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Editorial on the Research Topic
Customized artificial implants: bionic design and multiscale evaluation

Due to individual differences, anatomical variability and complexity of working
conditions, traditional “one-size-fits-all” implants cannot fulfill the clinical
requirements. With the concept of precision medicine or personalized medicine being
proposed and hotly discussed, more surgeons and engineers are designing, manufacturing,
evaluating, and applying customized artificial implants. Meanwhile, advanced technologies
such as 3D printing andmultiscale computer simulations are promoting the development of
customized artificial implants. Especially, customized artificial implants are booming in
orthopedics and orthodontic surgeries recently. Customized orthopedic implants can offer
remarkable precision and fit, improve functionality, reduce pain and inflammation, and
accelerate healing. However, challenges to implement precision design and evaluation arise
not only from the design need to consider bionic structures, kinematical function,
mechanical performances, and biological function but also from the performance and
functional evaluation involving multiscale computational simulations and comprehensive
experimental testing. There is still a lack of knowledge on customized principles, design
methods, evaluation systems, new material applications, and surgical plans. Advancements
have been made to delve into the role of bionic design in precision treatment and long-term
success, as well as the importance of multiscale evaluation to ensure the safety and efficiency
of these life-changing devices.

Irregular bone defects or resection areas are common in orthopedic clinical practice,
and anatomical matching design is crucial for artificial implants (Wang et al., 2022). Hu
et al. designed and used a 3D-printed custom prosthesis for a patient with irregular
humeral defects accompanied by shoulder joint “locking” dislocation and reverse Hill-
Sachs injury. Liu et al. reported a 3D-printed integrated acetabular prosthesis and
modular acetabular prosthesis for the acetabular reconstruction of total hip
arthroplasty in Crowe III hip dysplasia. Wang et al. designed a novel individualized
porous titanium alloy zero-profile cage for anterior cervical discectomy and fusion
based on the morphological characteristics of the intervertebral space. However, in fact,
customized artificial implant not only requires anatomical matching but also need to
deeply focus on mechanical matching and kinematical matching. Wang et al. designed
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an innovative temporomandibular joint (TMJ) fossa prosthesis
based on the envelope surface of condyle movement. This
customized design of fossa prosthesis not only successfully
achieved a wider condylar range of motion but also reduced
the muscle activation for jaw opening on the surgical side and
resistance on the intact side than traditional
commercial implants.

Except for customized orthopedic implants, customized breast
implants, dental implants, and stents have been developed and
studied. Tong et al. proposed a customized design strategy for
the single-tube-braided airway stents to meet various airway
structures, investigated the radial stiffness of the stents and
deformation upon compression using a theoretical model, and
evaluated their mechanical properties and functions using
experimental testing. The proposed customized stents adapt well
to different airway structures.

The customized implant is costly and time-consuming due to
its customized nature (Hafez et al.). Artificial intelligence or
machine learning may help to improve the drawbacks of long
design cycles, such as quickly obtaining a patient’s bone geometry
and mechanical property (Lu et al., 2023), and creating the 3D
model of artificial implants (Burge et al., 2023). Triply periodic
minimal surface (TPMS) is widely used in the design of bone
scaffolds for large bone detects due to its structural advantages. Liu
et al. proposed a new inverse design of an anisotropic TPMS bone
scaffold based on the mechanical properties of bone structures
using machine learning and a regenerative genetic algorithm.
Combining machine learning with the traditional optimization
method achieves higher design efficiency, and the entire design
process is easily controlled.

Multiscale evaluation of customized implants encompasses a
range of assessments that consider the implant’s performance
and interaction with the body at various levels, from the
macroscopic to the microscopic. Musculoskeletal (MSK)
multibody dynamics (MBD) model has a remarkable
advantage in simulating human macro physical activities and
getting joint force and motion, ligament force, muscle force or
activation. Wang et al. adopted a mandibular MSK MBD model
to evaluate the jaw opening-closing motions, mandibular muscle
activation, and contact forces of the customized TMJ fossa
prosthesis. The finite element analysis (FEA) method can be
used to quantify the stress and strain of artificial implants from a
microscopic point of view. Yang et al. analyzed the position,
structure, and spread area of the wing fixture of a new customized
implant applied in severe atrophic maxillary posterior region
restoration using FEA. Combining the advantages of MSK MBD
simulation and FEA, the coupling analysis method of both
(Zhang et al., 2017; Hua et al., 2022) and the FE MSK MBD
model (Li et al., 2019) are the current development trend of
multiscale evaluation. Meanwhile, a combination of theoretical
models or computer simulation and biomechanical experiments
are recommended to comprehensively evaluate the safety,
efficacy stability of artificial implants (Li et al.). In addition,
clinical case observation and report are equally important for

systematically evaluating customized implants (Hu et al.), which
should be combined with the aforementioned methods. Clinical
trials and patient outcomes provide real-world data that feed
back into the design process, ensuring continuous improvement
and refinement. The traditional experimental methods and
devices do not work on most customized artificial implants.
New test standards, technologies, and equipment need to be
established and developed for testing the rising
customized designs.

Overall, customized artificial implants represent a significant
leap forward in medical technology. This Research Topic of articles
contributes to promote the development of customized artificial
implants in bionic design, multiscale evaluation, and translation.
New technology based on machine learning and new materials have
been introduced into the precise design of customized artificial
implants. Bionic design methods based on joint kinematics and
the mechanical properties of bone structures are developed for
customized artificial implants. The exploitation and application
of novel approaches, testing techniques, and standards in
evaluation are still scarce. The challenges remain in the high-
efficiency, accurate, and quick design and evaluation of
customized artificial implants.
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Severe bone atrophy in the maxillary posterior region poses a big challenge to
implant restoration. Digitally designed and customized short implants with wing
retention provide a safer and minimally invasive implant restoration scheme in such
circumstances. Small titaniumwings are integratedwith the short implant supporting
the prosthesis. Using digital designing and processing technology, the wings fixed by
titanium screws can be flexibly designed, providing the main fixation. The design of
the wings will influence the stress distribution and implant stability. This study
analyzes the position, structure, and spread area of the wings fixture scientifically
by means of three-dimensional finite element analysis. The design of the wings is set
to linear, triangular, and planar styles. Under the simulated vertical and oblique
occlusal forces, the implant displacement and stress between the implant and the
bone surface are analyzed at different bone heights of 1 mm, 2 mm, and 3mm. The
finite element results show that the planar form can better disperse the stress. By
adjusting the cusp slope to reduce the influence of lateral force, short implants with
planar wing fixtures can be used safely even if the residual bone height is only 1 mm.
The results of the study provide a scientific basis for the clinical application of this
new customized implant.

KEYWORDS

atrophy, finite elements, stress distribution, dental implant, custom-made

1 Introduction

Alveolar bone resorption occurs due to local inflammation and a long-time lack of
physiological stimulation after tooth loss. Pneumatization of the maxillary sinus is more
likely to lead to a severe reduction of residual bone height (RBH), which brings a big challenge to
implant restoration in the maxillary posterior region (Bitinas and Bardijevskyt, 2021).
According to the 6th ITI Consensus, short implants of a diameter ≤6 mm can be chosen as
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a valid treatment option in atrophic ridge cases. However, studies have
revealed that they have a higher variability and lower predictability in
survival rates (85%–100%) than standard ones (95%–100%) (Jung
et al., 2018). Sufficient bone tissue is considered a critical condition for
implant anchorage. Therefore, transalveolar sinus floor elevation
(tSFE) with simultaneous implant placement is proposed
in situations with RBH above 4 mm (Pjetursson and Lang, 2014;
Qian et al., 2020). However, it has been found that the RBH of some
patients is below 4 mm, and sometimes even only 1–2 mm. Weaker
maxillary sinus floor bones increase the risk of maxillary sinus
membrane perforation in tSFE treatment, so lateral sinus floor
elevation with delayed implant placement is recommended.
However, this technique would prolong the recovery time and
cause more suffering for patients (Gonzalez et al., 2014; Testori
et al., 2019). Moreover, when the RBH is below 1.5 mm, only
cortical bone is left, and effective graft regeneration may not be
possible (Taschieri et al., 2015).

Zygomatic implants reported by Bedrossian are developed to use
when the RBH in the maxillary posterior area is extremely insufficient.
This implant is about 30–52.5 mm in length and should be placed via
the sinus cavities and anchored in the zygoma for stability. A few cases
have shown favorable results for this technique, but further long-term
clinical observation is still lacking (Varghese et al., 2021). In addition,
the technique is more invasive and complex, and is often associated
with serious complications such as infection, bleeding, and nerve
damage. Therefore, it is not widely used in clinics. For patients with
severe bone deficiency in the maxillary posterior region, especially
those with RBH of less than 3 mm, there is no good clinical treatment
at present. Subperiosteal implants have been re-proposed following
the development of modern digital dentistry (Gellrich et al., 2017). The
subperiosteal implants gain stability through the use of large-area
spread titanium plate fixation. Although the plate can be individually
designed to ensure fitness, poor blood flow of soft tissue still can be
caused by extensive flap surgery. Nevertheless, the use of subperiosteal
implants has facilitated the conception and development of innovative
bone anchorage systems for oral restorations.

We have developed a new type of implant named Yang’s
Implant (Xu et al., 2022). This implant, as described above, is
composed of a short implant and retaining wings. But unlike the
subperiosteal implant, Yang’s implant has an implanted part and
abutment structure, and the platform switching structure is
maintained to ensure soft tissue closure formation around the
implant after implantation. The wing retention is fixed by
titanium screws, which can be flexibly designed and provide the
main fixation. In the circumstance of RBH being less than 4 mm,
the stability and stress condition of Yang’s implant is still unclear.
However, three-dimensional finite element analysis (3D-FEA)
models have been established, which are useful to guide the
design and innovation of Yang’s implant to better realize the
clinical applications.

2 Materials and methods

2.1 Sinus geometric modeling

Initial data was obtained from patients’ CBCT. The
thresholding operation was performed to extract the relevant
structural information of the maxilla to reconstruct the point

cloud data model, then geometric modeling and a three-
dimensional (3D) finite element model of the maxillary sinus
were carried out with the software Mimics 24.0 (Materialises,
Leuven, Belgium). After that, the local finite element model was
refined with the software Hypermesh 2017 (Altair, Troy, USA) to
generate an editable maxillary sinus model with RBH of less than
4 mm. The height of RBH was set up to 1 mm, 2 mm, and 3 mm,
respectively.

2.2 Yang’s implant geometric modeling

Registered CBCT data with model scanning data was used to
obtain a virtual 3D bone reconstruction model of the patient. The
position and shape of Yang’s implant was designed by 3Shape
dental system (3Shape, Copenhagen, Denmark) as described
previously (Xu et al., 2022), and the associated file was saved in
standard tessellation language (STL) format. The STL format file
was imported into Hypermesh software to form the Yang’s implant
network model. The position of the wings responsible for retention
of the implant could be moved and adjusted in this model. In this
study, the implant restoration model of a left upper first molar was
established. The wings were distributed in different directions on
the buccal or lingual side, and they were represented with numbers,
as shown in Figure 1. Named wing numbers of 13 as linear style

FIGURE 1
Three-dimensional finite element model of the partial maxilla and
Yang’s implant; Representative numbers of different direction wings.
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(LS), 134 as triangular style (TS), and 1234 as planar style (PS), and
the names were used for subsequent analysis.

2.3 Model assembly and material properties

The refined mesh model of the maxillary sinus was generated into a
local geometry model, and the generated local geometry model was
combined with the model of the implant through Boolean operations
(Figure 2).

The material properties of different kinds of tissues and implants in
the model were set to be homogeneous, isotropic, and linear elastic. The
Young’s modulus and Poisson’s ratio of materials shown in Table 1 were
taken from the previous study (Yan et al., 2015).

2.4 Interface conditions

To obtain the initial stability of Yang’s implant, the interface between the
implant and bone was assumed as a friction interface. It was modeled using
non-linear frictional contact elements that allow for tiny displacements
between the implant and the bone. The friction coefficient between the
implant and bone/callus was set to 0.2. After 3months, it was determined
that osseointegration was formed. The friction coefficient was adjusted to
infinity and tested the stress distribution of Yang’s implants on the bone
under the situation of different directions of force.

2.5 Loading and boundary conditions

Parts of the maxillary sinus model that interfered with the
implant were removed. The maxillary sinus mesh in the hole-edge
area was reconstructed and optimized to ensure the quality of the
calculation mesh. The maxillary sinus and implant model was
assigned to the unit attribute, the unit type was set to higher-
order tetrahedron C3D10M.

The average occlusal force of 150 N was loaded in a vertical direction
on the top of the crown (0°) and at an angle of 45° (45°) to the long axis of
the crown (Figure 3). Abaqus 2018 software (Dassault Systèmes, Paris,
France) was used for calculation, and the results were outputted after post-
processing. Different RBH heights were set and measured the von Mises
stress at the implant-bone interface of differently designed implants. To
assess the distribution of stresses, von Mises stresses were visualized with
stress contour plots. Biomechanical effects were also analyzed by
comparing the maximum displacement of the implants.

When the RBH was only 1mm, a force of 150 N was applied at
angles of 20° and 30° to the long axis of the crown, respectively.
Calculations were made with the samemethod. The vonMises stress at
the implant-bone interface in the LS, TS, and PS groups was recorded
and compared with the stress at 0° and 45°.

3 Results

3.1 Implant displacement

The change of RBH, the direction of force, and the design of implant
wing retention all affected the displacement of the implant.With the decrease
of RBH, the displacement of the implant increased. The PS group could
control the implant displacement by about 11.5 μmwhen theRBHremained
2 or 3 mm and the force was given perpendicularly. Under such conditions,
the implant displacements of groups LS and TS were higher, at about
22.1 μmat 3mmand32.1 μm–40.3 μmatRBH2mm. In the casewhere the
RBHwas reduced to 1mm, implant displacements of the LS and TS groups
were obviously higher, exceeding 50 μm. However, the PS group would

FIGURE 2
Assembly diagram of maxillary model and Yang’s implant model.

TABLE 1 Material properties.

Material Young’s modulus (MPa) Poisson’s ratio

Titanium implant 103,400 0.35

Cortical bone 13,700 0.3

Cancellous bone (D3) 1370 0.3

Sinus membrane 58 0.45
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better maintain the displacement of the implant at 19.5 μm (Figure 4A).
Compared to the force direction of 0°, a 45° force would shapely increase the
displacement of the implant. Nevertheless, the planar retention style better
maintained the implant stability compared to the other two groups. When
RBH was reduced from 3mm to 1mm, the maximum displacement of the
implant could still be controlled below 100 μm (Figure 4B).

3.2 Stress distribution at the implant-bone
interface

The highest stress on the bone tended to increase as the height of the
alveolar ridge decreased. Stress was gathered on the cortical bone around
the neck of the implant and the retention wing. A force of 150N was
applied perpendicularly to the direction of the crown.When the RBHwas
3 mm, the maximum vonMises stress of the LS and TS groups was above
50 MPa, and the LS group was much higher than the TS group, at about
65.1 MPa. Compared to these two groups, the PS group was much lower,
at about only 30.2 MPa. ThemaximumvonMises stress on crestal cortical
bone slowly increased when RBHwas decreased to 2 mm. The LS and TS
groups could maintain the stress around 65.4–70.8 MPa, while the PS
group kept the stress still below 40MPa. However, the stress in the LS and
TS groups increased significantly when the RBH reached 1 mm;
compared to RBH 2mm, the stress nearly doubled, soaring to
120.3 MPa. In these circumstances, the wing design of the planar style
had outstanding advantages. The stress in this group could be controlled
stably below 40MPa (Figure 5).

When the force was applied at 45° oblique to the direction of the
crown, the maximum von Mises stress on the cortical bone obviously
increased. In this situation, much of the force was concentrated
around the implant neck. The linear style wing design was not
suitable for resisting the 45° force even when the RBH was 3 mm,
and the maximum stress far exceeded 200 MPa. Compared with the LS

group, group TS reduced the stress to about 116.2MPa, and the lowest
stress was shown in group PS, at about 91.9 MPa. However, even using
the planar design form, when RBH remained only 1 mm or 2mm, the
pressure on the cortical bone would increase at a faster rate. The stress
reached 158.1 MPa at RBH 2 mm and 218.5 MPa at RBH 1 mm.
Additionally, maximum stress also increased in group TS and group
LS when RBH was less than 3 mm, to about 225.1–355.7MPa and
434.2–482.7 MPa, respectively (Figure 6).

When RBHwas only 1mm,more stress distribution showed regardless
of thewings’ forms. Clinically, the impact of adverse lateral force on implant
restorations could be reduced by changing the cusp slope of the crown, and
adjusting the direction of the force to represent the inclination adjustment
of the cusp.We applied a 150N force oblique to the crown at an angle of 20°

and 30°, respectively, to test the stress distribution. As the force moved,
stress gathered around the implant neck gradually shifted from the center to
the opposite side of the force (Figure 7A).When the force was set to 20°, the
maximum stress in group LS was about 200MPa, and the stress in group
TS could be controlled at 157.1MPa. When the force was changed to 30°,
themaximum stress in the LS group increased obviously to 410.7MPa, and
also increased in the TS group, reaching 228MPa. For the PS group, when
the force was given at 45°, the maximum stress exceeded 200MPa. When
the force direction was changed to 20° or 30°, the maximum stress could be
well controlled below 150MPa (Figure 7B). In group PS, when the vertical
force or 20° force was given, the maximum stress concentration was at the
edge of the hole on the outside surface of the cortical bone. When 30° and
45° forces were applied, the greatest stress concentration existed at the
medial cortical bone of the hole margin (Figure 7C).

4 Discussion

The concept of submucosal implants was first proposed in the 1940s.
Initially, this implant was placed under the periosteum, anchored directly

FIGURE 3
Schematic diagram of force loading; the force of 150 N loaded in a vertical direction on the top of the crown (0°) and at an angle of 45° (45°) to the long
axis of the crown.
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to the bone surface bymeans of a large-area spread plate via screw fixation
(Silvestri and Carlotti, 1995). It solved the restoration problem of patients
with severe bone atrophy to some extent. Nevertheless, the use of
submucosal implants decreased in the late 1970s. One of the
important reasons for the rapid decline of subperiosteal implants was
that the fixed plate and post-column were integrally cast, so tiny mucosa
inflammation could spread rapidly and lead to failure (Schou et al., 2000;
Nemtoi et al., 2022). With the development of digital dentistry,
subperiosteal implants have been re-proposed (Gellrich et al., 2017;
Nemtoi et al., 2022). CAD/CAM techniques can make the retained
titanium plate closely fit the bone surface in order to obtain
satisfactory retention. However, the problem of one-piece
manufacturing is not solved. The wing retention of the Yang’s implant
we developed borrows the idea of the retention plate from submucosal
implants. But our implant has an implanted part, and the implant and the
abutment are two sections, between which a platform switching structure
is used. The platform switching connection is proven to have a better soft
tissue seal around the implant, thus effectively preventing infection and
marginal bone resorption. Meanwhile, Yang’s implant can be customized
with CAD/CAM techniques and precisely machined with a seven-axis
lathe, so that the wings can fit tightly to the bone surface and form good
retention.

3D-FEA has been widely used in dental research. It can be an excellent
method for modeling complex structures and analyzing their mechanical
properties (Trivedi, 2014). With this technique, it is possible to simulate
complex structures on a microscopic scale to observe further stress
distribution that is clinically impossible to observe (Turker et al., 2021).
Yang’s implant provides an effective method for implant restorations of
patients with RBH less than 4mm. In this circumstance, reliance on
osseointegration between the implant component and the residual bone
will not be sufficient for effective primary stability. The wing retained by
titanium screws around the implant can provide critical retention. Larger
wing spreading areas bring better support, but a larger flap elevation area is
also required during the operation, which does harm to the blood supply of
the soft tissue. Additionally, the direction of the wing also affects the stress
distribution, thus influencing the stability of the implant. In this study, 3D-

FIGURE 4
Implant displacement changes of different residual bone heights
and different wing designs under forces in different directions; (A) 0°;
(B) 45°.

FIGURE 5
Maximum von Mises stress on crestal cortical bone of different
residual bone heights and different wing designs at 0° force.

FIGURE 6
Maximum von Mises stress on crestal cortical bone of different
residual bone heights and different wing designs at 45° force.
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FEA was established to analyze the stress distribution of Yang’s implant
with different designs and numbers of wings at different RBHs. During the
process of implant surgery, the gingival flap is first performed, then the
implant is placed. After the surgery, the gingiva is sutured. The most
important function of the healed gingiva is to form a good soft tissue seal
around the implant neck to prevent complications such as infection. It has
no effect on the osseointegration stability of Yang’s implant, so the gingival
factor was not analyzed in the model. The result of the study is significant
for further clinical design and application.

Micromotion is defined as a phenomenon that occurs at the
interface of two components leading to the displacement of one
component relative to the second one (Winter et al., 2013). Large
micromotion at the bone-implant interface is harmful. Over 150
μm micromotion will induce the formation of fibrous connective
tissue, thus interfering with implant osseointegration (Brunski,
1993; Szmukler-Moncler et al., 1998; Barnes et al., 2019). The
wing retention structures of Yang’s implants mainly account for

the primary implant displacement. From the results of the study, a
linear wing form has a poor ability to stabilize the initial
displacement of the implant, especially under an oblique force.
The triangular design is more conducive to the spread and
dispersion of force. The planar style could distribute the occlusal
force over surrounding cortical bone, effectively controlling the
distribution of the implant and maintaining initial stability. When
lateral force is applied, the implant displacement could still be
guaranteed to be less than 100 μm even if the RBH is 1 mm. From
the perspective of displacement control, the planar design form
could better meet clinical application requirements.

According toWolff’s law of bone transformation, the bone’s response
to absorption or healing is directly related to stress in the bone (Frost,
1994). Excessive distribution of stress concentration is one of the
important factors involved in time-dependent marginal bone loss, with
inevitable progression compromising post-implantation stability.
Marginal bone resorption usually begins in the cortical bone and
progresses toward the apex (Wang et al., 2020). In addition,
progressive bone loss is regarded as the first step of peri-implantitis
(Galindo-Moreno et al., 2015). Maximum principal stress consists of
tensile stress and compressive stress. Previous studies revealed that tensile
stress promotes bone deposition while compressive stress promotes bone
resorption (Zhong et al., 2013). A satisfactory design should have the
ability to effectively disperse stress to avoid excessive stress concentration.
Von Mises stress is commonly used in 3D-FEA studies to summarize the
overall stress condition and the distribution of compressive stress and
tensile stress can be analyzed by a stress distribution map. The maximum
force and distribution range map must be taken into consideration to
comprehensively determine the ideal design form of Yang’s implant. The
ideal design can effectively diminish stress concentration in supporting
bone and realize stable implant restoration when the RBH is seriously
insufficient. The results showed that the planar style had outstanding
advantages. When vertical force was loaded, the maximum von Mises
stress in this group could be controlled stably below 40MPa, even when
the RBH was only 1 mm left. Oblique forces, which are quite common
during normal mastication, cause more stress than axial forces (Tepper
et al., 2002). Nevertheless, the PS group could still effectively control the
maximum stress value when the RBH was 3 mm. From the map of stress
distribution, the planar form had the advantage of dispersing the force
concentrated around the hole compared to the liner and triangular
groups. The maximum stress induced by the lateral force increases
significantly as RBH further decreases. The 3D-FEA established in this
paper simulated that the remaining bone volumewas only 1 mm,which is
an extreme circumstance of severe RBH deficiency in clinical practice. At
this time, only the maxillary sinus floor composed of a thin layer of hard
compact bone remains (Taschieri et al., 2015). The bone marrow
space and blood supply are relatively poor in dense tissue. Blood
vessels, capable of transporting oxygen and nutrients, are crucial for
bone regeneration (Filipowska et al., 2017). So, in this case, the fresh
bone powder implanted by lateral sinus floor elevation would hardly
survive. We expect that Yang’s implant with the planar form of wings
could be applied in such extreme bone conditions. However, the
maximum stress was beyond 200 MPa if a 45° force was loaded. It is a
useful method to adjust the inclination of the cusps to eliminate the
harmful effects of lateral stress during mastication. A previous study
showed when remaining tooth tissue was weak, the stress
concentration could be reduced by adjusting the inclination of
the tooth cusp after post-core crown restoration, thus reducing
the rate of root fracture (Liu et al., 2014). Accordingly, we

FIGURE 7
The changes of maximum von Mises stress according to different
force directions and wing designs at RBH 1 mm. (A). The diagram of
maximum von Mises stress distribution; (B). Value changes of maximum
von Mises stress; (C). The stress distribution at the hole-edge of the
PS group.
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adjusted the direction of the lateral force, and the different degree of
the force simulated cusp slope at different angles of the implant
crown. The total stress in the PS group decreased as the force angle
reduced. When the force angle was 20°, the maximum stress could be
controlled below 150 MPa. Meanwhile, the compressive stress was
mainly concentrated on the edge of the hole on the surface of the
cortical bone opposite to the direction of the force. The maximum
compressive stress shifted from the outer edge to the inner surface of
the hole with the increase of the force angle (30°/45°), which could
pose a potential risk of bone fracture or mucosa separation.

In summary, Yang’s implant may be a good choice when a
severe bone deficiency occurs in the maxillary posterior region. In
clinical practice, the planar design form is suggested, which is more
conducive to providing stable support in even extreme bone
deficiency situations (e.g., RBH is only 1 mm). In such
circumstances, it is necessary to properly adjust the cusp
inclination of the implant crown to reduce the influence of
harmful lateral force. The results of the 3D-FEA are the
cornerstone of the large-scale clinical application of Yang’s
implants. In the future, the results of this study need to be
compared with the accumulated clinical results.

5 Conclusion

In our finite element study, two conclusions can be drawn.

1) The customized Yang’s implant can be a less traumatic and
invasive method suitable for the implant restoration of patients
with severe atrophic maxillary posterior regions. When the RBH in
the maxillary posterior region is less than 4 mm, the stress
distribution of the short implant with properly designed wings
can meet the clinical requirements.

2) Compared to other styles, planar form wings can better disperse
the stress andmaintain the stability of the implant. By adjusting the
cusp slope to reduce the influence of lateral force, the customized
short implant with a planar wing fixture can be used safely even if
the residual bone height is only 1 mm.
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A single-tube-braided stent for
various airway structures

Xin Tong1,2†, Yongkang Jiang3†, Fei Mo1, Zhongqing Sun1,
Xiaojun Wu2* and Yingtian Li1*
1Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 2School of
Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an, China,
3School of Automation, Beijing University of Posts and Telecommunications, Beijing, China

Background: Airway stent has been widely used in airway procedures. However,
the metallic and silicone tubular stents are not customized designed for individual
patients and cannot adapt to complicated obstruction structures. Other
customized stents could not adapt to complex airway structures with easy and
standardized manufacturing methods.

Object: This study aimed to design a series of novel stents with different shapes
which can adapt to various airway structures, such as the “Y” shape structure at the
tracheal carina, and to propose a standardized fabricationmethod tomanufacture
these customized stents in the same way.

Methods: We proposed a design strategy for the stents with different shapes and
introduced a braiding method to prototype six types of single-tube-braided
stents. Theoretical model was established to investigate the radial stiffness of
the stents and deformation upon compression. We also characterized their
mechanical properties by conducting compression tests and water tank tests.
Finally, a series of benchtop experiments and ex vivo experiments were conducted
to evaluate the functions of the stents.

Results: The theoretical model predicted similar results to the experimental
results, and the proposed stents could bear a compression force of 5.79N. The
results of water tank tests showed the stent was still functioning even if suffering
from continuous water pressure at body temperature for a period of 30 days. The
phantoms and ex-vivo experiments demonstrated that the proposed stents adapt
well to different airway structures.

Conclusion: Our study offers a new perspective on the design of customized,
adaptive, and easy-to-fabricate stents for airway stents which could meet the
requirements of various airway illnesses.

KEYWORDS

airway stent, photocurable stents, braiding method, stent customization, ex vivo
experiments

1 Introduction

Airway illnesses, such as tracheobronchomalacia (TBM) and tracheobronchial stenosis
(TBS), may cause the patients to cough, wheeze, apnea and sometimes lead to profound
airway obstruction which will threat patients’ life (Torre et al., 2012; Mitchell et al., 2014).
TBM and TBS are sometimes congenital airway malformations, but more often caused by
surgical trauma, tumor compression, anastomotic hyperplasia after lung transplantation,
and extrinsic compression (Carden et al., 2005; Wright et al., 2019; Xiong et al., 2019). In
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clinical practice, the diseases are mainly treated by tracheostomy
based long-term mechanical ventilation, aortopexy, suspension, and
airway stenting (Torre et al., 2012; Mitchell et al., 2014; Fraga et al.,
2016; Hysinger and Panitch, 2016). Due to the advantages in non-
invasive properties during surgery and rapid post-surgery recovery,
airway stenting procedures have been widely adopted to keep the
airway open (Ha et al., 2019; Xiong et al., 2019).

To design airway stents used for the above-mentioned clinical
practices, several requirements have to be met. First, the diameter
and the radial stiffness of the airway stents must be systematically
optimized, to keep the airway open and reduce the risk of
unnecessary complications simultaneously. Oversized stent or too
large radial stiffness will cause the airway tissue injured, e.g., mucosal
ischemia, while undersized stent or too weak radial stiffness will
result in migration inside airways (Murgu and Laxmanan, 2016).
Second, the stent must own sufficient fatigue strength to avoid
fracturing when suffered from the periodical contraction during
breathing and sometimes coughing (Folch and Keyes, 2018). Finally,
to avoid mucus plugging, the stent should minimize its impediment
on the mucociliary clearance, so that cilia-mediated mucus can flow
through the stented region (Bhora et al., 2016; Murgu and
Laxmanan, 2016).

Over decades, airway stents has been constantly studied
(Avasarala et al., 2019; Guibert et al., 2019; Guibert et al., 2020;
Mathew et al., 2020; Paunović et al., 2021; Soriano et al., 2021;
Ratwani et al., 2022). The most widely used airway stents in clinical
procedures are self-expandable metallic stents (SEMS). They are
designed into a series of standard dimensions and fabricated by laser
cutting technique. The SEMS are standard-sized stents, but the sizes
and structures of different patients vary a lot. Thus, this mismatch of
the standard stents and non-standard patients’ airway make it
difficult for patients to select proper stents during procedures. In
addition, the sharp edges of SEMS will cause mucosal trauma of the
airways, inducing the growth of granulation tissues which eventually
requires invasive procedures to remove the stents (Dasgupta et al.,
1998; Saad et al., 2003; Almadi et al., 2017; Folch and Keyes, 2018).
Silicone rubber tubular stents, compared to the metallic stents, are
much safer when deployed into patients’ airways due to their
intrinsic soft properties. However, mucus plugs or even
pneumonia may occur because the silicone stents will fully cover
the airways and further block the secretions cleaning (Saji et al.,
2010; Sökücü et al., 2020). To create a non-standard stent, there were
trials to suture several silicone rubber tubular stents together to
match complicated airway structures, such as the “Y” shape
structure located at the tracheal carina. But the stents are too
complicated during fabrication and still difficult to match the
airway sizes perfectly (Long, 1988; Majid et al., 2012).

In the previous work, an in vivo molded airway stent was
designed. The thermoplasticity-based single helical stent would
not induce the growth of the granulation tissue and avoid
blocking the mucociliary clearance, and its diameter can also be
adjusted during clinical procedures (Mencattelli et al., 2021). The
limitation of this work is that the single helical structure cannot
adapt to complicated branches. For example, when the stent is
required to support airway tissues at the tracheal carina, we had to
implant three single helical stents individually instead of a Y-shape
stent, which brings unnecessary complexity to clinical procedures
(Dutau et al., 2004; Madan et al., 2016; Sehgal et al., 2017). Besides,

the single helical structure has only one contact point at each cross-
sectional area, limiting the support effect in the airway in some cases.

In this paper, we proposed a novel series of stents which can be
fabricated by the same braiding method using a single soft tube, and
we named this type of stents as single-tube-braided stent (STB stent)
(Figure 1A). The stents are photocurable, and their diameters can be
customized during the clinical procedures. The STB stents are
designed to exhibit different shapes in order to adapt to varied
airway structures for various airway illnesses. Altogether six
different shapes of the stents (Figure 1B) were demonstrated
based on clinical requirements. Type Ⅰ to III stents are designed
for malacia located at tracheal, bronchi and/or tracheal carina. Type
IV stent can be used for tracheal intubation procedures, while Type
V to VI stents could provide supports to different types of TBS. In
addition to design and fabrication, we also established a theoretical
model to illustrate the relationship of radial stiffness and radial
deformation of the stents. Experiments were conducted to verify the
model and evaluate the mechanical properties of the stents,
including compressive tests and water tank tests. Then, the
supporting behaviors were evaluated in phantom experiments.
Finally, functional demonstrations were presented by stenting the
proposed stents in the ex vivo trachea and bronchi harvested from a
swine.

2 Material and methods

2.1 Stent design

2.1.1 Design strategy
The design strategy of STB stents is described in this section. The

STB stents are designed to be braided by a single tube filled with UV-
curable polymer. The tube we selected is a biocompatible silicone
tube, and the softness brought by the silicone material promise the
stent to exhibit easy deformation and adaptation to the airway
structures. To provide sufficient supporting force to the airway, the
radial stiffness is the key design criteria. In this work, the UV
polymer filled into the silicone tube is liquid before curing but will
turn to rigid material after ultraviolet radiation. In view of the
shortcoming of the in vivomolding stents, the STB stent is designed
as multi-helix structure, to provide sufficient supporting force and
contact points to the airways. From the perspective of design, five
conditions must be fully met in this work.

First and foremost, the stent must be braided by one single tube,
to provide customized stents for various airway illnesses, and the
stent shall be composed of 2m helixes. Then, a left-hand helix and a
right-hand helix with the same number of coils, which is symmetric
about X-Y plane, are braided as a “curve group” structure defined in
this work. The structures are illustrated by purple and blue curves in
Supplementary Figure S1A. Third, to provide supporting forces to
airways evenly, m pairs of “curve group” are designed to distribute
uniformly in circumferential. Since single curve group structure
cannot be evenly distributed and thus the number of m should be
larger than 1. Fourth, a start point and an end point for each helix
shall be defined, and the start point of later helix shall coincide with
the end point of the former helix. At last, the start point of the first
helix must coincide with the end point of the last helix, as shown in
subfigure II of Supplementary Figure S1B. Because curve group
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structures have to be evenly distributed, the start point and end point
of a single curve group structure have to locate at the two ends of the
arc of the projected circle, whose length is 1/m +N or (m − 1)/m +
N of the circumstance, whereN is any natural number representing
N full circles, as shown in Supplementary Figure S1C.

Although the following theory can be used to design the
proposed stents with more than three pairs of curve group
structures, the number of curve group structures m are selected
to be 2 in this work. This is because the stents are required to avoid
the impediment of mucociliary clearance, the contact area between
stents and airways shall be minimized. Therefore, the stent in this
work only consists of two curve group structures, indicating four
helixes in total.

2.1.2 Number of coils for the stent
For a single curve group structure, the two helixes must be

symmetric, so the pitch and diameter of the helix are the same
and the only parameter determining the length is number of coils
for each helix n. Because they are connected to each other, the turning
point shall locate at the middle points of the arcs formed by the start
and end points. Therefore, the number of coils for each helix n could
be written as a dataset when we have decided the value of curve group
ism, the dataset and each data element in the set is expressed as Eq. 1:

Nm � n
∣∣∣∣∣∣∣n � N

2
+ k

2m
{ } (1)

where k equals to 1 or m − 1.
Before deciding the actual number of coils, the relationship

between the number of helical coils and the parameters of airways
shall be expressed.

ntheory � l

P
(2)

where ntheory is the calculated helical coil number according to the
length of diseased airway, P is the required pitch of helix after the
stent is expanded in the airway, which will be discussed in Section
2.3.2, l is the length of the airway region need to be supported
(Figure 2A).

However, ntheory is the minimum value in theory and may not
equals any one data element n in the dataset Nm. Therefore, the
number of coils for each helix in practice (npractical) should be no
smaller than ntheory to ensure a sufficient supporting, and the value
should be selected from the dataset Nm. Therefore, Eq. 3 expresses
the way to select npractical.

npractical � min (Nm(find(Nm ≥Ntheory)) (3)

2.1.3 Pitch and diameter of the stent
Once the number of helical coils of STB stents have been

determined, the rest works to conduct is to decide the pitches
and diameters of the stents. The four helixes of the stent are
bonded to each other at their interaction points exhibiting
numbers of rhombic structures (Figure 2A), which will keep the
number of coils as a constant. The determination of the parameters
starts from the molding process.

The stents will be winded onto the mold for consistency, so the
diameter of the mold plus the twice the diameter of the tube shall be
smaller than the diameter of human main bronchi (12 mm in
general). The diameter shall be as small as possible, but not too
small to unnecessarily enhance the difficulty in manufacturing.

FIGURE 1
Concept of the single-tube-braided airway stent. (A) A schematic diagram, in which a Y-type single-tube-braided (STB) stent is implanted into the
trachea and bronchi. (B) 6 types of STB stents for various airway structures: Type Ⅰ stent, a straight stent for central airway obstruction. Type Ⅱ stent, a
L-shape stent to support trachea and one main bronchus. Type Ⅲ stent, a Y-shape stent to support trachea and both main bronchi. Type Ⅳ stent, a
T-shape stent for tracheal intubation procedures. Type Ⅴ stent, an hourglass stent for tracheostenosis. TypeⅥ stent, a conical stent for the disorder
at the end of the airway.
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Since we have the diameter of mold Dm and the actual number
of helical coils nreal, we can easily obtain the pitch of mold P0 by Eq.
4 (detail derivate process can be found in Supplementary Material
“Derivation processes of Equation 4” and Supplementary Figure S2).

P0 �
����������������
π2 D′2 −D2

m( ) + P22
√

(4)

where D′ � D − 4(d + 2t) is the inner diameter of expanded STB
stent in airway, d and t are the inner diameter and thickness of the
silicone tube used to fabricate the stents, and D is 3 mm larger than
the trachea of human in diameter (15 mm–20 mm in general) to
produce a similar preload against the trachea and prevent the stents
from migration.

The length of mold lm can be calculated by lm � npracticalP0,
where P0 is the pitch of the initial STB stent as shown in Figure 2B.

2.2 Stent fabrication and curing process

Here, the materials we chose, the fabrication method and curing
process are described in this section. In this work, we selected a
silicone tube with a thickness of 0.15 mm and the UV-curable
polymer we selected with high elastic modulus (about 1,790 MPa

measured with MARK-10, Mark-10 Corporation, NY, through a
standard uniaxial extension test) and relatively low creep.

To braid the proposed STB stent of diverse shapes, we designed a
modular molding technology (Figure 2B). The modular molds can
be assembled into different configurations to fabricate different
stents. The whole set of molds comprise main mold, left mold,
and right mold with grooves on each of them, which is
manufactured by a 3D printer (Ultimaker S3, Ultimaker B.V.,
MA). The grooves on the mold are braiding tracks to guide the
braiding of the tube.

The braiding process is described in detail in Figure 2B. All
the stents begin with winding the tube on the main mold, which
are used to fabricate Type I, V and VI stents as shown in
Figure 1B. The steps I to IV sequentially describe the steps to
wind the four helixes, and the tube highlighted in red represents
the ongoing operation in these steps. The whole braiding process
is presented in Supplementary Video S1. The fabrication of other
types of stents is built on the straight stent and requires the
assembly of right and/or left mold onto the main mold. Step V
illustrates assembling the left mold onto the main mold to form
the L-shape mold, which is used to fabricate Type II stent. In step
VI, the first four steps shall be repeated in sequence to braid the
second branch of the stent. To fabricate the Type III and IV

FIGURE 2
STB stent design strategy, fabrication and curing process. (A) Design parameters of an uncured STB stent on a mold (top), a cured STB stent in an
airway (bottom left), and inner structure of the STB stent (bottom right). (B) Fabrication steps. A silicone rubber tube ismanually winded along the grooves
on the mold. Steps I to IV sequentially described the steps to wind the four helixes, and the tube highlighted in red represents the ongoing operation in
these steps. Steps V to VIII separately illustrates braiding the second and the third branches of the stent. Step IX presents the injection of the UV-
curable polymer. The ready-to use stent is shown in step X. (C) Initial straight stent on a balloon catheter, and a phantom tracheal model with a simulated
stricture in the middle. (D) Curing process. The uncured stent is delivered into the model across the area of the stricture. Expand the stent radially by
balloon dilation to conform with the model. Cure the stent with UV light provided by an optical fiber.
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stents, the left mold should be first demolded and the right mold
is then assembled onto the main mold as shown in step VII;. In
step VIII, the second branch of the stent is braided by the above-
mentioned steps. In step IX, the stent is demolded, and the UV-
curable polymer is injected into the tube. The ready-to use stent
filled with polymer is shown in step X.

The curing process is described in detail. The ready-to-use stent
will be placed on a balloon catheter, with which the stent will be
delivered to the airways. We used an hourglass-shape transparent
pipe to represent the trachea with stricture, which was designed to be
consistent with the anatomical shape of an adult trachea. The
balloon catheter and pipe are shown in Figure 2C. As for curing

FIGURE 3
Modelling and characterization. (A) A rendered graph of a straight stent and a diagram of its deformation analysis. (B) Compression test setup. The
cured stent was positioned between the two plates with fillisters and compressed by a force-measuring platform. (C)Water tank test setup. The stent is
kept inside the phantom tracheal model at 37°C and a water pressure at a depth of 10 cm was applied. (D) Compression force versus travel distance.
Experimental results compared to the predicted results to verify the model and compared to the results for the single helical stent with the same
parameters. (E) Diameters of the stent [interpreted by the vertical and horizontal distances as shown in (C)] versus time (30 days).
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process, the stent positioned on the uninflated balloon catheter is
first delivered into the pipe. Then the balloon is inflated to expand
the stent so that the stent could adapt to the varied pipe diameters.
After that, we keep the inflation and insert an optical fiber connected
to a UV-light source through the central lumen of the balloon
catheter, to deliver UV-light to cure the polymer. The end of UV
optical fiber can be positioned at different points along with the
balloon to ensure fully curing of the stent. Finally, we deflate the
balloon and remove the catheter, leaving the cured stent in the pipe
(Supplementary Video S2).

2.3 Modelling and experimental method

In this section, we established a model to investigate the radial
stiffness of the STB stents, and meanwhile we performed a series of
experiments to investigate their mechanical properties. The
deformation of the STB stent under uniformly distributed
loading was studied in the first set of experiments, to verify the
model. The second set of experiments investigated the fatigue
performance of STB stents over time under radial loading (water
pressure at a depth of 10 cm). The modeling and experiments are
described below.

2.3.1 Model
The stents used in clinical procedures are usually oversized than

the airways to prevent the stent from migration and hence suffer
from compressive forces due to the elasticity of the tissue. Breathing
and coughing of patients can further improve the compressive force.
We established a theoretical model to establish the relationship
between the compressive force and the radial deformation of the
STB stent. This model shows how the parameters influence the
stiffness of STB stents, such as the cross-section area of cured
polymer, diameter D and helical angle of STB stent.

Based on the design configuration, we assume that the force
applied on all helixes are the same. To simplify the calculation, half
coil of a single helix is chosen for analysis (Figure 3A). The curve can
be considered as half of an elliptical beam, which will be pressed by a
uniformly distributed loading force f. Then, we can express the
compressed ellipse by Eq. 5:

4x2

l2
+ y2

h − w( )2 � 1 (5)

where h � D
2 is the equation of minor axis of the compressed ellipse,

w is the deflection of middle point on the beam, and themajor axis of
the compressed ellipse l �

��������
D2 + (P2)22

√
.

The perimeter of the semi-ellipse is kept constant due to the
inextensibility of the cured polymer, we can get the relationship of
the axes before and after compression:

l

2
( )2

+ h − w( )2 � l0
2

( )2

+ h2 (6)

where, l0 is the initial major axis of ellipse. This equation is
calculated based on the approximated calculation formula of the
perimeter of ellipse, which is generally written as
L � π

������������
2((l0/2)2 + h2)2

√
. In this equation, L is the perimeter of

ellipse (Muir, 1902).

The horizontal and vertical component of the uniformly
distributed loading force f is expressed as Eq. 7

fx � fcosθ;fy � fsinθ (7)
where,

sin θ � − h − w( )x������������������������
l

2
( )4

− x2 l

2
( )2

− h − w( )2[ ]2

√

cos θ �

l

2

���������
l

2
( )2

− x2
2

√√
������������������������
l

2
( )4

− x2 l

2
( )2

− h − w( )2[ ]2

√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Then, we can obtain the reaction force by Eq. 8:

Fy � ∫0

− l
2

fydx (8)

The friction between the beam and the internal wall of the
airway was assumed as below (the detailed explanations refer to
Supplementary Material “Explanation for Equation 9” and
Supplementary Figure S3):

Ffric � 2μAEw2

L*l
(9)

where μ is the friction coefficient, A is the cross-sectional area of
the beam.

Then, the moment applied to point x0, which could be at any
point on the beam, can be written as:

M � Fy x0 + l

2
( ) − ∫x0

− l
2

fy x0 − x( )dx − ∫x0

− l
2

fx y x0( ) − y x( )( )dx
− Ffricy x0( )

(10)
In general, the equation of deflection w can be expressed as

Eq. 11.

EIw″ � −M (11)
Therefore, we can obtain the relationship between deflection w

and the uniformly distributed loading f by substituting Eq. 10 into
Eq. 11 and integrating the corresponding expression.

2.3.2 Experimental method
The stiffness of the airway stent shall be strong to provide

sufficient radial support to keep the airway open during breathing
and sometimes coughing. Therefore, we conducted a few sets of
experiments. The experiment aims to prove that the stents fabricated
with the selected tube own sufficient stiffness for clinical procedures.

2.4 Radial stiffness

First, the stents were designed with the diameter of 13.4 mm and
pitch of 18.6 mm, to compare the radial stiffness to our previously
published work (Mencattelli et al., 2021) which had already proved
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its practicability in in vivo animal experiments. Second, the cured
diameter of the stents was chosen as the variate, whose initial
diameter before balloon dilation was kept the same, to investigate
the influence of diameter on the radial stiffness in response to
compressive loading, and the results were also compared to the
results predicted by the proposed model. The parameters of the STB
stent before curing were calculated according to Eq. 4. To conduct
the tests, the stents were radially compressed by a displacement of
0 mm–3 mm, which is referred to the research work (Mencattelli
et al., 2021). Force data was collected 20 points per second, and each
trial were repeated for three times. The results are presented in
Figure 3D.

The testing platform consists of a lifting platform with a force
gauge (MARK-10, Mark-10 Corporation, NY) and two parallel
plates with curved fillisters, between which the stents are
positioned, as shown in Figure 3B. The curvature of the fillisters
matched the unloaded diameters of the stents (10 mm, 12.5 mm,
13.4 mm, and 15 mm) and each plate covered a circumferential
angle of 20°C on each side of the stent. We assume that the
deformation of the stents in the experiment is similar to that
under radial loading. To simulate the slippery in airways, the
stents and fillisters were lubricated (Multi-Use Performance
Lubricant with Teflon, DuPont, NY).

2.5 Fatigue property

After implanted, the stents are suffering from continuously
radial loads at body temperature over a long period of time.
Therefore, to evaluate the performance of stents in a simulated
environment, we performed water-tank tests. The proposed stents
were delivered into a phantom tracheal models, which was placed
under 37°C water (Figure 3C). According to reference, the
continuous positive airway pressure (CPAP) to treat airway
disorders has been proven effective, and the value of the applied
pressure which is sufficient to maintain respiration equals to a water
pressure at a depth of 5 cm–10 cm (Pizer et al., 1986;WEIGLE, 1990;
Panitch et al., 1994).

The phantom tracheal model was casted with silicone with an
inner diameter of 10 mm and a thickness of 0.2 mm (The detailed
material constants based on Yeoh model are:
C1 � 1.0 × 10−1, C2 � 1.69 × 10−1, C3 � 2.66 × 10−4). According to
(Ha et al., 2019), the properties of the silicon had been proved with
biaxial testing experiments to exhibit similar mechanical property to
the actual trachea. This tracheal model was easier to collapse radially
because of its soft property. This means we simulated a worse case of
TBM, when the tracheal cartilages completely lose their functions
and cannot provide supports to the tracheal tissue, to evaluate the
performance of our stents (see Supplementary Figure S4).

As a comparison, three phantom tracheal models were side-by-
side positioned in a water tank under a depth of 10 cm. The ends of
the phantoms were glued and sealed to rigid tubes, which passed
through the holes in the wall of the tank. To produce a similar
preload against the trachea, the diameter of stents implanted in the
tracheal model is 3 mm larger than the diameter of the phantom. As
shown in Figure 3C, an STB stent was cured inside the middle
phantomwith a cured outer diameter of 13 mm, a single helical stent
whose diameter and pitch are the same with the STB stent was

delivered into the bottom phantom, while the phantom on the top
has nothing inside. The endoscopic views at the bottom of Figure 3C
show that only the phantom with the STB stent did not collapse
(Supplementary Video S3, Figure S5).

3 Results

3.1 Mechanical properties

The results show the radial stiffness of the stents were presented
in Figure 3D, and the stiffness was interpreted by the external
compressive force. It is obvious that a cured STB stent with a
larger diameter exhibits a stronger ability to resist a compressive
force. If compressed no more than 1.8 mm, the resistance ability for
external compressive force of the STB stent, whose pitch is 13.4 mm
and silicone tube is 1 mm in diameter, is similar to that of our
previous single helical stent. However, when compressed
displacement exceeds 1.8 mm, the resistance ability of STB stent
is larger than that of the single helical stent. This means that the
proposed stent has proved its resistance ability for external
compressive force is large enough to meet clinical requirements
(Ha et al., 2019; Mencattelli et al., 2021).

The results predicted with the model showed similar trend to the
experimental results in Figure 3D which verified the effectiveness of the
above-mentionedmodel. In the first stage of compression, the predicted
results were a little bigger than the experimental results. The differences
decreased with the increase of compressive displacement. In the second
stage, the experimental results increased with an even faster rate and
showed larger values than the predicted ones. The reasons behind are
discussed here. 1) In the model, we assumed that the elliptical beam
suffered a uniformly distributed load (Supplementary Figure S6A).
However, due to the fabrication error in practice, the stents cannot
always match well with the fillisters of plates (Supplementary Figures
S6B). The mismatch made the uniformly distributed load a
concentrated force and provided less constraints to the boundary of
the stents. Therefore, in the first stage, the stents were easier to deform
with a smaller compressive force. 2) After the stents were compressed
for a few millimeters, the compressed stents fully contacted with the
fillisters. If continue the compression, in theory, the compressed stents
should elongate along the axial direction of the stents (Supplementary
Figures 6C, 6E). But as illustrated in Supplementary Figure S6D, the
stents would deform into the gap between the plates, resulting in
irregular deformation. A large portion of the compression force would
be transmitted to the region to induce the irregular deformation rather
than compressing the stent as a whole. This may be the reason leading
to larger forces than the predicted ones in the second stage.

Figure 3E shows the radial deformation of the STB stent over a
period of 30 days. In each measurement, 6 sets of data were
recorded, and they are three pairs of horizontal distances (H1,
H2, and H3) and three pairs of vertical distances (V1, V2, and
V3). The details are explained in Figure 3C; Supplementary Figure
S7. The outer diameter of the STB stent decreased from 13 mm to
11.4 mm during the 30 days. The change of diameter is 1.6 mm,
which is smaller than 3 mm stated above, and the stent could still
maintain the airway open. Therefore, it is safe to conclude that the
STB stent would not fail for 30 days even if it is stented in a worse
simulated diseased airway.
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3.2 Benchtop and ex-vivo experiments

The STB stent proposed in this paper can be designed to produce
different types of stents for various airway structures. To
demonstrate stenting the STB stents in different airway
structures, we designed, fabricated and cured the rest five types
of stents, including stents in hourglass shape, conical shape, T shape,
L shape, and Y shape. We also fabricated five different phantom
airway models accordingly (Figure 4).

3.2.1 Benchtop experiments
Airway stenosis shows diameter decrease in airways. Stenting in such

an area is the variation of airway stents in diameter. The hourglass shape
stent, illustrated in Figure 4A, was obtained by curing an initial soft
straight stent in a tracheal model with a narrowed region to simulate
stenosis. The tracheal model, which was fabricated by a heat shrinkable
tube with a wall thickness of 0.5 mm, is 130mm in length, with a outer
diameter of 16mm, while the narrowed region is 30 mm in length and
10mm in outer diameter. Compared the diameters at point A and point

FIGURE 4
Benchtop experiments. Different shapes of the stents cured inside the corresponding phantom tracheal models with endoscopic views. (A, B)
Molded straight stents inside tracheal phantom model with insets showing endoscopic views. (C–E) Molded complicated-shaped stents inside a
phantom model of tracheal and bronchi with insets showing endoscopic views.
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C, the diameter at point B was much smaller, which is observed with an
endoscope. This proved the stents adapted well to both the normal
trachea model and the narrowed tracheal model.

Similarly, when the stenosis occurs at one end of airways, the
conical stent will be a good choice. As shown in Figure 4B, a conical
STB stent was cured in a conical tracheal model, and the endoscopic
view clearly showed that the stent formed could match the inner wall
of the phantomwell. Therefore, it is safe to conclude that the straight
STB stent could adapt to varied airway diameters.

The other three types of stents (T shape, L shape, and Y shape)
investigated whether the proposed STB stent could provide support to
different airway regions in more complicated scenarios. The T shape
stent shown in Figure 4C was implanted into a tracheal model with

incisions to simulate the functions of tracheostomy tubes. In Figures 4D,
E, we 3D printed a transparent tracheobronchial model (transparent
resin, Projet, SD system) to illustrate STB stent adapted to the trachea
and bronchi at the same time. This 3Dprintedmodel with a thickness of
1 mm simulated a trachea with the outer diameter of 15 mm and the
bronchi with outer diameters of 10 mm and 12 mm separately. The L
shape stent and Y shape stent were delivered into and cured inside the
model (Figures 4D, E). The results illustrates the proposed stents can be
used for various complicated airway illness (Supplementary Video S4).

3.2.2 Ex vivo evaluation
To further evaluate the stenting performance of STB stents in

real airways, we performed ex vivo experiments with trachea and

FIGURE 5
Ex vivo experiments. (A) Ex vivo swine airways and two types of stents used in the experiment. (B) Endoscopic view before (left) and after (right)
stenting of the inner walls of the trachea, trachea carina, right and left bronchus. (C) Stricture created to simulate stenosis in the ex vivo trachea. (D)
Endoscopic view before and after stenting in ex vivo trachea with stenosis.
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bronchi harvested from a swine (Figure 5A). The inner diameters
of the trachea and bronchi are 17 mm, 13 mm, and 12 mm
respectively, and endoscopic inspection were performed as
shown in Figure 5B.

We tested the stents in normal airways to validate their basic
functions and the delivering procedures. We cured a straight and a
Y-shape STB stent separately, and endoscopic inspection were
performed. It is clear that the stents adapted to the inner walls of
the trachea well, and no visual mechanical injuries caused by the
deployment procedure was found (Figure 5B). After that, to simulate
the trachea stenosis, we manually created a 2-cm length stricture in
the middle of the ex vivo swine trachea, by externally compressing
the trachea wall with three zip ties (Figure 5C). The stricture
constrained airway and left only approximately 1/5 of its original
inner cross-sectional area, which simulated a severe tracheal stenosis
(upper left panel in Figure 5D). To simulate the clinical procedure,
we delivered a straight STB stent covered the stricture area. The stent
was delivered with the above-mentioned balloon catheter, which is
also used to conduct balloon dilation to open the stricture area by a
little bit. The dilated stricture reopened to approximately 2/5 of its
original cross-sectional area. The stent was successfully cured in the
area and could support the trachea to avoid future stenosis. The
endoscopic inspection is shown in (Figure 5D) and (Supplementary
Video S5).

4 Discussion

This paper proposed a single-tube-braided airway stents for
various airway illness. The contribution of this work is
summarized here. We explained the design strategy and
fabrication method for the proposed stents and six types of
stents have been prototyped to demonstrate their adaptation to
different airway structures. We also established a model to predict
the influence of the design parameters on the radial stiffness of the
stents under external compression. Then, experimentally
verifications were conducted to investigate the deformation of
the stents in response to external loads. It showed that the
cured STB stents could bear a compression force of 5.79N,
which is 145% of what could be tolerated by the previous
stents, and proved the proposed stent has met the clinical
requirements on stent stiffness. In addition, the fatigue property
of the proposed stents was tested, and the stent could keep the
phantom tracheal model open when suffered continuously loads of
10-cm water pressure at body temperature for a period of 30 days.
Moreover, benchtop experiments and ex vivo evaluations on swine
trachea and bronchi were conducted to further validate the
practicability and adaptation of the proposed stents.

Our stent, compared to the commercial self-expandable
metallic stents (SEMS), would not cause injuries to the
tissue, and the geometrical design would not induce the
growth of granulation tissues which may require invasive
procedures to remove the stents out of the airway. In terms
of the comparison with silicon stents in clinical trials, our stents
can reduce the impediment on mucus flow and has less
possibility to cause mucus plugs. In addition, the proposed
stent shares the same advantage with the previous work that
the stents can be easily screwed out of airways to reduce the

chances to hurt the tissues, but this stent could provide more
reliable and uniform supports to the trachea than the previous
work. Moreover, the proposed braiding method provides
possibility to manufacture all types of airways stents with the
same fabrication technique.

5 Limitations of the study

Our study demonstrated the potential of STB stents, but
there are still limitations which require further investigation in
future works. 1) Fabrication: To fabricate a STB stent, we
manually braided the tube on a 3D printed mold, which is
not a standard fabrication technique. The errors in
fabrication will add inaccuracy to the theoretical prediction.
Thus, an automatic braiding equipment shall be built to improve
the fabrication precision in the future. 2) Modeling: In this
paper, to simplify the modeling process, we chose half
elliptical beam as the representative for analysis. We also
made a few assumptions or used approximated calculations
formulas. Even though the modeling showed similar results to
the experiments, the accuracy of theoretical model is limited. 3)
Experiment: It is normal to find both continual and fluctuant
breathes in real breathing. But in the water tank tests, the
silicone tube was placed under water with the inner space
connected to the atmosphere. The experiment only provided
static tests but no dynamic physiological conditions were
simulated. 4) Animal test: Only ex vivo experiment was
conducted in this work. To further evaluate the practicability
of STB stents in clinic procedures, we still need to conduct in
vivo experiments to test the proposed stents in future.
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Novel uniplanar pedicle screw
systems applied to thoracolumbar
fractures: a biomechanical study

Yuheng Jiang1,2,3, Xiang Cui1,2, Wei Ji1, Jia Li1,2, Yanli Shi4,
Jingxin Zhao1,2, Junsong Wang1,2*, Peifu Tang1,2* and
Wei Zhang1,2*
1Department of Orthopedics, Chinese PLA General Hospital, Beijing, China, 2National Clinical Research
Center for Orthopaedics, Sports Medicine and Rehabilitation, Beijing, China, 3Department of Orthopedics,
General Hospital of Southern Theater Command of PLA, Guangzhou, China, 4Anesthesia and Operation
Center, The First Medical Center of Chinese PLA General Hospital, Beijing, China

Objective: In this study, the advantages of the internal fixation configuration
composed of uniplanar pedicle screws in the treatment of thoracolumbar
fractures were verified by biomechanical experimental methods, which
provided the basis for subsequent clinical experiments and clinical applications.

Methods: A total of 24 fresh cadaveric spine specimens (T12-L2) were utilized to
conduct biomechanical experiments. Two different internal fixation
configurations, namely, the 6-screw configuration and the 4-screw/2-NIS (new
intermediate screws) configuration, were tested using fixed-axis pedicle screws
(FAPS), uniplanar pedicle screws (UPPS), and polyaxial pedicle screws (PAPS)
respectively. The spine specimens were uniformly loaded with 8NM pure force
couples in the directions of anteflexion, extension, left bending, right bending, left
rotation, and right rotation, and the range of motion (ROM) of the T12-L1 and L1-
L2 segments of the spine was measured and recorded to access biomechanical
stability.

Results: No structural damage such as ligament rupture or fracture occurred
during all experimental tests. In the 6-screw configuration, the ROM of the
specimens in the UPPS group was significantly better than that of the PAPS
group but weaker than those of the FAPS group (p < 0.01). In the 4-screw/2-
NIS configuration, the results were identical to the biomechanical test results for
the 6-screw configuration (p < 0.01).

Conclusion: Biomechanical test results show that the internal fixation
configuration with UPPS can maintain the stability of the spine well, and the
results are better than that of PAPS. UPPS has both the biomechanical advantages
of FAPS and the superiority of easy operation of PAPS. We believe it is an optional
internal fixation device for minimally invasive treatment of thoracolumbar
fractures.

KEYWORDS

biomechanical study, uniplanar pedicle screw, intermediate screw, thoracolumbar
fractures, screw tulip design
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1 Introduction

Thoracolumbar fractures are a common consequence of external
forces that result in continuous destruction of thoracic and lumbar
vertebrae. With the increasing global aging population, the incidence
of such fractures is on the rise. Pedicle screw and rod configuration is
the most used surgical intervention. The surgery includes key steps
such as fracture reduction and spinal stabilization. Fixed-axis pedicle
screws (FAPS) have been the standard equipment for open internal
fixation of the spine. However, during the operation of traditional
open surgery, the soft tissue retraction may cause muscle crushing
injury, destroy the muscle attachment point, etc., which may cause
postoperative pain and fatigue of the lower back muscles, extended
recovery time, and in extreme cases, spinal function impairment.

In recent years, the use of posterior spine minimally invasive
screw placement has become increasingly popular due to its
effectiveness in addressing the limitations of traditional open
surgery. By limiting the surgical approach’s breadth, minimally
invasive surgery reduces soft tissue injury and the probability of
postoperative low back pain and muscle weakening. FAPS must,
however, be placed in the same plane and at the same depth during
operation to allow for the connecting rod’s smooth insertion. The
limited exposure of the minimally invasive surgical field and
variations in surgeon expertise make inserting the connecting rod
for FAPS challenging, resulting in increased operation time and
variability in the operation’s outcome.

Surgeons are continuously seeking new pedicle screw fixation
systems that are more convenient for minimally invasive surgery

while maintaining biomechanical advantages. Among the available
solutions, the polyaxial pedicle screw (PAPS) has been commonly
employed. However, its overall biomechanics are weaker than those of
fixed-axis pedicle screws (FAPS), resulting in the loss of vertebral
body anterior height during the healing process (Yao et al., 2021). We
must therefore create new pedicle internal fixation products that are
stronger biomechanically and have superior therapeutic outcomes.

To ensure the overall biomechanical advantage of internal
fixation and facilitate minimally invasive surgical operations, we
designed a new uniplanar pedicle screw (UPPS) (Figure 1). The
screw head of UPPS has a limited range of motion within one plane
while remaining fixed in other planes. Theoretically, the free
movement of the screw head on the axial plane of the body does
not sacrifice the stiffness of the entire internal fixation structure on
the sagittal plane, and at the same time facilitates the insertion of the
connecting rod. UPPS offers the advantages of both FAPS and PAPS
and is ideal for minimally invasive posterior spinal surgery (Peck
et al., 2021).

In addition, our previous conducted research using the finite
element method and found that a four pedicle screws and two
modified new intermediate screws (NIS) had similar
biomechanical advantages compared to the six-pedicle screw
configuration (Li et al., 2020; Guo et al., 2021). This configuration
allows bilateral intermediate screws to reach the center of the injured
vertebra, elevate the depressed endplate, and maintain its reduction
position more efficiently than the traditional parallel configuration of
pedicle screws. The new configuration can enhance internal fixation
strength and enable simultaneous vertebroplasty and bone grafting

FIGURE 1
Three different pedicle screws and their schematic diagrams: (A) FAPS; (B) PAPS; (C) UPPS; (D) FAPS; (E) PAPS; (F) UPPS.
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procedures by surgeons. However, further research is needed to
determine whether UPPS is applicable to this new configuration.

In this paper, the range of motion of the vertebral body in the
T12-L1 and L1-L2 segments was measured using different internal
fixation devices through biomechanical research methods. The
biomechanical advantages of the UPPS internal fixation system
were verified by comparing the differences in the vertebral body
movements in the six spatial directions, including flexion, extension,
left bending, right bending, left rotation, and right rotation. The
following report presents the results of our research.

2 Materials and methods

2.1 Design and manufacture of uniplanar
pedicle screws and new intermediate screws

The 3D model of UPPS was created using Solidworks software
(Dassault Systèmes, Concord, MA, United States). This screw has an
inner diameter of 4.1 mm and an outer diameter of 6 mm, and its
hollow design enables minimally invasive insertion, with a 2 mm
diameter hollow lumen. Unlike FAPS, the UPPS has a head-shank
connection that allows for a ±30° range of motion on the body axis.
Spot welding is used in the manufacturing process to minimize the
movement of the head-shank in other directions.

The new intermediate screw was developed based on the USS®
cannulated schanz screw. The NIS design features threads situated at
the one-third shank, with a smooth section in the middle.

2.2 Specimen preparation

A total of 24 normal fresh cadaveric spine specimens (T12-L2)
were carefully selected for this study. Each specimen was examined
visually and with X-ray observation to ensure that no damage to the
functional unit of the spine or abnormal bony structures were
present. After removing the superficial muscle, fat and soft tissue,

the inter-articular ligament and intervertebral disc structure were
preserved. The specimens were then wrapped in double-layer plastic
bags and stored at −20°C for later use. Prior to testing, the specimens
were thawed at room temperature for 5 h. To create a model of
fracture, cuneiform osteotomy was performed on the L1 vertebral
body. The sample, test purpose, process, and post-test treatment
process were approved by the Guangdong Provincial Medical
Biomechanics Laboratory and related units, and all the
procedures were carried out in accordance with the ethics
guidelines established by the Chinese PLA General Hospital,
Beijing, China.

2.3 Groups

The biomechanical test comprised two parts. In the first part, we
aimed to investigate the biomechanical differences among UPSS,
FAPS, and PAPS for the short-segment 6-screw configuration,
respectively. The three groups were labeled as follows:1) 6-UPPS
2) 6-FAPS 3) 6-PAPS. The second part of the experiment was
designed to compare the biomechanical differences of the three
types of pedicle screws in the 4-screw configuration with two-NIS.
This was labeled as follows: 1) 4-UPPS/2-NIS; 2) 4-FAPS/2-NIS; 3)
4-PAPS/2-NIS (Figure 2). To ensure proper experimental design
and grouping, we equally divided the 24 specimens into 6 groups,
with 4 samples in each group.

2.4 Surgical operation

In the first part of the experiment, 6 pedicle screws were inserted
into each specimen, with two screws placed in each of the T12, L1,
and L2 segments. The screws were all 6.0 mm in diameter and
45 mm in length and connected longitudinally by connecting rods
without cross-links. A standard surgical procedure was followed by
the same experienced surgeon, adhering strictly to the
manufacturer’s specifications for screw placement.

FIGURE 2
Show the spinal specimen and samples after internal fixation procedures. (A)Normal fresh cadaveric spine specimens; (B) 6-screw configuration; (C)
4-screw/2-NIS configuration.
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In the second part of the experiment, 4 pedicle screws were
inserted into each specimen, with 2 screws placed in each of the
T12 and L2 levels. The newly developed NIS screw was inserted
laterally at the L1 level, which is hollow and has inner and outer
diameters of 5.2 and 6 mm, respectively. The NIS screw was
connected to the longitudinal rod connecting the T12 and
L1 pedicle screws through a connecting device. The rest of the
surgical procedure was the same as in the first part, and was
performed by a deputy chief physician with extensive surgical
experience.

After the placement of internal fixation for each specimen was
completed, the effectiveness of the placement was confirmed by
taking an X-ray (Figure 3).

2.5 Biomechanical tests

To maintain the mechanical properties of fresh specimens and
ensure accurate test results, the entire test procedure for each
specimen must be completed within 8 h. In the event of ligament
rupture, fracture, or intervertebral disc herniation, testing of the
affected specimen must be discontinued, and a replacement
specimen must be used for subsequent testing.

The testing process is to place the specimen on the pure force
couple loading table, fix the L2 vertebral body, and allow the
T12 vertebral body to move freely. The T12 vertebral body is
connected with the force couple loading link, and the 8NM pure
force couple is uniformly loaded on the six degrees of freedom of
flexion, extension, left bending, right bending, left rotation, and right
rotation. The motion and force characteristics of the specimen are
evaluated under the same loading conditions.

The motion capture system and EVaRT software (Motion
Analysis Company, United States) were used to measure the
absolute value of range of motion (ROM) of each segment of the
specimen (Figure 4). The system employs the Edge-8 high-speed
infrared capture lens, which can achieve fast (response time <0.001s)

and high-precision (0.001 mm) capture of Marker point space
coordinates.

2.6 Statistical analysis

Statistical analysis was performed using SPSS 19.0 software, and
the results were presented in the form of mean ± standard deviation.
Statistical differences between groups were compared using one-way
ANOVA. Significance was defined as p < 0.05.

3 Results

3.1 Spinal ROM in 6-screw configuration
group

During the biomechanical testing of the 6-screw configuration,
no instances of ligament rupture or bony structure compromise
were observed in any of the specimens.

3.1.1 ROM of T12-L1 level
At the T12-L1 level, with the 6-screw configuration composed of

UPPS, the ROM of the spine in six degrees of freedom of flexion,
extension, left curvature, right curvature, left rotation, and right
rotation was 0.44° ± 0.04°, 0.73° ± 0.01°, 0.46° ± 0.02°, 0.63° ± 0.05°,
0.52° ± 0.01°, and 0.50° ± 0.06°, respectively. These results are
significantly better than the 6-screw configuration composed of
PAPS at all degrees of freedom levels (p < 0.01) (Figure 5).
Besides, in specimens using FAPS, the ROM at the T12-L1 level
was also found to be superior to those using PAPS (Supplementary
Table S1).

3.1.2 ROM of L1-L2 level
At the L1-L2 level, with the 6-screw configuration composed of

UPPS, the ROM of the spine under loads of flexion, extension, left

FIGURE 3
X-rays were used to confirm the success of the internal fixation insertion.
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curve, right curve, left rotation, and right rotation were 0.63° ± 0.09°,
0.51° ± 0.05°, 0.48° ± 0.02°, 0.58° ± 0.04°, 0.54° ± 0.03°, and 0.47° ±
0.01°, respectively. Similar to the T12-L1 level, this result was also
significantly better than the 6-screw configuration composed of

PAPS at all degrees of freedom levels (p < 0.01) (Figure 6). The
specimens utilizing FAPS demonstrated superior spinal range of
motion at the L1-L2 level compared to those using PAPS as well
(Supplementary Table S2).

FIGURE 4
Sample in motion capture system.

FIGURE 5
Show the ROM (°) of the T12-L1 segment in 6-screw configurations.
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3.2 Spinal ROM in 4-screw/2-NIS
configuration group

During the biomechanical testing of the 4-screw/2-NIS
configuration, no significant damage or destruction of load-
bearing structures such as ligaments or bony structures were
observed.

3.2.1 ROM of T12-L1 level
The internal fixation configuration composed of 4 UPPS and

2 NIS made the ROM of the spine model at the T12-L1 level under
flexion, extension, left bending, right bending, left rotation, and right
rotation force couples to be 0.52° ± 0.01°, 0.71° ± 0.06°, 0.76° ± 0.03°,
0.64° ± 0.02°, 0.76° ± 0.04°, and 0.64° ± 0.02°, respectively. The results
were superior to the configuration consisting of 4 PAPS/2 NIS (p <
0.01) (Figure 7). In addition, ROM of the spine at the T12-L1 level in
specimens that utilized 4-FAPS/2-NIS was found to be superior
compared to those utilizing 4-PAPS/2-NIS (Supplementary
Table S3).

3.2.2 ROM of L1-L2 level
At the L1-L2 level, the 4-UPPS/2-NIS configuration also

showed better spinal stability than 4-PAPS/2-NIS (p < 0.01)
(Figure 8). The ROM under flexion, extension, left bending,
right bending, left rotation and right rotation couples were
0.55° ± 0.03°, 0.68° ± 0.04°, 0.66° ± 0.01°, 0.69° ± 0.06°, 0.67° ±
0.04°, and 0.64° ± 0.04°, respectively. Additionally, according to the
results of the experiment, ROM of the spine at the L1-L2 level in
specimens that utilized 4-FAPS/2-NIS was also found to be
superior compared to those utilizing 4-PAPS/2-NIS
(Supplementary Table S4).

4 Discussion

This study provides evidence that UPPS confers unquestionable
biomechanical advantages in spinal surgery. Biomechanical testing
of both 6-screw and 4-screw configurations revealed no damage or
destruction to load-bearing structures such as ligaments and bones.
Additionally, we measured the ROM of each spine segment in six
degrees of spatial freedom. ROM partially reflects the mechanical
stability of the fused vertebral body in biomechanical experiments.
Our findings indicate that the use of UPPS screws results in superior
biomechanical stability compared to PAPS models. These results
have significant implications for the treatment of spinal pathologies
with minimally invasive surgery, expanding the range of available
surgical options.

Minimally invasive spine surgery minimizes the incidence of
postoperative low back pain and weakness in patients with open
posterior spine surgery. Clinical application also verified the
protection effect of the back muscles by the minimally invasive
spine surgery. Kim et al. compared the trunk muscle strength of
patients who underwent open posterior spinal fixation and those
who underwent percutaneous internal fixation and found that the
lumbar spine extension improved by more than 50% in patients who
underwent percutaneous fixation, but not in patients who
underwent open surgery (Kim et al., 2005). Kawaguchi et al.
(1994) performed muscle biopsies on patients who underwent
spinal revision surgery and observed atrophy of both type I and
type II muscle fibers, extensive branching of fibrous tissue, and a
“moth-eaten” appearance (Zhao et al., 2000). This behavior is caused
by muscle compression, similar to the use of pneumatic tourniquets
in extremity surgery. Additionally, denervation is thought to be the
mechanism of muscle degeneration and atrophy after traditional

FIGURE 6
Show the ROM (°) of the L1-L2 segment in 6-screw configurations.
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open surgery. Multifidus, a muscle with a single-segmental
distribution of nerves, is particularly vulnerable to injury (Hodges
et al., 2006). Prolonged stretches can cause damage at the
neuromuscular junction, leading to muscle denervation and
postoperative muscle degeneration and atrophy.

Given the advantages of minimally invasive surgery, a matching
pedicle screw design is required. The conventional FAPS is secured
between the threaded section and the head, which provides high
mechanical stability after vertebral body fusion. Our research further
supported this claim. At levels of T12-L1 and L1-L2, FAPS screws
had the least ROM values across all setups, indicating greater
biomechanical stability. However, the use of FAPS requires
precise alignment of the pedicle screw caps of each spinal
segment on the same horizontal line to ensure insertion of the
connecting rod. Unfortunately, the limited exposure of the
minimally invasive surgical field and the challenging passage of
the rod make it difficult to perform this task. Moreover, the already
constrained operating environment is made even more constrained
by the employment of the screw sleeve throughout the surgical
procedure. This leads to prolongation of operation time and poor
treatment outcomes in some patients. Thus, the benefits of
minimally invasive surgery may be outweighed by the challenges
posed by the FAPS system.

In 2001, Foley et al. (2001) have developed the PAPS system.
Using the geometric trajectory principle, the connecting rod can
be inserted into the deep muscle precisely and conveniently. It
has undergone revolutionary changes and is currently the most
widely used pedicle fixation device for minimally invasive
posterior spine surgery. However, due of the mobility between
the PAPS head and threaded component, the total configuration’s
sagittal mechanical strength is decreased. Its surgical impact is
also less than that of FAPS since it cannot be employed as a tool

for fracture reduction and lacks intervertebral compression and
distraction capabilities.

This study demonstrated that the ROM of the spine was the
largest in the configuration composed of PAPS, indicating that the
stability of the spine was worse. This is consistent with other
research findings. Palmisani reported in a retrospective study that
the use of polyaxial pedicle screws which are less rigid and might
therefore increase the risk of loss of correction with time (Palmisani
et al., 2009). A study by Shim also found that the use of PAPS is not
conducive to restoring the height of the anterior column of the
vertebral body and correcting kyphosis (Shim and Seo, 2022). A
previous finite element study of ours also confirmed that the
stabilization of the spine was worse with PAPS than with FAPS.
In addition, during flexion and extension of the spine, the overall
von Mises stress of the internal fixation using PAPS was higher,
indicating that the biomechanical performance of the internal
fixation was poor (Li et al., 2020).

UPPS was designed to address the fixation challenges
encountered during minimally invasive spine surgery, particularly
in situations where the use of PAPS is not desirable from a
biomechanical standpoint. Our findings support the notion that
UPPS offers superior biomechanical benefits compared to PAPS.
Although our experimental data show that FAPS has higher
biomechanical stability than UPPS, there might not be a
significant difference between the two in clinical practice. Yebin
confirmed that the therapeutic effects of UPPS and FAPS were
comparable in the follow-up period of 12–18 months through a
retrospective research of 204 patients. Patients treated with UPPS
experienced less intraoperative bleeding and spent less time in the
hospital. Additionally, when it comes to restoring the anterior
vertebral body’s height following surgery, UPPS and FAPS have
comparable results (Ye et al., 2022). This demonstrates that UPPS

FIGURE 7
Show the ROM (°) of the T12-L1 segment in 4-screw/2-NIS configurations.
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combines the advantages of FAPS and PAPS, ensuring sufficient
biomechanical stability while facilitating the operation and reducing
the risk of postoperative complications.

The biomechanics benefits of UPPS have also been supported by
earlier investigations. Ye and Luo compared the ultimate load of
FAPS, UPPS, and PAPS for internal fixation failure in static and
dynamic biomechanical tests. They confirmed that UPPS has better
axial mechanical stiffness than PAPS, which can reduce the risk of
loss of reduction (Ye et al., 2017). The use of long segmental fixation
for spinal fusion in this work, however, raises concerns about multi-
segment damage and aberrant stress distribution. Liu et al. (2019)
tested three types of screws and recorded two parameters that affect
the retentive force including the tilt angle and the nut tightening
torque. They found that the tulip-rod interface of FAPS
frequently has a tilt angle, and this greatly reduces the
retentive force. Therefore, Serhan et al. (2010) advocated for
the use of polyaxial or uniplanar screws at the distal end of long
spinal constructs since these screws increase the strength of the
rod-tulip interface, and tilt angle occurs frequently at the distal
end of long spinal constructs.

Intermediate screw have been developed to facilitate
vertebroplasty and reduction maneuver (Baaj et al., 2011; Wang
et al., 2012; Liao et al., 2017; Basaran et al., 2019). According to our
prior article’s finite element analysis, the configuration of
employing two new intermediate screws instead of two pedicle
screws in the center can give appropriate biomechanical strength
for the treatment of vertebral fractures (Li et al., 2020; Guo et al.,
2021). In this paper, we continued our prior study by conducting
biomechanical experiments using the newly designed intermediate
screw. The results demonstrated that the 4UPPS/2NIS
configuration was superior to 4PAPS/2NIS, consistent with the
findings of the 6-screw configuration. In addition, the new

intermediate screws offer benefits for both vertebroplasty and
fracture reduction simultaneously. The new intermediate screw
is placed in a manner, that is, more outside-in than typical pedicle
screws, which enables it to reach the center of the fractured
vertebral body and elevate the compressed endplate for better
maintenance of reduction. Additionally, the newly created NIS nail
features a lateral window at the distal end, that is, practical for bone
grafting or filling with bone cement, enabling concurrent
vertebroplasty during the procedure. By contrast, the traditional
use of short-segment fixation requires the middle pedicle screw to
be pulled out for bone cement filling or bone grafting after fracture
reduction, then reinserted after vertebroplasty, which interrupts
the normal operation and prolongs the operation time (Chen et al.,
2014; Li et al., 2016). Our designed NIS simplifies the surgical
procedure by allowing for vertebroplasty through the lateral
window after reduction and fixation.

There are several limitations to this study that need to be
addressed. Firstly, the biomechanical specimens used in this
study were derived from normal spines, and the biomechanical
characteristics of pathological spines, such as those with
osteoporosis, may differ. Secondly, this study did not test the
ultimate load of internal fixation, which could provide additional
information on the stability of the constructs. Additionally, there are
various similar screws available in clinical practice, but this study
only compared one type of FAPS and PAPS. These are issues that
warrant more study.

5 Conclusion

The biomechanical test findings revealed that the configuration
employing the innovative UPPS had strong biomechanical benefits

FIGURE 8
Show the ROM (°) of the L1-L2 segment in 4-screw/2-NIS configurations.
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and assured spine stability. UPPS combines the biomechanical
advantages of FAPS with the ease of use of PAPS. It is an
optional minimally invasive internal fixation device for the
treatment of thoracolumbar fractures.
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Background: The effects of cannulated screws made of polyetheretherketone
(PEEK) on the biomechanical properties of the vertebral body during vertebra-
pediculoplasty remain unclear. This study aimed to investigate whether PEEK
screws have the potential to replace titanium alloy screws.

Methods: The surgical model of two differentmaterials of screwswas constructed
using the finite element method. The biomechanical effects of the twomodels on
the vertebral body under different working conditions were compared.

Results:① The peak von Mises stress of PEEK screws was significantly lower than
that of titanium screws, with a reduction ranging from 52% to 80%. ② The von
Mises stress values for the injured T12 spine were similar for both materials.
Additionally, the segmental range of motion and intervertebral disc pressure
showed no significant difference between the two materials.

Conclusion: PEEK screws demonstrated advantages over titanium screws and
may serve as a viable alternative for screw materials in vertebra-pediculoplasty.

KEYWORDS

screw, finite element analysis, biomechanics, PEEK, vertebra-pediculoplasty

1 Introduction

Vertebra-Pediculoplasty has emerged as a novel treatment approach for managing split
and delayed osteoporotic vertebral fractures that were at risk of cement dislocation (Noritaka
et al, 2021). It addressed the issue of poor clinical outcomes associated with balloon
kyphoplasty for cleft osteoporotic vertebral fractures (Takahashi et al, 2019). The
method involved using cannulated screws inserted into the cement block, in
combination with balloon kyphoplasty, to create a “pedicle” (Noritaka et al, 2021).
Traditional screws were primarily made of titanium, which offered excellent mechanical
properties and good biocompatibility. However, their elastic modulus significantly differed
from that of bone tissue, thereby increasing the risk of implant-related complications such as
screw loosening or fracture, degeneration of adjacent segments, and long-term
complications like pseudarthrosis (Zhang and Rong, 2020).
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To overcome these limitations, this study proposed the use of
polyether-ether-ketone (PEEK) material as an alternative to titanium
alloy screws. PEEK has been extensively studied as an orthopedic
implant material since the 1990 s (Kurtz and Devine, 2007). It has
been a semi-crystalline polymer that exhibited excellent mechanical
properties, favorable biocompatibility, X-ray penetrability, and other
desirable physical and chemical properties, making it a promising
material for orthopedic implants (Panayotov et al, 2016).
Furthermore, its elastic modulus closely resembles that of normal
human bone tissue, reducing stress-shielding effects (Zhao et al,
2020; Mrówka et al, 2021). Hence, this study aimed to evaluate the
potential benefits of using PEEK screws in vertebra-pediculoplasty to
minimize the risks associated with titanium alloys.

As vertebra-pediculoplasty was a relatively new method, the
biomechanical effects in clinical practice remained unclear. Finite
element (FE) analysis served as a valuable tool for assessing the
biomechanical parameters of vertebral columns (Marien et al, 2017),
and several studies have been conducted to evaluate the
biomechanical properties of titanium and PEEK retention bars
and spacers during surgery (Li et al, 2023). However, studies on
titanium and PEEK screws have been limited to in vitro experiments
(Lindtner et al, 2018; Stavros et al, 2020). Therefore, this research
employed finite element analysis to compare the biomechanical
effects of PEEK and titanium screws in vertebra-pediculoplasty,
utilizing a finite element model of the human T11-L1 segment. The
findings of this study may provide valuable theoretical guidance for
the clinical application of screw materials.

2 Materials and methods

2.1 Establishment of normal thoracolumbar
and osteoporotic fracture models

The CT data of a healthy 30-year-old male were imported into
Mimics software (Materialise Technologies, Leuven, Belgium) to

initially create a geometric model of the thoracolumbar spine (T11-
L1). The thoracolumbar spine model was then imported into 3-
Matic (Materialise Technologies, Leuven, Belgium) for individual
processing of each vertebral body, resulting in a more accurate
model structure in Geomagic software (Geomagic Inc., North
Carolina, United States). The model was further processed in
HyperMesh software (Altair Engineering Corp, Michigan,
United States) for meshing, material property assignment, and
assembly. Finally, the model was imported into Abaqus software
(Dassault Systemes, PA, United States) for calculations and analysis
(Tan et al, 2021). The elastic modulus of the osteoporotic vertebral
structures was determined based on POLIKEIT et al (POLIKEIT
et al, 2003), and specific material properties were determined
according to previous studies (SHIM et al, 2008), as shown in
Table 1.

2.2 Establishment of surgical model

The hollow lateral screw geometry was created in SolidWorks
and imported into HyperMesh to assemble it with the vertebral
body. The vertebral body-screw connection was simulated using a
“binding” constraint, completing the vertebral screw fusion model.
Two postoperative models of different materials (titanium and
PEEK) for screw placement into the vertebral body were
established based on vertebra-pediculoplasty. The cannulated
screws used were 6.5 mm in diameter and 50 mm long. During
the operation, bone cement was injected into the vertebral body
through the hollow screw, and it diffused around the side hole of the
screw, wrapping the screw evenly in a cylindrical shape (WANG
et al, 2014). Each cannulated screw was injected with 2 ml of bone
cement, and a cylindrical block with a radius of 8 mm and a height of
9.95 mm was created in SolidWorks to simulate the bone cement
block. The screws of the two different materials had the same
structure and shape. The establishment of the surgical operation
model is illustrated in Figure 1.

TABLE 1 Material properties of thoracolumbar spine and screws (POLIKEIT et al, 2003; Stavros et al, 2020; Tan et al, 2021).

Component Young’s modulus (MPa) Osteoporosis (normal) Poisson’s ratio Osteoporosis (normal) Element type

Cortical 8,040 (12,000) 0.3 (0.3) C3D8R

Cancellous 34 (100) 0.2 (0.3) C3D4

Posterior element 2,345 (3,500) 0.25 (0.3) C3D4

Endplate 670 (1,000) 0.4 (0.4) C3D8R

bone cement 3,000 0.4 C3D4

Titanium screws 110,000 0.28 C3D4

PEEK screws 3,600 0.25 C3D4

Nucleus pulposus Mooney-Rivlin, C1 = 0.18, C2 = 0.03 C3D8RH

Annulus fibers Calibrated stress-strain curves Spring

Facet cartilage Neo-Hookean, C10 = 2 C3D8RH

Annulus ground Mooney-Rivlin, C1 = 0.18, C2 = 0.045 C3D8RH

Ligament Calibrated deflection–force curves Spring

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Wang et al. 10.3389/fbioe.2023.1225925

38

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1225925


2.3 Loads and boundary conditions

A follower load of 500 N was applied to the upper surface of the
T11 vertebral body to simulate physiological compressive loading. A
moment load of 7.5 N m was applied to the T11 vertebral body to
simulate forward flexion, back extension, lateral bending, and axial
rotational motion. During loading, all degrees of freedom of the
lower surface of the L1 vertebral body were constrained. (LIAO et al,
2017; DU et al, 2021).

2.4 Main outcome indicators

The maximum von Mises stresses of the screws and the injured
T12 vertebral structure were compared for each model with different
materials under various gestures such as flexion, extension, left
bending, right bending, left rotation, and right rotation.
Additionally, the segmental range of motion and intervertebral
disc pressure were also evaluated.

3 Results

3.1 Verification of the normal thoracolumbar
vertebrae finite element model

The range of motion (ROM) of the vertebral body was calculated
under different postures. The ROMs of the T11-T12 segments were
found to be 7.4°, 8.9°, and 4.6° for flexion and extension, lateral
bending, and axial rotation, respectively. Similarly, the ROMs of the
T12-L1 segments were 7.2°, 8.7°, and 3.8° for the corresponding
postures. These results were compared with previous experimental
data, and they were consistent with the findings reported in the
literature (PANJABI et al, 1994; LIANG et al, 2015).

3.2 Maximum stress results of the screw

In the six models, the peak von Mises stress of the PEEK screws
was 17.52 MPa, 9.125 MPa, 16.66 MPa, 8.48 MPa, 14.94 MPa, and

17.8 MPa. On the other hand, the peak stress of the titanium alloy
screws was 89.03 MPa, 29.93 MPa, 69.06 MPa, 31.37 MPa,
90.88 MPa, and 37.48 MPa (e.g., Figure 2A). Upon comparison, it
was observed that the maximum von Mises stress on PEEK screws
was significantly lower than that on titanium screws.

3.3 Maximum Stress Analysis of Injured
Vertebral T12 Structure and Analysis of
Segmental Range of Motion and
Intervertebral Disc Pressure

There were no significant differences in the maximum stress of the
T12 cortical bone in the injured vertebra when using PEEK screws
compared to titanium alloy screws under the six different states.
Similarly, no noticeable differences were found in the maximum
stress of the T12 cancellous bone or the analysis of the endplates
(e.g. Figure 2B–D). Furthermore, the analysis of the range of motion of
the vertebral body and the intervertebral disc pressure in the T11-L1
segment yielded similar results (e.g. Figure 2E, F). Upon comparing the
results of the finite element analysis, it was concluded that different
materials have minimal impact on the vertebral body.

4 Discussion

Due to its unique properties, PEEK has gained significant interest in
bone implant research. The use of PEEK in orthopedic screws offers a
promisingavenueforexploration.Inthisstudy,weconductedasimulation-
based analysis to assess the potential of PEEK as a substitute for the
conventional titanium alloy used in screw fabrication. PEEK is a semi-
crystallinepolymerwithexcellentproperties suchashighmodulus,melting
point, processing performance, and strength (KULKARNI et al, 2007). Its
elastic modulus closely resembles cortical bone, which reduces stress-
shielding effects (MO et al, 2019). Additionally, PEEK is radiolucent,
biocompatible, and does not cause artifacts during magnetic resonance
scanning.

Recent efforts have focused on optimizing the mechanical and
biological properties of PEEK through various methods such as 3D
printing, coating, chemical modification, and the introduction of

FIGURE 1
Establishment of the model after screw operation. (A): Schematic diagram before T11-L1; (B): Schematic diagram of T11-L1; (C): Screw placement;
(D): Screw-cement model.
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bioactive or antibacterial substances (Chen et al, 2022). These
modifications aim to enhance the overall properties of PEEK and
facilitate the treatment of bone injuries, making PEEK materials a
promising option for lumbar spine repair.

In recent years, numerous studies have explored the factors that
influence screw stability, including screw diameter, shape, length,
thread shape, implantation method, angle, and combination
(ABSHIRE et al, 2001; KINER et al, 2008; SENGUPTA and
Herkowitz, 2012; Karami et al, 2015; JENDOUBI et al, 2018;
NAKASHIMA et al, 2019). The current study investigates the
effect of screw material in finite element analysis to provide
further insights.

By comparing the von Mises stress of screws made from
different materials under different vertebral body motions, our
analysis reveals that PEEK screws have a significant advantage in
reducing peak stress compared to titanium alloy screws. Specifically,
the range of reduction observed in the von Mises stress with PEEK
screws ranges between 52% and 80%. The observed reduction in
peak stress indicates that the use of PEEK screws may lead to reduce
the incidence of screw loosening, thereby establishing its potential as
a promising alternative material. Some experiments have confirmed
the idea that PEEK screws have a low risk of loosening. Richard
Lintner et al (Lindtner et al, 2018) conducted cyclic loading tests on
ten cadaveric lumbar vertebrae to compare the performance of
carbon fiber-reinforced PEEK (CF/PEEK) and standard titanium
pedicle screws in reducing screw loosening. The study found that
PEEK and CF/PEEK screw/rod configurations had a significant
advantage over titanium screws in reducing screw loosening.
Similarly, Stavros Oikonomidis (Stavros et al, 2020) conducted
cyclic loading tests on ten freshly frozen human cadaveric
lumbar vertebrae to investigate the loosening rate of pedicle
screws made of CFR/PEEK compared to titanium. The study
concluded that the use of CFR/PEEK pedicle screws could reduce
the rate of screw loosening. Further investigation is warranted to
compensate for the lackofclinical studiesusingpedicle screwsmadeof
PEEK. One avenue for exploration is to compare relevant trials
involving PEEK rods. Qian Jiaming et al (QIAN et al, 2022) and

HuangWeimin et al (Huang et al, 2016) conducted follow-up studies
for 6 months and 2 years, respectively, on patients who underwent
posterior lumbar pedicle internal fixation and multi-level fixation
usingPEEKmaterial. The results of the studies showedno instances of
screw fracture or loosening during the respective follow-up periods.
Although further clinical follow-up studies are required to ascertain
the superiority of PEEK screws over other materials in preventing
screw loosening, recent research suggests that PEEK screwsmay have
similar benefits to PEEK rods in this regard.

When assessing the risk of screw fracture, it is important to
consider the ratio of peak stress to yield stress rather than focusing
solely on stress magnitude. The ratio of peak stress to yield stress for
PEEK screws ranged from 8% to 17%, while for titanium screws, it
fell within the range of 3%–12% (PEEK: 100 MPa, titanium:
750 MPa). The higher percentage for PEEK screws suggests a
potential escalation of breakage risk (e.g., Figure 3), consistent
with prior findings by FAN et al (FAN et al, 2021). However,
there have been no reported cases of PEEK rod fracture, possibly
due to the load experienced under physiological conditions being
insufficient to cause rupture. Consequently, screw breakage is
unlikely to occur.

Previous investigations have examined the load transmission
properties of titanium alloy posterior screw rod systems and PEEK
screws in posterolateral lumbar fixation. These studies indicated that
the titanium alloy system can transmit approximately 67% of the
axial compressive load, while the natural upright state can bear only
about 20% of the load (CUNNINGHAM and POLLY, 2002; AHN
et al, 2008). PEEK screws have favorable characteristics such as
biocompatibility, radiolucency, and a lower elastic modulus
compared to titanium alloy screws. These characteristics allow
PEEK screws to transfer more load to the front column,
improving the load distribution between the front and rear
columns. A finite element study by GARNET et al (GORNET
et al, 2011) supported this finding, demonstrating that a titanium
rod bore at least 6% more load than a PEEK rod. This evidence
suggests that the principal advantage of PEEK screws lies in
mitigating stress concentration on the screw.

FIGURE 2
The stress results of the structure of the vertebra body [(A) The result of stress on pedicle screw; (B, C, D): The stress results of the T12 structure of the
injured vertebra; (E, F): the result of the segmental range of motion and intervertebral disc pressure; FL = flexion, EX = extension, LB = left bending, RB =
right bending, LAR = left axial rotation, and RAR = right axial rotation].
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Next, we analyze the finite element results of the vertebral
structure. The von Mises stress of the vertebral body, as well as
the segmental Range of Motion and Intervertebral Disc Pressure,
were obtained through finite element analysis under various
conditions. The results show that the stability of the vertebral
body remains largely unaffected. Similar findings have been
reported in related investigations. Nomidis et al (Stavros et al,
2020) conducted biomechanical experiments using cadaveric
specimens and found no macroscopic changes in the vertebral
structure. Additionally, YEAGER et al (YEAGER et al, 2015)
compared PEEK and titanium rods using human lumbar spine
specimens and concluded that both materials offered comparable
stability under different loading modes. While PEEKmay not match
the strength and rigidity of titanium alloys, it possesses adequate
strength and rigidity to maintain spinal stability and endure
physiological biomechanical demands. The elastic modulus of
PEEK closely matches that of bone tissue, allowing PEEK screws
to conform to micro-movements and deformations of
interconnected spinal bones. This feature reduces the likelihood
of stress concentration and ensures a secure connection. Moreover,

PEEK demonstrates exceptional biocompatibility, minimizing the
risk of inflammatory responses or tissue rejection. PEEK screws can
integrate stably with the surrounding bone tissue, exhibiting
biostability comparable to that of titanium screws. The adaptive
nature of PEEK material to bone morphology enables it to establish
minute biological interconnections with bone tissue, enhancing the
stability of PEEK screw integration with the spinal bone and
reducing the risk of loosening. However, the development of
more ideal internal fixation materials warrants further
exploration through basic scientific research and clinical trials.

Several limitations should be considered when interpreting the
results of this study. Firstly, the finite element model used is based on
theoretical numerical simulations and may not fully capture the
complexity of the human spine system, as it does not account for
factors such as cyclic loads and the influence of muscles. Secondly,
the thoracic and lumbar spine models used are limited to a single
subject, and the number of models is small, which may limit the
generalizability of the findings. Lastly, this study represents a
preliminary exploration of finite element analysis. Further
research and exploration are necessary to establish a solid

FIGURE 3
Comparison of stress distribution of screwsmade of twomaterials under different loading directions. (The figure shows titanium alloy material at the
top and PEEK material at the bottom).
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foundation for the long-term development of PEEK material in
lumbar spine repair.

5 Conclusion

In conclusion, PEEK screws demonstrate comparable efficacy to
titanium alloy screws in providing segmental stability post-surgery.
Additionally, PEEK screws facilitated the prevention of loosening,
which was a great clinical advantage. Moreover, the radiolucent
nature of PEEK screws facilitates postoperative imaging without
interfering with radiation therapy. Thus, the PEEK or PEEK
composite material may emerge as a viable alternative for screw
materials in clinical practice. (Sato et al, 2018).
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Biomechanical evaluation of a
novel minimally invasive pedicle
bone cement screw applied to the
treatment of Kümmel’s disease in
porcine vertebrae

Xiang Ma1,2†, Qing Feng1†, Xingze Zhang1,2†, Xiaolei Sun1,
Longwei Lin1,2, Lin Guo1, Lijun An3, Shenglin Cao3 and Jun Miao1*
1Tianjin Hospital, Tianjin University, Tianjin, China, 2Tianjin Medical University, Tianjin, China, 3Chengde
Medical College, Hebei, China

Background and objective: Treatment of Kümmel’s Disease (KD) with pure
percutaneous kyphoplasty carries a greater likelihood of bone cement
displacement due to hardened bone and defect of the peripheral cortex. In
this study, we designed a novel minimally invasive pedicle bone cement screw
and evaluate the effectiveness and safety of this modified surgical instruments in
porcine vertebrae.

Methods: 18 mature porcine spine specimens were obtained and soaked in 10%
formaldehyde solution for 24 h. 0.5000mmol/L EDTA-Na2 solution was used to
develop in vitro osteoporosis models of porcine vertebrae. They were all made
with the bone deficiency at the anterior edge of L1. These specimens were
randomly divided into 3 groups for different ways of treatment: Group A: pure
percutaneous kyphoplasty (PKP) group; Group B: unilateral novel minimally
invasive pedicle bone cement screw fixation combined with PKP group; Group
C: bilateral novelminimally invasive pedicle bone cement screw fixation combined
with PKP group. The MTS multi-degree of freedom simulation test system was
used for biomechanical tests, including axial loading of 500 N pressure, range of
motion (ROM) in flexion, extension, left/right lateral bending, and left/right axial
rotation at 5 Nm, and the displacement of bone cement mass at maximum angles
of 5° and 10°.

Result: The three groups were well filled with bone cement, no leakage or
displacement of bone cement was observed, and the height of the vertebrae
was higher than pre-operation (p < 0.05). In the left/right axial rotation, the
specimens were still significantly different (p < 0.05) from the intact specimens
in terms of ROM after PKP. In other directions, ROM of all group had no significant
difference (p < 0.05) and was close to the intact vertebrae. Compared with PKP
group, the relative displacement of bone cement in groups B and C was smaller
(p < 0.05).

Conclusion: In the in vitro animal vertebral models, the treatment of KD with the
placement of novel pedicle minimally invasive bone cement screw combined with
PKP can effectively restore the vertebral height, improve the stability of the
affected vertebra and prevent the displacement of bone cement.
Biomechanically, there is no significant difference between bilateral and
unilateral fixation.
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1 Introduction

Kümmel’s disease (KD), a rare type of osteoporotic vertebral
compression fracture (OVCF), is characterized by an intravertebral
vacuum cleft (IVC)in radiological imaging (Qi HR. et al., 2022; Gou
et al., 2023). Patients with OVCF can experience relief of symptoms
with non-surgical treatment, but about 1/3 of patients may have
persistent low back pain and kyphosis, which may develop into KD
(Duan et al., 2019). KD presents with back pain without obvious
causes or after minor trauma based on osteoporosis, followed by a
long or short asymptomatic period. Eventually, prolonged spine
pain reappears in the same area and cannot be relieved, leading to
the development of kyphosis (Qi J. et al., 2022; Li et al., 2023).

KD generally does not heal spontaneously, and alternative
treatments such as bed rest and stent fixation have shown limited
success for the treatment. They are often not sufficient to address the
underlying bone deficiency and may lead to persistent symptoms
and potential complications (Wang et al., 2020; Zhang et al., 2022).
Moreover, patients are usually the elderly, and long-term bed rest

can lead to various complications. Therefore, KD patients usually
need surgical treatment such as percutaneous vertebroplasty (PVP)
and percutaneous kyphoplasty (PKP) (Niu et al., 2017; Zhang et al.,
2021). Internal fixation should also be considered when the patient’s
kyphosis is significant and compresses the spinal cord or neural
structures (Gan et al., 2021; Huang et al., 2021; Han et al., 2022).
Compared with common OVCF, KD tends to have a longer course
of disease and have a greater likelihood of bone cement displacement
after surgery due to the presence of hardened bone and defect of the
peripheral cortex on either side of the IVC (Chen et al., 2015; Li et al.,
2017). The hardened bone makes it difficult for bone cement to
penetrate the cancellous bone and form a uniform and cohesive
mass within the vertebral body (Li et al., 2017; Liu JB. et al., 2022).
Displacement of bone cement can lead to nerve and spinal cord
damage (Yang et al., 2008).

Currently, some studies have proposed cement augmentation
combined with short segmental fixation to strengthen bone cement
anchoring, but these methods are difficult to achieve minimally
invasive treatment (Wang et al., 2021; Liu Y. et al., 2022; Zhang et al.,

FIGURE 1
Novel and conventional cannulated pedicle screw. *, representing our improvements.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Ma et al. 10.3389/fbioe.2023.1218478

45

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1218478


2022). The short segmental fixation could be not required for
patients with KD without neurological compression symptoms.
To address these clinical issues, we considered strengthening the
interaction force between bone cement and bone tissue directly
through pedicle screws in the treatment of KD with defect of the
peripheral cortex. And the problem of wearing the muscles and
other soft tissue due to the excess caudal design of the conventional
pedicle bone cement screws should be further avoided (Figure 1). In
this study, 18 in vitro specimens of KD were prepared to evaluate
and analysis the effectiveness and safety of fixing bone cement mass
using this modified surgical instrument.

2 Materials and methods

2.1 Material selection and preparation

This study was performed using 18 thoracolumbar vertebrae
T14 (T15) -L2 harvested frommature pigs (weight 110–130 kg). The
porcine thoracic vertebrae have 14–15 segments and the lumbar
vertebrae have 6–7 segments. Prior to their use in the study, the pigs
were healthy and not exposed to any environmental factors that
could affect their bone quality. All specimens were rigorously
inspected to ensure that there were no defects. CT scan in the
imaging department of Tianjin Hospital confirmed that the
structure of them was intact and no deficiency (Figure 2). The
paravertebral muscles and other soft tissues on both sides of the
specimen were removed, and the intervertebral disc, spinous
process, interspinous ligament, posterior longitudinal ligament,
facet joint, ligamentum flavum and transverse process were
preserved. Rinse with water and soak in 10% formaldehyde

solution for 24 h. The study design and subjects are presented in
Figure 3.

2.2 Preparation of KD specimens

The 18 triple vertebrae specimens were completely immersed in
0.5000 mmol/L EDTA-Na2 decalcification solution (pH 7.3 ± 0.1)
(Lee et al., 2011; Hsieh et al., 2020; Liu JB. et al., 2022). Bone mineral
density (BMD) of all vertebral bodies was measured weekly and the
solution was changed until the percentage loss of BMD value
reached 30%. After all specimens met the criteria of osteoporosis,
a conical vertebral bone defect with a diameter of 16 mm and a depth
of 30 mm was created in L1 of each specimen using a grinding drill.
The animal model of KD was prepared by smearing the cancellous
bone surface in the cone-shaped defect with bone wax to simulate
the hardened bone at the defect site. L1 of each specimen was
compressed to 1/2 the height of the original vertebral body by
biomechanical testing machine (ElectroForce 3510, Bose) (Figure 4).

2.3 Surgical methods and experimental
grouping

18 triple vertebrae specimens were randomly divided into
3 groups, which were recorded as group A, B, and C (n = 6/
group). Group A underwent pure PKP; Group B underwent
unilateral pedicle cement screw fixation combined with PKP;
Group C underwent bilateral pedicle cement screw fixation
combined with PKP.

The details of PKP surgical were performed based on standard
procedure (Lei et al., 2020). The puncture position was adjusted
according to the IVC to ensure that the tip cone was located in the
cleft. The tip cone was withdrawn, and the guide drill was inserted in
sequence to a distance of approximately 3–5 mm from the posterior
edge of the vertebral body. The collapsed vertebral tissue was opened
with a balloon to create a cemented cavity. Apply the PKP working
sleeve to push the prepared bone cement along the vertebral arch in
slow and staged injections, stopping the procedure immediately if high
resistance is encountered or if the bone cement is close to the posterior
wall of the vertebral body. The amount of bone cement was selected as
8 mL according to the size of the porcine vertebrae, and the distribution
of the bone cement in the vertebral bone was observed. The curing time
of the bone cement was 15 min. After waiting for sufficient time and
confirming the curing of the bone cement, the pusher and working
cannula were rotated and then withdrawn.

The following were details of the surgical procedure for novel
pedicle bone cement screw fixation combined with PKP. The surface
projections of the bilateral pedicle margin of the diseased vertebra
were used as the pedicle screw entry point. Firstly, 1.5 mL bone
cement was pushed in with the bone cement pusher, and
appropriately sized pedicle bone cement screw were placed
without penetration from the anterior cortical aspect. Bone
cement was injected along this pedicle screw so that so that the
cement flowing out of the anterior and lateral holes of the pedicle
screw fused with the previously injected cement and became a single
unit. After the cement had set, and the tail of the pedicle screw was
broken.

FIGURE 2
Sagittal reconstruction CT images before (left) and after (right)
decalcification.
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CT was performed on all specimens immediately after surgery.
Observation of cement filling, screw placement, vertebral body injury
and spinal cord compression (Figure 5).

2.4 Three-dimensional stability
biomechanical experiments

The upper and lower vertebrae of each specimen were embedded
with denture base resin without crossing the intervertebral disc at
depth. And in the procedure, try to make the part fixed to the MTS
multi-degree of freedom simulation test system (MTS, Bionix
370.02, Figure 6) as regular in shape as possible, so that the
specimens were sufficiently fixed during movement and did not
become skewed. The upper and lower bases of each specimen were
tightly attached to respective bases of the test machine with the T12/

L1 and L1/L2 discs in a horizontal neutral position. The specimens
were preloaded at a rate of 1 mm/min and stopped when the force
reaches 100 N. The purpose was to eliminate creepmovement and to
make the vertebrae fully fixed in the mold so that they would not slip
off and affect the determination of the value. The test force was set to
zero after adequate fixation was completed. An axial load of 500 N
was applied to simulate the mass of the upper body. The specimens
were kept moist by spraying physiological saline every 5 min during
the test to reduce the error caused by evaporative water loss.

2.4.1 ROM testing of vertebrae
By adjusting the tightness of the screws fixing the specimen until

the constraint force in each direction was shown as 0 on the sensor.
The 5 Nm force was then applied to the specimen to complete the
flexion, extension, left/right lateral flexion and left/right axial
rotation, and the maximum activity angle was recorded.

FIGURE 3
Flow chart of the study design.
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2.4.2 Bone cement relative displacement test
Each postoperative specimen underwent movements with the

same force applied at maximum angles of 5° and 10° in each
direction, completing each movement six times. Set the angular
speed to 0.003 rad/s. The specimens were scanned by CT after
movement to observe the relative displacement of the bone cement.

2.5 Statistical analysis

SPSS 26.0 software (IBM, United States) was used for statistical
analysis. The means and SD ( �X ±s) were calculated for BMD during
specimen decalcification. Medians and interquartile range [M(IQR)]
were calculated for the data on the height of the vertebral body,

ROM and bone cement displacement in each of these groups. The
Kruskal–Wallis test was used for the comparative analysis of
experimental results among different groups. The 5% significance
threshold indicated a difference.

3 Results

3.1 BMD during specimen decalcification

The changes in regional bone mineral density (BMD) from
normal to osteoporotic status were shown in Figure 7. The initial
BMDwas recorded as 1.34 ± 0.15 g/cm2, and after being treated with
EDTA for 7 weeks, the BMD decreased to 0.89 ± 0.16 g/cm2. After

FIGURE 4
Compression process of specimens by biomechanical testing machine (ElectroForce 3510, Bose).

FIGURE 5
The postoperative CT scan shows satisfactory bone cement filling and accurate placement of the pedicle screws. No vertebral damage or spinal
cord compression occurred during the operation. (A) pure PKP; (B) unilateral pedicle cement screw fixation combined with PKP group; (C) bilateral
pedicle cement screw fixation combined with PKP group.
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EDTA treatment for 7 weeks, the BMD decreased to below 30% of
the normal vertebral value (p < 0.05), indicating the onset of
osteoporosis in the experiment.

3.2 The recovery status of vertebral height

The vertebral heights at 500 N of axial compression in each
group were shown in Table 1. There was no statistical difference in
vertebral body height before treatment (p > 0.05) and after treatment
(p > 0.05). After different treatments, all three groups had higher
vertebral heights than before surgery (p < 0.05).

3.3 Range of motion

ROM measured at 5 Nm in six directions for intact vertebral
specimens (N), KD specimens (KD), postoperative group A (A),
postoperative group B (B), and postoperative group C (C) were
shown in Figure 8; Table 2. Statistical analysis showed that the ROM
of the KD specimens was greater (p < 0.05) compared to the N
control group, except for right lateral bending. In the left/right axial
rotation, the specimens were still significantly different (p < 0.05)
from the intact specimens in terms of ROM after pure PKP.

3.4 Relative displacement of bone cement

All specimens underwent 6 times of activity with different
deflection angles in 6 directions of flexion, extension, left/right
lateral bending, left/right axial rotation. After repeated movement
with 5° as the maximum activity angle, no significant displacement
of bone cement was seen in all vertebrae on the CT images. After
repeated movement with 10° as the maximum activity angle, the
relative displacement of the bone cement in each group is shown in
Table 3, and the partial post-activation CT of the bone cement is
shown in Figure 9. Compared with pure PKP, pedicle cement screw
fixation combined with PKP can significantly reduce the relative
displacement of the bone cement (p < 0.05).

4 Discussion

With the aging of society, osteoporosis has become the most
common bone metabolic disease which is characterized by low bone
density and leaving the affected bones susceptible to fracture (Song
et al., 2022). KD is a complication or end-stage manifestation of
vertebral compression fractures and once it occurs, it can seriously
affect the patient’s quality of life and survival, requiring more

FIGURE 6
Three-dimensional stability biomechanical experiments.

FIGURE 7
The changes in BMD from normal to osteoporotic status. N, the
initial BMD; *, statistical differences.

TABLE 1 M(IQR) of the vertebral heights (mm) at 500 N of axial compression in each group, n = 6.

Group Pre-treatment Post-treatment Wilcoxon signed-rank test

Z-value p-value

A 121.02 (23.66) 131.06 (16.99) 1.782 0.075

B 109.27 (32.04) 121.84 (31.91) 2.201 0.028

C 121.85 (25.96) 137.36 (24.17) 2.201 0.028

H-value 0.881 1.205

p-value 0.644 0.548
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aggressive surgical treatment (Zhang et al., 2022; Gou et al., 2023).
With the leap forward in minimally invasive spine technology over
the last decade, the traditional open fixation-fusion surgical
approach is not the best choice for patients with no nerve

compression symptoms (Huang et al., 2018). PVP and PKP are
more widely used in clinical practice because of its advantages in
terms of economic cost, operative time, blood loss, and radiation
exposure. However, they have some postoperative risks, such as
loosening of the cement mass, displacement, and fracture of the
cement mass, resulting in adverse consequences such as neurological
impairment and re-aggravation of the posterior convexity
deformity.

There is a significant technical gap in the current approach to
reduce postoperative cement displacement in KD. In order to solve
these clinical problems, pedicle bone cement screw can act as a “bridge”
to link the bone cement with the surrounding bone tissue while being
placed percutaneously andminimally invasively, reducing the incidence

FIGURE 8
ROM (°) were indicated as the medians and interquartile range [M(IQR)].

TABLE 2 ROM (°) was shown with M (IQR); “N”, intact lumbar spine; “KD”, KD
specimens; “A”, PKP; “B”, unilateral pedicle cement screw fixation combined
with PKP; “C”, bilateral pedicle cement screw fixation combined with PKP. FL,
flexion; EX, extension; LB, left lateral bending; RB, right lateral bending; LAR,
left axial rotation; RAR, right axial rotation. *, statistical difference with “N”;▲,
statistical difference with KD.

N (n = 6) KD (n = 6) A (n = 6) B (n = 6) C (n = 6)

FL 5.45 (0.57) 7.90 (1.48)* 5.60
(1.03)▲

5.55
(1.38)▲

5.85 (0.83)

EX 5.55 (0.60) 7.90 (0.83)* 6.00 (2.13) 5.45
(1.17)▲

5.30
(1.00)▲

LB 3.25 (1.10) 6.80 (0.85)* 3.80 (0.57) 3.10
(1.27)▲

3.20
(0.63)▲

RB 3.55 (0.60) 6.85 (1.55) 3.70 (0.67) 3.20
(0.63)▲

3.50
(0.43)▲

LAR 1.30 (0.35) 3.30 (0.90)* 2.45 (0.27)* 1.90
(0.55)▲

1.90
(0.75)▲

RAR 1.25 (0.40) 3.50 (0.40)* 2.25 (0.32)* 1.75
(0.35)▲

1.95 (0.65)

TABLE 3 Relative displacement (mm) of bone cement with 10° as the maximum
activity angle. “*”, statistical difference (p < 0.05) compared to the A group.

Group M (P25, P75) Kruskal–Wallis test

H-value p-value

A 3.50 (1.50,6.48) 8.307 0.016

B 0.00 (0.00,0.55)*

C 0.00 (0.00,0.43)*
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of bone cement loosening and displacement. It can be implanted into
the diseased vertebra through the puncture needle used in the PKP/PVP
treatment of KD, without causing additional trauma (Figure 10). The
front end of the pedicle screw is equipped with multiple bone cement
overflow hole, which can directly inject bone cement and fuse with the
bone cement injected by PKP/PVP, ensuring a strong and anchored
connection between the screw and bone cement. Meanwhile, the screw
provides a fixed point of stability for the bone cement in the vertebral
body. By connecting to the pedicle, the screw can anchor the bone
cement in place, preventing it from loosening or displacing over time.

4.1 Preparation of KD specimens

Biomechanical testing of new spinal implants in vitro is essential
for their safety and efficacy (Lee et al., 2011). However, the limited
availability of human cadavers leads to inconsistent specimen
quality, making it difficult to obtain enough specimens for
controlled experiments to explore the effects of these implants
(Lee et al., 2011; Hsieh et al., 2023). The vertebrae of other large
mammals are morphologically and biomechanically different from
the human vertebrae, and their experimental parameters are not
directly transferable to the human spine. However, due to the
similarity of the porcine spine to the human in terms of size,
nutritional make-up, bone structure, and mineral metabolism, it
has been frequently used in some studies to verify the effectiveness of
spinal fusion and internal fixation, and to a certain extent to draw
clinically relevant conclusions (Lee et al., 2011; Hsieh et al., 2020;
Laznovsky et al., 2022).

To model osteoporosis, demineralization can be performed
using reagents such as hydrochloric acid and hydrogen peroxide,
but the models prepared using these methods differ from the
pathological process of human osteoporosis, which is more like
osteomalacia (Elfar et al., 2014; Stewart et al., 2020). EDTA is a
chelating agent that binds to the metal ion Ca2+ and acts more
slowly, preserving the natural biological structure of collagen better
than the stronger and faster acting hydrochloric or nitric acids (Lee
et al., 2011). After 7 weeks, the difference in BMD values of the
vertebrae before and after decalcification was more than 30%. Since
there is currently no investigation data on peak BMD in porcine
spine, the percentage of BMD loss was measured using the human
osteoporosis standard, where 25% loss is considered an indicator of
osteoporosis (Lee et al., 2011; Siris et al., 2014).

In the preparation of in vitro osteoporotic specimens, treatment
with 10% formaldehyde solution for 24 h was a common approach
in previous biomechanical experimental studies because of the
prolonged exposure to ambient temperature (Lee et al., 2011;
Hsieh et al., 2022). This preservative measure inevitably causes

FIGURE 9
Bone cement displacement after movement. The red line
represents the maximum displacement distance.

FIGURE 10
Intraoperative fluoroscopic and incisional photograph of a patient with KD treated with a novel minimally invasive pedicle bone cement screw: (A)
lateral view (B) anteroposterior view (C) incisional view (1.5 cm).
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changes in the biomechanical properties, focusing particularly on
Young’s modulus and impact energy in short time applications
(Currey et al., 1995; Holewijn et al., 2017). This alteration makes it
necessary to use smaller moments and slower angular velocities in
the experiments to avoid damaging the specimens, which can also
affect the experimental results to some extent.

4.2 Recovery of vertebral body height

In clinical practice, it has been found that KD occurs most
commonly at the thoracolumbar junction, which is also the common
location for osteoporotic vertebral fractures. From a biomechanical
perspective, one important reason for the development of KD from
vertebral microfractures is that the shear stress in the thoracolumbar
segment changes after a large range of motion (Li et al., 2011).
Following vertebral fracture, the vertebral morphology changes,
mainly characterized by loss of vertebral height and spinal
kyphosis (Röllinghoff et al., 2013). In this study, we found that
satisfactory vertebral height was achieved regardless of the use of
pedicle bone cement screw or not. This result is similar to the clinical
treatment outcomes reported by Noriega et al. (2019) (Wang et al.,
2021). It can be concluded that using the novel type of pedicle screw
combined with PKP for the treatment of KD can achieve good
effectiveness in static standing position. The restoration of vertebral
height can prevent spinal center of gravity shifting, which in turn
restores the internal biomechanical environment of the vertebrae
and reduces the risk of nonunion (Cao et al., 2020; Najjar et al.,
2023).

Both PVP and PKP are commonly used for vertebral
compression fractures. Patients with severe OVCF can be treated
with PVP in a prone position with the chest and hips resting on soft
pillows to maintain spinal hyperextension to help restore vertebral
body height (Chin et al., 2006; Shin et al., 2009; Yu et al., 2020). Since
this experiment used an in vitro specimen, we had to use a balloon to
expand the vertebral body when repairing the vertebral height.

4.3 Changes in vertebral body stability

After making the specimens into IVC-like vertebrae, ROM was
significantly increased compared to intact vertebrae under 5 Nm torque.
In the experiment, we observed that the increased instability mainly
occurred at the site of the discontinuous cortical bone. Restoring the
stability of the vertebral body is also a clear need in the treatment of KD
(Yokoyama et al., 2013). The ROMof the vertebral body is an important
parameter of vertebral stability. According to Denis’ three-column
theory, recompression of the spine may be influenced by spinal
stability (Denis, 1983). Low spinal stability may lead to an increased
risk of recompression. In this study, filling with bone cement reduced
the maximum displacement of the KD specimens and approached the
intact vertebrae, which was also demonstrated by some related studies
(Dai et al., 2022). However, in the PKP group, the specimens still
differed from the intact vertebrae in terms of stability during rotation.
This result suggests that the stability of the vertebral body can be further
increased by pedicle screw fixation, thus reducing the incidence of
recompression.

4.4 Relative displacement of bone cement

An important purpose of PKP and PVP is to return the
patient to normal living conditions as soon as possible, which
requires that the patient be able to perform the angle required
after surgery. It is also required to reduce the probability of bone
cement displacement during this period (Qi HR. et al., 2022). The
gold standard in biomechanical testing is to apply moments to
the specimens (Wilke et al., 1998). However, due to the in vitro
osteoporotic specimens we used, which was more flexible than
undecalcified specimens, this torque may result in a significant
movement of the lumbar spine that should not have been
accomplished. In previous studies, maximum rotational value
was similar, with a range of 4.05° to 7.10° for lying and 9° to 14° for
standing (Yeager et al., 2014; Breen et al., 2019; Daniel et al.,
2023). In consideration of the maximum ROM of L12-L2 and
avoiding excessive damage to the experimental specimen during
the experiment, 5° was used to simulate ROM for lying and 10° to
simulate ROM of standing (Yeager et al., 2014; Breen et al., 2019;
Daniel et al., 2023).

Previous clinical case reports have also shown displacement
of bone cement, but our experimental results generally have a
higher displacement rate (Korovessis et al., 2013), perhaps due to
the extreme smoothness of the cortical bone defect and the
complete coverage of the cancellous bone surface by bone wax
in our experimental models to better control the number of
variables. The KD model designed in the experiment meets
the clinical and radiographic characteristics of intravertebral
cleft (Formica et al., 2016; Qi J. et al., 2022). This makes it
possible that the measured displacement of the bone cement in
the experiment indicates the trend and magnitude of
displacement. The screw can release bone cement through the
lateral hole at the front end of the screw, thoroughly filling the
cracks in the vertebral body, so that the bone cement and the
screw are connected as a whole. At the same time, the screw
connects the strongest part of the bone at the pedicle, and
ultimately reinforces the interaction between the bone cement
and the surrounding bone tissue as a “bridge”. This achieves the
function of preventing the bone cement from loosening and
displacing.

4.5 Study limitations

The experiment has convincingly demonstrated that the novel
bone cement screws provide excellent fixation of bone cement
masses, providing them with less mobility and more stability.
However, the experiment has certain limitations. First, the
specimens used were porcine spines prepared by formaldehyde
solution and EDTA, which inevitably led to altered the soft tissue
properties and thus the overall biomechanical properties and
therefore cannot be identical to human specimens. Second, the
number of specimens was small, and more data are needed to
support the results. Third, during the experiments, shear forces
were still unavoidable, with a maximum value of 0.3 Nm. To obtain
more reliable test results, these forces had to be reduced further, even
to pure moments. Finally, the bone cement relative displacement
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was linked to the ROM, which is not correspond to the common
recommendations in previous studies.

5 Conclusion

In an in vitro animal vertebral body model, the application of a new
minimally invasive cemented screw forKümmel’s diseasemeets the need
for restoration of vertebral body height. It also possesses a stronger effect
of fixing the vertebral body and limiting bone cement displacement
compared to pure PKP. From the viewpoint of biomechanics, both
unilateral and bilateral anchoring have better effects, which provides
strong evidence and guidance for later clinical application.
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Finite element study of sagittal
fracture location on
thoracolumbar fracture treatment

Xilong Cui1,2,3, Junjun Zhu1, Wanmei Yang2,3, Yuxiang Sun1,
Xiuling Huang1, Xiumei Wang1, Haiyang Yu2,3, Chengmin Liang2,3*
and Zikai Hua1,3*
1School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China,
2Department of Orthopedics, Fuyang People’s Hospital, Fuyang, Anhui, China, 3Spinal Deformity Clinical
and Research Center of Anhui Province, Fuyang, Anhui, China

Background: Posterior internal fixation is the main method used for the treatment
of thoracolumbar fractures. Fractures often occur in the upper 1/3 of the vertebral
body. However, they can also occur in the middle or lower 1/3 of the vertebral
body. At present, there is no report discussing the potential effects of sagittal
location on instrument biomechanics or surgical strategy. The object of this study
was to investigate the effect of the sagittal location of the fracture region of the
vertebral body on the biomechanics of the internal fixation system and surgical
strategy.

Methods: A finite element model of the T11-L3 thoracolumbar segment was
established based on a healthy person’s CT scan. Different sagittal fracture
location finite element models were created by resection of the upper 1/3,
middle 1/3, and lower 1/3 of the L1 vertebral body. Three surgical strategies
were utilized in this study, namely, proximal 1 level and distal 1 level (P1-D1),
proximal 2 level and distal 1 level (P2-D1), and proximal 1 level and distal 2 levels
(P1-D2). Nine fixation finite element models were created by combining fracture
location and fixation strategies. Range of motion, von Mises stress, and stress
distributionwere analyzed to evaluate the effects on the instrument biomechanics
and the selection of surgical strategy.

Results: In all three different fixation strategies, the maximum von Mises stress
location on the screw did not change with the sagittal location of the fracture site;
nevertheless, the maximum von Mises stress differed. The maximum rod stress
was located at the fracture site, with its value and location changed slightly. In the
same fixation strategy, a limited effect of sagittal location on the range of motion
was observed. P2D1 resulted in a shorter range of motion and lower screw stress
for all sagittal locations of the fracture compared with the other strategies;
however, rod stress was similar between strategies.

Conclusion: The sagittal location of a fracture may affect the intensity and
distribution of stress on the fixation system but does not influence the
selection of surgical strategy.

KEYWORDS

thoracolumbar fracture, sagittal location, instrument, biomechanics, surgical strategy

OPEN ACCESS

EDITED BY

Junyan Li,
Southwest Jiaotong University, China

REVIEWED BY

Christian Liebsch,
Ulm University Medical Center, Germany
Mehran Moazen,
University College London,
United Kingdom

*CORRESPONDENCE

Zikai Hua,
eddie_hua@shu.edu.cn

Chengmin Liang,
liangchm@163.com

RECEIVED 26 May 2023
ACCEPTED 26 July 2023
PUBLISHED 07 August 2023

CITATION

Cui X, Zhu J, Yang W, Sun Y, Huang X,
Wang X, Yu H, Liang C and Hua Z (2023),
Finite element study of sagittal fracture
location on thoracolumbar
fracture treatment.
Front. Bioeng. Biotechnol. 11:1229218.
doi: 10.3389/fbioe.2023.1229218

COPYRIGHT

© 2023 Cui, Zhu, Yang, Sun, Huang,
Wang, Yu, Liang and Hua. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 07 August 2023
DOI 10.3389/fbioe.2023.1229218

55

https://www.frontiersin.org/articles/10.3389/fbioe.2023.1229218/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1229218/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1229218/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2023.1229218&domain=pdf&date_stamp=2023-08-07
mailto:eddie_hua@shu.edu.cn
mailto:eddie_hua@shu.edu.cn
mailto:liangchm@163.com
mailto:liangchm@163.com
https://doi.org/10.3389/fbioe.2023.1229218
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2023.1229218


Introduction

According to an epidemiological study, the incidence of spinal
fractures is approximately 32.8/100 000 (Liu et al., 2018). Most
fractures occurs in the thoracic spine, followed by the lumbar- and
cervical spine, accounting for 41.6%, 33.7%, and 24.6% respectively
(den Ouden et al., 2019). More than 14.3% of cases are burst
fractures (Denis, 1983). The thoracolumbar spine is the transition
region from the fixed thoracic spine to the flexible lumbar.
Therefore, the thoracolumbar segment is the region where
fractures occur most frequently (Holmes et al., 2001). Fracture
fragments can migrate the spinal canal and potentially cause
spinal cord injury. The main focus in the treatment of
thoracolumbar fractures is to restore spinal stability. Burst
fractures involve the anterior and middle columns, which are
considered unstable (Petersilge and Emery, 1996). Internal
fixation is the most important surgical option for the treatment
of unstable thoracolumbar fractures. Internal fixation could be
divided into anterior, posterior, and combined anterior and
posterior operations. Posterior transpedicular internal fixation is
the most commonly used method. Short-segment, limited long-
segment, and long-segment fixation has been previously reported in
the literature (El et al., 2020; Girardo et al., 2021; Liang et al., 2020).
These techniques have resulted in good clinical outcomes; however,
instrument loosening and breakage can occur (Mu et al., 2022).

Finite element (FE) analysis offers the advantages of good
repeatability and cost-effectiveness. Thus, it has been widely used to
understand and optimise the different fracture fixations, mechanical
testing, and spine fracture biomechanical research (Naoum et al., 2021;
Guo et al., 2021; Wong et al., 2021). Numerous studies have compared
the maximum stress and distribution of different fixation methods.
However, not all internal instruments have the same fracture location
as predicted in clinical practice.

Studies revealed that the location and size of upper endplate
injury in the coronal plane affect internal fixation and vertebral body
stress. Wang and Hu found that in cases with 4/5 endplate fractures,
internal fixation should not be removed after surgery (Wang and Hu.,
2020). In patients with spinal tumors, the location and size could also
affect spinal biomechanics (Galbusera et al., 2018). However, whether
the sagittal distribution of the fractures affects the stress of internal
fixation or surgical strategy has not been reported in the literature.
Clinically, some researches have observed this sagittal distribution.
According to the AO classification, type A3.2 is divided into upper
burst fractures, lower burst fractures, and lateral burst fractures
(Rosenthal et al., 2018). In the Denis classification, compression
fractures are divided into Types A, B, C, and D. The fractured
region of Type B, C, and D primarily located in the upper,
middle, and lower regions, accounting for 62.4%, 6.09%, and
15.2%, respectively. In burst fractures, upper fractures account for
49.2%, while lower fractures account for 6.8%. Some researchers have
also classified the mechanical mechanisms behind these distribution
patterns. (Guo and Li., 2019).Therefore, we hypothesized that the
sagittal distribution of fractures may affect the level and position of
maximum mechanical stress on the internal fixation suggesting that
the fracture level must be taken into account when developing a
treatment algorithm.

In this study, we resected the upper 1/3, middle 1/3, and lower 1/
3 of the vertebral body to simulate the sagittal distribution of

different sagittal fractures, A3 burst fractures according to
Vaccaro et al. (2013) Three internal fixation strategies were used,
namely, one proximal and distal segment (P1D1), two proximal and
one distal segment (P2D1), and one proximal and two distal
segments (P1D2). The objectives of this study were to 1)
investigate the effects of fracture sagittal distribution on internal
fixation biomechanics, and 2) determine its potential influence on
the selection of internal fixation strategy.

Materials and methods

The volunteer selection criteria: 18–30 years old, no history of
spinal tumors, lower back pain, or spinal surgery, BMI 18.5–23.9 kg/
m2. A 25-year-old male with a BMI of 20.2 kg/m2 was involved in the
study with written informed consent. The study was approved by the
Ethics Committee of Fu YangHospital (No, 2020-11, Anhui, China).

Computed tomography images of T10-L4 were obtained using a
Brilliance 256 CT scanner (Philips Brilliance iCT256, Eindhoven,
Netherlands). The slice thickness was 0.5 mm and the in-plane
resolution was 512 × 512. A three-dimensional model of T11-L3 was
established withMimics 21.0 (Materialise, Leuven, Belgium). The cortical
bone and cancellous bone were based on geometry using the “Threshold”
and “Regional Growth” tools. Themesh structure was prepared using the
preprocessing software Geomagic Studio 12.0 (Geomagic, Cary, NC,
United States). Notably, the thickness of the cortical bone and endplate
was 1 mm and 0.5 mm, respectively (Wong et al., 2003).

UGNX12.0 (Dassault Systèmes, S.A, Paris, France) was used to
construct the intervertebral disc. The nucleus pulposus and annular
fibers were constructed separately. Additionally, the volume ratio of the
annulus fibrosus to the nucleus pulposus was set to 6:4 (Wang et al.,
2013).

A baseline three-dimensional FE model of a healthy T11-L3 was
created first. The following three interfaces were modelled as
bonded: the vertebral body-endplate, endplate-nucleus pulposus,
and nucleus pulposu-annulus fibrosus. Moreover, frictionless
contact was used to simulate the sliding contact between articular
cartilages. The model was assumed to be homogeneous, isotropic,
and linearly elastic. The material properties used are presented in
Table 1 (Park et al., 2013; Wang et al., 2018). The ligaments (i.e., the

TABLE 1 Material properties assumed for different components of the finite
element (FE) model.

Spinal site Young’s modulus (MPa) Poisson’s ratio

Vertebra

Cortical 12,000 0.3

Cancellous bone 100 0.2

Endplate 23.8 0.4

Cartilage 11 0.4

Intervertebral disc

Nucleus pulposus 1 0.49

Annulus fibrosis 4.2 0.4

Pedicle screws and rods 110,000 0.3
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anterior longitudinal ligament, posterior longitudinal ligament,
ligamentum flavum, capsular ligament, and interspinous
ligament) were constructed as nonlinear spring elements in
ANSYS Workbench (Ansys, Pittsburgh, PA, United States), and
the material properties are shown in Table 2(Rohlmann et al., 2009).
After mesh convergence analysis, a total of 68,619 elements and
1,240,899 nodes were included.

Model creation for different sagittal fracture
distribution

The fractured vertebramodelwas created using SolidWorks (Simulia,
United States). The upper, middle, and lower 1/3 of L1 were resected, and
the posterior structure was maintained to establish an unstable type
A3.2 thoracolumbar fracture, according to the AO spinal fracture
classification (Vaccaro et al., 2013) (Figure 1).

Creation of the pedicle and screw and rod
models

Titanium alloy pedicle screws (6 mm × 50 mm for lumbar;
5.5 mm × 45 mm for thoracic vertebra) and rods (5.5 mm) were
modeled using SolidWorks. The screws were inserted into the
vertebra and connected with rods (Figure 1). Bonded contact
was used between the screw and the vertebra, as well as between
the screw and the rod. The mesh size was set to 1 mm for each
screw and rod, and the unit included a total of 42,923 elements
and 152,473 nodes.

Models of different surgical strategies

The models included upper 1/3 fracture, (U-P1D1, U-P2D1,
U-P1D2), middle 1/3 fracture, (M-P1D1, M-P2D1, M-P1D2), and

TABLE 2 Material properties assumed for different components of ligaments.

Ligament Rigidity Strain ε (%) Rigidity Strain ε (%) Rigidity Strain ε (%)

Anterior 347 0–12.2 787 12.2–20.3 1,864 20.3

Posterior 29.5 0–11.1 61.7 11.1–23 236 23

Capsular 36 0–25 159 25–30 384 30

Intertransverse 0.3 0–18.2 1.8 18.2–23.3 10.7 23.3

Flavum 7.7 0–5.9 9.6 5.9–4.9 58.2 49

Supraspinal 2.5 0–20 5.3 20–25 34 25

Interspinal 1.4 0–13.9 1.5 13.9–20 14.7 20

FIGURE 1
Finite element models with L3 fixed in all degree of freedom (A), (B) 7.5 N*Mmoment in extension, flexion and lateral bending, (C) 5.5 N*Mmoment
in axial rotation was assumed with 400 N compressive load: intact model; lower 1/3 L1 fracture model; and fixation instrument model.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Cui et al. 10.3389/fbioe.2023.1229218

57

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1229218


lower 1/3 fracture (L-P1D1, L-P2D1, L-P1D2) (Figure 2). Nine
models were created in total.

Load and boundary

The load and boundary conditions were based on research
published by Basaran et al. (2019). The L3 vertebra body was
fixed in all degree of freedom. A compressive load of 400 N was
applied to the top surface of T11 was applied to all the models
as follower loading. Movement in coronal, sagittal, and
transverse planes were evaluated, including extension,
lateral bending, and rotation motions. The extension,
flexion and lateral flexion moments were assumed to be
7.5 N*M, while the axial rotation moment was assumed to
be 5.5 N*M.

Measurements and assessment indices

The range of motion (ROM) of T12-L2 was assessed in the nine
FE models under six loading conditions. Data for the maximum von
Mises stress and location were also collected and analyzed.

Results

Validation

Following the creation of the normal T12-L2 FE model, data on
movement induced by 7.5 N*M in flexion, lateral bending and
rotation were collected. The ROM values of the T12-L2 segment
were as follows: flexion 6.36°; extension 8.12°; left bending 9.9°;
right bending 7.85°; left rotation 4.61°; and right rotation 3.78°. The
ROM results were comparable with those reported by (Alizadeh
et al., 2013; Disch et al., 2007; Schmoelz et al., 2010) (Figure 3). To
further verify the intact modle, we extracted the ROM of T11-L3 at
5.5N*M and compared it with the titro experiment. The ROM
results were comparable with those reported by Couvertier et al.,
2017 (Figure 3).

ROM of the T12-L2 in nine FE models

The ROM values, including flexion, extension, left and right
lateral bending, and left and right axial rotation, for the three
internal fixation models in the upper, middle, and lower 1/3 of
L1 fractures under different motion states were presented in

FIGURE 2
Models of different surgical strategies.
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Table 3. It was found that the P1-D1 fixation model showed
maximum ROM in all six motion states, while the P2-D1 and
P1-D2 fixation models showed no obvious difference in ROM
values. It was also evident that the effect of the same fixation
technique on ROM varied with different fracture locations.
Across all models, flexion motion resulted in the highest
ROM values with the maximum values of 11.63°, 12.85°, and
12.85° in the upper, middle, and lower 1/3 fractures, respectively,
followed by extension, axial rotation, and the lowest ROM in left
and right lateral bending. For the flexion motion, the P1D1,
P2D1, and P1D2 fixation models could not provide sufficient
stability for the fixed segments, resulting in significantly higher
ROM values for all models compared to other physiological
motion states.

Maximum von mises stress on the screws
and rods

In all fixation models and states of motion, the maximum von
Mises stress for both pedicle screws and rods was observed during
flexion, while the lowest was during extension (as shown in Figures 4,
5). For upper and lower 1/3 fractures, the maximum von Mises
stresses of pedicle screws in all three models were ranked in
descending order as P1-D1, P1-D2 and P2-D1 models under all
six physiological motion states, the maximum von Mises stresses in
rods among the three models did not show significant differences. For
middle 1/3 fractures, the maximum von Mises stresses in flexion and
extension were identified in descending order as P1-D1, P1-D2 and
P2-D1 models, however, the maximum von Mises stress values for

FIGURE 3
Comparison of the range of motion (ROM) of T12/L2 and T11-L3 in this study with those recorded in other studies.
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pedicle screws were observed in the P1-D2 model, with slight
differences between the P1-D1 and P2-D1 models, in lateral
bending and axial rotation. Similarly, in flexion and extension, the
maximum von Mises stress values for rods, were observed in the P1-
D1 model, while in lateral bending and axial rotation, the von Mises
stress value of the rod in the P1-D1 model was the smallest, and the
maximum von Mises stress values of the rod in the P1-D2 and P2-D1
models did not show significant differences.

The results shown in Figure 6, indicate that themaximum vonMises
stresses for pedicle screws of all three models were majorly concentrated
around the screw roots, and the maximum stresses on the rods were
located in the L1 cone region, i.e., at the fracture location.

Discussion

To investigate the influence of sagittal location of vertebral body
fracture on internal fixation system stress and the selection of
surgical internal fixation strategy, 9 finite element models with
three types of sagittal and three surgical strategies were
developed in this study. The results showed in all the three
sagittal models, P2D1 has a smaller ROM and less internal
fixation stress. Therefore, the findings indicated that the sagittal
location of the fracture does not affect the choice of surgical strategy,
but can affect the level of mechanical stress on the internal fixation
and their potential risk of failure.

TABLE 3 Range of motion (ROM) of the finite element models of different fixation strategies (°).

Fracture location Upper 1/3 fracture Middle 1/3 fracture Lower 1/3 fracture

Model/Motion P1D1 P2D1 P1D2 P1D1 P2D1 P1D2 P1D1 P2D1 P1D2

Flexion 11.63 9.93 10.07 12.85 9.17 9.59 12.85 10.83 11.00

Extension 4.77 4.60 4.26 4.75 4.57 4.40 4.75 4.57 4.40

Left bending 1.35 0.74 0.63 0.82 0.70 0.65 1.72 0.70 0.63

Right bending 1.32 0.53 0.62 1.87 0.70 0.64 1.00 0.68 0.64

Left rotation 2.20 1.70 1.85 1.90 1.80 1.90 2.17 1.79 1.92

Right rotation 2.20 1.86 1.80 1.79 1.80 1.91 2.19 1.79 1.93

FIGURE 4
Maximum von Mises stress on the screws.
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Spinal fractures often occur in the thoracolumbar segment, and
L1 is the most frequently involved site, taking up 16.2%–34.4% of
all spinal fractures (Holmes et al., 2001; Katsuura et al., 2016;
Leucht et al., 2009). Thus, we selected L1 to establish the FE model.
There are various surgical strategies available, in addition to the
P1D1, P2D1, and P1D2 methods mentioned in the article. Other
options include the P2D2 and the combination of P1D1 with
vertebral pedicle screw fixation, etc. However, if the pedicle of
the injured vertebra is fractured, the screw could not be placed.
Furthermore, it is difficult to establish the FE model because the
screws are exposed in upper 1/3 fractures. It is thought that
P2D2 does not significantly reduce stress on screws compared
with P2D1 and P1D2. P2D1 involves the fixation of more
segments, thereby resulting in loss of movement. P2D2 is not
recommended as the first choice for the treatment of
thoracolumbar fractures (Basaran et al., 2019; Wong et al.,
2021). Therefore, in this study, we selected the P1D1, P2D1,
and P1D2 fixation techniques.

Multiple posterior internal fixation surgical techniques have
been widely used in clinical practice, with significant effects in
the treatment of thoracolumbar fractures. However, controversy
remains regarding the selection of surgical strategies (Cahueque
et al., 2016). In recent years, studies have analyzed the biomechanical
stability of fracture regions using different internal fixation models.
The majority of these studies modeled the lower 1/3 of the vertebral
body resection. Nevertheless, fractures can occur in the upper,
middle, and lower regions (Denis, 1983; Rosenthal et al., 2018).
Additionally, L1 is the most common site of thoracolumbar
fractures. Therefore, T11-L3 was chosen to establish a fracture
model of upper, middle, and lower 1/3 fractures of L1. Our
results show that the sagittal distribution of fractures influences
the ROM.

In all models, the largest ROM was obtained at the flexion
motion. This finding is consistent with those noted in previous
studies (Basaran et al., 2019). Under the flexion motion, fractures in
the middle and upper 1/3 are associated with the shortest and
longest ROM, respectively. For example, in the P1D1 fixationmodel,
the ROM values for the upper, middle, and lower 1/3 were 11.63°,
9.93°, and 10.07°, respectively. The probable cause is that fractures
located in the middle 1/3 have more uniform internal fixation stress
is more uniform and greater stability. The pedicle plays an important
role in the stability of the spine. When the fracture is located in the
upper 1/3, the pedicle is involved, thereby increasing the ROM.

The biomechanical stability of fixation models is related to the
extent and location of fixation (Wang et al., 2018). This study
showed no significant difference in the ROM of extension, lateral
bending, and axial rotation between the P2D1 and P1D2 models at
the three fracture levels. The ROM values for both models were
lower than those recorded for the P1D1 model at all six states of
motion. This implies that six-screw fixation in the fracture area
could provide more spinal stability than short-segment fixation.
Theoretically, the addition of the fixation segment provides
additional fixation points for fracture reduction and kyphosis
correction. This is consistent with the conclusions of previous
studies (Jindal et al., 2020; Xu et al., 2019).

In all models, the maximum screw stress was obtained under
flexion motion. The distance between the fracture position and the
screw affects the instrument stress (Zhang et al., 2021). Our findings
showed that, under the same type of internal fixation, the fracture
location altered (reduced or increased) the stress on the screw but
did not affect the maximum stress location (Figures 4, 6).

It has been documented that stress concentration occurs in
adjacent segments under short-segment fixation. This may cause
looseness and breakage due to fatigue by increased bearing stress of

FIGURE 5
Maximum von Mises stress on the rods.
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the internal fixation (Jindal et al., 2020). The results of this study
further indicated that an increase in the number of screws can
reduce the average stress, thus reducing the risk of screw breakage
(Xu et al., 2019). In the three fracture distributions analyzed in this
study, the maximum stress of P1D2 and P2D1 was significantly
lower than that of P1D1. This result was comparable with those
reported in previous studies (Wu et al., 2019). Our results showed
that P2D1 was considered more appropriate in this setting than
P1D2, comparable with previous studies (C. E. Wong et al., 2021).
Clinically, this method has proven to be an effective alternative for
fixation (Modi et al., 2009). However, they did not consider the
sagittal location variation of the fractures.

The fracture site was the most unstable region of the constructs.
Hence the maximum stress on the rods occurred across the fractures
site that was in line with previous studies (Wong et al., 2021). In the
present study, the site of maximum stress on the rod shifted
downward in parallel with the location of the fracture, and the
stress value changed accordingly. For the three fixation strategies,
the maximum stress on the instrument in the upper and lower 1/
3 fracture models was similar. In the middle 1/3 fracture model,
P2D1 and P1D1 were associated with similar stress. The stress noted
for these techniques was higher than that recorded for P1D1. These
findings could guide physicians regarding the clinical management
of type A3 fractures.

FIGURE 6
Maximum stress location on the screw and rod.
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This study had several limitations. Although finite element
analysis is a valid method in biomechanical studies, it still does not
fully simulate the comparison of human treatments. Experimental
results of finite element analysis represent a new clinical trend rather
than definitive conclusions (Lewis et al., 2021). Under 7.5 N*M
moments, the fracture models may seriously deform. We did not
validate the fracture models. In this study pertaining to the somewhat
simplified and idealized material properties used in the simulation,
such as the nonlinear behavior of spinal ligaments, the viscoelasticity
of intervertebral discs, and the varying degrees of degeneration - all of
which differ from cadaveric specimens. And what’s more, pure
structural resection does not reflect the complexity of fracture
morphology. Only the A3 fracture models were established in this
study and the boundary conditions in terms of the complex segmental
motion of the human spine in the thoracolumbar segment were
simplified Thus, models with actual ROM and with other fracture
subtypes should be warranted in the future. The screw thread size
should be considered for more realistic screw stress analyses in future
studies. In addition, using a nonlinear material constitutive model is
necessary to study the localized failure of internal fixation systems.
However, the stress trends for the different procedures observed in this
study are comparable to previous studies. Finally, although there are
numerous posterior internal fixation methods used to treat fractures,
only three techniques were modeled in this study. Further
investigations should be performed to evaluate more biomechanical
properties of othermodels concerning other posterior internal fixation
methods.

Conclusion

The sagittal location of fractures did not affect the choice of
surgical strategies; however, it affected the magnitude of stress and
distribution of the internal fixation system.
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Total talus replacement is a promising alternative treatment for talus fractures
complicated by avascular necrosis and collapse. This surgical option replaces the
human talus bone with a customized talus implant and can maintain ankle joint
functionality compared to traditional treatment (e.g., ankle fusion). However, the
customized implant is costly and time-consuming due to its customized nature.
To circumvent these drawbacks, universal talus implants were proposed. While
they showed clinically satisfactory results, existing talus implants are heavier than
biological talus bones as they are solid inside. This can lead to unequal weight
between the implant and biological talus bone, and therefore leading to other
complications. The reduction of the implants’ weight without compromising its
performance and congruency with surrounding bones is a potential solution.
Therefore, this study aims to design a lightweight universal talus implant using
topology optimization. This is done through establishing the loading and boundary
conditions for three common foot postures: neutral, dorsi- and plantar-flexion.
The optimized implant performance in terms of mass, contact characteristics with
surrounding joint cartilage and stress distributions is studied using a 3D Finite
Element (FE) model of the ankle joint. The mass of the optimized implant is
reduced by approximately 66.6% and itsmaximum stresses do not exceed 70 MPa,
resulting in a safety factor of 15.7. Moreover, the optimized and solid implants
show similar contact characteristics. Both implants produced peak contact
pressures that were approximately 19.0%–196% higher than those produced by
the biological talus. While further mechanical testing under in-vivo loading
conditions is required to determine clinical feasibility, preliminarily, the use of a
lightweight universal implant is expected to provide the patient with amore natural
feel, and a reduced waiting period until surgery.

KEYWORDS

talus implant design, bioinspired design, total talus replacement, finite element analysis,
topology optimization, contact pressure, cartilage

1 Introduction

The talus bone, with its unique geometry and large articular surface, plays a
significant role in load transmission and foot movement as it serves as the
connection point between the leg and the foot (Liu et al., 2020). Given its poor
blood supply and large cartilage-covered surface area, coupled with the non-
existence of muscular or tendinous attachments, the talus is more susceptible to
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avascular necrosis (AVN). AVN is the death of bone tissue due to
restricted blood supply (Tonogai et al., 2017), and may be a result
of fractures (Trovato et al., 2018), high-energy injuries (Katsui
et al., 2019), trauma, steroid use, metabolic or idiopathic causes
(Bowes et al., 2019), and osteosarcoma (bone cancer) (Huang
et al., 2021). Ultimately, talar collapse manifests in the form of
ankle joint incongruity leading to pain, stiffness and restricted
movement (Bowes et al., 2019).

A common surgical treatment is ankle arthrodesis (fusion)
where the talus is fixated to the tibia or to both the tibia and
calcaneus. While this procedure provides acceptable pain relief,
it results in the loss of hindfoot and ankle movement as well as
increased stresses on the surrounding joints (Bowes et al., 2019).
A more favorable alternative is total talus replacement (TTR)
surgery, which results in a higher rate of pain relief (Tonogai
et al., 2017), preserved range of motion and joint function as well
relatively easier surgeries and reduced recovery periods
(Hussain, 2020). Since TTRs are typically patient-specific, the
custom-made implant’s design process can be time-consuming
and costly, resulting in increased periods between surgical
decision and implantation (Liu et al., 2020). To solve the
drawbacks, universal talar prostheses have been previously
developed and were proved to be feasible (Trovato et al.,
2018; Bowes et al., 2019; Trovato, 2016; Trovato et al., 2017;
Liu et al., 2022a). Due to the universal nature, these types of
implants can be mass produced. Both the waiting time between
diagnosis and surgery as well as the associated design and
production costs can be reduced (Trovato et al., 2017).
However, when comparing the weight of the talus implant to
the biological talus bone, existing universal talus implants are
generally up to several times heavier, given the use of ceramics
and metals as implant materials (West and Rush, 2021). This can
lead to unequal weight of the left and right foot and potential
complications.

In order to enhance implant structures, topology optimization
(TO) is typically used. TO is a procedure that optimizes material
distribution in a defined design space in order to achieve higher
performance structures, typically ones with lighter weight while
maintaining mechanical properties (Kladovasilakis et al., 2020). For
TTRs, a single study is known to have employed TO in their design
process. In that study, a comparison was made between a
topologically optimized scaffold and a rational scaffold of the
inner structure of a talus replacement in three postures
corresponding to peak gait cycle loads. The implant used was a
recreation of a cadaveric talus, and the simulation excluded the
fibula as well as the adjacent bones’ cartilages (Kang et al., 2022).
This exclusion likely decreases the accuracy of the resulting stress
distributions, thereby affecting the optimized implant geometry and
expected performance under more anatomically-accurate
conditions.

This study focused on the design of a universal talus
implant, under three loading scenarios, using topology
optimization to obtain an enhanced structure that benefits
from the advantages of a universal implant as well as
addresses some limitations of the aforementioned study by
including the fibula and the bones’ cartilages in the model.
The optimized implant’s performance (mass, stresses and
contact pressures) is then assessed, in comparison with the

non-optimized solid implant and biological talus, using finite
element analysis (FEA).

2 Materials and methods

2.1 Geometry acquisition

The universal talus implant’s geometry was obtained from an
earlier study (Trovato et al., 2017) where a talus (among 91 tali) with
the least total deviation from the rest of the tali was selected, and was
uniformly further scaled up by 0.5 mm to compensate for the
cartilage existing on a biological talus bone.

The ankle joint geometry, including the biological talus bone,
was obtained from an earlier study (Trovato et al., 2018) where a
dissected cadaveric foot (right side) was CT scanned under three
postures: +20° dorsiflexion (DF, foot pointed upwards), 0° neutral
standing (NS, standing position), and −20° plantarflexion (PF,
foot pointed downwards). The angles were selected to represent a
wide range of flexion angles of the foot where the postures are
typically experienced when ascending/descending stairs, for
example, (Brockett and Chapman, 2016). The obtained images
were then imported into MIMICS (Materialize, NV, Belgium,
Version 20.0) where the bones were created, and then cleaned
using Geomagic (3D Systems®, Morrisville, USA, Version 2014)
to ultimately obtain the 3D geometry. The cartilage, presented in

FIGURE 1
(A) Universal talus implant and (B) biological talus bone setup.
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greater detail in Section 2.3, was created using Hypermesh
(Altair®, Troy, United States, Version 2021), by extruding the
shell elements on the articular surfaces of the adjacent bones, as
well as the biological talus, by 1.5 mm (Liu et al., 2022a).
Throughout the study, the term ‘ankle joint’ is used to
represent all the five bones (including the navicular and
calcaneus), not strictly the anatomical ankle joint composed of
the talus, tibia, and fibula. Additionally, the term ‘adjacent bones’
refers to the aforementioned ankle joint without the talus.
Finally, unless stated otherwise, the terms ‘implant’ and
‘universal implant’ are used interchangeably.

2.2 Biological talus bone and universal
implant setup

The solid implant geometry, shown in Figure 1A, was
partitioned to easily allow its modification for different FEA
setups as well as the optimization while preserving the mesh for
consistency. It was divided into the design space (in white) and non-
design space (in grey). The outer sections, namely, the outer design
space and entire non-design space, are 1 mm-thick solids. The
biological talus bone, presented in greater detail in Section 2.3, is
shown in Figure 1B with and without its cartilage. For the purposes
of this study, the biological talus was used strictly for comparison,
not optimization.

The partitions were not randomly created; rather they were
defined to maintain the implant’s function in terms of contact
between the non-design space partitions with their respective
adjacent bones’ cartilages while accounting for additive
manufacturing (AM) constraints. The main consideration was to

allow the metal powders used in powder-based AM to be removed,
hence the availability of an outer design space as well instead of only
having an enclosed inner design space where the powders would
remain trapped.

2.3 Finite element model

The following section describes the setup for both implants,
namely, the optimized and solid implants, in addition to the
biological talus.

2.3.1 Solid implant and ankle joint FE setup
Given that the obtained ankle joint’s 3D geometry was of the

biological bones, the solid implant was ‘best-fit’ aligned with the
biological talus using Geomagic, and then the adjacent bones were
translated away from the implant to avoid interference when
creating their cartilage layers. Figure 2 shows the ankle joint FE
setup, with the solid implant, in dorsiflexion (DF, +20°), neutral
standing (NS, 0°), and plantarflexion (PF, −20°) respectively.

The simulation of each posture, using Optistruct solver (Altair®,
Troy, United States, Version 2021), includes three consecutive,
large-displacement, non-linear static load steps: 1) the adjacent
bones are returned to their respective CT scan position to
establish contact with the implant which is fixed in place; 2) the
implant freely adjusts itself with the adjacent bones which remain
fixed in their positions at the end of load step 1; 3) a compressive
force of 2000 N is applied to the tibia in the direction of gravity
(negative Z-axis). Note that the magnitude of the compressive force
(2000 N) equates to approximately three to four times a person’s
weight and was chosen in accordance with a previous study (Liu
et al., 2022a). More complex or extreme loading conditions were not
considered in this work. Both the tibia and fibula are equation-
constrained to move together in the Z-axis to mimic their realistic
combined motion (Liu et al., 2022a).

All the defined loads, displacements and equation constraints
are applied to reference points representing rigid body motion of a
set of elements on the adjacent bones. The only exception is the
implant whose defined displacements are applied to the nodes on the
outer surface of its outer design space.

To reduce computational difficulties, the non-articular surfaces
of the adjacent bones were meshed using three-node triangular shell
elements while the articular surfaces were meshed using four-node
quad elements. All the shell elements were assigned a thickness of
1 mm. For the cartilage, the articular surface’s four-node elements
were extruded 1.5 mm, distributed over four equal layers, to create
solid eight-node hexahedral elements.

Since the implant is an artificial replacement for the biological talus,
no cartilage was created on its surface, rather its volume was uniformly
scaled up by 0.5 mm to account for the natural cartilage thickness. For
the non-design sections, their outer surfaces were first shell-meshed
using four-node quad elements (for the main areas that will be in
contact with the adjacent bones’ cartilages) while surrounded by three-
node triangular elements. The shell mesh of the five aforementioned
sections was then mapped across each respective solid section, from its
outer to its inner surface, creating eight-node hexahedral and six-node
pentahedral solid elements. For the outer-design section, since it does
not establish any contact, its outer surface was meshed with quad-

FIGURE 2
Ankle joint in (A) +20° DF, (B) 0° NS, and (C) −20° PF.
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dominated mixed shell elements. Finally, the inner-design section was
meshed using four-node tetrahedral solid elements.

Herein, the implant, cartilages, and bones were assumed to be
homogeneous isotropic solids, and their assigned material models and
properties are summarized in Table 1. Additionally, surface-to-surface
contacts were defined between the cartilages of the adjacent bones and
their related contact areas on the outer surfaces of the respective non-
design space of the implants. A static friction coefficient, µs = 0.01
(frictionless contact), was defined between the contact pairs, and
separation was allowed after contact (Liu et al., 2022a).

2.3.2 Biological talus FE setup
As for the ankle joint FE setup involving the biological talus, a visual

demonstration is shown in an earlier study (Liu et al., 2022a). A setup
similar, in terms of loading and material properties, to that in Section
2.3.1 was utilized where the biological talus was in place of the solid
implant. The selected rigid body set of elements were on the non-
contact shell elements. The talus and its cartilage were meshed
identically to the aforementioned adjacent bones (see Section 2.3.1).
In this particular case, the surface contacts were defined between the
adjacent bone cartilages and their related contact areas on the talus’
cartilage surface.

2.3.3 Optimized implant FE setup
The optimized universal implant, presented further in Section

3.1, is visualized in isolation from the ankle joint in this study, as
shown in Figure 5B. After TO (defined in Section 2.5), the updated
finite element (FE) model of the ankle joint with the optimized
implant, a setup identical to that of the solid implant in Section 2.3.1,
was used for all three postures. The non-optimized (solid) implant
was substituted with the optimized one in order to evaluate the
performance of the latter. The only difference is the optimized
implant’s mesh, which due to its complex geometry, was fully
meshed using four-node tetrahedral solid elements.

2.4 Mesh sensitivity analysis

To verify that the simulation results are independent of the solid
implant’s mesh, a sensitivity analysis was conducted. The ankle joint,
in NS only, was simulated by varying the total number of elements of
the implant while maintaining the mesh setup described in
Section 2.3.1.

Based on the results, beyond 376,156 elements (100,083 nodes)
the stress values varied minimally, where for at least a 4.2% increase
in the total number of elements leads to an increase of at most 1.7%
in either von Mises or contact stress, the solid implant was deemed
to be mesh insensitive. Therefore, the model selected for further FE
simulations and optimizations was the one with 414,111 elements

(118,218 nodes). It possesses a sufficiently high number of elements,
which will be required for a more detailed representation of the
optimized topology; while it simultaneously has less elements, for
computational efficiency, than the model with the finest mesh.

2.5 Topology optimization setup

The mesh and the material properties used for the implant are as
described in Section 2.3.1. To further expand on Section 2.2, in the
context of TO, the definitions of the design and non-design spaces,
shown in Figure 1A, are important. The non-design space is the
section that remains unchanged and is not optimized while the
design space is the section that changes and is optimized, hence the
partitions created in the implant.

For the loading conditions of the implant, the output nodal
contact forces on the non-design sections from the FEA of the
implant (resulting from the analysis in Section 2.3.1), in all three
postures, were directly applied as loads on the same nodes of the
implant (since the same mesh was used). All nodal contact forces
belonging to each posture were placed in a load step of their own for
a total of three linear static load steps. For example, Figure 3 shows
the DF load step, where the size of each arrow is proportional to the
magnitude of each nodal contact force.

The inertia relief ‘INREL’ parameter was activated which allows
the software to run the static analysis without constraints, and
instead, the applied loads are balanced out by nodal accelerations
(automatically determined by Optistruct).

For the TO setup, the objective was to minimize the total volume
V(ρ) of the design space, which is the combination of both the ‘Inner
Design’ and ‘Outer Design’ sections, as shown in Figure 1A. A von
Mises (VM) static stress constraint was applied to the entire implant
where the maximum VM stress of element e, σvm,e, may not exceed
75 MPa. The TO problem can be formulated as follows:

minimizeV ρ( ) � ∑N
e�1
ρe w.r.t. ρe (1)

subject to σvm,e ≤ 75MPa (2)
where

0.01≤ ρe ≤ 1, where e � 1, . . . , N (3)
The design variable is the relative density ρ of each element in

the design space, where the relative density is the ratio of the
optimized element’s volume to the same element’s non-optimized
volume (which is a solid). Each element e, ranging from 1 to N
number of finite elements, is assigned the design variable ρe.

The 75 MPa limit was selected to maintain a sufficiently high
safety factor (SF, where SF is the ratio of the material’s yield strength,
1,100 MPa for Ti-6Al-4V (Ansys Workbench, 2020), to the

TABLE 1 Model material properties.

Component Material Behavior Mechanical Properties

Bones (cortical bone) Linear elastic E = 19 GPa, ν = 0.3 Liu et al. (2022a)

Cartilage Hyperelastic (Ogden) µ1 = 2.43 MPa, α1 = 12.45, D1 = 0.176 1
MPa Liu et al. (2022a)

Implant (Ti-6Al-4V) Linear elastic E = 107 GPa, ν = 0.323, ρ = 4,405 kg
m3 Ansys Workbench (2020)
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maximum VM stress in the model) against yielding while still
obtaining a relatively lightweight structure.

3 Results

3.1 Optimized geometry

The output of the optimization is the element density contour
plot where the element densities (relative densities) of each element
are shown. The relative density is the ratio of the optimized
element’s volume to the volume of the same non-optimized
element. The values range from 0.01 (1%) to 1 (100%), where a
(near) zero value represents a void (no material) and a value of one
represents a solid (material). The element density contour plot of the
optimized implant is shown for all densities in Figure 4A, and
densities >0.09 in Figure 4B. Since the non-design space is not
optimized, it is made transparent in Figure 4 for better visualization.

To extract the surface of the optimized geometry, the
Hypermesh post-processing tool ‘OSSmooth’ was used and an

iso-density boundary surface was extracted with a selected
threshold density of 9%. The selected threshold density was
based on requiring the removal of low-density solid elements
while maintaining connections in some areas between the design
and non-design space. The resulting optimized geometry’s non-
design and optimized design spaces are shown in Figure 5A while
the solidified geometry, used for further analysis as defined in
Section 2.3.3, is shown in Figure 5B. The masses of the design and
non-design spaces, as well as the total masses of both the
optimized and solid (non-optimized) implants are plotted in
Figure 6A for a material density of 4,405 kg

m3, corresponding to Ti-
6Al-4V (Ansys Workbench, 2020).

3.2 Stress comparisons

To ensure the safety of the optimized implant, in addition to
verifying that the optimization stress constraints were satisfied, a
VM stress evaluation was conducted. For comparison of the
optimized and solid implants as well as the biological talus, the

FIGURE 3
Nodal contact forces in dorsiflexion.

FIGURE 4
Optimized implant element density contours for (A) all densities and (B) densities >0.09.
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maximum VM stresses are plotted in Figure 6B and the stress
contours are shown in Figure 7 for all three postures. Note that
the cartilage of the biological talus is hidden in Figure 7 for
visualization and ease of comparison, and the grey sections were
defined as rigid body sets, hence the nonexistence of stress contours.

3.3 Contact pressure comparisons

The effect of the optimized implant on the adjacent cartilages’
contact characteristics was considered. Since a higher pressure,
beyond a certain limit, could lead to bone fracture (Liu et al.,
2022a), any talus implant should ideally have contact pressures
and areas similar to those of the biological bone. For comparison of
the optimized and solid implants as well as the biological talus, the

maximum contact pressures are plotted in Figure 8. For the
optimized implant and biological talus, the contact pressure
contours of the adjacent cartilages in DF, NS, and PF are shown
in Figure 9. As for the solid implant, the equivalent contours are not
shown since the contact pressure patterns were identical to those
produced by the optimized implant, and exhibit negligible
maximum pressure differences, as seen in Figure 8.

4 Discussion

4.1 Results discussion

Based on Figures 4, 5, the material appears to be distributed in a way
that is mostly governed by the load transfer paths, and is removed in the

FIGURE 5
Optimized implant geometry (A) with non-design and optimized design spaces and (B) overall.

FIGURE 6
Comparisons of (A) mass between optimized and non-optimized (solid) implants and (B) maximum von Mises stress between optimized and solid
implants, and biological talus.
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sections that are less stressed. This leads to an optimal material
distribution that reduces the implant’s mass while rendering it safe for
implantation by reinforcing the sections that transfer the load. For the
summarizedmasses in Figure 6A, it is evident that the optimized implant
weighs considerably less than the solid, non-optimized one. This
lightweight implant design is expected to provide the patient with a
more natural feel similar to that offered by the biological bone.

As for the stresses in all three postures in the optimized implant,
based on Figure 6B; Figure 7, they are lower than the defined 75 MPa

stress constraint. Additionally, the overall SF (lowest of the three
postures, in DF) under static loading conditions is approximately
15.7. Accordingly, the optimized implant is deemed to be safe given
its high SF. Additionally, as expected, it has higher stresses than the
solid implant due to the availability of less material. For the
biological talus, given its low elastic modulus, it experienced the
highest stress across all three postures.

Finally, based on Figures 8, 9, the optimized and solid implants’
contact pressures on the adjacent cartilages are identical in all three

FIGURE 7
Von Mises Stress (MPa) contours for the optimized and non-optimized (solid) implants, and biological talus.

FIGURE 8
Maximum contact pressure comparisons between the optimized and solid implants, and biological talus.
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postures. While this could partially be attributed to the nature of the
material used for the implant which is considerably stiffer than
cortical bone (Liu et al., 2022a), it is more likely that this is due to the
unchanged articular surfaces (since they are a part of the non-design
space). The biological bone has the lowest contact pressures with a
significant peak pressure difference, relative to the implants. It
produced peak pressures approximately 15.9%–66.2% lower than
those produced by both implants. Additionally, on average, the

contact areas appear to be higher for the biological talus in
comparison to the implants. This could be attributed to the less
stiff nature of cortical bone, but more significantly, this is likely due
to the cartilage layer on the biological talus. Hence, adding an
artificial cartilage layer on the implant surface could help in
alleviating contact pressure peaks and guard against bone
fractures near the bone/implant interfaces. Increased contact
areas and reduced contact pressures due to the addition of a

FIGURE 9
Contact pressure (MPa) contours for the optimized implant and biological talus.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Hafez et al. 10.3389/fbioe.2023.1228809

72

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1228809


compliant layer on top of the metal-based implant were also found
in a recent study (Liu et al., 2022b).

The results of this study deem the usage of optimized universal
implants a feasible alternative to traditional custom-made ones. The
patient is expected to benefit from a more natural feel as a result of
the optimized implant’s lightweight nature as well as reduced times
until surgical implantation given the universal nature. More
generally, this study can help define a framework on how to
approach the optimization of talus implants to obtain higher-
performance and more economical total talus replacements.

4.2 Limitations and future work

Future work on the topic should focus on addressing the
limitations of the present study. The optimization should be
conducted for different types of loading such as dynamic (based
on the human gait cycle), fatigue, and impact loading, that is not
only limited to a single plane (sagittal in this research), but also to
coupled out of plane loading and motion such as in the frontal
plane. For the adjacent bones, more subjects could be used for
optimization based on a variety of higher-quality bone
geometries, rather than a single geometry. Moreover, more
anatomically accurate ankle joint setups can be used in which
both cortical and cancellous bone properties are considered,
alongside the use of ligaments and muscles. Ligaments were
not included in this comparative study given that the same
postures and boundary conditions were used for all three tali
and static loading was assumed. While the ligaments can play a
significant role under dynamic loading, ligament usage is
expected to have a minimal impact on the results when loads
are applied statically (Liu et al., 2022a). To possibly reduce
contact pressures, the usage of other materials (or a
combination) could be explored. Additionally, to reduce the
potential of stress concentrations without significantly
increasing the implant’s weight, the use of a porous structure
within the design space can be explored. This would likely offer
enhanced energy absorption and buffering effects, which are
beneficial for the long-term performance of the implant (Peng
et al., 2022).

Finally, it is worth noting that, while a constant elastic modulus
was assumed throughout the implant, in practice, the mechanical
behavior of the component may vary spatially. In particular, lower
thickness sections realized through AM have been shown to possess
a lower elastic modulus as compared to their bulk equivalent
(Danielli et al., 2023). Hence, the computed geometry may not
exhibit the intended optimality and safety criteria in the additively
manufactured part. Consequently, the fabricated implants would
need to be mechanically tested to validate the study’s results and
ensure safety.

5 Conclusion

This study focused on optimizing a universal talus implant, for
total talus replacement, using topology optimization. For three
postures, an FE model was developed for the biological talus, the

solid implant, and similarly for the optimized implant post-
optimization.

The major findings pertaining to the optimized universal
implant are as follows. Its mass is significantly reduced (by
approximately 66.6%). Based on maximum von Mises stresses
in all three postures, it evidently satisfies the stress constraints
(≤75 MPa) set in the optimization. Additionally, it is deemed to
be safe in that it withstands 2000 N of static loading in all three
postures with a safety factor of 15.7. This is based on the worst-
case posture, dorsiflexion, with the highest maximum stress
among all three. As for its effect on the surrounding cartilage,
its maximum contact pressures were identical to those of the solid
implant, therefore that aspect remained unaffected by the
optimization.
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Introduction: Triply periodic minimal surface (TPMS) is widely used in the design of
bone scaffolds due to its structural advantages. However, the current approach to
designing bone scaffolds using TPMS structures is limited to a forward process from
microstructure to mechanical properties. Developing an inverse bone scaffold design
method based on the mechanical properties of bone structures is crucial.

Methods: Using the machine learning and genetic algorithm, a new inverse design
model was proposed in this research. The anisotropy of bone was matched by
changing the number of cells in different directions. The finite element (FE) method
was used to calculate the TPMS configuration and generate a back propagation neural
network (BPNN) data set. Neural networks were used to establish the relationship
between microstructural parameters and the elastic matrix of bone. This relationship
was then used with regenerative genetic algorithm (RGA) in inverse design.

Results: The accuracy of the BPNN-RGA model was confirmed by comparing the
elasticitymatrixof the inverse-designed structurewith thatof theactual bone.The results
indicated that the average error was below 3.00% for three mechanical performance
parameters as design targets, and approximately 5.00% for six design targets.

Discussion: The present study demonstrated the potential of combining machine
learning with traditional optimization method to inversely design anisotropic
TPMS bone scaffolds with target mechanical properties. The BPNN-RGA model
achieves higher design efficiency, compared to traditional optimization methods.
The entire design process is easily controlled.

KEYWORDS

machine learning, genetic algorithm, triply periodic minimal surfaces, inverse design,
arrangement anisotropy

1 Introduction

Bone is a crucial part of the human body, serving various functions such as body support,
protection of internal organs, and mineral storage. With the increasing aging population, the
number of people suffering from joint diseases is also rising, leading to a greater demand for
external repair techniques for bone defects (Gruskin et al., 2012; Li et al., 2015; Lin et al., 2020).
Currently, the most important treatment method for repairing bone defects is bone tissue
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engineering scaffolds that can guide bone tissue regeneration (Henkel
et al., 2013; Tang et al., 2016; Zhu et al., 2021). The triply periodic
minimal surface (TPMS) is an ideal model for designing scaffolds in
bone tissue engineering due to its zero mean curvature and high specific
surface area, which is similar to natural bone (Yan et al., 2015; Bobbert
et al., 2017). However, it should be noted that different parts of bone
tissue have varyingmechanical properties, and themechanical properties
of the same bone tissue may differ in different directions. Therefore, it is
crucial to develop an inverse design method for bone scaffolds based on
the mechanical properties of bone structures.

The current research on TPMS bone scaffold mainly focuses on
optimizing its structure to achieve the target performance. For example,
(Yánez et al., 2018), systematically investigated stress conditions under
compression and torsion of different types of Gyroid porous structures
with varying porosity models (Rajagopalan and Robb, 2006). Proposed
two bracket models, the P-type bracket and the regular voxel bracket in
the TPMS unit. They found that the stress distribution of the P-unit
bracket was better than that of other units with smaller strains (Wieding
et al., 2014). Optimized the configuration parameters of titanium alloy
scaffolds with opening characteristics, making the scaffolds have
similarly elastic to human bone and satisfactory pore size. Overall,
the research on TPMS bone scaffolds still needs to be improved,
focusing on optimizing their structures to improve their performance.
Unlike the previous uniform arrangement, the anisotropic TPMS
structure is introduced in this article. This structure is more in line
with the real structure of bone, which is also anisotropic.

To realize the inverse design, the machine learning (ML) based
method is resorted due to its low computational cost, high adaptability to
various physical problems, and good independence from physical
models. ML-based method is a data-driven method, and its
effectiveness depends on the amount of prepared data and the
algorithm employed (Wang et al., 2021). Besides, the use of ML for
inverse design has matured in metamaterials. For example, the artificial
neural network (ANN) was employed by (Peurifoy et al., 2018) to
approximate the inverse design of photonic crystals. The deep-learning-
based model comprising two bidirectional ANN was established to
design and optimize the chiroptical metamaterials at specific

wavelengths (Ma et al., 2018). Recently, the Gauss-Bayesian model
involving Bayesian optimization using Gaussian kernel was proposed
to realize the inverse design of various acoustic metamaterials for
predesignated functionality (Zheng et al., 2020). While ML methods
have been effectively utilized in the inverse design of metamaterials, their
application in bone implants is still limited and requires further
investigation.

The present study aimed to inversely design complex bone scaffolds
using anisotropic TPMS structures. The target for inverse design was the
partial elasticity matrix of bone. A mapping relationship between
structural parameters and mechanical properties using the back
propagation neural network (BPNN) neural network was established
in our designmethod. Then, a regenerative genetic algorithm (RGA)was
embedded in machine learning for inverse search to obtain the desired
structure (Figure 1). Finally, several sets of design targets and high-
precision finite element (FE) simulations were used to demonstrate the
validity and generalizability of the BPNN-RGA model.

2 Materials and methods

2.1 Anisotropic TPMS structures

Arrangement anisotropy refers to the fact that the number of TPMS
unit cells arranged in each direction is different while the length of the
structure in each direction remains constant. The whole structure had
different mechanical properties, such as Young’s modulus, in different
directions. As shown in Figure 2A, the unit cell structure, normal
arrangement structure, and anisotropic arrangement structure of four
types of TPMS required for inverse design are displayed. As shown in
Figure 2B, the change in compressive modulus in different directions of
the structure varies with the number of units in the y-direction of the
given coordinate system in Figure 2A. It should be noted that when only
themodulus in the y-direction is changed, themoduli in the x-direction
and z-direction were the same (the number in x and z directions is kept
“2”). A more complicated structural design can be made if the numbers
in the three directions are different.

FIGURE 1
Flow chart of forward prediction and inverse design.
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Anisotropic TPMS structures can be generated by controlling
the parameters of the surface equations. The anisotropic Primitive
scaffold was characterized using the following equation:

US � cos
2πm
L

x( ) + cos
2πn
L

y( ) + cos
2πl
L

z( ) − t

where m, n, and l are the arrangement numbers of the
anisotropic Primitive unit cell in the x, y, and z directions,

respectively; t is the surface control coefficient, which is related
to porosity φ; L is the dimension of the design structure in the x,
y, and z directions.

The FE method was used to calculate the equivalent stiffness
matrix of the human bone from computed tomography (CT)
images (Figure 3). The 2D image is re-established as a 3D model
by superposition, and then the finite element method is utilized
to solve the Cij, with 1,2,3 in the parameters corresponding to the
x, y, and z directions, respectively, as detailed in the literature

FIGURE 2
Schematic diagram of structure and their performance. (A) Structures of various arrangements (B) Variation of compression modulus with the
number of arrangements.

FIGURE 3
CT images of bone structure and its stiffness matrix.
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(Xiao et al., 2021; Lu et al., 2022). The stiffness matrix was then
compared with those in the existing literature to verify its
rationality (Kalouche et al., 2010; Wang et al., 2016). The
analysis of the equivalent elastic matrix data shows that it is
difficult to achieve inverse design of the elastic matrix if the
TPMS was uniformly arranged in space. A previous study has
shown that, in a specific direction, the mechanical properties of
TPMS scaffolds can be significantly improved by adjusting
structural anisotropy (Peng et al., 2022). This feature was used
to create structures with various mechanical properties in all
directions.

2.2 Establishment of machine learning
database

The ML method is largely database dependent, so enough
data are required to perform the inverse design. To generate the
data set for ML to predict the equivalent stiffness matrix of
TPMS, we obtained the 3D scatter plot from the TPMS surface
equation and used the scatter plot to generate the unit node
information. The range of variation of the number of structural
arrangements is set to 3–8. The range of variation of porosity is
set to 50%–75%. The element node information was imported
into ANSYS (v.18.0, Ansys Inc., Canonsburg, PA, United States)
to generate the FE model. Moreover, FE calculations were
performed according to different boundary conditions. TPMS
surface parameters and the results of FE calculation were used as
the training set of neural networks.

As shown in the Figure 4, the compression and shear terms in
the stiffness matrix were solved using the unidirectional
compression and pure shear conditions. The lower surface of the
TPMS structure was completely fixed and a displacement load of
0.1 was applied to the upper edge face. The length L was 10.00 mm,
and the elements were first-order hexahedral solid elements
(Solid185). The Young’s modulus for the component material
was 10.00 GPa, and the Poisson ratio was 0.30 (Hak et al., 2014;
Wu et al., 2018). It should be noted that Young’s modulus of the
designed configuration was changed to 100 GPa for the low porosity
bone due to the significant difference between the two bone moduli
(Collins et al., 2021).

2.3 Forward prediction using BPNN

ML can be used to quickly predict problems that are previously
difficult to solve (Yan et al., 2018; Chen et al., 2019). The BPNN is a
representative ML algorithm inspired by the biological neural
network of the human brain (Lu et al., 2019). BPNN could be
regarded as a non-linear operator, which takes an input vector X and
returns the hypothesis value of the output vector y, as given in
equation:

y � BPNN X( ) � BPNN c,φ, t, m, n, l( )
where c is a label used to distinguish different TPMS structures, and
c is an integer, the value of which is between 1 and 4 (Figure 5).

A typical BPNN is shown in Figure 6. The first layer of the
BPNN was the input layer, the last layer was the output layer, and
two hidden layers were introduced between them. When the input
information X was transferred into a neuron node in the hidden
layer, as shown in Figure 6, the neuron node would give an
approximation adjusted by a nonlinear activation function. The
nonlinear relationship between the input variables and the medium
approximation hj was captured in hidden layer 1.

hj � f ∑6

i�1w
1( )

ij xi( ) + b 1( )
j[ ], j � 1 → m

where w(1)
ij is the weight connecting the input variable i and the

neuron node j , b(1)j is the related bias, and f is the nonlinear
activation function which is continuous and differentiable.

Through two hidden layers, this approximation is mapped into
the output variable ~yj corresponding to the neuron node j by a
linear transfer function ϕ.

~y � ∑6

j�1 ~yj � ∑6

j�1ϕ w 3( )
j hj + b 3( )( )

where w(3)
j is the weight connecting the neuron j and the output

variable b(3) is the related bias. If the actual output ~y is different to
the target output y, a back propagation of error based on gradient
error theory is required to iteratively adjust the weight coefficients in
the network to minimize the difference through the mean square
error (MSE) function.

Two neural networks, BPNN1 and BPNN2, were trained after
determining the optimal structure of the neural network. The

FIGURE 4
Two loading conditions of the TPMS structure.
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BPNN1 was used to train the mapping relationship between the
structure and the compressive modulus, and BPNN2 was used to
train the mapping relationship between the structure and the shear
modulus.

2.4 Inverse design using BPNN-RGA

The RGA was employed to search for the TPMS configuration,
of which the equivalent stiffness matrix was closest to the objective
one, as illustrated in Figure 7. The individuals of the RGA were
TPMS configurations, and chromosomes were surface equation
parameters. A ML model was used to map the relationship
between the surface parameters and the equivalent stiffness. The
model’s fitness was determined by comparing the absolute value of
the difference between the fitting stiffness and the target stiffness.
The smaller the absolute value, the better the fitness. A single output

was used to ensure the neural network’s accuracy. Moreover, a
regeneration step based on the traditional genetic algorithm was
incorporated in this article. Regenerating two structures with the
same design parameters but different x, y, and z arrangements was
involved in this step. This step aimed to change the direction of load
application and obtain the compression or shear properties of the
same structure in different directions. Without adding new neural
networks, the accuracy of multi-output neural networks was
improved in this approach.

TPMS structures with different porosities, arrangement
numbers, and cell types were generated as the initial population.
The first step in the genetic algorithm was to evaluate the fitness of
the individuals in the population. Individuals with lower fitness
scores were more likely to undergo cross-mutation, while those with
higher fitness scores may also undergo cross-mutation but with a
lower probability. After completing the mutations and crossovers,
the parents and children were sorted together. The top

FIGURE 5
Machine learning label of TPMS structures.

FIGURE 6
The structure of the BPNN neural network.
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2,000 individuals with the highest fitness were selected as the new
population, and the next round of mutation and crossover sorting
was carried out. The best-adapted individual was recorded each

time, and if the error did not decrease after 20 consecutive iterations,
it was considered that the best individual had been found. At this
point, the outputs were the structural design parameters.

FIGURE 7
Flow chart of the inverse search using genetic algorithm.

FIGURE 8
Comparison of the neural network errors with different structures.
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3 Result

3.1 Optimization of the neural network
model

We generated 8,000 TPMS configurations and computed their
equivalent stiffness matrixes using the FE method, among which
7,000 configurations were used in the training set and
1,000 configurations in the test set. Once the database was
established, it was crucial to determine the optimal BPNN
structure, including the number of hidden layers and neurons in
each layer. The quality of the neural network structure was evaluated
based on the mean absolute percentage error (MAPE). The MAPE
for the stiffness of each architecture is shown in Figure 8. It can be
seen that the BPNN architecture with two hidden layers and
48 neurons in each hidden layer has the minimal error.
Therefore, the neural network structure was used to predict the
modulus.

The convergent behavior of the selected BPNN architecture is
shown in Figure 9A. It was also indicated that there was no
overfitting phenomenon because the established BPNN model
performed well with training and test datasets. In order to verify
the reliability of the neural network, the trained network was loaded,
the newly generated input data was given, and the comparison
between the fitted output data and that of the FE calculation was
made. The result is shown in Figure 9B. It can be seen that the BPNN
has a high predictive accuracy even when it is used to predict

untrained data. A sensitivity analysis of the number of trainings was
also conducted and the results are shown in Table 1. The time
consumed to compute the samples was also labeled.

3.2 Inverse design based on the porous bone

The stiffness matrix of porous bone was calculated from CT
images. However, due to the anisotropy of porous bone, there were
still nine different design goals, even after omitting items close to
zero. The inverse design of the spine bone focused on the structure’s
performance in compression rather than shear. Therefore, the
compressive moduli in three directions (C11, C22, C33) were
considered as the primary design target, while the shear moduli
related to (C44, C55, C66) were the secondary design target. The other
non-diagonal items related to compression (C12, C13, C23) were used
as the verification items, and their errors should not be too large.
Using the regenerative genetic algorithm in inverse design, the two
neural networks BPNN1 and BPNN2, combined with the function
of the regenerative genetic algorithm, we can obtain the structural
design parameters that meet the six design objectives:

Xbest � c,φ, t, m, n, l( ) � 1, 67%, 0.52, 7, 8, 3( )
The corresponding TPMS structure was Gyroid, the structural

porosity was 67%, and the numbers in the x, y, and z directions were
7, 8, and 3, respectively. The stress distribution under compression is
shown in Figure 10. The proposed supporting reaction force can be

FIGURE 9
Error analysis of neural network model. (A) The mean square error (B) The test results of the BPNN network.

TABLE 1 Data sensitivity analysis.

Number of data Data calculation time (h) Network training time (s) Percentage relative error (%)

400 0.36 3 3.5

1,200 1.1 8 2.4

2,000 1.8 8 1.8

4,000 3.6 26 1.4

8,000 7.2 34 1.2

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Liu et al. 10.3389/fbioe.2023.1241151

81

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1241151


obtained through formula calculation (Feng et al., 2021; Lu et al.,
2022), and the partial stiffness matrix of the structure was compared
with the target value. The comparison between the results and the
target value is as shown in Figure 11. Error analysis in terms of both
numerical magnitude and relative error percentage (REP).

The results of the simulation demonstrated that the BPNN-RGA
method could achieve the inverse design with a maximum absolute
error of 0.03 GPa and a maximum relative error percentage of
7.00%, when the design targets were the compression and the
shear modulus in three directions. The secondary design target
had the most significant error percentage due to its small magnitude.

When the design targets were reduced to three, such as the
compressive modulus in three directions, the relative error
percentage became almost negligible (Figure 12). Therefore,
achieving indiscriminate prediction of three or fewer design
objectives within the current inverse design domain was possible.
When the design target was only the three-dimensional compressive
modulus, the maximum absolute error was limited to 0.04 GPa, and
the maximum relative error percentage was limited to 2.00%. It can
be concluded that the BPNN-RGA method has the higher design

accuracy for the fewer design targets, as demonstrated by the
decrease in relative error percentage.

3.3 Inverse design based on other porous
bones

The data presented in this article was obtained through the analysis
of porous bone CT images. While its validity had been confirmed
(Kalouche et al., 2010; Wang et al., 2016), it should be noted that it was
served as an illustrative example. Due to the irregular arrangement of
trabecular bone in porous bone, the modulus of different positions can
vary greatly, and the ratio of modulus in each direction may be
inconsistent. The three-dimensional compressive modulus from
existing literature (Wu et al., 2018) was used as the design target to
demonstrate the universality of the inverse design domain of the BPNN-
RGA model (Figure 13).

As shown in Figure 13, the BPNN-RGA model still has good
solutions for different compressive moduli and proportions. The
corresponding TPMS structure was Primitive, the structural
porosity was 52%, and the numbers in the x, y, and z directions
were 3, 6, and 6, respectively. The maximum error of the structure is
less than 3.00%. In addition to the inverse design of porous bone
with a small modulus, low porosity bone with a relatively large
modulus was also inverse designed. Design goals for low porosity
bone from existing literature (Wang et al., 2016).

As shown in Figure 14, the design error of BPNN-RGA for low
porosity bone is still controlled within 3.00%. The corresponding
TPMS structure was Octo, the structural porosity was 58%, and the
numbers in the x, y, and z directions were 4, 5, and 5, respectively. In
addition, the analysis of the historical output data of the RGA
showed that when the control error was around 5.00%, several unit
cell structures can satisfy the design requirements (Figure 15). These
unit cells had different arrangement numbers in three directions and
different porosity levels, providing more options for selecting the
most appropriate porosity and structures for machining based on
machining constraints.

FIGURE 10
Verification of the design structure using the FE simulation.

FIGURE 11
Error analysis of six design objectives of porous bone.
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4 Discussion

In the present study, a BPNN-RGA model was developed to
design complex bone scaffolds, and a simulation error analysis was
performed to verify the accuracy of the model. The present study
indicates that complex bone scaffolds can be designed efficiently and
accurately using the BPNN-RGA model.

In some ways, the design method based on neural networks was
more efficient than other optimization methods. A comparative
discussion with other bone scaffold design methods is given below:
The randomization method based on computer aided design has
been proven effective in simulating real bone through the
randomization process (Mullen et al., 2010). However, this
method requires many trials to achieve the expected

performance. The design of unknown design targets could not be
efficient. Although the BPNN-RGA model depends on data, when
the data is accumulated enough, the neural network can find the
internal relationship between the data to predict the unknown data
accurately, which cannot be achieved by traditional randomization
methods.

Except randomization, comparison with topology optimization
methods is also a focus (Guest and Prevost, 2007). Utilized solid
isotropic material with penalization based structural optimization to
develop a topology optimization technique for finding a scaffold
with pores in the shape of a Schwartz primitive structure. The
topology optimization method was also used to match the stiffness
matrix of the scaffold material to the stiffness matrix of anisotropic
natural bone. Although topology optimization can realize the design

FIGURE 12
Error analysis of three design objectives of porous bone.

FIGURE 13
Error analysis of high porous bone based on existing literature.
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of complex bones the designed structure may have gray units that
affect the printing of the structure. It should be noted that although
additive manufacturing (AM) can produce structures in any shape,
the quality of the structures may vary greatly depending on the
design and fabrication parameters (Wang et al., 2013). As the
BPNN-RGA method is designed based on the TPMS structure,
which has been widely used in bone scaffolds, there is no need to
worry about manufacturing. The dimension of the design target is
reduced using the parameters of the surface equation instead of the
three-dimensional structures, which improves the design efficiency.

In addition, the selectivity of the design results are also the
highlights of the BPNN-RGA model. When the design error was set
to approximately 5.00%, we found various unit cells suitable for
inverse design with the same design goals, which provided us with
more options to select. The difference between the different types of
TPMS structures, if they all met the design objectives, was the
porosity. A successful implant must meet mechanical requirements

that match the surrounding tissue to reduce stress shielding and
prevent mechanical failure. However, except these considerations, it
is also important to consider cell attachment and growth, as well as
the transportation of nutrients and metabolic wastes for optimal
biocompatibility (Langer and Vacanti, 1999; Hollister, 2009). Bone
regeneration in porous implants in vivo involves the recruitment and
penetration of cells from the surrounding bone tissue and
vascularization (Karageorgiou and Kaplan, 2005). The porosity of
a structure is linked to nutrient exchange and the size of its specific
surface area. Therefore, when designing structures that meet specific
requirements, we can make a decision based on the porosity of the
structure (Story et al., 1998; Lewandrowski et al., 2000).

The limitation of the BPNN-RGA model is that the design
field is limited to four TPMS structures. When there are more
than six targets in the inverse design, some inaccuracies may
occur due to the design field. To address this issue, one of the
methods is to increase the variety of TPMS structures, and the

FIGURE 14
Error analysis of low porosity bone based on existing literature.

FIGURE 15
Several other structural diagrams that meet the design error.
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other method is to increase the number of single-cell arrays.
Furthermore, the efficiency of the BPNN-RGA model is reflected
in its repeated use. The time cost of building the model may be
higher if it is used only once. This is also a common feature of all
machine learning models.

5 Conclusion

In this paper, a new inverse design method BPNN-RGA was
proposed to inversely design anisotropic bone scaffolds. In this
method, anisotropy was introduced into the arrangement of bone
scaffolds based on traditional TPMS structures, and the bone
stiffness matrix calculated from CT images was used as the
inverse design target. The results of the FE calculation were
used in neural network training to find the mapping
relationship between the structural parameters and the elastic
modulus. RGA was used in inverse design to find the structure
meeting the target modulus. Multiple bone data were used to
verify the universality and accuracy of the BPNN-RGA method.
The results showed that the average error was less than 3.00%,
when the design targets was three mechanical performance
parameters and about 5.00% when the design targets was six.
Compared with the traditional optimization method, the
proposed BPNN-RGA model achieves high design efficiency.
Moreover, the results of the design have the characteristics of
stability and selectivity.
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Biomechanical evaluation of a
novel individualized zero-profile
cage for anterior cervical
discectomy and fusion: a finite
element analysis
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Anesthesiology, The Second Hospital of Jilin University, Changchun, China, 3Department of
Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China

Introduction: Anterior cervical discectomy and fusion (ACDF) is a standard
procedure for treating symptomatic cervical degenerative disease. The cage
and plate constructs (CPCs) are widely employed in ACDF to maintain spinal
stability and to provide immediate support. However, several instrument-related
complications such as dysphagia, cage subsidence, and adjacent segment
degeneration have been reported in the previous literature. This study aimed
to design a novel individualized zero-profile (NIZP) cage and evaluate its potential
to enhance the biomechanical performance between the instrument and the
cervical spine.

Methods: The intact finite element models of C3-C7 were constructed and
validated. A NIZP cage was designed based on the anatomical parameters of
the subject’s C5/6. The ACDF procedure was simulated and the CPCs and NIZP
cage were implanted separately. The range of motion (ROM), intradiscal pressure
(IDP), and peak von Mises stresses of annulus fibrosus were compared between
the two surgical models after ACDF under four motion conditions. Additionally,
the biomechanical performance of the CPCs and NIZP cage were evaluated.

Results: Compared with the intact model, the ROM of the surgical segment was
significantly decreased for both surgical models under four motion conditions.
Additionally, there was an increase in IDP and peak von Mises stress of annulus
fibrosus in the adjacent segment. The NIZP cage had a more subtle impact on
postoperative IDP and peak von Mises stress of annulus fibrosus in adjacent
segments compared to CPCs. Meanwhile, the peak von Mises stresses of the
NIZP cage were reduced by 90.0–120.0 MPa, and the average von Mises stresses
were reduced by 12.61–17.56 MPa under different motion conditions. Regarding
the fixation screws, the peak von Mises stresses in the screws of the NIZP cage
increased by 10.0–40.0 MPa and the average von Mises stresses increased by
2.37–10.10 MPa.

Conclusion: The NIZP cage could effectively reconstruct spinal stability in ACDF
procedure by finite element study. Compared with the CPCs, the NIZP cage had
better biomechanical performance, with a lower stress distribution on the cage
and a more moderate effect on the adjacent segmental discs. Therefore, the NIZP
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cage could prevent postoperative dysphagia as well as decrease the risk of
subsidence and adjacent disc degeneration following ACDF. In addition, this
study could serve as a valuable reference for the development of personalized
instruments.

KEYWORDS

cervical spine, finite element analysis, anterior cervical discectomy and fusion, Cage,
biomechanics

Introduction

Cervical degenerative disease is a chronic, structural
deterioration of the cervical spine associated with aging and
physiological deterioration (Teraguchi et al., 2014; Theodore,
2020; Lee et al., 2021). MRI screenings have shown that between
47.4% and 86.3% of individuals over the age of 50 have cervical disc
degeneration, with the C5/6 segment being the most commonly
affected (Teraguchi et al., 2014). The symptoms of cervical
degenerative disease typically involve cervical axial pain,
numbness and weakness in the limbs, and even neurological
deficits, resulting in a significantly decreased quality of life
(Theodore, 2020). Conservative treatments are generally effective
for patients with mild symptoms or a short duration of the disease;
However, surgical intervention is a preferable alternative for patients
with cervical degenerative disease suffering from severe neurological
symptoms and ineffective conservative management (Scholz et al.,
2020; Heijdra Suasnabar et al., 2023).

Anterior cervical discectomy and fusion (ACDF) has been a
standard procedure for the treatment of symptomatic cervical
degenerative disease (Fraser and Hartl, 2007; Zou et al., 2017;
Sun et al., 2018). Cage was first proposed by Bagby et al. and was
made of stainless steel with a hollow structure (Bagby, 1988).
Since then, the cage has been optimized in terms of materials
and processes, which has gradually become the preferred
internal fixation device for spinal fusion surgery (Zdeblick
and Phillips, 2003; Shen et al., 2022). At present, the most
frequently performed internal fixation devices in clinical
practice are cage and plate constructs (CPCs). The devices
have the capability to directly decompress the nerves, restore
the height of intervertebral space, and maintain the mechanical
stability of the cervical spine. Nevertheless, previous literature
has reported several instrument-related complications, such as
dysphagia, cage subsidence, and adjacent segment degeneration
(Fountas et al., 2007; Moussa et al., 2018). For conventional
CPCs, the contact area between the cage and endplates is limited
due to the irregular surface of the upper and lower endplates.
This limited contact area, prone to relative stress concentration
and uneven distribution, potentially resulting in cage
subsidence and instrument fracture (Zhang et al., 2022; Sun
et al., 2023).

In recent years, with the refinement of individualized medical
models, there has been an increase in the design of individualized
spinal instruments (Spetzger et al., 2016). Zhang et al. (2022)
constructed a novel individualized titanium mesh that improved
the compatibility of the implant with the cervical spine as well as
decreased implant-related complications. It has been reported that
the titanium plates are an important factor contributing to

postoperative dysphagia and heterotopic ossification (Sun et al.,
2018; Scholz et al., 2020; Guo et al., 2021). To address this,
zero-profile cage has been introduced to replace titanium plate
fixation with screw-only fixation, which could prevent
complications associated with titanium plates (Sun et al., 2018).
However, previous reports have demonstrated a higher risk of
subsidence for implantation of zero-profile cage compared to
conventional CPCs (Lee et al., 2015; Chen et al., 2016).
Therefore, it was necessary to design a novel individualized zero-
profile (NIZP) cage to prevent instrument-related complications
for ACDF.

Finite element (FE) analysis is a crucial in vitro experiment
that allows for realistic simulation of spinal surgery and
evaluation of the biomechanical performance of the spine.
Several studies have investigated the biomechanical effects of
internal fixation devices on ACDF using FE analysis (Moussa
et al., 2018; Hua et al., 2020; Zhou et al., 2021). Consequently, this
study aimed to design a NIZP cage for ACDF and evaluate the
biomechanical differences between CPCs and NIZP cage.
Additionally, it could provide biomechanical evidence for
further optimization of cervical cage.

Materials and methods

Finite element model of the cervical spine

A three-dimensional FE model of C3-C7 was first
reconstructed based on computed tomography scans with
0.8 mm intervals (Dual Source CT; Siemens, Munich,
Germany) of a 32-year-old healthy male volunteer (height:
175 cm; weight: 63 kg). This study was performed in strict
accordance with the Declaration of Helsinki (2003) and
approved by the Ethics Committee of the Second Hospital of
Jilin University (Ethical batch number: SB2020189). All details of
the experiment were explained to the volunteer and his informed
consent was obtained. The computed tomography data were
imported into Mimics software v21.0 (Materialise, Inc.,
Leuven, Belgium) in DICOM format to reconstruct the
geometry of the cervical spine model. The initial C3-C7 model
was then smoothed and polished using Magics software v21.0
(Materialise, Inc., Leuven, Belgium). Then, solid models of
intervertebral discs, facet joints, and endplates were
constructed in 3-Matic software v13.0 (Materialise, Inc.,
Leuven, Belgium). Afterwards, these components of FE model
were meshed in Hypermesh v16.0 (Altair Engineering, Troy,
Michigan, United States). The vertebral body, intervertebral
disc, facet joints, and endplates were constructed using 3D
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FIGURE 1
Finite element model for intact C3-7 cervical spine. (A) Intact model, (B) Left-view section of the finite element model, (C) Cortical bone, endplate,
annulus ground, nucleus pulposus, and annulus fiber.

TABLE 1 Material properties of the finite element model.

Component Element
type

Young
modulus (MPa)

Poisson’s
ratio

Crosssection
(mm2)

References

Vertebrae C3D4 ρ = 47 + 1.112*HU 0.3 - Rho et al., 1995; Sun et al., 2023; Wo et al.,
2021

E = 0.63ρ1.35

Intervertebral disc Zhang et al., 2022; Shen et al., 2022

Nucleus pulposus C3D8 1.0 0.49 -

Annulus fibers T3D2 110.0 0.3 -

Annulus fibrosus substance C3D8 4.2 0.49 -

Endplate C3D8 500.0 0.4 - Wo et al. (2021)

Facet joint cartilage C3D8 10.4 0.4 - Wo et al. (2021)

Ligament Shen et al., 2022; Zhang et al., 2022

Anterior longitudinal
ligament

T3D2 10.0 0.3 6.0

Posterior longitudinal
ligament

T3D2 10.0 0.3 5.0

Interspinous ligament T3D2 1.5 0.3 10.0

Supraspinous ligament T3D2 1.5 0.3 5.0

Capsular ligament T3D2 10.0 0.3 46.0

ligamentum flavum T3D2 1.5 0.3 5.0

Implants (Ti6Al4V) - Zhang et al. (2022)

NIZP cage, screws C3D4 110, 000 0.3 -

CPCs C3D4 110, 000 0.3 -

NIZP cage, a novel individualized zero-profile (NIZP) cage; CPCs, cage and plate constructs.
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solid elements with isotropic properties (Hua et al., 2020; Shen
et al., 2022; Zhang et al., 2022).

The element type of the vertebral bodywas divided into a four-node
tetrahedral mesh (C3D4), and the intervertebral disc, facet joints, and
endplates were divided into an eight-node hexahedral mesh (C3D8)
(Wo et al., 2021). According to the empirical formulation of Rho et al.,
the material properties of the vertebrae were attached to the FE model
based on computed tomography gray values in Mimics software v21.0
(Rho et al., 1995; Sun et al., 2023). The intervertebral disc was further
divided into two parts with a volume ratio of 7:3: nucleus pulposus and
annulus fibrosus (Zhang et al., 2022). The nucleus pulposus was
modeled as having isotropic, incompressible, fluid-like properties
(Kallemeyn et al., 2010). The annulus fibrosus was simulated by
annulus fibers wrapped around an annulus fibrosus substance. And
the annulus fiber was a mesh structure composed of truss elements that
experienced tension only, with an inclination angle between 15° and 45°

to the transverse plane (Mo et al., 2017; Zhang et al., 2022). The cervical
ligaments, including anterior longitudinal ligament, posterior
longitudinal ligament, interspinous ligament, supraspinous ligament,
capsular ligament, and ligamentum flavum, were modeled using
tension-only truss elements and connected to the adjacent vertebrae
(Figure 1) (Shen et al., 2022; Zhang et al., 2022). All components were
imported into Abaqus software v6.14 (SIMULIA Inc.) in inp format.
The facet joints covered by articular cartilage layer with surface-to-

surface contact and a frictional coefficient set at 0.1, and other contact
surfaces were defined as Tie contact (Wo et al., 2021; Shen et al., 2022).
All material properties and element types of the components of cervical
spine were shown in Table 1 (Rho et al., 1995; Wo et al., 2021; Shen
et al., 2022; Zhang et al., 2022; Sun et al., 2023).

Design of a novel individualized porous
titanium alloy zero-profile cage

The NIZP cage for ACDF was designed in Magics software v21.0
(Materialise, Inc., Leuven, Belgium). Initially, the morphology of the
intervertebral space was depicted by extracting the lower surface of the
C5 vertebra and the upper surface of the C6 vertebra. Subsequently, a
novel cage was designed based on the morphological characteristics of
the intervertebral space, aiming to increase the contact area between the
implant and the cervical spine. To prevent the cage from entering the
spinal canal during fixation screw insertion, an arc-shaped restrictor
plate was constructed in front of the cage. The height of the restrictor
plate was determined by measuring the intervertebral space height of
C5 and C6. Finally, in order to maximize the length of the screw track
within the vertebral body and enhance spinal stability, two screws were
implanted in the C5 and C6 vertebrae at a 45° angle in the sagittal plane,
respectively. The fixation screws had a diameter of 4 mmand a length of

TABLE 2 Mesh convergence test of the mesh density of the FE model.

Case Element size (mm) Number of elements Percentage change in peak von mises stress

Reference case 0.5 211,030 -

Case A 0.8 100,044 <5%

Case B 1.2 50,600 >5%

Case C 1.5 34,754 >5%

FIGURE 2
Finite element model for anterior cervical discectomy and fusion. (A) Intact model subject to force and constrain, (B) CPCs model, (C) NIZP cage
model.
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16 mm. Furthermore, the NIZP cage was manufactured from titanium
alloy (Ti6Al4V) to enhance the osseointegration performance of the
implant (Epasto et al., 2019).

FE model of ACDF procedure

The ACDF procedure was performed on the C5-C6 segment in
the research. At this segment, the anterior longitudinal ligament and
intervertebral disc were completely resected. Then two surgical
implants, including CPCs and NIZP cage, were simulated and
implanted in the C5-C6 intervertebral spaces, respectively
(Figures 2B,C). The CPCs are composed of a conventional cage,
a titanium plate, and four screws. The titanium plate was fixed
anteriorly to the intervertebral space by four screws. As for the NIZP
cage, it consists of only a individualized cage and two screws. The
cage was implanted into the intervertebral space and secured by two
screws. For all surgical models, the contact surfaces between the
cage, screws, and the vertebra were defined as Tie contact to simulate
complete bony fusion (Zhang et al., 2022). Thematerial properties of
these implants are listed in Table 1 (Zhang et al., 2022).

Mesh convergence

In this research, a mesh convergence test was conducted to
validate the influence of mesh refinement on the predictions of the
FE model (Shen et al., 2022). The element size of the C3-C7 was set
at four different sizes for comparative analysis (Table 2). The
element size of the FE model was set at 0.5, 0.8, 1.2, and 1.5 mm
in the four cases, respectively. By comparing the peak von Mises
stress values predicted by the reference case, the corresponding
values of cases A, B, and C were considered accurate within 5% of the
reference case. Notably, Case A demonstrated a higher accurate
compared to the other cases, maintaining a prediction accuracy of
98% over the reference case model in less computation time.

Boundary and loading conditions

As shown in Figure 2A, the intact C3-C7 segment was modeled
in the FE analysis. The lower surface of the C7 vertebrae was
constrained in all directions, while a follower load of 73.6 N was
applied to the upper surface of the C3 vertebra to simulate the weight

FIGURE 3
Validation of the C3-7 intact model. (A) Flexion, (B) Extension, (C) Lateral bending, (D) Axial rotation.
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of the head and muscle force. Moreover, a 1.0 N m moment was
performed on the upper surface of the C3 vertebra to simulate
flexion, extension, axial rotation, or lateral bending (Sun et al., 2023).
The range of motion (ROM) for each segment was calculated based
on the relative motions of each vertebra in each motion condition
(Panjabi et al., 2001). The ROM of each segment in the intact FE
model was compared to previously published data to validate the
model’s effectiveness. The differences in biomechanical
characteristics of the two surgical implants were compared in
each motion condition. Furthermore, the ROM of each segment,
intradiscal pressure (IDP) in adjacent segments and peak von Mises
stress of the annulus fibrosus in adjacent segments were tested under
all motion conditions.

Results

Validation of the cervical FE model

To validate the cervical FE model, a follower load of 73.6 N
and a moment of 1.0 N-m were applied to the upper surface of the
C3 vertebrae, while a constraint was applied to the lower surface
of C7. The intervertebral ROMs were compared with the results
of published in vitro experiments as well as FE experiments
(Panjabi et al., 2001; Lee et al., 2016; Shen et al., 2022)
(Figure 3). The ROMs of the intact model at C3/4, C4/5, C5/6,
and C6/7 were 5.85°, 6.09°, 7.12°, and 5.20°, respectively, in

flexion; 5.06°, 5.35°, 5.68°, and 4.21°, respectively, in extension;
8.52°, 8.72°, 5.62°, and 4.76°, respectively, in lateral bending; and
5.06°, 6.58°, 5.54°, and 3.34°, respectively, in axial rotation. The
prediction results of the cervical FE model were consistent with
the results reported in the previous literature.

ROMs after surgery

As shown in Figure 4, the ROMs at C5/6 for the intact, CPCs and
NIZP cage models were 7.12°, 0.24°, and 0.20° in flexion; 5.68°, 0.25°,
and 0.16° in extension; 5.62°, 0.28°, and 0.22° in lateral bending; and
5.54°, 0.10°, and 0.08° in axial rotation, respectively. Compared to the
intact model, the ROMs of the two surgical models were significantly
decreased under four motion conditions. In addition, postoperative
ROMs in adjacent segments increased in both the CPCs and NIZP
groups, especially in flexion.

Intradiscal pressure in adjacent segments

IDP at C4/5 and C6/7 are presented in Figures 5A,B. At C4/5, the
IDP of the intact, CPCs and NIZP cage models were 0.28 MPa,
0.31 MPa, and 0.29 MPa in flexion; 0.15 MPa, 0.16 MPa, and
0.16 MPa in extension; 0.19 MPa, 0.21 MPa, and 0.20 MPa in
lateral bending; and 0.14 MPa, 0.15 MPa, and 0.14 MPa in axial
rotation, respectively. As for C6/7, the IDP of three models were

FIGURE 4
Comparison of the range of motion for the three models under four motion conditions. (A) Flexion, (B) Extension, (C) Lateral bending, (D) Axial
rotation.
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0.29 MPa, 0.35 MPa, and 0.30 MPa in flexion; 0.11 MPa, 0.11 MPa,
and 0.11 MPa in extension; 0.20 MPa, 0.23 MPa, and 0.21 MPa in
lateral bending; and 0.11 MPa, 0.18 MPa, and 0.14 MPa in axial
rotation, respectively. Compared with the intact model, the IDP in
adjacent segments increased in both surgical models under four
motion conditions, with a more pronounced variation in the CPCs
mode (Figure 6).

Peak von mises stress of annulus fibrosus in
adjacent segments

Peak von Mises stress on the annulus fibrosus at C4/5 and C6/
7 are presented in Figures 5C,D. For C4/5, the peak von Mises
stresses of annulus fibrosus of the intact, CPCs and NIZP models
were 1.40 MPa, 1.80 MPa, and 1.50 MPa in flexion; 1.00 MPa,
1.10 MPa, and 1.10 MPa in extension; 1.00 MPa, 1.20 MPa, and
1.10 MPa in lateral bending; and 0.94 MPa, 1.10 MPa, and
1.05 MPa in axial rotation, respectively. At C6/7, the peak
stresses of annulus fibrosus of three models were 1.70 MPa,
2.00 MPa, and 1.75 MPa in flexion; 0.70 MPa, 0.80 MPa, and
0.75 MPa in extension; 1.20 MPa, 1.40 MPa, and 1.20 MPa in
lateral bending; and 0.79 MPa, 1.10 MPa, and 0.91 MPa in axial
rotation, respectively. Peak von Mises stresses on the annulus
fibrosus of adjacent segments were increased owing to internal
fixation devices, especially the CPCs. The stress cloud maps of the
annulus fibrosus are shown in Figure 7.

Von mises stress of internal fixation systems

As shown in Figure 8, the peak and average von Mises stresses of
two internal fixation systems - CPCs and NIZP - are compared under
different motion conditions. Among them, the peak von Mises stresses
in the cage for the CPCs and NIZP models were 540.0 MPa and
440.0 MPa, 430.0 MPa and 310.0 MPa, 450.0 MPa and 330.0 MPa, and
410.0 MPa and 320.0 MPa in flexion, and extension, lateral bending,
and axial rotation, respectively. In addition, the average von Mises
stresses in the cage for two surgical models were 33.17 MPa and
19.61 MPa, 35.10MPa and 22.49 MPa, 34.19MPa and 16.63 MPa,
and 28.15 MPa and 15.48MPa under four motion conditions,
respectively. As for plate or screw, the peak von Mises stresses for
two surgical models were 140.0 and 180.0 MPa, 200.0 and 220.0 MPa,
150.0 and 160.0 MPa, and 120.0 and 150.0 MPa under four motion
conditions, respectively. And the average von Mises stresses in cage for
two surgical models were 17.46MPa and 24.24 MPa, 21.20 MPa and
23.57 MPa, 16.28MPa and 26.38 MPa, and 14.07 MPa and 22.97MPa
under four motion conditions, respectively. The stress distributions of
the internal fixation systems are shown in Figure 9.

Discussion

Anterior cervical discectomy and fusion (ACDF) is widely
acknowledged as the most common and effective treatment for
cervical degenerative diseases (Zou et al., 2017; Sun et al., 2018).

FIGURE 5
Comparison of intradiscal pressure and peak von Mises stresses in adjacent segments for the three models under four motion conditions. (A) IDP in
C4/5, (B) IDP in C6/7, (C) Peak von Mises stresses in C4/5, (D) Peak von Mises stresses in C6/7.
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CPCs plays an important role in ACDF. Previous studies have
demonstrated that the implantation of titanium plates in the
anterior approach stabilizes spinal structures and promotes
fusion (Zou et al., 2017; Guo et al., 2021). However, this
approach may irritate the esophagus and increase the risk of
postoperative dysphagia (Xiao et al., 2017; Liu et al., 2020). To
address these concerns, the NIZP cage was designed to decrease
implant-related complications. In this study, a finite element model
of C3-C7 segment was constructed to evaluate the biomechanical
performance of the NIZP cage. In ACDF procedure, surgeons only
need to expose the prevertebral soft tissue of diseased segment to
implant the NIZP cage, thereby reducing excessive irritation of the
esophagus and minimizing postoperative dysphagia. ROM was
evaluated in this study to determine the efficacy of implants in
maintaining structural stability of the cervical spine. The results
revealed that both the implants effectively reduced the ROM at the
surgical segment under four motion conditions, compare to the
intact model. Moreover, the ROMs of the NIZP cage was slightly
lower than that of the CPCs. It was relevant to a better fit with the
upper and lower cervical endplates. However, there was no
statistically significant difference between the two models. Zhang
et al. (2016) conducted FE analysis and cadaveric studies to
demonstrate that a cage that closely matched the cervical spine
provided better stability during flexion and extension motion
compared to the conventional cage. It is worth mentioning that

the ROMs at the C4/5 and C6/7 were increased in both surgical
models, especially in flexion and extension motion. To compensate
for the lost ROM in the surgical segment, the cervical spine increased
the ROM in the adjacent segment to maintain postoperative ROM.
Previous in vitro mechanical experiments (Eck et al., 2002) and FE
analysis (Zhou et al., 2021) similarly concluded that there was a
corresponding increase in the mobility of the upper and lower
segments after ACDF. In general, the stability of spinal structure
was well reconstructed by both CPCs and NIZP cage after ACDF.

Stress distribution is frequently utilized in FE studies to evaluate
the risk of subsidence and fixation failure, with von Mises stress
serving as a crucial indicator (Wo et al., 2021). Following ACDF,
cage subsidence is a prevalent complication, with reported
subsidence rates ranging from 8% to 34%. This subsidence could
contribute to kyphotic deformity, nerve impairment, etc. (Zhang
et al., 2016; Sun et al., 2018; Jin et al., 2021; Zhang et al., 2022).
Inadequate compatibility between the cage and the spine endplate
leads to uneven stress distribution and stress concentration,
ultimately posing a potential risk of cage subsidence (Shen et al.,
2022; Zhang et al., 2022). A NIZP cage was constructed in this study
based on the anatomical characteristics of the cervical spine, in order
to enhance the compatibility between the cage and the endplate.
Comparing the stress distributions of the two implants, it revealed
that the NIZP cage had a reduction in peak von Mises stresses by
90.0–120.0 MPa and average vonMises stresses by 12.61–17.56 MPa

FIGURE 6
The stress distribution of disc in adjacent segments for the three models under four motion conditions.
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compared to CPCs under the four motion conditions. As shown in
the stress cloud maps, the stresses in CPCs were mainly
concentrated in the edge areas, particularly in the front area of
the cage. In contrast, the stresses in the NIZP cage were more evenly
distributed in the inner areas and the anterior restrictor plate. This
indicated that a well-matched implant could decrease the peak stress
and improve stress distribution, thereby reducing the risk of cage
subsidence. Several studies also support this perspective (Zhang
et al., 2022; Sun et al., 2023), stating that increasing the contact area
through improved conformity of the implant to the endplate can
prevent excessive stress concentration and reduce the risk of implant
subsidence.

Disc degeneration in adjacent segments represents an important
complication after spinal surgery (Fountas et al., 2007). To assess the
risk of adjacent segment degeneration, the IDP and the peak von
Mises stresses of annulus fibrosus in the adjacent segments were
measured respectively in this study. For both surgical groups, the
postoperative IDPs of C4/5 and C6/7 were higher than those of the
intact model. And the IDP of the CPCs group were slightly higher
than those of the NIZP group under most motion conditions.
Specifically, under flexion and axial rotation conditions, the IDP
in the CPCs group increased by 7.14% in C4/5 segment, and by
17.24% and 36.36% in C6/7 segment, respectively, compared to the
NIZP group. It is well known that the motion unit of the cervical
spine consists of the upper and lower vertebrae and an intervertebral
disc (Theodore, 2020). After ACDF, an intervertebral disc structure

was sacrificed and replaced by a titanium alloy. The loss of a motion
unit led to a corresponding increase in ROMs of adjacent segments,
which resulted in an increase in IDP and annulus fibrosus stresses
(Eck et al., 2002). Similarly, Zhang et al. (2022) concluded that the
increase in ROM of the adjacent segments after surgery contributed
to further disc compression or stretching, resulting in increased
stresses. Overall, the NIZP cage facilitates the decrease of the risk of
disc degeneration in the adjacent segment after ACDF compared
to CPCs.

In addition, fixation screws are an important component of
the two implants. Compared to the screw-plate device of CPCs,
the NIZP cage exhibited an increase in peak von Mises stresses in
the screws within a range of 10.0–40.0 MPa, and an increase in
average von Mises stresses within a range of 2.37–10.10 MPa
under various motion conditions. As shown in the stress cloud
map, the stresses of the screw-plate device were primarily
concentrated in the contact area between the screws and the
titanium plate under different motion conditions. However, in
the contact area between the screws and the vertebral body, the
stresses were distributed more uniformly. On the contrary, the
stresses in the screws of the NIZP cage were primarily
concentrated in the contact area between the screws and the
vertebral body, especially in the upper screws. Since the fixation
pattern of NIZP cage relied on only two screws, it was inevitable
that the stress increased and the stress concentrated in the screws.
It is worth mentioning that the peak von Mises stress in the screw

FIGURE 7
The stress distribution of annulus fibrosus in adjacent segments for the three models under four motion conditions.

Frontiers in Bioengineering and Biotechnology frontiersin.org09

Wang et al. 10.3389/fbioe.2023.1229210

95

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1229210


FIGURE 8
Comparison of peak or average vonMises stresses for the CPCs and NIZP cage under fourmotion conditions. (A) Peak vonMises stresses for cage of
the two instrument, (B) Average von Mises stresses for cage of the two instrument, (C) Peak von Mises stresses for fixation screws of the two instrument,
(D) Average von Mises stresses for fixation screws of the two instrument.

FIGURE 9
The stress distribution of the CPCs and NIZP cage under four motion conditions.
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is far less than the yield strength of the titanium alloy, which is
not sufficient to cause screw fracture or failure (Zhang et al.,
2018).

The study has several limitations that should be acknowledged.
Firstly, only FE analysis was performed to test the biomechanical
performance of the NIZP cage. However, further validation is
needed through animal and clinical experiments. Secondly, the
finite element model was simplified within an acceptable range,
including material properties, boundary conditions, and contact
relations. The influence of the cervical muscles on the biomechanics
was not considered, which means that the study cannot completely
simulate the actual situation after ACDF. Thirdly, although the cages
used in the study have porous structures, solid structures were
employed for all the analyses to ensure better convergence of the
calculations. And the fourth, the finite element analysis was based on
data from only one patient. Additionally, in vitro biomechanical
experiments and clinical studies will be conducted in the future to
evaluate the findings of this study.

Conclusion

The NIZP cage could effectively reconstruct spinal stability after
ACDF by FE analysis. The NIZP cage demonstrated superior
biomechanical performance compared to CPCs, resulting in a
lower stress distribution on the cage and a more moderate effect
on the adjacent segmental discs. Therefore, the NIZP cage could
prevent postoperative dysphagia as well as decrease the risk of
subsidence and adjacent disc degeneration after ACDF. In
addition, this study could serve as a valuable reference for the
development of personalized instruments.
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clinical observation of 3D-printed
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hip arthroplasty in Crowe III hip
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Objective: This study aimed to evaluate the biomechanical effectiveness of 3D-
printed integrated acetabular prosthesis (IAP) and modular acetabular prosthesis
(MAP) in reconstructing the acetabulum for patients with Crowe III developmental
dysplasia of the hip (DDH). The results of this study can provide a theoretical
foundation for the treatment of Crowe III DDH in total hip arthroplasty (THA).

Methods: Finite element (FE) analysis models were created to reconstruct Crowe
III DDH acetabular defects using IAP and MAP. The contact stress and relative
micromotion between the acetabular prosthesis and the host bone were analyzed
by gradually loading in three increments (210 N, 2100 N, and 4200 N). In addition,
five patients with Crowe III DDH who underwent IAP acetabular reconstruction
were observed.

Results: At the same load, the peak values of IAP contact stress and relative
micromotion were lower than those of MAP acetabular reconstruction. Under
jogging load, the MAP metal augment’s peak stress exceeded porous tantalum
yield strength, and the risk of prosthesis fracture was higher. The peak stress in the
bone interface in contact with the MAP during walking and jogging was higher
than that in the cancellous bone, while that of IAP was higher than that of the
cancellous bone only under jogging load, so the risk of MAP cancellous bone
failure was greater. Under jogging load, the relative micromotion of the MAP
reconstruction acetabular implant was 45.2 μm,which was not conducive to bone
growth, while under three different loads, the relative micromotion of the IAP
acetabular implant was 1.5–11.2 μm, all <40 μm, which was beneficial to bone
growth. Five patients with IAP acetabular reconstruction were followed up for
11.8 ± 3.4 months, and the Harris score of the last follow-up was 85.4 ± 5.5. The
imaging results showed good stability of all prostheses with no adverse conditions
observed.

Conclusion: Compared with acetabular reconstruction with MAP, IAP has a lower
risk of loosening and fracture, as well as a better long-term stability. The
application of IAP is an ideal acetabular reconstruction method for Crowe III DDH.
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1 Introduction

Development dysplasia of the hip (DDH) is characterized by
abnormalities in the anatomy of the acetabulum and femur. This
anatomical abnormality increases the contact stress of the hip
joint, resulting in hip instability, impingement, and pathological
state of the labrum, and finally develops into osteoarthritis (Gala
et al., 2016). Osteoarthritis, secondary to hip dysplasia, includes
thinning of articular cartilage, narrowing of joint space,
subchondral cystic lesions, and even hip joint deformation.
The clinical manifestations are hip joint pain and limited
activity, which seriously affect the quality of daily life (Garcia
et al., 2022). Although there are several alternatives to hip
preservation, many adult patients with DDH eventually
require hip replacement (Schmitz et al., 2020).

Total hip arthroplasty (THA) can relieve hip pain symptoms
and improve hip function in patients with DDH and is the main
surgical procedure for adult DDH (Zhang et al., 2022). Based on the
subluxation height relative to the inter-teardrop line, DDH was
divided into four types according to Crowe’s classification. The
acetabular morphological deformity in Crowe III is more obvious
than those in Crowe types I, II, and IV, resulting in more incredible
difficulty of acetabular reconstruction and the installation of the
acetabular prosthesis in THA, especially for the restoration of the
hip rotational center and the reconstruction of bone defect (Wen
et al., 2021). The traditional methods mainly include bone grafting,
high hip center, and medial protrusio technique (Mou et al., 2020).
However, the structural bone graft has problems, such as bone
resorption and collapse (Goto et al., 2021). The internal or upward
movement of the rotation center has the disadvantages of offset
reduction and leg length discrepancy (Kleemann et al., 2003; Liu
et al., 2018; Mou et al., 2020). For Crowe III DDH, choosing a more
appropriate acetabular reconstruction method is an urgent issue for
clinicians.

In recent years, with the development of the 3D printing
technology, personalized orthopedic implant devices have
provided solutions to many problems (Mirkhalaf et al., 2023).
The 3D printing technology originated in the 1980s can provide
preoperative visual and tactile evaluation and prepare
individualized prostheses for different degrees and parts of
orthopedic injuries, thus achieving improved surgical
outcomes and reduced postoperative complications (Lee et al.,
2020; Pu et al., 2021). Meanwhile, the 3D printing technology
provides a new idea for acetabular reconstruction in patients with
Crowe III DDH, which can personalize the design of metal
augments and acetabular cups according to the acetabular
bone defects in Crowe III DDH patients. We use screws to fix
the metal augment on the bone defect and place the acetabular
cup, which not only ensures the complete coverage of the
acetabular cup but also restores the hip center of rotation and
achieves the biomechanical stability of the acetabular cup (Zhang
et al., 2020). However, the modular acetabular prosthesis (MAP)
with multiple components (acetabular cup + metal augment +
metal screw) poses a risk of inter-component failure (Strahl et al.,

2023). To reduce the complex intra-operative manipulation and
the potential of prosthetic loosening for the MAP, the integrated
acetabular prosthesis (IAP) designed by the 3D printing
technology may achieve better initial and long-term stability.
This could effectively reduce the incidence of adverse events after
acetabular reconstruction in patients with Crowe III DDH.

Additionally, selecting the appropriate acetabular prosthesis
material is a key factor to the success of the surgery. Porous
tantalum is currently the ideal orthopedic implant material for
prosthesis repair. Its low modulus of elasticity prevents stress-
shielding; a high coefficient of friction enhances the initial
stability of the prosthesis; and the design of a bone trabecular
structure promotes the ingrowth of new bone tissue (Junlei Li
et al., 2020). Therefore, porous tantalum, which has more stable
physicochemical properties, superior biomechanical performance,
and better osseointegration ability, was chosen as the material for the
acetabular prosthesis in this study.

Furthermore, the differences between the two acetabular
prostheses regarding adaptability and biomechanical
properties will be verified. In this study, a model of the
acetabular bone defect of Crowe III DDH was established to
simulate THA, and the initial stability of IAP and MAP
acetabular reconstruction under different loads was compared
and analyzed, which provides a reference for clinical selection of
appropriate acetabular reconstruction from a biomechanical
perspective.

2 Materials and methods

2.1 Establishment of the acetabular bone
defect model of Crowe III DDH

The subject, a 60-year-old man (175 cm; 70 kg) with Crowe
III DDH, agreed and signed the informed consent form. A
Siemens 64-row spiral CT scanner was used to scan the hip
with a thickness of 0.5 mm. The CT image was stored in the
standard Digital Imaging and Communications in Medicine
(DICOM) format in Mimics 21 (The Materialise Group,
Leuven, Belgium), a medical 3D reconstruction software.
Appropriate gray values were selected to distinguish bone and
tissue, and the three-dimensional model of the original hip was
established (Wang et al., 2021) (Figure 1A). Then, the
reconstructed model was imported into 3-Matic (The
Materialise Group, Leuven, Belgium) software for surface
optimization processing, such as model surface defect repair,
smoothing, and accurate surface function.

2.2 Establishment and assembly of the
acetabular prosthesis model

According to the size of the acetabulum of the subject, the
acetabular cup component of the MAP was constructed in CAD

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Liu et al. 10.3389/fbioe.2023.1219745

100

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1219745


(SolidWorks 2016; SolidWorks Corp, United States), and the
diameter of the acetabular cup designed in this study was 50 mm.
The anteversion angle of the acetabular cup was adjusted to 15°

and the abduction angle was 45° (Pour et al., 2023). In CAD
software, the IAP and metal augment were designed according to
the acetabular bone defect’s size after the acetabular cup’s
placement. Two screws (length: 35 mm and diameter:
6.0 mm) were used to fix the IAP and metal augment (Figures
1B, C). The parameters of the femoral head prosthesis were
designed according to the diameter of the femoral head, and the
32-mm femoral ceramic head and corresponding polyethylene
liner were implanted. Since the femoral part was not involved in
this study, to save the calculation time of the Finite element (FE)
model, the construction of the femoral and femoral stem
prosthesis was omitted in this paper. In addition, to facilitate
the application of the load, the femoral head of the prosthesis
was simplified to a hemisphere in FE analysis (Wang et al., 2022).
Finally, the aforementioned model was non-fluid-assembled in
3-Matic (Figures 1D, E).

2.3 Establishment of the FE model

FEmodel wasmeshed with tetrahedral 4-node elements (C3D4).
To obtain the actual structure and calculation proportion of the
model, the mesh size was set to 1 mm, which has been validated by
Dutt (2015). All models being analyzed were assumed to be
continuous, isotropic, and with homogeneous linear elastic
materials. The model was re-imported into Mimics 21, and
material assignments were assigned according to the
corresponding areas of the cortical and cancellous bone obtained
by CT scanning (Guo et al., 2022) (Figure 2A). Table 1 lists the
parameters of various materials (Fu et al., 2018).

2.4 Setting of the model parameters

The previously assembled models were imported into Abaqus
2021 (Simulia Corp, Providence, RI, United States). Based on the
previous studies setting frictional contact interactions, the

FIGURE 1
Establishment and assembly of models. (A) Geometrical model of the hip joint of the Crowe III developmental dysplasia of the hip (DDH); (B)
integrated acetabular prosthesis (IAP) components; (C)modular acetabular prosthesis (MAP) components; (D) assembly of IAP acetabular reconstruction;
(E) assembly of MAP acetabular reconstruction.

FIGURE 2
Setting of material properties, boundary conditions, and loads. (A) Setting the material properties of the iliac and acetabular prostheses and (B)
loading and boundary conditions of FE modeling.
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friction coefficient between the bone–metal augment interface
and the bone–acetabular cup interface was set to 0.8, the interface
between the acetabular cup and the metal augment was
established to a non-frictional connection, and the rest of the
interfaces were tied connection (Du et al., 2020). In addition,
fixed constraint boundary conditions were set on the pubis and
the superior part of the ilium to prevent the model from moving
during the analysis (Akrami et al., 2018) (Figure 2B). Based on
the results of peak stresses in the unilateral hip joint reported in
most of the literature, the hip contact force is 30% BW for double-
legged standing (Xiong et al., 2022), 300% BW for walking, and
600% BW for jogging (Bergmann et al., 2001; Kitamura et al.,
2022). The body weight of the volunteers was 70 kg. Therefore, in
this study, we applied loads of 210 N, 2100 N, and 4200 N of hip
contact forces to the rotation center of the femoral head (Soloviev
et al., 2023).

2.5 Clinical application of the IAP in the
acetabular reconstruction of Crowe III DDH

General data of patients: After obtaining the approval of the
institutional ethics committee of the Affiliated Zhongshan
Hospital of Dalian University, we performed a retrospective
study that enrolled five patients with Crowe III DDH treated
with 3D-printed porous tantalum IAP for THA in our hip joint
department from January 2021 to January 2022. There were one
male and four female patients with an average age of 65.2 ±
8.5 years.

Inclusion criteria: 1) Diagnosis of Crowe III DDH complicated
with hip osteoarthritis and 2) patients agreed to hip replacement and
signed the informed consent form.

Exclusion criteria: 1) The ages of the patients were below
30 years or above 80 years and 2) the primary diseases of the hip
joint were other autoimmune diseases, infectious arthritis, or
neoplastic conditions.

Preoperative design and preparation of the prosthesis: The
CT data of the patient’s hip joint were reconstructed on a
computer, and the position of the acetabular cup was
simulated in the true acetabulum position. The superolateral
bone defect of the acetabular cup was filled with a sphere,
forming an interconnected double spherical structure matched

with the true and false acetabulum. A smooth curved transition
between the edge of the acetabular prosthesis and the outer plate
of the iliac crest should be carried out to avoid excessive
protrusion of the outside of the augmentation device and
preserve the nail hole position. The screw diameter, length,
and fixation direction were designed according to the
simulation design, defect location, and amount of residual
bone. To avoid stress-shielding, the final structure of the IAP
model was made porous by Magics (Materialise, Belgium).
Finally, we imported the porous IAP model data into the 3D
printer and used the laser powder bed fusion technology to
prepare the prosthesis using tantalum powder (Figures 3A–E).

Surgical procedure: After the patient was anesthetized, the
operation was performed via the posterolateral approach with the
patient in the lateral decubitus position. The exposure and
preparation of the acetabulum were the same as that for the
posterolateral THA. The fibrotic scar tissue, thickened joint
capsule, and surrounding hyperplastic osteophyte were removed
intraoperatively. The acetabular reamer file was used to grind it to
the preoperative planned size in the true and false acetabulum
position. The 3D printing IAP was implanted and fixed with
metal screws, finally installing the inner lining and femoral head
prosthesis. The range of motion was checked adequately after hip
reduction and before closing the incision (Figure 3F).

Postoperative management: The antero-posterior projection
X-ray of the hip after the operation showed that the acetabular
prosthesis was well-positioned with appropriate abduction and
anteversion angle. Antibiotics were dripped for infection
prophylaxis within 24 h. After resuscitation from anesthesia,
patients should have ankle flexion and extension activities and
quadriceps isometric muscle strength training under guidance.
Partial weight-bearing exercise was allowed 24–48 h after the
surgery, and the full weight-bearing exercise was permitted
2 weeks post-surgery.

2.6 Evaluation criteria

First, the stability of two acetabular prostheses in the Crowe III
DDH acetabular reconstruction was evaluated by the contact stress
and relative micromotion between the acetabular prosthesis and the
host bone. Second, for the selected cases of the acetabular IAP

TABLE 1 Material properties defined in the finite element (FE) models.

Components Materials Elastic Modulus (MPa) Poisson’s ratio (v)

Cortical bone Cortical bone 17,300 0.265

Cancellous bone Cancellous bone 400 0.2

Screws Titanium alloy 110,600 0.326

Acetabular cup Tantalum 8,963 0.31

Metal augment

Integrated cup

Ceramic femoral head Ceramics 350,000 0.22

Liner Polyethylene 800 0.45
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reconstruction for Crowe III DDH in this article, we used the Harris
hip score to evaluate hip joint function and used imaging
examination to assess whether there were transparent line,
displacement, aseptic loosening, osteolysis, and bone growth
between the prosthesis and the bone surface.

3 Results

3.1 Validation of the developed FE model

The FE model used in this study for MAP acetabular
reconstruction under walking and jogging loads had been
validated through comparison with previous biomechanical
models. The results of implant peak stress from Fu et al. (2018)
(50.25 MPa for walking and 75.86 MPa for jogging) and relative
micromotion under walking load (12.61 μm) from Wang et al.
(2022) were compared with those of our study: implant peak
stress of 52.3 MPa (walking) and 83.1 MPa (jogging), along with
a relative micromotion of 13.7 μm under walking load. The results
are similar, verifying that our FE model is suitable for further
analysis.

3.2 Comparison of stress distribution in
contact between the IAP and MAP

The bone interface in contact with the acetabular prosthesis is
divided into the cortical bone and cancellous bone. The peak stress
of the cortical bone interface was located at the edge of the cortical
bone in contact with the acetabular prosthesis, and the peak stress of
the cancellous bone interface was situated at the junction of the
cancellous bone and the end edge of the metal screw. The peak stress
at the cortical bone interface in contact with the IAP was 5.5 Mpa
(210 N), 10.7 Mpa (2100 N), and 22.4 Mpa (4200 N), and the peak
stress at the cancellous bone interface was 1.6 Mpa (210 N), 2.7 Mpa
(2100 N), and 5.6 Mpa (4200 N) (Figures 4A, C, E). The peak stress
at the cortical bone interface in contact with the MAP was 5.7 Mpa

(210 N), 12.6 Mpa (2100 N), and 25.8 Mpa (4200 N), and the peak
stress in the cancellous bone interface was 2.2 Mpa (210 N), 3.5 Mpa
(2100 N), and 6.8 Mpa (4200 N) (Figures 4B, D, F).

3.3 Comparison of stress distribution
between IAP and MAP implants

The peak stress of the IAP implant was located in the part of contact
with the acetabular cortical bone, whichwas 12.7Mpa (210N), 16.2Mpa
(2100 N), and 25.8 Mpa (4200 N) (Figures 5A, C, E). The peak stress of
theMAP implant was located at the lower one-third portion of the screw
of the fixed metal augment, which was 17.6 Mpa (210 N), 52.3 Mpa
(2100 N), and 83.1 Mpa (4200 N). The peak stress of the MAP metal
augment was located at the nail hole, which was 12.2 Mpa (210 N),
20.6 Mpa (2100 N), and 54.2 Mpa (4200 N) (Figures 5 B, D, F).

3.4 Comparison of the relative micromotion
of the IAP and MAP concerning the host
bone

Thepeakmicromotion of the IAP relative to the host bonewas 1.5 μm
(210 N), 8.9 μm (2100 N), and 11.2 μm (4200 N) (Figures 6A, C, E). The
peak micromotion of the MAP relative to the host bone was 9.7 μm
(200 N), 13.7 μm (2100 N), and 45.2 μm (4200 N) (Figures 6B, D, F).

3.5 Clinical follow-up results of patients

The follow-up time for patients was 11.8 ± 3.4 months. The
preoperative Harris hip score was 46.5 ± 4.8, increasing to 80.1 ±
6.6 at 3 months postoperative and 85.4 ± 5.5 at the final follow-up.
No surgical site swelling, infection, or postoperative complications
were observed during the last follow-up. In addition, all patients’
anteroposterior projection X-ray of the hip showed no adverse
conditions such as radiolucent lines, loosening, and osteolysis
around the 3D-printed IAP and bone surface (Figures 7A–C).

FIGURE 3
Clinical application of the IAP. (A) Acetabular cup placement in true acetabular position; (B) establishment of the integrated acetabular cup model;
(C) design of the nail hole and screw direction; (D) porous treatment of IAP model; (E) preoperative model adaptation analysis; (F) surgical procedure.
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4 Discussion

The lack of adequate acetabular bone coverage on the
superolateral part of the acetabular cup during the THA of
Crowe III DDH will affect the initial stability of the acetabular
cup (Crowe et al., 1979). The selection of an appropriate acetabular
reconstruction method is the key to ensuring the biomechanical
stability of the acetabular cup. The 3D printing technology provides
a new choice for acetabular reconstruction in Crowe III DDH
patients (Zhang et al., 2020). The IAP and MAP designed by the
3D printing technology can not only restore the rotation center of
the hip joint, leg length discrepancy, and the muscle tension around
the hip joint but also provide a stable and practical support for the
acetabular cup to keep it in an ideal position. However, there is a lack
of biomechanical research comparing the stability of the interface
between the IAP and MAP acetabular components and the
host bone.

To help clinicians better understand hip biomechanics and
prevent complications, the FE analysis has been widely used in
orthopedic implant design and preoperative planning. Compared to
other experiments, it can not only simulate the biomechanical
performance of implants as prostheses with good fidelity but also
demonstrate higher efficiency and conserve resources (Fallahnezhad
et al., 2023). This study used the FE analysis to evaluate the
biomechanical advantages and disadvantages of the IAP and
MAP by assessing the contact stress and relative micromotion
between the acetabular prosthesis and the host bone under
different loads.

The acetabular cup and metal augment used in the present study
were porous tantalum materials. The yield strength of porous
tantalum has been reported to be 35–51 Mpa (Wang et al.,
2023). Under the maximum load, the peak stresses of the IAP
and MAP as porous tantalum implants were 25.8 Mpa (contacting
the edge of the cortical bone) and 54.2 MPa (at the nail hole of the

FIGURE 4
Stress distribution of bones contacted by IAP and MAP. (A,B) 210 N; (C,D) 2100 N; (E,F) 4200 N.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Liu et al. 10.3389/fbioe.2023.1219745

104

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1219745


FIGURE 5
Stress distribution of IAP and MAP implants. (A,B) 210 N; (C,D) 2100 N; (E,F) 4200 N.

FIGURE 6
Relative micromotion distribution of the IAP and MAP relative to the host bone. (A,B) 210 N; (C,D) 2100 N; (E,F) 4200 N.
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metal augment), and the peak stress of the MAP was more
significant than the yield strength of porous tantalum. Therefore,
the MAP is prone to failure and fracture when it reaches the exercise
load immediately after operation. At the same time, under the same
load, compared with MAP acetabular reconstruction, IAP, as an
implant, had more uniform force and lower peak stress, which
reduced the risk of prosthesis fracture (Figure 8A).

The mean yield strengths of cancellous and cortical bones
near the acetabulum was 3.3 and 93.4 Mpa, respectively (Fu
et al., 2018). Under a double-legged standing load, the peak
interface stress between the cortical bone and the MAP was
5.7 MPa, and for the cancellous bone, it was 2.2 MPa. Similarly,
the interface peak stress between the cortical bone and the IAP
was 5.5 MPa, and for the cancellous bone, it was 1.6 MPa.

FIGURE 7
A 65-year-old male patient with Crowe III DDH who underwent 3D-printed IAP acetabular reconstruction. (A) Preoperative X-ray image; (B)
immediate postoperative X-ray image; (C) postoperative last follow-up X-ray image.

FIGURE 8
Comparison of contact stress and relative micromotion between the IAP andMAP. (A) Peak stress of the implant. (B) Peak stress of the cortical bone.
(C) Peak stress of the cancellous bone. (D) Peak micromotion of the acetabular prosthesis relative to the host bone.
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Notably, the peak stresses at the interface of cortical and
cancellous bones in contact with both the MAP and IAP were
found to be below their respective yield strengths. According to
the aforementioned data, the bone strength around the
acetabulum is strong enough to support the patient to stand
after acetabular reconstruction. Furthermore, the research has
shown that a relative micromotion of less than 40 μm between
the acetabular prosthesis and the host bone promotes bone
ingrowth, which is beneficial for the long-term stability of the
acetabular prosthesis (Kaku et al., 2015). Under a double-legged
standing load, the relative micromotion of the MAP and IAP was
9.7 and 1.5 μm, respectively, which facilitated bone ingrowth,
indicating that the two acetabular prostheses were stable under
the standing load.

Under the exercise load, the peak interface stress of the MAP
in walking and jogging contact with the cancellous bone was
3.5 and 6.8 Mpa, respectively, which were higher than the yield
strength of the cancellous bone. However, the peak stress
(5.6 Mpa) of the IAP exposed to the cancellous bone only
exceeded the yield strength of the cancellous bone under the
jogging load (Figures 8B, C). Therefore, compared with IAP
acetabular reconstruction, the MAP cancellous bone has a
higher risk of failure, and prosthesis fixation is unreliable and
prone to loosening. Under jogging load, the micromotion of the
MAP relative to the host bone was more than 40 μm, which was
not conducive to bone growth and affected the long-term stability
of the acetabular prosthesis. In contrast, the relative micromotion
of the IAP to the host bone under three different loads was much
smaller than the critical condition of bone growth, and the
condition of bone growth was better, which was beneficial to
the long-term stability of the acetabular prosthesis (Figure 8D).
Therefore, according to the results of FE analysis, the IAP is safer
than the MAP in acetabular reconstruction.

In summary, during the early postoperative exercise, with the
high stress in MAP nail holes and MAP metal screws, the
prosthesis has a higher risk of fracture and loosening. In
contrast, the IAP not only effectively disperses the stress on
the screws, reducing high-stress areas between the prosthesis and
the host bone, thus lowering the risk of prosthesis fracture and
loosening, but also provides more favorable conditions for bone
ingrowth, promoting the long-term stability of the prosthesis.
Regarding the reasons behind such biomechanical differences, we
believe that in Crowe III DDH acetabular reconstructions, the
integrated design of the IAP can effectively achieve uniform
stress transfer in the acetabular prosthesis. Additionally, the
fixation of multiple metal screws also provides enhanced
stability for the IAP. On the contrary, the multi-component
design of the MAP makes the acetabular prosthesis stress
distribution uneven, and the contact between the components
will cause the prosthesis to loosen due to the change in
biomechanical load. Therefore, from the biomechanical
perspective, the IAP reconstruction of the acetabulum can
provide more excellent biomechanical properties while
maintaining reliable structural strength.

In clinical applications, a high loosening and fracture rate of the
acetabular prosthesis after follow-up for acetabular defect
reconstruction using the MAP was also reported in the literature
Borland et al. (2012); Cassar-Gheiti et al. (2021). In this study, five

Crowe III DDH patients undergoing IAP acetabular reconstruction
were clinically followed up. The hip function of all patients was
significantly improved, and the quality of life of patients was greatly
improved. The imaging results showed that the acetabular prosthesis
is firmly fixed with no signs of loosening or fracture observed,
indicating the satisfactory stability of the prosthesis. This clinical
result has further confirmed the validity of the biomechanical results
of this study.

The limitations of this study are as follows: 1) The influence
of muscles and soft tissues around the hip joint was not
considered in this study: only hip contact forces were used for
testing, which might not accurately reflect hip joint motion under
physiological loading patterns. 2) The results of this study were
generated based on computer simulations and were not validated
using cadaveric bone for biomechanical studies. 3) No clinical
case comparison was performed primarily because the FE
analysis results of the MAP model indicated higher clinical
application risks. Therefore, clinical validation was carried out
exclusively on IAP cases. 4) This study merely referenced prior
research for mesh configuration and did not perform mesh
sensitivity analysis. Despite these limitations, our findings may
help orthopedic surgeons to select a more appropriate acetabular
reconstruction method in clinical practice.

5 Conclusion

In this study, the biomechanics of the IAP- and MAP-
reconstructed Crowe III DDH acetabulum designed by 3D
printing technology were evaluated by the FE analysis. The
results show that the risk of loosening and fracture of the
prosthesis is lower and the long-term stability is better with the
IAP than with the MAP reconstructed acetabulum, suggesting that
the IAP may have more excellent biomechanical properties than the
MAP in Crowe III DDH acetabular reconstruction. Clinical follow-
up of five patients with Crowe III DDH acetabular reconstruction by
IAP showed good clinical efficacy, which has further verified the
effectiveness of the IAP reconstruction of the acetabulum. These
results can provide a biomechanical reference for the selection of
clinical treatment.
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Biomechanical stability of oblique
lateral interbody fusion combined
with four types of internal
fixations: finite element analysis
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Jian Jiang1*
1Department of Spine Surgery, Dalian Municipal Central Hospital, Dalian University of Technology, Dalian,
China, 2Department of Engineering Mechanics, Dalian University of Technology, Dalian, China

Objective: Using finite element analysis to identify the optimal internal fixation
method for oblique lateral lumbar interbody fusion (OLIF), providing guidance for
clinical practice.

Methods: A finite elementmodel of the L4– L5 segmentwas created. Five types of
internal fixations were simulated in the generated L4-L5 finite element (FE) model.
Then, six loading scenarios, i.e., flexion, extension, left-leaning, right-leaning,
rotate left, and rotate right, were simulated in the FE models with different
types of fixations. The biomechanical stability of the spinal segment after
different fixations was investigated.

Results: Regarding the range of motion (ROM) of the fused segment, OLIF +
Bilateral Pedicle Screws (BPS) has a maximum ROM of 1.82° during backward
bending and the smallest ROM in all directions of motion compared with other
models. In terms of the von Mises stress distribution on the cage, the average
stress on every motion direction of OLIF + BPS is about 17.08MPa, and of OLIF +
Unilateral Vertebral Screw - Pedicle Screw (UVS-PS) is about 19.29 MPa. As for the
von Mises stress distribution on the internal fixation, OLIF + BPS has the maximum
internal fixator stress in left rotation (31.85 MPa) and OLIF + Unilateral Pedicle
Screw (UPS) has the maximum internal fixator stress in posterior extension
(76.59 MPa). The data of these two models were smaller than those of other
models.

Conclusion:OLIF + BPS provides the greatest biomechanical stability, OLIF + UPS
has adequate biomechanical stability, OLIF + UVS-PS is inferior to OLIF + UPS
synthetically, andOLIF +Double row vertical screw (DRVS) and Individual OLIF (IO)
do not present significant obvious advantages.

KEYWORDS

finite element analysis, OLIF, internal fixation, biosolid mechanics, CAGE

Introduction

Currently, lumbar fusion surgery (LIF), including posterior lumbar fusion (PLIF) or
transforaminal lumbar fusion (TLIF), is widely used in clinical practice (Huang et al., 2022).
However, insertion of the fusion through a posterior approach requires the removal of the
posterior structures of the vertebral body, which can affect vertebral stability. Additionally,
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repeated traction on the dural sac and nerve roots during the
procedure may lead to nerve injury. Multiple surgical approaches
have been attempted to minimize complications.

Oblique lateral lumbar interbody fusion (OLIF) is considered
one of the best options for lumbar fusion (Aleinik et al., 2021). In
1997, Mayer (Mayer, 1997) described a minimally invasive anterior
approach to the lumbar spine through a retroperitoneal approach at
the L2-L5 level and a transabdominal approach at the L5-S1 level,
which first proposed OLIF. In OLIF, the cage enters the disc from the
oblique lateral side, preserving the small posterior joints, muscles,
and other tissues. In 2012, Silvestre et al. (Silvestre et al., 2012)
improved Mayer’s approach to the procedure, resulting in the OLIF
that is currently used. OLIF is a discectomy implant fusion
performed through the anatomical gap between the
retroperitoneal lumbar major muscle anteriorly and the aorta.
The mechanisms of OLIF include restoring disc height,
increasing posterior longitudinal ligament tension, and improving
the sagittal sequence of the spine. (Alimi et al., 2014; Liu et al., 2019).

Compared to other lumbar fusion methods, OLIF has the
following advantages (Huang et al., 2022; Liu et al., 2022; Zhang
et al., 2022). First, OLIF allows the cage to enter the lumbar spine
anteriorly without opening the spinal canal or damaging the
posterior muscles, ligaments, and bony structures. This preserves
more bone, which is particularly important for patients with disc
degeneration combined with osteoporosis. Second, by removing
sufficient disc tissue and providing a large contact area with the
endplate, the fusion device significantly enhances the supporting
strength of the fusion. Third, OLIF reduces the possibility of
damaging the lumbar muscles and lumbosacral nerves. Fourth,
the interbody fusion used in OLIF is much larger compared to
conventional posterior fusions, and it is placed across the endplate,
which significantly enhances its biomechanical stability. In addition,
OLIF has the advantages of a low complication rate, less surgical
blood loss, shorter operative time, and shorter patient hospital stay
(Mobbs et al., 2015; Lu and Lu, 2019; Aleinik et al., 2021). Joseph
et al. (2015) reported a complication rate of 20.2% (380/1885) after
TLIF, whereas Abe et al. (2017) reported a complication rate of 1.2%
(2/155) after OLIF, indicating a significant reduction in innerve
injury with OLIF. Moreover, the OLIF procedure preserves more of
the anatomy, theoretically providing more resistance during motion
(Kim et al., 2005).

It has also been suggested that OLIF leads to lumbar instability
and increases the risk of fusion subsidence and fracture (Abe et al.,
2017; Quillo-Olvera et al., 2018; Bereczki et al., 2021). After OLIF,
especially in osteoporotic patients, surgical injury can lead to
instability of the corresponding lumbar segment, subsidence, and
displacement of the fusion cage, which can ultimately result in
surgical failure (Malham et al., 2015). Therefore, in most cases, OLIF
requires reinforcement with internal fixation devices to enhance the
stability of the fusion (Cappuccino et al., 2010; Shasti et al., 2019).
The internal fixation system must maintain good function until firm
bony fusion is achieved. For lumbar fusion, the stiffness of the
internal fixation system at the operative segment and its ability to
share the load of the fusion apparatus is fundamental to bone healing
or fusion. The combination of fusion inserted through OLIF with
posterior internal fixation instrumentation results in a stronger and
more stable structure (Kim et al., 2005; Niemeyer et al., 2006;
Kornblum et al., 2013). Different types of internal fixation

devices play important roles in maintaining the stability of the
operated segment and reducing fusion device complications (Pham
et al., 2016; Xu et al., 2018). Fusion device complications are related
to bone density, fusion level, disc position, disc height, and pedicle
screw internal fixation (Kim et al., 2013; Oh et al., 2017). Fusion
settling is a major factor in revision surgery after OLIF (Alimi et al.,
2014; Tempel et al., 2018). Local healing is better facilitated if the
load transmitted through the fusion device can be increased without
fusion settling.

There is limited research on the biomechanical stability of OLIF
combined with internal fixation. This study aims to identify an OLIF
supplementary internal fixation method that can provide the best
spinal stability. We established a normal vertebral body model and
five surgical models and compared their biomechanical stability
using finite element (FE) analysis. In these 5 models, although the
Individual OLIF (IO) model did not have any additional internal
fixation, we still established its model as a reference.

Methods

Three-dimensional FE model of the lumbar
spine

A female volunteer (age: 39 years old, height: 169.0 cm,
weight: 60.0 kg) with lumbar degenerative disease was
recruited. The entire lumbar spine was scanned using a
NEUVIZ 64-row spiral CT scanner with a slice thickness of
0.1 mm. Appropriate gray values were selected to distinguish
bone and tissues. The images of the L4-L5 segment were selected
from the complete lumbar spine image, as this is the most
commonly used in OLIF surgery. The computed tomography
images were stored in the format of Digital Imaging and
Communications in Medicine (DICOM). The DICOM data
were imported into Mimics Research 20.0 (Materialise,
Belgium) for the three-dimensional (3D) reconstruction of
Lumbar 4-5 segments. Then the reconstructed model was
imported into Geomagic Wrap 2021 (Reverse Engineering
Software, United States) for surface optimization, eliminating
defects in the initial model. After the smoothing process was
completed, the vertebral body of the spine model was offset
inward by 0.5 mm. The hollow part between the original
model and the offset model was added to the anterior
vertebral body as cortical bone and the inner body was used
as cancellous bone. The cortical bone on the upper and lower
surfaces of the vertebral body is set as an endplate with a
thickness of 0.5 mm. The cartilage part was first created by
creating an appropriately sized cylinder in SolidWorks 2019
(CAD software, Dassault Systems, United States), and then
performing Boolean operations on the L4 and L5 endplates
that fit with the cylinder to generate the cartilage. The fusion
device and bone screw were established in Solidworks 2019 with
corresponding dimensions. Finally, all the models were imported
into 3-material (Metric, Belgium) to adjust the screw positions,
perform Boolean operations, generate four screw layout schemes,
and import the inp file into Abaqus 6.14 after generating the
mesh. The ligaments were established in Abaqus 6.14 with seven
major ligaments created at appropriate locations: Anterior
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Longitudinal Ligament (ALL), Posterior Longitudinal Ligament
(PLL), Ligamentum Flavum (LF), Intertransverse Ligament
(ITL), Supraspinous Ligament (SL), and Interspinous
Ligament (ISL).

In the interaction setting, the bonding surface of cortical bone
and cancellous bone were bound, the fusion device was bound to
the lower surface of the L4 segment and the upper surface of the
L5 segment, the ligament was bound to the outer surface of
cortical bone, the bone screw was bound to the surface of the hole
after Boolean operation of the spine. The friction contact
coefficient between the cartilage and the surface of the upper
and lower articular processes was set to 0.1 (Cai et al., 2022). The
bone parts in the complete FE model of the L4-L5 segments
include cortical bone, cancellous bone, and cartilage parts. The
cortical bone thickness was set to 0.5 mm based on CT image
estimation and another research (Cai et al., 2022). The element
type for cortical bone, cancellous bone, fusion cage, and bone
screw was C3D4, the element type of ligament was T3D2, and the

element type of cartilage was C3D4. The developed L4-L5 spinal
segment model was meshed using C3D4 elements after a mesh
convergence study.

FE models of the internal fixation and cage

In the present study, the Individual OLIF (IO) model and
OLIF combined with four internal fixation models were
established (Figure 1). The cage measures 45.0 mm in length,
17.0 mm in width, and 14.0 mm in height. The length of the
screw is 45.0 mm and the diameter is 6.5 mm. The connecting
rod has a length of 50.0 mm and a diameter of 5.5 mm. The
fusion device and internal fixation were established by
corresponding dimensions in Solidworks 2019. During the FE
simulation, the entire nucleus pulposus and fibrous ring were
removed. In the Individual OLIF (IO) model, fusion cages were
implanted in the intervertebral space, and no internal fixation

FIGURE 1
Four types of internal fixation models. (OLIF: Oblique lateral lumbar interbody fusion, UPS: Unilateral Pedicle Screw, BPS: Bilateral Pedicle Screws,
DRVS: Double row vertical screw, UVS-PS: Unilateral Vertebral Screw-Pedicle Screw).
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was implanted. In the OLIF + Unilateral Pedicle Screw (OLIF +
UPS) model, while implanting a fusion cage in the intervertebral
space, screws were implanted in one side of the pedicle, and the
upper and lower screws were connected by connecting rods. In
the OLIF + Double row vertical screw (OLIF + DRVS) model,
while implanting a fusion cage in the intervertebral space,
double row screws were implanted in the lateral vertebral
body, which was connected by connecting rods. At the same
time, a transverse connection was added at the level of the
intervertebral disc to connect the bilateral connecting rods. In
the OLIF + Unilateral Vertebral Screw - Pedicle Screw (OLIF +
UVS-PS) model, a fusion cage was implanted in the
intervertebral space, screws were implanted in one side of the
pedicle, and screws were implanted in the same side of the
vertebral body. The pedicle screws and vertebral screws were
connected by connecting rods, respectively. In the OLIF +
Bilateral Pedicle Screws (OLIF + BPS) model, a fusion cage

was implanted in the intervertebral space, screws were
implanted in both pedicle screws, and the upper and lower
screws were connected by connecting rods.

Definition of the properties of the materials

Linear elastic material models were used for the bony
tissues. Facet cartilage and intervertebral discs were modeled
using Neo-Hookean and Mooney-Rivlin hyperelastic materials
(Du et al., 2014; Cai et al., 2020; Cai et al., 2022; Liu et al., 2022).
The nucleus pulposus constituted 50% of the disc and the cortical
bone thickness was 0.5 mm (Cai et al., 2022; Zhang et al., 2022).
The material parameters of the tissue model are shown in Table 1.
The material used in the cage is Poly ether ether ketone (PEEK),
and the material used for internal fixation is titanium alloy.
Linear elastic material models were used for the spinal cage

TABLE 1 Material properties, element type, and number for the component in the FE model of the spinal segment.

Component E [MPa] ν Element type References

Bony Structures

Cortical bone 12,000 0.3 C3D4 Burstein et al. (1976)

Cancellous bone 1,500 0.3 C3D4 Lindahl (1976)

Posterior bone 3,500 0.3 C3D4 Shirazi-Adl et al. (1986)

End plate 12,000 0.3 C3D4 Grant et al. (2001)

Facet cartilage 20 0.3 C3D4

Intervertebral disc

Annulus fibrosus Calibrated stress-strain curves

Nucleus pulposus Mooney–Rivlin, C1 = 0.12, C2 = 0.03

Implants

Cage 22,000 0.3 C3D4

Internal fixation 110,000 0.3 C3D4

(*E represents Young’s modulus and ν represents the Poisson’s ratio).

TABLE 2 Material properties, element type, number, and cross-sectional area of the ligaments in the FE model.

Ligament E1*[Mpa] E2*
[Mpa]

ε12** Element type (number) Area [mm2] Reference

Anterior Longitudinal Ligament 7.8 20.0 0.12 T3D2 (7) 32.4 Moramarco et al. (2010)

Posterior Longitudinal Ligament 1.0 2.0 0.11 T3D2 (6) 5.2

Ligamentum Flavum 1.5 1.5 0.06 T3D2 (3) 84.2

Intertransverse Ligament 10.0 59.0 0.18 T3D2 (3) 1.8 Chazal et al. (1985)

Supraspinous Ligament 3.0 5.0 0.2 T3D2 (4) 25.2

Interspinous Ligament 13.2 42.6 0.15 T3D2 (4) 35.1

Ligament E [Mpa] ν Element type (number) Area [mm2] Reference

Capsular Ligament 24.4 0.3 T3D2 (6) 23.8 Tyndyka et al. (2007)

(*E1 denotes the Young’s modulus of the first phase and E2 denotes the Young’s modulus of the second phase; ε12** denotes the strain transition between two bilinear moduli E1 and E2.).
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and internal fixation components. Therefore, an elastic modulus
of 22000 MPa and Poisson’s ratio of 0.3 were defined for the cage,
and an elastic modulus of 110000 MPa and Poisson’s ratio of
0.3 were defined for internal fixation. All ligaments were meshed
using tension truss elements (T3D2). Based on literature data, the
bilinear elastic material model described the mechanical behavior
of ALL, PLL, LF, ITL, SSL, and ISL, while the linear elastic
material model described the mechanical behavior of CL.
(Table 2).

The setting of the loading and boundary
conditions

In the FE L4-L5 spinal fixation models, the spinal cage was fully
constrained to its adjacent bony parts. The screws were fully

constrained to their surrounding bone tissues, and the
connecting bars and screws were also fully constrained to each
other. Six loading scenarios (flexion and extension, leaning-left and
leaning-right, rotate right and rotate left) were simulated in the FE
L4-L5 spinal fixation models to mimic the daily activities (Figure 2).
In all the loading scenarios, a vertically downward load of 200.0 N
was applied in the model to simulate the body weight. Boundary
conditions were established to fix the lower surface of L5, a reference
point was established at the center of the upper surface of L4, the
reference point was coupled with the upper surface, a torque of
5 N m and a concentrated force perpendicular to the upper surface
of the vertebral body of 200 N were applied to the reference point,
and the forces on the spine were jointly simulated. After the settings
were applied, the results were calculated.

IOmodel has 232,411 nodes and 1424600 elements. OLIF + UPS
model has 228,770 nodes and 1393400 elements. OLIF + DRVS

FIGURE 2
Six activity directions and boundary conditions.
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model has 232,840 nodes and 1415121 elements. OLIF + UVS-PS
model has 229,094 nodes and 1390833 elements. OLIF + BPS model
has 242,659 nodes and 1808364 elements. The mesh size of bones
ranges from 0.5 to 2.5. The mesh size of the cage ranges from 1.2 to
4.5. The mesh size of the screw ranges from 0.5 to 2.5.

Results

Validation of the FE spinal model

Apply 10 N m to our model and compare the ROM of fused
segments with cadaver studies (Yamamoto et al., 1989). Our results

fall within the range of variation, demonstrating our model’s
reliability (Figure 3).

Ranges of motion (ROM) of the fused spinal
segment

The ultimate goal of OLIF surgery is to make the fusion segment
as a whole part, and thus the angle of vertebral body movement can
directly reflect the effectiveness of the surgery. The ROMof the fused
segment is expressed as an angle, which directly reflects the stability
of the fused segment. The less ROM, the more stable of fusion
segment and the less risk of complication (Cai et al., 2022). The

FIGURE 3
The comparision of ROM between the intact model and the previous in vitro experimental study. (Unit:degree).

FIGURE 4
The ranges of motion (ROM) of fusion segments (Unit:degree).
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ROM of the surgical model under a combined load of 200 N and
5 N m is shown in Figure 4 and Table 3. In the flexion group, the
ROM of IO was 9.48°, and the ROM of OLIF + DRVS was 6.74°. In
the backward bending group, the ROM of IO was 6.44°, and the
ROM of OLIF + DRVS was 7.91°. These four data are significantly
greater than the data of other models in various motion directions.
OLIF + BPS has a maximum ROM of 1.82° during backward
bending and has the smallest ROM in all directions of motion.
OLIF + UPS is similar to OLIF + UVS-PS, and both models are
slightly inferior to OLIF + BPS overall, but the difference is not very
significant.

Distribution of the von mises stress in the
cage and internal fixations

The greater the stress distributed on the fusion cage and internal
fixation, the higher the likelihood of complications is to occur, such
as cage settlement, endplate collapse, fractures, and screw loosening
and fracture (Villa et al., 2014; Singhatanadgige et al., 2021; Qin
et al., 2022). The distribution of the von Mises stress on the Cage is
shown in Figures 5, 6; Table 4. In the flexion group, the von Mises
stress of IO was 68.15 MPa, and of OLIF + DRVS was 44.64 MPa. In
the backward bending group, the von Mises stress of IO was
54.07 MPa, and of OLIF + DRVS was 53.42 MPa. These four
data are significantly greater than the data of other models in
various motion directions. The data of OLIF + BPS and OLIF +

UVS-PS are similar and are less than others. The average stress on
every motion direction of OLIF + BPS is about 17.08 MPa and of
OLIF + UVS-PS is about 19.29 MPa.

The distribution of the von Mises stress on the internal fixation
is shown in Figures 7, 8; Table 5. In flexion and posterior extension,
the maximum internal fixation stresses on OLIF + DRVS and OLIF
+ UVS-PS were significantly greater than those in the other models.
OLIF + DRVS had the maximum internal fixator stress in forward
bending (155.9 MPa), and OLIF + UVS-PS had the maximum
internal fixator stress in posterior backward bending (105.8 MPa).
OLIF + BPS had the maximum internal fixator stress in left rotation
(31.85 MPa), and OLIF + UPS had the maximum internal fixator
stress in posterior extension (76.59 MPa). The data of these two
models were smaller than in the other models.

Discussion

This study aims to identify an OLIF supplementary internal
fixation method that can provide the best spinal stability. In the
present study, the biomechanical stability of the L4-L5 spinal
segment using different fixations was investigated using FE
analysis. Five different models, e.g., OLIF + DRVS, OLIF + UPS,
IO, OLIF + BPS, OLIF + UVS-PS, were simulated and the ROM of
the fused spinal segment and stress distribution in the cage and
internal fixations were investigated (Cai et al., 2022). All
intervertebral discs in the figures have been replaced by fusion cages.

TABLE 3 The ROM of fusion segments (Unit: degree).

Name Flexion Extension Left-leaning Right-leaning Rotate left Rotate right

Individual OLIF 9.48 6.44 1.47 1.90 1.51 1.61

OLIF + Bilateral pedicle screws 0.64 1.82 0.93 1.05 1.14 1.18

OLIF + Unilateral pedicle screw 1.22 2.99 1.20 2.44 1.69 1.36

OLIF + Double row vertebral screw 6.74 7.91 1.96 2.31 2.24 2.73

OLIF + Unilateral vertebral screw - pedicle screw 1.98 2.35 1.40 1.97 1.33 1.38

FIGURE 5
Maximum von Mises stresses distributed on the cage (Unit: MPa).

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Hao et al. 10.3389/fbioe.2023.1260693

116

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1260693


By comparing the ROM of different models, we found that OLIF +
BPS has the least ROM in each motion mode. On the one hand, this
indicates that OLIF + BPS provides a more stable load-sharing on the
fusion, facilitates bone healing or fusion, and has themost stable fusion-

vertebral body interface, reducing the likelihood of complications such
as fusion loosening. On the other hand, the IO and OLIF + DRVS had
the greatest ROM in flexion and extension motion compared to all
surgicalmodels. This implies that postoperative patients who accept one

FIGURE 6
Cloud map of stress distribution in the fusion device during flexion and extension.
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of these two operations aremore likely to experience pain due to lumbar
instability. The excessive motion indicates a weaker fusion-vertebral
body interface, increasing the risk of cage loosening, displacement, or
even prolapse.

The maximum stress on the IO and OLIF + DRVS fusion cages
during flexion and extension is significantly greater than that onOLIF +
BPS and OLIF + UVS-PS. This indicates that IO and OLIF + DRVS are
more prone to fusion cage settlement compared to OLIF + BPS and
OLIF + UVS-PS. This result is consistent with the study by Guofang
Fang et al. They found that OLIF + BPS can reduce themaximum stress
on the endplate, thereby reducing the incidence of cage settlement.
Compared to OLIF + BPS, the IO method of OLIF surgery generates
more pressure, especially in terms of extension and flexion, which may
be a potential risk factor for cage settlement (Fang et al., 2020). In
addition, in our study, the maximum stress on the fusion cage during
forward flexion and backward extension is significantly greater than in
other directions, mostly occurring in the upper front or lower back. This
indicates that the fusion cage ismore likely to enter the vertebral body in
an inclined posture (Figure 6). This is consistent with the research
results of Fang, G. et al. (Fang et al., 2020). The maximum cage stress in
the OLIF + UPS was less than that in the IO and OLIF + DRVS, but
greater than that in OLIF + BPS and OLIF + UVS-PS. Under different
motion loads, the cage was less stressed in the OLIF + BPS and OLIF +
UVS-PS. Only in flexion and rotating right, the maximum cage stress
was greater in OLIF + UVS-PS than in OLIF + BPS. In the rest of the
motion loads, the maximum cage stress was similar in both internal

fixation methods, indicating a lower likelihood of cage subsidence in
both models.

The maximum internal fixation stresses for OLIF + UVS-PS
were significantly greater in flexion, extension, and rotating left
compared to the other models, except for OLIF + DRVS. These
results indicate that the components of OLIF + DRVS and OLIF +
UVS-PS are more likely to fracture. The maximum internal fixation
stresses for OLIF + UPS and OLIF + BPS were smaller and similar in
all motion directions. The maximum internal fixator stress of OLIF
+ BPS was greater than that of OLIF + UPS only in left rotating.
Therefore, OLIF + BPS is the least likely to experience a component
fracture due to metal fatigue, followed by OLIF + UPS. These
findings are consistent with the study by Cai, X. Y. et al., where
the maximum stress of OLIF + DRVS was significantly greater than
that of OLIF + UPS and OLIF + BPS (Cai et al., 2022).

The performance of the ROMandmaximum stresses of OLIF + BPS
were better than the other models under the same loading conditions.
This indicates that OLIF + BPS can limit the movement of the surgical
segment, share the stress of the fusion and endplate, maintain the effect of
indirect decompression after OLIF, and further improve its stability with
significant biomechanical advantages. However, OLIF + BPS cannot be
performed in a single position and requires intraoperative changes in the
patient’s position. OLIF + UPS were slightly less effective than OLIF +
BPS in terms of internal fixation, but still provided good biomechanical
stability in all directions of motion and did not require intraoperative
changes in the patient’s position. OLIF + UVS-PS is inferior to OLIF +

TABLE 4 The maximum stress of the cage (Unit: MPa).

Name Flexion Extension Left-leaning Right-leaning Rotate left Rotate right

Individual OLIF 68.15 54.87 29.72 20.29 19.98 19.99

OLIF + Bilateral pedicle screws 7.919 27.98 15.65 16.85 18.82 15.29

OLIF + Unilateral pedicle screw 15.63 39.23 26.96 29.42 24.24 17.11

OLIF + Double row vertebral screw 44.64 53.42 20.16 15.33 18.27 16.31

OLIF + Unilateral vertebral screw - pedicle screw 13.99 27.22 13.96 23.7 20.37 16.52

FIGURE 7
Maximum von Mises stresses distributed on the internal fixation sytem (Unit: MPa).
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UPS in terms of internal fixation stress, patient economic burden, and
surgical procedure. Moreover, the vertebral screws of OLIF + UVS-PS
were only subjected to a small amount of stress, which indicates that
vertebral screws may not be necessary (Figure 8). The ROM and
maximum fusion stresses of IO and OLIF + DRVS are inferior to

those of the other models, which indicates that the incidence of fusion
subsidence and vertebral instability may be higher in these two models
than in the other models. Only one of the two vertebral screws in OLIF +
DRVS was significantly stressed, and the crossbeam was almost
unstressed, which indicates that it may not be necessary to add two

FIGURE 8
Internal fixation strss distribution cloud map during flexion and extension.

TABLE 5 Maximum stress on the internal fixation system (Unit: MPa).

Name Flexion Extension Left-leaning Right-leaning Rotate left Rotate right

OLIF + Bilateral pedicle screws 38.49 54.56 31.85 42.24 64.2 57.26

OLIF + Unilateral pedicle screw 52.82 76.59 21.98 44.78 67.52 64.13

OLIF + Double row vertebral screw 155.9 130.2 28.82 49.74 60.66 42.49

OLIF + Unilateral vertebral screw - pedicle screw 73.88 105.8 56.38 39.61 66.37 74.58
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vertebral screws to the vertebral body and connect them through the
crossbeam (Figure 8).

Although the present study comprehensively investigated different
implantation methods, some limitations should be acknowledged. First,
only the FE analysis is performed in the present study and no cadaver
studywas performed, whichmay result in conclusions deviating from the
actual situation. Second, this study did not simulate soft tissues except for
the ligaments and intervertebral discs such as muscles, fascia, and fat.
These soft tissues provide slight traction due to their elasticity. However,
currently, there is no evidence to prove that this traction force affects the
biomechanical stability after lumbar surgery. What’s more, it is
conventionally believed that early postoperative lumbar spine surgery
often requires limiting lumbar muscle activity. Therefore, even without
simulating soft tissues like muscles, the results will not be affected
(Williamson et al., 2007). Third, simplified FE models of the cage and
screw are used in the present study.However, the texture on the surface of
the fusion device and the thread of the screw do not affect the overall
mechanical performance, so removing the texture on their surface will
not affect the results of this study. In summary, further experimental
research on cadaveric biomechanics is still necessary for future
investigations. Despite these limitations, our research findings can still
assist spinal surgeons in selecting the most suitable fixation strategy in
clinical practice.

Conclusion

It is concluded from the present study that OLIF + BPS has the best
biomechanical stability, but it requires changing the patient’s position
during the surgery, which reduces the simplicity of the surgery. OLIF +
UPS provides adequate biomechanical stability. OLIF + UVS-PS is
inferior to OLIF + UPS in terms of internal fixation stress, patient
economic burden, and surgical procedure. IO andOLIF +DRVS do not
have significant advantages in biomechanical stability, and may only be
of value in exceptional circumstances. Based on the biomechanical
analysis, OLIF + BPS is recommended for OLIF surgery. OLIF + UPS
can be used as an alternative.
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Effect of carbon-fiber-reinforced
polyetheretherketone on stress
distribution in a redesigned
tumor-type knee prosthesis: a
finite element analysis

Han Wu1,2, Yu Guo1,2* and Wei Guo1,2*
1Department of Musculoskeletal Tumor, People’s Hospital, Peking University, Beijing, China, 2Beijing Key
Laboratory of Musculoskeletal Tumor, Beijing, China

Background: Surgery for bone tumors around the knee often involves extensive
resection, making the subsequent prosthetic reconstruction challenging. While
carbon fiber-reinforced polyetheretherketone (CF-PEEK) has been widely used in
orthopedic implants, its application in tumor-type prosthesis is limited. This study
aims to evaluate the feasibility of using 30wt% and 60wt% carbon fiber-reinforced
polyetheretherketone (CF30-PEEK and CF60-PEEK) as materials for a redesigned
tumor-type knee prosthesis through numerical analysis.

Methods: A knee joint model based on CT data was created, and the resection and
prosthetic reconstruction were simulated. Three finite element models of the
prostheses, representing the initial and updated designs with CoCrMo and CFR-
PEEK components, were constructed. Loading conditions during standing and
squatting were simulated with forces of 700 N and 2800 N, respectively. Finite
element analysis was used to analyze the von Mises stress and stability of all
components for each prosthesis type.

Results: After improvements in both material and design, the new Type
3 prosthesis showed significantly lower overall stress with stress being evenly
distributed. Compared with the initial design, the maximum von Mises stress in
Type 3 was reduced by 53.9% during standing and 74.2% during squatting. In the
standing position, the maximum stress in the CF30-PEEK femoral component
decreased by 57.3% compared with the initial design which was composed of
CoCrMo, while the stress in the CF60-PEEK cardan shaft remained consistent. In
the squatting position, the maximum stress in the femoral component decreased
by 81.9%, and the stress in the cardan shaft decreased by 46.5%.

Conclusion: The incorporation of CF30-PEEK effectively transmits forces and reduces
stress concentration on the femoral component, while CF60-PEEK in the redesigned
cardan shaft significantly reduces stress while maintaining stiffness. The redesigned
prosthesis effectively conducts loading force anddemonstrates favorable biomechanical
characteristics, indicating thepromisingpotential of utilizingCF30-PEEKandCF60-PEEK
materials for tumor-type knee prostheses. The findings of this study could provide novel
insights for the design and development of tumor-type knee prostheses.

KEYWORDS

tumor-type prosthesis, prosthetic reconstruction, carbon-fiber-reinforced
polyetheretherketone, finite element analysis, stress distribution
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1 Introduction

Aggressive bone and soft tissue tumors around the knee often
require extensive surgical resection, and functional reconstruction
with tumor-type knee prosthesis. The limitations of widely used
metallic materials in orthopedic prostheses, such as titanium alloys
and CoCrMo, have been highlighted in numerous studies. The most
common drawbacks are the heavy weight due to high density, and
the significant difference in elastic modulus between the metal
implants (ranging from 100 to 200 GPa) and human bones
(3–20 GPa). The modulus mismatch, also known as the stress
shielding effect, can lead to small fractures, aseptic loosening, and
ultimately implant failure (Sumner, 2015). Additionally, certain
metal ions released by wear particles are toxic to bone and tissue
cells, causing inflammation in adjacent tissues (Okazaki and Gotoh,
2005; Scharf et al., 2014; Armstead et al., 2017). Therefore, updating
the materials used for prosthetic fabrication is crucial.

Implants that offer suitable mechanical properties, excellent
wear resistance, and low cytotoxicity form the basis for successful
osteointegration. Carbon/polymer composites have gained
significant interest due to their exceptional mechanical properties.
Among these composites, carbon-fiber-reinforced
polyetheretherketone (CF-PEEK) has been extensively studied in
orthopedics over the past few decades, following the successful
utilization of pure polyetheretherketone (PEEK) (Theivendran
et al., 2021). CF-PEEK provides translucency under X-ray
imaging, eliminating scattering effects and enabling the
evaluation of early tumor recurrence and precise radiotherapy
while minimizing the impact on surrounding soft tissues (Zimel
et al., 2015; Nevelsky et al., 2017). CF-PEEK filled with 30wt% short
carbon fiber (CF30-PEEK) demonstrates excellent mechanical
properties, with a tensile strength (175–209 MPa) and elastic
modulus (16–24 GPa) (Bonnheim et al., 2019; Avanzini et al.,
2022) significantly lower than those of metals, closely resembling
the properties of bone (50–100 MPa and 7–30 GPa) (Morgan et al.,
2018). This resemblance effectively avoids stress shielding and
subsequent implant loosening or failure (Sha et al., 2009).
Additionally, CF-PEEK exhibits favorable wear resistance when
articulating against ceramic and metallic materials (Scholes and
Unsworth, 2007; Brockett et al., 2016), and its wear particles do not
demonstrate significant cytotoxicity (Utzschneider et al., 2010),
thereby extending the prosthesis lifespan. To date, CF-PEEK has
been investigated in various applications, including spinal cages
(Schwendner et al., 2023), fixation systems (Boriani et al., 2018;
Cofano et al., 2020), knee joint prostheses (Koh et al., 2019), and
intramedullary nails (Vles et al., 2019; Ziran et al., 2020).

The length, arrangement, and weight percentage of carbon fibers
filled in CF-PEEK can impact its mechanical properties, providing the
opportunity to manipulate them (Liao et al., 2020). While CF-PEEK
with 30wt% carbon fiber is reinforced by short carbon fibers, CF-PEEK
with 60wt% (CF60-PEEK) contains relatively longer or continuous
carbon fibers. CF60-PEEK shares many similarities with CF30-PEEK
but exhibits higher stiffness due to the utilization of long carbon fibers
(Zhao et al., 2021). The elastic modulus of CF60-PEEK can range from
50 GPa to 150 GPa, depending on the orientation and volume fraction
of carbon fibers (Bonnheim et al., 2019). Therefore, CF60-PEEK,
possessing light weight and high stiffness, is suitable for fabricating
torsion-resistant and load-bearing implants.

Due to the large bone defect, tumor-type knee prostheses are
typically heavier than most knee joint implants. Therefore, replacing
metallic biomaterials with CF-PEEK holds technological importance
for tumor-type prostheses. With a lower density than CoCrMo alloy
(7.9–8.5 g/cm3) and Ti6Al4V alloy (4.51 g/cm3), CF30-PEEK
(1.35–1.4 g/cm3) can reduce the weight of the prosthesis and
alleviate the burden on surrounding tissues, resulting in a
considerable improvement in comfort. Despite the increasing use
of CF-PEEK in orthopedic trauma and spinal instrumentation, there
is limited published research on tumor-type knee prostheses
composed of CF-PEEK. Finite Element Analysis is an essential
method for simulating stress distribution and exploring
mechanical properties when designing a prosthesis (Yao et al.,
2021; Zhu et al., 2021). In our previous study, we introduced an
originally designed micro-motion tumor-type knee prosthesis and
conducted Finite Element Analysis. However, the initial prosthesis
yielded unsatisfactory results during subsequent tests. In this study,
we have renewed the design and provided a numerical study of a
novel tumor-type prosthesis composed of CF-PEEK. This study
aims to explore the feasibility of using CF30-PEEK and CF60-PEEK
as replacements for CoCrMo in tumor-type knee prostheses, and
three different Finite Element models were established to analyze the
von Mises stress of each component. The results of this study are
expected to provide insights into the development of tumor-type
knee prostheses.

2 Materials and methods

2.1 Updates in prosthesis design

Three tumor-type knee prostheses, referred to as Type 1, Type 2,
and Type 3, were evaluated in this study. Type 1 represents the initial
design, consisting of intramedullary stems for the femur and tibia
medullary cavity, an extension rod, a distal femoral component, two
flexion shafts with two shaft bushings, a cardan shaft with a cardan
gasket, a tibial insert, and a proximal tibial component (Figure 1A).
The cardan shaft not only links the femur and tibia but also enables
controlled micro-motions within the knee joint. This design
preserves knee joint flexibility for multidirectional movement
while maintaining necessary constraint. However, subsequent test
results of Type 1 indicated a possibility of dislocation and the need
for further adjustments, leading to the development of Type 2 and
Type 3 prostheses.

To reduce the risk of dislocation, the diameter of the distal end of
the cardan shaft was enlarged in Type 2 and Type 3, making it wider
than the gap of the tibial insert. As a result, the cardan gasket was
removed to fit into the groove of the tibial component. Additionally,
the neck of the cardan shaft was lengthened, and the PE tibial insert
was slightly thickened accordingly. A bushing ring inside the cardan
shaft was also removed. The Type 2 and Type 3 has the same
geometric design, and the details of all types are shown in
Supplementary Figure S1.

However, both the cardan shaft and tibial component weremade
of CoCrMo. Although our previous study showed that the flexion
shafts and cardan shaft are not the main bearing components (Guo
and Guo, 2022), it is doubtful whether retaining a metal-on-metal
interface after removing the PE gasket is safe and appropriate. This
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interface may not withstand repeated motion and may increase the
risk of wear, especially considering the cytotoxicity of CoCrMo wear
debris.

CF60-PEEK reinforced by continuous carbon fiber has shown a
comparable elastic modulus (150 GPa) to CoCrMo (218 GPa), with
reduced wear rates and cytotoxicity of wear debris. Therefore, to
reduce the potential for wear while maintaining high stiffness,
CoCrMo was replaced by CF60-PEEK for the cardan shaft, while
the tibial component remained made of CoCrMo. Consequently,
Type 2 (which contains a CoCrMo cardan shaft) served only as a
control group in this study. Apart from the structural issues, the
weight of the CoCrMo components also drew our attention. The
advantages of using CF30-PEEK in tumor-type prostheses were
confirmed in our previous study (Guo and Guo, 2022), and we
retained the design of CF30-PEEK femoral component and
extension rod in Type 3 (Figure 1B).

2.2 Finite element model construction

The CT data was derived from the same patient as our previous
study (Guo and Guo, 2022), with a height of 168 cm and a weight of
70 kg. The total femur and total tibia measured 430 mm and

330 mm in length, respectively. Next, the medical modeling
software Mimics 20.0 (Materialise Inc., Belgium) was used to
construct the original knee joint model. The osteotomy length for
the resection of the distal femur tumor was set at 128 mm, and for
the proximal tibia it was set at 10.5 mm. Both osteotomy directions
were perpendicular to the axis of the medullary cavity.

Subsequently, the simulated osteotomy was performed, and a
custom prosthesis model was designed using engineering design
software CREO 7.0 (PTC, United States). To analyze the stress
distribution of three different implants in two static postures (knee
joint at 0° for standing and at 90° for squatting), a finite element (FE)
environment was created. The Altair Inspire software (Altair
Engineering Inc., United States) was used for the pre-processing
of this environment. Static structural analysis was performed using
the OptiStruct 2019 solver (Altair Engineering Inc., United States).
All materials were simplified to be linear elastic and isotropic, and
the properties of different materials are shown in Table 1.

2.3 Loading and boundary conditions

In the loading condition, a downward load of 700 N was
applied vertically to the femoral head to simulate the body’s

FIGURE 1
(A) A schematic diagram of the components of this micro-motion tumor-type knee prosthesis. (B) Differences in the materials among the three
types of prostheses.
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gravity in one-legged standing. A load of 2,800 N was applied to
simulate the highest loaded condition during one-legged
squatting (Smith et al., 2008; Kutzner et al., 2010; Bergmann
et al., 2014). In both postures, the distal end of tibia was fully
constrained in all directions (Supplementary Figures S2A, B).

As shown in Supplementary Figures S2C, D, the contact
conditions were varied among standard, boned and no
contact. Briefly, the interfaces between the intramedullary
stems and bones were bonded due to the bone cement design
(indicated in blue). The interfaces between the femoral
intramedullary stem, extension rod and the femoral
component were also bonded because of the taper connection.
For the remaining interfaces, standard contact conditions were
applied (indicated in green). Additionally, some seemingly
narrow gaps did not actually result in contact based on the
geometric design (indicated in gray).

2.4 Model verification and data processing

Initially, the 10 Nodes tetrahedral (TET10) elements were
utilized for calculations. However, during the gradual mesh
refinement, increasing errors emerged and prevented the
completion of the calculations. This issue could be attributed to
the complexity of the model, which includes multiple components
with intricate structures. Additionally, the software may
automatically adjust meshes to accommodate small curvature
corners, potentially distorting the meshes, which could
significantly impact the stress levels and yield unreliable results
(Saadlaoui et al., 2017).

For computational efficiency, the 4 Nodes tetrahedral (TET4)
elements was subsequently employed for the calculation. In this
study, the vonMises stress was selected as the primary parameter for
evaluating biomechanical performance of the prosthesis. A
convergence test was conducted on both Type 1 and Type
3 models by increasing the mesh densities (Supplementary
Figures S3A, B). It was observed that convergence curve was not
smooth. This could be attributed to the fact that many parameters of
the model could affect mesh convergence behavior, and convergence
tests may not always yield satisfactory solutions (Schmidt et al.,
2009).

Another reason for the lack of smoothness in the convergence
curve may be that the models retained substantial details, resulting
in different convergence rates at different locations (Schmidt et al.,
2009). For instance, considering the femoral component, which is of
particular interest in this study, as the mesh density increased, the
smooth surfaces of the medial and lateral condyles converged at
much lower mesh densities. In contrast, the intercondylar fossa with
curvature features exhibited slower convergence rates
(Supplementary Figures S3C, D). Theoretically, the best way to
determine whether smaller element sizes would result in smooth
curves without abrupt changes would be to continuously increase
themesh densities, although this approach is impractical (Bright and
Rayfield, 2011).

The different rate was calculated as the percentage difference in
the maximum von Mises stress between the current mesh density
and the previous density (Supplementary Tables S1, S2). Regarding
the different rate, there appears to be no consensus in the literature,
with values of <10% or <5% both being quoted (Schmidt et al., 2009;
Bright and Rayfield, 2011; Lai et al., 2015; Tseng et al., 2015). In this
study, the convergence was considered to have started at where
a <10% different rate was observed between successive meshes.
Consequently, for most locations, the Type 1 model can be deemed
to have converged at 341,411 elements and the Type 3 model at
333,723 elements, with an average mesh size of 2.0 mm (Table 2).

All the statistical analyses in this study were performed with the
SPSS 22.0 software. For comparison of three groups, one-way
ANOVA was performed. The differences were considered
significant at p < 0.05.

TABLE 1 The characteristics of different materials.

Materials Young’s
modulus (MPa)

Poisson’s
ratio

Tensile
strength (MPa)

Compressive
strength (MPa)

Cortical bone Rezwan et al. (2006), Guo and Guo (2022) 14,000 0.30 50–151 130–220

CoCrMo Sevimay et al. (2005), Herranz et al. (2020) 218,000 0.33 409–431 632–682

Ti6Al4V Arrazola et al. (2009), Kaleli et al. (2018), Ishfaq
et al. (2021)

110,000 0.35 960–1,100 870–1,010

UHMWPE Manoj Kumar et al. (2015), Malito et al.
(2018)

1,016 0.30 10.2–26.3 9.8–15.7

CF30-PEEK Sarot et al. (2010), Schwitalla and Müller
(2013)

18,000 0.39 175–214 239–246

CF60-PEEK Schwitalla et al. (2015), Liao et al. (2020) 150,000 0.35 2000 800

TABLE 2 The number of nodes and elements for each model.

Model Nodes Elements

Standing Type-1 83,163 341,411

Type-2 80,812 333,723

Type-3 80,812 333,723

Squatting Type-1 83,180 339,746

Type-2 81,739 337,572

Type-3 81,739 337,572
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3 Results

3.1 Development of micro-motion tumor
prosthesis

The initial design (referred to as Type 1) was first
demonstrated in our previous study (Guo and Guo, 2022). For
individuals in Asia and the Middle East, certain daily activities
such as toileting, kneeling, and cross-legged sitting often require
full flexion squatting (Hemmerich et al., 2006). However, during
the subsequent static loading test of Type 1, which simulated this
specific movement, unsatisfactory results were observed. It was
discovered that there was a potential issue where the cardan shaft
could be pulled out from the cardan gasket, leading to
subluxation, or even getting stuck in the gap of the tibial
insert, resulting in complete dislocation (Figure 2). This
occurred when the prosthesis underwent prolonged bending at
a high flexion angle with load-bearing. If this situation were to
occur in a clinical utilization, it would require a revision surgery
to restore the functionality of the knee joint. To address this issue,
the cardan shaft was redesigned as described in the Methods
section. Subsequently, the stress distribution of all three
prostheses was analyzed.

3.2 Overall stress distribution and
displacement of three models

The von Mises stress distribution of three models, including
the proximal femur and tibia, was analyzed in this study.
Figure 3A illustrates the overall stress distribution of the
entire model in the standing posture. The maximum stress
value was observed in Type 2 (93.63 MPa), which was higher
than Type 1 (82.95 MPa) and Type 3 (38.25 MPa). As shown in
Figure 3B, when squatting, Type 2 showed the highest stress value
(5,662 MPa), significantly exceeding that of Type 1 (4,694 MPa)

and Type 3 (1,213 MPa). For a more detailed examination, three
random points around the maximum stress point were collected
for statistical analysis. As shown in Figures 3C, D, the maximum
stress observed in the Type 3 model was the lowest in both
standing and squatting position. Compared with Type 1, Type
3 showed a distinct reduction of 53.9% in maximum von Mises
stress during standing and 74.2% reduction during squatting. The
maximum displacement of the entire model was shown in
Figure 4. The maximum displacement was observed in the
proximal femur in both positions. When standing, the
maximum displacement in Type 3 (18.02 mm) was slightly
higher than that of Type 1 (17.48 mm) and Type 2
(17.53 mm). In the squatting position, the maximum
displacement remained highest in Type 3 (173.6 mm),
significantly surpassing that of Type 1 (115.5 mm) and Type 2
(114.8 mm).

3.3 Mechanical analysis of extension rod,
femoral component and tibial insert

The extension rod and femoral component of three
prostheses were made of materials with different mechanical
properties, which could potentially affect the stress distribution.
However, as shown in Figure 5, in the standing condition, the
maximum stress values observed on the extension rod were
nearly identical for Type 1 (22.15 MPa), Type 2 (26.83 MPa),
and Type 3 (25.48 MPa). This trend remained similar in the
squatting position, with values of 1,308, 1,283, and 1,213 MPa,
respectively.

There were significant differences in the stress distribution on
the femoral component. In the standing condition (Figure 5A), the
maximum stress on the CF30-PEEK femoral component in Type 3
(35.45 MPa) was significantly lower than that of the CoCrMo
component in Type 1 (82.95 MPa) and Type 2 (93.63 MPa).
Moreover, in all three types, the highest stress on the femoral

FIGURE 2
Illustration of (A) a normal Type 1 prosthesis, (B) the cardan shaft being pulled out from the cardan gasket, and (C) the cardan shaft fully dislocated
and stuck into the tibial insert.
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FIGURE 3
Distribution of the von Mises stress in the three entire models in the (A) standing position and (B) squatting position. Statistical analysis of the
maximum von Mises stress in the (C) standing and (D) squatting position (*p < 0.05 compared with Type 1, #p < 0.05 compared with Type 2, same in the
following figures).

FIGURE 4
Displacement of the threemodels in the (A) standing and (B) squatting position. Statistical analysis of themaximum displacement in the (C) standing
and (D) squatting position.
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component appeared at the contact area with the cardan shaft,
located within the region corresponding to intercondylar fossa. In
the squatting condition, the maximum stress on the femoral
component of Type 3 (850 MPa) was substantially lower than
that of Type 1 (4,694 MPa) and Type 2 (5,662 MPa). It is
noteworthy that the maximum stress in all three types of
prostheses was observed at the interface between the femoral
component and tibial insert (Figure 5B). Compared with Type 1,
the maximum stress on the femoral component of Type 3 decreased
by 57.3% and 81.9% under the standing and squatting conditions,
respectively.

Regarding the tibial insert, stress concentration was observed on
the anterior regions of the insert in all three types. The maximum
stress observed in Type 3 (6.723 and 704 MPa) was higher than that
of Type 1 (4.095 and 625.1 MPa) and Type 2 (3.853 and 519.3 MPa)
in both postures (Figures 5A, B). Further analysis of the medial and
lateral sides of the insert (corresponding to the medial and lateral
menisci) revealed that the maximum von Mises stress on both sides
of the tibial insert in Type 3 was also higher than those in the other
two types (Supplementary Figure S4).

3.4 Stress analysis of connecting
components

The connecting components consist of the flexion shaft S1 and
flexion shaft S2 (Figure 1). S2 is inserted into S1, with two shaft
bushings positioned between S1 and the femoral component.
Together, these connecting components articulate the cardan
shaft with the femoral component. When standing, the
maximum stress on both the flexion shaft S1 (6.383 MPa) and S2
(3.137 MPa) of Type 3 was slightly higher than that of Type 1
(2.158 and 1.148 MPa, respectively) and Type 2 (5.842 and
2.545 MPa, respectively) (Figure 6A). Similarly, when squatting,
Type 3 exhibited the highest stress on S1 (295.8 MPa) and S2
(71.23 MPa) among the three types, as compared with Type 1
(105.7 and 36.51 MPa, respectively) and Type 2 (169.8 and
54.06 MPa, respectively) (Figure 6B). In the standing condition,
most stress located on the central area of shaft S1 and S2 in all the
three types. However, when squatting, most stress was concentrated
on the central area of S2 but a greater amount was found on the edge
of S1. The maximum stress on all shaft bushings showed no

FIGURE 5
Distribution of the von Mises stress in the extension rod, femoral component and tibial insert in the (A) standing and (B) squatting position.
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significant differences among them, although Type 3 presented
slightly higher stress values regardless of position (Figure 7).

3.5 Stress analysis of micro-motion
components

The cardan shaft is a key distinguishing feature that sets this
prosthesis apart from other distal femoral tumor-type prostheses. It
serves the dual purpose of connecting the femoral and tibial
components and enabling micro-motions in multiple directions,
thus preserving the flexibility of the knee joint.

Figure 8 demonstrates that in Type 2 and Type 3, the cardan
gasket was removed due to the enlarged distal end of the cardan
shaft. Following design and material adjustments, it was observed
that when standing, the maximum stress in the cardan shaft of Type
3 (26.69 MPa) was slightly higher than that of Type 1 (22.29 MPa)
but lower than Type 2 (37.34 MPa). In Type 1, the majority of the
stress was located at the contact area with femoral component,
whereas in Type 2 and Type 3, more stress appeared on the neck of
the cardan shaft. In the squatting position, the stress distribution
differed from the standing posture. The maximum stress in Type 3

(996.3 MPa) was significantly lower than that in Type 1 (1862 MPa)
but similar to Type 2 (970.3 MPa). The majority of high-stress was
located at the flange region of upper cardan shaft, in contact with the
shaft bushings, with no significant stress concentration in the neck
or bottom areas. Compared with Type 1, the maximum stress on the
cardan shaft of Type 3 increased by 19.7% when standing, but
decreased by 46.5% when squatting.

Regarding the cardan gasket in Type 1, most of the maximum
stress was observed on the edges below the top of the gasket. When
squatting, stress concentration appeared at the central bottom of the
gasket, which was not obvious when standing. Furthermore, in Type
1, the gasket top was in contact with the tibial insert, presenting an
interface stress of approximately 0.16–0.53 MPa in the standing
position and 2.06–8.52 MPa in the squatting position. It is worth
noting that in Type 2 and Type 3, the upper surface of the
hemisphere structure was not in contact with the bottom of the
tibial insert (Supplementary Figure S1), thus showing a normal
stress gradient.

Analysis of the tibial component revealed that when standing,
the maximum stress in Type 3 (11.16 MPa) was lower than that of
Type 1 (20.62 MPa) and Type 2 (15.78 MPa). When squatting, Type
1 showed the highest stress value of 937.8 MPa, followed by Type 3

FIGURE 6
Distribution of the von Mises stress on flexion shaft S1 and S2 in the (A) standing and (B) squatting position.
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(612.4 MPa) and Type 2 (532.1 MPa). The distribution of von Mises
stress on the tibial component was similar among the three types in
the standing or squatting position, respectively.

3.6 Stress analysis of femur, tibia, and
intramedullary stems

Figure 9 demonstrates that in the standing condition, the
maximum stress on the proximal femur was nearly identical
between Type 1 (8.262 MPa) and Type 2 and Type 3 (both
8.222 MPa). Additionally, the maximum stress observed on the
tibia was similar among Type 1 (33.61 MPa) and the other two
types (both 34.02 MPa). Furthermore, there were only minor
differences in the stress distribution among the femoral or tibial
intramedullary stems, respectively. A similar trend was observed in
the squatting condition. These findings suggest that the adjustments
in design andmaterial had minimal impact on the stress distribution
of the femur, tibia, and their intramedullary stems. Figure 10
presents the maximum stress values of each component in all
three types.

4 Discussion

The wide resection of bone tumors around the knee requires
reconstruction with appropriate tumor-type prostheses. In our
previous study (Guo and Guo, 2022), we proposed the initial
design of a micro-motion tumor-type knee prosthesis. This
prosthesis incorporates a crucial cardan shaft connection, which

enables micro-motion between the femur and tibia, preserving the
flexibility of the knee joint after implant surgery. However, during
subsequent tests simulating prolonged squatting with weight-
bearing, the prosthesis exhibited a potential for dislocation,
leading to malfunctions of the prosthesis. Consequently, a
redesign of the prosthesis became necessary. The primary cause
of dislocation was the cardan shaft being pulled out from the shaft
gasket and the tibial component. Therefore, the redesign primarily
focused on addressing this issue throughmodifications to the cardan
shaft, as described above.

CFR-PEEK has been successfully used in many orthopedic
reconstructions. Although CF30-PEEK has not been extensively
used for femoral components or load-bearing parts of joint
prostheses (Koh et al., 2019; Vertesich et al., 2022), it has
demonstrated good load-bearing capacity in other clinical
applications and has shown stable long-term performance
(Nakahara et al., 2013; Rotini et al., 2015; Schliemann et al.,
2015; Boriani et al., 2018; Laux et al., 2018; Ziegler et al., 2019).
Additionally, our previous study found favorable stress distribution
in the femoral component made of CF30-PEEK (Guo and Guo,
2022). These findings suggest that CF30-PEEK can potentially
replace CoCrMo for the femoral component, reducing the weight
of the tumor-type prosthesis without compromising its strength.
Therefore, in this study, we chose to retain CF30-PEEK as the
material for the femoral component in Type 3.

By adjusting the arrangement and weight fraction of carbon
fibers embedded in CFR-PEEK composites, CF60-PEEK exhibits an
elastic modulus ranging from 50 to 150 GPa (Schwitalla et al., 2015;
Xu et al., 2019; Liao et al., 2020; Souza et al., 2021). This allows for
achieving higher rigidity and torsion resistance similar to metals,

FIGURE 7
Distribution of the von Mises stress on shaft bushings in the (A) standing and (B) squatting position, and (C) statistical analysis of the maximum stress
in three types.
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while maintaining a lighter weight (Verma et al., 2021). Clinical use
of long carbon fiber-reinforced PEEK composites, such as the
Carbofix Piccolo system, have demonstrated good load-bearing
capabilities and bending resistance (Hak et al., 2014). Tests
conducted by Steinberg et al. showed that tibial nails and plates
made of 60wt% CFR-PEEK exhibit similar mechanical
characteristics to commercially available metal implants, with
lower wear performance (Steinberg et al., 2013). CF60-PEEK also
demonstrates excellent wear resistance (Koh et al., 2019). The wear
rate of CFR-PEEK is lower than that of metal-on-UHMWPE and
metal-on-metal systems (Howling et al., 2003; Scholes and
Unsworth, 2009a; Scholes and Unsworth, 2009b). Considering
these characteristics, CF60-PEEK was selected as the material for
the cardan shaft in this study to ensure component rigidity, stability,
and high wear resistance. Its impact on stress distribution was
subsequently analyzed.

Finite element analysis (FEA) is a highly effective and powerful
tool for evaluating multiple variables in orthopedic implants, aiding
in design optimization and predicting stress distribution (Pfeiffer,
2016). In this study, three different finite element models were
developed, incorporating Young’s modulus and Poisson’s ratio to

complete the models. To independently assess the effect of material
variations on stress distribution, the Type 2 group, which had the
same geometric structure as Type 3 but retained the CoCrMo
composition as Type 1, served as control group as well. However,
there is currently a lack of consensus on the loading or contact stress
on the knee joint during movement, particularly after reconstruction
with a tumor-type knee prosthesis. Research on the knee joint
suggests that the peak axial force during level walking can range
from 2.2 to 2.5 times body weight (BW) (Bergmann et al., 2014). In
fast walking, the medial knee contact force can increase by 30%–70%
compared to the standing position, and the loading is greatly
influenced by muscle force (Ogaya et al., 2015; Trepczynski et al.,
2018). Stair descent can generate forces up to 346% BW, while stair
ascent can result in forces up to 316% BW (Kutzner et al., 2010).
These values vary widely among individuals, and the estimation of
contact force may have an error of 10% BW (Jung et al., 2017).

Furthermore, the load on the knee joint becomes more complex
in the deep squat position (beyond 90 degrees of flexion). On one
hand, the actual tibiofemoral contact forces depend on the net
moments of the hamstrings or the quadriceps force in the sagittal
plane (Smith et al., 2008; Kutzner et al., 2010; Bergmann et al., 2014).

FIGURE 8
Distribution of the von Mises stress on the cardan shaft, cardan gasket, and tibial component in the (A) standing and (B) squatting position.
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On the other hand, even at the same knee flexion angle, loading
conditions on the knee joint can vary during activities such as stair
ascent, rising from a chair, and deep squatting. For example, during
one-legged flexion in stair ascending, the knee joint experiences

forces equivalent to 316% BW, while during two-legged bending in
deep squatting, the forces range from 240% to 253% BW (Taylor
et al., 1998; Smith et al., 2008; Kutzner et al., 2010; Bergmann et al.,
2014). Moreover, due to the various combinations of anatomical

FIGURE 9
Distribution of the von Mises stress on the proximal femur, tibia, and respective intramedullary stems in the (A) standing and (B) squatting position.

FIGURE 10
Summary of the maximum von Mises stress in each component in the (A) standing and (B) squatting position.
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structures and complex movements, determining the normal
loading conditions within the knee joint is challenging (Taylor
et al., 2004).

Therefore, for computational efficiency, in our study, we
applied a load of 700 N to simulate the load during standing,
and 2800 N to simulate the extreme load during knee bending in
the gait cycle. These loads are slightly higher than those used in
previous finite element studies, but align more closely with the
peak loading during one-legged postures (Bergmann et al., 2014),
as we aimed to encompass a wider range of the complexity and
variability of knee joint loading. However, considering that
patients may use assistive devices such as braces or crutches
during postoperative recovery, the load settings in this study may
be higher than the actual tibiofemoral contact stress under most
circumstances.

Research has shown that for primary distal femoral
endoprostheses, decreased survivorship is primarily attributed to
soft tissue failure, aseptic loosening, and structural complications
(Pala et al., 2013; Bus et al., 2017; Haijie et al., 2018; Ogura et al.,
2021). In the case of revision prostheses, periprosthetic fracture and
aseptic loosening are the primary causes of implant failure (Pala et al.,
2013; Geiger et al., 2023). In this study, the overall von Mises stress of
the newly designed prosthesis was significantly lower than that of the
other two groups in both the standing and squatting position. Stress
analysis of the entiremodel showed that, after updating the design and
material, the overall stress on the Type 3 prosthesis remained
consistent and evenly distributed. Additionally, there was no
significant difference in the stress distribution observed at the
bone-prosthesis interface between Type 3 and Type 1 in both
standing and squatting positions. The von Mises stress between
the bones and intramedullary stems was similar, indicating no
significant stress shielding effects. This suggests that the stress in
the Type 3 model is effectively transmitted from the prosthesis to the
cortical bone, preventing instability between the prosthesis and bone
and avoiding subsequent complications.

The displacement analysis of the entire model revealed that in
the standing position, Type 3 showed similar results to the other two
groups. However, during the higher load-bearing squatting position,
the displacement in Type 3 significantly increased. This can be
attributed to the notable difference in stiffness between the CF30-
PEEK components and the CoCrMo components. The extension
rod and femoral component that made of CF30-PEEK exhibit lower
stiffness but higher elastic deformability, which aligns with the
findings of our previous study (Guo and Guo, 2022).

Upon further analysis of the load distribution on the components,
it was observed that after the design modifications, there were no
significant differences in the stress distribution of the intramedullary
stems of the femur and tibia, extension rod, and bushings for flexion
shafts. However, notable changes were observed in the stress
distribution of the components that had been replaced with new
materials and the components in contact with them. When
comparing the stress distribution of the femoral components, it
was found that in the standing position, the region in contact with
the cardan shaft (referred to as the intercondylar fossa) showed the
highest stress. In the squatting position, the maximum stress shifted to
the region in contact with the tibial insert. The femoral component
made of CF30-PEEK exhibited significantly lower maximum stress in
both standing and squatting positions, compared with the CoCrMo

groups. A long-term follow-up research showed that after tumor
resection and reconstruction in the knee joint, the prosthesis failure
was primarily caused by mechanical facts (Henderson et al., 2011).
These failures are likely linked to the weight of the prosthesis. The
findings in this study highlight the positive impact of using CF30-
PEEK in the femoral component, as it not only effectively reduces the
weight burden but also mitigates the risks of fatigue due to stress
concentration.

Analysis of the tibial insert revealed complex results. The
Type 3 group showed higher maximum stress on the UHMWPE
insert compared to the other two groups, in both standing and
squatting postures. Further analysis revealed that both the medial
and lateral regions of the tibial insert experienced elevated stress
in the Type 3 group. In this study, the elastic modulus of CF30-
PEEK was set at 18 GPa, significantly lower than that of CoCrMo
but closer to UHMWPE. This relative modulus compatibility
helps with load transfer and promotes even stress distribution
(Heary et al., 2016). It was further confirmed in this study, where
the von Mises stress on the CF30-PEEK femoral component was
closer to that of the UHMWPE insert, compared with the
CoCrMo-UHMWPE pairs. These findings suggest that the
load force could be effectively transmitted from the femoral
component to the tibial insert. However, it is important to
note that all three groups exhibited some stress concentration
at the ridge of the tibial insert. Further research is necessary to
assess the potential risks of wear and fatigue associated with tibial
inserts.

The flexion shaft S1 and S2 play a crucial role in articulating the
femoral components and the cardan shaft. The stress concentration
regions on the flexion shaft may be influenced by the transmission of
axial forces from the femoral component. Regarding the cardan
shaft, when comparing Type 3 with Type 2 and Type 1, the
utilization of CF60-PEEK as the material along with the design
updates, resulted in a similar stress distribution when standing, but a
substantial reduction in stress when squatting. This reduction could
hold significant importance for tumor-type prostheses, as many of
tumor-type prostheses still carry a risk of breakage (Yoshida et al.,
2012). Studies have reported that approximately 2%–6% of tumor
patients reconstructed with rotating hinge prostheses experienced
fractures at the tibial yoke, where the rotating component was
inserted into the tibial tray (Myers et al., 2007). In contrast to
rotating hinge implants, in this prosthesis, the bottom of the cardan
shaft remains unfixed, and stress is transmitted through the femoral
component to the tibial insert and tibial component. We speculate
that the substantial reduction in stress on the cardan shaft could help
mitigate the risk of fractures resulting from increased activity and
repetitive torsion.

As for the tibial component, Type 3 exhibited slightly higher
stress, although the stress difference among the three groups was
minimal. The region in contact with the tibial insert experienced the
highest stress, and no stress concentration was observed at the
contact surface between the cardan shaft and the groove of the tibial
component. The low contact pressure contributes to reducing the
risk of wear at the interface between the cardan shaft and the tibial
component (Grupp et al., 2010; Koh et al., 2019).

In the squatting position, certain components showed stress
levels that exceeded their theoretical yield strength. However, this
does not necessarily indicate component failure. The results are
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influenced by various parameters such as mesh density and loading
conditions. Utilizing loading conditions that are closer to
physiological conditions could likely yield a more realistic stress
distribution. We also acknowledge the following limitations in this
study. Firstly, for computational efficiency, only Poisson’s ratio and
elastic modulus were considered as parameters. Incorporating
additional parameters for model construction (Viceconti et al.,
2005) and using viscoelastic models for specific components may
offer more comprehensive insights into stress distribution (Alotta
et al., 2018). Secondly, this study exclusively assessed the von Mises
stress on bones and the prosthesis under two static conditions.
Future research should account for the gradual changes in a post-
surgery patient’s gait. Incorporating dynamic motion models and
analyzing the complete gait cycle would facilitate a more specific
evaluation of stress distribution across a wider range of knee flexion
degrees. Furthermore, a comprehensive biomechanical analysis
should consider the influence of soft tissues and muscles, as they
significantly impact joint loading. Additionally, combining the
findings with ex vivo validations such as pressure-sensitive film
tests would provide a more accurate assessment of the contact forces
and stress distribution within the prosthesis (Khosravipour et al.,
2018).

5 Conclusion

In conclusion, our study provides a novel investigation into a
tumor-type prosthesis composed of CFR-PEEK, with a focus on
assessing the von Mises stress distribution across its components.
The results indicate that CF30-PEEK effectively transmits forces,
leading to reduced stress concentration on the femoral component,
while reduced weight and improved functionality. The incorporation
of CF60-PEEK in the redesigned cardan shaft significantly reduces the
von Mises stress while maintaining comparable stiffness. These
advancements in force transmission and stress reduction are
expected to enhance the stability and durability of the new tumor-
type knee prosthesis. However, before introducing the prosthesis into
routine clinical practice, further objective investigations on
deformation and wear performance are necessary.
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3D-printed custom implant for the
management of “locked” posterior
dislocation of the shoulder joint
with reverse Hill-Sachs lesion: a
case report

Yongrong Hu†, Kunhai Yang†, Hao Liu, Liping Wang, Song Wang,
Xiang Zhang, Bo Qu* and Hongsheng Yang*

Department of Orthopedics, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical
College, Chengdu, Sichuan Province, China

Introduction: Irregular bone defects of the humerus are common in clinical
practice, but there are fewer reported cases of irregular humeral defects
accompanied by shoulder joint “locking” dislocation and reverse Hill-Sachs
injury caused by an electric shock. The choice of treatment for such cases is
closely related to the extent of shoulder joint function recovery. This is a case
report of a 60-year-old male patient who suffered from a shoulder joint “locking”
dislocation with accompanying reverse Hill-Sachs injury due to muscle
contraction after being electrically shocked at work. The patient was treated
with a 3D-printed custom humeral head prosthesis for the treatment of the
shoulder joint “locking” dislocation and reverse Hill-Sachs injury.

Case presentation: A 60-year-oldmale patient, working as a constructionworker,
presented to our emergency department with right shoulder pain and restricted
movement for more than 30 min after an electric shock. Right humeral CT
revealed a comminuted fracture of the right humeral head. D-dimer levels
were significantly elevated at 3239.00 ng/mL, and oxygen partial pressure was
slightly decreased at 68 mmHg. Treatment included emergency wound
debridement and dressing for the electrical injury, cardioprotective measures,
anticoagulation, and symptomatic management. After stabilizing the patient’s
condition, the patient underwent 3D-printed custom prosthesis-assisted partial
replacement of the right humeral head and rotator cuff repair in the orthopedic
department. Postoperatively, the patient’s right shoulder joint wound healed well,
and mobility was restored.

Conclusion: This case report demonstrates that the use of a 3D-printed custom
prosthesis for the treatment of irregular humeral bone defects caused by specific
injury mechanisms, especially cases involving shoulder joint “locking” dislocation
and reverse Hill-Sachs injury, can achieve precise bone defect repair, minimize
surgical trauma, and provide superior outcomes in terms of postoperative
functional rehabilitation.

KEYWORDS

reverse Hill-Sachs lesion, posterior dislocation, electric shock injuries, 3D printing,
shoulder joint
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Introduction

Electrical injuries pose significant risks to the human body and
can result in multisystem damage, including injuries to the
musculoskeletal, respiratory, cardiovascular, and central nervous
systems (Zhang et al., 2017). The injuries caused by electric shocks
are primarily characterized by burns but can also lead to secondary
damage such as fractures and dislocations. These secondary injuries
often occur due to loss of consciousness and subsequent falls or as a
result of involuntary muscle contractions (Kokkalis et al., 2017).

The shoulder joint, being the most mobile and unstable joint in
the human body, is particularly susceptible to injuries following an
electric shock. The surrounding muscles of the shoulder joint
forcefully contract, pulling on the bones and causing posterior
dislocation of the shoulder joint along with an anterior fracture
of the humeral head. This condition, known as “locking” dislocation
of the shoulder joint with associated reverse Hill-Sachs injury,
presents challenges in terms of diagnosis and treatment, with
literature reporting a misdiagnosis and missed diagnosis rate of
up to 60% (Stone et al., 2014). This injury has been labeled a
“treatment trap” due to its complex nature.

Irregular large bone defects of the humeral head present a
significant challenge for orthopedic surgeons. Traditional
methods of fracture fixation and shoulder joint replacement have
shown limitations in long-term outcomes for irregular large bone

defects accompanied by “locking” dislocation of the shoulder joint
and reverse Hill-Sachs injury. However, with the rapid development
of digital technology, 3D printing technology, also known as additive
manufacturing, has emerged as a promising approach for surgical
planning and preoperative simulations in cases of humeral head
injuries.

In this case report, we present the case of a 60-year-old male
patient admitted to our hospital following an electrical injury. The
patient underwent treatment for a fractured right humeral head
using a 3D-printed custom prosthesis. Given the unique mechanism
of injury and the complexity of the case, this report aims to
emphasize the necessity and importance of utilizing 3D-printed
custom prostheses in the treatment of “locking” dislocation of the
shoulder joint with associated reverse Hill-Sachs injury and irregular
large bone defects of the humeral head. The report provides a
detailed description of the patient’s diagnostic and treatment
process.

Case presentation

A 60-year-old middle-aged laborer had been engaged in
construction activities at the worksite, required to use iron tools
to mix concrete within a cement-filled barrel. Unfortunately, the
construction site’s electrical wires accidentally came into contact

FIGURE 1
(A, B) Preoperative X-ray and (C, D) CT bone three-dimensional reconstruction.
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with the cement-filled iron barrel. The electrical current from the
wires was conducted through the iron barrel into his body, resulting
in his electrocution (approximately 380V) and subsequent collapse.
He immediately experienced chest tightness, blurred vision, and
excruciating pain that immobilized his right shoulder. Promptly, his
colleagues dialed emergency services (120) and swiftly transported
him to the Emergency Department of the First Affiliated Hospital of
Chengdu Medical College. Upon arrival, a burn care physician
conducted a physical examination, noting significant tenderness
and limited mobility in the right shoulder joint. However, the Dugas
sign yielded a negative result (−). Furthermore, the patient had
multiple electrical burn wounds on his hands and feet, characterized
by volcano-shaped lesions with dry, black charred tissue inside.
After confirming the patient’s stable vital signs, the wounds
underwent debridement and dressing. The patient received
treatment at the Burn Unit. Following treatment there, the
patient was further transferred to the Orthopedics Department
for further evaluation.

Radiographic and three-dimensional CT scans were performed
to assess the condition of the patient’s right shoulder joint (Figure 1).
The imaging revealed a comminuted fracture of the right humeral
head with fragmented, collapsed fragments and surrounding soft
tissue swelling, along with a minor amount of air. Preoperative
examination demonstrated significant impairment in the patient’s

range of motion in the right shoulder joint. General information and
indicators of abnormal laboratory tests upon admission see in
Table 1.

Based on the patient’s medical history and auxiliary
examinations, the orthopedic physician established the following
diagnoses: 1) Comminuted fracture with a substantial bone defect in
the right humeral head, 2) “Locking” dislocation of the right
shoulder joint accompanied by a reverse Hill-Sachs injury, 3)
Proximal fracture of the right humerus, and 4) Electrical injury
with necrotic electrical burns on both hands and feet. After careful
deliberation, the medical team decided to proceed with a 3D-printed
custom prosthesis-assisted surgery, which involved partial
replacement of the right humeral head and exploration and
repair of the rotator cuff, once the patient’s condition stabilized.
A 3D-printed model was used to simulate the surgical procedure,
enabling the formulation of an effective plan that would address the
remaining fracture fragments specific to the patient’s case. During
the design phase of the 3D-printed prosthesis, various factors were
taken into account, including prosthesis compatibility, the
arrangement of rotator cuff suture holes, and the integration of
the prosthesis and bone contact surface to promote bone integration.

The 3D-printed prosthetic limb was fabricated using Ti-6Al-4V
material, renowned for its outstanding biocompatibility and bone
integration properties (Li et al., 2020). The prosthetic limb was
designed utilizing Mimics software (version 20.0; Materialise,
Belgium) and manufactured through 3D printing technology by
Chunli Limited Company (Beijing, People’s Republic of China).
Before proceeding with final production, the prosthetic limb model
underwent printing and testing procedures to validate our design.
The entire process, commencing from the collection of patient data
to the production of the prosthetic limb, typically spanned
approximately 3 weeks.

The surgical procedure (Figure 2) was carried out as follows: The
surgical site was accessed through the deltopectoral groove of the
pectoralis major muscle. During the surgery, the greater and lesser
tuberosities of the right humerus were exposed, revealing a severe
fracture with small and fragmented bone pieces that could not be
adequately stabilized using screws. The right humeral head was
dislocated and trapped, necessitating the use of a bone lever for
reduction and the installation of a resection guide. The fracture ends
were trimmed with a saw, and the surrounding fragmented
fragments were removed. A marrow expansion was performed at
the proximal end, followed by the placement of the 3D-printed
humeral head prosthesis based on the nailing plate guide. Direct
visualization confirmed a good match between the 3D-printed
prosthesis and the remaining right humeral head. The rotator
cuff was sutured onto the 3D-printed prosthesis, and the repair
and fixation of the infraspinatus muscle insertion were conducted.
Fluoroscopy was utilized throughout the surgery to ensure proper
positioning of the prosthesis. Postoperatively, the patient’s condition
was favorable, allowing for weight-bearing activities to commence
on the second day. The shoulder joint exhibited limited anterior and
posterior swinging movements. The surgical incision healed without
complications or infection. Once the incision had fully healed, the
patient was discharged for home treatment and provided with
guidance for rehabilitation training. In the initial phase
(0–6 weeks) after surgery, the patient was advised to use a
suspension sling (with the option of an abduction pillow) for

TABLE 1 General information and indicators of abnormal laboratory tests upon
admission.

Category Result Reference value Counting unit

Gender Male — —

Age 60 — —

Past Medical History none — —

Family History none — —

Personal History none — —

Blood Routine

WBC 14.26 4–10 10̂9/L

NE% 80.2 45–77 %

LY% 10.1 20–40 %

MO% 9.3 3–8 %

NE# 11.43 2–7.7 10̂9/L

MO# 1.33 0.12–0.8 10̂9/L

Liver Function, Renal Function and Cardiac Enzymes

TP 55.6 65–85 g/L

ALB 35.2 40–55 g/L

CK 392 <200 U/L

Urine Analysis

PRO +- - —

PH 8.0 5.0–7.5 —

BLD 3+ - —
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immobilization. Passive elevation up to 120° was permitted, and
pendulum exercises involving forward and backward as well as side-
to-side swinging of the affected arm in a bent-over position were
recommended. In the subsequent phase (7–12 weeks after surgery),
the support device was removed, and resistance training, including
external rotation exercises, was gradually introduced. In the third
phase (after 12 weeks), comprehensive shoulder joint training was
conducted to optimize the patient’s shoulder joint function (Yu
et al., 2020).

Postoperative follow-up was conducted to evaluate the patient’s
recovery. Over a 2-month period at our postoperative follow-up,
notable improvements in functional and pain scores were observed
between preoperative, 1-week postoperative, and 2-month
postoperative assessments. The Visual Analog Scale (VAS) pain
score decreased from approximately 5 points 1 week after surgery to
approximately 2 points 2 months after surgery. At the 2-month
mark, the patient achieved 150° of forward flexion, 90° of abduction,
and 40° of extension in the shoulder joint, demonstrating significant
improvement compared to preoperative and 1-week postoperative
measurements (Figure 3).

Postoperative X-rays revealed no evidence of prosthesis
loosening (Figures 4A, B). According to the concept of
osseointegration proposed by Professor Branemark in the 1960s
(Branemark et al., 2001), a permanent bone-to-bone interface,
devoid of fibrous tissue intervention, was established when an

implant came into contact with actively functioning bone tissue.
The occurrence of osseointegration on the prosthesis surface was
observed on the 2-month follow-up CT scan (Figures 4C, D).

Discussion

This case report strictly adheres to The CARE guidelines
checklist 2013 edition (Gagnier et al., 2013) and provides a
detailed description of a rare case involving an irregular defect of
the right humerus caused by an electrical injury, accompanied by
posterior dislocation of the right shoulder joint and a reverse Hill-
Sachs lesion. In clinical practice, such a condition is relatively
uncommon, thus further exploration is warranted regarding its
complex etiology and treatment methods for irregular bone
defects. In our literature search, we did not find any case reports
specifically related to electrical injuries and the use of 3D printing
technology for repair and treatment. Therefore, this report
represents the first of its kind. However, for the repair of large
irregular bone defects, previous studies have demonstrated the
potential application of customized repairs using 3D printing
technology. However, for the repair of irregular large segmental
bone defects, existing research has demonstrated the potential
application of customized repair using 3D printing technology.
For example, Fiz et al. have suggested that in femoral

FIGURE 2
Custom 3D Printed Prosthesis Design and Surgical Procedure. (A–C) Preoperative Simulated Guide Plate Osteotomy and Fixation. (D–F)During the
surgery, a significant bone defect was observed in the right humeral head. (G–I) Intraoperatively, the site of the humeral head injury and the position of the
3D-printed implant were confirmed. Repairs were performed on the rotator cuff and the insertion point of the infraspinatus muscle on the scapula. (J, K)
Intraoperatively, fluoroscopy shows that the implant is well-placed.
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derotational osteotomy, 3D printing technology is considered a
rapid and cost-effective tool for improving surgical outcomes (Fiz
et al., 2017).

In this case, the patient suffered multiple electrical wounds on both
hands and feet following an electrical shock. The patient also presented
with a “locked” posterior dislocation of the right shoulder joint, a reverse
Hill-Sachs lesion, as well as a comminuted fracture and a substantial
defect of the right humeral head. We believe these injuries were a result
of the burns and intense contraction of the muscles around the right
shoulder joint. For such conditions, early surgical intervention is crucial
to restore the morphological integrity of the humeral head and stabilize
the shoulder joint. Studies have shown that conservative treatment can
be considered for fresh dislocations with humeral head defects less than
25%. Manual reduction under nerve block anesthesia and the use of
external fixation can achieve satisfactory stability of the shoulder joint.
However, for patients with humeral head defects greater than 25%,
conservative treatment is prone to result in shoulder joint deformity and
loss of function, severely impacting the quality of life. Therefore, active
surgical intervention should be chosen (Cirino et al., 2022).

Traditional surgical methods for this condition include
McLaughlin surgery, modified McLaughlin surgery, shoulder
joint replacement, and arthroscopic surgery. Although these
methods can effectively restore shoulder joint stability,
McLaughlin surgery and modified McLaughlin surgery are only
suitable for patients with humeral head defects less than 50% (Yu
et al., 2020). They have disadvantages such as long operation time,

significant bleeding, extensive trauma, slow recovery, and difficulty
in reconstructing bone fragments that fit the defect site. Long-term
complications may include bone resorption, traumatic arthritis, and
pain. While shoulder joint replacement can address joint mobility
issues in the short term, this method may disrupt normal tissue
structures and has drawbacks such as long operation time,
significant bleeding, and substantial trauma. Additionally,
prosthetic implants have a limited lifespan and may require
subsequent or multiple shoulder joint replacement surgeries.
Arthroscopic repair of soft tissue injuries and restoration of soft
tissue balance is suitable for patients with humeral head defects less
than 25%, particularly those with defects less than 20%
(Martetschlager et al., 2013). This may be due to the fact that in
cases with smaller humeral head defects, shoulder joint instability is
primarily caused by damage to the joint capsule, labrum, and rotator
cuff (Yu et al., 2020). Arthroscopic modified McLaughlin surgery
also has some limitations, such as a longer learning curve, uncertain
long-term outcomes, and difficulties in reducing locked posterior
dislocations under arthroscopy (Du et al., 2023). Therefore, we did
not choose these methods.

In this case, the extent of humeral head injury was 40%, with
important structures such as the rotator cuff attached to it. The
humeral head has a smooth, spherical structure that is difficult to
match in shape. Therefore, we chose to use 3D printing technology
to design precise implants for the surgery. Unlike traditional internal
fixation devices such as plates and screws, 3D-printed implants can

FIGURE 3
Patient’s range of motion at 1 month postoperatively: (A, B) Forward flexion: 90°–150°, (C) Extension: 40°, (D) Abduction: 90°.
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seamlessly connect with the remaining portion of the patient’s
humeral head, achieving a perfect fit. This not only maximizes
the preservation of normal tissue structures, reduces operation time,
bleeding, and trauma, but also enables the reconstruction of the
proximal anatomy of the humeral bone to facilitate the attachment
and repair of a portion of the rotator cuff, thereby improving
shoulder joint stability and function. We observed a secure
fixation of the implant. Two months post-surgery, we noted the
formation of a bony callus at the interface between the implant and
the bone, indicating the feasibility of achieving osseointegration with
the 3D-printed porous implant. Additionally, 3D-printed porous
metal structures can provide excellent bone integration and
protection of the subchondral bone and joint surfaces, facilitating
bone ingrowth and shaping (Abar et al., 2022).

Regarding the limitation of a 2-month follow-up period, we
acknowledge that the follow-up duration was relatively short.
However, within the short span of 2 months, the patient’s pain,
as measured by the Visual Analog Scale (VAS) score, and shoulder
joint range of motion had already shown such significant recovery,
further supporting the effectiveness of this technique. Nonetheless,
we plan to conduct further follow-up to gain a more comprehensive
understanding of the patient’s recovery. Considering the limitations
of implants, the presence of implants in the body can endure for
several centuries; therefore, the question of whether they will
degrade inside the body should not be entertained. However, the
surface roughness, morphology, and morphological characteristics

of implants can significantly influence cellular behavior,
encompassing aspects such as cell adhesion, proliferation,
differentiation, and the corrosion behavior of implants.
Consequently, most additive manufacturing technologies require
post-processing to enhance their surface properties, thereby
promoting osseointegration. In addition, challenges such as
adhesive removal, sacrificing residual materials, microbial
infections, uneven shrinkage, and resolution issues may pose
limitations in the manufacturing of these implants (Alipour et al.,
2022). As a result, recent research has proposed improved additive
manufacturing methods to address these challenges and continues
to delve into further studies to better serve patients.

Based on this case, it can be concluded that 3D printing
technology offers the following advantages in treating large
irregular bone defects of a special nature: 1. Customized
individualized implants tailored to the specific factors causing the
irregular lesion, enabling personalized and precise treatment to
achieve satisfactory expected outcomes; 2. The implant surface
possesses a porous and rough trabecular bone structure that
better mimics the microstructure of human bones, promoting
bone and soft tissue ingrowth; 3. Additive manufacturing
techniques allow for customized production of implants that
closely match the patient’s needs. Therefore, this technology
addresses the shortcomings of traditional shoulder joint surgeries
for the treatment of large segmental bone defects and brings benefits
to challenging cases.

FIGURE 4
(A, B) Postoperative X-ray and (C, D) CT examination (White arrow: successful osseointegration).
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Conclusion

The utilization of 3D-printed custom implants for the treatment
of irregular humeral head bone defects caused by specific injury
mechanisms, particularly in cases of shoulder joint “locked”
posterior dislocation and reverse Hill-Sachs injury, represents a
promising and advantageous option.
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Objective: This study presents an innovative articular fossa prosthesis generated
by the envelope surface of condyle movement, and compares its mandible
movements, muscle activities, and joint reaction forces with two
temporomandibular joint (TMJ) prostheses using multibody musculoskeletal
simulation.

Methods: A healthy 23-year-old female was recruited for this study. Cone-beam
computed tomographic (CBCT) was performed to reconstruct the mandibular
bone geometry. A customized TMJ fossa prosthesis was designed based on the
subject-specific envelope surface of condyle movement (ESCM). Mandibular
kinematics and jaw-closing muscle electromyography (EMG) were
simultaneously recorded during maximum jaw opening-closing movements.
To validate our prosthesis design, a mandibular musculoskeletal model was
established using flexible multibody dynamics and the obtained kinematics and
EMG data. The Biomet fossa prosthesis and the ellipsoidal fossa prosthesis
designed by imitating the lower limb prostheses were used for comparison.
Simulations were performed to analyze the effects of different fossa
prostheses on jaw opening-closing motions, mandibular muscle activation, and
contact forces.

Results: The maximum opening displacement for the envelope-based fossa
prosthesis was greater than those for Biomet and ellipsoidal prostheses
(36 mm, 35 mm, and 33 mm, respectively). The mandibular musculoskeletal
model with ellipsoidal prosthesis led to dislocation near maximal jaw opening.
Compared to Biomet, the envelope-based fossa reduced the digastric and lateral
pterygoid activation at maximal jaw opening. It also reduced the maximal
resistance to condylar sliding on the intact side by 63.2 N.

Conclusion: A customized TMJ fossa prosthesis was successfully developed using
the ESCM concept. Our study of musculoskeletal multibody modeling has
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highlighted its advantages and potential. The artificial fossa design successfully
achieved a wider condylar range of motion. It also reduced the activation of jaw
opening muscles on the affected side and resistance on the intact side. This study
showed that an ESCM-based approach may be useful for optimizing TMJ fossa
prostheses design.

KEYWORDS

articular fossa prosthesis, envelope surface, musculoskeletal simulation, flexible
multibody dynamics, temporomandibular joint, mandibular movement

1 Introduction

The temporomandibular joint (TMJ) is the only movable joint of
the human oral and maxillofacial region, and is actively involved in
several daily activities (Zheng et al., 2019). TMJ disorders, such as
tumors and ankylosis, can affect its integrity and cause joint dysfunction
(Mercuri, 2000). Total joint replacement is an effective method for TMJ
reconstruction and functional restoration (Sidebottom, 2008).

Currently, there are two commercially-available TMJ replacement
systems approved by the Food and Drug Administration, Biomet
Microfixation (Jacksonville, FL, USA) (Imola and Liddell, 2016) and
TMJ Concepts (Ventura, CA, USA) (Wolford et al., 1994). Both these
systems consist of condylar and fossa components (Kiehn et al., 1974).
The TMJ Concepts prostheses are constructed using patient-specific
cone-beam computed tomography (CBCT) data (Wolford et al., 2003).
Meanwhile, Biomet has three stock components with different lengths
and styles (Imola and Liddell, 2016). The Biomet artificial fossa is a flat
and ellipsoidal surface, and the TMJ fossa and mandibular ramus may
need to be trimmed in order to fit with it.

Existing TMJ prostheses were designed solely based on medical
imaging, and cannot completely restore the physiological condylar
kinematics (Zou et al., 2020). The natural condyle has sliding and
rotational movements (van Loon et al., 1999). Although TMJ
replacement significantly improves mandibular movement, the
condylar kinematics for the prosthesis are different compared to the
natural TMJ (Westermark, 2010; Gruber et al., 2015; Gonzalez-Perez
et al., 2016). In particular, condylar sliding may be completely lost after
TMJ replacement (Sonnenburg and Sonnenburg, 1985; Merlini and
Palla, 1988; Mercuri et al., 1995). This may be because the geometry of
the TMJ prosthesis restricts the condylar range of motion (ROM) (van
Loon et al., 1999). In vitro experiments performed by Celebi et al.(2011)
demonstrated that the artificial condyle is more deeply enclosed within
the articular fossa compared to the natural condyle. This makes
achieving the normal condylar ROM nearly impossible.

A function-based prosthesis may be designed by imitating the
artificial joints of the lower limb. For example, the instantaneous
center of rotation of the knee joint was considered when designing
artificial knee implants (Walker, 2001). It has been observed that the
physiological knee kinematics cannot be achieved by restoring its
anatomical morphology alone (Wang et al., 2021). Similarly, TMJ
fossa prostheses may also be custom-made based on the three-
dimensional (3D) condylar movement. According to the finite
element analysis using a canine model, this may result in a
reasonable strain distribution (Xu et al., 2017). Reconstruction of
the functional condylar surface, i.e., the envelope surface of condylar
movement (ESCM), in normal adults was proposed by Huang et al.
(2021). The use of the ESCM concept for designing TMJ fossa

prostheses can allow physiologically accurate kinematics (Chen
et al., 2022a; Chen et al., 2022b).

The ESCM surface concept has not yet been applied for the real-
world design of human TMJ fossa prostheses. An important reason
is the lack of systematic comparison of the effect of different TMJ
prostheses on mandibular biomechanics. Radiographic, ultrasonic,
magnetic, and optoelectronic tracking methods have previously
been used for in vivo quantification of the mandibular kinematics
(Woodford et al., 2020). Based on these measured kinematics data,
multibody dynamics modeling provided an in silico method to
investigate the hidden biomechanics of the mandibular
musculoskeletal system. This has proven to be effective and
reliable in quantifying the functional outcomes after mandibular
surgery and reconstruction (Hannam et al., 2010; Hannam, 2011).
Previous studies have also validated the feasibility of simulating
maximal jaw opening-closing movements based on flexible
multibody dynamics (Broser et al., 2021; Guo et al., 2022).

This study is the first to propose a TMJ fossa prosthesis design
based on the ESCM concept. Functional outcomes of this fossa
design, including mandibular movements, muscle activity, and joint
reaction forces, were predicted based on musculoskeletal multibody
simulations, and compared with those of the Biomet and ellipsoidal
fossa prostheses. We hypothesized that the customized envelope-
based fossa prosthesis would improve the functional outcomes,
including condylar ROM and jaw opening muscle activations.

2 Materials and methods

2.1 Subject

This study was approved by the Institutional Review Board of
Peking University School and Hospital of Stomatology, Beijing,
China (Pkussirb-201947091). A 23-year-old female volunteer
with no symptoms and signs of TMJ disorder or a history of
TMJ disorder or orthodontic treatment was selected. Written
informed consent to publish the findings was obtained.

2.2 CBCT

Skull base and mandibular CBCT scans (NewTom VG, NewTom,
Imola, Italy; Voxel size: 0.3 mm, Field of view: 16 cm × 16 cm) were
performed in the intercuspal position. The segmentation and 3D
reconstructions were performed in stereolithographic format using
CBCT data in the Proplan CMF software (version 3.0, Materialise,
Leuven, Belgium).
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FIGURE 1
Procedure of obtaining the ESCM. The coronal section (A) and sagittal section (B) of positions of the condylar functional surfaces at each moment.
The coronal section (C) and sagittal section (D) of ESCM generated by merging the condylar functional surface data.

FIGURE 2
The sagittal section (A) and cross section (B) of envelope-based fossa prosthesis. The sagittal section (C) and cross section (D) of the ellipsoidal fossa
prosthesis.
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2.3 Mandibular movements and
electromyography (EMG)

The subject was instructed to perform twowarm-up cycles and one
test cycle of maximal opening-closing movements, beginning and

ending in the maximum intercuspal position (Baqaien et al., 2007;
Koeppel et al., 2015). TheWINJAWultrasound system (Zebris Medical
GmbH, Isny, Germany) was used to record the mandibular motion.
Mandibular position relative to the upper dentition was recorded using
the Trios intraoral scanner (3Shape, Copenhagen, Denmark).

FIGURE 3
Geometry of different fossa prostheses. (A) Ellipsoidal fossa prosthesis. (B) Envelope-based fossa prothesis. (C) Biomet fossa prosthesis. (D)
Comparison of the range of condylar motion.

FIGURE 4
The schematic overview of establishing the subject-specific mandible musculoskeletal model. MSD, Multibody System Dynamics.
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FIGURE 5
3D trajectories for the lower incisors with different artificial fossae. The axes were separated as two different panes, Left-Right (A) and Posterior-
Anterior (B).

FIGURE 6
Edgeloading (A) and condylar dislocation (B) near maximal jaw opening.
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FIGURE 7
Activation of the digastric (A) and lateral pterygoid (B) muscles on the affected side. The vertical dotted line demonstrates the time range for jaw
opening-closing movements. Act. = Activation. Lat. = lateral.

FIGURE 8
TMJ contact forces for different types of articular fossa types. (A) Intact side; (B) Affected side.
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The WINJAW EMG device (Zebris Medical GmbH, Isny,
Germany) was used to simultaneously record bilateral
stomatognathic muscle activities during each cycle of mandibular
movements. The electrodes were positioned on the anterior
temporalis and masseter muscle bellies bilaterally. The subject
was instructed to perform maximum voluntary contractions
(MVCs) thrice to obtain the maximal muscle force-generating
capacity for each muscle (Ferrario et al., 2004; Owashi et al.,
2017). Raw EMG signals were rectified and low-pass filtered
(Lloyd and Besier, 2003; Guo et al., 2020), and the data were
normalized using the MVC values (Quental et al., 2012). The
obtained dimensionless signal was used as input to analyze
muscular activation based on the first-order activation dynamics
equation (Thelen, 2003; Guo et al., 2022).

2.4 TMJ fossa protheses and ellipsoidal
condyle design

The TMJ fossa prothesis, based on the ESCM concept, was
designed as follows. The maxilla, mandible and mandibular border
movement trajectories were registered. Then according to the
trajectories, the mandibular border movement was simulated, and
the positions of the functional surfaces of the condyle at each
moment were saved in the same 3D coordinated system. The
condylar functional surface was defined as the coverage of the
transverse ridge 6 mm forward. Condylar functional surface data
was merged to construct the ESCM, as reported previously (Huang
et al., 2021). The procedure used to obtain the ESCM is shown in
Figure 1. Subsequently, the geometry of envelope surface was
smoothened and refined using the Geomagic Studio software

(version 2012, 3D Systems, Rock Hill, SC, USA). The envelope
surface was uniformly thickened by 1 mm, and the customized fossa
prosthesis was obtained (Figures 2A, B).

The Biomet fossa used in this study was obtained by
increasing the overall size of the stock fossa prosthesis by 25%
to fit the shape of the subject’s natural fossa. An ellipsoidal fossa
prosthesis was obtained by setting a hemi-ellipsoid to fit the
subject’s natural condyle (Figures 2C, D). The ellipsoidal fossa
prosthesis was designed by imitating the lower limb joint
implants and ignoring the condylar translation. The ellipsoidal
fossa prosthesis was used to demonstrate the importance of
condylar movements in TMJ prosthesis designing. Previous
studies (Oberg et al., 1971; Zhao et al., 2019) have reported
that the mandibular condyles of most adults are nearly
ellipsoidal. The major (mediolateral) axis of the condyle is
twice as long as the minor (anteroposterior) axis. Similarly,
the mediolateral to anteroposterior diameter ratio of the
ellipsoidal fossa prosthesis was 2:1.

The condylar ROMs for different fossa prostheses are shown in
Figure 3. A least-squares fit of the subject-specific CBCT was used
to determine the condylar radius, assuming the condylar surface to
be frictionless (Yao et al., 2011; Modenese and Kohout, 2020; Guo
et al., 2022). The condyle on the intact side was kept in the natural
shape.

2.5 Mandibular multibody musculoskeletal
model

Mandibular subject-specific musculoskeletal modeling and
simulation were based on a study by Guo et al. (2022). The subject-

FIGURE 9
Resistance to forward condylar translation on the intact (A) and affected (B) sides.
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specific mandibular and skull geometry was obtained from the
reconstructed CBCT data (Koolstra and van Eijden, 2005). The
mandibular model was driven by 24 muscle bundles (de Zee et al.,
2007), whichwere discretized by a flexiblemuscle element with a typical
Hill-type model. Muscle insertion contours within the generic model
weremapped onto the subject-specific bonemorphology using the non-
rigid iterative closest point algorithm.

The surface geometry of each fossa prosthesis type was
extracted, and their vertices were set as contact detection points.
Condylar contact geometry on the affected side was simplified as an
ellipsoid, and the TMJ contact was modeled as a group of contact
points to the rotating body. The normal contact force for the TMJ
was calculated using a frictionless contact force model for soft
materials (Flores and Ambrósio, 2010), with a friction coefficient
of 0.001 (Xu et al., 2017).

Numerical simulations were performed using the inverse-
forward dynamic coupling approach (Guo et al., 2022). The 3D
mandibular movements were selected as the kinematic inputs to
constrain the mandibular bone kinematics. Hyoid location in the
intercuspal and maximal opening positions were measured using
CBCT, and its movement trajectories were simplified through linear
interpolation (Silva and Ambrósio, 2003; Guo et al., 2022). The
musculotendon length for each muscle was calculated using the
inverse dynamics approach. Motion constraints were removed
during forward dynamics estimations. Mandibular muscle forces
were estimated via feedback control using their lengths as the target

value. A proportional derivative controller was used to calculate the
activations for each muscle bundle. The schematic overview of
establishing the subject-specific mandible musculoskeletal model
is shown in Figure 4.

3 Results

Lower incisor movements for different artificial fossa types are
shown in Figure 5. The maximum jaw opening magnitudes for the
envelope-based, Biomet, and ellipsoidal fossae were 36 mm,
35 mm, and 33 mm, respectively. With an ellipsoidal fossa
prosthesis implanted, the condyle of the affected side performed
joint dislocation (Figure 6). Condylar ROMs on the affected side
were nearly identical for the envelope-based and Biomet
prostheses.

We also compared the kinetic data during jaw-opening
motions. The activation of the digastric and lateral pterygoid
muscles during maximal jaw opening was reduced with
envelope-based fossa prosthesis compared to Biomet (Figure 7).
Bilateral contact forces for the envelope-based and Biomet fossae
were similar during and at maximal jaw opening. However, the
TMJ with the envelope-based fossa allowed greater normal contact
forces than Biomet (Figure 8). When the condyle traveled through
the apex, the resistance for forward condylar translation with the
envelope-based fossa decreased by 62.4 N (Figure 9). Moreover,
the condylar contact force was unevenly distributed for different
prostheses, and the maximal contact force for the envelope-based
fossa at maximal jaw opening was greater than that for Biomet
(Figure 10).

4 Discussion

Total joint replacement is commonly used to treat severe
degenerative conditions of the TMJ, particularly when
conservative treatment has been ineffective. A major goal of TMJ
reconstruction is the restoration of normal function. However,
current TMJ prostheses that conform to the anatomical shape of
TMJ cannot completely restore the physiological condylar
kinematics; the geometry of the prostheses reduces the condylar
ROM (van Loon et al., 1999; Zheng et al., 2019; Zou et al., 2019). The
present study combined the TMJ fossa prosthesis with a functional
condylar surface, which was different from the commercially-
available TMJ prostheses, allowing physiologically accurate
kinematics (Chen et al., 2022b).

The present study was the first to apply the ESCM concept to
TMJ fossa prostheses, and a subject-specific mandibular
musculoskeletal model was used to simulate mandibular
movements, muscle activation, and resistance forces with
different prostheses. As a subject-specific model for the human
mandibular musculoskeletal system, it had been validated for
predicting mandibular trajectories during jaw opening-closing
movements in two previous studies, one with seven healthy
subjects (Guo et al., 2022), and the other with the patients
suffering from oral and maxillofacial tumors (Guo et al., 2023).
Calculation precision of the musculoskeletal model would be
verified in the further study with patients of TMJ replacement

FIGURE 10
Distribution of TMJ contact forces with the condyles moving to
edges of different fossa prostheses.
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surgery. The kinematic results were compared among the envelope-
based, stock Biomet, and ellipsoidal fossa prostheses. The maximum
jaw opening magnitude for the stock Biomet fossa prosthesis was
35 mm, which was similar to the long-term outcomes for Biomet
following TMJ replacement reported in previous studies (Gonzalez-
Perez et al., 2016; Kanatsios et al., 2018). Compared to the Biomet,
the envelope-based artificial fossa reduced jaw-opening muscle
activation on the affected side and resistance on the intact side.
It also increased the maximum jaw opening magnitude while
maintaining the condylar ROM and bilateral contact forces.
These results suggested that in terms of restoring the natural
ROM of TMJ, the ESCM-based TMJ fossa prosthesis did show
advantages and potential.

We developed the ellipsoidal fossa prosthesis based on the lower
limb joint implants, such as the artificial hip joint (Hernigou et al.,
2017). For the ellipsoidal fossa prosthesis design, we only considered
condylar rotation and ignored its forward translation.We found that
the ellipsoidal fossa limited the postoperative ROM of the TMJ. This
indicates the importance of considering all condylar movements
while designing prostheses, and reflects the rationale for envelope-
based fossa prosthesis.

As showed in the results, there were advantages of the ESCM-
based fossa prosthesis. It could not only improve the maximal jaw
opening magnitude and condylar ROM, but also increased the
efficiency of the jaw-opening process, as shown by the significant
decrease in lateral pterygoid activation at maximum jaw opening.
These indicated that the ESCM-based artificial fossa successfully
replicated the functional anatomy of the mandibular
musculoskeletal system. The physiological movement of TMJ
could be affected by many factors, such as the posterior slope of
articular eminence, the shape and deformation of articular disc, and
traction of muscles (Mack, 1989). The articular eminence could
provide a stable fulcrum for anterior condyle rotation (Van Eijden
et al., 1997), while significant volume of the articular fossa and
eminence bone has to be sacrificed for commercial condylar
prostheses (Bai et al., 2015). In a study of 165 TMJs
reconstructed using the Biomet stock prosthesis, Zhao et al.
(2018) found that some patients required significant bone
trimming or grafting to adjust the condyle-ramus angle and fossa
for stable prosthesis implantation. As a result, the complete structure
of articular eminence was damaged. On the other hand, the ESCM-
based fossa prosthesis generated by the condylar functional surface
data would provide physiological support and guidance for the
condylar movement (Chen et al., 2022b; Chen et al., 2023). It
may play a combined role of articular eminence, articular disc,
capsule, ligament and so on, which could also provide the stable
fulcrum for anterior condyle rotation as same as articular eminence.
That increased the moment arms of the jaw-opening muscles
(Spencer, 1998) and so could explain the significant decrease in
digastric activation at the maximal jaw opening. Moreover, the
guidance of ESCM-based fossa prosthesis for the condyle to slide
forward could explain the significant decrease in lateral pterygoid
activation at maximum jaw opening.

This study also had some limitations. First, the data used were
obtained from a single subject. Studies with larger sample sizes will
be required in the future. In addition, the subject of this study had
no history of TMJ diseases, while total TMJ replacement is a
biomechanical treatment option for patients with end-stage TMJ

diseases (Sidebottom, 2008). For the patients whose articular fossa
is damaged by the tumor and the condyle is intact and the condylar
movement is normal, their envelope surfaces of condylar
movement can still be obtained by the method used in this
study. Moreover, in the case where the unilateral condyle is
damaged but the patient could still perform normal mandibular
movements, the mirroring of the intact side could be applied using
the same method. This method could not be applied to those
patients who were unable to perform normal mandibular
movements, such as, patients with TMJ ankylosis. A method for
predicting the shape of ESCM based on the facial morphology had
been proposed in the previous study (Chen et al., 2023). Although
further research was needed, it may be helpful in future ESCM data
collection of patients with TMJ diseases whose normal mandibular
movements could not be performed. Second, the complex TMJ
morphology and loading patterns were simplified for our
musculoskeletal models. TMJ cartilage and articular disk of the
intact side were not modelled, which may have influenced the
contact mechanics of the intact side. Besides, given that the
mandibular kinematics would change for different other
positions, more mastication loading conditions other than the
maximum intercuspal position should be considered in the further
study. Third, the condylar geometry on the affected side was
simplified as an ellipsoid. An articular fossa prosthesis should
be matched with a suitable condylar prosthesis based on the
patient-specific functional anatomy. ESCM-based fossa
prostheses still require some improvements. For example, the
peak contact force for the envelop-based fossa was greater than
that for Biomet at maximum jaw opening. This may have been
because of the uneven distribution of contact forces, resulting from
the bistable shape of the envelope-based fossa prosthesis, which
could be influenced by the articular eminence morphology (Huang
et al., 2021; Chen et al., 2022b). Compared with the envelope-based
artificial fossa, the surface geometry of the Biomet fossa was flatter,
making the contact force distribution more even. The uneven
geometry of the envelope-based fossa prosthesis reduced the
contact area with the condyle, resulting in an increased contact
force. This would increase the potential for component wear,
material failure, and TMJ dislocation (Kent et al., 1986;
Giannakopoulos et al., 2012). Moreover, an anterior stop of the
ESCM-based fossa prosthesis may be needed to avoid TMJ
luxation, which will be considered in the further study. Despite
these limitations, the study offers a novel perspective for TMJ fossa
prostheses design. The customized envelope-based fossa prosthesis
described in this study may allow the optimization of TMJ fossa
prosthesis design.

5 Conclusion

A customized TMJ fossa prosthesis was successfully developed
using the ESCM concept. Our study of musculoskeletal multibody
modeling has highlighted its advantages and potential. The artificial
fossa design successfully achieved a wider condylar ROM. It also
reduced the activation of jaw opening muscles on the affected side
and resistance on the intact side. This study showed that an ESCM-
based approach may be useful for optimizing TMJ fossa prostheses
design.
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Biomechanical evaluation of a
novel anterior transpedicular
screw-plate system for anterior
cervical corpectomy and fusion
(ACCF): a finite element analysis

Shengbin Huang1,2†, Qinjie Ling3†, Xinxin Lin2, Hao Qin2,
Xiang Luo2* and Wenhua Huang1,4*
1Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning,
Guangxi, China, 2Department of Orthopedics, The Eighth Affiliated Hospital of Guangxi Medical University,
Guigang, Guangxi, China, 3Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou
Medical University, Guangzhou, Guangdong, China, 4National Key Discipline of Human Anatomy,
Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research
Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern
Medical University, Guangzhou, Guangdong, China

Background and objective: Cervical fusion with vertebral body screw (VBS)-plate
systems frequently results in limited biomechanical stability. To address this issue,
anterior transpedicular screw (ATPS) fixation has been developed and applied
preliminarily to multilevel spinal fusion, osteoporosis, and three-column injury of
the cervical spine. This study aimed to compare the biomechanical differences
between unilateral ATPS (UATPS), bilateral ATPS (BATPS), and VBS fixation using
finite element analysis.

Materials and methods: A C6 corpectomy model was performed and a titanium
mesh cage (TMC) and bone were implanted, followed by implantation of a novel
ATPS-plate system into C5 and C7 to simulate internal fixation with UATPS, BATPS,
and VBS. Internal fixation with UATPS comprises ipsilateral transpedicular screw-
contralateral vertebral body screw (ITPS-CVBS) and cross transpedicular screw-
vertebral body screw (CTPS-VBS) fixations. Mobility, the maximal von Mises stress
on TMC, the stress distribution and maximal von Mises stress on the screws, and
the maximum displacement of the screw were compared between the four
groups.

Results: Compared with the original model, each group had a reduced range of
motion (ROM) under six loads. After ACCF, the stress was predominantly
concentrated at two-thirds of the length from the tail of the screw, and it was
higher on ATPS than on VBS. The stress of the ATPS from the cranial part was
higher than that of the caudal part. The similar effect happened on VBS. The screw
stress cloud maps did not show any red areas reflective of a concentration of the
stress on VBS. Compared with VBS, ATPS can bear a greater stress from cervical
spine movements, thus reducing the stress on TMC. Themaximal von Mises stress
was the lowest with bilateral transpedicular TMC and increased with cross ATPS
and with ipsilateral ATPS. ITPS-CVBS, CTPS-VBS, and BATPS exhibited a reduction
of 2.3%–22.1%, 11.9%–2.7%, and 37.9%–64.1% in the maximum displacement of
screws, respectively, compared with that of VBS.
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Conclusion: In FEA, the comprehensive stability ranked highest for BATPS, followed
by CTPS-VBS and ITPS-CVBS, with VBS demonstrating the lowest stability. Notably,
utilizing ATPS for fixation has the potential to reduce the occurrence of internal
fixation device loosening after ACCF when compared to VBS.

KEYWORDS

cervical spine, anterior pedicle screw, anterior surgery, corpectomy, reconstruction,
biomechanics, finite element analysis

1 Introduction

Degeneration, trauma, and infection of the lower cervical spine
frequently occur in the anterior column, and conventional anterior
fixation with plates and screws is usually used in most cases
undergoing diskectomies or corpectomis. In patients with
osteoporosis or those requiring multilevel decompression and
reconstruction, fixation with vertebral body screw (VBS)-plate
systems frequently results in limited biomechanical stability and
loosening of internal fixation devices (Singh et al., 2004). Koller
et al. (2007) reviewed the literature and found the non-fusion rate
of multilevel anterior cervical discectomy and fusion (ACDF) to be
20%–50% and the failure rate of anterior cervical corpectomy and
fusion (ACCF) to be 30%–100%. Bayerl et al. (2019) retrospectively
analyzed 21 patients who underwent two-level cervical corpectomy,
and long-term postoperative follow-ups revealed that the instability
rate was up to 33% after fixation only with the anterior VBS system.
Hence, they recommended additional posterior spinal fusion after
two-level cervical corpectomy to increase the stability of anterior
fixation and reduce the failure rate and complications of surgery.
However, additional posterior surgery not only increases the
economic burden, but also increases surgical complications
(Okawa et al., 2011; Mushkin et al., 2019).

Pedicle screw fixation can offer adequate stability of the cervical
spine (Henriques et al., 2015). Biomechanical research show that ATPS
performs significantly better than VBS (Koller et al., 2008a; Wu et al.,

2015). Koller et al. (2008b) demonstrated that the ATPS technique for
the cervical spine takes advantage of both anterior and posterior
approaches and can prevent loosening of internal fixation devices.
In addition, this technique can overcome the inadequacy of fixation
strength of VBS in patients with osteoporosis and, thus, results in
enhanced biomechanical stability. In clinical practice, the ATPS-plate
system is rarely available and it is difficult to insert bilateral ATPS
(BATPS) into the lower cervical spine because of the hindrance of the
trachea and esophagus and the lack of other factors such as the
computer navigation systems. Consequently, there are few reports
of the clinical application of the ATPS fixation technique for the
cervical spine. There have been many reports of unilateral
transpedicular screw fixation (Aramomi et al., 2008; Yukawa et al.,
2009; Ikenaga et al., 2012) or fixation with unilateral ATPS (UATPS)
plus VBS (Zhang et al., 2016). However, there is paucity of literature on
the differences in the stability of UATPS and BATPS for the cervical
spine, and on comparative biomechanical advantages of different
orientations of unilateral screws.

The action forces among the vertebral bodies of the cervical spine
and their surrounding muscles and ligaments are complicated, and
both animal and cadaver models have drawbacks. Hence,
biomechanical finite element analysis (FEA) of the cervical spine,
as a supplement to animal and cadaver studies, has been widely used.
It is a tool for predicting and preparing for clinical trials. After the
finite element test predictions are reasonable, in vitro experiments
need to be conducted for analysis and verification before clinical trials.

TABLE 1 Parameters of the various tissues of the cervical spine (Polikeit et al., 2003).

Structure Young’s modulus (MPa) Modulus (MPa) Poisson’s ratio Area (mm2) Element type

Cortical bone 12,000 0.3 solid186

Cancellous bone 100 0.2 solid186

Endplate 1,000 0.4 solid186

Posterior elements 3,500 0.25 solid186

Nucleus pulposus 0.2 0.4999 solid186

Annulus fibrosus 4.2 0.45 solid186

Anterior longitudinal ligament 20 0.3 38 link180

Posterior longitudinal ligament 70 0.3 20 link180

Ligamentum flavum 50 0.3 60 link180

Interspinal ligament 28 0.3 35.5 link180

Supraspinous ligament 28 0.3 35.5 link180

Capsular ligament 20 0.3 40 link180

Titanium prosthesis 116,000 0.3 solid186
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The finite element method allows for the establishment of three-
dimensional (3D) finite element models for specific scenarios and
facilitates analysis of the efficacy of various therapeutic regimens
(Biswas et al., 2018; Dai et al., 2022). Finite element models can also
determine the engineering basis for device design and provide
technical recommendations (Ling et al., 2019). This study aimed to
explore the biomechanical differences between UATPS (two screw
orientations), BATPS, and VBS by testing a novel ATPS-plate system
for the cervical spine through finite element analysis, so as to provide a
theoretical basis for the clinical use of ATPS for the cervical spine.

2 Materials and methods

2.1 Construction of C3–C7 finite element
models

The study subject was a 32-year-old healthy male volunteer. This
study was approved by the Ethics Committee of Guangxi Medical
University, and informed consent was obtained from the volunteer.

FIGURE 1
The mesh FE model.

FIGURE 2
Mesh convergence analysis.
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A 3D finite element model of C3–C7 was reconstructed with
computed tomography (CT) data using Mimics 20.0 (Materialise,
Leuven, Belgium). Next, the 3D model was smoothed and polished
using Geomagic 12.0 (Geomagic, United States). In the model, the
cortical and cancellous bone, endplate, annulus fibrosus, nucleus
pulposus, posterior elements, anterior longitudinal ligament,
posterior longitudinal ligament, capsular ligament, transverse
ligament, ligamentum flavum, interspinous ligament,
supraspinous ligament and capsular ligament were reconstructed.
Table 1 lists all the material properties and element types of these
tissues according to Polikeit et al. (2003).

To obtain accurate data, the mesh of the model was validated. The
mesh convergence test was performed with the 3D finite element
model of C3–C7, and the mesh was divided by five sizes (0.5, 1, 1.5, 2,
and 3 mm) (Figure 1). The fivemeshmodels were subjected to testing,
with the maximal von Mises stress on the vertebral body being the
parameter of interest. Figure 2 shows the relationship between the
stress and the mesh size. Based on the calculation time and results, the
requirement of a change rate of <5% for the maximal vonMises stress
wasmet (Dai et al., 2022). Hence, the unit size of 1 mmwas used as the
final mesh size for this study (Table 2).

2.2 Boundary and loading conditions of FE
models

Setup of the C3–C7 model (Figure 3): All facet joints were set
as contact, with a friction co-efficient of 0.1 (Liu et al., 2011). All
degrees of freedom of the endplate beneath C7 were restricted,
and a pre-load of 50 N was applied to the endplate above C3 to
simulate the weight of the head, and the additional bending
moment of motion was 1 Nm (Lee et al., 2011). To validate the
C3–C7 finite element model, a bending moment of 1.5 Nm was
applied to the C3 plane, and the model was loaded in flexion,
extension, lateral bending, and axial rotation (Lee et al., 2011),
followed by calculation, data extraction, and determination of the
range of motion (ROM).

2.3 Construction of ACCF finite element
model by four types of fixation

3D physical modeling was performed for a novel ATPS-plate
system of the cervical spine (Patent No: ZL 2018 2 0814089.9)
(Figure 4) and for a titanium mesh cage (TMC) by using
Solidworks 2015 (Dassault Systemes, France). C6 corpectomy
and C5/6 and C6/7 discectomy were simulated, and a TMC

packed with cancellous bone was implanted into the
decompression groove. The components of the screw-plate
system were then assembled. For contact setup: the
intervertebral disc, nucleus pulposus, and endplate were
bound to each other; the screws and vertebrae contacted
inseparably, the screws and plate and the plate and vertebrae
contacted in a face-to-face manner. There was separable rough
contact between the TMC and endplate, which did not allow for
sliding. The finite element model of four types of internal fixation
in ACCF following reconstruction for single-level corpectomy
and decompression was simulated (Figure 5): UATPS, including
ipsilateral transpedicular screw-contralateral vertebral body
screw (ITPS-CVBS) and cross transpedicular screw-vertebral
body screw (CTPS-VBS); BATPS; and VBS.

The 4-type finite element model was imported into Ansys
Workbench 18.0 (ANSYS, United States), and working
conditions were established and calculated with reference to the
original model of the full set. Subsequently, the ROM, the maximal
von Mises stress on TMC, the stress distribution and maximal von

TABLE 2 Mesh convergence test results.

Mesh size (mm) Nodes Units Change rate of the maximal von Mises stress (%)

0.5 865,134 574,841 -

1 235,972 374,193 <5

1.5 214,571 156,216 >5

2 177,387 125,396 >5

3 143,318 110,125 >5

FIGURE 3
Loading and boundary conditions of the C3–C7 cervical model.
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FIGURE 4
The novel anterior transpedicular screw plate systems.

FIGURE 5
The models of four types of screw instrumentation. (A,B) Unilateral ATPS (UATPS): ipsilateral transpedicular screw-contralateral vertebral body
screw (ITPS-CVBS, (A) and cross transpedicular screw-vertebral body screw (CTPS-VBS, (B); (C) bilateral ATPS (BATPS); (D) vertebral body screw (VBS).

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Huang et al. 10.3389/fbioe.2023.1260204

159

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1260204


Mises stress on screws, and the maximum sliding displacement of
screws were analyzed for the four models.

3 Results

3.1 Validation of C3–C7 vertebral model

Under pure moments and motion loads, the predicted results of
ROMwere compared with the results of the validated model to assess
the validity of the new model. The results were congruent with the
literature (Lee et al., 2011), thus, the model was validated (Figure 6).

3.2 Range of motion (ROM)

Compared with the original model, all the internal fixation models
exhibited reduced ROM in the six orientations, namely, reduction of
ROM by 42.1%–48.1% in flexion, by 44.3%–47.5% in extension, by
20.2%–33.5% in left lateral bending, by 15.7%–22.1% in right lateral
bending, by 20.7%–24.6% in left rotation, and by 20.0%–22.2% in right
rotation. The ROMdiffered insignificantly between the fourmodels and
was in the ascending order: BATPS<CTPS-VBS<ITPS-CVBS<VBS
(Figure 7).

3.3 Maximal von Mises stress on TMC

Under the loading conditions in flexion, extension, lateral
bending, and lateral axial rotation, the maximal von Mises stress
on TMC was lowest in the BATPS group (12.18, 43.58, 29.58, 30.05,
51.59, and 40.28 MPa, respectively) and highest in the VBS group
(14.92, 51.10, 24.93, 36.92, 47.36, and 49.17 MPa, respectively),
while that in the UATPS group was between the BATPS group
and the VBS group (CTPS-VBS: 14.20, 48.41, 31.72, 33.00, 41.99,
and 41.48 MPa, respectively; ITPS-CVBS: 14.64, 50.26, 32.41, 33.11,
42.03, and 42.09 MPa, respectively) (Figure 8). The stress on BATPS
in flexion, extension, and lateral bending was significantly lower
than that on UATPS, but the differences were insignificant in
rotation. However, regardless of bilateral or unilateral ATPS, the
stress on TMC was lower compared with that on VBS.

3.4 Maximal von Mises stress and stress
cloud map of screws

Comparison of UATPS (ITPS-CVBS vs. CTPS-VBS) showed that
the stress reduced by 37.4% on ITPS-CVBS when compared to CTPS-
VBS in left bending, but the group differences were insignificant in
flexion, extension, right lateral bending, and lateral rotation (Figure 9).

FIGURE 6
Comparison of the range of motion (ROM) of the original finite element models of C3–C7 with the previous biomechanical study. (A) ROM in
flexion-extension. (B) ROM in lateral bending. (C) ROM in axial rotation.
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BATPS endured the maximum stress of 82.07 MPa in extension. VBS
endured stress of 23.38, 58.92, 78.80, 36.09, 44.56, and 40.66 MPa,
respectively, under the six loads, which were significantly lower than
those on transpedicular screws (ITPS-CVBS, CTPS-VBS, and BATPS)
(Figure 9). Figure 10 shows the stress distribution on the screws under
the six loads in each model group.

3.5 Maximum displacement of screws

The maximum displacement of screws was largest in the VBS
group under loads in flexion, extension, left and right lateral

bending, and left and right lateral axial rotation (Figure 10).
When compared with VBS, the maximum displacement of
screws reduced by 8.1%, 2.3%, 4.1%, 7.7%, 22.1%, and 6.4%,
respectively, with ITPS-CVBS; by 29.4%, 11.9%, 32.7%, 16.6%,
22.1%, and 6.6%, respectively, with CTPS-VBS; and by 39.6%,
37.9%, 64.1%, 64.6%, 53.1%, and 50.7%, respectively, with BATPS
(Figure 11).

4 Discussion

Following anterior cervical corpectomy, VBS or ATPS can be
used for internal fixation. ATPS can anchor the three columns of the
vertebra, leading to a higher stability compared with VBS. ATPS
technique is insertion pedicle screw from the anterior cervical
vertebra, cross-sectional insertion of ATPS into the cervical spine
is key to the technique. Koller et al. (2008b) proposed that the ideal
cross-sectional entry point for screws is contralateral to the pedicles
for C3–C5, but is ipsilateral to the pedicles for C6–T1. Zhao et al.
(2018) drew similar conclusions as Koller et al. However, in
modeling, we found that the screw into the C5 vertebral body
can rotate around the center of the pedicle; thus, the entry point
of ATPS was ipsilateral to the pedicles, and the cortical bone of the
pedicle was not penetrated (Figure 5C). Therefore, we choose the
anterior pedicle screw fixation method should based on the upper
and lower cervical corpectomy segment. If the upper vertebral body
of the corpectomy segment is C3 or C4, we can only choose one
vertebral body screw and one pedicle screw (Figures 5A, B). For C5,
one vertebral body screw and one pedicle screw or two pedicle
screws can be used. The lower vertebral body of the corpectomy
segment is C6 or C7, and two pedicle screws can be inserted
(Figure 5C). Hence, we performed C6 corpectomy with screw
fixation of C5 and C7, which can meet the requirement of
inserting unilateral or bilateral ATPS and VBS and allows for the
following biomechanical comparisons.

FIGURE 7
ROM of the different models of fixation.

FIGURE 8
Maximal von Mises stress on TMC graft in the different groups.

FIGURE 9
Maximal von Mises stress on screws between different groups.
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4.1 ROM

Following cervical spinal fusion, a smaller ROM is associated with
higher stability and reduced likelihood of loosening of internal fixation
devices. Wu et al. (2018) simulated ATPS and VBS internal fixation
with six cervical spine specimens and found that ATPS had a smaller
ROM than VBS, and that ATPS internal fixation can offer adequate
stability for three-column injury to the lower cervical spine. Our results
demonstrated that compared with the original model, the four screw
insertionmethods, namely, BATPS, ITPS-CVBS, CTPS-VBS, andVBS,
exhibited significantly reduced overall ROMof the cervical spine under
all six loads, with the ROM in the ascending order of ATPS<ITPS-
CVBS<CTPS-VBS<VBS (Figure 7). When compared with VBS, ATPS
can reduce the ROM of the cervical spine, which is consistent with the
findings ofWu et al. (2018). It can be inferred that the use of ATPS can
reduce the ROM of the cervical spine and thus increase the stability of
the cervical spine, and that such advantages may be more pronounced
in the internal fixation for multilevel cervical corpectomy and spinal

fusion. Notably, the number of screws used and the method of screw
insertion influence the ROM of the cervical spine differently. An
increased number of ATPS used is associated with a decreased
ROM; given a same number of ATPS or VBS used, cross insertion
of ATPS resulted in a smaller ROM and a better overall stability
compared with ipsilateral insertion.

4.2 Maximal von Mises stress on TMC

Implant displacement and settlement is associated with the
stress on the implant-endplate interface. An excess load of the
endplate may lead to implant displacement and endplate damage,
ultimately resulting in failure of the internal fixation. In this study,
the maximal von Mises stress on TMC was lowest in flexion and
highest in extension in each group, possibly because the screws and
plate in front of the cervical spine can offset some stress in flexion.
However, the magnitude of the stress varied among the different

FIGURE 10
Distribution of the von Mises stress on screws between different groups.
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methods of fixation. Under various working conditions in motion,
the maximal von Mises stress on TMC was lowest with BATPS, was
lower with CTPS-VBS than with ITPS-CVBS, and was highest with
VBS. Hence, internal fixation with VBS yields greater stress on TMC
and is likely to cause damage to the endplate bone.

4.3 Maximal von Mises stress and stress
cloud map of screws

Owing to bending, deformation, and loosening, the anchoring
components and rods between the screw and bone are liable to
displacement (Oda et al., 2022). Fogel et al. (2003) also reported
that fracture is likely to occur in the presence of failure between the
screwhead and screw. In the clinical setting, the screw is usually
fractured at the junction of the nut and the plate, and the stress on
this junction is key to facture of the screw. In this study, the stress cloud
map showed that the stress was predominantly concentrated at a point
two-thirds of the length from the tail of the screw after ACCF, the stress
of the ATPS from the cranial part was higher than that of the caudal
part. Themaximal vonMises stress was greater on unilateral or bilateral
ATPS compared with that on VBS. VBS inserted into the anterior and
middle columns of the vertebral body and into the cancellous bone of
the vertebral body can bear a small stress during movements of the
cervical spine. In contrast, ATPS penetrates the anterior, middle, and
posterior columns of the vertebral body; hence, it bears a great stress
during movements of the cervical spine, thereby avoiding loosening.
The screw stress cloud maps did not show any red areas reflective of a
concentration of the stress on VBS in the six orientations of movement,
possibly because of transfer of the stress onto the TMC. Hence, the
likelihood of TMC displacement is high with VBS. With respect to
UATPS fixation, the stress was reduced by 37.4% with ITPS-CVBS
when compared with CTPS-VBS in left bending, possibly because no
ATPS shared the stress in ITPS-CVBS at the left side of the cervical
spine.Hence, in light of themaximal vonMises stress on screws and the
stress cloud map, ATPS can tolerate greater stress than VBS during

cervical spine movements. BATPS can balance the stress during
cervical spine movements better than UATPS. In terms of UATPS,
CTPS-VBS can tolerate lateral bending better than ITPS-CVBS.

4.4 Maximum displacement of screws

Themaximum displacement of the screw is proposed as a stability
parameter (Li et al., 2013), which can reflect the overall stability of the
screw-plate system better than the ROM of the cervical spine and the
stress on internal fixation devices. Screw loosening results from
insufficient stress on the screw-bone interface, and the bone
density of the vertebral body, the length of screw, the thread type,
the screw diameter, and single or double cortical fixation all influence
screw stability (Zhang et al., 2006; Matsukawa et al., 2016). Pedicle is
the most abundant area of cortical bone in the cervical spine. Koller
et al. (2008a) demonstrated that the fixation strength of ATPS was
2.5 times that of conventional anterior VBS. In this study, under loads
in flexion, extension, lateral bending, and lateral axial rotation, the
maximum displacement was largest with VBS, smallest with BATPS,
and was moderate with ITPS-CVBS and CTPS-VBS. UATPS showed
even smaller displacement than VBS under the six loads, suggesting a
good stability, which is consistent with the literature (Koller et al.,
2010; Zhao et al., 2018).With respect to UATPS, CTPS-VBS exhibited
smaller screw displacement and better stability compared with ITPS-
CVBS in flexion, extension, and lateral bending, but not in rotation.
Hence, in terms of the ATPS technique, stability is highest with
BATPS, followed by CTPS-VBS, and is lowest with ITPS-CVBS.

Taken together, based on the ROM, the maximal von Mises
stress on TMC, the stress distribution and maximal von Mises stress
on screws, and the maximum sliding displacement of screws, we
compared different methods of anterior screw insertion into the
cervical spine in ACCF and demonstrated that the stability was
highest with BATPS, followed by CTPS-VBS, ITPS-CVBS, and then
VBS. Hence, the ATPS technique can reduce the incidence of screw
loosening and TMC displacement.

4.5 Limitations of the study

This study does have some limitations. The study investigated
the initial stability of different screw fixations following single-level
ACCF, and further studies need to be conducted on the ultimate
mechanical properties and fatigue resistance of these screw fixations.
In addition, no finite element model involves muscles, and the data
may change with the addition of muscles. Furthermore, the model in
this study did not simulate multilevel ACCF or osteoporosis-related
working conditions. Our data are expected to change in multilevel
spinal fusions and osteoporosis, but the overall trend of stability may
not change. In addition, in vitro biomechanical testing and clinical
studies need to be performed to appraise the results of this study.

4.6 Conclusion

The stability of various methods of anterior screw insertion in
the cervical spine for ACCF differs. The findings of this study hold
the potential to aid in the development of an optimal fixation

FIGURE 11
Maximum displacement of screws between different groups.
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method for lower cervical spinal fusions, with the goal of reducing
internal fixation failures following anterior cervical spinal fusions. In
the context of finite element analysis (FEA), BATPS is
recommended whenever feasible, and in cases where only
UATPS insertion is possible, CTPS-VBS is recommended. Prior
to conducting clinical trials, it remains essential to perform in vitro
experiments to further analyze and validate the results.
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Is it reasonable to shorten the
length of cemented stems? A finite
element analysis and
biomechanical experiment

Junyan Li, Liang Xiong, Chao Lei, Xinyu Wu and Xinzhan Mao*

Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan,
China

Background: Uncemented short stems have been shown to optimize load
distribution on the proximal femur, reducing stress shielding and preserving
bone mass. However, they may adversely affect the initial stability of the stems.
To date, most research conducted on short stems has predominantly centered on
uncemented stems, leaving a notable dearth of investigations encompassing
cemented stems. Therefore, this study aimed to investigate the length of
cemented stems on the transmission of femoral load patterns and assess the
initial stability of cemented short stems.

Method: A series of finite element models were created by gradient truncation on
identical cemented stem. The impact of varying lengths of the cemented stem on
both the peak stress of the femur and the stress distribution in the proximal femur
(specifically Gruen zones 1 and 7) were assessed. In addition, an experimental
biomechanical model for cemented short stem was established, and the initial
stability wasmeasured by evaluating the axial irreversible displacement of the stem
relative to the cement.

Result: The maximum von-Mises stress of the femur was 58.170 MPa. Spearman
correlation analysis on the shortened length and von-Mises stress of all nodes in
each region showed that the p-values for all regions were less than 0.0001, and
the correlation coefficients (r) for each region were 0.092 (Gruen Zone 1) and
0.366 (Gruen Zone 7). The result of the biomechanical experiment showed that
the irreversible axial displacement of the stem relative to cement was −870 μm (SD
430 μm).

Conclusion: Reducing the length of a cemented stem can effectively enhance the
proximal load of the femur without posing additional fracture risk. Moreover, the
biomechanical experiment demonstrated favorable initial stabilities of cemented
short stems.

KEYWORDS

hip, joint arthroplasty, cemented stem, stem length, finite element analysis, biomechanics

1 Introduction

Total Hip Arthroplasty (THA), as one of the most successful surgical techniques of the
20th century, is the most effective treatment for various end-stage hip joint diseases.
Currently, hip replacement has achieved good long-term survival rates, with an average
cumulative revision rate of about 8% after 15 years for patients with osteoarthritis (Evans
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et al., 2019). Femoral and acetabular prostheses can be implanted
using cemented or uncemented techniques. The choice of femoral
fixation method is currently controversial. Supporters of
uncemented fixation point out that compared to cemented
femoral stems in young patients, uncemented femoral stems have
good long-term survival rates (Eskelinen et al., 2006) and may be
easier to revise. On the other hand, supporters of cemented fixation
argue that, like elderly patients, young patients would benefit from
the longer lifespan of modern cemented femoral stems (Kiran et al.,
2018). Due to the unique fixation method of cemented stems, stress
distribution of the proximal femur is more reasonable, with less
stress shielding effect compared to uncemented stems, resulting in
better preservation of bone mass and reduced long-term revision
rates. Additionally, revision surgery may be easier to perform (Costi
et al., 2017). Follow-up data from Australian Orthopedic
Association National Joint Replacement Registry (AOANJRR)
over 17 years suggested that cemented polished tapered stems
had lower revision rates than commonly used uncemented stems
(Babazadeh et al., 2022).

In the past decade, there has been a trend towards developing
shorter femoral stems, which aims at reducing stress shielding near
the femur and reducing the risk of potential proximal femoral
fractures. Several uncemented short stems have shown good
medium to long-term clinical results (Hossain et al., 2017;
Giardina et al., 2018; Zimmerer et al., 2020). However, some
researchers have reported limitations of these stems, particularly
in cases of poor bone mineral density (Gruner and Heller, 2015; Shin
et al., 2016). Significantly decreased bone mineral density is
associated with increased risk of periprosthetic fractures when
using uncemented short stems (Gkagkalis et al., 2019). Cemented
short stems offer potential benefits in terms of optimizing proximal
femoral loading, facilitating installation and revision procedures.
Research has confirmed the good long-term survival rate of
cemented short stems (Santori et al., 2019).

With the population ages, there is a significant increase in the
demand for hip arthroplasty. Researchers are striving to translate the
potential benefits of uncemented short stems to cemented short
stems. Currently, there is limited research on cemented short stems.
The purpose of this study was to investigate the influence of
cemented short stem on proximal femoral load distribution and
evaluate its initial stability through a combination of finite element
analysis (FEA) and biomechanical experiment.

2 Materials and methods

2.1 Finite element analysis

2.1.1 Finite element model
In this study, a medium-sized, left-sided, fourth-generation

artificial composite femur model (3403, Sawbones, Pacific
Research Laboratories, Vashon, United States) was used. To
obtain the 3D model of the sawbones, it was scanned using a
computed tomography (CT) machine (GE Lightspeed VCT 64,
General Electric, Massachusetts, United States) with a scan
interval of 1.0 mm. The CT scan data was then exported to
Mimics (Version 21.0, Materialise, Leuven, Belgium) in DICOM
format. After extracting the contours of each CT slice image, the

contours were overlaid in three dimensions to obtain the shape and
surface of the entire femur. The lines and surfaces of the 3D
construction were corrected for distorted areas and then
segmented to obtain the final 3D femur shape, which was
exported in STL format.

The imported femur model in STL format was loaded into
Geomagic Wrap (Version 2021, 3D Systems, Rock Hill,
United States). The model was then remeshed to achieve a
smoother surface. This involved utilizing functions such as
feature removal, relaxation, and pin deletion. Additionally, the
offset function was employed to create a cancellous bone model
by inwardly offsetting the femur bone by 2 mm. The Mesh Doctor
command was used to inspect the grid status of the mesh model.
Once the inspection was passed, the precise surface interface was
accessed to perform a sequence of operations. These operations
included detecting and editing contour lines, constructing and
repairing surface patches, constructing grids, and fitting surfaces.
These actions resulted in the generation of surface models for the
cortical bone and cancellous bone. Finally, the shell unit model was
transformed into a solid model and exported in STEP format.

We selected the ACP stem (Model: 1#, AK MEDICAL, Beijing,
China) as the experimental stem. ACP stem was a high-polished,
three-tapered, collarless, cemented femoral stem. The overall length
of the stem was 115 mm (Figure 1). STEP format of ACP stem was
collected through manufacturer datasheets.

The cortical bone, cancellous bone, and stem models were
imported into Unigraphics NX software (Version 12.0, Siemens,
Berlin, Germany). The resection of the femoral neck was done using
a standard method. The inner side of the resection was located

FIGURE 1
ACP stem.
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10 mm above the lesser trochanter horizontally, while the outer side
was located at the level of the base of the femoral neck. The femoral
neck was cut at a 45° angle along the line connecting these two points
in the coronal plane, and the femoral head was subsequently
removed. To minimize computational load, the distal femur was
removed. Every 10 mm of the distal end of the stem was horizontally
truncated once, for a total of six truncations, resulting in seven sets of
stems with lengths ranging from 55 mm to 115 mm. They were
named ACP55 to ACP115 based on the stem length. The length of
ACP75 was equal to twice the vertical distance from the highest
point of the greater trochanter of the femur to the lowest point of the
lesser trochanter. So ACP55 to ACP75 were regarded as short stems
by Feyen and Shimmin. (2014). The longitudinal axis of the stem
was parallel to the anatomical axis of the femur in both the coronal
and sagittal planes. The stem was assembled in the femur with a
anteversion of 15°, and the height of the rotation center of the
femoral head aligned with the highest point on the greater
trochanter horizontally. By using the intersection function, the
intersection surface between the stem and cancellous bone was
obtained. This surface was then offset outward by 2 mm to
obtain a 2 mm-thick cement mantle. The cortical bone region
was removed by Boolean operations to account for the space
occupied by cancellous bone and the stem. The stem-occupied
space was removed from the cancellous bone. Finally, seven sets
of final models were obtained and exported in PRT format as shown
in Figure 2.

2.1.2 Material properties and meshing
We assumed that the bone structure had homogeneous and

isotropic linear properties. The material properties were obtained
from the manufacturer, respectively for cortical bone (E = 16.7 GPa,
] = 0.3), trabecular bone (E = 0.155 GPa, v = 0.3), bone cement (E =
2.2 GPa, ] = 0.3), and ACP stem (E = 210 GPa, ] = 0.3) (Naghavi
et al., 2023).

We partitioned all finite element models into tetrahedral 10-
node meshes. To assess mesh convergence, we constructed six
groups of finite element models with different mesh densities and

performed finite element analysis with the same boundary
conditions. The peak value of the von-Mises stress in the femur
was considered the convergence observation indicator, defined as
the numerical difference between the two successive solutions under
the same loading conditions being less than 5% to determine mesh
convergence. Based on the results of the mesh convergence analysis,
the optimal mesh sizes were determined to be: 2 mm for cortical
bone, 2 mm for cancellous bone, 1 mm for bone cement, and 1.5 mm
for the stem. The result of mesh quality evaluation showed that the
average values of jacobian ratio and skewness were 1.037 and 0.252
(Ruggiero et al., 2019).

FIGURE 2
The final FEA models (From left to right, the models are labeled as ACP115 to ACP55 consecutively).

FIGURE 3
Gruen zones in cemented stems.
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2.1.3 Loading and boundary conditions
Finite element analysis was performed using Ansys workbench

(Version 2021 R1, ANSYS Inc, Canonsburg, United States). The
ASTM F2996–13 and ISO 7206–4:2010(E) were taken into
consideration when determining the loading and boundary
conditions (Bergmann et al., 2016).A load of 2300N was applied
to the point at the center of the maximum offset femoral head, at a
12° angle to the anatomical axis of the femur. The distal end of the
femur was set as the fixed support surface. All the contact areas were
considered bonded except the cement-stem interface. The coefficient
of friction 0.25 was considered between cement and stem interface
(Verdonschot and Huiskes, 1996).

2.1.4 Observation indicators and statistical analysis
The main purpose of this finite element analysis was to observe

the following factors and statistical methods in different lengths of
cemented stems after implantation in the femur: (1) Peak values and
distribution characteristics of von-Mises stress in the femur; (2)
Characteristics of the distribution of nodal von-Mises stress in the
proximal femur. We chose Gruen zones 1 (number of nodes: 755)
and 7 (number of nodes: 755) as the regions of interest (Figure 3)
(Gruen et al., 1979). Because these areas are less affected by the
design of the femoral stem (de Waard et al., 2021). Statical analysis
was performed using IBM SPSS (Version 23, IBM, Armonk,
United States). The normality test indicated that the data was
nonparametric, hence the summary statistics were represented by
the median and interquartile range (IQR). Spearman correlation
analysis was used to find the relationship between the length of the
stem and von-Mises stress in the proximal femur. When p < 0.05, it
was considered to indicate correlation. In order to ensure
comparability of the results, the Gruen partitioning of the
ACP115 group was used as the partitioning criterion for the
femoral models in each group.

2.2 Biomechanical experiments of cemented
short stem

We used a stem with a length at the junction of the standard
stem and the short stem as the experimental object, which was
referred to as the ACP75 stem mentioned in the above text. The
distal part of the stem was cut using a low-speed water-cooled saw to
minimize damage to the remaining part of the prosthesis. After the
cutting was completed, the cut surface was rounded and polished to
reduce local stress concentration and adverse effects on cement
during subsequent implantation.

Implant structures were prepared by experienced orthopedic
surgeon (X.M). A standard femoral neck cut was made
approximately 1 cm near the lesser trochanter, and then a
suitable broaching rasp of the stem size was used to broach the
bone for stem placement.

A distal cement plug was introduced at the distal end located at
the tip of the stem. Then, Simplex bone cement (Stryker
Orthopedics, Mahwah, United States) was used to bond the stem
to Sawbones using a stem centralizer. A total of six models were
prepared for the following experiments.

The femoral models were installed in the material testing
machine (ElectroPuls E10000, Instron, Norwood, United States)

and subjected to vertical loading. To ensure that the load was
introduced without creating any moments, a ball bearing was
placed between the device and the load cell (Figure 4). The
material testing machine applied 100,000 dynamic sinusoidal load
cycles at a frequency of 2 Hz between 100 and 1600 N to simulate the
load during the first 6 weeks in vivo condition (Freitag et al., 2021).
The axial displacement between the stem and the cement mantle was
used as an observation parameter to evaluate the initial stability of
the stem. The measurement process was performed using the
PLMLAB DIC-3D system (PLMLAB Sensor Tech, Nanjing,
China). This system was based on the principle of binocular
stereo vision and uses three-dimensional digital image correlation
methods to measure the three-dimensional shape and the three-
dimensional strain field of the tested object’s surface under loading.
The axial displacement of the stem was determined by measuring
the difference in axial distance between the highest point of the stem
shoulder and the highest point of the cement mantle in the coronal
plane.

3 Results

3.1 Peak values and distribution
characteristics of femoral von-Mises stress

Total seven models with different stem length were analyzed, as
shown in Figure 5. In general, the peak von-Mises stress tended to
increase with a decrease in the stem length. Furthermore, the
location of the peak Von-Mises stress was gradually shifted from
the medial distal femur to the medial proximal femur.
ACP115 group was 54.431 MPa, ACP105 group was 54.757 MPa,

FIGURE 4
The testingmachine. The femur and stem are fitted in the Instron.
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ACP95 group was 54.838 MPa, ACP85 group was 54.888 MPa,
ACP75 group was 54.913 MPa, ACP65 group was 56.077 MPa,
ACP55 group was 58.170 MPa. The rates of increase in peak
Von-Mises stress, compared to the ACP115 group, were as
follows: 0.599% (ACP105), 0.748% (ACP95), 0.840% (ACP85),
0.886% (ACP75), 3.024% (ACP65), and 6.869% (ACP55).

3.2 Distribution of von-Mises stress in the
proximal femur

The nodal von-Mises stress in the proximal femur of each model
was calculated from the finite element results and plotted in Figure 6.
In Gruen zone 1, the von-Mises stress for each group model was as

FIGURE 5
Femoral von-Mises stress distribution under different stem lengths.

FIGURE 6
Nodal von-Mises stress in the proximal femur under different stem lengths. (A) Gruen zone 1 (B) Gruen zone 7.
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follows: ACP115 (1.682 MPa, IQR 0.651–3.173), ACP105
(1.177 MPa, IQR 0.574–2.079), ACP95 (1.166 MPa, IQR
0.567–2.063), ACP85 (1.173 MPa, IQR 0.555–2.12), ACP75
(1.749 MPa, IQR 0.738–2.857), ACP65 (1.467 MPa, IQR
0.530–3.116), ACP55 (2.071 MPa, IQR 0.575–4.368). In Gruen
zone 7, the von-Mises stress for each group model was as
follows: ACP115 (2.987 MPa, IQR 1.810–5.522), ACP105
(4.737 MPa, IQR 2.973–6.385), ACP95 (4.711 MPa, IQR
2.961–6.395), ACP85 (4.817 MPa, IQR 3.066–6.617), ACP75
(3.597 MPa, IQR 2.639–6.276), ACP65 (6.481 MPa, IQR
4.378–8.953), ACP55 (8.823 MPa, IQR 6.172–12.332).

In order to investigate the correlation between von-Mises stress
in different regions of the femur and the length of the stem,
Spearman correlation analysis was performed on the von-Mises
stress and shortened length of all nodes in each region, as shown in
Figure 7. The results showed that the p-values for all regions were
less than 0.0001, and the correlation coefficients (r) for each region
were 0.092 (Gruen Zone 1) and 0.366 (Gruen Zone 7), which
indicating a positive correlation between von-Mises stress in the
proximal femur and the shortened length of the stem.

3.3 Primary stability evaluation

After 100,000 loading cycles, the irreversible axial displacement of
the ACP75 stem relative to bone cement was −870 μm (SD 430 μm).

4 Discussion

Currently, limited research exists on cemented short stems. This
study investigated the impact of cemented stem length on femoral
load and the initial stability of cemented short stems. To eliminate
the influence of metaphyseal design factors on experimental results,
we progressively truncated the same stem. This approach allowed us
to clearly comprehend the trend of changes in various observed
indicators as the length of the cemented stem changed. Our finite
element analysis demonstrated that shortening the length of
cemented stems effectively enhanced the proximal load of the
femur, while having minimal effects on the femur’s peak stress.
The peak von-Mises stresses in all groups were far below the

ultimate strength of 133 Mpa, which did not increase the risk of
fracture. Additionally, we conducted fatigue testing to simulate the
load conditions experienced by cemented short stems during the
first 6 weeks in vivo. Based on our findings, we observed an
irreversible axial displacement of −870 μm for the cemented
short stem, which fell below the predetermined criterion of 5 mm
for prosthesis loosening (Santori et al., 2019). This result provided
evidence for the favorable initial stability of cemented short stems.

This study demonstrated results similar to those of uncemented
stems. Bieger et al. and Arno et al. have argued that reducing the stem
length can decrease proximal stress shielding without compromising
initial stability (Arno et al., 2012; Bieger et al., 2012). In a comparison
between the Alloclassic hip system and the Mayo short stem, Boyle
et al. discovered that the Mayo stem was more effective in load
transmission to cancellous bone and reducing proximal bone loss
(Boyle and Kim, 2011). Østbyhaug et al. conducted research on the
ABG-1 stem and determined that shortening the stem by 40–50 mm
could transmission stress more effectively in the metaphysis and
diaphysis (Østbyhaug et al., 2009). However, shortening the
uncemented stem may impact initial stability. Van Rietbergen et al.
found that shorter stems had higher shear stress near the distal lateral
side compared to standard stems, which could potentially lead to
decreased initial stability (van Rietbergen andHuiskes, 2001). Ong et al.
compared longer and shorter versions of the Omnifit hydroxyapatite
stem and observed that although the shorter design had greater
potential for bone formation on the medial side, the displacement
of the bone-prosthesis interface at the tip of the short stem was 40%–
94% greater than that of the longer stem, which may result in patient
discomfort (Ong et al., 2009). Cement fixation had a significant impact
on load transfer at the proximal femur (Scheerlinck and Casteleyn,
2006). The study by Freitag et al. found that cemented Optimys short
stem demonstrated a smaller irreversible axial displacement after
fatigue testing compared to cemented conventional straight twinSys
stem (−20.4 µm ± 38.3 µm/−61.4 µm ± 92.8 µm) (Freitag et al., 2021).
Although no statistical differences were observed in the result.
Thomsen et al. compared the maximum fracture load and fracture
pattern of cemented and uncemented stems in non-osteoporotic bone
and discovered that the maximum fracture load of the cemented stem
was significantly higher (Thomsen et al., 2008). Similarly, Klasan et al.
conducted an experiment on cadaver bones comparing the failure loads
of cemented and uncemented stems. They found that the failure load of

FIGURE 7
Results of Spearman correlation analysis between shortened length and von-Mises stress in the proximal femur. (A) Gruen zone 1 (B) Gruen zone 7.
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the cemented stem increased by 25% compared to the latter (Klasan
et al., 2019). The utilization of cement technology may offer a solution
to the low initial stability observed in uncemented short stems.

In recent years, several clinical studies have been published
regarding cemented short stems. A study based on AOANJRR
compared the 7-year follow-up results of the short and standard
Exeter stem. Despite the short stem being used in a larger proportion
of potential difficult cases with developmental dysplasia of the hip,
there was no significant difference observed in the cumulative revision
rate between the short and standard Exeter stem (Choy et al., 2013).
However, another study based on the New Zealand National Joint
Registry produced different result. This study found that the revision
rate of the standard Exeter stem was significantly lower than that of
the short Exeter stem with an offset of 35.5 mm. On the other hand,
the revision rate of the shorter Exeter stem with an offset of 37 mm
was similar to that of the standard stem (Wyatt et al., 2020). Another
recent study also indicated that femoral stem with smaller offset
carried a higher risk of revision (Wyatt et al., 2019). Therefore, for the
Exeter stem, offset appears to be more important than stem length, as
the proximal part provides rotational stability (Wilson et al., 2012). In
addition to revision rates, a randomized controlled trial has compared
the functional outcomes between short and standard Exeter stems in
total hip arthroplasty. The result of this trial showed that, at an average
of 2 years postoperatively, the short Exeter stem exhibited similar hip
joint function, health-related quality of life, and patient satisfaction
compared to the standard stem (Gaston et al., 2023). Although a
greater rate of varus malalignment was found in short stem group,
which may affect the stem survival rate in the future.

However, the short Exeter stem was not a truly representative short
stem in the conventional sense. It was designed specifically for patients
with smaller femurs. The longest follow-up results for cemented short
stemswere derived from the study conducted by Santori et al. The results
showed that the survival rate of the Friendly cemented short stem, with
aseptic loosening as the endpoint, was 100%with a maximum follow-up
of 11.2 years (Santori et al., 2019). However, it was important to note that
the Friendly short stem was only a modification of the Exeter stem
concept, with a reduced length, limiting its comparability to the novel
generation of calcar-guided short-stem concept. To date, there have been
no new-generation cemented short stems used clinically. The utilization
of the line-to-line technique in the development of cemented short stems
may present a promising alternative for the treatment of osteoporotic
bone conditions (Azari et al., 2021).

There are some limitations in this study that should be
acknowledged. Firstly, the finite element analysis was performed
under static load conditions, which only provided limited results. It
was important to consider more realistic load conditions, such as
walking, climbing stairs, and running (Kwak et al., 2021). Previous
research has demonstrated that the torque generated during stair
climbing poses the greatest risk for cement failure (Bergmann et al.,
1995). However, in dynamic situations, it is crucial to understand
the interplay between the femoral and the acetabular prosthesis.
Recently, scholars have developed a novel 3D contact-lubrication
model to calculate the wear performance of hip prostheses during
the gait process, and they have achieved encouraging results. This
may assist us in better simulating the kinematic characteristics after
hip arthroplasty (Ruggiero and Sicilia, 2020). Secondly, we were
hindered by the lack of a femoral canal rasp specifically designed for
the shortened stem. Consequently, we utilized a femoral canal rasp

that corresponded to the pre-cut stem, leading to a longer cement
mantle at the distal end. However, the mechanical strength of the
Sawbones primarily derived from the cortical bone, which remained
unaffected by this issue. Therefore, we believed that the impact on
the result was minimal. Lastly, the simulated loading employed
during the first 6 weeks could only capture the initial characteristics
following the implantation of the cemented short stem. The medium
and long-term characteristics can only be obtained by conducting
long-term clinical follow-up studies in vivo.

5 Conclusion

The findings of the finite element analysis indicated that, similar
to an uncemented stem, reducing the length of a cement stem could
effectively enhance the proximal load in the femur without posing
additional fracture risk. Moreover, the biomechanical experiment
validated the favorable initial stabilities of cemented short stems.
However, further investigations are required to ascertain whether
these findings can translate into clinical benefits.
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biomechanical risk of screw
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Screw loosening is a widely reported issue after spinal screw fixation and triggers
several complications. Biomechanical deterioration initially causes screw
loosening. Studies have shown that incomplete insertion of pedicle screws
increases the risk of screw breakage by deteriorating the local mechanical
environment. However, whether this change has a biomechanical effect on the
risk of screw loosening has not been determined. This study conducted
comprehensive biomechanical research using polyurethane foam mechanical
tests and corresponding numerical simulations to verify this topic. Pedicle
screw-fixed polyurethane foam models with screws with four different
insertion depths were constructed, and the screw anchoring ability of different
models was verified by toggle tests with alternating and constant loads. Moreover,
the stress distribution of screw and bone-screw interfaces in different models was
computed in corresponding numerical mechanical models. Mechanical tests
presented better screw anchoring ability with deeper screw insertion, but
parameters presented no significant difference between groups with complete
thread insertion. Correspondingly, higher stress values can be recorded in the
model without complete thread insertion; the difference in stress values between
models with complete thread insertionwas relatively slight. Therefore, incomplete
thread insertion triggers local stress concentration and the corresponding risk of
screw loosening; completely inserting threads could effectively alleviate local
stress concentration and result in the prevention of screw loosening.

KEYWORDS

screw loosening, incomplete thread insertion, biomechanical deterioration, pedicle
screw, comprehensive biomechanical research
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Introduction

The pedicle screw fixation system is the most widely used spinal
fixation method for treating spinal trauma and degenerative and
tumoral diseases (Chen et al., 2003; Karami et al., 2015). Compared
with other spinal fixation methods, this method could provide better
fixation stability and could be seen as the gold standard of spinal
fixation (Amaritsakul et al., 2014; Ambati et al., 2015). Screw
loosening is a commonly observed complication for pedicle
screw-fixed patients, which triggers the loss of fixation stability
and a corresponding series of issues (Bredow et al., 2016; Marie-
Hardy et al., 2020). Biomechanical deterioration initially induces
screw loosening. The loss of bone-screw integration is the primary
pathological phenotype of screw loosening; higher stress values at
the bone-screw interface cause this phenotype and corresponding
screw loosening (Li et al., 2022b; Li et al., 2022c). Therefore, any risk
factors that potentially trigger stress concentration on bone-screw
interfaces should be considered potential risk factors for
screw loosening.

Hypertrophy of articular processes is common in patients with
pedicle screw fixation (Adams et al., 2000; Adams and Roughley,
2006). This change may inhibit the complete insertion of pedicle
screws. Studies have reported a lower fatigue life and a higher risk
of screw breakage when threads are not completely inserted into
bony structures (Chen et al., 2005; Athanasakopoulos et al., 2013).
Correspondingly, higher stress values of pedicle screws can be
recorded in numerical models without complete thread insertion.
Since the stress concentration on screws is closely related to that on
the bone screw interfaces, we hypothesize that incomplete
insertion of pedicle screws may also be a significant
biomechanical risk factor for screw loosening; however, this has
not been verified. In this study, comprehensive research combining
mechanical tests and numerical simulations was performed to
verify this assumption. The corresponding results should
provide a theoretical foundation for optimizing fixation stability
from a biomechanical perspective.

Materials and methods

Mechanical tests on polyurethane foams

Model construction
Osteoporotic polyurethane foams (Sawbones Company,

United States) were used as bone substitutes due to their
homogeneous structure, consistent material properties, and
availability (Brasiliense et al., 2013; Amirouche et al., 2016). Since
screw loosening is commonly observed in osteoporotic patients, the
density of the polyurethane foam was selected to be 0.16 g/
cm3 according to the standard of the American Society of
Testing Materials (ASTM) protocol (Seng et al., 2019; Weidling
et al., 2020). The polyurethane foam was cut to a length of 60 mm, a
width of 40 mm, and a height of 50 mm. A clinically used cylindrical
titanium alloy (Ti-6Al-4V) pedicle screw (with two start threads and
a parallel minor diameter) (Reach-Med Company, China) was
selected for this study. The outer diameter of the pedicle screw
was 6.5 mm, the inner diameter was 3.5 mm, and the screw thread
length was 40 mm.

Models with four different screw insertion lengths were
constructed. Models with complete thread insertion (40 mm)
were considered the baseline for judging screw insertion depth.
In models with incomplete screw insertion, quarter-circle threads
(90°) were reserved from the test block. In contrast, in models with
screw overinsertion, quarter-circle and half-circle (i.e., 90° and 180°)
screws were overinserted into the test blocks, respectively (Figure 1).

Toggle tests under different
loading protocols

Toggle and pull-out tests were performed on an E3000 fatigue
testing machine (Instron Company, USA). Each single test was
repeated ten times in different models. Each screw, connecting rod,
and nut was tested only once. Before the toggle tests, the connecting
rod (6.0 mm in outer diameter and 100 mm in length) was inserted
into the screw tulip and secured with nails. The axis of the rod was
vertical to that of the pedicle screw, and the distance from the screw
axis to the tip of the rod was set at 60 mm. For toggle testing, foam
blocks were fixed in the testing machine. Each group was tested five
times in different parts of the toggle tests.

Toggle tests were performed under varying cyclic loading. The
pedicle screw was subjected to cyclic loading in a craniocaudal
direction with stepwise increasing loads. Each pedicle screw was
cyclically loaded with an initial load of ±100 N; the vertical load was
increased by 25 N every 30 cycles (Brasiliense et al., 2013; Kanno
et al., 2019). The instantaneous values of maximum screw
displacement and the corresponding vertical load were recorded
100 times per second. Cyclic loading was terminated when screw
fixation failed (the maximum screw displacement reached 1 mm).
Cycle times and corresponding compressive loads at fixation failure
were recorded in this procedure (Figure 1).

Moreover, when performing toggle tests under a constant load of
1*104 cycles, the pedicle screw was subjected to cyclic loading in the
cranio-caudal direction with a load of ±200 N. This load level was
selected to simulate the physiological load of a 40-kg
postmenopausal woman with osteoporosis. This is a common
loading environment for screw fixation in osteoporotic patients
in our country. The instantaneous values of maximum screw
displacement and the corresponding vertical load were recorded
100 times per second (Pelletier et al., 2017; Wang et al., 2019b).
Cyclic loading was terminated after 1*104 loading cycles. The
differences between the first and last displacement values were
also calculated and recorded in this procedure.

Pull-out tests

The foam-screwmodels in each group were subjected to pull-out
tests after the toggle test with different loading protocols. In the pull-
out tests, the foamwas also rigidly fixed to the testing machine, and a
custom-made fixture connected to the testing machine was then
attached to the connecting rod. By this method, the axis of the screw
was collinear with the pull-out force. All screws were pulled
uniaxially at a rate of 5 mm/min until they were entirely pulled
out of the foam (Chen et al., 2011; Cho et al., 2011). The pull-out
strength was judged as the axial force value when a sudden decrease

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Yang et al. 10.3389/fbioe.2023.1282512

175

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1282512


in the pull-out force was observed. The pull-out stiffness in different
models was also recorded (Zhang et al., 2006; Yuan et al.,
2014) (Figure 2).

Statistical analyses

Mechanically tested parameters are presented as the mean ±
standard deviation (Li et al., 2023; Xi et al., 2023). Statistical analyses
were conducted using SPSS software. When comparing the
differences between groups with different screw insertion depths,
a one-way ANOVA was used for these continuous variables. A
p-value less than 0.05 indicated a significant difference (Burger,
2023; Chatzi and Doody, 2023).

Numerical simulations (finite
element analysis)

Numerical model construction
The numerical model of the pedicle screw was constructed based

on the outline of the screw used in the mechanical test. Therefore,
the outline of the screw in the mechanical test and simulation were
completely identical. Moreover, the model construction strategy,
boundary conditions, and loading conditions in the numerical
simulation of the toggle and pull-out tests are similar to those in
the mechanical tests. To optimize computational efficiency, model
simplifications were made in the numerical models. Specifically, the
size of the test blocks in the numerical simulations was consistent
with the mechanical tests (60*55*40 mm). The screw insertion depth

was set at 40 mm. The connection between the screw tulip, the nut,
and the spacer was simplified to a single model. The axis of the screw
was vertical to the connecting rod, the distance between the axis of
the screw and the tip of the rod was 60 mm, and the rod on the
caudal side was deleted to reduce the number of elements (Li et al.,
2022b; Li et al., 2022c). When defining the material properties of
different components, the test blocks were set according to the
official product parameter table of the saw-bone company.

Moreover, since the elastic deformation of the bony structures
was present during the screw insertion process, the bony
compaction (consolidation) effect caused by screw insertion was
also simulated by upregulating the material properties of the
surrounding bony structure around the screw tip (Figure 1). The
elastic modulus of bone was assumed to be a power-law function of
the density with an exponent of 2. The definition of the bony
compaction region and the corresponding adjustment of its
material properties were based on the same type of studies (Hsu
et al., 2005; Chao et al., 2008; Travascio et al., 2017).

Moreover, the pedicle screw and connecting rod were defined as
titanium alloymaterial (elasticmodulus = 12 GPa and Poisson’s ratio =
0.31), and the definition of the test block was also performed based on
the production manual of osteoporotic polyurethane foams from the
Sawbone Company (elastic modulus = 23MPa and Poisson’s ratio =
0.3). Given that the stiffness of the TC4 (120000MPa) pedicle screw
was dramatically higher than that of osteoporotic polyurethane foam
(23MPa). The deformation value of the TC4 screw was very small, so
the deformation of screw can be ignored in the numerical simulaion.
Therefore, the deformation of the pedicle screw was not considered in
either toggle or pull-out mechanical simulations (Zhang et al., 2006;
Kanno et al., 2019-2021).

FIGURE 1
Schematic of test models with different screw insertion depths and identical mesh generation strategy in different models.
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Finite element analysis under different
loading protocols

Toggle test simulation
To ensure computational credibility, the boundary and

loading conditions of the numerical simulation were kept
identical to those of the toggle test. Contact types between
different interfaces were defined according to the same type of
study. The contact type between the screw and connecting rod
was defined as “bonded”, that between bone-screw interfaces was
“frictional”, and the friction coefficient was set to 0.2 (Xu et al.,
2019; Takenaka et al., 2020; Li et al., 2022b). All degrees of
freedom of the foam models were completely fixed, and a ±200 N
load in the cranial-caudal direction was loaded on the tip of the
connecting rod. To eliminate the confounding effect of mesh size,
we performed a mesh convergence test on the 40 mm screw depth
model. By evaluating the change in maximum equivalent stress
on the pedicle screw, mesh sizes on the screw and foam were
adjusted. The model was considered convergent if the change in
the computed stress values was less than 3% (Ottardi et al., 2016;
Li et al., 2023; Xi et al., 2023). To represent the potential risk of
screw loosening, the maximum stress value of the pedicle screw
and foam, the maximum shear stress and strain of the foam, and
the average stress of the bone-screw interfaces were computed
and recorded.

Pull-out test simulation

The material property definition, mesh size, and contact type at
the bone-screw interfaces in the pull-out test were consistent with
those in the toggle test. The construction of the test block and the
screw models were also consistent with the toggle test, but the
connecting rod in the pull-out test was removed to reduce the
number of elements (Prasad et al., 2016; Nakashima et al., 2018).
The degrees of freedom of the test block were completely fixed, and a
500 N load along the axis of the pedicle screw was applied to the
screw tulip. The maximum screw displacement, maximum
equivalent stress on the test block, and failure volume were
recorded during this procedure (Krenn et al., 2008; Bianco et al.,
2017) (Figure 2).

Results

Mechanical test results

Overall, screw anchoring ability increased stepwise with
increasing screw insertion depth. In the alternating load toggle
test, the failure load of the 90° preservation and no overinsertion
groups was significantly worse than that of the 180° overinsertion
groups. The failure and cycle times of the 90° preservation models

FIGURE 2
Protocols for mechanical testing and numerical simulation.
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were significantly lower than those of the other groups, and those of
the models without overinsertion were also significantly lower than
those of the 180° overinsertion groups. Pull-out strength in the
alternating load toggle test was also significantly lower in the 90°

preservation models compared to the 180° overinsertion
group. Additionally, in toggle tests with a constant load, there
were no significant differences in screw anchorage parameters
between the complete thread insertion groups (i.e., no
overinsertion and 90° and 180° overinsertion groups). The

anchoring ability of the 90° preservation group was significantly
worse than that of the complete thread insertion groups (Figure 2).

Numerically simulated results

An overall consistent tendency for variation could be recorded
in both toggle and pull-out mechanical simulations. Specifically, a
step decrease in the maximum screw displacement stress values

FIGURE 3
Mechanical test results in models with four different screw insertion depths.
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could be observed with a step increase in the screw insertion depth.
Compared to the difference between models with and without
complete screw thread insertion, the differences in stress and
deformation values in models with complete thread insertion
were relatively small. Detailed changes in stress and deformation
values and corresponding variation percentage ratios are presented
in Figures 3, 4.

Discussion

Biomechanical mechanisms of potential risk factors for screw
loosening have been identified as a stress concentration-induced
complication in published studies (Yuan et al., 2014; Wu et al., 2019;
Zhang et al., 2020). Although several studies have reported incorrect
screw insertion and a corresponding risk of complications
(Galbusera et al., 2015; Amirouche et al., 2016), the question of
whether the reservation of the thread from bony structures triggers a
higher risk of screw loosening remains to be addressed. Given that
the selection of the screw insertion depth is a topic arising every time
a screw is inserted, identifying this could provide theoretical
guidance for pedicle screw insertion to biomechanically reduce
the risk of screw loosening.

By performing comprehensive research consisting of
mechanical tests and numerical simulations, this study shows
that incomplete thread insertion induces local stress
concentration and the corresponding risk of screw loosening;
complete thread insertion could effectively alleviate the local
stress concentration and optimize the screw anchoring ability. In
addition, although the difference between the tested and computed
results was less significant in the groups with complete thread
insertion, further increasing the screw insertion depth after
complete thread insertion can further optimize the screw
anchoring ability. Therefore, although various factors may affect
the complete insertion of the screw (e.g., hypertrophy of articular
processes, occlusion of soft tissues such as the facet capsule), based
on the positive correlation between screw insertion depth and
anchoring ability (Figures 3, 5), complete thread insertion and

even overinsertion of pedicle screws are recommended to
biomechanically reduce the risk of screw loosening.

From a methodological perspective, several issues should be
clarified. First, polyurethane foammodels with osteoporotic bone
density were selected in this study rather than vertebral bodies
from specimens or any laboratory animals. Polyurethane foam
can well simulate the mechanical properties of cancellous bone
and has the advantages of good homogeneity (effectively
eliminating the confounding effect caused by existing regional
differences in cancellous bone density) (Li J. et al., 2022; Li et al.,
2023) and high availability (inexpensive, and more importantly,
not limited by sample sources). Therefore, this test block
selection strategy may improve the feasibility and
standardization of experiments, thereby increasing the
credibility of this study.

However, only osteoporotic models were selected in this study.
The stepwise reduction in patients’ BMD has been the most
significant reason for poor screw anchoring ability by reducing
the yield strength and degrading the biomechanical environment
at the bone-screw interface (Xu et al., 2020; Zou et al., 2020).
Biomechanical studies investigating the biomechanical effect of
other risk factors (e.g., screw insertion angle, thread designs) on
the risk of screw loosening also show that the incidence rate of screw
loosening was consistently low in models with normal bone density,
regardless of changes in other potential risk factors (Hsu et al., 2005;
Galbusera et al., 2015). Therefore, osteoporotic models were selected
for the current mechanical tests and corresponding numerical
simulations. In addition, individual differences in the direction
and size of the load applied to the pedicle screw existed in
different patients but were not considered in this study
(Mohammed et al., 2018). Alternatively, standard loading
protocols widely used in published studies were selected in this
study (Shi et al., 2012; Brasiliense et al., 2013; Wang et al., 2019a;
Marie-Hardy et al., 2020; Kanno et al., 2021). The ±200 N toggle
load carried by a single screw represents the old load of a patient
with a body weight of 40 kg, and 500 N was selected in the pull-out
test by referring to the average mechanically tested pull-out strength
values in this study.

FIGURE 4
Stress distribution nephograms in models with four different screw insertion depths.
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In this study, toggle tests with alternating and constant loads were
performed on models with different insertion depths. Alternating load
toggle tests were terminated when the maximum screw displacement
value reached 1 mm because the 1 mm cavity was the standard
assessment value for screw loosening. A total of 1*104 times were
selected in the constant load toggle tests. Screw loosening is a typical
short-term complication (Galbusera et al., 2015; Amirouche et al., 2016;
Ding et al., 2017). During the first 1*104 cycles, the maximum screw
displacement increased rapidly and remained relatively balanced
(i.e., increasing the number of cycles did not significantly increase
the maximum screw displacement values). Therefore, 1*104 cycles are
sufficient to identify the postoperative screw anchoring ability.
Moreover, although the pull-out test can only directly reflect the risk
of screw pull-out rather than screw loosening, this indicator has also
been measured for better integration between the bone-screw interface
and can optimize not only pull-out but also screw toggle strength
(Wiendieck et al., 2018; Wang et al., 2019b). Consistent with this point,
the current Pearson correlation analyses showed that the pull-out
strength was significantly positively correlated with indicators related
to the screw anchoring ability in toggle tests, and the pull-out strength
was also a credible predictor when predicting the risk of
screw loosening.

Mechanical tests and numerical simulations are commonly used
biomechanical methods for determining screw anchoring ability
(Chao et al., 2008; Solitro et al., 2022). Although mechanical tests
can directly reflect screw anchoring ability by directly recording the
screw displacement values in each cycle, detailed stress distribution
patterns, especially at the bone-screw interfaces, cannot be directly
reflected by this method. In contrast, with increasing cycle times,
screw compaction on bony structures leads to higher screw
displacements and results in screw loosening (Hsu et al., 2005;
Boriani et al., 2018). However, this process could not be simulated in
numerical models. In contrast, by comprehensively performing
these two methods, the computed stress distributions can well
explain the mechanism for the tested results. Also, this method
can effectively optimize the reliability of the current study (Hsu et al.,
2005; Chao et al., 2008).

Consisted to the same type study, directmodel validation can not be
performed based on the current numerical model. In finite element
modeling, comparing the computed result with the mean of the test
result is a common method for model validation (Li et al., 2021; Xu
et al., 2022). This method is widely used in the finite element models of
the intervertebral disc and facet cartilage. However, it is not suitable for
screw-fixed bony structure models. Specifically, as mentioned above,
bone compaction is a common phenomenon at the bone-screw
interface, which can trigger an increase in bone density and elastic
modulus in the compact region. Similarly, bone compaction existed not
only during screw insertion but also during the toggle test process. This
loading process leads to an increase in bone density around the screw,
which in turn leads to an increase in screw restriction by bony
structures. However, this dynamic process cannot be accurately
simulated in current numerical models, which leads to the
computed value of screw displacement always being larger than the
tested one (this phenomenon can be observed in the current and similar
studies, such as Hsu et al., 2005; Chao et al., 2008). Therefore, the above
model validation method is not suitable for screw-fixed models. As an
alternative, in screw anchoring ability studies where numerical
simulation and mechanical tests are performed simultaneously,
researchers compare the tendency of the tested and computed
results, and if the trend is consistent, the numerical model is
considered credible. Admittedly, this is a qualitative, rather than
quantitative, approach to model validation, and screw compaction in
the toggle test numerical model will be simulated in our future studies.

The neglect of cortical cells in the posterior column is an existing
limitation of this study. Specifically, bony structures with irregular
outlines (e.g., hypertrophied articular processes) inhibit pedicle screw
insertion (Paik et al., 2012; Pelletier et al., 2017). To achieve complete
screw insertion, these structures should be resected. Although
cancellous bone plays a prominent role in pedicle screw anchorage,
studies have also shown that this procedure damages the cortical shell of
the insertion screw point and adversely affects screw anchoring ability
(Paik et al., 2012; Pelletier et al., 2017; Solitro et al., 2019). The
interaction between cortical damage/preservation and complete/
incomplete screw insertion should be validated in future studies.

FIGURE 5
Computed stress and deformation values.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Yang et al. 10.3389/fbioe.2023.1282512

180

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1282512


Moreover, the lack of clinical evidence was due to the difficulty in
accurately quantifying incomplete thread insertion during
intraoperative observation and immediate postoperative imaging
examination (due to the surgical field of view and titanium
artifacts). Therefore, elucidating this topic through comprehensive
biomechanical research has become the only feasible method.

Additionally, several factors, including changes in connecting rod
materials (Athanasakopoulos et al., 2013; Boriani et al., 2020; Massey
et al., 2021), screw diameters (Chao et al., 2008; Solitro et al., 2019),
screw insertion orientations (Amirouche et al., 2016; Matsukawa et al.,
2017; Szczodry et al., 2018), and even different screw designs (Chao
et al., 2008), have been reported to affect screw anchoring ability, and
interactions between these factors and incomplete thread insertion on
screw anchoring ability should also be verified in our future studies.
However, because all of the above parameters (i.e., rod materials, screw
diameters, and orientations) were selected in this study of the most
commonly used parameters in our clinical practice (the titanium alloy
connecting rod was the most commonly used material, the screw axis
was parallel to the fixed vertebral body, and the outer diameter was set at
6.5mm, the most commonly used diameter of a lumbar pedicle screw),
we believe that these limitations will not negatively affect the credibility
of the current study.

Finally, the significance of postoperative physiological and
pathological processes on screw anchoring ability (Galbusera et al.,
2015; Ding et al., 2017; Volz et al., 2022), including the potential
osteogenic activity of different types of screw coatings (Patel et al., 2014;
Li et al., 2015; Kashii et al., 2020), cannot be determined by numerical
simulations and mechanical tests on polyurethane models. However,
although these limitations exist, given that the mechanical tests and
numerical simulations present consistent results, complete insertion of
pedicle screws, especially complete thread insertion, is recommended in
patients with pedicle screw fixation to optimize screw anchoring ability.

Conclusion

Incomplete thread insertion triggers local stress concentration
and higher risk of screw loosening.
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