might be perceived as unreliable
(Kim and Hinds, 2006). However, more information is not always
better. An overabundance of information might even decrease
transparency, leading to difficulties in selecting crucial information
by the worker (Finomore et al., 2012). Furthermore, the interaction
with the robotic system should be designed in such a way, that its
users perceive the system as safe. Transparency is one of several
factors influencing this, alongside familiarity, predictability, sense of
control and trust (Akalin, Kristoffersson and Loutfi, 2022).

3.1.2.4 Operation and supervision
Operation and supervision refers to the management and

oversight of the day-to-day activities and processes when working
with a robotic systems. A number of topics fall into this category
such as the allocation of resources and monitoring of performance.
One psychosocial factor that should be taken into account during
the introduction of robotic systems to the workplace is the attitude
and experience towards and with robots present in the workers.
A lack of familiarity may shape initial attitudes (Sanders et al.,
2019). Moreover, it was found that trust and acceptance tend to
increase as workers are exposed to the systems (Hancock et al.,
2011) while negative attitudes decrease over time (Nomura et al.,
2011). The fear of job loss is one of the most thoroughly researched

topics in the context of robotic automation (McClure, 2018) and
given that approximately 40% of workers will experience significant
changes in their work due to the introduction of robotic systems
to the workplace (Pouliakas, 2018), it represents another important
psychosocial factor. More so in light of the evidence that job
insecurity is linked to the risk or presence of depression, anxiety
and emotional exhaustion, as well as to low satisfaction with life
(Llosa et al., 2018).

3.2 Organisational

The effects of introducing a new technology to a workplace can
reach further than the physical or psychosocial aspects of OSH. In
some cases, it leads to OSH related organisational changes, or the
introduction itself needs to be preceded by specific processes to
maximize the OSH benefits of the technology.

3.2.1 Change management
Change management in a company refers to the structured

approach aimed at preparing and implementing organisational
changes. Effective communication and active participation are
crucial for a successful introduction of a new technology. Informing
and involving employees in workplace changes can have positive
effects on acceptance and enhanced commitment (Bordia et al.,
2004). Change management encompasses the company culture
around the process and how they deal with problems that may
arise. If changemanagement fails for a technology that was intended
to bring OSH benefits to workers, they may now not experience
these positive effects. Unsuccessful change management may also
result in feelings of uncertainty, stress (DeGhetto et al., 2017), while
successful change management may increase them (Chien, 2015).

3.2.2 Introduction process
The introduction process of a new technology falls under the

umbrella of change management. It is, however, more specific to
the technology being implemented. It includes the involvement
of all stakeholders in the process, but also pilot testing, risk
assessment, training, as well as pre and post assessments. Factors
like proper risk assessments are vital to OSH. However, the
involvement of effected parties can be influential on OSH as
well. Communicating future changes to employees can reduce
feelings of uncertainty towards the rationale behind the change
and promote change supportive behaviour (Bordia et al., 2004).
Employee participation and involvement play a part in the
acceptance and the implementation and outcomes of technological
transformations in the workplace (Krutova et al., 2022). Increased
worker participation also correlates with better risk assessments
and more effective preventive measures, especially concerning
psychological strain (Popma, 2009).

3.2.3 Training
For many workers, advanced robotic systems are still a new

technology with which they have little to no prior experience.
Changes in the work equipment or work routine might incite
the need for workers to acquire new skills or change their
overall skill portfolio, some skills even might become dispensable.
Some organisations predict that the automation of tasks will
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lead to skill polarization in the workplace, where available jobs
are extreme in complexity, either very high or very low, with
little available middle ground (ILO, 2017). Specialized training
specific to the robotic technology and work situation may be
necessary to ensure effective and safe use of the systems. While this
offers the potential for workers to perform more interesting tasks,
continuous learning may also pose a new cognitive strain on the
workers.

4 Methodology

The data for this publication was collected via two
methods. The data sources were a subset of studies from a
systematic literature review and a worker survey, the results
of which were then subjected to qualitative content analysis
and interrater reliability using Fleiss kappa was calculated. All
calculations were performed with IBM SPSS Statistics Version 29
(IBM, 2022).

The original literature review was performed as part of a larger
research project funded through the EuropeanAgency for Safety and
Health at Work. The original review aimed to create an overview of
policies, research and practices in relation to advanced robotics and
AI-based systems for automation of tasks and occupational safety
and health; which is a much wider scope than this research paper
addresses. Part of the author team of this article was involved in the
creation of the framework used in this article.Theworker surveywas
part of the EU-funded project “Socio-Physical Interaction Skills for
CooperativeHuman-Robot Systems inAgile Production” (SOPHIA,
Funding Agreement No. 871237).

4.1 Systematic literature review

Two systematic literature reviews were conducted with a focus
on systematic reviews and meta-analysis only, examining human-
robot interaction and the automation of tasks within EU-OSHA's
original publication (Rosen et al., 2022). Their publication focuses
on the central question where current research activities regarding
advanced robotic and AI-based systems lie, whereas our analysis
focusses on the questionwhatOSH implications are addressed in the
manufacturing sector with regards to advanced robotics specifically.
We aim to investigate whether and how OSH related dimensions
and effects of robotic systems apply for the subset of physical task
automation in the manufacturing sector as well as their suitability to
categorise worker expectations. Hence, we specifically selected the
subset of publications that focused on the automation of physical
tasks in the manufacturing sector, which featured OSH relevant
findings. The selection process from each search is illustrated in
Figure 2. The literature review was conducted in scientific and
complementary databases (IEEEexplore, Ebscohost, WebOfScience,
PubMed, and Google Scholar). An additional systematic literature
review focused on the automation of tasks, independent from
any specific technology. Supplementary literature was obtained
through additional desk research using the same data bases,
in order to elaborate on the previous results. A comprehensive
combination of search terms was developed following the PEO-
scheme (Population—Exposure—Outcome). The complete search

strings, as well as a more detailed description of the review process
can be found in the publication Rosen et al. (2022). The review only
included publications meeting set criteria. They had to be meta-
analysis or literature reviews, focussing on human-robot interaction.
For the initial quantitative reporting, they did not have to include
OSH specific results, for the second step of analysis in Rosen et al.,
only publications with OSH related insights were included. Rosen
et al., aimed to create an overview of the state of research, hence
they did not limit the sector or type of task the publications had to
address, as long as they included awork-related application of anAI-
based system or advanced robotics. For our publication the selection
was narrowed down, significantly, by enforcing additional selection
criteria. For our analysis, five publications met the selection criteria
of focusing on the automation of physical tasks in themanufacturing
sector, or being applicable to this field, while containing OSH
relevant outcomes (Prewett et al., 2010; Kadir et al., 2019; Dobra
and Dhir, 2020; Rauch and Dallasega, 2020; Ötting et al., 2022).
Major outcomes from these studies were extracted to be analysed
in this study. An overview of the included studies can be found in
Table 1.

4.2 Worker survey

To assess the workers' perspective, we performed a survey as
part of the SOPHIA project that included workers from three
European companies. They were asked about their expectations
regarding changes, benefits and challenges of robotic systems at
their workplace. All three companies are part of the manufacturing
industry but differ in size, core business and country of origin
(Germany, Netherlands, and Slovenia). Twenty seven workers were
asked about their expectations regarding a robotic system that was
planned to be implemented at a workstation at their company. The
number of potential participants was limited in order to survey
workers with a high level of experience and therefore expertise
at the selected workplace. All the workers who took part in the
survey had at least 1 year of experience of working at the chosen
workstation. The workstations considered were selected by the
companies after identifying a suitable task that could be facilitated
by a robotic system. All selected workstations involved repetitive
tasks that had recently been performed manually: the unloading of
steel laminates after an annealing line, the manufacturing process
of gear cutting and the attachment of a rubber seal to the car
body.

The questionnaires and surveys were conducted over a period
of 2 weeks in small online groups, due to the pandemic restrictions
in autumn 2020. The focus was set on workers' expectations
regarding aspects related to the usability of the respective robotic
system. Ethical approval was obtained beforehand, and a data
protection declaration was carried out and approved by the
organization's data protection officer. Participating in the study
was voluntary during their working hours. Each round of the
survey lasted approximately one to one and a half hours. The
workers completed paper and pencil versions of the survey,
which were returned by post to the responsible scientists for
analysis.

The aim of the study was to gather data on workers' expectations
before developing a specific robotic system, they were asked to
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FIGURE 2
Literature review process.

imagine working with a robot that could perform various tasks to
support their daily work. To give the employees a better idea of
the intended scenario, they were shown a picture of the intended
workstation and a picture of the chosen base platform for the
development of a robot as an anchor example for the collaborative
robots. In one company the robotic system had been introduced a
few weeks before the survey, so the workers were already familiar
with it. Therefore, the participants were asked to imagine that
the functionality of a robotic system would exceed the level of
the current system, with the aim of gathering expectations of
robotic systems from a more general point of view. Besides well-
established questionnaires on system usability, acceptance, strain
and job control, open format questions were included, asking the
workers to express their initial expectations towards the changes
brought by the robot: How do you think your task will change by
using the robot?; Do you expect benefits from using the robot (in
the short- and long-tern)?; Where do you see potential problems
when using the robot (in the short- and long-tern)? For this article,
we analysed theses open-ended questions. By this, we aimed to
gauge if the primary association with the technology from workers
is positive, negative or neutral. Their statements were not limited
to a specific number of expectations to express or to OSH related
changes.

4.3 Content analysis

Central questions to the analysis were whether and how the
OSH dimensions and effects laid out in the OSH-factors framework
for advanced robotics apply for the automation of physical tasks in
the manufacturing sector. Furthermore, we wanted to find out if
the results of the literature match the expectations of the surveyed
workers and if tendencies (positive or negative) can be identified for
the respective categories.

To elevate the collected statements from both literature and
the worker survey, we performed a Qualitative Content Analysis
(QCA) (Mayring and Fenzl, 2019), which is a commonly used
methodology to analyse qualitative data. QCA concentrates on
describing and reducing or summarizing the collected material
focussing on the particular analysis object as well as the material
context (Mayring, 2014). Since objective criteria, common in
quantitative studies to assure a high research quality, are not easily
transferable to qualitative research, it is important to focus on
methodological consistency (Corbin and Strauss, 2014). Equally
important is iterative data collection and analysis, enabling a
comprehensive consideration of different perspectives and contexts.
Ideally, there is a balance between following a systematic approach
and discussion-based consensus (Strübing, et al., 2018). Therefore,
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TABLE 1 Overview of the included studies.

Author Year Study Number of
primary studies

Technology NACE-sector

Dobra and Dhir 2020 Technology jump in the
industry: human-robot

cooperation in
production

87 Industrial robots Manufacturing

Kadir et al. 2019 Current research and
future perspectives on
human factors and

ergonomics in Industry
4.0

90 Industrial and
collaborative robots

Manufacturing

Prewett et al. 2010 Managing workload in
human-robot

interaction: A review of
empirical studies.

113 Robotic systems Manufacturing

Rauch et al. 2020 Anthropocentric
perspective of

production before ad
within Industry 4.0

58 Industrial robots Manufacturing

Ötting et al. 2022 Let´s work together: A
meta-analysis on robot
design features that
enable successful
Human-Robot

interaction at work

81 Industrial robots other

decided on a structured analysis approach for which the underlying
codewere the categories of the framework (physical, psychosocial and
organisational) including its subcategories with the above written
descriptions (Figure 1). These deductive categories provided the
guideline for the initial analysis.

On this basis, three independent raters categorised both the
literature and worker statements to relate to either physical,
psychosocial or organisational changes. The raters were part of
the research team and are considered experts in the field of
robotic systems and human factors with academic backgrounds in
psychology, sociology, cognitive science and computer science. In a
second step they also assigned each statement to one of the OSH-
factors framework subcategories. Furthermore, they had the option
to withdraw a statement from the selection should it not contain
information that could be attributed to a category (for example, “I
do not think the robot could do my job successfully”). Once each
rater had independently categorised the statements, the results were
compared and the researchers discussed any points of controversy.
When all raters assigned a statement to the same primary category
it was classified as an agreement. An overlap of two out of three
raters in the subcategory was also seen as an agreement on the
subcategory level. Any remaining disagreements were discussed and
resolved among the raters. All statements that were not made in
English were translated using DeepL, and translated back, to reduce
loss of information. In total, 16 statements made by workers were
excluded from further analysis (plus three who choose not to answer
the question). During the process of discussion, the raters noticed
repeating patterns in the assignment of categories. Hence, they
decided to form new, inductive subcategories on the basis of the
existing framework.

5 Results

In the following section, we present the results of the content
analysis. The OSH-factors framework's categories were considered
as a basis to assign major insights of the selected research papers
into the categories, where possible.The first section presents selected
results from the literature review, while the second, greyed, section
presents exemplary replies of the workers (Table 2). It was possible
to categorise both, the worker statements as well as the excerpts
from literature, using the primary categories of the OSH-factors
framework for advanced robotics. Several statements, however,
were categorised as too ambiguous to be assigned a definitive
subcategory by the raters. The sample included only 25 male and
2 female participants, of whom 72% were working directly at the
production line, 24% were craftsmen and one person was in middle
management. In order to ensure the anonymity of the participants,
data on age was not collected.

5.1 Interrater reliability

Fleiss' kappa was calculated to determine if there was agreement
between the raters on the primary categories assigned to the
statements from literature and theworker survey.Thebase categories
were taken from the OSH-factors framework, namely, physical,
psychosocial and organisational. For the statements extracted from
literature, the kappa regarding the primary categories was (κ) =
0.624, a 95% confidence interval (CI) between 0.478 and 0.770.
The result was statistically significant (p < 0.001) and represents a
substantial strength of agreement between the raters. For the worker
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TABLE 2 Categorisation of statements.

Physical

Subcategory Risk Opportunity

Physical alteration of the
workplace

- Close human robot collaboration evokes safety concerns

- Residual risk/unreliability cannot be eliminated completely - A [robot] cannot always avoid colliding with humans.
Safety sensors reduce the force of impacts and stop the
robot movement when bumping into a human, but the
residual risk remains

- Some operators experience mental stress because of safety
concerns during close collaboration with robotic systems

- Robots can help compensate physical limitation of human
workers

- […]

- “Ergonomic improvement, increase of occupational safety”

- “Less physical load as a result of which in an older age
you have fewer complaints or would never get worse from
them”

- “Combining human and robot safety at work and detection
of border pieces”

- “Less suffering joints and muscles”

- “Space around the machine, weight of the products” - “No more heavy physical work”

- “More space by the machine” (room) - “Preservation of your physical condition. Less physical
complaints”

- “Protection of body and psyche”

- […]

Psychosocial

Function allocation - “Multiple machines save more time”

Task design

- “Facilitate/simplify the work”

- “Less repetitive work and therefore less work pressure”

- “Makes work more interesting”

- “More time left for maintenance and other important
things”

- “Setting up the robot cost time in the beginning, but later
you benefit from it because the programs already exist and
you can therefore do other things”

- […]

Ambiguous (Task design or
Function allocation)

- Robots and collaborative robots can perform easy,
repetitive, monotonous and straining manual tasks (dull
tasks) instead of humans

-Hybrid production systems [incl. robots] can bridge the gap
between humans and machines abilities

- Cobots can perform unsafe, repetitive, or boring tasks so
workers can perform other more value-added tasks

(Continued on the following page)
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TABLE 2 (Continued) Categorisation of statements.

Physical

Subcategory Risk Opportunity

Interaction design

- Working with an advanced socio-technological system can
result in a degree of uncertainty

- Autonomous robots might be able to identify and adapt to a
worker's individual strengths and needs

- Audio feedback while controlling a multi-robot set up increases
reaction time

- The interface design of a robotic system can significantly
influence performance, cooperation and satisfaction, by
increasing feature visibility and giving feedback

- Lack of confidence in sensory systems for physical contact
[during HRI]

- Minimize injury through viscoelastic coverings, mechanical
absorption systems, lightweight structures and collision
detection systems

- […]

- “High error rate, complicates handling”

- “Perishability of the robot and its repair

- the consequences of a delay in production” - “The simple handling”

- “I foresee many technical problems in the human-machine-
robot collaboration.”

- “That it works”

- “Prone to failure, acceptance of the workforce”

- […]

Operation and
supervision

- Residual risk/unreliability cannot be eliminated completely - Reliable automation can improve operator performance

- Automating tasks through robotic automation might lessen
operator workload, if the technology is reliable

- “Older” persons have fear of failure, problems of understanding” - “Increase work performance”

- “Elimination of personnel by machinery use” - “Increasing productivity through daily operation in the service,
healthcare”

- “Replacement of employees” - “More productivity”

- […] - “More profit for the company”

Ambiguous (Interaction
design/Operation and

supervision)

- As system complexity increase, somight the cognitive workload
of operators

- Controlling more than two robotic systems can decrease
performance and increase error rate

- Effective HRI is achieved by considering both humans and
robots [abilities]

- “Difficulties in examining the use, not related to the technology” - The mental status of the human partner plays an important part
in the collaboration […]. [It is proposed to] adjust the human
workload according to the stress level of the operator

- “Service and manipulation in production”

Organisational

Training

- Cognitive overload of workers [due to constant need for
learning]

- [Industry 4.0 incl. robots] is driven forward more quickly
than training and education institutes are able to adapt the
qualification profile of existing and future workers

- “Knowledge when using it”

- “Problem in robot learning (use)”

(Continued on the following page)
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TABLE 2 (Continued) (Continued) Categorisation of statements.

Physical

Subcategory Risk Opportunity

Change management

-Without effective human leadership, andmaterial resources
operators will struggle to be effective

- Robots will support demographic and diverse team
structures

- Fear, that increasing digitization will result in a large wave
of unemployment

- Participation, communication, manager support, training,
worker empowerment and existing process [are process
enabler when introducing a robotic system]

- Union membership, awareness of process complexity,
manual process variability and [scarcity of] resources [are
barriers]

- “Destruction of many jobs, chance for a basic income” - “When we manage to implement it in the environment it
certainly picks up the acquisition of the yield, the work
done”

- “Not in the short-term. Think that a lot of time is needed
for the work on the shop floor”

Introduction process

statements Fleiss' kappa (κ) = 0.755, a 95% confidence interval (CI)
between 0.679 and 0.835. The result was statistically significant (p <
0.001) and represents a substantial strength of agreement between
the raters (Landis and Koch, 1977).

5.2 Categorisation

After the initial round of analysis which resulted in the
categorisation (Table 2), it became apparent, that the categories
of the framework are quantitatively and qualitatively addressed
to varying degree in the workers' replies as well as in the
literature statements, and present a varied image towards the risks
and opportunities associated with robotic systems in industrial
workspaces. Regarding the category of physical factors, and its only
subcategory physical alteration of the workplace, physical closeness to
the machine was a concern, however, literature indicates that only a
residual risk of physical complications remains. This is strengthened
by the listed opportunities, which highlight that new, advanced
sensors allow safe and close interaction. Workers highlight the
reduction of physical load and health complications, especially in
the long-term (“Less physical load as a result of which in an older age
you have fewer complaints”). Regarding the category of psychosocial
factors, the raters assigned most statements unanimously to the
primary category, however in the subcategory there were two
clusters of statements that were labelled as too ambiguous to be
assigned to one of the four subcategories. Function allocation was
assigned near to no statements from either workers or literature.
Task design only contained opportunities or positive expectations
workers, no statements from literature.Workers expect their tasks to
become “less repetitive” and “more interesting.” Several statements
from literature were assigned to a distinct subcategory, as they
could reasonably describe function allocation or task design. Content
wise however, they mirrored workers expectations (e.g., Cobots

can perform unsafe, repetitive, or boring tasks so workers can
perform other more value-added tasks).These statements contained
facets of both how the task would be effected as well as who
would perform it. The raters discussed this overlap and came to
the consensus, that while task design and function allocation are
distinguishable in a theoretical context, when analysing workers'
experiences and expectations it is a too high level of detail to
apply. However, the importance of both topics was recognized
by the raters, so the researchers propose to combine the two
categories into shared one called “function allocation and task
design.” A similar situation emerged when it came to the categories
of interaction design and operation and supervision. Depending on
the perspective applied to the statements, both categories were
applicable and assigned by at least one rater. A statement from
the workers perspective can be interpreted to relate more to the
expected interaction with a technology, whereas from a company
perspective, it would be more related to operation and supervision.
Hence, the categories were ultimately combined into one group
called “interaction design, operation and supervision”. Statements
that were categorised as related to primarily interaction design
from literature, focussed primarily on how interface and interaction
modalities effect the interaction, both in a positive and possibly
negative direction. Workers mainly anticipated malfunction from
the robot. In the category operation and supervision, literature
highlighted reliability or unreliability as a determining factor for the
effectiveness of a robotic system in the industrial sector. Workers
positive expectations leaned towards increased productivity, while
they negatively anticipated job loss, and demographic challenges
with regards to learning new, robotic related skills. The operation
and supervision, literature highlighted reliability or unreliability as
a determining factor for the effectiveness of a robotic system in
the industrial sector. Workers positive expectations leaned towards
increased productivity, while they negatively anticipated job loss,
and demographic challenges with regards to learning new, robotic
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TABLE 3 Initial expectation of change fromworkers.

Positive Neutral Negative

- Reduced work intensity (2)

- Improved physical ergonomics (5)

- Increased task variability (2) - General expectation of change (2)

- Reduction of strenuous tasks - Uncertainty about what could change - No changes expected

- Overall improvement (7) - They do not see a robotic system as applicable for their workplace (2) - General negative changes expected

- Higher efficiency in the production (5)

- Upskilling of workers

related skills.The organisational factor and its subcategories were the
least populated among the three. Both literature and workers only
listed risks regarding training. They both described the challenges
of re-education and the cognitive demand this poses on workers.
Change management was represented nuanced in both sources.
Literature stressed ineffective leadership as curtail in enabling people
to work effectively with the technology, and point out the potential
for a more inclusive workplace. Workers perspectives included
statements addressing a potential development towards universal
income and more long-term developments on the shop floor.
Noticeably, neither literature nor worker statements addressed the
introduction processes.

5.3 Changes, short- and long-term
expectations by workers

The survey asked workers about their general expectations
of changes. By keeping the initial question of this set open, we
aimed to gauge if the primary association with the technology
from workers is positive, negative or neutral. These results can
deliver an indication if workers had a primarily positive, neutral or
negative outlook towards the changes brought by the technology.
However, focusing too strongly on the quantity of the expectations
named might result in a skewed representation, as workers were
not limited to a specific number of expectations to express.
To provide a comprehensible overview, statements relating to
the same general topic (e.g., “lifting fewer heavy objects” and
“work will become less physically demanding”) were summarized
under group names presented below (Table 3). After every group
we provide an indication how many statements were included
in it.

To further illustrate these finding, Figure 3 displays the named
positive, negative and neutral expectations towards robotic systems.
The size of each word is relative to the frequency the category
was mentioned. Green writing indicates positive aspects, yellow
neutral and red negative aspects. Next, workers were specifically
asked what types of effects they expect the robotic system to
have in the short- and long-term. Differentiating between the
immediate and continuous impact of a technology may grant
insight into a more layered opinion of workers on the technology.

Table 4 provides an overview of the workers responses to both
the short- and long-term category. Participants were again not
limited in how many expected benefits or problems they could
name.

6 Discussion

The introduction of advanced robotic systems at an industrial
workplace can change working conditions drastically for the
employees. These changes can permeate aspects regarding physical,
psychosocial and organisational factors concerning, but not
limited to, occupational safety and health. While it is vital
to consult research on possible effects such a technology can
have on workers, it is also important to assess the expectations
of those who will be directly affected by the technology.
Using existing frameworks like the OSH-factors framework for
advanced robotics can provide a basis for comparison and further
analysis.

6.1 Content analysis

The selected literature focusses on OSH related risks and
opportunities for industrial human-robot interaction. All five
studies contain various outcomes that describe how OSH is affected
by advanced robotic systems in an industrial setting. The results
show that these studies cover a vast variety of factors.When it comes
to opportunities, the analysed literature does not provide any insight
regarding the categories of task design, organisation and supervision
as well as training. With regards to possible risks the category
of change management was underrepresented. Furthermore, the
category introduction process was neither addressed regarding any
opportunities nor risks. The analysed literature only presents a
small, yet specific subsample of all available literature on robotic
systems. The present distribution may still be used as an indicator
of areas which are in need of more focused research in the future.
The worker statements were similarly distributed, with the greatest
focus on physical effects followed by how their direct task might
change. The fewest statements were assigned towards organisational
aspects. Possibly, because the effect of organisational changes is
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FIGURE 3
Visualisation of positive, neutral and negative expectations towards robotic systems.

the furthest removed from their area of influence. Even though
neither literature nor worker statements addressed the introduction
processes, the topic is of major relevance. The distribution supports
the findings of Berx et al. (2022), where Technological and Human
related OSH factors were noticeably more present in their reviewed
literature as in the Enterprise category. The underrepresentation
of the organisational category on the workers' side might be due
to the framing of the survey. The questions were phrased in
such a way that it could be assumed, the robotic system had
already been installed and the introduction process finished. Future
studies could consider investigating workers expectations towards
the introduction process specifically, to gain insight on the needs and
expectations of workers during this time of change. When focussing
on the content both sources provided, we can see that they align
in some categories, while others focus on different aspects of the
topic.

During the categorisation of statements, a few points of
discussion came up. One that was repeatedly raised between the
raters, was the perspective under which any given statement should
be analysed under. Depending on that, the category that was
considered fitting for a statement changed among the rater. For

example, “Personalized, adapting systems could result in continuous
monitoring, which raises concerns for privacy” was categorised as
applicable for interaction design, operation and supervision, and
change management. The categorisation depended on where the
focus was being set and if they were seen to relate to the worker
perspective, developers' perspective or the company's perspective.
This change of category depending on the mikro- or meso-view
of a working situation poses a challenge for this type of content
analysis.

The OSH dimensions and effects laid out by the OSH-factors
framework for advanced robotics largely apply for the automation
of physical tasks in the manufacturing sector regarding advanced
robotic systems, especially when looking at the threemain categories
proposed. However, as working situations become more complex,
which is that case for advanced robotic systems, using a framework
with highly granular categories can be less effective. In our analysis,
not all categorieswere represented.This does not necessarily indicate
that these categories hold no importance to the automation of
physical tasks through robotic systems, but more so that these
are currently neither at the forefront of workers expectations nor
the primary focus of research. In order to better represent the
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TABLE 4 Short- and long-term risks and opportunities expected fromworkers.

Short-term Long-term

- Technological failures (2)

- Unclear task allocation

- Reduced physical workspace (3) - Job loss (4)

- Reduced product quality - Decreased productivity

- High error rate (3) - Increased monotony

- Stress (2) - Malfunctions and errors

- Low acceptance

- (Lack of) training (2)

- Safety concerns

- Increased job control - Increased task variability (2)

- Reduced work intensity - Improved time control

- Increased productivity (2) - Improved physical ergonomics (7)

- Reduced monotony - Improved physical and cognitive ergonomics

- None (2) - Reduced long-term health complications (3)

- Improved wellbeing - Economic growth

- Reduced work intensity - Job transformation (2)

- Improved physical ergonomics (3) - Increased productivity

- Improved cognitive ergonomics - Overall improvement (2)

- Overall improvement (4)

statements analysed in this study, researchers decided to combine
the categories “task design and function allocation” as well as
“interaction design, operation and supervision.” Future analysis
may have a greater benefit from using the primary categories
(physical, psychosocial and organisational) and then derive their
own sub-categories, while using publications like the OSH-factors
framework for advanced robotics as a guideline (Rosen et al.,
2022).

6.2 Positive—neutral—negative
expectations

When comparing the initial expectation of change towards the
robotic system, as displayed in Table 3, one can observe two general
tendencies. Firstly, the replies heavily lean towards positive changes.
The most frequently named expectations related to unspecified
changes was “overall improvement of the work situation.” This goes
along with the second most named category, namely, “improved
physical ergonomics.” This was as frequently addressed as the
expectation for the robotic system to increase the efficiency in

production. Other positive changes that were also named were a
reduction in work intensity, an increased task variability and that
the introduction will lead to an upskilling of workers. The initial
positive expectations align with the impact robotic systems typically
have on a workplace according to literature (improved efficiency
(Evjemo et al., 2020), and ergonomic improvements (Colim et al.,
2020). Looking at the neutral and negative responses, workers either
expected a general increase of their work, explicitly express that
they are uncertain what will change, or doubted the applicability
of robotic systems at their workplace. This might indicate a lack
of knowledge about automation, the capabilities or intended uses.
Overall, we see a similarly mixed distribution of expectations as in
previous studies on this topic (Wurhofer et al., 2015; Kildal et al.,
2018) with a slight lean towards positive change.

The technology as well as public perception and media
reporting on it, may have changed over time, influencing
workers' answers (Riemer and Wischniewski, 2019). While
it is not possible to conclusively determine the reason why
this sample's initial expectations were more positive than in
prior studies (Wurhofer et al., 2015), it underlines that it is
valuable to assess these expectations in workers. Not only to
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gauge if their expectations are realistic, but also to identify any
distrust or fears related to the technology, as these can have
a negative influence on the implementation process and later
use of the robot (Hancock et al., 2011; Marangunić and Granić,
2015).

6.3 Opportunities and risks on a time frame

The follow-up questions of the general change workers expected
from the technology were targeted at short-term as well as long-
term risks and benefits. Literature shows that people consider
distant or immediate consequences of potential behaviours or events
differently (Strathman et al., 1994). Moreover, the Construal-Level
Theory of Psychological Distance states that the further removed
something is from direct experience, the more abstract the level of
construal of the matter (Trope and Liberman, 2010). Hence, results
should indicate a greater level of detail in the expected short-term
changes, compared to the long-term consequences, which matches
our findings.

6.3.1 Short- and long-term changes
When workers were asked to give specific examples on

short-term opportunities and risks, they provided a variety of
answers with varying depth. The most named opportunity was
an overall improvement of the work situation without any further
specifications, followed by the expectation that the robot will
improve physical ergonomics. However, a number of other OSH
related factors were named in greater detail. From the named
opportunities (Table 2), the workers' expectations for the system in
the short-term were that it will benefit their working conditions
by alleviating both physical and mental strain. Workers were able
to formulate their short-term expectations in great detail. Workers
expect the robot to have errors or produce work at a lower quality.
There is minor concern about the physical safety of the system
but a stronger focus on the machine taking up too much space in
the current workplace. When OSH related factors were named by
workers, they focus on psychosocial factors like increased stress,
unclear task allocation or a low acceptance for the technology which
literature shows can spike during the early days of use (Wisse
and Sleebos, 2016; Tuomi et al., 2021). We also see that a lack of
training is mentioned in the short-term, which could potentially
contribute to the expected errors and in the long run, job loss.
Interestingly the short-term risks indicate that while workers are
aware that the robotic system will alter their physical workspace and
has residual physical risks, they name negative psychosocial effect
more frequently than physical.

Regarding the long-term changes, there were fewer risks than
opportunities named and those exhibited a lower level of detail.
Workers name primarily OSH related long-term opportunities,
like an increased task variability, prevention of long-term health
consequences and the improvement of both physical and cognitive
ergonomics at the workplace, which aligns with literature findings
(Kim et al., 2017; Kadir et al., 2019). The most dominant group
here is the improvement of physical ergonomics. However, there
were also contributions from individuals who expected opposing
effects: an increase in task variability or more monotony. The
most commonly named long term-risk was job loss; the fear of

which triggered by automation at the workplace is well documented
(Bhattacharyya, 2023). Malfunctions, too, were named as a long-
term phenomenon of the technology, however to a lesser degree
than in the short-term. Overall, the long-term consequences were
formulated to a lower level of detail, which generally aligns with
the Construal-Level Theory of Psychological Distance (Trope and
Liberman, 2010).

This comparison of both short- and long-term risks and
opportunities highlights that worker are well aware of the potential
impact a robotic system can have on them and their work
environment, not just imminently, but also over time. Long- and
short-term expectations from workers towards robotic systems,
OSH related and non-OSH related, is a highly under researched
area. Few studies on the OSH impact take an explicit timeframe
into consideration, with the exception of long-term physical
strain effects like MSD (Haddadin et al., 2009). None of the
above included publications specified the effects to a certain time
frame.

7 Limitations

While great efforts were made, to uphold high scientific
standards, some limitations still apply to the results of this
research. The worker survey took place in their mother tongue,
however the results had to be translated for further analysis.
While a high standard of translation was aimed for, linguistic
nuance was inevitably lost in translation. Furthermore, the surveyed
workers had different levels of experience, specifically the German
subsample, as they had already worked with the robot by the
time the survey took place. This may have informed their replies
to the survey. Although a large proportion of employees in
the workplaces surveyed participated, the overall sample size is
moderate. Regarding the analysis of short-term and long-term
consequences, it has to be noted that someparticipants gave identical
answers for both, leaving it open to interpretation if they expect the
effect to be persistent, or to change over time.

8 Future research

The present study has provided a comprehensive examination
of the multifaceted risks and opportunities associated with robotic
systems in the context of workplace automation, particularly in
industrial settings. However, to further enhance the depth and
applicability of our findings, there is a need for future research. An
important next step could be a validation of our findings through
expert consensus assessment by involving experts in the fields
of robotics, occupational safety and health (OSH), and industrial
automation. By gauging the level of agreement among experts, it
would be possible to ascertain whether our conclusions align with
a broader expert consensus. Another research avenue that can be
explored is, preforming the above demonstrated procedure in other
sectors that are likely to see increased robot usage in the near future,
like the agricultural or medical sector. This would allow a broader
comparison between the sectors, possibly unveiling critical overlap
or discrepancies between the expectation and OSH factors between
the sectors.
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Lastly, a topic which is continuously growing in relevance and
prominence, when it comes to the integration of robotic systems into
the world of work at large, as well as the industrial sector specifically,
are the ethics and legislative challenges these technologies create.
Their expanding capabilities in perceiving their work environment
are already in focus of matters regarding data privacy and personal
data collection. Future research should focus on the specific ethical
challenges for the industrial sector as well as the world of work at
large.

9 Conclusion

More and more workers are expected to interact with robotic
systems at their workplace. In order to create a human-centred
workspace, it is necessary to be aware of worker expectations as well
as current research on the risks and opportunities these technologies
may bring. In order to gain a better understanding of research
results, both theoretical and fromworker surveys, it can be helpful to
use existing models or frameworks to create a common ground for
analysis. The OSH-factors framework for advanced robotics divides
the topic into physical, psychosocial and organisational facets.
Central question to our paper was whether and how these OSH
dimensions and effects apply for the automation of physical tasks
through interactive robotic systems in the manufacturing sector,
represented by literature as well as a worker survey. Furthermore, we
analysed tendencies (positive or negative) in workers expectations
in the long- and short-term, as this is a critically under researched
topic. We found that the framework is applicable to the reviewed
data with limitations. The three main categories could be applied
to the statements with high interrater reliability, showing that
they are suitable as a baseline for further analysis. Most of the
subcategories provide additional nuance to that analysis. However,
not all subcategories are distinct enough and show significant
overlap. Combining the categories may help better represent the
underlying data. There are several categories in the framework
that are underrepresented, both in literature, as well as the worker
survey. Especially the lack of focus on the introduction process offers
potential for future research.

Regarding expected short- and long-term changes, both the
positive and negative details are prevalent expectations. Both
short- and long-term opportunities focus on physical ergonomics,
however, they also contain detailed suggestions on how workers
expect their jobs to change towards lessmonotonouswork, andmore
control over their time and decision making. Short- and long-term
risks were highly varied and addressed topic relating to physical,
psychosocial and organisational aspects.

The results of the study highlight the predominantly positive
impact of robotic systems on physical factors, including reduced
physical strain, removal from unsafe work environments and long-
term ergonomic improvement. From the literature perspective,
there is a lack of long-term study results on the impact of these
technologies. The interviews however indicate that workers do
approach these technologies with the expectation of long-term
health benefits. However, both the literature and the workers'
perspective also identified potential psychosocial risks, including
an increase in cognitive demands and concerns about job
loss.

Overall, this article provides insights for researchers,
practitioners, and policymakers involved in the design and
implementation of robotic systems in the workplace. While the
results suggest an overall positive impact expectation of robotic
systems on occupational safety and health in the manufacturing
sector, it also highlights that workers expect negative changes to
come from the technology. Further research is needed to assess
long-term effects and ensure that workers' wellbeing is prioritized
in the process of automation.
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The effect of human autonomy
and robot work pace on
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Michiel P. de Looze1
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Collaborative robots (in short: cobots) have the potential to assist workers with
physically or cognitive demanding tasks. However, it is crucial to recognize that
such assistance can have both positive and negative effects on job quality. A key
aspect of human-robot collaboration is the interdependence between human
and robotic tasks. This interdependence influences the autonomyof the operator
and can impact the work pace, potentially leading to a situation where the
human's work pace becomes reliant on that of the robot. Given that autonomy
and work pace are essential determinants of job quality, design decisions
concerning these factors can greatly influence the overall success of a robot
implementation. The impact of autonomy and work pace was systematically
examined through an experimental study conducted in an industrial assembly
task. 20 participants engaged in collaborative work with a robot under three
conditions: human lead (HL), fast-paced robot lead (FRL), and slow-paced robot
lead (SRL). Perceived workload was used as a proxy for job quality. To assess
the perceived workload associated with each condition was assessed with the
NASA Task Load Index (TLX). Specifically, the study aimed to evaluate the role of
human autonomy by comparing the perceived workload between HL and FRL
conditions, as well as the influence of robot pace by comparing SRL and FRL
conditions. The findings revealed a significant correlation between a higher level
of human autonomy and a lower perceived workload. Furthermore, a decrease
in robot pace was observed to result in a reduction of two specific factors
measuring perceived workload, namely cognitive and temporal demand. These
results suggest that interventions aimed at increasing human autonomy and
appropriately adjusting the robot's work pace can serve as effective measures
for optimizing the perceived workload in collaborative scenarios.

KEYWORDS

cobot, perceived workload, industrial assembly work, autonomy, work pace, job quality

1 Introduction

The fourth industrial revolution, conceptualized in Industry 4.0, has led to the
introduction of various new technologies that digitize, connect, and automate procedures.
Despite this ever-increasing level of automation, human involvement is still crucial due to
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their adaptability, dexterity, and cognitive abilities. To make optimal
use of the strengths of humans within a highly automated
environment new solutions are needed. The development of the
collaborative robot or cobot, allowed humans and robots to
work closely together as a flexible and efficient team (Lenz et al.,
2008). A key characteristic of human-robot collaboration is
the interdependency between human and robot actions (Hoc,
2000).

The benefit of human-robot collaboration (HRC) is the
possibility to make optimal use of human and robot strengths
and mitigate weaknesses. HRC can improve efficiency through
concurrent motion of robots and humans (Lasota and Shah, 2015).
The potential benefit for humans in HRC is that it can reduce
physical and cognitive workload (Singh et al., 2013; Cherubini et al.,
2016). On the other hand, working in collaboration with a robot
can also have negative effects for humans. To facilitate human
robot collaboration, more focus on the human is needed, instead
of automation alone (Kolbeinsson, Lagerstedt, and Lindblom,
2019).

To measure and access the quality of jobs the OECD developed
the framework for job quality (Cazes, Hijzen, and Saint-Martin,
2015). Within this framework, the quality of the working
environment is the dimension that deals with the non-economic
aspects of the work. A good working environment balances job
demands and job resources. This balance originated from the job-
demand-control model (Karasek, 1979). According to this model
operator wellbeing depends on the balance between the level of
job demands, and the level of control the operator has to cope
with these demands. The introduction of robots in the workplace
alters both demands and control. The demands change when tasks
are reallocated between the human and the robot, or the robot
changes the working pace. The level of control changes when the
robot takes over decision making tasks from the human. In the
design of HRC applications, numerous task distributions and robot
work paces can be considered, offering an opportunity to optimize
the HRC implementation and enhance working conditions. In this
research, we focus on the robot work pace and the human autonomy,
i.e., the level of control an operator has to select and initiate
actions.

Human autonomy in HRC is conceptualized in the levels of
automation that describe ten levels between fully manual and fully
automated behavior (Parasuraman, Sheridan, and Wickens, 2000).
According to this study, an automation level should be chosen
that optimizes performance. A metastudy Onnasch et al. (2014)
shows a preference to increase automaton until a tipping point
is reached where the unwanted effects from mistakes overtake.
HRC studies by Gombolay et al. (2015) and Schulz et al. (2017) have
shown that humans prefer working with a robot with a relative
high level of automation. This seems to suggest that operators are
willing to sacrifice autonomy if there is a considerable advantage
in demand. The opposite has been argued by Weiss et al. (2011)
who stated that operators might perceive a negative change in
their working conditions when part of the control and task load is
taken over by the robot. In line with this Pollak et al. (2020) found
that manual control over the robot improved the wellbeing of the
operator.

The effect of pace and synchronization of human and robot
actions has been captured in the concept of fluency for which a set

of subjective and objective metrics is available.The objective metrics
include the relative portion of functional and non-functional
delays of the human and robot, and the amount of parallel work
(Hoffman, 2019). Fluency is generally improved by minimizing
delays, especially for the worker. This promotes a fast-paced robot
that finishes tasks early in anticipation of human tasks. However,
two studies revealed that a high moving speed of the robot leads
to high cognitive workload, significantly increasing fear, surprise
and discomfort (Arai, Kato, and Fujita, 2010; Fujita, Kato, and
Tamio, 2010). These results might also be explained in part by
the fact that faster moving robots increased the sense of time
pressure.

The aforementioned studies seem tomake conflicting statements
about the role of human autonomy and time pressure. There
are several explanations for this. First, the change in human
autonomy or work pace is paired with other factors that have
influenced the outcomes. For example, time pressure and robot
speed might be influenced at the same time (Arai, Kato, and
Fujita, 2010; Fujita, Kato, and Tamio, 2010), or the change in
autonomy also entails a change in the task load (Fournier et al.,
2022). Second, many studies are intended as a proof of concept
and only involve a small (<10) number of subjects (Baltrusch et al.,
2021).

To properly study the effects of time-pressure and autonomy,
the conditions should be kept uniform in terms of task load. Such
a standardization might also benefit industrial applications. Many
industrial processes, such as assembly work, are characterized by
repetitive tasks that must be completed in a prescribed cycle time
(Cohen et al., 2022). This cycle time is linked to the task at hand
and also to other tasks in the process and customer demand. HRC
solutions that improve workload at the expense of cycle time are
likely to be rejected in practice.

This study aims to identify the effect of human autonomy and
robot work pace in the context of industrial assembly work. The
following research questions are formulated:

1. What is the impact of increasing human autonomy on the
perceived workload of industrial operators?

2. What is the impact of slower robot pacing on the perceived
workload of industrial operators?

We have set up an experiment to answer the stated research
questions. In the experiment, participants worked together with
a robot on a manual assembly task. The task simulates a typical
industrial assembly task. During the experiment the level of human
autonomy and the robot work pace of the robot could be controlled
such that multiple conditions were created that provided the data to
answer the research questions.

2 Methods

2.1 Participants

In this study 20 participants were included (15 men and
5 women, 39 std 14 years old). Participants were recruited via
flyers and personal contacts at the BIC Manufacturing Campus,
Eindhoven, Netherlands and from the research groups at TNO
and HIVA KU Leuven. As such, a diverse group of participants
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FIGURE 1
Experimental set-up of the manual assembly task.

was found, 4 participants had secondary education or an associate
degree, 4 had a bachelor's degree, and 12 had a master's degree or
higher. 6 participants were students, 14 had a job. This research
complied with the tenets of the Declaration of Helsinki and was
approved by the Institutional Review Board at TNO, Leiden,
Netherlands (application 2020-063). Informed consentwas obtained
from each participant.

2.2 Experimental set-up

The participant and the robot performed collaborative manual
assembly tasks in a shared workspace (Figure 1).

The collaborative task comprised placing pink and brown tiles
on a board. Each board had two rows with six slots and ten of these
boards were made per condition. The human and the robot each
filled a different row with tiles (Figure 2). The participant and the
robot were instructed to place the tiles such that opposing tiles had
the same color. Each participant collaborated with the robot in three
different conditions. For each condition the way the tiles had to be
placed on the board was different: human in the lead (HL), slow-
paced robot in the lead (SRL), fast-paced robot in the lead (FRL).
The actor that was in the lead, determined the placement order of
the tiles and triggering the actions of the other actor (human or
robot). The HL versus the FRL condition tests the effect of human
autonomy (high versus low human autonomy). The SRL versus the
FRL condition tests the effect of robot work pace. The robot work
pace was changed by altering the onset of the robot movement. The
robot speed was constant across conditions.The different conditions
are visualized in Figure 3. A video of the conditions is available as
Supplementary Material.

2.2.1 Human in the lead (HL)
The participants initiated the task, by selecting a tile from their

supply and placing it in one of the slots on the board (Figure 2A).
In this condition the slots were marked pink or brown and the

participant was instructed to place tiles in the slots with matching
colors. Each board had a different color pattern to prevent that
a participant learned a sequence. The participant could select its
own placement pattern, i.e., the order in which the slots were filled.
When the participant placed a tile, the robot picked a tile of the
same color and placed it in the matching slot on the opposite side
of the board. The human did not have to wait for the robot to
continue to the next tile, so the participant and the robot worked in
parallel.

2.2.2 Slow-paced robot in the lead (SRL)
Therobot initiated the task, by selecting a tile from its supply and

placing this tile in one of the slots on the board (Figure 2B). Then
participants had to pick a tile of the same color and placed it in the
opposing slot on the board. The robot waited until the participant
had placed a tile before placing its next tile. The participant and the
robot worked serially on the task. The robot had a limited set of
predefined placement patterns, to prevent that a participant learned
a sequence.

2.2.3 Fast-paced robot in the lead (FRL)
This condition was the same as the SRL condition with one

exception. In the FRL condition the robot was allowed to work
one tile ahead of the human so the participant and the robot
worked in parallel without waiting times between human and robot
tasks.

2.2.4 Cognitive task
To assure, for each condition, that the task time of the robot

was shorter than the task time of the human, the participants had to
perform a small cognitive task before placing the tile.Theparticipant
had to count the number of “T”-signs in an arrangement of “T” and
“+”-signs on the back of each tile (Figure 4). Each tile had between
2 and 8 “T”-signs on the back.

The front side listed multiple possible answers (2-8). The
participant had to place the tile with the correct answer on top the
board. To assure that the participant placed all the tiles correctly.
The tiles had an unnoticeable small asymmetry, such that the tiles
only fitted in the slots when the correct answer was on top. When
the participant noticed the tile did not fit, the participant had to
correct the counting error before proceeding with the next tile.
This approach effectively mitigated the possibility of errors at task
completion.

2.2.5 Robotic setup
The robotic setup consisted out of a dual armed YuMi cobot

(IRB 14000, ABB, Zürich, Switzerland) and an auxiliary camera
(Logitech C920 HD Pro Webcam). The board and robot-tiles
supply had fixed positions and the robot was programmed to place
tiles from its tile supply to the board using its build in suction
cups. The position and color of the tiles that were placed on the
board by the participant were detected by the camera that tracked
the square AR markers that were put on the tiles and board.
The detection of a new placement triggered the robot actions.
The synchronization of tasks performed with custom scheduling
software (Pupa, Van Dijk, and Secchi, 2021). The robot motions
were programmed in ABB RAPID software. The markers detection
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FIGURE 2
Tile boards for the collaborative tasks. (A): tile board for the HL condition without tiles. Note that for the HL conditions the dots in the middle in the
bottom rows indicate the color of the tile that needs to be placed. (B): tile board for the FRL and SRL conditions with 3 robot tiles and 2 human tiles.

FIGURE 3
Timeline of the three conditions (HL, FRL, SRL). Task times are indicative for flawless task execution without delays or mistakes. The board cycle time,
the time to finish one board, is fixed to 90 s. Arrows denote a dependency between an ending and a starting task. Note that when a human task is
dependent on a robot task, the human can start as soon as the robot has selected a tile, and the human does not have to wait until the robot has
completed the task.

was programmed in ROS (kinetic) using the ar_track_alvar
package.

2.3 Experimental procedure

Before the start of the measurement participants were requested
to fill in a questionnaire on personal characteristics, gender, age,
highest completed level of education and type of employment. After
a short explanation of the experimental set-up, each participant
started with a try-out where each condition was tested for a brief
period. During this try-out the participants could get familiarized

with the robot and the task. Subsequently, the participant performed
the manual assembly task in the three different collaboration
conditions (Figure 2). Each condition consisted of the assembly of
ten boards in a row. The assembly of a board consisted of placing
the tiles, removing the tiles placed by the robot, putting away the
current board, and placing a new board on the table. The board
cycle time, i.e., the time a participant had to finish one board, was
fixed at 90 s. The board cycle time was established during a pilot and
allowed the subjects to work at a comfortable pace. If the participant
finished early, the participant waited until the 90 s were passed. If
the participant was not ready in the allotted time the participant
was allowed to finish the task before starting the next cycle. After
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FIGURE 4
Back and front view of a tile that was placed by the human. The
correct answer (2) is on top.

each condition with ten boards, participants filled a questionnaire
for assessing perceived workload and perceived performance. The
sequence of conditions was systematically varied to prevent order
effects.

2.4 Measurements

2.4.1 Perceived workload
The NASA Task Load Index (TLX) (Hart and Staveland,

1988) was used to score the perceived workload on 6 scales:
cognitive demand, physical demand, temporal demand, effort,
frustration and perceived performance. A copy of the questionnaire
in Dutch and English is available as Supplementary Material. Since
objective performance was fixed through the board cycle time
across conditions, the perceived performance score will serve an
indicator of whether subjects perceived their performance as similar
across conditions. The other factors are indicators for the change in
perceived workload.

2.4.2 Objective task performance
The board cycle time was kept constant (see Section

Experimental set-up), while the tile cycle time had the potential
to vary. To ensure that large variations in tile cycle time were not
present across conditions, the tile cycle time was recoded. The tile
cycle time was recorded as the time between placing two tiles by the
participant. Any waiting time for the participant due to the robot
was included in the cycle time. For each participant and condition
the median cycle time was calculated. The placement of the first
tile was discarded because it often had some irregularities in the
recording and in the HL condition involved a vocal “go” from the
experiment conductor which did not exactly line up with the start
of the recording.

2.4.3 Statistics
To test for statistical differences in collaboration conditions, the

scale values of the TLX were compared between the conditions,
using the non-parametric Wilcoxon test. The results will report
the comparison between HL vs. FRL and SRL vs. FRL that relate
to respectively research questions one and two. p-values below

0.05 were marked as statistically significant. Results will report the
relevant findings.

3 Results

3.1 Perceived workload

The perceived workload (cognitive demand, physical demand,
temporal demand, effort, frustration) and perceived performance
are shown in Figure 5, a full report on the outcomes of the statistical
tests is available as Supplementary Material.

Increased human autonomy (HL vs. FRL) led to a significant
decrease in all perceived workload factors (cognitive demand
p < 0.001, physical demand p = 0.011, temporal demand, p
= 0.007, effort p = 0.03, frustration p = 0.032). Decreased
robot work pace (SRL vs. FRL) led to a significant decrease
in cognitive demand (p = 0.026) and temporal demand (p =
0.008). The same trend was observed in the other perceived
workload factors, physical demand, effort, and frustration, but
without significant differences. The difference in perceived
performance between all collaboration conditions was small and not
significant.

3.2 Objective performance

The tile cycle time, the time between two tiles placed by the
human is shown in Figure 6.

Increased human autonomy (HL vs. FRL) led to a
9.2% decrease in tile cycle time (6.8 s vs. 7.5 s). Decreased
robot work pace (SRL vs. FRL) led to an 12.5% increase
in tile cycle time (8.5 s vs. 7.5 s). These differences were
significant.

4 Discussion

4.1 Experimental validity and limitations

The experiment aimed to keep performance constant across
conditions by fixing the board cycle time. Despite this, small
(<15%) but significant differences in the tile cycle times were
observed, which affected the waiting time between boards.
However, these differences in tile cycle time did not lead
to significant differences in perceived performance among
participants. Furthermore, the increase in perceived workload
was not directly associated with an increase in tile cycle time, as
observed in the HL vs. FRL comparison but not in the SRL vs.
FRL comparison. The tile cycle time is therefore not considered
as a primary indicator for perceived workload. Still, the tile cycle
time differences will be considered when interpreting the other
results.

After the experiment the participants were asked if they were
able to systematically improve their task execution with something
they discovered in the experiment. First, they were asked after
the experiment whether they recognized the predefined placement
patterns of the robot, which was not the case. Secondly, participants
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FIGURE 5
Perceived workload in the three collaboration conditions: Human in the lead (HL), Slow-paced robot in the lead (SRL) and Fast-paced robot in the lead
(FRL).

FIGURE 6
Average tile cycle times.

were asked whether they discovered strategies that let them work
more efficient, e.g., counting strategies for the cognitive tasks.
Participants reported a wide range of strategies. However, they did
not experience one strategy to be much more efficient that other

strategies. Therefore, it is unlikely that placement patterns of the
robot or the development of task strategies led to instantaneous
changes in performance and influenced the outcomes of the
experiment.

There are limitations to consider in this study. Firstly, our
experiment focused solely on a single task resembling an industrial
assembly task. The perceived workload, measured using the TLX,
served as a proxy for job quality, but this relationship is non-linear.
Extreme workload levels, either too low or too high, can lead to
performance decline, following a U-model (Young and Stanton,
2002). Therefore, the findings should be interpreted within the
context of industrial assembly work and may not be generalizable
to other tasks, such as monitoring or high-load tasks. Also, factors
of the TLX tend to correlate (Hart, 2006). This study reports
the outcomes on all six factors. Due to the correlation between
factors, it is difficult to isolate the effects on different types of
perceived demands which might also be reflected in the results.
For example, the perceived physical demand changed along with
the other factors even though the real physical demand did not
change.

Another limitation is that a fixed delay was chosen between
human tasks, ensuring all participants experienced the samewaiting
time. This delay was effectively zero in FRL and HL conditions and
small in the SRL condition. Consequently, participants were unable
to adjust the waiting time by working at a faster or slower pace. In
situations where the waiting time between tasks is dependent on the
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working speed of the human, the relation between working pace and
perceived workload may differ.

Furthermore, the experiment involved modifying human
autonomy by allowing participants to initiate tasks and select
the execution order, which slightly altered their task load. The
primary components of task load were manual handling and
cognitive counting. However, minor variations in task load existed
across the conditions. These limitations emphasize the need for
caution when extrapolating the results, particularly to other types of
work.

4.2 Human autonomy (HL vs. FRL)

The study results indicate that, in the assembly task, increased
human autonomy reduces perceived workload. The increase in
human autonomy (HL vs. FRL) was achieved by letting the human
start the tile placement sequence and letting the human select the
order in which the tiles were placed instead of the robot. This
relatively small change in human autonomy was sufficient to lead
to a significant decrease in the selected five perceived workload
factors. This is in line with the findings of Pollak et al. (2020)
that promotes manual control over the robot. This finding is also
in line with the Karasek's job-demand-control model (Karasek,
1979; De Spiegelaere et al., 2015). According to the model, when the
operator has the job control (i.e., autonomy to initiate a new cycle)
to tackle a matching job demand (i.e., work pace) the perceived
workload will be lower. Thus, it should be noted that leaving a
task for the operator to perform does not automatically increase
perceived workload. On the contrary, take away a task which helps
the operator control the job demands, and the perceived workload
will likely increase. In contrast, the result of the present study
conflicts the findings of (Gombolay et al., 2015; Schulz, Kratzer, and
Toussaint, 2017) that promote automation. A difference between
this study and Schulz et al. (2017) and Gombolay et al. (2015) is that
these studies is that a pro-active involvement of the cobot resulted in
clear task performance advantages, such as reduced execution time
or less re-scheduling.

It was also observed that the tile cycle time in the FRL condition
was slightly higher than in HL condition. This was not caused
by increased waiting time of the human since the robot always
worked ahead of the human (Figure 3). The change in autonomy
also entailed a change in dependency between the robot and the
human tasks. In the HL condition there was no direct dependency
of the human tasks on the robot tasks, i.e., the human could work
without noticing the result of the robot's task. In the FRL condition,
the human did have to watch the outcome of the robotic tasks, i.e.,
observe the color and the location of the tile placed by the robot.
The dependency on robot tasks in the FRL condition might have
caused that the participant felt an increased need to actively follow
the robot's actions. It could have also been caused by the fact that
since the robot took the initiative, it was perceived as less predictable.
The predictability of robot motions has been positively associated
with trust and perceived safety (Dragan et al., 2015). Both factors
might have led to an increase in attention to the robot's actionswhich
might have caused the increased cognitive and temporal demand in
the FRL condition.

4.3 Robot work pace (SRL vs. FRL)

This study indicates that decreased robot working pace reduces
workload. In the SRL condition, participants experienced a fixed
delay between their tasks. They had to wait with picking a new tile
until the robot selected a tile color by picking a new tile from the
supply. This contributed to the observed increase in the tile cycle
time. In the FRL condition the new tile from the robot was already
on the table since the robot worked one step ahead. This change led
only to a significant change in two factors, cognitive and temporal
demand, and is thus less prominent as the human autonomy related
effect.

The finding that workload indicators are lower in the SRL
condition competes with the findings of Hoffman (2019) who found
positive associations between objective fluency (i.e., minimizing
delays) and factors such as trust and bonding which favor the FRL
condition. However, if reducing workload is the goal, it can be
achieved by decreasing the robot pace, which aligns with the SRL
condition. Other studies (Arai, Kato, and Fujita, 2010; Fujita, Kato,
and Tamio, 2010) have shown that faster moving robots increase
mental strain. Itmust be noted that in their studies themoving speed
of the robot was increased. This study changed pace, i.e., the timing
of the onset of robot actions, alone and the robot moving speed
was constant. Changing the moving speed of the robot might have a
separate effect on perceived workload.

5 Conclusion

The study demonstrates that human-robot collaboration
(HRC) in industrial settings creates interdependence between
humans and robots, which can impact job quality. Based on
The OECD Job Quality Framework and Karasek's job-demand-
control model (1979), human autonomy and robot work pace were
selected as key factors that might affect the perceived workload.
The experiment manipulated these two factors across three
conditions.

Increasing human autonomy by assigning decision-making
tasks to humans resulted in a decrease in perceived workload, even
for small decision-making tasks typical in industrial assembly. This
finding aligns with the notion that higher levels of human autonomy
which match corresponding job demands contribute to improved
job quality.

Lowering the work pace of the robot, such that it creates small
waiting times between tasks for the human, led to a reduction
in perceived workload. This finding supports previous research
suggesting that a high working speed of the robot can increase
mental strain. Interestingly, this finding contradicts the fluency
principle, which emphasizes minimizing waiting times for both
humans and robots.

These findings have practical implications for various industrial
HRC processes that involve a sequence of human and robot tasks.
The level of human autonomy can be adjusted by determining task
initiation and execution order responsibilities between humans and
robots. Similarly, the robot's pacing can be modified by altering the
timing of its actions. Importantly, these changes can be implemented
independently of the primary task distribution between humans and
robots, without significant consequences for productivity. Based on
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the study's results, two design guidelines are proposed to optimize
HRC applications:

• Encourage a design that allows operators some freedom to
initiate tasks and choose the execution order.

• Thework pace of a robot can be optimized by balancing fluency,
cognitive demands, and temporal demands (time pressure).
Lowering the robot pace can be an effective strategy to reduce
cognitive and temporal demands.

By following these design guidelines, industrial HRC processes
can be optimized to enhance working conditions, improve job
quality, and mitigate workload-related challenges.
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Advanced workstations and
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eye-tracking and cardiac activity
indices to unveil senior workers’
mental workload in assembly
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(HIT) Research Centre, University of Padova, Padova, Italy, 3Department of Computer Science, Helsinki
Institute for Information Technology, University of Helsinki, Helsinki, Finland, 4BNP Srl, Cittadella,
Padova, Italy

Introduction: As a result of Industry 5.0’s technological advancements,
collaborative robots (cobots) have emerged as pivotal enablers for refining
manufacturing processes while re-focusing on humans. However, the successful
integration of these cutting-edge tools hinges on a better understanding
of human factors when interacting with such new technologies, eventually
fostering workers’ trust and acceptance and promoting low-fatigue work. This
study thus delves into the intricate dynamics of human-cobot interactions by
adopting a human-centric view.

Methods: With this intent, we targeted senior workers, who often contend
with diminishing work capabilities, and we explored the nexus between various
human factors and task outcomes during a joint assembly operation with a
cobot on an ergonomic workstation. Exploiting a dual-task manipulation to
increase the task demand, we measured performance, subjective perceptions,
eye-tracking indices and cardiac activity during the task. Firstly, we provided
an overview of the senior workers’ perceptions regarding their shared work
with the cobot, by measuring technology acceptance, perceived wellbeing,
work experience, and the estimated social impact of this technology in the
industrial sector. Secondly, we asked whether the considered human factors
varied significantly under dual-tasking, thus responding to a higher mental load
while working alongside the cobot. Finally, we explored the predictive power of
the collected measurements over the number of errors committed at the work
task and the participants’ perceived workload.

Results: The present findings demonstrated how senior workers exhibited strong
acceptance and positive experiences with our advanced workstation and the
cobot, even under higher mental strain. Besides, their task performance suffered
increased errors and duration during dual-tasking, while the eye behavior
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partially reflected the increased mental demand. Some interesting outcomes
were also gained about the predictive power of some of the collected indices
over the number of errors committed at the assembly task, even though the same
did not apply to predicting perceived workload levels.

Discussion: Overall, the paper discusses possible applications of these results in
the 5.0 manufacturing sector, emphasizing the importance of adopting a holistic
human-centered approach to understand the human-cobot complex better.

KEYWORDS

human factors, ergonomic workstations, collaborative robots, mental workload,
psychophysiology

1 Introduction

The rapid evolution of technology has had a profound impact on
the manufacturing industry. Specifically, collaborative robotics (or
cobotics) has gained attention for increasing accuracy and efficiency
in manufacturing activities (Liu et al., 2022; Lorenzini et al., 2023).
In this framework, innovations such as the Internet of Things (IoT)
and the Industrial Internet of Things (IIoT) have enabled data-
sharing between tools, sensors, and actuators, optimizing working
activities and predicting maintenance needs (Wollschlaeger et al.,
2017; Khan and Javaid, 2022). Artificial Intelligence (AI) is also
being leveraged to enhance processes and ensure quality control
(Jan et al., 2022; Morandini et al., 2023), while Big Data analytics is
being used to identify trends and support supply chainmanagement
(Bag et al., 2020; Koot et al., 2021). Despite these technologies have
a clear relevance for the manufacturing sector, their introduction
into the industrial routines needs to be carefully implemented to
avoid a low level of workers’ acceptance (Lu et al., 2022) and trust
(Charalambous et al., 2016) towards such working technologies,
that would otherwise result in a reduced use. Eventually, operators
need to understand that these recent and advanced tools have
not been considered as a replacement but instead as a support in
carrying out the daily working activities.

The shift in the conceptualization from Industry 4.0–5.0 has in
fact brought to light the centrality of human beings, their individual
characteristics and needs (e.g., ageing and consequent physical or
cognitive decline). In this view, besides the strong interest in the
digital transition, the introduction of cutting-edge hardware and
software solutions and AI-driven technologies must be carefully
considered, on the one hand, to support efficient and flexible
industrial productivity, and on the other hand, to back individuals
and society. To pursue the latter point, technologies must adapt to
the needs and individual features of industrial workers (Lu et al.,
2021; Lu et al., 2022), while adhering to the principles of social
fairness and sustainability inherent in Industry 5.0 (Xu et al., 2021;
Huang et al., 2022; Ivanov, 2023). This human-centric approach is
also endorsed by the European Commission (Breque et al., 2021)
and is essential for creating accessible, inclusive, and safe working
environments that enhance physical and mental health, wellbeing,
and the quality of working life.

In the manufacturing sector specifically, advanced ergonomic
workstations and collaborative robots play a pivotal role in this
shift toward a human-centric focus. These enabling technologies are
designed to work alongside human operators, providing ergonomic

features and promoting user-centered design (Panchetti et al., 2023).
In cobotics, operators and cobots share time andworkspace, directly
interacting to perform tasks (Hopko et al., 2022). The introduction
of these technologies typically increases acceptance, intention of
usage, and actual usage among end users (Weiss and Huber, 2016;
Meissner et al., 2020).

These advanced workstations offer various ergonomic features,
such as adjustable height, smart lighting, pick-to-light systems, and
torque reaction arms to improve the operator’ comfort, safety and
acceptability. Furthermore, there are relevant differences between
traditional robots and cobots. For instance, traditional industrial
robots do not allow the human-robot direct physical interaction,
and therefore do not need any safety features to ensure the
physical integrity of the worker. Differently, cobots allow a shared
workspace and close actions of humans and cobots. To ensure
workers’ safety when closely interacting with these technologies,
cobots are equipped with several sensors (e.g., proximity, smart
cameras) and safety features (i.e., force and speed limiting and
collision avoidance systems; Sherwani et al., 2020). This heightened
level of safety measures enables cobots to interact securely with
human workers in close proximity. They effectively bridge the
divide between the physical limitations that traditional industrial
robots entail. By assuming responsibility for physically demanding
and repetitive tasks while concurrently minimizing the risks of
errors, waste, injuries, and accidents, cobots reveal their substantial
advantages for human workers, with particular significance for
senior workers.

The human-cobot framework is thus characterized by a
symbiotic relationship that combines human expertise, creativity,
and the ability to handle unforeseen situations, in conjunction with
the precision and unwavering performance of robots. According to
Kopp et al. (2021), the effectiveness of a human-cobot dyad can be
influenced by three elements: worker’s skills, cobot performance,
and their mutual interaction. Remarkably, there is recent literature
that highlights how, by bringing the focus on humans within
the human-cobot interplay, the study and assessment of human
factors become essential. For instance, Paliga and Pollak (2021)
and Paliga (2022), proposed the concept of fluency in human-robot
collaboration, which seeks to replicate the seamless interactions
observed in human teams. Furthermore, physical ergonomics, trust,
acceptance, user experience and usability of these working tools, and
the level of operators’ mental workload are crucial aspects that must
be measured in order to introduce cutting-edge workstations and
collaborative robotics in the workplace effectively (for a review, see
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Faccio et al., 2023). All these factors, along with the aging factor
that is central in our investigation, are detailed in the following
paragraphs.

Concerning physical ergonomics, researchers such as
Gualtieri et al. (2021) and Gaultieri et al. (2020a) have explored the
assessment of anthropometric data, focusing on workbench heights
and the positions of tools, including dispensers. To accomplish this,
both virtual and real prototypes have been employed to determine
the correct positioning of workers’ arms, shoulders, and backs,
often using wearable devices. The objective was to mitigate the
risk of musculoskeletal problems (Colim et al., 2021a). In certain
scenarios, these ergonomic risks can be alleviated by delegating
specific assembly phases to robotic counterparts, thereby reducing
the strain on operators’ hands and wrists (Colim et al., 2021b). This
approach not only lessens physical fatigue but also optimizes overall
body posture (Lorenzini et al., 2019). Further research underscored
the significance of task allocation and increased collaboration with
cobots in comparison to entirely manual work processes (Liau and
Ryu, 2020). Ultimately, reducing physical risks for workers can
be achieved by entrusting manual handling of heavy components
and repetitive tasks to collaborative robots (Gualtieri et al., 2020b;
Cardoso et al., 2021).

Other fundamental factors to account for are trust and
acceptance of cobots (Rossato et al., 2021a; Panchetti et al., 2023).
In fact, these working tools can be seen as a threat or an opportunity.
The former can lead, for example, to a reduction in work motivation
related to the fear of employment loss, while the latter can be
characterized, for instance, by a decrement of physical and mental
strain (Meissner et al., 2020). Furthermore, research suggests that
cobots must be related to a positive working experience and
characterized by high levels of usability to influence the perceptions
of workers favorably (Hopko et al., 2022; Faccio et al., 2023), for
example, by permitting the workers to customize the cobot behavior
(e.g., speed, type of interaction; Fraboni et al., 2022) or choosing the
interaction modality (i.e., direct physical interaction or mediated
by a control interface; Rossato et al., 2021a). Nonetheless, so far,
there are more studies focusing on the acceptance of healthcare and
assistive robots but yet not enough research in the industrial domain
(Savela et al., 2018).

Concerning the human mental/cognitive workload
(Van Acker et al., 2018), previous studies have quantified this
factor by processing various psychophysiological indices that can
affect human-cobot interactions or by collecting and analyzing
self-reports. For instance, some researchers have considered
indices related to eye behavior, such as fixation duration/number
(Matthews et al., 2015; Wu et al., 2020) or blink rate/duration
(Nenna et al., 2023). Others have analyzed cardiac activity, for
example, heart rate or heart rate variability (Charles and Nixon,
2019; Lagomarsino et al., 2022; Lin and Lukodono, 2022), which can
reflect fluctuations in the level of mental workload while performing
working tasks. To explore the mental workload in experimental
settings, the scientific literature has outlined how the manipulation
of experimental tasks (e.g., dual task, time pressure, etc.) can induce
elevated levels of mental load and negatively influence participants’
performance and subjective experiences (Galy and Mélan, 2015;
Shaw et al., 2018; Vasquez et al., 2019). Similarly, the subjective
perception of participants’ cognitive workload (i.e., NASA-TLX;
Chacón et al., 2021; Rossato et al., 2021a) or the decrement in

work performance are also typically used for measuring the human
mental/cognitive load. For instance, longer time on task or higher
error rate are indicative of increased mental demand (Rossato et al.,
2021a; De Simone et al., 2022; Fraboni et al., 2022; Panchetti et al.,
2023).

Finally, considering the extension of working life, the age of
operators (i.e., >50–55 years) is a human factor that is recently
gaining increasing importance. This element can significantly
influence operators’ perception and interaction with cutting-edge
working tools such as cobots. Several studies have investigated
the senior workers-cobot interaction and overall experience
(Bogataj et al., 2019; Rossato et al., 2021a). Bogataj et al. (2019)
outlined the need to invest in workplace ergonomics and cobots
to reduce the fatigue and mental stress of old operators, which
can mitigate the decrement in their working abilities (e.g., speed,
physical strength). A recent literature review (Calzavara et al., 2020)
described several benefits related to the introduction of cobots
considering the management of ageing workforce. Specifically, they
mentioned how simplifying tasks, assigning to cobots the non-
ergonomic activities, and enhancing the quality of work output
(i.e., human-cobot co-monitoring) are the most beneficial aspects.
Rossato et al. (2021a) showed that senior workers perceived the
cobot as more supportive than a sample of adult workers. These last
reported high levels of satisfaction, cobot’s perceived ease of use,
and besides high pleasantness when they had the opportunity of
interacting physically with it. Recent studies (Rossato et al., 2021a;
Rossato et al., 2021b), reported various primary elements that can
affect the aged operators’ acceptance of advanced workstations
equipped with cobots, such as perceived utility, sense of safety,
and the need for proper training to use these technologies. Indeed,
operators’ ageing can make it difficult to ensure high knowledge and
skills to deal with advanced technologies.

Taking all this, the main objectives of the present study are
to: a) evaluate the subjective perceptions of senior workers in
terms of technology acceptance (before and after both post-tests),
perceived wellbeing and working experience with an advanced
workstation and a cobot and the estimated social impact of this
integrated working technology in the industrial sector; b) assess
whether the human factors considered in the present research (i.e.,
task performance, subjective perceptions, eye tracking indices and
cardiac activity) variate significantly under dual-tasking (i.e., under
higher mental load); c) explore the predictive power of the collected
measurements over the number of errors committed at thework task
and over the perceivedmental demand. For clarity, we have provided
a table (i.e., Table 1) collecting all the acronyms used along the paper.

2 Materials and methods

The study was carried out with ethical committee approval by
the Ethics Committee of the Human Inspired Technology Research
Centre (HIT) (Protocol number: n.2019_58).

2.1 Participants

Fifteen workers (Mage = 55.21, SDage = 3.65, F = 4) were
recruited for the experiment. The inclusion criteria were that the
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TABLE 1 Acronyms used along the paper.

Full term Acronym

Collaborative robots cobots

Internet of Things IoT

Industrial Internet of Things IIoT

Collaborative robotics Cobotics

Artificial Intelligence AI

Assistive Assembly System AAS

Smart Manufacturing Manager SMM

Hardware HW

Software SW

Heart Rate HR

age was equal to or higher than 50 years old, normal or corrected-
to-normal vision, and no heart diseases, and that participants
were active workers in the industrial domain. Participants received
compensation for partaking in the trial (i.e., 25 euros). Eleven
participants (Mage = 54.72, SDage = 4.05, F = 4) were considered
in the statistical analyses. Indeed, four participants were excluded
for low accuracy of the eye-tracking and/or cardiac activity data.
Participants were recruited by an agency, that was a sub-contractor
of the Co-Adapt H2020 EU project, with experience in recruiting
senior workers within the industrial/artisanal sectors.

2.2 Experimental design

A within-participants design was adopted for the experiment.
All participants had to accomplish a single and a dual task (counter-
balanced order). Following a dual task paradigm, we manipulated
the task difficulty (i.e., independent variable) by adding a secondary
task (i.e., mathematical) to the main one (i.e., assembling task).

2.3 Tasks

In the single task condition, participants had to accomplish an
assembly task conceived in collaboration with BNP Srl company
to have an ecological working activity carried out in a laboratory
setting. Typically, an assembly task is amanufacturing or production
process that involves the assembly of various components, parts or
materials to create a finished products or subassembly. The same
assembly task was performed four consecutive times.

In the first step, following the instructions presented on the
monitor, participants had to choose a green plate (step 1; i.e., a green
metallic plate, “Retrieve a green plate”) and manually tighten the
screws (step 2; i.e., “Pick up and screw in six pillars and six screws onto
the green plate, taking them one at a time from the steel tray. Ensure
with your hands that all six pillars are tightened”). Next, they had to
place the plate inside a specific area delimited by pieces of plexiglass

tightened with screws on the workbench (step 3; i.e., “Position the
green plate between the stops on the right side of the table. Press the
“next” button at the top right of the workstation screen”; Figure 1).

Then participants had to choose a transparent plate (step 4; i.e.,
“Take a transparent plate”) and place it in the cobot’s area (step
5; “Place it below the cobot on the supports”) on two supports.
Following, they had to pick up a black plastic plate (step 6; i.e.,
“Retrieve a black plastic mold with the same letter as the green plate”)
and a set of colored plastic pieces (step 7) to form a puzzle (step 8; i.e.,
“Complete the puzzle using the components in the blue boxes following
the pattern in the illustration” Figure 2), while the cobot pretended
to glue the transparent plate.

When the cobot finished its task, it passed the transparent plate
to the participants (step 9; i.e., “Take the transparent cover that the
robot brought to you. Press the “next” button at the top right of the
workstation screen”). They placed it on the semi-assembled block of
components (step 10). Finally, senior workers picked a red metallic
plate (step 11; i.e., “Retrieve a red plate with the corresponding letter
and position it above the semi-assembled block of components and
press the “next” button at the top right of the workstation screen”)
and used an electric screwdriver to tighten the screws following
a specific sequence detailed in the instructions presented on the
AssistiveAssembly System (AAS)monitor (step 12–13; i.e., “Retrieve
the screws one at a time from the steel tray and perform the screwing in
the indicated order and use the screwdriver located on the arm to your
right and press the finish buttonwhen you have completed the screwing
task”). The final assembled object is depicted in Figure 3 (step 13).

In the dual task condition, participants had to carry out a
mathematical task aloud simultaneously. They had to subtract seven
from 800 and again from the result until the main assembly task
was completed (4 times). We asked participants to be accurate and
fast as much as possible while performing both experimental tasks.
A familiarization phase (see Procedure Section 2.5 for details) was
considered for both types of tasks (i.e., assembly and mathematical).

2.4 Equipment and materials

An advanced workstation equipped with a collaborative robot
(Assistive Assembly System; AAS) was exploited in the experiment.
The integrated working tool is graphically depicted in Figure 4. The
collaborative robot is installed aside from the workbench.

The AAS comprises several hardware (HW) and software (SW)
components as follows:

HW:

• collaborative robot (Universal Robot UR10e) with its teach
pendant (control interface);

• adaptive workbench with adjustable height;
• smart lighting system;
• gesture detection and safety smart camera;
• LCD touch screen (on which the task instructions were

displayed);
• force reaction system and a comfortable electric tightener;
• RGB Pick-to-Light smart system;
• Wearable eye-tracking glasses;
• Amplifier and non-invasive surface electrodes for monitoring

cardiac activity.
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FIGURE 1
Participants had to choose the metallic plate (1), tighten the screws (2), and place the first plate on the AAS workbench (3).

FIGURE 2
Participants chose a transparent plate (4), placed the plate in the cobot area (5), picked up the plastic plate (6) and pieces (7), and formed a puzzle (8).

SW:

• Smart Manufacturing Manager (SMM), offering real-time
interactive multimedia instructions;

• Integration of the eye-tracking and physiological software
API/SDK for synchronizing the data acquisition.

We utilized a collaborative robot (UNIVERSAL ROBOT;
UR10e) which adheres to a stringent set of safety standards as
outlined in ISO/TS 15066:2016, making it suitable for operation in

close proximity to human workers. It boasts a considerable payload
capacity of 10 kg and exhibits remarkable versatility in reaching
diverse positions on the workbench. The robot system comprises a
robotic arm, complemented by a user-friendly interface installed in a
“teach pendant”, i.e., a tablet device.This interface empowers users to
establish virtual boundaries around the cobot, serving as a proactive
safety measure to prevent inadvertent collisions with other objects
or surfaces. Besides, the UR10e is equipped with an automatic safety
feature that halts itsmovement if any attempt ismade to breach these
pre-defined safety boundaries. In this particular setup, we employed
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FIGURE 3
Cobot passed the plate to the participants (9), they placed the plate on the semi-assembled piece (10), took a red metallic plate (11), and tightened the
screws (12–13).

FIGURE 4
The Assembly Workstation with cobot, eye tracker, and surface
electrodes on the workbench.

a gripper as the end effector, facilitating the robot’s capability to grasp
and release assembly components. The teach pendant permitted the
programming of all the cobot movements in the collaborative task.

Besides, participants wore a pair of eye-tracking glasses (i.e.,
Pupil Labs; maximum sampling frequency of 120 Hz, accuracy of
0.5 visual angle degrees) during the whole experimental session.
This tool allowed the collection of fixations and blinks data (i.e.,
duration and frequency) and pupil diameter. An MSI laptop (Intel
Core i7-6700HQ, screen resolution 1920 × 1080) was connected

using a USB cable to the eye-tracking glasses, permitted to perform
the calibration phases and store the eye-tracking data.

A portable amplifier (ProComp5 Infiniti; © 2022 Thought
Technology Ltd.) and its software (i.e., BioGraph Infiniti; © 2022
Thought Technology Ltd.) installed on a second MSI laptop (Intel
Core i7-6700HQ, screen resolution 1920 × 1080) were utilized to
gather physiological data related to the cardiac activity.The amplifier
comprises five channels (i.e., it can record up to 2,048 Hz). For the
present purpose surface electrodes were used, and the sampling rate
was set at 256 Hz.

Two 4K cameras (Value HD Corporation©) were positioned
in the laboratory to allow the video recordings (acquired with the
software WMIX HD Edition) of all the experimental sessions.

Recording user interactions with technology in complex
settings, such as workplaces, has been widely embraced (Heath
and Luff, 2018; Blackler et al., 2018). Researchers can scrutinize
the recorded behaviors pertinent to their investigations, employing
lucid, observable criteria to ensure impartiality and mitigate bias
(Bakeman and Quera, 2012; Guo et al., 2015).

The WMIX HD Edition software was employed to process
and synchronize footage captured by each camera resulting
in a unified video. Subsequently, these videos were imported
into BORIS software, and a coding scheme was independently
devised by two researchers based on the observed behavioral
patterns. Discrepancies were addressed through discussion, thereby
diminishing subjectivity. Subsequent analysis, executed with the
concurred-upon coding framework, revealed that certain manual
errors (e.g., errors in selecting the correct plates; screw tightening
sequence) were infrequently committed by participants. For this
reason, the errorswere included in a single final category.The refined
coding scheme is presented in Table 2.
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TABLE 2 Coding scheme.

Coded event Description

Time on task The time spent in completing each task (i.e., single
task, dual task)

Error in the assembly
process

These errors occurred each time the participant
failed in some operations of the assembly process

Error in the math task These errors occurred each time the participant
failed in the -7 task

The following self-reported tools were administered:

• Demographic questionnaire (PRE), this tool aimed at collecting
background information (e.g., gender, age, experience with
collaborative robots, etc.).

• NASA-TLX (POST), the NASA-Task Load Index (Hart and
Staveland, 1988; Hart, 2006) was used for assessing the task
load in the different experimental sessions. This tool comprises
the following six sub-scales: mental, physical, and temporal
demands, perceived performance, effort, and frustration. Each
sub-scale presents a response based on a 20-step bipolar
scale (i.e., range: 5–100). It is possible to evaluate each scale
(Galy et al., 2018) independently or consider an overall score by
merging the scores of the individual scales.

• TAM 3 (PRE-POST). We adapted the TAM3 questionnaire
(Venkatesh and Bala, 2008) considering 16 items and the
following constructs: Perceived Usefulness (PU; 4 items),
Perceived Ease of Use (PEOU; 4 items), Perception of External
Control (PEC; 3 items), Perceived Enjoyment (PE; 3 items), and
Behavioral Intention (BI; 2 items). All itemsweremeasured on a
7-point Likert scale (i.e., from 1, strongly disagree, to 7, strongly
agree).

• Ad hoc wellbeing and working experience questionnaire
(PRE-POST). This instrument comprises a total of 14 items
considering the following dimensions: work satisfaction (4
items), motivation (3 items), engagement (3 items), and overall
working experience (4 items). A 5-point scale was used to
respond (i.e., from 1, not at all, to 5, extremely).

• Social impact (PRE-POST). This dimension was assessed
utilizing a single item (Gervasi et al., 2020). We asked, “which
will be the introduction of our workstation in the industrial
sector?”. The response options were: it will cause the dismissal
of workers; it will positively affect the working activities but it
will not cause the dismissal of workers; and it will not produce
any effect on the working activities.

2.5 Procedure

The experimental sessions were carried out in a quiet
and isolated laboratory. Upon participants’ arrival they were
administered with the informed consent and an informative note.
They had to fill out a battery of pre-test questionnaires (i.e.,
demographic, TAM 3, Social impact, and Wellbeing and working
experience).

According to Rossato et al. (2021a), the height of the workbench,
where participants were asked to accomplish the various tasks,

was meticulously adjusted to conform with precise ergonomic
standards, such as ensuring that the workbench’s height corresponds
to the height of the bent elbow aligned parallel to the ground,
minus 150 mm. Afterward, participants were asked if they found
comfortable the workbench height to reach various locations shown
by the experimenter, that were linked to the actual assembly activity
and to use the tools of the workstation (e.g., electric tightener).
Thus, in case of an affirmative response the first set of pre-recorded
instructions was presented. This information was provided prior
to each experimental condition. Nevertheless, researchers were
available to clarify any doubt to participants.

A familiarization phase (10–15 min) allowed participants to
learn how to perform the assembly task utilizing the cobot,
the Smart Manufacturing Manager (SMM) control interface, and
the electric tightener. Following this, the experimenter helped
participants wearing eye-tracking glasses, and three non-invasive
surface electrodes were placed on their chests. The eye tracker was
calibrated following a standard procedure using external markers.
Afterward, participants were still maintaining their gaze on a cross
made of two tapes that were located on a wall at a specific distance
from the chair (2.5 m). This phase was carried out to acquire the
baseline of their gaze behavior and cardiac activity in a resting
condition. The baseline permitted in the pre-processing phase to set
the threshold for considering an eye closure as a blink and to avoid
artifacts in the data (e.g., not a real blink but a moment in which the
eye was ajar).

After the baseline, participants began the experimental tasks.
The first condition (e.g., single task) was equal for all participants.
They had to perform an assembly activity utilizing the AAS
equal to the task of the familiarization phase four consecutive
times. In the second condition (e.g., dual task), participants
had to simultaneously perform a secondary task: mathematical
counting. Participants while performing the assembly task, had
to simultaneously subtract seven from 800 and again from the
obtained result up to when they accomplished 4 times the assembly
task. At the end of each condition, a set of questionnaires was
administered. Participants had to complete the NASA-TLX, TAM3,
and the Social Impact questionnaire. Single and dual task were
counterbalanced across participants (i.e., a sub-group of participants
performed first the single task, and then the dual task the other
sub-sample first accomplished the dual task and then the single
task). Participants carried out the various assembly tasks without
speed pressure or a pre-specified time interval. Additionally, to
mitigate fatigue-related effects, scheduled intervals of rest were
incorporated between the completion of the questionnaires and the
beginning of the subsequent task, which were tailored to the needs
of each participant. The overall experiment lasted around 45 min. A
graphical depiction of the procedure is presented in Figure 5.

2.6 Measures

The following dependent variables were considered, related
respectively to performance, subjective perceptions, eye behavior,
and cardiac activity:

• Performance (i.e., nº of errors in the assembly and percentage
of accuracy in the mathematical task, time on task in sec);
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FIGURE 5
Experimental procedure.

• Pre- and Post-test questionnaires scores (e.g., NASA-TLX,
acceptance, wellbeing and working experience);

• Fixations duration (ms) and frequency (min);
• Blinks duration (ms) and frequency (min);
• Heart Rate (HR; bpm).

3 Results

For the sake of brevity, in the following sections, only the
analyses that showed significant differences among the experimental
conditions are reported. All analyses were conducted using the
software RStudio (R Core Team, 2022).

In the case of data normally distributed, ANOVA analyses
were performed. Differently, non-parametric (i.e., Wilcoxon tests)
analyses were considered, and the Benjamini and Hochberg (1995)
correction was applied to adjust p-values. Regarding the parameters
enclosed in parentheses, we provide the following explanations for
clarity: t/V = respectively the value of a t-test or Wilcoxon test; d =
Cohen’s d effect size value; r = effect size value for Wilcoxon tests
(Field et al., 2012; Page 665); and R2 = r-squared of the model.

3.1 Performance

3.1.1 Errors
A difference emerged (t = −2.87, df = 10, p < 0.05, d = 1.28).

Participants committed a higher number of errors in the dual task
(M = 5.64) compared to the single task (M = 0.81; Figure 6). On
average, participants performed well on the secondary task (M =
77.23%), reflecting the mental workload imposed by the dual task
condition.

FIGURE 6
Mean number of errors in the assembly task as a function of condition.
Note: DT, Dual Task; ST, Single Task.

3.1.2 Time on task
A difference emerged (V = 0, p < 0.001, r = 0.99). Participants

were faster in performing the single task (M = 806.82 s) compared
to the dual task (M = 966.84 s; Figure 7).

3.2 Subjective perceptions

3.2.1 NASA-TLX
Several Wilcoxon tests were carried out considering the NASA-

TLX sub-scales (20-step bipolar scale, range: 5–100). Regarding the
mental demand sub-scale, a difference was highlighted (V = 0, p <
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FIGURE 7
Mean Time on Task (seconds) in the assembly task as a function of
condition. Note: DT, Dual Task; ST, Single Task.

0.05, r = 0.87). Participants reported a higher level of mental load
in the dual task (Mdn = 100) compared to the single task (Mdn =
45). Besides, considering the effort sub-scale, a differencewas shown
(V = 0, p < 0.05, r = 0.79). Senior workers reported a higher effort in
the dual task (Mdn = 95) compared to the single task (Mdn = 60).

3.2.2 TAM
Nodifferences emerged considering all the TAMdimensions (all

ps > 0.05). Nevertheless, Table 3 shows that all the mean and median
(in parentheses) scores were above the scale median (i.e., 4; 7-point
Likert Scale, strongly disagree-strongly agree).

3.2.3 Ad hoc wellbeing and working experience
No differences emerged considering all the dimensions (all ps

> 0.05). Mean and median (in parentheses) scores are reported
in Table 4. Wellbeing and working experience questionnaire (scale
median = 3; 5-point scale, not at all-extremely).

3.2.4 Social impact
Overall, participants reported a positive perception regarding

the potential effect of introducing an AAS equipped with a cobot
in an Industrial context. Indeed, more than 90% of the participants
at pre-test and both post-tests choose “it will positively affect the
working activities, but it will not cause the dismissal of workers.”
Only 10% of participants in both post-tests selected “it will not
produce effects on working activities” (Figure 8).

3.3 Eye tracking

3.3.1 Fixation duration
Considering fixations duration, three t-tests were performed.

No difference emerged between single and dual task conditions
(p > 0.05; respectively, single task: M = 142.15 ms; dual task M =
139.47 ms). Differently, both experimental conditions (resting vs.
single task: t = 5.43, df = 10, p < 0.001, d = 2.47; resting vs. dual task:
t = 5.96, df = 10, p < 0.001, d = 2.58) showed a significant

reduction in the average duration of fixations compared to the
resting condition (M = 325.50 ms).

3.3.2 Fixation frequency
Pertaining to the frequency of fixations, a series of t-tests

did not highlight any difference between single and dual tasks.
The mean fixation frequency per minute was similar among
the resting phase and the experimental conditions (resting:
M = 140.49; single task: M = 146.00; dual task: M = 147.21).

3.3.3 Blink duration
Regarding the blink duration, t-tests were carried out. No

differencewas shownbetween the experimental conditions (p>0.05;
respectively, single task: M = 379.78 ms; dual task: M = 424.69 ms).
Nonetheless, in both experimental conditions (resting vs. single
task: t = −3.06, df = 10, p < 0.05, d = 1.79; resting vs. dual task:
t = −2.39, df = 10, p < 0.05, d = 0.97), the duration of blink was
longer than in the resting condition (M = 239.65 ms).

3.3.4 Blink frequency
Concerning the blink frequency, a differencewas underlined (t =

−5.03, df = 10, p < 0.01, d = 0.70) between experimental conditions.
Participants blinked more frequently in the dual task (M =
23.30 blink/min) compared to the single task (M = 14.87 blink/min;
see Figure 9). Besides, only the dual task condition differed from the
resting conditions (resting:M = 9.12 blink/min; resting vs. dual task:
t = −4.84, df = 10, p < 0.01, d = 1.37).

3.4 Cardiac activity

No difference in heart rate was shown between single and dual
task conditions (p > 0.05). The average heart rate was similar in the
experimental sessions (single task: M = 101.25 bpm; dual task: M =
100.05 bpm), while, both conditions differed from the resting phase
(resting: M = 78.05; resting vs. single task: t = −5.50, df = 10, p <
0.001, d = 1.78; resting vs. dual task: t = −3.01, df = 10, p < 0.05; d =
1.31).

3.5 Multiple linear regressions

A first multiple linear regression analysis was carried out to
assess if the implicit measures (i.e., time on task, fixation duration,
fixation frequency, blink duration, blink frequency, and heart rate)
could predict task accuracy in the assembly task (explicit measure)
including in the model also all the interactions between the implicit
measures and the condition. This model (m1) was overall not
significant [F (13, 8) = 2.41, p = 0.11, R2 = 0.47], although some
of the predictors and interactions were significant. For this reason,
we refined the model (m2) by removing the variables (i.e., time
on task, heart rate) and the corresponding interactions that were
not contributing to the predictive power of the model (James et al.,
2013). The second model was significant (F (9, 12) = 4.68, p < 0.01,
R2 = 0.61). Besides, the reduction in the residual standard error from
m1 tom2 (respectively from 3.24 to 2.76) suggested that m2 is better
fitting the data. We further analyzed the individual predictors. The
fixation duration (B = 0.33, t = 3.78, p < 0.01), fixation frequency
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TABLE 3 TAM questionnaire dimensions and scores.

TAM dimensions Pre-test Post ST Post DT

Mean (Median) Mean (Median) Mean (Median)

Perceived Enjoyment 4.27 (4) 5.45 (6) 4.64 (5)

Perceived Usefulness 5.68 (5.5) 6.41 (6.5) 5.50 (6)

Perceived Ease of Use 4.73 (4.5) 5.95 (6) 4.59 (4.5)

Behavioral Intention 5.82 (6) 6.32 (6.5) 5.64 (6)

Perceived External Control 5.36 (6) 6.00 (6) 5.55 (5)

Note. ST, Single Task and DT, dual task.

TABLE 4 Wellbeing and working experience questionnaire dimensions and scores.

WB Dimensions Pre-test Post ST Post DT

Mean (Median) Mean (Median) Mean (Median)

Motivation 3.14 (3.5) 3.82 (4) 3.50 (3.5)

Engagement 3.18 (3) 3.64 (4) 4.05 (4)

Satisfaction 2.91 (3) 3.91 (4) 3.03 (3)

Work/Task Experience 2.86 (3) 3.59 (3.5) 3.12 (3)

Note. ST, Single Task and DT, dual task.

FIGURE 8
Mean responses (%) concerning the perceived social impact of the
AAS as a function of the experimental phase. Note: PRE, Pre-test; ST,
Single Task; DT, Dual task.

(B = −0.21, t = −4.40, p < 0.001), blink duration (B = 0.02, t = −3.98,
p < 0.01), and blink frequency (B = 0.23, t = 2.84, p < 0.05) were able
to predict the accuracy in the assembly task significantly. Besides,
three significant interactions emerged (Figure 10): fixation duration
X condition (B = −0.34, t = −3.75, p < 0.01), fixation frequency
X condition (B = 0.21, t = 3.72, p < 0.01), and blink duration X
condition (B = 0.02, t = 2.7, p < 0.05).

FIGURE 9
Mean blink frequency/min as a function of condition. Note: REST,
Baseline resting condition; ST, Single Task; DT, Dual Task.

We carried out a second a multiple linear regression analysis to
predict the task performance in terms of time on task on the basis
of the implicit metrics including in the model all the interactions
between the implicit measures and the condition. The first model
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FIGURE 10
Multiple linear regressions showing the predicting power of Fixation duration (A), Fixation Frequency (B), Blink duration (C) over the Number of errors in
the two experimental conditions. Note: DT, Dual task; ST, Single Task; Fix Dur, Fixation Duration; Fix Freq/min, Fixation Frequency; Blink Dur, Blink
Duration.

was overall not significant [F (13, 8) = 1.13, p = 0.44, R2 =
0.08], and all the predictors and interactions were not significant
(all ps > 0.30).

Besides, a series of multiple regressions was performed to
analyze if the implicit measures could predict the scores assigned
to the different NASA-TLX subscales. The outcomes of the
first regression model, which considered mental demand as the
dependent variable, did show a significant collective effect between
the considered predictors [F (15, 6) = 7.64, p < 0.01, R2 = 0.83].
Nonetheless, the predictors or their interactions with the condition
did not predict themental demand scores (all ps > 0.05). Considering
the other multiple linear regressions they did not show collective
effects [i.e., physical demand: F (15, 6) = 0.97, p > 0.05, R2

= −0.02; temporal demand: F (15, 6) = 1.87, p > 0.05, R2 =
0.38; performance: F (15, 6) = 1.72, p > 0.05, R2 = 0.34; effort:
F (15, 6) = 2.23, p > 0.05, R2 = 0.47; frustration: F (15, 6) = 3.41,
p > 0.05, R2 = 0.63].

4 Discussion

The present experiment aimed at a thorough analysis of a
series of human factors in a cutting-edge manufacturing setting,
which involved an advanced ergonomic workstation and a cobot.
By following the Industry 5.0 conceptualization, we proposed a
human-centered study. We specifically targeted senior workers, as
this population is particularly inclined to a decrement in their
working abilities and, therefore, would particularly benefit from
the introduction of supportive and collaborative systems such as
cobots in their daily work life (Bogataj et al., 2019). The main
objective of this study was thus to provide a broad assessment
of various human factors (e.g., senior workers’ mental workload
and task accuracy) during the execution of an assembly task
in collaboration with a cobot, installed on an assistive assembly
workstation. More specifically, the following human factors were
analyzed: task performance (i.e., number of errors and time on
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task), subjective perceptions (i.e., the perceived workload reported
at the NASA-TLX, the cobot acceptance assessed via TAM, the
level of wellbeing and work experience, the social impact of using
cobots), eye tracking indices (i.e., blink and fixation frequency and
duration), and the cardiac activity. A dual task paradigmwas used to
manipulate the task difficulty, and therefore, the participants’ mental
loads.

As a first objective, we wanted to provide a broad assessment
of human perceptions regarding the integration of a cobot within
a work environment, including technology acceptance, wellbeing,
and working experience as well as the broader social impact of
this integrated technology in the industrial sector. Our senior
participants’ scores were high (>4.3) above the scale median (4)
both after the single task and after the dual task condition,
demonstrating that they enjoyed working with the AAS, they found
it useful and easy to use, they expressed the intention to use
it if available, they perceived to have control over the system,
and they possess the necessary skills to utilize it. Furthermore,
at both post-tests, the wellbeing and work experience scores (>3)
showed high reported motivation, engagement, satisfaction, and
positive work/task experience. Finally, most participants reported
that the AAS would have a positive effect on the working activities
and would not cause the dismissal of workers if implemented
in a real-world scenario. It is important to highlight that these
findings were observed in older workers, who might have less
experience and skills with advanced technologies compared to
a younger population. This observation is in line with Rossato
et al. (2021a), who found that older workers viewed the cobot
as being more helpful than a group of younger adult workers
did.

As a second objective, we aimed at evaluating if the
human factors examined in this study (e.g., task performance,
subjective perceptions, eye tracking measures, and cardiac activity)
significantly changed during dual tasking with increased mental
load. On this regard, the level of AAS acceptance, wellbeing, and
work experience scores did not differ in the dual task compared
to the single task. These findings thus suggest that the cobot was
actually supportive and well-accepted even during dual tasking
when handling a new technology while under mental strain could
have introduced an additional challenge.

Concerning the performance measures, as predicted, both
performance indices were modulated. Indeed, the increment in
difficulty (dual task; i.e., assembly task + concurrent mathematical
task) resulted in a higher number of errors and a longer time on task
compared to the condition in which participants had to accomplish
the assembly task only. These results align with previous literature
using dual tasking to increase task difficulty (Galy and Mélan, 2015;
Shaw et al., 2018; Vasquez et al., 2019).

Furthermore, as regards the perceived workload, participants
showed a higher level of perceived mental demand and effort
while accomplishing the dual task. This result confirms that our
manipulation successfully also increased the perceived level of
mental demand in the users, and it is in line with previous
research (Rubio et al., 2004; Mansikka et al., 2019; Mingardi et al.,
2020; Lowndes et al., 2020; Panchetti et al., 2023). Concerning the
physical demand, the absence of single vs. dual task difference
simply due to the nature of the secondary task being predominantly
cognitive (i.e., mathematical), did not affect participants’ perception

in terms of physical strain. Regarding the temporal demand, a
difference was not shown insofar as senior workers were expected
to execute the tasks in the various experimental condition with
both speed and accuracy, albeit without adhering to a predefined
time constraint. Participants reported a similar level of perceived
performance, suggesting that they may not have been aware of the
disparity in difficulty and, as a result, inadvertently committed more
errors in the dual task condition. Finally, the dual task condition
was not associated with a higher level of perceived frustration.
This finding also substantiates the lack of awareness regarding
their actual performance in the two conditions. In fact, being
conscious of committing more errors in the dual task would have
been expected to be related to a higher sense of frustration. In
the context of advanced workstations and collaborative robotics,
failing to recognize performance deterioration can result in
increased operational risks, higher error rates, compromised quality
control, and adverse effects on workers’ health and wellbeing.
Therefore, it is crucial to explore and study the implementation
of monitoring technologies that can quickly identify performance
decline, especially in individuals who may be more prone to it due
to factors like age. This area deserves further investigation in future
research.

Regarding the implicit measures, instead, we did highlight
a difference in one of the eye behavior metrics. Indeed, blink
frequency associated with the dual task condition was higher than
in the single task condition. It thus seems that, based on previous
literature (Faure et al., 2016; Tao et al., 2019; Mingardi et al., 2020),
participants experienced a higher level of mental load in the dual
task compared to the single task. Nonetheless, the fixation frequency
and duration, as well as the blink duration and also cardiac activity,
did not demonstrate to change significantly under dual tasking. On
this matter, it is possible that these indices were not sensitive to
the mental load fluctuations during our assembly task, while they
demonstrated to be sensitive to mental load fluctuations in different
work tasks (e.g., a manual screwing task, Mingardi et al., 2020).
This generates newquestions aboutwhether the psychophysiological
indices’ sensitivity to mental load in such ecological work contexts
is task-dependent, a question that is worth investigating in future
research.

Finally, we investigated the predictive capacity of the gathered
measurements on task-related errors and perceivedmental demand.
Our results from the first linear regression analyses demonstrated
how all the measured eye behavioral indices (i.e., fixation duration
and frequency, and blink duration and frequency) successfully
predicted the number of errors committed at the assembly task.
Interestingly, these indices had a stronger predictive power on the
committed errors in the dual task condition compared to the single
task one, suggesting that the higher the mental demand, the more
these indices differ with varying error rates at the task. This could
be related to the fact that eye blinks and fixations are known to
respond to different levels of task complexity and mental demand
(Matthews et al., 2015; Mingardi et al., 2020; Wu et al., 2020; Nenna
et al., 2023).Therefore, even thoughweonly found a significant effect
of dual tasking over blink frequency, the eye indices might show
significant modulations under higher mental strain particularly.
More specifically, we found that an increase in the number of errors
committed at the assembly task is related to an increase in the
fixation duration and the blink frequency, and with a decrease in
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the fixation frequency. Future works might extend research on the
predictive power of eye indices over work task accuracy, similarly
to what was done with workload estimation (e.g., Novak et al.,
2015), and consider the possibility of implementing eye measures
to actively predict the increase rate of task errors online, during the
interaction with cobots.

Otherwise, the second series of linear regression analyses
showed that task accuracy and the implicit measures were not
capable of predicting the scores of the NASA-TLX sub-scales. A
suitable explanation is that participants were not aware of their
actual performance. Indeed, differences in both task accuracy and
time on task (i.e., higher error rates and longer time in the dual
task condition) were not related to a discrepancy in the NASA-
TLX sub-scale of perceived performance. This outcome is very
relevant regarding work safety insofar as not being aware of a decline
in performance due to a more demanding working activity could
potentially be related to a diminution of overall attention and the
adoption of unsafe behaviors.

Some limitations of the study could be underlined. Firstly,
we considered a small sample size (N = 11), so we must
exercise caution when generalizing the findings of the current
study. Secondly, more ecological tasks must be considered,
especially in terms of duration that could be similar to a phase
of a real working shift to also have reliable data, for instance,
to assess work-related stress exploiting heart-rate variability
(HRV; Gervasi et al., 2020).

Overall, this paper contributes to the literature by proposing
a human-centric perspective and a thorough analysis of various
human factors to shed light on the feasibility of integrating
advanced ergonomic workstations and cobots within industrial
manufacturing contexts. While the benefits of these technologies
for industrial production are well-known, our study uniquely
examines their impact on human factors by adopting a multi-
method approach that includes various data sources (performance,
self-report, eye-tracking and heart rate data). In a future perspective,
the relationships between implicit measures acquired while
participants were performing the tasks (e.g., eye-tracking indices)
and the working performance could be exploited to inform
advanced workstations equipped with wearable sensors (e.g., eye
trackers, chest bands) that could adapt their functioning based
on the detection of variations in the level of mental load (i.e.,
overload), with the intention of assisting the workers when they
are dealing with more mentally demanding working activities.
For instance, future directions might involve adapting these
systems for the effective detection and mitigation of worker
overload states in diverse industrial environments. This may
encompass the development of tailored interventions and the
integration of adaptive technologies to enhance worker wellbeing
and productivity while maintaining safety standards. However,
to implement such a flexible system, it is first imperative to
understand human needs. In this respect, we here assessed
technology acceptance and perceived wellbeing among senior
workers, shedding light on their experiences with these integrated
technologies in industrial settings. This holistic approach advances
our understanding of the complex interplay between humans
and technology, paving the way for safer, more inclusive, and
efficient working environments in the evolving manufacturing
landscape.
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Material Handling Vehicles (loaders, excavators, forklifts, harvesters, etc.) have
seen a strong increase in automation efforts in recent years. The contexts such
vehicles operate in are frequently complex and due to the often very specific
nature of industrial material handling scenarios, know-how is fragmented and
literature is not as numerous as, for example, for passenger vehicle automation.
In this paper, we present a contextual design space for automated material
handling vehicles (AMHV), that is intended to inform context analysis and design
activities across awide spectrumofmaterial handling use cases. It was developed
on the basis of existing context and design spaces for vehicle and machine
automation and extended via expert knowledge. The design space consists of
separate context and interaction subspaces, that separately capture the situation
and each individual point of interaction, respectively. Implications, opportunities,
and limitations for the investigation and design of AMHV are discussed.

KEYWORDS

vehicle automation, material handling, interaction design, design space, human in the
loop

1 Introduction

Along with the continuous automation of public and private transport as well as
manufacturing environments, material handling is another context that sees increasing
automation efforts (Machado et al., 2021a; Machado et al., 2021b; Li et al., 2018; Efthymiou
and Ponis, 2019). Not only does the number of employed front loaders, excavators,
bulldozers, forwarders, mobile cranes, and other material handling vehicles increase, but
their degrees of automation do as well (Ha et al., 2018; Heath, 2018; Frank, 2019), thus
increasing in-context complexity on two levels. Even without automation factored in,
material handling is a complex context by itself: Not only does it involve navigation from
one point to another, but destinations are usually also changing as tasks progress or are
finished (e.g., moving from stack to stack as they are gradually filled at the same location
or transitioning from one location to another entirely). On top of that, there is the non-
navigational handling operation, e.g., grabbing, dredging, lifting, etc., all mediated through
higher degrees of freedom (e.g., cranes with multiple junction points) and resulting complex
controls. In addition, material handling is needed in a wide variety of environments, many of
which are not regular on-road environments (e.g., construction sites, farmland, gravel pits,
forests, etc.). By adding automation to this already demanding mix, the additional challenge
of adequately keeping the human in the loop (Gil et al., 2019) receives greater relevance.

It is unlikely that any given material handling situation is limited to a single handling
operation of quantity X of material Y to a point Z. Rather, material handling exists along
a process chain, often at multiple points, and in interaction with other agents, which can
and often are themselves material handlers (e.g., loading containers via crane onto a train,
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then unloading container contents via forklift for a very common
example with already three vehicle handlers involved). Depending
on the levels of individual automation of each handler as well as
the automation of the entire handling chain, properly calibrating the
human-in-the-loop is not trivial: At which points in the handling
flow does a human need to observe/verify/intervene? Which
capacity/qualification does the human need to have, mediated by
the task that needs to be performed? At which physical point does
the interaction happen and does it need to be done on-site or can it
be done remotely? Can the interaction be prompted by a system or
must it be human-initiated? These and similar questions need to be
answerable in order to properly and safely operate heavy machinery
within a material handling context (Heath, 2018).

In Human-Computer Interaction (HCI), one of the best ways
to properly capture a context is via a design space. A design
space essentially is a “space of possibilities”, which organizes design
opportunities and constraints along specified dimensions (Heape,
2007; Beaudouin-Lafon and Mackay, 2009; Biskjaer et al., 2014;
MacLean et al., 2020). A comprehensive design space thus should
capture and structure a given interaction context, including related
stakeholders, points of interaction, and any variables that can
influence the interaction between stakeholders and machines or
devices within the context. The goal and purpose of a design space
is then to show where within the space activities can be done, whom
they will likely affect, and conversely what they are mediated by.
This greatly aids interaction designers in planning where, when, and
for whom to design - an essential step before the actual interaction
design begins.

Currently, there is no such design space for automated
material-handling vehicles. There are numerous related design
spaces, including in-car interaction (Kern and Schmidt, 2009;
Haeuslschmid et al., 2016; Wiegand et al., 2019) and external
communication of automated vehicles (Colley et al., 2017; Colley
and Rukzio, 2020). The transferability of these design spaces to
material handling is limited, as material handling involves specific
task types and interaction chains, driving maneuvers, and handling
actions combined, as well as greater contextual variability due to the
great variety of material handling scenarios. Due to the industrial
nature of material handling use cases, there is quite a good number
of automation projects with significant funding behind them, yet
there is also little knowledge exchange between these projects, which
would enable a common material handling automation knowledge
base.

Thus, a design space for material handling would be both
desirable and beneficial to 1) capture and categorize current
efforts and 2) structure, guide, and help align future design and
development efforts. In this paper, we present such a design
space that was derived from components of related design
spaces and enriched with aspects specific to material handling.
The multidimensional design space structures the automated
vehicle handling space via the dimensions task and purpose,
automation setting, situation, and interaction. The design space
allows specification of driving and handling tasks, mapping them
to individual interaction points, and defining the role of the human
not only in relation to the interactive device but also via levels of
autonomy of (a) the vehicle, (b) the material handler, and (c) the
operative process.

2 Related work

Heavy material handling vehicles are primarily or exclusively
used on private, off-highway grounds - be it construction and
mining grounds, industrial production sites, agricultural fields, or
logistics areas. The higher control over processes, traffic, and lower
regulatory demands have made material handling vehicles pioneers
for automated transport. Automated Guided Vehicles (AGV) have
been used for decades in specific industrial contexts (Wankhede
and Vinodh, 2021), and these are increasingly used in one-to-
many relationships through the remote management of driverless
vehicle fleets (Fottner et al., 2021). There is a high business interest
and considerable growth prospects with regard to achieving higher
autonomy levels (Krug et al., 2019; Gupta et al., 2022). The strive
for automatizing material handling vehicles is also motivated by
ongoing driver shortage (Costello and Suarez, 2015), the need to
increase the attractiveness of work within harsh environments, as
well as to reduce safety risks (Machado et al., 2021b). However,
despite the longstanding experience and growing relevance of
such systems for automated handling of heavy materials, there is
surprisingly little open scientific literature available about contextual
factors and HMI design, and if available, it is scattered across
different sub-disciplines (Krug et al., 2019; Machado et al., 2021b).
For such situations with little knowledge about the context variables,
general scope, and design alternatives, a design space can help
to provide a generic means of orientation. In the following, the
state of the art of design spaces is summarised. Then, taxonomies
for describing the level of automation and contextual factors are
described.

2.1 Design spaces in HCI

Design spaces have been used in architecture, computer science,
and especially in Human-Computer Interaction as a complement
to standards and guidelines, to inspire design decisions and
innovations (Simon, 1975; Card and Mackinlay, 1997; Shaw, 2012;
Haeuslschmid et al., 2016; Halskov et al., 2021). Their primary use
is to structure and group designs and parameters according to a
set of design dimensions. Each design option is ideally represented
as a point within that space, thus defining the parameters for each
of its constituting dimensions (Simon, 1975). While early work
focused on fundamental classifications of input devices (Buxton,
1983; Card et al., 1991) and information visualization (Card and
Mackinlay, 1997; Chi, 2000), important contributions have also
been provided for specific types of interaction, such as mobile
phone input (Ballagas et al., 2008), public displays or multimodal
interaction (Müller et al., 2010). Since Kern’s and Schmidt’s design
space for the car cockpit (Kern and Schmidt, 2009), further
more specific automotive user interface aspects were addressed,
such as augmented reality (Tönnis et al., 2009; Haeuslschmid et al.,
2016; Wiegand et al., 2019), conversational interaction (Braun et al.,
2017), multimodal interaction (Wang et al., 2022) as well as
application contexts like the mobile office (Li et al., 2020). With
regard to design support of automated driving, however, design
spaces for the internal design of automated vehicles are still rare,
but for the external communication of automated vehicles (Colley
and Rukzio, 2020) and teleoperation, first proposals have beenmade
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(Graf et al., 2020). While surveys on interaction issues with AMHV
have been put forward (Hoffmann and Chan, 2018), no design
space is available to support the development of human-automation
interaction for this category of systems.

2.2 Level of automation

With the constant penetration of automation and robotics in
industrial contexts, the nature of human tasks and involvement
with technology is changing (Chen and Barnes, 2014; Gil et al.,
2019). The increasing intelligence and sophistication of systems
enables human operators of AMHV to not only manually operate
them (“in-the-loop”), but also to transition into a supervisory
role (“on-the-loop”), where fleets of vehicles are monitored over
a distance [see related definitions in Merat et al. (2019)] Various
models within and across application areas to categorize the degree
of automation and human involvement therein have been proposed
[see Vagia et al. (2016), for a comprehensive overview). While
for automation of passenger cars, the SAEJ3016 taxonomy of
automation levels (Taxonomy, 2021) has become a de facto standard
(despite other existing standards (Hopkins and Schwanen, 2021)],
automation taxonomies for heavy machinery or load handling
vehicles are mostly specific to application fields, such as agriculture
(Benos et al., 2020), constructions sites (Lee et al., 2022), or mining
(Rogers et al., 2019). Only recently, Machado et al. (Machado et al.,
2021a) proposed an approach that makes reference to several
preliminary models (Heath, 2018; Heikkilä et al., 2019; Krug et al.,
2019), which is essentially constituted of a 2-dimensional matrix,
where both for driving and for handling (or “manipulation”) the six
levels of the SAEJ3016 are applied.

2.3 Contextual factors

Interaction design choices for AMHV will have to take account
of various contextual factors, in order to achieve optimal system
control and perception, worksite communication, and decision
making. Only a few scientific accounts, notably all of them from
the research area of Automotive UI, include contextual factors
like the traffic situations and involved traffic participants, thus
actually extending towards contextual design spaces (Wiegand et al.,
2019; Colley and Rukzio, 2020; Graf et al., 2020; Colley et al., 2022).
Taxonomies of context have a long tradition, as documented in
the standard definition of “context of use” in ISO 9241-210 and
ISO 20282-1 (for Standardization, 2010; ISO, 2006; Bevan et al.,
2015) and 20 years of discussion on context-aware computing
(Schmidt et al., 1999; Bradley and Dunlop, 2005; Bauer and
Novotny, 2017;Dey, 2018).However, there is no dedicated taxonomy
of physical, social, or organizational context factors for material
handling vehicles, let alone related to their automation.

3 Methods

While there is no standard method for creating design spaces,
we used a systematic procedure for developing the design space
that consisted of a literature review as well as two design and

evaluation cycles. The purpose of the initial literature review was to
identify existing relevant design spaces to use as a basis. We used
two iterative cycles so that we could do one in-depth evaluation
and fundamental iteration and then a second refinement afterward,
following a standard iterative approach. For practical relevance,
we focused on the AMHV domains of construction, agriculture,
intralogistics, and manufacturing, which are frequent subjects of
automation efforts.

After defining the scope, we conducted the initial literature
review across the ACM Digital Library and IEEE Xplore. These
two data sources were chosen for literature review work since both
ACM Digital Library and IEEE Xplore feature a wide selection of
reliable HCI works. We used the following search queries in August
2022 in English-language publications: “automated/automation
material handling vehicle”, “automated/automation crane”,
“automated/automation forklift”. This resulted in a total of 908
publications (633 publications in ACM Digital Library and 275
publications in IEEEXplore). After having the database, we screened
the papers that met our criteria. First, we looked for papers that
potentially had an example of design space by searching through
their title, authors’ keywords, abstract, and introduction with the
keywords “design space”. Second, as we found no single design
space paper for any automated material handling vehicle, we instead
focused on publications dealing with the automated vehicles. Third,
we focused on detailed descriptions or full overviews of design
spaces for the analysis and, therefore, targeted full conference or
journal papers only. Any formats that can be expected to only
mention or superficially describe design spaces, such as proposals,
panels, workshops, or doctoral consortium papers, were excluded.
After a metadata-screening for relevance and removing duplicates,
the number was reduced to 30 publications. A manual screening in
the full text of the publications with the goal of identifying the most
directly related design spaces resulted in seven final publications
(Kern and Schmidt, 2009; Colley et al., 2017; Mahadevan et al.,
2018; Wiegand et al., 2019; Colley and Rukzio, 2020; Graf et al.,
2020; Wang and song, 2022). We used the design spaces described
within them as inspirations for initial dimensions and categories.
We then enriched them with features specific to capture automation
as well as the human-in-the-loop characteristics to arrive at the first
draft of the contextual design space.

We then evaluated this draft through a series of in-depth expert
interviews with three AMHV domain experts. These experts were
selected for their experience and expertise in material handling
vehicles ranging from technical competence such as automation
aspects to process competence that demonstrates the interrelation of
various stakeholders. Experts had on average 4 years of experience
working with material handling vehicles in the areas of logistics
or mobility. Each interview lasted approximately 2 h, excluding
preparation time. Before the interview, each interviewee was
instructed to prepare a use case of their choice from within their
application domain. They were free to do so in any possible way, as
long as they would be able to fully describe the case and all relevant
actors during the interview. The interview itself then consisted of
three parts: an introduction, the design space population, and then
a final feedback and comments session.

During the introduction, the interviewee was informed about
the purpose of the interview as well as its duration and agenda
and was then introduced to the design space, its overall purpose,
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as well as all dimensions and categories. They were then explicitly
asked to raise questions regarding anything that was not clear before
moving on to the next part. The introduction lasted 10–15 min.
Then, the interviewee was asked to populate the design space with
the use case they had prepared. We conducted a semi-structured
interview, where the interviewer asked several predetermined
thematic questions based on each part of the design space “E.g.,
How many individuals are involved in the overall process and which
roles do they have?”. As the interviewee answered, the interviewer
completed the dimensions of the design space in an Excel Sheet.
This step took approximately 60–70 min. In the final phase of the
interview, the interviewee was asked to reflect on the completed
design space and comment on any aspects of the design space that
had not been situated in the use case at all or only incompletely.They
were also asked to highlight incomplete or inappropriately named
labels, category errors, or any other issues that came to their mind.

On the basis of the interview results, we created an iterated
version of the design space. This version was then validated in a
second round of interviews with seven human-machine interaction
experts. We selected our sample respondents by identifying the
target population as experienced HCI designers and researchers
with at least 4 years of professional experience in the field of
automated vehicles. While selecting more experienced individuals
might exclude the viewpoints of early-career HCI practitioners, our
goal was to provide a comprehensive design space by highlighting
the practical and industry-oriented insights that are crucial for
the implementation of automated material-handling vehicles. These
interviews were shorter, with a duration of 30–40 min each, and the
interviewees were no longer asked to prepare a use case description
beforehand, as this round of interviews primarily emphasized the
design perspective. Instead, the interviews consisted of a very
short introduction (5 min), after which the interviewer reviewed
the design space together with the interviewee, asking for each
dimension and its categories regarding relevance, comprehensibility,
cohesion, and completeness. This part took 20–30 min. At the
end, the interviewee was asked to provide a final valuation of the
design space’s appropriateness as well as sum up the definitive needs
for improvement, if any. The results from this second round of
interviews were collected and then integrated into the final version
of the contextual design space (see Table 1 for an overview of the
main implications from the subsequent phases of the development
of the design space).

4 Design space

In this section, we describe the design space that resulted from
the iterative process described in the previous section. The design
space consists of two main parts or “spaces”: Context Space, and
Interaction Space.

The two spaces complement each other and also serve to reduce
the complexity of any given context that is captured via the design
space. The Context Space serves to capture all factors pertaining
to the material handling context, including surface and weather
constraints, machines and their automation levels, user roles and
task types, etc. It is to be defined once for any given scenario or use
case.

The Interaction Space, on the other hand, defines any interaction
point within the context. An interaction point is any (physical)
instance where a machine or human interacts. E.g., a simple context
with two machines, each with one set of direct controls each as well
as a fleet management workstation would result in three interaction
points overall. The Interaction Space then defines in- and output
for each of these points but maps back to the Context Space to the
previously defined task types, user roles, automation setting, etc.

By doing so, the overall design space can efficiently capture
complex human-in-the-loop scenarios withmany differentmachine
types, several control interfaces, different automation levels and
intervention capabilities, without increasing exponentially. In the
following, we describe the sub-space (e.g., automation setting),
dimensions (e.g., driving), categories (e.g., level of autonomy), and
their characteristics (e.g., semi-automated) for each space in detail.

4.1 Purpose/task

Although there are two primary purposes that we cover for
automated material handling vehicles, that is, driving and handling,
we subdivided the purpose subspace into three scope elements:
driving, handling, and support tasks (see Figure 1, left side). Driving
tasks are those related to maneuvering the vehicle. Handling tasks
are about handling thematerial such as loading/unloading the cargo.
Lastly, coordination and support tasks are non-related driving or
handling tasks such as management of fleet scheduling, vehicle
allocation, and maintenance.

4.1.1 Task abstraction
As Table 1 indicates, the scope or abstraction of a task has

emerged as a relevant dimension from our first interview round,
but notably, it has so far not been proposed by previous design
spaces summarised in section 2. We identified three abstraction
levels of driving and handling tasks, based on Michon’s model
(Michon, 1979). Strategic tasks are those that plan the goal of the
action such as navigation. Tactical tasks are those that facilitate
the accomplishment of the task, for instance, detecting an obstacle.
Operational tasks are those activities that aim to maintain and
sustain a system such as loading the lattice box.

4.1.2 Degree of freedom
A factor of primary relevance was found to be the physical

direction in terms of movement. In order to capture this for the
design space, the degree of freedom has been incorporated as a
dimension of the design space. Notably, this aspect so far has not
been presented as part of previous related design spaces mentioned
in section 2. The most generic way to specify the target direction
along their trajectories is to specify degrees of freedom, separately
for the driving, handling, and support tasks (e.g., for directing
vehicle charging or maintenance personnel). It has to be noted that
the technical movements to be done by the handling components
are typically highly complex and fine-grained (Hamid et al., 2016;
Martin and Irani, 2021), thus in principle entailing many degrees
of freedom. However, from the perspective of task and purpose
specification, the actual defined movement targets can be specified
with significantly fewer degrees of freedom, essentially reducing it
towards three independent directions (x,y,z) in space.
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TABLE 1 Overview of the implications from the literature review and the two rounds of expert interviews.

Space Sub-
space

Dimension Main implications from the evidence
collected during the design

space creation process

Literature review 1st interview
round

2nd interview
round

Previous work adopted
for first draft

Resulting revisions
of design space

Evidence for the finalization of
the design space

Context
Space

Purpose/task

General Machado et al. (Machado et al.,
2021a): Main Driving and
handling (“manipulation”) as
main categories

Refined (3rd category of
coordination added)

Confirmed

Task abstraction - Refined (task types and steps) Consolidated (Michon’s model
implemented, based on expert feedback
(Michon, 1979))

Degree of
Freedom

- Refined (introduced different
types of DoF: actual and
translated)

Consolidated (simplified DoF options)

Duration Wiegand et al.
(Wiegand et al., 2019)
introduced duration “travel
time”

Introduced Confirmed

Automation
Setting

General - Refined (levels of automation) Confirmed

Level of
Automation

SAEJ3016 as widely accepted
taxonomy for automated
driving (Taxonomy, 2021),
Machado expand this for the
LoA of material handling
vehicles (Machado et al., 2021a)

Refined (summarizing SAE
automation levels 1/2 and 3/4)

Confirmed

Human operator
location

- Refined (Added option “no
human operator location”)

Consolidated (simplified the categories)

Situation

General ISO 9241-210 taxonomy for
social and physical context (for
Standardization, 2010); Colley
et al. ‘s design space contains
physical and social context
variables (Colley and Rukzio,
2020)

Confirmed Confirmed

Social Different user/operator roles
adopted from (Graf et al., 2020;
Colley and Rukzio, 2020)

Refined (added user role
“maintenance”)

Consolidated (final grouping of user roles)

Physical Physical context aspects are
broken as categories in ISO
9241-210 (for
Standardization, 2010), and
related to automated driving in
Colley et al. (Colley and Rukzio,
2020). Soil categories were
taken from (Deatherage et al.,
2004). Other environmental
factors, such as temperature and
light intensity, were taken from
(Yamazaki et al., 1998)

Refined (introduced
“Dynamicity” dimension,
added “sunlight” and “storm”)

Refined (Added dimension “Loading dock
type”), consolidated

(Continued on the following page)
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TABLE 1 (Continued) Overview of the implications from the literature review and the two rounds of expert interviews.

Space Sub-
space

Dimension Main implications from the evidence
collected during the design

space creation process

Literature review 1st interview
round

2nd interview
round

Previous work adopted
for first draft

Resulting revisions
of design space

Evidence for the finalization of
the design space

Interaction
Space

Human-
Automation
Interaction

Scope elements
Input/Output

Multiple design spaces with a
differentiation of input and
output (Nigay and Coutaz,
1993; Frohlich, 1992; Kern and
Schmidt, 2009; Graf et al., 2020;
Wang and song, 2022)

Confirmed Confirmed

User role profiles - Refined (added user role
“maintenance”)

Consolidation (consistency with user role in
social dimension)

Communication
type

Communication messages of
automated vehicles to road
users proposed by Colley et al.
(Colley and Rukzio, 2020)

Confirmed Confirmed

Modality Design spaces with modality as
a key dimension (Detjen et al.,
2021; Colley et al., 2022;
Graf et al., 2020; Ahmad et al.,
2018)

Confirmed Refined (added variation “biometrics” for
input modality)

Device Type Graf et al. propose partly
propose device types, as part of
their interaction space
(Graf et al., 2020)

Refined (added variation
“pedal”)

Confirmed

Locus (Detjen et al., 2021;
Colley et al., 2022)

Confirmed Confirmed

Degree of
Freedom

- Introduced Confirmed

4.1.3 Duration
This dimension distinguishes between short or long duration

of a task [adapted from Wiegand et al. (2019)]. According to the
duration of task performance, additional interactionwith the vehicle
would be required. For instance, a long duration may require
charging the vehicle.

4.2 Automation setting

For the characterization of the automation setting targeted for a
certain AMHV use case, we again analyze the vehicle’s driving and
handling, as well as the coordination and support activities.

4.2.1 Level of automation
For categorizing automation levels for driving, handling, and

coordination, we took reference to the SAE automation levels

(Taxonomy, 2021) [similarly to Machado et al. (2021a)], in a
condensed form.

• No automation: human operator is in direct control and
performs the tasks manually (equivalent to L0 SAE J016 level).
• Partial automation: operator in direct control, but supported

through partial automation (SAE L1+L2).
• Supervised automation: system is operated in an automated

way, but operator should be available to intervene (SAE L3+L4).
• Full automation: system is running autonomously with

interventions only in case of system errors (SAE L5).

This taxonomy is similar to the level of automation (LOA)
of decision and action selection (Sheridan et al., 1978), e.g., no
automation is equivalent to LOA scale 1, partial automation to LOA
2-4, supervised automation to LOA 5-9 and full automation to LOA
10.

Frontiers in Robotics and AI 06 frontiersin.org81

https://doi.org/10.3389/frobt.2023.1276258
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mirnig et al. 10.3389/frobt.2023.1276258

FIGURE 1
Human-Automation Context Space for AMHV (see description in sections 4.1–4.3).

4.2.2 Human operator location
The location of operators to material handling vehicles can be

either on the vehicle or distant from the vehicle, which results
in different design requirements. Also in case of coordinating or
supporting actions, it makes a significant difference whether the
scheduling or charging is done with the vehicle in sight. This
dimension emerged during the first round of interviews and was
refined in the second round.

4.3 Situation

The situation in which the operation is undertaken will entail
significant constraints on the design options for AMHV interfaces.
Referring to context models from HCI and pervasive computing
(ISO, 2006; for Standardization, 2010; Schmidt et al., 1999; Bradley
and Dunlop, 2005; Dey, 2018), as well as to previous design spaces
that had already adopted contextual dimensions (Colley et al., 2017;
Wiegand et al., 2019; Colley and Rukzio, 2020; Graf et al., 2020), we
include the following main elements for the situation sub-space:
social and physical context (see Figure 1, right side). The first two
dimensions - user roles and expertise - are related to the social
context and the other five are about the physical context (weather
characteristics, road type, loading dock type, environmental factor,
and dynamicity).

4.3.1 User role
A user is any person who is actively or passively engaged

with the AMHV. The most common roles of these persons who
need to be supported by AMHV user interfaces are direct control
of a vehicle (driver), monitoring and coordination of (fleets of)
vehicles, regular technical support, and interventions in situations of
malfunction (maintenance), and passive use of a vehicle (passenger).
This dimension has also been part of other design spaces (e.g., Colley

and Rukzio, 2020), and the categories have been specified by means
of the first round of interviews.

4.3.2 Expert mode
Depending on the user interacting with the AMHV, information

may embrace different degrees of detail. While the criteria in
assessing expert models of operators can vary depending on the
industry, equipment, and specific task, here we define expertise as
the extent of specialized knowledge and skills in operating amaterial
handling vehicle (Hetmański, 2018).This could be based on a history
of successful completion of similar tasks or relevant certification or
training in material handling operations. In order to capture this
important difference, we identify two modes, i.e., expert and novice
[adapted from Graf et al. (2020)]. For instance, a novice operator
who requires the supervision of a superior is considered a novice,
while an experienced operator is an expert.

4.3.3 Weather characteristics
Weather as a relevant contextual dimension has been proposed

for external HMIs of automated vehicles (Colley and Rukzio, 2020).
We identified different characteristics such as rain, snow, and fog
[adapted from Colley and Rukzio (2020)] that affect the sensor
functionality. Furthermore, we added two weather characteristics
that are particularly important for handling activities that emerged
from the interviews: storm and sunlight.

4.3.4 Road type
AMHV operation strongly depends on the road type, especially

whether activities are being performed indoors or outdoors. In this
regard, an indoor road can be part of a warehouse, whereas an
outdoor road is outside, for instance at a construction site.

4.3.5 Loading dock type
This dimension is discussed by reviewed publications. Previous

work lacks a description of the soil at the loading dock (i.e., pick up
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FIGURE 2
Human-Automation Interaction Space for AMHV (see description in section 4.4).

or drop-off points), therefore we add a new category for specification
of soil type, since loading or unloading the material can take place
in locations outside of a warehouse. According to a taxonomy
by the OSHA (Occupational Safety and Health Administration,
Department of Labor), we identify four characteristics such as solid
rock, clay, silt, and sand (Deatherage et al., 2004).

4.3.6 Environmental factor
Similar to Colley and Rukzio (2020), we incorporated

this category for environmental aspects that can affect the
vehicle’s performance in terms of energy efficiency, component
reliability, and communication interference. Two characteristics of
temperature and light intensity were added to noise (Yamazaki et al.,
1998), due to the relevance of this category in material handling.

4.3.7 Dynamicity
This dimension is introduced during the first round of

interviews.We added this category to distinguish static and dynamic
environments. It influences the design of communication protocols
and methods of data gathering. As AMHVs are expected to
communicate with other vehicles or with infrastructure via wireless
technologies, we further categorize the dynamic environment into
non-connected and connected.

4.4 Human-automation interaction

As Figure 2 shows, we propose the following dimensions to
describe human automation interactionwith AMHV. For both input
and output, the following dimensions are proposed.

4.4.1 User role profile
This dimension reflects any active (e.g., driver) or passive user

(e.g., passenger) who engages in an interaction with AMHV. The

most common users are the driver, who is in charge of operating the
vehicle. A truck driver could also communicate with the operator,
e.g., by requesting to park the AMHV at a specific destination
in relation to the truck. Other users, e.g., fleet coordinator and
maintenance, to some degree might interact with the AMHV. Also,
a system such as a fleet management system can be considered as an
active user, in case AMHV is connected to infrastructure or other
machinery. Furthermore, passive users can also be considered as
interacting partners. Passengers, for instance, might be informed
about the activity that the AMHV is about to undertake (e.g.,
parking).

4.4.2 Communication type
The communication type contains the elements advisory,

instruction, question, answer, notification, and prediction. These
characteristics are adapted fromColley andRukzio (2020). Advisory
and instruction are both guiding behaviors, however, instruction
has a relatively top-down approach. Question is demanding
information, while answer is providing information. Predictive is a
special type of answer when the provided information contains an
extent of probability. Notification is giving notice for instance about
the intent of the AMHV or possible failure in executing an action
such as a warning.

4.4.3 Modality
This dimension is discussed by reviewing design spaces and

refined during the second round of interviews. Based on previous
works [e.g., (Detjen et al., 2021; Colley et al., 2022)], we identified
three main interaction modalities, i.e., auditory, visual, and haptic.
Auditory inputs are, for instance, speech control and non-speech
sounds. Alarm or warning sounds are examples of auditory
feedback. Visual inputs such as laser point or gesture are efficient
for a simple command (such as selecting an option from a
given alternative) (Ahmad et al., 2018). Anything displayed on the
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monitor or the color of vehicle lights are examples of visual feedback.
Haptic controls such as pedals and the steering wheel are fixed,
installed at a particular spot. Vibrations are a common example of
haptic feedback (Detjen et al., 2021). Furthermore, we also include
the biometric as an additional input modality for determining
physical and behavioral characteristics, e.g., mental fatigue and
stress of the operator (Graf et al., 2020).

4.4.4 Device type
Depending on the modality of interaction, different devices can

be used. For input modality, we identified tablet, keyboard, mouse,
joysticks, pedal, wheel, and scanner. For the feedback modality,
tablet, loudspeaker, headset, head-mounted display, smartphone,
ruggedized industry PC, lights, and LED display can be listed.

4.4.5 Locus
Due to the different physical positions that team members can

have in relation to the vehicle, depending on the role (confer the
different roles specified in the context space) and operator location
(e.g., remote or on the vehicle), user interfaces may be located at
different locations. Based onMahadevan et al.’s design exploration of
external communication for automated vehicles (Mahadevan et al.,
2018), the locus of the interaction device can be on the vehicle, in
the infrastructure, or on a user’s personal device.

4.4.6 Degree of freedom
For system inputs, the degree of freedom that an interaction

device offers or requires is regarded as the number of defined modes
in which users can move the device to specify the command input
(Albertson and Womack, 1968). For instance, the rotary knob has
only one degree of freedom but a traditional mouse has two degrees
of freedom. The degree of freedom has so far not been proposed as
a dimension in related design spaces introduced above.

5 Illustrating the design space

Thecontextual design space introduced previously is intended to
support the design of concrete instances within a flow of activities.
In the case of the example of a forestry use case where a flatbed
logging truck equipped with a z-crane is driven to a log pile in the
forest and the driver uses the automated crane to load tree trunks
onto the flatbed, the context is first to be specified. Table 2 lists
the context parameters, highlighted in red, that apply to this use
case. While driving is an operational task that occurs with three
degrees of freedom and takes a long time to complete, the material
handling device (i.e., the z-crane) is mechanically equipped with
6 degrees of freedom. Loading the truck with this type of handler
is considered an operational task, but it takes a short completion
time. Coordination and support are only necessary in the event
of a fault (i.e., a defect) and can therefore be classified as an
operational (manual) factor with a relatively short time impact (i.e.,
repair on-site). In the selected use case, the approach to automation
of driving is still manual, with the driver performing the task.
However, the material handling is carried out autonomously under
the supervision of the user at the vehicle, while other tasks (e.g.,
maintenance, repairs on site) require the human to be in control of
the handler or vehicle (no automation). Since in this case automation

is only applicable to the handling level, the user still needs to
have expert knowledge of the situation. Furthermore, the physical
conditions, like weather conditions (i.e., rain or sunshine), loading
dock type (i.e., silt), and environmental disturbance factors (i.e., light
intensity) as well as a static dynamicity of the situation, in which
the automated material handler is only communicating with the
user directly, are prominent properties within the shown contextual
design space.

As shown in Table 3, on another example of a logistics use case,
where lattice boxes are to be picked up by an automated forklift
in a production area and then to be transported to and parked at
a drop-off spot, the context can be specified following the same
scheme. In this case, the operational task of driving an AMHV
is relatively short in duration, but it has a medium-range degree
of freedom (DOF) due to the technical and functional range of
motion of the vehicle. Similar parameters also apply to the material
handling and coordination tasks, although their task abstraction is
classified as strategic (i.e., preventive maintenance and allocation of
vehicles). A further specialty of this contextual instance is that the
technical material handling scope only reflects a small range in the
degree of freedom parameter field, due to the technical conditions
of the material handling device (i.e., forklift). For the chosen context
instance, the AMHV is assumed to have highly automated driving
behaviorwithout a human in the loop, while in thematerial handling
task, a human is assumed to act as an external (remote) supervisor
for any necessary checks and safety measures.

In terms of the situational context in this specific logistics
use case, the role of an expert user is to monitor the system,
communicating over a wireless network. The situational context
is furthermore characterized as dynamic, due to the changing
locations of goods and other vehicles, but not as connected, as here
machines are not communicating with each other. As regards the
environment, the forklift operates in an indoor environment, on a
stable surface such as tar or concrete. Thus, in this case, external
weather characteristics are not prominent, but sunlight (shining
through warehouse windows) may still be a factor of relevance,
also expressed by the environmental factor of light intensity. As can
be seen, the provided categories of our design space are neither
exclusive nor independent. For instance, the road type for the
discussed use case is both indoor and outdoor, as the boxes are
handled inside a warehouse but sometimes the drop-off point is
outside the warehouse building.

Based on the specified context, the possible options for human-
automation interaction can be specified. Table 4 shows a task flow
matrix on the example of a logistics use case. This matrix has been
adapted from (Prati et al., 2021) and is completed as a result of a use
case interview. As shown in Table 4, first the temporal sequence of
the tasks to be performed and the actors of the actions and tasks
(e.g., driver or AMHV) are defined. In our example, this process
starts with the worker bringing the lattice box to the pick-up point
and ends with an AMHV moving back to the parking area. In the
next step, for each interaction between the user and an AMHV, the
modality, device, its locus, and degree of freedom are clarified. Based
on this information, designers can be supported in the exploration
and allocation of a proper interplay of human actions and automated
system behaviors.

At the very right column of the task flow matrix in Table 4,
standards are provided, which have to be considered or followed
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TABLE 4 Task flowmatrix of example logistics use case, used for setting the parameters for dimensions of the interaction space.

Task User/Actor Communication type Modality Device Locus DoF Applicable
standards

Input Output

Bringing the lattice
box to the pick-up
point

Driver Instruction Haptic Scanner in the
infrastructure

Six EN 894

Turning on at
parking area

AMHV Notification Visual PC (via FMS) in the
infrastructure

EN 61310-1

Moving to the
pick-up point

AMHV Notification Auditory Speakers in the
infrastructure

EN 61310-1,
SAE J3134

Positioning in the
pick-up area

AMHV Notification Auditory Speakers on the vehicle EN 61310-1,
SAE J3134

Scanning/detection
of lattice box

AMHV Question Visual PC (via FMS) in the
infrastructure

EN 61310-1

Checking the lattice
box for loading

Driver Answer Haptic Touchpad in the
infrastructure

Two -

Loading the lattice
box

AMHV Notification Visual/Auditory PC/headset in the
infrastructure

EN 61310-1

Securing the lattice
box

Driver None Haptic Touchpad in the
infrastructure

Two OSHA 2236

Transporting with
lattice box to the
drop-off point

AMHV Notification Auditory Speakers in the
infrastructure

EN 61310-1,
SAE J3134

Positioning in the
pick-up area

AMHV Notification Auditory Speakers on the vehicle EN 61310-1,
SAE J3134

Detecting the free
spot to unload

AMHV Advisory Visual Lights on the vehicle -

Confirming the
unloading spot

Driver Instruction Haptic Touchpad in the
infrastructure

Two EN 894, EN
61310-1

Unloading the lattice
box

AMHV Notification Visual/Auditory PC/headset in the
infrastructure

EN 61310-1

Moving back to
parking area

AMHV Notification Visual PC (via FMS) in the
infrastructure

EN 61310-1,
SAE J3134

when addressing the interaction design regarding a certain task, and
thus these can impose potential design constraints. The referenced
standards include design requirements for heavy machinery, such as
principles for visual, acoustic, and tactile signals (EuropeanMachine
Directive, EN61310-1 (for Electrotechnical Standardization,
2008a)), for visual displays and control actuators (EN 894-
1:1997 + A1:2008 (for Electrotechnical Standardization, 2008c)),
and for indications, actuation and marking (EN61310-2 (for
Electrotechnical Standardization, 2008b)). Also, standards applying
for the general scope of automated driving are to be considered,
most importantly the SAE J3134 for vehicle lighting towards other
road users (SAE, 2019). As regards operational health standards
for the material handling domain, respective standards like OSHA
2236 (Safety and Administration, 2002) also need to be taken into
account in the design process.

6 Discussion

In the following, we discuss the in-practice application of the
design space, as well as two related aspects, namely, the capturing
of human-in-the-loop aspects as well as the feasibility of strict
separation of the design space constituents.

6.1 Making use of the design space

The primary purpose and intended use of the design space is to
situate any given interaction context or specific challenge within it
and then identify the most suitable design options in a structured
way. In doing so, one can reveal, identify, and categorize all relevant
aspects (objects, actors, or parameters) that can (a) be subject to
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or targets of design activities, (b) influence interactions, including
the success of interaction designs within the context (Dove et al.,
2016). This aligns with the notion of a design space also being
able to serve as a practical foundation for promising and novel, but
also challenging and still insufficiently structured interface classes
or application areas (Ballagas et al., 2008; Kern and Schmidt, 2009;
Tönnis et al., 2009; Haeuslschmid et al., 2016; Braun et al., 2017;
Wiegand et al., 2019; Colley and Rukzio, 2020).

While only recently previous design spaces have started to
add contextual variables (Colley and Rukzio, 2020), the AMHV
context space necessarily had to be more comprehensive, given the
multitude of possible situations, automation settings, and allocated
tasks. Mapping out an entire use case within a specific context can
be time-consuming, which is why the space is modular and should
be used as such: The Context Space can be used on its own to
capture possible influences on any given design activity and be used
as a design aid even when the interaction space is not being used.
Users can already gain all relevant information regarding contextual
variables, possible task types, controllability of machines, and their
degree of automation, as well as elementary user characteristics.

The Interaction Space can be used to finely detail any given
interaction situation. It is intended to be detailed for any given point
of interaction, e.g.,: if there are two machines, a fleet management
interface for both, and each with its own on-machine control
interface, then that results in three interaction points overall. As a
result, a full capturing of this space would entail specifying input and
output three times, separately for each interaction point. Thereby,
the interaction space is specified in accordance with both the level of
interactional complexity in the specific use case as well as the design
needs - if the design for a specific interaction point is out of the scope
of the current activities, then that one can be omitted.

6.2 Capturing the human(s) in the loop

Describing the involvement of humans in automated processes
in the area of material handling is especially complex, as work roles
and team allocations are currently evolving (Cimini et al., 2020).
One of the bigger challenges of creating the design space was thus
to capture the human role within various scenarios of automation,
without introducing needless complexity into the design space, as
the space needs to be easily readable and graspable in order to serve
its primary purpose (Halskov et al., 2021). Since the context space
is defined once for a given use case and the size of the interaction
space is proportional to the number of interaction points, we aimed
to contain the human in the loop within the context space as much
as possible, in order to keep complexity low.

In our approach, we captured the aspects relevant to the
position of the human in the loop via the level of abstraction as
well as the automation setting for each task (driving, handling,
coordination, and support). While this does not result in detailed
human-machine-interaction workflows with exact indicators as to
when and where the human is involved to which capacity, it does
provide a similar result once the interaction space maps back to
it: Since the level of automation–and with it, the degree of human
involvement—are specified in the context space, this information
does not need to be repeated for every single interaction point.
Even high-level task durations are already specified in the context

space already. Also, the human operator location is specified for the
driving, handling, and coordination and support tasks, which gives,
in combination, an overall impression of the distribution of human-
automation task distribution among the team. Thus, by mapping the
interaction to the context space, any given interaction is specified
regarding the Where, When, and How of the Human-in-the-Loop.

This approach does have two drawbacks: The temporal
component is high-level and specific task durations or times when
certain tasks are performed are not supported by this design space.
In addition, it is not possible to specify different levels of involvement
within the same interaction point and user role, which can occur
in individual cases (e.g., different levels of experience between two
individuals sharing the same role leading to different involvement).
Especially the latter is very specific and out of the scope of a typical
design space (Simon, 1975; Halskov et al., 2021). Still, both are
relevant to finely specify the role and position of the Human-in-
the-Loop, thereby also suggesting a limit as to how far this can be
specified within a design space alone.

6.3 Managing definitions and delimitations

A design space, at least in its classical understanding (Shaw,
2012), implies that its dimensions are independent and that
parameters along these dimensions should be discrete. However,
in system types such as mechanical material handling vehicles,
delicate interdependencies need to be considered (Halskov et al.,
2021). We encountered a fundamental example of this during the
creation of the AMHV design space, as we were separating driving
from handling as the two elementary task categories. While both
involve movement to some extent, focus and challenge are different:
Movement is primarily a matter of (two-dimensional) trajectory
planning, steering maneuver execution, and dealing with different
surface types. Material handling, however, involves trajectories in a
three-dimensional space, with challenges more related to picking up
and putting down, and also concerned with the type and quantity
of material to be handled, as well as generally shorter trajectories.
In addition, there is also frequently a clear physical distinction
between a machine’s driving and handling means (e.g., wheels vs.
crane boom).

We had separated the two categories like that in the initial draft
already and the division held until the final version, with iterations
mainly concerning the dimensions and their refinement. What
became clear, however, was that a clear separation was sometimes
more challenging in practice and the term “movement” could
sometimes be misleading. Two machine types where this came up
more frequently were forklifts and swap-body trucks. Forklifts do
have a clear separation between fork movement and forklift steering
controls. However, part of the picking-up motion is purely driving:
The forklift is first, via the regular driving controls, maneuvered
into position so that the fork is positioned below the stillage. Only
then is the fork moved upwards. The question is then - how should
the initial maneuvering be classified: as movement or material
handling? Swap-body trucks face a very similar challenge. Such
trucks simply dock at a loading station, where their body is then
loaded automatically. A truck can dock onto any loaded body and
drive out for delivery, hence the term “swap body”. The question is
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whether the driving into the docking station constituted a driving or
a material handling task.

One possible solution to this problem could be to further define
tasks specific to their purpose. This could mean that if an action
is executed primarily for the purpose of handling or preparing to
handle material, then it would be classified undermaterial handling,
even if it uses driving controls and maneuvers only. If, on the other
hand, the primary purpose is the navigation of the entire machine
from point A to point B, then it would be classified under driving.
The challenge with this solution is the clear delineation in specific
cases - where does the driving end and howmuch of the approach of,
e.g., the forklift to the hall where the stillages are, is handling? Given
that there is no clear intrinsic distinction, this would need to be
defined at least on a machine-level separate for each machine type,
perhaps even on a contextual level (storehouse types, etc.), which
would defeat the purpose of a design space that should not impose
unnecessary restrictions and enable consistency.

Instead, we decided and subsequently suggest to separate the
task categories on the control level instead. If the task is executed
via driving controls and entails moving the machine, it is of
the driving type. If it is executed via non-driving controls and
either directly involves or has the immediate purpose of handling
material (including repositioning), then it is classified as thematerial
handling type. This means that both the initial maneuvering of
the forklift, as well as the entire docking operation of a swap
body truck, would be classified as driving. On the interaction level
especially, this renders the distinction clear, as there is no switch
from driving to handling on the same set of controls. For the swap
body trucks in particular, it would seem that this categorization
then misses the material handling component entirely. However,
the actual material bulk of the material handling challenge in these
cases happens during the container loading operation, where the
truck is simply not involved, and not during docking. As such, the
categorization also more adequately reflects the extent of material
handling involved, which is minimal to nonexistent in these cases.

7 Limitations

The design space was based on a foundation of existing
design spaces and was iterated on the basis of expert inputs from
professionals working in AMHV contexts as well as HCI. Due to
the often closed nature of industrial AMHV use cases and the
resulting difficulty of stakeholder access, gathering the ten experts
involved was already very challenging. While in line with or even
above the number of experts involved when creating a design space
(Braun et al., 2017;Wiegand et al., 2019; Colley andRukzio, 2020), it
still means that the number of individuals involved was on the lower
end. While the application domains we focused on (construction,
agriculture, intralogistics, and manufacturing) represent a broad
spectrum of material handling applications, we do expect that
applications outside of the investigated domains will yield further
requirements or extensions for the design space. To this end, one
should keep in mind that a design space should serve as a design
aid that should be adaptable along each tackled design project
(Heape, 2007). A particularly promising area of further extending
the AMHV design space has been proposed by (Steckhan et al.,
2022), suggesting the extension of lower-level abstractions

(e.g., functional driving dynamics as cues for interventions) and
user satisfaction as target functions. Another limitation lies with
our separation of task types between driving and material handling
and delineating the two on the control level.While this solution does
lead to a clearer distinguishability and reflects the involved actual
material handling well, it cannot appropriately capture some corner
cases, such as, e.g., using a crane boom to push oneself away, thus
constituting movement rather than any type of handling operation.
While such actions are typically outside of the intended scope (and
unsafe as well as nonpermitted as a result), capturing non-intended
use can be very valuable for accurately describing design contexts
(Satchell and Dourish, 2009) and we consider this potential room
for improvement.

8 Conclusion

In this paper, we presented a design space for AMHV.The design
space is based on six existing design spaces for either automation
or material handling and is the first design space that captures both
aspects and enables AMHV contexts to be fully situated within. The
design space consists of two sub-spaces—the Context Space and the
Interaction Space. This division enables efficient definition of each
interaction point in the Interaction Space by mapping back to the
contextual factors (user roles, task types, level of automation, etc.)
that are globally defined in the Context Space. The design space can
be used to support targeted design efforts that in configurations are
characteristic of automated material handling use cases, including
extended process chains and multiple interaction chains across
several machines that involve different user roles, remote vs. on-
machine operation, as well as different degrees of automation and
corresponding intervention or monitoring capabilities. It is the first
dedicated design space specific to AMHV and shall serve to be a
useful tool for future design efforts as well as provide a consistent
framing for AMHV contexts going forward.

9 Future work

One of the main goals of this design space was to provide a
tool to structure any given context in order to then situate one’s
design activities within it and to identify correct devices, locus,
users, etc. We plan to conduct prototyping-oriented research with
the help of the proposed design space, specifically focusing usability
and acceptability of fleet monitoring interfaces in multi-machine
contexts. We use the design space to mainly capture the type and
levels of automation and controllability for each machine involved,
then identify and design for the user roles that require access to the
fleet view, with the eventual goal of defining views with separate
indicators and different levels of detail, depending on physical
location and which user roles access it.
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Socially adaptive cognitive
architecture for human-robot
collaboration in industrial
settings

Ismael T. Freire*† , Oscar Guerrero-Rosado*† , Adrián F. Amil and
Paul F. M. J. Verschure

Donders Institute for Brain, Cognition and Behaviour Radboud University, Nijmegen, Netherlands

This paper introduces DAC-HRC, a novel cognitive architecture designed to
optimize human-robot collaboration (HRC) in industrial settings, particularly
within the context of Industry 4.0. The architecture is grounded in the
Distributed Adaptive Control theory and the principles of joint intentionality and
interdependence, which are key to effective HRC. Joint intentionality refers to
the shared goals and mutual understanding between a human and a robot,
while interdependence emphasizes the reliance on each other’s capabilities
to complete tasks. DAC-HRC is applied to a hybrid recycling plant for the
disassembly and recycling of Waste Electrical and Electronic Equipment (WEEE)
devices. The architecture incorporates several cognitive modules operating
at different timescales and abstraction levels, fostering adaptive collaboration
that is personalized to each human user. The effectiveness of DAC-HRC is
demonstrated through several pilot studies, showcasing functionalities such
as turn-taking interaction, personalized error-handling mechanisms, adaptive
safety measures, and gesture-based communication. These features enhance
human-robot collaboration in the recycling plant by promoting real-time robot
adaptation to human needs and preferences. The DAC-HRC architecture aims
to contribute to the development of a new HRC paradigm by paving the way for
more seamless and efficient collaboration in Industry 4.0 by relying on socially
adept cognitive architectures.

KEYWORDS

cognitive architecture, social robotics, human-robot collaboration, industry 4.0,
distributed adaptive control

1 Introduction

The increasing automation in the industry over the past decades has been partially
driven by the adoption of robots, which have proven to be valuable tools for handling
heavy, risky, and repetitive tasks. By automating these tasks, robots have helped alleviate
the burden on human workers, contributing to improved safety, efficiency, and productivity
Mazachek (2020) and Cette et al. (2021). However, robotic solutions have their own
limitations; they tend to have restricted operational capacity in terms of degrees of
freedom and decision-making and therefore they do not perform well outside of highly
controlled and structured environments Vysocky and Novak (2016). As a result, complete
automation might be neither feasible nor desirable Charalambous et al. (2015), Weiss et al.
(2021), a discussion further amplified by recent advances in AI Verschure et al. (2020).
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Instead, the future of Industry 4.0 Lasi et al. (2014) lies in
the collaboration between humans and robots, capitalizing on
the strengths of both in a manner that is both beneficial for
the health and wellbeing of the workforce and productive for
companies. Human-Robot Collaboration (HRC) is poised to
become a key component of Industry 4.0 Baratta et al. (2023),
with the primary goal of creating a safe environment for
humans and robots to collaborate effectively. This transition
from traditional automation to Industry 4.0 will be marked by
a transformation involving the use of the latest advancements
in information and communication technologies (ICTs)
Robla-Gómez et al. (2017).

However, the transition to HRC in industrial settings faces
several technical and scientific challenges Inkulu et al. (2021).
Physically close collaboration between human workers and
industrial robots has been limited so far, primarily due to
safety concerns, such as potential collisions causing injury to
human operators Robla-Gómez et al. (2017), Vysocky and Novak
(2016). Recent advances in collaborative robotics, including
the emergence of cobots, now allow for safer and closer
interactions between humans and robots Weiss et al. (2021).
Other technological advances come from transformative ICTs
like artificial intelligence (AI) and the related field of machine
learning (ML). In Semeraro et al. (2023), the authors review the
impact of AI and ML in HRC, highlighting the shift towards
cobots (collaborative robots) designed for safe, close-proximity
work with humans. The authors emphasize the potential of ML
to improve HRC by enabling robots to better understand and
adapt to human behavior. Most approaches have relied on vision-
based ML to handle objects and perform collaborative assembly
in a safe manner. In addition, neural networks have been used
to recognize human actions for the robot to assist the human
when needed. Furthermore, reinforcement learning has shown
great promise in decision-making during collaborative tasks
that require outcome-dependent switching between the human
and the robot. An example of an AI-based HRC solution in
an industrial setting is outlined in Dimitropoulos et al. (2021),
where the authors introduce an AI system with three modules
to enable seamless human-robot collaboration by understanding
the environment and operator actions, providing customized
support, and adapting robot poses for better ergonomics,
demonstrated through an elevator manufacturing case study.
However, despite all these advances, Lemaignan et al. (2017)
point out that advanced HRC will actually require robots to
possess more advanced cognitive capabilities, such as common
sense reasoning for context-aware decision making, which is
not achievable yet. These advances in collaborative technologies
call for novel paradigms to design collaboration in hybrid
industrial settings that are in line with the ambitions of
Industry 4.0.

One prime example of such a setting has been the
implementation of a hybrid human-robot system in a recycling
plant for Waste Electrical and Electronic Equipment (WEEE)
products under the umbrella of the EU-funded HR-Recycler
project Axenopoulos et al. (2019). This type of environment poses
a unique set of challenges for human-robot interaction (HRI)
and collaboration (HRC) Robla-Gómez et al. (2017), Vysocky and
Novak (2016).

• Noise. Tasks carried out in a recycling plant involve actions
such as hammering, cutting, grinding, and transporting heavy
pallets, which makes the workplace a highly noisy environment
where verbal communication is hampered if not completely
disrupted.
• Task hazardousness. WEEE material disassembly involves

the manipulation of sharp and heavy materials that
during their processing may produce hazardous metal
shavings and sparks during processing. To ensure the
integrity of the workers, WEEE recycling requires safety
measures such as wearing Personal Protective Equipment
and maintaining a large distance between co-workers
that, at the same time, limits the collaboration between
counterparts.
• Dynamic environment. Plant configuration constantly

evolves. The continuous processing of WEEE material
involves piles of WEEE devices disappearing and new
piles arriving at different locations, workers leaving their
workbenches to attend to other assignments, surfaces getting
covered by metallic dust, light conditions changing along
the day, etc. This prevents cobots from following fixed
routines.

In parallel, the specific tasks involved in the recycling process
demand physically close collaboration and interaction between
workers and robots, requiring human-robot collaboration to be
socially adaptive.

To achieve social adaptability, HR-Recycler builds on
the new dimension that human-robot collaboration (HRC)
takes in Industry 4.0, becoming a complex sociotechnical
system where agency—the capacity to act—is not solely
attributed to humans. Instead, it is shared among humans and
non-human agents, such as machines, robots, sensors, and
software Weiss et al. (2021). This paradigm shift is crucial as
it acknowledges the increasing demand for more interactive
roles between humans and cobots within industrial settings
and, therefore, the need to develop new control systems that
accommodate this emergent reality. Additionally, this shift also
highlights the rise of novel configurations of shared control and
distributed agency, which are key aspects of this new industrial
paradigm.

To address the challenges posed by Industry 4.0, including the
integration of collaborative robots (cobots) in hybrid industrial
environments, this paper introduces a novel systems-level
control paradigm for designing and implementing cognitive
architectures tailored for Human-Robot Collaboration (HRC).
Accordingly, we present DAC-HRC, a novel cognitive architecture
that is specifically designed to facilitate socially adaptive
human-robot collaboration within industrial contexts. In the
next sections of the introduction, first, we outline the key
principles for human-robot collaboration upon which the
cognitive architecture is based, with and special emphasis on
the notions of joint intentionality and interdependence. We
then introduce the Distributed Adaptive Control perspective
for building HRC and highlight how each of the specialized
modules of the DAC-HRC cognitive architecture is related to
these principles and the state-of-the-art of each implemented
functionality.
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1.1 Principles for human-robot
collaboration in industrial settings

To develop an effective socially adaptive cognitive architecture
within the context of a hybrid recycling plant, we reviewed state-
of-the-art Human-Robot Collaboration principles for industrial
settings aiming to conciliate the perspective of different authors that
have explored this in the past. As a result, the following principles
were considered:

• Implicit Switch Modes: The system must fluidly alternate
between various interaction modes, adapting to the human
worker’s context without burdening them Bauer et al. (2008).
• Natural Cues: Intuitive interaction is facilitated by leveraging

humans’ inherent understanding of natural signals, enabling
humans to communicate with robots using familiar gestures
and symbols Goodrich and Olsen (2003).
• Direct World Manipulation: Interactions are designed to serve

the ultimate purpose of task completion in a tangible world,
allowing humans to directly influence robotic behavior to
navigate the unpredictable physical environment of industrial
settings Adams (2005).
• Information Manipulation: Information presented by the

robot must be actionable, supporting the human worker’s
decision-making processes and promoting goal-oriented
collaboration Goodrich and Olsen (2003).
• AttentionManagement:The design of HRC interactions should

cater to the cognitive limitations of human attention, ensuring
that critical information is highlighted and that potential
attentional lapses are mitigated Adams (2005).
• Situational Awareness: Maintaining an acute awareness of the

robot’s internal and external state is paramount, enabling
human workers to anticipate robotic actions and intervene
when necessary Goodrich and Olsen (2003).
• Safety: Paramount to any HRC system is the unwavering

commitment to human safety, ensuring that robots can navigate
the potential hazards of industrial tasks without endangering
human collaborators Goodrich and Olsen (2003).

1.1.1 Joint intentionality and interdependence as
core principles for industrial HRC

Beyond the general HRI principles described above, the DAC-
HRC architecture incorporates two core principles coming from
our current understanding of the origins of human collaboration:
interdependence and joint intentionality.

Joint intentionality refers to the shared mental states and
cooperative activities that arise when individuals engage in
collaborative endeavors. Research on social cognition posits that
shared intentionality is a unique feature of human cognition, setting
us apart from other primates Tomasello et al. (2005). It manifests
in the form of shared goals, joint attention, and mutual knowledge
among individuals working together. For instance, when two people
collaborate to lift a heavy object, they share a common goal (i.e.,
moving the object) and are aware of each other’s intentions, roles,
and actions.

This concept is particularly relevant in the context of Human-
Robot Collaboration (HRC), as it emphasizes the importance of
mutual understanding, communication, and coordination between

human workers and their robotic partners. In industrial HRC,
developing systems capable of exhibiting joint intentionality is
essential for ensuring more efficient and safer interactions between
human workers and robots. In this context, developing shared
intentionality in artificial and hybrid collaborative systems would
imply the ability to (1) detect and predict human intentions,
actions, and goals, (2) communicate its intentions, actions, and
goals to human workers and (3) coordinate and adapt its behavior
based on the shared goals and the feedback from the ongoing
collaboration.

Interdependence is another foundational aspect of current
theories of the evolution of human cooperation Tomasello et al.
(2012). It refers to the reliance of individuals on one another to
achieve shared goals or complete tasks, and its key role in vital tasks
for early humans such as obligate collaborative foraging Tomasello
(2009), O’Madagain and Tomasello (2022). Applied to the context of
HRC, interdependence implies that both humanworkers and robots
depend on each other’s actions, skills, and knowledge to execute
tasks effectively. The Interdependence Hypothesis Tomasello et al.
(2012) suggests that interdependence fosters cooperation, as it
encourages individuals to align their goals, share information, and
coordinate their actions.

In HRC, task interdependence between humans and robots can
motivate the design of systems that (1) recognize the skills and
capabilities of human workers and adapt their behavior accordingly,
(2) share task-related information with human workers, facilitating
mutual understanding and efficient task execution (3) respond to
changes in the task or environment, adjusting their actions to
maintain effective collaboration.

To illustrate, consider a collaborative robot in an automotive
assembly line. The cobot could be designed to recognize the
specific skills of the human worker, such as their proficiency in
installing certain parts. Based on this recognition, the cobot could
adapt its behavior to complement the worker’s skills, perhaps
by preparing the necessary parts or tools for the worker’s next
task. Moreover, the cobot could share task-related information
with the worker, such as the sequence of assembly steps or
the status of the parts supply, facilitating mutual understanding
and efficient task execution. Finally, the cobot should be able to
respond to changes in the task or environment. For instance, if
a part is missing or defective, the cobot could adjust its actions,
perhaps by fetching a replacement part or alerting the worker
to the issue.

In understanding and implementing these core principles of
joint intentionality and interdependence, it becomes apparent that
a sophisticated cognitive architecture is required: one that not only
comprehends human social behaviors but also adapts and responds
to the dynamic nuances of industrial settings. This necessity brings
us to the Distributed Adaptive Control (DAC) approach, which
provides a validated and biologically-inspired framework. The
DAC approach, with its layered control system and emphasis on
adaptability, is ideally suited to embed these principles into the
fabric of human-robot collaboration. As we transition to exploring
the DAC-HRC architecture, we will see how each of its specialized
modules is designed to operationalize the principles of joint
intentionality and interdependence, thereby creating a harmonious
and effective collaborative environment between humans and robots
in industrial settings.
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1.2 The distributed adaptive control
approach to human-robot collaboration

A cognitive architecture is a modular control system that
governs a robot’s decision-making, information processing, and
environmental interaction Vernon (2022), Moulin-Frier et al.
(2017). It is from the interaction and interdependence of its
constituent modules that a cognitive architecture displays cognitive
capabilities such as perception, decision-making, memory, or
social learning. The Distributed Adaptive Control (DAC) theory
of mind and brain Verschure, (2012) offers a robust theoretical
foundation for such architectures, as it has been previously
shown in various HRI scenarios Lallée et al. (2015), Moulin-
Frier et al. (2017), Fischer et al. (2018). DAC views the brain as a
hierarchical system with multiple control layers, each crucial for
adaptive behavior in diverse physical and social contexts Verschure,
(2012), Verschure et al. (2014). This biologically grounded modular
modeling approach is especially suitable for addressing the HR-
Recycler environment’s challenges, which demand adaptive and
goal-oriented actions.

Informed by the DAC framework, the DAC-HRC architecture
we introduce in this paper integrates four specialized modules that
reflect key principles for effective HRC. Each module is tailored
to specific principles, forming a cohesive and operational control
system:

• Task Planner: Coordinates the proper disassembly steps for
each device, organizes the disassembly procedure and the
turn-taking between human and robot actions, centralizes
task-related information among the DAC-HRC modules, and
implements safe and robust error-handling protocols. The
Task Planner reflects the principles of shared intentionality
and interdependence, as it involves a mutual understanding
between the human and robot about the sequence of tasks and
reliance on each other’s capabilities to complete these tasks.
Moreover, by orchestrating robot control and human-robot
interaction, it also embodies the principles of ’implicit switch
modes’ and ’direct world manipulation’.
• Interaction Manager: Serves as a multimodal, non-verbal

communication interface, facilitating efficient communication
and interaction between humans and robots. To achieve this,
the module integrates multimodal channels of communication,
ranging from audiovisual interfaces such as tablets to embodied
gesture-based, communication. By handling natural embodied
human-robot interaction based on gestures and adapting to
the context of the information visualized on tablet devices, this
module implements the principles of ’natural cues’, ’attention
management’, ’information manipulation’, and ’situational
awareness’. By jointly visualizing in the tablet device the
progress and information about the status of the human worker
and the robot, this module also creates a sense of shared
intentionality.
• Socially Adaptive Safety Engine: Acts as a context-aware

adaptive safety mechanism, controlling the safety distances
between humans and robots as well as the speed of the
interactions, adapting them to the context and the preference
of the human co-worker. It deals with the integration of the
relevant environmental, social, and material information that

comes from other modules to adapt the safety mechanisms
of the human-robot collaboration, directly addressing the
principles of ’safety’ and ’situational awareness’. It dynamically
adjusts robot behavior to align the safety measures with human
preferences and the task context, also emphasizing the principle
of interdependence.
• Worker Model: Creates an internal model of human

workers, focusing on the principles of ’information
manipulation’, ’implicit switch modes’, ’situational awareness’,
and ’interdependence’. This module handles information about
the human worker, using it to adapt the robot’s behavior
in alignment with the worker’s preferences. This module is
instrumental in adaption the overall collaboration schemes to
the human worker, enabling the robot to adjust its actions and
fostering a collaborative relationship where both parties rely on
and benefit from each other’s strengths.

By integrating these modules within a single cognitive
architecture, DAC-HRC, we create a robust control system for
HRC in industrial settings. This system is inherently socially
adaptive, as it is capable of dynamically adjusting in real-time
to accommodate the varied preferences of human workers and
the nuances of different scenarios. Moreover, it facilitates mutual
understanding and fosters effective collaboration between human
workers and robots, a critical requirement for addressing the
complex tasks encountered in the HR-Recycler’s recycling plant
use case. Comprising various specialized modules, the DAC-
HRC cognitive architecture implements distinct functions, each
grounded in contemporary, state-of-the-art solutions derived from
the literature.

1.2.1 Task planner as a hierarchical finite state
machine

Task planners play a pivotal role in robotics, especially in
enabling robots to adeptly navigate complex and unpredictable
environments. In domains like electronicwaste recycling operations,
the ability of robots to perform a range of tasks, from sorting
to processing diverse types of devices and components, hinges
on sophisticated task planning mechanisms Alami et al. (2005).
The cornerstone of contemporary task planning in robotics
is the use of finite-state machines (FSMs), revered for their
simplicity and intuitiveness in modeling robot behavior amidst
uncertainty Foukarakis et al. (2014).

Finite-state machines are essentially mathematical constructs
encompassing a finite set of states, transitions between these states,
and corresponding input/output events. This structure empowers
robots with the ability to efficiently adapt their behavior in
response to varying conditions, a feature crucial in the fluctuating
environment of a recycling plant. The inherent simplicity of FSMs,
however, can be a limitation when dealing with more complex
behaviors.

To address this complexity, hierarchical finite-state machines
(HFSMs) have emerged as a potent solution to orchestrate complex
robot behaviors.HFSMs represent behaviors in a layered structure of
FSMs, where each level corresponds to a specific subtask or behavior
component Johannsmeier and Haddadin (2016). This hierarchical
arrangement facilitates a modular and scalable approach to task
planTask Planner, the Socially Adaptive Safety Engine, the Worker
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Model and the Interaction Managerning. By breaking down overall
robot behavior into manageable subtasks, HFSMs offer a tailored
solution to the multifaceted tasks encountered in electronic waste
recycling.This approach not only enhances the robot’s efficiency and
adaptability but also allows for easier integration and updates to the
task planning system as recycling requirements evolve.

Moreover, the incorporation of human-in-the-loop
methodologies in task planning signifies a significant evolution in
robotic systems.This approach involves integrating human feedback
and inputs directly into the robot’s control mechanism, enabling
a more dynamic and adaptable interaction between humans and
robots Raessa et al. (2020). In the context of electronic waste
recycling, this means that robots can be more responsive to human
operator’s preferences and needs, thereby enhancing collaboration
efficiency and safety.

In implementing HFSMs, the Task Planner module within
the DAC-HRC cognitive architecture embodies these principles,
leveraging the hierarchical structure to manage complex tasks
while remaining adaptable to the diverse challenges presented in
electronic waste recycling. The module’s design allows for seamless
incorporation of human inputs, ensuring that the robotic system is
not only responsive but also attuned to the needs and preferences
of different human workers. This integration of advanced HFSMs
within the DAC-HRC architecture illustrates a commitment to
developing robotic systems that are both technically proficient and
collaboratively effective in complex industrial settings.

1.2.2 Interaction manager as a multimodal
non-verbal communication protocol

The DAC-HRC architecture’s Interaction Manager advances
the paradigm of multi-modal non-verbal communication, pivotal
for intuitive and effective human-robot collaboration in industrial
settings. In the human-centered HRI paradigm, an essential aspect
of implementing a successful and effective HRI is building a natural
and intuitive interaction Wang et al. (2022). In recognition of the
importance of non-verbal communication modalities, particularly
in noisy industrial settings, the Interaction Manager eschews
auditory channels in favor of gesture-based and tablet-based
interfaces.

Gestures serve as a fundamental form of human
communication, making them ideal for conveying rapid commands
in human-robot interaction (HRI) Vouloutsi et al. (2020),
Pezzulo et al. (2019). Gesture-based communication harnesses the
natural propensity for humans to use physical gestures, thereby
facilitating a more immediate and universal form of interaction
Liu and Wang (2018), Wang et al. (2022), Peral et al. (2022). The
Interaction Manager incorporates a repertoire of shape-constrained
gestures Alonso-Mora et al. (2015) tailored to the communication
needs specific to the HR-Recycler’s project, which facilitates natural
and intuitive interactions without extensive training Vouloutsi et al.
(2020) while also ensuring accurate recognition and interpretation
by the robotic agents Peral et al. (2022).

To complement gesture-based interactions and cater to
scenarios necessitating more detailed information exchange, the
architecture also integrates tablet-based communication. This
method leverages interactive applications, which, while commonly
used for teleoperation Yepes et al. (2013), Best and Moghadam
(2014), Luz et al. (2019), are repurposed in the DAC-HRC to

enhance the human-robot bond and situational awareness Goodrich
and Olsen (2003). The tablet application provides a direct interface
for the human worker to receive updates on the robot’s internal state
and environmental interpretations, aligning with keyHRI principles
Goodrich and Olsen (2003), Adams (2005).

The combined use of gesture and tablet-based interactions
by the Interaction Manager represents a state-of-the-art approach
to non-verbal HRI. It successfully navigates the challenges of
noisy industrial settings, where traditional verbal communication
is untenable, and establishes a robust, adaptive, and user-friendly
communication system conducive to the dynamic requirements of
the HR-Recycler’s operations.

1.2.3 Socially adaptive safety engine as an
allostatic control system

A robot must not endanger a human under any circumstances.
This premise, already formulated by Isaac Asimov in his famous
“Three Laws of Robotics,” is crucial for any robotic installation
but especially for those promoting interaction and collaboration
between humans and synthetic agents Asimov, (2004). Importantly,
in industrial settings interactions must be designed bearing in mind
that robots occasionally will represent a source of danger to humans
because of the tools they employ to perform hazardous tasks such as
cutting, hammering, or moving heavy objects. Safety measures need
to be implemented both according to the work to be performed and
the human demands Van Wynsberghe (2020).

In the context of theWEEE recycling factory, humans and robots
have to interact with a variety of different objects and tools and
realize many changing sequences of actions in order to successfully
complete their tasks Axenopoulos et al. (2019). Although each of
the robotic components has its own built-in safety mechanisms and
corresponding certified ISO safety measures, the interaction of all
these elements together will require an additional layer of control
that can adapt their behavior to the requirements of the hybrid
recycling plant while following human-centered design principles.
This layer of control is the Socially Adaptive Safety Engine (SASE).

The Socially Adaptive Safety Engine within the DAC-HRC
architecture goes beyond mere harm avoidance to actively promote
cooperation Freire et al. (2020a). The SASE not only adheres to
basic safety principles but also engages in more flexible adaptation
of the robot’s behavior to the preferences of the human worker,
thus fostering a more cooperative and harmonious human-robot
interaction. It also reflects the principles of shared intentionality
and interdependence, as it involves amutual understanding between
the human and robot about the safety measures and reliance on
each other’s capabilities to maintain safety during the disassembly
process.

The goal of the SASE is to promote human-robot cooperation
by building safer, more trustworthy, and personalized interactions
with human users Kok and Soh (2020), Christoforakos et al.
(2021). It does so by regulating and adapting the robot’s behavior
to the particular human preferences of every user Senft et al.
(2019), Edmonds et al. (2019). In this way, it also serves as an
extra layer of security for the system by integrating contextual
information from the environment and using it to prevent
potentially harmful situations Yang et al. (2018). At the heart of
this approach is the implementation of an allostatic control system
Sanchez-Fibla et al. (2010), Guerrero Rosado et al., 2022. This
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system aims to ensure harm avoidance and promote cooperative
behaviors, which are two fundamental aspects of ethical machine
behavior Freire et al. (2020a).

In essence, the Socially Adaptive Safety Engine encapsulates the
ethos of the DAC-HRC architecture—prioritizing human safety and
introducing dynamic adaptability, thereby exemplifying a model
of responsible and responsive artificial intelligence in industrial
settings.

1.2.4 Worker model based on human-centered
design principles

User modeling systems rely on data gathering to create user
models, either explicitly or implicitly Luna-Reyes and Andersen
(2003). The integration of novel machine learning techniques has
significantly enhanced the capabilities of these systems, steering
them towards more data-driven strategies Kontogianni et al. (2018).
One emerging technique being implemented in these data-driven
user modeling practices is the Digital Twin concept, which
generates or collects digital data representing a physical entity,
emphasizing the connection between the physical and virtual
counterpart through real-time information flow Bruynseels et al.
(2018), Negri et al. (2017).

Digital Twin technologies have been applied in various contexts,
such as healthcare Croatti et al. (2020) and human-robot interaction
Wilhelm et al. (2021), Malik and Brem (2021), Wang et al. (2020).
In industrial settings, Digital Twins have been utilized for
tasks like interactive welding, bridging human users and robots
through bidirectional information flow, and benefiting novice
welder training Wang et al. (2020), Jokinen and Wilcock (2015).
However, these data-driven approaches raise concerns regarding
big data management, privacy, and trustworthiness, especially
when applied to sensitive fields Kumar et al. (2020). The Human-
CenteredAI paradigmaims to address these concerns by prioritizing
methodologies that meet user needs while operating transparently,
delivering equitable outcomes, and respecting privacy Xu (2019),
Riedl (2019). This approach also aligns with legislation such as the
European General Data Protection Regulation (GDPR) Kloza et al.
(2019).

The Worker Model module of the DAC-HRC cognitive
architecture follows such human-centered design principles by
maximizing functionality while minimizing the amount of data
gathered from the user Xu (2019), Riedl (2019). This design strategy
ensures that the Worker Model respects user privacy while still
providing effective support for human-robot collaboration in the
disassembly of WEEE devices. The main goal of the Worker
Model is to collect, process, and store all the relevant information
regarding each user of the system and integrate it into one single,
coherent data structure. This information is used by the DAC-
HRC architecture to flexibly adapt the human-robot collaboration
paradigm to the human partner. In other words, the Worker
Model creates a virtualization of the human worker that allows the
collaborative architecture to dynamically adjust its parameters to
ensure a personalized interaction.

In essence, the Worker Model’s integration into the DAC-HRC
architecture not only enhances the adaptability of the human-robot
collaboration paradigm but also embodies a human-centric focus
into the design of these new technologies Xu (2019), Riedl (2019).

The rest of the chapter is organized as follows: In the following
section section, we first describe the aCell, a specific experimental
setup designed for the collaborative disassembly of WEEE devices.
We then continue describing in detail each of the components of
the DAC-HRC architecture along with its interactions. We proceed
with a report of the main results showcasing the functionalities of
the architecture across the different tested use cases, and conclude
with a discussion of the main outcomes of the study, its limitations,
implications, and future work.

2 Methods

2.1 The aCell experimental setup

The experimental setup consists of a specific spatial and
technical configuration of an adaptive Collaborative Cell (aCell)
designed for the collaborative disassembly of Waste Electrical and
Electronic Equipment (WEEE) devices. The concept of an aCell
represents an evolution in the way we approach task allocation
in HRC Axenopoulos et al. (2019). Traditional industrial HRI
methodologies often focus on individual tasks within a single work
cell, with the human and robot working in isolation on specific
tasks. However, the aCell concept promotes a more holistic view of
HRC that takes into account the interdependence between humans
and robots. It envisions a dynamic, integrated system where the
human and robot work together across multiple tasks, adapting to
changes in the work environment and each other’s capabilities. This
approach aims to enhance the overall efficiency and effectiveness
of the collaboration, rather than optimizing individual tasks in
isolation.

An aCell is a dynamic and adaptive component of a hybrid
factory, responsible for a specific task and for a given time period.
The responsibilities, resource allocation, and overall positioning of
its elements within the factory are dynamically assigned and adapted
in real time with respect to the overall factory workflow demands,
available skills, and available resources. In the context of our study,
the cell consists of a human worker collaborating with a cobot, with
each of them possessing specific, known skills. They operate as part
of a joint intentional team with shared goals: to disassemble a series
of Waste Electrical and Electronic Equipment (WEEE) devices.

The design of the aCell is grounded in the interdependence
and joint intentionality between the human worker and the cobot.
The components of the aCell are interdependent since effective task
completion requires the combination of both human and robot
capacities while sharing the same goals for disassembly. By taking
into account the complementary skills and shared goals of the
human-cobot dyad, the aCell can be seen as a single collaborative
unit whose control is distributed. The DAC-HRC architecture we
present in this chapter is designed as a control system to deal with
such hybrid collaborative entities, by orchestrating the disassembly
process while also taking into account human workers’ safety, and
promoting context and real-time adaptation in the dynamic and
complex environment of the WEEE recycling plant.

In this work, the aCell is composed of two primary regions
(Figure 1): the open space, where the human worker performs
tasks without hindrance, and the workbench, where the DAC-HRC
synthetic actuators are strategically located.
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FIGURE 1
Experimental Set-up. (A) Cenital view of the aCell. Green dashed lines illustrate the human working area, being limited by a safety threshold (red dashed
lines). (B) Complete configuration of the aCell including the human worker, the cobot, the WEEE device to be disassembled, the clamping tool, the
tablet device where the Interaction Manager app is displayed, the cobot tool rack, and the cameras monitoring the behavior of both the human worker
and robot.

WEEE materials are positioned on the workbench for
collaborative disassembly by the human worker and a COMAU
Racer-5 collaborative robot (cobot). To further augment the
functionality of the cobot, a tool rack is in place to house and
arrange Racer-5 tools that are not currently in use. These tools
include a screwdriver, a vacuum gripper, a finger gripper, and a
cutting device.

Two vision modules allowed DAC-HRC to be informed by the
aCell regarding the status of the disassembly task and the human
worker. These vision modules were designed following state-of-the-
art computer vision techniques Tran et al. (2018), Ghadiyaram et al.
(2019), Cao et al. (2017), Kalitsios et al. (2022), Gabler andWollherr
(2022) and provided by otherHR-Recycler partners. A vision system
oriented towards the open space captures and processes information
related to the human worker, such as their identity, position, and
behaviors like gestures. To enable the cobot to gather information
on the WEEE device, such as the status of its components, an
additional vision system is directed toward the disassembly area,
informing about the device’s state. A mechanical clamping tool is
also integrated with the workbench to stabilize the WEEE device
while either the human worker or cobot performs actions on it.

Lastly, the workbench, and by extension, the aCell, are
supplemented by a tablet display that enables a bilateral
communication channel between DAC-HRC and the human
worker, displaying relevant information (e.g., current task status),
and serving as a medium for human feedback.

2.2 The DAC-HRC cognitive architecture

The aim of the DAC-HRC architecture is to develop a robust
human-robot collaboration control system for industrial settings
that adapts to different workers through strategies learned from data
obtained during the interaction. This process reflects the principles

of shared intentionality, as it involves a mutual understanding
between the human and the robot about the worker’s skills and
preferences. It also illustrates the principle of interdependence, as
the architecture relies on both the human and robot’s capabilities to
ensure safe and efficient human-robot collaboration.

More concretely, DAC-HRC enables robotic components to
tailor their interactions to the needs of their collaborative human
partner, taking into account their unique skills, capabilities, and
preferences. In order to achieve such a level of personalized
adaptation to each human partner, each of its core four
functionalities, control, safety, adaptation, and interaction are
all distributed across the whole architecture, while having their
specialized cognitive modules: the Task Planner, the Socially
Adaptive Safety Engine, the Worker Model and the Interaction
Manager, respectively.

DAC-HRC follows the design principles of the Distributed
Adaptive Control theory, which states that the goal of cognition in
embodied agents is to control action, and as such, any cognitive
system can be described as a modular, hierarchical control system
operating at different spatiotemporal timescales Verschure et al.
(2012).TheDAC theory can be expressed as a robot-based cognitive
architecture organized in two complementary structures: layers
and columns. The columnar organization defines the processing
of states of the world, the self, and the generation of action. The
organizational layers define the different levels of control, starting
from the Soma Layer integrating all sensors and effectors of the
system, the real-time reactive sensorimotor control in the Reactive
Layer, the adaptive associative learning and allostatic control in
the Adaptive Layer, up to abstract and symbolic manipulation and
context-based control in the Contextual Layer.

DAC-HRC is organized following DAC’s layered structure,
where each of its specialized HRC cognitive modules is located
at different levels of the layered architecture based on their
spatiotemporal timescales of control and their informational and
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FIGURE 2
The DAC-HRC architecture for human-robot collaboration in industrial settings. DAC-HRC is structured in four layers of control (from left to right):
Soma, Reactive, Adaptive, and Contextual; and composed of four specialized cognitive modules: the Task Planner, the Interaction Manager, the Socially
Adaptive Safety Engine, and the Worker Model. The cognitive modules are distributed across various levels of the layered architecture, aligning with
their control timescales and levels of information and sensory abstraction. The Soma Layer represents the physical components of the aCell, including
the cameras, tablet, cobot, and human worker. The Reactive Layer houses the Interaction Manager and Task Planner modules, responsible for
orchestrating human-machine communication and managing task allocation, respectively. The Socially Adaptive Safety Engine and the API component
of the Worker Model, which adapts safety measures and processes real-time worker information, span both the Reactive and Adaptive Layers. The
Contextual Layer is hThe effectiveness of DAC-HRCome to the Worker Model Database, storing long-term memory of past interactions and user
preferences, and the Interaction Learner, which uses this information to adapt tablet display options based on past interactions.

sensory abstraction, as we can see in Figure 2. In other words,
the cognitive modules are strategically distributed throughout the
architecture based on the specific temporal and spatial requirements
for control, as well as the degree to which they process and abstract
sensory information and relevant data.

Its Soma Layer is defined by the hybrid combination of synthetic
and biological sensors and actuators that comprise the aCell, that
is, the cameras, the tablet, the cobot, and the human worker. In its
reactive layer, DAC-HRC incorporates the Interaction Manager and
the Task Planner modules. The Interaction Manager is devoted to
the human-machine interaction protocols necessary to orchestrate
communication between the human and the cobot. The Task
Planner is in charge of the adequate task allocation among the
members of the collaborative entity. It sequentially organizes the
disassembly tasks and controls the correct turn-taking behavior
between the human and the cobot. The Socially Adaptive Safety
Engine, which is in charge of providing an additional layer of safety
that adapts the security distances and robot speed to the particular
preferences of the human partner and the current task context,
spans both the reactive and adaptive layers. The same applies to
the API component of the Worker Model, which deals with the
real-time information related to the worker, as well as with the
update of the Database. In the contextual layer, the Worker Model
Database provides the system with an internal model of the human

workers, storing in its long-term memory the past interactions
between each user and the system, as well as relevant information for
adapting the overall collaboration to the preferences of the human
partner. The Interaction Learner, spanning both the contextual and
adaptive layers, uses the contextual information to learn from past
interactions with the system to adapt the options displayed by the
Interaction Manager through the tablet device. In the following
sections, we describe in detail the technical implementation of the
cognitive modules of the DAC-HRC architecture.

2.2.1 Task planner
The DAC-HRC’s Task Planner module is conceived as a human-

in-the-loop hierarchical finite state machine that encompasses all
disassembly steps of all devices, as well as the error-handling
protocols. The Task Planner (TP) has been developed to ensure
robust orchestration of various components contributing to the
disassembly of WEEE devices within the aCell system. The
objectives of the TP are to coordinate the proper disassembly steps
for each device, organize the disassembly procedure and robot-
worker interleaving, centralize task-related information among the
DAC-HRC modules, and implement safe and robust error-handling
protocols. The TP reflects the principles of shared intentionality and
interdependence, as it involves a mutual understanding between the
human and robot about the sequence of tasks and reliance on each
other’s capabilities to complete these tasks. The TP integrates and
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coordinates low-level sensorimotor information (coming from the
computer vision and robotic components of the aCell) with high-
level information about the task and the interaction (coming from
the upper control layers of the architecture). Therefore, within the
TP’s HFSM, we find states with different levels of abstraction and
description. The Task Planner operates at five levels:

• Task Planner. This level corresponds to the highest level of
abstraction, which contains the state machines (SM) of all
4 Devices. It also contains the functionalities that deal with
continuous status reports, as well as direct human interactions
(through the Interaction Manager, or IM) that allow the TP to
be suddenly interrupted by the worker.
• Device. This level contains the state machine (SM) that links

the steps (i.e., Tasks) needed for the proper disassembly of a
particular device, in a sequential manner (i.e., without internal
loops). Thus, it comprises a straightforward sequential SM with
all the necessary steps or Tasks to be executed in the right
order, steps which have been pre-defined based on domain-
specific knowledge of the proper disassembly of the devices
(see Figure 3A).
• Task. In this level, a particular Task–involving one or more

Actions (see below)— is executed, with the end result of
removing a particular component of the device (e.g., “top lid
removal of the e-light”). Here, errors during the execution
of an Action are handled in a dedicated SM so that the
worker is engaged whenever needed (see Figure 3B). Feedback
and responses from the worker redirect the state of the TP
accordingly (e.g., if an error with the robot occurs and the
worker decides to complete that Task themselves).
• Action. This is the atomic level of description, where specific

modules are uniquely engaged via ROS communication (e.g.,
ROS-actions or ROS services). During an Action, either a ROS
action is sent to a robot to perform a specific action (e.g.,
“change tool to vacuum gripper,” or “dispose lid”), or a ROS
service is issued to the vision module to acquire the necessary
information that the robot will need to perform a subsequent
action (e.g., “identify the grasping pose of the lid”).
• Sub-action. In some cases where Actions need to be repeated

several times and imply feedback loops with vision and the
robot, an additional level is introduced so that the SM design
becomes more modular and robust (e.g., “Unscrew the six
screws of the microwave’s cover” is designed so that a dedicated
SM to unscrew coordinating the robot and vision feedback can
be called in loop until all screws have been removed).

The Task Planner is implemented with the Smach-ROS python
library, which allows seamless integration of HFSMs with ROS-
based communication protocols Bohren and Cousins (2010),
Pradalier, (2017). Crucially, internal data structures allow the
conveying of information received from vision (response of a ROS
service) to the robot (goal of a ROS action). In an SM, the transitions
between states depend on the outcome of each State after having
been executed. An example of a Task can be seen in Figure 3. In
general, an outcome “succeeded” will make the SM transition to the
next Task orAction (depending on the level).The outcome “aborted”
will engage the error-handling loop (see section Error Handling
below), which asks the worker for feedback, and transitions to

different states according to the worker’s decision (e.g., the robot
tries again, or the worker finishes the Task and then the TP moves to
the next Task).Thehierarchical structure of the FMS can be achieved
because all SMs are treated as States too, inheriting their properties.

2.2.2 Interaction manager and interaction learner
The Interaction Manager module plays a vital role in facilitating

efficient communication and interaction between humans and
robots. To achieve this, the module integrates multimodal channels
of communication, ranging from audiovisual interfaces to embodied
non-verbal communication. To account for high levels of noise
and equipment worn by workers, verbal communication was
excluded from the communication repertoire. The two main modes
of interaction, gesture-based communication, and tablet-based
communication, have been chosen to address the noisy industrial
environment and safety concerns during collaboration between
human workers and robots.

Gesture-based communication provides a fast and direct means
for the human worker to convey simple and fast control commands
and responses to the robotic companion, making it a useful and
naturalistic way of communicating in the collaborative environment
of the aCell. The Interaction Manager integrates eight different
communication signals, providing a rich set of gestures for effective
communication between the worker and the robotic system.

aCell-to-human communication is enabled through a tablet-
based application, representing the main communication channel
through which the system can provide detailed information about
the current task’s state. Additionally, through this Interaction
Manager application (IM app), the system can request human
intervention during the disassembly or request human input for
problem-solving or decision-making when unforeseen problematic
situations are faced.

These two main modes of interaction have been chosen to
cover the speed-accuracy trade-off, with gestures for simpler but
time-sensitive interactions, and tablets for slower but more fine-
grained information exchange. This dual communication paradigm
accommodates individual human preferences and ensures efficient
collaboration in various human-robot collaboration scenarios, as we
will see in the Results section.

The Interaction Learner adds a level of personalization on top
of the Interaction Manager functionalities by providing it with
an adaptive mechanism to support human-robot decision-making
based on the prior history of interactions between the human
and the cobot. Its main function is to keep track of human-robot
interactions and human feedback during error-handling scenarios.
It computes useful statistics based on the history of human-robot
interactions, and when a similar situation is encountered, it adapts
the options displayed in the tablet by the Interaction Manager in
a way that enhances collaborative decision-making by highlighting
on the menu the most frequently selected options by that worker
in a given situation. This level of adaptation takes into account
the human-robot interactions at each specific step during the
disassembly and for each worker in particular.

2.2.3 Socially adaptive safety engine
The design of the Socially Adaptive Safety Engine (SASE)

incorporates a set of reactive control systems inspired by Pavlovian
appetitive and aversive drives Freire et al. (2020a). This approach
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FIGURE 3
Task Planner. Visualization of the Device (A) and Task (B) levels of the Task Planner’s hierarchical finite-state-machine (HFSM) for the flat-panel display
use case. (A) Device level of the Task Planner’s HFSM. This level showcases the finite-state machines responsible for sequentially connecting the
disassembly steps (i.e., Tasks) required for the correct disassembly of the flat-panel display. (B) Task level of the Task Planner’s HFSM. At this level,
dedicated error-handling mechanisms within the Task Planner engage the worker when errors occur during the execution of an action (in this case,
‘remove screws’). This ensures that the worker is actively involved in resolving any issues that may arise. Feedback and responses from the worker serve
to redirect the state of the Task Planner, enabling effective error resolution and maintaining the overall flow of the task execution.

shapes the SASE’s functionality, guiding its interactions in the
DAC-HRC architecture to align with principles of both harm
avoidance and proactive cooperation. This incorporation allows the
Socially Adaptive Safety Engine to adapt its behavior dynamically,
not only avoiding harm but also optimizing operation parameters
such as speed, distance, and task allocation based on the unique
context of each human worker. The Worker Model, integral to the
contextual layer of theDAC-HRC architecture, helps personalize the
interaction, treating eachworker as a distinct individualwith specific
preferences and needs.

The Socially Adaptive Safety Engine module, in charge of
providing a context-aware and personalized safety control system,
spans across three layers of the DAC-HRC architecture. The
SASE’s reactive layer integrates several homeostatic modules whose
purpose is to monitor key aspects of the human-robot interaction.
The goal of each homeostatic module is twofold: to keep its
desired variable within the optimal range of operation, and to exert
control when that variable trespasses the safe range. The current
implementation comprises the homeostatic control of key proxemics
variables in HRI, such as the human-robot interaction security
distance, the robot movement speed, and the robot action execution
speed.When any of those variables reach or trespass their threshold,
the control response can be either a direct modification of the
exceeded value -in the case of speed modulation-, or a command
directed to stop the robot’s current action -in case the HRI distances
are trespassed. For instance, if the actual detected distance between
the human and the robot is below the desired safety value, the
homeostatic control system will generate a stop signal and the robot
will notmove until the actual distance goes back to the desired range.

The Socially Adaptive Safety Engine’s adaptive layer is composed
of the allostatic control module.This is the keymechanism by which

the SASE can adapt the interaction of the robot to its changing
environment. This module is in charge of the transformation of the
environmental information provided by the contextual layer and
modifying the desired parameters of the subsequent homeostatic
regulatory mechanisms of the reactive layer. For instance, when the
robot is handling a dangerous tool, the allostatic controlmodule gets
this information and adapts the desired safety HRI distance, as well
as the speed at which the robot will operate when being close to a
human.

The Socially Adaptive Safety Engine’s contextual layer deals
with the integration of the relevant environmental, social,
and material information that comes from other modules of
the DAC-HRC architecture. It endows the SASE with context
awareness. The constant integration of these different sources
of information defines the specific context at every point in
time, thus allowing the SASE to monitor and adapt the behavior
of the robot to the changing conditions of its surroundings.
For instance, the contextual layer can obtain information in
real-time about the HRI preferences of the currently detected
human worker, the risk level of the current robot action, and the
information about the current tool being used by the robot (if
any).

The incorporation of the reactive control systems inspired by the
Pavlovian appetitive and aversive drives allows the Socially Adaptive
Safety Engine to adapt its behavior dynamically, not only avoiding
harm but also optimizing operation parameters such as speed,
distance, and task allocation based on the unique context of each
human worker. The worker model, integral to the contextual layer
of the DAC-HRC architecture, helps personalize the interaction,
treating eachworker as a distinct individual with specific preferences
and needs.
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2.2.4 Worker model
The Worker Model is composed of short-term and long-term

memory buffers alongwith its reactive and adaptive input processing
layers. The Worker Model’s reactive layer serves as a first data
integration step, gathering information from several input sources,
whereas its adaptive layer processes the raw data in order to produce
new parameters that will be used by other modules of the Worker
Model and the DAC-HRC architecture. The online information
gathered by the Worker Model’s reactive layer is transiently stored
in the short-term memory buffer before it is further processed by
the adaptive Layer to generate new relevant information about the
worker and their interactionwith the system. For instance, the short-
term memory can store the timings of past interactions during
a disassembly step, while the adaptive layer generates estimates
of current task duration based on this input. The type of input
information gathered by the Worker Model can be divided into
offline and online variables:

• Offline variables - This type of data is mostly static, as
it will not vary throughout the session (e.g., age, gender,
language, and interaction preferences). This information is
acquired through preliminary questionnaires before engaging
with the system and defines the profile of each user based
on demographic information and her opinion towards robots.
• Online variables - Comprises all the relevant user data that

is dynamically updated in real-time over the course of the
interaction with the system. Integrates information about the
position of the worker and their performance (e.g., current
disassembly task, or estimated duration), as well as about
the context in which the worker is embedded (e.g., current
disassembly process, a Cell number, or location).

The technical implementation of the Worker Model is based on
two main components: the Worker Model’s API and the Worker
Model Database. The database implements the long-term memory
component of the Worker Model. Its function is to store all the
information related to each worker and to keep it up to date. It is
deployed as a document-oriented database usingMongoDB1, where
each worker profile is stored as a unique document. Each worker
model entry is initialized with the offline variables acquired from
the worker profile and questionnaires. Additionally, it also stores
the main statistics of each interaction between the worker and the
DAC-HRC collaborative architecture that has been extracted by the
WorkerModel API, such as the expected task duration or the history
of interactions with the tablet.

All the communications with the database are centrally
controlled by the Worker Model’s API, which integrates the reactive
and adaptive input processing layers along with the short-term
memory component of the Worker Model. The API’s function is
twofold: it performs the basic CRUD (create, read, update, and
delete) operations that keep the database up to date, and it is in
charge of filtering the online and state variables to produce the task-
and interaction-relevant outputs of the Worker Model. The API is
written in Python and communicates with the database using BSON
as the data interchange format.

1 https://www.mongodb.com

3 Results

In this section, we showcase the application of the DAC-
HRC within the industrial context of the HR-Recycler hybrid
recycling plant, highlighting the various functionalities of DAC-
HRC that enhance human-robot collaboration in the recycling
plant, specifically: (1) turn-taking human-robot collaborative
interaction during the disassembly of a WEEE device, (2)
error handling mechanisms personalized by past collaborative
interactions, (3) adaptive and personalized safety measures for
human-robot collaboration, and (4) gesture-based communication
for goal-oriented collaboration. Each scenario was assessed
during the disassembly of different WEEE devices, specifically:
emergency lamps, computer towers, microwaves, and LCD displays.
Importantly, trials to assess the robot’s autonomous disassembly
capabilities were conducted prior to these tests; in all cases, the
robot failed to successfully disassemble any device without human
intervention or the application of the DAC-HRC. This failure
serves as the reference process against which we benchmark
our architecture’s performance. Furthermore, the experiments
included various human participants to evaluate the architecture’s
adaptability to different human actors and preferences. Given the
nature of the experiments and the robot’s inability to complete tasks
autonomously, we chose not to report these autonomous trials in
the results section, focusing instead on the functionalities enabled
by the DAC-HRC architecture.

3.1 Turn-taking human-robot collaborative
interaction in the disassembly of a WEEE
device

This use case describes the involvement of the DAC-HRC
architecture during the collaborative disassembly of WEEE devices
between a cobot and a human worker. Such a collaborative process
begins when a human worker approaches the aCell. Once the
worker enters the working area, they are recognized by the vision
module that perceives their identity by decoding the unique fiducial
code allocated in the workers’ helmets (Figure 4A). Then, using the
identity of the worker, the Worker Model anonymously accesses
their corresponding personal information and makes it available
to the entire DAC-HRC architecture, so other cognitive modules
can socially adapt to the current worker. This process reflects
the principle of shared intentionality, as it involves a mutual
understanding between the human and the cobot about the identity
and role of the current worker. It also illustrates the principle of
interdependence, as the overall disassembly performance depends
on both the cobot and worker (Figure 4B).

The Interaction Manager receives and processes the worker’s
personal information and provides them with immediate feedback
about their detection by displaying such information through the
IM app (Figure 4C). It is noteworthy that this information, and
further notifications, are displayed meeting the worker language’s
preferences. Importantly, the rapid communication between the
vision modules and the Worker Model ensures that the social
information considered by the cognitive architecture has real-time
correspondence with the current human worker at the aCell.

Frontiers in Robotics and AI 11 frontiersin.org102

https://doi.org/10.3389/frobt.2024.1248646
https://www.mongodb.com
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Freire et al. 10.3389/frobt.2024.1248646

FIGURE 4
Human-Robot Collaborative Disassembly of a WEEE Device. (A) Vision module identifies a worker using their unique code. (B) DAC-HRC architecture
adjusts to worker preferences, modulating robot behavior. (C) The IM app shows worker details and disassembly status and sends notifications if
human input is required. (D) Task Planner updates after full disassembly of the WEEE device.

In parallel, the cobot continues operating primarily guided by
the goals imposed by the Task Planner. The succession of steps,
as well as their status and the progress during the disassembling
process, is also communicated to the human worker through the
IM app (Figure 4C). However, as mentioned in the description of
the Task Planner, the scheduling of disassembly steps is determined
as a succession of states that ensures the task allocation (human or
cobot)matches the worker’s skills and preferences.Thus, the optimal
distribution of disassembly tasks leads to stable collaborative

turn-taking dynamics, fostering predictability and facilitating the
rapid acquisition of social conventions Hawkins and Goldstone
(2016), Freire et al. (2020b).

Once the Task Planner has successfully overcome the
robot’s assignments and reached an action that requires human
intervention, this module interplays with the Interaction Manager
to proactively interact with the human worker. As a result, the
IM app sends a notification to the human worker describing the
action to be performed (Figure 4C). Moreover, this notification
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FIGURE 5
Personalized error-handling mechanisms during Human-Robot collaborative disassembly. (A) The complex coupling of both the aCel and the
DAC-HRC architecture becomes a potential source of failure that needs to be addressed at the systems level. (B) Either when the cobot cannot
complete a given disassembly action, or when is the worker’s turn to execute a step of the disassembly, the human worker can intervene safely. (C) IM
app notification of an error during the disassembly providing the three different actions to overcome the error. (D) The IM app in liaison with the
Interaction Learner provides an attentional bias towards the preferred error-handling options by modulating their visual saliency.

enables the worker to control the clamping tool (see Figure 1)
through the IM app when the device’s translation or reorientation
is needed. Once the human intervention has been completed,
a completion button must be pressed to allow the DAC-HRC
architecture to carry on with the next step. Additionally, an
abort option is available in cases where the human worker
needs to stop the collaborative disassembly and finish on
their own.

Finally, when both the robot and human’s disassembling
actions have been completed, the Interaction Manager, in liaison
with the Task Planner, informs the human worker about the
completion of the disassembling process through the IM app
(Figure 4D).

3.2 Error handling mechanisms
personalized by past collaborative
interactions

Beyond the complex interaction that DAC-HRC cognitive
architecture maintains within its components, it is also in
contact communication with other HR-Recycler sensory and
control modules. This architecture’s complexity aims to both
cope with the challenge of autonomously disassembling WEEE

devices, but also ask for collaboration when unexpected
issues prevent the optimal performance of the cobot’s
assignments (Figure 5A).

To overcome these errors, the Task Planner, through the IM app,
informs the humanworker of any problematic action (i.e., any action
that leads to errors) and provides three possible solutions. These
options give the worker the possibility to (1) force the cobot to retry
the problematic action, (2) inform the cobot that the worker will
take care of the action (Figure 5B), or (3) to inform the cobot that
the worker will take care of the remaining steps of the disassembly
(Figure 5C).

Importantly, due to the involvement of the Interaction
Learner module, this error-handling functionality becomes
adaptive to the worker’s preferences by learning from previous
interactions. Thus, if a worker exhibits consistent biases
toward one of the options when handling Task Planner
errors, the module memorizes these preferences and facilitates
future decision-making by increasing the visual saliency of
the previously preferred options (Figure 5D). This reflects
the principles of shared intentionality and interdependence,
as it involves a mutual understanding between the human
and robot about handling errors and reliance on each
other’s capabilities to resolve these errors and complete the
disassembly process.
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FIGURE 6
Adaptation of safety distance to human workers with different trust measures. (A) A worker with high trust in their robotic counterpart engages in the
collaborative process of disassembling the WEEE device. Their high trust is considered by the Socially Adaptive Safety Engine which, accordingly, sets a
short safety distance. Nonetheless, once this personalized safety distance is surpassed the robot comes back to its initial position and stops. (B) Surpass
of the safety distance triggers an IM app alert notification. According to the worker’s high measure of trust, the personalized safety distance is set at
0.70 m (C) When a different worker reporting a lower measure of trust in their robotic counterpart enters the aCell, the Socially Adaptive Safety Engine
recalculates the safety distance. As a result, the safety distance is enlarged and the human worker is not allowed to get so close to the cobot without
triggering the safety alert. (D) IM app alert notification when the worker with lower trust surpasses the safety distance. Notice that it was enlarged to
1.70 m.

3.3 Adaptive and personalized safety
measures for human-robot collaboration

In parallel to the Human-Robot collaborative disassembling of
WEEE devices, safety-related information is constantly monitored
and processed to provide adaptive and personalized robot behavior.
With this aim, once the computer vision module has detected and
recognized a human worker at the aCell, the Socially Adaptive
Safety Engine (SASE) draws its measure of trust from the Worker
Model. In addition, the SASE updates the safety distance and
robot’s speed according to the worker’s preferences (Figure 6).
This process reflects the principles of shared intentionality
and interdependence, as it involves a mutual understanding
between the human and robot about the worker’s trust level and
reliance on each other’s capabilities to maintain safety during the
disassembly process.

Since the adaptation of the robot’s speed to the worker’s trust
does not interfere with the worker’s performance, it has been
designed to occur covertly and automatically.Thus, the robot’s speed

is set at high levels when the current worker has reported high levels
of trust in their robotic counterpart and decreases when a more
distrusting worker enters the aCell.

However, aiming to ensure the integrity of the human workers,
the normal turn-taking collaborative Human-Robot interaction can
be interruptedwhen they surpass the safety distance (Figures 6A, B).
This safety distance, as well as the robot’s speed, is initially
personalized by the Socially Adaptive Safety Engine based on the
trust information provided by the Worker Model. Thus, human
workers with higher trust are allowed to get closer to the workbench
while the cobot is carrying out its tasks. Nonetheless, when a more
distrusting worker enters the aCell, this safety distance is extended
ensuring both their physical integrity and physiological wellbeing
(Figures 6C, D and Supplementary Videos S1 and S2). Importantly,
even when workers report a maximum level of trust in robots, a
minimum safety distance is set, following the international safety
requirements for industrial robots ISO (2011, 2016). The real-time
monitoring of the workers’ position relative to their personalized
safety distance is accomplished by the DAC-HRC architecture due
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to the continuous communication between the SASE and the vision
module, which provides the current worker’s location.

In cases where the worker has surpassed their personalized
safety distance, the Socially Adaptive Safety Engine ensures their
integrity by immediately stopping the cobot’s action.The trespassing
of the safety distance is also reported to the Interaction Manager,
which in turn notifies the human worker about their current
location and the minimum distance they should keep to the cobot
(Figures 6B, C). This alert remains displayed on the IM app until the
worker gets back to respect their safety distance. Once the safety
distance is reached again, the SASE’s alert disappears from the IM
app and the cobot resumes its previous task.

3.4 Gesture-based communication for
goal-oriented collaboration

Besides the direct input that human workers could provide
to the DAC-HRC architecture through the IM app, vision
modules recognize a set of gestures that enables multimodal
communication and enhance human-robot interaction during
collaborative disassembly.

Unlike direct input through the IM app, which is dependent on
specific events such as the requirement of human intervention or
error-handling situations, gesture-based communication is available
at any time during disassembly. That is, the workers can exert
control over the collaborative process by performing predefined
gestures that inform the DAC-HRC architecture to stop or
resume the disassembling process, as well as informing that the
disposal tray is full (Figure 7 and Supplementary Videos S3 and S4).
Consequently, the worker also gets feedback about the detection of
the recognized gesture through the IM app (Figures 7B, D, E). This
reflects the principles of shared intentionality and interdependence,
as it involves a mutual understanding between the human and
robot about the meaning of different gestures, and a reliance on
each other’s capabilities to interpret these gestures and respond
appropriately (Figures 7F, G).

4 Discussion

This paper introduces the Distributed Adaptive Control-
based Human-Robot Collaboration (DAC-HRC) architecture, a
novel cognitive framework tailored for enhancing human-robot
interactions within the dynamic and evolving landscape of Industry
4.0. Unlike traditional paradigms that promoted more static and
rigid interactions, DAC-HRC represents a significant leap forward,
integrating socially adaptive, flexible, and intuitive interaction
schemes that cater specifically to the nuanced demands of industrial
contexts. By leveraging novel Human-Robot Collaboration (HRC)
strategies, such as gesture-based communication and user-
context adaptation, DAC-HRC facilitates a more natural and
efficient partnership between humans and non-humanoid robots,
particularly within the challenging environment of electronic waste
recycling.

At the heart of DAC-HRC are four main cognitive modules:
the Task Planner, Socially Adaptive Safety Engine, Interaction
Manager, and Worker Model. Each module is meticulously

designed to operate across various timescales and abstraction
levels, ensuring that the architecture can provide personalized
adaptive collaboration that is sensitive to the unique needs of
each human user. This modular design not only underscores the
architecture’s flexibility but also its potential to enable seamless
and organic human-robot interaction in complex and dynamic
industrial scenarios.

Applied within the HR-Recycler environment, a hybrid
recycling plant focused on the disassembly and recycling of Waste
Electrical and Electronic Equipment (WEEE) devices, DAC-HRC’s
capabilities were demonstrated through several pilot studies. These
studies showcased the architecture’s ability to enhance human-
robot collaboration through (1) adaptive turn-taking interactions,
(2) personalized error-handling mechanisms, (3) dynamic safety
measures, and (4) intuitive gesture-based communication. By
addressing key collaboration aspects such as adaptation, safety,
personalization, transparency, and real-time interaction, DAC-
HRC proposes a new paradigm for human-robot collaboration
in industrial settings.

In each of the outlined use cases, the DAC-HRC architecture
demonstrates its capacity for real-time adaptive decision-
making, informed directly by data gathered during human-
robot interactions. For instance, in the collaborative disassembly
of WEEE devices, the cobot’s operational speed and safety
distances are dynamically adjusted based on the trust levels
reported by the human workers. This socially adaptive mechanism
ensures that interactions are tailored to individual comfort levels,
thereby enhancing the safety and efficiency of the collaborative
process. Similarly, the system’s ability to adapt to the language
preferences of each worker, as identified through their unique
fiducial codes, exemplifies how DAC-HRC leverages personal
information to customize the interaction experience, ensuring
clear and effective communication through the Interaction
Manager. These adaptations, underpinned by principles of shared
intentionality and interdependence, enable DAC-HRC to foster
a cooperative environment that is responsive to the nuanced
needs and preferences of human workers, significantly impacting
the collaborative dynamics within the industrial setting of the
HR-Recycler plant.

Despite the promising potential of DAC-HRC, current
limitations such as the need for further validation and refinement,
as well as the integration of additional cognitive modules for
predictive task allocation and human behavior understanding, must
be addressed.

The primary aim of this paper was to explore and demonstrate
the feasibility and adaptability of the DAC-HRC cognitive
architecture as a novel systems-level control paradigm for HRC,
particularly within industrial settings. The focus of our pilot studies
was to validate the cognitive architecture’s conceptual and functional
capabilities, such as facilitating adaptive collaboration, enhancing
safety measures, and implementing intuitive communication
protocols.

Given the innovative and exploratory nature of this work, the
emphasis was placed on qualitative assessments of the architecture’s
integration and interaction dynamics within the HR-Recycler
environment, rather than on quantitative performance metrics. This
approach aligns with the initial stages of deploying such complex
systems, where understanding the system’s behavior, adaptability,
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FIGURE 7
Human-Robot interaction based on gesture recognition. (A) Human worker performing the ‘stop’ gesture. (B) IM app notification for the recognition of
the ‘stop’ gesture and showing information about the corresponding robot action: adopting its initial, default pose. (C) Human worker performing the
‘resuming’ gesture. (D) IM app notification for recognition of the ‘resuming’ gesture and showing information about the corresponding robot action,
resuming the interrupted action. (E) Human worker performing the ‘wave’ gesture and IM app notifying about the recognition and meaning of the
gesture: disposal tray is full. (F) Automated guided vehicle (AVG) robot picking up the full disposal tray from the aCell. (G) AVG robot leaving the full
disposal tray in the removal area.

and potential for enhancing human-robot collaboration takes
precedence. Therefore, while the inclusion of performance
metrics is undoubtedly valuable for evaluating HRC systems,
the current phase of this research was focused on establishing a
foundational understanding and proof of concept of the DAC-
HRC architecture. Future work should focus on incorporating
quantitative performance metrics to rigorously evaluate the
architecture’s effectiveness and efficiency in enhancing human-robot
collaboration.

Recognizing the importance of these human-centric factors,
future research should also incorporate more formal evaluations
of the human aspects of collaboration. This includes assessing
the user experience, perceived usefulness, and mental load using
standardized tools like the NASA-TLX, alongside additional metrics
that can provide a more comprehensive understanding of the
human-robot interaction dynamics. These future studies aim to
balance the focus between technical innovation and human factors,
ensuring that advancements in HRC systems like DAC-HRC not
only meet technical and safety requirements but also align with
human workers’ needs and preferences for a truly collaborative and
supportive work environment.

The interdisciplinary nature of DAC-HRC’s development,
drawing from cognitive science, robotics, and human-robot
interaction research, is a testament to its innovative approach
to solving complex HRC challenges. This cross-disciplinary
collaboration has enabled the creation of an architecture that not
only meets the technical requirements of industrial applications but
also aligns with the cognitive and social dynamics of human-robot
interaction.

The collaborative entity of DAC-HRC termed the aCell,
symbolizes a distributed cognitive organism akin to an ant
colony, where cognitive processes are shared among agents to
achieve collective goals. This analogy is rooted in the notions
of extended cognition Clark and Chalmers (1998) and liquid
brains Solé et al. (2019), which describe how cognitive processes
can be distributed across multiple agents in a system, rather
than being confined to a single individual. It highlights the
importance of designing distributed hybrid collaborative systems
that leverage the complementary strengths of humans and
robots. By fostering shared control and distributed agency,
DAC-HRC paves the way for innovative approaches to human-
robot collaboration that can significantly impact Industry 4.0
and beyond.

In an ant colony, for example, no single ant possesses the entire
knowledge of the colony’s activities. Instead, each ant contributes to
the collective intelligence of the colony through its individual actions
and interactions with other ants. Similarly, in an aCell, the human
and cobot work together as a cohesive unit, with each contributing
their unique skills and capabilities to the collective performance of
the task at hand.

This perspective offers valuable insights for designing
distributed hybrid collaborative systems. For instance, it suggests
that we should focus not only on the individual capabilities of
humans and robots but also on how they can best interact and
coordinate their actions to achieve shared goals. This could involve
developing natural language understanding methods that enable
humans and robots to share informationmore effectively Dong et al.
(2019), Thomason et al. (2019), or designing control algorithms
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that allow robots to adapt their behavior based on the expected
actions and intentions of their human partners Shum et al. (2019),
Lake et al. (2017), Freire et al. (2023).

Moreover, by integrating principles of shared intentionality and
interdependence, the DAC-HRC architecture provides a robust
foundation for future endeavors in human-robot collaboration
across industrial settings and beyond, aiming to enhance the
cognitive and communicative dynamics of collaborative tasks.
This principled framework encourages the creation of more
socially-aware, adaptable hybrid systems capable of supporting
nuanced human-robot interactions in diverse environments.
For example, in manufacturing, such insights could guide the
development of cobots engineered to proactively respond to
human workers’ needs, facilitating real-time adjustments to
workflow tasks or machine pacing to alleviate worker fatigue
or optimize productivity. Similarly, in healthcare, DAC-HRC’s
approach could lead to assistive robots that offer tailored support to
patients or healthcare providers, learning from each interaction to
improve responsiveness and adapt behavior based on individual
preferences or emotional cues. Looking ahead, DAC-HRC’s
expansion into other sectors such as logistics and warehouse
management promises to leverage these insights further, driving the
creation of more efficient, empathetic, and adaptable collaborative
systems that elevate the efficacy of human-robot partnerships in
any context. By capitalizing on the complementary strengths of
humans and robots in this way, we can create hybrid collaborative
systems that enable them to work together more effectively and
efficiently.

In sum, DAC-HRC’s commitment to enhancing the
collaborative bond between humans and robots through adaptation,
safety, personalization, and transparency sets a new blueprint for
future hybrid industrial collaborative efforts. The architecture’s
modular and flexible framework aims to advance the efficiency
and efficacy of human-robot partnerships, providing valuable
insights for both industrial applications and the broader human-
robot interaction research community. As we continue to explore
and expand the capabilities of DAC-HRC, it stands as a testament
to the potential of cognitive architectures to revolutionize the
way humans and robots work together, paving the way for
more responsive, understanding, and cooperative collaborative
systems.
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Integrating collaborative robots
in manufacturing, logistics, and
agriculture: Expert perspectives
on technical, safety, and human
factors

Luca Pietrantoni*, Marco Favilla, Federico Fraboni,
Elvis Mazzoni, Sofia Morandini, Martina Benvenuti and
Marco De Angelis

Department of Psychology, Alma Mater Studiorum - University of Bologna, Bologna, Italy

This study investigates the implementation of collaborative robots across
three distinct industrial sectors: vehicle assembly, warehouse logistics, and
agricultural operations. Through the SESTOSENSO project, an EU-funded
initiative, we examined expert perspectives on human-robot collaboration using
a mixed-methods approach. Data were collected from 31 technical experts
across nine European countries through an online questionnaire combining
qualitative assessments of specific use cases and quantitative measures of
attitudes, trust, and safety perceptions. Expert opinions across the use cases
emphasized three primary concerns: technical impacts of cobot adoption, social
and ethical considerations, and safety issues in design and deployment. In
vehicle assembly, experts stressed the importance of effective collaboration
between cobots and exoskeletons to predict and prevent collisions. For
logistics, they highlighted the need for adaptable systems capable of handling
various object sizes while maintaining worker safety. In agricultural settings,
experts emphasized the importance of developing inherently safe applications
that can operate effectively on uneven terrain while reducing workers’
physical strain. Results reveal sector-specific challenges and opportunities:
vehicle assembly operations require sophisticated sensor systems for cobot-
exoskeleton integration; warehouse logistics demand advanced control systems
for large object handling; and agricultural applications need robust navigation
systems for uneven terrain. Quantitative findings indicate generally positive
attitudes toward cobots, particularly regarding societal benefits, moderate to
high levels of trust in cobot capabilities and favorable safety perceptions.
The study highlights three key implications: (1) the need for comprehensive
safety protocols tailored to each sector’s unique requirements, (2) the
importance of user-friendly interfaces and intuitive programming methods for
successful cobot integration, and (3) the necessity of addressing workforce
transition and skill development concerns. These findings contribute to our
understanding of human-robot collaboration in industrial settings and provide
practical guidance for organizations implementing collaborative robotics while
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considering both technological advancement and human-centered design
principles.

KEYWORDS

collaborative robots, human-robot collaboration, industrial automation, safety
perception, trust development, workforce transition

1 Introduction

Recent research on collaborative robots (cobots) highlights their
increasing adoption across various sectors, including automotive,
logistics, and agriculture, primarily aimed at enhancing efficiency,
productivity, and worker safety. Cobots are designed to work
alongside human operators, enhancing productivity and safety
while addressing the challenges posed by traditional automation
methods. The integration of cobots into these sectors is driven by
advancements in technology, particularly in artificial intelligence
(AI), machine learning, which facilitatemore intuitive human-robot
interactions and operational efficiencies (Malik and Bilberg, 2019).

In the manufacturing sector, cobots are increasingly utilized
to optimize assembly lines and improve operational workflows.
They assist workers with tasks that are ergonomically challenging,
thereby reducing physical strain and enhancing overall workplace
safety. Studies indicate that cobots can significantly improve
productivity by automating repetitive tasks while allowing human
workers to focus on more complex activities that require cognitive
skills (Borboni et al., 2023; Kakade, 2023). Furthermore, the
implementation of cobots in manufacturing environments has been
shown to foster a collaborative atmosphere that enhances worker
satisfaction and reduces turnover rates (Othman and Yang, 2022).

In logistics, cobots are transforming supply chain operations
by automating material handling and inventory management tasks.
Their ability to navigate dynamic environments and interact
with human workers makes them invaluable in warehouses and
distribution centers. Research indicates that cobots can streamline
logistics processes, reduce errors, and enhance the speed of
operations, particularly in last-mile delivery scenarios (Pessot et al.,
2023). The integration of AI-driven cobots allows for predictive
maintenance and real-time data analysis, which further optimizes
logistics operations.

The agricultural sector is also witnessing a surge in the
use of cobots, particularly for tasks such as harvesting, sorting,
and planting. These robots not only increase efficiency but also
address labor shortages in the agricultural workforce. Studies have
shown that cobots can improve the precision of agricultural tasks,
leading to better crop yields and reduced waste. The collaborative
nature of these robots allows them to work closely with human
farmers, enhancing productivity while ensuring safety in potentially
hazardous environments (Rowan, 2022; Guruswamy et al., 2022).

Despite the numerous benefits of cobots, challenges remain
regarding their widespread adoption. Issues related to safety, trust,
and the potential displacement of human workers are significant
concerns that need to be addressed (Adel, 2022; Raja Santhi
and Muthuswamy, 2023). Research emphasizes the importance of
developing robust safety standards and training programs to ensure
that both workers and cobots can operate effectively and safely in
shared environments (Guertler et al., 2023). Additionally, as the

technology evolves, continuous vocational training will be essential
to equip workers with the necessary skills to collaborate effectively
with cobots.

Human factors and ergonomics serve as fundamental
elements in human-robot collaboration (HRC), significantly
influencing interaction effectiveness, acceptance, and overall success
(Green et al., 2008; Simone et al., 2022). Contemporary research
has expanded into cognitive domains, examining user experience
(Gervasi et al., 2022), cognitive load (Kim, 2022), and social
cognition (Henschel et al., 2020). This heightened attention to
human-related aspects aligns with the emerging Industry 5.0 (I5.0)
concept, which represents an evolution from Industry 4.0. This
transformation emphasizes the seamless integration of advanced
technologies with human-centric approaches, particularly focusing
on resilience, human wellbeing, and sustainability (Trstenjak, et al.,
2022). While I5.0 encompasses various sectors, its impact is
particularly significant in manufacturing (Narkhede et al., 2023),
logistics (Berkers et al., 2023), and agriculture (Henriksen et al.,
2022). These sectors stand at the forefront of the I5.0 revolution,
where HRC dynamics play a pivotal role. Nevertheless, despite
HRC’s growing importance in these settings, substantial gaps
remain in understanding the challenges associated with workers’
safety and skills development within these new collaborative
environments. Additionally, there is limited comprehension of the
requirements and specific standards necessary for such innovative
transformation (Villani et al., 2018).

The main objective of this study is to investigate the
collaborative dynamics between workers and cobots across
three distinct industrial sectors: vehicle assembly operations
(manufacturing), robotic handling in warehouses (logistics), and
vineyard operations (agriculture). These sectors represent diverse
applications of HRC, each presenting unique requirements and
challenges (Shamshiri et al., 2018). Through a questionnaire-based
qualitative approach targeting technical professionals in automation
and robotics, this research aims to comprehensively examine
experts’ perceptions regarding technical, ethical, and safety aspects
of cobot deployment.

The study specifically focuses on understanding three key
dimensions: attitudes toward collaborative robots (Koverola et al.,
2022), trust in robotic systems (Charalambous et al., 2015), and
safety perceptions (Arents et al., 2021).This qualitativemethodology
enables the exploration of nuanced experiences and perspectives
that quantitative methods might not capture, including workers’
adaptation to technological changes, job security concerns, and
expectations about system efficiency (Stapels and Eyssel, 2021).
Furthermore, this approach allows for examining contextual
factors such as cultural attitudes towards technology and task-
specific considerations in cobot applications (Søraa et al., 2023),
providing insights into how assembly line workers perceive their
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interactions with cobots, including safety considerations and job
satisfaction impacts (Bhargava et al., 2021).

Conducting qualitative studies to gather perceptions of targeted
technical professionals in automation and robotics is crucial for
understanding the collaborative dynamics between workers and
collaborative robots in specific use cases. Qualitative research allows
for an in-depth exploration of how assembly line workers perceive
their interactions with cobots, including their feelings of safety,
job satisfaction, and the perceived impact on their roles (Bhargava
et al., 2021) but also can provide insights into how workers adapt
to these changes, their concerns about job security, and their
expectations regarding the efficiency of robotic systems (Stapels and
Eyssel, 2021).

2 Literature review

2.1 Collaborative robots in manufacturing

Recent research on collaborative robots in manufacturing
and assembly lines has explored various dimensions of HRC,
revealing insights into how these interactions can be improved
(Ajoudani et al., 2018; Kumar et al., 2021).

One significant area of research is the impact of cobots on
worker productivity and posture. Bouillet’s study demonstrated
that the introduction of a cobot in collaborative tasks resulted
in longer collaboration times and increased production output,
suggesting that the proactive coordination of cobots can enhance
hybrid collaboration and improve overall productivity Bouillet
(2023). This finding underscores the need to consider how
cobots can be designed to facilitate smoother interactions with
human workers, thereby reducing physical strain and improving
ergonomic outcomes. Moreover, the relationship between human-
cobot interaction fluency and job performance has been a focal point
in recent studies.

Paliga’s research indicated that fluent and well-coordinated
cooperation between humans and cobots positively affects job
performance and satisfaction, regardless of the workload (Paliga,
2023). This highlights the importance of designing cobots that can
adapt to the dynamic nature of humanwork, ensuring that operators
feel a sense of control and fulfillment in their tasks. Such insights
are critical for fostering a collaborative environment that enhances
both productivity and worker wellbeing. The qualitative assessment
of cobot interactions with different demographics, such as senior
workers, has also been explored.

Rossato et al. (2021) found that cobots can significantly enhance
the efficiency of manufacturing systems while improving the quality
of life for human operators. This is particularly relevant as the
workforce ages and the need for ergonomic solutions becomes more
pressing. Understanding how different worker profiles interact with
cobots can inform the design of adaptive workstations that cater to
diverse needs.

Safety remains a paramount concern in HRC. The Cobot And
Robot Risk Assessment (CARRA) method developed by Stone et al.
emphasizes the need for safety assessments that consider the unique
dynamics of human-cobot interactions (Stone et al., 2021). This
method aims to improve fluency in safe interactions, highlighting
the necessity of integrating safety protocols into the design

and operation of cobots. Furthermore, the psychological aspects
of human-cobot interactions have gained attention, particularly
regarding mental workload and emotional states. Pluchino’s study
utilized eye-tracking and cardiac activity indices to assess senior
workers’ mental workload during assembly tasks with cobots,
emphasizing the need for a human-centric approach in designing
collaborative systems (Pluchino et al., 2023).

Kumar and colleagues (2021) made significant contributions to
the understanding of variousHRC techniques, in themanufacturing
processes, highlighting the potential for enhanced productivity
and efficiency through effective human-robot interaction. They
explored both one-way and two-way collaboration models, which
are essential for understanding how humans and robots can
work together effectively. This classification helps in identifying
the specific needs and challenges associated with each type
of collaboration, thereby providing a framework for future
research and practical applications in the field (Inkulu et al.,
2021). Kumar et al. also addressed the challenges faced in
implementing HRC techniques, such as safety concerns, the need
for effective communication between humans and robots, and
the importance of designing user-friendly interfaces. The most
recent research highlights the role of advanced technologies,
such as artificial intelligence and machine learning, in facilitating
more intuitive interactions between humans and robots, allowing
for adaptive responses based on real-time feedback from
the work environment. Kumar and colleagues emphasized
that leveraging these technologies can lead to more efficient
workflows and improved safety outcomes, as robots can learn
from human actions and adjust their behavior accordingly
(Othman and Yang, 2022).

2.2 Collaborative robots in logistics

Recent research on collaborative robots in logistics has
highlighted their potential in enhancing operational efficiency,
safety, and flexibility within supply chain processes. The integration
of cobots into logistics operations is increasingly seen as a critical
component of the broader trend towards Logistics 4.0, which
leverages advanced technologies to optimize logistics activities.

One of the primary contributions is the exploration of
safety mechanisms for cobots operating in logistics environments
(Kiangala and Wang, 2022). proposed an experimental safety
response mechanism that utilizes Q-learning algorithms and speech
recognition to enhance the safety of autonomous moving robots
in smart manufacturing settings. This research underscores the
importance of developing robust safety protocols that ensure
safe interactions between human workers and cobots, particularly
in dynamic logistics environments where the risk of accidents
can be heightened (Kiangala and Wang, 2022). Additionally,
Rautiainen et al. (2022) emphasized the significance of multimodal
interfaces for intuitive human-robot interaction, which is crucial
for effective collaboration in logistics. Their findings suggest
that enhancing communication between humans and cobots can
improve operational outcomes, as workers are better equipped to
interact with and manage robotic systems. This aligns with the
growing recognition that successful HRC relies not only on the
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robots’ capabilities but also on the quality of interaction and the ease
of use of control systems (Saenz et al., 2022).

Wei et al. (2022) highlighted the role of automated guided
vehicles (AGVs) in warehouse systems, where multi-robot
collaboration is optimized through advanced path planning
and obstacle avoidance techniques. This research illustrates
how collaborative approaches can enhance the efficiency of
logistics operations by enabling multiple robots to work together
seamlessly, thereby reducing operational bottlenecks and improving
throughput.

Lambrechts et al. (2021) conducted a comprehensive
investigation into the human factors influencing the implementation
of cobots in order picking operations, a critical component of
warehouse logistics. Their research identified several key human
factors that impact the successful integration of cobots, including
resistance to change, organizational culture, communication
regarding changes, and leadership support. They found that
resistance to change is often rooted in fear of job displacement
and a lack of understanding of the benefits that cobots can
bring to the workforce. Effective communication and leadership
are essential to mitigate these concerns and foster a culture of
acceptance and collaboration between human workers and robots.
This highlights the importance of addressing psychological and
organizational barriers when implementing new technologies in
logistics. Berkers et al. (2023) further explored the implications of
human factors in the context of logistics automation, emphasizing
the need for a human-centered approach to the design and
deployment of cobots. Their research underscores the significance
of creating intuitive interfaces that facilitate seamless interaction
between humans and robots. They argue that understanding
the cognitive load and physical demands placed on workers
is crucial for optimizing HRC systems. Their findings align
with the broader trend in logistics research that advocates for
integrating human-centered design principles in the development of
automated systems.

2.3 Collaborative robots in agriculture

Collaborative robots have been applied to enhance productivity,
sustainability, and efficiency in farming practices. One of the
significant contributions to the field is the exploration of
HRC techniques that leverage the strengths of both humans
and robots. Yerebakan and Hu (2024) provides a comprehensive
review of current research on HRC in agriculture, emphasizing its
potential to design modern agricultural systems that capitalize on
the unique capabilities of both parties. This review underscores
the importance of integrating human expertise with robotic
precision, particularly in tasks such as planting, harvesting, and
pest control, where human cognitive skills can complement robotic
efficiency.

The ability of robots to communicate and coordinate their
actions is crucial for tasks that require high levels of precision
and adaptability. The safety and ergonomics of HRC in agriculture
have also been addressed. Tagarakis et al. (2021) explored
the use of wearable sensors to monitor human activity in
collaborative agricultural environments, emphasizing the need for
safetymeasures when humans and robots operate in close proximity.

This research highlights the importance of creating a safe working
environment that minimizes risks associated with human-robot
interaction.

More recently, Adamides and Edan (2023) conducted a
comprehensive review of HRC strategies and approaches in the
agricultural industry and proposed that HRC systems could
function as transitional solutions toward full automation, effectively
combining robotic capabilities with human skills to address current
technological limitations and streamline system design. The study
emphasizes the importance of adopting a mixed-methods approach
to examine the multifaceted nature of human social aspects,
including experiential knowledge, practical implementation, and
cultural considerations. The authors advocate for broad stakeholder
engagement, particularly technical experts, in addressing social
dimensions during the deployment of robotic systems. This
comprehensive strategy ensures a balanced understanding of HRC
technical and social aspects, ultimately facilitating more effective
cobot integration and acceptance in agricultural settings.

2.4 Human factors in cobot integration

The integration of collaborative robots (cobots) in industrial
settings represents a significant advancement in HRC, yet it brings
complex challenges regarding safety, trust, and human acceptance.
While the technical capabilities of cobots continue to evolve,
understanding the human factors that influence their successful
implementation remains crucial (Faccio et al., 2023).

This study stems from the theoretical foundations of
HRC through multiple lenses. By investigating attitudes, trust
development, and safety perceptions in three distinct industrial
contexts - vehicle assembly, warehouse logistics, and agricultural
operations - this research aims to provide comprehensive insights
into the dynamics of HRC. The study combines expert opinions
with quantitative assessments to understand both the technical
requirements and human factors essential for successful cobot
integration. This approach acknowledges that while cobots offer
significant potential for enhancing workplace efficiency and safety,
their effectiveness ultimately depends on the careful consideration
of human perceptions, trust dynamics, and safety requirements
within specific industrial contexts.

2.4.1 Foundational aspects
Understanding the foundational aspects of HRC requires

examining multiple theoretical frameworks that explain how
humans and robots interact and integrate in workplace
settings. Mubin et al. (2013) establish three primary categories of
robot roles during activities: tool, partner, and tutor. In industrial
settings, particularly where cobots are equipped with AI systems,
additional roles such as supervisor may emerge. These varying
roles determine different types of collaboration and significantly
impact trust and safety perceptions, largely due to the technical
complexities of cobot operations that may not be immediately
transparent to users.

The concept of “functional organs” (Benvenuti et al., 2020;
Mazzoni and Benvenuti, 2023) provides a crucial framework
for understanding the integration of technological artifacts and
humans. This concept emphasizes how combined human-robot
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performance can exceed individual capabilities of either party.
However, not all tools qualify as functional organs; only those deeply
integrated into human practices, evolving through repeated use to
become true extensions of human capability and operating without
conscious control, achieve this status.

Building on this foundation, Human-robot “coefficiency”
(Lagomarsino et al., 2022; 2023) offers another vital theoretical
perspective. This concept suggests that during HRC, where humans
and automated systems share common objectives, individuals
view the interaction as a holistic unit, similar to human-human
interactions. They select actions aimed at maximizing overall
efficiency rather than focusing on individual components. The
application of coefficiency principles proves crucial for skills
development and can enhance workers’ trust and safety perceptions
within manufacturing ecosystems. Recent research by Vianello et al.
(2023) supports these theoretical frameworks through empirical
evidence, showing how humans adapt to changing roles and
control strategies of collaborating robots. Their study, focused
on a sawing task, revealed preferences for energy-efficient modes
and collaborative interactions, emphasizing the importance of
understanding human responses to cobot behavior in fostering
trust and positive attitudes.

2.4.2 Attitudes and acceptance
Attitudes toward collaborative robots in organizations span

a spectrum of positive and negative perceptions (Savela et al.,
2022; Koverola et al., 2022). Edison et al. (2003) emphasize the
distinction between personal and societal attitudes, noting that
individual enthusiasm for technology doesn't necessarily correlate
with positive views of its societal implications. As Koverola et al.
(2022) observe, personal attitudes might involve simple enjoyment
or discomfort with robot interaction, while societal concerns often
center on broader issues like workforce displacement. Recent
research by Kaur et al. (2023) provides valuable insights into worker
perceptions, finding that robots offering as-needed assistance were
viewed more favorably than fully interventional or standoff robots,
particularly regarding autonomy and job security. This finding
highlights the critical role of cobot deployment strategy in shaping
worker attitudes.

2.4.3 Trust development and dynamics
The development of trust in HRC presents unique challenges,

as workers initially experience uncertainty regardless of prior
robotic system experience (Groom and Nass, 2007). Multiple
studies emphasize trust’s crucial role in successful human-
robot engagement (Lee and See, 2004; Kopp et al., 2021;
Maurtua et al., 2017), linking it to enhanced efficiency and
productivity (Charalambous et al., 2015).

Hancock et al. (2021), Hancock et al. (2023) have extensively
studied trust factors in human-robot interaction, identifying
robot performance, anthropomorphism, and transparency as key
predictors. Their recent work proposes an elaborate interpersonal
trust model incorporating non-human entities. Atchley et al. (2023)
introduce the “contagion effect” concept in trust, where initial
system-wide trust can shift to component-specific trust based
on individual robot performance. Recent innovations, such as
integrating Large Language Models (Ye et al., 2023), demonstrate
how enhanced communication interfaces can significantly increase

trust levels in HRC, pointing toward future directions in cobot
development and integration.

2.4.4 Safety perceptions
Safety perception in HRC encompasses users’ risk assessment

and comfort levels during interactions (Bartneck et al., 2009). This
perception fulfills basic human needs (Ryan and Deci, 2000) and
represents a statewhere individuals feel protected fromphysiological
and psychological harm (Dyreborg et al., 2022). Arents et al.
(2021) classify collaboration levels into three categories: coexistence,
cooperation, and collaboration, each presenting unique safety
challenges. Recent studies (Sahin and Savur, 2022) demonstrate
how robot behavior changes significantly influence human safety
perceptions during collaboration.

3 Methodology

3.1 The use cases

This study emerges from the SESTOSENSO project, an EU-
funded initiative involving a consortium of European universities,
research institutions, and private companies. The project’s primary
objective is to develop advanced sensing technologies for robots
to enhance HRC effectiveness and safety. We investigate three
distinct industrial sectors where collaborative robots and assistive
systems are implemented to improve worker safety and operational
efficiency: manufacturing, logistics, and agriculture. Each sector
presents unique technical, safety, and ethical challenges for HRC
implementation.

The research examines three specific use cases that exemplify
different aspects of human-robot collaboration:

3.1.1 Manufacturing: COBOT-worker cooperative
assembly

This use case focuses on vehicle assembly operations where
workers perform tasks requiring diverse postures and varying
workloads. Cobots assist workers by supporting heavy components
(such as vehicle roofs) and managing tool logistics. The complexity
of this environment is heightened by the simultaneous use of
exoskeletons and cobots in confined spaces like vehicle cockpits.
Key challenges include collision avoidance and optimizing worker
movements. To address these challenges, the project develops AI
control strategies and enhanced sensorization for both cobots and
exoskeletons, ensuring safe and efficient three-way cooperation
in this dynamic environment (Fournier et al., 2023; Razin and
Feigh, 2023).

3.1.2 Logistics: dual arm handling of large objects
Set within an online grocery fulfillment center, this use case

explores bi-manual roboticmanipulation of large, bulky objects.The
system features a specialized robotic setup with sensorized skin for
enhanced object-handling capabilities. Human workers primarily
serve supervisory and collaborative roles, intervening only when
the robotic system requires assistance or guidance with complex
manipulation tasks. This setup represents a shift in traditional
human-robot interaction paradigms, emphasizing cognitive rather
than physical collaboration.
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3.1.3 Agriculture: collaborative mobile
manipulators for harvesting

This use case addresses the challenges of grape harvesting
in hillside vineyards, where workers traditionally face significant
biomechanical stress frommanual handling, awkward postures, and
repetitive movements. The proposed solution integrates worker-
worn exoskeletons with autonomous mobile manipulators that
provide physical assistance. The system actively monitors human
features and working conditions to optimize biomechanical load
reduction, enhancing physical ergonomics and supporting efficient
farming operations.

3.2 Selection of participants

An online questionnaire was designed to investigate the
perceptions and attitudes of technical experts in the collaborative
robotics domain towardsHRCwithin three settings:manufacturing,
logistics, and agriculture. The selection of participants was based on
a strategic approach to ensure that the sample consisted of technical
experts with relevant experience and knowledge in collaborative
robotics. The participants were chosen based on their professional
backgrounds, roles within their organizations, and experience
working with or near cobots.

The recruitment strategy targeted individuals with technical
job profiles within the manufacturing and automation sectors. This
approach was chosen to ensure the participants had the technical
expertise to provide valuable insights into adopting cobots in
various industrial settings. Including participants with different
roles within their organizations, such as Technical Field Managers,
Technical Field Specialists, and experts in Human Resources (HR)
or Health, Safety, and Environment (HSE), allowed us to provide
a holistic overview of cobot adoption. Technical Field Managers
and Specialists were selected for their hands-on experience and
knowledge of the technical aspects of cobot implementation. At the
same time, HR and HSE experts were included to offer insights into
the social, ethical, and safety implications of cobot adoption in the
workplace.

3.3 Measures

The questionnaire consisted of two main sections. The
first section aimed to gather qualitative data by focusing on
three specific use cases’ technical, ethical, and safety aspects.
This approach sought to provide a richer understanding and
capture diverse viewpoints on deploying cobots in these distinct
industries. Participants were presented with detailed descriptions
of each use case and asked to respond to open-ended questions
regarding the potential technical and safety issues and the
social and ethical implications of implementing cobots in these
scenarios.

The second section of the questionnaire employed established
psychometric scales to quantitatively assess relevant psychological
factors, including attitudes towards robots, trust in their operations,
and perceptions of safety during interactions. These scales were
carefully selected based on their reliability, validity, and relevance to
the study’s objectives. Participantswere asked to rate their agreement

with a series of statements using a Likert-type scale, providing a
standardized measure of their perceptions and attitudes.

Three pairs of researchers analyzed the responses to the
open-ended questions, ensuring a comprehensive and balanced
data elaboration process. Each pair independently reviewed the
responses within the context of the specific use case scenarios,
identifying initial categories and themes. Through an iterative
process of comparison and synthesis, the researchers refined
these categories into central themes that emerged as pivotal
to the study’s objectives. This collaborative approach helped to
minimize individual biases and enhance the reliability of the
qualitative findings.

By combining open-ended questions and validated
psychometric scales, this study offers a comprehensive examination
of the human factors’ issues surrounding human-robot
collaboration, as perceived by technical experts. The mixed-
methods approach allows for a deep understanding of the complex
interplay between technical, social, and safety considerations,
providing valuable insights into the challenges and opportunities
associated with the deployment of cobots in three distinct
settings. The questionnaire was distributed using the Qualtrics
online platform, and data collection took place from March
to June 2023.

3.3.1 Qualitative measures: cobot adoption in the
three use cases

Participants were presented with detailed descriptions of
three distinct use cases involving collaborative robots in various
industrial settings. Each use case highlighted the specific challenges,
objectives, and potential benefits of implementing cobots in
that context. After reviewing each use case, participants were
asked to provide their insights and opinions by answering three
open-ended questions designed to capture key aspects of cobot
adoption:

3.3.1.1 Technical issues
“What are the key technical issues of cobot adoption

in this particular use case?”. This question aimed to elicit
participants’ views on the critical technical factors, challenges,
and opportunities associated with implementing cobots
in the given scenario. Participants were encouraged to
consider efficiency, productivity, flexibility, and innovation
potential.

3.3.1.2 Safety issues
What safety-related issues warrant careful consideration in the

design and deployment of cobots in this given use case?” This question
focused on identifying the critical safety aspects that should be
prioritizedwhendeveloping and implementing cobots in the specific
use case. Participants were encouraged to consider factors such
as collision avoidance, human-robot interaction protocols, fail-safe
mechanisms, and the potential risks associated with the specific
tasks and environments.

3.3.1.3 Social and ethical implications
“How could cobots facilitate or impede ethical and social

considerations within this context?”. This question sought to explore
participants’ perspectives on the potential social implications of
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cobot adoption. Participants were asked to reflect on how cobots
might influence factors such as job displacement, workforce
diversity, skill requirements, and overall social acceptance of the
technology.

The open-ended nature of these questions allowed participants
to provide rich, qualitative responses based on their expertise and
insights. The questions were designed to ensure a comprehensive
understanding of the participants’ perspectives on cobot adoption
in each use case.

3.3.2 Quantitative measures: attitudes, trust, and
safety perception
3.3.2.1 Attitudes toward cobots

TheGeneral Attitudes TowardsRobots Scale (GAToRS;Koverola
et al., 2022) was used to assess participants’ attitudes toward
collaborative robots (cobots). This 20-item scale comprises four
distinct dimensions, each containing the five items: 1) Personal
Level Positive (P+): Measures the level of comfort and enjoyment
during interactions with cobots (e.g., “I would feel comfortable
working with a cobot.”); 2) Personal Level Negative (P-): Assesses
levels of unease and anxiety surrounding cobots (e.g., “I would be
anxious about making mistakes while interacting with a cobot”);
3) Societal Level Positive (S+): Evaluates positive viewpoints about
the societal benefits of cobots (e.g., “Cobots can enhance human
capabilities and productivity.”); 4) Societal Level Negative (S-):
Quantifies reservations and concerns about the broader societal
impacts of cobots (e.g., “Overreliance on cobots may lead to a loss of
human skills”).

Participants responded to each item using a 5-point Likert scale
(1 = completely disagree; 5 = completely agree).

3.3.2.2 Trust toward cobots
The Trust Perception Scale - HRI (Schaefer, 2016), a 14-item

scale, was used to measure the multidimensional nature of trust
in cobots. This scale assesses trust based on various parameters,
such as functionality, maintenance requirements, performance
expectations, and safety features. Example items include “Most
cobots meet the user or operator’s expectations” and “I would feel
comfortable assigning a cobot a critical task.” Participants responded
to each item using a 5-point Likert scale (1 = completely disagree; 5
= completely agree).

3.3.2.3 Perception of safety during human-cobot
interactions

A four-item scale developed by Weiss et al. (2009), initially
used to study novice users’ experiences with humanoid robots,
was adapted to evaluate participants’ perceptions of safety during
interactions with cobots. The scale covers four aspects of safety
concerns: 1) Fear of causing harm to the cobot (e.g., “I fear to use
cobots, as an error might harm the cobot”); 2) Fear of self-harm
(e.g., “I hesitate to use cobots for fear of making errors that will
harm me”); 3) Perception of safety in the interaction (e.g., “I feel safe
when working with cobots”); 4) Overall safety perception (e.g., “I
perceive cobots as safe”). These items provide a multidimensional
view of perceived safety, assessing varying levels of fear, confidence,
and overall safety perception. Participants responded to each
item using a 5-point Likert scale (1 = completely disagree;
5 = completely agree).

3.4 Participants

The study initially involved 64 respondents who began the
questionnaire. After screening and data validation, 31 participants,
coming from the European Countries of the project’s partners
(England, France, Greece, Italy, Latvia, Netherlands, Spain, Sweden,
Switzerland) were included in the final analysis. The technical
experts had an average age of 40.4 years (with a range from 26 to
58) and were predominantly male, with 24 males (77.4%) and seven
females (22.6%). Participants were professionals actively engaged
in various sectors. Specifically, 35.5% of the participants were from
robotics and automation, 29.4% were involved in manufacturing,
16.1% in packaging, 9.7% in the automotive industry, and 9.3%
in the chemistry and agrifood sector. Regarding their roles within
their organizations, 13 participants (41.9%) were Technical Field
Managers, 11 (35.5%)were Technical Field Specialists, and 7 (22.6%)
were experts in either Human Resources (HR) or Health, Safety,
and Environment (HSE) fields. In terms of their experience with
collaborative robots (cobots), 14 respondents (45.2%)were currently
actively engaged with cobots at the time of the study, while 17
respondents (54.8%) had experience working near cobots within the
last 5 years.

4 Results

4.1 Experts’ opinions on the use cases

Table 1 summarizes the key insights from experts’ opinions
on the technical impacts, social and ethical considerations, and
safety issues related to adopting collaborative robots (cobots) in
three distinct use cases: vehicle assembly operations, logistics, and
vineyard harvesting.

4.1.1 Experts’ opinions on the use case about
vehicle assembly operation

Experts reported on the technical impacts of cobot adoption
in vehicle assembly operations, where workers perform tasks
with diverse postures, workloads, and complexity, often requiring
exoskeletons to reduce biomechanical load. They emphasized the
importance of developing accurate kinematic models and control
systems for specific tasks, determining the range of movement,
and utilizing sensors, cameras, and machine learning to enhance
recognition of the work environment. Cobots can assist by
supporting heavy parts, such as the vehicle roof, picking components
and tools for workers, and reducing human injuries due to repetitive
loads. Enabling effective collaboration between exoskeletons and
cobots is crucial to predicting and preventing collisions and
improving workload management. One engineer in the automotive
sector stated: “Cobots can improve workloadmanagement by assisting
workers in handling heavy vehicle components, such as the roof, or by
efficiently selecting and delivering the necessary tools and parts to the
workers, streamlining the assembly process”. Other issues are related
to developing user-friendly interfaces and intuitive programming
methods to enable easy deployment and adaptation of cobots for
different assembly tasks.

Regarding social and ethical considerations, experts highlighted
that cobots could assist with lifting parts while humans/exoskeletons
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TABLE 1 Experts’ opinions on the three use cases.

Technical impacts of cobot adoption Social and ethical considerations Enhancing safety in cobot
Design and deployment

Use case “vehicle assembly operations”

• Enabling effective collaboration between cobots to
predict and prevent collisions

• Improving workload management by enabling
cobots to support heavy parts or handle component
and tool selection for workers

• Determining the range of movement based on the
specific task

• Utilizing sensors, cameras, and machine learning to
enhance recognition of the work environment

• Facilitating tasks for operators, reducing the need for
particular skills or physical conditions

• Addressing limitations in the use of exoskeletons for
workers with limited motor functions

• Assessing socio-economic impacts of potential
worker substitution by cobots

• Ensuring cobots support rather than replace jobs,
enhancing working conditions

• Making cobots adaptable and user-friendly for all
workers

• Designing cobot tools to ensure safety (e.g., avoiding
sharp or non-reversible tools)

• Real-time analysis of human movement to predict
potential collision points

• Adjusting cobot velocity to mitigate risk to humans
• Considering ergonomics and testing forces exerted
on the operator’s body

• Minimizing risk through careful design, using
minimal weights and speeds

Use Case “Logistics”

• Facilitating the management of large loads, reducing
accidents from incorrect weight assessments

• Eliminating errors in picking products through
electronic identification (e.g., barcode or RFID)

• Redesigning physical work environments for safe
cobot operation alongside humans

• Flexibility, versatility, and sensitivity in handling food
products, minimizing space requirements

• Ensuring safety for human workers and preventing
food contamination

• Assisting workers with physically demanding tasks,
potentially affecting job numbers

• Enabling humans to undertake more complex
activities while cobots handle simpler tasks

• Reducing physical labor and reshaping workforce
dynamics

• Potentially replacing low-paid jobs, impacting social
dynamics

• Helping people with disabilities but raising concerns
over job losses due to automation

• Ensuring operators cannot enter the cobot’s work
area during hazardous operations (e.g., using
proximity sensors)

• Addressing the absence of mature safety standards
for close operator-cobot interactions

• Considering nearby operator interference and
implementing instant motor stop measures

• Providing special safety equipment and intrinsically
safe systems that activate in anomalies

• Ensuring cobot reactivity to human touch and robust
handling of objects to prevent accidents

Use Case “Vineyard”

• Autonomous mobile manipulators can enhance
precision and reduce harmful movements, allowing
workers to carry more grapes with less effort and in
less time

• Implement visual technology like cameras to
compensate for environmental irregularities (ground
conditions, fruit shape, etc.)

• Integration of soil conservation techniques, including
precision seeding and minimal chemical impact, to
prevent soil fatigue

• Improvement of worker’s quality of life, leading to
higher productivity and a reduced risk of
musculoskeletal diseases

• Enhancing job access for individuals with physical
disabilities

• Importance of reliability and ease of use in wearable
devices

• Addressing cultural readiness among agrifood
operators to adopt new technologies

• Addressing exploitation issues often associated with
manual, labor-intensive tasks like harvesting

• Developing inherently safe applications, prioritizing
the ability of cobots to halt operations immediately
in both typical and atypical risks

• Considering worker mobility on uneven ground
surfaces to ensure safety and efficiency (e.g.,
balancing, weight distribution, and movement
considerations in steep slopes)

• Emphasizing the redundancy of sensors and robust
mechanical designs as critical safety measures

perform precision operations, facilitating tasks for operators and
reducing the need for particular skills or physical conditions.
They also noted the importance of addressing limitations in using
exoskeletons for workers with limitedmotor functions and assessing
the socio-economic impacts of potential worker substitution
by cobots. Adopting cobots may lead to job displacement for
some workers, particularly those involved in repetitive and
physically demanding tasks. Nevertheless, it can also create new job
opportunities in areas such as cobot programming, maintenance,
and supervision. Cobots can help reduce workers’ physical strain
and risk of injuries, improving their overall wellbeing and job
satisfaction. One expert stated: “In my opinion, the integration
of cobots in the assembly process can greatly assist operators by
reducing the physical demands and skill requirements for certain tasks,
thereby creating a more inclusive and accessible work environment for
employees with diverse abilities and backgrounds”. However, there
may be concerns about the long-term effects of working closely

with machines and the potential for over-reliance on technology.
Implementing cobots may require workers to acquire new skills and
adapt to working alongside machines, which could be challenging
for some individuals and require significant training and support.

Safety issues in cobot design and deployment were a major
concern for experts. They stressed the need for real-time analysis
of human movement to predict potential collision points, adjusting
cobot velocity to mitigate risk to humans, and incorporating data
from external equipment like exoskeletons to prevent collisions.
Considering ergonomics and testing forces exerted on the operator’s
body, minimizing risk through careful design using minimal
weights and speeds and designing cobot tools to ensure safety
(e.g., avoiding sharp or non-reversible tools) were also deemed
essential. They also highlighted the need for comprehensive safety
training and education for workers to ensure they understand
and adhere to the safety protocols when working with cobots and
exoskeletons.
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4.1.2 Experts’ opinions on the use case “robotic
handling in the warehouse”

Experts highlighted various technical impacts of cobot adoption
in the logistics use case. They emphasized the importance of
adaptability to the working environment, efficient pick and
pack activities, and flexibility in handling food products while
minimizing space requirements. Cobots can assist with physically
demanding tasks, increase operational safety, and eliminate errors
in picking products through electronic identification. Redesigning
physical work environments is necessary for safe cobot operation
alongside humans. Cobots can also facilitate the management of
large loads, reduce accidents from incorrect weight assessments,
ensure safety for human workers, prevent food contamination, and
reduce movement speed and costs associated with technical safety
solutions.

One robotics engineer in the logistics sector stated: “The sensing
skin and control algorithms need to be robust enough to adapt to
the varying shapes, sizes, and weights of the objects being handled,
ensuring a secure grip and smooth manipulation. Other issues
include optimizing the robotic system’s performance to maximize
throughput and efficiency in the warehouse setting and developing
intuitive interfaces for human workers to monitor and intervene when
necessary”.

Concerning social and ethical implications, adopting bi-manual
robotic manipulation systems in warehouse settings can lead to
significant job role changes for human workers. Cobots can reduce
physical labor and reshape workforce dynamics, but there are
concerns about potential job displacement due to automation.
Introducing cobots may replace low-paid jobs often held by
immigrant workers, impacting social dynamics. However, cobots
can also enable humans to undertake more complex activities
while they handle simpler tasks. While some jobs involving manual
handling of large objects may be displaced, new roles may emerge
in areas such as robot supervision, maintenance, and exception
handling. One industry expert noted: “The introduction of these
robotic systems will shift the focus of human jobs towards more high-
level decision-making and problem-solving tasks, requiring workers
to develop new skills and adapt to working alongside advanced
automation technologies”. However, theremay be concerns about the
potential impact on employment levels and job security, particularly
for lower-skilled workers. Implementing these robotic systems
may require significant retraining and upskilling efforts to ensure
workers can effectively transition to new roles and responsibilities.

Experts extensively discussed safety issues in cobot design
and deployment. They emphasized the importance of ensuring
operators cannot enter the cobot’s work area during hazardous
operations and using proximity sensors to manage the space
between cobots and operators. Redesigning workspaces with inputs
from engineers, architects, and health professionals is crucial.
Experts also highlighted the need to address the absence of mature
safety standards for close operator-cobot interactions, consider
nearby operator interference, and implement instant motor stop
measures. Proper training and clear communication are essential
to prevent safety incidents. Providing special safety equipment
and intrinsically safe systems that activate anomalies, evaluating
potential impact speeds and trajectories to prevent crushing and
shearing incidents, and ensuring cobot reactivity to human touch
and robust handling of objects is critical for avoiding accidents.

One expert said: “Regarding this use case,The use of cobots for this
application will facilitate the management of large loads. It will reduce
the possible accidents this handling could cause if incorrect assessments
weremade regarding the object’s weight.” Another expert states: “From
the point of view of safety, it must be ensured that in certain operations,
the operator cannot enter the work area of the cobot. For example,
when a large and heavy load is at a certain height. The presence of
proximity sensors capable of detecting the distance of the cobot from
the operator can, for example, be useful for decreasing the movement
speed of the cobot”.

4.1.3 Experts’ opinions on the use case “cobots in
the vineyard operations”

In the vineyard use case, experts discussed the technical impacts
of cobot adoption. Autonomous mobile manipulators can enhance
precision and reduce harmfulmovements, allowingworkers to carry
more grapes with less effort and in less time. The availability of
management infrastructures, such as WIFI connections, is crucial
to support cobot operations. Cobots can improve workers’ quality
of life, leading to higher productivity and a reduced risk of
musculoskeletal diseases. The assistance of cobots can significantly
reduce workers’ physical effort. Participants reported that the
collaborative systemmay increase efficiency and improve the quality
of life for vineyard workers through reduced physical effort and
enhanced carrying capacity. Factors such as reliability, ease of
use, and consistent proximity of the cobot were emphasized to
maximize benefits.

Experts also emphasized the importance of reliability and ease
of use in wearable devices. The integration of soil conservation
techniques, including precision seeding and minimal chemical
impact, can help prevent soil fatigue. The implementation of
visual technology like cameras can compensate for environmental
irregularities, such as ground conditions and fruit shape. As one
agricultural robotics expert pointed out, “The autonomous mobile
manipulator needs to be able to navigate through narrow, uneven
terrains and adapt to changing weather conditions while precisely
locating and assisting the human worker”.

Regarding social and ethical considerations, experts noted
that while cobots may initially be perceived as awkward, they
can potentially transform industry practices, especially in harsh
environments. Cobots can enhance job access for individuals with
physical disabilities, elevating work from a social perspective to
be more technical. They can also attract a younger workforce, but
managing the impact on current workers is essential. Addressing
cultural readiness among agrifood operators to adopt new
technologies is crucial, focusing on balancing cost reduction with
investments in life quality. Cobots can eliminate physical ability
disparities among workers, thus democratizing the field. They
can also help address exploitation issues often associated with
manual, labor-intensive tasks like harvesting. An expert noted, “The
introduction of assistive technologies like exoskeletons and mobile
manipulators could greatly improve the working conditions and
overall wellbeing of agricultural workers, who often face significant
physical demands and health risks”. On the other hand, there may
be concerns about the potential displacement of jobs, particularly
for low-skilled workers who may not have the necessary training or
skills to adapt to working with advanced technologies. Additionally,
these collaborative systems may raise questions about the equitable
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distribution of benefits and the potential widening of the skill gap
between workers who can effectively use these technologies and
those who cannot.

Safety issues in cobot design and deployment were a significant
concern for experts. They emphasized the importance of ensuring
cobots comply with safety standards, such as UNI EN ISO 10218, to
guaranteeworker protection in all operational scenarios.Developing
applications that are inherently safe and prioritizing the ability of
cobots to halt operations immediately in both typical and atypical
risks is crucial. Experts also stressed the need to consider worker
balance and mobility on uneven ground surfaces to ensure safety
and efficiency. Special attention should be given to balancing,
weight distribution, and movement considerations, especially in
areas with steep slopes, to prevent accidents. The redundancy of
sensors and robust mechanical designs were highlighted as critical
safety measures.

Regarding safety issues, participants stressed the importance
of implementing reliable stability control and collision avoidance
mechanisms to ensure the safe interaction between the human
worker and the mobile manipulator, particularly on steep and
uneven terrains. One safety engineer commented, “The collaborative
system should be designed to detect and respond to the human
worker’s movements and potential loss of balance, adjusting its actions
accordingly to minimize the risk of injury. We need to consider the
steep surface of the ground. Moreover, the robotic system should not
limit mobility”.

In vineyard operations, unique challenges are posed by the
uneven terrain and slope gradients characteristic of vineyards.
Participants stressed that the design of cobots for vineyard
operations should prioritize the stability and balance of both the
cobot and the human worker. They suggested that cobots should
be equipped with features that enable them to navigate rough
terrain without compromising the safety or mobility of their human
collaborators. Participants underscored the need for cobots to
have high situational awareness and adaptability, by dynamically
adjusting their movements and behavior based on real-time data,
cobots can maintain a safe working distance from human workers
and minimize the risk of accidents or injuries.

4.2 Attitudes towards collaborative robots

The General Attitudes Towards Robots Scale (GAToRS) was
used to assess participants’ attitudes toward collaborative robots
(cobots) across four dimensions: Personal Level Positive (P+),
Personal Level Negative (P−), Societal Level Positive (S+), and
Societal Level Negative (S−).

The mean scores for the P+ dimension ranged from 2.42 to 4.15,
indicating a moderate to high level of positive attitudes towards
cobots on a personal level. Participants expressed trust in the
development of cobots (M = 4.15) and believed that the needs and
feelings of users would be considered (M = 4.15). However, the
lowest mean score in this dimension was for the item “If cobots had
emotions, I would be able to befriend them” (M = 2.42), suggesting
some hesitation in forming emotional connections with cobots.

The mean scores for the P- dimension were relatively low,
ranging from 1.39 to 2.27, indicating that participants generally had
low levels of negative attitudes towards cobots on a personal level.

Participants expressed minimal fear (M = 1.39) and nervousness (M
=1.39) around cobots.Thehighestmean score in this dimensionwas
for the item “I don't want a cobot to touchme” (M=1.97), suggesting
some discomfort with physical contact with cobots.

The mean scores for the S+ dimension were high, ranging from
3.91 to 4.38, indicating strong positive attitudes towards the societal
benefits of cobots. Participants believed that cobots could make life
easier (M = 4.38), allow people to do more meaningful tasks (M =
4.34), and help society by assisting people (M = 4.06).

The mean scores for the S- dimension were moderate, ranging
from 2.13 to 3.72. Participants expressed some concerns about the
societal impact of cobots, such as the need for close monitoring of
robotics (M = 3.72) and the potential for societal upheavals due
to unregulated use (M = 3.37). However, they were less concerned
about cobots taking away jobs (M = 2.13) or encouraging less
interaction between humans (M = 2.16).

Overall, the results suggest that participants held generally
positive attitudes towards cobots, particularly regarding their
societal benefits, as shown in Figure 1. While there were some
concerns about the societal implications of cobot adoption,
personal-level attitudes were mostly positive, with low levels of fear
and unease.

4.3 Trust in human-cobot interactions

The Trust Perception Scale-HRI was used to assess participants’
trust in collaborative robots (cobots) across 14 items. The means
for these items ranged from 2.23 to 4.10, indicating a moderate
to a high level of trust in cobots. The items with the highest
means (above 3.70) suggest a strong belief in cobots’ ability to
perform tasks successfully, follow instructions, and even outperform
novice human users. Participants expressed high trust in cobots’
capability to do exactly as instructed (M = 4.10), succeed when
performing tasks (M = 3.81), and be qualified for specific tasks (M =
3.81). Additionally, the reversed Item 13 (M = 3.77) indicates that
participants believe cobots can perform tasks better than novice
human users.

Items with moderately high means (between 3.30 and 3.70)
indicate a reasonable level of trust in cobots’ ability to function
in team environments, provide appropriate information, meet user
expectations, and warn of potential risks. However, items with lower
means (below 3.30) suggest relatively lower trust in cobots’ ability
to be good teammates, work well in teams, and their maintenance
requirements (see Figure 2).

4.4 Safety perception in human-cobot
interaction

The evaluation of perceived safety in human-cobot interactions
encompassed four specific items to evaluate the extent of
apprehensions and participant confidence level. The results reveal
a generally favorable perception of safety (Figure 3). Participants
indicated high perceived safety (M = 3.9; SD = 1.0) and felt secure
while workingwith cobots (M= 3.7; SD = 1.0). Conversely, concerns
about potential errors that could harm the participants (M = 1.7;
SD = .09) or the cobots (M = 1.6; SD = 0.8) were notably low.
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FIGURE 1
Attitudes towards cobots on personal and societal levels.

FIGURE 2
Trust towards cobots.

FIGURE 3
Safety perceptions of collaborative robots.

5 Discussion

The present study aimed to investigate the perceptions and
attitudes of technical experts towards adopting collaborative robots
in three distinct use settings: vehicle assembly operations, robotic
handling in warehouses, and agricultural harvesting. The findings

provide insights into the technical, safety, and social implications of
implementing cobots in these industrial settings.

Regarding the vehicle assembly use case, experts highlighted
the importance of developing accurate and reliable sensor systems
for seamless and safe interaction between workers, cobots, and
exoskeletons. These findings align with previous research that
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underscores the significance of sensor technology and motion
planning in human-robot collaboration (Robla-Gómez et al., 2017;
Villani et al., 2018). Experts also stressed the need for user-friendly
interfaces and intuitive programming methods to facilitate the easy
deployment and adaptation of cobots for various assembly tasks,
echoing the importance of usability in implementing industrial
robots (Weiss and Spiel, 2022). Usability is also one of the most
relevant factors in transforming a tool into the technological part of
a functional organ, allowing humans to feel comfortable and trusted
when using a specific tool (Mazzoni, 2017).

In the robotic handling in warehouses use case, experts
emphasized the development of advanced sensing and control
systems to ensure precise and reliable handling of large, bulky
objects. Optimizing the robotic system’s performance to maximize
throughout and efficiency was also highlighted, consistent with the
goals of warehouse automation (Azadeh et al., 2019). Developing
intuitive interfaces for human workers to monitor and intervene
when necessary was also stressed, reinforcing the need for effective
human-robot interaction in logistics settings (Rojas and Rauch,
2019).This aspect is also critical for the coefficiency of human-robot
interaction, particularly in selecting actions aimed at maximizing
the overall efficiency of the joint effort, achieving the best efficiency,
and minimizing the probability of errors.

For the agricultural harvesting use case, experts identified
developing robust navigation and localization systems as a key
challenge for mobile manipulators operating in unstructured and
dynamic vineyard environments (Kostavelis et al., 2017). This finding
resonates with the current research focus on developing autonomous
navigation systems for agricultural robots (Shamshiri et al., 2018).The
importance of implementing reliable stability control and collision
avoidance mechanisms to ensure safe interaction between human
workers and mobile manipulators was also emphasized, particularly
in steep and uneven terrains characteristic of vineyards. These are
both critical for the evolution of a functional organ, allowing humans
to overcome their limits and achieve better results and for the best
effectiveness of the human-robot coefficiency.

Across all use cases, safety emerged as a paramount concern.
Experts consistently highlighted the importance of implementing
robust collision avoidance systems, fail-safe mechanisms, and
emergency stop protocols to ensure the safety of human workers
interacting with cobots.The emphasis on developing comprehensive
safety protocols and the need for broad safety training and education
for workers was also emphasized, underlining the crucial role of
human factors in the successful adoption of cobots.

The social and ethical implications of cobot adoption were
also explored. Experts recognized the potential for cobots to
facilitate the inclusion of workers with diverse physical capabilities
and limitations, promoting a more inclusive and accessible work
environment. This finding aligns with the growing interest in
using assistive technologies to support workers with disabilities
in industrial settings (Bianchini et al., 2022). However, concerns
about job displacement, particularly for workers involved in
repetitive and physically demanding tasks, were also raised. This
highlights the need for proactive measures to support workforce
transitions and reskilling efforts (Li, 2022). Experts also noted the
potential for cobots to reduce physical strain and risk of injuries
for workers, improving overall wellbeing and job satisfaction. This
finding is consistent with research demonstrating the ergonomic

benefits of human-robot collaboration (Schmidtler et al., 2015).
Addressing these concerns is urgent for formulating policies and
creating organizational practices that guarantee the equitable
allocation of benefits derived from the adoption of cobots.
Scholars, organizational stakeholders, and policymakers are
encouraged to leverage these insights to construct agendas that
harmonize technological progress with social equity, ensuring that
automation’s dividends are equitably distributed throughout society
(Weidemann et al., 2023; Mazzoni and Benvenuti, 2015).

The quantitative measures employed in this study provide further
insights intotechnicalexperts’attitudes, trust,andperceptionsofsafety
towards cobots. Participants exhibited generally positive attitudes
towards cobots at both personal and societal levels, with higher
positive attitudes at the societal level.Thisfinding suggests that experts
recognize the potential benefits of cobots for society, such as increased
productivity (Gombolay et al., 2017). However, negative attitudes,
particularly at the societal level, indicate that concerns about the
broader impacts of cobot adoption, such as job displacement and
skill gaps, persist and need to be addressed.

Trust perception in human-cobot interactions was found to
be moderately high, with participants expressing confidence in
the functionality, low maintenance requirements, and expectation
alignment of cobots. This finding aligns with previous research
highlighting the importance of trust in successfully implementing
industrial robots (Charalambous et al., 2015). However, lower scores
were observed for cobots’ suitability for team environments, aptitude
for handling critical tasks, and ease ofmaintenance, suggesting areas
for improvement in cobot design and integration.

Perceived safety in human-cobot interactions was generally
favorable, with participants indicating high levels of perceived safety
and security while working with cobots. The findings of this
study contribute to the growing body of literature on human-robot
collaboration in industrial settings. By providing insights into the
perspectives of technical experts on cobot adoption in three distinct
use cases, this research highlights the critical technical, safety, and
social considerations thatneed tobeaddressed toensure the successful
implementationofcollaborativerobots.Theresultsalsounderscorethe
importance of considering human factors, such as attitudes, trust, and
safety perceptions, in the design and deployment of cobots.

This study has some limitations that should be acknowledged.
The sample size may not represent the broader population of
technical experts in the field. Additionally, our focus on the
industrial, logistics, and agricultural sectors limited our ability
to explore the unique challenges and requirements of other
domains (Medical, HoReCa) where human-robot collaboration is
equally important. Therefore, future research should aim to address
these limitations by conducting larger-scale studies across various
industries and contexts. Future research could also benefit from
larger and more diverse samples to enhance the generalizability
of the findings. Additionally, the study relied on self-reported
data, which may be subject to response biases. Future studies
could employ observational or experimental methods to triangulate
the findings and provide a more comprehensive understanding
of human-robot collaboration in industrial settings. Furthermore,
ongoing research efforts should consider longitudinal studies
that track changes in attitudes, trust, and safety perceptions as
collaborative robots become smaller, more advanced, and widely
adopted across different sectors. Continuously surveying the same
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areas of cobot deployment while expanding into new industries
and application contexts will help assess how technological
advancements and broader use cases influence the evolving
dynamics of human-robot collaboration.

6 Conclusion

This study provides comprehensive insights into the
implementation of collaborative robots across three distinct
industrial sectors: vehicle assembly, warehouse logistics, and
agricultural operations. Through the analysis of expert opinions and
quantitative assessments of attitudes, trust, and safety perceptions,
key findings emerge that have important implications for both
theory and practice. The study’s examination of specific use cases
reveals distinct challenges and opportunities. In vehicle assembly
operations, the integration of cobots with exoskeletons presents
unique challenges requiring sophisticated sensor systems and
motion planning. For warehouse logistics, the emphasis lies in
developing advanced control systems for handling large objects
while maintaining human supervisor safety. In agricultural settings,
the need for robust navigation systems and stability control on
uneven terrain emerges as a critical consideration.

These findings have significant practical implications.
Organizations implementing cobots should prioritize
comprehensive safety training and user-friendly interfaces. System
designers should focus on enhancing cobot capabilities in teamwork
scenarios and maintenance accessibility, while industries need
to develop proactive strategies to address workforce transitions
and skill development. From a policy perspective, the findings
underscore the need for standardized safety protocols across
different industrial applications. They emphasize the importance
of balancing technological advancement with workforce protection
and highlight the requirement for guidelines that ensure equitable
distribution of cobot-derived benefits.

In conclusion, while the implementation of cobots across
different industrial sectors shows promise, success depends on
carefully balancing technical capabilities with human factors.
This study’s findings emphasize that effective cobot integration
requires not only advanced technological solutions but also careful
consideration of human perceptions, safety requirements, and
societal implications. The insights gained from this research
contribute to our understanding of how to effectively implement
cobots in various industrial settingswhilemaintaining focus on both
technological advancement and human-centered considerations.
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