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Editorial on the Research Topic
Progress and challenges in computational structure-based design and
development of biologic drugs

Biotherapeutics have emerged as a major class of pharmaceuticals, encompassing
monoclonal antibodies, recombinant human proteins and enzymes, fusion proteins,
antibody drug conjugates, multi-specific formats, peptides, and vaccines. These
modalities serve a wide range of therapeutic areas, including immune-oncology,
inflammation, cardiovascular, metabolic, infectious, and rare diseases (DeFrancesco,
2019; Kang and Jung, 2020; Lu et al., 2020; Kaplon et al., 2023). Recent advancements
in structure determination, structure prediction, bioanalytical characterization, and
machine learning have established in silico approaches as a key toolbox employed in
the biologic drug discovery and development pipelines (Fischman and Ofran, 2018;
Norman et al., 2020; Fernandez-Quintero et al., 2023). Additionally, physics-based
molecular modeling and simulation methods, along with empirical linear models, have
matured to routine implementation during biotherapeutic drug candidate selection and
optimization. However, the accuracy of these predictions can be improved. Further
refinements will be welcomed, particularly towards binding affinity predictions and
developability assessments.

At the same time, with the fast-paced infusion of artificial intelligence in various
research areas that impact daily life, we are witnessing a new chapter being written in
biological drug design (Kim et al., 2023). A wide range of nonlinear models, from machine
learning to unsupervised deep neural networks and language models, is now emerging.
These models, fueled by still modest but expanding biological and structural datasets, are
complementing classical methods (Baek et al., 2021; Jumper et al., 2021; Kryshtafovych
et al., 2021; Bennett et al., 2023; Lin et al., 2023; Wodak et al., 2023). There are also
increasing attempts to integrate advanced computational methods with next-generation
sequencing, either from synthetic or natural libraries, to enhance the efficient hit-to-lead
optimization and de novo discovery of tight binders with favorable developability profiles
(Makowski et al., 2021; Mason et al., 2021; Hie et al., 2023; Parkinson et al., 2023). While
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past structure-based efforts were focused on optimizing existing
antibody candidates, the emerging trend is the hopeful possibility of
de novo discovery of antibody-based and other biologic drugs via in
silico methods. This opens prospects for extensive application of
computational techniques in biologic drug discovery and
development.

This Research Topic comes at an opportune time when the
accuracy limits are being pushed for classical methods and
foundations are being established for machine learning methods.
These complementary tools are poised to enhance the entire
biologics drug development pipeline, from the molecular design
and property optimization to large-scale manufacturability. In this
Research Topic, readers will find a breadth of computational
approaches, ranging from established 3D structure and physics-
based techniques to innovative explorations in sequence-based non-
linear machine learning models.

An overview of the current state and opportunities for
synergistic use of computation and experimentation in this field
is provided by Bauer et al. The authors described their vision of
Biopharmaceutical Informatics and discuss already available
computational methods at each stage of the biologic drug design-
discovery-optimization-development pipeline. The authors have
provided useful cues on how best to apply these in silico methods
and how to combine them with experimental approaches to
maximize the odds and efficiency of arriving at biologics that are
both effective and developable.

Fundamental understandings of molecular properties of the drug
candidates and their targets are essential to advance both biologic
discovery and development. Di Rienzo et al. focused on discerning
the rules that define antibody-antigen recognition as a fundamental step
in the rational design and engineering of functional antibodies with
desired properties. Their novel method, which is based on the 3D
Zernike polynomials to generate shape and electrostatic descriptors
capturing both global and local protein surface physicochemical
properties, accurately classified types of antibody-antigen interfaces
solely based on paratope surface information. Fernandez-Quintero
et al. took a deep dive into seemingly similar interfaces between the
various Ig-folded domains that make up a monoclonal antibody
structure. Using classical MD simulations and analyses, they revealed
and compared contact maps that can be used to inform selection of
favorable point mutations for the design of bispecific antibodies. In their
case study, Paul et al. described the well-recognized yet inadequately
understood trade-off between binding affinity and thermal stability,
which can have significant implications during the lead candidate
optimization stage. Using classical force-field methods, molecular
dynamics, and amino-acid hydropathy, they observed affinity-
stability correlations and patterns in key pairs of residues called hotspots.

Novel tools are also reviewed in this Research Topic. For
example, Jaszczyszyn et al. assembled a timely review of recent
advances of deep-learning based tools for structural modeling the
variable regions of antibodies. In addition to cataloguing underlying
algorithms and benchmarking their performance, the authors
offered their perspective on how the emerging high accuracy of
antibody paratope modeling can influence the field of biologics drug
discovery. Engelberger et al. provided the energy breakdown guided
protein design (ENDURE) tool for accurately assessing energetic
contributions from individual and combinatorial mutations to the
overall protein stability. An interesting feature is the residue depth

analysis which enables tracking the energetic contributions of
mutations occurring in different spatial layers of the protein
structure. Spoendlin et al. introduced the second iteration of their
structural profiling of antibodies to cluster by epitope (SPACE) tool,
which builds upon the recent progress in machine learning antibody
structure prediction and a novel clustering protocol. It improved
data coverage and identified even more diverse clusters of antibodies
that bind to the same epitope. These tools are expected to further
advance rational design of biotherapeutics.

Proof-of-concept studies illustrating novel screening campaigns
that combine computational design with experimental data are also
presented. Arras et al. combined next-generation sequencing of
semi-immune/semi-synthetic libraries built on a humanized
VHH framework with machine learning, data processing, and
model building for simultaneous optimization of affinity and
developability. The proposed typical early drug discovery
methodology generated diverse and potent VHH hits against
NKp46 protein without requiring further humanization and
developability optimization, thereby accelerating drug discovery.
Gaudreault et al. focused on protein-protein docking with flexible
side chains while retaining rigid protein backbone to discover novel
binders against predefined target epitopes. Their approach was
applied to randomized libraries of surface mutations introduced
in a rigid protein scaffold called DARPin, leading to the design and
experimental validation of an enriched small set of hits against a
predefined epitope on the BCL-W target protein.

The literature in this field is growing rapidly. Our Research
Topic does not cover all computational aspects of biologic drug
discovery. Nonetheless, the articles compiled here hopefully offer
timely snapshots of key components along a biologic drug’s
discovery, design, and development.
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Quantitative Description of Surface
Complementarity of Antibody-Antigen
Interfaces
Lorenzo Di Rienzo1, Edoardo Milanetti 1,2, Giancarlo Ruocco1,2 and Rosalba Lepore3*

1Center for Life Nano and Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy, 2Department of Physics, Sapienza University,
Rome, Italy, 3Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland

Antibodies have the remarkable ability to recognise their cognate antigens with
extraordinary affinity and specificity. Discerning the rules that define antibody-antigen
recognition is a fundamental step in the rational design and engineering of functional
antibodies with desired properties. In this study we apply the 3D Zernike formalism to the
analysis of the surface properties of the antibody complementary determining regions
(CDRs). Our results show that shape and electrostatic 3DZD descriptors of the surface of
the CDRs are predictive of antigen specificity, with classification accuracy of 81% and area
under the receiver operating characteristic curve (AUC) of 0.85. Additionally, while in terms
of surface size, solvent accessibility and amino acid composition, antibody epitopes are
typically not distinguishable from non-epitope, solvent-exposed regions of the antigen, the
3DZD descriptors detect significantly higher surface complementarity to the paratope, and
are able to predict correct paratope-epitope interaction with an AUC � 0.75.

Keywords: surface complementarity, antibody complementarity determining regions, antibody—antigen complex,
antigen recognition, zernike polynomials

1 INTRODUCTION

Antibodies, also known as immunoglobulins, are multimeric Y-shaped proteins that the immune
system uses to recognize and neutralize foreign targets, named antigens. The antigen binding site is
located on the upper tip of the molecule, and is formed by the pairing of two variable domains, the
VH and the VL, each contributing three hypervariable loops or complementary determining regions
(CDR). The remarkable ability of the antibodies to recognize virtually any foreign antigen stems from
the sequence and length variability of the CDR, while the framework of the molecule is largely
conserved (Chothia and Lesk, 1987; Chothia et al., 1989; Tramontano et al., 1990).

Early studies, based on a handful of crystallographic structures, revealed that despite the large
sequence variability of CDRs, five out of the six hypervariable loops only exhibit a limited number of
main-chain conformations called “canonical structures” (Chothia and Lesk, 1987; Chothia et al.,
1989), where most sequence variations only modify the surface generated by the side chains on a
canonical main-chain structure. Over the years, with more experimentally determined structures of
antibodies becoming available, an exhaustive repertoire of canonical structures has been compiled
and their relationship with the chain isotypes (Tramontano et al., 1990; Chothia et al., 1992; Foote
and Winter, 1992; Tomlinson et al., 1995; Martin and Thornton, 1996; Chothia et al., 1998;
Decanniere et al., 2000; Vargas-Madrazo and Paz-García, 2002; Chailyan et al., 2011; North et al.,
2011; Kuroda and Gray, 2016) and packing mode of the antibody was extensively analysed (Chothia
et al., 1985; De Wildt et al., 1999; Abhinandan and Martin, 2010; Jayaram et al., 2012; Dunbar et al.,
2013a). This led to the development of fully automated pipelines for the prediction of
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immunoglobulin structures given their amino acid sequences,
with predictions reaching near-native accuracy both at the global
and local CDR level (Whitelegg and Rees, 2000; Marcatili et al.,
2014; Messih et al., 2014; Dunbar et al., 2016; Lepore et al., 2017;
Weitzner et al., 2017). In parallel, a major focus has been in
understanding the structural and molecular basis of antibody
function and, in particular, of antigen recognition. The
identification of the portion of the antigen that is recognized
by an antibody, i.e. the epitope, is indeed of central relevance for
the development of vaccines and immunodiagnostics, as well as
for our understanding of protective immunity (Pollard and
Bijker, 2020). As a consequence, in the past years, there have
been several attempts in the direction of relating the sequence and
structural properties of antibody binding sites to their function,
and more specifically, to the type of recognised antigen. Early
work by Webster et al. in 1994 first discovered a strong
correlation between the topography of the CDRs and the
broad nature of the antigen, proposing that antibodies binding
protein antigens are characterised by flat combining sites, while
those recognising smaller antigens, like haptens and peptides,
show the most concave interfaces (Webster et al., 1994).
Subsequent work confirmed and extended these findings to
the length and sequence composition of the CDRs based on
increased availability of sequence and structural data of antibody-
antigen complexes (MacCallum et al., 1996; Collis et al., 2003; Lee
et al., 2006; Raghunathan et al., 2012).

The study of molecular interactions in proteins, and antibodies in
particular, poses well known challenges. Existing experimental
methods, such as Xray crystallography, mass spectrometry, phage
display and mutagenesis analysis are intrinsically expensive,
laborious, and time consuming (Sela-Culang et al., 2013). Hence,
computational methods have established themselves as a valuable
complement to experimental biology efforts for the analysis and
characterization of the vast repertoire ofmolecular interactions at the
atomic level. Early studies by Lee and Richards (1971) proposed the
first description of protein solvent-accessible surface, which was later
refined by Connolly (1983), allowing to distinguish surface atoms
from buried atoms and opening the way to efficient graphical
representation and comparison of molecular surface properties.
Subsequent methods relied on the application of spherical
harmonics descriptors (Leicester et al., 1988; Max and Getzoff,
1988) and Fourier correlation theory to shape complementarity
and electrostatic interaction analysis (Gabb et al., 1997).
Additionally, approaches based on tessellation (Walls and
Sternberg, 1992; Li et al., 2007), void volume (Jones and
Thornton, 1996) and surface density (Norel et al., 1995) provided
an efficient way for representation and matching of protein surfaces,
including protein-protein interaction sites, ligand binding sites and
functional sites (Via et al., 2000; Mitra and Pal, 2010).

In this study we rely on a surface representation of antibodies
and their cognate antigens based on the 3D Zernike Descriptors
(3DZD). The Zernike polynomials were first described by Fritz
Zernike in 1934 (Zernike and Stratton, 1934) as a framework for
the analysis of aberrations in optical systems and subsequently
generalized to three-dimensions (Ming-Kuei Hu, 1962;
Canterakis, 1999; Novotni and Klein, 2004). One of the
convenient features of Zernike polynomials is that their

rotational symmetry allows the polynomials to be expressed as
products of radial terms and functions of angle, where the
coordinate system can be rotated without changing the form
of the polynomial. Hence, they allow a concise, roto-
translationally invariant characterization of 3D objects,
comparing favourably to other moment-based descriptors in
terms of shape retrieval and robustness to topological and
geometrical artifacts (Novotni and Klein, 2004). When applied
tomolecular surfaces, the 3DZD have been shown to capture both
global and local protein surface properties and to adequately
represent their physico-chemical properties (Venkatraman et al.,
2009a; Venkatraman et al., 2009b; Kihara et al., 2011; Di Rienzo
et al., 2017; Daberdaku and Ferrari, 2018; Daberdaku and Ferrari,
2019; Alba et al., 2020; Di Rienzo et al., 2020). Here we apply the
3DZD to provide a quantitative description of the shape and
electrostatic properties of Ab–Ag interfaces, leading to an
accurate classification of the antibodies according to the type
of their cognate antigens solely based on the information of the
CDR surface, with overall AUC � 0.85 and accuracy of 81%.

Additionally, we show that while in terms of surface size,
solvent accessibility and amino acid composition, antibody
epitopes are not distinguishable from non-epitope, solvent-
exposed regions of the antigen, they display significantly
higher surface complementarity to the antibody paratope, both
in terms of shape and electrostatic 3DZD, leading to a prediction
performance in terms of ROC AUC of 0.75 and 0.61 respectively.

2 MATERIALS AND METHODS

2.1 Dataset
We selected 326 antibodies with redundancy lower than 90% and
resolution <3.0 Å using the SabDab database (Dunbar et al.,
2013b). 229 antibodies were solved in complex with protein
antigens, 71 with haptens, 19 with carbohydrates and 7 with
nucleic acids. The sequence of each antibody was renumbered
according to the Chothia numbering scheme (Chothia and Lesk,
1987; Chothia et al., 1989) using an in-house python script.

2.2 Solvent Accessible Surface and
Electrostatics Surface
For each antibody and protein antigen 3D structure, atomic
partial charges and radii were assigned using PDB2PQR with
default parameters (Dolinsky et al., 2004). Solvent Accessible
Surface (SAS) was computed using GROMACS (Abraham et al.,
2015). Electrostatic surface (ES) potential was computed using
the Bluues software (options -srf and -srfpot) (Fogolari et al.,
2012). Each molecular surface point was assigned to the
electrostatic potential of the corresponding residue. The
“geometry” (Habel et al., 2019) and “Bio3D” (Grant et al.,
2006) packages available in R were used for PDB structure
processing and analysis.

2.3 Voxelization Procedure
The set of selected molecular surface points was scaled to the unit
sphere and placed into a 3D grid of dimension 1283. To avoid
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boundary effects, the size of the bounding box of the point cloud
was set so as to be contained within 80% of the unit sphere
(Grandison et al., 2009). Voxelization was performed separately
for SAS and ES. In SAS voxelization, each voxel was assigned a
value of 1 if the center of the voxel was closer than 1.7 to any SAS
point, 0 otherwise. In ES voxelization, each voxel was assigned the
mean ES value of the enclosed points, 0 otherwise.

Since the Zernike formalism does not differentiate positive and
negative values (Chikhi et al., 2010; Daberdaku and Ferrari,
2018), but only patterns of non-zero values in the 3D space,
voxels were initialized for positive and negative patterns
separately using a similar approach as done in (Chikhi et al.,
2010), as follows:

f+
elec � 0 if felec < 0 f+

elec � felec if felec > 0 (1)

f−
elec � felec if felec < 0 f−

elec � 0 if felec > 0 (2)

In summary, voxels with positive electrostatics values were
initialized to 1 and all other voxels with negative electrostatics
values were set to zero, and vice versa. The resulting voxels, one
for SAS values, and two for positive and negative ES values,
respectively, were considered as three different 3D functions, f(x),
each expanded into the 3DZD as described in the next section.

2.4 3D Zernike Descriptors
For the quantitative description of the binding sites, we rely on a
representation based on the Zernike polynomials and their
corresponding moments. Moment-based representations are a
class of mathematical descriptors of shape, originally developed for
pattern recognition and subsequently generalized to three-dimensions
(Ming-Kuei Hu, 1962; Canterakis, 1999; Novotni and Klein, 2004).

A surface described by a function f (r, θ, ϕ) in polar coordinates
can be represented by a series expansion in an orthonormal
sequence of polynomials (Canterakis, 1999):

f(r, θ, ϕ) � ∑∞
n�0

∑n
l�0

∑l
m�−l

CnlmZ
m
nl(r, θ, ϕ) (3)

where the indices n, m and l are the order, degree and repetition,
respectively.

The Zernike polynomials can be written as:

Zm
nl(r, θ, ϕ) � Rnl(r)Ym

l (θ, ϕ) (4)

where the Y functions are complex spherical harmonics
depending on both θ and ϕ while R only depends on the
radius r, which is given by

Rnl(r) � ∑(n−l)2

k�0
Nnlkr

n−2k (5)

where N is a normalization factor.
The 3D Zernike moments of a surface described by a function

f (r, θ, ϕ) are defined as the coefficients of the expansion of f(r) in
the Zernike polynomial basis, i.e.:

Cnlm � ∫
|r|≤1

f(r)Zm
nl(r, θ, ϕ)dr (6)

where �Z is the polynomial complex conjugate.
Their rotation invariant norms, i.e. the 3DZD, are defined as:

Dnl � ‖Cnlm‖ �

����������∑l
m�−l

(Cnlm)2
√√

. (7)

The Zernike formalism can be as detailed as desired by
modulating the order of the expansion n. In our
implementation, the function f represents the geometric or the
(positive or negative) electrostatic potential of the molecular
surface, and the maximum order of expansion was set to 20,
giving a total of 121 invariants.

2.5 Generation of Native Epitopes and
Surface Decoys
Given the dataset of Antibody-Antigen complexes containing
protein antigens, the native geometric epitope was defined as the
set of residues of the antigen having a distance lower than 6 Å to
any residue of the antibody. The pivot residue was defined as the
residue with the lowest mean distance to any residue of the native
geometric epitope. The native electrostatic epitope was defined as
the set of residues of the antigen having a distance shorter than
15 Å to any residue of the antibody. For the set of native
geometric epitope residues, the Solvent Accessible Surface
Area (SASA) was computed using GROMACS. The mean and
standard deviation values of the computed global and residue-
based SASA were used to generate an alternative set of surface
patches, i.e. decoy epitopes. The algorithm first selects a decoy
pivot residue, i.e. by randomly selecting any solvent exposed
residue having a value of SASA within half standard deviation of
the mean SASA value measured over all pivot residues of the
native epitopes, i.e. SASA � 0.48 ± 0.33 nm2 (Supplementary
Figure S1). The algorithm proceeds by adding neighboring
solvent accessible residues, i.e. having relative SASA >0.2 (Tien
et al., 2013), until the decoy geometric epitope reaches a similar
global SASA to that of the native epitope. To ensures continuous
coverage of the antigen protein surface (Supplementary Figure
S2) and diversity of the generated patches, a maximum 50%
surface patch overlap was allowed between native and decoy
epitopes. Electrostatic decoy epitopes were defined by calculating
the electrostatic potential over the region defined by a geometric
decoy epitope considering all the charged residues within 15�A to
the pivot residue.

2.6 Comparison of the 3DZD Descriptors
Given a pair of ordered set of 3DZD, x and y, their cosine distance
is measured as:

D(x, y) � 1 − Sc(x, y) � 1 − xy

‖x‖ ‖y‖ (8)

where Sc (x, y) is the cosine similarity as measured by the “proxy”
R package (Meyer and Buchta, 2019).

Given two patches A and B, the similarity between their 3DZD
is computed as:
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[A − B]shape � D(XA
shape, X

B
shape) (9)

[A − B]elec � (D(X+,A
elec, X

+,B
elec) +D(X−,A

elec, X
−,B
elec))

2
(10)

where Xshape, X+
elec and X−

elec are, respectively, the shape, the
electrostatic positive potential, and the electrostatic negative
potential 3DZD.

The surface complementarity between A and B is defined as
follows:

[A − B]shape � D(XA
shape, X

B
shape) (11)

[A − B]elec � (D(X+,A
elec, X

−,B
elec) +D(X−,A

elec, X
+,B
elec))

2
(12)

3 RESULTS

In this work we aim at providing a quantitative description of the
geometric and electrostatic properties of antibody-antigen
interaction through a mathematical representation of the
interacting surfaces. To this aim, we rely on a dataset of
experimentally determined 3D structures of antibody-antigen
complexes and a moment-based representation of the
interacting surface using the 3D Zernike descriptors (3DZD)
(Novotni and Klein, 2004; Venkatraman et al., 2009b; Daberdaku
and Ferrari, 2018).

The 3DZD descriptors provide a compact, roto-translationally
invariant representation of 3D objects, thus enabling effective
comparison of both global and local properties of molecular
surfaces by standard pairwise similarity metrics. The order n

of the series expansion determines the resolution of the
descriptor. In this study, 3DZD were computed at different
levels of truncation of the expansion, with n ranging from 10
to 20, which correspond to vectors of 36 and 121 invariants,
respectively. The overall scheme of the procedure used in this
work is shown in Figure 1.

3.1 Antibody Classification Based on
Surface Shape and Electrostatic 3DZD
Descriptors of CDRs
We have previously shown that a 3DZD-based description of the
surface of the antibody CDRs provides an effective metric for
antibody classification according to their specificity towards
protein and non-protein antigens (Di Rienzo et al., 2017).
Here we extend this approach to the analysis of both the
shape and electrostatic properties of the CDRs and analyze the
classification performance of both descriptors at different orders
of the Zernike expansion. For each CDR we generated two sets of
121-dimensional vectors, representing the 3DZD of the shape and
the electrostatic surface, similar to what done in (Chikhi et al.,
2010; Di Rienzo et al., 2020). The similarity between each set of
descriptors is then computed to perform an all-against-all
comparison of CDRs, according to Eq. 9, 10 in Methods
section. For each CDR, we then selected the nearest neighbors
set as the 5% most similar CDRs in terms of shape and
electrostatic surface and analyse the number of protein
binding antibodies (Npb) in the neighbours set. As it is shown
in Figures 2A,B, protein-binding antibodies (green curve) are
typically characterized by an higher number of Npb

(mean(Nshape
pb ) � 13.37 ± 2.61, mean(Nelec

pb ) � 13.54 ± 3.24) in

FIGURE 1 | Schematic workflow for the comparison of Ab-Ag interfaces based on 3DZD. (A) Molecular representation of a given Ab-Ag complex. Antibody and
antigen are shown in gold and blue, respectively. (B) The interacting surfaces are selected according to inter-molecular atomic distance threshold. (C) Solvent accessible
and electrostatic surfaces are computed on the selected regions (D) 3DZD Zernike descriptors are computed for each molecular surface. (E) Distribution of 3DZD
surface complementary complementarity between paratope and non-epitope surface decoys. The red line denotes 3DZD surface complementarity between the
antibody paratope and their cognate epitope.
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the neighbors set as compared to non protein-binding antibodies
(orange curve) (mean(Nshape

pb ) � 10.31 ± 2.99,
mean(Nelec

pb ) � 9.93 ± 3.13) and to random expectation (i.e., Ex
[Npb] � NProt/Ntot, where Ex [Npb] is the expected number of
protein-binding antibodies if they were distributed uniformly,
Nprot represents the number of protein-binding in the dataset and
Ntot is the total number of antibodies in the dataset.).

We next analyzed the performance of each descriptor in
classifying the CDRs as a function of the antigen type, using a
leave-one-out approach. In summary, for each CDR, if the Npb

was greater than Ex (Npb) the CDR was labeled as protein-
binding, non protein-binding otherwise. The obtained
classification accuracy for the shape and electrostatic
descriptors at order n � 20 is 75 and 73%, respectively. Using
a Receiver Operating Curve (ROC) analysis, both descriptors
achieved an Area Under the Curve (AUC) of 0.78. We next
analyzed the classification performance when assigning the class
label based on the weighted contribution of shape and
electrostatics, as follows:

Npb � ANelec
pb + (1 − A)Nshape

pb A ∈ [0, 1] (13)

whereNshape
pb andNelec

pb correspond to theNpb computed based on
shape and electrostatic descriptors, respectively, and A is the
weight ranging from 0 to 1. The results are shown in Figure 2C,
where the ROCAUC is reported as a function of the weight A and
the order n of the Zernike expansion. As it can be noticed, overall
performance increases with increasing values of n. Higher AUC
values are achieved when both descriptors contribute with similar
weight in the classification. Top classification performance indeed
is obtained with A � 0.4 and n � 17, leading to an AUC � 0.85 and
accuracy of 81%. A very similar performance is obtained with n �
20 and A � 0.4 (AUC � 0.83).

3.2 CDRs vs. Antibody Paratope
The sequence and structure analysis of antibodies, as well as antibody
engineering experiments, crucially rely on the precise identification
of the CDRs from the antibody sequence (Chothia and Lesk, 1987;
Chothia et al., 1989; Kabat et al., 1992; MacCallum et al., 1996;
Lefranc, 2011). On the other hand, it is well known that the CDRs
only provide a proxy of the actual antigen-binding site, i.e. the
antibody paratope (Kunik et al., 2012; Olimpieri et al., 2013). Indeed,
early studies showed that only 20–30% of residues within the CDRs

FIGURE 2 | (A) Density distribution of protein binding antibodies (Npb) in the neighbours set of protein binding (green curve) and non-protein binding antibodies
(orange curve) based on surface shape similarity. (B) Density distribution of protein binding antibodies (Npb) in the neighbours set of protein binding (green curve) and
non-protein binding antibodies (orange curve) based on electrostatic surface similarity. (C)Classification performance (ROC AUC) is reported as a function of the order n
of the Zernike expansion and weight of the average. (D) ROC curve of the best classifier based on shape 3DZD (blue curve), electrostatic 3DZD (red curve) and
weighted average Npb (green curve).
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are directly involved in the interaction with the antigen (Padlan,
1994; Sela-Culang et al., 2013). To quantify to what extent this
approximation affects our predictions, we analyzed the classification
performance as a function of distance from the center of the
antibody-antigen interface. For each Antibody-Antigen complex,
we defined a centerpoint, b, as the centroid of the 10 interface atoms
of the antibody closer to the antigen and computed the 3DZD for
increasing concentric shells around b.

We then applied the same classification procedure as described
previously, by fixing the order n � 20 for both shape and
electrostatic 3DZD. The results are shown in Figure 3 where the
ROC AUC of the individual classifiers are reported as a function of
the percentage of the CDR surface included in the analysis.

As it can be noticed in Figure 3B, the performance of the shape-
based classifier shows a maximumwhen the selected surface region
around b extends up to including 20% of the CDRs (ROC AUC �
0.88) followed by a linear decrease when larger surfaces are
considered. These results are consistent with the previous
notion that shape recognition of the antigen is largely mediated
by smaller interacting surfaces contained within the CDR, i.e. the
antibody paratope. In summary, while the overall CDR surface can
inform about the function of the antibody, this analysis highlights
that the information of the paratope can significantly increase our

ability to predict antibody specificity. On the other hand, in
Figure 3C, the classification performance based on the
electrostatic descriptor shows a different trend. Indeed, while
the classifier shows an overall lower performance compared to
the shape-based classifier, performance increases when larger CDR
surfaces are considered, reaching a maximum when almost the
entire CDR surface is included in the analysis.

3.3 Geometric and Electrostatic
Complementarity of Antibody-Antigen
Interfaces
A key feature of the 3DZD description is that it is invariant under
rotation and translation of the represented surface. This implies
that two interacting protein regions with perfect surface
complementarity yield identical sets of 3DZD descriptors
(Venkatraman et al., 2009a). In line with this principle, here
we focus on the application of 3DZD to the analysis of surface
complementarity between antibody CDRs and their cognate
protein antigens (Details in Methods). The results are shown
in Figure 4, where the average surface shape and electrostatic
complementarity computed on 229 antibody-antigen complexes
are reported as a function of the interaction cutoff distance

FIGURE 3 | (A) Portion of the CDR surface used for classification. (B,C) Area Under the ROC Curve achieved considering different portions of the CDR, based on
shape (B) and electrostatics (C) 3DZD descriptors. Dashed lines indicate the performances obtained considering the entire CDR surface (AUC � 0.78 for both
descriptors).
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between the antibody and the antigen, and the order n of the
series expansion. As expected, shape complementarity decreases
at higher values of the cutoff distance, i.e. as regions of the
antibody/antigen that are distant from the interaction interface
are progressively included in the analysis. On the other hand,
electrostatic complementarity increases at higher distances,
reaching a maximum when the distance cutoff is 15�A.
Notably, in both cases, results are consistent at different
orders n of the series expansion. These results indicate that
the two descriptors are competent in capturing both short- and
long-range effects occurring during antibody-antigen
recognition. As further validation of our approach, we
measured the surface complementarity at the paratope-
epitope interface and compared it with that measured
between the paratope and a set of non-epitope, solvent-
exposed regions of the antigen, i.e. surface decoys. The
results are reported in Figure 5, where both shape and
electrostatic complementarity are reported for each paratope
as normalized Z-score distances to native epitopes and surface
decoys, respectively. Notably, while in terms of amino acid
composition, surface size, and solvent accessibility the antibody
epitopes are essentially not distinguishable from the decoys
(Supplementary Figure S3), they display significantly higher
surface shape and electrostatics complementarity to the
paratope. In summary, the metric is able to distinguish the
correct paratope-epitope pair among the set of decoys with a
classification performance of AUC � 0.75 based on the shape
descriptor, and AUC � 0.61 based on the electrostatic 3DZD.
Additionally, we compared the 3DZD complementarity
observed between specific paratope-epitope pairs and that
between the antibody paratopes and non-native epitopes. The
results (Supplementary Figure S4) show that only a relatively
low number, i.e. 68% (72%) of the antibodies in our dataset
show a higher shape (electrostatic) complementarity to their
cognate epitope compared to non-native epitopes, highlighting
the limitation of this metric in the very elusive task of predicting
which antibody recognises specifically a given antigen.

4 DISCUSSIONS

In this work we describe a computational protocol based on
the 3D Zernike descriptors formalism, which allows a fast,
superposition-free comparison of molecular surfaces, and has
been applied here to the study of the interacting regions of the
antibodies and their cognate antigens. The method represents
a significant upgrade compared to our previous
implementation (Di Rienzo et al., 2017) as it includes two
relevant modifications found to improve its performance,
namely, the selection of the molecular patch of interest
and the description of its electrostatic properties. Using
this new version of the method we are able to classify the
antibodies according to the nature of their recognized
antigens with a classification performance of 81%. Notably,
the method only takes as input the information of the
antibody CDR surface. However, when the analysis is
restricted to the CDR surface that is in direct contact with
the antigen, i.e. the antibody paratope, the classifier based on
the shape 3DZD descriptor alone reaches a maximum
performance of AUC � 0.88.

As 3DZD descriptors are roto-translation invariant, they
are also adept at capturing and quantifying surface
complementarity at protein-protein interfaces
(Venkatraman et al., 2009a). Here we exploit this property
to study the surface shape and electrostatic complementarity
between antibody CDRs and their bound protein antigens. Our
results indicate that maximum surface shape complementarity
is achieved at the docking interface, i.e. at 4 to 8 Angstrom
distance cutoff between antibody and antigen residues, and
decreases when larger distance cutoffs are considered. In
contrast, electrostatic complementarity increases at larger
distance cutoffs, reaching a maximum between 14 and 17 Å.
For both descriptors, results are consistent at different orders n
of the series expansion. Hence, we tested the ability of the
surface complementarity metric in recognising antigenic
surface epitopes among a set of non-epitope, solvent

FIGURE 4 | Surface complementarity of antibody-antigen interacting surfaces based on shape (A) and electrostatic (B) 3DZD descriptors as a function of the
interaction cutoff distance (y-axis) and order n of the series expansion (x-axis).
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exposed regions of the antigen, i.e. surface decoys. Notably,
while in terms of surface size, solvent accessibility and amino
acid composition the selected surface decoys are not
distinguishable from true epitopes, they display significantly
lower surface complementarity to the paratope. Indeed, when
the 3DZD-based complementarity metric is used to select the
correct paratope-epitope pair among a set of surface decoys,

we show that shape complementarity alone can lead to a
prediction performance of ROC AUC � 0.75. These results
show that 3DZD provide a valid quantitative metric for the
analysis of surface complementarity at the antibody-antigen
interface, which is expected to find applications in many areas,
including the identification and design of optimal antibody-
antigen interfaces.

FIGURE 5 | (A)Molecular representation of experimental paratope (blue), experimental epitope (red) and decoys (green). Z-score distribution of (B) shape and (C)
electrostatic surface complementarity based on the 3DZD descriptors between paratope-epitope (red) and paratope-decoy surfaces (green).
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Comparing Antibody Interfaces to
Inform Rational Design of New
Antibody Formats
Monica L. Fernández-Quintero1†, Patrick K. Quoika1†, Florian S. Wedl1, Clarissa A. Seidler1,
Katharina B. Kroell 1, Johannes R. Loeffler1, Nancy D. Pomarici 1, Valentin J. Hoerschinger1,
Alexander Bujotzek2, Guy Georges2, Hubert Kettenberger2 and Klaus R. Liedl1*

1Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of
Innsbruck, Innsbruck, Austria, 2Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation
Center Munich, Penzberg, Germany

As the current biotherapeutic market is dominated by antibodies, the design of different
antibody formats, like bispecific antibodies and other new formats, represent a key
component in advancing antibody therapy. When designing new formats, a targeted
modulation of pairing preferences is key. Several existing approaches are successful, but
expanding the repertoire of design possibilities would be desirable. Cognate
immunoglobulin G antibodies depend on homodimerization of the fragment
crystallizable regions of two identical heavy chains. By modifying the dimeric interface
of the third constant domain (CH3-CH3), with different mutations on each domain, the
engineered Fc fragments form rather heterodimers than homodimers. The first constant
domain (CH1-CL) shares a very similar fold and interdomain orientation with the CH3-CH3
dimer. Thus, numerous well-established design efforts for CH3-CH3 interfaces, have also
been applied to CH1-CL dimers to reduce the number of mispairings in the Fabs. Given the
high structural similarity of the CH3-CH3 and CH1-CL domains wewant to identify additional
opportunities in comparing the differences and overlapping interaction profiles. Our vision
is to facilitate a toolkit that allows for the interchangeable usage of different design tools
from crosslinking the knowledge between these two interface types. As a starting point,
here, we use classical molecular dynamics simulations to identify differences of the CH3-
CH3 and CH1-CL interfaces and already find unexpected features of these interfaces
shedding new light on possible design variations. Apart from identifying clear differences
between the similar CH3-CH3 and CH1-CL dimers, we structurally characterize the effects
of point-mutations in the CH3-CH3 interface on the respective dynamics and interface
interaction patterns. Thus, this study has broad implications in the field of antibody
engineering as it provides a structural and mechanistical understanding of antibody
interfaces and thereby presents a crucial aspect for the design of bispecific antibodies.

Keywords: antibodies, structure, interface characterization, interface dynamics, antibody design, bispecific
antibody formats
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INTRODUCTION

Antibodies play a central role in the adaptive immune system, as
they can recognize and neutralize foreign antigens (Chiu et al.,
2019). In the last years, antibodies emerged as a new class of
pharmaceuticals (Kaplon et al., 2020; Kaplon and Reichert, 2021),
with over one hundred antibody-based drugs being marketed or
pending approval.

Structurally, antibodies consist of two heavy and two light
chains and have a unique modular anatomy facilitating their
engineering and design (Davies and Chacko, 1993). The
immunoglobulin heavy and light chains are composed of
various discrete protein domains. Especially interesting is that
these domains all have a similar folded structure, which is known
as the immunoglobulin fold (Chiu et al., 2019). However, even
though they share a similar fold, there are distinct structural
differences between these domains (Figure 1). In general,
antibodies can be divided into a crystallizable fragment (Fc)
and two identical antigen-binding fragments (Fabs). The Fab
can further be subdivided into constant (CH1-CL) and variable
(VH-VL) domains (Davies and Chacko, 1993; Röthlisberger et al.,
2005). The variable domains of the heavy and the light chain (VH

and VL) shape the antigen binding site and are responsible for
antigen binding and recognition (Colman and Dixon, 1988;
Addis et al., 2014; Fernández-Quintero et al., 2020c). The
variable and the constant domains in the Fab are linked via a
so-called switch region (Stanfield et al., 2006). The CH1-CL

heterodimer plays an essential role for antibody assembly and
secretion in the cell (Adachi et al., 2003). Comparison of the
VH-VL and the CH1-CL heterodimers revealed that the CH1-CL

heterodimer is more stable than the VH–VL heterodimer
(Röthlisberger et al., 2005). The individual CH1 domain is not
stable in folded form and requires interactions with either the
chaperone BiP or the CL domain for folded state stability
(Vanhove et al., 2001; Feige et al., 2014). The crystallizable
fragment is composed of a CH2-CH2 and a CH3-CH3
homodimer (Teplyakov et al., 2013). The CH2-CH2 domain
has no direct protein interactions in the interface as the
interface is formed by glycans (Teplyakov et al., 2013). Thus,
the CH2-CH2 domain differs from all other domains and
consequently will not be discussed in this manuscript. The
CH3 domains bind tightly with each other by hydrophobic
interactions at the center, surrounded by salt bridges and
thereby forming the foundation for the heavy chain dimer
association (Teplyakov et al., 2013). Mutations in the CH3-
CH3 interface have been shown to strongly influence the
stability and the association of the two domains (Rose et al.,
2013).

The concept of having an antibody with two different antigen
binding sites was established more than 50 years ago by Nisonoff
and co-workers and evolved alongside numerous advances and
technical innovations in the field of antibody engineering, leading
to more than 100 bispecific antibody (bsAb) formats known up to
now (Nisonoff and Rivers, 1961; Fudenberg et al., 1964). BsAb
formats expand the functionality of traditional antibodies by their
ability to target effector cells to kill tumor cells, to enhance tissue
specificity or to combine the antigen binding of two antibodies in

a single molecule to simultaneously target two signaling pathways
(Brinkmann and Kontermann, 2017; Sedykh et al., 2018). BsAbs
can be assembled from different heavy and light chains. To
suppress random assembly of different chains, resulting in
various non-desired molecules, engineering efforts are required
(Bönisch et al., 2017). A major breakthrough in the development
of bsAb formats was the invention of the knobs-into-holes (KiH)
technology for CH3-CH3 interfaces (Ridgway et al., 1996; Elliott
et al., 2014). Precisely, advances like the KiH technology for CH3-
CH3 interfaces represented a novel and effective design strategy
for engineering heavy chain homodimers towards heterodimers,
to reduce the risk of random assembly of different chains
(Ridgway et al., 1996; Elliott et al., 2014; Kuglstatter et al.,
2017). Thus, the idea of modifying the interfaces has
motivated numerous studies to find variations of this
approach by following a number of different strategies, such as
alterations of the charge polarity in the interfaces compared to the
homodimer, e.g., inverted charge interactions (DE-KK and DD-
KK variants) (Ha et al., 2016; Moore et al., 2019). More recently,
also KiH mutations in combination with charge inversions have
been introduced into both Fab interfaces, CH1-CL and VH-VL,
enforcing the correct pairings of light chains with the
corresponding heavy chains (Bönisch et al., 2017; Dillon et al.,
2017; Regula et al., 2018).

In this study, we use classical molecular dynamics simulations
to provide a systematic and extensive comparison of different
antibody interfaces, which are in the spotlight of antibody
engineering as they offer numerous design opportunities for
bispecific antibody formats (Brinkmann and Kontermann,
2017; Sedykh et al., 2018). As CH1-CL dimers are inherently
heterodimers, we compare them with the homo-and-
heterodimeric CH3-CH3 domains. We aim to identify different
and overlapping interaction profiles of either the CH3-CH3 or
CH1-CL interfaces with the intention to crosslink the knowledge
covering the two interfaces (Jost Lopez et al., 2020). Apart from
that, we compare the interface flexibilities of CH3-CH3 or CH1-CL

domains and provide key determinants that contribute to the
stability and their tendency to heterodimerize.

The investigated CH3-CH3 and CH1-CL dimers and their
respective PDB accession codes are summarized in
Supplementary Table S1, covering a variety of different
design strategies to enforce the formation of heterodimers.
The Fabs to study the CH1-CL dimers were chosen based on
their availability of experimentally determined structure and
stability data and their light chain isotypes. We also included
in our dataset three antibody Fabs with mutations in the CH1-CL,
which facilitate selective Fab assembly in combination with
previously described KiH mutations for preferential heavy
chain heterodimerization.

RESULTS

Structural Architecture of the Investigated
Antibody Interfaces
First, we introduce and structurally characterize different
antibody interfaces and their respective architectures
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(Figure 1). All investigated antibody interfaces (23 Fab fragments
and 23 CH3-CH3 domains), summarized in Supplementary
Table S1, have been simulated for 1 µs with classical
molecular dynamics simulations (extracting 10,000 frames) in
explicit solvation to better understand and capture the variability
of these interfaces. Figure 1 shows the comparison of the dimeric
antibody interfaces in the antigen-binding fragment (VH-VL and
CH1-CL domains) and in the third constant domain (CH3-CH3
domain). All of the presented interfaces share the same
immunoglobulin fold, which is characterised by hydrogen
bond interactions between the different β-strands.
Additionally, we find that the CH1-CL and CH3-CH3 domains
have actually the same number of β-strands, i.e., a 3-stranded
sheet packed against a 4-stranded sheet. Also, the relative
orientation of the two monomers with respect to each other
(approximately 90° observed in X-ray structures) is nearly
identical between the CH3-CH3 and CH1-CL dimers. Thus, the
CH3-CH3 and CH1-CL dimers share a very similar structure and
fold. However, we observe structural differences in the overall
architecture between the CH1-CL/CH3-CH3 and the VH-VL

domains, as the VH-VL domains differ in their number of
strands (9 β-strands arranged in two sheets of 4 and 5
strands), and in their relative orientation between the VH and
VL monomers with respect to each other (approximately 50°

observed in X-ray structures).

Relative Interdomain Orientations of CH1-CL

and CH3-CH3 Domains
Apart from understanding the structural architecture, the dimeric
interfaces are strongly influenced by the relative interdomain
orientation and their respective dynamics. To calculate the
interface movements, we used the well-established ABangle
tool (Dunbar et al., 2013) and a recently presented python
tool, called OCD tool (Hoerschinger et al., 2021), which both
allow to calculate the interface orientations of different
immunoglobulin like domains by defining five angles (one
torsion angle (HL/AB)/four tilt angles (LC1, LC2, HC1, HC2/

AC1, AC2, BC1, BC2) and one distance (dC). For the CH1-CL

domains we added the prefix c to the angle names (cHL, cLC1,
cLC2, cHC1, cHC2, dC), as the CH1-CL dimer forms the constant
domain of the Fab fragment and to be able to distinguish them
from the variable fragment (Fv) nomenclature. The detailed
definition of these angles is presented in the methods section.
Figure 2A shows a superimposition of the two dimers (CH1-CL

and CH3-CH3), highlighting the high structural similarity of the
β-strands, while the loops on the other hand differ between the
two dimers (Cα-RMSD 1.8Å). Figure 2B depicts the interdomain
angle distributions of the relative interdomain orientations for all
investigated CH1-CL and CH3-CH3 simulations and shows
significant overlaps in the interface angle (cHL/AB)
distributions. However, the CH1-CL shows a higher variability
in the interface angle, which is reflected in broader angle
distributions, compared to the CH3-CH3 dimer. Apart from
the higher flexibility in the interdomain angle, we also find
shifted CH1-CL distributions towards lower cHL-Angle values.
The torsion angle (cHL) of all CH1-CL domains ranges from
65°–110°, while the torsion angle (AB angle) of all CH3-CH3
ranges from 85–125° (cHL angle, AB angle). The biggest
difference in the relative interdomain orientations can be
observed for the Fv torsion angles (HL angle), which range
from 35°–80° (Supplementary Figure S1).

Structural Characterization of the CH1-CL

and CH3-CH3 Interfaces
To structurally characterize interactions in the CH1-CL and CH3-
CH3 interfaces, we use the GetContacts tool (Stanford University,
adate), which calculates the interface contacts in a time-resolved
way and depicts them with so-called flareplots (https://
getcontacts.github.io/). To better visualize the comparison
between the two interfaces we grouped the residues belonging
to the same loops and β-strands to obtain coarse grained
flareplots. This coarse-grained representation of the CH1-CL

and CH3-CH3 interfaces also allows having a better overview
about the regions of these interfaces that actually form key

FIGURE 1 | Structural and schematic representation of the modular anatomy of an antibody focusing on the discrete protein domains, which are characterized by
the immunoglobulin fold. (A) Crystal structure of a whole IgG2 antibody (PDB: 1IGT) highlighting the different interface classes and their respective domain architecture.
(B) Schematic depiction of the tertiary structure features, i.e., number and organization of the β-strands, for each of the individual antibody domains sharing the
immunoglobulin fold. The CH3 and CL/CH1 domains do not only share a similar structure and topology but also contain the same number and arrangement of
β-strands. The variable domains on the other hand differ in their number of β-strands and their architecture and are therefore color-coded differently.
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interactions, which contribute to their structural integrity and to
their stability. The β-strands are labelled with single letters, while
the loops are tagged with a two-letter combination of the
respective β-strands before and after the loop. To ease the
comparison between CH1-CL and CH3-CH3 we refer both to
the CL domain and one of the CH3 domains (the domain A) as “a”
and to the CH1 domain and to the other CH3 domain (the domain
B) as “b.” The thickness of the lines in the flareplots corresponds
to the occurrence of a contact (ratio) over the whole simulation
time (10,000 frames/simulation). A representative CH1-CL and
CH3-CH3 structure color-coded and labeled according to the
flareplots (right) is depicted in Figure 3. The coarse-grained
flareplots presented in Figure 3 show all interdomain contact
patterns for both the CH1-CL and CH3-CH3 interface. While the
CH1-CL and CH3-CH3 domains share common interaction
patterns, we also investigated the type of interactions
contributing to the formation of the respective interface. The
flareplots shown in Supplementary Figure S2, Figures 4, 5 are
just exemplary plots. The barplots on the right quantitatively
summarize and compare the contacts observed for all investigated
CH3-CH3 and CH1-CL domains. Supplementary Figure S2
illustrates representative coarse-grained flareplots showing the
interdomain hydrogen bond interactions of both the CH1-CL and
CH3-CH3 domains. While we find overlaps in the hydrogen bond
interaction patterns for the CH3-CH3 and CH1-CL interfaces

(Supplementary Figures S2A,B), they differ substantially in
number and occurrence of interdomain hydrogen bonds
between CH1-CL and CH3-CH3 domains, i.e., the CH3-CH3
domains form significantly more hydrogen bonds between the
a_E – b_DE, a_DE – b_E, a_A – b_AB, a_B – b_E, a_B – b_B and
a_G – b_AB loops/strands (Supplementary Figure S2).

In line with these observations, we find that the CH3-CH3
interfaces are strongly stabilized by salt bridges (Figure 4), while
the CH1-CL interfaces reveal substantially more hydrophobic
interactions (Figure 5). Long-lasting salt bridge interactions
(>60% of the simulation time) in the CH3-CH3 interfaces are
formed by the a_E – b_DE, a_DE – b_E, a_D – b_E, a_B – b_AB,
a_AB – b_B and a_G – b_AB loops/strands. Salt bridges between
the a_AB – b_G and a_DE – b_D loops/strands are present in
both CH1-CL and CH3-CH3 domains (Figure 4). While the CH3-
CH3 domains are characterized by a substantially higher number
of charged interactions, the CH1-CL domains are stabilized by
hydrophobic interactions between the a_B – b_D, a_B – b_A, a_A
– b_A, a_B – b_E and a_A – b_B strands. Even though the CH3-
CH3 interface is strongly stabilized by salt bridge interactions, the
hydrophobic interactions between the a_E – b_B, a_D – b_D, a_E
– b_E and a_E – b_D strands (Figure 5C) are characteristic for
the CH3-CH3 domains, compared to the CH1-CL domains.

Moreover, we find interdomain van der Waals interaction
patterns that are present in both the CH1-CL and CH3-CH3

FIGURE 2 |Comparison of the structurally highly similar CH3-CH3 and CH1-CL domains. (A) Structural overlay of a CH3-CH3 (grey, PDB: 3AVE) and a CH1-CL (cyan,
PDB: 5I19) dimer illustrating their identical scaffold, despite having diverging loop structures. (B)Distributions of interdomain angles for all CH3-CH3 and CH1-CL domains,
respectively. These angles haven been calculated with the recently published OCD tool and show that the CH3-CH3 interfaces cover narrower angle ranges, while the
CH1-CL, due to their higher number of sequence variations, reveal a larger spread. The highlighted distributions shown in blue correspond to the CH3-CH3
heterodimeric DE-KK variant (PDB: 5NSC) and to the λ-light chain antibody (PDB: 1NL0).
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domains, e.g., interactions between a_D – b_D strands
(Supplementary Figure S3). However, also substantial
differences between CH1-CL and CH3-CH3 domains can be
identified for the interdomain van der Waals interactions, such
as the interactions between the a_E – b_E strands and the a_A –
b_AB strand/loop, which are dominantly present in CH3-CH3
domains and the a_E – b_D and a_A – b_B strands, which can be
found more in CH1-CL domains. Figure 6 illustrates contact
maps depicting differences in the number and duration of
hydrogen bond, salt bridge and hydrophobic interactions for
all investigated antibody fragments. The color bar is normalized
according to the most frequent contacts in either of the two
interface classes.

Thus, Figure 6 summarizes the findings shown in Figures 4, 5
and Supplementary Figure S2, as it clearly displays the
substantially higher number of hydrogen bond and salt bridge
interactions for the CH3-CH3 domains, while the CH1-CL

interface is dominated by hydrophobic interactions. To
quantify this difference even more, we calculated the
electrostatic interface interaction energies for all investigated
CH1-CL and CH3-CH3 dimers (Supplementary Table S2). The
strong difference in the type of interactions between the CH1-CL

and CH3-CH3 are even more pronounced in the electrostatic
interface interaction energies, where we find significantly higher

electrostatic interaction energies for the CH3-CH3 dimer,
compared to the CH1-CL domains.

Supplementary Figure S4 shows the comparison of three
CH3-CH3 domains (Dengl et al., 2020) with three engineered
CH1-CL interfaces (Dillon et al., 2017), which were designed
following similar heterodimerization strategies. The goal of
redesigning the CH1/CL interface was to reduce mispairings by
having a stably paired CH1-CL interface due to mutations that
create incompatibilities towards the binding of wildtype CH1 or
CL domains (Dillon et al., 2017). Apart from inserting KiH
mutations, the interface was redesigned by introducing charge
mutations, which co-determine orthogonal heavy and light chain
pairing preferences. The first two presented CH1-CL domains
(Supplementary Figures S4A,B) have newly introduced charge
pairs and are therefore described as KE (CH1 S183K interacts with
CL V133E) and EK (CH1 S183E interacts with CL V133K) variants
(PDB accession codes: 5TDN and 5TDO, respectively). The third
CH1-CL interface (Supplementary Figure S4C) contains
mutations at the edge of the interface at position CL F116A
and CH1 S181M, which introduce more flexibility. Additionally,
KiH modifications are introduced at position CH1 F170S and CL

S176F (PDB accession code: 5TDP). Supplementary Figures
S4A,B shows strong hydrogen bond networks for the KE and
EK variants, especially between the a_E – b_E and a_B – b_E

FIGURE 3 | Structural representation of the CH3-CH3 and CH1-CL domains including a coarse-grained contact analysis of the interactions contributing to the
formation and stabilization of the domain interfaces. (A) Structure of CH1-CL heterodimer (PDB: 5I17) color-coded and labeled according to the coarse-grained flareplots
on the right showing the interdomain interactions present in the X-ray structure. We coarse grained residues belonging to the same loops or β-strands. (B) Structure of
CH3-CH3 (PDB: 5DJ0) dimer color-coded and labeled according to the coarse-grained flareplots on the right, which illustrate the interdomain contacts present in
the X-ray structure.
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strands. Additionally, also strong salt bridge interactions can be
observed for both the KE and EK variants between a_B – b_E
strands, which cannot be observed in the third variant
(Supplementary Figure S4C). Differences can also be
observed in the hydrophobic contacts between the three
engineered CH1-CL variants. While hydrophobic contacts
between a_A – b_A and a_A – b_B are present in all three
variants, the third variant has long-lasting contacts between the
a_E – b_E strands (Supplementary Figure S4C). Additionally,
the two charge optimized CH1-CL domains make strong
hydrophobic interactions between the a_B – b_D and a_B –
b_E strands (Supplementary Figures S4A,B). Comparing CH1-
CL variants with CH3-CH3 domains, we find that the EK and KE
CH1-CL variants (Supplementary Figures S4A,B) are able to
form salt bridges between the a_B – b_E strands, which we only
identified in CH3-CH3 domains before and not in other
investigated CH1-CL domains. The hydrophobic interactions of
the KiH designed CH1-CL domain (Supplementary Figure S4C)
also show CH3-CH3 specific interactions between a_E – b_E

strands, while the EK and KE variants show hydrophobic
interaction patterns which are present in both CH3-CH3 and
CH1-CL domains. Panels d–f in Supplementary Figure S4
illustrate the interdomain interactions of three engineered
CH3-CH3 variants, which are part of bispecific antibody
matrices generated by Format Chain Exchange (FORCE),
which enables the screening of the combinatorial format
spaces (Dengl et al., 2020). These variants were originally
designed by further modifying the 5HY9 KiH structure, which
already differs from the 4NQS KiH structure by an additional
intermolecular disulfide bridge.

In Figure 7 we show three exemplary CH1-CL and three
exemplary CH3-CH3 interfaces color-coded according to the
number of interdomain salt bridge interactions. To facilitate
the visualization of interface interactions, we flip the CH3
domain A and the CL domain. In line with the results
presented in Figure 6, we find that the CH3-CH3 interface is
dominated by salt bridge interactions, while the CH1-CL interface
reveals a substantially lower number of ionic interactions,

FIGURE 4 | Exemplary coarse-grained flareplots showing the salt bridge interactions formed between the different interdomain β-strands and loops of both (A)
CH1-CL and (B) CH3-CH3 domains. (C) Bar plots quantitatively depicting differences in per strand/loop salt bridge interactions. We compare the two interface classes,
i.e., CH1-CL (blue) and CH3-CH3 (red). Thus, we show averages and standard errors of the mean of all investigated antibodies within the respective class.
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FIGURE 5 | Exemplary coarse-grained flareplots showing the hydrophobic interactions formed between the different interdomain β-strands and loops of both (A)
CH1-CL and (B)CH3-CH3 domains. (C) Bar plots quantitatively depicting differences in per strand/loop hydrophobic interactions. We compare the two interface classes,
i.e., CH1-CL (blue) and CH3-CH3 (red). Thus, we show averages and standard errors of the mean of all investigated antibodies within the respective class.

FIGURE 6 |Maps depicting the differences in hydrophobic interactions, salt bridges and hydrogen bonds between CH3-CH3 and CH1-CL domains. (A) Difference
in hydrophobic interactions between all investigated CH3-CH3 and CH1-CL domains (Supplementary Table S1) based on the previously defined coarse graining of the
residues belonging to the same loops or β-strands. We normalized the colorbar according to the most frequent contact in either of the two interface classes. (B)
Difference in salt bridge interactions between all investigated CH3-CH3 and CH1-CL interfaces, showing the substantially higher number of salt bridge interactions
dominating the CH3-CH3 interface. (C) Hydrogen bond difference maps for all investigated CH3-CH3 and CH1-CL interfaces.
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precisely the CH1-CL reveals one characteristic salt bridge
between loop a_AB and β-strand b_G.

Structural CH3-CH3 Interface
Characterization
Apart from identifying differences in interface interaction patterns
between the structurally highly similar CH1-CL and CH3-CH3
interfaces, we provide in Figure 8 an overview of the main
interactions stabilizing the homo-and-heterodimeric CH3-CH3
interfaces (wildtype, KiH and charge inversion). Already from
the panels in Figure 8 the unique and well-defined organization of
the CH3-CH3 interface becomes apparent. Together with the
hydrophobic core interactions (shown in green), various salt
bridge interactions located at the N-terminal and C-terminal
charge cluster (highlighted in pink) contribute to the
stabilization of the dimeric interface. To characterize
interactions and to identify residues that are critical for the
interface formation, we analysed the investigated CH3-CH3

homo-and-heterodimer simulations in-detail. We find that the
interactions in the core of the interface are particularly important
for stabilization and formation of the dimer. One of these crucial
interactions is the stacking interaction between residues Y407-
Y407, which are present in all frames of the simulation in the
variants with both interaction partners present (highlighted in
Figure 8). We observe that especially mutations at the centre of the
interface have a strong influence on the hydrophobic and salt
bridge interaction network of the whole interface. One example
would be the DE-KK variant (PDB accession code: 5NSC) (De
Nardis et al., 2017), which introduces two ion pair interactions into
the hydrophobic core by substituting L351D and L368E in one
domain and L351K and T366K in the other. Even though these
introduced residues strongly interact with each other, the
mutations result in a change of the overall interdomain
interaction patterns, which also differ from all other engineered
variants. Particularly interesting is, that this DE-KK variant has the
highest variability in the interdomain orientations (dC, AB, AC1,
AC2, BC1, BC2) compared to all other investigated variants

FIGURE 7 |Comparison of CH3-CH3 and CH1-CL interface interaction patterns by analyzing their salt bridge interdomain interactions. (A) Stepwise illustration of the
workflow to obtain the “open-book” representation (PDB: 3AVE). (B–G) Each individual domain is gradually colored based on the number and duration of interdomain
interactions. The color-gradient (grey to blue) corresponds to the number of interdomain salt bridges each residue is forming (the higher the number of contacts, the
darker are the shades of blue).
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(Figure 2B). It also shows a slightly higher distance (dc) between
the two domains and bigger variations in the tilt and bend angles,
allowing also water molecules to interact with the N-terminal and
C-terminal charge clusters. We also find similar results for the DD-
KK variant (PDB accession code: 5DK2). The main difference
between the DE-KK and the DD-KK variant is the location of the
mutations. While the DE-KK disrupts the hydrophobic core
interactions at the centre of the interface, the DD-KK variant

introduces substitutions in the N-terminal charge cluster and
C-terminal charge cluster. Introducing charge reversions in the
charge clusters in this example results in an imbalance of positive
and negative charges in the respective domains and, i.e., five
negative charges in domain A, six positive charges in domain B.
In particular the E356K mutation additionally results in a loss of a
critical salt bridge interaction situated at the N-terminal charge
cluster, which consequently shifts the interdomain tilt angles AC1

FIGURE 8 | Interface interaction analysis of the homodimer and two heterodimers following different design strategies, i.e., knobs-into-holes (PDB: 4NQS) and
charge inversion (PDB: 5DK2). The CH3-CH3 dimers consist of a hydrophobic core at the centre of the CH3-CH3 interface (illustrated in palegreen) and two highly charged
regions (N-terminal charge cluster and C-terminal charge cluster), shown in light pink, that stabilize the interface.
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and BC1 and thereby increases the conformational variability in
the interface. In line with these findings, we observe an increase in
flexibility of the core interface residues for the KiH (PDB: 4NQS)
and the charge inversion variants (PDB: 5DK2, 5NSC), which is
reflected in higher root-mean-square-fluctuation (RMSF) values,
compared to the homodimer (Supplementary Figure S7).

DISCUSSION

The idea of modifying antibody interfaces to reduce the risk of
random assembly of different chains has motivated numerous
studies to find variations of the proposed KiH approach, e.g.,
introducing charge pairs. Inverted charge interactions, instead of
steric KiH interactions, were used for example for the design of
the CH3-CH3 heterodimer DD-KK (K409D, K392D-D399K,
E356K) variant (PDB accession code: 5DK2) (Ha et al., 2016).
Also, the combination of the KiH interactions with the
introduction of charge mutations have been presented in the
CH3-CH3 heterodimer EW-RVT (K360E, K409W – Q347R,
K399V, F405T) variant (PDB accession code: 4X98) (Choi
et al., 2015).

One of the most frequent interactions situated in the centre of
the homodimeric CH3-CH3 interface is the Y407-Y407 pi-
stacking contact, residing in the central part of the E strands
(Figure 8). (Dall’Acqua et al., 1998) Mutational studies
confirmed the importance of these residues for the formation
of the homodimeric interface. The salt bridge interactions at the
N-terminal charge cluster and the C-terminal charge cluster
(Figure 8) determine the characteristic interaction profile of
the CH3-CH3 interface and substantially stabilize the dimer.
The hydrophobic core in the homodimeric CH3-CH3 interface
is formed by contacts between residues F405, L368, L351, Y407
and T366. These hydrophobic interactions are often modified
following the KiH strategy (Ridgway et al., 1996; Elliott et al.,
2014; Kuglstatter et al., 2017). The KiH variant (PDB accession
codes: 4NQS, 5HY9, 5DI8) contains a knob in one CH3 domain
(domain A) by mutating residue T366 to the bulkier amino acid
tryptophane (Figure 8). Three other residues on the other CH3
domain (domain B) are also exchanged to smaller residues
(T366S, Y407A, L368V) to ensure hydrophobic and steric
complementarity. The orientation and position of the
introduced tryptophane residue, also called “knob,” dominates
the shape complementary between the two domains.

For the CH3-CH3 interfaces investigated in this study, we
provide a sequence alignment showing the respective mutations
including a classification of the underlying engineering strategies.
To connect the sequence variations to our coarse-grained
flareplots, we included our color-coded strand/loop definition
in the alignment (Supplementary Figures S5, S6).

In our simulations of all different CH3-CH3 homo-and-
heterodimers, we find that if both tyrosine residues are
present, the pi-stacking interaction occurs in all frames of the
simulation and contributes to stabilizing the interface.
Additionally, Y407 forms a stabilizing and conserved hydrogen
bond with T366, located in strand B, which occurs on average in
65% of the simulation time. Thus, as these Y407 residues form

critical interactions, stabilizing the centre of the CH3-CH3
interface, mutating one of these residues can already prevent
homodimerization (Ridgway et al., 1996; Von Kreudenstein et al.,
2013). Additionally, we observe that introducing charge
mutations/inversions at the hydrophobic core, can strongly
influence the interface interaction network as shown for the
DE-KK variant and result in a different interface formation,
which can be accompanied by a decrease in stability. We find
that this decrease in stability for the KiH (PDB: 4NQS) and the
charge inversion variants (PDB: 5DK2, 5NSC), can result in a
higher flexibility of the core interface residues, which is reflected
in higher RMSF values (Supplementary Figure S7).

To compare the interaction patterns of the structurally highly
similar CH1-CL and CH3-CH3 interfaces, we calculate coarse-
grained interdomain interaction maps, which are visualized as
flareplots and quantified as barplots. When comparing different
CH3-CH3 interfaces we find a highly conserved salt bridge
between two glutamate residues (E356/E357) located in the
a_AB loop with the lysine (K439) located in the b_G strand.
These interactions can also be found in the CH1-CL interfaces
containing a λ light chain (PDB accession codes: 7FAB, 1NL0).
Another critical conserved interdomain interaction among CH1-
CL domains can be found between the a_DE loop and the b_D
strand, which is unique for kappa light chain antibodies.
Especially for the salt bridges and hydrophobic interactions
the patterns between κ and λ light chains differ the most
(Figures 4A, 5A). Apart from the conserved contacts among
all CH1-CL interfaces, salt bridges are formed between the a_AB
loops and b_B strands for the λ light chain antibodies.
Interestingly, these salt bridges between a_AB loops and b_B
strands are actually present in all considered CH3-CH3 domains
(Figure 4B). Furthermore, an additional hydrophobic interaction
can be found for the λ light chain antibodies between the a_E -
b_D strands, which again can also be found in the CH3-CH3
interface (Figure 5C). Astonishingly, we observe in Figure 6 that
the CH3 dimer is not only primarily stabilized by hydrophobic
interactions but actually dominated by strong electrostatic
interactions. Our observation, that the CH3-CH3 domains have
a substantially higher number of salt bridges and hydrogen bonds,
can also be explained by very frequently occurring interactions
between residues D399-K409, D399-K392, E356-K439 and E357-
K370, which surround the hydrophobic core. The high number of
salt bridge interactions in the CH3-CH3 interface are also reflected
in the electrostatic interaction energies, which are substantially
higher compared to the CH1-CL domains (Supplementary Table
S2). However, there are high fluctuations in the electrostatic
energies of the individual CH3-CH3 interfaces, which result from
repairing salt bridge interactions between different residues. The
CH1-CL interface on the other hand is formed by mainly
hydrophobic contacts.

The difference in electrostatic interaction energy is also reflected in
the findings presented in Figure 7, which show a comparison of three
CH3-CH3 and three CH1-CL interfaces, illustrated as an “open-book”
representation. The surfaces of the individual domains are color-
coded according to the number of interdomain salt bridge
interactions. We find substantial differences in the interface
interaction patterns between the two interface classes. In
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particular, the CH1-CL interface is dominated by one salt bridge
between the a_AB loop and the b_G strand (Figure 7E). Figure 7F
shows an engineered and mutated CH1-CL interface, which contains
mutations at the edge of the interface, which have been discussed to
introducemore flexibility and indeed, we findmore frequent switches
in interdomain salt bridge interactions, which suggests a higher
flexibility at the edge of the interface. In Figure 7G we depict
interdomain salt bridge interactions of a CH1-CL interface
containing a λ light chain. In agreement with the results in
Figure 4, we find more salt bridge interactions in CH1-CL

interface for λ light chain CH1-CL domains and thus observe
similar interaction patterns compared to the CH3-CH3 interfaces.

Apart from a detailed characterization of the CH3-CH3 and
CH1-CL interfaces, we also investigated the relative interdomain
orientations during the simulations. In line with previous studies,
we find that for the CH1-CL, as well as the CH3-CH3 domains, the
majority of interdomain movements are surprisingly fast and can
be captured in the low nanosecond timescale (Fernández-
Quintero et al., 2020a; Fernández-Quintero et al., 2020b).
Additionally, we observe for the investigated CH1-CL domains
(both λ and κ) left shifted cHL angle distributions towards lower
cHL angles with a broader spread angle in the angle ranges,
compared to the CH3-CH3 domains. For one λ light chain
antibody (PDB accession code: 1NL0) we even observe a
substantially shifted angle distribution towards lower cHL
angle ranges. This higher variability in these cHL angle
distributions is not surprising considering the higher number
of sequence variations that occur in CH1-CL domains, while the
CH3-CH3 domains contain solely point mutations.

CONCLUSION

In conclusion, we present a systematic characterization and a
structural comparison of different CH1-CL and CH3-CH3 domains.
By using molecular dynamics simulations, we find substantial
differences in interaction patterns of the structurally highly similar
CH1-CL and CH3-CH3 interfaces. While CH1-CL interfaces are
dominated by hydrophobic interactions, we find that the CH3-
CH3 interfaces are stabilized by numerous salt bridge interactions
surrounding the hydrophobic core. Furthermore, we provide
quantitative contact maps comparing CH1-CL and CH3-CH3
domains and highlighting which strands are key determinants for
their structural integrity. Apart from the comparison, we also
mechanistically discuss different CH3-CH3 interface engineering
strategies, which provide an extensive understanding of the CH3-
CH3 interfaces and thereby advance the design of bispecific
antibodies.

METHODS

Dataset
The investigated CH1-CL and CH3-CH3 X-ray structures were
chosen to have a representative set of antibodies covering various
challenges in antibody engineering and design, as they differ in
light chain types and follow different design strategies to reduce

the risk of mispairings (Supplementary Table S1). (Ha et al.,
2016; Teplyakov et al., 2016; Dillon et al., 2017; Dengl et al., 2020)
23 crystal structures of heterodimeric CH3 IgG1 mutants, as well
as the corresponding wildtype were obtained from the PDB. The
23 mutants have been designed following different strategies:
knobs-into-holes strategy, complementary electrostatic
interactions, format chain exchange platform or by using
Multistate Design (MSD), which is a computational sequence
optimization tool.

Apart from the 23 CH3-CH3 domains, we also simulated 23
Fab crystal structures.

16 germline Fab crystal structures are from the same library
(Teplyakov et al., 2016). We chose this dataset as it allows to
systematically investigate the influence of different heavy and
light chain pairings. The phage library is composed of 4 heavy
chain germlines IGHV1-69 (H1-69), IGHV3-23 (H3-23),
IGHV5-51 (H5-51) and IGHV3-53 (H5-53) and 4 light chain
germlines (all κ) IGKV1-39 (L1-39), IGKV3-11 (L3-11), IGKV3-
20 (L3-20) and IGKV4-1 (L4-1). These genes were selected based
on the frequency of their use, their cognate canonical structures,
which can recognize proteins and peptides and their ability to be
expressed in bacteria. Additionally, we included three Fab
fragments which were part of a study redesigning the Fab
interfaces. Furthermore, we also investigated two λ light chain
antibodies and two recently published DutaFab structures, which
are characterized by their high stability and their ability to
recognize two different antigens (Beckmann et al., 2021). Dual
targeting (Duta) Fab molecules contain two independent and
spatially separated binding sites within the CDR loops (H-side
paratope and L-side paratope) that simultaneously allow to bind
two target molecules at the same Fv.

MD Simulation Protocol
All X-ray structures were prepared inMOE (Molecular Operating
Environment, Montreal, QC, Canada: 2019) (Chemical
Computing Group, 2020) using the Protonate 3D (Labute,
2009) tool. With the tleap tool of the Amber Tools20 package,
we explicitly bonded all existing disulphide bridges
(Supplementary Figure S8) and placed the Fab and CH3-CH3
structures into cubic water boxes of TIP3P(Jorgensen et al., 1983)
water molecules with a minimum wall distance to the protein of
10 Å (El Hage et al., 2018; Gapsys and de Groot, 2019).
Parameters for all antibody simulations were derived from the
AMBER force field 14SB (Cornell et al., 1995; Maier et al., 2015).
To neutralize the charges, we used uniform background charges
(Darden et al., 1993; Salomon-Ferrer et al., 2013; Hub et al., 2014).
Each system was carefully equilibrated using a multistep
equilibration protocol (Wallnoefer et al., 2010; Wallnoefer
et al., 2011).

Molecular dynamics simulations were performed using
pmemd.cuda in an NpT ensemble to be as close to the
experimental conditions as possible and to obtain the correct
density distributions of both protein and water. Bonds involving
hydrogen atoms were restrained by applying the SHAKE
algorithm (Miyamoto and Kollman, 1992), allowing a
timestep of 2.0 fs. Atmospheric pressure of the system was
preserved by weak coupling to an external bath using the
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Berendsen algorithm (Berendsen et al., 1984). The Langevin
thermostat was used to maintain the temperature at 300K
during simulations (Adelman and Doll, 1976). The parameter
file used to perform all MD simulations is provided at the end of
the Supporting Information.

Contacts
To calculate contacts of both CH1-CL and CH3-CH3 interfaces
we used the GetContacts software (Stanford University,
adate). This tool can compute interactions within one
protein structure, but also between different protein
interfaces and allows to monitor the evolution of contacts
during the simulation. The development of the contacts
during a simulation can be visualized in so-called
flareplots. For all available simulations (Supplementary
Table S1) we calculated all different types of contacts,
including hydrogen bonds (sidechain/sidechain, sidechain/
backbone, backbone/backbone), salt bridges, hydrophobic
and Van der Waals interactions. The contacts are
determined based on the default geometrical criteria
provided by GetContacts. To recognize interface patterns
and to describe the dissociation mechanisms of both the
CH1-CL and CH3-CH3 domains, we coarse grained residues
belonging to the same loops or β-strands. The secondary
structure assignment has been performed with STRIDE
(Frishman and Argos, 1995; Heinig and Frishman, 2004).
To quantitively identify systematic differences in the
interface interactions of the two interface classes, we
evaluated the frequency of different interaction types. Thus,
we counted contacts (for each type of interaction) of certain
structural elements, e.g., salt bridges between the strand a_A
and the loop b_AB. Furthermore, we calculated mean contact
frequencies (contact per frame) in the simulations and
averaged these frequencies within the interface classes and
compared the results. In addition, we quantified the standard
error of the mean of these contact frequencies within these
classes. This comparison enabled us to find contacts, which,
e.g., exist in all the CH1-CL interfaces, but not in CH3-CH3
interfaces, or vice versa. Apart from visualizing and
quantifying the contacts of both CH1-CL and CH3-CH3
interfaces, we also calculated the linear interaction energies
(LIE) by using the LIE tool implemented in cpptraj (Roe and
Cheatham, 2013). We calculated the electrostatic interaction
energies for all frames of each simulation (10,000 frames/
simulation) and provided the simulation-averages of these
interaction energies in Supplementary Table S2.

Interdomain Orientation Calculations
While computational tools to fully characterize the Fv region of
antibodies and TCRs are already available, no such tools were
published for other immunoglobulin domain interfaces, such
as the CH3-CH3 and the CH1-CL interface (Dunbar et al.,
2013). The OCD approach (Hoerschinger et al., 2021)
creates a suitable coordinate system for the characterization
of these interfaces for any user-provided reference structure.
This allows a straight-forward analysis without the significant
demands on previous structural knowledge. Using this tool, a

reference coordinate system is created based on user-defined
reference structures consisting of an atomic structure and two
domain selections over these atoms. To this end, the reference
structure for each domain is generated by considering a center
axis linking the two centers of mass of the different domains,
and the first principal axis P of inertia of each domain
corresponding to the lowest eigenvalue of the inertia tensor.
Each individual domain is aligned to the world coordinate
system by aligning this principal axis to the z unit vector and
the center axis as close as possible to the x unit vector, yielding
a reference structure for each domain. To map the coordinate
system onto a sample structure, the references are aligned to
the sample and the alignment transformations are applied to
the xyz unit vectors. The transformed z vectors (A1/B1) and y
vectors (A2/B2) as well as the center axis are then used to
calculate six orientational measures: Two tilt angles for each
vector towards the center axis (AC1, AC2, BC1, BC2), the
length of the center axis (dC) and a torsion angle (AB) between
the two intersecting planes composed of A1, the centre axis
and B1. To better visualize the relative interdomain
orientations we performed the Gaussian kernel density
estimation (KDE) on the HL angles, to obtain the
probability density distributions. To calculate the KDE we
used the recently published implementation of KDE in C++
(Kraml et al., 2021). We used 10,000 frames of each MD
simulation (1µs) to calculate and plot the relative
interdomain orientations.

Relative VH and VL Orientations Using
ABangle
ABangle is a computational tool (Dunbar et al., 2013; Bujotzek
et al., 2015; Bujotzek et al., 2016; Fernández-Quintero et al.,
2020b) to characterize the relative orientations between the
antibody variable domains (VH and VL) using six
measurements (five angles and a distance). A plane is
projected on each of the two variable domains. Between these
two planes, a distance vector C is defined. The six measures are
then two tilt angles between each plane (HC1, HC2, LC1, LC2)
and a torsion angle (HL) between the two planes along the
distance vector C (dC). The ABangle script can calculate these
measures for an arbitrary Fv region by aligning the consensus
structures to the found core set positions and fitting the planes
and distance vector from this alignment. This online available
tool was combined with an in-house python script to reduce
computational effort and to visualize our simulation data over
time. The in-house script makes use of ANARCI(Dunbar and
Deane, 2016) for fast local annotation of the Fv region and pytraj
from the AmberTools package (Case et al., 2020) for rapid
trajectory processing.
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Guiding protein design choices by
per-residue energy breakdown
analysis with an interactive web
application

Felipe Engelberger, Jonathan D. Zakary and Georg Künze*

Institute for Drug Discovery, Leipzig University, Leipzig, Germany

Recent developments in machine learning have greatly facilitated the design of
proteins with improved properties. However, accurately assessing the
contributions of an individual or multiple amino acid mutations to overall
protein stability to select the most promising mutants remains a challenge.
Knowing the specific types of amino acid interactions that improve energetic
stability is crucial for finding favorable combinations of mutations and deciding
which mutants to test experimentally. In this work, we present an interactive
workflow for assessing the energetic contributions of single and multi-mutant
designs of proteins. The energy breakdown guided protein design (ENDURE)
workflow includes several key algorithms, including per-residue energy analysis
and the sum of interaction energies calculations, which are performed using the
Rosetta energy function, as well as a residue depth analysis, which enables
tracking the energetic contributions of mutations occurring in different spatial
layers of the protein structure. ENDURE is available as a web application that
integrates easy-to-read summary reports and interactive visualizations of the
automated energy calculations and helps users selecting protein mutants for
further experimental characterization. We demonstrate the effectiveness of the
tool in identifying the mutations in a designed polyethylene terephthalate (PET)-
degrading enzyme that add up to an improved thermodynamic stability. We
expect that ENDURE can be a valuable resource for researchers and
practitioners working in the field of protein design and optimization. ENDURE
is freely available for academic use at: http://endure.kuenzelab.org.

KEYWORDS

protein design, energy calculation, amino acid interaction, web application (app),
machine learning

1 Introduction

The design of proteins with improved stability and activity is a critical aspect of research
in biotechnology and related fields. It holds the potential to revolutionize a wide range of
applications (Arnold, 2018), from developing enzymes for industrial processes (Chen and
Arnold, 2020), antibodies and antivirals for medicine (Sevy and Meiler, 2014; Willis et al.,
2015) to molecular switches and biosensors (Stein and Alexandrov, 2015; Quijano-Rubio
et al., 2021). Protein design has been demonstrated to play a crucial role in many different
areas of biotechnology (Castro et al., 2022; Habibi et al., 2022; Reetz, 2022).

Two widely used protein design approaches are directed evolution and computer-aided
protein design. The former approach mimics the natural gene diversification and selection
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process and involves iterative rounds of mutagenesis, which create a
library of mutants, and selection of mutants with desired functions
(Arnold, 2018). Computer-aided protein design typically involves
algorithms that suggest mutations for experimental testing (Pan and
Kortemme, 2021). These algorithms may be based on in-depth
molecular modeling, e.g., with the Rosetta software suite (Leman
et al., 2020), or machine learning predictions (Dauparas et al., 2022).
The experimental testing of the designed proteins is time-, cost-, and
labor-intensive. Thus, prioritizing the most probable candidates for
experimental testing is necessary. To facilitate mutant selection, it
can be informative to determine the specific types of amino acid
interactions that contribute to protein stability and assess the
energetic impact of mutations (Goldenzweig et al., 2016).

Machine learning algorithms have revolutionized the field of
protein design, enabling researchers to generate novel proteins with
improved properties more efficiently (Dauparas et al., 2022; Ferruz
and Höcker, 2022). Two current state-of-the-art methods are the
evolutionary and structure-based design method PROSS
(Goldenzweig et al., 2016; Weinstein et al., 2021), and the deep
learning method ProtMPNN (Dauparas et al., 2022). Both methods
can yield tens to hundreds of candidate structures or sequences.
Selecting the best candidates for experimental testing is a rather
tricky task, particularly for designed proteins with multiple
mutations, as the effect of each mutation is dependent upon the
presence of other mutations—a phenomenon referred to as epistasis
(Starr and Thornton, 2016). Yet the selection process determines the
success of the overall design process. Thus, it is essential to have
reliable, comprehensive, and easy-to-use methods for evaluating and
selecting the most probable designs, based on the energetic
magnitude and type of interactions (hydrogen bonds, salt bridges,
etc.) introduced by the mutations.

Some existing tools for protein design and mutant selection
include Rosetta (Leman et al., 2020), HotSpotWizard3.0 (Sumbalova
et al., 2018), ProteinSolver (Strokach et al., 2021), and FoldX
(Schymkowitz et al., 2005). Scoring functions and modeling
algorithms from Rosetta were previously tested for the prediction
of protein stability and affinity changes (ΔΔG). Kellogg et al. (2011)
investigated the role of conformational sampling in computing
mutation-induced changes in protein stability and compared the
predictions to experimental ΔΔG values. Barlow et al. (2018)
developed the Flex ddG method using Rosetta ensemble-based
estimation of changes in protein-protein binding affinity upon
mutation. Frenz et al. (2020) focused on improving the
prediction of protein mutational free energy using Cartesian
coordinate minimization. However, all these tools often require
extensive knowledge of the software, leaving non-expert users
without easy access to analyze the outcomes of their protein
design experiments. In the field of de novo protein design, DE-
STRESS (Stam and Wood, 2021) has been developed to help non-
expert users evaluate the plausibility of such designs. Unfortunately,
equivalent tools for assessing the results of sequence design
experiments operated on a provided structure are lacking. To
address this gap, we have developed ENergy breakDown gUided
pRotein dEsign (ENDURE), a modular web application that
provides an interactive and user-friendly interface for analyzing
the energetic contributions of protein designs. ENDURE integrates
easy-to-read summary tables and interactive visualizations of
automated energy calculations, helping users to explore and

reveal mutational hotspots—which confer stabilization or
destabilization—and compare the specific types of interactions
that a particular mutation is introducing. In that way, ENDURE
helps selecting the best protein mutants for further experimental
characterization.

The application workflow (Figure 1) integrates several key
algorithms, which analyze the protein structure using the Rosetta
energy function, including per-residue energy breakdown and the
sum of interaction energies calculations. Additionally, the tool
provides a residue depth analysis, which enables users to track
the energetic contributions of mutations occurring at different
spatial layers of the protein structure, thus easily shedding light
on the particular strategies that a design pipeline might have used
and assessing its particular energetic impact. We demonstrate the
use of ENDURE in assessing a previously designed version of a
polyethylene terephthalate (PET)-hydrolyzing enzyme from
Ideonella sakaiensis (IsPETase), called DuraPETase (Cui et al.,
2021), carrying ten mutations compared to the wildtype IsPETase
(Yoshida et al., 2016). We expect that ENDURE will be a valuable
resource for protein designers, filling a crucial gap in assessing and
explaining the outcomes of protein design calculations.

2 Methods

The architecture and interface of the ENDURE web-app are
designed in such a way that users are guided through the process of
analyzing the energetic contributions of their protein designs in an
intuitive and user-friendly manner. As shown in Figure 1, the whole
workflow consists of several pages implemented in Streamlit
(https://streamlit.io), a web application framework for Python.
Starting from the File Upload page, the user uploads the PDB
files of the designed protein and the reference protein structure.
Alternatively, users can choose to provide amino acid sequences of
the reference and mutant protein, and ENDURE will automatically
predict their structures using ESMFold (Rives et al., 2021). The app
then guides the user through three analysis steps, including pairwise
interaction analysis, residue depth analysis, and inspection of all
pairwise interaction changes by means of an energy difference
heatmap. The results of these analyses are presented to the user
in an interactive way that can be easily adapted to suit their specific
needs using the controls on the left sidebar. The resulting tables can
also be exported and downloaded as CSV file. Streamlit abstracts
both front-end and back-end programming, making the application
easily extensible by users with Python programming knowledge.
Finally, the source code of ENDURE is packaged in a Docker
container for easy installation and replication of the tool across
different compute environments such as servers or HPC clusters.
More details on the technological implementation of the app and the
computational algorithms are provided in the following paragraphs.

2.1 Front end/backend in streamlit

The application’s front end consists of the user interface (UI),
which includes the welcome page, file upload section, and interactive
visualizations. The UI is designed to be user-friendly and easy to
navigate, allowing users to upload their protein structure file,
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prepare the structure, and run the energy breakdown and residue
depth calculations. Since Streamlit is our web development
framework, the front and backend are managed under the hood.
We do include several analysis modules, which are either pure
Python functions or Python functions that call other auxiliary
executables. The names of important internal functions in the
ENDURE app are written in typewriter font in the
following sections.

2.2 Processing structures with ENDURE

The protocol consists of two main stages: 1) structure pre-
processing actions and 2) structure analysis actions. Those
actions are run on the File Upload page.

The pre-processing is an important step in the ENDURE web
tool as it ensures that the uploaded protein structure is in the correct
format and ready for analysis. The pre-processing actions include
cleaning of the PDB files to remove any ligands, ions, or water
molecules, relaxing of the protein structures to remove any steric
clashes or unfavorable interactions, and determining the mutations
for the designed protein relative to the reference protein.
Additionally, the PDB file is renumbered in this step so that the
first residue in the file is at position 1. Relaxing the protein structures
is the second important action in preparing the protein structures
for analysis. This ensures that the protein structure is in a low energy
state according to the Rosetta energy function (Alford et al., 2017),
which can help to minimize false positive results. The ENDURE web
tool uses RosettaScripts (Fleishman et al., 2011) to perform a single
iteration of FastRelax (Khatib et al., 2011) by default, taking a
previously minimized protein structure and optimizing its energy
landscape further. Overall, the input preparation protocol is crucial
for ensuring that the protein structure is in the correct format and

ready for analysis. (See Supplementary Material for the specific relax
and energy breakdown commands).

The analysis actions include the energy breakdown (EB)
calculations, which provide information about the energetics of
each residue’s interaction in the two analyzed protein structures,
and the residue depth (RD) calculations. These algorithms are
powered by the Rosetta energy function (Alford et al., 2017) and
the Biopython (Cock et al., 2009) library, respectively. The EB
calculations are performed using the Rosetta EB executable. In
short, EB determines the one-body and two-body energies for
each residue and decomposes them further into individual score
term contributions, thus allowing the simultaneous exploration of,
e.g., sidechain and backbone interactions. By clicking on the
Calculate Energy button on the File Upload page, the Rosetta EB
calculation is run in a subprocess. Internally, the run function is
launched with four parameters as input: the input PDB file name, the
location to save the result file, the location to save the log file, and the
file path of the Rosetta executable. The output of the protocol is
converted to a downloadable CSV file using the convert_

outfile function, which saves the CSV file as a dictionary in
the current session state.

These actions are followed by the RD calculation, which uses the
MSMS algorithm (Sanner et al., 1996) from Biopython to calculate
the distance of each residue to the molecular surface. The MSMS
software computes the solvent-excluded surface from a set of
spheres, representing the atoms in a protein structure. The
reduced surface is calculated, and an analytical description of the
solvent-excluded surface is derived from it. The calculation is done
in the calculate_depth function.

The processing and analysis actions launched from the File
Upload page are run in the background to prevent the UI from
freezing, and their results are integrated into the interactive
visualizations in the front end.

FIGURE 1
Overview of the ENDURE application architecture. Each colored box represents a subpage that performs a specific task, such as structure pre-
processing and Rosetta calculations (File Upload page), pairwise interactions and residue depth analyses, and lastly visualization of an energy difference
heatmap. The symbols represent the tools and libraries used for analysis and visualization. The Rosetta software is used for residue interaction analysis, the
Biopython library is used for residue depth calculation, and the 3Dmol.js library is used for generating the visualization of the 3D structures. The
process starts with uploading the protein structures, and then proceeds to processing and analysis of the structures. Pairwise interactions and residue
depth are analyzed, and a CSV report can be generated. Finally, an energy difference heatmap is created.
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2.3 Analysis of ENDURE outputs: pairwise
interactions analysis

The Interaction Analysis page allows users carrying out a
comprehensive analysis of the energetic changes in pairwise
interactions of single- and multi-mutant protein designs. The user can
select and analyze interactions from different categories (A to F explained
below) and from different physical interaction types (salt bridges, etc.)
through different control parameters on the side bar. Individual residue
pairs, affected directly or indirectly by the mutations, can be selected and
displayed in interactive 3D visualizations.

We defined six categories of residue pair interactions to identify
the regions in the protein structures most affected by the mutations.

Category A: residue pairs that are interacting in the reference
structure have different interaction energy in the mutant, even
though neither of the two residues were mutated.

Category B: residue pairs that are interacting in the reference
structure have one member replaced, resulting in a different
interaction energy in the mutant.

Category C: residue pairs that are interacting in the reference
structure no longer interact in the mutant, even though neither of
the two residues was mutated.

Category D: residue pairs that are interacting in the reference
structure no longer interact in the mutant because one member was
mutated.

Category E: residue pairs that are not interacting in the reference
structure interact in the mutant, even though neither of the two
residues was mutated.

Category F: residue pairs that are not interacting in the reference
structure interact in the mutant because one member was mutated.

In order for ENDURE to detect the different interaction
categories A-F and different physical interaction types, there are
several functions implemented on the page that users can execute by
clicking the Start Calculations button (after having run all the pre-
processing actions on the File Upload page). Such functions perform
a post-processing and filtering of the scorefile generated by the
Rosetta EB calculations.

The energy_calc function is used to identify the essential
changes in interaction energies between the mutant and the
reference protein structure. It takes the outputs of the residue EB
computation performed for the mutant and reference structures, the
list of mutations between the reference and mutant, and a streamlit
progress bar. The function calls several sub-functions to perform
various interaction energy comparisons for each interaction
category and physical interaction type. The former is managed by
the interaction_analysis function and the latter is managed
by the following functions: salt_bridges, disulfide_bonds,
and hydrogen_bonds. As the names suggest, these functions
calculate the energy differences for different types of interactions,
such as salt bridges, disulfide bonds, and hydrogen bonds.

The interaction_analysis function calculates the
difference in interaction energies between a mutant and a reference
protein structure for a given list of mutations. The interaction_

analysis function processes the outputs of the per-residue EB
performed on the reference and mutant structures. It calculates the
differences in all single-body (i.e., within a single residue) and two-body
(i.e., between two residues) energies for all categories (A to F) between
the two proteins.

In analyzing the interaction energy changes between the
wildtype and mutant protein, it is important to distinguish
between total energy changes and significant energy changes. The
former is the sum of all energy changes, including those with a small
value. However, since thousands of small changes can occur, it is
possible for insignificant changes to mask chemically important
changes. To overcome this issue, the significant energy change is
calculated, which is the sum of only those interaction energy changes
that exceed a minimum magnitude. In ENDURE changes that are
larger than +1.0 Rosetta Energy Units (REU) or smaller
than −1.0 REU are considered significant. By focusing only on
significant energy changes, the mutations that are likely to have a
significant impact can be more easily detected.

For the REF2015 scoring function for soluble proteins, there is
an approximate 1:1 correspondence of REU and kcal/mol (Alford
et al., 2017). However, for other Rosetta scoring functions, which
include statistically derived potentials, the correspondence of
Rosetta score units to thermodynamic energies is convoluted. For
compatibility with other Rosetta scoring functions, which we plan to
add to ENDURE in the future, we decided to report energy values on
the ENDURE web page in REU.

The total energy change for all interactions and the sum of the
subset of significant changes, is calculated using the total_

energy_changes and significant_changes functions,
respectively. These functions operate on a dictionary returned by
interaction_analysis and sum all as well as the significant
energy changes for each interaction category specified in an
interaction list. Interactions from categories A-F can be selected
from a list and the change for a given interaction type (salt bridges,
disulfide bonds, sidechain-sidechain hydrogen bonds, sidechain-
backbone hydrogen bonds, backbone-backbone short-range
hydrogen bonds, backbone-backbone long-range hydrogen bonds,
and all interactions) can be furthered inspected.

2.4 Analysis of ENDURE outputs: residue
depth analysis

Mutation-induced energetic changes can have different effects
on different layers of the protein structure. Therefore, we
implemented a residue depth analysis and combined it with the
per-residue energy breakdown analysis to distinguish changes
occurring on the protein surface from those occurring in buried
regions of the protein structure.

The Residue Depth page of the ENDURE app allows the user to
analyze and compare the effect of mutations on the energy and
spatial location of residues. Specifically, the user can select a residue
pair that displays a strong negative energetic contribution and
visualize the interaction in the protein structure. By adjusting the
threshold slider, the user can see which residues have a significant
impact on stability and select the most promising mutations for
further analysis. Once the user selects a particular mutation by
clicking on a point in the scatter plot, the app displays a side-by-side
3D visual comparison of the residue in the mutant and reference
structures, which allows for a direct comparison of the effect of
mutations on the protein structure. This analysis provides valuable
insights into the structural and energetic changes resulting from
mutations.
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3 Results

The Welcome page (Figure 2) is the first page users will
encounter when accessing the web application. This page
provides an overview of the tool and its functionality, allowing
new users to quickly familiarize themselves with the interface. The
Welcome page includes a brief description of the purpose of
ENDURE and the steps involved in using the tool to analyze
protein designs. The Welcome page is designed to be user-
friendly and intuitive, providing a clear and concise introduction
to the tool and its capabilities, making it easier for users to get started
and use the tool most effectively for their particular research
questions.

Figure 3 presents the File Upload section, where users can
upload their protein structure files in PDB format. The interface
is designed to be intuitive and user-friendly, with options for either
selecting the file from the local file system or dragging and dropping
the file into the designated area. After uploading the file, the user is
prompted to run five important pre-processing actions: 1) cleaning
PDBs, which ensures that the files are correctly parsed, and the
residues are renumbered so that the first residue is at position 1. 2)
Relaxing PDB files, which prepares the files for the analysis. 3)
Determining mutations by identifying the amino acid differences
between the reference and mutant sequences. This information is
crucial for many components of the analysis, as it allows tracking the
position of mutations. 4) Calculating residue depth determines the

average distance of residues from the solvent-accessible surface. This
is a key factor in understanding the energetic contributions of
mutations. The calculation is performed using the Biopython
library and is executed in a separate thread to avoid hanging the
GUI. 5) Creating energy breakdown files, which provide a detailed
breakdown of the energy contributions of individual residues. This
calculation is performed using the Rosetta EB executable, as
explained above, and is run in the background to prevent the
GUI from being frozen.

3.1 ENDURE use case: analysis of an in silico-
designed PET-degrading enzyme

To demonstrate the workflow and scope of application of
ENDURE, we present here the results obtained for a previously
reported designed PET-degrading enzyme, called DuraPETase
(PDB ID: 6KY5) (Cui et al., 2021), which has higher
thermostability than the wildtype IsPETase enzyme (PDB ID:
5XJH) (Yoshida et al., 2016; Joo et al., 2018). As can be seen in
Figure 4A, ENDURE confirms that the particular mutant (carrying
ten mutations) has favorable total and significant energy changes
(−5.8 REU), indicating improved stability. This result is in line with
the experimentally determined increase in the apparent melting
temperature (Tm) of DuraPETase by 31°C compared the wildtype
IsPETase (Cui et al., 2021). In addition, we calculated the significant

FIGURE 2
Welcome page. On the left-hand side, the side bar containing the subpages and status bars is given. The latter indicate, by turning from red to green,
if the pre-processing and analysis actions on the File Upload page are completed. The main section of the Welcome page contains a brief description of
the tool and of each subpage.
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energy changes for two other designed PET hydrolases, FastPETase
(Lu et al., 2022) and HotPETase (Bell et al., 2022), using ENDURE
(Supplementary Table S1). The favorable energy changes for
FastPETase (−10.2 REU) and HotPETase (−27.6 REU) confirmed
their higher stability of Tm = 67°C and Tm = 82°C, respectively,
compared to wildtype IsPETase. This shows the utility of ENDURE
in estimating overall stability changes.

In addition to the overall energy comparison, ENDURE also
provides detailed information about the specific amino acid
interactions that contribute to the improved stability of the
selected mutant. The interaction analysis feature allows focusing
on and visualizing specific residue interactions in the protein
structure, which help to rationalize the underlying molecular
mechanisms contributing to the improved stability of the selected
mutant. These features will be described next.

3.1.1 Interaction analysis—Changes in pairwise
interactions

The Interaction Analysis page of ENDURE enables performing a
detailed examination of the energetic changes for residue pairs of
different types (see Figure 4B). With this help, the user can identify
the particular interactions contributing to improved or impaired
energetic stability.

For example, Figure 4B shows a salt bridge interaction between
residues Arg135 and Asp153, which causes a significant energy
improvement of −3.32 REU in DuraPETase compared to wildtype
IsPETase. This salt bridge isn’t present in the wildtype protein but is
in DuraPETase—i.e., it belongs to interaction category F. IsPETase
has an isoleucine (Ile135) at the same position, which cannot form a
salt bridge. In addition, as shown in the left-hand table in the
screenshot in Figure 4B, there are two more salt bridges detected by

FIGURE 3
File Upload page. (A) Interface before uploading PDB files or using the example files. The latter action can be activated by clicking the “Use Example
File” button. (B) Interface after running all pre-processing and analysis actions. Note that the color of the status boxes turned from red to green.
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ENDURE, which contribute significant energy changes in
DuraPETase: Asp187-Arg252 (−2.52 REU) and Arg120-Asp230
(−1.99 REU). These two interactions belong to category E,
i.e., they do not involve a mutated residue but are probably an
indirect effect of nearby mutations in the environment of the four
residues. Information like this provides valuable insight into protein
structure and can help guide the user in their efforts to design a
better-functioning mutant protein.

The different categories of interaction changes (A to F) allow the
user to quickly identify the changes in interactions that have
occurred and to focus their attention on the most important
ones. For example, if a user observes that most changes are of
type E or F, this might suggest that new interactions have formed,
which could also significantly affect function. By providing this

information, the Interaction Analysis page helps the user to quickly
understand and prioritize the changes in interactions that have
occurred and guide their efforts in protein design.

3.1.2 Residue depth analysis
The residue depth analysis feature allows determining the depth

of each residue in the protein structure, which reflects its
accessibility to the solvent. By analyzing the energetic changes of
mutations occurring in different spatial layers of the protein
structure, the location of mutations that improve or impair
stability can be determined. In Figure 5, the aforementioned
mutation Ile135Arg is displayed as an example. In wildtype
IsPETase, Ile135 is located on the protein surface, indicated by a
low residue depth value of ~2Å (Figure 5A). This surface-exposed

FIGURE 4
Interaction Analysis page. (A) Summary table of the number of significant energy changes for residue pairs belonging to different interaction
categories (A-F, explained in the text) and types of physical interactions in the DuraPETase enzyme. (B) 3D visualization of a salt bridge interaction
(Arg135-Asp153) in DuraPETase from interaction category F (i.e., significant energy improvement due to mutation of one residue in the pairwise
interaction). Other salt bridges with improved energy in DuraPETase compared to the wildtype IsPETase are listed in the table on the left side. The
selected Arg135-Asp153 salt bridge is visually represented in the structure viewer window on the right side, highlighting the selected residue pair in sticks.
Residue pairs from other physical interaction types (hydrogen bonds between backbone or side chain atoms, disulfide bonds) can also be selected, as
explained in the text.
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location is unfavorable for a hydrophobic amino acid. By contrast,
the Arg135 residue in DuraPETase can form favorable interactions
on the protein surface. In addition to the alreadymentioned Arg135-
Asp153 salt bridge, the side chain of Arg135 interacts with the side
chain of Gln155 through a hydrogen bond (Figure 5B). The table in
Figure 5B, which lists the interacting residues for Ile135 or Arg135,
respectively, and highlights their respective energy contributions
(blue: high energy, red: low energy), confirms these visual
observations. These extra interactions, can explain the lower net

energy of −14.16 REU for Arg135 in DuraPETase compared
to −13.32 REU for Ile135 in IsPETase (Figure 5A).

Information like this is important because it can help decide
which residues to mutate in order to improve protein stability. For
example, mutations in the protein core may have a greater impact on
stability than those located near the surface, and thus targeting core
residues for mutagenesis can considerable impact the stability of the
designed protein. Additionally, the residue depth analysis feature
can be used to select the most promising mutants for further

FIGURE 5
Residue depth analysis. (A)Net interaction energy versus residue depth plots for wildtype IsPETA (left) and DuraPETase (right). The blue data point in
the lower left corner of the plot, corresponding to Ile135 in IsPETase or Arg135 in DuraPETase, respectively, has been selected. (B) Side-by-side
comparison of the location and surrounding amino acids of Ile135 and Arg135, respectively. The interacting residues and their energy contributions are
listed above the 3D viewer.
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characterization, by identifying mutations that have an improved
net interaction energy and are located in favorable positions within
the protein structure.

3.1.3 Energy difference heatmap
This feature allows the user to quickly represent all residue pairs

that have a significantly changed interaction energy in the mutant
protein compared to the wildtype, and selectively track specific pair
interactions. The user can select interactively from the residue pair
interaction matrix on the left side in Figure 6 a pair of residues that
display a large negative energetic contribution. The relevance threshold
for the energy can be adjusted with the threshold slider present above.
Once the user has selected a residue pair (Figure 6A), the corresponding
pair (Arg135-Asp153 in this example) will be highlighted in the
structure viewer in the middle of the page (Figure 6B), and a
breakdown of the interaction energy change into individual score
terms from the Rosetta energy function will appear (Figure 6C). For
visual clarity only none-zero score terms are displayed to the user.

4 Discussion

The ENDURE web application provides a user-friendly interface
for analyzing protein structures to facilitate mutant selection in
protein design workflows. The study has shown that the application
can accurately and efficiently process PDB files, clean and renumber
them, determine mutations, calculate residue depth, and generate
energy breakdown files. The interaction analysis section allows users

to view changes in pairwise interactions between residues in the
wildtype and mutant structures by providing visual representations
of the significant and total energy changes.

One of the key innovations of the ENDURE web application is its
ability to group changes in residue pairwise interactions into different
types and categories, ranging from residues that are interacting in the
reference and mutant protein structure with different interaction
energies (category A), to residues that aren’t interacting in the
reference structure but make interactions in the mutant due to a
mutation (category F). These different categories of changes provide a
useful way for the user to identify which mutations have the strongest
impact on the protein structure, and consequently focus design efforts
on specific areas of the protein structure.

Compared to previous research, our web application offers a
user-friendly and accessible solution for analyzing protein structures
and interaction changes. Prior research in this field has typically
been focused on developing computational tools for protein
structure prediction and analysis (Schymkowitz et al., 2005;
Leman et al., 2020; Stam and Wood, 2021) or the analysis of the
effects of single point mutations (Yin et al., 2007). For instance, the
Eris web server (Yin et al., 2007) is an estimator of protein stability
that primarily focuses on single mutations. In contrast, our
ENDURE server is specifically designed to handle multiple
mutations simultaneously while assessing the introduction of
significant pairwise interactions. ENDURE provides a unique
solution by incorporating advanced Rosetta modeling and
analysis algorithms into a user-friendly interface and making
them more broadly accessible.

FIGURE 6
Energy difference heatmap. (A) 2D matrix of residue pair energy changes between IsPETase and DuraPETase. Negative values indicate that an
interaction has a lower (more negative) energy in DuraPETase. The 2D matrix is illustrated as a heatmap with larger negative changes colored blue and
smaller negative energy changes colored red. Users can zoom in the 2D matrix and interactively select a residue pair for further analysis. (B) 3D
visualization of the Arg135-Asp153 residue pair after selecting it in the heatmap in (A). The structure is colored according to the positional energy
difference. (C) Breakdown of the energy change for the selected pairwise interaction into individual Rosetta score terms, representing different physical
interactions.
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It is important to note that the tool is limited by the accuracy of
the underlying computational tools and algorithms used for protein
structure prediction and analysis. Additionally, the interaction
analysis section is based on a static protein structure analysis.
Accuracy in predicting mutation-induced energy changes could
benefit from a model ensemble approach (Peccati et al., 2023), in
which protein dynamic changes like loop rearrangements can be
considered. These limitations should be taken into consideration
when interpreting the results of the analysis.

Despite these limitations, it represents a significant advancement
in the field of protein structure and interaction analysis. The
integration of computational tools into a user-friendly interface
makes it possible for scientists outside the field of computational
structural biology to quickly and efficiently analyze protein structures
and identify potential areas for improvement. In future versions,
ENDURE could be expanded to include additional features and
improvements, such as the ability to examine other kinds of
proteins, including membrane proteins and proteins with
noncanonical amino acid modifications, through the incorporation
of different energy functions. It could also be enhanced to consider
ligand molecules in the design analysis, allowing the identification of
designs with improved binding affinity. These features are currently
planned for the next version of ENDURE, which will be released in the
future. Additionally, the tool could be further developed to
incorporate machine learning techniques to improve the accuracy
of the analysis. With these advancements, ENDURE could become an
even more powerful tool for protein design and analysis.

In conclusion, the ENDURE web application provides a unique
and accessible solution for analyzing protein structure and
interaction changes and, in that way, represents a significant
advancement for the field of protein design. Categorizing changes
in pairwise interactions for different interaction types provides a
straightforward way for the user to guide their protein design
strategies. Integrating computational tools into a user-friendly
interface makes it possible for a broader audience to quickly and
efficiently analyze protein structures. The future direction of the
research will focus on further developing the application to
incorporate analysis on protein dynamics, support for non-
standard amino acid residues, and application of machine
learning techniques. Furthermore, a command line interface
integrated in the front end is planned, which will help further
customize some of the analyses.
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AlphaFold2 has hallmarked a generational improvement in protein structure
prediction. In particular, advances in antibody structure prediction have
provided a highly translatable impact on drug discovery. Though
AlphaFold2 laid the groundwork for all proteins, antibody-specific applications
require adjustments tailored to thesemolecules, which has resulted in a handful of
deep learning antibody structure predictors. Herein, we review the recent
advances in antibody structure prediction and relate them to their role in
advancing biologics discovery.

KEYWORDS

deep learning, structural modeling, drug discovery, antibody therapeutics, antibody
structure prediction

1 Introduction

Antibodies are the largest class of biotherapeutics, with more than 100 approved
molecules (Kaplon et al., 2023). The antibody drug market is rapidly growing, and it is
predicted to reach approximately $300 billion by 2025 (Lu et al., 2020). As a result, there is
much interest in streamlining antibody discovery methods by tapping into recent
computational advances in deep learning.

One of the most striking computational advances has taken place in structure prediction,
with the development of tools such as AlphaFold2 (Jumper et al., 2021). For antibodies, the
determination of the proper antibody structure is key to many downstream drug discovery
tasks, such as developability annotation (Raybould et al., 2019) or antibody–antigen docking
(Krawczyk et al., 2014; Schneider et al., 2021). Though AlphaFold2 works well for general
proteins, it falls short on the specific case of antibodies (Ruffolo et al., 2022a; Abanades et al.,
2022b; Cohen et al., 2022), prompting the development of antibody-specific modeling
protocols.

In this review, we describe the methods which contribute to the improvement of
computational structure modeling for antibodies and provide context to the role they
play in designing antibody-based therapeutics.
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2 Antibody structure in the context of
3D modeling

Antibody structure prediction is primarily focused on the
variable domains of the heavy chain (Vh) and the light chain (Vl)
(Figure 1A). Each domain is relatively small, comprising
~110 residues each. There are two major hurdles within the
overall antibody structure prediction problem: determining the
relative orientation of the two domains (Figure 1B) and
predicting the complementarity-determining region (CDR)
loop structures. The two domains can be juxtaposed
differently, which affects the overall shape of the antibody
binding site. For this reason, orientating the multimer of the
heavy and light chains is crucial (Dunbar et al., 2013; Bujotzek
et al., 2015).

The CDR prediction problem can be further subdivided into
classifying the “canonical” CDRs (CDR-L1, CDR-L2, CDR-L3,
CDRH1, and CDR-H2) or modeling the CDR-H3. The canonical
CDRs have reasonably conserved folds (Nowak et al., 2016; Kelow
et al., 2022) (Figure 1C). The latter problem is arguably the most
difficult and critical, as the CDR-H3 is the most variable (Figure 1D),
and also plays themajor role in binding (Marks andDeane, 2017; Regep
et al., 2017; Ruffolo et al., 2020; Abanades et al., 2022a).

There is a diversity of methods to approach any of these sub-
problems individually, or predicting the entire multimeric gamut of
variable domains. However, attention is often focused around CDR-
H3 prediction accuracy given its central role in binding and
function. Compilation of the available antibody structure
prediction methods that leverage recent advances in machine
learning are listed in Table 1.

3 Current machine learning methods
tackling antibody structure prediction

3.1 What data fuel the models?

Antibody-based deep learning methods require antibody
structures for training and validation which are typically
downloaded from the Protein Data Bank (PDB). At the time of
writing, there were approximately 7,000 redundant antibody
structures. Although this sample of the antibody sequence space
represents a small subset of all possible antibody molecules (>1015),
it can still be used to model most naturally occurring antibodies
(Krawczyk et al., 2018).

Databases such as AbDb (Ferdous and Martin, 2018) and
SAbDab (Dunbar et al., 2014) curate such antibody-specific
information. Most of the antibody structure prediction tools use
these two resources that facilitate the creation of training, validation,
and test datasets.

3.2 How is the antibody model quality
assessed?

In the original AlphaFold2 work and CASP competition in
general, the structural accuracy is calculated using GDT_TS
(Kryshtafovych et al., 2021). This score is a measure of structural
alignment between the model and native structure that is capable of
indicating fold similarities. All antibodies are already of the same
fold and one needs to account for differences in single loops (e.g.,
CDR-H3), where the RMSD is more suitable.

FIGURE 1
Specifics of the antibody structure in the context of modeling. (A) Variable region in the context of the entire antibody structure. The antibody
binding site is located in the variable region composed of the variable heavy (Vh) and variable light (Vl) polypeptide chains associated with the constant
portions (HC/LC). (B) Heavy/light chain orientation. The orientation of the Vh and Vl is not constant, and differing angles can affect the shape of the
binding site. (C) Canonical structures of CDRs. Most of the binding residues (the paratope) are found in the complementarity-determining regions
(CDRs). There are three CDRs on each of the heavy and light chains. All the CDRs except the CDR-H3 cluster into a set of “canonical shapes” depending on
residues in key positions. (D) Heterogeneity of CDR-H3. CDR-H3 is not only the most variable of the regions but also usually the most important for
antigen binding.
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TABLE 1 Compilation of the available antibody structure prediction methods that leverage recent advances inmachine learning. For eachmethod, we describe the
general goal (e.g., CDR prediction or whole variable region prediction), the accuracy of the most difficult region, the CDR-H3, its code/server availability, and the
source paper. Please note that the CDR-H3 root mean square deviations (RMSDs) are not directly comparable as they could have been obtained from a different
test set and are sometimes calculated in a different fashion, e.g., based on Cα or main chain heavy atom positions. As a baseline and reference point, we also
include the AlphaFold2 predictions since many methods report values with respect to that method.

Method Problem
addressed

Model
characteristic

CDR-H3 prediction
accuracy

Corresponding
AlphaFold2 accuracy

Availability Source

DeepH3 CDR
prediction

Residual neural network 2.2 Å backbone atoms are used N/a https://github.com/
Graylab/deepH3-
distances-orientations

Ruffolo et al.
(2020)

Quaternion and
Euler angle
combined
method

CDR
prediction

Graph neural network SAbDab benchmark: 2.29 Å N/a N/a Son et al.
(2022)

ABlooper CDR
prediction

Graph neural network
based

RosettaAntibody benchmark:
2.49 Å; SAbDab latest
structures: 2.72 Å. Backbone
atoms were used

RosettaAntibody benchmark:
2.87 Å

https://github.com/
oxpig/ABlooper

Abanades
et al. (2022a)

DeepSCAb Antibody side
chain
prediction

Residual neural network Not applicable (side chain
prediction)

N/a https://github.com/
Graylab/DeepSCAb

Akpinaroglu
et al. (2022)

NanoNet Heavy chain
prediction

Residual network RosettaAntibody benchmark:
2.38 Å; Nanobodies: 3.16 Å.
Backbone atoms were used

Nanobodies: 2.88 Å https://github.com/
dina-lab3D/NanoNet

Cohen et al.
(2022)

AbodyBuilder2 Variable region
prediction

Based on
AlphaFold2 structural
module

AbodyBuilder2 benchmark:
2.81 Å. Backbone atoms were
used

AbodyBuilder2 benchmark:
2.90 Å

https://github.com/
oxpig/
ImmuneBuilder

Abanades
et al. (2022b)

EquiFold Variable region
prediction

SE(3)-equivariant neural
network

IgFold benchmark: 2.86 Å (only
N, Cα, C, and O RMSD)

IgFold benchmark: 3.02 Å https://github.com/
Genentech/equifold

Lee et al.
(2022)

tfold-Ab Variable region
prediction

Based on AlphaFold2,
using language models in
the place of Evoformer

IgFold benchmark: 2.74 Å;
SAbDab-22H1-Ab benchmark:
3.03 Å. Backbone atoms were
used

IgFold benchmark: 3.02 Å;
SAbDab-22H1-Ab
benchmark: 3.18 Å

https://
drug.ai.tencent.com/
en

Wu et al.
(2022)

xTrimoABfold Variable region
prediction

Based on AlphaFold2,
using language models in
place of Evoformer

1.25 Å (Cα only) 1.47 Å N/a Wang et al.
(2022)

IgFold Variable region
prediction

Graph transformer using
language model
AntiBERTy

IgFold benchmark: 2.99 Å
(backbone heavy atoms)

IgFold benchmark: 3.02Å https://github.com/
Graylab/IgFold

Ruffolo et al.
(2022a)

AbFold Variable region
prediction

Based on AlphaFold2 AbFold benchmark: 3.04 Å,
(backbone heavy atoms)

AbFold benchmark: 3.14 Å
(backbone heavy atoms)

N/a Peng et al.
(2023)

AbBERT-
HMPN

Sequence and
structure
generation

Deep graph neural
network employing
language models with
generative capabilities

2.38 Å backbone atoms were
used

N/a N/a Gao et al.
(2022)

RefineGNN CDR
prediction and
design

Graph neural network
with generative
capabilities

2.50 Å (Cα only) N/a https://github.com/
wengong-jin/
RefineGNN

Jin et al.
(2021)

AbDockGen CDR-H3
prediction,
design, and
antigen
docking

Graph neural network-
based with generative
capabilities

Not applicable (docking scores
reported)

N/a https://github.com/
wengong-jin/
abdockgen

Jin et al.
(2022)

DiffAb Antibody
sequence and
the structure
design

Diffusion method Test set of 19 complexes: 3.246
Å (Cα only)

N/a https://github.com/
luost26/diffab

Luo et al.
(2022)

DeepAb Variable region
prediction

Residual neural network RosettaAntibody benchmark:
2.33 Å; therapeutics: 2.52 Å.
Backbone heavy atoms were
used

N/a https://github.com/
RosettaCommons/
DeepAb

Ruffolo et al.
(2022b)
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Methods that attempt the modeling of the entire variable region
report the entire chain RMSD, further dividing it into the individual
CDR RMSDs. Nevertheless, here, the gains in structure prediction
accuracy are typically small as such predictions are already of very
good quality, excluding the CDR-H3.

Since the CDR-H3 is the most difficult to predict, it is the
benchmark point of reference for accuracy across different models.
Methods typically report the RMSD of the prediction versus the
native structure. RMSD can be calculated using two different
approaches. Typically, RMSD is calculated based on the
backbone atoms (N, C, CA, and O) or C-alpha (Cα) carbons
only, with the latter always being lower. RMSD can also be
calculated after aligning the entire variable region or only after
aligning the CDR-H3 atoms. The latter method leads to a slightly
lower reported RMSD, as it causes bias in the structural alignment
for a better fit.

3.3 What methods and techniques are used
for modeling individual antibody loops and
individual chains?

Due to the importance of the CDR-H3 loop, many methods
focus exclusively on modeling this region. For instance, DeepH3 and
ABlooper were designed for CDR-H3 loop prediction, rather than
addressing the entire variable region. DeepH3 is based on a residual
network architecture that receives one-hot encoding of the sequence
to be predicted as input. In terms of residual network size, it is much
smaller than RaptorX (Källberg et al., 2012) on which it is based (6
1D + 60 2D) with only 3 1D + 25 2D blocks. It operates by predicting
discretized inter-residue distances (assigning distances into equally
spaced intervals) and orientation angles which are employed for full
structure reconstruction by RosettaAntibody. In contrast, ABlooper
is based on equivariant graph neural networks [E(G)NNs], which
are equivariant to translations and rotations in 3D space (Satorras
et al., 2021). ABlooper allows for coordinate uncertainty estimation
by calculating the agreement between five independently trained
neural network models. The chief advantage of ABlooper is speed, as
it can produce hundreds of structures within seconds as opposed to
previously available homology modeling methods that required
around a minute.

Beyond CDR-H3-focused predictions, one needs to
contextualize this loop to the rest of the heavy chain. One of the
early machine learning models that could perform whole chain
predictions is NanoNet. Originally designed as a predictor of single-
chain antibodies (Deszyński et al., 2022), it can also predict heavy
chains of canonical antibodies. Similar to DeepH3, it is a residual
neural network (ResNet) that relies on one-dimensional
convolutions to map sequence elements to three-dimensional
coordinates. Unlike DeepH3, which operates on invariant features
(residue distances and orientation angles), NanoNet operates on a
single frame of reference by aligning all PDB heavy chains to a single
reference structure. Owing to this, the predictions of the NanoNet
are 3D coordinates, not requiring further translation into the
structure as is the case with invariant features. In the context of
the entire heavy chain prediction, authors report 2.38 Å accuracy for
CDR-H3 (solutions in the region of 1 Å can be considered near-
native). Similar to ABlooper, NanoNet is rapid, allowing for

predicting thousands of structures in a matter of seconds.
However, the predicted structures are often of bad physical
quality [e.g., atomic clashes, D-amino acids, etc. (Fernández-
Quintero et al., 2023)], requiring refinement.

3.4 What architectures and techniques are
currently used to predict the entire antibody
variable region structure?

Prediction of the entire variable region requires modeling and
multimeric assembly of both heavy and light chains. Herein,
DeepAb is a network that predicts discretized residue distances
and orientation angle bins that are then passed for structure
realization using Rosetta. The chief innovation of DeepAb is the
usage of a language model as an input to the network. Employing
embedding (internal efficient representations of input antibody
sequences) for prediction offers an opportunity for the network
to perform prediction on more efficient features extracted by the
language model. Furthermore, the network employs attention
mechanisms that allow tracking of which residues contribute to
each other’s predictive signal.

Residual neural networks provide limited ways to abstract
invariant three-dimensional information. Representing the entire
variable region structure as a graph (as was the case with ABlooper)
offers a solution to this problem. For instance, one can encode amino
acids as nodes (using features such as amino acid and position) and
draw edges between nodes/residues in proximity (e.g., within 8 Å
heavy atom distance). Graph neural networks (GNNs) have
increasingly gained popularity; this is hallmarked by ABlooper,
IgFold, and EquiFold. The authors of EquiFold employed a
coarse-grained representation for nodes to demonstrate its power
within the framework of a SE (3) (special Euclidean (3) group
ensuring rotation and translation equivariance) equivariant
network. Ensuring geometric equivariance helps the network in
learning features that can be rotated and translated. A more abstract
representation using quaternions and Euler angles to encode the
amino acids as invariant representations and as an extension of
RefineGNN residues has been shown to achieve CDR-H3
predictions in the region of 2.5 Å. IgFold is another GNN-based
method that also employs embeddings from AntiBERTy, which is
trained on 500-m antibody sequences to supplement its prediction
of the entire variable region.

Three key components have contributed to the success of
AlphaFold2: the Evoformer, invariant point attention (IPA), and
recycling. First, AlphaFold2 infers spatial constraints between amino
acids by extracting evolutionary information embedded within
multiple sequence alignments (MSAs) using its Evoformer
module. In parallel, this information is fed into a structural
module that leverages IPA to predict coordinates. IPA is a novel
attention mechanism designed to be invariant to rotations and
translations by aligning the feature vectors based on the
geometric relationship between the residues without changing
their 3D positions. It has been shown that it improves the
accuracy of protein structure prediction by enabling the network
to better capture the complex spatial relationships between residues
in a protein. Finally, the whole workflow is repeated or “recycled”
three times to refine the prediction.
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While AlphaFold2 was designed for predicting any arbitrary
protein sequence, its main components have influenced the
design of antibody-specific tools. There are variations in the
implementation of each of the aforementioned three
components. For example, IgFold uses separated weights for
each IPA layer and gradient propagation through rotations.
xTrimoFoldAb and tfold-Ab use language model embeddings
to replace the Evoformer, before applying the learned constraints
into the structural module. Other methods, such as
ABodyBuilder2, demonstrated that one can use only the
structural module without resorting to antibody-specific
embeddings or modified Evoformers. The antibody-focused
methods are more accurate than AlphaFold2, but these
improvements are limited. One major advantage of antibody-
specific methods is their efficient running time. For instance,
ABodyBuilder2 achieves predictions in a matter of seconds,
compared to tens of minutes for AlphaFold2. AlphaFold2’s
running time is comparatively long because of the MSA search
step, which is unnecessary for antibody-specific methods.

The loss function drives the training of a model as it penalizes
wrong predictions and rewards better ones. It is extremely
important as one of the chief innovations of AlphaFold2 was
the introduction of the frame aligned point error (FAPE) loss.
This component exposes the model to information related to
physicochemical constraints, such as proper chemical bond
distances and angles, as well as penalizing atom clashes and
other structural violations, and is also used in some of the
antibody-specific models. However, because of the skewed
difficulty in structure prediction, applying the same loss to
each antibody region is not an ideal approach. For instance,
xTrimoABFold employs focal loss focused on CDRs that are
more difficult to predict. On the other hand,
ABodyBuilder2 treats framework and CDR regions differently,
clamping framework regions at a FAPE loss of 30 Å and the
CDRs’ FAPE loss at 10 Å.

3.5 How do networks approach fine-
structural details beyond the backbone?

Despite the progress in predictions, a seemingly trivial
problem faced by the networks is the physical plausibility of
the produced models (Fernández-Quintero et al., 2022). It was
observed in AlphaFold2 that the structure module can produce
predictions violating physical constraints, such as atomic
clashes. This is not only a problem of AlphaFold2-based
methods, and methods such as NanoNet and EquiFold are
also afflicted. Methods such as ABodyBuilder2 and IgFold
employed OpenMM and Rosetta, respectively, to reduce the
number of physical clashes in the model produced by a
neural network. The number of non-physical distances can
also be reduced by introducing various physical
constraints at the training time (Eguchi et al., 2022;
Kończak et al., 2022).

Although structure prediction is typically evaluated on its
ability to recapitulate the backbone, the determination of the side
chains is important for fine-grained modeling of molecular
function, such as binding affinity. Methods such as

ABodyBuilder2 and IgFold produce the backbone structures
annotated with side chains. Other methods such as EquiFold
use a novel coarse-graining scheme where atoms are mapped to
coarse-grained “superatom” prior to structural modeling and
then reverse-mapped to the individual atoms once the
backbone is constructed (Akpinaroglu et al., 2022). Other
methods such as NanoNet only produce the backbone. Side
chains are typically added by algorithms such as SCWRL
(Krivov et al., 2009) or PEARS (Leem et al., 2018), but
recently an antibody-specific side chain prediction mechanism
using convolutional neural networks has been
introduced—DeepSCAb (Akpinaroglu et al., 2022). Altogether,
fast and accurate prediction of all-atommodels is key to using the
antibody structures for practical drug discovery purposes.

4 Drug discovery perspective of
antibody structure prediction

Antibodies are a well-established drug format, with the structure
as a key component in aiding their discovery and development,
paving ground for real-world applications of 3D modeling.

Antibody structures provide rich information that can be used to
improve various prediction features, such as molecular recognition
(Oh et al., 2021), liability detection (Irudayanathan et al., 2022), or
developability screening (Jain et al., 2023). These models can
complement wet-lab antibody discovery methods, such as
immunization or phage display, to ultimately improve the
selection of binders. For instance, the identification of antigen-
specific antibodies was typically tackled using clonotype/sequence
clustering methods. Machine learning has shown alternative ways to
group these molecules such as by embeddings from variational
autoencoders (VAEs) (Friedensohn et al., 2020), predicting
paratope residues (Richardson et al., 2021), or clustering
structures (Robinson et al., 2021). In particular, structural
clustering can provide a highly translational interpretation of
antibody binding. The methods described in this Review are
highly scalable, making it possible to group thousands of structures.

The optimization of biologics is the process of improving an
existing molecule, which already displays a variety of desirable
properties, with regard to a set of physicochemical properties.
Structural features can be employed to guide the optimization
process. A trivial example would be to focus existing liability
removal (e.g., deamidation) protocols on only surface-exposed
residues, which can be identified based on a reasonably accurate
three-dimensional model (Irudayanathan et al., 2022). Structural
features can be indicative of successful therapeutics (Raybould et al.,
2019; Ahmed et al., 2021), with some differences in the calculated
results based on the underlying modeling method (Jain et al., 2023).
In some cases, such as antibody–antigen docking, good quality
models are needed to reach the results achieved by docking
crystal structures (Schneider et al., 2021).

The most ambitious use of antibody structure prediction is for
the de novo antibody design, where the goal is to computationally
define an antibody sequence that can bind to a given target epitope.
One approach to the de novo design that relies on structural
predictions is “virtual screening,” a methodology that has been
practiced in small molecule drug discovery for decades but has
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only been recently applied to antibodies. This can involve the
modeling of and selection from millions of antibody molecules,
which are then funneled into a molecular docking approach
(Schneider et al., 2021; Jin et al., 2022) or alternative binding site
design methods (Rangel et al., 2022). The quality of the models is a
key consideration as subtle changes in Vh/Vl arrangement,
backbone, or side chain orientation can affect the quality of the
predictions (Fernández-Quintero et al., 2022). In addition, any such
efforts hinge on linking the antibody structural predictions to
paratope–epitope interaction prediction. In this context, “zero-
shot” predictions require the models to propose sequences
binding a specific epitope without observing it, or any close
variants of it, in the training/test sets.

Another approach to the de novo design is using generative
methods. Herein, the latent space of the input (e.g., antibody
sequences) is learned, providing a way to sample novel
elements. Producing novel sequences based on transformer
models has already been shown in general proteins (Rives
et al., 2021) as well as in the antibody world (Melnyk et al.,
2021; Saka et al., 2021; Shin et al., 2021; Shuai et al., 2021).
Autoregressive methods such as IgLM (Shuai et al., 2021) offer
a way to generate new binder sequences based on millions of
sequences from natural repertoires. Such generation can also
be biased toward sequences with certain biophysical properties
by GANs (Amimeur et al., 2020). Most such methods, however,
are currently sequence-driven but not structure-driven.

Structure holds the potential to provide more information
than sequence alone (Kovaltsuk et al., 2017). Encoding the
structural space, in the form of torsional angles using VAEs,
has shown potential in generating novel 3D shapes (Eguchi et al.,
2022). Leveraging structural information for generating
paratopes to specific antigens should produce better results
than using sequence alone (Jin et al., 2022). Higher quality
structural models have the potential to inform better
structure-generation methods, leading to more accurate
emulation of molecular space than sequence alone.
Embeddings generated by the inverse-folding of general
proteins have already shown potential to be useful for B-cell
epitope prediction (Hsu et al., 2022; Høie et al., 2023).

In the context of structure-conditioned generative methods,
RefineGNN, AbDockGen, AbBERT-HMPN, and DiffAb go a step
further than the modeling methods described in this review. They
also provide a “compatibility” score for the structure and designed
sequence. RefineGNN, AbDockGen, and AbBERT-HMPN are
based on the iterative refinement of latent representations from
graph neural networks, whereas DiffAb samples via a denoising
diffusion model. The integration of structure prediction and
sequence design is the next intuitive step superseding structure
prediction, which holds the promise to enhance antibody-based
drug discovery.

5 Conclusion

Advances in protein structure prediction have practical
application in the discovery of new antibody drugs.

In general, accuracy increasing with respect to the pioneer in
ML-based accurate structure prediction, AlphaFold2, is noticeable,

but stay within an order of magnitude. Predictions of the CDR-H3
structure in particular appear to be “stuck” in the 2–3 Å heavy atom
backbone RMSD interval. Difficulty in the prediction of CDR-H3
conformation could stem from the loops’ flexibility (Wong et al.,
2011; Fernández-Quintero et al., 2018; Jeliazkov et al., 2018) as well
as the possible influence of the Vh/Vl orientation (Marze et al., 2016;
Boucher et al., 2023). With only several thousand antibody
structures at hand (Dunbar et al., 2014), it is challenging to study
any flexibility or allosteric effects, but perhaps with a larger number
of better quality cryo-EM structures we will increase the volume of
structural information available. Efforts in improving antibody
structure prediction might take the flexibility into account by
scoring the CDR-H3 conformational ensemble rather than single
“best structure” produced.

The main advantage of the antibody-specific methods with
respect to AlphaFold2 is the speed. The antibody sequence
space in a single individual [~109–1011 (Briney et al., 2019)]
easily surpasses the human proteome (~20 k). The speed of
antibody modeling methods is of utmost importance, as it
directly translates to the mapping of the available antibody
sequence space (Kovaltsuk et al., 2018; Olsen et al., 2022),
antibody virtual screening (Schneider et al., 2021; Rangel
et al., 2022), and the development of novel generative models
(Eguchi et al., 2022).

Given the number of currently available antibody-specific
structure predictions, it might be suitable to take stock of the
state of the field and devote efforts into benchmarking the
different methods as was the case with the two rounds of the
Antibody Modeling Assessment competition (Almagro et al.,
2011; Almagro et al., 2014). In the field of antibody discovery
specifically, we could use the tools not only to test by a single
measure of RMSD but also to assess how useful the structural
predictions are for therapeutically minded tasks, such as lead
optimization, docking, epitope, or paratope prediction.

Altogether the accuracy, speed, and accessibility of the
current antibody modeling methods make it possible to apply
structural information to various aspects of biologics discovery
pipelines today. An incremental improvement to existing
discovery approaches using structure-guided computational
methods appears entirely feasible, while the field continues to
move ever forward toward the “holy grail” of the true de novo
antibody design.

Author contributions

IJ, WB, and KK contributed to the conception and design of the
study. IJ and WB wrote the first draft of the manuscript. IJ, WB, PD,
TS, JK, WW, BJ, SW, DC, JG, JL, SK, and KK wrote sections of the
manuscript. TG prepared the figures. All authors contributed to the
article and approved the submitted version.

Funding

This work was co-financed by the European Regional
Development Fund within the Smart Growth Operational
Programme 2014–2020 POIR.01.01.01-00-0962/21 (to KK).

Frontiers in Molecular Biosciences frontiersin.org06

Jaszczyszyn et al. 10.3389/fmolb.2023.1214424

47

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1214424


Conflict of interest

IJ, WB, TG, PD, TS, JK, WW, BJ, SW, DC, and KK are
employees of NaturalAntibody that develops data, software and
machine learning solutions for the therapeutic antibody industry. JG
and JL are employees of Alchemab. SK is an employee of UCB
Pharma.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abanades, B., Georges, G., Alexander, B., and Deane, C. M. (2022a). ABlooper: Fast
accurate antibody CDR loop structure prediction with accuracy estimation.
Bioinformatics 38 (7), 1877–1880. doi:10.1093/bioinformatics/btac016

Abanades, B., Wong, W. K., Boyles, F., Georges, G., Alexander, B., and Charlotte, M.
D. (2022b). ImmuneBuilder: Deep-Learning models for predicting the structures of
immune proteins. Available at: https://www.biorxiv.org/content/10.1101/2022.11.04.
514231v1 (Accessed November 4, 2022).

Ahmed, L., Gupta, P., Martin, K. P., Scheer, J. M., Nixon, A. E., and Kumar, S. (2021).
Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. Proc.
Natl. Acad. Sci. 118 (37), 577118. doi:10.1073/pnas.2020577118

Akpinaroglu, D., Ruffolo, J. A., Mahajan, S. P., and Gray, J. J. (2022). Simultaneous
prediction of antibody backbone and side-chain conformations with deep learning. PloS
One 17 (6), 0258173. doi:10.1371/journal.pone.0258173

Almagro, J. C., Beavers, M. P., Hernandez-Guzman, F., Maier, J., Shaulsky, J.,
Butenhof, K., et al. (2011). Antibody modeling assessment. Proteins 79 (11),
3050–3066. doi:10.1002/prot.23130

Almagro, J. C., Teplyakov, A., Luo, J., Sweet, R. W., Kodangattil, S., Hernandez-
Guzman, F., et al. (2014). Second antibody modeling assessment (AMA-II). Proteins 82
(8), 1553–1562. doi:10.1002/prot.24567

Amimeur, T., Shaver, J. M., Ketchem, R. R., Taylor, J. A., Clark, R. H., Smith, J., et al.
(2020). Designing feature-controlled humanoid antibody discovery libraries using
generative adversarial networks. Available at: https://www.biorxiv.org/content/10.
1101/2020.04.12.024844v1 (Accessed April 13, 2020).

Boucher, L. E., Prinslow, E. G., Feldkamp, M., Yi, F., Nanjunda, R., Wu, S.-J., et al.
(2023). ‘Stapling’ scFv for multispecific biotherapeutics of superior properties. mAbs 15
(1), 2195517. doi:10.1080/19420862.2023.2195517

Briney, B., Inderbitzin, A., Joyce, C., and Burton, D. R. (2019). Commonality despite
exceptional diversity in the baseline human antibody repertoire. Nature 566 (7744),
393–397. doi:10.1038/s41586-019-0879-y

Bujotzek, A., Dunbar, J., Lipsmeier, F., Schäfer, W., Antes, I., Deane, C. M., et al.
(2015). Prediction of VH-vl domain orientation for antibody variable domain modeling.
Proteins 83 (4), 681–695. doi:10.1002/prot.24756

Cohen, T., Halfon, M., and Schneidman-Duhovny, D. (2022). NanoNet: Rapid and
accurate end-to-end nanobody modeling by deep learning. Front. Immunol. 13, 958584.
doi:10.3389/fimmu.2022.958584

Deszyński, P., Młokosiewicz, J., Adam, V., Jaszczyszyn, I., Castellana, N., Bonissone,
S., et al. (2022). INDI—Integrated nanobody database for immunoinformatics. Nucleic
Acids Res. 50 (1), D1273–D1281. doi:10.1093/nar/gkab1021

Dunbar, J., Fuchs, A., Shi, J., and CharlotteDeane, M. (2013). ABangle: Characterising
the VH-VL orientation in antibodies. Protein Eng. Des. Sel. PEDS 26 (10), 611–620.
doi:10.1093/protein/gzt020

Dunbar, J., Krawczyk, K., Leem, J., Baker, T., Fuchs, A., Georges, G., et al. (2014).
SAbDab: The structural antibody database.Nucleic Acids Res. 42, D1140–D1146. doi:10.
1093/nar/gkt1043

Eguchi, R. R., Choe, C. A., and Huang, P.-S. (2022). Ig-VAE: Generative modeling of
protein structure by direct 3D coordinate generation. PLoS Comput. Biol. 18 (6),
1010271. doi:10.1371/journal.pcbi.1010271

Ferdous, S., and Martin, A. C. R. (2018). AbDb: Antibody structure database-a
database of PDB-derived antibody structures. Database J. Biol. Databases Curation
2018, bay040. doi:10.1093/database/bay040

Fernández-Quintero, M. L., Kokot, J., Waibl, F., Fischer, A. M., Quoika, P. K., Deane,
C. M., et al. (2023). Challenges in antibody structure prediction. mAbs 15 (1), 2175319.
doi:10.1080/19420862.2023.2175319

Fernández-Quintero, M. L., Kokot, J., Franz, W., Fischer, A.-L. M., Quoika, P. K.,
Deane, C. M., et al. (2022). Challenges in antibody structure prediction. Available at:
https://www.biorxiv.org/content/10.1101/2022.11.09.515600v1 (Accessed November 9,
2022).

Fernández-Quintero, M. L., Loeffler, J. R., Kraml, J., Kahler, U., Kamenik, A. S., and
Liedl, K. R. (2018). Characterizing the diversity of the CDR-H3 loop conformational
ensembles in relationship to antibody binding properties. Front. Immunol. 9, 3065.
doi:10.3389/fimmu.2018.03065

Friedensohn, S., Neumeier, D., Khan, T. A., Csepregi, L., Parola, C., Arthur, R. G. D.
V., et al. (2020). Convergent selection in antibody repertoires is revealed by deep
learning. Available at:https://www.biorxiv.org/content/10.1101/2020.02.25.965673v1
(Accessed February 26, 2020).

Gao, K., Wu, L., Zhu, J., Peng, T., Xia, Y., Liang, H., et al. (2022). Incorporating pre-
training paradigm for antibody sequence-structure Co-design. Available at: https://
arxiv.org/abs/2211.08406 (Accessed October 26, 2022).

Høie, M. H., Gade, F. S., Johansen, J. M., Würtzen, C., Winther, O., Nielsen, M., et al.
(2023). DiscoTope-3.0 - improved B-cell epitope prediction using AlphaFold2modeling
and inverse folding latent representations. Available at: https://www.biorxiv.org/
content/10.1101/2023.02.05.527174v1 (Accessed February 5, 2023).

Hsu, C., Verkuil, R., Liu, J., Lin, Z., Hie, B., Tom, S., et al. (2022). Learning inverse
folding from millions of predicted structures. Available at: https://www.biorxiv.org/
content/10.1101/2022.04.10.487779v1 (Accessed April 10, 2022).

Irudayanathan, F. J., Zarzar, J., Lin, J., and Izadi, S. (2022). Deciphering deamidation
and isomerization in therapeutic proteins: Effect of neighboring residue. mAbs 14 (1),
2143006. doi:10.1080/19420862.2022.2143006

Jain, T., Todd, B., and Vásquez, M. (2023). Identifying developability risks for clinical
progression of antibodies using high-throughput in vitro and in silico approaches.mAbs
15 (1), 2200540. doi:10.1080/19420862.2023.2200540

Jeliazkov, J. R., Sljoka, A., Kuroda, D., Tsuchimura, N., Katoh, N., Tsumoto, K., et al. (2018).
Repertoire analysis of antibody CDR-H3 loops suggests affinity maturation does not typically
result in rigidification. Front. Immunol. 9, 413. doi:10.3389/fimmu.2018.00413

Jin, W., Barzilay, D. R., and Jaakkola, T. (2022). “Antibody-antigen docking and
design via hierarchical structure refinement,” in Proceedings of the 39th International
Conference on Machine Learning, Baltimore, MA, July 17-23, 2022 (Proceedings of
Machine Learning Research. PMLR).

Jin, W., Wohlwend, J., Barzilay, R., and Jaakkola, T. (2021). Iterative refinement graph
neural network for antibody sequence-structure Co-design. Available at: http://arxiv.
org/abs/2110.04624 (Accessed October 9, 2021).

Jumper, J., Evans, R., Alexander, P., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature 596
(7873), 583–589. doi:10.1038/s41586-021-03819-2

Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., et al. (2012). Template-
based protein structure modeling using the RaptorX web server. Nat. Protoc. 7 (8),
1511–1522. doi:10.1038/nprot.2012.085

Kaplon, H., Crescioli, S., Visweswaraiah, J., and Reichert, J. M. (2023). Antibodies to
watch in 2023. mAbs 15 (1), 2153410. doi:10.1080/19420862.2022.2153410

Kelow, S., Faezov, B., Xu, Q., Parker, M., Adolf-Bryfogle, J., and Roland, L. D. (2022).
A penultimate classification of canonical antibody CDR conformations. Available at:
https://www.biorxiv.org/content/10.1101/2022.10.12.511988v1 (Accessed October 16,
2022).

Kończak, J., Janusz, B., Młokosiewicz, J., Satława, T., Wróbel, S., Dudzic, P., et al.
(2022). Structural pre-training improves physical accuracy of antibody structure
prediction using deep learning. Available at: https://www.biorxiv.org/content/10.
1101/2022.12.06.519288v1 (Accessed December 9, 2022).

Kovaltsuk, A., Krawczyk, K., Galson, J. D., Kelly, D. F., Deane, C. M., and Trück, J.
(2017). How B-cell receptor repertoire sequencing can Be enriched with structural
antibody Data. Front. Immunol. 8, 1753. doi:10.3389/fimmu.2017.01753

Kovaltsuk, A., Leem, J., Kelm, S., James, S., Deane, C. M., and Krawczyk, K. (2018).
Observed antibody space: A resource for Data mining next-generation sequencing of
antibody repertoires. J. Immunol. 201 (8), 2502–2509. doi:10.4049/jimmunol.1800708

Krawczyk, K., Kelm, S., Kovaltsuk, A., Galson, J. D., Kelly, D., Trück, J., et al. (2018).
Structurally mapping antibody repertoires. Front. Immunol. 9, 1698. doi:10.3389/
fimmu.2018.01698

Krawczyk, K., Liu, X., Baker, T., Shi, J., and CharlotteDeane, M. (2014). Improving
B-cell epitope prediction and its application to global antibody-antigen docking.
Bioinformatics 30 (16), 2288–2294. doi:10.1093/bioinformatics/btu190

Krivov, G. G., Shapovalov, M. V., and Dunbrack, R. L., Jr. (2009). Improved
prediction of protein side-chain conformations with SCWRL4. Proteins 77 (4),
778–795. doi:10.1002/prot.22488

Frontiers in Molecular Biosciences frontiersin.org07

Jaszczyszyn et al. 10.3389/fmolb.2023.1214424

48

https://doi.org/10.1093/bioinformatics/btac016
https://www.biorxiv.org/content/10.1101/2022.11.04.514231v1
https://www.biorxiv.org/content/10.1101/2022.11.04.514231v1
https://doi.org/10.1073/pnas.2020577118
https://doi.org/10.1371/journal.pone.0258173
https://doi.org/10.1002/prot.23130
https://doi.org/10.1002/prot.24567
https://www.biorxiv.org/content/10.1101/2020.04.12.024844v1
https://www.biorxiv.org/content/10.1101/2020.04.12.024844v1
https://doi.org/10.1080/19420862.2023.2195517
https://doi.org/10.1038/s41586-019-0879-y
https://doi.org/10.1002/prot.24756
https://doi.org/10.3389/fimmu.2022.958584
https://doi.org/10.1093/nar/gkab1021
https://doi.org/10.1093/protein/gzt020
https://doi.org/10.1093/nar/gkt1043
https://doi.org/10.1093/nar/gkt1043
https://doi.org/10.1371/journal.pcbi.1010271
https://doi.org/10.1093/database/bay040
https://doi.org/10.1080/19420862.2023.2175319
https://www.biorxiv.org/content/10.1101/2022.11.09.515600v1
https://doi.org/10.3389/fimmu.2018.03065
https://arxiv.org/abs/2211.08406
https://arxiv.org/abs/2211.08406
https://www.biorxiv.org/content/10.1101/2023.02.05.527174v1
https://www.biorxiv.org/content/10.1101/2023.02.05.527174v1
https://www.biorxiv.org/content/10.1101/2022.04.10.487779v1
https://www.biorxiv.org/content/10.1101/2022.04.10.487779v1
https://doi.org/10.1080/19420862.2022.2143006
https://doi.org/10.1080/19420862.2023.2200540
https://doi.org/10.3389/fimmu.2018.00413
http://arxiv.org/abs/2110.04624
http://arxiv.org/abs/2110.04624
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/nprot.2012.085
https://doi.org/10.1080/19420862.2022.2153410
https://www.biorxiv.org/content/10.1101/2022.10.12.511988v1
https://www.biorxiv.org/content/10.1101/2022.12.06.519288v1
https://www.biorxiv.org/content/10.1101/2022.12.06.519288v1
https://doi.org/10.3389/fimmu.2017.01753
https://doi.org/10.4049/jimmunol.1800708
https://doi.org/10.3389/fimmu.2018.01698
https://doi.org/10.3389/fimmu.2018.01698
https://doi.org/10.1093/bioinformatics/btu190
https://doi.org/10.1002/prot.22488
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1214424


Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., and Moult, J. (2021). Critical
assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins 89
(12), 1607–1617. doi:10.1002/prot.26237

Lee, J. H., Yadollahpour, P., Watkins, A., Frey, N. C., Leaver-Fay, A., Stephen, R., et al.
(2022). EquiFold: Protein structure prediction with a novel coarse-grained structure
representation. Available at: https://www.biorxiv.org/content/10.1101/2022.10.07.
511322v1 (Accessed October 8, 2022).

Leem, J., Georges, G., Shi, J., and CharlotteDeane, M. (2018). Antibody side chain
conformations are position-dependent. Proteins 86 (4), 383–392. doi:10.1002/prot.
25453

Lu, R.-M., Hwang, Y.-C., Liu, I -J., Lee, C.-C., Tsai, H. Z., Li, H. J., et al. (2020).
Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27
(1), 1. doi:10.1186/s12929-019-0592-z

Luo, S., Su, Y., Peng, X., Wang, S., Peng, J., and Ma, J. (2022). Antigen-specific
antibody design and optimization with diffusion-based generative models for protein
structures. Available at: https://www.biorxiv.org/content/10.1101/2022.07.10.499510v1
(Accessed July 11, 2022).

Marks, C., and Deane, C. M. (2017). Antibody H3 structure prediction. Comput.
Struct. Biotechnol. J. 15, 222–231. doi:10.1016/j.csbj.2017.01.010

Marze, N. A., Lyskov, S., and Gray, J. J. (2016). Improved prediction of antibody VL-
VH orientation. Protein Eng. Des. Sel. PEDS 29 (10), 409–418. doi:10.1093/protein/
gzw013

Melnyk, I., Das, P., Chenthamarakshan, V., and Lozano, A. (2021). Benchmarking
deep generative models for diverse antibody sequence design. Available at:http://
arxiv.org/abs/2111.06801 (Accessed November 12, 2021).

Nowak, J., Baker, T., Georges, G., Kelm, S., Klostermann, S., Shi, J., et al. (2016).
Length-independent structural similarities enrich the antibody CDR canonical class
model. mAbs 8, 751–760. doi:10.1080/19420862.2016.1158370

Oh, L., Dai, B., and Bailey-Kellogg, C. (2021). “A multi-resolution graph convolution
network for contiguous epitope prediction,” in Proceedings of the 12th ACM
Conference on Bioinformatics, Computational Biology, and Health Informatics BCB
’21 38, Chicago, IL, August 7-10, 2022 (Association for Computing Machinery).

Olsen, T. H., Boyles, F., and Deane, C. M. (2022). Observed antibody space: A diverse
database of cleaned, annotated, and translated unpaired and paired antibody sequences.
Protein Sci. A Publ. Protein Soc. 31 (1), 141–146. doi:10.1002/pro.4205

Peng, C., Wang, Z., Zhao, P., Ge, W., and Huang, C. (2023). AbFold - an AlphaFold
based transfer learning model for accurate antibody structure prediction. Available at:
https://www.biorxiv.org/content/10.1101/2023.04.20.537598v1 (Accessed April 21,
2023).

Rangel Aguilar, M., Bedwell, A., Costanzi, E., Taylor, R. J., Russo, Rosaria, Bernardes,
G. J. L., et al. (2022). Fragment-based computational design of antibodies targeting
structured epitopes. Sci. Adv. 8 (45), eabp9540. doi:10.1126/sciadv.abp9540

Raybould, M. I. J., Marks, C., Krawczyk, K., Taddese, B., Nowak, J., Claire, M., et al.
(2019). Five computational developability guidelines for therapeutic antibody profiling.
Proc. Natl. Acad. Sci. U. S. A. 116 (10), 4025–4030. doi:10.1073/pnas.1810576116

Regep, C., Georges, G., Shi, J., Popovic, B., and Charlotte, M. D. (2017). The H3 loop
of antibodies shows unique structural characteristics. Proteins 85 (7), 1311–1318. doi:10.
1002/prot.25291

Richardson, E., Galson, J. D., Paul, K., Kelly, D. F., Anne Palser, S. E. S., Watson, S.,
et al. (2021). A computational method for immune repertoire mining that identifies
novel binders from different clonotypes, demonstrated by identifying anti-pertussis
toxoid antibodies. mAbs 13 (1), 1869406. doi:10.1080/19420862.2020.1869406

Rives, A., Meier, J., Tom, S., Goyal, S., Lin, Z., Liu, J., et al. (2021). Biological structure
and function emerge from scaling unsupervised learning to 250 million protein
sequences. Proc. Natl. Acad. Sci. U. S. A. 118 (15), 239118. doi:10.1073/pnas.2016239118

Robinson, S. A., Raybould, M. I. J., Schneider, C., Wong, W. K., Marks, C., and Deane,
C. M. (2021). Epitope profiling using computational structural modelling demonstrated
on coronavirus-binding antibodies. PLoS Comput. Biol. 17 (12), 1009675. doi:10.1371/
journal.pcbi.1009675

Ruffolo, J. A., Chu, L.-S., Mahajan, S. P., and Gray, J. J. (2022a). Fast, accurate
antibody structure prediction from deep learning on massive set of natural antibodies.
Available at: https://www.biorxiv.org/content/10.1101/2022.04.20.488972v1 (Accessed
April 21, 2022).

Ruffolo, J. A., Guerra, C., Mahajan, S. P., Sulam, J., and Gray, J. J. (2020). Geometric
potentials from deep learning improve prediction of CDR H3 loop structures.
Bioinformatics 36 (1), i268–i275. doi:10.1093/bioinformatics/btaa457

Ruffolo, J. A., Sulam, J., and Gray, J. J. (2022b). Antibody structure prediction using
interpretable deep learning. Patterns (New York, N.Y.) 3 (2), 100406. doi:10.1016/j.
patter.2021.100406

Saka, K., Kakuzaki, T., Metsugi, S., Kashiwagi, D., Yoshida, K., Wada, M., et al. (2021).
Antibody design using LSTM based deep generative model from phage display library
for affinity maturation. Sci. Rep. 11 (1), 5852. doi:10.1038/s41598-021-85274-7

Satorras, V. G., Hoogeboom, E., and Welling, M. (2021). “E(n) equivariant graph
neural networks,” in Proceedings of the 38th International Conference on Machine
Learning, July 18-24, 2021 (Proceedings of Machine Learning Research. PMLR).

Schneider, C., Buchanan, A., Taddese, B., and CharlotteDeane, M. (2021). DLAB-
deep learning methods for structure-based virtual screening of antibodies.
Bioinformatics 38, 377–383. doi:10.1093/bioinformatics/btab660

Shin, J.-E., Riesselman, A. J., Kollasch, A. W., McMahon, C., Simon, E., Sander, C.,
et al. (2021). Protein design and variant prediction using autoregressive generative
models. Nat. Commun. 12 (1), 2403–2411. doi:10.1038/s41467-021-22732-w

Shuai, R. W., Ruffolo, J. A., and Gray, J. J. (2021). Generative Language modeling for
antibody design. Available at: https://www.biorxiv.org/content/10.1101/2021.12.13.
472419v2 (Accessed December 20, 2022).

Son, Y.-H., Shin, D.-H., Han, J.-W., Won, S.-H., and Kam, T.-E. (2022). “GNN-based
antibody structure prediction using quaternion and euler angle combined
representation,” in 2022 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia), Yeosu, South Korea, October 26-28, 2022, 1–4.

Wang, Y., Gong, X., Li, S., Yang, B., Sun, Y., Shi, C., et al. (2022). xTrimoABFold: De
novo antibody structure prediction without MSA. Available at: http://arxiv.org/abs/
2212.00735 (Accessed November 30, 2022).

Wong, S. E., Sellers, B. D., and Jacobson,M. P. (2011). Effects of somaticmutations onCDR
loop flexibility during affinity maturation. Proteins 79 (3), 821–829. doi:10.1002/prot.22920

Wu, J., Wu, F., Jiang, B., Liu, W., and Zhao, P. (2022). tFold-Ab: Fast and accurate
antibody structure prediction without sequence homologs. Available at: https://www.
biorxiv.org/content/10.1101/2022.11.10.515918v1 (Accessed November 13, 2022).

Frontiers in Molecular Biosciences frontiersin.org08

Jaszczyszyn et al. 10.3389/fmolb.2023.1214424

49

https://doi.org/10.1002/prot.26237
https://www.biorxiv.org/content/10.1101/2022.10.07.511322v1
https://www.biorxiv.org/content/10.1101/2022.10.07.511322v1
https://doi.org/10.1002/prot.25453
https://doi.org/10.1002/prot.25453
https://doi.org/10.1186/s12929-019-0592-z
https://www.biorxiv.org/content/10.1101/2022.07.10.499510v1
https://doi.org/10.1016/j.csbj.2017.01.010
https://doi.org/10.1093/protein/gzw013
https://doi.org/10.1093/protein/gzw013
https://doi.org/10.1080/19420862.2016.1158370
https://doi.org/10.1002/pro.4205
https://www.biorxiv.org/content/10.1101/2023.04.20.537598v1
https://doi.org/10.1126/sciadv.abp9540
https://doi.org/10.1073/pnas.1810576116
https://doi.org/10.1002/prot.25291
https://doi.org/10.1002/prot.25291
https://doi.org/10.1080/19420862.2020.1869406
https://doi.org/10.1073/pnas.2016239118
https://doi.org/10.1371/journal.pcbi.1009675
https://doi.org/10.1371/journal.pcbi.1009675
https://www.biorxiv.org/content/10.1101/2022.04.20.488972v1
https://doi.org/10.1093/bioinformatics/btaa457
https://doi.org/10.1016/j.patter.2021.100406
https://doi.org/10.1016/j.patter.2021.100406
https://doi.org/10.1038/s41598-021-85274-7
https://doi.org/10.1093/bioinformatics/btab660
https://doi.org/10.1038/s41467-021-22732-w
https://www.biorxiv.org/content/10.1101/2021.12.13.472419v2
https://www.biorxiv.org/content/10.1101/2021.12.13.472419v2
http://arxiv.org/abs/2212.00735
http://arxiv.org/abs/2212.00735
https://doi.org/10.1002/prot.22920
https://www.biorxiv.org/content/10.1101/2022.11.10.515918v1
https://www.biorxiv.org/content/10.1101/2022.11.10.515918v1
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1214424


How can we discover developable
antibody-based biotherapeutics?

Joschka Bauer1,2, Nandhini Rajagopal2,3, Priyanka Gupta2,3,
Pankaj Gupta2,3, Andrew E. Nixon3 and Sandeep Kumar2,3*†

1Early Stage Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG,
Biberach/Riss, Germany, 2In Silico Team, Boehringer Ingelheim, Hannover, Germany, 3Biotherapeutics
Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, United States

Antibody-based biotherapeutics have emerged as a successful class of
pharmaceuticals despite significant challenges and risks to their discovery and
development. This review discusses the most frequently encountered hurdles in
the research and development (R&D) of antibody-based biotherapeutics and
proposes a conceptual framework called biopharmaceutical informatics. Our
vision advocates for the syncretic use of computation and experimentation at
every stage of biologic drug discovery, considering developability
(manufacturability, safety, efficacy, and pharmacology) of potential drug
candidates from the earliest stages of the drug discovery phase. The
computational advances in recent years allow for more precise formulation of
disease concepts, rapid identification, and validation of targets suitable for
therapeutic intervention and discovery of potential biotherapeutics that can
agonize or antagonize them. Furthermore, computational methods for de
novo and epitope-specific antibody design are increasingly being developed,
opening novel computationally driven opportunities for biologic drug
discovery. Here, we review the opportunities and limitations of emerging
computational approaches for optimizing antigens to generate robust immune
responses, in silico generation of antibody sequences, discovery of potential
antibody binders through virtual screening, assessment of hits, identification of
lead drug candidates and their affinity maturation, and optimization for
developability. The adoption of biopharmaceutical informatics across all
aspects of drug discovery and development cycles should help bring
affordable and effective biotherapeutics to patients more quickly.

KEYWORDS

biotherapeutics, drug discovery and development, developability, biopharmaceutical
informatics, machine learning, computational biophysics

1 Introduction

Since the inception of hybridoma technology, which facilitated large-scale monoclonal
antibody (mAb) production, biotherapeutics have experienced significant growth (Koehler
and Milstein, 1975). The Food and Drug Administration’s (FDA) approval of the pioneering
mAb therapeutic, muromonab or Orthoclone OKT3, in 1986 (Smith, 1996), set the stage for
numerous groundbreaking developments in biotherapeutics. As of 2022, over 110 approved
mAbs andmore than 65 mAbs in phase-2/3 and phase-3 clinical trials have emerged (Kaplon
et al., 2022). Clinically, mAbs have demonstrated their efficacy in treating serious conditions
such as neurodegenerative diseases, autoimmune diseases, and diverse types of cancers
(Reichert et al., 2009; Lu et al., 2020).
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Despite the promising trajectory of biotherapeutics, the
biopharmaceutical industry faces mounting pressure due to
decreasing productivity and increasing research and development
(R&D) costs. The average R&D cost surged from $1.2 billion in 2007
(adjusted United States dollar value of $1.6 billion in 2020) to
$2.8 billion in 2016 (equivalent to $3.1 billion in 2020) (DiMasi
and Grabowski, 2007; DiMasi et al., 2016; Farid et al., 2020).
Concurrently, the success rate of phase-1 to approval dropped
from 30% in 2007 to 12% or lower in 2016 (Farid et al., 2020).
These trends suggest the presence of several challenges along various
stages of discovery and development of novel biological
therapeutics. A lack of detailed understanding of disease biology,
the inability of model systems to reliably predict human diseases and
outcomes of therapeutic interventions, the lack of efficacy, target-
mediated toxicity and other safety issues, and suboptimal
developability profiles are among the major reasons that may
contribute to drug failures during clinical trials (Mehta et al.,
2017; Fogel, 2018). The identification of new targets presents
additional challenges toward development of novel therapeutic
concepts and discovery of multi-specific biotherapeutics, resulting
in low approval rates despite high development costs (Swinney and
Anthony, 2011). Next-generation biotherapeutics such as
nanobodies, bi- and multi-specific antibodies, and T-cell receptor
mimetics are broadening clinical applications (Strohl, 2018);
however, these novel formats are often more challenging to
develop into marketed biologic drug products (Runcie et al.,
2018; Wang et al., 2019; Sawant et al., 2020). Furthermore, as the
biopharmaceutical industry shifts its focus toward patient
convenience, drug product development processes must be
tailored to emerging routes of drug administration such as
subcutaneous or intravitreal delivery, necessitating high-
concentration protein formulations (HCPFs) (Garidel et al.,
2017). These requirements introduce additional challenges to the
manufacturability and developability of novel drugs. Integrating
developability early in the drug discovery process can help avoid
costly delays or failures at later stages and potentially increase the
likelihood of success during clinical trials and approvals. Numerous
technological advancements have been made since the approval of
the first mAb to overcome challenges in the R&D pipelines and
accelerate novel drug discovery and development (Martin et al.,
2023). However, every new technology comes with associated risks
and limitations (Gray A. C. et al., 2020; González-Fernández et al.,
2020).

In silico techniques have been well established in small-molecule
drug discovery (Shaker et al., 2021). Over the past decade,
considerable progress has been made toward developing in silico
strategies for the discovery and development of biologic drugs as
well. In fact, developability has emerged as a key concept for biologic
drugs over this time (Jarasch et al., 2015; Kumar and Singh, 2015;
Bailly et al., 2020; Garripelli et al., 2020; Khetan et al., 2022;
Mieczkowski et al., 2023). A variety of computational tools and
procedures are now employed across various stages of drug
development, such as hit selection, lead identification,
optimization, affinity maturation, and early developability
assessment. However, a significant potential of in silico
technologies toward the discovery of biotherapeutics still remains
untapped. As collaborative academic and industrial initiatives
continue to demonstrate the viability of in silico antibody

discovery techniques, it is important to acknowledge that the
nascent nature of these methods often results in a lack of
historical evidence to support their success and therefore requires
a cultural shift toward proactive adoption of innovation to
continually improve drug discovery and development processes.
To address these challenges and enhance the success rate of novel
targets, there is an urgent requirement for an integrated vision to
create a platform that streamlines biotherapeutic discovery and
development via syncretic use of experimentation and
computation. Such a vision would not only accelerate the
development of new biotherapeutics and reduce costs but also
expand the druggable target space.

2 Biopharmaceutical informatics:
integrating drug discovery and
development

In the realm of biotherapeutics, it is crucial for drug candidates
to be both developable and functional. Biotherapeutic drug
candidates often encounter developability challenges related to
manufacturing, safety, immunogenicity, efficacy, pharmacology,
and drug product heterogeneity. Many of these risks can be
linked to the inherent physicochemical properties of a biologic
drug candidate, as determined by its protein sequence, three-
dimensional structure, and molecular dynamics (MD) (Xu et al.,
2018). Considering the intrinsic physicochemical properties of a
biotherapeutic drug candidate, which are encoded in its amino acid

FIGURE 1
Strategic components for the vision of biopharmaceutical
informatics. The digital transformation of the biopharmaceutical
industry, achieved through capturing and curing experimental data,
can enable the development and continuous improvement of
digital twins for laboratory processes and prediction of experimental
results before their execution. Fundamental research connecting
molecular sequences, structures, and dynamics of biologic drug
candidates can enhance our understanding of experimental
observations, reduce empiricism, and enable more data-informed
decision-making at various project stages. Moreover, the integration
of computational learning technologies with principles of molecular
modeling and simulations can potentially facilitate the in silico
discovery of biotherapeutics. It is important to note that the key to
biopharmaceutical informatics lies in the syncretic use of
experimentation and computation, with a shared goal of making the
discovery and development of biotherapeutics more efficient.
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sequence and structure, early in the discovery and development can
help identify and mitigate risks associated with various
developability issues, such as chemical, conformational, colloidal,
and physical instabilities. Moreover, by employing the innovative
approach of biopharmaceutical informatics, these sequence–structural
attributes can be modified for improved developability as described
previously by Kumar et al. (2018a). Figure 1 outlines the primary
components of biopharmaceutical informatics. This interdisciplinary
field advocates for the digital transformation of the biopharmaceutical
industry by converting experimental data collected during drug
discovery and development phases into FAIR (findable, accessible,
interoperable, and reusable) information systems. These systems can
be leveraged by data scientists to create predictive tools such as digital
twins of actual laboratory processes. Additionally, the field promotes the
increased use of AI/ML (artificial intelligence/machine learning) and
computational biophysics to address fundamental challenges in drug
discovery and development through research. Biopharmaceutical
informatics seeks to enable data-driven decision-making at every
stage of biologic drug discovery and development. Developability is
a key aspect of biopharmaceutical informatics, encompassing both in
silico tools and experimental studies such as developability assessments.
Rooted in the energy landscape theory, the concept of developability
posits that the conformational ensembles and potential energy
landscapes of large macromolecules, like mAbs, change with their
environment (e.g., pH, temperature, and physicochemical state)
(Onuchic, 1997; Ma et al., 2000; Kumar et al., 2009). As a result, the
physicochemical properties of conformational ensembles of
biotherapeutics under a given set of environmental conditions
dictate their biophysical experiment outcomes. If proteins with the
same size and fold are analyzed under identical conditions using
standardized experiments, differences in the results should be
attributable to sequence–structural variations among the proteins.
The ability to predict experimental outcomes by analyzing the
sequence–structural characteristics of biotherapeutic drug candidates
is a primary goal for biopharmaceutical informatics, as part of the
development of computational methods that facilitate discovery of
antibodies in silico (DAbI).

Optimal synergies and benefits can be achieved by integrating
cost-effective, rapid computational methods with standardized
biophysical experimental studies, which are characteristic of
current developability assessments in biologic drug discovery and
early-stage product development (Zurdo, 2013; Jarasch et al., 2015;
Xu et al., 2018). Late-stage development approaches typically focus
on assessing the changing conditions of a single molecule in the drug
manufacturing process using quantitative unit operation models
(Smiatek et al., 2020), while early-stage approaches require
analyzing a diverse set of molecules under identical conditions.
Biopharmaceutical informatics plays a pivotal role in bridging the
gap between biologic drug discovery and development by improving
the understanding of the relationship between macromolecular
sequence–structure–function and developability.

A key challenge in biopharmaceutical informatics is correlating
the “macroscopic” experimentally determined properties of a
biologic with its “microscopic” sequence–structure features
computed in silico. Uncovering these correlations can guide
molecular sequence optimization strategies, proactively
addressing potential obstacles in drug product development by

predicting the performance of the final drug candidate in the
streamlined platform processes used during development stages.
This process necessitates combining data from standardized
biophysical experiments with descriptors computed from
molecular modeling and simulations in a common database.
Various statistical and machine learning approaches can be
employed to develop mathematical models that predict the
solution behavior of mAbs based solely on their
sequence–structure information, depending on the available data
(Tomar et al., 2016; Jain et al., 2017b; Chiu et al., 2019; Hebditch and
Warwicker, 2019; Lecerf et al., 2019; Raybould et al., 2019; Starr and
Tessier, 2019; Kuroda and Tsumoto, 2020; Zhang et al., 2020). As a
result, the interdisciplinary field of biopharmaceutical informatics
aims to seamlessly integrate techniques from computational and
experimental biophysics, information technology, and data science
to provide data-driven inputs for the decision-making framework
for all stages of biologic drug discovery and development.

3 Opportunities for computation at
various stages of biotherapeutic
discovery and early development

There are numerous opportunities to collaboratively apply
computational and experimental tools to facilitate faster and
more efficient drug engineering and development. In this review
article, we present a diverse set of use cases at various stages of
biotherapeutics discovery and development projects that could
benefit with increased use of computation in synchrony with the
experiments to demonstrate the practical feasibility of our vision.
The major challenges faced at distinct stages of biotherapeutic
discovery and early drug development are described in Table 1
along with potential computational opportunities to address them.
The pros and cons of these computational opportunities are also
presented in Table 1. It is important to note that the field has not
matured uniformly across all stages of discovery and development
cycles for biotherapeutics. For example, computational approaches
to developability assessments and lead optimization (LO) are
currently more advanced than in silico antibody discovery and in
silico formulation development. Moreover, there are also
opportunities to modify the workflows and transitions between
the different discoveries and development stages in view of the
rapidly growing capabilities of computation. These opportunities are
described in the following sections.

3.1 Antigen optimization

The discovery of antibody-based biotherapeutics adheres to a
stepwise approach once a target antigen or multiple antigens for
simultaneous targeting in a multi-specific format have been
identified. The initial phase entails producing enough target
antigens to enable animal immunization, in vitro selection of
antigen-specific antibodies, and functional activity
characterization. However, some antigens exhibit favorable
expression in vivo but encounter conformational stability and
solubility issues in vitro, outside the cellular context (Qing et al.,
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TABLE 1 Opportunities for the expanded use of computational approaches throughout the discovery and development process of biotherapeutics.

Process stage Typical problems Potential applications of
computational approaches

Pros Cons

In vitro synthesis of
immunogens/antigens to
generate corresponding
antibodies

1. Availability of structural models
for immunogens and accurate
definition of epitope(s) of
therapeutic interest
2. Aggregation tendency, protein
insolubility, and reduced
conformational stability may
result in limited material
availability for immunization
experiments
3. Epitope(s) of therapeutic
interest might not be
immunodominant

1. Protein structure prediction and
precise definition of epitope(s) of
therapeutic interest
2. Sequence/structure-based
optimization for improved solubility
via APR disruption, supercharging;
and increased conformational
stability via residue scan can help
improve quantity as well as quality of
material needed for immunization
3. Strategies for disruption or
masking of immunodominant but
therapeutically irrelevant epitopes to
improve chance of antibody binders
to the therapeutically relevant
epitopes

1. Protein structure is crucial for
structure-based approaches to
drug discovery defining epitopes
of therapeutic interest. The
emergence of AI-based protein
structure prediction methods has
enhanced the structural
definition of immunogens in
recent years
2. Judiciously selected mutations
at single or multiple sites can
significantly improve the
availability of immunogen
material in the laboratory

1. Confidence levels in different
regions of the structure should be
considered, as flexible regions are
typically predicted with lower
confidence levels
2. Defining the epitope(s) of
therapeutic interest and avoiding
mutations in and around them is
important
3. Implementing site-directed
mutagenesis of immunogens to
improve material availability also
requires a cultural shift among
experimental scientists

Antibody generation 1. Animal immunizations can be
time-consuming, expensive, and
may yield inconsistent results
2. The lead antibody molecule
identified through animal
immunization may necessitate
humanization and developability
enhancements
3. Humanized mice and display
technologies do not entirely
capture the complete human
immunome
4. Phage and yeast display
technologies can quickly identify
high-affinity binders, but these
may require further optimization
for developability

1. Generative AI can aid in designing
antigen-specific and agnostic
libraries with incorporated
developability features
2. Virtual screening of antibody
libraries against given antigen(s)/
epitope(s), followed by docking and
structure-based affinity
enhancements
3. Utilizing computational methods
to design phage and yeast display
libraries for enhanced developability
and/or affinity
4. Employing computational
approaches to redesign antibody
CDRs for altered specificities

1. Adopting computational
methods can reduce timelines
and costs associated with
antibody discovery
2. Expanded druggable antigen
space
3. Opportunities to explore a
broader sequence diversity,
thereby maximizing the odds for
antibody discovery compared to
conventional methods
4. Addressing developability
during library design can help
reduce time required for lead
optimization

1. Emerging technology
2. Necessitates more extensive
validation and experimental
demonstration of its capabilities
before routine project use
3. Requires a cultural shift from
experimentally driven antibody
discovery to computationally
driven approaches

Hit selection and lead
identification

1. Sequencing of identified hits
2. Epitope mapping of the hits to
ensure the desired therapeutic
effect in the absence of structural
models for the antigen-antibody
complex
3. Experimental evaluation of
several hundreds of candidates for
functionality and developability
can be time and resource-intensive

1. Establishment of suitable
sequencing pipelines
2. Computational prediction of
epitopes and paratopes for epitope
mapping purposes
3. In-silico evaluations of candidates
for developability and
manufacturability can facilitate the
selection of developable hits and
identification of lead candidate(s)
with favorable developability
characteristics
4. Development of digital twins for
biophysical processes via
computational biophysics and data
science

1. Incorporation of
computational assessments can
aid in guiding hit selection for
experimental testing
2. Proactive consideration of
developability can help reduce
costs and efforts to identify lead
molecules
3. Opportunities to enhance our
understanding of the connection
between molecular sequence-
structural properties and
experimental outcomes

1. Greater availability of data is
needed to connect ’microscopic’
sequence-structural features of
antibodies with the ’macroscopic’
biophysical outcomes
2. Lack of digitization and digital
transformation present
significant challenges
3. A cultural shift from protecting
experimental data to sharing it
with computational scientists is
required among discovery
scientists

Lead optimization Lead candidates may require
humanization, affinity
optimization, and elimination of
physicochemical liabilities in the
CDRs for enhanced developability

1. Structure-based modeling of the
lead candidates can assist in their
humanization, affinity maturation,
and identification of potential
sequence/structural motifs that may
contribute to their physicochemical
degradation. Access to this
information can help direct protein
engineering strategies for lead
optimization
2. Assessment of the optimized lead
candidates for their drug likeness

1. Computational guidance for
lead optimization efforts can
decrease timelines and costs
2. This aspect represents the
most developed application of
computational protein design in
biotherapeutic drug discovery
3. Numerous well-developed
computational solutions are
available

1. There remains cultural
resistance to the adoption of
computational protein design for
lead optimization among
industrial scientists
2. Greater dissemination of
successful case studies, where
computational protein design
makes a difference, is needed to
raise awareness

(Continued on following page)
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2022). Producing recombinant antigens can be particularly challenging
for certain target classes, such as membrane proteins (G protein–coupled
receptors and ion channels) (Bill et al., 2011). If antigen binding is
impacted by the in vitro conformational stability and/or solubility of the
antigen, then these issues may hinder the entire antibody discovery
strategy and functional validation of the antibody hits.

Computational methods can aid in the redesign of antigens with
enhanced conformational stability and solubility when a
threedimensional crystal structure or model is available.
Bioinformatic tools can enable crystal structure refinement,
modeling of breaks and gaps, loop modeling, energy
minimization and molecular dynamics simulations to support
antigen redesign. When the crystal structure of an antigen is
unavailable, protein structure prediction techniques can often
estimate it (Nimrod et al., 2018). For example, homology-based
structure modeling can be employed using crystal homologs. A
sequence identity of at least 30% between the protein of interest and
its crystal homologue is typically sufficient for structure generation
through homology modeling. However, some novel targets may not
have homologs with existing crystal structures. This can be due to
the inherent difficulty in obtaining crystal structures of membrane-
associated proteins, which often have poor solubility. Membrane
proteins represent a significant class of drug targets, and the
discovery pipeline frequently proceeds without knowledge of the
antigen structure. In such challenging cases, recent groundbreaking
advances in de novo protein structure prediction techniques have
achieved remarkable success and accuracy by leveraging machine
learning and deep learning algorithms (AlQuraishi, 2019; Gao et al.,
2020; Pereira et al., 2021; Jones and Thornton, 2022). Deep
learning–based structure prediction methods, such as
AlphaFold2 and RoseTTAFold, combined with physical
modeling, have outperformed numerous conventional approaches
(Baek et al., 2021; Jumper et al., 2021; Pereira et al., 2021; Jones and
Thornton, 2022). Understanding of the antigen’s three-dimensional
structure can be crucial for accurately assessing its stability and
solubility, computationally. This knowledge can also help enhance
solubility without sacrificing stability and functional activity,
allowing for the extraction of crystal structures, and facilitating
experimental assays that measure target binding. Care should be

taken, however, to minimize the impact of such mutations on the
overall molecular structure of the target antigen and preserve its
potential to generate adequate immune response to epitopes of
therapeutic interest. Bioinformatics can also support rational
strategies to immunize only therapeutically relevant epitopes on
the antigen surface. This means epitopes that may be immune-
dominant but are of no therapeutic interest or relevance can be
either eliminated or masked to facilitate the immunization of the
desired epitopes of therapeutic importance.

3.2 Antibody generation

Immunization strategies have long been employed to generate
high-affinity antibodies, using previously expressed and purified
antigens to establish immune reactions in animals (typically
laboratory mice, humanized/transgenic mice, or other animals
like chickens, rabbits, or cows). Antibody binding to specific
antigens can be obtained through techniques such as hybridoma
(Koehler and Milstein, 1975), single B cells (Yu et al., 2008), or
screening natural and/or synthetic antibody libraries via display
technologies using phage or yeast (Benatuil et al., 2010; Chen and
Sidhu, 2014; Alfaleh et al., 2020; Gray A. et al., 2020; Nagano and
Tsutsumi, 2021; Ledsgaard et al., 2022; Valldorf et al., 2022).
Promising candidates are selected and validated using antigen-
binding assays that align with the research target profile.
Currently used methods in the biopharmaceutical industry for
antibody generation are almost exclusively experimental, and
depending on the techniques used, it can take several months
before an initial set of antibody-based binders is available for
further investigation and lead identification. Fully synthetic
human antibody libraries containing Fabs chosen for their
biophysically favorable development characteristics have been
developed using experimental means (Valldorf et al., 2022).
Special emphasis has been placed on selecting molecules with
enhanced chemical, conformational, and colloidal stabilities
(Tiller et al., 2013). The availability of such libraries can
significantly help accelerate the discovery of antibody-based
biotherapeutics by pre-paying for developability.

TABLE 1 (Continued) Opportunities for the expanded use of computational approaches throughout the discovery and development process of biotherapeutics.

Process stage Typical problems Potential applications of
computational approaches

Pros Cons

Early stage
developability
assessments

1. Assessing molecular stability
and compatibility of drug
candidates, identified during drug
discovery, with platform processes
utilized in drug development
2. Adapting to multiple product
development goals such routes of
administration and product
presentations

1. Structure prediction of full length
antibodies and novel formats
2. In-silico development of
formulations
3. Employing multi-scale
simulations to anticipate platform
compatibility and evaluate molecular
responses to stresses encountered
during manufacturing, storage, and
transportation
4. Utilization of predictive
algorithms to determine suitable
bioprocess conditions
5. Establishing digital twins for
various facets of drug development

1. Developing full-length models
of the drug substance can
facilitate improved prediction of
molecular origins of dominant
degradation routes during
manufacturing, storage, and
shipping
2. Accelerating formulation
process development and saving
costs of drug development can be
achieved through pH and buffer
screening of antibody
formulations via in-silico
characterization of molecular
integrity of the drug substance
3. Resource savings can be
realized with the development of
digital twins

1. Computationally intensive
calculations
2. Need for improved
correlations between
experimental results and
molecular simulations
3. Consistent availability of
development data across
different projects
4. Requirement for greater
investments in the digitalization
of drug development data
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The concept of optimized antibody libraries for generating
developable antibodies can be integrated with de novo
computational databases containing an immense variety of
human-like light- and heavy-chain combinations (Pan and
Kortemme, 2021; Akbar et al., 2022). Targeted mutations at
specific sequence positions [e.g., complementarity-determining
regions (CDRs)] in the antibody sequences could further broaden
the library, either to recognize different antigens or to optimize
binding affinity toward a specific antigen (Ledsgaard et al., 2022).
Recently, a generative adversarial network was successfully
employed to create a diverse library of novel antibodies that
emulate somatically hypermutated human repertoire responses
(Amimeur et al., 2020). This in silico method further revealed
residue diversity throughout the variable region, which could be
useful for additional computational tools like CDR redesign. CDR
redesign utilizes a highly developable antibody framework and
modifies the original CDRs, or paratope, to recognize a new
antigen. In recent years, noteworthy progress has been made in
designing not only thermodynamically stable but also biologically
functional antibodies (Baran et al., 2017).

Computational technologies, initially developed for small-
molecule drug discovery, can also be applied to antibody-based
drug discovery. Once fully developed and implemented, these
computational methods will provide additional means to generate
diverse antibody binders against a target antigen. Thesemethods will
not only help reduce animal use in biologic drug discovery but also
decrease reliance on experimental trial and error for finding initial
hits. Initial case studies describing such methods are beginning to
emerge in the literature (bioRxiv.org for preprints) (Sever et al.,
2019; Wilman et al., 2022). Additionally, it becomes feasible to find
potential binders to difficult targets, thereby expanding the
druggable target space for antibody-based biotherapeutics.

Figure 2 provides an overall conceptual roadmap for Discovery
of antibodies in silico (DAbI). The proposed roadmap encompasses
three major parts where each part can have multiple stages
depending upon the project in hand. In the first part, the key is
to use different computational algorithms to generate medicine-like
human antibody sequence libraries in silico. These libraries can be
either antigen-specific or antigen-agnostic and are of orthogonal
utilities. For example, creation of antigen- or epitope-specific
antibody libraries via machine learning can help us achieve early
success in each antibody discovery project by facilitating a focused
path to the discovery of lead candidates toward the antigen and
support the therapeutic concept. A biological analog of such libraries
shall be the sequence repertoires obtained from immunized animals,
hybridomas, or the results obtained by panning the display libraries
against a specific antigen. However, such libraries have to be
generated repeatedly for each different antigen or epitope.
Antigen-/epitope-agnostic libraries on the other hand can be
incredibly useful toward supporting multiple drug discovery
projects simultaneously. Such libraries can be thought of as naive
B-cell repertoires obtained from humanized animals prior to
immunization with specific antigens. The computationally
generated naive antibody repertoires can potentially capture
greater sequence diversities than those feasible from humanized
animals, display technologies, or observable B-cell repertoires.
Within a discovery organization, such libraries have to be
constructed only once and be potentially useful toward pre-

computation of binders for all the targets of interest to the
organization. These pre-computed antibody binder libraries can
potentially accelerate early antibody discovery projects because now
the discovery process does not have to wait for availability of target
reagent in the laboratory. Therefore, such libraries can be
particularly useful toward difficult to express and purify targets
such as membrane proteins. Irrespective of the purpose of in silico
generated antibody libraries, it is important to generate structural
models of (at least) the variable regions of the antibodies sampled
from these libraries. The generated structures can then be used for
assessing their medicine-likeness and developability. Early
elimination of non–medicine-like antibodies from such libraries
can improve their utility and differentiate them from those
generated using the experimental means solely. The structural
models can also be used for predicting antibody paratopes. Many
computational methods are currently available for the structural
prediction of antibodies. The major challenges in this field include
prediction of HCDR3 conformation and pairing of the light- and
heavy-chain variable regions (Fernández-Quintero et al., 2023).

In addition to the design of the in silico antibody libraries,
currently available computational methods also provide an
opportunity to design single or a few human antibody variable
regions against specific antigen epitopes de novo (Chowdhury et al.,
2018; Nimrod et al., 2018). The design process can also commence
with a structural model of an antigen:antibody (Ag:Ab) complex,
generated using molecular docking of the antigen and antibody
structures (Nimrod et al., 2018). Subsequently, the affinity of the
antigen toward the antibody can be either altered by randomly
introducing sequence variations or selectively re-designing
interfaces using structure-based approaches (Nimrod et al., 2018).
For example, interfacial residues in the Ag:Ab complexes that
significantly contribute to their stability and instability can be
identified through computational alanine (Ala) scanning. In the
following step, the identified residue positions can be scanned for
mutations that either increase or decrease the stability of the Ag:Ab
complex and enhance or reduce the affinity of the antibody toward
its cognate antigen (Sheng et al., 2022), depending on the project
requirements. Another appealing alternative for rational antibody
design involves hotspot grafting with CDR loop swapping, which
only requires information about interactions with the antigen (Liu
et al., 2017).

The goal of epitope-driven antibody generation is to design an
antibody variable region with a paratope that complements the given
epitope. Since CDRs make up most of the paratope, initial efforts to
design epitope-specific antibodies have focused on ab initio CDR
redesign and modeling. OptCDR (Pantazes and Maranas, 2010),
used in conjunction with Rosetta Antibody Modeler, generates
epitope-specific high-affinity CDRs by selecting the most feasible
canonical loop conformations followed by iterative model
optimization and improvements in binding energy. This method
enables the generation of a focused library of antibody binders, quite
like hit sequences obtained from experiments. OptCDR was later
optimized (OptMAVEn) to consider the entire fragment variable
(Fv) region rather than just CDRs as the starting point for generating
antibody binders (Li et al., 2014), allowing for the incorporation of
humanness at the antibody generation stage through careful
selection of human framework region residues. Further advances
have incorporated MD simulations for accurate evaluation of
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binding energetics (Chowdhury et al., 2018). A one-to-one residue
matching method called epitoping, which starts from antibody
structures with basic shape complementarity, was developed to obtain
an accurate epitope–paratope binding match (Nimrod et al., 2018).
Although this process requires a pre-identified approximate match, it
can be considered for lead optimization to improve binding.

Recent advancements in generative deep learning and the
availability of approximately 2,000 solved crystal structures of the
antibody–antigen complexes have opened possibilities for structure-
based de novo antibody generation. A proof-of-concept study
utilizing a variational autoencoder (VAE)–based generative
algorithm demonstrated the capability to directly generate 3D
coordinates of antibody backbones that complement a specific
epitope (Eguchi et al., 2022). Additionally, another deep learning
algorithm was developed to learn the 3D features of antibodies from
1D sequences, enabling the generation of antibody sequences with
desired structural characteristics (Akbar et al., 2022). Although the
proof-of-concept study primarily aimed to achieve high-affinity
binder antibody sequences for a given epitope, the method holds
potential for encoding additional features, allowing the model to be
tailored to produce highly developable sequences. As stated
previously, generation of epitope-specific antibodies or libraries
thereof has immediate applications for individual drug discovery
projects, since the knowledge of epitopes is often required for
defining novel therapeutic concepts.

3.3 Early screening for developability of in
silico generated antibody libraries

Once the in silico antibody sequence libraries have been
generated, it is worth assessing the generated antibody sequences
for developability and advancing highly developable sequences to
further stages of discovery. The developability assessment tools to be
employed here can be ported over easily from those used at the hit
selection and lead identification, lead optimization, and early
development stages in the conventional biotherapeutic discovery
and development workflows.

Lipinski’s “rule-of-five” revolutionized the discovery and
development of small molecules by providing guidelines for
improving their solubility and permeability (Lipinski, 2000).
However, establishing similar rules for new biological entities
(NBEs) has proven challenging due to their complex structures.
In response, researchers have turned to biophysical evaluations and
computational approaches to better understand these entities and
overcome inherent obstacles. Biophysical evaluations of clinical-
stage antibodies have contributed to the empirical definition of
analogous boundaries, offering valuable insights for NBE
development (Jain et al., 2017b; Raybould et al., 2019; Jain et al.,
2023). Additionally, marketed antibodies have been profiled using
calculated physicochemical descriptors, in an approach known as
the DEvelopability Navigator In Silico (DENIS) (Ahmed et al., 2021;

FIGURE 2
Conceptual roadmap for the discovery of antibodies in silico (DAbI). This conceptual roadmap can be divided into three major parts that can be
developed either independently or in synchrony. The first part focuses on the in silico generation of medicine-like, antigen-agnostic, or specific antibody
sequence libraries. Several machine learning algorithms are currently being developed to facilitate the in silico generation of antibodies. In the second
part, these in silico generated antibodies and their structural models can be used to screen against a given antigen or an epitope on an antigen via
virtual screening, docking, or other computational chemistry-based algorithms. Conversely, a large set of potential antigens can also be pre-screened
against the antibody libraries using the same computational technologies. In both cases, the goal is to obtain atomistic definitions of putative
antibody–antigen complexes. At this stage, it is preferable to virtually screen a larger number of antibodies (e.g., 1–10 million) and then select a much
smaller number (e.g., 10–100) for docking simulations. This will help speed up the calculations and save computational resources. It is also important to
quantitatively assess the quality of modeled antibody–antigen complexes by comparing them against crystal structures of other antigen–antibody
complexes. A third option is to convert thewhole or portions of the in silico generated antibody libraries intomolecular libraries suitable for phage or yeast
display and then pan them against a diverse panel of desired antigens. In the third part, the structural models of the putative antibody–antigen complexes
obtained previously can be used to identify potential lead antibody candidates andmodify their binding affinities to the desired levels via single- or multi-
residue mutations in the paratope regions through computational protein design. These structural models can also be used to impart cross-reactivity to
homologous antigens from other non-human species and/or to even create surrogate antibodies. Care should be taken to avoid introducing residues
susceptible to physicochemical degradation and therefore reducing the developability of the lead candidates. It is important to note that DAbI will require
changing the discovery workflows because it is pre-paying for developability and may therefore require significantly reduced effort during lead
optimization (LO).
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Licari et al., 2022). These advances have significantly contributed to
our understanding of NBEs and their development processes.

Biotherapeutics can undergo various levels of conformational
changes over time, which presents significant challenges regarding
conformational stability during manufacturing, shipping, and
storage. This is because the environment of a biotherapeutic drug
candidate can influence its structure, highlighting the importance of
understanding these complex molecules in more detail. To address
this, biophysical analysis employs a variety of techniques, such as
thermodynamic, spectroscopic, and hydrodynamic methods, for
characterizing protein-based drug candidates. These techniques
are routinely used during the discovery phase to guide the
identification and characterization of the lead drug candidates.
Some properties commonly assessed during biophysical analysis
include post-translational modifications (e.g., glycosylation,
deamidation, isomerization, oxidation, and fragmentation),
aggregation, self-association, hydrophobicity, molecule pI, and
viscosity for high-concentration liquid formulations. While these
techniques are well established, they can be time- and resource-
consuming and demand expert knowledge and advanced
instrumentation. This has driven researchers to seek more
efficient and accessible methods for obtaining critical data. In
silico tools can predict the intrinsic biophysical properties of drug
candidates along with identifying their degradation routes, whose
knowledge is important for establishing appropriate formulation
strategies. These tools demonstrate significant relationships between
the Fv domain sequences and physicochemical properties that define
antibody developability. For example, post-translational
modification sites, such as deamidation, aspartate isomerization,
oxidation, and fragmentation can be identified using computational
approaches (Irudayanathan et al., 2022; Vatsa, 2022). Similarly,
hydrophobic interaction chromatography (HIC) retention times
have been successfully correlated with sequence and structure
features through diverse methods such as quantitative
structure–property relationship (QSPR) modeling and machine
learning (Jain et al., 2017a; Jetha et al., 2018; Karlberg et al.,
2020). Although solution and colloidal state properties are
challenging to predict due to multiple influencing factors,
computational tools like SOLpro and PROSO II have
demonstrated their ability to predict solubility upon expression
with an accuracy of ~75% (Magnan et al., 2009; Smialowski
et al., 2012). The isoelectric point (pI) is a crucial
physicochemical property for mAbs. It has been associated with
specific developability aspects such as thermostability, viscosity, and
resistance to high molecular weight species formation at low pH.
Tools like MassLynx, Vector NTI, and EMBOSS (Rice et al., 2000)
calculate pI based on sequence data, achieving results within a 15%
range of experimentally determined values (Goyon et al., 2017).
Tools that predict the pI based on protein structure can provide a
more accurate result, since the underlying residue pKa values are
calculated by considering the residual microenvironments. Viscosity
is also a critical factor in the colloidal stability of biologics and is
influenced by electrostatics and hydrophobicity, which are in turn
determined by the Fv sequence and structure. The in silico tool,
spatial charge map (SCM), can identify highly viscous antibodies
based on the mAb structure (Agrawal et al., 2015). Biomolecule
aggregation is related to sequence and structural characteristics,

such as the presence of aggregation-prone regions, hydrophobicity
(Münch and Bertolotti, 2010), electrostatics (Buell et al., 2013),
and dipole moments (Tartaglia et al., 2004), which enable both
sequence- and structure-based computational predictions.
Various in silico tools play a significant role in guiding mAb
candidate design with high colloidal stability by predicting the
impact of single or multiple amino acid exchanges on
aggregation propensity. Alternative tools such as TANGO, PASTA,
FoldAmyloid, SALSA, and AggreRATE-Pred can detect aggregation-
prone regions based on the physicochemical principles of secondary
structure elements, particularly the ability to form intermolecular
cross-β-structures (Fernandez-Escamilla et al., 2004; Trovato et al.,
2007; Zibaee et al., 2007; Garbuzynskiy et al., 2010; Walsh et al., 2014;
Rawat et al., 2019). In summary, these in silico tools can effectively
predict various biophysical properties of biotherapeutics. Their high-
throughput capabilities make them particularly attractive for
biophysical assessments during various stages of the drug discovery
process.

3.4 Hit selection and lead identification

Following the production of antigen-binding antibodies
through immunized animals, hybridoma cells, or phage and
yeast display techniques, the variable regions of the antibodies
are sequenced, and the binders are validated in the conventional
workflows adapted by the biopharmaceutical industry. The
immunization methods, strength and diversity of the immune
responses, and sequencing technologies used can yield numerous
unique hits, particularly via B-cell cloning and repertoire
sequencing. Subsequently, these diverse hits must be
prioritized to identify the most promising lead candidates,
necessitating extensive resources to experimentally test each
hit and confirm antigen binding.

Several bioinformatic techniques can aid in prioritizing and
selecting hits for in vitro confirmation of antigen binding and lead
identification (Figure 3). A common strategy involves clustering hits
into high-, medium-, and low-binding bins based on the initial
estimates, analyzing each bin for heavy- and light-chain germline
diversity, and then examining CDR diversity to select multiple
representatives from each germline pair in each bin for
experimental testing. Alternatively, hits can be binned based on
the germline pair and CDR diversity, with selections made according
to their estimated antigen binding. At this stage of hit selection,
developability aspects can also be considered using computational
tools introduced in the previous section. In a basic application,
heavy- (HC) and light-chain (LC) sequences of hits can be scored
based on the presence of potential chemical degradation motifs,
aggregation-prone regions (APRs), and T-cell immune epitopes
present in or overlapping with the CDRs of the heavy and light
chains. The scoring schemes can be further optimized by assigning
different weights based on which CDRs contain these motifs and
whether they are in the Vernier zones or middle of the CDRs.

Structure-based approaches require accurate three-dimensional
antibody fold information, typically generated via homology
modeling. This process includes 1) identifying a high-identity
structural template for framework (FW) regions, 2) loop
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modeling of LCDR1-3 and HCDR1-2 using canonical loop
conformations, 3) HCDR3 loop modeling and optimization of
the orientation of heavy-chain variable region (VH) and light-
chain variable region (VL), and 4) sidechain packing and
refinement. The key challenges involve obtaining high-resolution
templates with optimal VH-VL orientations and accurately
modeling loops, particularly the HCDR3 loop. Recent progress in
Fv structure modeling has led to advanced tools, such as
RosettaAntibody (Weitzner et al., 2017; Adolf-Bryfogle et al.,
2018; Schoeder et al., 2021), AbPredict2 (Lapidoth et al., 2018),
ABodyBuilder (Leem et al., 2016), LYRA (Klausen et al., 2015),
MoFvAb (Bujotzek et al., 2015), and Kotai Antibody Builder
(Yamashita et al., 2014), which demonstrate high performance in
the AMA-II benchmark test. Commercial packages like Molecular
Operating Environment (MOE) and BioLuminate are popular for
high-throughput full-length Fv structure modeling. A detailed
discussion of recent advancements in Fv structure modeling tools
can be found in focused reviews (Fernández-Quintero et al., 2023).
Additionally, tools like FREAD, H3LoopPred, SPHINX,
MODELER, PLOP, SCWRL, BetaSCPWeb, Chothia canonical
assignment, and SCALOP have significantly contributed to full-
length Fv region three-dimensional structure modeling. Tools such
as TopModel efficiently examine the structure for cis-amide bonds,
D-amino acids, and steric clashes, allowing for rapid evaluation of
model quality and accuracy prior to conducting further analysis
(Norman et al., 2019;Wilman et al., 2022; Fernández-Quintero et al.,
2023). The generated three-dimensional structural models of all or a
subset of hits can then be analyzed regarding their physicochemical
descriptors, such as pI, charge, dipole moment, and solvent-exposed
hydrophobic and ionic patches. These physicochemical properties
have been demonstrated to potentially influence the chemical,
conformational, colloidal, and physical stabilities of antibodies,
and consequently their developability. In subsequent studies, a
few of the best hits are rigorously tested in the laboratory for
biological function, cross-reactivity across species, non-specific
binding, and pharmacological indicators, such as serum stability.
This process results in the identification of one or more lead
candidates.

3.5 Virtual screening and docking as
potential alternatives to in vitro hit selection
and lead identification

Identification of potential binders through immunization
campaigns can be accomplished using bioinformatics tools for
paratope and epitope prediction, followed by rapid virtual
screening, as outlined in Part 2 of the in silico roadmap, we call
DAbI (Figure 2). This approach involves three-dimensional
structure modeling of a diverse antibody sequence library and
screening it against a given antigen by taking advantage of the
shape and charge complementarity between the epitopes and
paratopes. The antibody libraries to be screened can be endowed
with the biophysical characteristics desired from a developability
perspective as described previously.

Small-molecule drug discovery has successfully employed
virtual screening to identify binders from a library of drug
candidates (Gorgulla et al., 2020; Maia et al., 2020; Yan et al.,
2020). Typically, millions of small-molecule drug candidates
undergo structural and energetic screening processes through
docking, pharmacophore-, or ligand-based approaches. Modern
techniques involving computer vision, image-based, and
geometric learning–based algorithms have reached advanced
stages of validation and are now well established among the
marketed small-molecule drugs designed using in silico methods
(Eguida and Rognan, 2020; Gorgulla et al., 2020; Yan et al., 2020).
Similarly, a curated and modeled antibody library may be treated as
a potential set of drugs to be screened against a given antigen.
However, directly applying these techniques may not be feasible due
to the significant structural and functional differences between
small-molecule drugs and large antibodies, with size (molecular
weights, 500–1,000 Da versus approximately 25,000 Da for the Fv)
being a primary concern even when considering only the Fv regions.
Additionally, given the estimated theoretical diversity of B-cell
repertoire (BCR) based on V(D)J recombination, which is about
1013–1020 unique sequences, it is crucial to consider large antibody
libraries to allow screening over a highly diverse sample space of
paratopes.

FIGURE 3
Integration of in vivo, in vitro, and in silico approaches for hit selection in the discovery phase of the pharmaceutical industry. Next-generation
screening and virtual screening methods are employed to identify promising leads, which are then prioritized using clustering techniques based on 1)
antigen binding and 2) a combination of germline pair clustering and CDR diversity. Finally, computational developability screens that analyze the amino
acid sequence, structure, and combinatorial methods such as QSPR or machine learning are performed to select the most promising hits.
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Hypothetically speaking, we consider an antibody library of
1 million Fv sequences and assume a screening time of 1 min per Fv
for a given antigen, the total runtime would amount to
approximately 695 days (close to 23 months) for screening a
single antigen against the library, which consists of only a small
fraction of BCR diversity. Currently existing docking methods have
runtimes of several minutes per complex. On the bright side, rapid
virtual screening may not necessarily require rigorous energy-based
binding evaluations employed in modern docking programs.
Sacrificing the accuracy afforded by pose refinement can allow
for greater speed in the screening process. Consequently, novel
techniques have to be developed to enable the screening of large
antibody libraries by considering the key aspects of the structural
and chemical complementarity of the antigen:antibody interfaces
and ensuring high-throughput rapid execution. An ideal in silico
antibody virtual screening process could narrow down the potential
binding hits to the order of 101–102, meaning that virtual screening
would enable identifying binders at least as accurately as about one
in a thousand to a few thousand sequences from the library,
significantly impacting the discovery pipeline.

While in silico virtual screening does not replicate the generation
of antigen binders via experimental methods in terms of binding
affinity or functional efficacy, it can allow for comprehensive
screening of the antibody library to identify all possible structural
matches of epitopes and paratopes. Iterative refinement of these
matches can help discover antibody binders to a given antigen with a
diverse set of binding affinities and therefore suitable for antagonist
as well as agonist function. Novel techniques, such as image-based
and graph-based deep learning algorithms, have been proposed for
identifying complementary paratope/epitope interfaces. These
approaches can be further accelerated through pre-identified or
predicted paratope and epitope information (Gainza et al., 2020;
Pittala and Bailey-Kellogg, 2020; Akbar et al., 2021; Ripoll et al.,
2021). Schneider et al. (2021) proposed a structure-based virtual
screening method using voxel representation of the interfacing
surface atom groups in their screening method called Deep
Learning for AntiBodies (DLAB), adapted and extended from its
small-molecule counterpart (Imrie et al., 2018). Recently proposed
image fingerprinting–based approaches, with analogous
applications in small molecules, show promising potential for
protein interface matching and could be further expanded to
predict paratope/epitope binders for hit selection (Gainza et al.,
2020; Ripoll et al., 2021). More recently, a geometric deep learning
method called ScanNet has been introduced to predict
protein–protein and protein–antibody binding interfaces through
geometric deep learning of three-dimensional structural features
(Tubiana et al., 2022). Moreover, some of the paratope/epitope
prediction methods involving deep learning of interfacial
interactions may be extrapolated to interface screening and
predicting binders.

The in silico virtual screening of antibodies against a given
antigen can also borrow techniques such as fragment-based drug
design (Sormanni et al., 2015; Sormanni et al., 2018) and
pharmacophore modeling from the realm of small-molecule drug
discovery. By facilitating the identification of binding sites,
improving antibody–antigen docking, and enabling more
accurate structure-based virtual screening, these methods can
accelerate the development of novel therapeutic antibodies and

enhance our ability to target a wider range of diseases and
conditions.

Recent molecular docking protocols feature highly robust,
energy-based scoring functions for evaluating and ranking
protein–protein or protein–antibody binding partners. This offers
a suitable toolkit for further optimization of hits identified through
virtual screening of target antigens against an antibody library.
Docking methods have demonstrated accurate prediction of
protein-binding interfaces; however, speed has not been a
priority for molecular docking programs. Although the current
speed of implementation poses a bottleneck, rapid advancements
in the field of protein–protein docking have spurred the
development of new methods utilizing advanced machine
learning algorithms and hybrid physics and learning-based
technologies, promising faster docking methods soon. Moreover,
such advancements may bridge the gap between virtual screening
and docking, further accelerating in silico antibody screening, hit
selection, and lead identification processes altogether.

Antibody–antigen docking has often been considered with
paratope/epitope prediction and improving CDR modeling
accuracy. SnugDock combines docking with accurate modeling
prediction of the paratope (CDR loop construction), where the
Rosetta Antibody Modeler operates alongside the docking
protocol, iteratively improving docking and model prediction
(Sircar and Gray, 2010; Jeliazkov et al., 2021). Additionally,
methods employing more rigorous energy-defined constructs to
evaluate multiple docking poses through the MM-GBSA
(molecular mechanics—generalized Born solvent accessibility)
method have shown promising outcomes (Shimba et al., 2016).
Information-driven docking methods depend on a set of data to
reduce the number of decoys, thus saving prediction time. Interface
prediction-based methods, such as Antibody i-patch and EpiPred,
focus on refining docking poses through paratope/epitope interface
prediction (Krawczyk et al., 2013) By contrast, proABC adopts a
more site-directed approach driven by the interface (paratope)
(Olimpieri et al., 2013; Krawczyk et al., 2014). Advances in
machine learning and deep learning algorithms have significantly
contributed to enhancing docking prediction methods.

Other widely employed programs such as ClusPro, LightDock,
ZDOCK, and HADDOCK, coupled with CDR and binding epitope
information for directed/biased docking approaches, have shown
promising results, with HADDOCK demonstrating notable
performance improvement (Ambrosetti et al., 2020a). Pro-ABC-2,
another information-driven docking approach and an updated
version of Pro-ABC, utilizes deep learning convolutional neural
networks (CNNs) for paratope prediction to assist in docking
(Ambrosetti et al., 2020b). Such information-driven methods may
also be applicable in pipelines using commercial docking techniques
offered by MOE from Chemical Computing Group, PIPER from
Schrodinger, and others with additional efforts.

Several other methods that employ deep learning through
CNNs, recurrent neural networks (RNNs), or graph-based
learning have demonstrated promise in predicting binding
interfaces, consequently improving docking accuracy (Liberis
et al., 2018; Deac et al., 2019; Pittala and Bailey-Kellogg, 2020; Lu
et al., 2021; Myung et al., 2021; Vecchio et al., 2021; Davila et al.,
2022). Additionally, research groups have been exploring the
exceptional modeling performance of AlphaFold2 in docking
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prediction. The accelerated advancements in AI related to
AlphaFold and other docking methods offer significant potential
for the development of faster and more accurate docking programs
in the future.

3.6 In silico affinity maturation of lead
candidates

In a conventional discovery workflow, the lead candidates
identified may have to be optimized for affinity, cross-reactivity,
and developability. Among these, the focus is often on
developability of the lead candidates. By contrast, DAbI may
yield developable lead candidates already since the sequence and
structural features that support good developability are already
included in the library design (Part 1 of DAbI, see Figure 2).
Depending on the library choice (antigen-agnostic or antigen-
specific), the in silico generated lead candidate may have to be
optimized for binding affinity and any residual physicochemical
developability issues, particularly from the CDRs. For these
reasons, the third part of our conceptual roadmap, DAbI
(Figure 2), envisages an ability to adjust the binding affinity as
per the project requirements. Depending upon the novel
therapeutic concept (NTC), both enhancement (affinity
maturation) and decrease (affinity de-maturation) in binding
affinities may be required. However, affinity maturation may be
required more often than de-maturation, particularly when the
lead antibody binders have been derived from antigen-agnostic
libraries. In our conceptual roadmap, both affinity maturation
and de-maturation begin with a structural representation of the
atomic interaction between two proteins, namely, the antigen and
the antibody. The methodology’s reliability depends on
accurately analyzing the interacting sites. Therefore, co-
crystallized antibody–antigen complexes are typically preferred
over structure-based homology models or AI predictions, which
may lead to less reliable results if CDRs are not precisely modeled.
The in silico affinity maturation relies on accurate molecular
interactions for free energy or MM-GBSA–based calculations
(Comeau et al., 2023; Thorsteinson et al., 2023), highlighting the
importance of improving antibody–antigen complex predictions
and the implicit incorporation of multiple conformational
ensembles to enhance the effectiveness of in silico calculations
and optimize library design. Despite this limitation, these
methods have been already applied to predicted
antibody–antigen complexes (Rangel et al., 2022), facilitating
the generation of in silico affinity maturation libraries (Conti
et al., 2022; Thorsteinson et al., 2023).

The in silico scanning of the individual paratope residues
yields potential mutations and estimates of the corresponding
free energy changes in binding to the target. The subsequent
challenge involves designing a combinatorial assembly of these
mutations into a library suitable for phage/yeast display. This is
because the in silico affinity maturation often involves
computationally expensive calculations that tend to be more
accurate at identifying the single point mutations rather than
combinations thereof (Comeau et al., 2023; Thorsteinson et al.,
2023). The physical display libraries built using computational
guidance can be used to pan combinatorial mutations. Therefore,

this part of DAbI requires an understanding of the limitations
associated with the library size and panning methodology
(Tsumoto and Kuroda, 2022). It is also in consonance with
the spirit of biopharmaceutical informatics which calls for
taking advantage of the strengths of computation and
experiments in a synergistic manner. When combined with
library technologies like phage display, computational tools
have proven particularly powerful in guiding the design of
affinity maturation libraries (Tiller et al., 2017; Nelson et al.,
2018; Wang et al., 2018; Thorsteinson et al., 2023). Incorporation
of additional considerations along with the binding affinity can
help narrow down the mutations for experimental testing and
therefore the size of the display libraries. At this stage, the
mutations that enhance specificity, humanness, and CDR
germlining along with developability can be considered by
incorporating relevant physicochemical properties and stability
criteria (Khan et al., 2023; Svilenov et al., 2023). Consequently,
the selection of lead antibody candidates with high binding
affinity and favorable biophysical properties can be achieved
simultaneously. In-house, we successfully improved binding
affinities of the antibody drug candidates 10- to 1,000-fold in
multiple proprietary projects using this strategy.

Several studies have demonstrated the computational design
of functional antibodies using multiple structural models
supported by statistical or machine learning models (Nimrod
et al., 2018; Liu et al., 2019; Amimeur et al., 2020). Upon selecting
an initial antibody scaffold, mutations to enhance
complementarity with a given epitope can be designed to
obtain specific antibody binders to an antigen. For example,
the generative adversarial network (GAN) model was trained
on over 400,000 light- and heavy-chain human antibody
sequences to learn the rules of human antibody formation
(Amimeur et al., 2020). The resulting model outperforms
common in silico techniques, generating diverse libraries of
novel antibodies mimicking somatically hypermutated human
repertoire responses. Through transfer learning, the GAN can
generate molecules with improved stability, developability, lower
predicted major histocompatibility complex class II binding, and
specific CDR characteristics. In-house, we could independently
train the GAN on a much smaller set of approximately
31,500 paired antibody sequences belonging to the VH3-VK1
germline pair and format them as single chain variable regions
(ScFvs). These sequences were selected based on their high
percent humanness, low incidence of chemical liabilities in the
CDRs, and high medicine-likeness. The in-house developed GAN
model was then used to generate 100,000 unique antibody ScFv
sequences and a small yet highly diverse subset of them was
produced in the laboratory as immunoglobulin G1K (IgG1K)
antibodies. The initial experimental characterization showed that
most of the generated antibodies showed desirable attributes for
expression, purification, thermal stability, and colloidal stabilities
that compare favorably with those of trastuzumab, a
biotherapeutic well known for its good developability profile
(unpublished results). In summary, these in silico approaches
enable the control of pharmaceutical properties for antibodies,
potentially offering a more rapid and cost-effective screening,
docking, and binding affinity maturation against a given target
antigen.
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3.7 Humanization and optimization of lead
candidates

During the conventional discovery workflow, lead
optimization (LO) is carried out as soon as one or more lead
candidates have been identified and revalidated for function. The
Fv regions may require humanization if the lead molecule is from
a non-human source, the removal of post-translational
modification (PTM) sites, optimization of affinity, and ideally,
improvement of developability (Figure 4). When all parts of
DAbI are fully enabled, time and efforts required for LO may
be significantly reduced, if not eliminated completely as stated
earlier. However, for now, humanization and optimization of the
functional lead candidates remain an integral part of
biotherapeutic drug discovery. The following describes how
computation can support every aspect of the LO process for
therapeutic antibodies.

Humanization optimizes the amino acid sequence of non-
human Fv regions, decreasing immunogenicity and anti-drug
antibodies (ADAs) (Roguska et al., 1994; Townsend et al., 2015).
Computational protein design methods can efficiently increase
antibody humanness while maintaining structural stability (Choi
et al., 2015). State-of-the-art software like MOE (ULC, 2021)
enables CDR grafting and humanness optimization through in
silico calculations (Abhinandan and Martin, 2007; Lazar et al.,
2007; Gao et al., 2013; Seeliger, 2013; Olimpieri et al., 2015; Choi
et al., 2017; Kuroda and Tsumoto, 2020). Bioinformatic studies
have also revealed structural differences between the lambda
(VL) and kappa (VK) isotypes, which must be considered
during re-engineering (van der Kant et al., 2019). Structure-
guided approaches can aid in enhancing the biophysical
properties of a therapeutic mAb by transitioning from a
problematic lambda framework (FWR) region to a more stable
kappa FWR (Lehmann et al., 2015).

The humanized sequences progress to liability engineering
campaigns. Pre-formulation assessments, forced degradation
studies, and in silico evaluations are incorporated into the
engineering design plan. Phage display or other screening
technologies can be employed to screen a large panel of variants.
In silico tools monitor and guide the redesign of candidates’
individual liabilities (see Figure 4), and medicine-likeness can be
estimated by comparing molecular characteristics with marketed
antibodies (Ahmed et al., 2021).

Computational tools have successfully guided antibody
optimization campaigns, improving solubility, viscosity, self-
association, colloidal stability, and binding specificity (Yadav
et al., 2011, 2012; Nichols et al., 2015; Kumar et al., 2018b; Shan
et al., 2018; Zhang et al., 2018; Navarro and Ventura, 2019; Sakhnini
et al., 2019; Bauer et al., 2020). In silico–guided LO campaigns have
demonstrated single amino acid residue exchanges that can improve
multiple chemistry, manufacturing, and control (CMC) properties,
such as expression titer, yield, purity, and colloidal stability (Bauer
et al., 2020). A case study enhanced antibody developability using a
multi-stage approach, starting with in silico screening for mutations
addressing liabilities while preserving thermodynamic stability,
followed by production and characterization of stable candidates
(Sakhnini et al., 2019). An alternative hybrid method combined
computational and experimental alanine scans to identify CDR

positions for mutagenesis, maintaining antigen binding and
creating antibody libraries (Tiller et al., 2017). Structure-based
computational designs have been effectively employed to
improve the affinity and specificity of therapeutic antibodies
by pinpointing the key residues in the paratope for site-
directed single, double, or even triple mutations (Kiyoshi
et al., 2014; Grossman et al., 2016; Kumar et al., 2018b; Chiba
et al., 2020). Computational methods offer conformational
stability predictions for humanization or LO (Dehouck et al.,
2011; Baets et al., 2015; Folkman et al., 2016; Quan et al., 2016;
Pandurangan et al., 2017; Cao et al., 2019; Leman et al., 2020),
with some tools using ML on experimental data (Pandurangan
et al., 2017; Cao et al., 2019). Furthermore, glycoengineering
reduces aggregation propensity and enhances conformational
stability of biotherapeutics (Hristodorov et al., 2013; Courtois
et al., 2015).

Recommendations for amino acid substitutions help design a
customized humanization and optimization strategy for the lead
mAb candidate. The top lead optimized candidates (3–6) are
selected for large-scale production and biophysical
characterizations. These processes can be extended to multi-
specific antibodies, with additional engineering for optimizing
Fv or ScFv domains and identifying optimal multi-specific
formats.

FIGURE 4
Lead humanization and optimization involve converting non-
human sequences to human-like sequences while maintaining critical
key attributes. In vitro binding affinity, which acts as surrogate for
function, is the paramount criteria for accepting the mutations.
Furthermore, in silico tools can be used to identify potential T-cell
reactive epitopes, resulting in leads with lowest potential for
immunogenicity and high percentage human content by germlining
of the CDRs. Another aspect of optimization includes developability,
which involves identifying leads with desirable biophysical properties
and avoiding incidence of the post-translational modification sites
such as N-linked glycosylation, unpaired cysteines, oxidation,
deamidation, or aspartate isomerization, particularly in the CDRs.
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3.8 Formatting of conventional and next-
generation antibodies

After optimizing Fv regions, biotherapeutic engineering
proceeds with formatting Fvs into the desired antibody format,
combining Fv with the chosen IgG Fc isotype. Fc engineering may be
required to adjust receptor-mediated functions like antibody-
dependent cell-mediated cytotoxicity (ADCC), antibody-
dependent cellular phagocytosis (ADCP), complement-dependent
cytotoxicity (CDC), and endosomal recycling (Mimoto et al., 2016).
For next-generation biotherapeutics like bi- and multi-specific
antibodies, an intermediate formatting step assesses compatibility
and developability properties. Structure-based engineering supports
antibody formatting, as demonstrated in a study where TGFβ1
(transforming growth factor β1) binder affinity was restored after
converting from ScFv to IgG (Lord et al., 2018). Similar approaches
can support formatting complex next-generation antibodies.

In the discovery process’s final step, top-performing lead
variants undergo pre-formulation studies before transferring to
development for cell line generation and early developability
assessments (Bailly et al., 2020). The research phase concludes
with the final candidate selection, after which conventional and
DAbI-enabled workflows for antibody discovery are identical.

3.9 In silico assessments in early
development

The initial stages of drug substance and drug product
development are resource intensive, with full development
programs justified only for the final candidate. At the time of
selecting the final lead candidate, experimental data are often
scarce due to material limitations. The sequence of the final lead
candidate becomes locked at the start of development. This decision
puts product development at a disadvantage, as real-time stability
data are typically unavailable but crucial for meeting regulatory
requirements concerning shelf-life, Critical Quality Attributes
(CQA), and product heterogeneity. There is significant demand
for early, rapid, and reliable stability predictions addressed through
hybrid approaches combining in vitro and in silico techniques.
Computational approaches can help estimate a molecule’s fit to
specific platform processes and tailor subsequent development
programs to the biologic candidate’s inherent liabilities and
characteristics (Figure 5). Conversely, platform processes
continuously gather data for new molecules, improving existing
and developing novel bioinformatic predictions.

One platform step is the ultrafiltration/diafiltration (UF/DF),
typically employed to process the antibody into the desired
formulation. Recently, in silico models have demonstrated that
protein charge can predict common UF/DF effects, such as
Gibbs–Donnan and volume-exclusion phenomena (Kannan et al.,
2023). After antibody formulation, certain stability aspects become
most relevant for evaluating the developability of the final lead
candidates using hybridized assessments.

Conformational stability is generally not an issue for
conventional mAbs but can pose a significant challenge for next-
generation biologics like ScFvs and multi-specific antibodies (Bailly
et al., 2020). Numerous bioinformatics tools have been developed to

calculate conformational stability, mostly applicable during LO for
analyzing stability changes upon point mutations (Koenig et al.,
2017; Pandurangan et al., 2017; Steinbrecher et al., 2017; Cao et al.,
2019; Kuroda and Tsumoto, 2020; Leman et al., 2020; Harmalkar
et al., 2023). Prediction accuracy heavily relies on the quality of the
underlying structure or homology model, allowing comparisons
between similar sequence variants.

Recent advancements in homology modeling and MD-based
free energy calculations offer potential for enhancing thermal
stability prediction (Kuhlman and Bradley, 2019; Berner et al.,
2021; Tomar et al., 2021; Ko et al., 2022; Licari et al., 2022).
Soon, these simulation approaches will extend from antibody
fragments to full-length structures (Tomar et al., 2021). MD-
derived predictions will improve by considering formulation
aspects influencing conformational stability (Somani et al., 2021;
Blanco, 2022; Saurabh et al., 2022; Shmool et al., 2022). High-
throughput (HTP) screening of biologics’ thermal stabilities in
platform formulations enables AI, ML, and neural networks to
train computational tools to predict the thermal stabilities of
diverse candidates (Gentiluomo et al., 2019a; Cao et al., 2019;
Wei, 2019; Bailly et al., 2020; Harmalkar et al., 2023). The
pharmaceutical industry will benefit from bioinformatic tools
predicting optimal formulation composition for specific
candidates or identifying the best-suited candidate for a given
formulation.

Predicting colloidal stability and aggregation propensity of drug
products is critical, with bioinformatics offering significant
advantages in development efforts. First, real-time stability
studies may take years, allowing bioinformatics to reduce
development time and risk of late-stage failure. Second, stability
studies require large material amounts, particularly for HCPF,
increasing the cost of failures. Third, extrapolations from
accelerated stability studies often inaccurately reflect molecular
behavior under storage conditions. Simplified approaches using
conformational stability to estimate aggregation propensity only
account for non-native aggregation (Brader et al., 2015), neglecting
self-association and aggregation of natively folded mAbs. Fourth,
analytical techniques like HIC, dynamic light scattering (DLS), self-
interaction nanoparticle spectroscopy (SINS), size exclusion
chromatography (SEC), and micro-flow imaging (MFI) partially
characterize colloidal instability and aggregation, often necessitating
a comprehensive analytical panel (Kopp et al., 2020). Last, colloidal
instability and aggregation can be triggered by various intrinsic
(molecule-related) (Alam et al., 2019; Gentiluomo et al., 2019b; Lai
et al., 2022) and extrinsic (process-related) factors, following
complex mechanisms. Conventional methods struggle to
accurately predict shelf-life, leading to resource-intensive
development studies and troubleshooting efforts when the
development success is at risk.

A thorough understanding of molecular behavior is essential for
addressing self-association, aggregation, or particulate formation
issues. Computational approaches have been developed to estimate
mechanistic and kinetic characteristics for better comprehension
and prediction of colloidal instability and aggregation. Mechanistic
tools aid in screening and minimizing APRs during the discovery
phase (Kuhn et al., 2017; Prabakaran et al., 2017, 2020; van der Kant
et al., 2017; Gil-Garcia et al., 2018; Rawat et al., 2018; Bauer et al.,
2020; Ebo et al., 2020; Shahfar et al., 2022), while kinetic predictors
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estimate aggregation rates, crucial for liquid formulation
development meeting regulatory requirements for shelf life
(Rawat et al., 2019; Yang et al., 2019; Santos et al., 2020).
Machine Learning (ML) can train kinetic models using extensive
data sets with experimental and sequence/structure information
(Rawat et al., 2019; Yang et al., 2019), facilitating prediction of
optimal formulation compositions (pH, salt, excipients) for minimal
kinetics.

In the final development stage, creating liquid drug products
with stable physical properties is vital. Manufacturing, processing,
and administration of highly concentrated antibody formulations
often face viscosity challenges. Viscosity is linked to surface charge
and hydrophobicity of the mAb (Tomar et al., 2018; Apgar et al.,
2020; Lai et al., 2021; Blanco, 2022; Han et al., 2022; Lai, 2022).
Studies have shown computational ability to predict viscosity
profiles at platform conditions using mAb sequence and structure
(Tilegenova et al., 2019; Bauer et al., 2020; Thorsteinson et al., 2021;
Han et al., 2022; Lai et al., 2022; Rosace et al., 2022). A recent deep
learning approach utilized a 3D convolutional neural network to
predict high-concentration viscosity of therapeutic antibodies (Rai
et al., 2023). Feature attribution analysis identified key biophysical
drivers of viscosity, such as the electrostatic potential surface. The
predictor was successfully trained despite limited data. Early
integration of viscosity predictors enables addressing viscosity
issues and adjusting platform formulations and technologies
before finalizing the development strategy.

4 Discussion and conclusion

In this review, we have presented numerous opportunities for
computation to play a greater role in biotherapeutics discovery and
development. However, the excitement around computation’s
enhanced role should be tempered with pragmatism. Machine
learning experts often lack practical experience in biotherapeutics

discovery and development and vice versa. Thus, a strong
collaboration between bench scientists and data scientists is
recommended. Computational biophysics and antibody
structure–function–developability relationship experts should work
with machine learning and artificial intelligence experts, as well as
experimentalists, to fully enable biopharmaceutical informatics.
Additionally, technical limitations exist in emerging technologies like
machine learning and artificial intelligence. For instance, deep learning
model performance often depends on size and diversity within training
data sets (Wittmund et al., 2022), posing challenges in sparse or less
diverse data settings. Moreover, the lack of insights into the latent space
and interpretability of AI models in terms of the underlying
physicochemical rules hinders our ability to better understand the
models and extend their applicability beyond the tasks they have
been trained for. For example, AI-based methods have transformed
protein structure prediction, but contrary to popular belief, they have
not solved the protein folding problem (Chen et al., 2023), as they do
not provide insights into protein folding processes, such as initial
building blocks, intermediate states, energy landscapes, and pathways.

In the specific context of protein engineering, the complexity of
prediction tasks is escalated by non-additive mutational interactions
or epistatic effects, which can significantly alter the impact of single
or multiple mutational outcomes (Reetz, 2013; Miton and Tokuriki,
2016; Cadet et al., 2022). A further layer of complication is presented
by the dynamic interplay between mutated amino acids and the
subsequent establishment of intramolecular interaction networks,
which can alter the protein function (Acevedo-Rocha et al., 2021).
The situation is exacerbated by the limitations of tools such as
AlphaFold2 or ProteinMPNN, which may struggle to predict how
individual amino acid changes affect protein structure due to their
heavy reliance on evolutionary perspectives and variant sequences
(Eisenstein, 2021; Dauparas et al., 2022). Deep learning methods
offer a way to investigate protein attributes, such as stability,
solubility, aggregation, and binding affinity. However, these
methods operate within the confines of the training data.

FIGURE 5
Computational approaches analyze the physicochemical properties of the antibody structure to predict various developability aspects and stability
factors. These in silico methods evaluate factors such as aggregation propensity, conformational stability, colloidal stability, and post-translational
modifications and help to select candidates with improved developability and reduced risk of immunogenicity or manufacturing challenges.

Frontiers in Molecular Biosciences frontiersin.org14

Bauer et al. 10.3389/fmolb.2023.1221626

63

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1221626


Although this does not eliminate the possibility of identifying
beneficial protein variations within these parameters, it may fail
to recognize or accurately predict variants exhibiting fitness values
outside the learned range. This means that while beneficial variants
can be identified, the optimal variant, particularly if it is an epistatic
variant, might be overlooked. Against this backdrop, the use of deep
learning models in conjunction with conventional neural network
architectures is being explored as a solution for these challenges. By
representing numerical quantities as individual neurons without
non-linearity, these models can learn to perform systematic
numerical computation, enabling them to handle data that lie
outside the range used during training (Trask et al., 2018). The
adaptability of these models across various task domains augments
their potential to tackle challenges encountered in antibody
therapeutics. Importantly, the ability to harness epistatic effects
and predict mutational outcomes could significantly enhance the
design of therapeutic antibodies. Moreover, other studies have
indicated the potency of a Machine learning (ML) approach
focused exclusively on sequences in accurately predicting epistatic
phenomena (Cadet et al., 2018). Unlike most ML and deep learning
methodologies that predominantly capture low-order non-linear
interactions and predict the additive effects of mutations, this
innovative strategy comprehensively encapsulates both low- and
high-order non-linear interactions. By utilizing ML in tandem
with digital signal processing such as Fourier transform, case
studies have demonstrated a significant improvement in the
resistance of proteins to unfavorable unfolding and
aggregation. Crucially, this method unveils the correlation
between epistatic mutational interactions and protein
resilience, offering unique, predictive insights beyond those
provided by conventional machine learning or deep learning
approaches (Li et al., 2021). This approach has considerably
enhanced precision, reduced overfitting, and surpassed
conventional methods without increasing complexity (Medina-
Ortiz et al., 2022). Understanding the rules underlying these
interactions could contribute to a more efficient model design
and a more predictive performance, thereby bolstering the
success of deep learning in the realm of biopharmaceutical
informatics.

In conclusion, this review article aims to broaden our strategic
perspective on biopharmaceutical informatics. Initially, we emphasized
the syncretic use of computation and experimentation for the drug
product development of antibody-based biotherapeutics (Kumar et al.,
2015; Kumar et al., 2018a). Subsequently, Khetan et al. (2022)
demonstrated its feasibility by spelling out different methods and
published studies already available in the public domain to support
our vision. Here, we propose a more generalized vision of
biopharmaceutical informatics by including DAbI and digital
transformation. It is widely agreed that digital transformation is
essential for modernizing the biopharmaceutical industry’s work
processes, leading to more judicious use of resources and reduced
costs in biotherapeutics discovery and development. Recent
advancements in AI and ML, along with the availability of large-scale
antibody sequencing data in the public domain, have fueled excitement
for DAbI. When fully embraced by the biopharmaceutical industry,

DAbI will revolutionize the way biotherapeutic drugs are discovered and
developed. Current drug discovery processes and workflows are
dominated by experimental trials and errors, with computation
playing an assistive role at the best. DAbI can support the start of
projects even before the availability of antigen material for in vitro
experimental studies. This is particularly attractive when the antigens
involved are difficult to express and purify. DAbI can also accelerate
discovery projects by pre-paying for developability and therefore save on
resources and time required to fix these issues at the later stages.
These two features may eventually lead to situations where
computation plays an equal, if not greater, role alongside
experimentation in supporting biotherapeutics discovery and
development projects. Therefore, our vision of
biopharmaceutical informatics points to an exciting future
where we can better serve patients by addressing unmet
medical needs through more successful, faster, and affordable
discovery and development of biotherapeutics. Additionally, the
discovery and development of antibody-based biotherapeutics
are rapidly becoming industrialized, with several aspects
becoming more uniform (e.g., discovery processes and drug
formulations), while multiple options are being explored for
others, such as molecular formats, routes of administration,
and dosing options (Martin et al., 2023). Biopharmaceutical
informatics contributes toward accelerating this
industrialization and helping to improve human health.
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Glossary

Ab Antibody

ADA Anti-drug antibodies

ADCC Antibody-dependent cell-mediated cytotoxicity

ADCP Antibody-dependent cellular phagocytosis

Ag Antigen

AI Artificial intelligence

Ala Alanine

APR Aggregation-prone region

BCR B-cell repertoire

CDC Complement-dependent cytotoxicity

CDR Complementarity determining region

CMC Chemistry, manufacturing, and control

CNN Convolutional neural networks

CQA Clinical Quality Attributes

DAbI Discovery of antibodies in silico

DENIS DEvelopability Navigator In Silico

DLAB Deep Learning for AntiBodies

DLS Dynamic light scattering

Fab Fragment antigen binding

FAIR Findable, accessible, interoperable, and reusable

FDA Food and Drug Administration

Fv Fragment variable

FW Framework

GAN Generalized adversarial network

HC Heavy chain

HCDR1-3 Heavy-chain complementarity determining regions 1–3

HCPF High-concentration protein formulations

HIC Hydrophobic interaction chromatography

HTTP High-throughput

IgG Immunoglobulin G

LC Light chain

LCDR1-3 Light-chain complementarity determining regions 1–3

LO Lead optimization

mAb Monoclonal antibody

MaSIF Molecular surface interaction fingerprints

MD Molecular dynamics

MFI Micro-flow imaging

MHC Major histocompatibility complex

ML Machine learning

MM-GBSA Molecular mechanics—generalized Born solvent accessibility

MOE Molecular Operating Environment

NBE New biologic entity

NTC Novel therapeutic concept

pI Isoelectric point

PTM Post-translational modification

QSAR Quantitative structure–activity relationship

QSPR Quantitative structure–property relationship

R&D Research and development

RNN Recurrent neural networks

RTP Research target profile

ScFv Single-chain fragment variable

SCM Spatial charge map

SEC Size exclusion chromatography

SINS Self-interaction nanoparticle spectroscopy

TGFβ1 Transforming growth factor β1

UF/DF Ultrafiltration/diafiltration

VH Heavy-chain variable region

VK Light-chain variable region (kappa isotype)

VL Light-chain variable region (lambda isotype)
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Exploring rigid-backbone protein
docking in biologics discovery: a
test using the DARPin scaffold

Francis Gaudreault1, Jason Baardsnes1, Yuliya Martynova1,
Aurore Dachon1, Hervé Hogues1, Christopher R. Corbeil1,
Enrico O. Purisima1, Mélanie Arbour1 and Traian Sulea1,2*
1Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC,
Canada, 2Institute of Parasitology, McGill University, Montreal, QC, Canada

Accurate protein-protein docking remains challenging, especially for artificial
biologics not coevolved naturally against their protein targets, like antibodies
and other engineered scaffolds. We previously developed ProPOSE, an exhaustive
docker with full atomistic details, which delivers cutting-edge performance by
allowing side-chain rearrangements upon docking. However, extensive protein
backbone flexibility limits its practical applicability as indicated by unbound
docking tests. To explore the usefulness of ProPOSE on systems with limited
backbone flexibility, here we tested the engineered scaffold DARPin, which is
characterized by its relatively rigid protein backbone. A prospective screening
campaign was undertaken, in which sequence-diversified DARPins were docked
and ranked against a directed epitope on the target protein BCL-W. In this proof-
of-concept study, only a relatively small set of 2,213 diverse DARPin interfaces
were selected for docking from the huge theoretical library from mutating
18 amino-acid positions. A computational selection protocol was then applied
for enrichment of binders based on normalized computed binding scores and
frequency of binding modes against the predefined epitope. The top-ranked
18 designed DARPin interfaces were selected for experimental validation. Three
designs exhibited binding affinities to BCL-W in the nanomolar range comparable
to control interfaces adopted from known DARPin binders. This result is
encouraging for future screening and engineering campaigns of DARPins and
possibly other similarly rigid scaffolds against targeted protein epitopes. Method
limitations are discussed and directions for future refinements are proposed.

KEYWORDS

binding affinity, protein-protein docking, rigid backbone, DARPin, ProPOSE

1 Introduction

Biologics have witnessed a tremendous growth in the past decades, with antibody-based
therapeutics leading the way and recombinant proteins forming another important market
segment (DeFrancesco, 2019; Lu et al., 2020; Kaplon et al., 2023). Advances in computational
methods have spurred the idea that in the not-so-distant future, novel biologics can be
discovered entirely in silico, complementing current wet-lab methods such as immunization
and display technologies. This emerging field is dubbed de novo discovery of biologics with a
particular emphasis on de novo antibody engineering (Fischman and Ofran, 2018).

Central to this de novo discovery approach is the ability to dock and score large libraries
of biologic variants on the three-dimensional (3D) structure of a target protein (e.g., the

OPEN ACCESS

EDITED BY

F. Javier Luque,
University of Barcelona, Spain

REVIEWED BY

Pablo Chacon,
Spanish National Research Council
(CSIC), Spain
Baldomero Oliva,
Pompeu Fabra University, Spain

*CORRESPONDENCE

Traian Sulea,
traian.sulea@nrc-cnrc.gc.ca

RECEIVED 05 July 2023
ACCEPTED 14 August 2023
PUBLISHED 24 August 2023

CITATION

Gaudreault F, Baardsnes J, Martynova Y,
Dachon A, Hogues H, Corbeil CR,
Purisima EO, Arbour M and Sulea T
(2023), Exploring rigid-backbone protein
docking in biologics discovery: a test
using the DARPin scaffold.
Front. Mol. Biosci. 10:1253689.
doi: 10.3389/fmolb.2023.1253689

COPYRIGHT

© 2023 Gaudreault, Baardsnes,
Martynova, Dachon, Hogues, Corbeil,
Purisima, Arbour and Sulea. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 24 August 2023
DOI 10.3389/fmolb.2023.1253689

71

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1253689/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1253689/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1253689/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1253689&domain=pdf&date_stamp=2023-08-24
mailto:traian.sulea@nrc-cnrc.gc.ca
mailto:traian.sulea@nrc-cnrc.gc.ca
https://doi.org/10.3389/fmolb.2023.1253689
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1253689


antigen in the case of antibodies). Artificial intelligence/machine
learning (AI/ML)-based methods like AlphaFold2 (Jumper et al.,
2021), which have recently demonstrated a tremendous success in
predicting protein structures and complexes of biologically co-
evolved proteins, unfortunately are not applicable to docking and
scoring of antibodies and artificially designed proteins (Yin et al.,
2022). This limitation is due to co-evolution data being essential to
AI/ML’s success in protein-protein docking (Evans et al., 2022; Gao
et al., 2022). Compounding the docking and scoring challenge is the
difficulty to predict 3D structures of antibody libraries. While there
has been some recent success in modeling antibodies with AI/ML
methods without co-evolutionary information, there are still
challenges in predicting the conformation of the hypervariable
CHR-H3 loop (Abanades et al., 2022; Cohen et al., 2022; Ruffolo
et al., 2022). Due to technical limitations from the high
dimensionality of the CDR-H3 conformational space, the
applicability of de novo antibody discovery efforts based on
docking modeled antibody libraries to an antigen structure was
met with limited success, as reported with several classical
approaches (Adolf-Bryfogle et al., 2018; Chowdhury et al., 2018;
Warszawski et al., 2019; Wood, 2021). Instead, applications on
biologics displaying limited amounts of flexibility should be
explored for increased likelihood of success (Youn et al., 2017;
Radom et al., 2019).

We previously developed ProPOSE, an exhaustive direct
protein-protein docker with full atomistic details (Hogues et al.,
2018). By allowing side-chain rearrangements upon docking,
ProPOSE delivers the current leading-edge performance in both
general protein-protein docking and the specific case of antibody-
antigen docking, when the backbone conformations of the
interacting partners in the complex are a priori known. More
specifically, ProPOSE maintains a strong performance even when
side-chain flexibility is of concern. However, the docking accuracy
was lower when backbone atoms experienced significant
displacements between the bound and unbound states. We
anticipated that despite its limitations, ProPOSE should be able
to show utility in de novo biologics discovery when there is limited
backbone flexibility upon binding and when reasonable models of
backbone conformations can be inferred for the library of potential
binders.

Hence, in this proof-of-concept study, we turned away from
antibodies and towards the well-known engineered scaffold called
DARPin (Designed Ankyrin Repeat Protein) (Binz et al., 2003). The
DARPin scaffold has been refined over the years and has proven its
value for the discovery of molecules with various medical and
engineering applications, for example, as biotherapeutics,
diagnostic agents, biosensors, molecular probes and
crystallization helpers (Pluckthun, 2015; Rothenberger et al.,
2022; Strittmatter et al., 2022). Compared to antibodies, DARPins
are generally considered to be more rigid due to their smaller size
and more defined structure. The repeating ankyrin unit (a β-turn
followed by two anti-parallel α-helices) confers rigidity and stability
to their structure (Kramer et al., 2010; Schilling et al., 2022). Such a
limited backbone flexibility thus appears suitable for modeling
DARPin substitution variants relatively reliably starting from
available DARPin template structures.

Hence, the exploratory prospective study described here was
centered around applying ProPOSE rigid-backbone docking to the

DARPin scaffold exhibiting relative backbone rigidity. A
computational flow was devised to generate a relatively small
library of diverse DARPin interfaces for directed docking to a
known epitope on the structure of the protein target, BCL-W. A
selection procedure was further devised to establish a score
threshold that captured self-consistent positive controls generated
within the same computational procedure. Prospective
computational designs were then subjected to experimental
testing. Testing of 18 top-ranked hits demonstrated that half of
them had detected binding to the target. Comparative analysis of
computational and experimental data prompted to several
limitations and areas for future improvements of the rigid-
docking based approach for de novo biologics discovery.

2 Materials and methods

2.1 Computational methods

The sequence-based and structure-based computational design
process (Figure 1) consisted of 6 steps which are described in the
following sub-sections.

2.1.1 Defining the DARPin common framework
sequence

Hundreds of DARPin structures with various topologies were
published in the literature and are accessible in the PDB, among
which many have 4 or 5 repeated ankyrin motifs. Two DARPins
evolved through ribosome display to bind BCL-W, and
corresponding to PDB entries 4k5a and 4k5b (Schilling et al.,
2014b), were used as known binders in this study. These known
binders engage the target in a binding mode which is typical for
DARPins, which consists of interactions made by the concave
paratope formed by their 5 repeated ankyrin motifs (Binz et al.,
2003; Kramer et al., 2010; Pluckthun, 2015; Schilling et al., 2022). By
inspecting the sequences and structures of these known binders and
other DARPins with available crystal structures in PDB, a common
framework sequence was defined for further library expansion. The
main features considered during the selection of a DARPin common
framework sequence were: 1) 157 amino acids starting with DLGKK
and ending with LQKAA sequences; 2) conserved regions at these
N- and C-terminal ends; 3) consensus residues deemed essential for
the stability of the overall fold along repeated ankyrin motifs; and 4)
key residues contributing to binding along repeated ankyrin motifs.
These criteria led to a single DARPin common framework sequence,
which corresponded to the DARPin of chain F in the PDB entry 4drx
(the nomenclature 4drx [F] is used) (Pecqueur et al., 2012).

2.1.2 Expanding the framework sequence into a
DARPin library

A set of 18 amino-acid positions within the defined DARPin
common framework sequence were manually selected and allowed
to vary (referred to as variable positions). These positions, which
have high-frequency rates of mutation as observed from sequence
alignments of many DARPins from the literature, are: 45, 46, 48, 56,
57, 78, 79, 81, 89, 90, 111, 112, 114, 122, 123, 144, 145 and 147
(standard DARPin numbering is applied). Amino-acid side chains at
these positions are lining the concave face of the DARPin scaffold by
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being located within the β-turn loops and following short α-helices
of the ankyrin repeats (Figure 2).

Two positive controls having the 18 variable positions
corresponding to known DARPin binders of BCL-W, having
PDB entries 4k5a [B] and 4k5b [B], were also built manually into
the library. It is important to note that these constructed positive
controls share the common framework of the designed library
described above and thus differ at several positions from the
frameworks of the originating known binders (Figure 2).

2.1.3 Selecting a DARPin sub-library of diverse
sequences

An alphabet was created to group amino acids by chemical
properties. The following five groups excluding Gly, Cys and Pro
were defined: positively-charged (Arg, His, Lys); negatively-charged
(Asp, Glu); polar (Asn, Gln, Ser, Thr); non-polar (Ala, Ile, Leu, Met,
Val); and aromatic (Phe, Trp, Tyr). Equal probability was given to
each group to be selected when mutating sequences. Similarly,
amino acids within a group were given equal probability.

The designs were generated using a stochastic procedure in
which variable amino-acid positions were mutated either through
point mutations or through permutations of amino acids. Multiple
starting points in the sequence space were used to generate the
designs. The set of mutated designs (M-set) were generated starting

from the 4drx [F] sequence chosen as common framework. All
variable amino acids were forced to be mutated in this set. To be
included in the library, a design sequence had to be sufficiently
distant to the designs comprised within the same set. A threshold
distance of 10 was fixed which required at least 10 alphabet group
changes. The set of permutated designs (P-set) were generated
starting from the sequences of the two positive controls. No
change in the alphabet group was imposed for this set. A
threshold distance of 13 was set, requiring at least 13 amino-acid
changes.

2.1.4 Grafting DARPin sequences onto template
structures

The designed sub-library sequences were grafted onto four
DARPin template structures followed by side-chain repacking
using SCWRL4 (Krivov et al., 2009). The last two alanine
residues at the C-terminus of the template sequence were
truncated for modeling purposes. Only those side-chains that are
different at a given side-chain were mutated and repacked to
preserve the structural integrity of the original crystal structures
of the DARPin templates. The entire structure was then allowed to
be repacked. The DARPin templates from the following PDB entries
were used in this study: 4drx [F], 4j7w [A], 5lw2 [A] and 5le6 [A]
(Figure 1). The backbone structures of these templates are distinct

FIGURE 1
Flowchart of the overall computational design and experimental testing. The first three steps of the computational design are in the sequence space,
while the last three steps are in the 3D-structure space and inherit structural knowledge from the Protein Data Bank (Berman et al., 2000). Themain steps
of the computational design are numbered outside the boxes and described in the text.
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from those of the two known DARPin binders of BCL-W, 4k5a [B]
and 4k5b [B], which were purposely excluded as structural templates
to avoid the cognate-docking bias. The selected DARPin template
structures underwent the following preparation procedure: 1)
addition of missing side chain atoms (no repacking); 2) addition
of missing hydrogen atoms and assignment of standard protonation
states at pH 7; 3) optimization of the hydrogen-bond network the
minH program (Hogues et al., 2014); and 4) AMBER force-field
(Cornell et al., 1995; Hornak et al., 2006) energy minimization of
added hydrogen atoms and any newly added side-chain atoms with
harmonic restraints on all the other heavy atoms of 1,000 kcal/mol/
�A

2
followed by energy minimization of the entire structure with

harmonic restraints of 10 kcal/mol/�A
2
on backbone heavy atoms,

1 kcal/mol/�A
2
on side-chain heavy atoms, and no restraints on

hydrogen atoms.

2.1.5 DARPin docking protocols
The BCL-W docking-based screening of the DARPin library was

performed using the exhaustive docking engine ProPOSE version
1.03 (Hogues et al., 2018). ProPOSE was run with default parameters
using the HITSET flag to force binding towards the set of residues
involved in binding BCL-W. Initially, no binding location (or
epitope) was defined on the target protein BCL-W and
exhaustive docking was performed all around the BCL-W
structure. Two BCL-W structures were employed for docking,
with PDB entries 4k5a [A] and 4k5b [C] (Figure 1), which
correspond to the BCL-W complexed with the two known
DARPin binders. For each DARPin library sequence, the four
DARPin structural templates carrying the grafted designed
sequence were docked against the two BCL-W target structure,
resulting in 8 docking experiments. In this study, only the top-1
scored pose generated by ProPOSE was considered for a given
complex given its accuracy in pose recovery as top-1 when the
protein backbone conformation is known, without the need for

rescoring (Hogues et al., 2018). On average, a single docking run
took 30 min to execute when parallelized on an Intel Xeon Gold
5,218 using 6 cores.

Epitope restriction on the BCL-W target was introduced after all
docking calculations were completed. In this proof-of-concept
study, we elected to target the same BCL-W epitope and the
DARPin binding mode observed for the two known BCL-W
DARPin binders (PDB entries 4k5a and 4k5b) (Schilling et al.,
2014b). The similarity of predicted docked poses of designed
sequences relative to these known structures was based on
CAPRI classification (Lensink et al., 2017). Predictions were
compared on the basis of: 1) the backbone RMSD of the ligand
upon target superposition; 2) the backbone RMSD of the interface
upon superposition of interface atoms; and 3) the fraction of
preserved contacts (fcon). The ligand and target were DARPin
and BCL-W, respectively. Noteworthy, fcon was used rather than
the standard fnat from CAPRI that is derived from the comparison to
a native structure. Moreover, fcon is a position-dependent (amino
acid-independent) measure allowing designs with different
sequences to be compared. Two predictions were declared as
having high, medium or acceptable quality, or as incorrect
otherwise, with thresholds defined by the CAPRI classification
(Lensink et al., 2017).

2.1.6 Ranking docked DARPin structures
The number of top-1 scored poses, Npose, docked at the targeted

epitope from the 8 docking runs was used to retain only those
designs that have at least 2 poses docked at the target epitope. To this
end, the predicted poses for a given DARPin were grouped using a
greedy clustering algorithm with a tolerance of at least medium
quality between cluster representatives. In geometric terms, for
poses to be considered bound at the targeted epitope occupied by
one of the known binders, they were required to have acceptable
quality criteria, i.e., 1) fcon of at least 30% with a ligand backbone

FIGURE 2
Variable positions on the DARPin scaffold docked onto BCL-W target epitope. (A) Sequence alignment between the common framework sequence
(4drx [F]), known binders (4k5a [B] and 4k5b [B]), and the positive controls (PC1 and PC2) grafting the interface of the known binders onto the common
template sequence, at the 18 variable positions (marked by green Xs). The conventional DARPin sequence numbering scheme is used, h denotes α-helix,
IR1 to IR3 delineate internal ankyrin repeats 1-3, and N-Cap and C-Cap are the terminal ankyrin repeats. (B) Location of the 18 variable positions
(spheres) on the 4 DARPin template structures (Cα-traces with different shades of green). (C) Location of the docking site on the BCL-W target protein
indicated by the crystal structure (4k5b) of a known DARPin binder (red cartoon) complexed with the BCL-W target (molecular surface).
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RMSD >5.0Å and interface backbone RMSD >2.0 Å; or
alternatively, 2) fcon between 10% and 30% while having a ligand
backbone RMSD <10.0 Å or an interface backbone RMSD <4.0 Å.
For poses to be part of the same cluster, they were required to have
medium quality criteria, i.e., 1) fcon of at least 50% with ligand
backbone RMSD >1.0 Å and interface backbone RMSD >1.0 Å; or
alternatively, 2) fcon between 30% and 50% while having ligand
backbone RMSD <5.0 Å or an interface backbone RMSD <2.0 Å. No
cut-off in score was applied for the clustering.

For each design with Npose > 1, a consensus score was derived as
the arithmetic average over the docking scores of the poses binding
to the targeted epitope. Consensus scores over the designs with
Npose > 1 were also normalized into Z-scores to better inform the
selection of a top-ranked population based on a minimum number
of standard deviations away from the mean calculated from the
distribution of all DARPins combining the P-set designs, M-set
designs and the positive controls.

2.1.7 Other software and data availability
Structure visualization was performed in PyMOL (The PyMOL

Molecular Graphics System, Version 2.0, Schrödinger, LLC).
Statistical analyzes were run in R (R Development Core Team,
2011). ClustalW2 was used to run the multiple sequence alignments
(Larkin et al., 2007).

The sequence datasets generated for this study have been made
available as a MongoDB with example scripts that can be found at
the GitHub repository https://github.com/gaudreaultfnrc/Darpins.

2.2 Experimental methods

2.2.1 Protein expression and purification
Each DARPin design included a N-terminus tag

(MRGSHHHHHHGS) and two alanines at their C-terminus as
described in (Schilling et al., 2014a). The protein sequences were
optimized for Escherichia coli expression using a multifactor
algorithm (https://www.genscript.com/tools/gensmart-codon-
optimization), then synthesized by GenScript. After inserting
each gene in pET24a (+) via NdeI and NotI restriction enzyme
sites, the final plasmids were transformed into NRC E. coli BL21-T7
strain (rhaB lacZ::Ptac-T7 RNAP). For each clone, a 2.8-L Fernbach
baffled flask containing 500 mL Animal-Product Free (APF) LB
Miller (Athena Enzyme Systems Cat. 0133) plus 50 μg/mL
kanamycin was inoculated with an overnight preculture to get an
initial OD600nm of 0.1. The flasks were incubated at 37°C,
200–250 rpm until an OD600nm between 0.8 and 1.0 were
reached. To induce protein expression 1 mM isopropyl β-d-1-
thiogalactopyranoside (IPTG) was added and the culture
incubated for another 4 h at 37°C, 200–250 rpm. The cultures
were harvested, and the cell pellets stored at −80°C.

Before purification, a cell pellet was resuspended in Lysis buffer
50 mM NaPO4, 300 mM NaCl, 10 mM imidazole, pH 7.4 with
cOmplete protease inhibitors EDTA-free (Millipore Sigma Cat.
11836170001) and lysed by two passages on a French Pressure
Cell Disruptor. Finally, the cell lysate was clarified by centrifugation
at 10,000 x g, 4°C, for 15 min and filtration on 0.45 µm filter. A
fraction of the clarified lysate (15 mL) was applied on a 3 mL HisPur
Cobalt Spin Column (Thermo Fisher Cat. 89969) and the column

was washed with 20 mM NaPO4, pH 7.5, 500 mM NaCl, 0.3 mM
TCEP, 15 mM imidazole. Elution was done with 20 mM NaPO4,
pH 7.5, 500 mM NaCl, 0.3 mM TCEP, 100 mM imidazole and
pooled after visualization on SDS-PAGE. For some of the
proteins, the purification was repeated to increase purity. Buffer
exchange for DPBS (Thermo Fisher Cat. 14190144) was done with
PD-10 desalting columns (Cytiva Cat. 17085101) and final
concentration measured by Qubit Protein Assay (Thermo Fisher
Cat. Q33211).

The design of BCL-W was based on (Schilling et al., 2014a) with
an N-terminal Avi-tag followed by a bacteriophage lambda protein
D fusion tag to improve protein solubility (Forrer and Jaussi, 1998)
(see Supplementary Data). A 6xHis tag was added to the C-terminus
of BCL-W for purification. Gene optimization, synthesis and cloning
in pET24a (+) vector was done as described above for the DARPins.
To allow in vitro biotinylation, the NRC E. coli BL21-T7 strain (rhaB
lacZ::Ptac-T7 RNAP) was first transformed with pBirAcm (Avidity),
a plasmid expressing biotin ligase under tac promoter (IPTG
inducible). After growing a chloramphenicol resistant colony in
APF LP Miller medium containing 10 μg/mL chloramphenicol,
electrocompetent cells were prepared using standard procedures.
The plasmid pET24a (+)-BCL-Wwas then transformed in BL21-T7/
pBirAcm strain and selected on APF LB Miller agar containing
50 μg/mL kanamycin and 10 μg/mL chloramphenicol.

Expression of BCL-W, cell lysis and clarification were done as
described for the DARPins with some exceptions. Both antibiotics,
kanamycin and chloramphenicol, were used, and biotin was added
to a final concentration of 5 mM during the culture (25 mL). The
cells were lysed in a buffer containing 50 mM NaPO4, 300 mM
NaCl, 10 mM imidazole, pH 8.0 (plus cOmplete EDTA-free protease
inhibitors). The clarified lysate (2.5 mL) was applied on a 0.2 mL
HisPur Cobalt Spin Column (Thermo Fisher Cat. 90090) and the
column was washed with 20 mM NaPO4, pH 7.5, 500 mM NaCl,
0.3 mM TCEP, 20 mM imidazole. Elution was done with 20 mM
NaPO4, pH 7.5, 500 mM NaCl, 0.3 mM TCEP, 300 mM imidazole
and pooled after visualization on SDS-PAGE. Buffer exchange for
DPBS (Thermo Fisher Cat. 14190144) was done with G-25
MiniTrap desalting columns (Cytiva Cat. 28918007) and final
concentration measured by Qubit Protein Assay (Thermo Fisher
Cat. Q33211). Purity levels are given in Supplementary Table S1 and
SDS-PAGE gels are provided as Supplementary Data.

2.2.2 Binding affinity measurements
Surface plasmon resonance was used to screen the top 18 DARPin

designs for binding to the biotinylated BCL-W using a Biacore
T200 instrument (Cytiva Inc., Marlborough MA) at 25°C and with
PBST running buffer (Teknova, Hollister CA) containing 0.05% Tween
20, 3.4 mM EDTA and an additional 350 mM NaCl. The strategy
employed was to capture the biotinylated BCL-W onto the SPR surface
with a CAP sensor chip (Cytiva Inc.) and flow a three-point
concentration series of the DARPin scaffold using a 10-fold dilution
series from 1 μM to cover a wide concentration range. From the
resulting sensorgrams, the affinity constant of binding candidates
can be determined. A CAP immobilization chip was prepared
following the manufacturer’s instructions. Each injection cycle
consisted first of a 120-s injection at 5 μL/min of a 5-fold dilution of
CAP reagent to indirectly immobilize streptavidin over flow-cells 1 and
2. This was followed by a 240-s capture of 5 μg/mL biotinylated BCL-W
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at 5 μL/min over flow cell 2 only to form the 60–62 RUBCL-W surface,
and finally a three-point concentration injection of the DARPin scaffold
or running buffer only using single-cycle kinetics was performed at
50 μL/min for 90 s with a 300-s dissociation phase. At the end of the
dissociation phase, any BCL-W/DARPin complex was stripped from
the SPR surface using a 60-s injection of 6 MGuCl/0.25 MNaOH taken
from the CAP sensor chip reagent kit. The sensorgrams were double
referenced and analyzed using the Biacore BiaEval software. Affinities of
the DARPin scaffolds for BCL-W were determined using the steady
state model, or the 1:1 binding model when kinetic rate constants could
be evaluated.

2.2.3 Folding stability measurements
Differential scanning calorimetry (DSC)was used to determine the

thermal transition midpoints (Tm) as previously performed (Schrag
et al., 2019). DSC was carried out in a VP-Capillary DSC system
instrument (Malvern Instruments Ltd., Malvern, United Kingdom).
Samples were diluted in DPBS buffer to a final concentration of
0.4 mg/mL. DPBS blank and sample scans were carried out by
increasing the temperature from 20°C to 100°C at a rate of 60°C/h,
with feedback mode/gain set at “low”, filtering period of 8 s, pre-scan
time of 3 min, and under 70 psi of nitrogen pressure. All data
were analyzed with Origin 7.0 software (OriginLab Corporation,
Northampton, MA). Thermograms were corrected by subtraction
of corresponding DPBS blank scans and normalized to the protein
molar concentration. The Tm values were determined using automated
data processing with the rectangular peak finder algorithm for Tm.
Melting temperatures are listed in Supplementary Table S1 and DSC
thermograms are provided as Supplementary Data.

3 Results

3.1 Sequence-based and structure-based
computational design

3.1.1 Overall design process
The flowchart in Figure 1 presents the overall computational

design process devised and implemented for this rigid-docking
based proof-of-concept engineering study based on the DARPin
scaffold. It includes 6 steps: 1) definition of a single DARPin
common framework sequence; 2) expansion of the common
framework sequence into a DARPin sequence library with
variable positions; 3) selection of a small DARPin sub-library
consisting of diverse sequences; 4) grafting of the sequence sub-
library onto DARPin structural templates; 5) docking of DARPin
sub-library to target protein structures, the core component of the
process; and 6) ranking docked DARPin variants for experimental
testing. The first three steps operate in the sequence space, whereas
the last three in the 3D structure space. All the steps are described in
detail in the sub-sections of the Methods section. The following sub-
sections focus more in-depth on results obtained in steps 3), 4), 5)
and 6) of the process.

3.1.2 Selecting diverse DARPin sub-library
sequences

Expanding a common framework sequence by varying
18 positions lining the concave face of the DARPin fold (Figure 2)

resulted in 1023 theoretical library size. Millions of iterations were run
to select a diverse sub-library fulfilling several design criteria (see
Methods sub-Section 2.1.3). The resulting diverse sub-library
comprised a total of 2,213 designs of which 1,429 were produced
by mutations and 784 by permutations (Table 1). The closest designs
in sequence are 9 amino-acid substitutions away from any of the two
positive controls (Supplementary Figure S1), or 6 groups away when
grouping amino acids by homology (see Methods section). The
mutation-based designs have an even proportion of amino-acid
groups at the variable positions (Supplementary Figure S2). In
contrast, permutation-based designs have unevenly distributed
amino-acid groups and lack Ala, His and Ser as inherited from the
starting positive-control sequences (Supplementary Figure S2). In
terms of net charge, mutation-based designs span a wide range
from −16 to +3 with a mean net charge of −6.8, whereas
permutation-based designs inherit the net charges of their
respective parental positive control (Supplementary Figure S3).

In order to generate a sub-library that samples homogeneously
the immense theoretical sequence space, designs were imposed to be
orthogonal to each other. Clustering based on amino-acid properties
indicated that most sequence space regions were covered by both
mutation-based and permutation-based types of sequences, with a
few areas only covered by the mutation-based set (Figure 3). While
proximity in sequence might be perceivable between some of the
designs and the two positive controls (Figure 3A), overall, the
designed sequences were diverse and nearly equidistant from
each other (Figure 3B).

3.1.3 Grafting sequence sub-library onto DARPin
structural templates

Four crystal structures were used as templates in the modeling of
the DARPin ligands (see Methods section). The variance in RMSD
among these templates has a mean of 0.95 Å. The template 4drx [F]
is more distant due in part to an opening of the last repeated motif of
the scaffold. The magnitudes of backbone changes between each of
these templates and any of the 2 known DARPin binders of BCL-W
are larger than between the 2 known binders (0.42 Å). Thus,
backbone RMSDs of 0.91, 0.75, 0.79 and 0.79Å were calculated
to the 4k5a [B] known binder, and of 0.96, 0.75, 0.78 and 0.78Å to
the 4k5b [A] known binder, for the template structures 4drx [F],
4j7w [A], 5le6 [A] and 5lw2 [A], respectively. More backbone
variations could be observed in the unstructured region of the
fourth ankyrin repeat, where the known BCL-W binders had a
distinct conformational topology at the tip of this loop region. These
variations in the templates relative to known binders were critical for
testing the method in real-life application mode in which the bound
backbone structure will be unknown a priori.

3.1.4 Docking DARPin sub-library structures to
target

The entire set of sequence designs in the selected sub-library was
grafted onto four template structures, then cross-docked against two
target (BCL-W) structures, leading to 8 docking runs per DARPin
sequence. The two backbone structures used for the target (4k5a [A]
and 4k5b [C]) were relatively close from each other, with an RMSD
of 0.77 Å. They also engaged their respective known DARPin
binders (4k5a [B] and 4k5b [A]) via a well-preserved binding
interface with backbone atoms deviating by an RMSD of 0.60 Å.
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Hence, in this study, the docked poses for novel DARPins were
required to bind around the same epitope that is targeted by these
two knownDARPin binders of BCL-W. In more technical terms, the
predicted poses of designed DARPins were required to have an
overlap of at least acceptable quality (according to CAPRI
classification (Lensink et al., 2017) to either of these known
binders. This was met by 1,033 designs (47% of the sub-library),
and are referred to as “locus designs”. (Increasing the stringency and
imposing at least a medium quality of pose overlap with the known
binders reduced the number of locus designs to 559.) We found no
bias towards either of the two target BCL-W structures used for
docking, as 811 designs docked to structure 4k5a [A] and
632 designs to structure 4k5b [C]. In terms of the template
DARPin structures used for docking, 5lw2 [A] was the least
successful template structure with 344 docked designs, followed
by 380 designs docked on 5le6 [A], 533 on 4j7w [A] and 579 on 4drx
[F]. The net charge distribution of the 1,033 locus designs is slightly
different relative the entire docked sub-library of 2,213 designs, as it
has sharper peaks at the −6 and −4 net charges (Supplementary
Figure S3).

3.1.5 Ranking DARPin virtual hits
First, locus design DARPins were filtered based on the number

of top-1 scored poses, Npose, that were docked at the targeted epitope
from the 8 docking runs for each DARPin. A total of 293 locus
designs (13% of the sub-library) had at least 2 poses docked at the
target epitope. These were retained for further ranking and were
called “consensus designs”. The net charge distribution among the
consensus designs had even sharper peaks at the net
charges −6 and −4, with the majority of consensus designs at
charge −6 (Supplementary Figure S3).

For each of selected 293 consensus designs, a consensus score was
derived as the arithmetic average over the docking scores of the poses
binding to the targeted epitope. These consensus scores were normally
distributed and ranged from −84.2 to −45.3, from strongest to weakest
binder (Figure 4). The permutation-based designs were preferentially
chosen according to the consensus scores with a median of −65 as
opposed to a median of −61 for the mutation-based ones. In total, 152
(52%) and 71 (24%) designs that docked at the targeted epitope did so
with values in Npose of 2 and 3, respectively (inset in Figure 4). The
lowest consensus score corresponded to a Z-score of −3.5. Consensus
designs with Z-scores below −1.5 were selected for experimental
validation, which formed a set consisting of 18 novel DARPins
(Table 2). An overlay of all consensus poses for the selected designs
is shown in Figure 5A.

The two positive-control interfaces, having the 18 variable
positions imported from the two known DARPin binders of
BCL-W and grafted onto the common framework sequence, were
also docked in the same manner. These positive controls had
consensus scores of −75.8 and −73.5, corresponding to Z-scores
of −2.1 and −1.7, respectively. With the assumption that none of the
designs are true binders, the separation of the positive controls from
the designs had an AUC of 0.971 (Figure 4). The AUC dropped to
0.922 when best scores were used instead of consensus scores for
designs with Npose > 1. While working with rigid scaffolds, this
observation suggested the need for structural ensembles to achieve
better enrichments and thus motivated the use of consensus scores
over best scores in the sections that follow. These positive controls
were ranked within the range of the top-18 novel designs, and they
were also subjected to experimental testing. It is important to note
that to properly compare the scores for the two parental known
binders of BCL-Wwith those of the mutants, we needed to base it on
the modeled structures of the known binders rather than their
crystal structures. Using the crystal structures would be a case of
cognate backbone docking and perfect match in shape
complementarity leading to out-of-range scores (DARPin/BCL-W
docking scores of −144.5 and −123.3 were obtained for 4k5a [B]/
4k5a [A] and 4k5b [B]/4k5b [C], respectively). The overlay of all
locus docked poses for the two grafted positive control interfaces is
shown in Figure 5B to have the same orientation with those of the
selected designs (Figure 5A). These poses are further similarly
oriented with those of the known binders, as exemplified in
Figure 5C. A closer examination reveals that despite an excellent
pose recovery for this cross-docking experiment, there are certain
noticeable differences in the fine atomic details at the interface,
which are likely due mainly to non-cognate backbone coordinates
and to a lesser extent to changes of the framework sequence outside
the 18 variable positions. Overall, cross-docking of positive controls
predicted that they would retain similar binding relative to the
corresponding known binders.

As presented in Table 2, most of these top consensus designs
(13 of 18) were from the permutation set despite its smaller
representation in the initial library. Also, 15 out of the
18 consensus designs had a net charge equal to that of a positive
control (−6 or −4), despite the random sequence generation
procedure employed. On average, the top-18 designs were
15 mutations away from the positive-control interfaces, with the
closest design being 10mutations away. These top consensus designs
had between 2 and 7 top-1 poses bound at the target epitope.
Interestingly, a strong bias towards an increased consensus was

TABLE 1 Library design statistics.

Starting DARPin PDB ID Variable positionsa Setb Nseq
c dseqd dchemseq

e Qnet
f

Common framework 4drx [F] ASLTYIMSLITWDIMKFK M 1,429 9 7 −6.8

Known binder 4k5a [B] KYDMNFMRDNFWKQQKFK P 284 12 7 −4.0

Known binder 4k5b [B] RFWMEDLTMKIVYWEKFK P 500 9 6 −6.0

aPosition IDs, in the same order: 45, 46, 48, 56, 57, 78, 79, 81, 89, 90, 111, 112, 114, 122, 123, 144, 145 and 147.
bM: mutation; P: permutation.
cNumber of sequences.
dClosest distance from a design to a known binder interface at 18 variable positions, expressed as number of substitutions.
eClosest distance from a design to a known binder interface at 18 variable positions, expressed as number of homology group changes.
fMean net charge of designs within the set.
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observed with 14 out of the 18 novel designs (78%) with at least
3 representative poses bound at the targeted epitope. This level has
to be contrasted to only 24% of all consensus designs reaching an
Npose > 2. Hence, not only were the top designs predicted to bind
stronger to the target, they also did so with a higher number of

predicted consensus poses, with an average Npose of 4.2.
Comparably, the two positive controls had Npose values of 4 and
7 (Figure 4).

3.2 Experimental testing of DARPin designs

The 18 top-ranked consensus designs, together with the
2 positive controls and the 2 parental known binder DARPins
were produced in bacteria, purified by IMAC and screened for
binding to BCL-W by SPR. The purity levels of the DARPins ranged
from 45% to 99% with an average of 82% (Supplementary Table S1).
While some of these levels could be considered as suboptimal for
SPR experiments and might lead to non-specific binding, they were
deemed sufficient for a first-pass screening. Tested DARPins were
flowed at a fixed concentration over biotinylated target protein
immobilized on the sensorchip. An overview of the SPR binding
screen is given in Figure 6. Overall, binding in the nM range was
detected for 3 designs, the 2 positive controls and the 2 known
binders (Table 2). Additionally, 6 designs had weak binding in
the μM range, with a caveat that some of the binding events detected
in these cases could be non-specific. Among the top 10 designs, only
3 had no detected binding, while the 3 stronger binders and 4 of the
weak binders were present in this group. All 7 binders in the top-10
group belonged to the permutation (P) set. In the group consisting of
the 8 remaining tested designs, ranks 11–18, there were only 2 weak
binders while the rest of designs had no detected binding. These
2 weak binders were both from the mutation (M) set. Overall, data in
Table 2 indicate a certain level of enrichment in binding that follows
the predicted docking scores within the set of 18 tested variants, with
the caveat that SPR data is insufficient to confirm the predicted
binding modes. We also measured the thermal stabilities of the

FIGURE 3
Diversity of the DARPin sequence sub-library. Unrooted
phylogenetic tree from hierarchical clustering of sequences by the
chemical properties of amino acids using defined amino-acid
homology groups (see Methods section). Sequences marked in
black are from the mutation-based set and in blue from the
permutation-based set. The two positive-control sequences are
shown in red. Only a 5% random sample of the sub-library consisting
of 134 sequences is plotted. The top-18 consensus designs and
positive controls were annotated. (A) For visual clarity, the terminal
branches were equally trimmed down to a cladogram giving the
illusion of sequence proximity (Yu, 2020). (B) The non-trimmed tree
that preserves the ordering in (A) is shown to illustrate the true
divergence in sequence between designs. For reference, the
evolutionary distance is shown.

FIGURE 4
Distribution of scores from docking-based screening.
Distribution of scores obtained from the docking experiments using
ProPOSE on the entire set of designs in the library. The scores were
obtained from a consensus of multiple predictions binding at the
same locus while imposing an acceptable or better quality among the
representatives of the cluster. The scores follow a normal distribution
with the median marked as dashed lines. The underlying area-under-
the-curve of the receiver operating characteristic (AUC-ROC) curve
obtained from the separation of the two positive controls from the
combined mutation and permutation design sets has a value 0.971.
The inset shows the distribution in number of representatives used to
calculate the consensus ProPOSE score. The two positive controls
have 4 and 7 representatives.
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designed DARPins and obtained very high thermostabilities, with
melting temperature (Tm) values typically in the 80–100°C range
(Supplementary Table S1), comparable with those measured here for
the positive controls and known binders, as well as previously for
other DARPins (Schilling et al., 2014a). This stability data provides
some level of confidence that the sequence perturbations introduced
in the designed variants were able to maintain the folded structure of
the archetypical DARPin scaffold.

For the two known DARPin binders of BCL-W, 4k5a [B] and 4k5b
[B], we obtained dissociation constants, KD, of 26 nM and 3.5 nM,
respectively, which are in line with their previously published KD data of
10 nM and 0.64 nM (Schilling et al., 2014a). The two corresponding
positive control DARPins, which import only the 18 variable positions of
the common framework scaffold from these known binders, bound with
KD values of 245 nM and 0.9 nM. These values represent comparable
affinities to their respective parental known binders, although it seems
that the framework change from the known binders to the common
framework sequence impacted detrimentally the 4k5a [B] interface and
beneficially the 4k5b [B] interface.

For the 3 novel DARPin designs exhibiting good binding, we
obtained dissociation constants, KD, in the 40–150 nM range,
which are well within the range bracketed by the two positive
controls (0.9–245 nM). These were ranked 4, 6 and 7 among the
top-18 consensus designs (Table 2), with the 4th ranked design
exhibiting the better KD of 44 nM, which is similar to the affinity of
one of the known binders (26 nM). Low binding, with KD above
1 μM, could also be detected for designs with ranks 1, 3, 9, 10,
11 and 14. Further details about the binders on their amino-acid
substitutions, net charges, sets and substitutions are listed in
Table 2.

A retrospective analysis of ranking by best scores instead of
consensus scores versus experiment indicated that this approach
could also be suitable (Supplementary Table S2). By this ranking of
the 18 tested designs, the top 4 gave binding signals and among
them the 2nd and 4th ranked are the best designs with KD values of
44 nM and 111 nM. Also, best scoring was able to correctly rank
the two positive controls among themselves, i.e., the stronger
binder has a more negative score. However, best scoring always

TABLE 2 Top-ranked consensus designs.

Rank Variable positionsa Setb Nsub
c Npose

d Qnet
e Scoref Z-Scoreg KD (nM)h

1 RMTKEKFFWEILWYDMVK P 14 7 −6 −84.2 −3.5 weak

2 RQIVHRHWFDVIKYWRHL M 18 (17) 3 −1 −77.8 −2.4 n.d.b

3 KFWFETMDKMKRYEWVIL P 14 7 −6 −77.2 −2.3 weak

4 KFWMEMLTDWIYEVRKKF P 10 3 −6 −75.9 −2.1 44

5 KFMREEFWWLIKKTDYMV P 15 6 −6 −75.3 −2.0 n.d.b

6 KFWYNDFQMDFQMRNKKK P 13 4 −4 −75.2 −2.0 150

7 VWWEEDFKIKMMKFYTLR P 14 3 −6 −75.1 −2.0 111

8 KYRKNKFWFNDQFKDQMM P 14 3 −4 −74.8 −1.9 n.d.b

9 RKMDQKFKMNDYWNFQFK P 15 2 −4 −74.7 −1.9 weak

10 KIMWFKWDYKELMVETFR P 15 3 −6 −74.7 −1.9 weak

11 RAVNRTVFVYWAYNFRVV M 18 (16) 2 −4 −74.6 −1.9 weak

12 KFWMQRFMQYKDFKDKNN P 15 2 −4 −74.6 −1.9 n.d.b

13 KLMEYDFMVWITKFERWK P 14 7 −6 −74.6 −1.7 n.d.b

14 KYWYRTTWYHAIWNFYKQ M 18 (16) 5 −3 −73.5 −1.7 weak

15 KYFEWVQRVMFKVVLMNR M 18 (14) 2 −4 −73.3 −1.7 n.d.b

16 FKMWEMLFWRVIYEDKKT P 14 5 −6 −72.8 −1.6 n.d.b

17 KFFRNNKMDYWKKMDFQQ P 14 3 −4 −72.8 −1.6 n.d.b

18 KKSQTSYHHQQMLRTHRV M 18 (17) 5 0 −72.7 −1.6 n.d.b

KYDMNFMRDNFWKQQKFK PC1 0 4 −4 −75.8 −2.1 240

RFWMEDLTMKIVYWEKFK PC2 0 7 −6 −73.5 −1.7 0.9

aPosition IDs, in the same order: 45, 46, 48, 56, 57, 78, 79, 81, 89, 90, 111, 112, 114, 122, 123, 144, 145 and 147.
bP: permutation; M: mutation; PC: positive control.
cNumber of substitutions at 18 variable positions from the corresponding known binder for the P-set designs or from the initial sequence of the common framework-based library for the M-set

designs. Number of substitutions from the closest known binder is also shown in parenthesis for the M-set designs.
dNumber of poses predicted to bind at the target epitope.
eNet charge.
fConsensus docking score obtained from an arithmetic average of the docked poses at target epitope.
gCalculated from scores over the set of 293 “consensus designs” (see Results section).
hDetermined by SPR measurements (see Methods section); weak: KD > 1 μM; n.d.b.: no detected binding.
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performed slightly worse than consensus ranking for the
discrimination of binders against non-binders (Supplementary
Figure S4).

While our computational strategy forced the designs to bind at
a specified locus, our geometric criteria were loose enough to allow
for some structural variability around the targeted epitope, that
could lead to substantially different structural determinants
required for binding. Despite the weak statistics due to the
relatively low number of experimentally-validated designs, a
close inspection of important structural determinants revealed
that the non-binders bury more surface area on average than
the validated strong binders (Supplementary Figure S5).
Notably, a larger fraction in non-polar surface area on the BCL-
W interface is predicted to be lost by the non-binders relative to

binders (Supplementary Figure S5). This is an interesting finding
to explore in future screening campaigns as docking algorithms are
normally calibrated to attribute larger scores to burial of larger
interfaces and would indirectly favor or enrich those designs
achieving increased surface burial. For this set of binders,
hydrophobic residues tend to be preferentially enriched only in
the internal DARPin repeat 1 (Supplementary Figure S5).

4 Discussion

In this proof-of-concept study, we aimed at exploring if rigid-
backbone docking can lead to meaningful biologics discovery.
A first objective was to test, in a real-life scenario, the utility of
our exhaustive protein-protein docking tool ProPOSE that
incorporates side-chain flexibility (Hogues et al., 2018).
ProPOSE performed very well in cognate-backbone docking,
but returned a lower performance in unbound-backbone
docking, thus hampering de novo antibody discovery efforts,
mainly due to the hypervariable nature of the CDR-H3
loop. While work addressing the challenging problem of
backbone sampling and scoring is highly relevant and remains
to be pursued, here we explored the practical utility of
ProPOSE in its current state by employing a more rigid
scaffold, DARPin, which has already been used as an
alternative scaffold in biologics discovery (Binz et al., 2003;
Pluckthun, 2015). The overarching assumption is that
ProPOSE can tolerate some minor level of backbone
movements at the binding interface, but the extent of tolerated
backbone movements has not been established yet.

From the technological perspective of rigid docking with
unbound backbone conformation, employing four experimentally
determined backbone conformations, each slightly different from
bound backbone conformations, provided a test of the impact of
backbone flexibility on biologics design. An initial measure of
success was gleaned from so-called positive controls, in which
18 interfacial residues of known DARPin binders to a given
target (BCL-W in this study) were transferred to a common
DARPin framework sequence, assigned unbound backbone
conformations, and cross-docked to the target. The predicted
binding modes of these positive controls were similar to those of
known binders, but docking scores were reduced almost in
half relative to those obtained for the known binders in their
bound backbone conformations. Yet, experimental testing of
these positive controls showed retained binding affinities at
comparable levels relative to the known binders, despite reduced
scores. This established a new range of binding scores at a
reduced magnitude which was adapted for cross-docking but
remained predictive of true-positive binders. Consequently, novel
DARPin designs cross-docked at that same target epitope were top-
ranked and had scores within the re-established score level
suitable for cross-docking. Upon their experimental testing, seven
out of top-10 ranked designs demonstrated at least some level of
binding to the target, with 3 of them exhibiting binding strengths
similar to those of the positive controls as well as the previously
known binders.

Despite this initial relative success, rigid-backbone docking
remains challenging even for scaffolds with fairly rigid protein

FIGURE 5
Non-cognate docking results for the top-ranked poses. (A)
Overview of all poses at the target epitope for the top-18 consensus
designs selected for testing. The novel designs are part of the
permutation-based set (blue) and themutation-based set (black).
(B) Overview of all poses docked at the target epitope for the two
positive controls (red). Comparisons of atomic details between the
best-scored docked pose of a positive control and the crystal
structure of the corresponding known binder sharing the same
residues at the 18 variable positions are shown in panel (C) for the
positive control PC1 and the known binder (4k5a [A]; in purple), and in
panel (D) for the positive control PC2 and the known binder (4k5b [C];
in purple). All structure orientations are kept as in Figure 2C.
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backbone like DARPins. Several limitations of this approach and
directions for possible improvements are noted below.

First, most novel binders belonged to the random permutation
(P) set, which confines the library space with respect to certain
global properties, for example, the net charge. These results thus
point to the benefits of landing into the “right” regions of the
library space after randomization at variable positions. While it
was certainly harder for members from the random mutation (M)
set to reach the top of the hit list, the finding of two weak binders
belonging the M-set is extremely encouraging. In principle, real-
life applications utilize mainly M-libraries. One way in this
direction could be to enlarge the size of the docked diversified
sub-library (only ~2,000 in this study). This could be feasible with
access to large computing resources given the not overly
prohibitive computational task involved in running ProPOSE.
An alternative approach could be a focused expansion into
P-subsets around initial M-set hits from a relatively sparse sub-
library. This approach could set a preferred range for net charge,
for example, and it would be especially beneficial as the number of
randomized interfacial positions increases. Furthermore, the
efficiency of the M-libraries at finding better hits could most
likely be improved by applying structure-guided filters to search
in more relevant regions of the sequence space. For instance,
designs could be filtered based on their complementarity in
charge or by their exposure of polar or non-polar surfaces at
variable positions based on structural information of the selected
binding epitope being targeted.

Secondly, while initial hits are often weak binders which are
difficult to characterize, they should not be immediately discarded
but rather treated as seeds for further optimization by affinity
maturation, which can be done either experimentally (e.g., display
methods) or computationally (e.g., ADAPT platform). This aspect
has significant practical importance, given that by random
sampling of the immense library space it is highly unlikely to
obtain a very strong binder.

Thirdly, the unbound backbone conformations selected for
cross-docking were from experimentally determined crystal
structures. This is similar to the multiple protein structure
approach used in small-molecule docking and virtual screening
(Sheridan et al., 2008). Because the DARPin scaffold is not
completely rigid and scoring functions used in docking are
sensitive to atomic positions, including more than one backbone
as templates in the cross-docking approach was felt to be beneficial.
Carefully derived simulated structures obtained, for example, via
backrub motions, molecular dynamics or Monte-Carlo simulations
can be used as alternatives sources to experimentally-determined
backbone conformations. The multiple template approach used here
for docking was also extended to the stage of hit ranking, via
consensus scoring. This seemed to provide a reasonable
enrichment, although retrospectively we also found that the best-
score approach might provide a similarly good, if not better ranking,
among the small set of hits ranked by consensus scoring.

Despite some approximations in the underlying methodology
adopted here, it is encouraging that cross-docking could identify
binding sequences that differ substantially from known binders
out of thousands of potential candidates. This relative success
may be attributed to the foundational work underlying the
methods used here to address the two intimately-related
challenges of docking and scoring in computational drug
discovery (Schneider et al., 2022). On one hand, for binding
mode prediction, ProPOSE was used given its high accuracy in
rigid-backbone docking when the bound-backbone conformation
is provided. On the other hand, for ranking among different
docked variants, ProPOSE employed a scoring function drawn
from the solvated interaction energy (SIE) exhibiting high
transferability from small-molecule to protein ligands (Purisima
et al., 2023).

The data presented here support the notion that de novo biologics
discovery via computational methods is a tractable problem that could
complement the more traditional and matured wet-lab methods of

FIGURE 6
Surface plasmon resonance screening. SPR binding sensorgrams are shown for the 18 top-ranked designs, the positive controls and the known
binders. Ranking of designs is based on the consensus score (see also Table 2). Sensorgrams are labeled according to 3 levels of binding affinity as shown
in the legend.
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library display screening and animal immunization. One main added
benefit of the structure-based approach is directing the binding
response towards desired target locations, e.g., functionally
relevant, in a controlled manner. Further advances in several areas
such as backbone sampling and depth of theoretical library screening,
will be required for maturing de novo biologics discovery for routine
applications in the not-so-distant future.
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Improved computational epitope
profiling using structural models
identifies a broader diversity of
antibodies that bind to the same
epitope
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The function of an antibody is intrinsically linked to the epitope it engages. Clonal
clustering methods, based on sequence identity, are commonly used to group
antibodies that will bind to the same epitope. However, such methods neglect the
fact that antibodies with highly diverse sequences can exhibit similar binding site
geometries and engage common epitopes. In a previous study, we described
SPACE1, a method that structurally clustered antibodies in order to predict their
epitopes. This methodology was limited by the inaccuracies and incomplete
coverage of template-based modeling. In addition, it was only benchmarked at
the level of domain-consistency on one virus class. Here, we present SPACE2,
which uses the latest machine learning-based structure prediction technology
combined with a novel clustering protocol, and benchmark it on binding data that
have epitope-level resolution. On six diverse sets of antigen-specific antibodies,
we demonstrate that SPACE2 accurately clusters antibodies that engage common
epitopes and achieves far higher dataset coverage than clonal clustering and
SPACE1. Furthermore, we show that the functionally consistent structural clusters
identified by SPACE2 are even more diverse in sequence, genetic lineage, and
species origin than those found by SPACE1. These results reiterate that structural
data improve our ability to identify antibodies that bind to the same epitope,
adding information to sequence-based methods, especially in datasets of
antibodies from diverse sources. SPACE2 is openly available on GitHub (https://
github.com/oxpig/SPACE2).

KEYWORDS
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1 Introduction

Antibodies are important components of the adaptive immune system. An antibody
recognizes foreign particles by binding to a specific site—the epitope—on their surface. As
antibody function is tightly linked to the epitope it engages, studying epitopes is essential to
understand immunology. For example, determining epitope specificities of antibody
repertoires can increase our understanding of the immune response to disease (Tsioris
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et al., 2015; Bashford-Rogers et al., 2019) or differences of the
immune system between individuals (Briney et al., 2019).
Furthermore, epitope profiling can be applied in antibody drug
discovery to identify both new binders to a desired target (Reddy
et al., 2010; Zhu et al., 2013; Tsioris et al., 2015) and binders with
improved affinity (Hsiao et al., 2019).

Epitopes can be determined at high resolution by solving the
structure of an antibody in complex with its antigen. However,
structure determination methods are too resource-intensive to be
used to explore large datasets (Nilvebrant and Rockberg, 2018).
Experimental epitope binning methods, such as competition assays
(Abdiche et al., 2009), scale better; however, it remains difficult to
analyze very large datasets as costs grow at O(n2) with the
number of antibodies (n) to be evaluated. Competition assays
also only offer low resolution as they struggle to distinguish
between antibodies that bind to the same site and those that bind
to distinct sites but overlap sterically.

Prior computational clustering of antibodies into functional
groups that engage the same epitope can reduce the number of
experiments that needs to be run or even remove the need for
experimental epitope determination entirely. Most computational
epitope profiling methods group antibodies based on sequence
similarity. Clonotyping, the most widely used method, attempts
to link antibodies that originate from the same progenitor B-cell
(Greiff et al., 2015; López-Santibáñez-Jácome et al., 2019). The exact
definition of a clonotype varies across the literature. Commonly,
antibodies that originate from the same heavy chain V and J genes,
match in CDRH3 length, and exceed a threshold CDRH3 sequence
identity are considered a clonotype. Threshold values between 80%
and 100% have been reported. To introduce additional leniency, the
requirement for matching J genes can be neglected (Greiff et al.,
2015). Clonal clustering is usually highly accurate, and antibodies
within a cluster tend to engage the same epitope.

Clonotyping was originally intended to trace lineages of
antibodies within an individual. Its use in functional clustering
thus makes the assumption that antibodies against a given
epitope must originate from progenitor B cells with shared
genetic origins. However, antibodies from different lineages and
with highly dissimilar sequences can adopt a similar binding site
geometry and engage the same epitope (Scheid et al., 2011; Joyce
et al., 2016; Rijal et al., 2019; Robinson et al., 2021; Wong et al.,
2021). The ability to determine functional convergence is especially
important when comparing the immune response of individuals, as
different individuals exhibit personalized immunoglobulin gene
usages (Briney et al., 2019). As clonotyping is not able to link
antibodies from distinct genetic lineages, it loses power when
analyzing antibodies originating from different sources.

Alternative methods have been developed to try and identify
functionally equivalent antibodies that are not similar in sequence.
Clustering antibodies by sequence similarity across predicted
paratope residues can link antibodies from different clonotypes
(Richardson et al., 2021). However, methods that consider
structural similarity to cluster antibodies are even better suited to
detect less related sequences with functional convergence because
the binding site structure provides more direct evidence of antibody
function than its sequence. Several methods are available that
attempt to functionally link antibodies based on a representation
containing structural information in addition to physicochemical

properties of paratope residues (Ripoll et al., 2021; Wong et al.,
2021).

In a previous study, we described the SPACE1 method
(Robinson et al., 2021), which clusters antibodies based on
structural similarity of homology models. The algorithm
accurately clusters antibodies that bind to the same epitope and
is able to functionally link antibodies with diverse sequences.
However, SPACE1 is limited by the coverage of homology
modeling (in the original study, only 73% of the data could be
modeled to a usable standard) and its inaccuracies. The method was
also only benchmarked at the level of domain consistency on one
virus class. Recent progress in machine learning-based antibody
structure prediction has led to more accurate structural models than
those obtained with homology-based approaches, especially in cases
where no template with high-sequence similarity is available
(Ruffolo et al., 2020; Baek et al., 2021; Jumper et al., 2021;
Abanades et al., 2022a; Ruffolo et al., 2022a; Abanades et al.,
2022b; Ruffolo et al., 2022b; Lin et al., 2022). Higher accuracy
and higher confidence in structural models also allow increased
coverage and have the potential to improve structure-based epitope
profiling.

Here, we present the Structural Profiling of Antibodies to
Cluster by Epitope 2 (SPACE2) algorithm. SPACE2 builds on
recent progress in machine learning-based antibody structure
prediction and uses a novel clustering protocol systematically
optimized and extensively benchmarked on epitope-resolution
binding data. We show that SPACE2 outperforms SPACE1 by
improving data coverage and identifying clusters even more
diverse in sequences, genetic lineages, and species origin. These
results underline that structural data, which can now be rapidly and
easily generated through structure prediction tools, contain
orthogonal functional information to sequence and should be
considered when investigating antibody function.

2 Materials and methods

2.1 Datasets

Six datasets of antigen-specific antibodies were used to analyze
SPACE2 clustering performance.

The training set on which the clustering algorithm, thresholds,
and antibody region were set consisted of 3,051 antibodies against
the SARS-CoV-2 receptor-binding domain (RBD). Antibodies were
annotated with groups of overlapping epitopes originating from
mutation escape profiling (Cao et al., 2023). We refer to this dataset
as the Cao et al. (2023) training set throughout the paper.

CoV-AbDab (Raybould et al., 2021a), a dataset of anti-lysozyme
antibodies, a non-public dataset of antibodies against Ebola viruses
(EVs), and two non-public dataset of antibodies against non-viral
targets (NVA1 and NVA2) were used as additional datasets to
evaluate SPACE2. CoV-AbDab is a database of antibodies against
coronavirus antigens, such as those from SARS-CoV-2, SARS-CoV-
1, and MERS-CoV. A version of CoV-AbDab timestamped
3 October 2022 was used containing 10,719 antibodies with
sequence data. As CoV-AbDab is a collection of antibodies
reported in the literature, it contains the Cao et al. (2023)
training set. When using CoV-AbDab as a test set [denoted as
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CoV-AbDab (test)], the training set was removed, and only the
remaining 7,685 antibodies were included. Epitope data in CoV-
AbDab are reported as in the original publications and range from
the antigen to domain level.

A dataset of anti-lysozyme antibodies was created from all
53 lysozyme-specific antibodies in the structural antibody
database (SAbDab) (Dunbar et al., 2014; Schneider et al., 2022),
for which the antibody–antigen complex structure has been solved.
Antibodies were grouped by their epitope using the Ab-ligity
method (Wong et al., 2021) and annotated as binding to the
same epitope if their Ab-ligity score was greater than a threshold
of 0.1 (as in the original paper). Similarity of epitopes within an
epitope group was confirmed by visual inspection.

The EV set contains 126 antibodies with epitope data ranging
from antigen to domain level. The NVA1 set contains 31 antibodies
with epitope data from competition assays. NVA2 contains
33 antibodies with epitope data from mutation escape profiling.

2.2 SPACE1

The original SPACE1 method clusters antibodies by the
structural similarity of homology models. The algorithm was run
as detailed in Robinson et al. (2021).

Homology models were produced using ABodyBuilder (Leem
et al., 2016). ABodyBuilder uses structures from a database to build
its models. In this study, we used quality-filtered SAbDab (Dunbar
et al., 2014; Schneider et al., 2022) entries timestamped before 6 July
2022. Quality filtering restricts structures to those solved by X-ray
crystallography and excludes structures with a resolution of >2.5 Å
and structures containing residues with a B-factor >80. In a standard
ABodyBuilder run, the method first attempts to model CDR loops
with a template database search method (Choi and Deane, 2010). If
no suitable template is found for CDRs, hybrid homology/ab initio
modeling is performed (Leem et al., 2016). Only models for which
homology templates for all six CDR loops were found are used for
clustering in the SPACE1 method to keep the models as accurate as
possible.

The remaining homology models are clustered by structural
similarity of CDRs. The models are split into groups of antibodies
with identical CDR lengths. Antibodies in each group are then
clustered using a greedy clustering algorithm. The first antibody
in the group is selected as the cluster center, and all antibodies
with a CDR Cα RMSD smaller than a specified threshold after
alignment of framework residues are added to the cluster. After
all antibodies have been compared against the first cluster center,
the algorithm selects the next unclustered antibody as a new
cluster center, and cluster members are chosen as in the previous
step. In addition to the RMSD threshold of 0.75 Å suggested by
Robinson et al. (2021), we also assessed the performance at a
1.25 Å threshold.

2.3 SPACE2

Our novel SPACE2 algorithm clusters antibodies by the
similarity of models obtained from an ML-based structure
prediction tool. The method functions in four main steps.

Initially, a structural model of the antibody Fv is produced using
ABodyBuilder2 (Abanades et al., 2022b). ABodyBuilder2 is a deep-
learning-based tool for antibody structure prediction and was
trained on SAbDab structures timestamped up to 31 July 2021.
The models are then split into groups of identical CDR lengths. The
models in each group are then structurally aligned on the Cα of
residues in framework regions, and a pairwise distance matrix is
computed of the Cα RMSDs of CDR loop residues. The antibodies
are then clustered based on these distances.

2.3.1 Clustering algorithms
Eight different clustering algorithms were explored

(agglomerative clustering, affinity propagation, DBSCAN,
OPTICS-xi, OPTICS-DBSCAN, K-means, Butina clustering, and
greedy clustering). Agglomerative clustering (Murtagh and
Contreras, 2012), affinity propagation (Frey and Dueck, 2007),
DBSCAN (Schubert et al., 2017), OPTICS-xi, OPTICS-DBSCAN
(Ankerst et al., 1999), and K-means (MacQueen, 1967) were
implemented using the scikit-learn (Pedregosa et al., 2011).
Butina clustering (Butina, 1999) was implemented using the
RDKit (Landrum, 2006). A greedy clustering algorithm, grouping
antibodies as the algorithm described in Section 2.2, was
implemented.

Parameters and evaluated ranges for each algorithm are shown
in Table 1. The K-means algorithm requires an additional parameter
(K) that corresponds to the predetermined number of clusters. K was
set to the number of clusters obtained from agglomerative clustering
using the best performing parameters.

2.3.2 SPACE2-HC
A variation of the SPACE2 algorithm was implemented that

clusters antibodies based on the structural similarity of heavy chains
only (SPACE2-HC). The light chains were included for the
modeling step, as ABodyBuilder2 (Abanades et al., 2022b)
requires sequences of both chains as an input. After this step,
light chains were ignored. Antibodies were grouped based on the
length of the heavy chain CDRs, aligned on heavy chain framework
regions, and the Cα RMSD of CDRs H1-3 calculated. Agglomerative
clustering with a “complete” linkage criterion was used as the
clustering algorithm of SPACE2-HC.

2.3.3 SPACE2-Paratope
A second variation of the SPACE2 algorithm was

implemented that clusters antibodies based on the structural
similarity of CDR loops, which are predicted to form part of
the paratope (SPACE2-Paratope). Structural models were
produced using ABodyBuilder2 (Abanades et al., 2022b). The
Paragraph method (Chinery et al., 2023) with a classifier cut-off
of 0.734, as suggested in the original paper, was then used to
predict residues that are part of the paratope based on the models.
All CDRs containing at least one paratope residue were then
labeled as paratope CDRs. Antibodies were divided into groups
containing the same set of paratope CDRs. Antibodies in each
group were further grouped based on the length of the paratope
CDRs, aligned on heavy chain framework regions, and clustered
based on the Cα RMSD of paratope CDRs. Agglomerative
clustering with a “complete” linkage criterion was used as the
clustering algorithm of SPACE2-Paratope.
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2.4 Numbering scheme and region
definitions

IMGT numbering (Lefranc et al., 2003) and North CDR
definitions (North et al., 2011) are used throughout.

2.5 Analysis of structural clusters

2.5.1 Domain/epitope-consistent clusters
Antibody clusters generated for the Cao et al. (2023) training set,

NVA1 set, NVA2 set, and anti-lysozyme set were classified as
“epitope-consistent” or “epitope-inconsistent.” “Epitope-
consistent” clusters of the Cao et al. (2023) training, NVA1, and
NVA2 sets only contain antibodies that bind to the same epitope
group as determined by experimental epitope binning. “Epitope-
consistent” clusters of the lysozyme dataset only contain antibodies
that bind to the same residue-level epitope determined using crystal
structures.

Owing to the lower resolution of epitopes reported in the EV set
and CoV-AbDab, clusters of these datasets were classified as
“domain-consistent” and “domain-inconsistent.” EV set clusters
were labeled as “domain-consistent” if they only contain
antibodies that engage the same antigen domain. CoV-AbDab
clusters that satisfy the following rules, consistent with previous
studies (Robinson et al., 2021), were determined to be “domain-
consistent”:

1. Clusters that only contain antibodies that bind to the same
antigen and domain.

2. Clusters that contain antibodies binding to the same domain and
others that bind to the same antigen without domain-level
resolution.

3. Clusters that only contain antibodies that bind to the same
antigen but do not have domain-level resolution of the
epitope data.

4. Clusters with internally consistent epitope data, e.g., a cluster of
antibodies labeled to bind to the spike (S) protein N-terminal
domain (NTD) and others labeled as S non-RBD binders, as S
NTD is a subdomain of S non-RBD.

2.5.2 Performance metrics
Throughout this study, we used seven metrics to analyze

functional clustering. Two accuracy metrics, the fraction of
epitope-consistent clusters (number of epitope-consistent
multiple-occupancy clusters/number of multiple-occupancy
clusters) and the fraction of clustered antibodies in epitope-
consistent clusters (number of antibodies in epitope-consistent
multiple-occupancy clusters/number of antibodies in multiple-
occupancy clusters), were used. Two coverage metrics, the
number of multiple-occupancy clusters and the number of
antibodies in multiple-occupancy clusters, were used. In order to
examine accuracy and coverage with onemeasure, we also calculated
the number of antibodies in consistent multiple-occupancy clusters.
Two further metrics were used to assess the diversity of antibodies
within clusters: the fraction of functionally consistent clusters
containing antibodies from more than one clonotype and the
mean CDRH3 sequence identity within functionally consistent
clusters.

2.5.3 Random baseline
Random clustering was performed as a baseline. The

distribution of cluster sizes obtained from the evaluated
clustering algorithm with specific parameters was recorded.
Clusters with an identical size distribution were then sampled
randomly from the dataset, and performance metrics were

TABLE 1 Clustering algorithms and parameter ranges/values evaluated during optimization.

Algorithm Parameter Range/values Optimal value

Greedy clustering RMSD threshold 0.5–10 Å 1.25 Å

Agglomerative clustering RMSD threshold 0.5–10 Å 1.25 Å

Linkage criterion Complete, average, and single Complete

Affinity propagation Preferences −5 to 4 Median (RMSD matrix)

DBSCAN RMSD threshold 0.5–5 Å 1 Å

Minimum samples 2 and 5 2

OPTICS-xi RMSD threshold 0.5–5 Å 1.5 Å

Minimum samples 2 2

xi 0.005–0.5 ≤0.01

OPTICS-DBSCAN RMSD threshold 0.5–2 Å 1 Å

Minimum samples 2 2

K-means Initialization Random, K-means++ K-means++

Butina clustering RMSD threshold 0.5–5 Å 1 Å

Reordering True and false False
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calculated. Sampling was repeated 100 times, and the metrics
averaged.

2.5.4 Clonotyping
Clonotyping was performed using an in-house script. Lenient

VH-clonotyping and Fv-clonotyping threshold conditions based on
community standards were used (Greiff et al., 2015; López-
Santibáñez-Jácome et al., 2019). A VH-clonotype was defined as
a match in IGHV genes, length-matched CDRH3, and >80%
CDRH3 sequence similarity. Fv-clonotypes were defined as a
match in VH-clonotype, matching of IG[K/L]V genes, length-
matched CDRL3, and >80% sequence identity of CDRL3.

3 Results

The original SPACE1 algorithm was developed to cluster
antibodies by structural similarity with the aim of better
identifying functional convergence. It grouped antibodies based
on the structural similarity of homology models. This method
was not systematically optimized and only benchmarked on a
single dataset of low-resolution epitope data. Newly available
ML-based structure prediction tools produce more accurate
models and have better coverage than homology modeling. Here,
we introduce SPACE2, which uses a state-of-the-art antibody
structure prediction method and a novel clustering protocol that
has been extensively optimized and then benchmarked on several
datasets of high-resolution epitope data.

SPACE2 clusters antibodies in four main steps. Initially, structural
models are produced using ABodyBuilder2 (Abanades et al., 2022b).
The models are then separated into groups of antibodies with identical
lengths of the six CDRs, followed by the computation of a pairwise
distance matrix of CDR Cα RMSDs. In the final step, a clustering
algorithm divides the antibodies into structural clusters. Although some
loops of different lengths can adopt similar structures, we have decided
to restrict structural comparison to antibodies with identical CDR
lengths for the SPACE2 method as evidence suggests length-
independent structural similarities are infrequent (Nowak et al.,
2016; Wong et al., 2019). Restricting structural comparison to CDRs
of the same length also allows for more rapid computation as RMSDs
do not have to be calculated between all pairs of antibodies within the
set. Optimization of the clustering protocol was performed on a training
set of 3,051 antibodies against the SARS-CoV-2 receptor-binding
domain (RBD) (Cao et al., 2023).

3.1 Evaluating an optimal clustering
algorithm

We tested eight widely used clustering algorithms, greedy
clustering, affinity propagation (Frey and Dueck, 2007), Butina
clustering (Butina, 1999), DBSCAN (Schubert et al., 2017),
OPTICS-DBSCAN, OPTICS-xi (Ankerst et al., 1999),
agglomerative clustering (Murtagh and Contreras, 2012), and
K-means (MacQueen, 1967), for their ability to correctly group
functionally consistent antibodies in the Cao et al. (2023) training
set. To assess the methods, we used the number of antibodies in
epitope-consistent multiple-occupancy clusters as our target

performance metric as it provides a trade-off between clustering
accuracy and dataset coverage. High accuracy or coverage metrics
individually do not necessarily indicate a good epitope profiling
method (Figure 1). High accuracy can be achieved by dividing the
dataset into very small clusters that are highly likely to be epitope/
domain-consistent but do not cover the full diversity of antibodies
able to engage a given epitope. Maximal coverage can be achieved by
putting all antibodies into a single cluster, which does not provide
any useful epitope information.

A parameter scan was carried out to find the optimal setting for
each clustering method. The ranges and optimal values of the
evaluated parameters are shown in Table 1. As expected, lenient
parameters increased dataset coverage, whereas stringent
parameters improve accuracy, and the trade-off was maximized
at intermediate values. The best performing algorithms, as defined
by maximizing the number of antibodies in epitope-consistent
multiple-occupancy clusters, were agglomerative clustering
(optimal parameters: linkage criterion = complete; RMSD
distance threshold = 1.25 Å), OPTICS-xi (optimal parameters: xi
≤ 0.01; RMSD distance threshold = 2 Å), and K-Means (optimal
parameters: initialization method = K-means++), where K was set to
the number of clusters obtained by agglomerative clustering with
optimal parameters (Figure 2). As K-means does not lead to an
improvement over agglomerative clustering, it was disregarded for
further analysis. A visualization of the clustering obtained by the
eight algorithms is shown in Supplementary Figure S1.

Agglomerative clustering andOPTICS-xi clusteringwere compared
in more detail (Supplementary Table S1). Both algorithms achieve a
similar clustering accuracy and dataset coverage. Agglomerative
clustering produces larger clusters with a mean cluster size of
3.0 members and a maximum of 28 than OPTICS-xi clusters with
mean 2.7 and maximum 11. When epitope-consistent clusters are
larger, it suggests that they are better capturing the full diversity of the
antibodies able to engage a given epitope. Therefore, agglomerative
clustering was selected for use in SPACE2.

3.2 Examining the behavior of agglomerative
clustering across different structural
similarity thresholds

The RMSD threshold parameter of agglomerative clustering
determines the leniency of the algorithm as it sets the maximum
distance between any two antibodies in a cluster. Small thresholds
restrict clustering to highly similar structures, whereas larger values
allow clusters to contain more dissimilar antibodies. We evaluated
agglomerative clustering for threshold values between 0.5 and 5 Å to
assess how clustering results are affected.

Four metrics were monitored to assess the accuracy of clustering
and dataset coverage. The fraction of epitope-consistent clusters
(number of epitope-consistent multiple-occupancy clusters/number
of multiple-occupancy clusters) and the fraction of clustered
antibodies in epitope-consistent clusters (number of antibodies in
epitope-consistent multiple-occupancy clusters/number of
antibodies in multiple-occupancy clusters) were used as an
accuracy measure. The number of multiple-occupancy clusters
and the number of antibodies in multiple-occupancy clusters
provide information on dataset coverage.
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Clustering accuracy and data coverage show a strong
dependence on the RMSD threshold (Figure 3). At thresholds
≤0.75 Å, the clustering is highly accurate. More than 80% of
clusters are epitope-consistent, and approximately 80% of
clustered antibodies are in epitope-consistent clusters. Increasing
the threshold leads to a rapid drop in accuracy but improves dataset
coverage. The number of antibodies in multiple-occupancy clusters
starts to plateau at approximately 3 Å. The large changes in accuracy
and data coverage as a function of threshold suggest that the
threshold should be adjusted depending on the aim of the
epitope profiling task. Optimal clustering is achieved at a value of
1.25 Å, as defined by maximizing the number of antibodies in
epitope-consistent multiple-occupancy clusters. However, the
threshold can be set to any value between 0.75 and 3 Å to
increase accuracy or coverage.

In all the analysis to this point, we have reported only on clusters
that are 100% epitope-consistent (i.e., only contain antibodies

against the same epitope). To measure the inconsistency of the
remaining clusters, we analyzed the fraction of clusters in which at
least 70% of the antibodies engage the same epitope. An additional
12% of clusters are >70% epitope-consistent, and these clusters
contain an extra 26% of all antibodies contained in multiple-
occupancy clusters (Supplementary Figure S2). This result
indicates that even those clusters our standard performance
metrics are marking as incorrect may contain large amounts of
useful information.

3.3 Evaluating the optimal region for
clustering

The SPACE2 method calculates structural similarity of
antibodies across all six CDRs. However, not all CDRs are
equally involved in binding and we expect the structure of some

FIGURE 1
Illustration of the evaluation of clustering algorithms. Accuracy and coverage metrics were used to analyze clustering algorithms. Individually, these
metrics do not necessarily indicate a good clustering algorithm, instead a trade-off between accuracy and coverage should be monitored. (A) High
accuracy is achieved by making small clusters. These are likely to be epitope-specific; however, most antibodies are not contained in a cluster. (B) High
coverage is achieved by the formation of large clusters. These contain most of the antibodies in the dataset but do not tend to be epitope-specific.

FIGURE 2
Examination of clustering algorithms. Parameter scans of eight clustering algorithms were performed using the Cao et al. (2023) training set. The
performance of clustering wasmeasured in terms of the number of antibodies in epitope-consistentmultiple-occupancy clusters (y-axis). Themaximum
value of this metric achieved by a specific algorithm across all evaluated parameters when clustering theCao et al. (2023) training set is shown. The ranges
and optimal values of the evaluated parameter are shown in Table 1. The agglomerative clustering algorithm selected for SPACE2 is highlighted in
blue.
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CDRs to be more important in determining epitope specificity than
the structure of others. Therefore, we investigated how the choice of
CDRs over which RMSDs are calculated impacts clustering. We
assessed two variations of SPACE2 that cluster based on subsets
of CDRs.

In the first variation, the algorithm was adapted to consider
structural similarity of heavy chain CDRs only (SPACE2-HC). This
approach was motivated by sequence-based methods, such as
clonotyping, which often achieve good performance considering
only the heavy-chain sequence. In SPACE2-HC, antibodies were
grouped based on the length of the heavy-chain CDRs, aligned on
heavy-chain framework regions, Cα RMSD of CDRs H1-3
calculated, and clustered with an agglomerative clustering
algorithm with a “complete” linkage criterion. An RMSD
threshold of 1.25 Å was found to optimize SPACE2-HC
(Supplementary Figure S3). SPACE2-HC performed worse than
the standard SPACE2 algorithm as measured by a 33% drop in
the trade-off metric of antibodies in epitope-consistent clusters
(Supplementary Table S2). Although SPACE2-HC slightly
increased dataset coverage, a substantial decrease in accuracy was
observed.

A second variation of SPACE2 was implemented to cluster
antibodies based only on the similarity of CDR loops that
contain paratope residues (SPACE2-Paratope). Paratope residues
were predicted using the Paragraph method (Chinery et al., 2023).
Models were grouped by the combination of CDR loops that contain

paratope residues (paratope CDRs). The models were then grouped
again based on the length of paratope CDRs, aligned on framework
regions, and the Cα RMSD of paratope CDRs was calculated. A
RMSD threshold of 1.5 Å was found to optimize agglomerative
clustering for SPACE2-Paratope (Supplementary Figure S3).
Measured by the trade-off metric, SPACE2-Paratope performed
worse than standard SPACE2 (Supplementary Table S2). A slight
drop in both clustering accuracy and data coverage was observed.

The best clustering results were achieved by clustering based on
the structural similarity of all six CDR loops. Therefore, the standard
SPACE2 method was chosen as the clustering protocol for further
analysis.

3.4 SPACE2 performs well on sets of
antibodies against diverse targets

SPACE2 was tested on five datasets of antigen-specific
antibodies using the clustering algorithm (agglomerative
clustering) and parameter choices (complete linkage criterion,
1.25 Å RMSD threshold) defined on the Cao et al. (2023)
training set. The test sets comprised a dataset of anti-lysozyme
antibodies, a non-public dataset of anti-Ebola virus antibodies, two
non-public datasets of antibodies against non-viral targets
(NVA1 and NVA2), and CoV-AbDab (test), a version of CoV-
AbDab with training set overlap removed (see Materials and

FIGURE 3
Results of agglomerative clustering as a function of RMSD threshold on the Cao et al. (2023) training set. Agglomerative clustering with a “complete”
linkage criterion was performed for threshold values between 0.5 and 5 Å. The values of the five performance metrics are plotted against evaluated
threshold values: (A) fraction of epitope-consistent clusters, (B) fraction of clustered antibodies in epitope-consistent clusters, (C) number of multiple-
occupancy clusters, (D) number of antibodies in multiple-occupancy clusters, and (E) number of antibodies in epitope-consistent multiple-
occupancy clusters. Results of a random clustering baseline (see Materials and Methods) are shown for comparison. Values for the number of multiple-
occupancy clusters and antibodies in multiple-occupancy clusters for the random baseline are matched to agglomerative clustering.
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Methods) (Raybould et al., 2021a). An overview of results from
clustering the test sets is shown in Table 2.

The anti-lysozyme dataset contains antibodies against five
distinct epitopes. SPACE2 clusters antibodies in this set with
high accuracy as 100% of clusters are epitope-consistent.
Good data coverage is observed, and 50 of the 53 antibodies
fall into multiple-occupancy clusters. SPACE2 divides the
dataset into eight clusters (Figure 4). We observe three cases

where antibodies binding to a common epitope are separated
into two clusters. Looking at these cases in more detail shows
that despite engaging the same epitope, the antibody structures
do not overlay perfectly. In each case, we observe antibodies
that bind to the epitope in two different binding poses, and
these are separated into distinct clusters by SPACE2. These
results show that SPACE2 groups antibodies with a high
resolution.

TABLE 2 Performance of SPACE2 on test datasets.

Dataset Anti-lysozyme mAbs CoV-AbDab (test) EV NVA1 NVA2

Antibodies in set 53 7,685 126 31 33

Fraction of antibodies modeled 1.0 1.0 0.87 1.0 1.0

Fraction of consistent clusters 1.0 0.85 0.78 0.83 1.0

Fraction of clustered antibodies in consistent clusters 1.0 0.80 0.74 0.86 1.0

Multiple-occupancy clusters 5 1,267 9 6 5

Antibodies in multiple-occupancy clusters 50 (94%) 4,188 (54%) 19 (15%) 14 (45%) 16 (48%)

Antibodies in consistent multiple-occupancy clusters 50 (94%) 3,353 (44%) 14 (11%) 12 (39%) 16 (48%)

Values of the five performance metrics and the fraction of antibodies successfully modeled using ABodyBuilder2 are shown for each dataset. For the two metrics of number of antibodies in

multiple-occupancy clusters and number of antibodies in epitope-consistent multiple-occupancy clusters, a percentage is shown additionally, indicating the percentage of antibodies in the

dataset. CoV-AbDab (test) denotes the subset of CoV-AbDab that is not contained in the Cao et al. (2023) training set (see Materials andMethods). CoV-AbDab (test) was used for this analysis

to prevent testing on training set antibodies.

FIGURE 4
Anti-lysozyme antibodies. Crystal structures of 53 antibody–lysozyme complexes are shown aligned on the antigen structure (gray). Antibodies are
colored according to the clusters assigned by SPACE2. (A)Overlay showing all 53 antibody–lysozyme complexes. (B–F) Each panel shows all antibodies
that bind to one of the five lysozyme epitopes as defined by Ab-ligity (Wong et al., 2021). Panels (B–D) Each contain two sets of antibodies that do not
overlay perfectly indicating a difference in binding pose. SPACE2 separates antibodies binding to the same epitope in a different binding pose into
distinct clusters as indicated by coloring.
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SPACE2 also achieves a high clustering accuracy on CoVAbDab
(test), the EV set, the NVA1 set, and the NVA2 set; 85%, 78%, 83%,
and 100% of clusters in the four sets are domain/epitope-consistent,
respectively. Domain/epitope-consistent clusters comprise 80%,
74%, 86%, and 100% of all antibodies grouped into multiple-
occupancy clusters in the four sets, respectively.

Data coverage differs for the four datasets (see Materials and
Methods for definition of coverage metrics). Coverage of
CoVAbDab (test), the NVA1 set, and the NVA2 set is high,
with 54%, 45%, and 48% of all antibodies contained within
multiple-occupancy clusters, respectivelwhich balances both
accuracy and cy. In comparison, only 19 of 126 EV set
antibodies are grouped into multiple-occupancy clusters. The
EV set is relatively small and contains antibodies against the
Ebola virus glycoprotein, a large multi-domain protein with
many potential epitopes (Lee et al., 2008). We do not expect
to observe many antibodies engaging the same residue-level
epitope in a small dataset of antibodies against a target with
many epitopes, which is likely why we see low coverage.

Antibodies within the same epitope group in CoV-AbDab, the
EV set, the NVA1 set, and the NVA2 set tend to be split across a
large number of SPACE2 clusters. This is explained by the low
resolution of epitope labels in these datasets and antibodies
annotated with the same epitope label likely bind to a large
number of different residue-level epitopes.

Overall, SPACE2 generalizes well to the test sets. The algorithm
achieves a high clustering accuracy on all five datasets and a good
coverage on CoV-AbDab (test), NVA1, NVA2, and anti-lysozyme
datasets. Coverage of the EV set is comparably low, indicating a
challenge in clustering smaller datasets of epitope-diverse antibodies.

3.5 Advances in structure prediction
improve structure-based computational
epitope profiling

We compared the performance of SPACE2 to SPACE1, our
previous structural epitope profiling method. SPACE1 (Robinson
et al., 2021) groups antibodies based on structural similarity of
homology models produced using ABodyBuilder (Leem et al., 2016)
followed by greedy structural clustering at an RMSD threshold of
0.75 Å.

We, once again, used the number of antibodies in epitope/
domain-consistent multiple-occupancy clusters, which balances
both accuracy and coverage, as our metric for comparing
performance. SPACE2 outperforms SPACE1 using its suggested
threshold (RMSD threshold 0.75 Å) (Supplementary Table S3). As
SPACE2 uses an RMSD threshold of 1.25 Å, we also explored a
range of RMSD values to see whether the difference in the RMSD
threshold is the driver for the difference in performance. We found
that a threshold of 1.25 Å improved SPACE1 clustering
(Supplementary Table S3), but it was still significantly worse than
SPACE2. SPACE1 with a 1.25 Å threshold results in an 18% and 9%
decrease in antibodies in epitope/domain-consistent multiple-
occupancy clusters on the two largest datasets, CoV-AbDab and
the Cao et al. (2023) training set, respectively (Table 3). SPACE2’s
better performance is driven by better coverage while achieving a
similar accuracy.

Modifications of the SPACE2 and SPACE1 methods reveal that
the better performance of SPACE2 arises due to the larger number of
antibodies modeled with ML-based structure prediction compared
to homology modeling and better clustering with the agglomerative
clustering protocol compared to greedy clustering. The higher
quality of models obtained from ML-based structure prediction
does not lead to clear improvements in clustering (Figure 5;
Supplementary Table S4).

3.6 SPACE2 improves coverage compared to
clonotyping

Clonotyping is the most commonly used epitope profiling
method. It clusters antibodies based on sequence similarity. As
clonotyping assumes that antibodies against a given epitope must
originate from progenitor B cells with shared genetic origins, it
cannot detect functional convergence. Thus, the method is limited
when clustering datasets of antibodies from different individuals or
species. Here, we compare SPACE2 to two lenient clonotyping
protocols, VH- and Fv-clonotyping (see Materials and Methods),
on the two largest datasets which contain antibodies from diverse
sources. The Cao et al. (2023) training set consists of antibodies
isolated from 165 human patients (Cao et al., 2023), and CoV-
AbDab contains antibodies from a range of studies (~450) and
several species (Raybould et al., 2021a).

The performance of SPACE2 and the two clonotyping protocols
are shown in Table 3. SPACE2 outperforms both VH- and Fv-
clonotyping in the key metric of antibodies in epitope/domain-
consistent clusters on both datasets. Improvement in this metric is
driven by increased dataset coverage by SPACE2. We observe 33%
and 21% more antibodies in multiple-occupancy clusters for Fv-
clonotyping of CoV-AbDab and the Cao et al. (2023) training set,
respectively. Data coverage by VH-clonotyping is better but still
substantially lower than SPACE2. On the other hand, SPACE2 is less
accurate than both clonotyping protocols. However, the increase in
coverage achieved by SPACE2 exceeds the drop in accuracy.

3.7 SPACE2 identifies functional
convergence signals

We next analyzed the diversity of antibodies within the
SPACE2 clusters of the Cao et al. (2023) training set and CoV-
AbDab to see whether we were identifying functionally similar
antibodies with very different sequences.

The majority of SPACE2 clusters contain antibodies belonging
to several clonotypes, highlighting the ability to link antibodies from
different genetic lineages. Specifically, 55% of epitope-consistent
clusters from the Cao et al. (2023) training set and 81% of domain-
consistent clusters from CoV-AbDab contain antibodies from more
than one VH-clonotype (Table 3).

Moreover, we investigated the sequence similarity of antibodies
within epitope/domain-consistent clusters. Clonotyping is limited to
linking sequence-similar antibodies as the method uses a
CDRH3 sequence identity cutoff to cluster antibodies. Here, we
use a lenient cutoff of 80%. We observed a mean CDRH3 sequence
identity of 86% within epitope-consistent VH-clonotypes of the Cao
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et al. (2023) training set and 88% for domain-consistent VH-
clonotypes of CoV-AbDab. In comparison, SPACE2 clusters tend
to be highly diverse in sequence. Epitope/domain-consistent clusters
have a mean CDRH3 sequence identity of 54% and 66% for CoV-
AbDab and the Cao et al. (2023) training set, respectively (Table 3).
A large number of CoV-AbDab clusters were observed with a mean
sequence identity below 40% (Supplementary Figure S4), and some
clusters even contain pairs of antibodies with no common
CDRH3 residues.

Structural clustering is also able to functionally link antibodies
from different organisms. For CoV-AbDab, SPACE2 produced

26 functionally consistent clusters containing antibodies from
more than one species and was able to group antibodies from
human, mouse, and rhesus macaque origins. In comparison,
optimized SPACE1 was only able to detect 18 domain-consistent
inter-species clusters, and clonotyping is unable to link antibodies
from different species.

3.7.1 SPACE2 informs on functional convergence
of sequence-dissimilar antibodies

We examined in more detail a SPACE2 cluster of the CoV-
AbDab dataset with 12 members (368.07.C.0221, BD55-4342,

TABLE 3 Comparison of SPACE2, SPACE1, and clonotyping.

Dataset CoV-AbDab Training set

Method SPACE2 SPACE1 Clonotyping SPACE2 SPACE1 Clonotyping

VH Fv VH Fv

Fraction of antibodies modeled 1.0 0.71 - - 1.0 0.7 - -

Fraction of consistent clusters 0.87 0.87 0.98 0.99 0.63 0.64 0.84 0.83

Fraction of clustered antibodies in consistent clusters 0.82 0.81 0.97 0.99 0.57 0.58 0.75 0.79

Multiple-occupancy clusters 1,811 1,165 1,191 970 480 314 361 303

Antibodies in multiple-occupancy clusters 6,271 (59%) 4,010 (37%) 4,045 (38%) 2,754 (26%) 1,446 (47%) 935 (31%) 1,060 (35%) 793
(26%)

Antibodies in consistent multiple-occupancy clusters 5,126 (48%) 3,255 (30%) 3,916 (37%) 2,733 (25%) 823 (27%) 538 (18%) 797 (26%) 628
(21%)

Fraction of clusters containing >1 VH-clonotypes 0.81 0.71 0 0 0.55 0.58 0 0

Mean CDRH3 sequence identity 0.54 0.57 0.88 0.88 0.66 0.67 0.86 0.87

The original SPACE1 algorithmwas evaluated at an RMSD threshold of 1.25 Å. Two protocols were used for clonotyping (seeMaterials andMethods). VH-clonotyping is restricted to genes and

sequence of the heavy chain. Fv-clonotyping considers both heavy and light chains. For the two metrics of number of antibodies in multiple-occupancy clusters and number antibodies in

epitope-consistent multiple occupancy clusters, a percentage is shown additionally, indicating the percentage of antibodies in the dataset. The most important performance metric to consider

when comparing different epitope profiling methods is the number of antibodies in epitope/domain-consistent multiple-occupancy clusters as high accuracy or coverage metrics individually

may not indicate good performance. The fraction of epitope/domain-consistent clusters containing more than one VH-clonotype and the mean CDRH3 sequence identity observed within

epitope/domain-consistent clusters are also given. The best result for each metric is highlighted in bold.

FIGURE 5
In-depth comparison of SPACE2 and SPACE1 performance on the Cao et al. (2023) training set. SPACE1 with a 1.25 Å RMSD threshold (green) and
SPACE2 (blue) as well as an adaptation of SPACE1 (light green) using the default agglomerative clustering algorithm of SPACE2 (complete linkage
criterion, 1.25 Å RMSD threshold) and an adaptation of SPACE2 (light blue) using the default greedy clustering algorithm of SPACE1 (1.25 Å RMSD
threshold) were evaluated on the complete data set (all). Additionally, SPACE2 and its adaptation were evaluated on a reduced dataset which only
included the 2,140 antibodies successfully modeled by homology modeling (reduced set).
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BD55-5339, BD55-5550, BD55-5856, BD55-6024, BD55-6223,
BD55-6372, BD55-6596, BD57-074, C018, and EY6A) (Figure 6).
Eleven of the antibodies engage the spike protein RBD, and the final
member is annotated as a spike protein binder with an unknown
domain. Clustering by SPACE2 suggests that these antibodies,
determined to bind to the same domain of the spike protein,
engage the same residue-level epitope.

The 12 antibodies are highly diverse in sequence and genetic
lineage. The cluster shows a mean CDRH3 sequence identity of
33%. The antibodies possess a CDRH3 of length 12, and eight of
these residues differ on average. The most distant pair of
antibodies in the cluster is BD55-6596 and EY6A, which differ
in 11 of 12 CDRH3 residues. The 12 antibodies originate from
seven different IgGH genes and fall into 12 separate VH-
clonotypes.

The improvement of SPACE2 over SPACE1 can be seen when
examining how these antibodies were clustered by SPACE1. Using
SPACE1 with an optimized threshold, only six of these antibodies
(BD55-6024, BD55-6223, BD55-6596, BD57-074, C018, and EY6A)
were grouped together, and even these six were a part of a larger
functionally inconsistent cluster with 44 members. BD55-5339 was
in a separate functionally inconsistent SPACE1 cluster with four
members, and the remaining five antibodies were not placed in
multiple-occupancy clusters.

3.7.2 SPACE2 identifies epitopes targeted by
multiple species

As the CoV-AbDab database contains antibodies from multiple
species (human, mouse, and rhesus macaque), we examined whether
SPACE2 can identify epitopes targeted by multiple species. There
were 26 SPACE2 clusters of the CoV-AbDab database that
contained antibodies from more than one species. We examined

a SPACE2 cluster with seven members (368.02a.C.0049, B13, BD55-
6574, BD57-092, DK15, Fab-160, and SW186) (Figure 7). The
cluster contains six antibodies that engage the spike protein RBD
and one spike-specific antibody without domain-level epitope data.
Five of the antibodies have human genetics and originate from
human patients, phage-display, and transgenic mice. The remaining
antibodies have murine genetics and were raised by immunized
mice. SPACE2 suggests that these genetically human and mouse
antibodies engage the same residue-level epitope which highlights its
ability to detect public epitope targeted by multiple species.

SPACE1 with an optimized threshold was only able to link one
of the two murine antibodies in this cluster to human structures,
while clonotyping is unable to linkmouse and human antibodies due
to different gene usage.

4 Discussion

Accurately identifying the epitope of antibodies is a key step in
understanding immunology and in the design of new biological
drugs. Such data are conventionally determined experimentally
either by solving individual antibody–antigen crystal structures or
by epitope binning methods, such as competition binding assays.
Prior computational clustering of antibodies into functional groups
could reduce the number of experiments that needs to be carried out
or even remove the need for them entirely. Clonal clustering is most
commonly used for this purpose, where antibodies are grouped by
sequence identity and genetic lineage. However, these types of
methods will miss antibodies with low sequence identity that
have functionally converged and target common epitopes (Scheid
et al., 2011; Joyce et al., 2016; Rijal et al., 2019; Robinson et al., 2021;
Wong et al., 2021; Shrock et al., 2023).

FIGURE 6
SPACE2 identifies functional convergence of antibodies. Twelve-membered CoV-AbDab cluster (368.07.C.0221, BD55-4342, BD55-5339, BD55-
5550, BD55-5856, BD55-6024, BD55-6223, BD55-6372, BD55-6596, BD57-074, C018, and EY6A) with a mean CDRH3 sequence identity of 33%. The
crystal structure of EY6A in complex with its antigen is available (PDB 6ZCZ). SPACE2 suggests that the 11 remaining antibodies bind to the same residue-
level epitope. (A) Structural models of the 12 members are overlaid with the crystal structure of EY6A (not shown) in complex with the spike protein
RBD (gray). (B) CDRH3 sequence alignment of all 12 cluster members colored by chemical properties of amino acid residues [produced with Logomaker
(Tareen and Kinney, 2020)] and heavy-chain V and J genes.
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In a previous study, we reported the SPACE1 method (Robinson
et al., 2021), which clusters antibodies by structural similarity of
their homology models. This method showed that structure-based
epitope profiling is better able to detect the full breadth of functional
convergence. However, SPACE1 was limited by the coverage of
template-based modeling and its inaccuracies. The method was also
only benchmarked at the level of domain-consistency of antibodies
against one virus class. Here, we introduce SPACE2, an updated
method which uses the latest machine learning-based antibody
structure prediction technology (Abanades et al., 2022b) and a
novel clustering protocol systematically optimized on epitope-
resolution data.

We show across six datasets that SPACE2 can accurately bin
antibodies that engage the same epitope and achieve high data
coverage. Available crystal structures of antibody–antigen
complexes reveal that SPACE2 tends to group antibodies that
bind to the same residue-level epitope in an identical binding
pose. Epitope resolution of SPACE2 appears to be similar to that
obtained from crystal structures and higher than data from epitope
binning methods which struggle to distinguish between antibodies
that bind to the same site and those that bind to distinct sites but
overlap sterically.

SPACE2 outperforms our previous epitope profiling tool
SPACE1 (Robinson et al., 2021) and clonotyping when
considering the number of antibodies in epitope-consistent
multiple-occupancy clusters. Clonotyping is more accurate than
SPACE2 but has far lower coverage. The lower accuracy of
SPACE2 is explained by the fact that antibodies with similar
CDR structures may engage different epitopes if chemical
properties of the CDR residues are significantly different.

We also highlight how our methodology allows the detection of
functional convergence across populations of antibodies. Across
functionally consistent clusters of our largest dataset, CoV-AbDab
(Raybould et al., 2021a), we detect a mean CDRH3 sequence identity
as low as 54%. Furthermore, we observe 26 functional clusters
containing antibodies from multiple species including human,

mouse, and rhesus macaque antibodies. In comparison, sequence-
based epitope profiling such as clonotyping is severely restricted in
grouping sequence-diverse antibodies and is not able to link
antibodies from different genetic origins and species (Greiff et al.,
2015; López-Santibáñez-Jácome et al., 2019; Raybould et al., 2021b).
Although it is possible to cluster nanobodies with the SPACE2-HC
implementation, we were unable to detect functional convergence to
antibodies when testing on CoV-AbDab. No clusters were detected
containing both antibodies and nanobodies suggesting that the two
formats use different binding site structures to engage common
epitopes.

SPACE2 clusters antibodies based on the length and structural
similarity of all six CDRs. This approachmay constrain the detection
of functional convergence to some extent as it assumes that
antibodies require the same length of all six CDRs to engage the
same epitope. We tried to address this issue by evaluating two
adaptations of SPACE2 that reduce the number of CDRs required to
have the same length. An implementation clustering antibodies
based on heavy-chain structural similarity (SPACE2-HC) caused
a drastic decrease in clustering accuracy. This indicates that light
chain structures are important for determining antibody binding
specificity, which is in line with previous findings on the functional
selection of light chains (Jaffe et al., 2022) and their structural
importance (Guloglu and Deane, 2023). Similarly, combining
SPACE2 with information from paratope prediction (SPACE2-
Paratope) (Chinery et al., 2023) and computing structural
similarity only across CDRs predicted to contain paratope
residues currently led to fewer functionally consistent clusters.
Furthermore, some loops of different lengths can adopt similar
structures (Nowak et al., 2016; Wong et al., 2019). Although
evidence suggests that this is infrequent, future work could focus
on being able to detect functional convergence across different CDR
lengths.

The ability to detect functional convergence of antibodies will
provide valuable insights into the humoral immune response.
SPACE2 is able to provide more complete information on public

FIGURE 7
SPACE2 identifies epitopes targeted by multiple species. Two representatives from a SPACE2 CoV-AbDab cluster comprising murine (SW186) and
human (BD57-092) antibodies are shown. The crystal structure of SW186 is available (PDB 8DT3). SPACE2 suggests that BD57-092 binds to the same
residue-level epitope. (A) Structural models of SW186 (pink) and BD57-092 (cyan) were overlaid with the crystal structure of SW186 (not shown) in
complex with the spike protein RBD (gray). CDR regions of both antibodies are highlighted by lighter coloring. (B)CDRH3 sequence alignment of the
two antibodies colored by chemical properties of amino acid residues [produced with Logomaker (Tareen and Kinney, 2020)].
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epitopes targeted by antibodies originating from different
individuals and species. Although previous studies show several
public epitopes are largely distinct between species (Shrock et al.,
2023), here, we identify a number of inter-species clusters. Structural
clustering of larger datasets of antibodies isolated from various
species will further improve our understanding of differences in
their immune responses.

Although SPACE2 is computationally more expensive than
sequence-based epitope profiling, it is tractable for datasets of 104

antibodies, a typical number of sequences obtained from methods
such as 10× sequencing (Supplementary Figure S5). The rate
limiting step of SPACE2 is currently the prediction of antibody
structures. Improvements in the speed of structure prediction tools
as well as the release of antibody databases containing pre-modeled
structures (Abanades et al., 2022b) will contribute to reducing the
computational cost of structure-based epitope profiling.

Overall, SPACE2 efficiently detects functional convergence of
antibodies with highly diverse sequences, genetic lineage, and
species origins, further illustrating that predicted structures
should be considered when investigating the function of
antibodies. SPACE2 is openly available on GitHub (https://
github.com/oxpig/SPACE2).
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Nomenclature

RBD receptor-binding domain

S protein spike protein

NTD N-terminal domain

GP1 envelop glycoprotein 1

RMSD root mean square deviation

CDR complementarity-determining region
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VHH immune repertoires enables
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humanized and
sequence-optimized single
domain antibodies: a prospective
case study
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Introduction: In this study, we demonstrate the feasibility of yeast surface display
(YSD) and nextgeneration sequencing (NGS) in combination with artificial intelligence
and machine learning methods (AI/ML) for the identification of de novo humanized
single domain antibodies (sdAbs) with favorable early developability profiles.

Methods: Thedisplay librarywas derived fromanovel approach, inwhichVHH-based
CDR3 regions obtained from a llama (Lama glama), immunized against NKp46, were
grafted onto a humanized VHH backbone library that was diversified in CDR1 and
CDR2. Following NGS analysis of sequence pools from two rounds of fluorescence-
activated cell sorting we focused on four sequence clusters based on NGS frequency
and enrichment analysis aswell as in silico developability assessment. For each cluster,
long short-term memory (LSTM) based deep generative models were trained and
used for the in silico sampling of new sequences. Sequences were subjected to
sequence- and structure-based in silico developability assessment to select a set of
less than 10 sequences per cluster for production.

Results: As demonstrated by binding kinetics and early developability assessment,
this procedure represents a general strategy for the rapid and efficient design of
potent and automatically humanized sdAb hits from screening selections with
favorable early developability profiles.

KEYWORDS

artificial intelligence and machine learning (ML), deep learning, in silico developability,
long short-term memory (LSTM), next-generation sequencing (NGS), single domain
antibodies (VHH), yeast surface display (YSD), protein engineering
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Introduction

VHHs (variable domain of the heavy chain of a heavy chain-only
antibodies), commercially known as nanobodies, are single-domain
antibody (sdAb) fragments derived from camelid heavy chain-only
antibodies (HcAbs). VHHs exhibit small size, high stability, and
exceptional binding specificity, making them valuable tools for
therapeutics, diagnostics, and research applications (Krah et al.,
2016; Könning et al., 2017; Wang et al., 2022; Jin et al., 2023). Owing
to their simple molecular architecture, they offer a plethora of
engineering options with respect to the generation of bi- and
multispecific antibody designs involving different paratope
valences and spatial orientations of individual domains within a
given molecule (Bannas et al., 2017; Chanier and Chames, 2019;
Pekar et al., 2020; Yanakieva et al., 2022; Lipinski et al., 2023a;
Lipinski et al., 2023b). However, VHH domains usually have to be
humanized and further sequence-optimized to be suitable for
therapeutic applications.

A classical cascade for antibody and VHH discovery typically
involves (camelid) immunization and antibody library construction
after immunization followed by antibody selections or panning.
Subsequently, Sanger sequencing of high prevalent clones can be
applied (typically in the range of a couple of hundred clones) that are
then profiled for the desired on-target effect, and functional or
phenotypic assays. The best hits are then nominated for sequence
optimization, usually including humanization (Vincke et al., 2009;
Sulea et al., 2022), replacement of chemically labile and post-
translational modification (PTM) motifs and ideally considering
further developability-related aspects (Lauer et al., 2012; Sormanni
et al., 2015; Raybould et al., 2019; Ahmed et al., 2021; Khetan et al.,
2022; Negron et al., 2022; Evers et al., 2023a; Fernández-Quintero
et al., 2023; Jain et al., 2023; Mieczkowski et al., 2023; Svilenov et al.,
2023). Sometimes, the complexity of these different optimization
parameters might require multiple design cycles and in some cases it
might not be even possible to optimize such hits towards a favorable
overall profile (Rabia et al., 2018). This process of iterative sequence
optimization is generally on the critical path in early biologics drug
discovery projects. Therefore, it is highly desirable to find new
approaches that accelerate the discovery and design of
humanized sequences with a favorable early developability
profile, both in terms of project timelines and to reduce attrition
in the downstream process.

In contrast to the traditional approach of Sanger sequencing,
next-generation sequencing (NGS) of screening pools obtained from
selection campaigns enables a rapid and cost-effective analysis of the
vast sequence spaces of binders (Larman et al., 2012; Mathonet and
Ullman, 2013; Hu et al., 2015; Barreto et al., 2019). Integration of
Sequence-Activity-Relationship (SAR), frequency and enrichment
analyses with in silico developability assessment on NGS data can
furthermore provide a rational approach to identify potent
sequences with improved developability profiles. Moreover,
recent studies have shown the versatility of artificial intelligence/
machine learning (AI/ML) techniques on antibody NGS data to
design new sequences with potentially further improved potency or
developability (Liu et al., 2020; Mason et al., 2021; Saka et al., 2021;
Makowski et al., 2022; Hie et al., 2023; Parkinson et al., 2023). In
these studies, regions of specific antibody candidates were diversified
in combinatorial mutagenesis display libraries, followed by the

generation of ML models from NGS data. Saka et al. (2021), for
example, employed long short-termmemory (LSTM) based on NGS
derived sequences from different panning rounds of a library
diversified in CDR-H1, -H2 and -H3 and FR1 of a kynurenine
binding antibody. The affinities of newly designed sequences were
over 1800-fold higher than for the parental clone. LSTM is a widely
used deep learning architecture in natural language processing that
is also particularly effective in predicting new protein sequences, as it
is capable of modeling long-term dependencies and capturing the
complex relationships between amino acids that determine structure
and function. Such LSTMs have not only been successfully applied
for the design of new antibodies (Saka et al., 2021), but also for
peptides (Müller et al., 2018) and small molecules (Gupta et al., 2018;
Merk et al., 2018; Segler et al., 2018; Z et al., 2022). While the above-
mentioned studies used combinatorial synthetic display libraries in
combination with NGS and AI/ML to optimize existing lead
antibodies, this concept might also be employed to discover new
and potent antibody sequences with favorable developability profiles
from diverse antibody repertoires obtained from animal
immunization.

As part of our integrated VHH hit discovery strategy, we have
recently implemented a semi-immune/semi-synthetic library
approach for the high-throughput de novo identification of
humanized VHHs following camelid immunization (Arras et al.,
2023). For this, VHH-derived CDR3 regions obtained from a llama,
immunized against recombinant human (rh) Natural Cytotoxicity
Receptor NKp46 (Barrow et al., 2019), were grafted onto a
humanized VHH backbone library comprising sequence-
diversified CDR1 and CDR2 regions that were tailored towards
favorable in silico developability properties, by considering human-
likeness and excluding potential sequence liabilities and predicted
immunogenic motifs. NKp46 is an activating receptor on Natural
Killer cells (NK cells) and was successfully harnessed for the
generation of potent NK cell engagers (Gauthier et al., 2019;
Gauthier et al., 2023; Lipinski et al., 2023). Target-specific
humanized VHHs were readily obtained in our previous study by
YSD (Arras et al., 2023). By exploiting this approach, high affinity
VHHs with optimized developability profiles can principally be
generated against any antigen of interest upon camelid
immunization. The process of CDR3 engraftment onto our
generic humanized and sequence-optimized VHH scaffold library
is characterized by its low complexity and duration similar to the
generation of wild-type VHH display libraries following
immunization (Roth et al., 2020); thereby this procedure
significantly accelerates VHH hit discovery by reducing or even
eliminating the need for subsequent sequence optimization. Due to
the setup of our library approach, all resulting VHHs have a fixed
humanized framework sequence, e.g., any differences in antigen
binding and developability properties are driven by sequence
variations in the CDR regions. Providing NGS data from
different rounds of YSD (Valldorf et al., 2022) based FACS
screens from this library therefore represent ideal inputs to train
AI/ML models for the design of new sequences with even further
improved potency and developability.

Goal of the present study was to investigate the feasibility of
our integrated approach of combining i) camelid immunization,
ii) humanized VHH library generation, iii) YSD, iv) FACS
screening, v) NGS analysis, vi) AI/ML based sequence
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sampling and vii) in silico developability assessment to identify
potent and readily sequence optimized VHH hits in a single
procedure. The display library was derived from our humanized
VHH library that was directed against (rh) NKp46 (Arras et al.,
2023). Based on NGS analysis, we selected four diverse
CDR3 sequence clusters in the present study that showed high
frequency or enrichment over two rounds of FACS screening.
These repertoires were used to train LSTM deep generative
models for the automated design of new sequences that were
subsequently filtered based on in silico developability criteria
using our recently described Sequence Assessment Using Multiple
Optimization criteria (SUMO) approach (Evers et al., 2023a). We
finally selected a set of only up to ten sequences per cluster for
synthesis and experimental profiling. As demonstrated in
binding measurements and early developability assays, the
proposed methodology has the capability to generate diverse
and potent VHH hits directly from screening collections upon
camelid immunization that do ideally not require further
humanization and sequence optimization. Furthermore, it
provides sequence activity (SAR) and sequence-property (SPR)
relationships for each of the investigated sequence clusters.
Taken together, as exemplified and demonstrated on a typical
early drug discovery project, this workflow has the potential to
significantly accelerate hit discovery and optimization and reduce
the risk for developability-related attrition.

Results

Previous work: humanized VHH library
construction after camelid immunization,
yeast surface display and cell sorting

As outlined in detail in our previous study (Arras et al., 2023) and
schematically illustrated in Figure 1A, we have recently developed a
semi-immune/semi-synthetic strategy that relies on grafting the PBMC-
amplified CDR3 VHH repertoire of llamas following immunization
onto two internally optimized humanized backbone libraries with a
framework germline sequence derived from human IGHV3-23*1
(Arras et al., 2023). Both libraries were diversified in CDR1 and
CDR2 towards favorable in silico developability properties, i)
considering amino acid distributions observed in naïve and
immunized llamas, eliminating residue combinations ii) that would
result in potential N-glycosylation sites (Asn-X-Ser/Thr) or highly
susceptible chemical liability motifs (Asn-Gly, Asp-Gly, Met,
unpaired Cys) and iii) strong predicted MHC-II binding peptide
motifs, while taking into account iv) diversity with respect to charge,
size and hydrophobicity and v) occurrence in the equivalent positions in
NGS data of human antibody repertoires. To identify novel binders
against (rh) NKp46, we had opted for PBMC-derived total RNA of a
(rh) NKp46 immunized llama for the generation of both CDR3-
engrafted humanized libraries for YSD. As demonstrated in a head-
to-head comparison, sequences from the CDR3-engrafted humanized
library that were selected after two rounds of FACS showed similar
activity against NKp46 compared to CDR3-analogues from immunized
WT llama sequences with improved early developability profiles (Arras
et al., 2023). In that study, 96 clones were selected after FACS by
random picking and Sanger sequencing from each library. For the

present study, we re-analyzed the sequence pools of the CDR3-
engrafted humanized library from the different selection rounds by
NGS (Figure 1B).

Identification of sequence clusters based on
NGS analysis and in silico developability
assessment

The application of NGS in combination with AI/ML
approaches can represent a quick and cost-effective way to
identify potent and developable binders that might not be
picked with the traditional approach of random clone
selection and Sanger sequencing. To exhaustively assess
sequence diversity from our previous display campaign, NGS
data for screening pools obtained from the different FACS rounds
of the CDR3-engrafted humanized library were generated using
the MiSeq system (Figure 1B). Table 1 summarizes the absolute
number of NGS reads that were obtained after the different
rounds of FACS for all sequences and for those
CDR3 sequence clusters that were used for LSTM deep
generative model generation as outlined below.

Sequences were annotated with Geneious Biologics (Antibody
Discovery Software, 2023) using IMGT numbering and clustered
based on 50% CDR3 sequence identity. We assumed that this cutoff
assures that i) within each cluster most VHHs bind in a similar
manner to the same epitope, and ii) at the same time provides
sufficient sequence diversity within each cluster for ML model
generation, SAR analysis and automated multi-parameter
optimization towards improved potency and developability. All
sequence clusters were ranked by either i) their absolute
frequency (total number of reads), i.e., the number of clones
observed after the second round of FACS or ii) their enrichments
(as described in Materials and Methods) observed over FACS round
2 vs. round 0 (Figure 1B; Table 1). The ranking of clusters and
sequences based on their absolute frequency should principally
result in similar selections compared to the random selection and
Sanger sequencing approach that is usually applied in the traditional
screening cascade. Conversely, selection based on enrichment is
potentially able to identify rare clones with superior affinity and
specificity (Rouet et al., 2018; Barreto et al., 2019). In a first feasibility
study, we selected the most occurring CDR1-3 amino acid sequence
from the i) fivemost frequent and ii) fivemost enrichedCDR3 clusters
for production and binding affinity determination against NKp46.
Since two CDR3 clusters occurred in both sets, a total of eight
sequences were produced and tested (Table 2). Remarkably, seven
sequences showed binding affinity in the 1-digit nanomolar range.
Only the representative of the most frequent cluster exhibits a slightly
lower binding affinity (KD = 19.8 nM). These results are in agreement
with previous literature reports that enrichment-based selection based
on NGS data can provide additional potent sequences (Rouet et al.,
2018; Barreto et al., 2019).

As mentioned above, due to our library design strategy, all
sequences are identical in their framework regions that were derived
from a humanized germline sequence. In the next step, we analyzed
the sequence and computed property space within each
CDR3 sequence cluster. To visualize diversity (based on sequence
identity) after each round of FACS enrichment, the respective
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FIGURE 1
The end-to-end process consists of the following steps: (A). Library construction process. VHH-derived CDR3 regions obtained from a llama,
immunized against (rh) NKp46 are grafted onto a generic humanized and sequence-optimized VHH backbone library. (B). Process of binder identification
from Yeast Display Library based on multiple rounds of FACS and next-generation sequencing (NGS) analysis of sequence pools before and after FACS,
followed by sequence clustering, per-cluster frequency and enrichment analyses in combination with in silico developability predictions to identify
most interesting sequence clusters. (C). Per-cluster LSTM deep generative model generation and sampling of new sequences that are subjected to in
silico developability assessment to identify sequences for synthesis and experimental profiling. (D). Selected VHH sequences are produced as one-armed
monovalent SEEDbodies and experimentally characterized for binding against NKp46 and in early developability assays. (Figures partially created with
BioRender.com).

TABLE 1 Summary of NGS data. VHH genes of screening samples were analyzed using MiSeq. Sequences were clustered based on 50% CDR3 sequence identity.
Number of NGS reads are shown for all sequences and for those clusters that were selected for sampling of new sequences, antibody production and experimental
profiling based on enrichment analysis and in silico developability assessment. Sequences obtained from FACS round 2were used for LSTM deep generative model
generation.

clusterID
NGS reads

Enrichment factor round 2 vs. round 0
FACS round 0 FACS round 1 FACS round 2

1 0 942 2,630 3,095

2 1 2,790 2,991 1760

3 36 4,964 4,147 132

4 888 8,573 11,954 16

ALL 887,881 1,138,880 754,669
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sequences pools were projected into a two-dimensional space using
UMAP (Becht et al., 2018) (Supplementary Figure S1). In addition, i)
the per-residue frequency distributions of clones obtained after the
second round of FACS and ii) the per-residue enrichment ratio
through FACS enrichment rounds 1–2 were computed and
analyzed, as shown in Figure 2 and Supplementary Figures
S2–S4. Finally, for each cluster the 100 most frequent unique
sequences obtained from FACS round 2 were subjected to in
silico developability assessment using our previously described
SUMO approach (Evers et al., 2023a). This method automatically
generates structural VHH models from provided sequences,
evaluates their human-likeness, and identifies potential surface-
exposed chemical liabilities and post-translational modification
motifs. Additionally, a small set of computed physico-chemical
descriptors is reported, including the isoelectric point (pI),
AggScore (Sankar et al., 2018) as predictor for hydrophobicity
and aggregation tendency, and the positive patch energy of the
CDRs. Analysis of sequence and predicted property data was used to
assess the sequence spaces within each cluster regarding their
potential to provide i) potent sequences, ii) broad sequence
diversity and SAR information and iii) favorable in silico
developability properties. We were particularly interested in
selecting clusters with considerable sequence diversity to
investigate how LSTM sampling could provide new sequence
combinations to increase diversity and ideally improve affinity
and/or developability properties. Based on these analyses, we
picked four sequence clusters (termed cluster IDs 1–4 in the
following) for LSTM based deep generative model generation and
sampling of new sequences. The original data files used for sequence
and in silico property analysis are provided in Supplementary Tables
S1–S4 and illustrated for CDR cluster 3 in Supplementary Figures
S5, S6.

LSTM model structure, training, sequence
generation and scoring

As illustrated in Figure 1C, the LSTM model training and design
was conducted using a recurrent network structure that has previously
been successfully applied for the design of peptides [details in ref
(Müller et al., 2018)]. LSTM models capture patterns in sequential
data and generate new data instances from the learned distributions.
Like their utility in peptide applications, the amino acid sequences of
VHHs serve as appropriate inputs for these machine learning models.
Since all sequences of the current study have identical framework
regions, only the CDR1-3 sequences were concatenated and used for the
training of LSTMmodels. For each of the four selected CDR3 sequence
clusters, these CDR1-3 sequences (including all redundant sequences)
from the second FACS round (Table 1) as determined by NGS were
used for training. The best models were selected by evaluating the
calculated validation losses on the left-out training datasets using a five-
fold cross-validation approach (Supplementary Figure S7). Based on the
learning distribution of the trained LSTMmodels, new sequences were
sampled. We sampled 10,000 new sequences per cluster. These new
sequences were combined with the original training sequences and
ranked by their calculated negative logarithm of likelihood (NLL), a score
that reflects the observed frequency of individual amino acids along the
sequences of the training data sets (see Methods, Supplementary FigureTA
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S5 and Supplementary Tables S1–S4). The NLL score is not a predictor
for binding affinity per se. However, since it reflects the sequence bias of
amino acid distributions in the training data set sorted for favorable
binding by FACS, it has been shown to represent a pragmatic score for
selecting new sequences with an increased likelihood for high binding
affinity (Saka et al., 2021).

In silico developability assessment to
identify sequences for production and
experimental profiling

Within each cluster, the top-ranked 100 non-redundant
sequences obtained from LSTM sampling and NGS analysis
were subjected to in silico developability assessment (see
Supplementary Tables S1–S4) using our SUMO approach
(Evers et al., 2023a). With the available sequences and their
in silico profiles, the primary goal was to select a set
of ≤10 sequences (for each cluster) for synthesis from which
at least one sequence (per cluster) should be suited for further
project progression after experimental profiling without the
need for further iterative sequence optimization. For the
nomination of these sequences, the following criteria were
taken into account.

1. NLL scores: To assess the NLL’s effectiveness in estimating
binding affinities, we chose binders within each cluster with
highly favorable scores, nominating at least three sequences
from the top 100 scoring sequences. Additionally, we
intentionally selected further sequences beyond the top 100 to
cover a broad range of NLL scores, facilitating subsequent
correlation analyses with experimental binding affinities.

2. In silico developability criteria: To minimize the risk of
aggregation and non-specific binding, we selected sequences
with computed aggregation propensity and positive charged
CDR patch scores below defined cutoff scores. These cutoffs
were set to the computed average scores plus one standard
deviations over a data set of 79 marketed antibodies (see
Table 4 legend). Additionally, as general de-risking approach,
we intentionally picked sequence variants covering a certain pI
range (Supplementary Table S5). The pI of an antibody/VHH can
significantly impact various developability properties, such as
solubility, aggregation during purification, virus inactivation (Jin
et al., 2019), colloidal stability, viscosity in formulation
(Kingsbury et al., 2020; Gupta et al., 2022), or non-specific
binding or clearance (Ahmed et al., 2021; G et al., 2021).
Small sequence modifications have been shown to improve
colloidal stability and viscosity behavior (Kumar et al., 2018;
Evers et al., 2019). Considering that the optimal pI for an

FIGURE 2
Per-residue enrichment and frequency analysis, both illustrated as heat-map for CDR3 sequence cluster 3. The table headers show the CDR1-3
sequence of the most frequent clone observed in the NGS data set after the second round of FACS selection within this cluster. (A). Per-residue
enrichment ratio over YSD-FACS rounds 1–2. Residues with a high enrichment (colored green) are observed with a higher relative frequency after FACS
round 2 compared to round 1. (B). Per-residue frequency distribution observed after FACS round 2.
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TABLE 3 CDR1-3 sequences of VHHs obtained from NGS analysis and AI/ML (LSTM) predictions. Sequences are grouped by their CDR3 cluster ID (50% SEQ-ID cutoff) with the most potent sequence at the top of each group. To
visualize sequence and property relationships, amino acid differences to the most potent sequence within each group are shown in orange boxes. Residues that might theoretically be prone to chemical degradation are
colored red (Asn deamidation, Asp isomerization, Met oxidation). In addition, the predicted NLL score and experimentally measured binding affinities (KD) as well as the kon and koff values are provided. NB: no binding.

ID CDR3
cluster

source KD [nM] kon [1/Ms] koff [1/s] NLL CDR1 CDR2 CDR3

1 1 AI/ML 5.3 3.2E + 05 1.7E − 03 4.9 G R T F S N Y A I S R G G D N T A A V F T P T D T V V F I N K E P Y N Y

2 1 NGS 7.4 3.4E + 05 2.5E − 03 4.8 G F T F S S Y A I S S S G S N T A A V F T P T D T V V F T N K G P Y N Y

3 1 AI/ML 8.1 6.9E + 04 5.6E − 04 6.2 G R T F S S Y A I S R G G D N T A A V F T P T D T V V F I N K E S Y N Y

4 1 NGS 8.6 1.3E + 05 1.1E − 03 2.9 G F T F S S Y A I S S S G S N T A A V F T P T D T V V F T N K E P Y N Y

5 1 NGS 9.4 1.9E + 05 1.8E − 03 2.5 G F T F S S Y A I S S G G D S T A A V F T P T D T V V F T N K E P Y N Y

6 1 AI/ML 11.3 1.8E + 05 2.1E − 03 2.5 G F T F S S Y A I S S S G G S T A A V F T P T D T V V F T N K E P Y N Y

7 1 NGS 11.7 2.3E + 05 2.7E − 03 2.8 G R T F S S Y A I S S S G G S T A A V F T P T D T V V F T N K E P Y N Y

8 1 AI/ML 13.9 1.9E + 05 2.7E − 03 2.7 G F T L S S Y A I S S G G G S T A A V F T P T D T V V F T N K E P Y N Y

9 1 AI/ML 21.9 5.4E + 04 1.2E − 03 20.8 G G T F S I Y A I S R G G S N T A A V F T P T D T V V F I N K E R Y N Y

10 2 AI/ML < 0.1 1.9E + 05 < 1.0E − 07 2.4 G G T F G S Y A I S R S G G S T A A A G G M G S T T V V V S T I P Y K Y

11 2 NGS 0.8 2.3E + 05 2.0E − 04 2.3 G G T F S S Y A I S S S G G S T A A A G G M G S T T V V V S T I P Y K Y

12 2 NGS 1.1 2.5E + 05 2.8E − 04 2.8 G G T F G N Y A I S R G G G S T A A A G G M G S T T V V V S T I P Y K Y

13 2 NGS 1.3 2.0E + 05 2.7E − 04 2.3 G G T F S S Y A I S R S G G S T A A A G G M G S T T V V V S T I P Y K Y

14 2 AI/ML 1.5 3.6E + 05 5.3E − 04 2.6 G G T F S N Y A I S S S G G S T A A A G G M G S T T V V V S T I P Y K Y

15 2 NGS 2.3 1.1E + 05 2.6E − 04 7.1 G R T F G S Y A I S S S G D S T A A A G G I G S S T V V V S P I P Y A Y

16 2 NGS 4.0 1.6E + 05 6.3E − 04 8.4 G R T L S S Y V I S S S G D R T A A A L A P S G T L V V V S P L G Y T Y

17 2 AI/ML 4.4 1.0E + 05 4.5E − 04 2.8 G G T F G N Y A I S R G G G S T A A A G G I G S T T V V V S T I P Y K Y

18 2 AI/ML NB NB NB 17.8 G G T F G N Y A I S R G G G S T A A A G G M G S T T V V V S T I P P K Y

19 2 AI/ML NB NB NB 17.8 G G T F G N Y A I S R G G G S T A A A G G M G S T T E V V S T I P Y K Y

20 3 AI/ML 2.1 1.3E + 05 2.8E − 04 3.6 G G T F S D A A I S R S G D S T A A N P A T S E V L I V R D L G Y A Y

21 3 NGS 2.3 1.4E + 05 3.2E − 04 3.0 G R T F G N Y A I S R S G G S T A A N P A T S T V L I V R D L G Y A Y

22 3 AI/ML 4.9 1.2E + 05 5.8E − 04 3.2 G R T F S S Y A I S S S G G N T A A N P A T S T V L I V R D L G Y A Y

23 3 NGS 7.2 1.0E + 05 7.3E − 04 3.6 G R T F S S Y A I S S G G G N T A A N P A T S T V L I V R D L G Y A Y

24 3 AI/ML 7.3 9.3E + 04 6.9E − 04 3.0 G F T F S S Y A I S S S G G S T A A N P A T S E V L I V R D L G Y A Y

25 3 NGS 7.6 9.6E + 04 7.3E − 04 2.8 G F T F S D Y A I S S S G G S T A A N P A T S T V L I V R D L G Y A Y

26 3 NGS 7.9 7.0E + 04 5.5E − 04 5.5 G F T F G N Y A I S R S G S S T A A N P A T S R V I I V R D L G Y A Y

27 3 NGS 8.0 8.2E + 04 6.6E − 04 7.2 G L T F S S Y A I S G S G D N T A A N P A T S R V I I V R E L G Y A Y

28 3 AI/ML 15.5 5.9E + 04 9.1E − 04 18.7 G F T L S D Y V I S S S G G N T A A N E A T S E V L I V R D L G Y A Y

29 4 NGS 0.8 9.6E + 04 8.0E − 05 5.8 G R T L G N Y A I S W G G S R T A T S L T Y D Q T T V Y V S P L A Y V D
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antibody drug product may vary depending on environmental
factors, such as a solution or formulation pH, often not yet
defined in the early project phase, selecting additional pI variants
of a lead sequence provides potential backups for efficient project
progression and de-risking.

3. Sequence diversity within each CDR3 cluster for SAR generation
and chemical liability site elimination: Our humanizedVHH library
design strategy (Arras et al., 2023) omits N-glycosylation sites (Asn-
X-Ser/Thr) and highly susceptible chemical liability sites (Asn-Gly,
Asp-Gly, Met, Cys) in CDR1 or CDR2 (Table 3). However, such
liabilities may still occur in CDR3, which is directly grafted from
NKp46-immunized llama VHHs. Additionally, other theoretical
chemical liability motifs (e.g., Asn-Ser, Asn-Asn, Asn-Thr; Asp-Ser,
Asp-Asp, Asp-Thr, etc.) may be present in CDR1 or CDR2. These
had not been excluded from library design, since degradation of
these motifs occurs significantly less frequently based on internal
and literature data (Lu et al., 2019) and are therefore assessed case-
by-case, either by post-filtering based on more rigorous in silico
liability assessments or by experimental profiling as exemplified
below. As shown in Table 3, several selected sequences possess
such “less severe” liability motifs. As part of our de-risking strategy,
we intentionally selected sequence variants within each cluster
where residues theoretically prone to chemical degradation (e.g.,
Asn, Asp, Met) are replaced by chemically non-reactive residues
(e.g., sequences 15–17, where a Met residue in CDR3 is replaced
by Ile).

4. Finally, we ensured that for all four clusters, sequences were
selected from both the NGS output and LSTM sampled
sequences to assess, through experimental profiling, the extend
to which LSTM sampling provided additional or improved
“chemical matter”.

Table 3 and Supplementary Table S5 display the CDR1-3
sequences that were ultimately selected, along with their
computed developability properties. For the specific rationale
behind selecting each sequence for synthesis and experimental
profiling, please refer to Supplementary Tables S1–S4. As shown
in Supplementary Table S5 and Figure 3, due to our humanized
VHH library design strategy all selected sequences show a high
human-likeness in the framework region of 91.3%. Furthermore,
due to our selection strategy, no sequence shows pronounced
computed aggregation propensity or positive charged patches in
the CDRs. However, as intended by the selection criteria, the
sequences cover a certain diversity in NLL scores, pI, sequence
diversity and chemical liability motifs.

NGS and AI/ML derived sequences display
high-affinity antigen binding and favorable
early developability properties

As illustrated in Figure 1D, the selected sequences (Table 3) were
utilized to synthesize one-armed, monovalent paratope-Fc fusion
constructs as described previously (Klausz et al., 2022; Lipinski et al.,
2023) to exclude avidity-related interactions that might enhance
apparent binding affinity (Vauquelin and Charlton, 2013). For
this, we utilized the strand-exchanged engineered domain (SEED)
technology for Fc heterodimerization (Davis et al., 2010).TA
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Production was performed in ExpiCHO™ cells at a scale of 5 mL for
experimental profiling. Expression yields were in the double-digit
milligram-per-liter scale for most sequences, indicating adequate
productivities for transient expression (Table 4). Furthermore,
aggregation propensities as determined by analytical size-exclusion
chromatography (SEC) post protein A purification indicated
favorable biophysical properties for most sequences (Table 4).
Binding experiments utilizing bio-layer interferometry (BLI) at
varying (rh) NKp46 concentrations revealed specific antigen
binding of the vast majority of tested VHHs from both
approaches, NGS and AI/ML, respectively (Table 3; Figure 4).
Encouragingly, within each sequence cluster, we obtained multiple
sequences binding in the 1-digit nanomolar or even sub-nanomolar
range to (rh) NKp46 (Table 3). Notably, although the affinity
improvements are not significant, for three of the four sequence
clusters, the most potent binder was obtained from the LSTM-
predicted sequences, suggesting that the deep generative model
approach can propose improved sequences in terms of binding
affinities within the sequence space spanned by the NGS data set.
Analysis of the NLL scores do not show a linear correlation to the
experimentally observed binding affinities. However, within this
specific dataset, high predicted (i.e., unfavorable) NLL scores
qualitatively translated to low or no detectable affinities, suggesting
the use of more stringent NLL cutoff scores in future studies to
eliminate true negatives from the list of candidates to be synthesized.

To experimentally assess early developability properties
(Table 4; Figure 5), we exploited analytical size-exclusion

chromatography (SEC) after protein A purification as a first
filter. Generally, purities above 85% target peak are considered as
adequate attributes for transient antibody expression, while purities
of more than 90% indicate favorable properties. Overall, most
sequences showed a high target purity above 90%. As additional
early developability attribute we also scrutinized one-armed
VHH SEEDbodies using analytical hydrophobic interaction
chromatography (HIC) assuming that a low overall
hydrophobicity would contribute to a good developability profile.
For this, we utilized two marketed therapeutic antibodies as assay
controls, cetuximab and avelumab, with HIC retention times of
5.8 min and 7.2 min, respectively. Overall, HIC retention times of
the vast majority of VHH SEEDbodies were in the lower favorable
range. In this respect most molecules displayed even shorter
retention times compared to cetuximab, indicating a beneficial
(low) relative hydrophobicity of the VHH domains. Only
variants of CDR3 cluster 4 (IDs 30–37) showed retention times
in the range of 6.0–6.7 min that are in between the ones from
cetuximab and avelumab. Notably, although there is no ideal linear
correlation between HIC retention times (Table 4) and computed
aggregation propensities (Supplementary Table S5 and Figure 6),
these in silico scores are (in agreement with their higher retention
times) on average higher for IDs 30–37 (cluster 4) compared to the
other sequences; supporting their usefulness for early in silico
ranking and filtering of sequences. The observed degree of
correlation between predicted and experimental hydrophobicity is
in agreement with a recent systematic study on antibody structures

FIGURE 3
Graphical visualization of in silico properties for VHH domains that were selected for synthesis and experimental profiling. Blue bars indicate
sequences obtained from NGS, red bars indicate sequences obtained from AI/ML (LSTM) sampling.
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TABLE 4 Analytical and early developability data for selected one-armed VHH SEEDbodies and antibody controls, including amount of protein, SEC Purity, mean
Tonset, HIC retention time, AC-SINS and PSR-BLI.

ID source amount of protein
[mg/L]

SEC Purity [%] Mean
Tonset [°C]

HIC tR [min] AC-SINS
[Δλmax (nm)]

PSR/
BLI

1 AI/ML 49.1 92.7 59.1 4.9 -0.705 -0.011

2 NGS 51.8 90.9 59.2 5.0 -0.076 0.036

3 AI/ML 33.7 89.4 58.4 4.9 -1.189 0.004

4 NGS 28.0 96.9 58.1 4.9

5 NGS 23.8 94.5 59.8 5.1 -0.550 0.016

6 AI/ML 25.2 96.5 58.1 5.1

7 NGS 29.4 91.4 58.4 4.9 -0.570 0.030

8 AI/ML 32.2 95.0 59.8 5.3 -0.596 0.037

9 AI/ML 43.5 83.1 59.4 5.0 -0.550 0.005

10 AI/ML 26.5 97.1 59.1 4.8 -0.604 -0.031

11 NGS 23.7 97.3 58.9 4.8 -0.516 -0.012

12 NGS 18.1 100.0 58.0 4.8

13 NGS 22.3 97.1 58.7 4.9 -0.578 0.021

14 AI/ML 25.1 99.2 57.4 4.9

15 NGS 25.1 100.0 59.0 6.4 3.296 -0.011

16 NGS 19.5 98.8 57.4 5.4

17 AI/ML 20.9 100.0 58.8 5.3 -0.497 0.007

18 AI/ML 50.9 98.8 58.7 5.2 -0.343 0.015

19 AI/ML 46.0 96.2 58.6 4.7 -0.548 0.015

20 AI/ML 36.8 99.1 56.3 5.0

21 NGS 25.1 99.2 56.4 5.0

22 AI/ML 37.7 98.3 58.2 5.2 -0.434 0.016

23 NGS 47.4 98.7 58.6 5.2 -0.504 0.035

24 AI/ML 34.9 97.3 58.5 5.1 -0.617 0.017

25 NGS 43.2 97.9 58.3 5.1 -0.511 0.024

26 NGS 30.7 97.4 58.0 5.0 -0.119 0.014

27 NGS 37.7 96.4 58.6 4.9 -0.310 0.039

28 AI/ML 22.3 82.2 58.5 5.0 -0.526 0.049

29 NGS 24.8 99.0 58.9 4.8 -0.395 0.019

30 NGS 37.2 100.0 58.4 6.0 -0.671 -0.020

31 AI/ML 133.2 99.1 58.7 6.4 -0.534 -0.011

32 AI/ML 71.6 100.0 59.0 6.4 -0.605 0.000

33 AI/ML 22.2 100.0 57.8 6.4

34 NGS 33.1 100.0 58.1 6.3 -0.307 0.018

35 NGS 26.2 94.4 57.4 6.3

36 NGS 48.2 97.8 58.6 6.7 -0.631 -0.009

37 NGS 22.2 97.1 58.7 6.5 -0.476 0.030

(Continued on following page)
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TABLE 4 (Continued) Analytical and early developability data for selected one-armed VHH SEEDbodies and antibody controls, including amount of protein, SEC
Purity, mean Tonset, HIC retention time, AC-SINS and PSR-BLI.

ID source amount of protein
[mg/L]

SEC Purity [%] Mean
Tonset [°C]

HIC tR [min] AC-SINS
[Δλmax (nm)]

PSR/
BLI

Trastuzumab -0.001 0.009

Briakinumab 63.6 25.961 0.115

Avelumab 7.2

Cetuximab 5.8

FIGURE 4
Bio-Layer Interferometry (BLI) curves (in black) and fitting curves (in red) obtained for all sequences.
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(Waibl et al., 2022). Based on that study, prediction accuracy for
HIC retention scales might be further improved by i) exploring
alternative approaches for 3D model generation and by i) using
hydrophobicity scales derived from experimental HIC data.

To further investigate the biophysical properties of the herein
identified VHHs, we checked the thermostability of the molecules by
nanoDSF. The Tonset of a dedicated molecule represents the
temperature where the variable domain of a VHH construct
starts to unfold while applying a temperature gradient and as
such, is an indicator of its thermostability in a certain buffer and
pH environment. The Tonsetswemeasured were in the range between
56°C and 59 °C for all tested molecules, representing an overall
adequate thermostability for further development (Mieczkowski
et al., 2023). As obvious from Figure 5, no significant differences
in Tonset are observed between the sequences obtained from NGS
and LSTM sampling, supporting the claim that LSTM is capable of
correctly modeling long-term dependencies and capturing
relationships between amino acids that determine structure and
function. Additionally, we evaluated available VHH SEEDbodies
(that were selected based on remaining substance availability) in
affinity-capture self-interaction nanoparticle spectroscopy (AC-
SINS) as early experimental predictor for colloidal stability (Liu
et al., 2014). Clinical antibody trastuzumab was used as assay control
indicating favorable biophysical properties with mean Δλmax values
of ~0.2 nm after subtraction of buffer blanks. Final AC-SINS scores
for the tested VHH SEEDbodies were calculated via subtraction of

blank and trastuzumab scores (Table 4). The calculated scores
indicate favorable colloidal stability properties for all tested
SEEDbodies, very similar to trastuzumab and significantly better
compared to briakinumab, which was used as reference with a
known propensity for self-interaction (Jain et al., 2017). As
further early developability assessment, the selected SEEDbodies
were evaluated in the polyspecificity reagent (PSR) assay which
provides insights into the general off-target interactions/specificity
and selectivity of the VHH domains, again using trastuzumab as
indicator for reduced unspecific interactions and briakinumab
reference indicating more pronounced polyspecificity (Table 4).
Compared to these assay controls, no SEEDbody shows
pronounced non-specific binding.

Although we have to keep in mind that the monospecific
IgG1 control antibodies might not be ideal references for
benchmarking our one-armed VHH SEEDbodies, the available
experimental data indicate favorable intrinsic developability
properties for the VHH domains.

To experimentally assess the risk for the formation of chemical
degradation products along the drug development process, which
might potentially affect its efficacy and safety, one potent sequence
from each of the CDR3 clusters was subjected to forced oxidation
and deamidation studies (Nowak et al., 2017) (Table 5; see Materials
and Methods for experimental details and Supplementary Table S6
for detailed experimental results). Within the CDR regions of the
four selected sequences, we could only observe significant

FIGURE 5
Graphical visualization of experimental analytical and early developability data for selected one-armed VHH SEEDbodies and antibody controls,
including amount of protein, SEC Purity, mean Tonset, HIC retention time, AC-SINS and polyspecificity (PSR-BLI). Blue bars indicate sequences obtained
from NGS, red bars indicate sequences obtained from AI/ML (LSTM) sampling.
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deamidation within CDR1 of sequence 1, attributed to the Asn-Tyr
sequence motif. This non-canonical motif is generally known as
non-highly susceptible to deamidation (Lu et al., 2019), but in the
present case this chemical liability is a potential critical quality
attribute (CQA) that would require additional efforts for monitoring
and control in the development process. The SAR data shown in
Table 3 demonstrate that several alternative sequence variants with
similar potency are available, which are devoid of this chemical
liability motif and might be selected as alternative optimized hits.
This example illustrates the benefit that the explicit selection of
sequence variants within specific CDR3 clusters provide valuable
SAR data that do not only point to mutations that finetune binding
affinity, but also to optimize the physico-chemical property profiles
(regarding chemical liabilities, PTMs, electrostatic and hydrophobic
properties).

AI/ML derived sequences fill gaps within the
sequence space spanned by NGS data

The experimental results demonstrate that several optimized hit
sequences were obtained within each cluster, suitable for further
project progression, including experimental characterization in
functional assays, early formulation studies, and/or in vivo
experiments. These sequences were derived from both the NGS
data and the LSTM sampled sequences. To investigate the benefit
of LSTM sampling, we analyzed the number and diversity of
additional unique sequences designed by LSTM in comparison to
the NGS sequences. Our analysis focused on the top-ranked 100 NLL
scorers within each CDR3 cluster, since all tested variants from these
lists showed favorable binding affinities (Supplementary Tables
S1–S4). As illustrated in a UMAP dimension reduction based on
sequence diversity, the LSTM approach generated a considerable
number of new sequence combinations, effectively filling gaps
within the sequence space spanned by the NGS dataset (see
Figure 7 and the underlying sequences in Supplementary Tables
S1–S4), thereby increasing not only the number of potent
sequences but also the likelihood of including variants with lower

risks of chemical degradation or post-translational modification
motifs. For CDR3 cluster 1, 41 of the top 100 sequences were
obtained from LSTM (cluster 2: 23, cluster 3: 45, cluster 4: 19).
The predicted physical properties (pI, hydrophobicity/aggregation
propensity, CDR Positive Patches) of the LSTM sampled sequences
covered a similar range and diversity as those obtained fromNGS (see
Supplementary Figure S8). Moreover, a comparative inspection of
production yield, melting temperatures, and other biophysical
properties (Figure 5) between the LSTM and NGS-derived
sequences that had been synthesized did not reveal any significant
differences. This finding supports the claim that LSTM sampling can
enrich the pool of NGS sequences with additional potent and
developable binders, which increases the overall chance of
discovering optimized hits with favorable developability profiles.

Discussion

In the past, the discovery and optimization of antibodies and
VHHs were predominantly reactive in nature (Evers et al., 2023b):
Traditional screening methods were used to obtain antibody or
VHH sequences, which were subsequently sequence-optimized with
regards to factors such as binding affinity, human-like
characteristics, and chemical stability. Following the identification
of the top-performing optimized hits, developability assessments
were carried out. These assessments, since conducted after sequence
optimization, aimed to identify any suboptimal developability
characteristics, such as aggregation, low solubility, poor
expression, non-specific binding, or unfavorable pharmacokinetic
properties. Consequently, issues arising from these suboptimal
properties were passed on to downstream functions, e.g., Drug
Metabolism and Pharmacokinetics (DMPK), non-clinical safety,
and Chemistry, Manufacturing and Controls (CMC) to adjust
and optimize downstream process development and dosing
regimens, thereby often imposing delays in development,
increased costs and finally a considerable risk for the project to
achieve approval for First in Human and further clinical studies
(Evers et al., 2023b). To mitigate these risks, in this work we propose

FIGURE 6
Comparison of predicted aggregation propensities vs. experimental HIC retention times and Pearson correlation values. Sequences from different
clusters are shown in different colors. (A). Predicted aggregation propensities based on the entire variable VHH regions. (B). Predicted aggregation
propensities based on the CDR regions only.
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an integrated and efficient de novo design strategy comprising
camelid immunization, library generation, YSD, FACS, NGS
analysis, AI/ML methods, in silico developability assessment as
well as synthesis and early experimental characterization of the
selected sequences. In an ideal scenario, these subsequent steps can
be accomplished in less than 4 months without the need for
subsequent time-consuming steps of iterative sequence
optimization. This comprehensive approach was successfully
applied for an early drug discovery project to generate
automatically humanized and sequence optimized VHH binders
against NKp46 with favorable early developability profiles.

The in silico steps described in this study are computationally
inexpensive (<1 week in this study) and can be combined into a fully
automated workflow. Furthermore, our process of
CDR3 engraftment upon camelid immunization onto a generic
humanized and sequence-optimized scaffold library is
characterized by its low complexity and duration (<1 week).
Besides camelid VHH library generation, we have established a
similar CDR grafting approach for the generation of ultralong CDR-
H3 antibodies following the immunization of cattle (Pekar et al.,
2021). Since finally NGS is meanwhile quick and cost-effective, the
herein described combination of experimental and in silico
approaches represent a general strategy for a fast and efficient hit
discovery and optimization upon camelid immunization. An
alternative option that bypasses animal immunization and
thereby can even further accelerate the de novo identification of
developable antibodies or VHHs is the screen of diverse synthetic
libraries that were tailored towards human-likeness and favorable
physico-chemical properties (Teixeira et al., 2021; Khetan et al.,
2022; Evers et al., 2023b). Binders obtained from antibody selections
and NGS analysis of such diverse libraries might further be
optimized towards improved binding and developability applying
AI/ML approaches as described in the present study. As recently
discussed (Gray et al., 2020; Gray et al., 2020; Custers and Steyaert,
2020; Laustsen et al., 2021), both animal immunization and
synthetic library technologies have their own benefits and
drawbacks for antibody discovery. For example, while synthetic
libraries bypass the need of animal immunization, the immune
system of animals has evolved over millions of years to efficiently
produce highly specific antibodies against a diverse range of antigens.
The semi-immune/semi-synthetic procedure presented in this study
combines the advantages of both technologies and is coupled with the
benefits of NGS and AI/ML approaches for rapid and efficient
antibody discovery and optimization (Laustsen et al., 2021).

In this study, we opted for a LSTM, a recurrent neural network
(RNN) architecture, as the basis of sequence prediction models
based on NGS data. The selection of this approach was based on the
fact that it has been successfully applied to diverse modalities (Saka
et al., 2021; Müller et al., 2018; Gupta et al., 2018; Merk et al., 2018;
Segler et al., 2018; Z et al., 2022) and that the code was already
available (Müller et al., 2018). From a scientific perspective, LSTM
models are known for their capability to learn complex patterns and
dependencies within sequences. Therefore, by training on existing
protein sequences from NGS data, the LSTM can capture essential
structural and functional motifs present in the library, potentially
generating new functional sequence combinations not observed in
the NGS dataset. The experimental data from the present study
confirmed that the LSTM sampled sequences did not exhibitTA
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significant disadvantages compared to the NGS-derived sequences
in terms of production yield, melting temperatures, or binding
affinities. Various other ML approaches have also demonstrated
effectiveness for the identification of complex patterns from
sequence input data and were successfully employed for antibody
design based on NGS data (Liu et al., 2020; Mason et al., 2021;
Makowski et al., 2022; Hu et al., 2023; Li et al., 2023; Parkinson et al.,
2023). Furthermore, additional deep generative modelling methods
such as variational auto-encoders (VAEs) and generative adversarial
networks (GANs) may also be explored to optimize sequence spaces
obtained from NGS data (Akbar et al., 2022).

LSTM sampling efficiently filled diversity gaps in the sequence space
beyond what is covered by the NGS training data (Figure 7). However,
since the present LSTM approach uses one-hot amino acid encoding, it
will generate new sequence combinations that only interpolate within
the sequence space covered by the NGS data. Therefore, another aspect
that might be further investigated is the representation of amino acids in
the context of in silico sequence processing.Most approaches utilize one-
hot encoding, which does not capture structural features, inherent
relationships, or the physicochemical similarities between amino
acids. Several alternative encoding schemes, such as amino acid
embeddings, physicochemical descriptors or position-specific scoring
matrices (PSSMs) might be suited to increase the model’s ability to
extrapolate into new sequence spaces.

Another crucial aspect forAI/MLbased prediction and identification
of improved binders is the scoring function used to rank the sequences

based on their assumed binding affinity against the target. In this study,
we utilized NLL that assumes a correlation of binding affinity with the
observed amino acid distribution in the NGS set of sequences obtained
after FACS. Notably, the majority of synthesized VHH constructs
(>80%) exhibited binding affinities in the (sub-)1-digit nanomolar
range. Therefore, based on the limited experimental data from this
study, we consider the NLL ranking as the suited criterion for selecting
sequences with a high likelihood of binding. For a more comprehensive
conclusion, future systematic studies would be required to explore
correlations with other scoring functions for identifying high-affinity
binders. However, such analyses would necessitate a large dataset of
sequences with experimental binding affinity data.

Recent studies have already shown the successful application of AI/
ML techniques on antibody NGS data to design new sequences with
even further improved potency or developability (Liu et al., 2020;
Mason et al., 2021; Saka et al., 2021; Makowski et al., 2022; Hie
et al., 2023; Parkinson et al., 2023). While these studies focused on
optimizing previously identified antibody candidates through sequence
diversification and library generation, the present study represents, to
the best of our knowledge, the first prospective application of AI/ML for
the de novo identification of diverse, potent, and developable VHHs. In
contrast to these previous studies, our approach was applied on a
humanized library that originated from a highly diverse camelid
repertoire upon immunization.

To validate the efficacy of our approach, we conducted
experimental profiling to assess binding affinity and developability

FIGURE 7
Similarity of CDR1-3 sequences within the best 100 scoring sequences (based on their NLL) for each CDR3 sequence cluster (A–D), illustrated using
UMAP dimensionality reduction. Blue dots represent sequences that were obtained fromNGS, red dots represent new sequence combinations that were
automatically designed with LSTM.
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for multiple sequences per cluster and gained valuable SAR and SPR
information directly from the initial set of synthesized variants. This
procedure mirrors the well-established “hit-triaging” approach for
small molecules obtained from high-throughput screens, where
multiple molecules within different chemical series are evaluated to
identify the most promising candidates for further development
(Kitchen and Decornez, 2015). As an advantage, this procedure
can directly point to lead molecules and backups without the need
for additional time-consuming sequence optimization cycles.

The present study represents a first successful application of our
integrated VHH discovery approach on NKp46 as specific target.
Further ongoing and future studies on internal projects will
demonstrate the robustness of this process and certainly point to
aspects that may be further optimized, e.g., regarding the design of a
follow up humanized VHH scaffold library (Arras et al., 2023), in
silico property predictors and further aspects as described above.

Finally, the findings and results of this study should also be
considered in the light of some limitations and inspirations for further
future studies (Jin et al., 2023). In the present study, we applied a
CDR3 sequence identity cutoff of 50% for sequence clustering as a
compromise to find i) sequences within one cluster that all bind in a
similar mode to the same epitope and ii) at the same time provide
sufficient sequence diversity for SAR analysis and automated multi-
parameter sequence optimization. It is generally known that similar
protein sequences have similar folds (Baker and Sali, 2001). However,
if this is also true for CDR3 loops and whether the 50% cutoff is the
most ideal cutoff for this purpose will require additional dedicated
studies (Könning et al., 2017). One might question the general need
for LSTM sampling if the sequences obtained from NGS analysis of
the semi-immune/semi-synthetic strategy are already “good” enough.
The present study demonstrates that i) high affinity binders with
favorable early developability profiles can already be obtained from
data mining of the available NGS data, but in addition ii) that LSTM
sampling is able to fill sequence gaps with additional potent and
developable sequences that have not obtained from the NGS data. The
timeframe for LSTM model generation and sequence sampling
(<1 day in the present study) is negligible in the context of a
standard hit discovery campaign. Therefore, our general
recommendation is to add the LSTM-based designs alongside
NGS-derived sequences. Then, select the best binders from the
combined pool based on their predicted likelihood of binding and
relevant in silico developability parameters, aligned with the specific
target product profile (TPP) of the project. This approach enhances
the overall project success probability (Krah et al., 2016). To ensure
proper assay controls for early experimental developability
assessments, we used four well-characterized monospecific IgG1s
(avelumab, cetuximab, trastuzumab, and briakinumab) as
references. While these control sequences allow assay comparisons
across different studies, they may not serve as ideal benchmarks for
drawing final conclusions about the general developability of our
VHHs, since we fused them to SEED Fc domains that show
considerable sequence differences to IgG1 Fc domains. As a
conclusion, the data presented in this study only indicate favorable
intrinsic developability properties for the VHHs generated here.
Further in-depth studies, including the identification and use of
specific VHH-based controls for benchmarking, will be necessary
to assess how these developability properties extend to differentmulti-
specific architectures (Bannas et al., 2017; Chanier and Chames, 2019;

Pekar et al., 2020; Yanakieva et al., 2022; Lipinski et al., 2023; Wang
et al., 2022) Quality of NGS data is critical for any AI prediction tool,
as it forms the basis for training. In this study, we used NGS data
obtained from different round of FACS. As we learned through the
course of the study, sample preparation, read depth, sequence
complexity and sequencing error rates can significantly impact the
results. The rate of enrichment over FACS round 2 vs. round 0 was
used as an essential parameter for nominating sequence clusters, but
this enrichment was biased due to the low number of reads in round 0,
and the final selection might have varied based on variations in NGS
data generation and analysis. Nevertheless, the reads used for LSTM
sampling after FACS round 2 were sufficiently broad and frequent to
discover potent binders with favorable early developability profiles.

In conclusion, the herein presented workflow comprising a
combination of AI/ML methods, camelid immunization, library
generation, NGS analysis, and in silico developability assessment can
identify potent VHH binders with promising early developability
profiles. This singular procedure mitigates the need for subsequent
sequence optimization, thereby offering the potential to significantly
accelerate hit discovery and optimization and at the same time to reduce
the risk for developability-related attrition in the downstream process.

Materials and Methods

NGS, sequence clustering and ranking

To prepare RNA material for NGS analysis, two defined antisense
primer sequences were used which specifically aligned with nucleotides
in the upper hinge regions of camelid IgG2 and IgG3 antibody isotypes,
facilitating directed cDNA synthesis.Within a subsequent PCR utilizing
index primers for Illumina sequencing, the VHH sequences were
amplified and tagged. For the samples derived from the VHH
diversities embedded in the plasmid vector system, the sequences
processed accordingly, but lacking the cDNA synthesis step. During
theDNAamplification process, theAMPure system (BeckmanCoulter)
was used to purify the VHH amplicons, while for the purification of the
final sequencing library a Pippin Prep (Sage Science) was used. For
sequencing purposes, a MiSeq (Illumina) device with the v3 600 cycle
kit according to the manufacturer’s protocol was employed. Resulting
FASTQ files were uploaded to Geneious Biologics (https://www.
geneious.com/biopharma) for analysis and annotation. Reads were
overlapped, filtered for length, and the VHH sequences were
annotated using the Lama glama reference library. Normalized
counts for each CDR3 were used to identify sequences that were
enriched in the sorted samples relative to the baseline diversity.

Sequences were clustered based on 50% CDR3 sequence
identity. All sequence clusters were assessed and ranked by their
i) NGS counts after the second FACS round and their ii) enrichment
(“Fold Change”) over round 0 to 2. The enrichment factor EF (“Fold
Change”) was calculated according to the following formula:

EF �
Ncluster+1
Ntotal+1( )

S2

Ncluster+1
Ntotal+1( )

S0

Where N represents the number of reads within the specific
cluster and S0, S2 represent the FACS selection round.
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LSTM model structure, training and
sampling

The code from Müller et al. (Müller et al., 2018) (https://github.
com/alexarnimueller/LSTM_peptides) has been used and slightly
adapted to constrain the input training sequence length to the
length of CDR1-CDR2-CDR3 output sequences of the individual
clusters. The adapted code and the sequences used as input for
training and sampling of new sequences are available from https://
github.com/MCompChem/LSTM_CDRs. The input sequences had
been exported from Geneious Biologics as csv file and used as input
sequences without further preprocessing. Sequences are represented
in one-hot encoding scheme, in which a one-hot residue represents a
single amino acid (single letter code). The LSTM architecture was
chosen based on hyperparameters described by Saka et al. (2021). The
chosen network architecture for this study was a two-layer LSTM
recurrent neural network consisting of 64 neurons and a 0.2 dropout
rate and trained for 200 epochs. Remaining parameters were set to
default values as described by Müller et al. were utilized for all other
parameters in the network. Based on five-fold cross validation, the
epoch with the best average performance were chosen for the given
LSTM architecture for each cluster individually. For each cluster,
10,000 sequences were sampled from the selected best epoch model.

Likelihood for sequence ranking

The NLL (negative log-likelihood) is a statistical measure that
describes the likelihood of observing each amino acid at each
position within the set of sequences over a training data set. From a
set of sequences, theNLL is computed for each sequence according to the
following formula:

NLL � −∑K
k�1

lnp xk( )

where p(xk) represents the generative probability of observing a
residue x at the k-th position of the sequence and K is the sequence
length.

In silico developability assessment

The in silico developability profiles were computed using an
internal pipeline termed “Sequence Assessment Using Multiple
Optimization Parameters (SUMO)” (22). This approach
automatically generates VHH models based on the provided
sequences of the variable regions, identifies the human-likeness
by sequence comparison to the most similar human germline
sequence, determines structure-based surface-exposed chemical
liability motifs (unpaired cysteines, methionines, asparagine
deamidation motifs and aspartate deamidation sites) as well as
sites susceptible to post-translational modification (N-linked
glycosylation). Moreover, a small set of orthogonal computed
physico-chemical descriptors including the isoelectric point (pI)
of the variable domain, Schrodingers AggScore as predictor for
hydrophobicity and aggregation tendency calculated for the
complete variable domain as well as the complementarity-
determining regions (CDRs) only and the calculated positive

patch energy of the CDRs were determined (Sankar et al., 2018).
These scores were complemented with a green to yellow to red color
coding, indicating scores within one standard deviation from the
mean over a benchmarking dataset of multiple biotherapeutics
approved for human application as green, scores above one
standard deviation as yellow and those above two standard
deviations as red (Ahmed et al., 2021). For the AggScore values,
these cutoffs were slightly adjusted based on correlation analyses to
internal experimental HIC data.

Protein expression and analysis

The sdAb variants were integrated into the pTT5 mammalian
expression vector by fusing them at the hinge region of Fc immune
effector-silenced (eff-) SEED AG chains (Thermo Fisher Scientific).
This fusion allowed the generation of one-armed (oa) SEEDbodies,
using a SEED-GA chain without paratope.

The proteins were produced using the ExpiCHO™ Expression
System (Thermo Fisher Scientific) in either 5 or 25 mL scale,
following the standard protocol provided by the manufacturer.
The expression was carried out with a 2:1 ratio of AG to GA
chain. After 7 days of expression, the supernatants containing the
proteins were purified using MabSelect™ antibody purification
chromatography resin (Cytiva) using 20 mM acetic acid followed
by an neutralization (500 mM sodium phosphate buffer, 1.5 M
NaCl, pH 8) to a final formulation pH of 6.8 in PBS. The
purified proteins were then subjected to sterile filtration, and
their concentrations were determined by measuring the
absorbance at 280 nm (A280).

To evaluate themonomer content of the protein samples, analytical
size-exclusion chromatography (SEC) was performed. Each sample
contained 7.5 µg of protein and was run on a TSKgel UP-SW3000
column (2 μm, 4.6 × 300 mm, Tosoh Bioscience) using an Agilent
HPLC 1260 Infinity system. The mobile phase consisted of 50 mM
sodium phosphate and 0.4 M NaClO4 at pH 6.3, with a flow rate of
0.35 mL/min. The signals were recorded at 214 nm.

For assessing the hydrophobicity of the different molecules,
hydrophobic interaction chromatography (HIC) was employed. Each
sample contained 20 µg of protein and was analyzed on a TSKgel Butyl-
NPR column (2.5 µm, 4.6 × 100 mm, Tosoh Bioscience) using an
Agilent HPLC 1260 Infinity system with a flow rate of 0.5 mL/min.
Prior to injection, the samples were mixed with a 50% (v/v) solution of
2M ammonium sulfate. A gradient was applied, running from mobile
phase A (1.2 M ammonium sulfate in PBS) to mobile phase B (50%
methanol in 0.1x PBS) over a period of 15 min at 25°C. Signals were
recorded at 214 nm. The reference molecules, anti-PD-L1 Avelumab
and anti-EGFR Cetuximab, were used for comparison.

To investigate the thermal unfolding properties of the
antibodies, differential scanning fluorimetry (DSF) was performed
using a Prometheus NT. PLEX nanoDSF instrument
(NanoTemper). The samples were measured in duplicate using
nanoDSF Standard Capillary Chips. A temperature gradient
ranging from 20°C to 95°C at a slope of 1°C/min was applied.
Fluorescence signals at 350 nm and 330 nm were recorded. The
unfolding transition midpoints (Tm) and Tonset values were
determined from the melting curves or the first derivative of the
fluorescence ratio 350 nm/330 nm.
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Bio-Layer Interferometry (BLI)

The biophysical properties of the sdAbs were evaluated using an
Octet Red BLI system from Sartorius. The binding experiments were
conducted in KB-buffer (PBS pH 7.4, 0.1% BSA, 0.02% Tween-20)
using Protein G Biosensors. The biosensors were loaded with the one-
armed antibody samples at a concentration of 3 μg/mL for 180 s. The
samples were subjected to a 2-fold serial dilution of (rh) NKp46
(ACRO Biosystems), starting at a concentration of 100 nM using a
measurement window of 300 s for association and dissociation each.

The obtained data was aligned to the association step, and inter-
step correction was applied during the dissociation step. To reduce
noise, Savitzky-Golay filtering was employed. The resulting data
were analyzed using a 1:1 binding model to determine the binding
kinetics and affinity between the binders and (rh) NKp46.

Forced oxidation and deamidation studies

Forced protein oxidation was introduced to the samples (30 μg,
1 mg/mL) by diluting with an equal volume of 0.1% H2O2 (Merck,
107,209) and incubation at room temperature. After 0, 6, and 24 h a
10 µL aliquot was taken and the oxidation reaction was stopped by
buffer exchange to 25 mM NH4HCO3 (Merck, 101131), pH 7 with
Amicon filter devices (Merck, UFC503096), respectively. To force
protein deamidation 30 µg sample was buffer exchanged to 25 mM
NH4HCO3 (Merck, 101131), pH 10 using Amicon filter devices
(Merck, UFC503096). Subsequently, the sample volume was
adjusted to 30 µL and incubated at 37°C. To stop the
deamidation reaction the sample was buffer exchanged to
NH4HCO3, pH 7 as described previously in the oxidation workflow.

Peptide mapping
Proteins were unfolded and reduced by addition of 5 µL 12M Urea

(Merck, 108487) and 1 µL 50mMDTT (Merck, 111474) and subsequent
incubation at 50 °C for 30 min. Reduced samples were then alkylated by
addition of 2.5 µL 55mM iodoacetamide (Merck, 804744) and
incubation at room temperature for 30 min in the dark. Samples were
then mixed with 30 µL 25mM NH4HCO3 and 3 µL trypsin solution
(0.1 mg/mL). After 6 h at 37°C, 0.5 µL 50% FA was added and the
peptides were analyzed by LC-MS. LC-MS analysis was performed using
an Exion HPLC system (Buffer A: 0.1% formic acid in water (Biosolve,
23244101), Buffer B: 0.1% formic acid in acetonitrile (Biosolve,
01934101)) coupled to a Sciex 6,600+ mass spectrometer by a Turbo
V ESI source. 8 μg peptide solution was loaded onto an Aeris 1.7 µm
PEPTIDE XB-C18 150 × 2.1 mm column (Phenomenex, 00B-4506-AN)
and eluted with a linear gradient from 5% to 50% Buffer B within 49min
and 0.25mL/min flow rate. Data were acquired in IDA mode with
positive polarity, in a mass range from 230 to 1,600m/z. Other
instrument settings were as follows: source voltage 5.5 kV,
declustering potential 80 V, accumulation time 0.25 s, source
temperature 450°C, maximum number of candidate ions per cycle 10,
gas1 45 L/h, and gas2 45 L/h. The mass spectrometer was calibrated with
ESI positive calibration solution 5,600. Acquired datawere processedwith
Genedata Expressionist 16.5. Chemical noise subtraction was applied to
the data by clipping all data points below an intensity of 50. Furthermore,
spectra were smoothed, and background subtracted. For peptide
mapping the MS tolerance was 20 ppm and the MS/MS tolerance

0.1 Da. Trypsin was chosen as enzyme with maximum 2 missed
cleavages and minimum 3 amino acid peptide length. Deamidation
(NQ), glutamine to pyroglutamate conversion, c-terminal lysine loss, and
oxidation (MW) were selected as variable modifications.

AC SINS
Molecules were captured onto particles via immobilized capture

antibodies and self-association was judged in PBS buffer at pH 7.4 by
shifts in the plasmon wavelengths (Makowski et al., 2021). Clinical
antibody Trastuzumab was used as control indicating favorable
biophysical properties with mean Δλmax values of ~0.2 nm after
subtraction of buffer blanks. Final AC-SINS scores for molecules were
calculated via subtraction of blank and Trastuzumab scores and the
calculated scores of the molecules in the range of −0.46 and 0.06 indicate
favorable developability properties very similar to Trastuzumab.

PSR-BLI
To assess non-specific antibody interactions to polyspecificity reagent

(PSR), a published cytometric assay (Xu et al., 2013) was adapted for the
application of fast and sensitive Bio-Layer Interferometry (BLI). PSR was
derived from soluble membrane proteins (SMP) of CHO and HEK293-
6E cells as described by Xu et al. (2013). Assays were performed at 25°C
with orbital sensor agitation at 1,000 rpm in 200 µL volume with DPBS.
Pre-hydrated AHC biosensors were loaded with antibody (10 μg/mL) for
300 s. Afterwards biosensors were blocked with 1% BSA for 200 s and a
baseline was established by rinsing in DPBS for 60 s. Association with
20 μg/mL PSR (1:1 mixture of CHO and HEK293-6E SMP) was
performed for 100 s. As reference, association was performed in
DPBS. To calculate the PSR-BLI score, the binding response from the
association step was normalized to the reference measurement by
subtraction, followed by subsequent subtraction with non-loading
control (DPBS).
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Recent years have seen an uptick in the use of computational applications in
antibody engineering. These tools have enhanced our ability to predict
interactions with antigens and immunogenicity, facilitate humanization, and
serve other critical functions. However, several studies highlight the concern of
potential trade-offs between antibody affinity and stability in antibody
engineering. In this study, we analyzed anti-measles virus antibodies as a case
study, to examine the relationship between binding affinity and stability, upon
identifying the binding hotspots. We leverage in silico tools like Rosetta and FoldX,
along with molecular dynamics (MD) simulations, offering a cost-effective
alternative to traditional in vitro mutagenesis. We introduced a pattern in
identifying key residues in pairs, shedding light on hotspots identification.
Experimental physicochemical analysis validated the predicted key residues by
confirming significant decrease in binding affinity for the high-affinity antibodies
to measles virus hemagglutinin. Through the nature of the identified pairs, which
represented the relative hydropathy of amino acid side chain, a connection was
proposed between affinity and stability. The findings of the study enhance our
understanding of the interactions between antibody and measles virus
hemagglutinin. Moreover, the implications of the observed correlation between
binding affinity and stability extend beyond the field of anti-measles virus
antibodies, thereby opening doors for advancements in antibody research.

KEYWORDS

antibody engineering, computer-aided design, measles virus hemagglutinin, hotspots,
relative hydropathy, molecular dynamics

1 Introduction

In recent years, the application of computational methods has expanded significantly in
the field of antibody engineering (Kuroda et al., 2012; Fischman and Ofran, 2018; Kuroda
and Tsumoto, 2018; 2020; Akbar et al., 2022a; Wilman et al., 2022). The potential
applications are vast; however, predicting biophysical properties can be still challenging
when crystal structures of neither the antibody itself nor the antigen-antibody complex are
available. This lack of binding information further complicates the task of guiding in silico
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antibody engineering. Numerous computational protocols have
been developed to facilitate tasks such as affinity maturation,
protein aggregation prediction, and stability enhancement. These
aim to create biologically superior antibodies and often rely on initial
structure predictions through techniques like homology modelling
and molecular docking (Weitzner et al., 2017; Cannon et al., 2019;
Liang et al., 2021).

Artificial intelligence (AI) technologies have made significant
strides in tackling challenges within protein engineering. The
advancements in machine learning (ML) and deep learning (DL)
have revolutionized antibody research, particularly in areas such as
structure prediction, antibody design, and epitope mapping (Jumper
et al., 2021; Ripoll et al., 2021; Akbar et al., 2022b; Prihoda et al.,
2022; Ruffolo et al., 2022; 2023). The integration of data-driven AI
approaches holds immense promise for drug discovery. However,
the accuracy and reliability of these AI predictions heavily rely on
the quality of the training data. One significant advancement in
developing more robust prediction models is the availability of
comprehensive antibody libraries, such as the Observed Antibody
Space (OAS) (Marks et al., 2021). OAS has played a crucial role in
addressing challenges in antibody engineering, such as
humanization and immunogenicity prediction (Olsen et al., 2022;
Prihoda et al., 2022). Despite these advancements, certain problems,
like trade-offs between antibody affinity and stability remains a
challenge as it necessitates large-scale experimental data.

Several studies highlight the same concern of potential trade-offs
between antibody affinity and stability in antibody engineering
(Rabia et al., 2018). However, current approaches have not
specifically addressed the exploration of this relationship. Seizing
this opportunity, we followed a knowledge-based computational
approach that can identify key residues, thereby revealing the
intricate interplay between the affinity and stability of an
antibody. This approach utilizes standard in silico protein
engineering tools and focuses on the importance of residues in
the complementarity determining regions (CDRs). CDR3 in the
heavy and light chains is widely recognized for its critical role in
antigen recognition and binding (Kuroda et al., 2008; Kuroda et al.,
2009; Weitzner et al., 2015; D’Angelo et al., 2018). In general, other
regions such as framework regions (FRs) in variable domain (Fv)
and constant domains primarily contribute to antibody stability
(Ionescu et al., 2008; Zabetakis et al., 2013). Nevertheless, we
hypothesize that CDR3 residues also contribute to stability and
could impact both affinity and stability. To substantiate this, we
identified hotspots as sequential pair located within CDRs
(particularly focusing on CDR3), by integrating MD simulations
to in silico alanine scanning. These hotspots are capable of
modulating both affinity and stability based on their local or
relative hydropathy (Di Rienzo et al., 2021). Relative hydropathy
is based on the surroundings of an amino acid side chain, which
plays a crucial role in antigen binding and stability.

As a model system, we choose antibodies against the measles
virus hemagglutinin (MVH). Measles is an infectious and highly
contagious disease that continues to thrive in developing countries,
despite the availability of an effective vaccine for decades (Suvvari
et al., 2023). To fully eradicate the disease, there is an urgent need for
advanced measles therapy. Although researchers have been
developing antibodies against measles virus for epitope
identification and other research purposes, none of these

antibodies have yet entered clinical trials. Remarkably, no crystal
structures for anti-measles virus antibodies or antibody-antigen
complexes are available in the Protein Data Bank (PDB) (Berman
et al., 2007). This lack of structural data is a significant hurdle to the
development of antibody-based treatments against the measles
virus. On the other hand, the crystal structures of the MVH
(Hashiguchi et al., 2007) and a fusion protein, two glycoproteins
present in the virus’s envelope, are available in PDB in both apo and
holo forms with cellular receptors such as signaling lymphocytic
activation molecule (SLAM) (PDB ID: 3ALW, 3ALZ, 3ALX),
Nectin-4 (PDB ID: 4GJT), and CD46 (PDB ID: 3INB) (Santiago
et al., 2010; Hashiguchi et al., 2011; Zhang et al., 2013). This disparity
makes antibodies against measles virus an intriguing subject for
further research. In this context, Tadokoro and colleagues
(Tadokoro et al., 2020) have extensively analyzed biophysical
parameters such as equilibrium dissociation constant (KD) or
binding affinity, melting point Tm or thermal stability, and
thermodynamic parameters for an anti-MVH antibody 2F4. The
reported binding affinity for antibody 2F4 Fab at 25 °C was 18 nM,
which is about 10 and 37-fold higher affinity than SLAM (KD =
170 nM) and Nectin-4 (KD = 670 nM), respectively. Neutralization
of the virus by the antibody 2F4 has also been reported, along with
three other antibodies, namely, 7C6, 8F6, and 10B5 (Sato et al.,
2018). All the antibodies obtained from mouse immunization can
neutralize the antigen MVH, differing to some extent in the
neutralizing capability. These four antibodies have different
germline origins (Supplementary Table S1).

In this study, based on homology modeling, docking
simulations, MD simulations, and in silico alanine scanning, we
computationally predicted residues that potentially coupled both
stability and binding affinity, and experimentally analyzed
physicochemical properties of anti-MVH antibodies. The
antibodies we employed demonstrated high binding affinities less
than 1 nM to MVH, but they differed in stability. Pairwise point
mutational analysis offered insights into these differences and
suggested a potential relationship between affinity and stability of
anti-MVH antibodies.

2 Results

2.1 Experimental characterization of anti-
measles virus neutralizing antibodies

We first performed physicochemical analysis of the four wild
type (WT) antibodies: 2F4, 7C6, 8F6, and 10B5. These antibodies
were previously obtained through mouse immunization (Sato et al.,
2018) and, except for 2F4 (Tadokoro et al., 2020), they had not been
biophysically characterized until this study. Ideally, antibodies
should demonstrate a rapid association and a slow dissociation
with antigens. Our SPR measurements confirmed that antibodies
7C6 and 8F6 exhibited these characteristics, resulting in an affinity
of 0.4 ± 0.2 and 0.9 ± 0.2 nM, respectively, toward MVH (Table 1).
On the other hand, 2F4 and 10B5 demonstrated a slower association
and a faster dissociation, resulting in lower binding affinity of 54.1 ±
0.1 and 60.3 ± 19.4 nM, respectively.

The KD of 2F4 antibody reported in a previous study
(Tadokoro et al., 2020) was lower than our observed value
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(Table 1; Supplementary Figure S1). Despite this discrepancy, all
four antibodies exhibited better binding affinity than the
receptors, particularly 7C6 and 8F6. Although the reported
thermal stability of the 2F4 Fab was 76°C (Tadokoro et al.,
2020), our DSC measurements revealed a decrease in melting
temperature (Tm = 72.7°C ± 0.1°C). Antibodies 7C6 and
10B5 demonstrated higher stability with melting temperatures
of 73.9°C ± 0.3°C and 73.9°C ± 0.1°C, respectively, while
8F6 exhibited lower thermal stability of 68.0°C ± 0.1°C
(Table 1; Supplementary Figure S2).

Based on these observations, we classified the antibodies into
two affinity groups (Table 1). Subsequently, we focused on the high
binding affinity (<1 nM) antibodies 7C6 and 8F6, which showed a
significant difference in thermal stability (ΔTm, ~6°C). Analyzing
these characteristics may provide insights into the relationship
between binding affinity and thermal stability in anti-MVH
antibodies.

2.2 Homology modeling and antibody-
antigen local docking

As the crystal structure of the antibodies are unavailable at
the time of this writing, we performed antibody structure
modeling with the RosettaAntibody protocol (Weitzner et al.,
2017). The variable fragment of the antibody was modeled from
the amino acid sequences (Figures 1A, B), and the best scored
model was selected for docking with the MVH crystal structure
(PDB ID: 2ZB6). While there was no prior binding information
available for the high-affinity antibodies (7C6 and 8F6), it was
available for the receptors. The head domain of the MVH has 6-
bladed β-propeller folds (β1–6). It is the main target of
neutralizing antibodies (Tahara et al., 2016). Among them,
the receptor binding epitope, which is a group of amino acids
in the receptor binding site, stands out because, as the name
suggests, it is also recognized by the three receptors to MVH, as
well as by antibody 2F4. It is worth noting that several other
antibodies, which were not included in this study, have also been
reported to target this epitope (Tahara et al., 2016). The receptor
binding epitope is located primarily within β5 with some
extension in β4 and β6. Since 2F4 is reported to interact with
the receptor binding epitope (Tahara et al., 2016), we first
constructed a putative structure of the 2F4 with MVH by
placing the antibody within 7 Å of the MVH near the
receptor binding epitope, so that the CDRs and the receptor

binding epitope roughly face each other. Next, we performed a
Monte Carlo-based rigid body docking using RosettaDock
(Chaudhury et al., 2011), that predicted favorable binding
modes of 2F4 with MVH. The best docking score obtained
was −26.9 Rosetta Energy Unit (REU). The visual inspection
of this docked model showed that amino acids 190, 533 and 541,
which reported to recognize 2F4 is within 5 Å, in agreement with
the reported experimental data (Tahara et al., 2013; 2016). The
2F4 docked model helped in our knowledge-based docking
approach and we used it as a reference to construct the
putative model for 7C6 and 8F6 followed by flexible
antibody-antigen docking (Weitzner et al., 2017). The “core
epitope” utilized in this study encompasses the following
amino acids in the receptor binding site of MVH: 187,
190–200 and 571–579 in β6, 483 in β4, 505–552 in β5
(Figure 1C). Binding of antibodies to this core epitope could
identify key interacting residues.

Subsequently, with the SnugDock algorithm (Sircar and Gray,
2010), we obtained the best docking scores of −41 REU
and −39.5 REU for 7C6 and 8F6 antibodies, respectively. The
order of these docking scores aligns with the experimental KD

values (0.4 ± 0.2 and 0.9 ± 0.2 nM for 7C6 and 8F6,
respectively). We also employed docking local refinement in
Rosetta to compute the docking score for the available crystal
structure of the receptor-antigen complex as a positive control.
The best docking scores for receptors SLAM (PDB ID: 3ALZ)
(Hashiguchi et al., 2011), CD46 (PDB ID: 3INB) (Santiago et al.,
2010) and Necin-4 (PDB ID: 4GJT) (Zhang et al., 2013)
were −38.9, −33.7 and −30.9 REU, respectively. These docking
scores are aligned well with the reported experimental binding
affinity (KD 170, 200 and 670 nM for SLAM, CD46 and Nectin-
4, respectively) (Hashiguchi et al., 2007; Santiago et al., 2010). The
resulting models for antibodies, representing the predicted holo
form, were then further evaluated through in silico and in vitro
assessments. The workflow for the in silico assessments is depicted
in Figure 2.

2.3 Visual inspection and MD simulations to
identify interacting residues in predicted
complex structures

In line with our proposed workflow for hotspot prediction
(Figure 2), our initial step involves identifying the interface
residues contributing to binding between the antibody and

TABLE 1 Physicochemical analysis of the wild type anti-MVH antibodies. Kinetic parametersa and melting temperature (Tm) are shown.

Physicochemical analysis (wild type) < 1 nM affinity group > 50 nM affinity group

7C6 8F6 2F4 10B5

Binding affinity kon (×105 M−1s−1) 11.4 ± 4.8 3.4 ± 2.9 1.2 ± 0.5 0.1 ± 0.1

koff (×10
−4 s−1) 4.1 ± 1.7 2.8 ± 1.7 65.8 ± 29.1 8.6 ± 0.4

KD at 25°C (nM) 0.4 ± 0.2 0.9 ± 0.2 54.1 ± 0.1 60.3 ± 19.4

Thermal stability Tm (°C) 73.9 ± 0.3 68.0 ± 0.1 72.7 ± 0.1 73.9 ± 0.1

aThe simple 1:1 Langmuir binding model was used to fit and calculate the kinetic parameters of the binding.
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the core epitope. To achieve this, we performed interface
analysis of the predicted holo form using UCSF Chimera
(Pettersen et al., 2004). We considered residues within a 5 Å
distance from both the core epitope and the antibody as interface
residues. Among the interface residues identified for 7C6,

46 residues were found in MVH, with 62.8% of them
belonging to the core epitope region. In contrast, a total of
31 residues were identified in the antibody as interacting
residues (13 and 18 residues in the heavy and light chains,
respectively). Notably, all of the identified interface residues

FIGURE 1
Antibody sequence and epitope of MVH. (A) and (B) display the antibody sequence of the heavy and light chains, respectively. (C) illustrates the head
domain of the measles hemagglutinin, showcasing the epitope used in this study represented as a mesh-like surface. The non-epitope region is
colored gray.
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in the heavy chain and 77.8% in the light chain were located
within the CDRs. Throughout this study, we followed Chothia
numbering scheme (Chothia and Lesk, 1987; Al-Lazikani et al.,
1997) to define CDRs (Figures 1A, B). Moving on to the
8F6 antibody, we identified 36 interacting residues in MVH,
with 74.4% of them belonging to the core epitope region.
Additionally, we found 27 interacting residues in the
8F6 antibody, out of which 18 were in the heavy chain, and
all of them situated within the CDRs. From this analysis, we
deduced that the CDRs of the heavy chain exhibited a reasonable
number of interacting residues in the antibodies, particularly in
the case of 8F6. Notably, the light chain of 7C6 exhibited a higher
presence of interfacial residues than the heavy chain,
emphasizing its importance in the interactions.

To computationally assess the validity of the predicted
interacting residues of the antibody-antigen complexes, we
employed MD simulations. In MD simulations, model
structures are refined as they interact with surrounding
explicit water molecules. This makes MD simulations a
common tool for refining model structures (Heo et al., 2021).
To confirm the quality of the simulations we first checked
convergence of the three independent MD simulations for
each antibody-antigen complex. The convergence of the
predicted complex is difficult to achieve since the crystal
structure of the MVH (PDB ID: 2ZB6) we used in our

docking simulations has missing residues (167–183 and
240–246) in the non-epitope region (Figure 1C). Therefore, we
trimmed the terminals of MVH and repaired the missing residues
240–246 through Modeller (Fiser et al., 2000; Webb and Sali,
2016) before the MD simulations. In addition, we modeled the
constant regions of the antibody to mimic the Fab format used in
experiments. The contribution of the modeled regions was
evident in the simulation runs which caused the higher
structural deviations in the trajectories. Given that our above
interface analysis of the docked models indicated that the
interacting residues were primarily located in the core epitope,
we focused our attention on verifying the potential interactions
within the core epitope and Fv of antibody. Therefore, we
checked the convergence using the root mean square deviation
(RMSD) of the Cα atoms for these regions, which remained quite
stable after 170 ns (Supplementary Figure S3). We used the last
70 ns of the trajectories after achieving convergence in the
analyses below.

To identify the residue-wise contributions of interactions
between antibody CDRs and the core epitope more
quantitatively, we computed the interaction energies
(comprising van der Waals and coulomb energy) based on
the MD trajectories (Figure 3). The probability distribution
function of the non-bonded energy components for both
antibodies showed strong interaction energies toward the core

FIGURE 2
Workflow of hotspots identification pipeline. (A, B) display the steps for hotspots identification and their link to affinity-stability trade-offs. (A)
presents the workflow of the in silico experiments, which involves checking the interaction energies of the complex structure by using MD simulations.
We identify the residue N exerting strongest interaction energy (total non-bonded interaction energy (ETot)). We then perform in silico alanine scan (Ala
scan) on the structures (both apo and holo forms). After averaging the ΔΔG from both apo and holo structures, we check whether residue N shares a
high-low ΔΔG pattern with its neighbor residues N-1 and N+1. If it does, we pair the residues and predict the pair as hotspots. Finally, we check the relative
hydropathy of the pair by calculating spatial aggregation propensity (SAP). This step helps in understanding the interplay between affinity-stability trade-
offs. (B) illustrates the workflow shown in (A). The residues are displayed as atoms in sphere style, with color coding based on the IMGT-defined
hydropathy and SAP score.
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epitope. The well-defined peaks observed in Figure 3A suggest
the system was in stable configurations during the interactions.
We also calculated the energy contribution from residues in all
six CDRs (Figure 3BC). The total interaction energy observed for
CDRs of 7C6 was −488.5 kJ/mol (H-CDRs: −285.4 kJ/mol and
L-CDRs: −203.1 kJ/mol), which was stronger than the
interaction energy of 8F6 CDRs at −409.6 kJ/mol (H-CDRs:
−294.7 kJ/mol and L-CDRs: −114.9 kJ/mol), in agreement
with our experimental results of SPR (Table 1). On a residue-

wise basis, a few L-CDR residues contributed significantly to the
interaction energy (Figure 3B), whereas multiple heavy chain
residues made notable contributions. For 8F6, a similar energy
contribution profile was observed for its H-CDR residues
(Figure 3C). It is worth noting that all six CDRs contributed
to the interaction energies observed in 7C6. In contrast, for 8F6,
L-CDRs appeared to make no discernible contribution to the
interaction energies except for CDR-L2. We further calculated
the interaction energies between the core epitope residues and

FIGURE 3
Identifying interacting residues by MD simulations. (A) probability distribution functions for interaction energies between antibody and epitope. The
data shown for the average of three independent MD simulations. The total non-bonded interaction energy (ETot) shown in kJ/mol, ETot = Coulombic
energy (Coul) + Lennard-Jones (LJ) energy. (B, C) display the heatmaps of residue-wise ETot between the epitope and CDRs of 7C6 and 8F6, respectively.
Interaction energies for heavy chain and light chain CDR residues are shown. (D, E) present heatmaps of residue-wise ETot between the CDR and the
epitope. These figures illustrate a quasi-epitope mapping for CDR-L and CDR-H residues with largest interaction energies shown in Figure 3BC,
respectively.
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the selected CDR residues that exhibited significant interaction
energies, as seen in Figures 3A, B. Residue L-R53 in the L-CDR2
of both antibodies demonstrated a pronounced interaction
energy with residue E535 of the core epitope (Figure 3D).
More core epitope residues interacted with H-CDR residues

(Figure 3E) than with L-CDR residues (Figure 3D). Figures
3D, E illustrate a quasi-epitope mapping of the MVH for
7C6 and 8F6 antibodies. The possible binding site of 7C6 and
8F6 could be within β6 (187–195) and β5 (529–535, 541,
and 546–552).

FIGURE 4
In silico alanine scanning and relative hydropathy analysis. (A, B) show the results of in silico alanine scanning using the FoldX AlaScan command. The
results are depicted as an orange line. The ΔΔG cut-off = 1 kcal/mol is represented by dashed line. These plots highlight the four identified residue pairs for
antibodies 7C6 (illustrated in (C) and 8F6 (illustrated in (D). (C), D) display the holo forms of the 7C6 and 8F6 antibodies, respectively. The epitope is
represented as a golden mesh-like surface, the non-epitope region is colored in gray, and the heavy and light chains are shown in purple and green,
respectively. TheCDR3 region is highlightedwith amesh-like surface. The identified residue pairs are displayed as atoms in sphere style, with color coding
based on the SAP score. The corresponding SAP scale used for both antibodies is also depicted in the image. The molecular representations were
visualized using UCSF ChimeraX.
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2.4 In silico alanine scanning to identify
hotspots for thermal stability and
binding affinity

The next step in our proposed workflow (Figure 2) entails
confirming the key residues for binding. To achieve this, we
performed in silico Ala scanning (hereafter Ala scan) using FoldX
(Schymkowitz et al., 2005). We employed Ala scan on both apo
(antibodies only) and holo (antibody-antigen complexes) forms. We
included apo forms in this analysis because the loss of binding may
originate from the collapse of the antibody structure itself. Hereafter,
we referred to ΔΔG as the average value estimated from the ΔΔG of
both the apo and holo forms. We utilized the standard cut-off of
ΔΔG ≥ 1 kcal/mol for hotspot prediction in protein engineering (Liu
et al., 2011; Peng et al., 2014). Positions with ΔΔG above the cut-off
are identified as predicted hotspots. From the ΔΔG profile, we first
noticed that hydrophobic residues tend to exhibit higher ΔΔG
(Supplementary Figure S4, 5). This is likely because they were
buried in the antibody structures or at the antibody-antigen
interfaces and mutating such a buried residue to Ala would lead
to an unstable structure in the apo and holo forms, respectively.

Second, we also observed a distinct visualization of the high-low
ΔΔG pattern (Figure 2; Supplementary Figure S4, 5), which
prompted us to further focus on a subset of 2 residues or “pair”.
Together with the MD results (Figure 3), we inferred that certain
residues paired with its sequential adjacent residues. The sequential
pairs for 7C6 were L-R53/L-L54, L-V55/L-D56, L-Y91/L-D92 and
H-D96/H-W97 (Supplementary Figure S4). For 8F6, the sequential
pairs were L-R53/L-L54, H-I98/H-Y99 and H-Y100c/H-R100d
(Supplementary Figure S5). Since our focus of this study is to
understand the intricate interplay between binding affinity and
stability, we decided to focus on the sequential pairs found in
CDR3: L-Y91/L-D92 in 7C6 CDR-L3, H-D96/H-W97 in
7C6 CDR-H3 and H-I98/H-Y99 and H-Y100c/H-R100d in
8F6 CDR-H3 (Figure 4AB). We hypothesized that focusing on
the CDR3 region would provide insights into affinity-related
trade-offs since, among the CDRs, CDR3 contributes primarily to
the binding affinity.

Interestingly, considering the amino acid types, Tyr exhibited a
duality nature in the Ala scan depending on the partner residues.
When the partner residue is hydrophilic, i.e., Asp (7C6 L-D92) or
Arg (8F6 H-R100d), Tyr showed high ΔΔG. On the other hand,
when the partner residue is hydrophobic (8F6 H-I98), Tyr showed
low ΔΔG. Despite being an aromatic residue, Tyr falls under the
“neutral” class of IMGT-defined hydropathy (Pommié et al., 2004),
which may explain this duality in the ΔΔG profile.

Thus, from the above analysis, it was suggested that a pattern
of high-low ΔΔG observed in this study (Figure 4AB) may be
utilized to identify residues in subset or pair that potentially
contribute both thermal stability and binding affinity. MD
simulation helped in drawing our attention to the residues in
CDRs where the pattern is distinct. Even though more favorable
interaction energies were observed for L-R53, we chose to focus
on the residues in CDR3 that matched our criteria of selection. A
high-low ΔΔG pattern shared by the pairs suggested that the
hydrophobic partner residues likely aid in interactions by
stabilizing the conformation of the partner residues tailored
for binding.

2.5 Relative hydropathy analysis

The dual hydropathic nature of Tyr prompts questions about its
relative hydropathy and its contribution to affinity and stability. To
explore this, we investigated the factors that influence change in
amino acid hydropathy. We observed non-bonded interactions (van
der Waals and coulomb) between antibody and antigen with
Coulombic interactions playing a dominant role (Figure 3A).
Antibody 7C6 exhibited stronger attractive forces compared to
8F6. The surrounding environment, including water molecules
(hydration) in a biological system, influences these interactions.
Changes in the environment can alter the chemical nature of an
amino acid, affecting the hydrophobic or hydrophilic nature of the
amino acid side chain. Recently, Rienzo et al. characterized the
hydropathy profiles of amino acid side chains at the protein-solvent
interface (Di Rienzo et al., 2021). Inspired by their work, we were
prompted to calculate the relative hydropathy of the identified pairs
based on their surroundings.

We computed the relative hydropathy on the holo form
(Figure 4CD) using spatial aggregation propensity (SAP)
(Chennamsetty et al., 2009). SAP identifies hydrophobic patches
on a protein’s surface based on a defined radius (R) called SAP
radius. Chennamsetty and colleagues (Chennamsetty et al., 2009)
reported that hydrophobic interaction plays a key role in protein
aggregation, thus impacting stability. A SAP radius of 5 Å could
identify the aggregation-prone patches with detailed view.
Conversely, a SAP radius of 15 or 20 Å tends to eliminate the
hydrophobic patches and favor the hydrophilic patches
(Chennamsetty et al., 2010). Thus, to identify the true nature of
the amino acid pairs, we employed a SAP radius of 10 Å that could
favor both hydrophobic and hydrophilic patches, maintaining a
balance between them. We provided a schematic illustration of the
alterations in hydropathy in Figure 2B. Upon analyzing the residue
pairs in CDR3, we observed pair L-Y91/L-D92 in CDR-L3 of 7C6
(Figure 4C), have a balanced hydrophobic and hydrophilic nature
respectively, while the other pairs H-D96/H-W97 in CDR-H3 of
7C6, and H-I98/H-Y99 and H-Y100c/H-R100d in CDR-H3 of
8F6 contributed to the hydrophobic gradient (Figure 4CD). The
observation that an IMGT-defined hydrophilic Asp and Arg
experiences a distinct change in its hydropathic nature (such as
7C6 H-D96 and 8F6 H-R100d becoming hydrophobic, while
7C6 L-D92 remains hydrophilic) may provide valuable insights
into their connection with stability. This is particularly relevant
since charged residues are typically not buried without neutralizing
their charge, often by forming salt bridges with other residues.
Without such compensation, buried charged residues could lead to
unstable protein structures. This emphasizes the critical role of the
protein environment in considerations of residue hydropathy and its
impact on the trade-off between stability and binding affinity.

To further explore the relationship between affinity and stability,
and to validate our computational predictions, we subjected the
identified paired residues to in vitro alanine scanning experiments.
This in vitro validation is particularly critical given the limited scope
of our dataset, comprising only four pairs. Drawing broad
conclusions from such a small dataset can be precarious. With
this in mind, our experimental validations were designed to assess
whether mutations at these positions could alter the characteristics
of these pairs, thereby affecting both binding affinity and thermal
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stability. For the pairs identified in 7C6, which has two types of pairs
within CDR3 (Figure 4C), in addition to introducing alanine, we also
predicted other amino acid substitutions at the same positions using
standard in silico tools.

We employed two methods to predict new mutations based on
the high-low ΔΔG pattern derived from Ala scan analysis of FoldX.
For residues with high ΔΔG values (such as 7C6 L-Y91 and H-W97),
which we hypothesized have an impact on stability, we utilized

TABLE 2 Kinetic and thermal stability parameters of the 7C6 and 8F6 mutants.

kon (×105 M−1s−1) koff (×10–4 s−1) KD at 25°C (nM) Tm (°C) ΔTm (°C)

7C6 WT 11.4 ± 4.8 4.1 ± 1.7 0.4 ± 0.2 73.9 ± 0.9

L-Y91A 1.8 ± 0.5 168.8 ± 35.0 97.5 ± 8.2 71.3 ± 0.7 −2.6

L-D92A 7 ± 0.4 4.6 ± 0.4 0.7 ± 0 73.7 ± 1.7 −0.3

H-D96A 14.2 ± 0.3 90.8 ± 0.2 6.4 ± 0.1 75 ± 1.7 1.0

H-W97A 43.6 ± 5.1 37.6 ± 1.6 0.9 ± 0.1 72.9 ± 0.3 −1.0

L-Y91F 27.0 ± 1.0 13.2 ± 0.3 0.5 ± 0 71.7 ± 1.1 −2.2

L-D92F 14.4 ± 0.2 4.4 ± 0.2 0.3 ± 0 72.7a −1.2

H-D96F 14.4 ± 1.3 363.1 ± 27.3 25.2 ± 0.4 72.8 ± 0.8 −1.1

8F6 WT 3.4 ± 2.9 2.8 ± 1.7 0.9 ± 0.2 68.4 ± 0.9

H-I98A 2.2 ± 0.8 153.3 ± 48.8 70.5 ± 2.4 69.1 ± 1.0 0.7

H-Y99A 0.1 ± 0 8.9 ± 0.2 99.5 ± 2.8 68.6 ± 0.4 0.2

H-Y100cA - - - - N.D. 69.7 ± 0.7 1.3

H-R100dA 0.1 ± 0 40.5 ± 0.3 284.0 ± 0.9 70.2 ± 0.4 1.8

N.D., not determined as kinetic fitting was not applicable.
aTm measurements for 7C6 L-D92F were conducted only once due to insufficient protein quantity.

FIGURE 5
Effect of mutations on binding affinity. Binding affinity is measured by SPR. Effect on binding affinity was measured in terms of KD ratio = KD of
mutant/KD of wild type. The wild type (WT) 7C6 and 8F6 antibodies served as the baseline (i.e 0), indicating no change in binding affinity. Error bars were
calculated from three independent measurements, and asterisks denote mutants that exhibit a significant change in binding affinity, which corresponds
with the > 30-fold decrease in binding affinity (Akiba and Tsumoto, 2015).
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Rosetta’s Cartesian_ddg application on the apo form to predict
potential mutations. We chose to use two different methods for ΔΔG
calculations–FoldX and Rosetta–because they are orthogonal
methods. They utilize distinct rotamer libraries and scoring
functions, capturing different aspects of the underlying physics.
On the other hand, residues with low ΔΔG values (7C6 L-D92 and
H-D96A) suggested that the effects of mutations at these positions
are minimal. Therefore, we continued to use FoldX to predict
mutations for these residues in both apo and holo forms.
Mutations with values below the cut-off (−1 kcal/mol) from the
in silicomutational analysis were chosen for the in vitromutagenesis
study (Supplementary Figure S6). The only exception was for
7C6 H-W97, which did not meet the cut-off. The amino acid
Phe was predicted for residues L-Y91, L-D92 and H-D96.

2.6 Experimental physicochemical analysis
of the antibody mutants

We expressed the mutants (Table 2) and purified them using
size-exclusion chromatography (SEC). Similar to theWT antibodies,
we conducted SPR analysis for the mutants to measure the binding
affinity and compared the change in binding affinity or KD ratio
(Figure 5). For the Ala mutants of the predicted hydrophobic-
hydrophobic pairs identified in 8F6 (H-I98/H-Y99 and H-Y100c/
H-R100d), significant loss of binding affinity was observed. Ala
mutation to H-Y100c exhibited a weak binding to the extent that
kinetic fitting was not applicable (Supplementary Figure S7B),
revealing that this position is also a hotspot for binding. This
suggests that all residues involved in the hydrophobic-
hydrophobic pairs of 8F6 were critical for binding. As a control,
we chose 8F6 H-D96, which is spatially near the hotspot pair
H-Y100c/H-R100d in 8F6 (Supplementary Figure S8). Although
H-D96 was not predicted as a hotspot in our approach, its proximity
and the charged nature of aspartic acid suggested its potential
importance for binding. However, despite its location within the
CDR-H3, H-D96 showed a negligible change in binding affinity
(Figure 5 and S8). This outcome serves as validation for our hotspot
identification pipeline (Figure 2), confirming the accuracy of not
identifying this residue as a hotspot.

For the Ala mutants of 7C6, we identified L-Y91 from the
hydrophobic-hydrophilic pair as a key residue with a loss in
binding affinity of about 242-fold. On the other hand, its partner
residue, L-D92, had no significant effect on binding affinity
(Figure 5). In contrast, within the hydrophobic-hydrophobic pair,
the H-D96A andH-W97Amutants in CDR-H3 of 7C6 showed a 16-
fold loss and a negligible change in binding affinity, respectively.
Additionally, the differences in the KD ratio between key residues
found in CDR-L3 and CDR-H3 suggested that light chain
accommodated the primary hotspot. The Ala mutants resulting
in reduced binding affinity of the high-affinity antibodies to MVH
echoed one common cause of loss of binding, that is faster
koff (Table 2).

The Phe mutants to 7C6 showed tolerance for Phe mutation at
the primary hotspot pair (L-Y91/L-D92), which is consistent with
the docking scores (Supplementary Figure S9). Furthermore, the
hydropathy of these Phe mutations aligned with the hydropathy of
the pair in the WT, suggesting an explanation for the pair’s ability to

tolerate the mutations. In contrast, the mutant H-D96F in CDR-H3
showed a 63-fold loss in binding affinity. This suggests that the
secondary hotspot is also contributing to the overall binding affinity
of 7C6 and did not tolerate a mutation to a bulky residue like Phe.

We performed circular dichroism (CD) to observe any structural
changes that may have occurred due to the point mutations causing
these changes in binding affinity (Figure 6). The CD spectrum for all
the mutants retained the beta-sheet like folding that generally
observed for Fab antibodies (Cathou et al., 1968). In addition,
some changes in molar ellipticity were observed for the mutants,
but the results were not conclusive to provide sufficient information
about the type of structural changes. Thus, we next performed
thermal stability measurements to observe the effect of mutations
on the melting temperature (Tm) of the mutant antibodies.

Due to insufficient yield, we employed CD measurements
instead of DSC to determine the Tm of the mutants. The Tm of
WT 7C6 remained consistent in both DSC and CD measurements
(Tm in CD: 73.9°C ± 0.9°C and DSC: 73.9°C ± 0.3°C), while a
negligible difference was observed for the 8F6 WT antibody
(ΔTm ~0.5°C). Therefore, we used the Tm obtained from CD
measurements to compare the ΔTm upon mutation (Table 2;
Supplementary Figure S10). In the CD measurements, we
observed that some mutants, such as L-D92A and H-D96A in
7C6, displayed larger error bars (±1.7°C). While differences in Tm
values might seem insignificant, the slopes of the CD profiles in
Supplementary Figure S10 could offer biophysical insights. For
instance, although the ΔTm value of L-D92A is only 0.3°C, a
seemingly negligible difference from the WT, its slope increases
more rapidly than the WT. This implies that the mutant unfolds
faster than the WT upon exposure to increasing temperatures.
Therefore, despite the need for caution, the subtle variations in
Tm observed in this study could provide valuable insights into the
affinity-stability trade-offs of the antibodies.

The thermal stability results offer revealing insights when
correlated with the nature of the amino acid pairs, specifically
their relative hydropathy. Figure 7 illustrates the relationship
between molar Gibbs free energy (ΔG) and stability, highlighting
the intricate interplay between affinity-stability trade-offs. For
hydrophobic-hydrophobic pairs found in CDR-H3 of both
antibodies, residues H-D96 in 7C6, as well as H-I98/H-Y99 and
H-Y100c/H-R100d in 8F6, exhibited an increase in Tm, with a less
favorable ΔG. This implies that the mutations have improved the
thermal stability of the antibodies; however, this enhancement
comes at the expense of an energetically less favorable binding
reaction, resulting in a decrease in affinity. An exception among the
hydrophobic-hydrophobic pairs was observed with H-W97 in 7C6.
An alanine mutation in this residue led to a decrease in Tm

(ΔTm = −1.0°C), but did not significantly affect binding affinity
(Table 2). Similar to a Tyr residue, a Trp residue seems to have a
unique function; it contributes to aromatic interactions, acts as a
hydrogen bond donor, possesses a large hydrophobic surface, and
can shield delicate hydrogen bonds from water (Samanta et al.,
2000). In contrast, in the case of the hydrophobic-hydrophilic pair
within 7C6’s CDR-L3 (L-Y91/L-D92), a less favorable ΔG was
observed alongside a decrease in Tm. This suggests that the
mutation has resulted in an energetically less favorable binding
interaction, consequently leading to diminished binding affinity and
a decrease in thermal stability. Notably, the negative ΔG associated
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with our predicted Phe mutant of 7C6 L-D92 suggests that this
hydrophilic position is well-suited to accommodate the mutation
and promotes an energetically favorable binding reaction. Among
the identified hotspot pairs, the residues 7C6 L-Y91 and H-D96,
along with 8F6 H-I98, H-Y100c and H-R100d, had a notable impact
on Tm. The marginal effect of 8F6 H-Y99A on Tm corroborates our
hypothesis about the dual role of Tyr, as evidenced by our
pattern analysis.

Our computational analysis and experimental measurements
suggest that relative hydropathy influences the trend in thermal
stability, whether increasing or decreasing (Figure 4; Table 2),
while the IMGT-defined hydropathy highlights the importance
of a residue’s contribution to stability (Figures 2, 4). This was
particularly observed with the dual nature of Tyr (8F6 H-Y99).
Recognizing the importance of both definitions provides a better
understanding of the factors determining stability. Therefore,
this study contributes to laying the groundwork for further

exploration into the dual nature of Tyr in antibody and
protein research.

3 Discussion

This study aims to investigate the binding affinity and stability of
anti-MVH neutralizing antibodies, with the objective of exploring a
potential correlation between binding affinity and stability. For this
purpose, we proposed a hypothesis that high-affinity antibodies with
differences in stability could provide valuable insights for our
research objective. The physicochemical analysis revealed that
antibodies 7C6 and 8F6 exhibited rapid association and slow
dissociation with MVH, indicating high binding affinity (<1 nM).
We focused on these two antibodies, which showed a significant
difference in thermal stability (ΔTm, ~6°C). Since no antibody crystal
structure was available at the time of writing, homology modelling

FIGURE 6
CD profile of the mutants. (A, B) show the CD profile of the mutants for 7C6 and 8F6, respectively.

FIGURE 7
Relationship between themolar Gibbs free energy (ΔG) and thermal stability (Tm).ΔG is obtained from the equilibrium dissociation constant, KD using
the following equation: ΔG = −RTln(1/KD), where R is gas constant (0.0019872 kcal/mol·K) and T is temperature in Kelvin (298.15 K). Thermal stability is
represented by melting temperature (Tm). Error bars are shown for Tm calculated from three independent measurements for all antibodies except
7C6 L-D92F due to insufficient protein quantity. This is shown by gray error bar. Since kinetic parameters were not obtained for 8F6 H-Y100cA, the
corresponding ΔG value does not directly reflect the effect on free energy for this mutant. To point out this discrepancy we marked this mutant with X.

Frontiers in Molecular Biosciences frontiersin.org11

Paul et al. 10.3389/fmolb.2023.1302737

129

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1302737


and knowledge-based local docking were performed to generate the
apo (antibody) and holo (complex) forms, respectively.

Modeling antibody structures remains challenging, especially
when the CDR-H3 extends beyond the average length (i.e., >
13–14 residues). While the modeling accuracy for non-CDR-
H3 sections of antibodies is often satisfactory, even the
state-of-the-art deep learning methods still struggle with CDR-
H3 conformation predictions. On average, these predictions often
deviate by more than 2.0 Å in backbone RMSD from crystal
structures (Ruffolo et al., 2023). Such a 2 Å variance in backbone
conformations is significant; even minor discrepancies (<1.0 Å) in
backbone configurations can substantially alter the energy landscape
of protein-protein interactions (Kuroda and Gray, 2016).
Consequently, computer-guided affinity maturation studies
without antibody crystal structures are scarce. A standout
example is the work by Cannon et al. They integrated
experiments with computational modeling to guide the affinity
maturation of an antibody targeting an antigen (Cannon et al.,
2019). Mutagenesis experiments were used to validate docking
models and pinpoint the potential binding modes of the
antibody-antigen complex. This was succeeded by re-docking of
the complex and further design calculations based on the predicted
model complex.

In our study, we sought to improve computational modeling
accuracy by performing MD simulations immediately after
modeling the antibody and docking it with the antigen. Within
MD simulations, model structures undergo adjustments by
interacting with the surrounding environment, including explicit
water molecules. Based on these wholly computational outcomes, we
were able to identify hotspots in the antibody-antigen interactions, a
finding that our in vitro mutagenesis experiments subsequently
validated. While the accuracy of ΔΔG calculations by FoldX may
be influenced by the quality of the input structures (Buß et al., 2018),
our study’s strength lies in the experimental validations that
corroborate our computational predictions. Although crystal
structures of the complexes between MVH and the anti-MVH
antibodies would offer valuable insights into molecular-level
interactions, our study suggests that knowledge-based rigid-body
docking simulations, followed by explicit solvent MD simulations,
could serve as an effective alternative for exploring these
interactions.

In protein engineering, the defined hotspots are a subset of
residues composed of high affinity residues surrounded by low
affinity residues as O-ring structure (Bogan and Thorn, 1998;
Soga et al., 2010; Akiba and Tsumoto, 2015). We proposed a
novel high and low ΔΔG pattern that appears to effectively
recognize these hotspots as a subset of two partner residues or
pair. This pattern aided in identifying the hotspots responsible
for significant loss in binding affinity for both the 7C6 and
8F6 antibodies. Through our investigation of high-affinity
anti-MVH antibodies, we suggested a potential relationship
between affinity and stability, which may offer insights into
their trade-offs. We noted two distinct types of pairs based on
their relative hydropathy: a) hydrophobic-hydrophilic and b)
hydrophobic-hydrophobic. While the former type tended to
show a decrease in stability along with a loss in binding
affinity, the latter type seemed to maintain or increase stability
despite a decrease in affinity.

In general, CDR-H3 is primarily responsible for antigen
recognition and binding. However, it is intriguing to note that
the highest affinity antibody, 7C6, possesses a shorter CDR-H3
(consisting of only 7 residues) compared to the other anti-MVH
antibodies (2F4 and 10B5 with CDR-H3 of 12 residues, and 8F6 with
CDR-H3 of 13 residues). This disparity in CDR-H3 length may
explain why the CDR-H3 of 7C6 acts as a secondary hotspot.

A comparison ofMVH binding to its receptors and antibodies in
Supplementary Figure S11 shows that the binding site of 7C6 is
predicted to be located within the region composed of amino acid
residues 190–200, which is part of the immunodominant epitope
(amino acids: 190–200 and 571–579). This epitope has been
identified as a recognition site for mAb BH26, which inhibits the
binding of approximately 60% of human serum antibodies in
vaccinees and individuals recovering from measles (Ertl et al.,
2003; Tahara et al., 2016). On the other hand, the predicted
binding site of 8F6 lies within amino acids 505–552, which
corresponds to the receptor binding epitope (residues 187, 190,
483, and 505–552). Additionally, residues within the CDR-H3 of
8F6 were found to interact with R533, which is part of a conserved
neutralizing epitope (residues F483, D505, R533, Y541, and Y543).
While there was a clear correlation between docking score and
binding affinity, we also observed that the docking pose correlates
with the inhibition capabilities of the anti-MVH antibodies.
Supplementary Figure S11B illustrates the footprints of both
receptors and the antibody on MVH. Although the overall
binding sites seem similar, the CDR-H3 of 8F6, containing a
hotspot (H-R100), is located near the hydrophobic pocket within
the β4-β5 groove, a region implicated in receptor binding (Zhang
et al., 2013). In contrast, a hotspot of 7C6 (L-Y91), experimentally
identified in this study, is positioned in a region more distal from the
hydrophobic pocket (Supplementary Figure S11B). This difference
in the location of hotspots may account for the lower neutralizing
capability of 7C6 compared to 8F6, as reported by Sato and
colleagues (Sato et al., 2018), despite having higher affinity
among the anti-MVH antibodies (Supplementary Figure S11A).
Mutations at these conserved neutralizing epitope residues have
been shown to facilitate immune escape from neutralization by the
monoclonal antibody 2F4 (Santiago et al., 2010; Tahara et al., 2013).
Although a co-crystal structure is currently unavailable, this study
suggested the plausible binding mode of high-affinity antibodies to
MVH (Supplementary Figure S11). Consequently, these findings
open up avenues for further research on anti-MVH antibodies,
providing valuable insights into their development.

Thus, this study highlighted the importance of a balance
between hydrophobic and hydrophilic residues for achieving high
affinity and stability in anti-MVH antibodies (Supplementary Figure
S9). These findings pave the way for computational design strategies
aimed at enhancing the affinity and stability of low-affinity anti-
MVH antibodies, such as 2F4 and 10B5, in future research
endeavors. When applying our approach to analyze the low-
affinity anti-MVH antibodies, we identified residues that form
pairs with Gly (Supplementary Figure S12). The absence of a side
chain in one of the paired residues in 2F4 and 10B5 may contribute
to their low affinity (Table 1). While Gly is known to play important
roles in conformational flexibility, its specific influence on affinity,
stability, and neutralization requires further investigation.
Additionally, the pairs identified for 2F4 and 10B5 exhibit a

Frontiers in Molecular Biosciences frontiersin.org12

Paul et al. 10.3389/fmolb.2023.1302737

130

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1302737


hydrophobic gradient, suggesting that hydrophobic-hydrophilic
combinations are relatively uncommon.

In this study, the combination of high-low ΔΔG pattern and
relative hydropathy analysis exhibit computational promise for
addressing challenges related to the trade-offs between affinity
and stability in antibody research. By training AI models with
this pattern-driven analysis of antibodies, it may be possible to
mitigate the need for large-scale experimental data. Therefore, it is
essential to validate this pattern on additional antibodies targeting a
range of antigens, in order to drive advancements in the field of
antibody research facilitated by computational methods.

4 Methods

4.1 Antibody homology modeling and
docking to antigen

The RosettaAntibody protocol (Weitzner et al., 2017) in Rosetta
(Leman et al., 2020) was used to generate three-dimensional
structure of the antibody Fv. To ensure comprehensive analysis,
we generated 2000 structures for the top scored grafted model and
200 structures for the other grafted models. This enabled us to select
the top-scoring model as a representative of the Fv structure among
a wide variation of models.

At the time of our analysis, seven crystal structures of the MVH
antigen were available in PDB, two of which were in the apo form,
and the remaining structures were in complex with receptors. To
identify the most suitable structure for docking, we selected the best
resolution structure available (PDB: 2ZB6, 2.6 Å). Using Chimera
v1.16 (Pettersen et al., 2004), we manually constructed a putative
antigen-antibody complex. Subsequently, we employed the
SnugDock protocol to perform a flexible backbone local docking,
generating 1,000 poses of the anticipated antigen-antibody complex
(Sircar and Gray, 2010).

4.2 Molecular dynamics simulations

The input structure for MD simulation were first modeled using
Modeller 10.0 (Webb and Sali, 2016) for repairing the missing
residues of MVH and constructing the constant regions of Fab.
Then MD simulations were conducted using GROMACS 2022.4
(Berendsen et al., 1995; Lindahl et al., 2001; Abraham et al., 2015)
with the CHARMM36m force field (Huang et al., 2017) to explore
the behavior of the docked models. To solvate the system, TIP3P
water (Madura et al., 1983) was used to fill a cubic box, and the
protein was placed at the center with a 10 Å minimum distance to
the box edge, while periodic boundary conditions were applied.
Additional Na+ or Cl− ions were introduced to neutralize the protein
charge and simulate a salt solution with a concentration of 0.15 M.
Each system was energy-minimized for 5,000 steps with the steepest
descent algorithm and equilibrated with position restraints of
protein heavy atoms and NVT ensemble, where the temperature
was increased from 50 to 298 K during 200 ps. Further non-
restrained simulations were performed with the NPT ensemble at
298 K for 240 ns. The time step was set to 2 fs throughout the
simulations. A cutoff distance of 12 Awas used for Coulomb and van

der Waals interactions. Long-range electrostatic interactions were
evaluated by means of the particle mesh Ewald method (Darden
et al., 1993). Covalent bonds involving hydrogen atoms were
constrained by the LINCS algorithm (Hess et al., 1997). A
snapshot was saved every 100 ps. We performed three
independent production runs with distinct initial velocities. All
subsequent analyses were conducted using the GROMACS package.

4.3 In silico alanine scanning and
mutational design

FoldX (v4) AlaScan command was utilized to identify potential
hotspots on the antibody (Schymkowitz et al., 2005). Both apo and
holo models underwent alanine scanning to predict the effect of
mutations on binding with the antigen and antibody. We obtained
difference in the free energy, or ΔΔG values for both apo (ΔΔGapo)
and holo (ΔΔGholo) forms in kcal/mol from each analysis and
averaged them for each position (ΔΔG).

ΔΔGholo � ΔGMut holo − ΔGWT holo

ΔΔGapo � ΔGMut apo − ΔGWT apo

ΔΔG � average ΔΔGholo + ΔΔGapo( )
Using ΔΔG from Ala scan as a reference, we performed

mutational design. Mutations for positions with low ΔΔG were
predicted using FoldX BuildModel command (van Durme et al.,
2011), while positions with high ΔΔG were predicted using the
Rosetta’s Cartesian_ddg application (Kellogg et al., 2011; Park et al.,
2016). A cut-off value of −1 kcal/mol was used for selecting mutants
for in vitro mutagenesis study.

4.4 Spatial aggregation propensity (SAP)

The SAP (Chennamsetty et al., 2009) algorithm was used to
predict relative hydropathy with an in-house CHARMM-based
script (Brooks et al., 2009). The SAP was calculated on the holo
form and score for each atom within a 10 Å radius was calculated by
this algorithm. As a result, a residue wise score was obtained in an
output file. The maximum (positive) and minimum (negative)
values on the SAP scale indicate hydrophobicity and
hydrophilicity of the scale.

4.5 Cloning, expression, and purification of
antibodies

The DNA sequences encoding the heavy and light chains of the
Fab antibodies were codon-optimized and synthesized by Integrated
DNA Technologies, Inc. They were subcloned into separate
pcDNA3.4 vectors (Thermo Fisher Scientific), with a His6 tag
fused to the C-terminus of the heavy chains by HiFi DNA
assembly (NEB). The DNA of the mutants was prepared by site-
directed mutagenesis PCR using the KOD -Plus- Mutagenesis Kit
(TOYOBO). The protocol was slightly modified, as we used KOD
One PCR Master Mix (TOYOBO) instead of KOD -Plus-. The Fab
antibodies were expressed in ExpiCHO cells (Thermo Fisher

Frontiers in Molecular Biosciences frontiersin.org13

Paul et al. 10.3389/fmolb.2023.1302737

131

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1302737


Scientific) following the max titer protocol for 8F6 antibody, and in
Expi293 cells (Thermo Fisher Scientific) following the
manufacturer’s standard protocol for rest of the antibodies (Fang
et al., 2017; Jain et al., 2017). The cells were cultured by rotating at
125 rpm at 37°C and 8%CO2 for 5 days for Expi293 cells, and at 32°C
and 5% CO2 for 13 days for ExpiCHO cells after co-transfecting the
cells with 13 µg of the heavy and light chain encoding plasmids. The
culture supernatant was collected by centrifugation for 10 min at
5,000 g, dialyzed with a solution of 20 mM Tris-HCl (pH 8),
500 mM NaCl, 5 mM imidazole (binding buffer), and filtered
with 0.8 μm filters (Advantec). It was loaded onto a Ni-NTA
Agarose resin (Qiagen) equilibrated with binding buffer for
immobilized metal affinity chromatography. After washing the
resin with 10 mL of binding buffer, the protein was eluted with
the buffers containing increasing concentrations of imidazole. The
antibodies were obtained after further purification by size-exclusion
chromatography (SEC) using HiLoad 26/600 Superdex 75 pg
column (Cytiva) at 4°C equilibrated with phosphate-buffered
saline (PBS) pH 7.4. The concentration of the proteins was
calculated from the molecular weights and molar extinction
coefficients (cm−1M−1) calculated from the amino acid sequences
using ProtParam Tool (ExPASy) (Gasteiger et al., 2005) and the
absorbance at 280 nm obtained on NanodropOne (Thermo
Fisher Scientific).

4.6 Cloning, expression, and purification of
antigen hemagglutinin

The pHLsec-vector plasmid with theMVH head domain (amino
acid residues 149–617) was transiently transfected into 293S GnTI
(−) cells (Hashiguchi et al., 2007). The cells were cultured for 4 days
after transfection at 37°C and 5% CO2. The culture supernatant was
collected by centrifugation at 7,000 rpm for 20 min at 4°C and
filtration. The collected supernatant was purified with a complete
His-Tag Purification Resin (Roche, Cat# 5893682001) affinity
column after equilibration with 50 mM NaH2PO4・2H2O,
150 mM NaCl, and 10 mM imidazole. The resin capturing the
head domain of MVH was washed with 25 mM NaH2PO4・

2H2O, 75 mM NaCl, and 5 mM imidazole, and subsequently, the
protein was eluted with the buffers containing increasing
concentrations of imidazole. The head domain of MVH was
obtained after further purification by SEC using Superdex
200 Increase 10/300 GL column (Cytiva) equilibrated with PBS.
The concentration of the head domain of MVH was also confirmed
following the same protocol as above.

4.7 Surface plasmon resonance (SPR)

The kinetic parameters of the antigen-antibody binding were
determined by SPR using Biacore T200 instrument (Cytiva). The
antigen hemagglutinin was immobilized on a CM5 sensor chip
(Cytiva) at around 500 resonance units following the manufacturer’s
amine coupling protocol. The Fabs were injected into the sensor chip at
a flow rate of 30 μL/min at 25°C. The binding response at the following
concentrations 62.5, 125, 250, 500, and 1,000 nM for 2F4 and 10B5, and
1.25, 2.5, 5, 10, and 20 nM for 7C6 and 8F6 wild type antibodies were

used for the experiment. The concentrations used for 7C6 mutants
except L-Y91A, were 1.25, 2.5, 5, 10, and 20 nM. For 7C6 L-Y91A
mutation we used the following dilutions 6.25, 12.5, 25, 50, and 100 nM.
For 8F6, two mutants H-D96A and H-I98A, used the following
concentrations 1.25, 2.5, 5, 10, and 20 nM, like wild type antibody.
For, 8F6 mutants H-Y99A, H-Y100 cA and H-R100dA, the following
concentrations 190, 380, 750, 1,500, 3,000 nM; 250, 500, 1,000, 2000 and
4,000 nM; and 62.5, 125, 250, 500, and 1,000 nM, were used
respectively. The association and dissociation time for wild 2F4,
10B5 and 8F6 mutant H-Y100 cA were 120 s and 600 s,
respectively. For the rest of the Fabs including wild type and
mutants for 7C6 and 8F6, a 120 s of association and 1,200 s of
dissociation time were used in the experiment. The assays were
carried out in HBS-T buffer (10 mM HEPES pH 7.5, 150 mM NaCl
and 0.005% [v/v] Tween 20 surfactant). Biacore Insight Evaluation
Software (Cytiva) was used to calculate the binding parameters.

4.8 Differential scanning calorimetry (DSC)

The thermal stability of the wild type antibodies was measured
by DSC using MicroCal PEAQ-DSC (Malvern; Worcestershire,
UK). The Fab samples (1 mg/mL) were prepared in PBS. At a
scanning rate of 1°C/min the samples were heated from 20°C to
110°C. The data was fitted by non-two-state model using MicroCal
PEAQ-DSC software (Malvern).

4.9 Circular dichroism (CD) measurements

The Fab’s CD profile and thermal stability were measured using
a JASCO J-820 spectropolarimeter. The CD spectra were obtained
from 260 to 200 nm using a 1 mm quartz cuvette with a protein
sample of 0.1 mg/mL in PBS. Each sample was measured five times
with a 1 nm bandwidth. To analyze the protein denaturation profile,
the thermal stability was measured at lower concentrations under
the same buffer conditions and with three repetitions, at 1°C
intervals from 30°C to 90°C and at a speed of 0.1°C/min, at
218 nm and 215 nm ellipticity for 7C6 and 8F6 wild type and
mutants, respectively. The Tm was determined by fitting the
ellipticity data against temperature using nonlinear least squares
curve fitting that followed the below logistic function equation,
followed by sigmoid curve fitting in Python 3.0 (Rossant, 2018) to
obtain the fitted molar ellipticity and temperature values.

f L,m,k,x0 x( ) � L
1 + exp −k x − x0( )( ) +m

Where, L, m, k and x0 are the vector parameters for optimization
of the fitting. For better visualization of the Tm measurements, we
represent the derivative of the fitted data.
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