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NK cell’s lytic granules polarization toward the immune synapse 

against the K562 cell line. Green: perforin-specific antibody, red: 

phalloidin stain for polymerized F-actin, blue: DAPI stain for nuclei.
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Recognition and killing of aberrant, infected or tumor targets by Natural Killer (NK) cells 
is mediated by positive signals transduced by activating receptors upon engagement 
of ligands on target surface. These stimulatory pathways are counterbalanced 
by inhibitory receptors that raise NK cell activation threshold through negative 
antagonist signals. While regulatory effects are necessary for physiologic control of 
autoimmune aggression, they may restrain the ability of NK cells to activate against 
disease. Overcoming this barrier to immune surveillance, multiple approaches to 
enhance NK-mediated responses are being investigated since two decades. Propelled 
by considerable advances in the understanding of NK cell biology, these studies are 
critical for effective translation of NK-based immunotherapy principles into the clinic. 
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In humans, dominant inhibitory signals are transduced by Killer Immunoglobulin 
Like Receptors (KIR) recognizing cognate HLA class I on target cells. Conversely, 
KIR recognition of “missing self-HLA” - due to HLA loss or HLA/ KIR mismatch - trig-
gers NK-mediated tumor rejection. Initially observed in murine transplant models, 
these antitumor effects were later found to have important implications for the 
clinical outcome of haplotype-mismatched stemcell transplantation. Here, donor 
NK subsets protect against acute myeloid leukemia (AML) relapse through missing 
self recognition of donor HLA-C allele groups (C1 or C2) and/or Bw4 epitope. These 
studies were subsequently extended by trials investigating the antileukemia effects 
of adoptively transferred haplotype-mismatched NK cells in non-transplant settings. 
Other mechanisms have been found to induce clinically relevant NK cell alloreactivity 
in transplantation, e.g., post-reconstitution functional reversal of anergic NK cells. 
More recently, activating KIR came into the spotlight for their potential ability to 
directly activate donor NK cells through in vivo recognition of HLA or other ligands. 

Novel therapeutic monoclonal antibodies (mAb) may optimize NK-mediated effects. 
Examples include obinutuzumab (GA101), a glyco-engineered anti-CD20 mAb with 
increased affinity for the FcγRIIIA receptor, enhancing antibody-dependent cellular 
cytotoxicity; lirilumab (IPH2102), a first-in-class NK-specific checkpoint inhibitor, 
blocking the interaction between the major KIR and cognate HLA-C antigens; and 
elotuzumab (HuLuc63), a humanized monoclonal antibody specific for SLAMF7, 
whose anti-myeloma therapeutic effects are partly due to direct activation of 
SLAMF7-expressing NK cells. In addition to conventional antibodies, NK cell-targeted 
bispecific (BiKEs) and trispecific (TriKEs) killer engagers have also been developed. 
These proteins elicit potent effector functions by binding target ligands (e.g., CD19, 
CD22, CD30, CD133, HLA class II, EGFR) on one arm and NK receptors on the other. 

An additional innovative approach to direct NK cell activity is genetic reprogramming 
with chimeric antigen receptors (CAR). To date, primary NK cells and the NK92 cell line 
have been engineered with CAR specific for antigens expressed on multiple tumors. 
Encouraging preclinical results warrant further development of this approach. 

This Research Topic welcomes contributions addressing mechanisms of NK-mediated 
activation in response to disease as well as past and contemporary strategies to 
enhance NK mediated reactivity through control of the interactions between NK 
receptors and their ligands.

Citation: Koehl, U., Toubert, A., Pittari, G., eds. (2018). Tailoring NK Cell Receptor- 
Ligand Interactions: An Art in Evolution, 2nd Edition. Lausanne: Frontiers Media.
doi: 10.3389/978-2-88945-663-5
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Editorial on the Research Topic

Tailoring NK Cell Receptor–Ligand Interactions: An Art in Evolution

This research topic is inaugurated by Goh and Huntington, who revise the dynamics of surface recep-
tor expression in murine NK cell subsets at different stages of development (Goh and Huntington). 
Human NK cell development is subsequently addressed. In their work, Post et al. demonstrate that 
the transcription factor gene ZNF683/HOBIT is critical for efficient ex vivo generation of CD56+ 
NK cells, but likely has limited effects on later acquisition of critical NK cell function modulators, 
namely NKG2A and killer immunoglobulin-like receptors (KIRs) (Post et al.).

In human disease, in  vivo selective expansion of phenotypically defined NK  cell subsets may 
affect disease course and response to treatment, a concept underpinned by three manuscripts in this 
collection. Huenecke et al. report an inverse correlation between the incidence of acute graft-versus-
host disease and the frequency of reconstituted CD56 bright NK cells in pediatric patients receiving 
a hematopoietic stem cell transplantation (HCT) (Huenecke et al.). In their review, Pollmann et al. 
describe how HCV and human CMV chronic infection affect relative frequency of specific NK cell 
subsets. The authors specifically revise evidence supporting the concept that genetic background 
and NK subset composition (e.g., expression of KIR2DL3 in a HLA-C1 homozygous background) 
promotes HCV clearance and response to treatment (Pollmann et al.). Further elaboration on the 
importance of NK subpopulation analysis in predicting response to antiviral treatment is provided 
by Gondois-Rey et al., who report an association between NK maturation phenotype and prompt 
viremia decrease in response to combination antiretroviral therapy in HIV-infected individuals 
(Gondois-Rey et al.).

Killer immunoglobulin-like receptor and their interaction with cognate ligands are a major focus 
of this research topic. Heidenreich and Kröger review the effects of NK cell alloreactivity mediated 
by inhibitory and activating KIR in unrelated HCT (Heidenreich and Kröger). Erbe et al. analyze 
the differential impact of alternative HLA-Bw4 antigen groups on the clinical outcome of mAb-
based immunotherapy. They previously observed that individuals with follicular lymphoma and 
neuroblastoma had better clinical outcome following immunotherapy if their HLA/KIR genotypes 
included KIR3DL1 and its cognate HLA-Bw4 ligand. The authors now show that this benefit does not 
extend across all HLA-Bw4 isoforms, but it is only observed for −Bw4 epitopes occurring on HLA-A 
alleles (HLA-A/Bw4) or HLA-B alleles with Thr amino acid substitution at position 80 (HLA-B/Bw4-
T80) (Erbe et al.). Mechanisms of NK tolerance to activating KIR-specific ligands are subsequently 
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addressed in two manuscripts. Carlomagno et  al. report that 
NK cells expressing KIR3DS1 may activate upon recognition of 
a −Bw4 I80+ HLA-B ligand (i.e., HLA-B*51 with Ile at position 
80) only if NK donor is −Bw4 I80−, thus ensuring tolerance to the 
self-antigen (Carlomagno et al.). van der Ploeg et al. show that 
target cell infection with human CMV may potentiate KIR2DS1-
mediated positive signaling in vitro, suggesting temporary breach 
of immunological tolerance to self-HLA-C2 in the presence of 
altered-self (van der Ploeg et  al.). Finally, Maniangou et  al. 
describe a novel next-generation sequencing technology for KIR 
haplotype-wide polymorphism detection, a fast and reliable tool 
for future studies addressing the effect of KIR allelic diversity in 
physiology and disease (Maniangou et al.).

Accumulating evidence indicates that positive signaling trans-
duced by NK  cell-activating receptors is subject to remarkably 
complex regulation involving gene expression, ligand interactions, 
and downstream pathways. Several contributions discuss recent 
insights into the mechanisms underlying NK cell activation plas-
ticity. NKG2D activating receptor and corresponding ligands are 
first addressed in a series of focused review articles. Isernhagen 
et al. address a hot single-nucleotide polymorphism of the MICA 
NKG2D-binding protein (rs1051792), resulting in a Val129Met 
substitution. Functional implications of low-affinity 129Met 
and high-affinity 129Val MICA isoforms on NKG2D-mediated 
activation are discussed (Isernhagen et  al.). Next, Mandelboim 
and Schmiedel illustrate mechanisms of NKG2D ligand down-
regulation as a strategy of herpesvirus evasion from NK-mediated 
immunosurveillance (Schmiedel and Mandelboim). The role of 
NKG2D and MICA on the outcome of kidney transplantation 
is revised by Risti and Bicalho. Killer lectin-like heterodimer 
signaling is addressed next by Pupuleku et  al., who utilized a 
reporter cell system to identify CD94/NKG2C-specific ligands 
on human CMV-infected cells (Pupuleku et al.). It is increasingly 
appreciated that ligand diversity and receptor alternative splice 
variants may potentially result in opposite (i.e., activating versus 
inhibitory) natural cytotoxicity receptor signaling. In their work, 
Pazina et al. discuss these phenomena and their potential impli-
cations in human physiology and disease (Pazina et al.).

The next section of this research topic describes strategies to 
enhance the cytotoxicity of cultured NK cells for adoptive immu-
notherapy. Granzin et al. provide a summary of methods known 
to promote antitumor reactivity of cultured NK cells and discuss 
technical and regulatory aspects relevant to NK-based cellular 
therapy (Granzin et al.). Three studies subsequently address the 
impact of specific soluble cytokines, cytokine combinations, and 
feeder cells on NK  cell in  vitro propagation. Sánchez-Correa 
et  al. describe NKp30-specific upregulation and functional 
reversal of AML-NK  cells following short term in  vitro IL-15 
exposure (Sanchez-Correa et al.). Next, Wagner et al. describe a 
novel NK cell culture protocol based on a two-phase sequential 
incubation with IL-15 (NK cell expansion) and IL-21 (NK cell 
functional boost). By using a rhabdomyosarcoma xenogeneic 
model, the authors show that this protocol may drive propagation 
of NK cells potentially synergizing radiotherapy antitumor effects 
(Wagner et al.). Delso-Vallejo et al. focus on the use of irradiated 
autologous PBMCs as feeders for NK  cell culture. This study 
shows that both feeder–NK physical contact and soluble factors 

are required for efficient NK cell expansion. Of interest, it also 
identifies differential transcriptome signatures for proliferating 
and non-proliferating NK cells (Delso-Vallejo et al.). Strategies 
to increase sensitivity of tumor cells to NK-mediated lysis are also 
addressed. Fischer et  al. show that incubation with the SMAC 
mimetic BV6, a selective antagonist of inhibitor of apoptosis 
proteins, sensitize rhabdomyosarcoma cell lines to NK-mediated 
killing (Fischer et al.). Moreover, Aquino-López et al. describe the 
effect of IFNγ on the expression of NK-specific ligands in a panel 
of tumor cell lines representing variable types of pediatric malig-
nancies. Rationale for these studies derives from the observation 
that NK cells cultured in the presence of IL-15 and IL-21 secrete 
high levels of IFNγ upon target recognition, potentially affecting 
susceptibility to NK lysis (Aquino-López et al.).

Multiple clinical studies have demonstrated the safety and 
feasibility of allogeneic peripheral blood or cord blood NK cell 
adoptive immunotherapy. The potential of adoptively transferred 
allogeneic NK cells as a universal cell therapeutic platform in the 
transplant and non-transplant settings is addressed by Veluchamy 
et  al. (Veluchamy et  al.). An overview of the potential clinical 
applications of cord blood-derived NK cells is subsequently pro-
vided by Sarvaria et al. Tumor immune escape from NK-mediated 
immunosurveillance may be prevented by redirecting specificity 
of NK cell effectors. To this end, chimeric antigen receptor (CAR)-
modified NK cells engaging tumor-associated antigens have been 
developed and currently represent a promising approach for 
clinical translation. Oberschmidt et al. address primary human 
CAR NK cells as an “off-the-shelf immunotherapy” and describe 
CAR signaling in NK  cells (Oberschmidt et  al.). In addition, 
Zhang et  al. review good manufacturing practice-compliant 
procedures for CAR-engineered NK-92 cells redirected against 
ErbB2 (HER2) and other tumor epitopes (Zhang et al.). Specific 
antigen targeting can also be efficiently attained by cross-linking 
NK cells to cancer cells. In an additional manuscript, Veluchamy 
et  al. demonstrate that lytic activity of cord blood-derived 
NK cells toward EGFR+ colon and cervical cancer cells is strongly 
enhanced by the mAb cetuximab (Veluchamy et al.). Kloess et al. 
show that an increased NK cell cytotoxicity leading to B-cell pre-
cursor leukemia elimination can be achieved by dual-specific tar-
geting via the trispecific immunoligand ULBP2-aCD19-aCD33 
(Kloess et al.). Further information on NK-specific dual targeting 
with triple-specific antibodies to prevent escape of antigen loss 
variants is provided by Vyas et  al. Subsequently, Messaoudene 
et  al. address the potential of NK-based therapy as a tool to 
enhance potency and prolong efficacy of novel antitumor strate-
gies (Messaoudene et al.). In a specular manner, contemporary 
therapeutic interventions have the potential to counter tumor-
induced NK cell immunosuppression. These effects are covered 
by Pittari et al., who specifically address the role of NK cells in the 
context of multiple myeloma (Pittari et al.). To date, preclinical 
evaluation of NK cell-based therapies in mouse models are chal-
lenged by the inherent problem that reagents designed to trigger 
human immune cells do not react with murine NK cells and by 
the fact that human NK cell infusions in mice do not provide a 
human immune cell compartment. Here, Lopez-Lastra and Di 
Santo describe a Flt3-deficient mouse model allowing for specific 
enhancement of human NK hematopoiesis via exogenous human 
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Flt3 ligand-mediated dendritic cell expansion (Lopez-Lastra and 
Di Santo). Finally, Hofer and Koehl report some future NK cell-
based strategies developed in the context of the European Union 
ITN NATURIMMUN network and published ahead in Frontiers 
in Immunology (Hofer and Koehl).
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Natural killer (NK) cells are effector lymphocytes of the innate immune system that are 
known for their ability to kill transformed and virus-infected cells. NK cells originate 
from hematopoietic stem cells in the bone marrow, and studies on mouse models have 
revealed that NK cell development is a complex, yet tightly regulated process, which is 
dependent on both intrinsic and extrinsic factors. The development of NK cells can be 
broadly categorized into two phases: lineage commitment and maturation. Efforts to 
better define the developmental framework of NK cells have led to the identification of 
several murine NK progenitor populations and mature NK cell subsets, each defined 
by a varied set of cell surface markers. Nevertheless, the relationship between some 
of these NK cell subsets remains to be determined. The classical approach to studying 
both NK cell development and function is to identify the transcription factors involved 
and elucidate the mechanistic action of each transcription factor. In this regard, recent 
studies have provided further insight into the mechanisms by which transcription factors, 
such as ID2, FOXO1, Kruppel-like factor 2, and GATA-binding protein 3 regulate various 
aspects of NK cell biology. It is also becoming evident that the biology of NK cells is 
not only transcriptionally regulated but also determined by epigenetic alterations and 
posttranscriptional regulation of gene expression by microRNAs. This review summa-
rizes recent progress made in NK development, focusing primarily on transcriptional 
regulators and their mechanistic actions.

Keywords: NK cell, transcription factors, ontogeny, maturation, homeostasis, iL-15

iNTRODUCTiON TO NATURAL KiLLeR (NK) CeLLS

Natural killer cells in mice were first described in 1975 (1–3), following further investigation into 
splenocytes that were able to kill tumor and virus-infected cells without prior sensitization (4–6). 
NK cells exert their cytotoxic effect on target cells by inducing apoptosis. Upon formation of an 
immunological synapse with the target cell, NK cells become activated and release cytolytic granules 
containing perforin and granzymes (7–9). Perforin forms pores in the membrane of target cells, 
thereby allowing granzymes to enter the cell, activate caspases, and initiate apoptosis (8). In a similar 
process known as antibody-dependent cell cytotoxicity, NK cells are able to release cytolytic granules 
and initiate apoptosis in opsonized cells, following recognition of the opsonized cells via low-affinity 
Fc receptors (CD16) expressed on the surface of NK cells (10). NK cells can also initiate apoptosis 
in target cells through the respective engagement of Fas ligands and tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) on their cell surface with Fas and TRAIL receptors on the target 
cells (11, 12). In addition to inducing apoptosis, NK cells can indirectly mediate the clearance of 
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target cells by producing pro-inflammatory cytokines [e.g., 
interferon-gamma (IFN-γ)], which boost the innate response and 
recruit adaptive immune responses (13–15).

The surface markers that are commonly used to identify 
murine NK cells by flow cytometry vary depending on the mouse 
strain. C57B/6 and SJL mice express the surface markers NK1.1, 
NKp46, and CD49b, but not CD3, which is a surface marker of T 
cells. CD3 is used to exclude contaminating T cell subsets, such 
as natural killer T cells and NK-like T cells, that, respectively, 
express NK1.1 and NKp46 (16). As for other mouse strains, such 
as BALB/c, NK cells are identified with only CD49b and NKp46 
as these strains possess allelic variants of NK1.1 that cannot be 
detected with the widely used PK136 antibody (16, 17).

MURiNe NK CeLL DeveLOPMeNT

Murine NK cells can be found in all lymphoid organs and many 
non-lymphoid tissues, such as salivary glands, liver, and kidney. 
The more recent discovery of related innate lymphoid cells 
(ILCs) places NK cells within this family, specifically in the IL-15 
dependent, IFN-γ producing group 1 ILCs. ILCs are lymphoid 
cells that lack rearranged antigen receptors and are dependent 
on the transcription factors inhibitor of DNA-binding 2 (ID2) 
and nuclear factor, interleukin 3 regulated (NFIL3) for their 
development. While NK cells are phenotypically heterogene-
ous and previously categorized based on their tissue of origin 
or location (bone marrow, thymus, fetal liver, adult liver), we 
appreciate that some of this heterogeneity stems from NK cells 
(Eomes+) and other ILC1s (Eomes−) being viewed as the same 
cell type. As much of our current understanding of murine NK 
cell development is built upon studies on bone marrow-derived 
NK cells [referred to here as conventional NK (cNK) cells], which 
represent the majority of NK cells within the body, this review 
will focus primarily on progress made in our understanding of 
cNK development.

cNK Development in the Bone  
Marrow—Lineage Commitment
Conventional NK cells develop from HSCs in the bone marrow, 
through a sequential order of intermediate progenitors. The first 
progenitor to arise from HSCs is the lymphoid-primed multipo-
tent progenitor, which then gives rise to the common lymphoid 
progenitor (CLP) (18). The earliest NK lineage committed pro-
genitor to arise from CLPs is known as pre-pro NK (19), which 
was subdivided into pre-pro A and pre-pro B (19, 20). Differing 
only in c-kit (CD117) expression, the relationship between pre-
pro A and B remains unclear and requires further investigation. 
Pre-pro NK cells then differentiate into the NK progenitor (NKP) 
(19, 21). NKPs give rise to immature NK (iNK) cells that either 
undergo further development within the bone marrow (22) or 
enter the periphery and develop into mature NK cells (23, 24).

As the early stages of murine NK development are still poorly 
defined, the developmental pathway outlined above is by no means 
the definitive model. Heterogeneity within existing progenitor 
populations, along with the discovery of new distinguishing cell 
markers, have led to the identification of new sub-populations 

and, therefore, refinements to the developmental pathway of 
NK cells. For instance, the common innate lymphoid progenitor 
(CILP) was found to possess the capacity to give rise to all line-
ages within the ILC family, of which NK cells are the founding 
member, but not B and T cells, thus making it an earlier progeni-
tor than the pre-pro NK (25). As the CILP is expresses α4β7, it is 
also alternatively referred to as the α-lymphoid precursor (αLP) 
(25). However, it has been postulated that there could be an even 
earlier progenitor population, as there were only about 50 CILPs 
per mice, and only 2.5% of CILPs efficiently developed into all 
ILC lineages (25).

The early innate lymphoid progenitor (EILP) is proposed to 
be the earliest known progenitor for ILCs and was identified 
using a TCF1 (T-cell factor 1, encoded by Tcf7) transgenic mouse 
strain that expresses a green fluorescent protein reporter (26). 
Like CILPs, EILPs give rise to all ILC lineages both in vivo and 
in vitro, albeit more efficiently (26). Nonetheless, EILPs have not 
been shown to differentiate into CILPs and hence, the relation-
ship between these two progenitors remains unresolved. As most 
of the surface markers used to identify the EILP and CILP were 
different, a detailed comparison of the surface marker phenotype 
between the two progenitors may also provide further insight.

The discovery of pre–pro NKPs was the outcome of efforts to 
better understand why only 8–40% of NKPs had solely NK cell 
potential (19). Similar studies resulted in the identification of a 
pre-NKP population that preceded a “streamlined” population 
of NKPs known as refined-NKP (rNKP) (27). Even though many 
parallels have been drawn between the pre-NKP and pre-pro 
NK, likewise with NKP and rNKP, it remains to be determined 
if these populations are exactly identical (20). A summary of the 
surface markers that are expressed on the various progenitors are 
provided in Table 1.

cNK Development in the Periphery—NK 
Cell Maturation
Natural killer cell maturation is a process by which lineage com-
mitted NK cells acquire their full effector functions. This process 
is also accompanied by the expression of different cell surface 
markers, which have helped in the identification of different NK 
cell maturation subsets. At present, most studies use CD11b and 
CD27 to divide cNK cells into three maturation subsets: immature 
(Imm), mature 1 (M1), and mature 2 (M2). Low (lo) and high (hi) 
CD11b expression divides cNK cells into immature and mature 
subsets, respectively (22). Heterogeneity in CD27 expression 
further delineates the mature NK compartment into CD27hi and 
CD27lo subsets, which has also been referred to as M1 and M2 NK 
subsets (24, 28). CD27 and CD11b expressing M1 NK cells have 
also been termed double-positive NK cells (24). The three subsets 
differ in proliferative and cytotoxic capacity. In general, NK cells 
lose proliferative potential and produce less cytokine, but become 
more cytotoxic against target cells as they mature (22, 24, 28).

Apart from CD27 and CD11b, markers such as KLRG1 
(23,  29), CD62L (30), MCAM (31), CD49b (21), CD43 (32, 
33), Ly6C (34), DNAM1 (35), and CD160 (36) have further 
dissected maturing NK cells into various phenotypic subsets 
(37, 38). NK cells that express CD160 exhibit enhanced IFN-γ 
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TABLe 1 | Surface markers expressed by different natural killer (NK) cell populations reported in the literature.

Surface markers Common 
lymphoid 
progenitor

early innate 
lymphoid 
progenitor

Common 
innate 
lymphoid 
progenitor 
(CiLP)/αLP

Pre–
pro  
A NK

Pre–
pro  
B NK

NK 
progenitor 
(NKP)

pre-
NKP

refined-
NKP 
(rNKP)

imm 
NK

M1 
NK

M2 NK

NK1.1 − − − − − − − − + + +
CD11b (MAC-1) − − − − − − − − − + +
CD127 (IL-7Rα) hi lo hi hi hi hi hi int int lo lo

CD117 (c-kit) int lo int int lo lo int lo int lo lo

Sca-1 int − int + + + + + − − −
CD49b − − − − − − − − − + +
CD27 + ND + + + + + + + + −
CD244 (2B4) + ND + + + + + + + + +
CD25 (IL-2Rα) − − − ND ND − − + − − −
CD122 (IL-2Rβ) − − − − − + − + + + +
CD132 (IL-2Rγc) + + + + + + + + + + +
CD314 (NKG2D) − − − + + + + + + + +
CD226 (DNAM1) − ND int ND ND + ND ND hi int lo

CD279 (PD1) − ND −/+ ND ND hi ND ND − − −
CD43 (Leukosialin) − − − − − − − − lo int hi

CD335 (NKp46) − − − − − − − − + + +
CD253 (tumor necrosis factor-related 
apoptosis-inducing ligand)

− ND ND ND ND ND ND ND int lo lo

KLRG1 − ND ND − − − ND ND − − +
α4β7 (LPAM) + + + ND ND − ND ND − − −
Ly49s − − − − − − − − −/+ −/+ −/+
CD94-NKG2 − ND ND − − − − − + + +
CD62L (L-selectin) − ND ND − − − ND ND −/+ + +
CD146 (MCAM) − ND ND − − − ND ND lo int hi

CXCR3 − ND ND − − + ND ND hi int lo

CXCR6 − − + + + + ND ND − − −
Ly6C − ND ND − − − ND ND lo int hi
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production (36), while the opposite is true for mature NK cells 
that express higher levels of Ly6C (34), and KLRG1 (39). Like 
Ly6C, MCAM is also more highly expressed on mature NK 
cells, although MCAM+ and MCAM− NK cells differ in their 
ability to kill target cells rather than cytokine production (31). 
Interestingly, the expression of DNAM1 appears to be independ-
ent of NK cell maturation that is defined by CD27 and CD11b, 
as DNAM-1+ and DNAM-1− NK cells were observed in both the 
immature and mature NK compartments (35). As the correla-
tion between these markers have not been studied in detail, the 
relationships between these phenotypic subsets remain unclear 
and warrants further investigation. A summary of the surface 
markers that are expressed on the various mature NK cell subsets 
are provided in Table 1.

TRANSCRiPTiONAL ReGULATiON OF 
MURiNe cNK CeLL DeveLOPMeNT

Transcription factors control gene expression by either activating 
or repressing gene transcription. This is achieved by first binding 
to specific DNA sequences in the enhancer or promoter regions 

that lay upstream of target genes, then promoting or blocking 
the recruitment of RNA polymerases that transcribe those genes 
(40). In terms of murine NK cell development, several TFs have 
been shown to play crucial roles in regulating NK cell lineage 
specification, NK cell maturation, or even both. Conventional 
NK cell development occurs mostly in the bone marrow, under 
the coordinated control of the TFs and cytokines. TFs like ID2, 
NFIL3, T-box brain protein 2 (EOMES), and T-box protein 21 
(TBET) to name a few, fall into the category of intrinsic factors 
that regulate NK cell development. A summary of the tran-
scription factors that are implicated in NK cell development is 
provided in Table 2.

Transcription Factors Regulating NK Cell 
Lineage Specification
The TFs that are involved in regulating NK cell lineage specification 
include ETS proto-oncogene 1 (ETS1), NFIL3, and TCF1. ETS1 
is a key regulator of early NK cell development as ETS1-deficient 
mice have normal CLP numbers but lack NK cells (45). Further 
investigation into the impact of ETS1 deficiency on NK lineage 
specification revealed a reduction in pre-pro NK, pre-NKP and 
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TABLe 2 | Transcription factors implicated in natural killer (NK) cell development and function.

Phenotype of germline (KO) or conditional (cKO) deficiency

Transcription factor 
(gene symbol)

Bone marrow 
NK precursor #

NK cells # iL-15 
responsiveness

interferon-
gamma (iFN-γ) 
production/
degranulation

Cytotoxicity (tumor/target 
cells)

Ikaros family zinc finger 3, 
Aiolos (Ikzf3)

ND KO: normal; accumulation of immature 
NKs (iNKs)

KO: 
hyperresponsive to 
IL-2/anti-IL-2 mAB 
complex in vitro

KO: slightly 
impaired IFN-γ 
production

KO: normal in vitro killing, 
augmented in vivo killing

B lymphocyte-induced 
maturation protein 1 
(Prdm1)

ND KO: reduced in spleen, liver, and lung; 
accumulation in bone marrow and lymph 
nodes; loss of mNKs

KO: 
hyperresponsive

KO: normal IFN-γ 
production

KO: normal in vitro killing, 
augmented in vivo killing

T-box brain protein 2, 
EOMES (eomesodermin)

ND cKO: reduced; loss of mNKs ND cKO: slightly 
impaired IFN-γ 
production

ND

ETS proto-oncogene 1, 
ETS1 (Ets1)

KO: lack pre-NKPs 
and rNKPs

KO: reduced KO: 
hyperresponsive

ND KO: impaired in vitro killing 
and degranulation

Forkhead box protein O1, 
FOXO1 (Foxo1)

cKO: normal  
NKP (41)

cKO: reduced; loss of mNKs (41) cKO: 
normal; accumulation of mNKs (42)

ND cKO: augmented 
IFN-γ production 
(42)

cKO: augmented in vitro and 
in vivo killing (42)

GATA-binding protein 3 
(Gata3)

ND cKO: reduced in bone marrow; 
accumulation in spleen and liver, 
systemic accumulation of iNKs

ND cKO: impaired 
IFN-γ production; 
normal 
degranulation

cKO: normal in vitro killing

Inhibitor of DNA-binding 2, 
ID2 (Id2)

KO: normal NKP KO: reduced; loss of mNKs; cKO: 
systemic reduction

cKO: 
hyporesponsive

KO: impaired IFN-γ 
production

KO: impaired in vitro killing

cKO: normal IFN-γ 
production

cKO: impaired in vivo killing

Interferon Regulatory Factor 
2 (Irf2)

ND KO: reduced; loss of mNKs KO: 
hyporesponsive

KO: impaired IFN-γ 
production

KO: normal in vitro killing (43); 
impaired in vitro killing (44)

Kruppel-like factor 2 (Klf2) ND cKO: reduced in spleen, blood, and lung; 
accumulation in bone marow and liver; 
loss of mNKs

ND ND ND

Myeloid elf-1-like factor 
(Mef)

ND KO: reduced ND KO: impaired IFN-γ 
production

KO: impaired in vitro killing

Nuclear factor, interleukin 3 
regulated, NFIL3 (E4bp4)

KO: lack CILP and 
NKPs, pre-NKPs 
and rNKPs

KO: reduced ND ND ND

T-box protein 21, TBET 
(Tbx21)

ND cKO and KO: reduced in spleen and 
liver; accumulation in bone marrow; loss 
of mNKs

ND KO: impaired IFN-γ 
production

KO: impaired in vitro killing

T-cell-specific transcription 
factor 1, TCF1 (Tcf7)

KO: lack NKPs KO: reduced in bone marrow; normal in 
periphery

ND ND ND

Thymocyte selection-
associated high mobility 
group box protein (Tox)

KO: normal NKP KO: reduced; loss of mNKs ND ND KO: impaired in vivo killing

Zinc finger E-box binding 
homeobox 2 (Zeb2)

ND KO: reduced in periphery; normal in bone 
marrow; loss of mNKs

cKO: 
hyporesponsive

cKO: normal to 
slightly augmented 
IFN-γ production

cKO: impaired killing in vivo
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rNKP, and mature NK cell numbers, thereby supporting the role 
of ETS1 in NK cell lineage specification (46). ETS1 is believed 
to impact early NK cell development by regulating the expres-
sion of ID2 and TBET, which are also important TFs for NK cell 
development (46).

TCF1 and NFIL3 are also key regulators of NK cell lineage 
specification, as marked reductions in pre-pro NK, pre-NKP, 
and rNKP numbers were observed within the bone marrow 
of NFIL3- and TCF1-deficient mice, although only the former 
mouse strain exhibited an additional reduction in CILP numbers 
(25, 26, 47, 48). NFIL3 appears to be dispensable for mature NK 
cell as their numbers remained unchanged after its deletion in 
mature NKp46+ NK cells (49). Despite reduced progenitor and 
mature NK cell numbers in the bone marrow of TCF1-deficient 
mice, mature NK cells have been found in the periphery at fre-
quencies comparable to littermate controls (26, 50). As most NK 
cells are derived from bone marrow precursors at steady state, an 
investigation into the source of NK cells in TCF1-deficient mice 
might perhaps shed some light on alternative pathways of NK 
development. The mechanism by which TCF1 mediates NK line-
age specification remains poorly understood. However, TCF1 has 
been shown to regulate T-lineage specification by promoting the 
expression of genes, such as Gata3, Bcl11b, Il2ra, and Cd3e, that 
are critical for T cell development (51). Similarly, the mechanism 
by which NFIL3 specifically mediates lineage specification in NK 
cells remains unclear, although NFIL3 was found to promote the 
expression of ID2 and EOMES (47), transcription factors known 
to be involved in the later stages of NK cell development (52, 53). 
The role of NFIL3 in ID2 expression remains to be clarified given 
a contradicting report that ID2 expression is normal in NK cells 
lacking NFIL3 (48).

The role of ID2 in the lineage specification of NK cells is 
unclear, due to contradicting reports following deletion of the 
encoding gene Id2. While Yokota et  al. (54). reported poor 
reconstitution of NK cells following bone marrow transplanta-
tion, implying a defect early on during NK cell development, 
Boos et al. (55) did not observe any reduction in NKP and iNK 
cell numbers. A recent demonstration of low ID2 levels in CLPs 
but consistently high levels in pre-pro NK, NKP, and immature 
and mature NK cells lends further support for the hypothesis 
that ID2 could indeed be important for NK lineage specification/
maintenance (53). Interestingly, ID2 has been found to suppress 
T and B cell development through heterodimer formation with 
the E-box protein E2A (55–57), although how the interaction 
specifically promotes commitment to the NK cell lineage 
remains unknown.

Transcription Factors Regulating  
NK Cell Maturation
A greater number of TFs have been shown to play a role in NK 
cell maturation. These factors include ID2, TBET, EOMES, Zinc 
finger E-box-binding homeobox 2 (ZEB2), Thymocyte selection-
associated high mobility group box (TOX), IKAROS family zinc 
finger 3 (AIOLOS), Interferon regulatory factor 2 (IRF2), B lym-
phocyte-induced maturation protein 1 (BLIMP1), Forkhead box 
O1 (FOXO1), Kruppel-like factor 2 (KLF2), and GATA-binding 

protein 3 (GATA3). An overview of the expression these TFs 
during NK cell maturation is presented in Figure 1.

The role of ID2 in NK cell maturation is better understood 
than its role in early NK cell development. A recent study pro-
vided additional insight into the underlying mechanism of ID2 
by demonstrating that it modulates the expression of E2A target 
genes (i.e., Socs3, Tcf7, and Cxcr5) by titrating E-protein activity, 
thereby controlling the responsiveness of NK cells to IL-15 that is 
crucial for survival (53, 58, 59).

TBET and EOMES are members of the T-box family of tran-
scription factors that appear to regulate distinct checkpoints in 
NK cell maturation. TBET- and EOMES-deficient mice exhibited 
a similar phenotype where NK cell numbers were reduced in the 
all lymphoid tissues (52, 60, 61), except in the bone marrow of the 
former where there was an increase in NK cell numbers (60, 61). 
Detailed analyses of the bone marrow from TBET-deficient 
mice revealed that the increase in NK cell numbers was due to 
an accumulation of iNK cells, which the authors attributed to a 
developmental block (60). However, the possibility of a defect in 
NK cell trafficking remains unaddressed, given that TBET plays a 
role in the expression of sphigosine-1-phosphate receptor 5 (S1P5) 
that is required for NK cell egression from the bone marrow (62). 
Nonetheless, both TFs are crucial for maturation, as mice that 
are deficient for both have a systemic lack of NK cells despite 
normal progenitor numbers (52, 61). As TBET and EOMES are, 
respectively, required by immature and mature NK cells, the two 
TFs are believed to function in a sequential manner for NK cell 
maturation (52, 60). Quite fittingly, both TBET and EOMES were 
shown to be essential for IL-15 responsiveness by enforcing high 
CD122 expression, with Il2rb (gene encoding CD122) being a 
direct target of EOMES (63).

Similar to that of TBET-deficient mice, NK cell numbers in the 
bone marrow of mice deficient for ZEB2 or BLIMP1 were higher 
than littermate controls (64, 65). The unusual accumulation of 
NK cells within the bone marrow of ZEB2-deficient mice was 
due to reduced S1P5 expression (64), while enhanced prolifera-
tion was found to be the underlying cause in BLIMP1-deficient 
mice (65). Profound losses in terminally mature NK cells were 
observed on closer examination of the bone marrow NK cells 
from both strains (64, 65). The lack of mature NK cells in ZEB2-
deficient was further attributed to poor responsiveness to IL-15, 
which resulted in poor survival (64).

The lack of mature NK cells was reported in mice that were 
deficient for TOX (66), AIOLOS (67), IRF2 (43, 44), KLF2 (68), 
or GATA3 (69, 70). A similar lack of mature NK cells in FOXO1-
deficient mice was reported most recently (41), although this 
remains to be clarified against an earlier study, which instead 
found an accumulation of mature NK cells (42). Interestingly, 
the iNK cells in AIOLOS-deficient mice retained their expres-
sion of KLRG1, which is typically expressed on terminally 
mature NK cells (67). NK cells from IRF2-deficient mice have 
been shown to undergo accelerated apoptosis, indicating a role 
for IRF2 in regulating NK cell survival as well as maturation 
(43). Unlike the foregoing TFs, the temporal requirement for 
myeloid elf-1-like factor (MEF) by maturing NK cells has not 
been determined, as only an overall reduction in NK cell num-
bers was reported (71).
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FOXO1 was recently found to be directly involved in the 
initiation of autophagy in iNK cells, most likely via cytosolic 
interactions between FOXO1 and the autophagy protein ATG7 
(41). KLF2 appears to regulate NK cell maturation via a different 
mechanism, influencing the expression of homing receptors such 
as CD62L (i.e., L-selectin) on maturing NK cells, thereby dictating 
their access to IL-15 signaling that is essential for survival (68). 
Current knowledge of how GATA3 regulates NK cell maturation 
is limited to disturbances in expression of the TFs ID2, TBET, 
and NFIL3 (70). Nevertheless, GATA3 has also been shown to 
regulate NK cell egression from the bone marrow in a CXCR4-
dependent manner, and also NK cell proliferation in response to 
IL-15 via CD25 expression (70).

Transcription Factors Regulating  
NK Cell effector Function
Natural killer cell effector function is also regulated by many of 
the TFs outlined above. FOXO1 has also been proposed to nega-
tively regulate NK cell effector function, as its absence was cor-
related with augmented IFN-γ production in response to murine 
cytomegalovirus (MCMV) infections and anti-metastatic activity 
against the B16F10 mouse melanoma cell line (42). Augmented 
anti-metastatic activity against the same melanoma cell line also 
was reported in mice deficient for either BLIMP1 or AIOLOS, 
despite the lack of any significant impact on cytokine production 
(65, 67). On the other hand, MEF is required for normal cytokine 

production and cytotoxicity, as it positively regulates IFN-γ and 
perforin expression, which corresponds to poorer cytotoxicity 
against tumor cell targets in MEF-deficient mice (71). Normal 
cytotoxicity but reduced IFN-γ production has been observed 
in IRF2-deficient mice and mice specifically lacking GATA3 in 
NK cells (43, 70). NK cell function is also regulated by TBET 
and EOMES, as TBET has been shown to bind to the regulatory 
regions of genes encoding granzyme B and perforin, while the 
expression of EOMES as NK cells mature is associated with 
increased transcription of mRNA (52, 60).

POSTTRANSCRiPTiONAL ReGULATiON 
OF NK CeLL DeveLOPMeNT BY 
microRNAs (miRs)

microRNAs are short non-coding RNAs (19–26 nt) that modulate 
gene expression at a posttranscriptional level. Recent studies have 
shown that miRs are also important for NK cell development and 
function. Using a Dicer1-deficient mouse model that abrogates 
miR biogenesis in NK cells, Degouve et al. (72). showed that a 
10-fold global reduction in miR expression resulted in reduced 
NK cell numbers, aberrant NK cell maturation, along with 
attenuated IFN-γ production and cytotoxicity against target cells. 
Given that IL-15 signaling via the STAT5 and mTOR pathways 
was significantly affected, it was proposed that miRs regulate NK 
cell survival by modulating IL-15 sensitivity (72). Although it 
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remains unclear as to whether NK cell survival is dependent on 
specific miRs, miR-155 and miR-15/16 are unlikely candidates 
since mice that are deficient for either miR have normal NK cell 
numbers (73, 74).

Rather than NK cell survival, mIR-155 and miR15/16 appear 
to be essential for normal NK cell maturation, as NK cells 
lacking miR-15/16 are unable to fully mature into M2 NK cells 
(74), much like Dicer1-deficient mice, while miR-155-deficient 
NK cells undergo accelerated maturation (73). In contrast to 
the accumulation of M2 NK cells in miR-155 deficient mice, 
an accumulation of Imm NK cells was observed in mice that 
over-expressed miR-155, thereby providing additional evidence 
for the role of miR-155 in NK cell maturation (75). More impor-
tantly, the opposing effect that miR-15/16 and miR-155 have on 
NK cell maturation highlights the pleiotropic effects of miRs and 
suggests that there is still much to learn about the role of miRs 
in NK cell biology, particularly about redundancies between 
miRs. Nevertheless, it has been shown that miR-15/16 controls 
NK maturation by directly regulating levels of the transcription 
factor MYB, since the overexpression of miR-15/16 or MYB defi-
ciency in miR-15/16-deficient NK cells rescues the maturation 
defect (74).

The mechanistic action of miR-155 can be appreciated in the 
context of NK cell proliferation and homeostasis, as NK cells 
deficient for miR-155 were unable to proliferate in response 
to MCMV infections and were also outcompeted by wild-type 
NK cells when cotransferred into homeostatic or lymphopenic 
environments (73). This dependency on miR-155 for prolifera-
tion under both homeostatic and infectious conditions appears 
to be mediated through the direct suppression of its target genes 
suppressor of cytokine signaling 1 (Socs1) and pro-apoptotic 
molecule phorbol-12-myristate-13-acetate-induced protein 1 
(Pmaip1; encoding NOXA) (73). Interestingly, an accumulation 
of NK cells was observed in transgenic mice that over-expressed 
miR-155, lending further support for the regulatory role of miR-
155 in NK cell proliferation (75).

ePiGeNeTiC ReGULATiON OF NK CeLL 
DeveLOPMeNT

Histone modifications have previously been shown to be essential 
events in B and T cell development (76, 77). Recent studies have 
demonstrated that defects in histone modification also impacts 
NK cell development with respect to lineage commitment 
(78) and maturation (79). Mice deficient for enhancer of zeste 
homolog 2 (EZH2), a H3K27 methyltransferase, were observed 
to have higher numbers NKPs and NK cells. Microarray analysis 
revealed that the difference was associated with the upregulation 
of genes essential for NK cell development and function, thereby 
resulting in earlier lineage commitment and enhanced survival of 
NKPs (78). This increase in NK cell production was also observed 
when hematopoietic progenitors from human and wild-type 
mice were treated in vitro with EZH2 inhibitors (78).

A different type of histone modification, deubiquitination, 
also appears to be involved in the epigenetic regulation of NK 

cell maturation. The histone deubiquitinase, MYSM1 (Myb-like, 
SWIRM, and MPN domains-containing protein 1), was found to 
regulate NK cell maturation as MYSM1-deficient mice possessed 
fewer NK cells that were mostly immature (79). Given that no 
defects were observed in the NKP compartment, MYSM1 was 
proposed to be uniquely required during NK cell maturation. 
Mechanistically, MYSM1 regulates NK cell maturation by 
binding directly to the Id2 gene locus, as revealed by chromatin 
immunoprecipitation, thereby maintaining expression of the TF 
(79). However, the mechanism by which MYSM1 is selectively 
directed to the Id2 gene locus remains unclear and thus requires 
further investigation.

CONCLUSiON

The discovery of new members within the ILC family has rekin-
dled efforts to better understand the development of NK cells, 
the founding member of the ILC family. Many of the recent 
breakthroughs made in the transcriptional regulation of NK cell 
development have been aided by key tools and techniques such 
as single cell RNA-seq, in vitro differentiation conditions, tran-
scription factor reporter mice and conditional alleles and lineage 
specific Cre-expressing mouse strains. As these techniques and 
tools become commonplace in the field of NK cell biology, our 
understanding of the temporal–spatial transcriptional regulation 
of NK cell development and the key target genes that govern NK 
cell fate, homeostasis, and function becomes increasingly more 
complete. Recent studies have advanced our understanding of 
how individual TFs may be regulating NK cell commitment and 
NK cell lineage maintenance. However, how these various TFs 
form a transcriptional network and act in concert to ensure NK 
cell homeostasis remains unclear.

On a translational front, defining the extrinsic cues and 
TFs that regulate NK cell maturation, proliferation, cytokine 
responsiveness, and priming of effector functions represents an 
area of therapeutic interest. Proteins that negatively regulate NK 
cell maturation and fitness are tangible drug targets in cancer 
immunotherapy as recently evidenced by our group. Building on 
these potential targets will increase the likelihood of developing 
specific inhibitors for clinical translation.
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We identified ZNF683/HOBIT as the most highly upregulated transcription factor gene 
during ex vivo differentiation of human CD34+ cord blood progenitor cells to CD56+ 
natural killer (NK) cells. ZNF683/HOBIT mRNA was preferentially expressed in NK cells 
compared to other human peripheral blood lymphocytes and monocytes. During ex vivo 
differentiation, ZNF683/HOBIT mRNA started to increase shortly after addition of IL-15 
and further accumulated in parallel to the generation of CD56+ NK cells. shRNA-mediated 
knockdown of ZNF683/HOBIT resulted in a substantial reduction of CD56−CD14− NK-cell 
progenitors and the following generation of CD56+ NK cells was largely abrogated. The 
few CD56+ NK cells, which escaped the developmental inhibition in the ZNF683/HOBIT 
knockdown cultures, displayed normal levels of NKG2A and KIR receptors. Functional 
analyses of these cells showed no differences in degranulation capacity from control cul-
tures. However, the proportion of IFN-γ-producing cells appeared to be increased upon 
ZNF683/HOBIT knockdown. These results indicate a key role of ZNF683/HOBIT for the 
differentiation of the human NK-cell lineage and further suggest a potential negative 
control on IFN-γ production in more mature human NK cells.

Keywords: ZnF683/hOBiT, natural killer cells, cD56, ex vivo differentiation, nK-cell development

inTrODUcTiOn

Natural killer (NK) cells are the third largest group of lymphocytes in peripheral blood and an 
important component of the first line of immune defense. They act against a wide spectrum of 
virally infected and neoplastic cells by direct killing of these cells or production of cytokines, 
such as IFN-γ. As components of the innate part of the immune system, they display immediate 
reactivity and do not require prior sensitization (1, 2). This traditional characterization of NK cells 
has been expanded over the recent years as they have been described to be able to incorporate 
features previously thought to be restricted to the adaptive immune system, such as interaction with 
dendritic cells and immunological memory (3–5). In contrast to the adaptive T and B lymphocytes, 
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NK cells lack somatically recombined and clonally distributed 
antigen receptors, and their activity is controlled by a varied 
repertoire of germline-encoded inhibitory and activating recep-
tors (6). Recently, additional tissue-resident subsets of innate 
lymphoid cells (ILCs), distinct from NK cells, became apparent 
and significantly expanded the complexity of innate lymphoid 
lineages. Whereas conventional NK  cells resemble cytotoxic 
T lymphocytes in many aspects, ILCs 1–3 rather mirror T helper- 
like cells (7).

Based on currently available data, the relationship between the 
different innate and adaptive lymphoid lineages is reflected by 
their initial common differentiation from the hematopoietic stem 
cell (HSC) and in similarities of their transcriptional networks. 
According to the current hypothesis, the HSC develops through a 
multipotent progenitor to a common lymphoid progenitor (CLP) 
(8). This CLP can further differentiate into adaptive lymphocytes 
under the control of E-proteins, whereas the development of 
innate lymphocytes requires antagonism of E-proteins and likely 
proceeds through a common innate lymphoid progenitor (9, 10).  
The following pre-NK progenitor (NKP) stage restricts the 
differentiating cells to the NK lineage and develops into NKP 
and subsequently into immature NK (iNK) cells. The final step 
involves maturation from the iNK  cells to mature NK (mNK) 
cells, both stages expressing the NK marker CD56 (11, 12).

Substantial data have been obtained to identify key transcrip-
tion factors essential for the differentiation of adaptive and innate 
lymphocytes. A common theme appears to be the mutual inhibition 
of factors determining different lineages. For example, EBF strongly 
inhibits ID2 expression, thereby allowing E2A to function during 
B-cell development. In addition, EBF and PAX5 support B-cell dif-
ferentiation by repressing additional critical regulators of T-cell and 
ILC differentiation, such as NOTCH1, GATA-3, and TCF-1 (8, 9).  
Conversely, all ILCs including NK  cells are dependent for their 
diff erentiation on ID2 that heterodimerizes with E proteins and 
neutralizes their activity (10). Subsequently, a complex network 
of transcription factors guides the cells through the distinct steps 
of NK-cell differentiation (13). The most important transcription 
factors for the early stages of murine NK-cell development include 
STAT5, two ETS family members (PU.1 and ETS-1), and NFIL3 
(also known as E4BP4) (14–17). The maturation stage from iNK 
to mNK cells and NK cells’ function are coordinated by BLIMP-1, 
T-BET, EOMES, and MEF among others (18–20). Compared to the 
data obtained from the murine system, experimental evidence on 
transcription factors governing human NK-cell development is far 
less available. This has been partially caused by the lack of an easy 
and robust system to mimic human NK-cell differentiation from 
HSC ex vivo. Of the few transcription factors described so far, TOX1 
and 2 are important in the early stages, T-BET and BLIMP-1 both 
play critical roles in the later phases and effector functions of human 
NK cells (21–24). From the currently available data, it appears that 
the precise function and sequential order of transcription factors 
directing NK-cell development may to some extent differ between 
mice and humans.

Due to their important role in immunosurveillance, NK cells 
and their modulation are currently being explored as a therapeu-
tic approach in a wide variety of cancers, autoimmune diseases, 
allergies, and transplantation (1, 25). These attempts have led 

to the development of methods for the specific modulation of 
endogenous NK cells as well as for ex vivo amplification of NK cells 
from patients or allogeneic donors for NK cell-infusion therapies. 
The obtained results show clear benefits of NK cell-based thera-
pies, in comparison to T  lymphocyte-based, including a good 
tolerance of allogeneic NK cells by the patients and the lack of a 
graft-versus-host disease (1, 25). Different strategies are exploited 
to obtain a sufficient number of NK cells for infusion therapies, 
including cytokine- and/or feeder cell-mediated expansion of 
peripheral blood NK cells as well as ex vivo differentiation from 
cord or peripheral blood-derived HSC (26, 27). In this regard, 
we have previously analyzed a feeder cell-free ex vivo system to 
generate large-scale therapeutic NK cells from cord blood stem 
cells that faithfully reproduces different steps of human NK-cell 
differentiation (28). This system is, therefore, ideally suited to 
investigate human NK-cell differentiation in addition to being a 
reliable method to generate NK cells for therapy (29, 30).

Here, we used this ex vivo differentiation system for a complete 
transcriptomic profiling of cells in different stages of NK-cell  
development. We identified the 20 most differentially expressed 
transcription factor genes and confirmed ZNF683/HOBIT 
mRNA as the highest upregulated transcription factor mRNA. 
The analysis of different human peripheral blood cell types 
showed preferential expression of ZNF683/HOBIT mRNA 
in NK  cells. Then, we analyzed the role of ZNF683/HOBIT 
during NK-cell differentiation in more detail. In the ex vivo dif-
ferentiation system, shRNA-mediated knockdown of ZNF683/
HOBIT significantly reduced CD56−CD14− NKPs up to day 
21 of culture and nearly abrogated the following generation of 
CD56+ NK cells. The few CD56+ cells that continued to mature 
displayed normal levels of NKG2A and KIR as well as degranula-
tion capacities similar to control cells. However, the number of 
IFN-γ-producing cells significantly increased upon ZNF683/
HOBIT knockdown. Taken together, these results support that 
ZNF683/HOBIT is a key regulator of early stages of human 
NK-cell differentiation and, in later stages, may function to 
repress IFN-γ production.

MaTerials anD MeThODs

Ex Vivo Differentiation of cD34+ stem 
cells into nK cells
Human umbilical cord blood samples were obtained at birth 
after full-term delivery from the Department of Obstetrics and  
Gynecology of the University Hospital of Vienna, Austria. Cord 
blood mononuclear cells (CBMCs) were collected by Ficoll den-
sity gradient centrifugation (Lympholyte Cell Separation Media, 
human, Cedarlane®, Burlington, ON, Canada). Stem cells were 
isolated from CBMCs according to manufacturer’s protocol, using 
a magnetic bead-based CD34+ isolation kit (CD34 MicroBead Kit, 
human; Miltenyi Biotec, Bergisch Gladbach, Germany). The purity 
of the stem cells was evaluated by flow cytometry (CD34+ reached 
at least 95% purity) after which the cells were cultured as previ-
ously described (28, 30). In short, stem cells at an initial density of 
105 cells/ml were seeded into 6-well plates (Corning Incorporated, 
Corning, NY, USA) for 10  days in basal expansion medium 
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(GBGM©; Glycostem Therapeutics, Oss, The Netherlands) sup-
plemented with stem cell factor (SCF), interleukin-7 (IL-7), throm-
bopoietin (TPO), and FMS-like tyrosine kinase 3 ligand (Flt3L); 
all factors at a concentration of 25  ng/ml (CellGro®, CellGenix 
GmbH, Freiburg, Germany) and granulocyte colony-stimulating 
factor (G-CSF, 250  pg/ml; Stemcell Technologies, Vancouver, 
BC, Canada), granulocyte-macrophage colony-stimulating factor 
(GM-CSF, 10  pg/ml; Stemcell Technologies), and IL-6 (50  pg/
ml; CellGenix GmbH). At day 10, TPO was replaced with IL-15 
(20 ng/ml; CellGro®, CellGenix GmbH), and at day 14, Flt3L with 
IL-2 (1,000  U/mL; Chiron Corporation, Emeryville, CA, USA) 
by refreshing half of the medium. After a total culture period of 
35 days, a regular culture consisted of >95% CD56+CD3− NK cells 
as evaluated by flow cytometry.

Microarray
Total RNA was extracted from cells at different time points of the 
ex vivo culture and transcribed into cDNA using the GeneChip® 
Whole Transcript Sense Target Labeling Kit (Affymetrix, High 
Wycombe, UK). The labeled cDNA was hybridized to GeneChip 
Human Gene 1.0ST Arrays, and the arrays were scanned and ana-
lyzed according to protocols of the manufacturer1 as described 
in Ref. (31). Robust multiarray average signal extraction and 
normalization were performed, as detailed at the Bioconductor 
website2 (32). The microarray data have been submitted to the 
GEO database under the accession number GSE95018.

rna sampling, cDna synthesis, and 
real-time rT-Pcr
Cultured cells (5  ×  105) were lysed in Trizol (QIAzol Lysis 
Reagent, Qiagen Biosciences, MD, USA) and stored at −80°C. 
Total RNA was extracted following ThermoFishers manual3, 
and 1  µg RNA was used for cDNA synthesis according to 
manufacturer’s protocol (RevertAid H Minus First Strand cDNA 
Synthesis Kit, ThermoFisher Scientific, MA, USA). Two hundred 
nanograms of transcribed cDNA were analyzed by real-time PCR 
using the KAPA SYBR FAST UNIVERSAL kit (Kapa Biosystems, 
Inc., Wilmington, MA, USA) and primer sequences as shown in 
Table S3 in Supplementary Material. As internal controls, prim-
ers for either hypoxanthine-guanine phosphoribosyltransferase 
or β-actin were used. Samples were measured and analyzed with 
QIAGEN’s real-time PCR cycler and corresponding software 
(Rotor-Gene Q, Qiagen, Hilden, Germany).

Western Blot
For protein-expression analysis, cell pellets (5 × 105 cells/sample) 
were resuspended in 2× Laemmli buffer, boiled for 10 min at 95°C 
and subsequently separated by SDS-polyacrylamide gel electropho-
resis (10% Bis-Tris gels, Acrylamide:Bis 37.5:1) and transferred to a 
nitrocellulose membrane (Amersham Protran Supported 0.45 µm 
NC, GE Healthcare Europe GmbH, Eindhoven, The Netherlands) 
by semi-dry electrophoretic blotting in Towbin buffer with 20% 

1 Affymetrix support site; www.affymetrix.com/support/index.affx.
2 www.bioconductor.org/.
3 https://www.thermofisher.com/order/catalog/product/15596026?ICID=cvc- 
rna-cultured-cells-c1t1.

methanol (PerfectBlue, “Semi-Dry” Electroblotter Sedec, Peqlab, 
Southampton, UK). The membrane was blocked with 5% non-fat 
dry milk in TBS-T (0.2% Tween in TBS) followed by overnight 
incubation at 4°C with primary anti-ZNF683 antibodies (goat-
anti-ZNF683 antibody C-12, 1:500, Santa Cruz Biotechnology, 
Heidelberg, Germany) or (mouse-anti-ZNF683 antibody, 1:500, 
Sigma-Aldrich, Saint Louis, MO, USA) and as control anti-GAPDH 
(mouse-anti-GAPDH, 1:10,000, Merck KGaA, Darmstadt, 
Germany). This was followed by 2 h incubation at room tempera-
ture (RT) with secondary antibodies, all 1:5,000 (donkey-anti-goat, 
Santa Cruz Biotechnology or goat-anti-mouse, Thermo Fisher 
Scientific) and corresponding washing steps with TBS-T.

lentiviral Vectors
To generate a lentiviral construct for knockdown studies, a sense 
oligo, 5′-TGGAAACACATGGGCTATGACATTTCAAGAGAA 
TGTCATAGCCCATGTGTTTCTTTTTTC-3′, corresponding  
with the sequence “GAAACACATGGGCTATGACAT” to 
position 1,402 to 1,412 from the start ATG of ZNF683/HOBIT 
cDNA (NCBI Reference Sequence: NM_001114759.2) and a cor-
responding antisense oligo, 5′-TCGAGAAAAAAGAAACACAT 
GGGCTATGACATTCTCTTGAAATGTCATAGCCCATG 
TGTTTCCA-3′ were synthesized (Integrated DNA Technologies 
Inc., Coralville, IA, USA) as complementary overlapping oligos, 
with a Xho1 overhang at the 5′end of the antisense oligo, as 
detailed.4 The complementary oligos were annealed and subse-
quently ligated into the LeGO-G/BSD lentiviral vector (LeGO-G/
BSD was a gift from Boris Fehse, Addgene plasmid #27354) that 
had been digested with HpaI and XhoI (New England Biolabs, 
Ipswich, MA, USA). The ligated product was transformed into 
the E. coli strain Stbl3 (New England Biolabs, Ipswich, MA, 
USA), recombinant colonies were selected, and plasmid-DNA 
isolated and verified by restriction digestion and Sanger sequenc-
ing. As a control, oligos containing a scrambled shRNA were 
synthesized and cloned into the LeGO-G/BSD vector using an 
identical strategy. The control shRNA sequence was obtained 
from the “Open Biosystems pGIPZ shRNAmir library” situated 
at University College London.5 To confirm the functioning of 
the shRNA, shRNA expression plasmids were co-transfected 
into HEK293 cells in the absence or presence of a commercially 
available ZNF683/HOBIT expression plasmid (ORF of ZNF683, 
transcript variant 1, in pEnter, with C-terminal Flag and His tag; 
Vigene Biosciences, Rockville, MD, USA) employing the CaPO4 
method using 4 µg of total DNA/6-well. Six hours after, transfec-
tion medium was changed, and cells were harvested 96 h after 
transfection by either direct lysis in Trizol (Qiagen) for RNA 
isolation or 1× Laemmli sample buffer for protein-expression 
analysis.

Virus Production
Virus production and all experiments involving the generated 
recombinant viruses were performed in a separate room under 
biosafety level (BSL)-2 conditions following the instructions 

4 http://www.sciencegateway.org/protocols/lentivirus/cloning.htm.
5 https://www.ucl.ac.uk/cancer/research/scientific-facilities-and-services/cancer- 
genomics-engineering-facility/rnai-library/open-biosystems-pgipz-rna-library.
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given by the corresponding directives of the European Union 
(Council Directive 90/679/EEC) and the Austrian government 
(GTG-BGBl. Nr. 510/1994 and 114/2012). The specific work 
with the replication-defective human lentiviruses was registered 
at the Austrian Ministry of Science, Research and Economy 
(BMWFW-5.011/009-WF/V/3b/2015).

To produce lentiviruses, HEK293T cells (ATCC # CRL-11268) 
were seeded at 107 cells per 15 cm2 tissue culture plate in 15 ml 
DMEM (DMEM/high glucose, GE Healthcare) supplemented 
with 10% FBS and glutamine (200  mM, Sigma-Aldrich). After 
24  h, 5  ml DMEM was added, and the 60–70% dense cultures 
were transfected with the LeGO-G/BSD-ZNF683/HOBIT-shRNA 
expression plasmid plus three complementing plasmids provid-
ing the essential Gag, Pol, Rev, and Tat gene products missing 
in the replication-defective virus. To this end, the following 
2 transfection solutions were prepared: (1) DMEM with 10% 
polyethyleneimine (PEI, Polysciences, Warrington, PA, USA) 
(1.5 ml/15 cm2 plate) and (2) DMEM with 2.3 µg pCAG-KGP3R, 
1.2  µg pCAG-RTR2, 2.5  µg pCAG-VSVg, and 24  µg vector of 
interest (in total 30 µg plasmids in 1.55 ml/15 cm2 plate). After 
15 min incubation at RT, solution 2 was sterile filtered and added 
to solution 1. The combined solutions were added dropwise to 
HEK293T cells at a density of 70%. After 12 h, the transfection mix 
was replaced with fresh medium (12 ml DMEM/15 cm2 plate). The 
supernatants were harvested after 48 and 72 h post-transfection. 
To remove cell debris, supernatants were centrifuged (1,500 rpm, 
5 min, 4°C), filtered (Puradisc FP30mm cellulose acetate syringe 
filter, 0.45 µm, sterile, GE Healthcare Life Sciences), and finally 
the virus particles were concentrated by ultracentrifugation for 
90 min at 4°C at 25,000 rpm/76,000 × g in a SW-32 rotor equipped 
with 32  ml open-top thickwall polycarbonate tubes in a XL-70 
ultracentrifuge (Beckman Coulter, Mystic, CT, USA). After ultra-
centrifugation, the supernatant was discarded leaving a 100  µl 
drop at the bottom of the tube. The virus particles were gently 
resuspended after keeping the tubes on ice for 1 h, aliquoted, and 
stored at −80°C until use.

Virus Transduction of cD34+ stem cells
After culturing freshly isolated cord blood CD34+ stem cells 
for 5 days in basal expansion medium supplemented with SCF, 
IL-7, TPO, and Flt3L as described under “Ex vivo differentia-
tion of CD34+ stem cells into NK cells,” the expanded cells were 
transduced with lentiviral particles. To this end, 24-well plates 
(multi-well plate for suspension culture, Greiner Bio-one 
GmbH, Frickenhausen, Germany) were coated with 8  µg ret-
ronectin/500 μl/well (recombinant human fibronectin fragment, 
Takara Bio Inc., Shiga, Japan) 24 h prior virus transduction and 
stored at 4°C until use. The retronectin solution was removed, 
250  µl GBGM containing virus particles (40 Transduction 
Units/cell) were added per well, and the plate was centrifuged 
at 4,000  rpm/1,900  ×  g for 2  h at 4°C. Immediately after cen-
trifugation, the 5 days cultivated CD34+ stem cells were added 
(5 × 104 cells in 250 µl basal expansion medium/well). The fol-
lowing day, 500 µl of basal expansion medium was added. Two 
days after transduction the cells were centrifuged (1,500  rpm 
for 5  min), suspended in fresh basal medium, and transferred 
to new uncoated 24-well cell culture plates (Corning® Costar®, 

Sigma-Aldrich). Transduction efficiency, determined as GFP+ 
cells, was measured by flow cytometry 3 days after transduction, 
and cultures were continued as described in the first section (for 
ex vivo differentiation). Further cell expansion was calculated as 
follows. Cell numbers were obtained at the various differentiation 
stages and divided by the cell numbers for the corresponding 
GFP+ and GFP− fractions measured 3 days after transduction, to 
correct for different transduction efficiencies.

Flow cytometry
Cell surface expression of NK and monocytic markers was 
monitored using anti-CD56-PeCy7, anti-CD14-PerCPCy5.5 (all BD 
Biosciences, San Jose, CA, USA), and anti-KIR-PE antibodies (R&D 
Systems, Vienna, Austria) on a FACS Canto II (BD Biosciences) 
and data were analyzed using both FACS DIVA software v6.0 
(BD Biosciences) and Flowjo v10.0.8 (Tree Star, Yorba Linda, CA, 
USA). Details on antibodies are given in Table S4 in Supplementary 
Material.

cytotoxicity and iFn-γ assay
Target K562 and effector NK cells were cocultured at a 1:1 ratio 
(15 × 104 cells of each cell type) in 200 µl RPMI medium (RPMI 
1640 medium, Life Technologies, Carlsbad, CA, USA) in an 
U-bottom 96-well plate (Greiner Cellstar® 96-well plates, Sigma-
Aldrich) in the presence of anti-CD107a-APC (BD Biosciences). 
Brefeldin A and Monensin (BD Golgiplug and Golgistop, BD 
Biosciences) were added after 1 h of culture. After an additional 
5 h of culture, cells were collected, stained for surface CD56 (anti-
CD56-PeCy7, BD Biosciences), subsequently prepared for intra-
cellular staining with IFN-γ (anti-IFN-γ-PE, BD Biosciences) 
using a fixation/permeabilization solution kit (BD Biosciences), 
and finally measured on a FACS Canto II.

statistical analysis
Statistical analysis was performed with Prism 6 software 
(GraphPad, San Diego, CA, USA) using Student’s t-test or a two-
way ANOVA as indicated in Figure Legends. A p-value of 0.05 
was considered as statistically significant.

resUlTs

ZNF683/HOBIT is the Most highly 
Upregulated Transcription Factor gene 
During Ex Vivo Differentiation of human 
nK cells
Initially, we were interested to identify novel transcription fac-
tors potentially contributing to human NK-cell differentiation 
that have not been described in this function before. For this 
purpose, we employed a recently developed ex vivo differentiation 
system (29). In this system, cord blood CD34+ stem cells are ini-
tially expanded for 10 days, prior to addition of IL-15. Following 
further addition of IL-2 from day 14, the differentiating cells are 
cultured for a total period of 35–42 days, by which time a regular 
culture comprises over 95% NK cells. To determine the repertoire 
of transcription factors differentially expressed during NK-cell 
development, we first performed a transcriptomic profiling study 
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FigUre 1 | high upregulation of ZnF683/hOBiT mrna during ex vivo 
differentiation of human natural killer (nK) cells correlates with 
preferential expression in peripheral blood nK cells. (a) Ten most highly 
upregulated transcription factor mRNAs during ex vivo NK cell differentiation: 
CD34+ stem cells from cord blood were expanded and ex vivo differentiated 
into NK cells. Cells were sampled at day 10, just before the differentiation into 
NK cells was initiated by the addition of IL-15, and at day 35, after 25 days of 
differentiation. RNA was isolated and subjected to real-time RT-PCR analysis. 
β-actin was used as internal control. Fold upregulation of specific mRNAs at 
day 35 compared to day 10 is shown. Results were calculated from three 
series of experiments performed in triplicates with cells from different donors 
and are displayed as mean ± SEM. (B) High expression of ZNF683/HOBIT 
mRNA in peripheral NK cells: mononuclear cells were isolated from human 
peripheral blood and one half of the cells used for isolation of NK cells by 
negative magnetic sorting. The NK cell fraction was further separated by flow 
cytometry into CD56bright and CD56dim NK cells. The second half of the 
mononuclear fraction was used to isolate CD3+ T lymphocytes, CD19+ B 
lymphocytes, and CD14+ monocytes by flow cytometry. RNA was isolated 
from the different cell samples and subjected to real-time RT-PCR analysis 
using β-actin as internal control. ZNF683/HOBIT mRNA levels within the 
different cell types are compared to the levels in the CD56bright NK cells set to 
100%. Results were obtained from three independent experiments using 
three different donors and are displayed as mean ± SEM (*p < 0.05, 
**p < 0.01, ***p < 0.001).
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comparing samples from different time points up to day 35 with 
cultures at day 10 (start of the NK-cell differentiation). The 20 
most highly upregulated transcription factor genes detected are 
shown in Table S1 in Supplementary Material. When real-time 
RT-PCR was performed for the corresponding transcripts, 
ZNF683/HOBIT mRNA was found to be by far the most highly 
upregulated mRNA at day 35 in relative terms (about 9,000-fold; 
Figure 1A). Among the most differentially expressed genes are 
many that have previously been reported to be important in 
NK-cell development and/or maturation such as GATA3 (33), 
TOX (34), ID2 (10), and ETS1 (16) (Figure  1A). Based on its 
near absence in the stem cell cultures before addition of IL-15 
and its high upregulation during differentiation, we decided to 
focus our further studies on ZNF683/HOBIT, especially as the 
role of this transcription factor in NK-cell development has not 
previously been reported.

human Peripheral Blood nK cells 
Preferentially express ZnF683/ 
hOBiT mrna
To determine if ZNF683/HOBIT is also highly expressed in adult 
peripheral blood NK cells, we performed real-time RT-PCR on 
different peripheral blood leukocyte subsets of multiple donors. 
Indeed, compared to T and B lymphocytes as well as mono-
cytes, ZNF683/HOBIT mRNA is predominantly expressed in 
NK cells (Figure 1B). CD19+ B lymphocytes display lower levels 
of ZNF683/HOBIT mRNA (about 7-fold less as compared to 
CD56dim NK cells) and the levels in T lymphocytes and monocytes 
are even much lower or at detection limit. We were furthermore 
interested to compare the ZNF683/HOBIT mRNA levels between 
the more immature CD56bright and the rather mature CD56dim 
subpopulations of NK cells. The data show that CD56bright cells 
express the highest levels of ZNF683/HOBIT mRNA, whereas 
CD56dim cells display about 20% lower levels (Figure 1B).

ZnF683/hOBiT mrna is Upregulated  
in Parallel to the generation of nK cells
To define the potential role(s) of ZNF683/HOBIT throughout 
NK-cell development, we evaluated the kinetics of accumulation 
of ZNF683/HOBIT mRNA during ex vivo differentiation. During 
this process, three different cell types can be distinguished based 
upon the monocytic and NK-cell markers, CD14 and CD56, 
respectively (28). One of the subpopulations arising from the 
amplifying CD34+ stem cells consists of monocytic CD14+ cells 
that accumulate until day 14 after which they gradually disappear 
(Figure  2A). The second population consists of CD56−CD14− 
cells, which peak at day 18. These CD56−CD14− cells are presumed 
to comprise at least in part the NK-cell progenitors as indicated 
by their rapid decrease from day 18 onward, along with the con-
comitant rapid generation of CD56+ NK cells (Figure 2A). The 
CD56+ NK cells become the predominant population after day 25 
and from day 35 onward the culture consists of over 95% CD56+ 
NK cells (Figure 2A).

We obtained samples at different time points during the  
ex vivo cultures and separated CD14− and CD14+ cells by flow 
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FigUre 2 | Upregulation of ZnF683/hOBiT mrna during natural killer 
(nK) cell differentiation. (a) Amplification of three different cell populations 
in the ex vivo NK-cell differentiation cultures. Cord blood CD34+ cells were 
differentiated into NK cells over a culture period of 40 days. In regular 
intervals, cells were analyzed by flow cytometry for expression of the 
monocytic marker CD14 and the NK cell marker CD56. The numbers of 
CD56−CD14−, CD56+CD14−, and CD56−CD14+ cells were plotted. Results 
are calculated from 10 independent experiments using cells of different 
donors and are displayed as mean ± SEM. (B,c) Upregulation of ZNF683/
HOBIT mRNA levels. Cell samples were taken at the indicated time points 
and CD14+ cells separated from the CD14− population using magnetic 
sorting. RNA was isolated and subjected to real-time RT-PCR analysis with 
β-actin as internal control. Results are calculated from three independent 
series of experiments performed in triplicates using different donors. Fold 
upregulation in comparison to the values obtained for day 8 cells is shown as 
mean ± SEM (B). To display early ZNF683/HOBIT mRNA upregulation the 
period until day 21 is shown at a larger scale (c).
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24 onward in CD14− cells comprising NKPs and CD56+ NK cells 
(Figure  2B). The magnitude of ZNF683/HOBIT mRNA accu-
mulation actually blurs the onset of expression in the display of 
Figure 2B. When plotted at a higher magnification, it is apparent 
that ZNF683/HOBIT mRNA increased in CD14− cells already 
until day 17 followed by a first exponential accumulation up to 
day 21 (Figure  2C). Although we observed low expression of 
ZNF683/HOBIT mRNA in the CD14+ monocytes at day 17, the 
following first accumulation is absent (Figure 2C) as well as the 
exponential increase later during differentiation (Figure 2B).

ZnF683/hOBiT Downmodulation 
substantially reduces expansion  
of nK Progenitors
After observing that ZNF683/HOBIT mRNA is mainly present in 
NK cells and their progenitors, we set out to elucidate the poten-
tial role(s) of ZNF683/HOBIT during NK-cell development and 
maturation in more detail. For this purpose, we performed loss-
of-function studies using a lentiviral-based shRNA-mediated 
knockdown of ZNF683/HOBIT. The appropriate functioning 
of the shRNA was confirmed by shRNA-mediated knockdown 
of ectopically expressed ZNF683/HOBIT in HEK293T cells. As 
shown in Figure 3A, expression of ZNF683/HOBIT mRNA and 
protein was strongly reduced (>90%) upon co-expression of the 
shRNA, thus confirming the proper functioning of the shRNA 
(Figure 3A).

We then continued to investigate the effects of ZNF683/HOBIT 
knockdown on ex vivo differentiation cultures. These cultures were 
transduced with lentiviruses expressing either ZNF683/HOBIT 
shRNA (shHOBIT) or a scrambled control shRNA (shControl). 
Cultures, mock-treated for the transduction procedure but 
without addition of viruses, were performed in parallel. Based 
on initial experiments that evaluated best transduction rates 
and survival in relation to days in culture, cells were transduced 
during the stem cell expansion phase 5 days after isolation. The 
presence of a GFP cassette driven by a spleen focus-forming virus 
(SFFV)-promoter enabled us to discriminate transduced GFP+ 
cells expressing the shRNA from non-transduced GFP− cells 
within the same culture in parallel (35). Regularly, transduction 
rates between 30 and 50% were achieved. Since these varied to 
some extent, we normalized obtained expansion rates for the 
analyzed fractions to the different transduction rates measured 
3 days after transduction (8 days after isolation).

Based on the fact that the expression of the NK-cell marker 
CD56 becomes significant only from day 24 onward, we decided 
to split the analysis in two parts. In the first part, we analyzed the 
NKP stage until day 21, in the second part the generation and 
maturation of CD56+ NK cells. At day 21, we observed a fourfold 
reduced expansion of the shHOBIT GFP+ cells compared to the 
shControl GFP+ cells (Figure 3C). Exemplary dot plots of the GFP 
staining are shown in Figure 3B. The GFP− cells of the shHOBIT 
culture also seemed to be somewhat reduced in comparison to the 
scrambled control and regular mock cultures, but the difference 
did not reach statistical significance.

Since at day 21 the culture comprises mainly two different 
cell types, CD56−CD14− progenitor cells and CD14+ monocytic 

cytometry. We detected that ZNF683/HOBIT mRNA is nearly 
absent after the initial expansion phase of 10 days. A tremendous 
accumulation of ZNF683/HOBIT mRNA is observed from day 
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FigUre 3 | continued  
effects of transduction with lentiviruses expressing hOBiT shrna on 
total cell expansion. (a) HOBIT shRNA strongly reduces HOBIT 
expression. Lentiviral vectors expressing HOBIT shRNA were co-transfected 
with a HOBIT expression construct into HEK293T cells. After 96 h, cells were 
either used for RNA isolation or lysed in Laemmli sample buffer. The RNA 
was used for realtime RT-PCR analysis (upper part). Results are derived from 
two experiments performed in quadruplicates and shown as mean ± SD. The 
proteins in the lysed samples were separated by SDS-PAGE, Western 
blotted, and probed with anti-HOBIT antibodies (lower part). As internal 
control hypoxanthine-guanine phosphoribosyltransferase was detected by 
respective antibodies. Two experiments with comparable results were 
performed. (B,c) HOBIT shRNA reduces expansion of cells at day 21. Cord 
blood CD34+ cells were cultured for 5 days, then cells were transduced with 
lentiviruses expressing either shHOBIT or a scrambled control shRNA 
(shControl) or were mock-treated. Transduction efficiency was measured 
3 days later by flow cytometry scoring GFP-positive cells. Cells were further 
cultured and differentiated until day 21. Then flow cytometry was performed 
to evaluate expansion of transduced GFP-expressing cells. Exemplary dot 
plots for cells transduced with lentiviruses expressing shHOBIT or shControl 
or mock-transduced controls are shown in (B). The numbers of the 
transduced GFP+ cells and the non-tranduced GFP− cells in individual 
cultures was calculated from the measured cell number and the respective 
percentages determined by flow cytometry and are shown in (c). The values 
were normalized to the number of transduced or non-tranduced cells 
measured at day 8 to establish the expansion rates. Results are calculated 
from four experiments performed in triplicates and are displayed as 
mean ± SEM (*p < 0.05, ***p < 0.001).
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indicate that a strong inhibitory effect on a fraction of the culture 
indirectly affects the whole culture, including the GFP− part.

The number of CD56+ NK cells was too low to be analyzed in 
detail at this time point of the culture (Figures 4A,B). Together, 
the data clearly showed that knockdown of ZNF683/HOBIT 
reduces the expansion of presumptive NKPs already at day 21 of 
the culture. This suggests a role of ZNF683/HOBIT in the early 
stages of human NK-cell development before the initiation of 
CD56 expression.

ZnF683/hOBiT Downmodulation largely 
abrogates the generation of cD56+  
nK cells
The second part of our analysis focused on the formation of CD56+ 
cells and their maturation from day 21 onward. At first sight, when 
we analyzed the percentages of CD56+ NK cells formed during 
later stages at day 35, both GFP+ populations (shHOBIT and 
shControl) seemed comparable to regular cultures (>95% CD56+ 
NK cells, Figure S1 in Supplementary Material). However, when 
the number of cells was taken into account, it became apparent that 
the generation of CD56+ NK cells from the GFP+ progenitors in 
the shHOBIT pool is substantially reduced compared to the GFP+ 
control shRNA fraction. Whereas the GFP+CD56+ NK cells in the 
control shRNA cultures showed a strong expansion between days 
21 and 35, the GFP+CD56+ NK  cells in the shHOBIT cultures 
displayed almost no increase beyond day 21 and remained low 
in number (around 20% of the shControl cultures). These cells 
did not enter the typical expansion phase between days 24 and 
35 (Figures 5A,B). In contrast, the GFP− cells in the shHOBIT 
cultures displayed an expansion phase between days 21 and 30, 
although this expansion seemed reduced in comparison to the 

cells (Figure  2A), we continued to analyze these populations 
separately. Exemplary dot plots of this analysis are displayed in 
Figure 4A. The data showed that the effect can be mainly traced 
to a fourfold reduced expansion of the CD56−CD14− progenitors 
in the shHOBIT GFP+ fraction. Although smaller inhibitory 
effects were also visible for CD14+ cells of the shHOBIT GFP+ 
pool and the GFP− cells of the shHOBIT culture, both did not 
reach statistical significance (Figure  4B). However, this may 
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shControl cultures. Again this may suggest an overall indirect 
effect of the strongly compromised GFP+ cells on the GFP− part 
of the cultures.

Taken together, our data showed that knockdown of ZNF683/
HOBIT strongly abrogates the generation of CD56+ NK cells. This 
suggests that ZNF683/HOBIT downmodulation strongly affects 
NK-cell progenitors shortly before the initiation of CD56 expres-
sion and prevents the progression toward CD56+ NK cells and/
or the further proliferation of the few detected CD56+ NK cells.

The Few Developed cD56+ nK cells 
Display normal nKg2a and Kir levels
We were further interested in the phenotype of the few detected 
CD56+ NK cells. To this end, we evaluated if these cells would 
further differentiate/mature via upregulation of NKG2A and 
KIR. The expression of these important NK-cell receptors was 
measured after 35  days of cultivation and compared between 
the GFP+ cells of the shHOBIT and the shControl cultures. We 
observed high levels of NKG2A in all of the GFP+ cells of the 
cultures independent of shHOBIT or control shRNA expression 
(Figure 6A, exemplary dot plots in Figure S2 in Supplementary 
Material). The GFP− fractions also displayed high NKG2A levels 
similar to regular control cultures. Similarly, KIR expression 
was not significantly influenced by the presence or absence of 
shHOBIT or control shRNA (Figure  6A, exemplary dot plots 
in Figure S2 in Supplementary Material) and was comparable 
to the typical levels of regular cultures. In this regard, our group 
previously showed that ex vivo generated NK cells express lower 
levels of KIR than peripheral blood-NK  cells (28). Together, 
these observations demonstrate that cells starting to express 
CD56 continue to develop normally in regard of NKG2A and 
KIR expression. Furthermore, it implies ZNF683/HOBIT does 
not influence the expression of NKG2A or KIR receptors on 
CD56+ NK cells.

Degranulation capacities remain 
Unchanged, but iFn-γ Production is 
strongly induced Upon Virus Transduction 
and Further enhanced by ZnF683/hOBiT 
Knockdown
Two main functions of NK cells are cytotoxicity, the direct kill-
ing of target cells, and IFN-γ production (1, 36). To evaluate 
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whether the CD56+ NK  cells differentiating under knockdown 
conditions for ZNF683/HOBIT would functionally mature, we 
tested degranulation capacity in the CD107a assay and IFN-γ 

production. Following coculture with the target cell-line K562, we 
detected similar levels of CD107a on the cell surface of all cells 
irrespective of the culture conditions (Figure 6B, exemplary dot 
plots in Figure S2 in Supplementary Material). In the same cul-
tures, we also determined the proportion of cells with intracellular 
IFN-γ. Intriguingly, the transduction with the scrambled control 
shRNA already caused a substantial increase in IFN-γ producing 
cells (up to 50%). This was further enhanced upon expression of 
the ZNF683/HOBIT shRNA leading to 80% IFN-γ-producing cells 
(Figure 6C). In contrast, only a very small fraction of the GFP− 
cells was competent to produce IFN-γ (Figure 6C). In summary, 
transduction with shRNA lentiviruses by itself leads to a higher 
proportion of NK cells with the capacity to produce IFN-γ and 
this is further increased by knockdown of ZNF683/HOBIT. The 
ZNF683/HOBIT shRNA effect is restricted to an increase in the 
number of IFN-γ-producing cells and not reflected in the level 
of IFN-γ per cell as measured by mean flourescence intensity 
(MFI). However, virus transduced cells displayed higher levels of 
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IFN-γ per cell in comparison to non-transduced cells (Figure S3 in 
Supplementary Material).

DiscUssiOn

The recent decade has witnessed an enormous increase in the 
understanding of the development of different immune-cell 
lineages including the various forms of innate and adaptive 
lymphocytes from HSCs (37). Most of this knowledge is derived 
from the murine system due to the possibility of genetic manipu-
lation of the animal models. Therefore, detailed knowledge on 
the specificities of the equivalent human differentiation and 
maturation pathways and factors are still elusive. Although many 
factors may function in identical or similar ways in murine and 
human immune-cell development, certain differences are to be 
expected based on a much more rapid evolution of the immune 
system when compared to other tissues. For example, this has 
led to the convergent evolution of distinct classes of important 

NK-cell receptors with similar function but encoded by struc-
turally different genes such as the human KIR and murine Ly49 
receptors (38, 39). It is conceivable that this is also reflected in 
the transcription factor circuitry defining human and murine 
NK cells.

Due to the recent increasing interest in NK cells as therapeutic 
agents, especially for the treatment of leukemia and potentially 
also solid cancers (40, 41), a more complete understanding of 
the control of human NK-cell differentiation and maturation is 
desirable. Here, we used a feeder cell-free ex vivo system for the 
generation of human NK cells from cord blood HSCs (29). This 
system can generate therapeutic NK cells that have been proven 
to be safe in a phase I clinical trial (42). We have, furthermore, 
demonstrated that the NK cells formed using this system display 
the typical NK cell receptors, potent ADCC and produce IFN-γ 
similar to peripheral blood NK  cells (28). So this provided an 
ideal system to study transcription factors during human NK-cell 
differentiation and maturation.

Identity of cell types and their differentiation and maturation 
is controlled in large part by the action of transcription factors. 
Normally, important core transcription factors can be identified 
by the characteristics of upregulation during differentiation and 
their high expression in a relatively high cell type-specific fashion 
(43). In this regard, our transcriptomic profiling has identified a 
large number of transcription factors strongly upregulated during 
human NK-cell differentiation. Many of these have previously 
been described in the context of murine NK-cell development. 
For example, in earlier stages of NK-cell differentiation, ID2 and 
ID3 contribute via suppression of E proteins, such as E2A, the 
B-cell promoting factor. GATA3, TOX, and IKZF3 (AIOLOS) 
have been reported to promote later maturation stages of NK-cell 
development (20, 44). From these TOX has also been described 
specifically to contribute to human NK-cell differentiation, where 
it seems to control T-BET expression (21, 22).

Upon re-evaluation of the 10 most highly upregulated 
transcription factor genes from the profiling experiment, it was 
apparent that ZNF683/HOBIT mRNA was the most strongly 
upregulated. It displayed a 10-fold higher upregulation compared 
to GATA-3, the second best factor. Further analysis of different 
immune-cell types in human peripheral blood showed prefer-
ential expression of ZNF683/HOBIT mRNA in CD56+ NK cells 
when compared to B and T  lymphocytes and monocytes. We 
detected low expression levels in B cells, but it was very low to 
undetectable in T  lymphocytes and monocytes. Furthermore, 
ZNF683 is a homolog of the PRDM1 gene encoding BLIMP-1 
(ZNF683 has, therefore, also been termed HOBIT, homolog of 
Blimp-1 in T cells) (45). In the mouse, Blimp-1 has been shown 
to be a master regulator of terminal differentiation of CD8+ 
effector T  cells and plasma cells (46) and to play a role in the 
maturation of peripheral NK  cells (18). Some upregulation 
of PRDM1 was detected in our profiling analysis (Table S1 in 
Supplementary Material), but BLIMP-1 mRNA showed a much 
less dramatic increase during human NK-cell differentiation than 
ZNF683/HOBIT mRNA (Table S2 in Supplementary Material). 
Considering its selective upregulation and expression and its 
homology with BLIMP-1, an established important differentia-
tion factor, ZNF683/HOBIT appeared to fulfill the precondition 
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for a new key transcription factor controlling the development 
of human NK cells.

We further analysed ZNF683/HOBIT expression in the 
classical defined NK subsets, CD56bright and CD56dim cells. It is 
thought that the CD56bright cells are more immature, preferen-
tially produce cytokines, and will mature further into CD56dim 
cells that display potent cytotoxic activity (1). In our analysis, 
evaluation of ZNF683/HOBIT mRNA revealed high expression 
levels in both subsets with somewhat higher levels in CD56bright 
cells. Together with the kinetic analysis of ZNF683/HOBIT 
mRNA accumulation, that displayed a parallel increase with the 
generation of CD56+ NK cells, this initially suggested a prefer-
ential activity between acquisition of CD56 and the CD56bright 
cell stage. However, a closer inspection revealed significantly 
increased ZNF683/HOBIT mRNA levels already in day 14-pro-
genitors, with an exponential upregulation from day 18 onward. 
This suggests that ZNF683/HOBIT mRNA starts to be expressed 
soon after addition of IL-15 in NKPs and continuously increases 
with highest accumulation rates in parallel to the increase in 
CD56 expression. In comparison, only minor ZNF683/HOBIT 
mRNA levels appeared to be present in the CD14+ monocytic 
subset, which develops between days 10 and 20 and disappears 
thereafter.

In line with the early expression of ZNF683/HOBIT at the 
NKP stage, shRNA-mediated downmodulation of ZNF683/
HOBIT resulted in a significantly reduced expansion of trans-
duced cells already at day 21 of the culture. The majority of 
this effect could be traced to the CD56−CD14− cells containing 
at least in part the NKPs. CD56+-expressing NK cells were not 
yet detectable at significant amounts at this time point in the 
culture. This clearly supports that a first major effect of ZNF683/
HOBIT downmodulation is a reduction of proliferation and/or 
survival of NK-cell progenitors prior to the initiation of CD56 
expression. Some reduction seemed also to occur for the CD14+ 
cells in shHOBIT transduced cultures, although this did not 
reach significance. As very low levels of ZNF683/HOBIT mRNA 
appear to be expressed in CD14+ cells, we are unable to rule out 
a potential specific negative effect also upon this subset following 
HOBIT knockdown.

The second major effect became apparent when we monitored 
the acquisition of CD56 expression. CD56 or N-CAM is generally 
accepted as a major marker for human NK cells, despite that its 
function remains elusive (47). It is present on about 95% of human 
NK cells (47), but lacks a clear homolog in murine NK cells (48). 
The kinetics of accumulation of CD56−CD14− progenitors and 
CD56+ cells in the ex vivo system are compatible with the start 
of expression of CD56 by CD56−CD14− progenitors from day 20 
onward. This is indicated by the rapid decline of CD56−CD14− 
progenitors and the concomitant appearance of the CD56+ cells. 
This generation of CD56+ cells was nearly abrogated upon down-
modulation of ZNF683/HOBIT. This supports that ZNF683/
HOBIT is essential for efficient generation of CD56 expressing 
cells and/or their further proliferation or survival.

Important receptors in human NK cells are the NKG2A and 
KIR receptors (11, 49). In the ex vivo cultures, the expression 
of NKG2A starts shortly after CD56 expression (28). NKG2A 

is further expressed on the majority of the more immature 
CD56bright cells. According to the current hypothesis, when these 
cells mature into CD56dim cells, they will reduce NKG2A and 
increase KIR expression (11). Despite the substantially reduced 
number of CD56+ cells formed in the shHOBIT cultures, it was 
astonishing that these cells appeared quite normal in respect of 
NKG2A expression compared to control cultures. The observed 
levels of NKG2A expression on about 80% of CD56+ cells were 
comparable to the levels characteristic for regular cultures (28). 
Also KIR levels established with a pan-KIR antibody were similar 
to regular cultures, in the order of 5% of CD56+ cells. As previ-
ously discussed (28), in the ex vivo cultures NKG2A levels are 
similarly high as in peripheral CD56bright cells, probably due to 
the high cytokine levels in the culture. KIR levels are intermedi-
ary between CD56bright cells and CD56dim cells. This suggests that 
ex vivo-generated NK cells, in terms of receptor expression, do 
not fully mature, whereas functionally they display full cytotoxic 
capabilities. In this regard, we observed no differences in degran-
ulation capabilities against K562 targets between the shHOBIT 
and control cultures.

In contrast, it was remarkable that virus transduction by itself 
caused an increase in the proportion of IFN-γ-producing CD56+ 
NK  cells. About 50% of day 35 cells transduced with control 
shRNA viruses produced IFN-γ upon coculture with K562 
target cells, whereas only a few percent for non-transduced cells. 
Currently, it is unclear whether this is due to a priming process 
at the time of transduction at day 5 that continues to act into 
later stages of differentiation or whether it is high expression of 
shRNAs that can activate the differentiated cells. We can only 
speculate about the underlying mechanisms for this unexpected 
finding. For example, it has been described that a uridine-rich 
part of the HIV RNA (ssRNA40) can activate NK cells via TLR7/8 
signaling (50). So, maybe the presence of high levels of shRNA 
or RNA transcribed from the viral sequences could somehow 
activate the IFN-γ machinery. Irrespective of the cause of this 
effect, the increase in IFN-γ-producing cells initiated by the virus 
itself was further enhanced by knockdown of ZNF683/HOBIT. 
This suggests that ZNF683/HOBIT negatively controls the devel-
opment of IFN-γ-producing NK cells.

We have to introduce a caveat on the interpretation of the data 
for the late stages of differentiation in the ex vivo sytem. Due to the 
low numbers of GFP+ cells obtained, that further appeared to be 
too fragile for preparative sorting, we were unable to exclude that 
the few late stage GFP+ NK cells generated are derivatives of few 
cells that failed to express the shRNA and, therefore, continued 
to differentiate. It is, however, equally conceivable that ZNF683/
HOBIT knockdown is effective on proliferation and/or survival 
only within a certain time window, when the cells normally still 
proliferate, and is less effective once the cells have passed this 
stage and do not proliferate but rather further differentiate and 
mature.

While this work was in progress, a report on ZNF683/HOBIT 
was published describing that the factor is highly expressed 
in human effector-type CD8+ T cells, but not in naive or most 
memory CD8+ T cells or CD4+ helper T cells (51, 52). High levels 
of ZNF683/HOBIT were expressed in CMV-specific, but not in 
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influenza-specific CD8+ T  cells. This may explain why in our 
experiments we did not detect significant expression levels in 
peripheral T cells as we only tested the overall population of CD3+ 
T cells comprising all CD4+ and CD8+ T cells. This report also 
showed highest expression in human NK cells and low expres-
sion in dendritic cells in accordance with our data on peripheral 
NK cells and monocytes.

Currently available evidence suggests that ZNF683/HOBIT 
may be special in terms of displaying substantial differences in 
expression pattern and possibly function in different cell types in 
mice and humans. In mice, it was reported to be predominantly 
expressed in NKT  cells, a CD4+ T  cell subset with immediate 
effector functions, and to some extent in CD8+ T cells (45, 53). 
In humans, ZNF683/HOBIT is mainly expressed in NK cells and, 
as described by others, also in effector-type CD8+ T cells (51). 
Differences also seem to occur regarding the control of IFN-γ 
production. In murine NKT  cells, ZNF683/HOBIT represses 
IFN-γ and activates granzyme B production (45). In contrast, 
in human long-lived effector T  cells, ZNF683/HOBIT was 
reported to induce IFN-γ and to have no effect on granzyme B 
production (51). Our findings in human NK cells rather support 
a suppressing effect of ZNF683/HOBIT on IFN-γ production. 
This correlates with a report on BLIMP-1 describing a similar 
suppression of IFN-γ production in human NK  cells (51). No 
effect of BLIMP-1 on cytotoxicity was observed, which is also 
in agreement with our findings on ZNF683/HOBIT. Generally, 
the homology of ZNF683/HOBIT and BLIMP-1 suggests over-
lapping and synergistic activities. Both factors display highly 
conserved zinc finger domains mediating binding to DNA target 
sequences in enhancer regions of a number of genes. The DNA 
binding sites of the factors largely overlap and both can bind 
to target sequences in several identical genes including TCF7. 
Both factors seem to mainly act as transcriptional repressors (44, 
54), although for BLIMP-1 activating properties have also been 
described (55).

Taken together, our data for the first time show a role of 
ZNF683/HOBIT during differentiation of human NK cells. They 
strongly support that ZNF683/HOBIT is a key regulatory factor 
controlling generation, proliferation, and/or survival of NK-cell 
progenitors (CD56−CD14−) and is essential for efficient genera-
tion of CD56+ cells. Once CD56 expression has been acquired 
the further maturation including NK receptor expression and 
development of degranulation capacity seems to be unaf-
fected, whereas IFN-γ production appears to be constrained by 
ZNF683/HOBIT. Although a more precise identification of the 
developmental stage(s) affected will need additional investiga-
tions, the data are compatible with the possibility that ZNF683/
HOBIT may mainly act between early factors, such as NFIL3 
(56) with proposed activities at the early committed NKP stage 
and factors described to promote rather maturation of NK cells 
at later stages such as GATA-3 (33). It further remains to be 
established how this is achieved in potential interaction with 
BLIMP-1 described so far as important mainly for late stage 
maturation.
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Development of Three Different nK 
cell subpopulations during immune 
reconstitution after Pediatric 
allogeneic hematopoietic stem cell 
Transplantation: Prognostic Markers 
in gvhD and Viral infections
Sabine Huenecke1*, Claudia Cappel1, Ruth Esser2, Verena Pfirrmann1,  
Emilia Salzmann-Manrique1, Sibille Betz1, Eileen Keitl1, Julia Banisharif-Dehkordi1, 
Shahrzad Bakhtiar1, Christoph Königs1, Andrea Jarisch1, Jan Soerensen1, Evelyn Ullrich1,3, 
Thomas Klingebiel1, Peter Bader1 and Melanie Bremm1

1 Clinic for Pediatric and Adolescent Medicine, University Hospital, Frankfurt, Germany, 2 GMP Development Unit, Hannover 
Medical School, Institute of Cellular Therapeutics, Hannover, Germany, 3 LOEWE Center for Cell and Gene Therapy, Goethe 
University, Frankfurt, Germany

Natural killer (NK) cells play an important role following allogeneic hematopoietic stem 
cell transplantation (HSCT) exerting graft-versus-leukemia/tumor effect and mediating 
pathogen-specific immunity. Although NK cells are the first donor-derived lymphocytes 
reconstituting post-HSCT, their distribution of CD56++CD16− (CD56bright), CD56++CD16+ 
(CD56intermediate=int), and CD56+CD16++ (CD56dim) NK cells is explicitly divergent from 
healthy adults, but to some extent comparable to the NK cell development in early 
childhood. The proportion of CD56bright/CD56int/CD56dim changed from 15/8/78% in early 
childhood to 6/4/90% in adults, respectively. Within this study, we first compared the NK 
cell reconstitution post-HSCT to reference values of NK cell subpopulations of healthy 
children. Afterward, we investigated the reconstitution of NK cell subpopulations post-
HSCT in correlation to acute graft versus host disease (aGvHD) and chronic graft versus 
host disease (cGvHD) as well as to viral infections. Interestingly, after a HSCT follow-up 
phase of 12  months, the distribution of NK cell subpopulations largely matched the 
50th percentile of the reference range for healthy individuals. Patients suffering from 
aGvHD and cGvHD showed a delayed reconstitution of NK cells. Remarkably, within 
the first 2  months post-HSCT, patients suffering from aGvHD had significantly lower 
levels of CD56bright NK cells compared to patients without viral infection or without graft 
versus host disease (GvHD). Therefore, the amount of CD56bright NK cells might serve 
as an early prognostic factor for GvHD development. Furthermore, a prolonged and 
elevated peak in CD56int NK cells seemed to be characteristic for the chronification of 
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inTrODUcTiOn

The reconstitution of natural killer (NK) cells following allo-
geneic hematopoietic stem cell transplantation (HSCT) plays 
an important role in the response against residual malignant 
cells and the control of viral infections (1, 2). Independent 
of the graft source, NK cells typically regenerate within the 
first month following HSCT (3). However, there is an over-
representation of CD56brightCD16neg NK cells in the early phase 
post-HSCT compared to healthy individuals (4, 5), where NK 
cells are composed of about 90% CD56dimCD16++ and 10% 
CD56brightCD16− cells. Whereas CD56dimCD16++ NK cells medi-
ate cytotoxicity and antibody-dependent cellular cytotoxicity, 
the CD56brightCD16− subpopulation, which is mainly present in 
the early period post-HSCT, primarily secretes immunoregula-
tory cytokines. Presumably, the development from CD56bright to 
CD56dim NK cells corresponds to sequential steps of NK cell dif-
ferentiation (6). In most patients, the ratio between CD56bright 
and CD56dim NK cells normalizes within the first 6  months 
post-HSCT influenced by the patient’s age and events following 
HSCT. A correlation between the reconstitution of NK cells 
and overall survival was described by few studies emphasizing 
their essential role in the defense of infections when T cell 
immunity is mainly absent (7, 8). Furthermore, NK cells were 
successfully applied as immunotherapy for patients with high-
risk malignancies suffering from impending relapse following 
HSCT. In clinical studies, adoptively infused NK cells induced 
graft-versus-leukemia/tumor effect without concomitant 
severe graft versus host disease (GvHD) (9–11). In addition, 
recent studies ascribe GvHD reduction to NK cell function 
post-HSCT (12). In this work, we focused on the regeneration 
of CD56bright and CD56dim NK cells with a special regard on the 
population shifting between these subpopulations. We divided 
NK cells in three NK cell subpopulations. In the first step, we 
established reference values of CD56++CD16− (CD56bright), 
CD56++CD16+ (CD56int), and CD56+CD16++ (CD56dim) NK 
cells of healthy children and adolescents (n  =  174). These 
reference values were matched and compared to the NK cell 
reconstitution of patients, who did not suffer from any viral 
infection or GvHD and are still alive after allogenic stem cell 
transplantation. In the next step, we investigated the associa-
tions between the reconstitution of the three different NK cell 
subpopulations in regard to the occurrence of events such as 
acute graft versus host disease (aGvHD) or chronic graft versus 
host disease (cGvHD) and severe viral infections in the first 
year post-HSCT in contrast to a cohort of patients without 
severe events assumed as control group.

MaTerials anD MeThODs

reference cohort of children and 
adolescents
In this cross-sectional monocentric study (approval ethic com-
mittee Ref. No. 139/09), 174 donors (64 females and 110 males) 
were included. Residual peripheral blood samples of hemato-
logically healthy children aged 1 month to 18 years were analyzed 
(patients were hospitalized, e.g., for cleft lip and palate correction). 
Inclusion criteria involved no incidence of immunodeficiency or 
infection (defined as >2 severe infections/year, >8 infections/
year, persistent fungal infections, post-vaccinal complications, 
no evidence of acute bleeding, negative for CRP and normal 
leukocytes, lymphocytes, and neutrophil granulocytes).

Patients and grafts
The reconstitution of NK cells and their subpopulation CD56bright, 
CD56int, and CD56dim was analyzed in n = 74 patients (n = 25 
females and n = 49 males) transplanted from 2010 to 2016 (see 
Table  1). Indications for HSCT were high-risk acute lympho-
blastic leukemia (n  =  51), acute myeloid leukemia (n  =  12), 
and myelodysplastic syndrome (n =  11). Median age at HSCT 
was 10.4  years (range: 1.3–24.4  years). Grafts were received 
from matched family donors (MSD; n = 20), matched unrelated 
donors (MUD) (n = 39), and haploidentical mismatched family 
donors with <8/10 HLA matches (MMFD; n = 15). No significant 
differences in the occurrence of GvHD were available in the 
different donor groups (MSD: 6/20, MUD: 10/39, and MMFD: 
3/15). A second or third transplant was administered to n = 9 
and n = 2 patients, respectively, because of relapse after first or 
second HSCT. Stem cell sources consisted of (bone marrow; 
n = 48), unmanipulated PBSC (n = 11), and T cell-depleted PBSC 
(n = 15). Post-transplant aGvHD occurred in n = 31 patients with 
grades I (n = 9), II (n = 3), III (n = 16), and IV (n = 3), cGvHD 
in 22 patients. Severe viral infections occurred in 18 patients 
including primary infection or reactivation with cytomegalovirus 
(CMV) (n =  8), adenovirus (ADV) (n =  5), and Epstein–Barr 
virus (EBV) (n = 5).

study Design
This study was carried out in accordance with the Declaration of 
Helsinki and was approved by the Medical Ethics Committee of 
the Frankfurt University Hospital (Ref. No. #198/16). Peripheral 
blood was collected within the framework of a post-HSCT routine 
sampling for clinical follow-up from 2010 to 2016. In engrafted 
patients, samples were collected starting at day 15, within the first 

GvHD. In context of viral infection, a slightly lower CD56 and CD16 receptor expression 
followed by a considerable reduction in the absolute CD56dim NK cell numbers combined 
with reoccurrence of CD56int NK cells was observed. Our results suggest that a precise 
analysis of the reconstitution of NK cell subpopulations post-HSCT might indicate the 
occurrence of undesired events post-HSCT such as severe aGvHD.

Keywords: nK cells, immune reconstitution, cD56, cD16, allogeneic transplantation, children, reference values
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Table 1 | Patient’s characteristics.

groups all agvhD cgvhD Viral 
infection

control 
group

Patients 74 19 22 (8) 18 23

Diagnosis
ALL 51 13 12 (4) 13 17
AML 12 3 3 (2) 5 3
MDS 11 3 7 (2) 0 3

age at hscT
Median (range) 10.4 

(1.3–24.4)
8.9  

(1.9–17.6)
9.4 

(1.3–18.2)
10.3 

(3.4–17.7)
12.1 

(2.3–24.4)

sex
Male 49 11 15 (6) 13 16
Female 25 8 7 (2) 5 7

Donor type
MSD 20 6 11 (4) 1 6
MUD 39 10 9 (2) 9 13
MMFD 15 3 2 (2) 8 4

stem cell source
BM 48 12 17 7 16
Unmanipulated PBSC 11 4 3 3 3
T cell depleted 15 3 2 8 4

gvhD
aGVHD 31 19 20 0 0
Grade I/II/III/IV 9/3/16/3 0/0/16/3 9/3/7/1 0/0/0/0 0/0/0/0
cGvHD 22 8 22 0 0

Viral infections
ADV/CMV/EBV 5/8/5 0/0/0 0/0/0 5/8/5 0/0/0
survival (%) 87 74 96 78 100

Follow-up (months)
Median (range) 35 

(3–105)
33 

(3–77)
43  

(6–92)
28 

(2–103)
48 

(24–105)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; MDS, 
myelodysplastic syndrome; HSCT, hematopoietic stem cell transplantation; MSD, 
matched sibling donor; MUD, matched unrelated donor; MMFD, mismatched family 
donor; BM, bone marrow; PBSC, peripheral blood stem cells; GvHD, graft versus host 
disease; aGvHD, acute graft versus host disease; cGvHD, chronic graft versus host 
disease; ADV, adenovirus; CMV, cytomegalovirus; EBV, Epstein–Barr virus.
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year monthly, within the second year three monthly, and after-
ward every 6 months until 36 months post-HSCT, respectively. 
In total, n = 925 measurements of n = 74 patients were included 
in this analysis.

Depending on the occurrence of unexpected events such as 
aGvHD (only grades III and IV, grades I and II excluded), cGvHD, 
and severe viral infections, the study group was partitioned. The 
patient group without aGvHD/cGvHD or any viral infections was 
chosen for comparison as control group.

Patients showing a distinct CD56int population in a sufficient 
absolute amount post-HSCT were elected for more detailed 
analysis applying a 10-color flow cytometry.

assessment of nK cells and Their 
subpopulations
Natural killer cell subpopulations were analyzed on a FC500 
flow-cytometer (Beckman Coulter, Krefeld, Germany) 

applying a five-color panel to estimate CD3+ T cells, CD19+  
B cell, and CD3−CD56+ NK cells, including the differentiation 
into CD56++CD16−, CD56++CD16+, CD56+CD16++ NK cells, 
abbreviated as CD56bright, CD56int, and CD56dim NK cells, 
respectively. Absolute cell numbers were estimated from 
peripheral blood samples in a dual platform lyse-no-wash pro-
cedure as described previously (13). In brief, a tube of 100 µl 
EDTA-peripheral blood was labeled with CD45/CD56/CD19/
CD3 tetraCHROME (clones B3821F4A/N901/J3-119/UCHT1) 
multi-color mAb conjugated with FITC, phycoerythrin (PE), 
phycoerythrin texas red (ECD), and phycoerythrin-cyanine 5 
(PC5). CD16 phycoerythrin-cyanine 7 (PC7, clone: 6607118) 
was additionally added. For the measurement of T cells includ-
ing T helper and cytotoxic T cells, we applied the tetraCHROME 
multi-color reagent CD45/CD4/CD8/CD3 (clones B3821F4A/
SFCI12T4D11/SFCI21Thy2D3/UCHT1) conjugated with FITC, 
PE, ECD, and PC5. All reagents were acquired from Beckman 
Coulter Immutech (Marseille, France).

Differences in the expression profiles of CD56bright, CD56int, and 
CD56dim cells were analyzed applying two panels on a Navios™ 
10-color flow cytometer (Beckman Coulter, Krefeld, Germany). 
Panel 1: CD226  =  DNAM-1 (FITC; clone: KRA236), NKG2A 
(PE; clone: Z199), DUMP = CD3&CD14&CD19 (ECD; clones: 
UCHT1, RMO52, J3-119), CD117 (PC5.5; clone: 104D2D1), 
CD27 (PC7; clone: 1A4CD27), CD56 [allophycocyanin (APC); 
clone: N901], CD127 (APC-A700; clone: R34.34), CD16 (APC-
A750; clone: 3G8), CD57 [Pacific Blue (PB); clone: NC1], CD45 
[Krome Orange (KrO); clone: J.33]. Panel 2: CCR5 (FITC; 
clone: 2D7), killer cell immunoglobulin-like receptor (KIR) mix 
(CD158 + CD158b + CD158e1; clones: EB6B, GL183, Z27.3.7), 
DUMP = CD3 + CD14 + CD19 (ECD; clones: UCHT1, RMO52, 
J3-119), CD117 (PC5.5; clone: 104D2D1), CX3CR1 (PC7; clone: 
2A9-1), CD56 (APC; clone: N901), CD62L (APC-A700; clone: 
DREG56), CD16 (APC-A750; clone: 3G8), CCR7 (PB; clone: 
G043H7), and CD45 (KrO; clone: J.33). All antibodies were 
purchased from Beckman Coulter Immutech except CCR5 (BD 
Biosciences, Heidelberg, Germany) and CX3CR1 (Biolegend, 
San Diego, CA, USA). Staining was performed, using 100 µl of 
peripheral blood for each tube followed by 15  min of incuba-
tion at room temperature and erythrocyte lysis applying NH4Cl 
reagent (Beckman Coulter, Marseille, France).

Stained Cyto-Comp™ cells were applied to compensate the 
fluorescence overlap. The flow cytometer fluidic stability and 
the optical alignment were daily tested using Flow-Check™ 
Fluorospheres (Beckman Coulter, Krefeld, Germany). For verifi-
cation, Immunotrol cells (Beckman Coulter) were applied three 
times a day. Furthermore, we participate in an external quality 
assessment for the detection of T-, B-, and NK cells (INSTANT e. 
V.—provider for German round robin test, No 213).

Data evaluation was performed using Kaluza and CXP-
software (Beckman Coulter).

statistical analysis
Statistical analysis was performed using GraphPad Prism 6 
(GraphPad Software, San Diego, CA, USA). The NK subpopula-
tion reference values of healthy children and adolescents were 
calculated with non-linear exponential regression analysis 
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FigUre 1 | reconstitution of cD56bright, cD56int, and cD56dim natural killer (nK) cells with respect to reference percentiles of healthy children. 
Reconstitution of CD56bright, CD56int, and CD56dim NK cells plotted into a graph showing the 10th, 90th (…., dotted line), and 50th (▬, solid line) percentile of NK cell 
reference values of healthy children (n = 174) as well as their underlying measurements (◼, gray squares). Measurements of stem cell transplanted patients without 
graft-versus-host disease or viral infections (n = 23; mean with SD) were plotted into the reference model (○, black rimmed circles) at 19 time points until 36 months 
after hematopoietic stem cell transplantation (HSCT). Time points were 15 days, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 18, 21, 14, 30, and 36 months after SCT. 
The CD56bright and CD56dim NK cells post-HSCT needed around 12 months to reach the distribution of healthy individuals NK cells. At that time point, the CD56bright, 
CD56int, and CD56dim NK cells met the 50th percentile of the reference range (a–c). CD56bright NK cells were elevated post-HSCT but already reached the reference 
range after 2 months (a). Intermediate NK cells matched the reference range directly after HSCT but showed a fast proliferation until 5 months followed by a decline 
until 12 months post-HSCT (b). CD56dim NK cells were underrepresented directly after HSCT, reaching the lower reference range after 8 months post-HSCT (c). 
The development of absolute cell counts of CD56bright, CD56int, and CD56dim NK cells is shown in subfigures (D–F).
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(equation: one-phase decay, least square fit; function: Y = (Y0 ‒  
Plateau)  ×  exp(‒  K  ×  X)  +  Plateau). Significant differences 
between groups were assessed by a non-paired two-tailed Mann–
Whitney U test. p-Values <0.05 were regarded as significant 
and are indicated as *p  <  0.05, **p  <  0.01, ***p  <  0.001, and 
****p < 0.0001.

resUlTs

normalization of cD56bright to cD56dim  
ratio Post-hscT within the First Year 
Post-hscT
The distribution of NK cell subpopulations post-HSCT is 
divergent from healthy individuals showing a high proportion 
of CD56bright cells shifting toward CD56dim NK cells. To estimate 
the reconstitution time to a normal CD56bright, CD56int, and 
CD56dim NK cell distribution and absolute cell counts post-
HSCT, we first generated age-matched reference values of NK 
cell subpopulation frequencies and absolute NK cell counts for 
healthy children and adolescents (Figure S1 in Supplementary 

Material). Interestingly, the proportion of CD56bright, CD56int, and 
CD56dim in early childhood changed from 15, 8, and 78 to 6, 4, 
and 90% in adults, respectively. Subsequently, we matched the 
NK cell reconstitution of all patients of the control group without 
severe events (e.g., GvHD, infections) with the newly generated 
reference values (Figure 1). The frequency of CD56bright NK cells 
is elevated directly after HSCT but reaches the upper reference 
range following 2  months. However, the levels of CD56bright 
appear slightly increased remaining between the 50th and 90th 
percentile until 12 months post-HSCT (Figure 1A). Surprisingly, 
the percentage of CD56int cells matches the reference range 
within the first 2 months post-HSCT but increases starting from 
3  months exceeding the 90th percentile of the reference range 
following 5  months post-HSCT. After this period, the CD56int 
fraction declines and converges to the 50th percentile of the 
reference values 12 months after HSCT (Figure 1B). By contrast, 
the CD56dim fraction remains below the 10th percentile until 
8  months and reaches the 50th percentile of normal reference 
values after 12  months post-HSCT (Figure  1C). Comparable 
reconstitution profiles are also apparent for absolute values of 
CD56bright, CD56int, and CD56dim NK cells. However, absolute 
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FigUre 2 | comparison of natural killer (nK) cell reconstitution in patients suffering from acute graft versus host disease (agvhD) versus patients 
without events. Regeneration of CD56bright, CD56int, and CD56dim NK cells in patients affected with severe aGvHD with grade III and IV (■, red squares, n = 19) and 
patients without events post-hematopoietic stem cell transplantation (HSCT) (□, green rimmed squares, n = 23) at time point of 15 days, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 15, 18, 21, 14, 30, and 36 months after SCT. Especially, in the first 3 months, post-HSCT aGvHD patients showed significantly lower CD56bright NK cells in 
both percentage (a) (p < 0.0001) and absolute amounts (D) (p < 0.01). CD56int NK cells of aGvHD patients seem delayed in their development as patients without 
events show an increased intermediate population over a period of at least 18 months (b,e). Except in the beginning, CD56dim NK cell levels of GvHD patients 
remain below those of patients without events during the whole monitoring interval (c,F). Measurements were available at almost all time points, except for five 
patients of the aGvHD group who died 2, 3, 9, 9, and 18 months post-HSCT.
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values after HSCT seem to be lower than NK cells of healthy 
children (Figures 1D–F).

reconstitution of nK cells with  
regard to gvhD Development
Patients suffering from aGvHD with grade higher than III show 
significant differences in the reconstitution of NK cell subpopula-
tions compared to patients without any severe events post-HSCT. 
The median time of first symptoms of aGvHD was 22 days post-
HSCT (range: 13–84). Within the first, second, and third month 
68, 89, and 100% of the affected patients showed first signs of 
aGvHD, respectively. Patients without events show conspicuously 
higher frequency of CD56bright NK cells within the first 3 months 
following HSCT compared to patients suffering from aGvHD 
with the most significant difference already 15  days following 
engraftment (p < 0.0001; Figure 2A). This could also be shown 
for the absolute CD56bright NK cell amount 1 month after HSCT 
(p < 0.01; Figure 2D). This tendency was less pronounced when 
analyzing NK cells in patients with lower grades aGvHD (data not 
shown). Furthermore, the reconstitution of NK cell subpopula-
tions seems to be delayed in patients suffering from aGvHD. For 
the CD56int NK cell population, a displacement in time could be 

shown, which leads to a longer increase in CD56int frequency and 
absolute amount (Figures 2B,E). To reach the 50th percentile of 
normal reference values, patients with aGvHD need a prolonged 
reconstitution time taking at least two times longer compared to 
patients without events. Patients with lower GvHD grades were 
lying in between (data not shown). Even after 3 years of monitor-
ing, a trend toward higher frequency of CD56bright and CD56int 
NK cells concomitant with lower CD56dim was seen in patients 
suffering from severe aGvHD (not significant, Figures  2A–C). 
These differences in the NK cell development post-HSCT were 
also found evaluating the absolute amounts of NK cell subpopula-
tions (Figures 2D–F). Noteworthy, patients affected with aGvHD 
following HSCT also show a reduced absolute amount of CD56dim 
NK cells after 3 years post-HSCT (Figure 2F). Analyzing absolute 
NK cell count (including all three subgroups), we did not see a 
correlation between patients with and without aGvHD (Figure 
S2A in Supplementary Material). Analyzing cytotoxic T cells, we 
detected that patients reaching levels of cytotoxic T cells above 
1,500/μl within the first year post-HSCT developed in almost all 
cases an aGvHD (Figure S2B in Supplementary Material). But this 
fact was only true for less than 25% of the total aGvHD patient 
cohort. Furthermore, we evaluated the NK cell regeneration of 
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FigUre 3 | natural killer (nK) cell reconstitution in patients suffering from chronic graft versus host disease (cgvhD). Development of CD56int NK cells 
of patients suffering from cGvHD after severe acute graft versus host disease (grade III or IV) is shown for frequency (a) and absolute count (b). Over a period of at 
least 18 months, a higher amount of CD56int NK cells for patients suffering from cGvHD (■, dark red squares, n = 8) was detectable compared to patients without 
severe events post-hematopoietic stem cell transplantation (□, green rimmed squares, n = 23).
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patients with primary aGvHD grade III or IV that became chronic. 
Thereby, we detected important differences in the development of 
NK cell subpopulations from CD56bright above CD56int to CD56dim 
NK cells. The development from CD56int to CD56dim NK cells is 
delayed for at least 2 years. Furthermore, patients with chronifica-
tion of aGvHD with grade >III have a markedly elevated CD56int 
frequency (Figure 3A), which is also clearly visible in absolute 
cell count of CD56int NK cells (Figure 3B).

receptor expression of cD56bright, cD56int, 
and cD56dim nK cells Post-hscT
As part of the patients had low absolute cell counts post-HSCT, 
a detailed phenotyping of the CD56bright, CD56int, and CD56dim 
NK cell populations was only possible for an elected cohort of 
patients. To get an understanding of the function of CD56int NK 
cells, we analyzed surface molecules linked to NK cell cytotoxic-
ity, adhesion, and immune regulatory functions (e.g., chemokine 
and cytokine receptors) and compared the expression of KIRs, 
CD62L, NKG2A, CD127, CD117, CX3CR1, CD226, and CD57 
on all three NK subpopulations. The CD56dim population showed 
a higher expression of KIRs, whereas the CD56int and CD56bright 
population did not. However, not all KIRs applied within the 
mix were expressed with equal density (Figure 4). Regarding the 
homing receptor CD62L, the CD56int, and the CD56bright fraction 
showed an increased expression compared to CD56dim population. 
The expression of NKG2A was highest on CD56int and CD56bright 
cells but bipartite in CD56dim NK cells. CX3CR1 is involved 
in adhesion and migration of NK cells and to a small extent 
higher presented on CD56dim NK cells. As already described, we 
could also show that CD57 was only detectable on the CD56dim 
subpopulation. Low expression of CD127 (IL7α chain), CD117 
(c-Kit), and CD226 (DNAM-1) could be seen on all NK cell sub-
populations; however, CD56bright intend to have higher expression 

than CD56dim, whereas CD56int was always lying in between. In 
summary, the expression profiles of CD56int and CD56bright NK 
cells were nearly congruent, but differed to CD56dim cells in KIR, 
CD62L, NKG2A, CX3CR1, and CD57 expression (Figure 4).

influence of Viral infection Post-hscT on 
nK cell reconstitution
The immune reconstitution of NK cell subpopulations post-HSCT 
was analyzed in patients without events and patients suffering 
from ADV (n = 5), EBV (n = 5), and CMV infection (n = 8). 
Infection was detected by the routine analysis of DNA copies in 
peripheral blood. Patients with elevated viral load at the day of 
transplantation were excluded from the study, resulting in a cohort 
of patients with occurrence of a positive viral load between 30 and 
90 days post-HSCT. Interestingly, we observed a slight reduction 
in CD56 and CD16 expression in patients suffering from viral 
infection in between day 30 and day 60 post-HSCT measured 
by mean fluorescence intensity (Figure 5). After viral clearance 
in most patients, a considerable loss in absolute CD56dim NK cell 
count occurred followed by continued regeneration of CD56int 
NK cells, which was lower in patients without events post-HSCT 
on day 150 post-HSCT (Figure 5).

DiscUssiOn

Especially in the early phase following allogeneic HSCT, together 
with neutrophils, NK cells are the first line of immune defense. 
Their immune reconstitution is of crucial importance for 
transplantation outcome with special regard to the occurrence 
of GvHD and viral infections. In this project, we analyzed NK 
cell subpopulations in detail not only focusing on CD56bright and 
CD56dim cells but also the fraction in between those subsets. With 
regard to NK cell subpopulation development in young healthy 
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FigUre 4 | immunophenotyping of cD56bright, cD56int, and cD56dim cells. Exemplary flow cytometric plots of natural killer (NK) cell subpopulations of a patient 
4 months post-hematopoietic stem cell transplantation (HSCT) with GvHD showing an almost equal distribution of CD56bright, CD56int, and CD56dim cells (a) and of a 
healthy child aged 3 years with mainly CD56dim cytotoxic NK cells (b). NK cell subpopulations were characterized in detail by flow cytometric measurement of 
surface antigen expression of several ligands involved in adhesion, chemotaxis, and cytotoxicity. Expression of the corresponding receptors on NK cells is shown by 
overlay plots with MFI on the x-axis of respective antigen in allocation to CD56bright (dark gray), CD56int (red) compared to CD56dim NK cells (light gray). CD56bright and 
CD56int NK cells show comparable receptor expression, but differ to CD56dim cells in KIR-, CD62L, NKG2A, CX3CR1, and CD57 expression (c).
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children, we found that it takes around 12 months until CD56bright, 
CD56int, and CD56dim NK cells of patients post-HSCT reach the 
50th percentile of age-matched reference range. Comparable 
results were published by Pical-Izard et al. describing that rapidly 
re-emerging NK cells remain immature for more than 6 months 
(8). Directly after HSCT we detected a highly increased frequency 
of CD56bright, whereas CD56int NK cells correspond to the reference 
range, but considerably expand within the first 3 months post-
HSCT. In contrast, CD56dim NK cells deserve around 8 months to 
enter the reference range. These results confirm the hypothesis of 
sequential development of NK cells with CD56int NK cells repre-
senting an intermediate state from CD56bright to CD56dim NK cells 
(14, 15). These CD56bright NK cells in peripheral blood are closely 
related to those NK cells populating secondary lymphoid tissues 
(16). Further evidence supporting this hypothesis was published 
by Freud et al. describing that the CD56bright subset is the major 

NK cell population that is derived early in vitro when CD34+ HPC 
are cultured in NK development supportive conditions, whereas 
CD56dim NK cells develop later (17). Furthermore, CD56bright NK 
cells display longer telomeres than the CD56dim NK cells, indicat-
ing lower proliferation capacity (6).

We further characterized all three NK cell subpopulations with 
the finding, that CD56int presented antigen expressions among 
CD56bright and CD56dim NK cells, even so CD56bright and CD56int 
NK cells showed rather equal expression profiles and seemed 
related more to CD56bright. However, differential expression of 
KIRs, CD62L, NKG2A, and CD57 was observed on CD56dim NK 
cells. This is in parallel to other findings describing an increased 
expression of NKG2A, the IL-7 receptor (CD127) and the lymph 
node homing receptor CCR7 on CD56bright cells (2, 5, 8, 18, 19) 
whereas CD56dim NK cells acquire KIR, NKG2C, and CD57 
expression (20).
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FigUre 5 | Viral infections influencing natural killer (nK) cell reconstitution and nK marker expression density. Exemplary flow cytometric plots of a 
patient without events and patients suffering from adenovirus (ADV), Epstein–Barr virus (EBV), and cytomegalovirus (CMV) infection between 15 and 150 days 
post-HSCT. Patients with high viral load (e.g., ADV above 40,000 genome equivalent/ml and CMV above 90,000 IU/ml) or qualitatively confirmed EBV infection with 
disease onset between day 30 and day 60 were exemplarily presented. NK cells of patients suffering from viral infection showed a slight reduction in CD56 and 
CD16 receptor expression 90 days post-HSCT (frame). After 150 days post-HSCT, the NK cells of the patient without events consisted of a major population of 
CD56dim, a small amount of CD56bright and only few CD56int cells whereas patients after EBV and CMV infection showed a distinct population of CD56int NK cells 
again. Patients suffering from infections: ADV (n = 5), EBV (n = 5), CMV (n = 8).
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Promoted by the IL-15 rich cytokine milieu post-transplant, 
NK cells are known to be one of the first lymphocyte subpopula-
tion recovering post-HSCT (21). Therefore, NK cell reconstitu-
tion might be the basis for generating early prognostic markers 
regarding the occurrence of severe events and transplantation 
outcome. Kim et  al. published that NK cell counts after allo-
HSCT, especially on day 30, were predictive markers for GvHD, 
non-relapse mortality, and survival (22). Furthermore, there is 
evidence that the speed of NK cell reconstitution correlates with 
transplant outcome, suggesting their important role in the early 
period when specific T cell immunity is absent (7, 8). Our and 
other findings suggest that the monitoring of NK cell subsets in 

the early phase post-HSCT might provide first signs of aGvHD 
development (23). Interestingly, within the first 2  months 
post-HSCT patients without aGvHD or viral infections had 
significantly elevated levels of CD56bright NK cells compared to 
patients suffering from aGvHD. This might be an early prognos-
tic factor regarding GvHD development; however, it needs to 
be confirmed in a prospective study. Likewise results were also 
published by Kheav et al. showing an impaired reconstitution of 
CD56dim NK cells 3  months post-HSCT (24). We also found a 
comparable trend for NK cell regeneration in patients suffering 
from cGvHD, although not significant (data not shown). This 
might be explained by the fact, that for aGvHD analysis, only 
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patients suffering from GvHD grades III and IV were considered, 
whereas no differentiation was available regarding cGvHD (e.g., 
chronification of primary aGvHD grades I and II).

Literature is discordant whether steroids/immunosuppression 
have a negative impact on NK cell reconstitution. Giebel et  al. 
proposed that the use of steroids for GvHD prophylaxis negatively 
affects quantitative reconstitution of NK cells after allo-HSCT 
(25). Although, patients suffering from GvHD grades III and IV 
normally receive steroids in our transplantation unit, we did not 
see any significant differences in the quantitative reconstitution of 
absolute NK cell numbers. Interestingly, Wang et al. described that 
CSA suppresses the in vitro proliferation of NK cells, especially 
the CD56dimCD16+KIR+ NK cells, resulting in a relative increase 
in the number of immature CD56brightCD16−KIR− NK cells (26). 
This might also contribute to the delayed NK cell development 
in patients suffering from higher grade aGvHD that we observed 
within this study. However, this remains controversial as other 
studies analyzed the effect of CSA on NK cell function in short-
term cultures and their cytokine production without finding 
significant differences between NK cells with and without CSA 
treatment (27, 28).

In patients suffering from viral infection post-HSCT, we 
observed a slight reduction in CD56 and CD16 expression. 
Notably, other publications already described the existence of 
CD56−CD16+ NK cells (CD56negative) NK cells in viral infections 
(e.g., HIV, hepatitis C), where NK cells undergo numerous phe-
notypic and functional changes (29). This CD56negative subset has 
been associated with high HIV viral load and has been reported 
to have an impaired cytolytic function and cytokine production 
(30). This increase occurred primarily at the expense of CD56dim 
NK cells, whereas numbers of CD56bright NK cells remained stable 
(31). Furthermore, we observed a considerable loss in absolute 
CD56dim NK cells followed by continued regeneration of CD56int 
NK cells. Alteration of NK cells upon viral infection has already 
been shown by other research groups, for example Pical-Izard 
et al. showed that in patients being affected by CMV reactivation, 
NK cells showed lower degranulation and TNF-α production 
compared to patients without CMV reactivation post-HSCT (8). 
In addition, it was shown that CMV reactivation is followed by an 
increase in the proportion of NKG2C+ NK cells within 2–4 weeks, 
which persist for at least a year (32, 33).

In conclusion, only after around 12  months, NK cells post-
HSCT reconstitute to a distribution of the subpopulations 
CD56bright, CD56int, and CD56dim comparable to age-matched 
healthy controls. The expression profiles of CD56int and CD56bright 
NK cells resemble each other but differed in KIR, CD62L, 
NKG2A, CX3CR1, and CD57 expression to CD56dim NK cells. 
We observed elevated levels of CD56bright directly after and 
CD56int NK cells 3 months post-HSCT accompanied by reduced 
CD56dim NK cells supporting the hypothesis of sequential NK cell 

development. Furthermore, we analyzed alterations in NK cell 
development in patients with severe viral infections and GvHD. 
Following viral infection, there was a slight reduction in CD56 
and CD16 receptor expression followed by a considerable loss in 
absolute CD56dim NK cells and continued regeneration of CD56int 
NK cells. Most important, within the first 2 months, post-HSCT 
patients without severe events had significantly elevated levels of 
CD56bright NK cells compared to patients suffering from aGvHD. 
While first measurements performed as early as 15 days following 
HSCT revealed the most significant differences, clinical occur-
rence of aGvHD was observed in median on day 22 post-HSCT. 
Therefore, we recommend immunophenotyping of NK cell 
subpopulations directly following engraftment, which might be 
an early prognostic factor regarding GvHD development.
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Hepatitis C virus (HCV) and human cytomegalovirus (HCMV) are prominent examples 
of RNA and DNA viruses, respectively, that establish a persistent infection in their host. 
HCV affects over 185 million patients worldwide, who are at high risk for developing liver 
fibrosis, liver cirrhosis, and ultimately hepatocellular carcinoma. Recent breakthroughs 
in HCV therapy, using direct-acting antivirals have provided the opportunity to monitor 
natural killer (NK) cells after clearance of a chronic infection. There is now increasing  
evidence that the individual NK cell repertoire before infection is predictive for the course 
of disease. HCMV affects the majority of the global population. While being asymptomatic 
in healthy individuals, HCMV represents a severe clinical challenge in immunocompro-
mised patients. Both viral infections, HCV and HCMV, lead to long-lasting and profound 
alterations within the entire NK cell compartment. This review article, will discuss the 
diverse range of changes in the NK cell compartment as well as potential consequences 
for the course of disease.

Keywords: natural killer cells, hepatitis C virus, human cytomegalovirus, chronic infection, natural killer subsets

inTRODUCTiOn

A wide range of viral infections challenge the immune system throughout the lifetime of its host 
exerting a substantial and often long-lasting impact on multiple immune parameters. Natural killer 
(NK) cells, vital players in the antiviral immune defense, have been shown to undergo substantial 
changes in phenotype, function, and subset distribution during persistent viral infections. Specific 
NK subsets have been associated with both efficient clearance of viruses and immune dysfunction.

Persistent viral infections can be latent or chronic. Latent infection is characterized by long 
periods of viral inactivity with no replication or production of new virions although stress stimuli 
can trigger episodes of reactivations. Prominent examples of viruses establishing latent infection are 
the herpes viruses [human cytomegalovirus (HCMV), herpes simplex virus (HSV), Epstein–Barr 
virus (EBV), varicella-zoster-virus (VZV)]. Other viruses, such as the majority of hepatitis viruses 
[hepatitis C Virus (HCV), hepatitis B Virus (HBV), hepatitis D Virus (HDV)] and human immuno-
deficiency virus (HIV), establish chronic infections in which constant replication takes place. This 
drives chronic inflammation, often resulting in severe tissue damage of the infected organ (1). In 
this review, we will focus primarily on the effects of latent HCMV and chronic HCV infection on 
NK cells.
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Hepatitis C Virus is a hepatotropic, enveloped, (+)-strand 
RNA virus that is transmitted person-to-person via blood and 
establishes chronic infection in 55–85% of patients. The prob-
ability for spontaneous viral clearance depends on several factors 
such as age, sex, host genetic factors, coinfection with other 
viruses, and viral genotype (2, 3).

Currently, seven genotypes and multiple subgenotypes are 
described with distinct global distribution patterns. In developed 
countries, genotype 1 is the most common, accounting for 
around 50% of all HCV infections, even though it has the most 
favorable prognosis (4). Worldwide an estimated 2.5% of the 
world’s population is chronically infected with HCV. Throughout 
the decade-long infection, the liver suffers from immunopathol-
ogy, resulting in fibrosis, cirrhosis, often progressing to hepato-
cellular carcinoma. Each year around 500,000 people die from 
HCV-related liver diseases (5). To establish chronicity, the virus 
interferes with several innate and adaptive immune pathways, 
such as recognition by retinoic acid inducible gene I (RIG-I), the 
primary sensor for HCV-RNA in the host cell’s cytoplasm (6). 
The emergence of viral escape variants facilitates evasion from 
recognition by CD8 T  cells, which are the main effector cells 
against HCV (7).

Until 2011, standard therapy for HCV consisted of pegylated 
IFN-α/ribavirin. However, only around half of the patients 
achieved a sustained virological response (SVR) defined by no 
detectable HCV-RNA 24 weeks after treatment and side effects 
were drastic. In 2011, the first direct-acting antivirals (DAAs) 
were approved targeting essential viral proteins which revolu-
tionized therapy by reaching SVR rates of >90% (4, 8, 9).

Human cytomegalovirus has a linear double-stranded DNA 
genome of 236 kbp. The virus spreads vertically and horizontally 
via bodily fluids by infecting epithelial and endothelial cells, mac-
rophages, and DCs wherein it establishes life-long latency. This 
leads to high global prevalence rates of 60–85%, depending on 
socioeconomic factors, geographical location, and age. HCMV is 
an opportunistic pathogen, causing disease only in immunocom-
promised people, e.g., during transplantations or in HIV patients. 
Furthermore, transplacental transmission of HCMV can cause 
severe, primarily neurological, damage to the fetus (10).

Human cytomegalovirus has developed a plethora of strate-
gies and dedicates a large portion of its genome to interfere with 
the host immune system. Many of these escape mechanisms have 
evolved to avoid recognition by NK cells (11–13).

Natural killer cells are important effector cells in the antiviral 
immune response in during HCMV and HCV infection (14–17).

The importance of NK cells in human Herpes virus infections 
was initially highlighted in a patient with a very rare NK  cell 
deficiency and his enhanced susceptibility to recurrent infec-
tions (18), a clinical phenotype corroborated in later reports  
(19, 20). Moreover, it is also indirectly evident in the multiple 
immune evasion strategies that HCMV utilizes to prevent 
NK cell recognition (11, 12).

The two main strategies employed by various viruses to evade 
NK  cells are preventing the upregulation of activating ligands 
or enhancing the expression of ligands for inhibitory NK  cell 
receptors. Upon viral infection, a variety of stress-induced mole-
cules are expressed on the surface of infected cells, which can 

be recognized by activating receptors on NK  cells. Important 
activating receptors belong to the natural cytotoxicity receptor 
(NCR) family, including NKp30, NKp44, and NKp46, which can 
recognize cellular as well as viral ligands. However, many of the 
NCR ligands still remain elusive. MHC class I molecules, in par-
ticular HLA-C, provide the main inhibitory signals for NK cells 
via interacting with killer immunoglobulin-like receptors (KIRs) 
(21). The KIRs, like their MHC ligands, are genetically highly 
polymorphic and expressed in a stochastic manner, leaving every 
NK cell with 0–4 KIR receptors (22). Furthermore, different KIR 
haplotypes—group A and B—have been identified. While the 
group A haplotype comprises almost exclusively inhibitory, the 
group B haplotypes also encode activating KIRs (23). Indeed, most 
receptors are expressed only on subsets of NK cells. Therefore, 
NK cells are not a uniform cell population but composed of many 
different subsets that differ in their mode of activation and their 
functional properties. In this review, we will discuss some of the 
NK cell subsets that have been studied in HCV and HCMV infec-
tions (Figure 1).

nK CeLL SUBSeTS CARRYinG  
SPeCiFiC KiRs

One receptor that has repeatedly been implicated in the anti-HCV 
immune response is the inhibitory KIR2DL3. In 2004, Khakoo 
and colleagues (24) reported a genetic association between 
the expression of KIR2DL3 and HCV clearance. They studied 
more than thousand patients infected with HCV, of whom 685 
developed a chronic infection while 352 cleared the virus. Those 
patients, whose NK  cells expressed the inhibitory KIR2DL3 
homozygously on an HLA-C1/C1 background, were more likely 
to clear the virus spontaneously. Of note, when stratified in 
terms of route of infection, this association was only observed 
in patients with presumed low-dose viral inoculum, e.g., after 
a needle-stick, suggesting that the antiviral NK cell response is 
most efficient in situations with low viral load. Other studies in 
cohorts of injection drug users confirmed that exposed but unin-
fected individuals had a higher frequency of KIR2DL3 expression 
than drug users with chronic and resolved infections or healthy 
donors (25). This association was also reflected in the response 
to treatment, in which KIR2DL3–HLA-C1 expressing patients 
had a higher chance to achieve SVR after IFN-α-based treatment 
(26). However, in other studies, a correlation between KIR2DL3 
and outcome of infection was not observed, albeit with smaller 
and different patient cohorts (27, 28). The current hypothesis for 
this association is that NK cells expressing KIR2DL3, which has 
a rather weak binding affinity to HLA-C (29), tend to receive less 
inhibitory signals and are, therefore, more easily activated than 
NK cells expressing KIRs with higher binding affinities.

Additionally, there is now increasing evidence that peptides 
presented in MHC class I complexes also influence binding 
affinities of KIRs. This has already been shown for HIV peptides 
(30–32) and could in 2016 for the first time be shown for an 
HCV peptide presented by an HLA-C1 molecule to KIR2DL3 on 
NK cells (33). Lunemann et al. (33) identified peptides derived 
from HCV NS3 and Core protein that stabilized expression of 
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FiGURe 1 | nK cell subsets in chronic viral infections. Persistent infections exert a profound and long-lasting impact on the NK cell compartment. In hepatitis C 
virus (HCV) (red background) and human cytomegalovirus (HCMV) (yellow background) infection, a number of NK cell subsets have been shown to expand and/or 
correlate with disease progression and outcome. During chronic HCV infection, an NK cell subset displaying increased expression of the natural cytotoxicity receptor 
NKp46 was observed, which proved superior in clearing HCV-RNA from infected hepatocytes. On the other hand, expansions of functionally impaired CD56neg 
NK cells (CD56−CD16+CD3−CD14−CD19−) were described during chronic HCV and human immunodeficiency virus and sporadically during reactivation episodes of 
HCMV. HCV patients with high numbers of NK cells expressing the inhibitory receptor KIR2DL3 on an HLA-C1/C1 background are more likely to spontaneously 
clear the virus or respond favorably to IFN-α treatment. Furthermore, certain killer immunoglobulin-like receptors (KIRs), including KIR2DL3 seem to be 
overrepresented on expanded adaptive NK cell subsets in HCMV infection. These adaptive NK cell subsets often express NKG2C and CD57 and are characterized 
by low/absent levels of key signaling molecules (e.g., FcεRIγ) and transcription factors (e.g., PLZF and/or Helios).
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HLA-C*03:04 on transfected 721.221 cells and facilitated bind-
ing of KIR2DL3–Fc proteins. One of the peptides derived from 
HCV Core protein was furthermore able to inhibit degranulation 
of primary KIR2DL3+ NK cells. When comparing core peptide 
sequences from different HCV genotypes, the genotype 1-derived 
peptide provided the strongest inhibitory signal, while peptides 
from other genotypes were much less effective. These results 
encourage speculations about possible viral escape mechanisms 
by modulation of KIR binding and the implication that NK cells 
exert evolutionary pressure on the HCV genome. Future studies 
should address if the identified peptides can also be presented 
on primary hepatocytes and if other KIRs/HLA interactions are 
involved as well.

Moreover, there is substantial evidence for an overrepresenta-
tion of certain KIRs in expanded adaptive NK cell subpopulations 
(see below) in HCMV. The currently available data yield a com-
plex picture with some reports highlighting KIR2DL2/3 (34–36) 
others KIR3DL1 (37) or activating KIRs (38).

THe CD56neg nK CeLL SUBSeT

Traditionally, NK  cells are classified as CD3−CD56+ lympho-
cytes, which are further divided into a CD56dimCD16+ and a 

CD56brightCD16− subset. During chronic viral infections, espe-
cially in HIV and HCV, a subset of CD3−CD56−CD16+ NK cells 
is detectable (39). These cells miss expression of lineage markers, 
such as CD14 and CD19 or markers of other cell types positive for 
CD16, while expressing a variety of NK cell receptors (NCR, KIR, 
and NKG2). They are, therefore, classified as CD56neg NK cells. 
This NK cell subset is found at low percentages (around 5% of all 
NK cells) in healthy adults and even in neonates, but can expand 
to 10–40% of all NK cells during HIV, acute, chronic, and resolved 
HCV infections or HIV/HCV coinfection. Concurrently, a drop 
in the percentage of CD56dim NK cells is observed (40–42).

Phenotypically, CD56neg NK  cells from healthy donors and 
chronic HCV patients are similar and expression of many recep-
tors is comparable between CD56neg and CD56dim NK cells from 
chronic HCV patients. Only CD57 and to a lesser extent NKp30 
were found to be expressed at lower levels in the CD56neg NK 
subset (40). Functionally, however, CD56neg NK  cells appear 
impaired. In response to different stimuli, the CD56neg NK subset 
of HCV patients failed to secrete significant amounts of IFN-γ and 
TNF-α and displayed low perforin expression and degranulation 
(40, 42). Yet, they showed higher TRAIL expression compared 
to CD56neg NK cells from healthy controls (41). This functional 
impairment seems to be a general feature of the CD56neg NK cell 
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subset, as it was observed in various chronic inflammatory situa-
tions. However, overnight in vitro culture of CD56neg NK cells with 
IL-2, IL-12, or IL-15 resulted in cytotoxicity levels comparable 
to stimulated CD56+ NK cells, indicating that upon stimulation 
CD56neg NK cells can effectively function (43). It was shown in 
HCV, as well as in HIV/HCV coinfection, that high pre-treatment 
levels of CD56neg NK  cells correlated with treatment failure  
(40, 44). Furthermore, after successful IFN-α/ribavirin treatment 
of HIV/HCV coinfected patients, absolute levels and percentage 
of CD56neg NK cells normalized after 4 weeks (45).

So far, the role of this particular NK  cell subset was not 
evaluated during DAA treatment of patients, but several lines of 
evidence suggest that the decline in CD56neg NK cells after treat-
ment is not induced by IFN-α, but results from a decrease in viral 
load (39). Until now, it was shown that the CD56dim and CD56bright 
NK cell subsets quickly normalize after DAA treatment in regard 
to numbers and functionality (46–48). This observation could 
indicate that the CD56neg subset also normalizes. However, fur-
ther studies are needed to address this and other open questions: 
does the CD56neg subset represent a terminally differentiated or 
exhausted cell type or rather a specific lineage? What is the degree 
of plasticity in terms of other NK cell subsets becoming CD56neg 
or CD56neg NK  cells acquiring CD56pos phenotypes? The fact 
that neonates and healthy individuals already have this CD56neg 
subset, might argue against an exhausted phenotype, although 
many of their properties resemble exhausted T cells.

In contrast to HCV and HIV, increased levels of CD56neg cells 
have only been reported sporadically in HCMV infection and 
were observed only in a subset of patients experiencing viral 
reactivation (49).

THe nKp46high nK CeLL SUBSeT

Expression of NK cell receptors was analyzed in different HCV 
patient cohorts (e.g., in acute or chronic infection and during 
treatment), but the obtained results have been highly controversial 
(50, 51). With regards to NKp46, however, several independent 
studies observed the involvement of an NKp46high NK cell subset 
expressing multiple markers of immature NK cells (52) in protec-
tion from infection, spontaneous clearance, liver inflammation, 
progression of fibrosis, and outcome of treatment.

In prospective studies of injection drug users, a higher per-
centage of CD56dim NK cells with increased levels of NKp46 was 
correlated with a higher percentage of individuals remaining 
seronegative, suggesting that high expression of NKp46 might 
be predictive for protection from infection (25). However, Alter 
et  al. (42) reported lower expression of activating receptors, 
including NKp46, in patients with acute infection who subse-
quently cleared the virus than in those, who progressed to chronic  
infection.

In chronically infected patients, the majority of studies report 
elevated NKp46 expression on peripheral blood NK cells compared 
to healthy donors (51). Of note, this is even more pronounced in 
the liver (52). NKp46high peripheral NK cells from healthy donors 
and HCV patients perform better in reducing HCV-RNA from 
in vitro infected hepatocytes, produce higher levels of IFN-γ, and 
degranulate more ex vivo in response to different stimuli (52, 53). 

Likewise, intrahepatic NKp46high NK  cells from HCV patients 
were shown to degranulate more ex vivo than NKp46dim cells (54). 
Furthermore, staining with an NKp46-Ig fusion protein revealed 
higher expression of a yet unknown NKp46-ligand on HCV-
infected Huh7.5 hepatoma cells than on uninfected cells (53).

Accordingly, NKp46 levels in patients correlate positively with 
liver inflammation scores (54) and inversely with HCV serum 
levels (52), suggesting that NKp46high NK cells can kill infected 
hepatocytes and contribute to viral control during chronic infec-
tion. The NKp46high subset correlated with low fibrosis stages, 
possibly due to NKp46-dependent killing of hepatic stellate cells, 
the main drivers of fibrosis (54–56).

Even though the NKp46high NK cell subset might be beneficial 
in reducing viral load and liver fibrosis during chronic infection, 
it also predicts failure to IFN-α therapy (54, 57). After successful 
DAA treatment, previously elevated NKp46 levels in liver and 
blood normalize, concomitantly with a normalization of many 
other NK cell receptors (47).

In contrast, in HCMV infection, there is little evidence for a 
direct modulation or involvement of NCRs. One report observed 
the dissociation of the CD3zeta chain from NKp30 after engaging 
the HCMV tegument protein pp65, leading to greatly reduced 
NKp30-mediated killing (58).

ADAPTive nK CeLL SUBSeTS

The most striking example for a long-lasting impact of a patho-
genic challenge on distinct NK subsets (59) was initially identi-
fied in two key reports by Miguel Lopez-Botet’s group (60, 61). In 
HCMV-seropositive individuals, a higher proportion of NK cells 
expressing the activating receptor CD94/NKG2C was detected. 
This expanded subset displays lower NCR levels and increased 
expression of CD85j/LIR-1 (60) and CD2 (38). Similar observa-
tions were made in transplant recipients who suffered from acute 
CMV infection/reactivation (34, 37, 49, 62, 63). In vitro studies 
recapitulated subset expansion suggesting that exposure of 
NKG2C+ NK cells to infected cells was critical for this process (61). 
Moreover, the interaction between HLA-E and CD94/NKG2C 
was defined as a critical event for subset expansion (64, 65). To 
date, several additional factors have been reported to contribute 
to the expansion and activation of NKG2C+ NK cells in response 
to HCMV infection, such as IL-15 (61), IL-12 (64), and CD14+ 
monocytes (64, 66), as well as the interaction between CD2 and 
upregulated CD58 on infected cells (67). As expansion of sub-
populations and their subsequent longevity resemble hallmarks 
of adaptive immune responses, the term “adaptive NK  cells” 
was coined for human NK cells displaying these characteristics. 
From here on, we will use the term in this broadly defined sense, 
comprising multiple subsets.

Intriguingly, while a large number of studies describe NK sub-
set expansions in other infections, e.g., HIV (68–70) Hantavirus 
(65), Chikungunya virus (71), EBV (72), and HBV/HCV (35, 73),  
seropositivity for HCMV seems to be a necessary pre-require-
ment. Altered HLA-E levels and/or a certain inflammatory 
cytokine milieu could be common denominators permitting 
the (re)expansion of NK cells “primed” initially by HCMV. The 
initial events, however, underlying the formation of this NK cell 
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subpopulation in primary HCMV infection, remain enigmatic 
and represent a field of intense interest.

In recent years, it became clear that the initial definition as 
NKG2C+ (and CD57+) was not sufficient to encompass all adap-
tive NK cell subsets.

A study by Hwang and coworkers in 2012 (74) identified 
NK  cell subpopulations with low or absent expression of the 
adaptor protein FcεRIγ in about one-third of all individuals 
tested. Zhang et  al. (75) then established that the presence of 
FcεRIγ-deficient NK cells was strictly associated with prior expo-
sure to HCMV. Expansion of an FcεRIγ− subset was also observed 
in HCMV+ chronic HCV patients and correlated with low liver 
damage and fibrosis levels, possibly implying an involvement of 
this subset in protection from immunopathology (76). Further 
reports extended the concept of HCMV driving the expansion of 
adaptive NK cell populations with deficiencies in key signaling 
molecules to Syk, EAT-2, and DAB2 and the transcription fac-
tors PLZF and Helios (77, 78). These features are not necessarily 
combined at a single-cell level and instead found in different 
combinations creating a previously unappreciated heterogeneity 
among adaptive NK cells.

Intriguingly, this molecular signature partially resembles 
exhausted T cells and in fact a recent study described high PD-1 
expression on a subset of CD57+ NK cells also displaying increased 
LIR-1 levels as well as higher NKG2C expression in some donors 
(79). Together with lower NCR expression in adaptive NK subsets, 
these features suggest a decreased functionality. While this seems 
to be the case for classical tumor targets (78), superior antibody-
dependent cellular cytotoxicity (ADCC) responses are emerging 
as a prominent and distinct characteristic of adaptive NK cells 
(38, 75, 77, 80–82), augmented by CD2 co-stimulation (67, 83). 
This functional specialization is accompanied by broad epigenetic 
modifications, including better accessibility of the ifn-γ locus  
(77, 78, 84). Latent HCMV infection might, therefore, be a worthy 
trade-off for the host if the interplay of CMV-induced adaptive 
NK cell populations and antigen-specific humoral immunity via 
ADCC results in elevated resistance to heterologous infection.

Besides deciphering the generation and function of adaptive  
NK cell subsets, several studies focused on their localization. In 
mice, a subset of NK cells endowed with antigen-specific memory 
has been shown to reside specifically in the liver (85, 86). In  
human liver samples, a subset, phenotypically similar to memory 
NK cells in the mouse (CD49a+T-bet+Eomes−) that also displayed 
high NKG2C expression, was identified. Yet, in contrast to 

peripheral NKG2C+ NK cells, they had an immature phenotype 
(CD57−, CD16−CD56bright), existed in high numbers in HCMV 
negative donors, and were incapable of mounting ADCC responses 
due to lack of CD16 expression (85, 87). Therefore, besides their 
striking resemblance to murine liver-resident memory NK cells 
and some shared features with human peripheral blood adaptive 
NK  cells, the function of this unique human liver NK subset 
needs to be further defined.

Very recently, another liver-resident NK  cell population, 
characterized as Eomeshi, CXCR6+ (88–90), and CD49e− (91) was 
described, following up HLA-mismatched human liver-trans-
plants. The authors demonstrated that these Eomeshi NK  cells 
survive for up to 13 years (90). This remarkable longevity makes 
an involvement of this subset in tissue homeostasis or antiviral 
responses against chronic infections a plausible scenario, which 
awaits further investigation.

COnCLUSiOn

Virus infections, especially with persistent viruses, have a remark-
able impact on the NK  cell compartment, shape the overall 
NK cell repertoire, and profoundly affect their effector functions. 
However, vice  versa, the different NK subset composition and 
receptor distribution before infection can also be decisive how 
well infections can be combated. The diversity of human NK cell 
subsets is one of the emerging topics in the field. Especially, tissue-
resident NK  cells and other subsets of helper innate lymphoid 
cells (ILCs), their development, regulation, antiviral functions, 
and plasticity in tissues, such as in the liver, are currently an area 
of intense research. A better understanding of the development 
and dynamics of ILCs comprising both NK cells and helper ILCs 
subsets in affected tissues during chronic viral infection might 
help the design of improved targeted strategies for therapeutic 
intervention.
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a Mature nK Profile at the Time of 
hiV Primary infection is associated 
with an early response to carT
Françoise Gondois-Rey1*, Antoine Chéret2,3,4,5,6,7, Françoise Mallet1, Ghislain Bidaut8, 
Samuel Granjeaud8, Camille Lécuroux3,4,5, Mickaël Ploquin6, Michaela Müller-Trutwin6, 
Christine Rouzioux7,9, Véronique Avettand-Fenoël7,9, Andrea De Maria10,11, Gilles Pialoux12, 
Cécile Goujard2, Laurence Meyer13 and Daniel Olive1*

1 CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Immunity and Cancer Team, Aix Marseille Univ, Marseille, France,  
2 APHP, Hôpital Bicêtre, Internal Medecin Unit, Le Kremlin-Bicêtre, France, 3 U1184, Paris-Sud Univ, Le Kremlin-Bicêtre, 
France, 4 CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France, 5 INSERM U1184, ImVA “Immunology of Chronic Viral 
Infections and Autoimmune Diseases”, Le Kremlin-Bicêtre, France, 6 Institut Pasteur, HIV, Inflammation and Persistance 
Unit, Paris, France, 7 Virology Laboratory, APHP CHU Necker-Enfants Malades, Paris, France, 8 CNRS, INSERM, Institut 
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Natural killer (NK) cells are major effectors of the innate immune response. Despite an 
overall defect in their function associated with chronic human immunodeficiency virus 
(HIV) infection, their role in primary HIV infection is poorly understood. We investigated 
the modifications of the NK cell compartment in patients from the ANRS-147-Optiprim 
trial, a study designed to examine the benefits of intensive combination antiretroviral 
therapy (cART) in patients with acute or early primary HIV infection. Multiparametric flow 
cytometry combined with bioinformatics analyses identified the NK phenotypes in blood 
samples from 30 primary HIV-infected patients collected at inclusion and after 3 months of 
cART. NK phenotypes were revealed by co-expression of CD56/CD16/NKG2A/NKG2C 
and CD57, five markers known to delineate stages of NK maturation. Three groups 
of patients were formed according to their distributions of the 12 NK cell phenotypes 
identified. Their virological and immunological characteristics were compared along with 
the early outcome of cART. At inclusion, HIV-infected individuals could be grouped into 
those with predominantly immature/early differentiated NK cells and those with predom-
inantly mature NK cells. Several virological and immunological markers were improved in 
patients with mature NK profiles, including lower HIV viral loads, lower immune activation 
markers on NK and dendritic cell (DC), lower levels of plasma IL-6 and IP-10, and a trend 
to normal DC counts. Whereas all patients showed a decrease of viremia higher than 3 
log10 copies/ml after 3 months of treatment, patients with a mature NK profile at inclusion 

Abbreviations: PBMCs, peripheral blood mononuclear cells; NK cell, natural killer cell; PTC, posttreatment controller; KIR, 
killer-cell immunoglobulin-like receptor; HIV, human immunodeficiency virus; PMT, photo-multiplicators.
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inTrODUcTiOn

Natural killer (NK) cells are one of the major innate immune 
components involved in the rapid response of the host to invading 
virus (1). Their function is probably crucial at the time of infec-
tion and can impact the quality of adaptive immune responses 
and the overall outcome of infections. NK cell activity is regulated 
by activating and inhibitory receptors, but their effector functions 
are intrinsically linked to their maturation (2). Cytolysis is the 
typical NK cell function, but NK cell also play an antiviral role 
through the release of soluble factors, such as IFN-γ and TNF-α  
(3), which activate T cells, macrophages, and dendritic cells 
(DCs). CD56bright NK cells are described as the progenitors of 
CD56dim, the latter being endowed with the main NK cell effec-
tor functions (2). CD56dim cells sequentially progress from an 
immature population, characterized by a high degranulation and 
proliferation potential, to a terminally differentiated population, 
characterized by potent cytokine production at the expense of 
cell division and degranulation (4). Immature NK cells express 
NKG2A, a C-type lectin receptor forming an inhibitory heterodi-
mer with CD94 to interact with HLA-E on target cells (5). HLA-E 
is a non-classical major histocompatibility complex (MHC) 
class I molecule whose expression is enhanced on infected cells 
through the presentation of viral peptides (6). During maturation, 
NKG2A loss is compensated by the acquisition of self-inhibitory 
killer-cell immunoglobulin-like receptor (KIR) expression, while 
CD57, a marker of senescence, is acquired (4). NKG2C/CD94 is 
the activating alternative receptor of HLA-E on NK cells (7). This 
receptor was initially described on a subset of NK cells expanded 
during CMV infection (8, 9), but recently, other viruses, including 
human immunodeficiency virus (HIV), were also shown to drive 
NKG2C+ NK cell expansion, in the context of CMV co-infection 
(10, 11). The persistence of a NKG2C+CD57+ NK cell subset for 
more than 1 year after CMV or Hantavirus infection has led to 
the proposition that they are a memory-like form of NK cell (8, 
12, 13). Therefore, the co-expression of CD56, CD16, NKG2A, 
NKG2C, and CD57 delineates sequential stages of the NK cell 
maturation process suggesting the acquisition of typical effector 
functions.

Natural killer cell functions are affected early after HIV 
infection (14). In addition, many modifications of the NK 
cell compartment, including decrease of CD56bright, expansion 
of CD56dim, and appearance of a functionally compromised 

subset of CD56dim expressing low levels of CD56 or CD16 were 
reported (15). Inversion of the ratio of NKG2A to NKG2C was 
described in primary HIV-infected patients (11, 16). In chroni-
cally infected patients, an overall increase of mature CD57+ NK 
cells was observed (17). In cohort of individualist risk of HIV 
infection, NK cell activation at the time of primary infection 
has been both positively and negatively correlated with the 
risk of HIV acquisition (18, 19). Recently, a correlation was 
demonstrated between NK cell repertoire diversity, linked to 
progression to maturity, and increased susceptibility to HIV 
infection (20). Therefore, while NK maturation seems to be an 
interesting parameter in HIV infection, so far, the impact of the 
overall maturation of NK cells on the outcome of primary HIV-
infection (PHI) remains elusive.

The Optiprim trial was designed to evaluate to what extent 
intensive antiviral therapy started during primary HIV infection 
contributes to a decrease in the size of HIV reservoirs and helps 
to achieve a so-called posttreatment controller (PTC) status (21). 
A sub-study was designed to investigate innate immune param-
eters. Considering the important role of NK cell maturation for 
their effector properties, we investigated the NK cell compart-
ment with a combination of markers known to characterize 
sequential steps of the NK cell differentiation pathway. Thirty 
primary HIV-infected patients peripheral blood mononuclear 
cell (PBMC) samples were investigated at inclusion and 3 months 
after the onset of combination antiretroviral therapy (cART). 
Because cell populations expressing unexpected combinations 
of markers might be expanded in pathological conditions, new 
bioinformatics methods were applied to analyze multiparametric 
cytometry data in an unsupervised approach (22). This allowed 
the identification of a relationship between profiles of NK cells 
skewed to immaturity or maturity and virological and immune 
parameters reached naturally a few weeks after infection and after 
early cART.

sUbjecTs anD MeThODs

ethical statement
All study participants provided written informed consent.

The study was approved by the Sud-Mediterranee-1 Ethics 
Committee and the French Health Products Safety Agency and 
complied with the Helsinki Declaration.

reached this threshold more rapidly than patients with an immature NK profile (70 vs. 
38%). In conclusion, a better early response to cART is observed in patients whose NK 
profile is skewed to maturation at inclusion. Whether the mature NK cells contributed 
directly or indirectly to HIV control through a better immune environment under cART is 
unknown. The NK maturation status of primary infected patients should be considered 
as a relevant marker of an immune process contributing to the early outcome of cART 
that could help in the management of HIV-infected patients.

Keywords: hiV, primary infection, nK cells maturation, carT, memory-like nK
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Table 1 | Patients’ characteristics at inclusion.

Number of patients 30

Number of patients acutely infected 14

Time between estimated date of infection and enrollment 
(days)

34 (20–55)

Age (years) 39.4 (23–55)

Number of patients handled by intensive combination 
antiretroviral therapy

15

CD4 counts at T0 (count/μL) 550 (323–1,012)

CD8 counts at T0 (count/μL) 1,704 (417–8,157)

CD4 to CD8 ratio at T0 0.47 (0.08–1.32)

Human immunodeficiency virus (HIV)-RNA at T0 
(log10 copies/mL)

5.51 (3.2–7)

HIV-DNA at T0 [log10 copies/106 peripheral blood 
mononuclear cell (PBMC)]

3.747 (2.78–4.68)

CD4 counts at M3 (count/μL) 656 (275–1,244)

CD8 counts at M3 (count/μL) 705 (371–1,282)

HIV-RNA at M3 (log10 copies/mL) 1.88 (1.3–3.42)

HIV-DNA at M3 (log10 copies/106 PBMC) 2.93 (2.25–3.62)

Mean values and (range) are indicated.
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study Population
Human immunodeficiency virus-1-infected subjects with 
PHI were included in a multicenter phase 3 randomized trial 
(ANRS-147 OPTIPRIM) (www.ClinicalTrials.gov, number 
NCT01033760). The endpoint was the impact of intensive vs. 
standard cART at month 24 on blood HIV-DNA levels. The 
results of this study have been published (21). Antoine Chéret was 
the Principal Investigator, Laurence Meyer the Methodological 
Investigator, and Christine Rouzioux the Virologist Investigator. 
We proposed a sub-study where the participants would give blood 
samples at day 0 (before cART initiation) and month 3. This sub-
study, in which Daniel Olive and Françoise Gondois-Rey were 
the investigators, was designed to investigate parameters of innate 
immunity linked to cART efficacy. Among 90 patients in the main 
study, 30 patients were randomly included in this sub-study. This 
work shows original data on NK cells, DC, CMV, and plasma 
cytokines, and uses information from the main study. Patient 
characteristics are listed in Table 1.

Fifteen healthy donor samples were obtained from the French 
Blood Bank (EFS, Etablissement Français du Sang) as controls. 
PBMC samples were frozen and kept in liquid nitrogen until 
tested.

Flow cytometry
Peripheral blood mononuclear cells were stained with multipara-
metric panels containing 9 or 12 fluorescent markers, respectively, 
designed to investigate NK and DC populations. The NK panel 
contained NKG2A-PacBlue (clone Z199, home-made), live–dead 
Aqua (Life Technology), CD57-FITC (Beckman Coulter; 1/30), 
NKG2C-PE (R&D; 1/40), CD14-PC5 (Beckman Coulter; 1/30), 
CD19-PC5 (Beckman Coulter; 1/30), CD56-PC7 (Beckman 
Coulter; 1/30), CD3-AF700 (BD Biosciences; 1/40), and CD16-
APCH7 (BD Biosciences; 1/40). The DC panel contained live–
dead Aqua (Life Technology), BDCA2-FITC (Miltényi; 1/30), 
CD123-PercpCy5.5 (BD Biosciences; 1/20), HLA-DR-ECD 

(Beckmann Coulter; 1/40), CD3-PC5 (BD Biosciences; 1/40), 
CD56-PC5 (Beckman Coulter; 1/30), CD19-PC5 (Beckman 
Coulter; 1/40), CD33-PC7 (BD Biosciences; 1/40), CD14-APCH7 
(BD biosciences; 1/40), and CD16-AF700 (BD Biosciences; 
1/40). Cells were incubated for 20 min at RT with reagents pre-
mixed in PBS, washed, and then fixed with 4% PFA. Data were 
acquired on a LSRII-SORP (BD Biosciences) equipped with four 
lasers (405 nm/100 mW, 488 nm/100 mW, 560 nm/50 mW, and 
630 nm/40 mW). Photo-multiplicators were set using unstained 
and fully stained samples and linked to the cytometer standardiza-
tion using the acquisition setting tool. Also, 7.74 × 106 ± 3 × 105 
events were recorded. Compensations were performed with 
beads individually stained with corresponding reagents.

Flow cytometry Data analysis
Data were exported and analyzed with FlowJo (version 9-2,  
MacOS X). NK cells were gated as CD3−CD14−CD19−CD56+ 
CD16+, CD3−CD14−CD19−CD56+CD16−, or CD3−CD14−CD19− 
CD56−CD16+ (Figure S1 in Supplementary Material). 
Contaminating non-classical monocytes represented less than 
0.11% of the gated events (not shown). The remaining data 
(3.5 × 105 ± 2.5 × 104 events) were exported to create new files 
further subjected to automated gating. DC’s were defined as 
CD3−CD14−CD19−CD56−CD16−HLA-DR+live cells. In the DC 
gate, the pDC were gated as CD33lowBDCA2+CD123+ cells, the 
mDC as CD33highBDCA2−CD123− cells.

automatic clustering
The flowClust implementation version 3.4.11on R version 3.1.2 
under Linux Cent OS 6 was applied on the following param-
eters: CD56-PC7, CD16-APCH7, NKG2A-PacBlue, NKG2C-PE, 
CD57-FITC, to compute clusters as described (22). The number 
of clusters that fit the data optimally was estimated by computing 
flowClust on a predefined range and comparing them with the 
statistical criteria BIC and ICL (not shown). This number was 
estimated to be above 20; therefore, 27 clusters were computed 
in the events within the NK gate of the 60 samples (30 patients, 
T0, and M3) and one healthy donor. Two samples failed to be 
computed.

MFI values and event counts of the 1,593 clusters generated 
after computation were exported in an Excel table.

Multiparametric Data Management  
with MeV
MeV (version 4.9.0, https://sourceforge.net/projects/mev-tm4/) 
(23) was used to visualize and group multiparametric clusters 
using hierarchical clustering (HCL) of their centers of CD56, 
CD16, CD57, NKG2A, and NKG2C MFI. Euclidean distance 
and average linkage were chosen. Prior to MeV, centers were 
rescaled to adjust the 5 (respectively, 95) percentile of each 
dimension to −3 (respectively, +3) and normalized. The tree 
was cut interactively using objective MeV tools and color inter-
pretation of the heatmap to define populations as homogeneous 
groups of clusters. Names were interactively given according to 
the comparisons of signatures between groups and the expres-
sion of known NK cell markers. The blocks were saved and 
imported in a spreadsheet program, leading to a matrix with 
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a population identifier column associated to the initial count 
of events. The percentages of each population of each patient 
sample were summarized using pivot tables.

Virus Quantification
Human immunodeficiency virus-RNA was quantified in plasma 
by real-time RT-PCR with the Cobas TaqMan HIV1 v2.0 assay 
(Roche Diagnostics). Threshold values were arbitrarily given to 
samples below the threshold of the assay (20 RNA copies/mL). 
Total HIV-DNA was quantified by ultra-sensitive real-time PCR 
in PBMC using the Generic HIV-DNA assay from BioCentric 
(Bandol, France) as described (24).

cytokine Quantification
Plasma Cytokines
IP-10 concentrations were determined in stored plasma or serum 
samples (−80°C) by specific enzyme-linked immunosorbent 
assay, human Quantikine CXCL10 (R&D Systems, Minneapolis, 
MN, USA) according to the manufacturers’ instructions. Levels of 
IL-6 were measured in frozen plasma samples with specific ELISA 
assays (Human IL-6 Platinum ELISA, eBioscience). Samples with 
undetectable levels of IL-6 were arbitrarily attributed half the 
minimal detectable value (0.46 pg/mL).

statistics
Statistical graphics were performed with Prism 6 software. The 
Kruskall–Wallis test followed by multiple comparison Dunn’s 
posttest were used to compare variables between groups. 
Correlations were evaluated by using simple linear regression 
analysis and Spearman’s rank correlation test.

resUlTs

automatic clustering revealed nK cell 
Differentiation subtypes within hiV-
Primary infected Patients’ PbMcs
We investigated the phenotypes of differentiation of NK cells 
with multiparametric cytometry using CD56, CD16, NKG2A, 
CD57, and NKG2C, known to delineate sequential stages of 
NK cell maturation (2, 4). In order to discover unexpected 
populations, multi-stained samples were analyzed through 
unsupervised computation of clusters, using a method previ-
ously validated (22). Computed clusters were visualized in a 
MeV heatmap according to their normalized MFI for the five 
markers and merged to identify populations as homogeneous 
groups of clusters (Figure 1). The tree was interactively cut to 
summarize the results in 19 groups, using objective tools of 
MeV and a subjective overview of the heatmap (Figure 1). Six 
of them including only a few clusters were excluded because 
of their rare representation. Thirteen groups were named 
according to comparisons of marker MFI and homogene-
ity with known NK population signatures, a process similar 
to manual gating of cytometry data visualized in dot plots 
(Figure 1). Accordingly, two groups of clusters expressing the 
highest levels of CD56, of NKG2A, no or low levels of CD16, a 
typical CD56bright signature, were thus named. Seven populations 

expressing medium levels of CD56 and high levels of CD16 
were identified as CD56dim. They included several groups dif-
ferentially expressing NKG2A and CD57, two markers linked 
to immaturity or maturity, respectively, and NKG2C, a NK cell 
receptor expanded during CMV infections. Four populations 
expressing low levels of CD56 or CD16 previously described 
in HIV-infected patients as dysfunctional NK populations were 
identified (15). Finally, phenotypes of NK cells usually found 
in human PBMC, including populations specifically expanded 
during HIV infection, and new phenotypes characterized by 
unexpected combinations of markers were found in patients’ 
samples using the automatic clustering and interactive merging 
approach. It should be emphasized that other analyses of the 
same data, based on the choice of higher or lower numbers of 
populations could have also been pertinent. As an example, the 
few clusters characterized by CD56brightCD16negNKG2C+ visible 
at the bottom of the tree were included in the CD56bright pool 
while other cuts of the tree could have separated this original 
combination of markers.

The Distribution of the Various Phenotypes 
of nK cells Defined groups of hiV-Primary 
infected Patients with Different Maturation 
Profiles
We next determined how these NK populations were individually 
distributed among the 30 primary HIV-infected patients. The 
blocks of clusters were imported into a spreadsheet program, 
leading to a matrix with a population name, associated with initial 
counts of events and patient number. The frequencies of the 12 
populations within the total NK cells of each patient were calculated 
and summarized using pivot tables (Table S1 in Supplementary 
Material). One population (CD56negCD16+CD57+), although 
present in different patients, represented less than 0.5% of total 
NK cells and was excluded from the analysis. Frequencies of 
the 12 remaining populations were visualized in a MeV heat-
map and used to cluster patients (Figure 2A). Three groups of 
patients, named X, Y, and Z appeared on the map. Group X was 
characterized by the highest frequencies of CD56dimNKG2A+ 
and CD56negCD16+NKG2A+ NK cells. Group Y showed high 
frequencies of CD56dimNKGC2+CD57+and CD56dimCD57+ 
NK cells. Group Z contained mainly a population of CD56dim 
CD57−NKG2A− NKG2C− (Figure 2A).

We checked whether the frequencies of the most frequent NK 
cell populations directing the clustering (the four populations 
on top of the list) were significantly different between the three 
groups (Figure 2B). Group X showed significant higher frequen-
cies of CD56dimNKG2A+ than Y and Z (34% vs., respectively, 13.8 
and 14.3%). Group Y showed significant higher frequencies of 
CD56dimCD57+ NK cells than X and Z (21% vs., respectively, 2.9 
and 7.2%), and higher frequencies of CD56dimNKG2C+CD57+ than 
X and Z (17.8% vs., respectively, 2.9 and 0.9%). Group Z showed 
42.6% of CD56dim NKG2A−NKG2C−CD57− while this phenotype 
represented only 12 or 16% of NK cells in, respectively, X and Y. 
Accordingly, the three groups of patients were significantly char-
acterized by, respectively, high proportion of CD56dimNKG2A+ 
for group X, high proportion of CD56dimCD57+ NK cells for group 
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FigUre 1 | identification of natural killer (nK) cell populations. Visualization of the 756 clusters computed into the NK cells files from the 28 T0 patients’ 
samples in a MeV heatmap. The clusters are visualized and merged according to their normalized MFI for the five markers shown on top using the MeV software 
hierarchical clustering tools. NK populations are defined as groups of merged clusters and annotated according to their signatures shown on the right.
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FigUre 2 | Patients grouping according to the frequencies of groups of natural killer (nK) populations. (a) Double clustering of the 12 most frequent NK 
populations shown on right (lines) according to their percentages among NK cells of patients (columns). The squares display the respective frequencies according to 
the scale of color shown on top. (b) Patients X, Y, and Z display significant differences of percentages of CD56dim NKG2A+, CD56dim, CD56dimCD57+NKG2C+, and 
CD56dimCD57+ populations. Errors bars represent the median and the interquartile range. p-Values from Kruskall–Wallis test are indicated on top of groups, p-Values 
from Dunn’s multiple comparison posttest on top of pairs: *<0.05; **<0.01; ***<0.001.
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Y, and high proportion of CD56dim NKG2A−NKG2C−CD57− for 
group Z.

nK cell Profiles of Patients correlated 
with hiV Viral load at inclusion
To evaluate the relationship between NK profiles of patients 
and HIV infection, the clinical and virological characteristics of 
patients within groups were compared at T0 (Table 2). Primary 
infection was defined by detectable plasma HIV-RNA and incom-
plete HIV-1 western blot, acute infection by one band or fewer 
(21) and early infection by more than one band. Four out of 14 
patients from group X, 4 out of 10 patients of group Y, and all 4 
patients of group Z were acutely infected (Figure 3A). The mean 
age of patients from each group was not significantly different (37, 

40, and 42 years for, respectively, X, Y, and Z), nor was the mean 
of estimated time since infection and enrollment (36.5, 35.3, and 
34.7 days for, respectively, X, Y, and Z) (Table 2). T-CD4 counts 
were similar for all groups, although group Z patients showed a 
trend to lower levels (Table 2). T-CD8 counts were significantly 
higher in X than Y and Z (mean of 2,148 counts/μL vs. 1,308 and 
1,415 for, respectively, Y and Z) (Table 2).

A striking difference was observed when the viral load was 
compared between the three patient groups. Patients from 
groups X and Z displayed significantly higher mean HIV-RNA 
levels than patients from group Y (respectively, 5.77 log10 HIV-
RNA  copies/mL and 6.05 log10 HIV-RNA  copies/mL vs. 4.88 
log10 HIV-RNA  copies/mL in group Y), while HIV-DNA were 
not significantly different despite a trend to lower levels for Y 
(Figure 3B). Thus, the major differences observed between the 
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FigUre 3 | clinical and virological characteristics of patients groups 
at T0. (a) Primary infection status of patients according to the X, Y, and Z 
groups. (b) Human immunodeficiency virus (HIV) viral load. Plasma HIV-RNA 
(left), HIV-DNA copies associated to millions of T-CD4 cells (right). Error bars 
represent the median and interquartile range. p-Values from Kruskall–Wallis 
are indicated on top of groups, p-Values from Dunn’s multiple comparison 
posttest on top of pairs: *<0.05; **<0.01; ***<0.001.

Table 2 | groups characteristics.

groups of patients

characteristics X Y Z

Number of patients 14 10 4

Acute (% in the group) 28 40 100

Time between estimated date of 
infection and enrollment (days)

36 (23–55) 35 (22–46) 35 (32–41)

Age (years) 37 (23–64) 40 (23–62) 42 (24–55)

CD4 counts (count/μL) 549 
(323–1,012)

584 
(368–864)

430 
(341–513)

CD8 counts (count/μL) 2,148 
(502–8,157)

1,308 
(417–2,716)

1,415 
(1,140–1,966)

CD4 to CD8 ratio 0.41 
(0.08–1.3)

0.57 
(0.23–1.1)

0.31 
(0.2–0.35)

Human immunodeficiency virus 
(HIV)-RNA (log10 cp/mL)

5.77  
(4.6–7)

4.88  
(3.2–5.7)

6.05  
(5.6–7)

HIV-DNA (log10 cp/106 peripheral 
blood mononuclear cell)

3.8  
(3.2–4.7)

3.5  
(2.8–4.3)

3.9  
(3.2–4.5)

Progenitors [% of natural killer 
(NK)]

7.7  
(3–20)

4  
(0–13.9)

6.3  
(0.9–9.5)

Effectors (% of NK) 49.2 (29–66) 20.8 (8–28) 0

Intermediate (% of NK) 17.5  
(3.5–29)

22.7 
(10–39.5)

45.7 
(40.5–56)

Mature (% of NK) 6.8 (0–16) 39 (21–54) 8.2 (2.7–15)

Dysfunctional (% of NK) 15 (5.7–41) 10.6 
(3.2–21.6)

11.7 
(2.3–16.3)

T0 mean values and (range) are indicated.
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three groups of patients at inclusion highlighted the lower viral 
load of group Y, the group defined by an expansion of CD57+ 
NK cells.

Patients with high Frequencies of Mature 
nK cells Displayed better immunological 
Parameters at inclusion
We next addressed the question of whether patients of group X, Y, 
and Z were different with respect to other major disease progres-
sion markers. We analyzed plasma inflammatory markers (IL-6, 
IP-10) (25, 26) and also focused on markers of innate immune 
activation and exhaustion, including CD38 expression on NK 
cells, CD86 expression on monocytes, PDL-1 expression on mDC 
(27), and pDC and mDC frequencies (28). These markers were all 
described to be linked to viral load and disease progression (29). 
They were compared between the groups of patients and some of 
them were compared to a group of 15 healthy donors (Figure 4).

Patients of group X displayed higher IL-6 and IP-10 plasma 
levels than patients of group Y (Figure  4A). CD38 expression 
on NK cells was significantly increased in all patients groups as 
compared to healthy donors. CD86 on monocytes and PDL-1 on 
mDC were significantly increased in patients X as compared to 
healthy donors, while patients Y showed a trend to lower increase 
and values of PDL-1 not different from that of healthy donors 
(Figure 4B). All patients groups showed significant decrease of 
pDC as compared to healthy donors, but patients Y showed a 

clear trend to higher values of pDC frequencies (Figure 4C). Only 
patients X and Z showed significant decrease of mDC frequen-
cies while patients Y exhibited values similar to healthy donors 
(median of, respectively, 0.3 vs. 0.33%) (Figure 4C). Therefore, in 
addition to exhibit the lowest activation, Y patients displayed low 
exhaustion of DC, as shown by a trend to higher frequencies of 
pDC and frequencies of mDC not different from that of healthy 
donors (Figure 4C). As expected according to their high viremia 
levels, patients from groups X and Z displayed higher immune 
activation and exhaustion while patients Y exhibited a better 
immune status in PHI.

Patients with high Frequencies of Mature 
nK cells Displayed a lower Viral load 
after 3 Months of carT
We then assessed the impact of the different virological and 
immunological status at inclusion on early cART outcome. While 
all patients showed a 3-log decrease of viral load after 3 months of 
cART (Table 2), we searched for those patients having reached a 
viral load below 50 copies/mL at M3. Notwithstanding the cART 
regimen, 6 out of 14 (57%) patients X, 1 out of 4 (25%) patients 

58

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 4 | immune status of patient groups at T0. (a) Plasma levels of IL-6 and of IP-10. (b) Innate immune cells activation of patients groups and a group of 
15 healthy donors. CD38 expression on natural killer cells, CD86 expression on monocytes, PDL-1 expression on mDC. (c) Dendritic cell exhaustion. Frequencies 
of pDC’s and mDC’s in the patients groups and in a group of 15 healthy donors. Errors bars represent the median and interquartile range. p-Values from Kruskall–
Wallis test are indicated on top of groups, p-Values from Dunn’s multiple comparison posttest on top of pairs: *<0.05; **<0.01; ***<0.001.
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Z, and 7 out of 10 (70%) patients Y reached a viral load below 
50 copies/mL at M3. Taken together, only 38% of patients lack-
ing significant frequencies of CD57+ NK cells (X + Z) reached a 
threshold of 50 log10 HIV-RNA copies/mL at M3 whereas 70% 
of patients with high frequencies of CD57+ NK cells (Y) could 
reach it.

early carT Modestly Modify the 
Frequencies of Mature cD57+ nK  
cells at M3
In order to evaluate the kinetics of NK cell maturation at a short 
time after infection, we compared the frequencies of CD57+ 

NK cells at inclusion and after 3 months of cART in groups of 
patients X, Y, and Z (Figure 5). All CD57+ NK cells were summed. 
HIV-RNA showed a mean decrease of 2 logs in both groups after 
1 month of treatment, one additional log being lost during the 
third month (left graph). In the meantime, the frequency of CD57 
NK cells remained unchanged in patients from group Y (47.5% at 
T0 vs. 48.9% at M3), while the frequencies of CD57 populations 
of patients from group X and Z significantly increased, or alter-
natively the proportion of immature NK cells decreased (13.9% at 
T0 vs. 20.5% at M3 for X; 11.7 vs. 19.4% for Z). Therefore, even if 
the frequencies of CD57 NK cells increased during the 3 months 
of cART, the values reached remained far from those of patients 
from group Y at T0 (47.5%).

59

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 5 | Kinetics of viral load and of mature natural killer (nK) cells frequencies during 3 months of combination antiretroviral therapy (carT). Left 
graph shows the kinetics of human immunodeficiency virus-RNA between T0 and M3 after cART onset. Right graph shows the kinetics of the frequencies of mature 
NK cells between T0 and M3. Errors bars represent the median and interquartile range.
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DiscUssiOn

Natural killer cells are potent effectors of the innate immune sys-
tem and key actors in the race engaged between the virus and the 
host. NK cell compartment is constituted by populations more 
or less advanced on the maturation pathway, which compose a 
unique landscape at an individual level. We studied the NK cell 
compartment of HIV-infected patients at the time of primary 
infection. In spite of limitations such as the number of patients 
and the lack of samplings before infection, our results globally 
support a link between NK cell compartment skewed toward 
maturation and decreased levels of viral load and immune activa-
tion at the time of the primary HIV infection.

While multiparametric cytometry allows deep investigation of 
human immune cells, discrete subsets resulting from unexpected 
combinations of markers are found by chance using classical 
manual analysis. Computation, through the consideration of 
all parameters at the same time allowed exploration of the full 
dataset and finding discrete subsets in an unsupervised approach 
(22). The description of the NK cells of patients into 12 subsets, 
whereas only six would have been searched according to previous 
reports (CD56bright, four populations of CD56dim and CD56neg), 
provides an added value to the comprehension of the ongoing 
interplays between NK cell and HIV. One example is the finding 
of four different CD56neg subsets and their clustering near four 
different NK cell populations, including CD56bright. This result 
suggests that the defect affecting the NK cell can touch the lineage 
at different levels of maturation.

Among 12 NK populations, four co-expressed NKG2C in vari-
ous combinations spanning the whole NK maturation process. 
The clustering of the CD56dimNKG2A+NKG2C+ subset near 
CD56brightCD16low, previously described at the transition between 

CD56bright and CD56dim (30), suggests they originate from the 
progenitor. NKG2C+ NK cell expansion was reported previously 
in HIV primary infection (10, 11, 16) and described during 
Hantavirus and Chikungunya acute infections (12, 31), always in 
the context of underlying CMV co-infection. The identification 
of discrete NKG2C+ NK cells subsets with a phenotype close to 
the NK cell progenitor suggests an ongoing generation during 
primary HIV infection.

The individual distribution of those 12 NK cell populations 
permits constitution of homogeneous and significantly differ-
ent groups of patients. Group X included 14 patients whose 
NK cells were mainly composed of CD56dimNKG2A+, group Y 
included 10 patients with high frequencies of CD56dimCD57+ 
and CD56dimCD57+NKG2C+, and group Z included four 
patients whose NK cells displayed a CD56dimNKG2A−NKG
2C−CD57− phenotype. To understand the role of those dif-
ferences on HIV primary infection, clinical, virological, and 
immunological characteristics of the patients groups were 
compared. Kinetics of HIV infection could have been involved, 
but this hypothesis was not sustained by the comparison of the 
estimated time since infection or by the status of antibodies 
developed to HIV, defining an acute or early primary infection. 
The striking difference was the viral load at inclusion: patients 
with high frequencies of CD56dimCD57+ NK cells (group Y) 
had significantly lower levels of HIV-RNA than patients with 
highest frequencies of CD56dimNKG2A+ (group X) or CD56dim

NKG2A−NKG2C−CD57− NK cells (group Z). Although the low 
number of patients limits the significance of some comparisons, 
patients Y, as expected according to their lower levels of HIV-
RNA, showed lower immune activation and lower exhaustion 
of immune cells than patients X and Z. cART initiated in this 
better environment resulted in increased efficiency at M3. 
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Interestingly, one of the 10 patients showing high frequencies 
of mature NK cells at inclusion became later a PTC (21).

CD57 is a marker of senescence highly correlated to expression 
of self-KIR that identifies fully mature NK cells (4). Immature 
KIR− NK cells mostly express NKG2A to regulate their activity, 
only a small subset of NK cell co-express NKG2A and KIR. 
Accordingly, CD57+ and NKG2A+ NK cells were considered as 
covering, respectively, mature and immature NK populations. 
Accordingly, the balance of the NK cell compartment maturation 
is indeed the difference between the groups: NK cell of patients Y 
are mainly mature CD57+ cells whereas most NK cells of patients 
X are immature. Thus, the NK cell maturation profile at the time 
of primary infection appears to be a pertinent marker of a bet-
ter immune status and response to cART started at the primary 
infection.

The status of the NK cells before HIV infection is not known. 
Because NK cell maturation is a dynamic process, imbalance of 
the NK cell compartment toward maturity or immaturity could 
be a rapid early consequence of HIV infection. CD57+ NK cells 
proliferate only slightly (4). The dynamics of their generation 
proposed by the follow-up of NKG2C subset during CMV reacti-
vation in transplant patients (32) suggested that NKG2C+CD57+ 
resulted from the contraction of effector NKG2C+ several months 
after control of CMV viremia. During the 3  months of cART, 
while HIV viremia was controlled, the frequencies of CD57+ NK 
cells slightly increased in the Optiprim patients with low levels at 
inclusion but remained far below the values exhibited by patients 
with high frequencies at inclusion, suggesting that the dynamics 
of NK cell maturation is slower than that of viral load. An expan-
sion of CD56dim was reported during HIV primary infection (14). 
According to the inverse relationship between proliferation and 
maturation, this expansion should result in decreasing even more 
the frequencies of mature CD56dimCD57+. Taking into account 
the limited proliferation of mature CD56dimCD57+ and the slow 
dynamics of their generation, it is reasonable to speculate that the 
imbalance of the NK cell compartment toward maturation found 
at inclusion corresponded to its status at the time of HIV infec-
tion, whereas the imbalance toward immature NK cells might be 
a consequence of early NK cell expansion.

Accordingly, mature CD57+ NK cell already present at the time 
of HIV infection must contribute better to immune control of 
the virus than CD56dimNKG2A+ NK cells does. As demonstrated 
in the NKG2C/CMV model, memory-like NKG2C+CD57+ NK 
cells expanded after CMV reactivation are potent producers of 
IFN-γ (8). Accumulation of NK cells expressing self-KIR was 
demonstrated in HIV PTCs of the Visconti study (33). Those 
NK cells were potent producers of IFN-γ upon stimulation with 
HIV-infected targets, suggesting that this function was crucial 
for virus control. IFN-γ can induce maturation and activation 
of T cells, DC, and macrophages (3), which cooperate in virus 
control. Indeed, DC frequencies in patients with high frequencies 
of mature CD57+ NK cells were similar to healthy donors, sug-
gesting indeed that innate immunity overall was involved.

Paradoxically, a prospective study on a cohort of prostitutes 
demonstrated an increased risk of HIV infection among those 
displaying highly diverse NK cell repertoire before infection, 

diversity being intrinsically linked to maturation (20). The high 
efficiency of NKG2A+ NK cell to kill HIV-infected CD4-T cell 
targets in  vitro, recently demonstrated (34) is an underlying 
mechanism that could be involved in the decreased susceptibility 
to HIV infection of prostitutes displaying an immature NK cell 
compartment before infection. Taken together, these observa-
tions suggest that if immature NK cells are efficient at the time of 
infection, once infection is established, other mechanisms involv-
ing mature CD57+ NK cells contribute better to virus control.

Natural killer cell diversity increases with aging and the 
number of stimulations encountered, resulting in accumulation 
of mature NK cells heterogeneous with respects to functional 
activating and inhibitory receptors (20). Groups of patients 
showed similar mean age, their NK cell profiles should rather 
be attributed to individual histories resulting in a unique shap-
ing of their NK cell repertoire. NKG2C+CD57+ NK cell could 
be considered as a particular subset of the mature CD57+ NK 
cell compartment whose ligand is known. Increased expression 
of HLA-E on HIV-infected cells suggest a possible mechanism 
involving NKG2C+ NK cells (35). Other subsets of the mature 
CD57+ pool might share unknown receptor specificities diversely 
able to target HIV-infected cells. Besides their functional recep-
tors characteristics, NKG2C+CD57+ NK cells expanded after 
CMV infection are now considered as a memory-like or adaptive 
form of NK cells (8, 13). Recently, this subset has been character-
ized by a low expression of FcRγ (36) and enhanced potential 
for broad antiviral responses in the presence of virus-specific 
antibodies (37). While we cannot identify unambiguously adap-
tive NK cells, the CD57+ NK cells found in patients partially 
controlling their viral load certainly overlap them. Irrespective 
of the various mechanisms possibly underlying the contribution 
of mature NK cell to HIV control, once infection is established, 
evaluation of this parameter during the primary HIV infection 
appears relevant in the search for prognostic markers to monitor 
HIV-infected patients.
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Besides donor T cells, natural killer (NK) cells are considered to have a major role in 
preventing relapse after allogeneic hematopoietic stem cell transplantation (HSCT). After 
T-cell-depleted haploidentical HSCT, a strong NK alloreactivity has been described. 
These effects have been attributed to killer-cell immunoglobulin-like receptors (KIR). 
Abundant reports suggest a major role of KIR not only on outcome after haploidentical 
HSCT but also in the unrelated donor setting. In this review, we give a brief overview of 
the mechanism of NK cell activation, nomenclature of KIR haplotypes, human leukocyte 
antigen (HLA) groups, and distinct models for prediction of NK cell alloreactivity. It can 
be concluded that KIR-ligand mismatch seems to provoke adverse effects in unrelated 
donor HSCT with reduced overall survival and increased risk for high-grade acute graft-
versus-host disease. The presence of activating KIR, as seen in KIR haplotype B, as well 
as the patient’s HLA C1/x haplotype might reduce relapse in myeloid malignancies.

Keywords: nK-cell, killer-cell immunoglobulin-like receptor, unrelated, stem cell, transplantation, HSCT, haplotype

inTRODUCTiOn

Natural killer (NK) cells are considered to contribute important immune effects against leukemia 
[graft-versus-leukemia (GVL) effect] after allogeneic hematopoietic stem cell transplantation 
(HSCT). Alloreactive NK cells are considered rather save concerning the development of graft-ver-
sus-host disease (GVHD) (1–5), although a high number of activating killer-cell immunoglobulin-
like receptors (KIR) (6) or extensive NK cell stimulation (7) might promote GVHD, maybe due to 
remaining T-cells in the graft. Shah et al. (7) found an association between infusion of activated 
NK cells and occurrence of acute GVHD (aGVHD): Children with ultrahigh-risk sarcoma received 
T-cell-repleted grafts from matched unrelated donors (URDs) or matched sibling donors with subse-
quent infusion of IL-15 and 4-1BBL preactivated NK cells. Five of nine patients developed aGVHD. 
Those effects were attributed to NK cell-mediated T-cell activation (7). The biology of NK cells is 
complex, but activation by human leukocyte antigen (HLA) via the group of KIR is considered to 
be a relevant mechanism of activation. Within this review, we will provide a summary of concepts 
of KIR-mediated NK cell activation and an overview of GVL effects in haploidentical (haplo), but 
especially in URD HSCT.

Biology and Activation of nK Cells
Natural killer cells were named after their ability to kill infected or tumor cells without the need for 
prior antigen contact (8–10). They are defined by surface expression of CD56 and lack of CD3 (11). 
Unlike T cells, NK-cell receptors do not undergo rearrangement. In a process called licensing, NK 
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cells with inhibitory receptors for present HLA class I (HLA-I) 
molecules (indicating “self ”) are positively selected and stimu-
lated for proliferation, leading to a licensed and self-tolerant 
subset. Missing inhibitory receptors against HLA-I do not lead 
to depletion but to a second subset of unlicensed but self-tolerant 
NK cells (12). Activation of NK cells might be initiated by antigen 
contact, but it is executed only after integration of abundant 
activating and inhibitory signals (13, 14). Today, several NK-cell 
receptors are known. Besides KIR, other NK-cell receptors that 
have been shown to have the potential to positively influence 
outcome after allogeneic HSCT are natural cytotoxicity receptors 
(15–17) as well as activating NKG2D (18) and DNAM-1 (19, 20) 
that bind to MICA/B and ULBPs or CD112/CD155, respectively. 
Both can be induced by DNA damage (21) and seem to play a role 
in negative regulation of T-cell responses (22) and acute myeloid 
leukemia (AML)/myelodysplastic syndrome immune evasion 
(15, 23).

KiR and HLA
Killer-cell immunoglobulin-like receptors belong to type-I trans-
membrane proteins of the immunoglobulin-like receptor super-
family and recognize classical HLA-I molecules (14). The 15 KIR 
genes and 2 pseudogenes are located on chromosome 19q13.4. 
According to the number of extracellular immunoglobulin-like 
domains (D), the receptors are named KIR2D and KIR3D (24, 
25). On the cytoplasmic side, they have either long (L) inhibitory 
or short (S) activating domains (14). Inhibitory KIR bind to the 
highly polymorphic regions of HLA-I molecules: HLA-A, B, and 
C (26), while the ligands for activating KIR are poorly defined 
(14, 27).

To facilitate description of KIR-ligands, HLA-C phenotypes 
can be grouped into HLA-C group 1 and 2 according to their 
respective KIR-binding motif. HLA-C group 1 contains all ligands 
with serine at residue 77 and asparagine at residue 80 of the α1 
helix (HLA-Casn80), binding KIR2DL2/3 and 2DS2. Members 
of this group are HLA-C*01/*03/*07/*08/*12/*14/*16. HLA-C 
group 2 (HLA-Clys80) has asparagine at residue 77 and lysine at 
residue 80 and contains HLA-C*02/*04/*05/*06/*15/*17/*18. 
They are ligands for KIR2DL1 and KIR2DS1 (28–31).

KIR3DL1 binds HLA-Bw4, and KIR3DL2 and 2DS2 
bind HLA-A3 and A11 (14, 18, 32–38). Despite its structure, 
KIR2DL4 exhibits activating capacities and might bind soluble 
HLA-G (39–45). The KIR phenotype of an individual is his or 
her distinct set of inhibitory or activating KIR with an underly-
ing distinct genotype (27, 46, 47). All genotypes can be sum-
marized to a set of distinct haplotypes, which again result in the 
superordinated KIR haplotypes A or B (27, 46). KIR haplotype 
B is defined as the presence of KIR2DL5, 2DS1/2/3/5, or 3DS1, 
which have to be absent in KIR haplotype A (48). KIR2DS4 is 
the only activating KIR in haplotype A (46). KIR haplotype B/x 
(B/B or B/A) is found in about 30% of the Caucasian popula-
tion (49). A more detailed analysis includes the information, 
whether the individual KIR is coded in the centromeric (Cen) 
or telomeric (Tel) gene motif of the KIR locus, resulting in Cen-
A/A, Cen-B/x, and the respective Tel haplotypes (49–52). Thus, 
each individual expresses a certain KIR haplotype and a distinct 
HLA-C haplotype (C1/C1, C1/C2, or C2/C2). For prediction 

of alloreactive NK cell effects, the presence of HLA-C1, C2, 
and Bw4, as well as their respective KIR, are investigated (53). 
KIR2DL4 stimulation by HLA-G is considered to induce toler-
ance at the maternal–fetal barrier as well as IFN-gamma release 
of NK cells but not cytotoxicity (39, 43). KIR3DL2 and 2DS2 
stimulation by HLA-A3 and A11 is also not in the primary focus 
of altering NK cell alloreactivity. KIR3DL2 has been identified 
as a surface marker in cutaneous T-cell lymphoma (54–56). For 
KIR2DS2, a reduced survival after URD-HSCT is suspected due 
to higher incidence of GVHD (57).

Model Situations Predicting nK Cell 
Alloreactivity
Different definitions of a mismatch between the donor’s NK cells 
and the recipient’s HLA exist, depending on the method that was 
chosen for KIR and HLA (HLA-C1, C2, and Bw4) evaluation 
(Figure 1).

Missing-Self/KIR-Ligand Mismatch (Figure 1A)
Alloreactivity was initially thought to be only dependent on lack 
of inhibitory HLA-I molecules in the recipient that are present in 
the donor (“missing-self ” or “KIR-ligand mismatch” or “ligand-
incompability model”) (53, 58–60). For evaluation of KIR-ligand 
mismatch, donor and recipient are screened for expression of 
HLA: NK cells from a HLA C1/C1 donor will be alloreactive 
against a C2/C2 recipient. If a recipient expresses HLA-C1, C2, 
and Bw4, he will be resistant toward NK cell killing, as seen in 
one-third of the population (61). It is assumed, but not verified 
that the respective KIR, necessary for alloreactivity, is present in 
the donor.

Receptor–Ligand Mismatch (Figure 1B)
The receptor–ligand model states that donor NK cells become 
activated in the graft-versus-host direction; if they have inhibi-
tory KIR, for which the HLA ligands in the recipient are missing, 
the NK cells become “uninhibited” (4). Thus, in addition to the 
HLA status of the recipient, confirmatory KIR genotyping of the 
patient is required. Other than in the first model, KIR on donor 
cells and HLA on recipient cells are investigated, not “assumed.” 
This model can be considered as an improvement of the “missing 
ligand model.”

Missing Ligand Model (Figure 1C)
Here, only the recipients’ HLA are genotyped, and missing HLA-
C1, C2, or Bw4 for inhibitory KIR predict an alloreactivity of the 
graft; the presence of the respective KIR that would bind to the 
missing HLA is only assumed (53).

Presence of Activating KIR (Figure 1D)
Some theories emphasize that to achieve NK cell alloreactivity, 
“un-inhibiton” of NK cells by missing inhibitory HLA ligands 
might not be sufficient. Activation requires additional stimulation 
of activating KIR in the graft (62). In this model, alloreactivity can 
be predicted by measurement of activating KIR on donor cells. 
Some studies increase the predictive validity by detection of the 
respective activating ligands on donor cells.
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FiGURe 1 | Model situations that provoke natural killer (nK) cell alloreactivity. Models are depicted as used in the present review, adopted and modified 
from Symons and Fuchs (53). Details concerning the activation mechanism are provided in the text. (A) Missing-self model, also described as “killer-cell 
immunoglobulin-like receptors (KIR)-ligand mismatch” or “ligand-incompability model”: Potential alloreactivity in the graft-versus-host direction is predicted by 
investigation of human leukocyte antigen (HLA) on donor and recipient. An HLA for inhibitory KIR that is present in the donor lacks in the recipient. The presence 
of the respective inhibitory KIR in the donor is assumed but not verified. (B) Receptor–ligand mismatch: NK cells become activated in the graft-versus-host 
direction, if they have an inhibitory KIR, for which the HLA ligand in the recipient is missing. Thus, the NK cells are “uninhibited.” Other than in (A), KIR on donor 
cells and HLA on recipient cells are investigated, not “assumed.” (C) Missing ligand: If the presence of the respective inhibitory KIR is not evaluated, but assumed 
in a model where at least one HLA-ligand is missing (HLA-C1/2 or Bw4). Other than in (A), only HLA on recipient cells but not on donor cells are evaluated. (D) 
The presence of activating KIR predicts alloreactivity in the presence of the respective activating ligand. KIR haplotype B/x contains more activating KIR than KIR 
haplotype A/A.
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Therefore, we determine mismatches on the donor and 
recipient side between ligand–ligand, receptor–ligand, and 
receptor–receptor or identify activating KIR in the donor (49, 53). 
HLA and KIR can be investigated by genotyping, phenotyping, 
or functional NK cell assays to predict alloreactivity. We would 
suggest to follow the well-described methods of Ruggeri et al. for 
genotyping and phenotyping (61).

All approaches were initially tested in the haploidentical set-
ting: The Perugia group suggests donor and recipient HLA typing 
to identify mismatch (2), followed by confirmatory donor KIR 
typing to verify a mismatch between donor KIR and recipient 
HLA ligand (“KIR-ligand mismatch” combined with a “receptor–
ligand” concept) (61). They found ligand incompatibility between 
donor and recipient in haploidentical HSCT to be associated with 
increased GVL effects and lower relapse in acute leukemia (2, 
4). KIR-ligand mismatch can be prevalent either in the graft-
versus-host direction when the donor’s KIR ligand is not shared 

by the recipient or in the host-versus-graft direction when the 
recipient’s KIR ligand is not present in the donor. The St. Jude 
group rather focuses on receptor–ligand mismatch in the haplo 
setting (63), while the researchers from Minnesota implemented 
their strategy for the URD setting by selecting KIR B/x donors 
for HLA-C1-positive recipients for improved alloreactivity (50, 
64, 65).

eviDenCe OF nK CeLL-MeDiATeD GvL 
eFFeCTS

Lessons Learned from the Haploidentical 
HSCT Setting
Much knowledge concerning NK cell-mediated alloreactivity 
has been collected due to the implementation of haploidenti-
cal HSCT. To reduce the risk of GVHD, T-cell depletion was 
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performed before graft infusion at the cost of graft rejection 
(66). These effects could be partially overcome by infusion of 
high numbers of stem cells (67). Ruggeri et  al. were the first 
to show NK cell-mediated alloreactivity in the T-cell-depleted 
haploidentical graft (5). Facilitated engraftment as well as 
tumor lysis by NK cells occurred by donor grafts that were 
KIR-ligand incompatible in the graft-versus-host direction 
without occurrence of GVHD. Since then, many other groups 
have investigated the beneficial effect of alloreactive NK cells 
in the haploidentical HSCT (2, 68) and have refined criteria for 
potential donor choice (61). The results are promising for AML 
(4, 68, 69), while lymphoid malignancies have been shown to 
be resistant in some (2, 69) but not all cases (63, 70) for KIR-
mediated NK cell effects. The present status of NK cell-mediated 
effects in haploidentical HSCT has been reviewed elsewhere (53, 
71, 72).

Results in the Unrelated-Donor  
HSCT Setting
After the identification of beneficial NK cell-mediated allore-
activity in haploidentical HSCT, efforts were made to adopt 
the findings for transplantations with URD (Table  1). Even 
though many patients already have the opportunity to receive 
a graft from an HLA-matched donor, donor choice by KIR 
repertoire is useful. Since HLA and KIR are inherited sepa-
rately, approximately 75% of HLA-identical sibling donors and 
almost 100% of matched URDs will show KIR disparities and 
might therefore be a potential source for alloreactive NK cells 
(73, 74).

KiR-Ligand Mismatch Seems to induce 
Adverse effects in URD HSCT
Davies et al. (75) were the first to perform a retrospective analysis 
of patients with HLA mismatched URD HSCT, comparing KIR-
ligand mismatch. In the analysis, no difference in any of the 
primary endpoints was achieved. Concerning the subgroup of 
myeloid malignancies, KIR-ligand mismatch resulted in worse 
OS at 5 years [13 versus 38%, P < 0.01, no use of antithymocyte 
globulin (ATG)], which was even more surprising. Others con-
firmed worse outcome for KIR-ligand mismatch in URD HSCT 
after conditioning with ATG (76–79) or without ATG (80), 
accompanied with higher infections in the early posttransplant 
period (78) or increased graft rejection, TRM, and GVHD (80). 
A recent study confirmed higher mortality and higher TRM with-
out difference in relapse in 3–5/8 HLA-mismatched KIR-ligand 
mismatched (in the host-versus-graft direction) unrelated cord 
blood transplantations for AML and acute lymphoid leukemia 
(ALL) compared to KIR-matched cord blood, while no difference 
was found for mismatch in the graft-versus-host direction or in 
a higher HLA-matched subgroup or the complete patient cohort 
(81). The authors did suggest to not using KIR-ligand mismatch 
as a criterion for cord blood selection. An earlier Eurocord study 
(82) detected favorable outcome for KIR-ligand mismatched 
transplantations in AML and ALL but used lower HLA-resolution 
techniques.

No difference in mortality after either KIR-ligand mismatched 
or HLA-mismatched but KIR-ligand matched donor–recipient 
pairs was detected by a comprehensive study of CIBMT, EBMT, 
and the Dutch transplant registry (83), investigating the results 
of 1,571 patients with myeloid malignancies with or without 
T-cell depletion. KIR-ligand mismatch was associated with 
significantly higher high-grade aGVHD, just as HLA mismatch 
at HLA-C and/or B. No predictive effects of KIR-ligand mis-
match on outcome after T-cell-repleted unrelated HSCT were 
detected in a retrospective multicenter study in France (84). 
Here, different models of NK cell alloreactivity were compared 
in a very heterogeneous cohort of patients. These investigations 
were partially designed as a response to the positive results in 
haploidentical HSCT and in a previous study by Giebel et  al. 
(85) with different results: KIR-ligand mismatch in patients with 
myeloid malignancies achieved significant higher OS and RFS 
as well as lower TRM and relapse compared to HLA mismatch 
with KIR ligand match or compared to matched URD HSCT 
with the use of pretransplant ATG. The differing results could 
be only partially attributed to the use or sparing of ATG (85): 
Although toxic (86) or immunosuppressive (87, 88) on NK 
cells, ATG has been shown to accelerate NK-cell and B-cell 
reconstitution in some (89) but not all investigations (90, 91). 
It has also been shown to decelerate the recovery of CD4+ and 
CD8+ T cells (89, 91) while sparing effector-memory T cells and 
T-regulatory cells (91). The results indicated that knowledge 
from haploidentical cannot be transferred to unrelated HSCT 
without further adaptations (75). Grafts for haploidentical 
HSCT were mainly highly T-cell depleted and performed with 
high stem-cell doses as well as no or low immunosuppression, 
resulting in fast NK cell but slow T-cell reconstitution with low 
T-cell numbers and eradication of antigen-presenting cells by 
alloreactive NK clones (2, 67, 92). Therefore, the immunologi-
cal environment during engraftment in haploidentical HSCT is 
much different from URD-HSCT.

Missing-Ligand Model and Presence  
of Activating KiR Are Predictive for 
Outcome
Later, Hsu et al. (60) identified not only KIR-ligand mismatch 
but also missing KIR ligands as protective against relapse 
in HLA mismatched but not in matched URD HSCT. These 
effects were seen in myeloid and lymphoid malignancies and 
supported by later investigations by other authors (93). In the 
study by Hsu et al. (60), the absence of HLA-C2 or HLA-Bw4 
KIR ligands was associated with lower relapse. Other authors 
confirmed the impact of HLA-C2: Absence of HLA-C2 in 
recipients of KIR2DL1-positive grafts resulted in higher inci-
dence of aGVHD after myeloablative (94) as well as reduced 
intensity (95) conditioning. The absence of C1 epitopes, as seen 
for C2/C2 recipients, has been claimed responsible for poorer 
outcome (57, 65, 96). In search for favorable KIR in URD HSCT, 
Sun et  al. (97) prospectively analyzed outcome of URD AML 
patients without in  vivo T-cell depletion by ATG. According 
to the presence or absence of activating or inhibitory KIR in 
donor and recipient, they calculated a new predictive algorithm 
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TABLe 1 | Studies on nK cell alloreactivity for unrelated donors.

Reference N Median 
age 

(years)a

Disease 
(n)

Tx (n) Model Conditioning 
and graft 
source

immunosuppression Main results

Davies et al. 
(75)

175 17 CML, AML, 
ALL, MDS, 
others

MMUD (175) KIR-L MMb Myeloablative

•	 BM

TCD or CSA ± MTX Adverse KIR-L MM in myeloid malignancies: Lower OS at 1 and 5 years (P < 0.01). 
No difference between KIR-L M/MM in any endpoint for total cohort

Schaffer et al. 
(76)

104 29 Diverse MUD (62)/
MMUD (42)

KIR-L MM Myeloablative

•	 BM (80)
•	 PB (24)

MTX + CSA, ATG Adverse KIR-L MM: Reduced OS and RFS

Giebel et al. 
(85)

130 18–20.5 Diverse MUD (61)/
MMUD (49)

KIR-L MM Myeloablative

•	 BM (125)
•	 PB (5)

CSA, MTX, ATG Beneficial KIR-L MM: Higher OS and RFS (P = 0.0007; 4.5 years). No influence of 
HLA-MM in the patients without KIR-L MM

Bornhauser 
et al. (77)

118 42–44 AML, CML, 
MDS

MUD (54)/
MMUD (64)

KIR-L MM Myeloablative

•	 BM (54)
•	 PB (64)

ATG (118) Adverse KIR-L MM: Higher relapse for KIR-L MM (P = 0.02), but no difference in 
survival after KIR-L MM, MUD, and MMUD transplantation

Schaffer et al. 
(78)

190 35–39 Diverse MUD (94)/
MMUD (96)

KIR-L MM Myeloablative 
(168)
RIC (22)

•	 BM (118)
•	 PB (72)

CSA based (179) or TCD 
(11) plus ATG (all)

Adverse KIR-L MM: Higher infections, leading to increased TRM and reduced OS 
(P = 0.01), but no increase of relapse or GVHD

Venstrom et al. 
(96)

1,277 40.5–41.7 AML MUD (664)/
MMUD (613)

Missing ligand Myeloablative 
(1,069)
RIC/NMA (189)

•	 BM (689)
•	 PB (588)

Diverse, no ATG Adverse absence of C1: HLAC2/C2 recipients have higher relapse than HLAC1/x 
recipients (P = 0.05)

Receptor–
ligand KIR 
genes

Beneficial KIR2DS1 from C1/x donor associated with lower relapse compared to 
absence of KIR2DS1 (P = 0.003) and lower mortality (P = 0.04) w/o higher high-
grade aGVHD or TRM
Beneficial KIR3DS1 associated with lower mortality (P = 0.01) by lower TRM and 
aGVHD
No predictive effects in ALL patients (separate cohort)

De Santis et al. 
(80)

104 24 Diverse MMUD (104) KIR-L MM Myeloablative

•	 BM (65)
•	 PB (39)

No ATG Adverse: KIR-L MM (HVG): Increased graft rejection
BM: CSA, MTX (59), T-cell 
depletion (9)

Adverse KIR-L MM (GVH): Increased aGVHD grade 3–4

PB: No CSA (39) Adverse KIR-L MM (GVH or HVG): Increased TRM, decrease RFS
Beneficial high number of donor KIR: Lower GVHD and improved survival

Giebel et al. 
(57)

111 18.5–21 Diverse MUD (90)/
MMUD (21)

Missing ligand Myloablative

•	 BM (96)
•	 PB (15)

CSA, MTX, ATG Adverse absence of C1: C2/C patients have lower OS and DFS, due to higher 
relapse

Sun et al. (97) 65 45–46 AML MUD (39)/
MMUD (26)

Receptor–
receptor

Diverse CSA + MTX (65) Prediction of incidence of aGVHD possible: Activating KIR in the donor that lack in 
recipient and the lack of inhibitory KIR in the donor that are present in the recipient 
predict increased aGVHD

No ATG or TCD Indifferent results for KIR-L MM, missing ligand, number of activating KIR

(Continued )
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Reference N Median 
age 

(years)a

Disease 
(n)

Tx (n) Model Conditioning 
and graft 
source

immunosuppression Main results

Giebel et al. 
(98)

25 27 ALL, AML, 
MDS, CML, 
NHL

MUD (23)/
MMUD (2)

KIR genes Myeloablative

•	 BM (20)
•	 PB (7)

CSA, MTX, ATG Adverse presence of KIR2DS1: Reduced OS and DFS due to increased GVHD and 
relapse
Indifferent presence of KIR2DS1

Kröger et al. 
(79)

142 33 AML, MDS, 
CMML, 
CML, ALL

MUD (103)/
MMUD (39)

KIR haplotype Myeloablative

•	 BM (67)
•	 PB (75)

ATG, CSA, MTX Adverse KIR B/x: Higher relapse than KIR A/A (P = 0.03), but only in AML/MDS/
CML/CMML, not ALL, resulting in lower OS

KIR-L MM Adverse KIR-L MM: Higher TRM, lower OS, no increase of GVHD
Adverse KIR3DS1, 2DS1, 2DS5 in UVA, only 2DS5 in MVA, all resulting in higher 
relapse

Farag et al. 
(83)

1,571 59–68 AML, MDS, 
CML

MMUD 
KIR-L MM 
GVH (137)

KIR-L MM Myeloablative

•	 BM

± T-cell depletion Indifferent KIR-L MM: For KIR-L MM (GVH/HVG) as well as KIR-L M but HLA MM 
at HLA B ± C versus HLA- and KIR-L M grafts: Same rates of increased aGVHD 
grade 3–4, TRM, treatment failure, and overall mortality compared to HLA- and 
KIR-L matched graftsMMUD 

KIR-L MM 
HVG (170)
MMUD 
KIR-L M 
(260)
MUD (1,004)

Hsu et al. (60) 1,770 34.5–35 AML, MDS, 
CML, ALL

MMUD 
(1,190)/
MUD (580)

Missing ligand Myeloablative

•	 BM or PB

T-cell replete grafts Beneficial: missing ligand in MMUD (defined as homozygosity of recipient HLA-B or 
C epitopes) resulting in lower relapse (P = 0.004), but not for MUD

KIR-L MM Absence of HLA-C2 or Bw4 associated with reduced relapse, no survival benefit
Indifferent KIR-L MM model in subgroup of 428 patients: no difference in relapse 
(but also not with applied missing-ligand model in same subgroup P = 0.07)

Miller et al. (93) 2,062 – AML, CML, 
MDS

MMUD/
MUD

Missing ligand - ± ATG or TCD Beneficial absence of one ligand in early stage AML or MDS: reduced relapse, 
independent from HLA match (C1/C2/Bw4)
Adverse absence of ≥1 ligand in CML: Increased late-onset high-grade acute 
GVHD

Willemze et al. 
(82)

218 12.8–15 AML, ALL MUD (42)/
MMUD 
(176)

KIR-L MM RIC (202)
Myeloablative (6)

•	 CB (single)

CSA based (174)
Other (44)±
ATG (196)

Beneficial KIR-L MM: Improved DFS, OS, and decrease relapse

Gagne et al. 
(84)

264 24.5 Diverse MUD (164)/
MMUD 
(100)

KIR-L MM
Missing ligand
Receptor–
ligand
Receptor–
receptor

Myeloablative

•	 BM

Unmanipulated BM Indifferent KIR-L MM
Adverse missing-ligand: Decreased survival but only in C1-deficient recipients, in 
myeloid malignancies
Adverse receptor–ligand mismatch: KIR3DL1 as well as KIR3DL1/3DS1 mismatch 
(GVH: D+ R–, absence of recipient HLA-Bw4) from a HLA-Bw4-negative donor is 
correlated with low OS in HLA-identical and high relapse in MMUD HSCT

(Continued )
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Reference N Median 
age 

(years)a

Disease 
(n)

Tx (n) Model Conditioning 
and graft 
source

immunosuppression Main results

Ludajic et al. 
(94)

124 42 Diverse MUD Missing ligand Myeloablative 
(90)
RIC (34)

•	 BM (54)
•	 PB (70)

CSA-based (124) ± ATG 
(30)

Adverse absence of HLA-C2 in recipients of KIR2DL1-positive grafts or KIR A/A 
grafts: Increased aGVHD
Beneficial absence of HLA-C2 in recipients of KIR2DS2-positive grafts: Decreased 
aGVHD

Cooley et al. 
(64)

448 33–34 AML MUD (209)/
MMUD 
(239)

KIR haplotype
KIR-L MM

Myeloablative

•	 BM (397)
•	 PB (51)

T-cell replete MMUD grafts Beneficial KIR B/x in KIR-L M HSCT: Compared to KIR A/A higher RFS in KIR-L M 
(MUD and MMUD) but not in KIR-L MM (MMUD)
Beneficial survival rates for KIR2DL2 and 2DS2 positive grafts

Cooley et al. 
(50)

1,409 19/39 ALL, AML MUD (687) 
MMUD 
(722)

KIR haplotype Myeloablative

•	 BM (942)
•	 PB (467)

T-cell replete MMUD grafts Beneficial KIR B/x: Higher RFS in AML but not ALL
Cen-B motifs improve outcome without increased aGVHD/cGVHD or TRM

Venstrom et al. 
(99)

1,087 35.3–37.5 AML, MDS, 
CML, ALL

MUD (670)/
MMUD 
(417)

KIR genes
KIR haplotype

Myloablative

•	 BM (1,050)
•	 PB (37)

CSA (751) Beneficial presence of KIR3DS1: Same rate of relapse but reduced TRM and 
aGVHD, resulting in lower mortality in AML and MDS. Beneficial effects increase 
with copy numbers of donor KIR3DS1

No CSA (120) Beneficial effect of KIR B/x (including KIR3DS1) similar but weaker
TCD (216)

Kröger et al. 
(100)

118 51 MM Unrelated 
(81)

KIR haplotype Myeloablative 
(12)
RIC (106)

•	 BM (13)
•	 PB (105)

ATG (110) Beneficial KIR B/x B in MUD: MUD but not MMUD haplotype B/x reaches lower 
1-year relapse than haplotype AA (P = 0.005), resulting in higher 5-year DFS 
(P = 0.009).Related (37)

Venstrom et al. 
(96)

1,277 40.5–41.7 AML MUD (664)/
MMUD 
(613)

Missing ligand
Receptor–
ligand
KIR genes

Myloablative 
(1,069)

•	 BM (689)
•	 PB (588)

CSA (346) Adverse absence of C1 and beneficial KIRSDS1: Reduced risk of relapse, if the 
allograft was derived from an HLA-C1/x donor

Tac (428) Beneficial presence of KIR3DS1: Not lower relapse but reduced TRM and aGVHD, 
resulting in lower mortality in AML

TCD (348)

Cooley et al. 
(65)

1,532 Adults and 
children

AML MUD (856)/
MMUD 
(676)

KIR haplotype Myeloablative T-cell replete MMUD grafts Beneficial KIR B/x, adverse absence of C1: Relapse protection improved by high 
KIR-B content in recipients HLA-C1/x but not C2/C2 (significant only in MMUD, not 
MUD). No effect of donor HLA

KIR gene 
content
Missing-ligand

Sobecks et al. 
(95)

909 56–57 AML, MDS MUD (712)/
MMUD 
(197)

Missing ligand RIC

•	 BM (169)
•	 PB (740)

Diverse ± ATG (317) Adverse KIR2DS1 educated in a C2/C2 donor: Higher GVHD and TRM without 
reduced relapse (AML)
Adverse ≥1 missing ligand or absence of HLA-C2: Higher aGVHD (AML)
Indifferent KIR centromeric gene content or donor activating KIR

Faridi et al. 
(49)

281 50 AML, ALL MSD (153)/
MUD (128)

Comparison 
of different 
models

Myeloablative

•	 BM (10)
•	 PB (271)

ATG, CSA, MTX Adverse KIR-KIR mismatch: Increased cGVHD in HLA C1/x recipients
Beneficial ≥1 missing ligand: Reduced relapse without improved OS
Indifferent results for KIR B

TABLe 1 | Continued
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for GVHD, in which an inhibitory KIR in the donor that lacks 
in the patients has a negative value vice versa a positive value. 
On the other hand, they could not find other models such as 
KIR-ligand, missing-ligand, or high numbers of activating KIR 
to be predictive for aGVHD (97). In general, among the activat-
ing receptors, the presence of KIR2DS2 has been shown to be 
associated with lower OS and DFS as well as higher incidence 
of GVHD, resulting in high TRM (98). The alloreactivity of 
KIR2DS1 educated in a C2/C2 donor results in higher GVHD 
and TRM without reduced relapse (95). KIRSDS1 has been 
claimed responsible for reduced risk of relapse, if the allograft 
was derived from an HLA-C1/x donor (96), but did not show 
any beneficial effects in other investigations (98). The presence 
of KIR3DS1 was not associated with lower relapse but reduced 
TRM and aGVHD, resulting in lower mortality in AML patients 
(96, 99). KIR3DL1 and KIR3DL1/3DS1 mismatch in the GVH 
direction (donor positive, recipient negative, absence of recipient 
HLA-Bw4) from a HLA-Bw4-negative donor is correlated with 
low OS in HLA-identical and high relapse in HLA-mismatched 
URD HSCT (84). There are several other investigations apart 
from the environment of URD HSCT, which might be even more 
conflicting and difficult to transfer. Our early investigations 
showed the low-alloreactive KIR haplotype A to be associated 
with lower relapse after HSCT for leukemia (79), while in a later 
analysis, KIR haplotype B was associated with improved PFS 
and OS in patients with multiple myeloma (100). Cooley et al. 
(50, 64, 65) systematically investigated the influence of the KIR 
haplotype B. In summary, a high number of KIR haplotype B 
defining receptors, especially of those coded in the centromeric 
regions, showed beneficial effects on survival of HLA C1/x AML 
recipients after ATG-free HSCT without increased GVHD and 
without benefit of KIR-ligand mismatch. No positive influence of 
haplotype B was seen in recent investigations for leukemia (49) 
but in HLA-matched URD-HSCT of non-Hogdkin lymphoma 
patients, where KIR B/x grafts led to significant lower relapse 
after 5 years compared to KIR A/A donors (P = 0.5) (101). The 
role of KIR genotypes in matched unrelated and sibling HSCT 
has recently also been investigated by Faridi et al. (49). Their aim 
was to compare the predictive value of KIR-ligand mismatch (61) 
versus the “missing-ligand” hypothesis (63) or the advantage of a 
specific KIR haplotype (50, 64, 65). They found KIR–KIR match 
to be associated with lower cGVHD for HLA C1/x recipients as 
well as lower RFS. One or more missing ligand in the unrelated 
recipient for donor KIR resulted in reduced relapse (21.6 versus 
63.6%, P = 0.001) and higher RFS without improved OS. None 
of the tested hypotheses had influence on OS, and no effect of 
donor KIR haplotype was detected.

FUTURe DiReCTiOnS

During the past years, improvement in understanding NK cell 
alloreactivity has been made by wisely modeled analyzes (49, 60, 
84). Despite clinical relevance (102–105), we still know too little 
about the NK cell education after HSCT (95). The interplay of 
NK cells and T-cells after HSCT is still subject of further inves-
tigation (105), and as we now know about KIR expression on 
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COnCLUSiOn
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Killer-cell immunoglobulin-like receptors (KIRs) are a family of glycoproteins expressed 
primarily on natural killer cells that can regulate their function. Inhibitory KIRs recognize 
MHC class I molecules (KIR-ligands) as ligands. We have reported associations of KIRs and 
KIR-ligands for patients in two monoclonal antibody (mAb)-based trials: (1) A Children’s 
Oncology Group (COG) trial for children with high-risk neuroblastoma randomized to 
immunotherapy treatment with dinutuximab (anti-GD2 mAb) + GM-CSF + IL-2 + isotre-
tinion or to treatment with isotretinoin alone and (2) An Eastern Cooperative Oncology 
Group (ECOG) trial for adults with low-tumor burden follicular lymphoma responding 
to an induction course of rituximab (anti-CD20 mAb) and randomized to treatment 
with maintenance rituximab or no-maintenance rituximab. In each trial, certain KIR/
KIR-ligand genotypes were associated with clinical benefit for patients randomized 
to immunotherapy treatment (immunotherapy in COG; maintenance rituximab in 
ECOG) as compared to patients that did not receive the immunotherapy [isotretinoin 
alone (COG); no-maintenance (ECOG)]. Namely, patients with both KIR3DL1 and its 
HLA-Bw4 ligand (KIR3DL1+/HLA-Bw4+ genotype) had improved clinical outcomes if 
randomized to immunotherapy regimens, as compared to patients with the KIR3DL1+/
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HLA-Bw4+ genotype randomized to the non-immunotherapy regimen. Conversely, 
patients that did not have the KIR3DL1+/HLA-Bw4+ genotype showed no evidence of 
a difference in outcome if receiving the immunotherapy vs. no-immunotherapy. For each 
trial, HLA-Bw4 status was determined by assessing the genotypes of three separate 
isoforms of HLA-Bw4: (1) HLA-B-Bw4 with threonine at amino acid 80 (B-Bw4-T80); 
(2) HLA-B-Bw4 with isoleucine at amino acid 80 (HLA-B-Bw4-I80); and (3) HLA-A with 
a Bw4 epitope (HLA-A-Bw4). Here, we report on associations with clinical outcome 
for patients with KIR3DL1 and these separate isoforms of HLA-Bw4. Patients random-
ized to immunotherapy with KIR3DL1+/A-Bw4+ or with KIR3DL1+/B-Bw4-T80+ had 
better outcome vs. those randomized to no-immunotherapy, whereas for those with 
KIR3DL1+/B-Bw4-I80+ there was no evidence of a difference based on immunotherapy 
vs. no-immunotherapy. Additionally, we observed differences within treatment types 
(either within immunotherapy or no-immunotherapy) that were associated with the gen-
otype status for the different KIR3DL1/HLA-Bw4-isoforms. These studies suggest that 
specific HLA-Bw4 isoforms may differentially influence response to these mAb-based 
immunotherapy, further confirming the involvement of KIR-bearing cells in tumor-reactive 
mAb-based cancer immunotherapy.

Keywords: Kir, Kir-ligand, hla-Bw4, hla, Mhc class i, natural killer cells, cancer immunotherapy

inTrODUcTiOn

One modality of cancer immunotherapy utilizes tumor-reactive 
monoclonal antibodies (mAbs) to elicit a tumor-targeted immune 
response. Two recently completed clinical trials, in separate dis-
ease settings, utilized tumor-reactive mAbs to successfully target 
and treat the tumors: (1) the combination of dinutuximab with  
IL-2, GM-CSF, and isotretinoin for patients with high-risk neuro-
blastoma (1) and (2) rituximab for the treatment of patients with 
low-tumor burden follicular lymphoma (FL) (2).

Natural killer (NK) cells can contribute to the response to tumor-
reactive mAb-based immunotherapeutics through antibody- 
dependent cellular cytotoxicity (ADCC). The ability of NK cells 
to elicit ADCC is regulated by activating and inhibiting signaling. 
Killer-cell immunoglobulin-like receptors (KIRs) are a class of 
receptors expressed on NK cells that influence such signaling (3, 4).  
Most inhibitory KIRs interact with HLA class I molecules as their 
ligands (KIR-ligand) (5). Specifically, KIR2DL1 binds to HLA-
C2, KIR2DL2 and KIR2DL3 bind to HLA-C1, and KIR3DL1 
recognizes the Bw4 epitope of HLA-A and HLA-B (6, 7).  
The independent segregation and inheritance of KIRs and KIR-
ligands help to shape NK cell function and response to immu-
notherapeutic agents (8–11). When inhibitory KIRs interact 
with class I HLA molecules on target cells, NK cell-mediated 
lysis and ADCC are inhibited. During development, KIR/KIR-
ligand interactions lead to self tolerance and NK cells become 
“licensed NK cells” (12–14). Licensed NK cells have augmented 
cytotoxicity against class I negative tumors compared to unli-
censed NK cells (15, 16).

Killer-cell immunoglobulin-like receptors and KIR-ligands 
segregate independently: KIR genes are located on chromosome 
19; HLA genes (KIR-ligands) are located on chromosome 6. 
Several studies have shown that genotypic differences of KIR 

and KIR-ligands can influence clinical outcome of certain cancer 
immunotherapies (8, 11, 17–19). We recently showed in two clinical  
trials that KIR3DL1 and its KIR-ligand, HLA-Bw4, appear to 
influence clinical outcome.

In a phase III trial (ANBL0032) of high-risk neuroblastoma 
patients, conducted by the Children’s Oncology Group (COG) 
(1), patients who inherited the KIR3DL1 gene and the gene for 
its HLA-Bw4 ligand (KIR3DL1+/Bw4+ genotype) and were 
treated with an immunotherapy regimen [dinutuximab (anti-
GD2), IL-2, GM-CSF, and isotretinoin] had improved event-free 
survival (EFS) and overall survival as compared to those treated 
with isotretinoin alone (20, 21). In a separate Eastern Cooperative 
Oncology Group (ECOG) Phase III clinical trial of low-tumor 
burden FL (2), patients who were KIR3DL1+/HLA-Bw4+ and 
treated with a continuous regimen of maintenance rituximab had 
improved duration of response and % tumor shrinkage compared to  
KIR3DL1+/HLA-Bw4+ patients who were randomized to not 
receive maintenance rituximab (22, 23). Conversely, we did not 
observe improved outcome for patients that were not KIR3DL1+/
HLA-Bw4+ when randomized to immunotherapy, in either study 
(22, 23). Furthermore, in both the COG and ECOG studies, 
patients who were randomized to the immunotherapy regimen 
that were KIR3DL1+/HLA-Bw4+ had better outcome compared 
to patients who were not KIR3DL1+/HLA-Bw4+.

Given these similar associations with outcome for the 
KIR3DL1/HLA-Bw4 interaction in these two clinical trials, we 
chose to evaluate these more deeply by evaluating the potential 
influence of distinct HLA-Bw4 isoforms. Polymorphisms in 
the α1 helix (positions 77–83) of HLA class I correspond to the 
sequence site of the Bw4 epitope that is recognized by KIR3DL1 
(24). In KIR/KIR-ligand associations, we analyzed in these 
COG and ECOG trials, individuals were considered positive for 
HLA-Bw4 if they were found to have at least one of the three 
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isoforms of HLA-Bw4: (1) HLA-B allele with a threonine at 
amino acid position 80 (B-Bw4-T80), (2) HLA-B allele with 
an isoleucine at amino acid position 80 (B-Bw4-I80), or (3) 
HLA-A with a Bw4 epitope (A-Bw4). Patients were negative 
for HLA-Bw4 if they did not have any of these three isoforms. 
These polymorphisms of this Bw4 epitope can impact KIR3DL1 
recognition (25–29). As such, we describe the impact of the 
genotype status of B-Bw4-T80, B-Bw4-I80, and A-Bw4, together 
with the genotype status of KIR3DL1, on the clinical outcome, 
based on a clinical outcome parameter that measured the dura-
tion of response to the treatment regimen (EFS in COG; duration 
of response in ECOG).

MaTerials anD MeThODs

Patients
COG ANBL0032 Patients
The phase III neuroblastoma clinical trial (ANBL0032; 
Clinicaltrials.gov # NCT00026312) evaluated the efficacy of 
isotretinoin alone as compared to an immunotherapeutic regi-
men consisting of dinutuximab (anti-GD2), aldesleukin (IL-2),  
sargramostim (GM-CSF), and isotretinoin (1). Of the 226 
patients randomized, 174 patients (immunotherapy: n  =  88; 
isotretinoin: n = 86) had DNA available, allowing evaluation of 
KIR/KIR-ligand genotype association with updated clinical out-
come (>5-year follow-up if no event). All analyses in this study 
were conducted utilizing an intent-to-treat approach. All patients 
signed IRB approved consent forms enabling lab-based immune 
correlative analyses, and the genotyping done at UW-Madison 
was approved by the UW-IRB.

ECOG E4402 Patients
The Phase III ECOG clinical trial (E4402; ClinicalTrials.gov 
#NCT00075946) evaluated the efficacy of single agent, rituximab 
therapy for adults with low-tumor burden FL. Clinical results 
from this study have been reported elsewhere (2). A total of 408 
patients with FL were entered, with 289 patients responding and 
randomized to no-maintenance or maintenance rituximab regi-
mens. Disease measurements were obtained every 13 weeks (2). 
Of the 289 randomized patients from this trial, 213 patients had 
evaluable DNA and clinical data for this study, and 159 of them 
were randomized to no-maintenance (n = 80) or maintenance 
rituximab (n = 79) treatment. Of these 79 patients treated with 
maintenance rituximab, 75 patients had clinical data available 
for duration of response. All patients signed IRB approved 
consent forms enabling lab-based immune correlative analyses, 
and the genotyping done at UW-Madison was approved by the 
UW-IRB.

genotyping
KIR3DL1 gene status was determined by a SYBR green real-time 
PCR reaction (30, 31). The genotype for HLA-Bw4, which includes 
three known HLA-Bw4 epitopes (B-Bw4-T80, B-Bw4-I80, and 
A-Bw4) were determined by PCR-SSP reactions using the KIR 
HLA Ligand SSP typing kit (product number 104.201-12u from 

Olerup, West Chester, PA, USA) with GoTaq DNA polymerase 
(M8295, Promega, WI, USA). All genotyping was conducted in a 
blinded manner, whereby individuals who determined the geno-
type of the patients did not have access to the clinical outcome 
data.

statistical Methods
The goal of these analyses was to evaluate the association of 
KIR3DL1 in combination with each HLA-Bw4 isoform (B-Bw4- 
T80, B-Bw4-I80, and A-Bw4) on response to therapy (EFS or 
duration of response). For the COG trial, EFS time was defined 
as the time from study enrollment until the first occurrence of 
relapse, progressive disease, secondary cancer, or death or until 
the last contact with the patient if none of these events occurred 
(censored). For the ECOG trial, the duration of response was 
defined as the time from randomization (following an initial 
response to the induction rituximab treatment) to documented 
disease progression (2).

Cox proportional hazards regression models and log-rank tests 
were used to compare EFS/duration of response curves by treatment 
and genotype combinations. The proportional hazards assumption 
was tested, and when the assumption was not met, adjustments 
were made by incorporating time-dependent covariates into the 
model. For both trials, only randomized patients were included in 
the analyses. Statistical analyses were performed using SAS v9.4 
(SAS Institute, Cary, NC, USA).

resUlTs

hla-Bw4 isoforms, Together with 
Kir3Dl1, Differentially influence the 
impact of mab-Based immunotherapy  
on clinical Outcome of neuroblastoma 
Patients
In our analyses of associations of KIR/KIR-ligand genotypic 
influence on clinical response in the neuroblastoma study 
(ANBL0032), we reported on differences in clinical outcome for 
those KIR3DL1+/Bw4+ (immunotherapy n  =  58; isotretinoin 
n = 61) and those not KIR3DL1+/Bw4+ (immunotherapy n = 30; 
isotretinoin n = 25), and differences in response were observed 
dependent upon treatment type (20, 21). Since not all of the 
isoforms of HLA-Bw4 may interact with KIR3DL1 to the same 
degree, we further assessed patients with different HLA-Bw4 
isoforms in this setting.

To better understand the KIR/KIR-ligand genotypic influence 
on clinical outcome, we evaluated the effect of Bw4 epitope on 
either an HLA-A or HLA-B allele. In this study, patients who 
were KIR3DL1+/A-Bw4+ had a trend toward improved EFS if 
they were treated with immunotherapy as compared to those 
treated with isotretinoin alone (p = 0.06; Figure 1A) (Table S1 in 
Supplementary Material). In contrast, we did not find a significant 
difference in EFS for patients receiving the immunotherapy vs. 
those randomized to not receive the immunotherapy (i.e., isotreti-
noin alone) in the patients that were not KIR3DL1+/A-Bw4+ 
(p = 0.35; Figure 1A).
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We found that B-Bw4-T80 and B-Bw4-I80 differentially influenced 
EFS in these neuroblastoma patients (Table S1 in Supplementary 
Material). Similar to results in Figure  1A, patients who were 
KIR3DL1+/B-Bw4-T80+ showed significantly improved EFS if 
they received immunotherapy compared with isotretinoin alone 
(p = 0.04; Figure 1B), whereas those that were not KIR3DL1+/B-
Bw4-T80+ showed no difference in EFS for patients receiving the 
immunotherapy vs. those randomized to receive isotretinoin alone 
(p = 0.57; Figure 1B). However, for B-Bw4-I80+, the results were 
converse. Patients who were KIR3DL1+/B-Bw4-I80+ showed no 
sign of improved EFS if they received immunotherapy compared 
with isotretinoin alone (p = 0.60; Figure 1C). Furthermore, and 
in contrast to results in Figures  1A,B, while not significant, 
there appears to be improved EFS for patients receiving the 
immunotherapy vs. isotretinoin alone in the patients who were 
not KIR3DL1+/B-Bw4-I80+ (p = 0.10; Figure 1C).

These findings suggest that the different isoforms of HLA-Bw4 
differentially influence the impact of anti-GD2-based immuno-
therapy on EFS for high-risk neuroblastoma patients.

hla-Bw4 isoforms, Together with 
Kir3Dl1, Differentially influence the 
impact of mab-Based immunotherapy  
on clinical Outcome of Fl Patients
The ECOG E4402 Phase III clinical trial sought to optimize the 
rituximab treatment regimen for low-tumor burden FL patients 
(2). As such, different from the design of the neuroblastoma COG 
trial described above where one treatment arm was treated with 
immunotherapy and the other was not, in E4402 all patients 
were initially treated with rituximab. In E4402, all FL patients 
received induction rituximab, consisting of four weekly rituximab 
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treatments. After 13  weeks, those patients who achieved ≥50% 
tumor shrinkage were randomized to two separate treatment 
regimens: (1) “maintenance” rituximab was given every 13 weeks 
or (2) “no-maintenance” where rituximab was given only upon 
disease progression (2). Thus, for the parameter of disease 
progression, the no-maintenance group received no rituximab 
between randomization and disease progression. Similar to the 
COG findings regarding the genotype status of KIR3DL1/Bw4, 
in this ECOG study, we also found that those KIR3DL1+/Bw4+ 
(maintenance n  =  49; no-maintenance n  =  53) had different 
clinical outcome than those not KIR3DL1+/Bw4+ (maintenance 
n = 27; no-maintenance n = 26), which was also influenced by the 
treatment arm.

Analyses of the three separate HLA-Bw4 isoforms suggest that 
the isoforms of HLA-Bw4 differently influenced the impact of main-
tenance rituximab. FL patients who were KIR3DL1+/A-Bw4+ that 

were treated with maintenance rituximab had a longer duration of 
response (0 of 23 progressed, Figure 2A) as compared to patients 
who were not KIR3DL1+/A-Bw4+ [13 out of 53 progressed 
(p  =  0.008, Figure  2A) (Table S1 in Supplementary Material)]. 
Separately, patients who were KIR3DL1+/B-Bw4-T80+ also 
showed significantly prolonged duration of response if they 
received maintenance as compared with no-maintenance 
rituximab (p  =  0.007; Figure  2B). In addition, those patients 
whowere not KIR3DL1+/B-Bw4-T80+ had a trend toward 
improved duration of response if treated with maintenance as 
compared with no-maintenance rituximab (p = 0.07; Figure 2B) 
(Table S1 in Supplementary Material). However, patients who 
were KIR3DL1+/B-Bw4-I80+ did not show prolonged duration 
of response if they received maintenance as compared with no-
maintenance rituximab (p = 0.40; Figure 2C). Similar to the trends 
for improved EFS observed in neuroblastoma patients treated 
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with immunotherapy (Figure  1C), those FL patients who were 
not KIR3DL1+/B-Bw4-I80+ had improved duration of response 
if treated with maintenance rituximab as compared to no-
maintenance (p = 0.002; Figure 2C) (Table S1 in Supplementary 
Material).

These findings suggest that the different isoforms of HLA-Bw4 
differentially influence the impact of rituximab maintenance 
treatment for these low-tumor burden FL.

DiscUssiOn

In both of these clinical trials, in separate disease settings, tumor-
reactive mAbs were used to treat the tumors. In the analysis of 
KIR/KIR-ligand genotypes in each of these studies, we found 
similar associations with outcomes based upon the influence of 
KIR3DL1/HLA-Bw4. Specifically, those patients who had both 
KIR3DL1 and HLA-Bw4 had improved clinical outcomes if 
they were treated with either the COG immunotherapy regimen 
or the maintenance rituximab regimen in ECOG as compared 
to those who did not receive these same immunotherapeutic 
regimens (20, 21). Here, we report on the analyses of the 
specific HLA-Bw4 isoforms in both trials. In the ECOG trial 
of FL patients, patients with a KIR3DL1+/A-Bw4+ genotype 
or a KIR3DL1+/B-Bw4-T80+ genotype showed improved 
outcome when randomized to the maintenance regimen rather 
than to the no-maintenance regimen. In contrast, patients with 
a KIR3DL1+/B-Bw4-I80+ genotype showed no evidence of 
improved outcome when randomized to the maintenance treat-
ment vs. no-maintenance regimen. We also observed similar 
trends for these same analyses in the COG trial of neuroblas-
toma patients.

Although other mechanisms, such as antibody-dependent 
cellular phagocytosis and complement-dependent cellular cyto-
toxicity (32, 33), could also contribute to the anti-tumor efficacy 
of tumor antigen-specific monoclonal antibodies, we hypothesize 
that the anti-tumor effect of rituximab and dinutuximab in these  
FL and neuroblastoma patients, respectively, is primarily through 
ADCC. NK  cells are major contributors to ADCC, and their 
activity is regulated via the interactions between KIRs/KIR-
ligands (34). As such, we hypothesize that the KIR/KIR-ligand 
genotypes could influence the degree that patients respond to 
antibody-based immunotherapies. Besides NK  cells, KIRs are 
also expressed by a subset of T cells as well as NKT cells (35, 36). 
Therefore, it is possible that these other cell types may also be 
influenced by KIR/KIR-ligand genotypes.

Besides inherited genetic differences in KIR and KIR-ligand 
genotypes, other individual genetic differences, such as polymor-
phisms in Fc gamma receptors (FCGRs), may influence patient 
outcome to immunotherapy. FCGR polymorphisms can alter 
the affinity of FCGRs for the Fc portion of antibodies (mAbs or 
endogenous antibodies) (37). For example, in a separate study 
of patients with metastatic renal cell carcinoma treated with 
high-dose IL-2, we found that patients with a “higher affinity” 
FCGR genotype had improved clinical outcome as compared 
to those patients with a “lower affinity” FCGR genotype (38). 
In our analysis of those same metastatic renal cell carcinoma 
patients for KIR/KIR-ligand genotype influence on outcome, 

we did not observe differences in clinical outcome associated 
with KIR3DL1 and HLA-Bw4 genotype status (39). The influ-
ence of FCGR polymorphisms on clinical outcome to rituximab 
is variable (40–42). For the FL patients analyzed here from this 
ECOG study, Kenkre and colleagues reported no association of 
FCGR genotype polymorphisms with patient outcome (43). In 
addition, some groups have found associations of FCGR geno-
type with clinical outcome for patients treated with anti-GD2 
immunotherapy (8, 44, 45). For the neuroblastoma patients 
from this COG trial, FCGR genotype associations with clinical 
outcome are still under investigation. In addition, it has been 
reported that the influence from KIR/KIR-ligand interactions 
on NK  cells may be affected by the affinity of the Fc portion 
of different therapeutic mAb used (46), the rituximab used in 
this ECOG trial and the dinutuximab used in this COG trial 
have similar human IgG1 Fc components, which may also help 
account for why we observed similar influences from HLA-Bw4 
epitopes in these two separate studies where two different thera-
peutic mAbs were used.

These clinical data are consistent with the B-Bw4-I80 iso-
form functioning somewhat differently than the B-Bw4-T80 or 
A-Bw4 isoforms, and potentially making the tumor cells less 
responsive to the potential benefit of the anti-GD2 or anti-CD20 
mAb-based immunotherapy. In vitro analyses have shown that 
a subset of HLA-Bw4 alleles (those with an B-Bw4-I80 isoform) 
show relative protection from lysis by NK  cells (47, 48). The 
data presented here are consistent with these in vitro results; 
mAb-based immunotherapy may provide more benefit for 
patients with weaker NK  cell inhibition from B-Bw4-T80 or 
A-Bw4, than for patients with stronger NK inhibition from 
B-Bw4-I80.

Given that patients assessed in either trial could be positive 
for more than one of the HLA-Bw4 epitopes, we did consider 
whether the HLA-Bw4 epitopes were in linkage disequilibrium. 
We found that A-Bw4 was not in linkage disequilibrium with either 
B-Bw4-I80 or B-Bw4-T80 (Table S2 in Supplementary Material). 
Thus, the influence that each of these HLA-Bw4 epitopes had on 
the length of patient response in either trial is presumably not due 
to linkage disequilibrium with each other.

We also considered whether the interaction of KIR3DL1 with 
these three different HLA-Bw4 isoforms showed any association 
of outcome among patients randomized to receive the immuno-
therapy regimens. Within the COG study, we observed a trend 
for improved outcome for those KIR3DL1+/HLA-A-Bw4+ vs. 
those not KIR3DL1+/HLA-A-Bw4+ (Figure  1A), and we also 
observed a trend in the opposite direction for HLA-Bw4-I80, 
namely, there was a trend for improved outcome for those not 
KIR3DL1+/HLA-B-Bw4-I80+ vs. those who were KIR3DL1+/
HLA-B-Bw4-I80+ (Figure 1C). Although only a trend, this dif-
ference in Figure 1A and Figure 1C is consistent with differential 
function of HLA-A-Bw4 and HLA-B-Bw4-I80. No significant 
differences or trends were noted when we evaluated among the 
FL patients randomized to receive the maintenance rituximab 
regimen (Figures 2A–C).

The interaction of KIR3DL1 with the Bw4 epitope is depend-
ent not only on the architecture of Bw4 but also on the sequence 
of the bound peptide (25, 28, 49–51). Additionally, the differences 
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we observed between A-Bw4, B-Bw4-T80, and B-Bw4-I80 may 
be due to the different inhibition strength for KIR3DL1 from 
these isoforms. For instance, HLA-A*32:01, HLA-B*51:01, 
and HLA-B*58:01 strongly inhibit target cells from lysis by 
KIR3DL1+ NK cells, yet HLA-B*15:13 and HLA-B*27:05 have 
weaker inhibitory effects, despite all being HLA-Bw4 alleles (6, 
25, 26, 48, 52–54). In addition, depending on the KIR3DL1 allele, 
expression of KIR3DL1 can vary; different HLA-A-Bw4 alleles 
have differential affinity for KIR3DL1 that is attributed to high vs. 
low expression of KIR3DL1 (55). Furthermore, the specific Bw4 
allele, as well as the KIR3DL1 allele, the strength of KIR3DL1/
HLA-Bw4 interaction and the binding avidity can vary (29). For 
example, Saunders et al. recently showed that HLA-A*24:02 acts 
as a poor ligand for KIR3DL1, and the strength of its interaction 
with KIR3DL1 differed depending on the allele of KIR3DL1 (29). 
The genotyping methodology employed for analyzing the many 
patients in these two clinical trials reported here was not able 
to address these more subtle allele-specific or peptide-related 
issues.

Another possible cause of the differences observed in these 
HLA-Bw4 isoforms may be due to genetic polymorphisms of 
KIR3DL1 (26, 28, 29, 56–60). More than 100 alleles of KIR3DL1 
have been described. Phylogenetically, these alleles span three 
lineages based on the polymorphism of the three extracellular 
domains (D0–D1–D2) (53, 61). In both of these clinical studies 
analyzed, we did not determine the allelic differences of the KIR 
genes, but rather we determined their presence or absence. Thus, 
we cannot assess how different KIR3DL1 alleles may affect the 
interactions between different isoforms of HLA-Bw4. We did, 
however, assess if KIR3DL1 allelic status could influence the 
interactions of KIR3DL1 with HLA-Bw4 and with the separate 
HLA-Bw4 isoforms. KIR3DL1 and KIR3DS1 are alleles, thus 
individuals can have 2, 1, or 0 copies of KIR3DL1 (2 copies: 
KIR3DL1/KIR3DL1, 1 copy: KIR3DL1/KIR3DS1, or 0 copies: 
KIR3DS1/KIRDS1). Although KIR3DS1 has not been shown 
to utilize HLA-Bw4 as a ligand in vitro, whether KIR3DS1 may 
still interact with HLA-Bw4 in  vivo is controversial (62–65). 
We assessed whether the allelic status of KIR3DL1/KIR3DS1 
together with HLA-Bw4 (and HLA-Bw4 isoforms) influenced 
patient response. We found that there was no evidence of an 
association with outcome in either the COG or the ECOG study 
that could be linked to the allelic status of KIR3DL1/KIR3DLS1 
(data not shown), nor was there evidence of an association of 
clinical outcome linked to KIR3DL1/KIR3DS1 status together 
with the HLA-Bw4 ligand isoforms (data not shown). Rather, the 
mere presence of KIR3DL1 together with its ligand, HLA-Bw4, 
seemed to influence patients’ response to immunotherapy in 
both clinical trials. These observations will require validation in 
a separate study.

In conclusion, this work sheds further light on the role of KIR 
receptors on NK  cells in the antitumor response to immuno-
therapeutic mAbs. We demonstrate that the KIR3DL1/HLA-Bw4 
axis influences response to tumor-targeted mAbs in two separate 
clinical trials and that the presence of the B-Bw4-T80 isoform 
or the A-Bw4 isoform is associated with improved response to 
mAb-based immunotherapy, while the presence of the B-Bw4-I80 
isoform is not.
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Several studies described an association between killer-cell immunoglobulin-like 
receptor (KIR)/HLA gene combinations and clinical outcomes in various diseases. In 
particular, an important combined role for KIR3DS1 and HLA-B Bw4-I80 in controlling 
viral infections and a higher protection against leukemic relapses in donor equipped 
with activating KIRs in haplo-HSCT has been described. Here, we show that KIR3DS1 
mediates positive signals upon recognition of HLA-B*51 (Bw4-I80) surface molecules 
on target cells and that this activation occurs only in Bw4-I80neg individuals, including 
those carrying particular KIR/HLA combination settings. In addition, killing of HLA-B*51 
transfected target cells mediated by KIR3DS1+/NKG2A+ natural killer (NK) cell clones 
from Bw4-I80neg donors could be partially inhibited by antibody-mediated masking of 
KIR3DS1. Interestingly, KIR3DS1-mediated recognition of HLA-B*51 could be better 
appreciated under experimental conditions in which the function of NKG2D was reduced 
by mAb-mediated blocking. This experimental approach may mimic the compromised 
function of NKG2D occurring in certain viral infections. We also show that, in KIR3DS1+/
NKG2A+ NK cell clones derived from an HLA-B Bw4-T80 donor carrying 2 KIR3DS1 
gene copy numbers, the positive signal generated by the engagement of KIR3DS1 
by HLA-B*51 resulted in a more efficient killing of HLA-B*51-transfected target cells. 
Moreover, in these clones, a direct correlation between KIR3DS1 and NKG2D surface 
density was detected, while the expression of NKp46 was inversely correlated with 
that of KIR3DS1. Finally, we analyzed KIR3DS1+/NKG2A+ NK cell clones from a HLA-B 
Bw4neg donor carrying cytoplasmic KIR3DL1. Although these clones expressed lower 
levels of surface KIR3DS1, they displayed responses comparable to those of NK cell 
clones derived from HLA-B Bw4neg donors that expressed surface KIR3DL1. Altogether 
these data suggest that, in particular KIR/HLA combinations, KIR3DS1 may play a role 
in the process of human NK cell education.

Keywords: human natural killer cells, activating killer-immunoglobulin-like receptors, Kir3Ds1, natural killer cell 
education, hla-B alleles, Kir/Kir-l interaction
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inTrODUcTiOn

Natural killer (NK) cells are lymphocytes of innate immunity that 
are involved in the host immune defenses against viruses and 
tumor cells. NK cells can exert cytotoxicity against transformed 
cells and release soluble factors important for regulating innate 
and adaptive immune responses (1, 2).

The NK cell function is controlled by an array of activating 
and inhibitory receptors, including the family of killer-cell 
immunoglobulin-like receptors (KIRs) (3). Inhibitory KIRs 
(iKIRs) possess a long cytoplasmic tail, containing ITIM motifs, 
responsible for the transduction of an inhibitory signal (3, 4), 
while activating KIRs (aKIRs) are characterized by a short tail and 
by a positively charged amino acid residue in their transmem-
brane region, which allows recruitment of the DAP12 signaling 
adaptor molecule (5, 6).

KIR3DL1/S1 is the KIR gene characterized by the highest 
degree of polymorphism, and it is the only one including alleles 
coding for either inhibitory (KIR3DL1) or activating (KIR3DS1) 
receptors. In particular, KIR3DL1 is highly polymorphic, 
whereas KIR3DS1*013 is the most represented in all examined 
populations (7). Notably, KIR3DS1 is the only activating receptor 
with three extracellular domains (8). Its inhibitory counterpart, 
KIR3DL1, recognizes HLA-A and HLA-B alleles, sharing the Bw4 
public epitope (3, 4, 9, 10). Despite the high degree of homology 
between these two KIR3D receptors, knowledge about KIR3DS1 
function and ligand specificity is not completely defined so far.

In this regard, several studies have suggested that certain 
HLA-B Bw4 alleles characterized by isoleucine in position 80 
(Bw4-I80) may be putative ligands for KIR3DS1. In particular, the 
carriage of a KIR3DS1 allele in conjunction with HLA-Bw4-I80 
alleles in patients with chronic HIV-1 infection has been associ-
ated with a slower progression to AIDS (11, 12). In addition, in 
individuals affected by acute HIV-1 infections and carrying HLA-
Bw4-I80 alleles, expansion of KIR3DS1+ NK cells (13), killing of 
HIV-1 infected cells, and inhibition of viral replication have been 
reported (12).

Carr and colleagues (14) could not detect any KIR3DS1-Fc 
binding to LCL721.221 cells transfected with HLA-B Bw4-I80 
alleles (HLA-B*57:01, HLA-B*58:01) or with HLA-B Bw4-T80 
(B*27:05) and HLA-Bw6 (B*15:02). Nevertheless they did not 
exclude the possibility that binding occurred below their detec-
tion limits or required the presence of additional factors, such as 
the presence of specific peptides in the HLA-B peptide-binding 
groove. In this regard, it has been shown that KIR3DS1 can inter-
act productively with HLA-Bw4 in the context of HIV infection. 
Indeed, two HIV-derived peptides have been described to enable 
HLA-B*57:01/KIR3DS1 interaction (15).

Recent studies have also reported that HLA-F open conform-
ers (OCs) are high-affinity ligands of KIR3DS1 and ligands of 
lower affinity for the inhibitory receptors KIR3DL1 and KIR3DL2 
(16, 17). However, KIR3DS1/HLA-F interaction cannot fully 
explain the control of HIV infection in KIR3DS1+ HLA-B Bw4-
I80+ patients only (16).

A protective role of KIR3DS1 in controlling certain tumors 
promoted by chronic viral infections has also been observed. 
For example, a protective effect of KIR3DS1 in combination with 

HLA-B Bw4-I80 alleles has been observed against hepatocellular 
carcinomas developed in chronically HCV-infected patients (18).

Remarkably, despite several attempts to define the specificity 
of KIR3DS1, the role of this receptor in the process of NK cell 
education has not been considered yet. In the present study, by the 
analysis of distinct NK clones, we show that certain self HLA-B 
allotypes can modify the functional responsiveness of KIR3DS1, 
thus providing evidence for an effect on the education of NK cells 
expressing this aKIR.

MaTerials anD MeThODs

KIR gene Profile and KIR-ligand  
(KIR-l) analyses
DNA of the tested donors was extracted using QIAamp DNA 
Blood Mini Kit (Qiagen, GmbH, Germany). The KIR gene profile 
and KIR-L analyses were performed using sequence-specific 
primer PCR (SSP-PCR) KIR genotyping kit and KIR ligand 
kit, respectively (GenoVision, Saltsjöbaden, Sweden) following 
the manufacture’s instruction. SSP-PCR analysis of KIR gene 
repertoire has been integrated with sequence of KIR3DL1 codon 
86 in order to distinguish KIR3DL1 alleles coding for surface 
receptors from those coding for polypeptide retained into the 
cytoplasm (19).

KIR3DL1 and KIR3DS1 gene copy 
number (gcn)
KIR3DL1 and KIR3DS1 GCN was measured using a quantitative 
PCR method and a comparative Ct method (ΔΔCt). The used 
amplification protocol, as well as primer and probe sequences, 
has been published by Jiang and coworkers (20). RNaseP was used 
as two copies reference gene (TaqMan Copy Number Reference 
Assay, human RNase P; Applied Biosystems).

HLA-B high-resolution Typing
Genomic DNA was used to perform HLA-B high-resolution 
typing. Some HLA typings were performed by sequence-based 
typing (SBT) using ATRIA kits according to the manufacturer’s 
instructions (Abbott–Celera Corporation, Alameda, CA, USA). 
Exons 2, 3, and 4 were bidirectionally sequenced using an ABI 
3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA, 
USA), and the sequences were analyzed by Assign 3.5+ HARPS 
software (Conexio Genomics, Applecross, Australia). Some HLA 
typings were performed using sequence-specific oligonucleotide 
probes (PCR-SSOP; One Lambda, Canoga Park, CA, USA), 
and the results were analyzed by the software Fusion 3.0 (One 
Lambda, Canoga Park, CA, USA).

antibodies and Flow cytometry
The following mAbs, all produced in our lab, were used in this 
study: c218 (IgG1, anti-CD56), c127 (IgG1, anti-CD16), AZ20 
and F252 (IgG1 and IgM, respectively, anti-NKp30), BAB281 
and KL247 (IgG1 and IgM, respectively, anti-NKp46), Z231 
(IgG1, anti-NKp44), ON72 and BAT221 (IgG1, anti-NKG2D), 
KRA236 and F5 (IgG1 and IgM, respectively, anti-DNAM-1), 
11PB6 (IgG1, anti-KIR2DL1/S1), GL183 (IgG1, anti-KIR2DL2/
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L3/S2), ECM41 (IgM, anti-KIR2DL3), DF200 (IgG1, anti-
KIR2DL1/L2/L3/S1/S2/S5), FES172 (IgG2a, anti-KIR2DS4), z27 
(IgG1, anti-KIR3DL1/S1), AZ158 (IgG2a, anti-KIR3DL1/L2/
S1), Q66 (IgM, anti-KIR3DL2), z199 and Y9 (IgG2b and IgM, 
respectively, anti-NKG2A), 6A4 and A6/136 (IgG1 and IgM, 
respectively, anti-HLA-class I), D1/12 (IgG2a, anti-HLA-DR), 
5A10 (IgG1, anti-PVR), L14 (IgG2a, anti-Nectin-2), and BAM195  
(IgG1, anti-MICA). F278 (IgG1, anti-LIR-1/ILT2) mAb was 
kindly provided by Dr. Daniela Pende. Anti-NKG2C (IgG2b, 
134522 clone), anti-ULBP-1 (IgG2a, 170818 clone), anti-ULBP-2 
(IgG2a, 165903 clone), anti-ULBP-3 (IgG2a, 166510 clone), and 
anti-KIR2DL1-PE, -FITC, -APC, or non-conjugated (IgG1, 
143211 clone) mAbs were purchased from R&D System Inc. 
(Abingdon, UK). Anti-KIR2DL5-PE or non-conjugated (UP-R1 
clone), anti-KIR3DL1-FITC and -APC (DX9 clone) mAbs were 
purchased from Miltenyi Biotec (Bergisch Gladbach, Germany). 
Anti-CD3-FITC (UCHT-1 clone), anti-CD56-PC7 (N901 clone),  
anti-NKG2A-APC (z199 clone), IgG1-PE (679.1Mc7 clone, 
isotype control), anti-KIR3DL1/S1-PE (z27 clone), and anti-
KIR2DL2/L3/S2-PC7 (GL183 clone) mAbs were purchased 
from Beckman Coulter Immunotech (Marseille, France). Anti-
KIR2DL2/L3-S2-FITC (CHL-clone) mAb was obtained from BD 
Bioscience Pharmingen (San Diego, CA, USA). Anti-HLA-Bw6-
FITC and anti-HLA-Bw4-FITC mAbs were purchased from One 
Lambda (Canoga Park, CA, USA). Anti-human HLA-E (IgG1, 
3D12 clone) and anti-human HLA-G (IgG1, MEM-G/9 clone) 
mAbs were purchased from BioLegend (San Diego, CA, USA) 
and Abnova (Taipei, Taiwan), respectively.

For cytofluorimetric analyses, cells were incubated with 
appropriate mAbs, followed by PE-, FITC-, or APC-conjugated 
isotype-specific goat anti-mouse secondary reagents (Southern 
Biotechnology Associated, Birmingham, AL, USA; Jackson 
ImmunoResearch Laboratories, Suffolk, UK) and/or fluoro-
chrome-conjugated mAbs. Cytofluorimetric analyses were 
performed on FACSCalibur (Becton Dickinson & Co., Mountain 
View, CA, USA), and data were analyzed by the CellQuest Pro 
software.

Mean fluorescence intensity ratios (MFIRs) were calculated by 
dividing the mean fluorescence intensity of stained molecules by 
the mean fluorescence of the respective isotype control.

generation of resting nK cells  
and nK cell clones
Buffy coats from healthy donors were obtained from the 
Immunohematology and Transfusion Center at the S. Martino 
Hospital (Genova, Italy). Approval was obtained by the ethical 
committee of IRCCS S. Martino-IST (39/2012) of Genova (Italy). 
Informed consent was provided according to the Declaration of 
Helsinki. Human peripheral blood mononuclear cells (PBMCs) 
were isolated by Ficoll/Hypaque gradients. PBMCs from 120 
healthy donors were screened for their KIR3DS1 expression by 
cytofluorimetric analysis. Donors characterized by the expression 
of a clearly detectable KIR3DS1+ NK cell subset (i.e., Z27+ DX9neg) 
were further typed for their KIR repertoires and KIR-Ls (n = 40 
donors). Based on KIR-L analysis, three groups of donors were 
selected: Bw4-I80 donors (n  =  12), Bw4-T80 donors (n  =  7), 
and Bw4neg donors (n  =  8). Individuals carrying both HLA-B 

Bw4-I80- and Bw4-T80-coding alleles were not considered in 
this study.

Highly purified NK  cells (97–99% purity) were isolated by 
depletion of non-NK cells, using Miltenyi NK Cell Isolation Kit 
(Miltenyi Biotec, Bergisch Gladbach, Germany) from some of 
the selected KIR3DS1+ donors (two Bw4-I80, two Bw4-T80, and 
three Bw4neg donors). NK cells were cultured on irradiated feeder 
cells in the presence of 100 U/ml rhIL-2 (Proleukin; Chiron Corp., 
Emeryville, CA, USA) and 2 µg/ml phytoemagglutinin (PHA; Life 
Technologies, Paisley, UK) in round-bottomed 96-well microtiter 
plates to obtain activated polyclonal NK cell populations or, after 
limiting dilution, NK  cell clones as previously described (21). 
After 2–4 weeks of culture, the expanded NK cells were used for 
the phenotypic analysis and NK  cell cytotoxicity experiments. 
The relatively limited number of donors used to generate NK cell 
clones reflects the difficult collection of individuals with similar 
characteristics in terms of KIR and KIR-Ls. Only KIR3DS1+ 
NK  cell clones expressing the inhibitory receptor NKG2A as 
HLA-specific receptor and characterized by a sufficient growth to 
perform phenotypic and functional tests were selected and ana-
lyzed in the study. The number of KIR3DS1+/NKG2A+ NK cell 
clones used is indicated in the legends to the figures.

analysis of HLA-F Transcript
Total RNA was extracted from LCL721.221, C1R, C1R-B51, and 
JA3 cell lines using RNeasy mini kit (Qiagen) according to the 
manufacturer’s instruction, and cDNA synthesis was performed 
using oligo-dT primers. HLA-F transcript analysis was performed 
using Hs04193807_g1: HLA-F human kit (Applied Biosystems, 
Foster City, CA, USA). GAPDH transcript was used to normal-
ize the HLA-F quantity (Human GAPDH Endogenous Control 
Kit, Applied Biosystems, Foster City, CA, USA). The normalized 
HLA-F mRNA transcript of the tested samples was calculated as 
time-fold mRNA detected in the LCL721.221 cell line (chosen 
as reference in this study). Each cell line was analyzed in four 
independent experiments, and each reaction was performed at 
least in triplicate.

51cr cytolytic assays
The NK-mediated cytotoxicity was assessed in a 4-h 51Cr-release 
assay as previously described (22). Cells used as targets in the 
various cytolytic assays were the following: P815 (murine masto-
cytoma cell line), C1R (human EBV-transformed lymphoblastoid 
cell line), and C1R transfected with HLA-B*51 (Bw4-I80) allele 
(Figure S1 in Supplementary Material). For redirected killing 
assays, P815 were used as target cells in the presence of mAbs of 
IgG isotype at a concentration of 0.5 µg/mL. For masking experi-
ments, NK  cells were pre-incubated with mAbs specific to the 
various NK receptors 10 min before addition of target cells; mAb 
concentration was 10 µg/mL. The E:T ratios are indicated in the 
figure legends. Δ and Δ-B51 indicate the variations of C1R or 
C1R-B51 lysis in the absence or presence of anti-KIR3DS1 mAb 
calculated for each NK cell clone.

Three different types of NK cell clones were used as effector 
cells for cytolytic assays: (1) NKG2A+, KIR3DS1+, KIR2DL2/S2/
L3neg, KIR2DL1/S1neg, KIR3DL1neg, and NKG2Cneg; (2) KIR3DL1+, 
NKG2A+, KIR3DS1neg, KIR2DL2/S2/L3neg, KIR2DL1/S1neg, and 
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FigUre 1 | Kir3Ds1 surface expression on resting peripheral blood natural killer (nK) cells. (a) Gate strategy for selecting KIR3DS1+ NK cell subset 
(CD3neg CD56+ KIR3DS1+ KIR3DL1neg) in peripheral blood mononuclear cell. For staining, the following mAbs were used in combination: anti-CD56 (N901), anti-CD3 
(UCHT-1), anti-KIR3DL1/S1 (z27), and anti-KIR3DL1 (DX9). (B) KIR3DS1 surface expression was evaluated on peripheral blood resting NK cells from HLA-B 
Bw4-I80 (n = 12, full squares), Bw4-T80 (n = 7, full circles), or Bw4neg (n = 8, full triangles) healthy donors in terms of frequency, mean fluorescence intensity ratio, 
and median values. Summarized results are compared in three scatter dot plots, respectively. In each plot, average and standard deviation are represented.
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NKG2Cneg; and (3) KIR3DL1neg, NKG2A+, KIR3DS1neg, KIR2DL2/
S2/L3neg, KIR2DL1/S1neg, and NKG2Cneg.

statistical analysis
Wilcoxon–Mann–Whitney non-parametric tests were employed. 
The statistical significances (p value: *p  <  0.1, **p  <  0.01, 
***p < 0.001) are indicated. Graphic representations and statisti-
cal analysis were performed using GraphPad Prism 6 (GraphPad 
Software, La Jolla, CA, USA).

resUlTs

Kir3Ds1 surface expression on resting 
nK cells is not affected by Differences in 
hla-B allotypes
Healthy donors were screened for their KIR3DS1 expression by 
cytofluorimetric analysis. To distinguish between KIR3DS1+ and 
KIR3DL1+ cells, peripheral blood NK cells were stained in double 
fluorescence analysis with two different mAbs: an anti-KIR3DL1-
specific mAb (clone DX9) and an mAb specific for both KIR3DL1 
and KIR3DS1 (clone Z27) (Figure 1A). Donors characterized by 
the expression of a KIR3DS1+ NK cell subset (i.e., Z27+ DX9neg) 
were further typed for their KIR repertoires and KIR-Ls (Figure 
S2 in Supplementary Material).

KIR gene analysis allowed us to define the telomeric regions of 
the tested donors. In order to compare donors characterized by 
similar KIR3DL1/3DS1 locus, we restricted our analysis to TelA/
TelB donors, namely, individuals characterized by one KIR3DL1 
and one KIR3DS1 gene copy. KIR3DL1neg donors (i.e., individuals 
characterized by two B telomeric regions) were excluded from 
this study according to recent evidences showing hyporespon-
sive and less frequent KIR3DS1+ NK cells in this type of donors 
(23). Subsequently, based on KIR-L analysis, three groups of 
donors were selected: (a) Bw4-I80 donors, typed as Bw4-I80pos 

and Bw4-T80neg (including both Bw4-I80/Bw4-I80 and Bw4-
I80/Bw6 donors); (b) Bw4-T80 donors, typed as Bw4-T80pos  
and Bw4-I80neg (including both Bw4-T80/Bw4-T80 and Bw4-
T80/Bw6 donors); and (c) Bw4neg donors, lacking both Bw4-I80 
and Bw4-T80. Individuals carrying both HLA-B Bw4-I80- and 
Bw4-T80-coding alleles were not considered in this study. Also 
some HLA-A molecules are characterized by a Bw4-80I motif  
(e.g., HLA-A*23, -A*24, -A*25 or -A*32) (24), and their frequency 
in the European population is ~16% (http://www.ncbi.nlm.nih.
gov/gv/mhc/ihwg.cgi?ID=9&cmd=PRJOV). Nevertheless, since 
not all HLA-A Bw4-I80 molecules are KIR3DL1 ligands (10, 25), 
we restricted our analyses to HLA-B alleles with Bw4-I80.

Comparison of KIR3DS1 surface expression on resting 
NK cells derived from these three donor groups did not show any 
significant difference in terms of percentage, MFIR, and median 
values (Figure 1B). These data are in line with previous results 
showing no substantial differences in KIR3DS1 mRNA levels 
between HLA-B Bw4-I80 and HLA-Bw6 healthy individuals (13).

Thus, similar to what had already been demonstrated for 
HLA-C alleles in relation to KIR2DS1 (26), expression of differ-
ent HLA-B allotypes does not influence the overall frequency of 
KIR3DS1+ NK cells and the KIR3DS1 surface expression density 
in peripheral blood NK cells.

Phenotypic and Functional Differences  
in Kir3Ds1+/nKg2a+ nK cell clones 
Derived from Donors carrying Various 
hla-B allotypes
Several NK cell clones were generated from donors belonging to 
each of the three above-mentioned groups (Bw4-I80: SiCa and 
J76 donors, Bw4-T80: J13 donor, and Bw4neg: GL115 and U58 
donors). These donors were all characterized by a TelA/TelB 
KIR genotype, nevertheless, since KIR haplotype characterized 
by KIR3DL1/3DS1 duplication has been described (20, 27), 
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GCN analysis was performed to verify, in these five donors, the  
presence of one KIR3DL1 and KIR3DS1 copy (Figure  2). To 
exclude the potential educational effects of different KIR/KIR-L 
interactions on KIR3DS1 expression and function, KIR3DS1+ 
NK cell clones expressing the inhibitory receptor NKG2A as the 
only known HLA-specific receptor were selected.

As shown in Figure 2A (left panel), cytofluorimetric analysis 
revealed that KIR3DS1 expression was significantly heterogene-
ous among NK cell clones derived from individuals with different 
HLA-B allotypes. Indeed, NK cell clones derived from Bw4-I80 
donors, and to a lower extent those from Bw4-T80 donors, showed 
a reduced expression of KIR3DS1 as compared to NK cell clones 
derived from Bw4neg donors (***p  <  0.0001 and **p  =  0.0018, 
respectively). On the contrary, no differences in NKG2A surface 
expression could be detected among the same series of NK cell 
clones analyzed (not shown).

KIR3DS1+/NKG2A+ NK cell clones were then analyzed in redi-
rected killing assays using mAbs specific for several activating or 
inhibitory receptors. Notably, the magnitude of cytolytic responses 
to KIR3DS1 mAb-mediated triggering correlated with the levels of 
KIR3DS1 surface expression. In particular, as shown in Figure 2B 
(left panel), NK  cell clones from Bw4-I80 donors expressing a 
significantly lower KIR3DS1 MFIR displayed a reduced incre-
ment of cytotoxicity upon KIR3DS1 mAb-mediated cross-linking 
as compared to those derived from Bw4neg donors (*p = 0.0287). 
On the contrary, mAb-mediated triggering of other activating 
receptors, including NKp46, CD16 (Figure 2B, left panel), NKp30, 
NKp44, NKG2D, and DNAM-1 (not shown), did not display any 
significant variation between KIR3DS1+ NK cell clones derived 
from Bw4-I80 and those derived from Bw4neg donors. Notably, the 
expression of these (non-HLA-specific) activating receptors did 
not display any significant difference in KIR3DS1+ NK cell clones 
derived from Bw4-I80 or Bw4neg donors (Figure 3).

Phenotypic and Functional analysis of 
Kir3Ds1+/nKg2a+ nK cell clones from 
Donors with Peculiar KIR3DL1/S1 and 
HLA-B combinations
Considering that it has been shown that the number of KIR3DL1 
and KIR3DS1 gene copies plays an important role in modulating 
the HIV-1 control and that this effect seems to be detectable 
only after epistatic interactions between HLA molecules and 
KIRs (23, 28), we extended the phenotypic and functional 
analyses to additional NK cell clones derived from donors with 
peculiar KIR3DL1/S1 and HLA-B combinations [Figures 2A,B 
(right panels) and Figure 2C]. In particular, NK cell clones were 
derived from: (a) an HLA-B Bw4-T80/Bw6 donor equipped 
with 2 KIR3DS1 and 1 KIR3DL1 GCN (P61, referred to as T80-
3DS1-2GCN); (b) an HLA-B Bw4-T80/Bw6 donor carrying 
HLA-B*37:01, a particular Bw4-T80 allotype characterized by 
D77-T80 sequence (K9, referred to as HLA-B*37:01); and (c) 
an HLA-Bw4neg donor equipped with a KIR3DL1 allele coding 
for a polypeptide retained into the cytoplasm (K7, referred to as 
Bw4neg KIR3DL1intra) (29). As shown in Figure 2A (right panel), 
comparison of KIR3DS1 MFIR among NK cell clones of this sec-
ond set (T80-3DS1-2GCN, HLA-B*37:01, Bw4neg KIR3DL1intra 

donors) did not reveal significant differences. On the contrary, 
some differences could be detected by comparing the first and 
the second set of donors analyzed. As shown in Figure  2A, 
KIR3DS1+ NK cell clones derived from T80-3DS1-2GCN donor 
displayed a more heterogeneous KIR3DS1 surface expression as 
compared to NK cell clones derived from T80 donor carrying 
one KIR3DS1 GCN. Nevertheless, NK cell clones derived from 
T80-3DS1-2GCN donor (but also those from B*37:01 donor) did 
not display significant differences in terms of KIR3DS1 MFIR as 
compared to NK clones of the first set.

On the contrary, NK cell clones from the Bw4neg KIR3DL1intra 
donor displayed a significantly lower KIR3DS1 surface expres-
sion (***p < 0.0001) (Figure 2A) but a similar cytotoxicity upon 
KIR3DS1 mAb-mediated triggering (Figure 2B) as compared to 
NK  cell clones derived from Bw4neg donors expressing surface 
KIR3DL1.

Moreover, the comparison of the cytotoxicity in redirected 
killing assays between the first and second sets of donors revealed 
that NK cell clones derived from the second set were character-
ized by higher increments of cytotoxicity upon KIR3DS1 mAb-
mediated triggering than NK cell clones from Bw4-I80 donors 
(*p  =  0.0243 with T80-3DS1-2GCN donor, *p  =  0.0014 with 
HLA-B*37:01 donor, and **p = 0.0059 with Bw4neg KIR3DL1intra 
donor) (Figure 2B).

correlation analysis between expression 
of Kir3Ds1 and non-hla-specific 
activating receptors in Donors 
characterized by Different hla-B 
allotypes
The existence of a possible correlation between the expression 
of KIR3DS1 and that of relevant non-HLA-specific activating 
receptors (i.e., NCRs, NKG2D and DNAM-1) was analyzed in 
all KIR3DS1+/NKG2A+ NK cell clones considered in the present 
study. Of interest, only in T80-3DS1-2GCN donor, KIR3DS1 
surface density correlated inversely with NKp46 and directly 
with NKG2D MFIR (*p = 0.0154 and *p = 0.0107, respectively) 
(Figure 4). Notably, this result was detected only in NK cell clones 
from these donors characterized by higher and heterogeneous 
values of KIR3DS1 MFIR (Figure  2A, right panel). Based on 
this observation, it cannot be ruled out that, in given HLA/KIR 
haplotype settings, KIR3DS1 may influence the surface density of 
NKp46 and NKG2D.

Kir3Ds1-Mediated recognition of 
hla-B*51 allele on Transfected cells
According to previous data suggesting a possible interaction 
between KIR3DS1 and HLA-B Bw4-I80 alleles (30) and consider-
ing the high level of homology between the extracellular domains 
of KIR3DS1 and KIR3DL1 as well as the ability of KIR3DL1 to 
recognize in most instances HLA-B Bw4-I80 alleles with higher 
efficiency than HLA-B Bw4-T80 alleles (9, 25), all KIR3DS1+/
NKG2A+ NK cell clones were assessed for their capability of kill-
ing HLA-B Bw4-I80 target cells. In particular, the killing activity 
of KIR3DS1+/NKG2A+ NK cell clones was assessed against the 
C1R cell line transfected or not with HLA-B*51 allele (31).
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FigUre 2 | Kir3Ds1 surface expression and mab-mediated cross-linking of Kir3Ds1 in Kir3Ds1+/nKg2a+ natural killer (nK) cell clones. KIR3DS1+/
NKG2A+ NK cell clones derived from HLA-B-typed donors were analyzed for KIR3SD1 surface expression (a) and for 51Cr release in redirected killing assay against 
P815 cell line (B). Data related to HLA typing and surface/intra KIR3DL1 presence are indicated in the box below panel (B). (a) The NK cell clones of the first set (left 
panel) were derived from Bw4-I80 (n = 10, full square), Bw4-T80 (n = 9, full circle), and Bw4neg (n = 12, full triangles) donors, whereas NK cell clones of the second 
set (right panel) were derived from T80-3DS1-2GCN (n = 11, overturned full triangle), HLA-B*37:01 (n = 10, full rhombus), and Bw4neg KIR3DL1intra (n = 12, full star) 
donors. (B) The cytolytic activity of the first (left panel) and second (right panel) set of KIR3DS1+/NKG2A+ NK cell clones was evaluated in redirected killing assays 
upon mAb-mediated cross-linking of different NK receptors. Cytolytic assays were performed in the absence of mAbs (white bar) or in the presence of anti-CD16 
(c127, dark gray bar), anti-NKp46 (BAB281, light gray bar), or anti-KIR3DS1 (z27, black bar) mAbs. Average, standard deviation, and p values are indicated 
(*p < 0.1, **p < 0.01, and ***p < 0.001). (c) HLA-B typing, KIR3DL1, and KIR3DS1 gene copy number (GCN) analyses of the indicated donors are shown. 
&P: indicated a group of alleles with identical sequence at exons 2 and 3 and therefore sharing the same antigen-binding domains.
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FigUre 3 | surface expression of several non-hla-specific activating 
receptors. Staining of NKp46 (BAB281), NKp30 (AZ20), NKp44 (z231), 
NKG2D (ON72), and DNAM-1 (KRA236) molecules on KIR3DS1+/NKG2A+ 
natural killer (NK) cell clones derived from Bw4-I80 (n = 12, full squares) or 
Bw4neg carrying surface KIR3DL1 (n = 13, full triangles) donors were 
compared in terms of mean fluorescence intensity ratio (MFIR) in scatter dot 
plot representation. Average and standard deviation are shown.

FigUre 4 | Phenotypic analyses of Kir3Ds1+/nKg2a+ natural killer (nK) cell clones derived from T80-3Ds1-2gcn donor. Correlation analyses among 
NKp46 or NKG2D activating receptors and KIR3DS1 surface expression in several KIR3DS1+/NKG2A+ NK cell clones (n = 8) derived from a T80-3DS1-2GCN donor 
are represented. Linear regression values (r) and p values are shown.
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Considering recent studies showing that HLA-F OCs are high-
affinity ligands of KIR3DS1 (16, 17), the HLA-F transcript was 
analyzed in C1R and C1R-B51 target cells to assess whether these 
cells would express this KIR3DS1 ligand. JA3 (a Jurkat clone) 
(32) and LCL 721.221 cell lines were used as negative control 
and positive control, respectively (16, 33). As shown in Figure 5 
and Figure S3 in Supplementary Material, C1R and C1R-B51 
expressed very low levels of HLA-F transcript similar to JA3 cells, 
whereas LCL 721.221 expressed HLA-F mRNA five times more 
than C1R-B51. Thus, possible differences of lysis between C1R 
and C1R-B51 may not be attributed to recognition of HLA-F by 
KIR3DS1.

A representative cytolytic experiment against C1R/C1R-
B51 target cells performed using as effector cell a KIR3DS1+/
NKG2A+ NK  cell clone derived from the T80-3DS1-2GCN 
donor is shown in Figure 6. As controls, KIR3DS1neg/NKG2A+ 
and KIR3DL1+/NKG2A+ NK cell clones derived from the same 
donor were analyzed. In the absence of mAbs, C1R-B51 cells were 
killed slightly more efficiently than un-transfected C1R by the 

KIR3DS1+/NKG2A+ NK cell clone (*p = 0.0159). Notably, this 
difference of lysis was abolished upon mAb-mediated masking 
of KIR3DS1, suggesting a possible positive recognition of HLA-
B*51 by KIR3DS1 (Figure 6A). Interestingly, this result was more 
evident when the experiment was performed in the presence of 
anti-NKG2D mAb. Thus, as shown in Figure 6B, the difference 
between C1R and C1R-B51 killing was amplified by NKG2D 
mAb-mediated blocking (**p  =  0.0022). Importantly, further 
masking of KIR3DS1 abrogated this difference (**p  =  0.0065) 
(Figure 6B). Similar data were obtained upon additional mAb-
mediated masking of NKG2A.

A similar experimental approach was applied to the NK cell 
clones generated from the other donors analyzed (Figure  7). 
These clones were characterized by a substantially homogeneous 
NKG2D expression. The cytolytic assays were performed not 
only in the presence of blocking NKG2D but also upon mAb-
mediated masking of NKG2A in order to further reduce possible 
functional variations caused by different intensities of inhibitory 
signals consequent to NKG2A/HLA-E interaction. Then, cyto-
toxicity was evaluated upon additional blocking of KIR3DS1 
(Figure 7). In this set of experiments, in order to better appreciate 
the KIR3DS1 contribution to target killing, each NK cell clone 
was also analyzed for possible variations in the lysis of C1R or 
C1R-B51 targets in the absence or in the presence of KIR3DS1 
mAb-mediated blocking (ΔC1R and ΔC1R-B51).

In Bw4-I80 donors, lysis of C1R and C1R-B51 was not affected 
by the addition of anti-KIR3DS1 mAb (as shown by the raw data 
as well as ΔC1R and ΔC1R-B51 values) (Figure  7A). On the other 
hand, in Bw4neg donors, the addition of anti-KIR3DS1 mAb 
slightly decreased C1R-B51 killing and a significant gap between 
ΔC1R and ΔC1R-B51 could be detected (*p = 0.0188).

KIR3DS1+/NKG2A+ NK cell clones from the T80-3DS1-2GCN 
donor killed more efficiently C1R-B51 than C1R. Moreover, 
the addition of anti-KIR3DS1 mAb abolished this difference. 
Remarkably, in this donor, the comparison between ΔC1R and 
ΔC1R-B51 showed a highly significant difference (***p  <  0.0001, 
Figure 7B). Significant differences between ΔC1R and ΔC1R-B51 could 
also be observed in KIR3DS1+/NKG2A+ NK cell clones derived 
from both HLA-B B*37:01/Bw6 and Bw4neg KIR3DL1intra donors 
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FigUre 6 | Killing of c1r-B51 target cells by natural killer (nK) cell clones derived from a T80-3Ds1-2gcn donor. Three representative NK cell clones 
(one KIR3DS1neg/NKG2A+, one KIR3DS1+/NKG2A+ and one KIR3DL1+/NKG2A+) derived from the T80-3DS1-2GCN donor were tested for cytotoxic activity against 
C1R (dark gray histograms) and C1R-B51 (light gray histograms) target cell lines. Experiments were performed in the absence (a) or in the presence of anti-NKG2D 
masking mAb (B). Additional mAb-mediated maskings were carried out as indicated below panel B. Histograms summarized results of three independent 
experiments in duplicate. Average, standard deviation, and p values are shown (*p < 0.1 and **p < 0.01).

FigUre 5 | c1r and c1r-B51 express low level of HLA-F transcript. 
HLA-F mRNA amount detected in the analyzed cell lines has been 
normalized to GAPDH transcript. The normalized HLA-F mRNA transcript of 
the tested cell lines was calculated as time-fold the mRNA detected in 
LCL721.221 cell line (chosen as reference). Mean values obtained in four 
different experiments and their standard deviations are reported.
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(**p = 0.0073 and *p = 0.0110, respectively). All together, these 
data suggest a direct involvement of KIR3DS1 in the recognition 
of HLA-B*51 (Bw4-I80) target cells. Remarkably, this result can 
be detected only when NK  cells were generated in particular 
KIR/HLA combination settings. Indeed, KIR3DS1-mediated 
recognition of HLA-B*51 occurs only when NK cell clones were 
derived from Bw4-I80neg donors (Bw4-T80-2GCN, B*37:01/Bw6, 
or Bw4neg), suggesting a role for HLA-B/KIR3DS1 interaction in 
the process of NK cell education.

Notably, when comparing KIR3DS1+/NKG2A+ and 
KIR3DS1neg/NKG2A+ NK  cell clones, a significant difference 
in NKp46 surface expression was observed only in Bw4-I80 
donors. Thus, KIR3DS1+/NKG2A+ NK  cell clones expressed 
lower levels of NKp46 than KIR3DS1neg/NKG2A+ NK  cell 
clones (***p = 0.0005), further corroborating the possibility that  

HLA-B/KIR3DS1 interaction may be involved in the process of 
NK cell education (Figure 8).

DiscUssiOn

A number of studies described an association between given 
KIR/HLA gene combinations and clinical outcome in various 
immune challenges and reported a possible perturbation of KIR/
HLA interactions by the presented peptide. In particular, an 
important combined role played by KIR3DS1 and HLA-B Bw4-
I80 in controlling HIV infection (11, 12) and the recognition of 
specific HIV-derived peptides associated with HLA-B*57 alleles 
by KIR3DS1 have been described (15).

In the present study, we provided the first evidence of a direct 
involvement of KIR3DS1 in the NK-mediated recognition of 
HLA-B*51 surface molecules expressed on target cells. This 
capability is manifested only when KIR3DS1 is expressed by 
NK cells derived from individuals carrying particular KIR/HLA 
combinations. Although our study was performed on a limited 
number of donors (due to the difficulty in the collection of indi-
viduals with similar characteristics in terms of KIR and KIR-Ls 
as well as in the generation and expansion of appropriate NK cell 
clones), our results suggest a role for this activating receptor in 
the process of NK  cell education. In particular, the KIR3DS1-
mediated positive recognition of HLA-B*51 (Bw4-I80) could be 
detected in NK cell clones derived from Bw4-I80neg donors (one 
Bw4-T80-2GCN, one B*37:01/Bw6, and three Bw4neg) but not 
in those from Bw4-I80 donors (two donors). Thus, in a manner 
reminiscent of that previously described for KIR2DS1 (26, 34), 
the interaction of KIR3DS1 with its self-HLA-B class I ligand 
(Bw4-I80 alleles) would affect the subsequent response mediated 
by this aKIR. Indeed, in HLA-B Bw4-I80 donors, the process of 
NK  cell education that is taking place via NKG2A/self-HLA-E 
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FigUre 7 | c1r-B51 killing by Kir3Ds1+/nKg2a+ natural killer (nK) cell clones. NK cell clones were tested in 51Cr-release cytotoxicity assay against C1R 
(circle) and C1R-B51 (square) target cell lines in the presence of anti-NKG2D + anti-NKG2A masking mAbs (full symbols) or anti-NKG2D + anti-NKG2A + anti-
KIR3DS1 masking mAbs (empty symbols). Δ and Δ-B51 indicate the variations of C1R or C1R-B51 lysis in the absence or presence of anti-KIR3DS1 mAb for each 
NK cell clone. NK cell clones derived from Bw4-I80 (n = 11) and Bw4neg (n = 9) donors are represented in panel (a), whereas those derived from T80-3DS1-2GCN 
(n = 9), HLA-B*37:01 (n = 9), and Bw4neg KIR3DL1intra (n = 8) donors are represented in panel (B). Plots summarized results of three independent experiments in 
duplicate. p values indicate a statistically significant difference between the groups (*p < 0.1, **p < 0.01, and ***p < 0.001).

FigUre 8 | nKp46 surface expression on Kir3Ds1+/nKg2a+ and 
Kir3Ds1neg/nKg2a+ natural killer (nK) cell clones derived from 
Bw4-i80 or Bw4neg donors. KIR3DS1+/NKG2A+ (full symbols) and 
KIR3DS1neg/NKG2A+ (empty symbols) NK cell clones derived from Bw4-I80 
(squares, n = 12 and n = 19, respectively) and Bw4neg (triangles, n = 13 and 
n = 22 respectively) donors were stained with anti-NKp46 mAb (BAB281). 
Results are summarized in scatter plot analysis. Average, standard deviation, 
and p values are indicated (***p < 0.001).
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interaction is characterized by a decrement in NK cell responsive-
ness upon KIR3DS1 engagement, thus ensuring self-tolerance. In 
this context, it has to be considered that KIR3DS1 responsiveness 
in redirected killing assays was lower in Bw4-I80 than in Bw4-
I80neg donors. In particular, among those analyzed, KIR3DS1 was 
the only receptor showing a significant differential expression and 
responsiveness between Bw4-I80 and Bw4neg donors.

The analysis performed in the present study was limited to 
KIR3DS1+/NKG2A+ NK cell clones in order to evaluate whether 

KIR3DS1 expression could confer alloreactivity to non-alloreactive 
NKG2A+ NK cells and to minimize the effect that other self KIR/
HLA interactions would exert on NK cell education. Several studies 
have suggested that, in given donor/recipient pairs, the expression 
of aKIRs, such as KIR2DS1, can amplify the size of the alloreactive 
NK cell subset. This effect is particularly relevant in the successful 
therapy of high-risk acute leukemias in the haplo-HSCT setting 
(35–39). Indeed, it has been shown that the “non-alloreactive” 
NKG2A+ iKIRsneg NK  cells can display alloreactivity against 
HLA-C2+ recipient cells when they co-express KIR2DS1 (40). A 
similar effect could be true, at least in part, also for KIR3DS1. In 
this context, the definition of the specificity/function of KIR3DS1 
would have important implications not only to identify donors 
capable of generating alloreactive NK  cells (on the basis of the 
existence of a KIR/HLA-class I mismatch) but also to select the 
best donor, according to the size of the alloreactive NK cell subset.

On the basis of a recent study (23) showing that KIR3DL1-
dependent licensing of NK cells could be involved in shaping a 
strong antiviral response mediated by KIR3DS1+ NK  cells, we 
also analyzed KIR3DS1 expression and responsiveness in donors 
characterized by peculiar KIR/HLA combinations. In this context, 
we showed that KIR3DS1 mAb-mediated triggering of cytotoxic-
ity in NK cell clones from a Bw4neg donor carrying KIR3DL1intra 
is similar to that detectable in NK cell clones from Bw4neg donors 
expressing surface KIR3DL1. It is noteworthy that this increment 
of cytotoxicity occurred despite the low surface expression of 
KIR3DS1 (Figure 2). Remarkably, NK cell clones from the Bw4neg 
donor carrying KIR3DL1intra were able to kill HLA-B*51+ target 
cells with efficacy comparable to that of NK cell clones derived 
from Bw4neg donors with surface KIR3DL1.
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Moreover, different from KIR3DS1+ NK cell clones of classical 
HLA-B Bw4-T80 donors, clones derived from a donor carrying 
the HLA-B*37 allele (a particular HLA-Bw4-T80 allotype char-
acterized by the D77-T80 sequence) were characterized by higher 
KIR3DS1 responsiveness in redirected killing assays and higher 
efficiency of killing HLA-B51+ target cells as compared to NK 
clones from HLA-B Bw4-I80 donors.

However, the highest increment of cytotoxicity against C1R-
B51 cells was detected in NK cell clones from a T80-Bw4 donor 
carrying two copies of KIR3DS1 and one copy of KIR3DL1. 
Interestingly, in this donor, an inverse correlation between 
KIR3DS1 and NKp46 MFIR could also be detected. This finding is 
relevant in the context of NK cell education. Indeed, a low surface 
expression of NKp46 combined with high KIR3DS1 surface den-
sity on NK cell clones may prevent possible KIR3DS1-mediated 
autoreactive responses in non-pathological conditions. In the 
same donor, a direct correlation between KIR3DS1 and NKG2D 
surface expression was also observed. Notably, these correlations 
could be observed only in NK clones from this donor in which 
KIR3DS1 surface expression was more heterogeneous and higher 
as compared to Bw4-T80 donor carrying one copy of KIR3DS1 
and one copy of KIR3DL1.

The direct correlation between KIR3DS1 and NKG2D surface 
expression is particularly interesting if we consider that NKG2D 
pathway is less functional in certain viral infections. Indeed, pre-
vious studies have described that several viral immune evasion 
strategies possibly evolved to elude NKG2D-mediated immune-
surveillance (30, 41–44). For example, the HIV Nef protein 
prevents the expression of some NKG2D ligands at the surface 
of infected cells (45, 46). According to these data, in an attempt 
to simulate the compromised NKG2D function occurring during 
certain viral infections, we analyzed the effect of mAb-mediated 
NKG2D blocking in KIR3DS1+ NK clones. Thanks to this experi-
mental approach, we could show that KIR3DS1 function may be 
crucial, primarily during viral infections in which other trigger-
ing signals, such as those through NKG2D, are compromised. In 
this context, it is also important to take into consideration that 
the expression of HLA-B can be modified only marginally during 
certain viral infections. Thus, in HIV-1-infected viremic patients, 
while HLA-A and -Bw6 surface molecules were significantly 
downmodulated in T cell blasts, HLA-B Bw4 alleles were not (47).

Considering the “discontinuity theory for immunity” (48), 
it is also possible that KIR3DS1+ NK cells in donors expressing 
specific HLA class I (Bw4-I80) may be less responsive under 
normal conditions. However, when a non-physiologic trigger-
ing signal is given to the cells (e.g., viral infections), the equi-
librium that is maintaining tolerance could be disrupted and 
may become an important component of an efficient immune 
response (34). This mechanism could explain the association 
between the expression of KIR3DS1 in conjunction with HLA-B 
Bw4-I80 in patients with chronic HIV-1 infection and a slower 
progression to AIDS.

KIR3DS1 associates DAP12 ITAM-bearing molecules in 
its cytoplasmic tail to enable signal transduction. Surprisingly, 
in recent years, different studies showed that ITAMs can also 

generate an inhibitory signal in addition to the activating ones. In 
particular, the same ITAM-coupled receptors can generate both 
positive and negative signals (49–51). The molecular basis of this 
dual function is not well understood at the present; however, it 
has been suggested that the avidity of receptor ligation may define 
the nature of response. In this regard, one may speculate that the 
peptide in the HLA-Bw4-I80 groove could determine change of 
affinity of KIR3DS1 ligation. Thus, healthy self peptides could 
mediate a low-affinity, tolerogenic signal, whereas viral peptides 
(i.e., HIV derived) would allow high-affinity activating signals. 
This hypothesis would be in line with the protective effect exerted 
by the combined presence of KIR3DS1 and HLA-B Bw4-I80 in 
patients with chronic HIV-1 infection.

All these considerations are consistent with an important role 
of KIR3DS1 in the control of viral infections (8, 30), primarily 
in post-transplantation settings (52). Since transplantation from 
donors displaying NK-cell alloreactivity and expressing KIR2DS1 
and/or KIR3DS1 has been associated with a reduced risk of no 
relapse mortality, that is largely infection related, and with 
significantly better event-free survival (38, 53), our results could 
further improve the selection of the most suitable donor, taking 
into account the expression of not only KIR3DS1 but also the self 
HLA-B allotype expressed.
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The interaction of inhibitory killer cell Ig-like receptors (KIRs) with human leukocyte 
antigen (HLA) class I molecules has been characterized in detail. By contrast, activating 
members of the KIR family, although closely related to inhibitory KIRs, appear to interact 
weakly, if at all, with HLA class I. KIR2DS1 is the best studied activating KIR and it inter-
acts with C2 group HLA-C (C2-HLA-C) in some assays, but not as strongly as KIR2DL1. 
We used a mouse 2B4 cell reporter system, which carries NFAT-green fluorescent 
protein with KIR2DS1 and a modified DAP12 adaptor protein. KIR2DS1 reporter cells 
were not activated upon coculture with 721.221 cells transfected with different HLA-C 
molecules, or with interferon-γ stimulated primary dermal fibroblasts. However, KIR2DS1 
reporter cells and KIR2DS1+ primary natural killer (NK) cells were activated by C2-HLA-C 
homozygous human fetal foreskin fibroblasts (HFFFs) but only after infection with specific 
clones of a clinical strain of human cytomegalovirus (HCMV). Active viral gene expression 
was required for activation of both cell types. Primary NKG2A−KIR2DS1+ NK cell subsets 
degranulated after coculture with HCMV-infected HFFFs. The W6/32 antibody to HLA 
class I blocked the KIR2DS1 reporter cell interaction with its ligand on HCMV-infected 
HFFFs but did not block interaction with KIR2DL1. This implies a differential recognition 
of HLA-C by KIR2DL1 and KIR2DS1. The data suggest that modulation of HLA-C by 
HCMV is required for a potent KIR2DS1-mediated NK cell activation.

Keywords: natural killer cells, human cytomegalovirus, killer ig-like receptor, Kir2Ds1, hla-c

inTrODUcTiOn

Since the discovery of natural killer (NK) cells more than 40 years ago (1–3), the interaction of inhibi-
tory NK cell receptors with human leukocyte antigen (HLA) class I molecules has been characterized 
in detail. This led to new insights into NK cell differentiation, education, and function. However, 
ligands of most activating receptors, including activating killer cell Ig-like receptors (KIRs), are yet 
to be discovered.
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KIR genes are members of the immunoglobulin (Ig) super-
family, encoded in the leukocyte receptor complex (LRC) on 
chromosome 19q14.3 (4). KIR molecules express either two or 
three extracellular Ig-like domains (2D or 3D) and consist of 
either a long (designated “L”) or short (designated “S”) cytoplas-
mic domain. KIRs with long cytoplasmic domains are inhibitory 
(iKIRs) and contain ITIMs. Activating KIRs (aKIRs) have a short 
cytoplasmic tail and transmit activating signals through the 
interaction with DAP12, which contains an ITAM (4).

Most iKIRs recognize certain allotypes of HLA class I. In gen-
eral, allelic products of KIR2DL1 bind to the C2 group of HLA-C 
molecules (C2-HLA-C) characterized by Asn77 and Lys80 (5), 
while KIR2DL2 and -2DL3, which are alleles at the same locus, 
recognize the C1 group (C1-HLA-C, Ser77, and Asn80) (6–8). 
These structural motifs were originally thought to be essential for 
the engagement of KIRs only on HLA-C. However, KIR2DL2 can 
also bind HLA-B46:01 and -B73:01 alleles, which have C1-related 
motifs at residues 77–83 (9). Furthermore, KIR2DL2 and -L3 
receptors can bind many HLA-C alleles irrespective of -C1 or 
-C2 group (10, 11).

The extracellular parts of iKIRs and aKIRs are highly 
homologous and share conserved amino acid sequences, as 
“paired” receptors (11, 12). The balance between inhibitory and 
activating signaling through these paired receptors is tightly 
regulated by NK  cells. Dysregulation of this balance might 
lead to autoimmunity or infectious diseases (13, 14). How the 
signaling is controlled by NK cells, however, is not completely 
understood, mainly due to uncertainty over the ligands and 
functions of aKIRs. The aKIR members seem to have evolved 
more rapidly than iKIRs, possibly through selection pressure 
imposed by pathogens (15, 16). If this hypothesis is true, it 
suggests that aKIR binding may be influenced by pathogen-
derived proteins. Notably, KIR2DS1 and -2DS2 counterparts in 
chimpanzees, respectively, bind C2- and C1-HLA-C with high 
avidity compared to their inhibitory paired receptors (17). This 
indicates that the loss of binding by KIR2DS2, or highly reduced 
binding of KIR2DS1, to HLA-C is a product of human-specific 
evolution.

Most interactions of aKIRs and HLA class I molecules are 
very weak or undetectable (17–23). The best studied aKIR is 
KIR2DS1 and many studies have found that it binds C2-HLA-C 
(10, 11, 17, 24–35). However, this binding is much weaker com-
pared to KIR2DL1 (10, 25, 27). Using surface plasmon reso-
nance (SPR) analysis, Stewart and colleagues demonstrated that 
KIR2DS1 tetramer-binding avidity to the soluble HLA-Cw4/
beta-2 microglobulin (β2M)/peptide complex is approximately 
four times lower than KIR2DL1: dissociation constants (Kd) of 
7.2 and 30 μM, respectively. In addition, amino acid substitu-
tion of the peptide at amino acid 7 or 8 drastically reduced 
KIR2DS1 tetramer binding to the HLA-Cw4 complex, indicat-
ing that the binding is peptide dependent (27). Both Moesta 
et al. and Hilton et al. demonstrated that KIR2DS1-Fc binds a 
range of C2-HLA-C allotypes linked to microbeads with differ-
ent avidity (11, 17). Biassoni and colleagues demonstrated that 
the amino acid at position 70, a threonine in KIR2DL1 and a 
lysine in KIR2DS1, is the key residue that differentiates binding 
between KIR2DL1 and -2DS1. Substituting the threonine to 

a lysine in KIR2DL1-Fc prevented binding to 721.221 trans-
fected with HLA-Cw4 (221-Cw4). When lysine was substituted 
for a threonine in KIR2DS1-Fc, the binding to 221-Cw4 was 
restored (25).

The rationale for KIR2DL1 and KIR2DS1 both binding 
C2-HLA-C would be understandable if the activating receptor 
was sensitive to structural changes in the HLA molecule, or 
bound an alternative molecule, induced by viral infection (18, 
27, 36–42). For example, in mice, the cytomegalovirus (CMV)-
encoded MHC class I homolog m157 is directly recognized by 
the activating Ly49H receptor (43). The mouse Ly49 receptor 
family serves a similar role to KIRs in humans, although KIRs 
and Ly49 receptors are from different molecular families. KIRs 
play an important role in human cytomegalovirus (HCMV) 
infections (44–47). For instance, a recent study demonstrated 
that KIR2DS1+ decidual NK (dNK) cells degranulated after 
engaging with HCMV-infected decidual stromal cells (DSC), 
suggesting an increased ability of KIR2DS1-expressing dNK cells 
to respond to placental HCMV infection (47). Della Chiesa et al. 
have reported that HCMV can drive NK cell maturation in the 
absence of NKG2C in patients with hematological malignan-
cies. These patients received umbilical cord blood transplanta-
tion from NKG2C−/− donors and when HCMV reactivation 
occurred, an expansion of NKG2A− NK cells expressing aKIRs 
was measured, particularly KIR2DS1 and KIR3DS1 (45). This 
finding is consistent with KIR2DS1 recognizing a ligand on 
HCMV-infected cells.

To probe the potential influence of HCMV on KIR2DS1 
recognition, we designed a mouse 2B4 T cell hybridoma carrying 
an NFAT-green fluorescent protein (GFP) reporter. Our results 
suggest that modulation of HLA-C by HCMV is required for a 
potent KIR2DS1-mediated NK cell activation.

MaTerials anD MeThODs

cell lines and cell culture
Reporter cells, 721.221 cells, K562 cells, and primary NK cells were 
cultured in RPMI-1640 (Sigma-Aldrich, Steinheim, Germany) 
supplemented with 100 U/ml penicillin, 100 μg/ml streptomycin 
(Gibco, Paisley, UK), and 10% heat-inactivated Fetal Bovine 
Serum (Gibco). Human fetal foreskin fibroblasts (HFFFs, Culture 
Collections—ECACC, UK) and primary dermal fibroblasts (DFs) 
were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, 
Sigma-Aldrich) supplemented with 100 U/ml penicillin, 100 μg/
ml streptomycin (Gibco), and 10% heat-inactivated fetal bovine 
serum. Adherent cells were harvested by washing the cells once 
with phosphate buffered saline (PBS, Sigma-Aldrich). Then the 
cells were either detached from the plastic using 0.05% Trypsin/
EDTA (Gibco) or Accutase™ (Biolegend, San Diego, CA, USA) 
for 5  min at 37°C. All cellular experiments were performed at 
37°C in 5% CO2.

721.221 cells transfected with -A23:01, -B58:01 (Bw4), -B35:01 
(Bw6), -C01:02 (C1), -C02:02 (C2), -C03:02 (C1), -C04:01 (C2), 
-C06:02 (C2), -C07:01 (C1), and -HLA-G were generated in 
house. 721.221-HLA-A11:02 was provided by Parham (22) 
(Stanford University, Palo Alto, CA, USA).
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establishment of the reporter cells
The 2B4 T cell hybridoma containing an NFAT-GFP reporter gene 
(2B4 reporter cells) was kindly provided by Lewis Lanier (43) 
(University of California San Francisco, USA). KIR2DL1*003, 
-2DL2*001, -2DS1*002, and -2DS1(K70T) reporter cells were gener-
ated as follows. First, pMX-neo constructs containing cDNA from 
a chimeric adaptor protein recombinant was used to transduce the 
2B4 reporter cells. The chimeric adaptor consists of DAP12 and 
a cytoplasmic tail of DAP10 with spacer sequences in between. 
Then cDNA of the indicated KIRs was subcloned into a pMX-
puro construct. For constructing 2DL1–2DS1TM (KIR2DL1 
reporter) and 2DL2–2DS1TM (KIR2DL2 reporter) chimeric mol-
ecules, 5′-CCTGCACGTTCTGATTGGGACCTCAGT-3′ and 
5′-CCCAATCAGAACGTGCAGGTGTCGGGGGTT-3′ primers 
were used. 5′-AGTCGCATGACGCAAGACCTGGCAGGG-3′ 
and 5′-GGTCTTGCGTCATGCGACTGATGGAG-3′ prim-
ers were used for constructing the KIR2DS1(K70T) reporter cell. 
Retroviruses were packaged in Phoenix-eco cells (generously 
provided by Lewis Lanier) using the non-modified polyethyl-
eneimine (PEI, Sigma-Aldrich) reagent as described by Ehrhardt 
et al. (48). After 48 h, supernatant-containing retroviral particles 
was used to transduce the 2B4 reporter cells by adding Polybrene 
(8  ng/ml, Sigma-Aldrich) and by spin-infecting the cells at 
2,500 rpm (AccuSpin 3R centrifuge, Fisher Scientific, Waltham, 
MA, USA) for 2  h. Cells expressing the KIRs were purified by 
surface staining using the PAN2D antibody (clone NKVFS1, Bio-
Rad, Hercules, CA, USA), followed by single-cell sorting using 
the FACS sorter (BD Bioscience, Oxford, UK). The transduction 
success and the function of the reporter cells were analyzed 
by immunofluorescent staining and antibody crosslinking, as 
described below. The LILRB1 reporter cell was provided by Des 
Jones (Department of Pathology, University of Cambridge) and 
was constructed as described in Ref. (49).

Primary cells
Primary NK  cells and DFs were obtained from healthy indi-
viduals. Ethical approval for the use of these tissues was given 
by Addenbrookes National Health Service Hospital Trust insti-
tutional review board (Cambridge Research Ethics Committee) 
and informed written consent was obtained from all volunteers 
in accordance with the Declaration of Helsinki (LREC 97/092). 
The primary fibroblasts were fully HLA typed. HFFFs express 
HLA-A11:01, -A24:02, -B35:02 (Bw6), -B40:02 (Bw6), -C02:02 
(C2), and -C04:01 (C2). Donor CMV307 expresses HLA-A01:01, 
-A26:01, -B08:01 (Bw6), -B27:05 (Bw4), -C07:01 (C1), and 
-C01:02 (C1). Donor CMV0005 expresses HLA-A02, -A03, -B07 
(Bw6), -B13 (Bw4), -C07 (C1), and -C06 (C2). Primary NK cell 
donors both express KIR2DL1, -2DS1, 2DL3, NKG2A, and were 
C1/C1-HLA-C. In addition, donor 016 expresses NKG2C and 
donor 111 expresses KIR3DL1.

For functional NK cell studies, peripheral blood mononuclear 
cells (PBMCs) were extracted from 30 to 40 ml blood of donor 
016 and 111 on a Ficoll-Hypaque density gradient (Lympoprep, 
Axis-Shield, Dundee, Scotland). The PBMCs were removed from 
the interface of the plasma and Lymphoprep layers and washed 
three times with PBS before further use. NK cells were separated 
from the PBMCs by negative selection using the EasySep™ 

Human NK  cell Enrichment Kit from Stemcell Technologies 
(Vancouver, BC, Canada).

Dermal biopsies were taken from healthy individuals by 
Andrew Carmichael (Department of Medicine, University 
of Cambridge). They were sectioned with a scalpel and were 
grown beneath cover slips in a six-well culture plate containing 
Eagle’s Minimum Essential Media (EMEM, GE Healthcare, Little 
Chalfont, UK) supplemented with 100 U/ml penicillin, 100 μg/ml 
streptomycin (Gibco), and 10% heat-inactivated fetal calf serum 
(Life Technologies, Carlsbad, CA, USA). The cells were grown 
until sufficient cell number was reached and were stored in liquid 
nitrogen at low passage numbers.

coculture experiments
Human fetal foreskin fibroblasts (10  ×  103 cells/well) and DFs 
(10 × 103 cells/well) were seeded in 96-well flat-bottom culture 
plates with or without interferon (IFN)-γ (500 U/ml, PeproTech, 
Rocky Hill, CT, USA) for 72 h or infected with HCMV as described 
below. After appropriate stimulation/infection time was reached, 
reporter cells were added to the adherent cells at a concentration 
of 2 × 104 cells per well, and reporter cells were added directly. 
Cocultures using K562 cells and 721.221 cells were performed 
at an E:T ratio of 1:1 and 1:3, respectively. After an overnight 
coculture, the reporter cells were harvested, and GFP expression 
was analyzed by flow cytometry.

antibody cross-linking
For antibody crosslinking experiments, anti-mouse IgG-coated 
microplates (R&D systems, Minneapolis, MN, USA) were used. 
The plates were incubated for 30  min with 0.2–1  μg per well 
of PAN2D (clone NKVFS1) or anti-HA (clone HA-7, Sigma-
Aldrich) antibodies in PBS at room temperature. After two PBS 
washes, the reporter cells were added.

antibody-Blocking assays
Unconjugated W6/32 (LEAF™ purified BioLegend), 6A4 (gift 
from Daniela Pende, Azienda Ospedaliera Universitaria San 
Martino di Genova), B1.23.2 (eBiosciences, San Diego, CA, USA), 
IgG2a (LEAF™ purified BioLegend), IgG2b (LEAF™ purified 
BioLegend), and IgG1 (LEAF™ purified BioLegend) isotype 
antibodies were added to pre-treated HFFFs. After an incubation 
of 10–15 min at room temperature and saturating concentration 
of 1–4 μg per well, the reporter cells were added.

Flow cytometry
Immunofluorescence Cell-Surface Staining
The cells were harvested and rested at 37°C in 5% CO2 for at least 
30 min for the recovery of HLA class I molecules on the cell sur-
face. Cells expressing Fc receptors or HCMV-encoded Fc recep-
tors were first blocked with 40% human serum (Sigma-Aldrich) 
in PBS for at least 5 min before staining. Fractions of 721.221 cells 
were collected and directly incubated with the appropriate anti-
body. Cell-surface expression of different receptors was analyzed 
by immunofluorescent staining using unconjugated monoclonal 
primary antibodies listed in Table 1, unconjugated anti-HLA-E 
(3D12, IgG1, BioLegend), biotinylated anti-HLA-A11 (Abcam, 
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TaBle 1 | list of antibodies and their target epitopes where known.

antibody isotype/supplier recognition specific hla molecules reference

W6/32 IgG2a/BioLegend, 
Hybridoma

β2M bound, fully assembled human leukocyte antigen (HLA) class I molecules. The 
epitope is not known. It includes residues on β2M, α2, and α3 domains

HLA-A, -B, -C and HLA-E, -G (50, 51)

B1.23.2 IgG2b/eBiosciences β2M bound, fully assembled HLA-B and -C molecules. Precise epitope unknown HLA-B and HLA-C (52)

6A4 IgG1/Hybridoma β2M bound, fully assembled HLA-B and -C molecules. Precise epitope unknown HLA-B and HLA-C (53)

HC10 IgG2a/Hybridoma Free heavy chain of HLA class I. Residues 57–62, specifically residue 60 in the α1 
domain in HLA-C. The epitope is blocked by peptide binding

HLA-B and HLA-C and some 
HLA-A (A10, A28, A29, A30, A31, 
A32, A33)

(54, 55)

DT9 IgG2b/Hybridoma Fully assembled HLA-C and HLA-E bound to β2M. Precise epitope unknown HLA-C and HLA-E (56)

L31 IgG1/MediaParma Free heavy chain of HLA-C. Residues 66–68, with F or Y at position 67 Most HLA-C and a few HLA-B 
(B08, B07, B35, B51, B54, B56)

(57)
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IgM, Cambridge, UK), APC-conjugated anti-HLA-Bw6 (IgG1, 
Miltenyi Biotec, Bergisch Gladbach, Germany), and the appro-
priate isotype control antibodies. The primary antibodies were 
added at a concentration of 0.5–1 μg per well in 5% FCS in PBS 
or 40% human serum in PBS and incubated on ice for 45 min. 
Following washing, the cells were incubated with secondary anti-
bodies (0.4–1 μg per well), AlexaFluor® 647 (AF647)-conjugated 
Streptavidin (Life Technologies) and polyclonal anti-mouse IgG 
conjugated to FITC (BD Pharmingen, San Diego, CA, USA), 
AF647 (Life Technologies), or R-PE (Thermo Scientific), in 5% 
FCS with PBS or in 40% human serum with PBS for 30 min on ice. 
For double staining experiments, the W6/32 antibody or IgG2a 
isotype control conjugated to AF647 or FITC (BioLegend) was 
added to the cells for 30 min on ice. The cells were fixed with 1% 
formaldehyde in PBS before flow cytometry analysis.

Functional Assay with Primary NK Cells Including 
Subsequent Multicolor Immunofluorescence Staining
Natural killer cells were stimulated with medium alone or with 
IL-12 (10  ng/ml, R&D systems) and IL-15 (50  ng/ml, R&D 
systems) for 12 h. The following day, target cells were added at 
an E:T ratio of 1:1 or 10:1 (58). Cytokine-stimulated NK cells in 
medium alone, or cocultured with K562 cells (a gold standard 
NK cell target cell line, devoid of MHC class I) served as a positive 
control for function when HCMV-infected HFFFs were investi-
gated for their capacity to trigger primary NK cells. After 1 h of 
coculture, GolgiPlug (Brefaldin A, BD Bioscience) and GolgiStop 
(Monensin, BD Bioscience) were added to the wells according to 
manufacturer’s instructions, and incubated for an additional 4 h. 
Non-adherent cells were subsequently transferred to V-bottom 
well plates where multicolor immunofluorescence staining was 
performed (32). The following conjugated monoclonal antibodies 
were used: anti-KIR2DL3 FITC (REA147, Miltenyi), anti-NKG2A 
APC (Z199, Beckman Coulter, Brea, CA, USA), anti-CD107a 
APC-H7 (H4A3, BD Bioscience), anti-KIR3DL1 Brilliant Violet 
421 (DX9, BioLegend), biotinylated anti-KIR2DL1 (143211, R&D 
Systems), anti-CD56 ECD (N901, Beckman Coulter), anti-CD3 
PE-Cy5 (UCHT-1, BioLegend), and anti-KIR2DL1/S1 PE-Cy7 
(EB6, Beckman Coulter). Briefly, the cells were stained with 
the primary antibody cocktail for 20  min. The anti-KIR2DL1/
S1 antibody was added directly to the wells (dilution 1:20) for 

10 min incubation. Following washing, the secondary antibody 
cocktail containing Live/Dead Aqua (Invitrogen, Carlsbad, CA, 
USA) and Qdot-605-conjugated Streptavidin (Invitrogen) was 
incubated for 20 min. Cells were next washed and fixed.

Data acquisition for the cellular and immunofluorescence 
cell-surface staining experiments was performed on FACScan 
(Department of Pathology), FACSCalibur or Accuri C6 flow 
cytometer (NIHR Cambridge BRC Cell Phenotyping Hub, BD 
Bioscience) depending on the experiment. The data acquisition 
of the multicolor primary NK  cell staining experiments was 
performed on a BD LSR Fortessa flow cytometer, equipped with 
4 lasers and 13 PMTs (Cambridge Stem Cell Institute). Flow 
cytometry data were analyzed using FlowJo software (TreeStar, 
OR, USA).

Viruses
Human cytomegalovirus strains TB40/E [isolated from a throat 
wash of a bone marrow transplant recipient (59)], AD169 (ATCC 
VR-538) and Merlin (a gift from Richard Stanton, University of 
Cardiff, UK) were grown, concentrated, and titrated as described 
previously (60). Confluent plates of HFFFs or DFs were infected 
with concentrated virus (TB40/E, AD169, Merlin) at a multiplicity 
of infection (MOI) as indicated in the experiment or with diluted 
(1:10) supernatant-containing virus (TB40/E-derived clones). 
The virus preparations were diluted in complete DMEM to  
obtain the required MOI. After 1 h of infection at room tempera-
ture, the cells were washed with PBS, and fresh complete DMEM 
was added. A coculture experiment was performed, or the cells 
were harvested for cell-surface staining, or western blotting, 24, 
48, and/or 72 h p.i. as indicated in the experiment. Time points 
were chosen to reflect the temporal cascade of expression of 
HCMV viral proteins (immediate early, early, and late genes). Late 
genes, which are structural viral components, are last expressed 
at ~72 h post infection (p.i.) (61). UV inactivation of the virus 
was obtained by exposing the virus 30 min to UV light of a 30 W 
germicidal lamp.

Plaque Purification assay
Human fetal foreskin fibroblasts were infected with serially 
diluted HCMV strain TB40/E. After 1 h of infection at room tem-
perature, the virus-containing medium was replaced with 5 ml 
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per well of 2% agarose mixed 1:1 with two times concentrated 
DMEM medium (Millipore, Bedford, MA, USA) containing 20% 
FCS, 200 U/ml penicillin, 200 μg/ml streptomycin, 8 g/L sodium 
bicarbonate (GE Healthcare), and 1  mM of sodium pyruvate 
(Sigma-Aldrich). After 3 weeks, plaques (areas of dead cells) were 
visible by eye. Well-separated plaques, representing different viral 
clones of the TB40/E wild-type strain, were picked using a glass 
Pasteur pipette by removing the agar and plaque as a plug. The 
agarose plug containing viral clones were disrupted and added 
to freshly plated HFFFs in 96-well flat-bottom culture plates to 
expand the viral clones. Selected clones were expanded up to a 
75 cm2 culture flask. After 100% infection was reached, as deter-
mined visually by microscopy, the supernatant-containing virus 
was harvested and stored at −80°C. Fresh complete DMEM was 
added to the flasks and further harvests were carried out every 
72 h until approximately 90% cell lysis was visually determined. 
All the harvested supernatant was pooled, spun at 2,000 rpm to 
remove cell debris, aliquoted, and stored at −80°C.

Western Blot
Cells were washed with PBS and lysed in lysis buffer [1% 
Triton X-100, 20 mM Tris–HCl (pH 7.4), 150 mM NaCl, 1 mM 
EDTA, 5  mM MgCl2, protease inhibitors (Roche, Mannheim, 
Germany), and 1  mM Phenylmethanesulfonyl fluoride (PMSF, 
Sigma-Aldrich) and 1.25  mg/ml N-ethylmaleimidine (Sigma-
Aldrich)] for 20 min at 4°C. Debris and nuclei were removed by 
centrifugation at 13,000  rpm (centrifuge HAWK 15/05, MSE), 
and a bicinchoninic acid (BCA) assay (Thermo Scientific) was 
used to determine protein concentrations.

Supernatants of TB40/E-derived clones were pelleted by 
centrifuging at 15,000 rpm for 2 h at 4°C using an Avanti J-25 
Ultracentrifuge (Beckman Coulter). The virus pellets were gently 
washed with PBS, and 200 μl of lysis buffer was added to lyse the 
particles. Lysates from positive and negative virus particles were 
paired based on approximately the same infectivity titer. Virus 
titers were calculated by TCID50.

Total cell or virus particle lysates were loaded onto a 10–13% 
SDS-PAGE gel, and proteins were transferred onto Immobilon-P 
PVDF membranes (Millipore). The membranes were blocked 1 h 
in PBS, 5% dried milk, and 0.05% Tween 20 at room tempera-
ture. The membranes were incubated overnight at 4°C or 3 h at 
room temperature with primary antibodies [anti-pp28 (Abcam), 
L31, HC10, anti-I.E.1 (Merck Millipore, Billerica, MA, USA), 
anti-Calnexin (Enzo Life Sciences, Farmingdale, NY, USA), and 
anti-Flag (M2, Sigma-Aldrich)] at concentration of 0.1–0.2 μg. 
The membranes were washed thoroughly, and polyclonal HRP-
conjugated goat anti-mouse IgG or goat anti-rabbit IgG (Dako, 
1:4,000 dilution) secondary antibody was added for 30  min at 
room temperature. Chemiluminescence was performed accord-
ing to the manufacturer’s instructions using ECL Prime (GE 
Healthcare) or home-made ECL (62).

establishment crisPr-cas9 Knockout 
(KO) for β2M in hFFFs
Streptococcus pyogenes CAS9 and short-guide RNA (sgRNA) were 
expressed in separate lentivirus constructs: pHRSIN containing 

the SFFV promoter, FLAG tag, nuclear localization signals (NLS), 
CAS9 and pGK Hygro (kind gift from Lehner’s group, CIMR, 
University of Cambridge), and pKLV-containing U6 promoter, 
sgRNA (modified BbsI), pGK Puro, 2A, and BFP tag [Addgene 
plasmid #50946; created by Kosuke Yusa, Wellcome Trust Sanger 
Institute, Cambridge, UK (63)]. The pKLV construct containing 
sgRNA-targeting β2M was a gift from Dick van den Boomen 
(CIMR, University of Cambridge), using the sgRNA sequence 
5′-GGCCGAGATGTCTCGCTCCG-3′.

The pHRSIN and pKLV lentivirus constructs (6  μg) were 
packaged together with pMDG and pCMV9.81 packaging 
vectors (4 μg) in HEK 293T cells in 75 cm2 culture flasks using 
Opti-MEM™ and GlutaMax™ media (Gibco), and TransIT® 
Transfection reagent (Mirus, Madison, WI, USA). After 48  h, 
supernatant-containing lentiviral particles were used to transduce 
HFFFs in 75 cm2 culture flasks by adding Polybrene (8 ng/ml). 
The transduced cells were selected with 200 μg/ml hygromycin 
and/or 2 μg/ml puromycin and grown until a confluent 75 cm2 
culture flask was reached. Cells negative for total HLA class I were 
purified by surface staining using W6/32 antibody, respectively, 
followed by single-cell sorting using the FACS sorter. The CAS9 
is FLAG-tagged and a HRP-conjugated anti-M2 FLAG antibody 
was used to detect it by western blot.

statistical analysis
Non-parametric one-way analysis of variance (ANOVA) using 
the Kruskal–Wallis test and Dunn’s multiple comparisons test 
was used to determine the statistical significance. In these tests, 
a p value of less than 0.05 was considered significant (*p < 0.05, 
**p < 0.01). The tests were done with GraphPad Prism version 
6.00 (GraphPad software).

resUlTs

The Function and specific recognition of 
Kir2Ds1 by reporter cells
Since KIR2DS1 binds C2-HLA-C only weakly, we aimed to 
investigate what might influence stronger binding. To accomplish 
this, we used a specifically designed mouse 2B4 T cell hybridoma 
carrying an NFAT-GFP reporter system, similar to that described 
by Arase et  al. (43). KIR2DS1 was transduced into these 2B4 
reporter cells, together with a modified adaptor protein. Once 
KIR2DS1 binds its cognate ligand, a signaling cascade is triggered 
through the adaptor protein, which then transcribes NFAT, result-
ing in GFP expression. KIR2DL1, -2DL2, and LILRB1 reporter 
cells were also generated. We confirmed that the reporter cells 
were constructed successfully by staining the surface expression 
of the different receptors with the relevant antibodies and by 
engaging the reporter cells with relevant plate-bound antibodies 
(Figure 1A).

There are seven amino acid differences between KIR2DL1 
and -2DS1 alleles, including the threonine to lysine in KIR2DL1 
and -2DS1 at position 70, respectively (Figure 1B). We wanted 
to investigate whether substituting the lysine to a threonine at 
position 70 in KIR2DS1 would result in the activation of the 
reporter cells as a result of the interaction with C2-HLA-C, 
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FigUre 1 | continued 
2B4 reporter system for activating killer cell ig-like receptor (Kir). 
(a) Cell-surface expression on the indicated reporter cells was measured by 
flow cytometry after staining the cells with PAN2D (clone NKVFS1, 
recognizes all KIRs) or anti-HA antibody (black line, left panel). Parental 2B4 
cells containing only the adaptor protein were used as a negative control. To 
test the function of these reporter cells, plate-bound PAN2D (clone NKVFS1) 
or anti-HA (LILRB1 reporter only) antibody crosslinking (black line) was used 
to engage KIR or LILRB1 molecules on the reporter cells during an overnight 
incubation (right panel). IgG1 antibody was used as isotype control (dotted 
line). (B) Table depicting amino acid positions of polymorphic sites in the 
extracellular domain of KIR2DL1 and -2DS1 alleles. Large letters indicate 
amino acids present in the majority of alleles, and small letters indicate 
amino acids that are present in few alleles. At position 70, a unique amino 
acid in KIR2DL1 and -2DS1, threonine (T) and lysine (K), respectively, was 
found. Allele sequences were aligned using the alignment tool in the IPD-KIR 
database. (c) KIR2DS1(K70T) was transfected into the 2B4 reporter system 
and an overnight coculture was performed using KIR2DL1, -2DS1, or 
-2DS1(K70T) reporter cells together with 721.221 cells expressing human 
leukocyte antigen (HLA)-Cw3 (C1) or HLA-Cw6 (C2). The next day green 
fluorescent protein (GFP) expression was measured by flow cytometry. The 
E:T ratio of the coculture was 1:3.

FigUre 1 | continued
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Kir2Ds1 reporter cells Do not recognize 
conventional hla class i
To verify whether KIR2DS1 reporter cells are activated by 
conventional HLA class I molecules, cocultures were performed 
using the KIR2DS1 reporter cells along with appropriate controls. 
The cocultures were done using a range of 221 cells transduced 
with different HLA molecules: HLA-A11:02, -A23:01, -Bw6 
(B35:01), -Bw4 (B58:01), -G, -C01:02 (C1), -C02:02 (C2), -C03:02 
(C1), -C04:01 (C2), -C06:02 (C2), and -C07:01 (C1). HLA 
expression levels on these 221 cells were confirmed by staining 
with W6/32 antibody (Figure 2A). KIR2DS1 reporter cells were 
not activated in cocultures with different 221-HLA-C or other 
221-HLA class I cells. However, the positive controls KIR2DL1, 
-L2, and LILRB1 were activated after engaging their documented 
ligands (Figures 2B,C). As expected, KIR2DL1, -L2, and LILRB1 
reporter cells were differentially activated, depending on the 
HLA-C allele they engaged. For instance, the KIR2DL2 reporter 
cell was weakly activated after binding HLA-C01:02 (<5% GFP-
positive cells) compared to HLA-C07:01 (>20% GFP cells), as 
depicted in Figure 2C, lower panel. This is in line with binding 
studies using Fc proteins and HLA-coated beads (11, 64).

In our hands, the KIR2DS1 reporter cells did not recognize 
endogenously expressed HLA class I molecules on 221 cells. To 
investigate this further, they were cocultured with primary cells: 
HFFFs, CMV307, and CMV0005 DFs, which were stimulated 
with or without IFN-γ for 72  h. Before the coculture experi-
ments, HLA class I surface expression levels of untreated and 
IFN-γ stimulated cells were measured. The primary fibroblasts 
all expressed high levels of folded HLA class I and HLA-C/-E 
molecules, revealed by W6/32 and DT9 antibody staining, 
respectively. These HLA class I levels were further increased 
after 72 h of IFN-γ stimulation (Figure 3A). KIR2DS1 reporter 
cells remained GFP-negative when cocultured with the different 
untreated or IFN-γ stimulated primary fibroblasts (Figure 3B). 
By contrast, LILRB1 reporter cells were activated in all coculture 
experiments with untreated cells and were further activated in 

as demonstrated previously by Biassoni and colleagues using 
Fc proteins (25). We made the KIR2DS1(K70T) reporter cell and 
cocultured these cells with 721.221 transfected with HLA-
C03:02 (C1) or -C06:02 (C2) (221-Cw3 or 221-Cw6). Indeed, 
both KIR2DL1 and KIR2DS1(K70T) reporter cells were activated 
after coculture with 221-Cw6 (15 and 11% GFP-positive cells, 
respectively) and not with 221-Cw3 (Figure 1C). This confirms 
the observations made by Biassoni et al. in our cellular reporter 
system and shows that the reporter cells are functional, specific, 
and sensitive.
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FigUre 2 | Kir2Ds1 reporter cells are not activated by conventional human leukocyte antigen (hla) class i molecules. (a) The 721.221-HLA 
transfectants were stained with W6/32 (black line), and measured by flow cytometry. IgG2a antibody was used as isotype control (dotted line). (B) Dot plots of a 
selection of representative data from the same experiment. A coculture of the indicated reporter cells together with 721.221 cells containing HLA-C07:01 (221 Cw7, 
C1) or HLA-C06:02 (221-Cw6, C2) is shown. GFP expression was determined by flow cytometry. The E:T ratio was 1:3. (c) The data are depicted as the 
mean ± SD of individual samples collected from five independent experiments.
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FigUre 3 | continued 
Kir2Ds1 reporter cells are not activated by interferon (iFn)-γ 
stimulated human fetal foreskin and primary dermal fibroblasts of 
healthy individuals. (a) Total human leukocyte antigen (HLA) class I (W6/32) 
and HLA-C/-E (DT9) expression levels of untreated and IFN-γ stimulated 
HFFFs (C2/C2) and DFs of donor CMV307 (C1/C1) and CMV0005 (C1/C2) 
were measured by flow cytometry. Gray = untreated, black = IFN-γ 
stimulated (500 U/ml, 72 h) and dotted line = isotype control. (B) The 
untreated and IFN-γ-stimulated fibroblasts were cocultured overnight with the 
indicated reporter cells, and green fluorescent protein (GFP) expression was 
measured by flow cytometry. Three independent experiments are depicted in 
the bar graphs as the mean ± SD of individual samples.

FigUre 3 | continued
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settings with IFN-γ stimulated cells. KIR2DL2 and KIR2DL1 
reporter cells were activated, in some conditions only minimally, 
depending on the particular HLA-C alleles expressed by the cells 
(Figure 3B). KIR2DS1 reporter cells were similarly unresponsive 
to tumor cell lines including HeLa, Meljuso, Caski, and JEG-3 
cells (data not shown). In conclusion, KIR2DS1 reporter cells 
were not activated after engaging with conventional C2-HLA-C 
molecules.

Kir2Ds1 reporter cells Bind a ligand on 
hFFFs infected with specific hcMV 
clones
Since KIR2DS1 reporter cells were not activated by conventional 
HLA molecules, we considered that KIR2DS1 might recognize a 
pathogen-induced ligand. Several studies have suggested a role 
for aKIR in HMCV infection (44–47). We therefore investigated 
whether the KIR2DS1 ligand might be upregulated after HCMV 
infection. HFFFs were infected with the HCMV TB40/E strain for 
24, 48, and 72 h and cocultured with the panel of reporter cells. 
HFFFs were used because they support full lytic HCMV infection 
(65) and express HLA-C02:02 and -C04:01, both C2-HLA-C.

HFFFs Infected with the TB40/E Wild-Type Strain 
Express a Ligand for KIR2DS1
In coculture, KIR2DS1 reporter cells increased in GFP positiv-
ity from 1% (uninfected and 24  h) to 5% (48  h) and to 21% 
positive cells (72  h) (Figure  4A). This indicates that KIR2DS1 
recognized a ligand, which was detected by the reporter cells 48 h 
p.i. with HCMV. In addition, there was increased triggering of 
both KIR2DL1 and LILRB1 reporter cells over time (Figure 4A). 
This was of interest as HCMV downregulates HLA class I mol-
ecules (66–71), and a decrease in KIR2DL1 reporter activation 
over infection time was expected. The increase in the LILRB1 
reporter cell activation might be explained by the recognition 
of UL18 protein, which HCMV produces as an immune evasion 
strategy (72, 73). Subsequently, in a total of 10 KIR2DS1 reporter 
cell coculture experiments with HFFFs infected with HCMV 
TB40/E strain were done, demonstrating the reproducibility of 
the KIR2DS1 reporter cell activation after infection (Figure S1  
in Supplementary Material). The KIR2DS1 ligand was only 
expressed on HFFFs infected with the TB40/E clinical strain and 
not with other strains tested, such as Merlin (another clinical 
strain) and AD169 (laboratory strain with deletion in the ULb’ 
region) (data not shown).
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FigUre 4 | The Kir2Ds1 reporter cell recognizes a ligand on human fetal foreskin fibroblasts (hFFFs) infected with specific human cytomegalovirus 
(hcMV) strains. (a) Uninfected HFFFs and 24, 48, and 72 h infected HFFFs with HCMV TB40/E strain with an MOI of 10 were cocultured overnight with the 
reporter cells as indicated. A representative experiment of two independent time course cocultures is shown. (B) HFFFs were infected with six different 
TB40/E-isolated clones (E1, E4, F5, G1, D6, and F8) in 10-fold serial dilutions for 72 h and cocultured with KIR2DS1 reporter cells. A representative experiment from 
over three independent experiments is depicted. (c) The infectivities of three positive and three negative TB40/E clones were calculated by TCID50 assay and are 
depicted in the table (virus titers in PFU/ml). Viral particles were isolated from the supernatant, lysed, and loaded onto a 12% SDS-PAGE gel for western blotting 
with anti-pp28 antibody. Positive and negative clones were paired based on approximately the same infectivity. Equal amounts of lysate from these pairs were 
loaded onto the gel. (−) indicates a negative clone, (+) positive clone. (D) HFFFs were stimulated with UV-inactivated TB40/E, infected with the positive B6 or 
negative A8 clone for 72 h. Forty-eight hours p.i. KIR2DL2 (negative control), KIR2DL1, LILRB1 (positive control), and KIR2DS1 reporter cells were added. After an 
overnight coculture, the GFP expression was measured using flow cytometry. The data are depicted as the mean ± SD of individual samples collected from five 
independent experiments. *p < 0.05 and **p < 0.01 are calculated by non-parametric one-way ANOVA using the Kruskal–Wallis test and Dunn’s multiple 
comparisons test.
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Specific TB40/E Clones Activate the KIR2DS1 
Reporter Cells
Tomasec and colleagues isolated two viral clones, called Lisa and 
Bart, from the TB40/E strain, which had different functional 
properties (74). We wanted to investigate whether different viral 
clones were also present in our TB40/E strain. Multiple viral 
clones were isolated using a plaque purification assay. Twelve 
clones were selected and used to infect HFFFs followed by cocul-
ture with KIR2DS1 reporter cells. Six clones (B6, D7, E1, E4, E5, 
and F5) activated KIR2DS1 reporter cells (referred to as positive 
clones in what follows), while the other “negative” clones (A6, 
A8, D6, F2, F8, and G1) did not. Figure 4B depicts a representa-
tive coculture experiment where HFFFs were infected with six 
randomly selected clones in a 10-fold serial dilution for 72 h and 

then cocultured with KIR2DS1 reporter cells. The reporter cells 
were highly activated by HFFFs infected with the positive clones; 
E1, E4, and F5. They were not activated after infecting with nega-
tive clones; G1, D6, and F8 (Figure 4B). Infecting HFFFs with the 
positive clones resulted in a higher percentage of GFP-positive 
KIR2DS1 reporter cells (ranging from 16% by E4 clone to 50% 
by B6 clone) compared to the wild-type TB40/E strain (ranging 
from 4 to 21%, Figure S1 in Supplementary Material), indicat-
ing that the positive clones induced the KIR2DS1 ligand more 
efficiently. This is in line with the idea that the parental TB40/E 
strain contains a mixture of positive and negative viruses with 
respect to KIR2DS1 ligand expression.

Human cytomegalovirus infection indeed led to reduction 
in total HLA class I expression on most HFFFs as monitored by 
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binding of W6/32 antibody and this was true of both positive 
and negative clones (Figure 6A). This indirectly indicates that the 
positive and negative clones were equally infectious and consist-
ently infected over 90% of the HFFFs. In addition, the differential 
response of the KIR2DS1 reporter cells to the positive and negative 
clones was not due to differences in overall viral particle numbers 
of the different clones. This was demonstrated by comparing the 
infectivity (functional virus particles) with the total number of 
viral particles (functional and empty/non-functional particles) by 
detecting a structural tegument protein pp28 by western blot after 
pairing positive and negative virus clones based on approximately 
the same infectivity titer (Figure 4C).

KIR2DS1 Ligand Is Only Expressed on HFFFs after 
Infecting with Infectious Virus
Within the investigated infection timeframe, non-infected 
cells could be refractory for HCMV infection, yet exposed to 
pro-inflammatory cytokines, such as type I interferons (IFNs), 
which subsequently induce HLA class I surface expression. 
It was therefore critically important to investigate whether 
KIR2DS1 reporter cells were activated by the infected cells or 
by the surrounding non-infected cells. To examine this, TB40/E 
viruses were exposed to UV light for 30 min to inactivate the 
virus. After exposure, viral particles will be present and able 
to enter the cell, but the viral genes will be inactivated and 
will not be transcribed. Virus inactivation was confirmed by 
immunohistochemistry staining of Immediate Early 1 (I.E.1) 
viral proteins on the treated HFFFs, as shown in Figure S2 
in Supplementary Material. These UV-inactivated viruses are 
called “UV virus.”

After stimulating HFFFs with UV B6 clone and infecting with 
the positive B6 and negative A8 clones for 72 h, a coculture with 
parental, KIR2DL1, LILRB1, and KIR2DS1 reporter cells was 
performed. KIR2DS1 reporter cells were significantly activated 
in coculture with the active B6 clone-infected HFFFs, but not 
with UV B6-stimulated HFFFs nor in any other conditions, as 
shown in Figure  4D. By contrast, the KIR2DL1 reporter cells 
were highly activated after encountering UV B6-stimulated 
HFFFs, as well as with B6 clone-infected HFFFs (Figure  4D). 
Total HLA class I and HLA-C/-E cell-surface levels using W6/32 
and DT9 antibodies were assessed and both HLA-A, -B, -C and 
HLA-C/-E surface expression levels were highly increased on UV 
virus-stimulated HFFFs (Figure 6). Since fibroblasts are known 
to produce IFN-α and -β (75, 76), it was expected to see such an 
increase in HLA class I cell-surface levels, after exposure to viral 
particles. This is the host response to HCMV particles without 
the interference of HCMV genes downregulating HLA class I 
molecules.

In conclusion, from the different HCMV strains tested, 
only the TB40/E strain activated KIR2DS1 reporter cells after 
infecting HFFFs. Furthermore, the TB40/E strain consists of 
different virus clones and these virus clones differentially acti-
vated KIR2DS1 reporter cells. Since the clones have comparable 
amounts of functional viral particles, the levels of activation 
were not governed by the number of viral particles. We may also 
conclude that active viral gene expression is necessary to induce 
the KIR2DS1 ligand.

Primary, single-Positive Kir2Ds1 nK cells 
are Only activated in coculture when 
hFFFs are infected with specific hcMV 
clones
After establishing that KIR2DS1 reporter cells recognize a ligand 
on HFFFs infected with specific clones, we asked whether primary 
NK cells would also interact with these infected cells. Coculture 
experiments were performed using freshly isolated peripheral 
blood NK  cells from healthy individuals. NK  cells expressing 
KIR2DS1 are hyporesponsive, if the donor is homozygous for 
C2-HLA-C (32). We therefore chose donors that were C1-HLA-C 
homozygous, bearing fully functional KIR2DS1-positive NK cells. 
General NK cell functionality was verified using IL-12/15 primed 
NK  cells cocultured with the prototypic HLA class I negative 
NK cell target cell line K562 (positive control), or with no target 
cells (negative control). The KIR− NK cell subset represents the 
KIR-independent activation of NK cells, which is the background 
NK cell activation in this experiment.

Forty-nine percent of the cytokine-primed KIR− NK  cells 
degranulated after NK  cells of donor 016 encountered K562 
cells, and degranulation of 4% was observed in culture without 
target cells, indicating that the NK cells are functional, and little 
background activation was observed (Figure  5A). In the same 
experiment, rested NK  cells (without cytokine stimulation) 
were cocultured with HFFFs. NKG2A− cells were separated 
into KIR-negative (KIR−), KIR2DL1 single-positive (2DL1sp), 
and KIR2DS1 single-positive (2DS1sp) NK  cells. The gating 
strategy is described in Figure S3 in Supplementary Material. 
No response (1% CD107a expression) was seen from 2DS1sp 
NK cells cocultured with uninfected or UV B6 clone-stimulated 
HFFFs (Figure  5B). Similarly, minimal functional response 
from 2DS1sp NK cells was observed after coculture with HFFFs 
infected with the negative A8 clone (5% CD107a expression). 
Notably, 2DS1sp NK  cells engaging HFFFs infected with the 
positive B6 clone showed 20% CD107a expression (Figure 5B). 
Only a slight background activation of 3% was observed in the 
KIR− population in coculture with positive B6 clone-infected 
HFFFs. In all the other conditions, no degranulation in the 
KIR− population was observed. Furthermore, in every condition, 
including the positive B6 clone condition, no degranulation of 
2DL1sp NK cells was observed (Figure 5B). The experiment was 
repeated with isolated NK cells of donor 111, and these NK cells 
responded similarly, though slightly weaker, to the different types 
of treated HFFFs (Figure 5C). These results were reproducible 
in two independent coculture experiments using either isolated 
NK  cells (Figure S4A in Supplementary Material) or PBMCs 
(Figure S4B in Supplementary Material).

In conclusion, similar to the reporter cells, primary NK cells 
expressing KIR2DS1 recognize a ligand on HFFFs infected with 
specific clones of the TB40/E strain.

specific hcMV clones are less effective 
in Targeting hla-c
After confirming that the KIR2DS1 ligand is expressed on HFFFs 
infected with positive clones of HCMV, different HLA class I 
surface levels of uninfected HFFFs, UV B6 clone-stimulated 
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FigUre 5 | Primary natural killer (nK) cells degranulated after coculture with human fetal foreskin fibroblasts (hFFFs) infected with the positive B6 
TB40/e clone. (a) After NK cell isolation, the NK cells of donor 016 were rested or stimulated with IL-12 and IL-15 overnight. IL12/IL15-stimulated NK cells were 
cocultured with and without K562 cells. (B) Unstimulated NK cells were cocultured with uninfected HFFFs, UV B6 clone-stimulated HFFFs (UV), negative A8 clone- 
(A8 neg), and positive B6 clone-infected HFFFs (B6 pos). After harvesting, the NK cells were stained with antibodies targeting different surface markers and the 
degranulation marker CD107a. NK cells from the KIR-negative (KIR), KIR2DL1 single-positive (2DL1sp), and KIR2DS1 single-positive (2DS1sp) subsets are shown. 
The percentage of CD107a expression is depicted. The NK subsets are grouped on NKG2A− NK cells (A−). (c) The same coculture experiment with NK cells of 
donor 016 is represented in a bar graph (left) including coculture data of NK cells of donor 111 (right). The percentage of CD107a expression is shown. All 
cocultures were performed for 5 h at an E:T ratio of 1:1. A representative data from three independent coculture experiments are shown. The other two independent 
experiments are illustrated in Figure S4 in Supplementary Material.
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HFFFs, and both positive and negative clone-infected HFFFs 
were compared. Surface expression of HLA-E (3D12), HLA-C/-E 
(DT9), total HLA class I (W6/32), HLA-A11, HLA-Bw6, total free 
heavy chain (FHC) of HLA class I (HC10), and FHC of HLA-C 
(L31) was analyzed. The antibodies used are listed in Table  1 
with a description of their specific recognition patterns and are 
discussed below.

Free Heavy Chain of HLA-C and Assembled HLA-C 
Remain on the Cell Surface of HFFFs Infected with 
Positive Clones
Positive and negative clones both reduced total HLA class I, 
HLA-E, HLA-Bw6, and HLA-A11 cell-surface levels on infected 
HFFFs compared to the UV B6 clone-stimulated HFFFs (p < 0.05 
and p < 0.01, Figures 6A,B). However, using antibodies to FHC 
forms of HLA, such as HC10 and, in particular, L31 staining was 
higher in HFFFs infected with the positive clones compared to 
the negative clones. FHC HLA-C levels, as detected by L31, were 
close to the levels of UV B6-stimulated HFFFs, indicating that 
the positive clones did not effectively downregulate the FHC 
HLA-C surface levels (Figures 6A,B). This difference observed 
in L31 staining was reproducible in every experiment performed 
(n = 11) and in an experiment where FHC HLA-C surface levels 
were compared in HFFFs infected with 12 additionally isolated 
clones comprising six positive and six negative clones (Figure S5A  
in Supplementary Material). Similar differences between the 
clones were observed with HC10 staining (FHC of HLA class 

I molecules, Figures 6A,B). This difference could be due to the 
antibody detecting the elevated FHC of HLA-C specifically. 
However, this remains uncertain, because specific antibodies 
against FHC of HLA-A and -B are not available.

The DT9 staining (detects conformational HLA-C/-E con-
taining β2M) was slightly weaker and less consistent than L31, 
but similar differences between the clones were measurable 
(Figures  6A,B). Since DT9 antibody cross-reacts with HLA-E 
(56), an anti-HLA-E monoclonal antibody (3D12) was included. 
HLA-E surface expression in general was very low on HFFFs 
(Figure  6A) and no difference was observed between HFFFs 
infected with positive and negative HCMV clones (Figure 6B). 
Low HLA-E expression in the infected HFFFs is most likely due 
to a mutation at position 2 (Met to Val) in the canonical sequence 
(VMAPRTLIL) of UL40 expressed in all the TB40/E clones, as 
described previously (77). This result implies that the difference 
observed in the DT9 staining is, most likely, due to higher HLA-C 
expression and not HLA-E expression. In addition, assembled 
HLA-C and FHC of HLA-C surface levels on HFFFs infected with 
other viral strains, such as Merlin and AD169, were downregu-
lated comparable to the surface levels found with the negative 
clones (Figure S6 in Supplementary Material). Together, these 
results indicate that the positive clones are less effective in down-
regulating assembled HLA-C and, in particular, FHC of HLA-C 
in HFFFs, compared to the negative clones and other HCMV 
strains. However, both sets of clones downregulated other HLA 
molecules to similar levels.
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FigUre 6 | continued
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FigUre 6 | continued 
human leukocyte antigen (hla) class i surface and total hla-c protein expression of infected human fetal foreskin fibroblasts (hFFFs). (a) Dot plots 
(left) and histograms (right) from the same representative experiment are shown. The HFFFs infected with the indicated positive or negative clones and the UV B6 
clone-stimulated HFFFs (UV) were treated for 72 h. The indicated treated HFFFs were stained subsequently with W6/32 (total HLA class I), DT9 (HLA-C/-E), 3D12 
(HLA-E), L31 (FHC HLA-C), and HC10 (FHC HLA class I) antibodies (black line). Cells stained with the appropriate isotype control (dotted line) were included. (B) 
Collection of up to four independent cell-surface staining experiments is depicted in bar graphs as the mean ± SD of individual samples. Anti-Bw6 and anti-A11 
antibodies were also included. The percentage change in MFI is depicted with the uninfected condition at 100%. *p < 0.05 and **p < 0.01 are calculated by 
non-parametric one-way ANOVA using the Kruskal–Wallis test and Dunn’s multiple comparisons test. (c) Total lysate of uninfected, UV B6 clone-stimulated (UV), 
positive clones- (E5, D7, B6), and negative clones (F2, F8, A6)-infected HFFFs were loaded onto a reduced 10% SDS-PAGE gel. The membrane was blotted with 
the L31, anti-I.E.1 viral protein (measure of infection) and anti-calnexin (loading control) antibodies.
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More Total HLA-C Protein Is Expressed on HFFFs 
Infected with Selected Clones of HCMV
After having found that HLA-C and, in particular, FHC of HLA-C 
cell-surface levels were higher on positive clone-infected HFFFs, 
we investigated whether differential expression of total HLA-C 
protein levels could be tracked by western blot. HFFFs infected 
with three positive clones had higher amounts of total HLA-C 
compared to the negative clones, although the levels in general 
were lower than for the uninfected and UV B6 clone samples. As 
expected, HFFFs stimulated with UV B6 clone contained high 
amounts of HLA-C protein (Figure 6C). Additionally, we tested 
HFFFs infected with a further 12 clones (6 positive and 6 nega-
tive, Figure S5B in Supplementary Material). From the 18 clones 
tested in total, 7 positive clones had high amounts of total HLA-C, 
while 7 negative clones had lower amounts.

In conclusion, positive TB40/E clones are defective in down-
regulating HLA-C and, in particular, FHC of HLA-C in HFFF cells. 
Higher amounts of total HLA-C protein were found in HFFFs 
infected with the positive TB40/E clone compared to infection 
with the negative TB40/E clone. This may reflect a deficiency in 
degradation/turnover of HLA-C by positive TB40/E clones.

Pan hla class i antibodies Block the 
Kir2Ds1–ligand interaction
Antibody-blocking experiments were performed using various 
anti-HLA class I antibodies to obtain a better understanding 
of the KIR2DS1 interaction. Previously, Stewart and colleagues 
tested a large panel of pan HLA class I antibodies in a blocking 
experiment to analyze the interaction of KIR2DL1 and KIR2DS1 
tetramers with 221-HLA-C transfectants (27). They concluded 
that W6/32 and HC10 antibodies were not able to block both 
KIR2DL1 and KIR2DS1 tetramer interactions with C2-HLA-C. 
However, other pan HLA class I antibodies, such as 6A4 and 
B1.23.2, did block (27). To confirm the previous findings, the 
interaction of KIR2DL1 reporter cells with UV B6-stimulated 
HFFFs, which highly expressed all HLA class I molecules, was 
tested. As expected, W6/32 antibody did not block the KIR2DL1 
interaction with the HFFFs, but the 6A4 and B1.23.2 antibodies 
did (Figures 7A,B, left panels). Next, the HFFFs were infected 
with the positive B6 clone and the antibody blocking experiment 
was repeated. W6/32, 6A4, and B1.23.2 antibodies blocked the 
KIR2DS1 reporter cell interaction with B6 clone-infected HFFFs. 
Notably, the W6/32 antibody did not block and the 6A4 and 

B1.23.2 antibodies only partially blocked the KIR2DL1 reporter 
cell interaction (Figures  7A,B, right panels). Furthermore, 
DT9, L31, and HC10 antibodies were also not able to block the 
KIR2DS1–ligand interaction and the anti-β2M only partially 
(data not shown). Together, these data are consistent with a  
differential mode of recognition of C2-HLA-C by KIR2DL1 and 
KIR2DS1.

hFFFs with a β2M KO infected with 
Positive hcMV clones Do not induce the 
Kir2Ds1 ligand
To confirm whether the KIR2DS1 ligand is a HLA class I mol-
ecule and specifically HLA-C, the β2M gene was knocked out of 
HFFFs. The HLA class I complex cannot be formed without β2M 
and therefore, HLA class I molecules, but also FHC of HLA class 
I, will not be transported efficiently to the cell surface (78). The 
β2M gene was knocked out by using the CRISPR/CAS9 genome 
editing tool (79). After selection and single-cell sorting, β2M KO 
HFFFs were checked for β2M, total HLA class I (W6/32), and 
FHC of HLA-C (L31) surface expression by flow cytometry and 
total protein expression by western blot. β2M KO HFFFs did 
not express surface β2M, total HLA class I, and FHC of HLA-C. 
B6 and A8 clone infection did not alter these expression levels 
(Figure 8A). Total β2M, total HLA class I (detected with HC10), 
and most HLA-C protein were also absent in the β2M KO HFFFs, 
compared to the untreated HFFFs (WT) and HFFFs containing 
CAS9 without the sgRNA (CAS9), indicating that the β2M KO 
was successful (Figure 8B).

Subsequently, β2M KO HFFFs and WT HFFFs, either stimu-
lated with UV B6 clone or infected with a positive and negative 
clone, were cocultured with the KIR2DS1, -L1, -L2, and LILRB1 
reporter cells. The KIR2DS1 reporter cell was not activated after 
encountering β2M KO HFFFs infected with the positive B6 clone, 
while, in the same experiment, 44% of KIR2DS1 reporter cells 
were GFP positive after coculture with B6 clone-infected WT 
HFFFs (Figure  8C). KIR2DL1 and LILRB1 reporter cells were 
not significantly triggered by β2M KO HFFFs in all the conditions 
(Figure 8C).

This result is consistent with KIR2DS1 recognizing an HLA 
class I molecule, including HLA-C. Together with the cell-surface 
staining and the antibody-blocking experiment, the data suggest 
that modulation of C2-HLA-C by HCMV induces a potent 
KIR2DS1-mediated NK cell activation.
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FigUre 7 | antibody-blocking experiment of reporter cells and hFFFs stimulated with UV B6 clone or infected with the B6 clone. W6/32, 6A4, 
B1.23.2, and isotype antibodies were added to 72 h UV-stimulated or infected HFFFs, before an overnight coculture with KIR2DS1 and KIR2DL1 reporter cells was 
performed. GFP expression was measured by flow cytometry. (a) The dot plots are data from a representative experiment. (B) Collection of up to five independent 
blocking experiments is depicted in bar graphs as the mean ± SD of individual samples with *p < 0.05 calculated by non-parametric one-way ANOVA using the 
Kruskal–Wallis test and Dunn’s multiple comparisons test.
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DiscUssiOn

We found that KIR2DS1 recognizes a ligand on HFFFs infected 
with the TB40/E strain of HCMV. This wild type strain consists of 
at least two sets of virus clones: one set that, after HFFF infection, 
activates KIR2DS1-expressing cells (positive clones) and one 
that does not (negative clones). This specific KIR2DS1 recogni-
tion was only present when the HFFFs were infected with fully 
functioning viruses, indicating that the virus plays a direct role 
in expressing the KIR2DS1 ligand. In addition, KIR2DS1 single-
positive (2DS1sp) primary NK cells degranulated after engaging 
with positive clone-infected HFFFs. Together, this indicates that 
KIR2DS1 reporter cell activation correlates with physiological 
KIR2DS1 binding to its ligand.

The reporter system is a Valid Way of 
examining Kir specificity
Using the reporter system, we confirmed that a single amino 
acid substitution K70T in KIR2DS1 altered the recognition from 
no binding to binding the same cognate ligands as KIR2DL1 
(Figure 1C). This confirms the important role of residue 70 in 
the binding avidity to HLA-C by KIR2DL1/2DS1. These findings 
together with the differential recognition of HLA-C alleles by 
LILRB1, KIR2DL1, and -2DL2 reporter cells (Figure 2C) indicate 
that the reporter system is sensitive to subtle differences. One pos-
sible explanation of KIR2DL1 and -L2 reporter cells responding 
minimally to DFs (Figure 3B) is that there is binding of KIR to its 
ligand, but this binding is not strong enough to trigger a signal-
ing cascade to activate the reporter cell. The signaling cascade 
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FigUre 8 | β2M KO hFFFs do not activate Kir2Ds1 reporter cells. (a) To control the success of the β2M knockout, untreated (WT) HFFFs (black line) and β2M 
KO HFFFs (shaded gray line) were stained with anti-β2M, W6/32, and L31 antibodies. Before staining, the cells were stimulated with UV clone (UV) or infected for 
72 h with the positive B6 clone (B6 pos) or the negative A8 clone (A8 neg). Unstained cells were included (dotted line). (B) Total lysate of β2M KO HFFFs, HFFFs 
containing CAS9 without sgRNA (CAS9) and WT HFFFs were loaded onto a reduced 10% SDS-PAGE gel. The membrane was blotted with the anti-β2M, L31, 
HC10, anti-M2 Flag, and anti-calnexin (loading control) antibodies. (c) β2M KO HFFFs and WT HFFFs were stimulated with UV B6 clone (UV) and infected with the 
positive B6 clone (B6 pos) or negative A8 clone (A8 neg) for 72 h. An overnight coculture was performed with KIR2DL2 (negative control), KIR2DL1, KIR2DS1, and 
LILRB1 reporter cells. GFP expression was measured by flow cytometry. This experiment was performed twice.
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will only be triggered if there is a true interaction. The degree 
of receptor/ligand clustering might also influence the down-
stream signaling, as shown by Oszmiana et  al. (80). Therefore, 
the reporter cells may be a more physiological system compared 
to Fc proteins or tetramers.

Kir2Ds1 interacts with hla-c but not in 
the same Way as Kir2Dl1
There are several examples of “paired” immunoreceptors consist-
ing of almost identical external moieties with positive and negative 
signaling tails, respectively (13). It is believed, but by no means 
proven, that this situation is driven by host–pathogen interac-
tion. Our data are broadly consistent with this proposal. Our 
data fit with KIR2DL1, the inhibitory receptor, interacting with 
C2-HLA-C for recognition of a self-ligand in order to promote 
education/licensing of NK cells and subsequent loss of inhibition 
when the ligand is missing. By contrast, the role of aKIR has 
been unclear. Some groups reported weak binding, particularly 
for KIR2DS1, but these effects are inconsistent. In general, aKIR 

appear to interact with HLA molecules weakly except in certain 
circumstances (27, 41, 42). We found that KIR2DS1 reporter 
cells were not activated after engaging conventional HLA class 
I molecules (Figures  2 and 3), as shown previously by others 
(10, 11, 17, 24–35). There is a possibility that the target cells used 
in previous KIR2DS1 studies did not only express conventional 
HLA-C molecules. These cells were EBV positive (721.221 cells, 
BLCLs, C1R cells), and/or tumor-derived cells, such as leuke-
mia blasts and lymphomas. In addition, other studies included 
primary cells such as DCs (33), T cells (30, 33), B cells (27, 29), 
and MRC-5 fibroblasts (supplementary data of Stewart et  al.) 
KIR2DS1 did not interact with or bind these primary cells, unless 
they were stimulated: in the case of DCs, stimulated with LPS and 
T cells, stimulated with PHA to form T cell blasts. Furthermore, 
Crespo et  al. found that HCMV-infected JEG-3 cells and fetal 
extravillous trophoblasts (EVT) did not induce degranulation 
and cytokine production of dNK cells. They only found a cyto-
toxic response when dNK cells were exposed to HCMV-infected 
DSC specifically, indicating differential recognition of dNK cells 
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FigUre 9 | summary of the findings and working models. (a) Both 
KIR2DL1 (red) and -2DS1 (green) bind conventional group C2 human 
leukocyte antigen (HLA)-C; however, KIR2DS1 binds weakly. Our data were 
consistent with previous studies demonstrating that the W6/32 antibody 
does not block the KIR2DL1–HLA-C interaction. The lightning bolt indicates 
KIR2DL1 triggering even after adding W6/32 to the coculture. (B) Strong 
KIR2DS1 activation was observed after coculture with HFFFs-infected 
selected TB40/E clones. After infecting β2M KO HFFFs with selected TB40/E 
clones, KIR2DS1 interaction was diminished (left). In addition, W6/32 blocked 
the KIR2DS1–ligand interaction after coculture with HFFFs-infected selected 
TB40/E clones (right). *Other pan class I antibodies, such as 6A4 and 
B1.23.2, blocked both KIR2DL1 and KIR2DS1 interaction. The red symbol 
indicates no binding of KIR2DS1 after coculture in the indicated setting. (c) 
Remaining FHC of HLA-C and, to certain extent, assembled HLA-C surface 
expression was found on infected HFFFs. Together with the other findings, 
we hypothesize that a modification of C2-HLA-C is induced by HCMV, which 
influences KIR2DS1 recognition. This modification could relate to the 
following: presentation of HCMV-derived peptides; alteration of glycosylation 
patterns on the HLA-C molecule; formation of HLA-C homodimers; or 
heterodimers association with another protein.
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to HCMV-infected cells (47). One explanation could be that 
KIR2DS1-mediated NK cell activation could only occur through 
an unknown synergistic engagement of other activating recep-
tors, as proposed by Bryceson et al. (81). Additionally, perhaps 
a high level of C2-HLA-C is needed for a potent KIR2DS1-
mediated NK cell activation, which is the case for these target 
cells. Primary cells might express too low levels of C2-HLA-C and 
in combination with the weak binding of KIR2DS1 to C2-HLA-C 
might result in the absence of NK cell activation. Crespo et al. 
also found reduced levels of HLA-C on HCMV-infected DSC 
leading the authors to speculate that an unknown activating 
ligand for KIR2DS1 is upregulated by HCMV infection which is 
recognized by dNK cells (47). Alternatively, our findings indicate 
that KIR2DS1 might recognize a modified form of C2-HLA-C, 
which is induced by selected TB40/E clones in HFFFs. Compared 
to HCMV from other sources, positive TB40/E clones were 
less effective in controlling FHC of HLA-C and, to a certain 
extent, assembled HLA-C (Figure 6). W6/32, 6A4, and B1.23.2 
antibodies were able to block the KIR2DS1–ligand interaction 
on positive clone-infected HFFFs, while these antibodies could 
not block, or only partially block, the KIR2DL1 interaction 
(Figure 7). β2M KO experiments confirmed that KIR2DS1 binds 
a HLA class I molecule, most likely HLA-C, on these infected 
cells (Figure 8). It is unlikely that KIR2DS1 was binding directly 
to an HCMV-encoded protein, since KIR2DS1 reporter cells 
were not activated in coculture with β2M KO HFFFs infected 
with the positive clone. The most parsimonious interpretation 
is that the virus influences the balance of recognition directly of 
HLA-C by the KIR2DL1/S1 pair. At this stage, however, other 
possibilities cannot be ruled out, such as a combination of HLA 
class I with another protein.

What is the Difference Between hla-c 
recognized by Kir2Ds1 and by Kir2Dl1?
Since all the data indicate that HLA-C forms at least part of the 
KIR2DS1 ligand the question that arises is how does HLA-C dif-
fer upon viral infection such that KIR2DS1 is brought into play? 
Figure 9 suggests various models which may be tested, namely:

 1. Bound peptide: there have been reports of KIRs recognizing 
certain peptide motifs presented by HLA class I molecules. 
Stewart and colleagues have demonstrated that amino acids 
at position 7 and 8 of the peptide play a role in KIR2DS1 
binding. KIR2DS1 has similar peptide selectivity to KIR2DL1 
(27). Work from Khakoo’s group has shown that peptides with 
certain motifs have either strong inhibitory, low inhibitory, or 
antagonistic effects on KIR2DL2 and -2DL3+ NK cells (82). 
These data suggest that NK cells are able to sense alterations 
of target cells, through selective peptide recognition.

 2. Modified glycosylation: KIR3DL1 binding to HLA-B57:01 
is dependent on the N-glycan on HLA-B57:01. Removing 
the N-glycan resulted in reduced inhibition, thus increas-
ing degranulation of KIR3DL1+ NK  cell clones (38). The 
N-glycosylation site on HLA class I is highly conserved 
and the glycan structures on HLA-C are relatively uniform 
between HLA-C allotypes (83). Perhaps viral infections could 
alter these glycosylation patterns and break the uniformity, 

resulting in the recognition of KIR2DS1. HIV and HCV infec-
tion has been shown to alter glycosylation in host cells, due to 
ER stress (84, 85). This might change the glycosylation pattern 
of HLA class I.

 3. Formation of HLA-C homodimers or heterodimers with other 
HLA class I molecules: KIR3DL2 binds FHC forms of HLA-
B27, including HLA-B27 dimers (86). LILRB1 interacts with 
different HLA class I molecules, which are able to dimerize 
via a cysteine residue in the cytoplasmic tail (49). Recently, 
it is described that the ligand for KIR3DS1 is FHC of HLA-F 
(41, 42). These data are evidence of the capability of Ig-like 
receptors to bind FHC HLA molecules or HLA homodimers.

 4. Modification by formation of HLA-C heterodimers with a 
virus-derived protein: in mice, activating receptor Ly49P bind-
ing to an MHC-CMV protein heterodimer has been reported. 
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Ly49P binds CMV-infected cells expressing a complex of the 
m04 CMV protein together with the MHC class I molecule 
H-2Dk (87). Very recently, Serena et al. proposed that HIV-1 
Env protein associates with FHC of HLA-C and that HIV-1 
specifically upregulates FHC of HLA-C at the cell surface of 
infected cells (88). Their work has some parallels with our 
findings. Our preliminary experiments, however, did not 
show any evidence of HLA-C forming homo- or heterodimers 
(data not shown).

Based on these observations together with our findings, we 
argue that KIR2DS1 most likely binds C2-HLA-C either through 
recognizing HCMV-derived peptide or changes in glycosylation 
patterns. This will be the focus of future experiments.

have activating Kirs evolved to 
recognize infected cells?
Studies investigating the evolution of KIRs and other paired 
receptors have proposed that the activating members may be 
evolving more rapidly than the inhibitory members through 
selection imposed by pathogens (15, 16). The positively charged 
lysine at position 70 in KIR2DS1 is critical for the diminished 
binding to C2-HLA-C compared to KIR2DL1. This amino acid 
is conserved in all KIR2DS1 allotypes (with the exception of 
KIR2DS1*001, which has a charged arginine) (11). Conversely, 
the lysine at position 70 in KIR2DS1 could be crucial for bind-
ing modified HLA-C induced by pathogens. KIR2DL1 might 
have evolved to recognize HLA-C on healthy cells (induced-
self), while KIR2DS1 might recognize slight structural changes 
on HLA-C induced by pathogens (altered-self). KIR2DS1 may 
still bind conventional HLA-C weakly to secure tolerance, yet 
recognition by KIR2DS1 of a modified form of HLA-C could 
overcome this tolerance. Our findings favor this hypothesis.

Why Were Kir2Dl1 reporter cells More 
activated after encountering 
TB40/e-infected hFFFs?
The GFP expression of KIR2DL1 reporter cells, after encounter-
ing TB40/E-infected HFFFs, was even higher than in coculture 
with UV TB40/E-stimulated HFFFs, which contain high expres-
sion levels of HLA-C (Figure 4A). HCMV downregulates HLA 
class I molecules, thus these findings were unexpected. A possible 
explanation is that KIR2DL1 binds the remaining HLA-C on the 
infected cell surface (Figure  6B). Ameres et  al. reported that 
HCMV downregulates certain HLA-A and -B alleles more effi-
ciently than HLA-C alleles (89, 90). Another explanation could 
be that KIR2DL1 recognizes an alternative ligand, comparable to 
how both inhibitory Ly49I and activating Ly49H-binding m157 
(43, 91).

Differences in hcMV isolates
Natural killer cell responses appear to differ when encountering 
cells infected with various HCMV strains and even clones within 
strains. Chen et al. also demonstrated that the ability of NK cells 
to control virus spread through LILRB1 was variable between 
HCMV viral strains, depending on the amino acid sequence 

within UL18 (92). Thus, the variable effect between HCMV 
strains on NK cell activity and vice versa should be taken into 
account when setting up experiments and interpreting published 
data. This will also count for cytotoxic T cells and other immune 
cell responses.

TB40/E-derived positive clones were the only viruses that, 
upon infecting HFFFs, expressed the KIR2DS1 ligand. Together, 
these findings imply that after infection the positive clones are less 
successful in downregulating the KIR2DS1 ligand than TB40/E-
derived negative clones or other HCMV strains. As a result, 
KIR2DS1 reporter cells and 2DS1sp NK  cells are specifically 
detecting the ligand on positive clone-infected HFFFs. This sug-
gests that the other HCMV strains are capable of downregulating 
the KIR2DS1 ligand as an immune evasion strategy to NK cells. 
Our findings could explain why this interaction has not been 
detected in previous studies. Identification of the differences 
between the positive and negative clones by whole virus genome 
sequencing should help to resolve this issue.

cOnclUsiOn

Our findings indicate that activating KIRs do not bind the same 
conventional HLA molecules as their inhibitory counterparts. 
They suggest that pathogenic infections are required for strong 
activating KIR binding, discriminating between healthy and 
unhealthy cells. To our knowledge, this is the first time that the 
role of HCMV on activating KIR recognition has been conclu-
sively shown. Future work will provide new insights into the role 
of NK cells in HCMV infection and transplantation. This could 
lead to more targeted and effective therapeutic avenues in the 
treatments for HCMV infection in new-born babies, immuno-
suppressed individuals, and patients undergoing solid organ or 
HSCT transplantation.
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The impact of natural killer (NK) cell alloreactivity on hematopoietic stem cell trans-
plantation (HSCT) outcome is still debated due to the complexity of graft parameters, 
HLA class I environment, the nature of killer cell immunoglobulin-like receptor (KIR)/KIR 
ligand genetic combinations studied, and KIR+ NK cell repertoire size. KIR genes are 
known to be polymorphic in terms of gene content, copy number variation, and number 
of alleles. These allelic polymorphisms may impact both the phenotype and function 
of KIR+ NK cells. We, therefore, speculate that polymorphisms may alter donor KIR+ 
NK cell phenotype/function thus modulating post-HSCT KIR+ NK cell alloreactivity. To 
investigate KIR allele polymorphisms of all KIR genes, we developed a next-generation  
sequencing (NGS) technology on a MiSeq platform. To ensure the reliability and 
specificity of our method, genomic DNA from well-characterized cell lines were used; 
high-resolution KIR typing results obtained were then compared to those previously 
reported. Two different bioinformatic pipelines were used allowing the attribution of 
sequencing reads to specific KIR genes and the assignment of KIR alleles for each KIR 
gene. Our results demonstrated successful long-range KIR gene amplifications of all 
reference samples using intergenic KIR primers. The alignment of reads to the human 
genome reference (hg19) using BiRD pipeline or visualization of data using Profiler soft-
ware demonstrated that all KIR genes were completely sequenced with a sufficient read 
depth (mean 317× for all loci) and a high percentage of mapping (mean 93% for all loci).  
Comparison of high-resolution KIR typing obtained to those published data using exome 
capture resulted in a reported concordance rate of 95% for centromeric and telomeric 
KIR genes. Overall, our results suggest that NGS can be used to investigate the broad 
KIR allelic polymorphism. Hence, these data improve our knowledge, not only on KIR+ 
NK cell alloreactivity in HSCT but also on the role of KIR+ NK cell populations in control 
of viral infections and diseases.

Keywords: high-resolution killer cell immunoglobulin-like receptor typing, allele polymorphism, next-generation 
sequencing, international histocompatibility Workshop Dna samples, natural killer cells
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inTrODUcTiOn

Hematopoietic stem cell transplantation (HSCT) provides a 
curative therapy for many patients with hematological malig-
nancies (1). Donors for HSCT are currently selected based on 
the level of matching for HLA-A, -B, -C, -DRB1, and -DQB1 
loci. Siblings, 10/10 HLA matched, remain the gold standard. 
However, substantial risks of morbidity and mortality caused 
by disease relapse (2), graft-vs-host-disease (GvHD) (3), and 
infection (4) are still prevalent after related, or unrelated HSCT. 
Natural killer (NK) cells are the first post-HSCT cells, reconsti-
tuting antiviral and antitumoral activity (5). NK  cells are able 
to recognize the missing-self via killer cell immunoglobulin-
like receptors (KIRs) (6). Ruggeri et al. (7) were first to report 
the beneficial effect of KIR ligand mismatched donor NK  cell 
alloreactivity after T  cell-depleted HLA haplo-identical HSCT 
resulting in less relapse, less GvHD, and better overall survival 
in patients with acute myeloid leukemia. The impact of KIR+ 
NK cell alloreactivity on HSCT outcome is still controversial due 
to the heterogeneity of graft parameters, HLA class I environ-
ment, nature of KIR/KIR ligand genetic combinations studied, 
and KIR+ NK cell repertoire size (8–12).

As HLA class I genes, KIR genes are highly polymorphic 
(13). In humans, 16 KIR genes have been described including 
eight inhibitory genes (2DL1/L2/L3/L4/L5, 3DL1/L2/L3), 6 
activating genes (2DS1/S2/S3/S4/S5, 3DS1), 2 two pseudogenes 
(2DP1, 3DP1). These genes are located within the leukocyte 
receptor cluster found on chromosome 19q13.4, spanning a 
region of 150 kb. Within a population, the genotypic diversity 
of KIR genes occurs at different levels. First, the number and 
nature of KIR genes vary between individuals defining different 
KIR haplotypes. KIR haplotypes are classified into group A and 
group B (14). The group A haplotype is defined by a fixed set of 
nine KIR genes: four framework KIR genes (3DL3, 3DP1, 3DL2, 
and 2DL4) that form the centromeric and telomeric part of KIR 
locus, three inhibitory KIR (2DL1, 2DL3, and 3DL1), a pseudo-
gene (2DP1), and a single activating KIR gene (2DS4). The group 
B haplotype is defined as having a variable number of KIR genes 
(7–14) including the four framework KIR genes and specific KIR 
genes (2DS2, 2DL2, 2DL5, 2DS3, and 2DS1). Second, a variable 
number of copies [copy number variation (CNV)] of the gene 
generated by recombination and replication have also been 
described for some KIR genes particularly those of the B haplo-
type (15–17). The CNV seems to influence the licensing of KIR+ 
NK cells (18). Overall, various KIR genotypes can be observed 
in a population. All KIR genes, and especially for inhibitory 
KIR, a high degree of allelic polymorphism has been described. 
The latest KIR Immuno Polymorphism Database (IPD–KIR) 
describes 753 KIR alleles. KIR allele polymorphisms need to be 
investigated throughout the exon and the intron regions, and 
regulatory regions as shown for KIR3DL1 (19). In contrast to 
HLA class I genes, structure and length of KIR genes vary. KIR 
allele polymorphisms impact both KIR+ NK cell phenotype and 
function, as we and other groups having described for KIR3DL1 
(20–25) and for KIR2DL2/L3 (26). Differences in the intensity 
of expression (strong, weak, or null) have been described for the 
KIR3DL1 receptor, defining different allotypes according to the 

KIR3DL1/3DS1 allele combinations present in healthy individu-
als (21, 27). Furthermore, the nature of KIR3DL1 alleles does not 
only impact the KIR3DL1 cell density but also the strength of 
the KIR3DL1–HLA interactions which in turn can affect NK cell 
functions (28, 29). The recognition of KIR allotypes using anti-
KIR monoclonal antibodies also varies depending on the KIR 
allele polymorphism (30).

Taking these points into account, it is therefore necessary to 
thoroughly investigate the phenotypic and functional impact of 
KIR allele polymorphisms. Until now, potential KIR+ NK cell 
alloreactivity in HSCT was mainly evaluated depending on the 
KIR/KIR ligand genetic combinations present and analyzed 
only at a generic level (i.e., presence or absence of KIR genes 
and KIR ligand). We speculate that KIR allele polymorphisms 
may alter donor KIR+ NK  cell phenotype/function, and 
thus modulate their alloreactivity affecting HSCT outcome. 
However, the impact of KIR allele polymorphisms on HSCT 
outcome remains difficult to assess due to the lack of suitable 
allele typing methods for all KIR genes. Until recently, several 
standard methods are used to type KIR genes at allelic level. 
Those methods include sequence-specific oligoprobe hybridiza-
tion (31–37), sequence-specific primer (SSP) typing (22), SNP 
assay (38), Sanger sequence-based typing (SBT) (20, 39–42), 
high-resolution melting (43), and also combined SSP/SBT 
(21, 44). KIR allelic polymorphisms have been investigated 
for a few functional KIR genes (KIR2DL1/2DL2/2DL3/2DS1
/3DL1/3DS1). Standard methods to type KIR genes at allelic 
level are usually single KIR locus specific and/or target a 
limited polymorphism. In addition, the constant increase in 
the number of KIR alleles described generates more and more 
ambiguous KIR typing in heterozygous samples since KIR poly-
morphism can extend over the entire gene. Recent advances in 
high-throughput sequencing technology [next-generation 
sequencing (NGS)], especially in immunology and hematology 
(45), enable determination of KIR alleles and KIR gene CNV. 
The extent of KIR allele polymorphisms, as demonstrated by 
exome capture, reported 37 new KIR alleles from 15 healthy 
South African individuals (46). Recently, whole KIR genome 
sequencing by NGS was used as a control method to validate 
CNV genotyping in the KIR locus (17). An exome capture that 
focused on KIR and HLA class I loci was also recently described 
(47). In this study, we developed a reliable NGS method for high 
quality DNA samples and easily implemented for the study of 
KIR allele polymorphisms.

MaTerials anD MeThODs

samples
Thirty B-EBV cell lines from the 10th International Histo-
compatibility Workshop (IHW) were selected from a well-
characterized panel known for their KIR gene content. KIR 
genotype information, including KIR allele typing of some KIR 
genes for all these B-EBV cell lines, was obtained either from the 
IPD/KIR database or from literature for specific KIR loci. Known 
KIR genotypes and allele typing of these 30 B-EBV cell lines are 
provided in the Table S1 in Supplementary Material.
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Kir long-range (lr) Pcr and Primers
DNA genomic extractions were performed from B-EBV cell lines 
using a Nucleospin blood kit (Macherey-Nagel, Duren, Germany). 
The concentration and the purity of all DNA samples were checked 
on a NanoDrop 2000C spectrophotometer (ThermoFisher, 
Wilmington, DE, USA) by measuring the ratio of absorbance 
at 260 and 280 nm. In parallel, 1.5 µg of each DNA sample was 
loaded on an agarose gel to check the DNA integrity. For KIR LR 
PCR, five intergenic KIR primers already described (17) and one 
additional in-house designed primer including four forward prim-
ers (#1, 5′-gccaaataacatcctgtgcgctgctcagct-3′; #2, 5′-ctcacaacatc-
ctgtgtgctgctaactga-3′; #4, 5′-acggctgcctgtctgcacagacagcacc-3′, #6, 
5′-cacatcgtctgcaccggtcagtcgagccga-3′) and two reverse primers 
(#3, 5′-ttggagaggtgggcaggggtcaagtg-3′; #5, 5′-ctccatctgagggtccc-
ctgaatgtg-3′) were used to amplify the whole KIR genome.

The KIR LR-PCR protocol was optimized using the method 
described by Vendelbosch et al. (17). Briefly, KIR LR-PCR was 
performed with 2.5  U of PrimeSTAR GXL DNA Polymerase 
(Ozyme, Saint-Quentin en Yvelines, France), 1× PrimeSTAR 
GXL buffer, 200  µM of dNTP mixture (Ozyme) and 0.2  µM 
final concentration of each KIR primer. The LR-PCR reaction 
was performed in a C1000 Touch™ Thermal Cycler (Biorad, 
Marnes la Coquette, France) consisted of an initial denaturation 
of 2 min at 94°C followed by 30 cycles of 20 s at 94°C, 12 min 
at 68°C and 1 cycle of final elongation of 10 min at 72°C in the 
final 50 µL volume. This protocol enables amplification of each 
KIR gene from 5′ to 3′ untranslated regions (UTR). The final KIR 
LR-PCR product was run on 0.7% Seakem agarose gel in TBE1X 
(Lonza, Verviers, Belgium) and visualized by staining with the 
SYBR® safe (Invitrogen, Villebon sur Yvette, France) using the 
SimplyLoad™ Tandem DNA ladder size marker (Ozyme) to 
confirm the amplification and correct fragment size as well as to 
check for non-specific amplification.

library Preparation and sequencing
Qubit dsDNA High Sensitivity Assay Kit (Life Technologies, 
Villebon sur Yvette, France) was used to quantify the starting 
DNA library in the Qubit® fluorometer (Life Technologies). The 
library preparation was performed using the NGSgo GENDX 
kit (Bedia Genomics, Chavenay, France). To achieve the optimal 
insert size and library concentration, 250  ng of each genomic 
DNA was randomly fragmented according to the manufacturer’s 
instructions. Briefly, 8.25 µL of NGSgo master mix (prepared from 
2 µL of NGSgo-LibrX Fragmentase buffer plus 3.25 µL of NGSgo-
LibrX End Prep buffer plus 1.5 µL of NGSgo-LibrX Fragmentase 
Enzyme plus 1.5  µL NGSgo-LibrX End Prep Enzyme) (Bedia 
Genomics, Chavenay, France) was added to each genomic DNA 
in a final volume of 32.5  µL. The fragmentation, end-repair, 
and dA-tailing reactions were performed in a T100™ Thermal 
Cycler (Biorad, France) consisted of 20 min of fragmentation and 
end-repair at 25°C followed by 10 min of dA-tailing at 70°C. The 
dA-tailed DNA fragments of each sample were then subjected 
to adapter ligation in 9.25 µL of an NGSgo master mix contain-
ing 7.5 µL of NGSgo-LibrX Ligase mix, 0.5 µL of NGSgo-LibrX 
Ligation Enhancer, 0.25 µL of NGSgo-Indx adapter for Illumina, 
and 1 µL of nuclease free water. The adapter ligation reaction took 
place in a T100™ Thermal Cycler (Biorad, France) for 15 min at 

20°C followed by a cooling step at 15°C. The first cleaning and size 
selecting of the samples after adapter ligation were performed in 
a 0.45× beads:DNA ratio by using the Agencourt® Ampure XP 
(Beckman Coulter, Villepinte, France) according to the manufac-
turer’s instructions and eluted in 12.5 µL of 0.1× elution buffer 
(Lonza Rockland, USA). The size-selected, adapter-ligated DNA 
fragments of each DNA sample were then dual indexed with 15 µL 
of NGSgo reaction mix made from 12.5 µL of NGSgo-LibrX HiFi 
PCR mix plus 1.25 µL of NGsgo-Indx IN-5 and 1.25 µL of NGSgo-
Indx IN-7 in a final volume of 25 µL followed by a PCR reaction in 
a T100™ Thermal Cycler (Biorad). PCR cycling was performed 
as follows: an initial denaturation of 30 s at 98°C  followed by 10 
cycles of 10 s at 98°C, 30 s at 65°C, 30 s at 72°C and 1 cycle of final 
elongation step of 5 min at 72°C in the final volume of 25 µL. A 
second DNA cleaning and size selecting was performed in a 0.6× 
beads: DNA ratio by using the Agencourt® Ampure XP beads 
according to the manufacturer instructions and eluted in 16.5 µL 
of 0.1× elution buffer (Lonza Rockland, USA).

Quality control procedure for the library preparation included 
verification of fragment size before and after purification by using 
the QiAxcel Advanced System (QiAgen, Courtaboeuf, France). 
The pooled and barcoded libraries were denaturated with 0.2 M 
of NaOH and diluted in the pre-chilled HT1-buffer to obtain a 
final library concentration of 12 pM. The final denatured library 
was subsequently sequenced by using the MiSeq sequencer 
(Illumina, Biogenouest Genomics Platform Core Facility, Nantes, 
France; HLA Laboratory, EFS Nantes, France) with 500 cycles v2 
kits, which generated 250-bp end sequence reads.

sequencing Data analysis and Kir allele 
assignment
The quality of the Illumina raw data sequences obtained was 
monitored by using the Sequencing Analysis Viewer Illumina 
software. The quality of the base calling from images and 
sequences was determined by the quality score (Q30) which must 
be ≥75% for 2 × 250 bp reads. KIR reads were mapped to the 
human genome reference sequence hg19 (GRCh37) by using the 
Burrows–Wheeler Aligner Memory Efficient Mapping (BWA-
MEM) tool. The binary alignment map (BAM) files containing 
mapped reads were then visualized on Integrative Genomics 
Viewer (IGV) algorithm (48).

In parallel, raw KIR sequences were aligned and visualized 
using the Profiler software version 1.70, initially developed by 
Dr. M. Alizadeh (Research Laboratory, Blood Bank, Rennes, 
France) for NGS-based HLA typing (49). A flowchart for data 
analysis using the Profiler software is provided in Figure S1 in 
Supplementary Material. The first step of analysis consists by 
merging R1 and R2 sequences to each other when at least 10 
complementary bases were found between R1 and R2 of the 
same cluster. During this phase, for each inconsistency of base 
calling, the quality value was used to select the best assignment. 
All sequences issued from a cluster for which we could not deter-
mine complementary between R1 and R2 remained unchanged. 
All sequences were transformed to FASTA format at the end of 
this step. The second step of analysis consists of phasing each of 
the sequences obtained in step one by using Blast algorithm. The 
third step of analysis consists by merging all sequences together 
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using Blast information. In this step, the depth for each position 
and the number of sequences for each allele were calculated. 
The first three steps are managed in a Linux environment. The 
last step is presentation and assignment of each construction 
based on database information in a friendly interface for user, 
all mismatches and differences to the database are extracted and 
presented to the user.

For KIR allele assignment, a manual bioinformatic pipeline 
was first used in the absence of available softwares. This consisted 
of exporting from IGV, all exon sequences of each KIR gene and 
comparing polymorphic bases with those referenced from the 
IPD–KIR database. Then, two different bioinformatics algorithms 
were used: the first one, hereafter called “BiRD,” was developed 
by the BiRD platform (E. Charpentier, U. Guyet, Genomics and 
Bioinformatics Core Facility GenoBiRD, Nantes, France) and 
consists of an analysis pipeline built with Snakemake on the same 
logic as the manual method. A flowchart for data analysis using 
the BiRD software is provided in Figure S2 in Supplementary 
Material.

Harvesting KIR-Specific Reads
First, raw sequences from fastq files are processed through 
cutadapt (v1.8.1) in order to remove Illumina adapter sequences. 
The cleaned reads are then mapped to hg19 (GRCh37) reference 
genome using BWA-MEM (v0.7.12) with the default parameters.

Determining Presence/Absence or KIR Genes
Absence or presence of KIR genes is evaluated using GATK 
DepthOfCoverage on the BAM and using a browser extensible 
data (BED) file describing the chromosome position of each gene 
(except KIR2DP1 and KIR3DP1). Coverage mean is calculated 
on each gene position, and a threshold of 10 is applied in order to 
ascertain its absence or presence. Presence/absence of KIR genes 
defined by NGS is concordant to the KIR genotype of the 30 IHW 
samples, stratified by AA vs Bx genotypes, previously validated in 
our laboratory by PCR-SSP multiplex method (data not shown).

Determining KIR Alleles
Allele-specific nucleotide positions are extracted manually using 
IPD–KIR alignment tool.1 For every gene, the Nucleotide—CDS 
of all alleles are aligned against the default reference allele. A 
python script is then used to reformat the multipage alignments 
in order to have one allele alignment per line. A second python 
script is utilized to extract all variations from the default reference 
allele and map the exon position number of these variations to 
the chromosome position. A file is created for each gene listing 
all the variations found for every allele. Bases at these positions 
are then called using SAMTools (v1.2-2) mpileup for all samples. 
Finally, KIR alleles are determined by calculating the percentage 
of nucleotide matches between the base calls and the allele varia-
tions for each KIR allele, the highest percentage giving the most 
confident allele.

The second algorithm used for KIR allele assignment was 
the Profiler software, previously described in Figure S1 in 
Supplementary Material, version 1.70 (49), which permits to 

1 https://www.ebi.ac.uk/ipd/kir/align.html.

directly assign KIR alleles at the highest level resolution (seven 
digits) since full intron and exon sequences were considered and 
also provides quality data such as mean coverage for each KIR 
locus. The fragment size percentage of sequences for each allele/
locus was also considered as well as percentage of mapping for 
each KIR gene.

Overall, KIR allele assignment for each locus and for all 
samples corresponds to the combined KIR results obtained using 
manual pipelines, BiRD, and Profiler softwares. KIR alleles were 
assigned on the basis of the known DNA sequences identity within 
the IPD/KIR database.2 KIR alleles are named in an analogous 
fashion as the nomenclature used for HLA class I alleles. After the 
gene name, an asterisk is used as a separator before a numerical 
allele designation. The first three digits of the numerical designa-
tion are used to indicate alleles that differ in the sequences of 
their encoded proteins. The next two digits are used to distinguish 
alleles that only differ by synonymous (non-coding) differences 
within the coding sequence. The final two digits are used to 
distinguish alleles that only differ by substitutions in an intron, 
promoter, or other non-coding region of the sequence.

resUlTs

lr Kir gene amplifications
Thirty reference IHW samples with known KIR genotyping 
(Table S1 in Supplementary Material) were used to validate our 
NGS method for typing of each KIR gene at allelic resolution. 
DNA integrity, checked by loading each sample on an agarose 
gel, confirmed high quality for all samples (data not shown). In 
order to amplify all KIR genes from the 5′ UTR to the 3′ UTR, 
six intergenic KIR primers were chosen to allow the amplifica-
tion of framework KIR genes. These intergenic primers also 
amplify KIR genes located either in the centromeric or telomeric 
region, which belong to the A and/or B specific KIR haplotype 
genes (Figure 1A). A robust LR amplification of KIR genes was 
obtained for all samples as illustrated for three representative 
IHW samples (Figure 1B). One specific band between 4 and 5 kb 
for the KIR3DP1 pseudogene and another specific band between 
9 and 17 kb corresponding to a cluster of all other KIR genes were 
observed, irrespective of KIR AA or AB genotype (Figure 1B) as 
KIR genomic length varies depending on KIR genes (Table S2 in 
Supplementary Material). For some IHW samples such as BOB, 
two specific bands at 4 and 5 kb were observed for the KIR3DP1 
gene corresponding to KIR3DP1*003 and KIR3DP1*001 
variants, respectively, whereas only one band at 4  kb specific 
of KIR3DP1*003 variant was observed for OLGA and SPO010 
samples (Figure 1B).

complete sequencing of all Kir genes
In order to check the specificity of KIR LR-PCR obtained, 
amplicons were further fragmented and sequenced on paired 
end 2 × 250 bp from Illumina MiSeq platform. The sequencing 
of all amplicons yielded a total of 6.3 Gb, which was generated 
from a 755  ±  31  K/mm2 cluster density (data not shown). 
Approximately 88.2% of the clusters passed QC filters and on 

2 http://www.ebi.ac.uk/ipd/kir/alleles.html
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FigUre 2 | Full sequencing of all killer cell immunoglobulin-like 
receptor (Kir) genes. Reads were mapped to the human genome 
reference sequence hg19 using the Burrows–Wheeler Aligner Memory 
Efficient Mapping tool. The binary alignment map files containing mapped 
reads were then visualized on the Integrative Genomics Viewer as illustrated 
for KIR2DS1, KIR2DS2, and KIR3DS1 genes (a) or using Profiler software (B) 
as illustrated for KIR2DL1, KIR2DL3, and KIR3DL1 genes from one 
representative International Histocompatibility Workshop DNA sample.

FigUre 1 | long-range (lr) killer cell immunoglobulin-like receptor 
(Kir) gene amplification. (a) Six intergenic KIR primers (four forward 
primers: #1, #2, #4, and #6 and two reverse primers: #3, and #5) were used 
to perform LR PCR amplifications. These primers were able to amplify full 
length KIR genes in both the centromeric and telomeric regions belonging 
either to the A or B KIR haplotype. (B) Illustrative 0.7% agarose gel 
electrophoresis of LR PCR amplifications spanning the KIR genome of three 
representative International Histocompatibility Workshop (IHW) DNA samples. 
One IHW sample with an AA KIR genotype (i.e., SPO010) and two DNA 
samples with an AB KIR genotype (i.e., OLGA and BOB) were used. 
Amplicon lengths vary from 4 to 5 kb for the KIR3DP1 gene to 9–17 kb for all 
other KIR genes. Two specific bands of 4 and 5 kb corresponding to two 
KIR3DP1 variants were observed for BOB sample. M: Tandem ladder Lonza 
Seakem size marker; C−: H2O, negative control.
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average, 82.4% of both reads passed with a Q30  >  82% (data 
not shown). Thus, analysis of FastQ data obtained from all IHW 
samples reported an excellent quality control. The entire length 
of KIR genes was sequenced with good coverage as illustrated 
for KIR2DS1, KIR2DS2, and KIR3DS1 (Figure 2A) activating 
genes, and for KIR2DL1, KIR2DL3, and KIR3DL1 (Figure 2B) 
inhibitory genes using either IGV or Profiler software, respec-
tively. For all genes, the depth of coverage varies most at the 
beginning and at the end of the amplicons, but all key regions 
were sufficiently covered. In particular, we observed that mean 
coverage ranged from 62.5× (KIR2DS4) to 2,373.3× (KIR3DP1) 
leading to a mean coverage of 316.55× for all KIR genes except 
for KIR2DL5A genes since not analyzed using Profiler (Table 
S3 in Supplementary Material). A significant correlation was 
observed between mean coverage and genomic KIR length 
(r  =  0.85, p  <  0.0001) as illustrated Figure  3A. Indeed, the 
lower the genomic length, the higher the mean coverage is 
as illustrated for the KIR3DP1 gene. The mean percentage of 
mapping, established by the coverage of amplicon, ranged 
from 86.2% (KIR3DL2) to 98.2% (KIR2DP1 and KIR3DP1) 
(Figure  3B; Table S3 in Supplementary Material) suggesting 
that sufficient read depth was obtained for determination of all 
KIR genes. However, KIR2DL5A reads could have been mapped 

only using BWA-MEM software and BiRD algorithm. Overall, 
these results demonstrate the efficiency of our NGS-KIR allele 
typing approach to capture the full KIR genomic locus and the 
uniformity of coverage for each KIR locus confers assurance for 
KIR allele assignment.

specificity of ngs-Based Kir allele Typing
Due to the high degree of KIR polymorphisms and the fact that 
NGS technology generates a lot of sequencing reads, three differ-
ent algorithms were evaluated to increase the reliability of KIR 
allele assignment as reported for NGS-based HLA typing (50). 
KIR allele assignment was first done manually and then con-
firmed using both BiRD pipeline and Profiler software. Overall, 
resulting KIR allele assignments of the 30 reference IHW samples 
were feasible for all loci and for the majority of samples without 
remaining ambiguities (Table 1).

We further evaluated the strength of our NGS-based method 
for KIR allele assignment. For all IHW reference samples tested 
(N = 30), the number of KIR alleles previously known in the 
IPD/KIR database and those obtained by our NGS-KIR based 
typing approach was compared for each KIR locus. As an 
example, from the 30 IHW samples tested, only 5 KIR3DL3 
alleles out of 60 expected alleles for this framework gene 
were previously known in the IPD/KIR database (Table S1 in 
Supplementary Material), 54 KIR3DL3 alleles from 24 het-
erozygous and 6 homozygous samples (Table 1) were assigned 
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FigUre 3 | coverage and percentage of mapping obtained for killer 
cell immunoglobulin-like receptor (Kir) genes. (a) Correlation graph 
representing mean coverage for each KIR gene and KIR genomic length. 
Mean coverage was estimated for each KIR gene present for all International 
Histocompatibility Workshop (IHW) samples using Profiler software. Statistical 
significance was determined using the Pearson’s rank coefficient using 
GraphPad Prism version 6 software (GraphPad Software, La Jolla, CA, USA). 
A significant p-value between mean coverage and genomic KIR length was 
observed (p < 0.0001). (B) Bars representing the percentage of mapping of 
each centromeric and telomeric KIR gene present for all IHW samples 
determined using Profiler software. KIR2DL5A locus was not included since 
not analyzed using Profiler.
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by our NGS-based KIR allele typing approach (Figure 4). Our 
NGS-based KIR allele typing approach permits identification 
of additional framework KIR alleles, e.g., KIR3DP1 (n = 43), 
KIR2DL4 (n = 48), and KIR3DL2 (n = 44) (Table 1; Figure 4). 
NGS-based KIR typing method also allows the identification 
of polymorphisms of well-functionally characterized KIR 
by increasing the number of assigned KIR alleles of the 30 
IHW samples available in the IPD/KIR database (Table S1 in 
Supplementary Material), e.g., KIR2DL1 (n  =  30), KIR2DL2 
(n  =  10), KIR2DS1 (n  =  11), KIR2DS2 (n  =  12), KIR3DL1 
(n = 35), and KIR3DS1 (n = 11) (Table 1; Figure 4). The num-
ber of activating KIR2DS1, KIR2DS2, and KIR3DS1 assigned 
alleles by NGS remained low because only IHW samples with 
the corresponding activating KIR gene were included in this 
analysis. Overall, a higher number of KIR alleles were identified 
from these 30 IHW samples by our shotgun NGS methodology 
compared to those previously characterized by other less sensi-
tive methods, as referred to in the IPD/KIR database (N = 422 
vs N = 233, respectively).

The knowledge of KIR allele typing of IHW samples, recently 
updated thanks to an exome capture (47), permits to evaluate the 
concordance of our NGS-based KIR allele results (Table 1) with 

those of Norman et al. since 22 IHW samples were commonly 
used in both methods (Table S1 in Supplementary Material). 
In this case, a large number of allelic KIR typing for all loci was 
compared ensuring the reliability of our NGS-based KIR allele 
typing method. For each KIR locus and for the 22 IHW concerned 
samples, KIR allele typing results were divided into: concordant 
(one KIR allele matched for homozygous samples or two KIR 
alleles matched for heterozygous samples), semi-concordant (one 
KIR allele matched and one KIR allele mismatched), and discord-
ant (one KIR allele mismatched for homozygous sample or two 
KIR alleles mismatched for heterozygous sample). For each KIR 
allele, only the first three digits were taken into account for the 
assessment of concordance. Complete concordance (100%) of 
KIR allele typing was demonstrated in 11 KIR genes. The concord-
ant genes were KIR2DS2 (8 samples out of 8), KIR2DL5B (2 out  
of 2), KIR2DS3 (1 out of 1), KIR2DL1 (18 out of 18), KIR2DL4 
(22 out of 22), KIR3DL1 (17 out of 17), KIR3DS1 (7 out of 
7), KIR2DL5A (7 out of 7), KIR2DS5 (6 out of 6), KIR2DS1 
(6 out of 6), and KIR2DS4 (16 out of 16) (Figure 5). Concordant 
results were observed, but at a lesser frequency for KIR3DL3 
(20  out of  22, i.e., 91%), KIR2DL2 (4 out of 5, i.e., 80%), 
KIR2DL3 (7 out of 8, i.e., 88%), KIR2DP1 (16 out of 20, i.e., 80%), 
KIR3DP1 (16 out of 18, i.e., 89%), and KIR3DL2 (16 out of 18, 
i.e., 89%) (Figure 5).

Ten semi-discordant KIR allele results and two discordant 
KIR allele results between our NGS-based method and exome 
data were identified (Table  2). Except for the pseudogene 
KIR2DP1, with four IHW samples, these discrepancies were 
limited to 1 or 2 out of 22 IHW samples per locus (Table  2). 
KIR allele determinations using manual, BiRD algorithm, and 
different versions (the latest one Rev 2.0.188) of Profiler software 
were carefully reviewed. Only IHW samples sequenced on dif-
ferent runs and with the same KIR allelic results were reported 
(data not shown). These potential discrepancies (5%), possibly 
linked to the design and implementation of each algorithm, need 
to be further validated by another typing method such as SSP or 
sequencing.

Overall, our NGS-based method and exome data showed a 
rate of concordance of 95% for all loci, established for all KIR 
genes on 22 IHW samples, suggesting a reliable method.

DiscUssiOn

In this study, we developed an NGS-based KIR allele typing 
approach to characterize the sequence of all polymorphic KIR 
genes. Our method of typing all KIR genes at high resolution 
provides an alternative, easily implemented method practice, to 
study the KIR allele polymorphisms. It may be a cheaper method 
than exome capture (47). This tool is currently adapted to the 
KIR gene large-scale analysis. Using our approach, the majority 
of KIR alleles previously uncharacterized by standard methods 
were clearly identified from genomic DNA of 30 B-EBV cell lines 
from the 10th IHW. High quality DNA samples, high fidelity 
of enzyme polymerase, and a reliable library preparation were 
needed since evaluation of different Taq polymerase enzymes 
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TaBle 1 | next-generation sequencing-based killer cell immunoglobulin-like receptor (Kir) allele typings of 30 reference B-eBV cell lines from the 10th international histocompatibility Workshop.

iD centromeric Kir genes Telomeric Kir genes

3Dl3 2Ds2 2Dl2 2Dl3 2Dl5B 2Ds3 2DP1 2Dl1 3DP1 2Dl4 3Dl1 3Ds1 2Dl5a 2Ds3 2Ds5 2Ds1 2Ds4 3Dl2

AMAI *013 + *00301 + *003 *0080101 *001 *00301 *00101
*041 *004 *006 *0080102

AMALA *00402 *00101 *00301 *001 *00201 *00302 *007 *00102 *01502 *001 *00201 *00201 *001 *0020105
*00802 *00901 *00501 *01301 *0070102

BOB *00101 *00101 *00301 *00201 *00301 *00302 *002 *001 *002 *01301 *00101 *00201 *00201 *001 *0020101
*01303 *00302 *005 *0070102

BRIP *00801 *00104 *00301 + *00103 *0010201 *00302 + *0010305 *008 *01301 *00103 *00103 *002 *003 *0070102
*004 *00201 *0020101 *00501 *00501 *00201 *0070103

CALOG *00207 + *00201 *00302 *00302 *008 *001 *00301 *00101
ERO *01001 *010 *004 *00601 *00301

COX *00102 *00201 *00301 *00201 *005 *00501* *005010 *055 *00101 *00201 *00201 *010 *00103
*00103 *007 *006 *011 *007

DEU *00101 *00101 *001 *00201 *00301 *00201 *001 *00801 *00101 *003 *01001
*01402 *006 *011 *00501 *010 *01101

DKB *00101 + *00301 *00201 *00302 *0010201 *002 *00101 *0020101
*006 *006 *00103 *02001 *00902

HO301 *014 *00101 *00101 *010 *00103 *00102 *004 *003010 *00102 *002 *00103 *001 *00201
*002 *00301 *00201 *010 *004 *00201

HID *01402 *00101 *00201 *00302 *00302 *00102 *01502 *00101 *00201
*018 *010

HOM-2 *00101 + *00201 *00302 *00302 *00801 *001 *00301 *0010102
*0090101 *005 *006 *00802 *004 *00601 *00501

HOR *001 + *00301 *00201 + *00501 *01301 *00101 *002 *00201 *007
*048 *021

JHAF *00901 *00101 *002 *00302 *00302 *011 *00501 *010 *001
*026 *01001

JVM *007 *00101 *00301 + *005 *00302 *001 *00103 *00101 *003010 *00101
*00801 *00302 *00801 *008 *009

KAS011 *00901 + *002 *00201 *00302 *00103 *008 *01301 *00101 *00201 *00201 *00301 *01001
*01302 *00301 *00302 *006 *005 *019

KAS116 *013 + *002 *00302 + *011 *00501 *010 *0103
*01501 *010

LBUF *00301 + + *001 *002 + *00302 *00102 + + +
*0090101 *0090102 *011

LUY *001 *00101 *00201 *00302 *00302 *00801 *00401 *00601 *001
*02701 *00501 *00301 *011 *00501 *010 *00501

MOU *00207 *001 *00201 *00302 *00302 *00801 *00101 *00301 *010
*00801 *005 *00401 *00601 *01101

(Continued)
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iD centromeric Kir genes Telomeric Kir genes

3Dl3 2Ds2 2Dl2 2Dl3 2Dl5B 2Ds3 2DP1 2Dl1 3DP1 2Dl4 3Dl1 3Ds1 2Dl5a 2Ds3 2Ds5 2Ds1 2Ds4 3Dl2

OLGA *00201 *00101 *00201 *00302 *00302 *005 *001 *01301 *00103 *002 *002 *010 *00701
*00902 *006 *011 *00501

PE117 *00101 *00101 *00201 *00201 *00901 *00501 *00401 *01301 *001 *00201 *00201 *00601 *00701
*01002 *00201 *00301 *00302 *00802 *018

PF04015 *01402 *00101 *00101 *001 *011 *00501 *010 *00103
*003

RSH *0040202 *00101 + + *004 *00201 *00302 *00304 *0010307 *00501 *006 + +
*00901 *009 *01201 *008 *011 *017

SAVC *00801 *00101 *008 *00302 *00302 *00102 *00401 *006010 2*00202
*00202 *00201 *00802 *01502 *00301

SPO010 *00206 + *00201 *00302 + *011 *0050101 *010 *001

T7526 *0090101 *00101 *00201 *00302 *00302 *00501 *01502 *013 *00101 *00201 *002 *001 *0020105
*00102 *0070102

VAVY *002 *00101 *002 *002 *00302 *011 *00501 *010 *0010302
*017 *00201 *003 *00302 *006

WT51 *00103 *00101 + + *00201 + *001 + + *00501 *01301 *00101 + *002 *002 +
*036 *004 *00501

WDV *00301 *00101 *003 + *002 *002 *00302 *00302 *00501 *01301 *00501 *002 *00201 *0070103
*0090101 *00901

YAR *00102 + *002 + *00302 *0010201 + + +
*003 *006 *011

Results are presented according to the centromeric or telomeric localization of KIR genes on human genome. KIR alleles were named according to the last nomenclature available on the IPD/KIR database (http://www.ebi.ac.uk/ipd/
kir/). + indicates the presence of a specific KIR gene. ID, sample identification.

TaBle 1 | continued
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FigUre 4 | number of killer cell immunoglobulin-like receptor (Kir) 
allele assigned by next-generation sequencing (ngs). Number of KIR 
alleles assigned for each centromeric and telomeric KIR gene of 30 
International Histocompatibility Workshop samples obtained by our NGS 
method. KIR allele assignment for each locus and for all samples 
corresponds to the combined KIR allelic results obtained using manual 
pipelines, BiRD, and Profiler software.
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and library preparation kits gave conflicting results (data not 
shown).

Our study evaluated the performance of different algorithms 
for KIR allele assignment. Reliability of the manual, BiRD pipe-
line, and Profiler software was tested since neither algorithm alone 
was able to provide 100% accuracy for all KIR loci. Our results 
showed that the Profiler software was reliable to assign KIR alleles 
through the full length of each KIR gene, excluding KIRDL5A 
variants. In this case, KIR2DL5A and KIR2DL5B sequences were 
too closed, and Profiler software failed to accurately analyze both 
sequences. Since all coding, non-coding, and regulatory regions 
were explored, one could expect that a lot of new KIR alleles will 
soon be described. Analysis with Profiler consists of two distinct 
parts. The first part is performed in three steps in a Linux environ-
ment: the first step corresponds to the merging of each R1 and R2 
issued from the same cluster to each other, each time that a com-
plementarity of at least 10 bases is found, with correction or base 
calling inconsistencies using a quality value for each nucleotide. 
There are two interests in this step: longer sequences and lower 
sequences number were analyzed. The second step corresponds 
to the phasing of each sequence based on KIR databases using 
Blast algorithm. Third, the data file from Blast was used to merge 
all sequences together to construct each allele. In this step, cal-
culation for depth of each position and the number of sequences 
used for each allele are determined. The second part is done on a 
Windows environment. A friendly interface presents graphics of 
all sequences for all studied loci. Assignment of all sequences is 
done using a database, highlighting all mismatches compared to 
reference and also differences between KIR alleles selected. Each 
allele is scored for quality control as per the European Federation 
for Immunogenetics guideline.

Killer cell immunoglobulin-like receptor alleles of all genes 
including KIR2DL5A, but excluding the pseudogenes KIR2DP1 
and KIR3DP1, were assigned using BiRD algorithm. However, 
many allelic ambiguities remained when this pipeline was used 
alone (data not shown). It is likely that this is due to the fact that 
only coding regions (CDS) were taken into account for allele vari-
ation comparison. Analysis of all exon/intron polymorphisms, 
CNV detection, summary statistics of call accuracy for KIR 
gene content (presence/absence) and for KIR allele identifica-
tion needs to be completed. Furthermore, the two pseudogenes 
KIR2DP1 and KIR3DP1 could be manually added to the BED file 
describing the gene positions on the genome in order to include 
them in the analysis pipeline.

Due to the time-consuming nature of manual KIR allele 
assignment, two different algorithms are needed to ensure the 
reliability of NGS-based typing methods for the identification of 
KIR allele polymorphisms.

Until now, KIR genetic population studies have often been 
restricted to the identification of KIR gene content, or of A and/
or B KIR haplotypes (51, 52). Determination of KIR alleles in 
healthy individuals of a given population may provide a bet-
ter definition of KIR haplotypes (52) and KIR gene linkage 
disequilibrium (53) and will considerably increase the IPD/KIR 
database.

The implementation of our suitable NGS.KIR method will 
enable analysis of all allelic polymorphism within KIR genes 
extending to all coding, non-coding, and regulatory regions. A 
link between KIR allelic polymorphism and the expression level 
and/or function of the corresponding KIR+ NK cells is necessary 
for all KIR genes as previously established for the expression level 
of HLA-A and HLA-Cw molecules (54–56). We speculate that 
KIR allelic polymorphisms may affect not only the distribution 
and function of these gene products but also the licensing of NK 
subpopulations as described for HLA class I molecules (57, 58). 
Deep analysis of KIR+ NK cell phenotype and function depend-
ing on KIR and HLA class I alleles present is needed to assess 
the diversity of KIR+ NK cell repertoire (21, 59), as well as the 
specificity of anti-KIR antibodies (30, 60). Overall, the analysis of 
KIR allelic polymorphisms combined with the autologous HLA 
class I environment will enable better evaluation of KIR+ NK cell 
functional subpopulations (61). This functional KIR+ NK  cell 
repertoire will be better defined by taking into account the nature 
of KIR alleles present in addition to the autologous HLA class I 
environment.

Investigation of KIR allelic polymorphism may be of an 
immunological interest in the context of viral infections such as 
those related to CMV (62), HIV (63), HCV (64), and of human 
reproduction (65). In the context of HSCT, inclusion of KIR 
allele typing in addition to HLA typing may provide a better 
evaluation of HSC donor’s KIR+ NK cell repertoire (21, 59, 60, 
66, 67). An identification of those with the best antileukemic 
potential will provide a potential tool to determine an early 
posttransplant hematopoietic chimerism when donor and 
recipient have identical KIR genotypes (68) as well as the impact 
of KIR+ NK cell alloreactivity on HSCT outcome (69–73). The 
functional relevance of typing both KIR and HLA genes at 

125

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 2 | Discordant killer cell immunoglobulin-like receptor (Kir) typing of international histocompatibility Workshop samples observed between 
typing obtained by exome capturea (47) and those obtained by next generation sequencing (ngs) in this study.b
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FigUre 5 | specificity of next-generation sequencing (ngs)-based killer cell immunoglobulin-like receptor (Kir) allele typing. Bars representing the 
numbers of KIR allele typing obtained by our NGS-based method from 22 International Histocompatibility Workshop (IHW) samples compared with those assigned 
by exome analysis (47). In this case, KIR allele typing for each locus and for all samples corresponds to the combined KIR allelic results obtained using manual 
pipelines, BiRD, and Profiler softwares. Each bar represents one specific centromeric or telomeric KIR gene. Concordant (one KIR allele matched for homozygous 
typing or two KIR alleles matched for heterozygous typing), semi-discordant (one KIR allele mismatched for heterozygous typing), and discordant KIR allele typing 
(one KIR allele mismatched for homozygous typing or two KIR alleles mismatched for heterozygous typing) were highlighted by a specific color code. Representative 
KIR3DL2 typing of IHW samples obtained by exome analysis compared to those assigned by NGS method is provided in the right of the graphs. Concordances are 
highlighted in bold and discordances in italics.
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high resolution may help determine their combined effects on 
outcome of HSCT.
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The major histocompatibility complex (MHC) class I chain-related A (MICA) is the most 
polymorphic non-classical MHC class I gene in humans. It encodes a ligand for NKG2D 
(NK group 2, member D), an activating natural killer (NK) receptor that is expressed 
mainly on NK cells and CD8+ T cells. The single-nucleotide polymorphism (SNP) 
rs1051792 causing a valine (Val) to methionine (Met) exchange at position 129 of the 
MICA protein is of specific interest. It separates MICA into isoforms that bind NKG2D 
with high (Met) and low affinities (Val). Therefore, this SNP has been investigated for 
associations with infections, autoimmune diseases, and cancer. Here, we systematically 
review these studies and analyze them in view of new data on the functional conse-
quences of this polymorphism. It has been shown recently that the MICA-129Met variant 
elicits a stronger NKG2D signaling, resulting in more degranulation and IFN-γ production 
in NK cells and in a faster costimulation of CD8+ T cells than the MICA-129Val variant. 
However, the MICA-129Met isoform also downregulates NKG2D more efficiently than 
the MICA-129Val isoform. This downregulation impairs NKG2D-mediated functions at 
high expression intensities of the MICA-Met variant. These features of the MICA-129Met/
Val dimorphism need to be considered when interpreting disease association studies. 
Particularly, in the field of hematopoietic stem cell transplantation, they help to explain the 
associations of the SNP with outcome including graft-versus-host disease and relapse 
of malignancy. Implications for future disease association studies of the MICA-129Met/
Val dimorphism are discussed.

Keywords: nK cells, T cells, activating nK receptor, costimulation, single-nucleotide polymorphism, autoimmune 
diseases, cancer, hematopoietic stem cell transplantation

inTRODUCTiOn

The major histocompatibility complex (MHC) class I chain-related A (MICA) is the most polymor-
phic non-classical MHC class I gene in humans, and 105 alleles are known encoding for 82 protein 
variants (http://www.ebi.ac.uk/imgt/hla/, release 3.25.0). MICA is encoded within the human 
leukocyte antigen (HLA) complex close to HLA-B (1, 2). The protein structure is similar to classical 
class I molecules, but MICA is not associated with β2-microglobulin and does not present peptides. 
MICA is constitutively expressed only on a few cell types, including gastrointestinal epithelium, but 
is induced due to cellular and genotoxic stress (3, 4), malignant transformation, or virus infection 
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(5, 6). MICA is a ligand for NKG2D (NK group 2, member D), 
an activating natural killer (NK) receptor encoded by the KLRK1 
gene (7). NKG2D is expressed on most human NK cells, CD8+ αβ 
T cells, γδ T cells, iNKT cells, and subsets of effector or memory 
CD4+ T cells (8, 9). On NK cells, NKG2D signaling elicits kill-
ing of target cells (10) and secretion of IFN-γ (11). On CD8+ 
αβ T cells, NKG2D provides a costimulatory signal to activate 
naïve cytotoxic T lymphocytes (12). NKG2D contributes to the 
elimination of tumor cells (13) and plays a role in the defense 
against pathogens (14, 15). In addition to MICA, MICB and the 
UL16-binding proteins (ULBP) encoded by the retinoic acid early 
transcript 1 (RAET1) family function as ligands for NKG2D. 
MICB is also very polymorphic with 42 alleles encoding 28 
protein variants (http://www.ebi.ac.uk/imgt/hla/, release 3.25.0). 
The RAET1 gene family is localized on chromosome 6 outside 
the HLA complex and six loci encode functional proteins (16). 
RAET1 genes are less polymorphic than MICA and MICB.

Polymorphisms of MICA have been investigated for their role 
in infections, autoimmune diseases, and cancer (17–21). The 
single-nucleotide polymorphism (SNP) rs1051792 (G/A) causing 
a valine (Val) to methionine (Met) exchange at position 129 in 
the α2 domain of the MICA protein has gained specific interest. 
It separates MICA alleles into two groups (22). MICA isoforms 
containing a methionine at position 129 bind NKG2D with high 
affinity, whereas those with a valine bind NKG2D with low affin-
ity. High-affinity alleles include MICA*001, *002, *007, and *017; 
among the low-affinity alleles are MICA*004, *006, *008, *009, 
and *010 (23). Due to its functional consequences, the MICA-
129Met/Val dimorphism has been investigated in several disease 
association studies. Here, we review these studies in view of new 
data on the functional consequences of this amino acid variation 
elicited after binding to NKG2D.

MiCA-129Met/val DiSeASe  
ASSOCiATiOn STUDieS

In September 2016, we searched Pubmed for MICA-129Met/
Val disease association studies using the key words rs1051792, 
MICA-129, MICA AND polymorphism AND Met, and MICA 
AND polymorphism AND Val. Moreover, we exchanged 
polymorphism by SNP, Met by methionine, and Val by valine. 
We identified 17 publications, in which an association of the 
MICA-129Met/Val dimorphism with a disease or disease com-
plication has been investigated. One study in Chinese language 
(24) appeared to be not independent of a larger study published in 
English (25). Thus, we analyzed 16 independent studies published 
between 2005 and 2015 (Table S1 in Supplementary Material). 
Three studies are small with less than 100 cases. All others are of 
a medium size with more than 100 but less than 1,000 patients 
included, and most studies used a case–control design.

Eight studies investigated associations with autoimmune dis-
eases, i.e., ankylosing spondylitis (AS) (26), rheumatoid arthritis 
(RA) (27–29), inflammatory bowel disease (IBD) (25, 30) [includ-
ing ulcerative colitis (UC) and Crohn’s disease], systemic lupus 
erythematosus (SLE) (28), type I diabetes (31), latent autoimmune 
diabetes in adults (LADA) (31), and psoriasis (32). In one study, 
the MICA-129 SNP has not been determined directly. Instead, the 

SNP rs1051794 was typed and reported to be in complete linkage 
disequilibrium with the rs1051792 (27). Five studies reported on 
malignancies, i.e., nasopharyngeal cancer (33), hepatitis B virus 
(HBV)-induced hepatocellular carcinoma (HCC) (34), cutane-
ous malignant melanoma (35), and relapse of malignancy after 
hematopoietic stem cell transplantation (HSCT) (36, 37). Three 
studies investigated infections or their complications, i.e., HBV 
infection and HBV-induced HCC (34), left ventricular systolic 
dysfunction (LVSD) in chronic Chargas heart disease (38), and 
ocular toxoplasmosis (39). One study investigated an association 
of the MICA-129Met/Val dimorphism with recurrent miscar-
riage (40). The two studies on HSCT (36, 37) investigated besides 
relapse also other outcomes including graft-versus-host disease 
(GVHD).

Three studies, on recurrent miscarriage (40), ocular toxoplas-
mosis (39), and malignant melanoma (35), failed to demonstrate 
an association with the SNP. Thus, 81% of the studies showed an 
association at least for a subgroup, e.g., juvenile AS, whereas in 
all patients with AS, the association was dependent on HLA-B27 
(26), or a sub-phenotype, e.g., severe LVSD (38). However, we 
must assume that other negative association studies have not 
been published. In seven studies, a MICA-129 allele and the cor-
responding homozygous genotype were both associated with a 
disease risk (25, 28, 29, 31, 32, 34, 38). The odds ratio (OR) was 
then always higher for the genotype than the allele. In six studies, 
the Met  allele and/or the Met/Met genotype were found to be 
associated with a risk, including autoimmune diseases [juvenile 
AS (26), UC (30), SLE (28), and psoriasis (32)], a malignancy 
(HBV-induced HCC) (34), and a complication of an infection 
(severe LVSD in chronic Chargas disease) (38). In three studies, 
the Val allele and/or the Val/Val genotype has been identified 
to confer a risk for autoimmune diseases [including RA (27), 
UC (25), and diabetes (31)] and for nasopharyngeal carcinoma 
(NPC) (33). Moreover, rheumatoid factor (RF) positivity in 
RA patients has been associated with the Val allele and the Val/
Val genotype (29). In the studies on HSCT, different outcomes 
showed different associations. In one study (36), the Met/Met 
genotype was associated with an increased risk of relapse and the 
Val/Val genotype with an increased risk of chronic GVHD. In our 
recent study (37), the Met/Met genotype conferred a risk of acute 
GVHD, whereas having Met alleles reduced the risk to die from 
acute GVHD. Overall, the Val allele was associated with a higher 
mortality after HSCT (37).

The results of these disease association studies do not allow 
for a simple unifying interpretation, such as the high-affinity 
MICA-129Met variant being associated with an activation 
of the immune system resulting in a lower risk of infections 
and cancer but higher risk of autoimmunity (Figures  1A,B). 
Autoimmune diseases are associated with both variants even 
within the same disease entity. UC, e.g., has been associated 
with the Met/Met genotype in a small study from Spain (30) but 
with the Val allele and Val/Val genotype in a larger study from 
China (25). RA has been associated with the Val allele in a study 
from France and Germany (27), but no association was found 
in cohorts from Japan (28) and Tunisia (29). Notably, a role of 
the NKG2D pathway has been reported for the pathogenesis 
of RA (41) and SLE (42), although this has not been linked to 
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FiGURe 1 | Reported associations of the homozygous MICA-129 genotypes (A) and the MICA-129 alleles (B) with health risks [odds ratio (OR) > 1] or 
advantages (OR < 1). Shown are ORs with 95% confidence intervals (CI) or hazard ratios reported by Boukouaci et al. (36) and Isernhagen et al. (37) (overall 
survival) in event-time data. The number of patients analyzed in the studies is indicated at the y-axis. Studies reporting on autoimmune diseases are shown by open 
and closed blue symbols and malignancies by red symbols; studies reporting complications of infections (LVSD, Chargas disease; HCC, hepatitis B virus infection) 
are shown by green frames, and others are displayed by black symbols. The investigated diseases or complications and the references for the studies are indicated. 
(A) MICA-129Met/Met genotype effects are directly displayed. For studies that reported MICA-129Val/Val genotype effects [chronic GVHD (36), NPC (33), UC (25), 
RA (27), T1D, and LADA (31), indicated by brown font], the graph displays the corresponding effect of the pooled MICA-129 Met/Met and MICA-129Met/Val 
genotypes to allow for a direct comparison. (B) MICA-129Met allele effects are directly displayed. For studies that reported MICA-129Val allele effects [UC (25), T1D, 
and LADA (31), indicated by brown font], the graph displays the corresponding effect of the MICA-129Met allele; ORMet = 1/ORVal and 95%-CIMet = (1/CIVal, 
upper, 1/CIVal, lower). Abbreviations: CPs, cutaneous psoriasis; GVHD, graft-versus-host disease; HCC, hepatocellular carcinoma; JAS, juvenile ankylosing 
spondylitis; LADA, latent autoimmune diabetes in adults; LVSD, left ventricular systolic dysfunction; NPC, nasopharyngeal carcinoma; PsA, psoriatic arthritis; RA, 
rheumatoid arthritis; SLE, systemic lupus erythematosus; T1D, type 1 diabetes; UC, ulcerative colitis.
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polymorphisms. Juvenile AS has been associated in a small 
study with the Met/Met genotype (26), and a larger sequencing 
study identified the MICA*007:01 allele that encodes a methio-
nine at position 129 as a risk allele for AS in both Caucasian and 
Han Chinese populations (43). However, MICA*019, encoding 

a valine-129, has been identified as the major risk allele in Han 
Chinese (43). Malignancies were found to be associated with 
Val/Val genotype in the case of NPC (33) but with the Met/Met 
genotype in the case of relapse after HSCT (36). These different 
associations could suggest that the observed associations are 
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random or dependent on the population studied. However, 
since the MICA-129Met/Val dimorphism is functional, it could 
also indicate that we need to better understand this function 
to predict its consequences in the pathophysiology of different 
diseases in various populations, which might be exposed to 
different interfering environmental factors. This assumption is 
supported by genome-wide association studies (GWAS), which 
have assigned disease risks for NPC (44), HCC (45, 46), cervical 
cancer (47, 48), and asthma (49) or advantages, such as HIV 
long-term non-progression (50) to the MICA gene region in an 
unbiased manner.

FUnCTiOnAL COnSeQUenCeS OF 
THe MiCA-129Met/val DiMORPHiSM

It has been shown by Steinle and colleagues that MICA-129Met 
isoforms bind NKG2D with high affinity in contrast to MICA-
129Val isoforms that bind with low affinity (22). Yoshida and 
colleagues combined the MICA-129Met variant with the A9 
variant of a microsatellite polymorphism in the transmembrane 
(TM) region and the MICA-129Val variant with the A5-TM 
variant in GST-fusion proteins (28). NK92MI cells showed 
a reduced NKG2D expression and killed K562 cells less effi-
ciently when exposed to the MICA-129Met-A9-TM variant, 
but IFN-γ production was increased (28). We recently studied 
the consequences of binding of the two MICA-129 variants 
to NKG2D on primary NK cells and CD8+ T cells using cell 
lines transfected with expression constructs and recombinant 
Fc-fusion proteins differing only in amino acid 129 (37, 51). 
The recombinant MICA-129Met variant stimulated a stronger 
phosphorylation of SRC family kinases in NK cells than the 
MICA-129Val variant. Subsequently, the MICA-129Met ligand 
triggered more degranulation and IFN-γ production than the 
MICA-129Val ligand (Figure 2A). We then exposed NK cells to 
target cells expressing different amounts of the MICA-129 vari-
ants. The extent of degranulation and IFN-γ secretion correlated 
positively with the MICA expression intensity on the target cells 
but only for the MICA-129Val isoform. The expression intensity 
of the MICA-129Met isoform, in contrast, had either none or 
even a negative effect on the extent of degranulation, target cell 
killing, and IFN-γ release (37). On CD8+ T cells, the MICA-
129Met isoform induced an earlier costimulatory activation 
than the MICA-129Val isoform (Figure  2B). Importantly, the 
MICA-129Met ligand induced also a stronger downregulation 
of NKG2D on both NK and CD8+ T cells than the MICA-129Val 
ligand. This downregulation of NKG2D impaired the capability 
of NK and CD8+ T cells to receive signals via NKG2D (37). Thus, 
MICA-129Met ligands, which elicit strong NKG2D responses, 
stimulate in parallel a robust negative feedback signal by down-
regulation of NKG2D that limits the initially stronger effects of 
MICA-129Met ligands. These data show that the biological effect 
of the MICA-129Met/Val dimorphism changes with the MICA 
expression intensity. Variant MICA-129Met triggers more 
NKG2D signals at low expression intensities, whereas variant 
MICA-129Val elicits more NKG2D effects at high expression, 
at which the MICA-129Met variant already downregulates 
NKG2D leading to impaired function. Thus, the biological effect 

of the SNP can hardly be predicted without information on the 
expression intensity of MICA.

It is known that expression intensities vary for certain MICA 
alleles (52, 53). The G allele of the SNP at -1878 (rs2596542) in 
the promoter region of the MICA gene region, e.g., was found 
to have a higher transcriptional activity (54). Biological effects 
of the MICA-129Met/Val dimorphism can be expected to be 
modified by polymorphisms affecting MICA gene expression. 
We have investigated whether the Met/Val dimorphism itself 
affects MICA expression. In transfected cells, more of the MICA-
129Met variant was retained in intracellular compartments 
(51). A similar alteration of the intracellular transport has been 
described for MICA-A5.1 variants (55). Thus, the combination 
of polymorphisms affecting transcription and intracellular 
transport of MICA could modify the effect of the Met/Val 
dimorphism.

Another important aspect of MICA is the generation of solu-
ble MICA (sMICA) by proteolytic shedding. sMICA can induce 
NKG2D downregulation (56, 57) resulting in tumor immune 
escape (58). Some MICA polymorphisms have been reported 
to affect the amounts of sMICA in sera of patients including 
the SNP at -1878 (rs2596542) in the promoter region (34, 45, 
59) that affects transcription (54), a microsatellite in exon 5 
encoding the TM region (60, 61), and the MICA-129Met/Val 
dimorphism. In patients with UC, the MICA-129Val/Val geno-
type was associated with higher sMICA serum levels (25), and 
the MICA-129Val allele was also associated with higher sMICA 
serum levels in HBV patients and controls (34). In transfected 
cells, we found that the MICA-129Met isoform was more suscep-
tible to shedding than the MICA-129Val isoform (51). However, 
due to the intracellular retention of the MICA-129Met variant 
(51), less sMICA might appear in sera (25, 34). Notably, intracel-
lular retention and preferred shedding both appear to limit the 
expression of the high-affinity MICA-129Met isoform at the 
plasma membrane.

MiCA-129Met/val DiSeASe 
ASSOCiATiOnS in view OF 
BiOLOGiCAL FUnCTiOnS

Recent data on the MICA-129Met/Val variation demonstrate 
the complexity of the functional consequences of this exchange 
of a single amino acid (37, 51). There are several layers of this 
complexity, which are as follows: (1) the function of the variant is 
not constant but dynamic (37); it depends on the MICA expres-
sion intensity, and the direction of the biological effect can invert 
for the MICA-129Met variant at higher expression. (2) Epistatic 
effects must be expected for this SNP as polymorphisms affecting 
the expression of MICA will modify the functional effects of the 
MICA-129Met/Val isoforms. Moreover, the expression intensity 
of NKG2D can be modified by SNPs in the KLRK1 gene (62) and 
those might interact with the MICA-129 variants. Other genes 
within the NKG2D pathway including other ligands might also 
show epistatic effects (63). (3) MICA can target NKG2D on 
several cell types, and biological effects on different cell types 
might be synergistic or antagonistic. An activation of NK cells 
and a costimulation of CD8+ T cells both can promote antitumor 
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FiGURe 2 | Summary of functional effects of MiCA-129 variants depending on expression intensity. (A) For target cells expressing the MICA-129Val 
variant, the degree of natural killer (NK) cell cytotoxicity and IFN-γ production increases steadily with the MICA expression intensity. Augmented expression of the 
high-affinity MICA-129Met isoform, in contrast, has none or even a negative effect on these NK cell functions due to a rapid downregulation of NKG2D on NK 
cells. (B) Antigen-dependent costimulation of CD8+ T cells with the MICA-129Met variant allows for an earlier antigen-dependent activation than costimulation 
with the MICA-129Val variant. However, the downregulation of NKG2D in response to MICA-129Met ligands impairs any subsequent NKG2D-dependent 
costimulation and T cell activation. The downregulation of NKG2D on CD8+ T cells is augmented with MICA-129Met expression intensity. The figure is reproduced 
from Isernhagen et al. (37).
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immunity. By contrast, a strong activation of NK cells might 
polarize an immune response to a Th1 reaction and reduce the risk 
to develop a Th2-mediated autoimmune disease. (4) Additional 
factors, such as sMICA or anti-MICA antibodies (36) that might 
neutralize sMICA, have been shown to be functionally important 
and have been determined in some of the disease association 
studies (25, 34, 36).

Currently, we mostly have not sufficient clinical and biological 
information to interpret the MICA-129Met/Val disease associa-
tion studies in view of the complex function of this polymorphism. 
However, the two HSCT studies do provide more information 
and illustrate the clinical effects of the MICA-129Met/Val dimor-
phism as explained previously in detail (37). In our study (37), 
the homozygous carriers of Met alleles had an increased risk to 
experience acute GVHD, possibly due to immediate strong effects 
of MICA-129Met variants on NKG2D signaling. Having at least 
one Met allele reduced the risk to die from acute GVHD likely due 
to a rapid downregulation of NKG2D on alloreactive CD8+ T cells 
mediated by engagement of a high-affinity MICA-129Met vari-
ant. Carrying a MICA-129Met allele increased in consequence the 
chance of survival in all patients and in patients receiving a MICA-
129-matched graft (37). Boukouaci and colleagues reported an 
increased risk of chronic GVHD for recipients with the Val/Val 
genotype, whereas the Met/Met genotype was associated with the 
risk of relapse (36). Sustained NKG2D-mediated activation of 
alloreactive CD8+ T cells would be expected if only MICA-129Val 
variants are present that fail to efficiently downregulate NKG2D, 
and this could increase the risk of chronic GVHD but reduce 
the risk of relapse. Thus, the different risk associations reported 
in the two studies are not arguing against the relevance of the 
MICA-129 dimorphism for the outcome of HSCT. The principal 
relevance of the NKG2D pathway for HSCT is further emphasized 
by studies showing an effect of the genotype of the NKG2D ligand 
RAET1L (64) and NKG2D itself (65) on the survival of patients. 
Moreover, matching for MICA alleles (66–69) and specifically 
for the MICA-129 polymorphism (70) is beneficial in HSCT. The 
huge effect of MICA-129 matching appears hardly explainable 
solely by the avoidance of a potential minor histocompatibility 
antigen. A “tuning” of the threshold of NKG2D signaling toward 
the affinity of NKG2D ligands present in an individual (52) and 
disturbance of this balance by mismatching could be considered 
as an alternative explanation.

Despite the functional relevance of the MICA-129 SNP, it 
cannot be excluded that some of the associations reported are 
random or caused by linkage disequilibrium with classical HLA 
genes. The association of MICA-129 with psoriasis (32) has been 
disproven in large GWAS cohorts (71). However, associations 
with NPC (33) and HCC (34) are supported by GWAS data point-
ing to the MICA gene region (44–46).

COnCLUSiOn

Information on functional consequences of a polymorphism is 
indispensable for understanding disease associations. The varia-
tion in the disease associated allele or genotype of MICA-129 in 
the published studies must not indicate random associations. For 
MICA-129, the biological function can change with expression 

intensity, epistatic interactions can be expected, the effect on 
different lymphocytes can vary, and modifying factors, such as 
sMICA, have to be considered. Notably, as expected for a func-
tional SNP with a minor allele (MICA-129Met) frequency rang-
ing from 48% in Africans to 30% in Asians (72), and being even 
the major allele reported in one of the analyzed studies (26), both 
alleles appear to confer advantages and disadvantages in specific 
situations suggesting balancing evolution of the MICA alleles. 
Since the MICA-129 dimorphism is considered as decisive for 
distinguishing low- and high-affinity variants (22), the frequency 
of alleles encoding high-affinity MICA variants is expected to 
match the frequency of the MICA-129Met variant. However, 
other MICA polymorphisms and their interaction need to be 
studied further (73).

In future studies, the MICA-129Met/Val dimorphism should 
be analyzed in larger cohorts. Detailed clinical information would 
help to understand why associations might differ in cohorts. 
Additional biological information should be obtained in parallel 
to genetic data. Most important would be data on MICA expres-
sion intensities in relevant tissues at relevant time points. Due to 
the complexity of MICA-129Met/Val effects, this polymorphism 
is unlikely to become a simple genetic biomarker for prediction 
of disease risks. However, it still may provide highly important 
information. We found that Val/Val genotype carriers undergoing 
HSCT specifically profited from a treatment with antithymocyte 
globulin to deplete T cells (37). This might be explained by a lack 
of a high-affinity MICA variant that efficiently downregulates 
NKG2D on alloreactive donor CD8+ T cells. Moreover, the MICA-
129 dimorphism might be relevant when considering therapies 
aiming at upregulation of MICA on tumor cells to sensitize them 
for NK cells (74, 75). Increasing the expression of MICA-129Met 
variants could result in opposite effects than intended.
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The coevolution of viruses and their hosts led to the repeated emergence of cellular alert 
signals and viral strategies to counteract them. The herpesvirus family of viruses displays 
the most sophisticated repertoire of immune escape mechanisms enabling infected cells 
to evade immune recognition and thereby maintain infection. The herpesvirus family 
consists of nine viruses that are capable of infecting humans: herpes simplex virus 1 
and 2 (HSV-1, HSV-2), varicella zoster virus (VZV), Epstein–Barr virus (EBV), human 
cytomegalovirus (HCMV), roseoloviruses (HHV-6A, HHV-6B, and HHV-7), and Kaposi’s-
sarcoma-associated herpesvirus (KSHV). Most of these viruses are highly prevalent and 
infect a vast majority of the human population worldwide. Notably, research over the 
past 15 years has revealed that cellular ligands for the activating receptor natural-killer 
group 2, member D (NKG2D)—which is primarily expressed on natural killer (NK) cells—
are common targets suppressed during viral infection, i.e., their surface expression is 
reduced in virtually all lytic herpesvirus infections by diverse mechanisms. Here, we 
review the viral mechanisms by which all herpesviruses known to date to downmodulate 
the expression of the NKG2D ligands. Also, in light of recent findings, we speculate 
about the importance of the emergence of eight different NKG2D ligands in humans and 
further allelic diversification during host and virus coevolution.

Keywords: nKG2D ligands, stress-induced ligands, nKG2D, herpesvirus, host-pathogen interaction, immune 
evasion, coevolution

HeRPeSviRUSeS—COnSTAnT COMPAniOnS DURinG HUMAn 
LiFe AnD evOLUTiOn

Herpesviruses have accompanied humankind since the dawn of evolution. Herpesvirus infections 
date back at least 6 million years, even before evolutionary split between hominids and chimpanzees 
(1). From that time on, viral strategies to ensure survival and dissemination coevolved together with 
the immune system that continuously developed new measures to clear viral infections.

To date, nine different herpesviruses capable of infecting humans have been identified: HSV-1, 
HSV-2, varicella zoster virus (VZV), Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), 
HHV-6A, HHV-6B, HHV-7, and Kaposi’s-sarcoma-associated herpesvirus (KSHV) (2).

Despite their different life cycle and growth properties, cellular tropisms and although they 
cause different diseases, all herpesviruses share common features. They are enveloped and contain 
a linear, double-stranded DNA genome, ranging from 125 kb (for VZV) to 235 kb (for HCMV) (2). 
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Furthermore, all have the ability not only to infect lytically but 
also to establish life-long infection in their host, a status called 
latency, which is a dormant infection lacking pathology and viral 
replication (2, 3).

Most herpesviruses are widely spread in human popula-
tions. Serological tests reveal that HSV-1, VZV, EBV, HHV-6, 
and HHV-7 have the highest prevalence of the herpesvirus 
family and infect about 90% of the adult population (4–10). 
Notably, the prevalence of herpesviruses varies geographically 
and is influenced by socioeconomic status (2, 11, 12). HCMV 
prevalence can therefore vary between 50 and 100% dependent 
on the population studied (13). Some herpesviruses reactivate 
symptomatically and frequently in healthy individuals for as 
yet unknown reasons, while others only cause symptomatic 
reactivation in immunodeficient patients (3). However, research 
over the past few years revealed that all herpesviruses use 
common strategies during primary infection, reactivation, and 
sometimes even during latency, in order to evade the immune 
surveillance during the different phases of herpesvirus life cycle. 
The interactions between adaptive immunity and herpesviruses 
are described elsewhere (14–17). In this review, we will focus 
on the interaction of herpesviruses and natural-killer group 2, 
member D (NKG2D)-expressing immune cells. The human-
activating receptor NKG2D is expressed on all natural killer 
(NK) cells as well as on most T cells including γδ T cells and NK 
T  cells (18). Its importance was shown for tumor surveillance 
(19) and inflammatory diseases (20). The significance of NK cells 
in herpesvirus immune surveillance becomes clear by looking at 
NK cell-deficient individuals who suffer from recurrent, severe, 
potentially life-threatening herpesvirus infections (21, 22).

GeneTiCS OF nKG2D LiGAnDS

In the course of human evolution, eight different, functional 
ligands for the NKG2D receptor emerged: MHC class I polypep-
tide-related sequence A and B (MICA and MICB, respectively) 
and the unique long 16 binding protein 1–6 (ULBP1–6) (23). 
Also known as “stress-induced ligands,” they are barely found 
on healthy cells in order to avoid auto-reactivity toward normal 
tissues. These ligands, however, are upregulated and expressed 
on the cell surface following various stresses including genotoxic 
stress, oncogene activation or hypoxia that are commonly seen in 
tumorigenesis, or following viral infection (24, 25).

All NKG2D ligands belong to the MHC class I-like protein 
family. ULBP family members have an α1/α2 domain structure, 
whereas the MIC proteins possess an α1/α2/α3 domain structure 
(26). Interestingly, classical MHC class I proteins serve mainly 
as inhibitory ligands for NK cells, whereas the NKG2D ligands 
activate NK cells (27, 28).

Up until now, 16 different allelic variants were identified for 
the 6 members of the ULBP family (29). More than 100 different 
MICA alleles and more than 40 MICB alleles were identified to 
date; a finding that demonstrates the striking superior evolutionary 
plasticity of the MIC family [http://hla.alleles.org/alleles/classo.
html; (30)] (Figure 1). The reason behind this enormous diversity 
of the MIC family is still unknown. MIC genes lack hypervari-
able regions; point mutations and genetic shuffles occur over all 

three domains (31). Comparing amino acid sequence homology, 
MICA and MICB are very similar (about 85% identity), whereas 
the similarity to ULBP family proteins is comparatively low (only 
about 20–25% identity between MIC and ULBP proteins). ULBP 
family members shares about 60% amino acid sequence identity 
with each other (32–34). Interestingly, MICA, MICB, ULBP4, 
and ULBP5 contain a transmembrane domain and a cytoplasmic 
tail, whereas ULBP1, ULBP2, ULBP3, ULBP6, and one particular 
allelic variant of MICA (allele *008) are glycosylphosphatidylino-
sitol (GPI) anchored (30).

Only recently, post-transcriptional cellular mechanisms 
that control stress-induced ligand expression by RNA-binding 
proteins (35–37) and microRNAs (miRNAs) (38, 39) began to 
be unraveled; however, the regulatory circuits and expression 
patterns in normal cells remain incompletely understood. By 
contrast, much information was gathered about the suppression 
of NKG2D ligands during herpesvirus infection, emphasizing the 
importance of the receptor NKG2D for anti-viral immunity.

ALL HeRPeSviRUSeS SUPPReSS 
eXPReSSiOn OF STReSS-inDUCeD 
LiGAnDS DURinG inFeCTiOn

HSv-1 and -2—HHv-1 and -2
Herpes simplex virus 1 and 2 can cause orofacial and genital 
infections in elsewise healthy individuals with a competent 
immune system (40). Reactivation is believed to be triggered by 
stress, sunlight, fever, or skin traumas, e.g., caused by surgery 
(40, 41).

The effects of HSV-1 infection on the expression of NKG2D 
ligands were first studied by Schepis et  al. [(42); Figure  1; 
Table 1]. Both ULBP2 and MICA surface expression levels were 
found to be decreased following infection with HSV-1 strain F. 
Concurrent with a loss of surface expression, MICA messenger 
RNA (mRNA) levels were decreased. Since MICA downregula-
tion was abrogated by inhibiting the viral DNA polymerase, the 
authors concluded that a late viral gene is responsible for the 
reduction of MICA expression. However, in this study, none of 
the cell lines tested expressed other ligands besides MICA and 
ULBP2. Another study, performed by Campbell et al., confirmed 
the decrease in MICA and ULBP2, but could additionally show a 
downregulation of ULBP1 and ULBP3 (43). Interestingly, MICA, 
ULBP2, and ULBP3 were shown to be reduced at the overall pro-
tein level, whereas ULBP1 was retained intracellularly, proving 
that different mechanisms act on these ligands (43).

In a subsequent study, Enk et al. added some mechanistic detail 
about the regulation of ULBP2 and ULBP3 (44). They reported 
that the viral miRNA miR-H8 interferes with the generation of 
GPI-anchored proteins by targeting PIGT, a key protein in the 
GPI-anchoring process (45, 46). Consequently, both ULBP2 
and ULBP3 levels were reduced in miR-H8 overexpressing cells. 
Interestingly, ULBP1 is also GPI anchored but not affected by this 
pathway, explaining the necessity for another mechanism of down-
regulation—intracellular retention. However, since both MICA 
(except the allele MICA*008) and MICB are transmembrane 
proteins and were not affected by the miR-H8 overexpression, 
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FiGURe 1 | The human genome encodes for eight functional stress-induced ligands, subdivided in the MiC and ULBP family. MICA, MICB, ULBP4, and 
ULBP5 contain a transmembrane domain, whereas ULBP1, 2, and 3 and one particular allele of MICA, MICA*008, are GPI-anchored. Interestingly, MICA and MICB, 
genes having a high evolutionary plasticity as reflected by the number of allelic variants, seem to be targeted more frequently by viral immune evasion mechanisms.
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the viral mechanism responsible for these downregulations are 
still unknown.

vZv—HHv-3
Varicella zoster virus is the causative agent of varicella (chick-
enpox) in primary infection (47). In the elderly or immunosup-
pressed patients, VZV can reactivate and cause herpes zoster 
(shingles), which is characterized by painful skin lesions as well 
as neurological and ocular disorders (47, 48).

By infecting retinal epithelial cells with a clinical VZV 
strain, Campbell et  al. revealed a down-modulation of the 
surface expression of the NKG2D ligands ULBP2 and ULBP3 
[(43); Figure 1; Table 1]. By contrast, MICA surface expression 
increased during the course of VZV infection; ULBP1 and MICB 
were not expressed in the studied cells. Due to the overall reduc-
tion of surface expression of NKG2D ligands, reduced activation 
of NK cells in the presence of VZV-infected cells as compared to 
mock infected cells was observed. Interestingly, the total protein 
levels of ULBP2 and ULBP3 were not reduced in infected cells 
(43), indicating intracellular retention of these ligands by a yet 
unknown viral factor.

eBv—HHv-4
Epstein–Barr virus is usually acquired asymptomatically in child-
hood (2, 49). Infection during adolescence can lead to infectious 
mononucleosis (in about 50% of primary infections), a weakening 
and sometimes painful but self-limiting disease associated with 
the occurrence of atypical lymphocytes in the blood stream (2, 
49). Reactivation can occur in immunocompromised individuals 
and is, among others, linked not only to lympho-proliferative 

diseases such as Burkitt’s and Hodgkin’s lymphoma but also to 
nasopharyngeal carcinoma (50, 51).

A sensitization of EBV-infected cells switching from latent 
to lytic infection to NK cell killing was reported by Pappworth 
et al. (52). They showed the induction of ULBP1 following this 
switch in a Burkitt’s lymphoma-derived cell line, whereas all other 
NKG2D ligands were absent from the cell surface. Later on, an 
overexpression study performed by Nachmani et al. revealed that 
the latency-associated viral miRNA miR-BART2-5p is capable 
of binding MICB mRNA and suppressing its translation [(53); 
Figure 1; Table 1]. Interestingly, they showed that the binding 
site in the MICA mRNA sequence was mutated in such a way that 
prevented the miRNA from suppressing MICA as well.

Remarkably, to the best of our knowledge, there are no immune 
evasion mechanisms regarding NKG2D ligands during lytic EBV 
infection described to date. This phenomenon might be explained 
by a study published by Song et al. (54). They showed that EBV-
transformed B cells produce and release the tryptophan-derived 
metabolite l-kynurenine that downmodulates NKG2D receptor 
expression on by-stander NK cells. Therefore, the suppression of 
NKG2D ligands on infected cells might be of little importance if 
the effector cells themselves are effectively disarmed.

HCMv—HHv-5
While being a harmless pathogen for immunocompetent indi-
viduals, HCMV constitutes a major risk for the elderly, patients 
after organ transplantation and AIDS patients (55). Additionally, 
primary infection in pregnant women can cause miscarriage, 
stillbirth, or developmental retardation of the child (55). HCMV 
possesses the largest genome of all HHVs of about 235 kb (2). 
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TABLe 1 | Overview of known suppression mechanisms for nKG2D ligands by HHvs.

viral effector Ligand Mechanism Reference

HSV-1 ? MICA ? (42, 43)
? ULBP1 Intracellular retention (43)
miR-H8 ULBP2 Interferes with protein maturation (42–44)
miR-H8 ULBP3 Interferes with protein maturation (43, 44)

HSV-2 ? ? ? ?
Varicella zoster virus ? ULBP2 Intracellular retention (43)

? ULBP3 Intracellular retention
Epstein–Barr virus miR-BART2-5p MICB Translational repression (53)
Human cytomegalovirus miR-UL112 MICB Translation repression (56)

UL16 MICB Intracellular retention (60)
ULBP1 Intracellular retention (32, 57)
ULBP2 Intracellular retention (32, 57)
ULBP6 Intracellular retention (61)

UL142 MICA Intracellular retention (62)
ULBP3 Intracellular retention (63)

US18/US20 MICA Lysosomal degradation (64)
US9 MICA*008 Proteasomal degradation (68)

HHV-6A ? ? ? ?
HHV-6B ? MICB Proteasomal degradation (71)

? ULBP1 Proteasomal degradation
? ULBP3 Proteasomal degradation

HHV-7 U21 MICA ? (72)
MICB ?
ULBP1 Lysosomal degradation

Kaposi’s-sarcoma-associated herpesvirus K5 MICA Ubiquitinylation/intracellular retention (75)
MICB Ubiquitinylation/intracellular retention (75)

miR-K12-7 MICB Translational repression (53)

?, no published data available.
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Therefore, it might not be surprising that HCMV has the greatest 
number of viral mechanisms dedicated to the immune evasion by 
manipulating NKG2D ligands described to date.

The first viral miRNA identified to target immune molecules 
in general and NKG2D ligands in particular was miR-UL112, 
discovered by Stern-Ginossar et al. [(56); Figure 1; Table 1]. By 
binding to the 3′-UTR of the MICB mRNA, it represses transla-
tion, and surface levels are rapidly reduced, leading to decreased 
NK cell activation. UL16 was the first HCMV viral protein found 
to bind and retain ULBP1, ULBP2, ULBP6, and MICB intracel-
lularly (“ULBPs” were named for being UL16-binding proteins) 
(32, 57–61). Later, UL142 was shown to sequester both MICA 
and ULBP3 intracellularly, they colocalized with markers of the 
cis-Golgi apparatus inside infected cells (62, 63).

Fielding et  al. showed that the viral proteins US18 and 
US20 are capable of both independently and synergistically 
downregulating MICA expression by targeting it for lysosomal 
degradation (64).

Notably, the GPI-anchored allele MICA*008 was not found 
to be targeted by the abovementioned viral mechanisms and was 
therefore considered as HCMV-resistant escape variant. Since 
the MICA*008 allele is a highly prevalent in human populations 
worldwide, the hypothesis was formed that its prevalence is the 
result of viral selective pressure (65–67). However, Seidel et al. 
showed that this supposed escape variant is specifically targeted 
by the HCMV protein US9 during its maturation process, prior to 
its egress from the ER, instead forcing MICA*008 to proteasomal 
degradation (68).

Roseoloviruses—HHv-6A, HHv-6B, 
and HHv-7
HHV-6A, -6B, and -7 have long been neglected in research. 
Only in the past years have these viruses gained attention since 
it became obvious that they not only cause a common chil-
dren’s disease (roseola infantum) but might also be involved in 
severe illnesses, especially in immunoincompetent individu-
als like neuroinflammatory diseases (HHV-6A), transplant 
rejection, myocarditis (HHV-6B), or encephalitis (HHV-6A, 
-6B, and HHV-7) (69, 70). For this reason, immunomodula-
tory features of these viruses were studied only relatively  
recently.

We showed that HHV-6B strain Z29 is capable of suppressing 
the surface expression of the NKG2D ligands ULBP1, ULBP3, 
and MICB, but not MICA or ULBP2 [(71); Figure 1; Table 1]. 
This was true both in primary T cells and in T cell lines. As a 
cellular response to the viral infection, mRNA levels of all 
stress-induced ligands rise following infection; however, the 
virus suppresses the three abovementioned ligands on protein 
level and degrades them rapidly in a proteasome-dependent 
pathway shortly after the start of infection. Also, we showed that 
the degradation of the three ligands is mediated by at least two 
different viral proteins.

As for HHV-7, Schneider et al. showed that U21, which was 
previously shown to target HLA class I for lysosomal degrada-
tion, also causes lysosomal degradation of ULBP1 resulting in 
a mild downregulation. Additionally, they observed a major 
downregulation of MICA and MICB (72). These findings were 
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established using the overexpression of the viral protein U21. 
However, the exact mechanism for MIC proteins degrada-
tion remained unclear. Probably, U21 interferes with proper 
protein glycosylation rendering the MIC proteins unstable 
and causing them to be targeted for cellular degradation. Due 
to the mild loss of ULBP1, this degradation was proposed to 
be the result of a “side-effect” of U21-mediated HLA class 
I degradation, since these related proteins were targeted to 
lysosomal degradation with higher affinity and to a greater 
extent.

However, since the study was limited to overexpression of a 
single gene and no studies were conducted using an actual infec-
tion model, it is possible that additional stress-induced ligands 
are affected by HHV-7 or that additional mechanisms targeting 
the same ligands exist.

KSHv—HHv-8
Kaposi’s-sarcoma-associated herpesvirus is the human her-
pesvirus with the lowest seroprevalence in the Western world 
with only about 1–3% of individuals infected (73). Still, this 
virus is a significant cause of cancer, primarily in AIDS patients, 
whereas immunocompetent individuals do not experience KSHV 
reactivation (73, 74). In developing countries, seroprevalence is 
substantially higher (73).

During lytic infection, KSHV evades NK  cell recognition 
by expressing the viral E3 ligase K5. Thomas et al. showed that 
K5 modifies lysine residues within the cytoplasmic tails of both 
MICA and MICB with ubiquitin. Consequently, these molecules 
are internalized from the cell membrane and intracellularly 
sequestered, but not degraded [(75); Figure 1; Table 1]. Notably, 
the fact that the MICA allele *008 as well as ULBP1, ULBP2, 
and ULBP3 are GPI anchored and therefore lack a cytoplasmic 
tail, render them resistant to K5-mediated ubiquitinylation. 
Additionally, Nachmani et al. reported that the viral miRNA miR-
K12-7 specifically represses the translation of MICB by binding 
to the 3′-UTR of its mRNA (53). Interestingly, MICA mRNA 
was shown not to be targeted by miR-K12-7 since the 3′-UTR 
is significantly shorter than the MICB equivalent and does not 
contain the binding site (53).

eiGHT LiGAnDS, FURTHeR ALLeLiC 
DiveRSiFiCATiOn: HOST–PATHOGen 
evOLUTiOn AT FULL SPeeD

As emphasized above, herpesvirus family members developed 
numerous mechanisms to interfere with the expression of 
the stress-induced ligands. However, most of these studies 
still leave unanswered questions. More mechanisms and viral 
effectors are still waiting to be discovered. The viral protein 
repertoire is probably much larger than currently known; by 
using ribosome profiling of HCMV and KSHV, numerous new 
open reading frames (ORFs) have been identified (76, 77). The 
functions of many viral proteins and ORFs are yet unknown 
and we are just on the verge of understanding the importance 
of viral non-coding RNAs, including long non-coding RNAs 
(78, 79).

While the NKG2D receptor itself is conserved among species, 
its ligands are not. Interestingly, having eight functional ligands 
of two different families (MIC and ULBP) and various alleles, 
the human NKG2D ligand repertoire is more complex than 
that of other species. Mice possess even nine functional ligands 
(MULT1, Raet1α–ε, H60a–c) (80). However, their domain struc-
ture reveals them to be ULBP family homologs with low allelic 
diversity. Non-human primates were shown to have homologs of 
the MIC proteins (81, 82). Still, compared to humans with more 
than 100 allelic variants, even great apes seem to possess lower 
allelic variation (83).

Herpesviruses might be a major driving force for diversifica-
tion of stress-induced ligands and further mutagenesis within 
alleles leading to allelic variations. None of the described viral 
mechanisms is capable of eliminating the expression of all 
stress-induced ligands, the evolutionary pressure rendered these 
ligands so diverse that no single viral protein or RNA is sufficient 
to regulate all of them.

As described earlier, viral miRNAs of HCMV, EBV, and 
KSHV target MICB mRNA at different sites of its 3′-UTR and 
suppress protein translation (53, 56). Despite the high degree of 
sequence homology in their 3′-UTRs, MICA is not targeted by 
any of these miRNAs. The binding sites for the viral miRNAs of 
HCMV (miR-UL112) and EBV (miR-BART2-5p) are modified 
by a single-nucleotide insertion, thus abolishing miRNA-induced 
translation repression. The sequence that is targeted by the KSHV 
encoded miR-K12-7 is completely absent due to a major deletion 
in the MICA 3′-UTR.

A similar mutagenesis apparently occurred in the MICA 
protein to escape UL16 binding. UL16 binds to an α-helical 
structure in the α2 domain of MICB. By substituting single amino 
acid residues in MICB with their MICA equivalents, Spreu et al. 
could show that a single substitution (at two different positions) 
is sufficient to abolish UL16 binding (84); hence, MICA is spared 
from UL16-mediated intracellular retention by virtue of very 
few mutations. Additionally, Klumkrathok et al. suggested that 
even different allelic variants of MICB are bound with different  
affinities by UL16 due to amino acid substitutions in the α2 
domain (85).

A third piece of evidence for a herpesvirus-driven coevolution 
is the emergence of MICA*008, a highly prevalent, GPI-anchored 
MICA variant. MICA*008 is not targeted by UL142, by US18, or 
by US20. Only recently, it was discovered that the evolutionary 
relatively novel US9 is capable of targeting solely this distinct 
allele, but none of the full-length alleles containing a transmem-
brane domain (68).

These few examples illustrate well the human capability to 
adjust to viral immune evasion strategies. Accordingly, this strong 
selective, coevolutionary pressure necessitates modification of 
viral effector molecules targeting the immune surveillance sys-
tem as well. By comparing different isolates from HCMV-infected 
individuals, Renzette et al. and Sijmons et al. indeed showed on 
a global level that genes involved in immune evasion within the 
HCMV genome are strongly diversified and contain high numbers 
of single-nucleotide polymorphisms (86, 87). Among others, one 
particular mutable gene was found to be UL142, which interacts 
with NKG2D ligands as pointed out before (87).
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DiveRSiFiCATiOn: An evOLUTiOnARY 
neCeSSiTY?

It seems obvious to conclude that herpesviruses and ligands 
for NKG2D continuously shape each other during coevolution, 
whereas the NKG2D receptor itself remains conserved.

Particularly MICA took the lead in this race on the human 
side, its 3′-UTR became shortened and modified and numerous 
allelic variations emerged to withstand herpesvirus infection. 
The diversity of MICA alleles might thereby even create a “popu-
lation level resistance” by making it difficult for newly emerging 
viral mechanisms to successfully target  all MICA variants at 
once.

However, in contradiction to this theory and the supposed 
importance of stress–ligand evolution, several reports showed 
a wide distribution of a MICA–MICB null haplotype (also 
described as MICA-del–MICB-null), a phenotype that occurs 
mainly, but not exclusively, in East Asia (88–91), apparently with 
no major evolutionary disadvantage or clinical manifestations.  

In fact, there are several known MICA-null alleles also independ-
ent of this haplotype. If and how MICA and MICB functions 
are compensated in these individuals, e.g., by the redundancy 
of the other NKG2D ligands that are still present, has yet to be 
elucidated; however, this phenomenon teaches us that we are still 
far from a complete understanding of the complex families of 
NKG2D ligands.
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This paper aims to present an overview of MICA and natural killer group 2 member 
D (NKG2D) genetic and functional interactions and their impact on kidney transplant 
outcome. Organ transplantation has gone from what can accurately be called a “clinical 
experiment” to a routine and reliable practice, which has proven to be clinically relevant, 
life-saving and cost-effective when compared with non-transplantation management 
strategies of both chronic and acute end-stage organ failures. The kidney is the most 
frequently transplanted organ in the world (transplant-observatory1). The two treatment 
options for end-stage renal disease (ESRD) are dialysis and/or transplantation. Compared 
with dialysis, transplantation is associated with significant improvements in quality of 
life and overall longevity. A strong relationship exists between allograft loss and human 
leukocyte antigens (HLA) antibodies (Abs). HLA Abs are not the only factor involved in 
graft loss, as multiple studies have shown that non-HLA antigens are also involved, even 
when a patient has a good HLA matche and receives standard immunosuppressive 
therapy. A deeper understanding of other biomarkers is therefore important, as it is 
likely to lead to better monitoring (and consequent success) of organ transplants. The 
objective is to fill the void left by extensive reviews that do not often dive this deep into 
the importance of MICA and NKG2D in allograft acceptance and their partnership in the 
immune response. There are few papers that explore the relationship between these 
two protagonists when it comes to kidney transplantation. This is especially true for the 
role of NKG2D in kidney transplantation. These reasons give a special importance to this 
review, which aims to be a helpful tool in the hands of researchers in this field.

Keywords: transplantation, kidney, allograft, MiCA, MiCA-129, NKG2D, LNK1, HNK1

iNTRODUCTiON

Genetic diversity is the hallmark of MHC genes (1). The main antigenic barrier to transplantation 
is molecules, which are polypeptide products of a cluster of genes known, in humans, as human 
leukocyte antigens (HLA). In addition, a family of highly glycosylated MHC-encoded molecules, 
the MHC class I chain-related (MIC) genes, has been identified (2) as a second lineage of mammalian 
MHC I genes, which could constitute an antigenic barrier to transplantation as well (3). The MIC 
molecules possess a low degree of homology to other MHC class I encoded genes and interact with 

1 http://www.transplant-observatory.org.
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FiGURe 1 | Representation of MHC class I chain-related (MIC) genes. The functional genes are represented in green and the pseudogenes are in orange 
(image by Matilde Risti).
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both T-cell and natural killer (NK)-cell receptors (2). MIC pro-
teins act as ligands for NK cells, γδ T cells, and αβ CD8+ T cells, 
which express natural killer group 2 member D (NKG2D) ligand 
(4). The importance of the MICA protein in kidney transplanta-
tion has been acknowledged in recent years, and the role they play 
in graft rejection has been intensely pursued.

MICA GeNe: STRUCTURe, 
POLYMORPHiSMS, AND FUNCTiON

The MIC gene family consists of seven members (MICA–MICG) 
(Figure 1), five of which are pseudogenes, and two, MICA and 
MICB, of which are functional (5, 6). MICA and MICB are the 
most divergent members of the human MHC-encoded class I 
genes identified to date, having an average of 19, 25, and 35% 
similarity in the extracellular α1, α2, and α3 domains, respec-
tively, to those of other MHC α-polypeptides (7).

The MICA gene is located 46.4 kb centromeric to HLA–B on 
the short (p) arm of chromosome 6 at position 21.33 (3).

MICA and MICB have been shown to differ in the tran-
scriptional control regions from common HLA class I genes. 
MICA/B genes lack the prototypic MHC class I gene promoter 
regulatory elements, the SXY module [heterotrimeric X-box-
binding factor—regulatory factor X; X2-box-binding factor—
cyclic-AMP-responsive-element-binding protein; Y-box-binding 
factor—nuclear transcription factor Y (NF-Y); and an as-yet-
unidentified S-box-binding factor]. In contrast, the regulatory 
promoter module of MICA/B contains heat shock elements 
resembling those of HSP70 genes, a CCAAT box that binds to 
nuclear transcription factor Y (NF-Y), and a GC box that binds 
to Sp1, Sp3, and Sp4 transcription factors (8).

There are 12 known possible haplotypes of MICA 5′ promoter 
regions, including a null haplotype due to a deletion of the entire 
MICA gene (MICA-P12), which are more densely distributed in 
both ends compared to the central portion of 5′ promoter (8, 9).

MICA has six exons separated by five introns (Figure 2): exon 
1 encodes the leader peptide, exons 2–4 encode three extracellular 
globular domains, exon 5 encodes the transmembrane domain, 
and exon 6 encodes the cytoplasmatic tail (6, 10). An intron of 
6,840 bp follows exon 1 and is unusually large for a class I gene. 
The remainder of the MICA gene has a quite similar organization 
to classical class I genes, except for the presence of a relatively 
long intron 5 and the fusion of the cytoplasmic tail and 3′ UTR 
sequence in a single last exon (11).

It is considered that MICA gene has a codominant expression, 
and the presence of heat shock elements within the promoter 

suggests that MICA transcription is indued under stress condi-
tions, and that therefore the MICA protein functions as an 
indicator of cell stress (11–13). The first intron of the MICA gene 
contains an NFkB-binding site that binds p65 (RelA)/p50 het-
erodimers and p50/p50 homodimers of the NFkB transcription 
factor family. The role of the proximal −130 bp NFkB site was 
reported as necessary and sufficient for transcriptional transacti-
vation of MICA in response to TNFα in primary endothelial cells 
(ECs) (14).

Gene transcription isoforms are mRNAs transcribed from the 
same locus that differs in their transcription start sites and/or 
untranslated regions or protein coding DNA sequences (CDSs) 
also producing different protein isoforms. The alternative splicing 
of MICA leads to the formation of four isoforms. Two of them 
were described by Zou and Stastny (15) (MICA isoforms 1 and 
2), and they did not appear to be tissue specific.

MICA isoform 1 (1*001) is the longest isoform, derived from 
the MICA*001 allele. MICA isoform 2 (1*008:01) is a variant 
isoform derived from the MICA*008:01 allele that contains a 
four-nucleotide insertion (rs9279200), which causes a frameshift 
mutation and subsequent truncation of the CDS, compared 
to isoform 1 (allele MICA*001) (15). The other two isoforms 
of MICA, isoforms 3 and 4, are described only in the ncbi.nih.
gov/gene2 website. MICA isoform 3 is, like isoform 2, encoded 
by the MICA*008:01 allele; however, it is shorter than isoform 
2 at the N-terminus, containing an alternate 5′ exon, differences 
in the 5′ UTR, and lacking a portion of the 5′ coding region, 
with translation being initiated from a downstream in frame 
start codon. MICA isoform 4 contains an alternate 5′ exon and 
uses an alternate splice site in an internal exon. It differs in the 
5′ UTR, lacks a portion of the 5′ coding region, and initiates 
translation from an alternate start codon, compared to variant 
1 (MICA*008:01 allele). Isoform 4 has a distinct and shorter 
N-terminus, compared to isoform 2.

The MIC genes are transcribed in keratinocytes, ECs, fibro-
blasts, monocytes, epithelial cell lines and epithelial tissues of cell 
lines, and freshly isolated cells (2, 16) and are not usually tran-
scribed in CD4+ T cells, CD8+ T cells, and CD19+ cells (17). MIC 
protein is only expressed on the cell surface of freshly isolated 
ECs, fibroblasts (17), and gastric epithelium (12). MIC protein 
acts as a ligand for NK cells, γδ T cells, and αβ CD8+ T cells, which 
express NKG2D ligand (NKG2DL) (4).

2 https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&T
erm=100507436#.
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TAbLe 1 | Nucleotide variations on exons 2–6 for MICA alleles from *001 
to *087.

eXON 2 α1

CODON 6 CTG (LEU) CGC (ARG)
CTC (PRO)

CODON 14 TGG (TRP) GGG (GLY)
CODON 23 CTC (LEU) GTT (LEU)
CODON 24 ACT (THR) GCT (VAL)
CODON 26 GTA (VAL) GGA (GLY)
CODON 36 TGT (CYS) TAT (TYR)
CODON 38 AGG (ARG) AGC (SER)
CODON 39 CAG (GLN) TAG (Stop)
CODON 55 GGA (GLY) GGC (GLY)
CODON 56 AAT (ASN) AAC (ASN)
CODON 64 AGA (ARG) AAG (ARG)
CODON 69 AAC (ASN) AAT (ASN)

eXON 3 α2

CODON 90 CTC (LEU) TTC (PHE)
CODON 91 CAG (GLN) CGG (ARG)
CODON 93 ATT (ILE) ATG (MET)
CODON 102 AAC (ASN) AGC (SER)
CODON 105 AAG (ARG) AAG (LYS)
CODON 112 TAC (TYR) TAT (TYR)
CODON 114 GGG (GLY) AGG (ARG)
CODON 122 CTG (LEU) GTG (VAL)
CODON 124 ACT (THR) TCT (SER)
CODON 125 AAG (LYS) GAG (GLU)
CODON 129 ATG (MET) GTG (VAL)
CODON 130 CCC (PRO) TCC (SER)
CODON 139 GCC (ALA) GCA (ALA)
CODON 142 GTC (VAL) ATC (ILE)
CODON 151 ATG (MET) GTG (VAL)
CODON 156 CAC (HIS) CTC (LEU)

CGC (ARG)
CODON 169 CGG (ARG) TGG (TRP)
CODON 173 AAA (LYS) GAA (GLU)
CODON 174 TCC (SER) TCT (SER)
CODON 175 GGC (GLY) AGC (SER)

GGT (GLY)
CODON 176 GTA (VAL) ATA (ILE)
CODON 181 ACA (THR) AGA (ARG)

eXON 4 α3

CODON 190 CGC (ARG) TGC (CYS)
CODON 191 AGC (SER) AGT (SER)
CODON 193 GCC (ALA) GCA (ALA)
CODON 198 ATT (ILE) ATC (ILE)
CODON 205 TCT (SER) TCC (SER)
CODON 206 GGC (GLY) AGC (SER)

FiGURe 2 | MICA gene exon–intron organization. The MICA gene has five introns and six exons (image by Matilde Risti).

(Continued)
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MICA Polymorphism and -129Met/val 
Dimorphism
Bahram et  al. (3) first described MICA*01 to MICA*05 alleles 
with a total of 18 nucleotide substitutions resulting in 14 amino 
acid changes in the final polypeptide. Fodil et al. (7) described 
the alleles, MICA*06 to MICA*16, with nine nucleotide substitu-
tions and eight amino acids changes. One year later, Mizuki et al. 
(18) showed a variable number of trinucleotide GCT repeats that 
encode 4, 5, 6, 7, 9, or 10 alanine (A, Ala). The short tandem 
repeats or microsatellite alleles were labeled as A4, A5, A6, A7, A8, 
A9, and A10. There is also an A5.1 allele that contains five triplet 
repeats of GCT plus an additional guanine nucleotide insertion 
(GGCT). This insertion causes a frameshift mutation leading to 
a premature intradomain stop codon within the transmembrane 
region, which deletes the MICA cytoplasmic tail. The A4, A5, A6, 
A7, A8, A9, A10, and A5.1 sizes are, respectively, 179, 182, 185, 
194, and 183 bp (18–20). At the time of writing (October 2016) 
hla.alleles.org3 reports 105 MICA alleles, 2 of which considered 
null, result in 82 different MICA proteins. All MICA alleles from 
*001 to *087 producing different proteins and their nucleotides 
variations on exons 2–6 are shown in Table 1.

Several studies have documented MICA allele frequencies 
within different populations (Figure 3), and the frequency dis-
tribution varies between them. For example, the same group of 
three alleles (MICA*008, MICA*002, and MICA*004) accounts 
for more than 50% of the allele frequencies commonly found 
in several Caucasoid populations (21–24) but at the same time 
MICA*027’s frequency is extremely different in a comparison 
between the South American Indian and Caucasoid populations 
(25). Single high-frequency MICA alleles are each associated 
with more than one different HLA-B allele, but this pattern is not 
reciprocal. Most specific HLA-B alleles, including B*07:02 and 
B*08:01 variations, are usually linked to a single MICA allele. This 
pattern suggests that the MICA alleles had an earlier origin than 
major branches of HLA-B alleles (26).

The evolutionary history of HLA-B alleles is recognizable in 
the linkage relationship between HLA-B and MICA genes. The 
high degree of sequence similarity between three HLA alleles 
(B*35, B*53, and B*58) indicates that they were all generated 
from the same progenitor allele, and the observation that glob-
ally they are all linked to the MICA*002 allele further supports 

3 http://hla.alleles.org/nomenclature/stats.html.
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eXON 4 α3

CODON 208 TAT (TYR) TGT (CYS)
CODON 210 TGG (TRP) CGG (ARG)
CODON 213 ACA (THR) ATA (ILE)
CODON 215 AGC (SER) ACC (THR)
CODON 221 GTA (VAL) CTA (LEU)
CODON 230 TGG (TRP) TCG (SER)
CODON 244 TGG (TRP) TGA (Stop)
CODON 247 AAC (THR) ACT (THR)
CODON 250 TGC (CYS) CGC (ARG)
CODON 251 CAA (GLN) CGA (ARG)
CODON 253 GAG (GLU) AAG (LYS)
CODON 254 GAG (GLU) AAG (LYS)
CODON 256 AAG (ARG) AGT (SER)

AAG (LYS)
CODON 265 GGG (GLY) AGG (ARG)
CODON 268 AGC (SER) GGC (GLY)
CODON 269 ACT (THR) ATT (ILE)
CODON 271 CCT (PRO) GCT (ALA)

eXON 5 TM

CODON 295 CGT (ALA) GCGT
CODON 304 TAT (TYR) TAC (TYR)
CODON 306 CGT (ARG) TGT (CYS)

eXON 6

CODON 350 GAT (ASP) GCT (ALA)
CODON 354 ACT (THR) GCT (ALA)
CODON 359 GGC (GLY) GGT (GLY)
CODON 360 GCC (ALA) ACC(THR)

Codons are shown in the first column. The second column shows the triplets and their 
corresponding amino acids in the consensus sequence (MICA*001). The third column 
lists that triplet’s possible variations in other alleles compared with the consensus 
sequence. Amino acid substitutions in MICA on the three external protein domains 
(exons 2–4), on the transmembrane domain TM (exon 5) and carboxy-terminal 
cytoplasmic tail (exon 6). The G nucleotide insertion is represented in red in the exon 
5 TM.

TAbLe 1 | Continued
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this conclusion. Specific MICA alleles also tend to associate with 
serological HLA-B groups. A rare exception can be found in 
B*44, whose two subgroups B*44:02 and B*44:03 have exclusive 
associations with MICA*008 and MICA*004 (26).

The MICA-129Val/Met dimorphism, caused by an SNP 
(rs1051792) at nucleotide position 454 (G>A) of the MICA gene is 
of particular interest. The substitution of valine (Val) for methio-
nine (Met) at position 129 in the α2 domain of the MICA protein 
has been reported to affect NKG2D binding avidity (36–40). This 
dimorphism divides the MICA alleles into two groups (Table 2). 
In 2015, it has been observed that MICA-129Met alelles increased 
the risk of experiencing acute graft-versus-host disease. This 
effect could be the consequence on NKG2D signaling by MICA-
129Met variant (40). In addition to this, it has been shown that the 
MICA-129 dimorphism may directly affect plasma membrane 
expression and shedding of MICA, and these functional effects 
might contribute to the numerous disease associations (41).

MiCA Molecule
MICA is a highly glycosylated membrane-anchored cell surface 
protein composed of 383 amino acids (12). Unglycosylated MICA 
appeared less stable than those incorporating glycosylated MICA 

(36). Its expression has been reported on the surface of different 
cells and resembles the domain organization (Figure 4) of the α 
chain of MHC class I molecules (16, 42). MICA α chain does not 
bind β2-microglobulin and is independent of any transporter-
associated protein. Attempts to identify peptides bound to MICA 
have been unsuccessful (10, 12). The crystal structure of MICA 
shows four distinct α helices arranged in an eight-stranded 
antiparallel β sheet. These helices in MICA roughly correspond to 
the two helices that define the peptide-binding groove in peptide-
binding MHC class I proteins and homologs (42).

MICA is generally concentrated in lipid rafts and is S-acylated, 
similar to other lipid rafts-associated proteins. In vitro mutation 
of the S-acylation site, replacing a cysteine residue with a stop 
codon at aminoacid position 39, yields a truncated form of 
MICA, unable to activate NK cells (43).

The MICA molecule interacts with NK cells, γδ T cells, and αβ 
CD8+ T cells, which express NKG2D, a common activating NK 
cell receptor (4, 10, 44). NKG2D recognizes the human MICA 
protein in conjunction with a transmembrane signaling adaptor 
protein, DNAX-activation protein (DAP10) (4, 10).

It is noteworthy that the MICA molecule can also be recog-
nized by γδ  T cells with the TCR variable region Vδ1 (4, 45–47).

Both types of receptors, Vδ1TCR and NKG2D, can simultane-
ously recognize and bind to MICA on a Vδ1 cell surface. There 
is close association between the tissue distribution of Vδ1 cells 
and the physiological expression of MICA, as MICA affects Vδ1 
cell lineage development (46). In Vδ1 γδT cells, the strength of the 
binding between TCR and MICA is weaker than that between 
NKG2D and MICA. Although weak, TCR:MICA complexes 
show unusual stability after they are formed, with long half-lives. 
TCR and NKG2D receptors compete for binding to MIC ligands, 
and it has been suggested that initial interactions at the point 
of contact may be dominated by NKG2D:MIC binding events, 
which then give way to longer-lived γδ TCR:MIC complexes (47).

Conclusions on MiCA
The MICA gene is polymorphic, and it is in linkage disequi-
librium with HLA-B genes. The MICA protein is expressed on 
the cell surface, and it is possibly the proteolytic cleavage of the 
α3 domain which in turn releases soluble MICA (sMICA). The 
MICA molecule does not present a peptide in its groove and can 
interact with the NKG2D receptor, which is the focus of the fol-
lowing paragraphs.

NKG2D OR KILLER CELL LECTIN-LIKE 
RECEPTOR K1 (KLRK1) GeNe: 
STRUCTURe, POLYMORPHiSMS, AND 
FUNCTiON

NKG2D gene, also known as KLRK1, is located in the natural killer 
complex (NKC) on chromosome 12 (42, 48, 49). Human NKG2D 
(Figure 5) has 10 exons (50). Exons 2–4 encode the intracellular/
transmembrane domain; exons 5–8 encode the ligand-binding 
ectodomain, which is a membrane-bound domain protruding 
into extracellular space (50, 51). NKG2D has a low number of 
nucleotide variations (48). NKG2D appears to be conserved 

150

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 4 | MiCA molecule. Exon 1 encodes one leader peptide, exons 
2–4 encode three extracellular globular domains, exon 5 encodes one 
transmembrane domain, and exon 6 encodes a cytoplasmic tail (image by 
Matilde Risti).

TAbLe 2 | Dimorphism 129 val/Met divides MICA alleles into two groups.

Dimorphism 129 val/met divides MICA alleles in two groups

ATG (Met) GTG (val)

MICA*001, *002, *007, *011, *012, *014, *015, 
*017, *018, *020, *023, *025, *026, *029, *030, 
*031, *032, *034, *035, *036, *037, *038, *039, 
*040, *041, *042, *043, *045, *046, *047, *050, 
*051, *052, *055, *059, *060, *061, *068, *072, 
*075, *078, *079, *081, *083, *084, *086

MICA*004, *005, *006, *008, 
*009, *010, *013, *016, *019, 
*022, *024, *027, *028, *033, 
*044, *048, *049, *053, *054, 
*056, *057, *058, *062, *063, 
*064, *065, *066, *067, *069, 
*070, *073, *074, *076, *077, 
*080, *082, *085, *087

The most frequent alleles present in Figure 3 are shown in bold. The MICA alleles 
shown are from MICA*001 to MICA*087.4 “MICA*003:01” label has never been 
assigned to any sequence. MICA*021 sequence was renamed MICA*012:03 in August 
2007. The sequence originally labeled MICA*071 was proven to contain errors and to 
be identical to MICA*017 (March 2013) (see text footnote 3).

4 http://hla.alleles.org/alleles/classo.html.

FiGURe 3 | Frequencies (%) of common MICA alleles within 12 populations. The allele frequencies of nine MICA alleles are shown for 12 populations: 
Caucasoid (21–23), Korean (19), North-Eastern Thai (27), Japanese (13, 28), African-American (21, 29), South American Indian (25), Moroccan (30), Turkish (31), 
Brazilian (24, 32), Chinese Mongolian (33), and Chinese Tujia (34, 35) (image by Matilde Risti).
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during evolution, with orthologs of KLRK1 are present in the 
genome of all mammals, as well as in marsupials (4, 52).

Human NKG2D is expressed from at least three distinct alleles, 
and several gene transcription isoforms have been described, 
including an alternatively spliced variant that introduces a non-
sense mutation resulting in a protein isoform that lacks the entire 
extracellular ligand-binding domain (53).

Hayashi et  al. (54) evaluated the SNPs in the NKC gene 
region. They selected 20 SNPs with a >10% higher frequency in 
Caucasoid or Japanese populations (Table 3); these SNPs covered 
CD94, NKG2D, NKG2F, NKG2E, NKG2A, and Ly49 genes. They 
selected 8 out of the 20 SNPs that were closely associated with 

natural cytotoxic activity, having P values <0.001. All these SNPs 
are located in the NKG2D gene region, except for rs1983526 that 
is located in the promoter region of the NKG2A gene. These eight 
SNPs were split into two groups: group 1 (rs1049174, rs2617160, 
rs2617170, rs2617171, and rs1983526) and group 2 (rs2255336, 
rs2246809, and rs2617169). All the SNP combinations of group 1/
group 1 and group 2/group 2 revealed a strong linkage disequilib-
rium, with r2 values >0.9, whereas group 1/group 2 combinations 
showed much weaker linkage disequilibrium, with r2 values <0.5. 
This indicates that the five group 1 and three group 2 SNPs belong 
to two different haplotype blocks (NKG2D hb-1 and hb-2), each 
of which generates two major haplotypes associated with low 
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TAbLe 3 | 20 SNPs selected by Hayashi et al. in their study (54).

SNP iD variation SNP iD variation NKG2D hb-1 Low High

rs3759272 G>T rs2617170 T>C rs1049174 C G

rs2537752 T>A rs2617171 C>G rs2617170 C T

rs1049174 G>C rs1971939 C>G rs2617171 C G

rs2255336 A>G rs1915319 A>G rs1983526 C G

rs2294148 G>A rs4763525 G>A rs2617160 T A

rs2049796 A>C rs3003 C>T NKG2D hb-2 Low High

rs2617160 A>T rs1983526 C>G rs2255336 G A

rs7972757 A>G rs10772285 G>C rs2246809 G A

rs2246809 A>G rs1915325 G>A rs2617169 T A

rs2617169 T>A rs2607893 C>T

Blue fields belong to group 1 and green ones represent group 2. Each of the different 
haplotype blocks (NKG2D hb-1 and hb-2) is split in low and high natural cytotoxic 
activity haplotypes. hb-1 and hb-2 may be successfully predicted knowing only 
rs1049174 (in bold).

FiGURe 5 | NKG2D gene exon–intron organization. The NKG2D gene has 10 exons and 9 introns (image by Matilde Risti).
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(LNK) and high (HNK) natural cytotoxic activity phenotypes 
(Table 3) (54).

A separate study on a European population confirmed that 
the NKG2D region haplotype associated with increased cancer 
susceptibility in the Japanese population also exists in Europeans 
at similar frequency. Therefore, the conclusions of the original 
study may also be applicable to this population (55).

NKG2D: HNK1 and LNK1 Haploblocks
Several studies have demonstrated that high and low natural 
cytotoxic activity haplotype alleles (HNK1 or LNK1) belonging to 
NKG2D haplotype blocks 1 (hb-1) may be successfully predicted 
by only a single SNP (dbSNP: rs1049174) (54, 56, 57).

A study on Japanese individuals demonstrated that the HNK1 
haplotype is associated with a greater activity of NK cells in the 
peripheral blood and a lower prevalence of cancers originating 
from epithelial cells (58). Espinoza et al. showed an association 
between the NKG2D-HNK1 haplotype (haplotype frequency, 
61%) in bone marrow donors and a significantly reduced trans-
plant-related mortality and better overall survival for unrelated 
donors of HLA-matched myeloablative bone marrow recipients 
with standard-risk disease (58).

The rs1049174 distribution for 25 populations (Figure  6) is 
reported on the 1,000 genomes website.5 HNK is reported to be 
associated with the rs1049174 (G) allele, and LNK with rs1049174 
(C) (54, 56).

NKG2D Protein
The NKG2D is a member of a C-type lectin-like family recep-
tor called CD94/NKG2 (42). Despite its inclusion in the NKG2 
family, NKG2D displays only limited sequence similarity to other 
members of the NKG2 family of NK cell surface receptors (NCRs) 
and CD94 and forms homodimers, rather than heterodimers, 
with CD94, as do other NKG2 NCRs (42).

Natural killer group 2 member D is a transmembrane-
anchored receptor expressed as a disulfide-linked homodimer on 
the cell surface, with a molecular weight of ~42 kDa (42).

In humans, each NKG2D homodimer (Figure 7) associates 
with two DAP10 homodimers to form a hexameric structure 
(59), which can signal by recruitment of phosphatidylinositol 
3-kinase (36).

Human NKG2DLs are MICA and MICB, and a group of 
glycosylphosphatidylinositol-bound surface molecules including 
UL16 binding protein(ULBP)-1, -2, -3, and -4 (6), RAET1G (or 
ULBP5), and RAET1L (or ULBP6) (60), which share about 25% 
identical amino acids in their α1α2 domains that are variably 
scattered throughout the aligned sequences without discernible 
patterns of sequence conservation (36).

Signals triggered by the NKG2D receptor are transmitted 
through the associated DAP10 dimer (Figure  7) (59) because 
NKG2D lacks a tyrosine-based inhibitory motif in its cytoplasmic 
tail (4, 61).

Natural killer group 2 member D is expressed by all human 
NK cells, γδ T lymphocytes, αβ CD8+ T lymphocytes (6), 
interferon-producing killer DC (62), invariant NKT cells cells, 
and a small subset of effector or memory CD4+ T cells (4, 52, 
63). Expression of NKG2D on NK cells and CD8+ T cells can 
be modulated by cytokines due to their effects on transcription 
and posttranscriptional processing of NKG2D and DAP10. In 

5 http://browser.1000genomes.org/Homo_sapiens/Variation/Population?db=cor
e;r=12:10524865-10525865;v=rs1049174;vdb=variation;vf=750969.
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FiGURe 7 | NKG2D and DAP10. Representation of the hexametric 
structure formed by one NKG2D and two DAP10 homodimers (image by 
Matilde Risti).

FiGURe 6 | 1000 Genomes frequency for the G>C alleles (NKG2D hb-1) (see Footnote 5). The population represented are African Caribbean in Barbados 
(ACB), African Ancestry in Southwest US (ASW), Esan in Nigeria (ESAN), Luhya in Webuyu Kenya (LWK), Mandinka in Degambia (MAG), Mende in Sierra Leone 
(MSL), Yoruba in Ibadan Nigeria (YRI), Utah Residence with Northern and Western European Ancestry (CEU), Finnish in Finland (FIN), British in England and Scotland 
(BGR), Iberian populations in Spain (IBS), Toscani in Italy (TSI), Chinese Dai in Xishuangbanna, China (CDX), Han Chinese in Bejing, China (CSH), Japanese in Tokyo, 
Japan (JPT), Kinh in Ho Chi Minh City Vietnam (KHV), Bengali in Bangladesh (BEB), Gujarat Indian in Houston Texas (GIH), Indian Telegu in the UK (ITU), Punjabi in 
Lahore Pakistan (PJL), Srilankan Tamil in the UK (STU), Colombian in Medellin Colombia (CLM), Mexican Ancestry in Los Angeles, California, USA (MXL), Peruvian in 
Lima Peru (PEL), and Puerto Rican in Puerto Rico (PUR).
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humans, IL-2, IL-7, IL-12 (64), IL-15, and IFN-α (65) upregulate 
NKG2D expression, whereas TGFβ (65–67), IFNβ1 (68), and 
IL-21 (69), IL-4, IL-12, and IFNγ (65) downmodulate NKG2D. 
This downregulation can also be attributed to the overexposure 
to soluble or membrane-bound NKG2DLs, which promote the 
internalization and subsequent degradation of the receptor or 
catabolites produced on macrophage activation [reactive oxygen 
species (ROS) and l-kynurenine] (65). This is a possible explana-
tion of the mechanism of oxidative stress, which is a common 
feature of chronic renal failure. ROS trigger the upregulation of 
MICA and downregulation of NKG2D in NK cells in vitro (70). 
DAP10 availability is also a decisive factor in NKG2D surface 

expression, and miRNAs can downregulate NKG2D expression 
in NK cells, reducing its cytotoxic effect (65).

Fernandez-Sanchez et al. (65) have shown for the first time that 
epigenetic mechanisms are involved in the regulation of NKG2D 
expression. They analyzed the region around the translation 
initiation site of the NKG2D gene (which included 11 CpG sites 
between −992 and +263 positions), and they found the greatest 
differences in DNA methylation patterns between the positions 
−992 and −255. These CpGs were highly methylated in Jurkat, 
HUT78 cell lines and CD4+ T cells, partially methylated in CD8+ 
T lymphocytes and NK cells, and fully demethylated in NK cells 
lines. They discovered that the acetylation of histone H3 lysine 
9 (H3K9) is important for correct NKG2D expression in NK 
and CD8+ T cells, while DNA demethylation may be associated 
with an increased expression of NKG2D in CD4+ T cells. The 
DNA methylation profile of DAP10 gene was also analyzed, but 
no differences were found. CD4+ T lymphocytes and T cell lines 
(Jurkat and HUT78) had a DNA methylation; instead NKG2D-
positive cells (CD8+ T lymphocytes, NK cells, and NKL cell line) 
had an unmethylated NKG2D gene and high levels of histone H3 
lysine 9 acetylation (H3K9Ac). It was observed that the histone 
acetyltransferase inhibitor, curcumin, reduced H3K9Ac levels in 
the NKG2D gene, downregulated NKG2D transcription, and led 
to a marked reduction in the NKG2D-mediated lytic capacity of 
NK cell lines (65).

Another interesting study by Karimi et  al. (71) of human 
primary NK and CD8+ T cells discovered a novel splice variant 
of human NKG2D that encodes a truncated receptor lacking 
the ligand-binding ectodomain (NKG2DTR). Overexpression 
of this truncated isoform severely attenuated cell killing and 
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IFNγ release mediated by full-length NKG2D (NKG2DFL). 
A specific knockdown of an NKG2DTR isoform enhanced 
NKG2D-mediated cytotoxicity, suggesting that NKG2DTR is a 
negative regulator of NKG2DFL. At the biochemical level, it was 
demonstrated that NKG2DTR bound to DAP10 and interfered 
with the DAP10–NKG2DFL interaction. In addition, NKG2DTR 
formed heterodimers with NKG2DFL and negatively modulated 
NKG2DFL preventing its surface expression. Therefore, NKG2DTR 
constitutes a mechanism for regulation of NKG2D-mediated 
function in human CD8+ T cells and NK cells (71).

Unlike CD8+ T cells, TCR-mediated activation is not sufficient 
to induce NKG2D expression on CD4+ T cells, and the factors 
responsible for induction of NKG2D on CD4+ T cells are still 
unknown (71).

Saez-Borderias et  al. (63) provided the first evidence that a 
subset of human cytomegalovirus (HCMV)-specific CD4+ T 
cells displays NKG2D. Their data suggest that CD4+NKG2D+ 
cells expanding in HCMV-stimulated cultures correspond to 
virus-specific memory T cells that have acquired NKG2D while 
losing CD28 (63).

Conclusions on NKG2D
The NKG2D gene can be split into two haploblocks: HNK1 and 
LNK1 (high and low cytotoxic activity related). The NKG2D pro-
tein is a homodimer associated with two DAP10 molecules and 
can interact with MICA. In NK cells, the NKG2D protein is an 
activation receptor which is able by itself to trigger cytotoxicity. 
This is the main reason why it is interesting to study the rela-
tionship between MICA and NKG2D in depth in the following 
paragraphs.

MiCA LiGAND AND iTS ReCePTOR 
NKG2D: FUNCTiONAL iNTeRACTiONS

The crystal structure of the MICA–NKG2D complex shows that 
NKG2D binds to one MICA molecule as a homodimer. One of 
the NKG2D molecules binds mostly to the α1 domain of MICA, 
while the other binds mostly to the α2 domain (6). The contact 
between these two molecules creates a small pocket (roughly 6 Å 
wide × 6 Å thick × 14 Å long) (42).

The NKG2D homodimer overlays MICA diagonally in way 
that resembles αβTCR overlaying MHC I molecules. The central 
section of the MICA α2 domain is disordered when MICA is 
crystallized in isolated form, but it becomes ordered when MICA 
is bound to NKG2D and forms part of the interface between the 
two molecules (6).

MICA glycosylation was not essential, but it enhanced com-
plex formation with NKG2D. Likewise, the glycosylation state of 
NKG2D had no substantial effect on complex formation (36).

MICA–NKG2D is considered a versatile ligand–receptor 
pair. As a matter of fact, NKG2D can act as a primary receptor 
or costimulatory molecule during infections, autoimmunity, or 
antitumor immune responses (6). For example, it has been shown 
that endothelial MICA triggeres an activating signal in allogeneic 
polyclonal NK cells through the immunoreceptor NKG2D, which 
may have account for a significant part in EC lysis by allogeneic 
NK cells. In vitro coculture assays show that interaction of 

endothelial MICA with NKG2D provides an immune suppressive 
pathway by downregulating NKG2D on the NK cell surface (14).

Boukouaci et al. (72) suggested that endocytosis of the NKG2D 
receptor, upon binding to sMICA, is considerably more rapid than 
the replenishment of cell surface NKG2D by de novo synthesis. 
The same authors also found that sMICA down regulates NKG2D 
receptor expression on CD8+ T cells. sMICA upregulates the IFNγ 
production only by cytokines-activated NK cells, while it has no 
effect on non-activated cells. The researchers demonstrated that 
sMICA upregulates IFNγ expression by IL-12/IL-18-activated 
CD3 CD56+ NK cells, demonstrating the pro-inflammatory 
effect of sMICA (72). A study with a mouse model found that 
Lewis rat hearts transplanted into BALB/c mice developed typical 
acute rejection (AR) in 6 days. The severity of xenograft rejection 
increased with time, from 2 to 6 days. Also increasing over time, 
the MICA protein and MICA mRNA reached their highest value 
after 6 h. The prevalence of anti-MICA was significantly higher 
among mice with severe AR. However, sMICA was significantly 
increased during AR at 2 h, then gradually decreased, and reach-
ing its lowest value after 6 h (73).

MiCA–NKG2D AND KiDNeY TRANSPLANT

In the last few decades, the role of MICA and NKG2D in kidney 
transplants has emerged (Table  4). The involvement of NK 
cells was discovered in 1995 when some indirect evidence was 
reported during rejection of kidney transplants. Accumulation 
of CD56+ NK cells expressing granzyme in kidney biopsies of 
patients undergoing AR suggested a role of their cytolytic activity 
in kidney-allograft rejection (74). Over the years, the association 
between NK cells and the mechanisms of microcirculation injury 
during antibody-mediated rejection (AMR) in kidney transplants 
has become increasingly evident. The researchers proposed 
that donor-specific antibodies (DSA) were able to bind to the 
endothelium and to recruit NK cells that produce IFNγ and trig-
ger antibody (Ab)-dependent cellular cytotoxicity (75).

NK Cells and Kidney Damage in Mice and 
Cell Lines
Natural killer group 2 member D-ligand engagement delivers a 
strong dominant activating signal that overrides the inhibitory 
signal delivered by self-MHC class I, thus activating NKG2D-
expressing cells, resulting in innate and adaptive immunity 
activation (113).

Zhang et al. (116) reported a study on ischemia/reperfusion 
injury (IRI) on mice and discovered the capacity of NK cells 
to injure renal tubular epithelial cells in vitro. In vivo data sup-
ported the hypothesis that NK cells interact with tubular epithelia 
through NKG2D/Rae-1 interaction to mediate kidney damage 
following IRI.

Luo et al. (89) performed an in vitro study on human renal 
proximal tubular epithelial cell line (HK-2). They discovered that 
hypoxia-inducible factor-1-α (HIF-1α) plays a very important 
role in upregulating MICA expression and enhancing NK cell 
cytotoxicity toward target cells during hypoxia/reoxygenation in 
HK-2 cells. HIF is a heterodimer consisting of an α-subunit (HIF-
1α) and a β-subunit (HIF-1β), the HIF-1β protein is constitutively 
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TAbLe 4 | Relevant published work regarding NKG2D, MiCA, and kidney transplants.

Reference Summary MiCA biomarker

Relevant published works regarding MiCA and transplants

Zwirner et al. (76) Several patients had specific antibodies (Abs) against MICA. Most of them were detected in serum samples 
collected at different times after organ rejection

Yes

Hankey et al. (77) MHC class I chain-related expression was documented in allografted kidneys and pancreas. Expression of MICB 
was observed in epithelial cells in allografted kidney and pancreas that showed histologic evidence of rejection and/
or cellular injury

Yes

Opelz (78) This work showed that non-HLA immunity contributed substantially to long-term kidney transplant failure. The 
targets for Abs causing late rejections could be called minor histocompatibility antigens

Yes

Mizutani et al. (79) Patients who rejected transplants had anti-HLA and anti-MICA Abs more frequently than those with functioning 
grafts. These Abs found in the peripheral circulation were not necessarily donor-specific, but their association with 
failure was consistent with a causality hypothesis

Yes

Amezaga et al. (80) Anti-MICA Abs were not detected pretransplant nor posttransplant in patients receiving a compatible graft. Anti-
MICA Abs were detected posttransplant acute antibody-mediated rejection in patients receiving an incompatible 
graft

Yes

Mizutani et al. (81) Anti-HLA and anti-MICA Abs were present independently on a more frequent basis in patients with failed grafts than 
those with functioning grafts

Yes

Panigrahi et al. (82) Patients who developed both anti-HLA and anti-MICA Abs rejected their grafts more frequently than those having 
either of these Abs

Yes

Zou et al. (83) Pre-sensitization of kidney transplant recipients against MICA antigens had been associated with an increased 
frequency of graft loss and might contribute to allograft loss among recipients who were well matched for HLA

Yes

Seiler et al. (62) Unlike previous reports, in this work the researchers could not detect elevated MICA mRNA levels in kidney biopsies 
derived from patients undergoing acute rejection (AR) or chronic allograft nephropathy. In contrast, they observed 
a strong NKG2D mRNA induction during renal-allograft rejection, which was verified by immunohistology in kidney 
biopsies

No

Suarez-Alvarez et al. 
(84)

Anti-MICA Abs were detected in 17.6% of the patients and correlated with the development of AR. The presence of 
anti-MICA Abs could be an important marker for diagnosis because of their contribution to the outcome of the graft, 
regardless of presence of anti-HLA Abs

Yes

Alvarez-Marquez et al. 
(85)

At the time of the biopsy, 21% patients had only anti-HLA I Abs, 15.8% had anti-GSTT1 Abs, 10.5% had anti-HLA II 
Abs, and 10.5% had anti-MICA Abs. Besides anti-HLA Abs, donor-specific Abs against MICA and GSTT1 antigens 
could be responsible for the occurrence of Ab-mediated kidney graft rejection

Yes

Racca et al. (86) This work did not show a correlation between MICA expression and renal graft state. The state of kidney allograft 
could be measured by using HLA-G1 isoforms, but not MICA mRNA levels, as markers

No

Lemy et al. (87) The comparison between anti-MICA Abs+ and anti-MICA Abs− patients showed that the incidence of AR episodes 
during the first year was similar in both groups. MICA Abs did not adversely affect renal graft outcomes

No

Li et al. (88) Anti-MICA Abs were detected in 11 of the 15 transplant patients, irrespective of interval acute graft rejection. Also, 
integrative genomics predicted localization of the MICA antigen on the glomerulus in the kidney. MICA localization 
may explain both immunoregulatory and pathogenic roles for MICA after transplantation

Yes

Luo et al. (89) HIF-1α plays a very important role in upregulating MICA expression and enhancing natural killer (NK) cell cytotoxicity 
toward target cells during hypoxia/reoxygenation in HK-2 cells. Their results demonstrated that hypoxia/
reoxygenation-promoted MICA expression on HK-2 cells is through a HIF-1 pathway

Yes

Cox et al. (90) Anti-MICA and anti-HLA Abs significantly associated with AR and anti-MICA donor-specific antibodies (DSA) and 
anti-HLA DSA correlated with decreased graft function by univariate and multivariate analysis. The researchers 
concluded that mismatching for MICA epitopes in renal transplantation is a mechanism leading to production of 
MICA Abs that associate with AR and graft dysfunction

Yes

Narayan et al. (91) Case report: this case demonstrated that donor-specific anti-MICA Abs could be associated with both acute 
antibody-mediated rejection (AMR) and type IIA acute cellular rejection and emphasized the necessity of treating 
both humoral and cellular components of the rejection

Yes

Yao et al. (92) The authors proved that Anti-MICA Abs+ rate was significantly higher in sensitized recipients and it had significant 
effect on the recovery of allograft function in early postoperative period. Protein A immunoadsorption plays an 
important role in decreasing preexisting Abs, especially the anti-MICA Abs

Yes

(Continued )
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Reference Summary MiCA biomarker

Zhang et al. (93) Anti-MICA Abs were present in 28.9% of patients and they were associated with renal-allograft deterioration. The 
researchers concluded that, besides anti-HLA Abs, the presence of posttransplant anti-MICA Abs was associated 
with poor graft outcome and increased the risk of graft failure

Yes

Lemy et al. (94) Anti-MICA Abs+ patients were more frequently anti-HLA Abs sensitized and regrafted. Four-year death-censored 
graft survival was not different between MICA+ and MICA− patients. These data did not support an independent 
pathogenic role for MICA in long-term renal graft injury

No

Li et al. (95) The levels of the peak mean fluorescence intensity of MICA Abs in patients with impaired renal function were 
significantly higher than those in normal renal function controls. They also concluded that some MICA Abs might be 
more important than others in mediating graft rejection

Yes

Seyhun et al. (96) Anti-HLA class II and anti-MICA Abs+ were only important predictors of graft failure when present together with 
anti-HLA I Abs+. Patients who developed anti-HLA Abs alone or both anti-HLA Abs and anti-MICA Abs rejected their 
grafts more frequently than Abs− recipients

Yes

Rodriguez Ferrero et al. 
(97)

They compared patients with versus without preformed circulating antibodies (circulating anti-MICA Abs and anti-
HLA Abs), and they did not observe a significant difference in graft survival or renal function at 3-month follow-up

No

Solgi et al. (98) This research supported the idea that monitoring of anti-HLA and anti-MICA Abs as well as soluble CD30 levels 
early after transplant had predictive value for early and late allograft dysfunctions and the presence of these factors 
was detrimental to graft function and survival

Yes

Akgul et al. (99) In this study, the scientist observed the role of anti-HLA II Abs in the development of chronic active AMR and 
in long-term allograft survival. It is observed that anti-MICA and anti-GSTT1 Abs showed no effect on rejection 
mechanisms

No

Chaudhuri et al. (100) Anti-MICA and anti-HLA Abs appeared in approximately 25% of unsensitized pediatric patients, placing them at 
greater risk for acute and chronic rejection with accelerated loss of graft function

Yes

Ding et al. (101) When comparing patients with acute graft rejection against recipients with stable renal functions, the researchers 
highlighted a significantly higher positivity rate of anti-MICA Abs. The status of anti-MICA Abs can predict the 
occurrence and treatment outcomes of AR, and affect the long-term survival of the renal grafts

Yes

He et al. (102) By following transplantation recipients during follow-ups, anti-HLA and anti-MICA Abs expression was proven to 
have a predictive value for early and late allograft dysfunction. The presence of donor-specific Ab is detrimental to 
graft function and graft survival

Yes

Jin et al. (103) They observed the prevalence of panel-reactive antibody (PRA) and anti-MICA Abs to be increased among Ptc, 
albeit not significantly different from C4d AR. These results implied that Ptc could be an early indicator of AR

Yes

Li et al. (104) CD19+ B cells and CD19+CD27+ memory B-cell subsets were detected from peripheral blood mononuclear cells 
obtained from six anti-MICA-sensitized kidney recipients. Kidney recipients had a higher percentage of CD19+CD27+ 
B cells compared with healthy controls. This study thus showed that B cells may be stimulated to secrete Abs

Yes

Sanchez-Zapardiel et al. 
(105)

The researchers detected that pretransplantation sensitization against anti-MICA and anti-HLA Abs were 
independent events. Preformed anti-MICA Abs independently increase risk for kidney rejection and enhance the 
deleterious effect of PRA+ status early after transplantation

Yes

Tonnerre et al. (106) The researcher found that individual carrying MICA A5.1/MICA A5.1 had 10-fold higher levels of MICA mRNA and 
MICA proteins at the endothelial cell surface. They also demonstrate a significant association between D/R MICA 
A5.1 mismatch and anti-MICA alloimmunization, particularly when donors carry the A5.1 mutation. They concluded 
that A5.1 mutation is an immunodominant factor and a potential risk factor for transplant survival

Yes

Zhang et al. (107) 5 years after transplantation, the frequencies of de novo anti-HLA and anti-MICA Abs were 25.8 and 12%, while 
26.5% of patients had proteinuria. All of these factors have been associated with poor graft survival

Yes

Sapak et al. (108) The researchers did not prove a complete correlation between the recipient anti-MICA Abs specificities and 
MICA antigens of the donor. They assumed that anti-MICA Ab induction occurred not only due to the allogeneic 
stimulation itself but also due to other factors that needed to be elucidated

No

Ming et al. (109) Case report: the patient’s HLA alloantibodies were not specific to the first kidney donor, but the MICA alloantibodies 
were. This indicates the importance of MICA virtual crossmatch in the process of selection for the kidney donor if 
the recipient is sensitized.

Yes

Xu et al. (110) Serum anti-HLA II Abs, anti-MICA Abs, and anti-HLA plus MICA Abs all statistically increased in renal-transplanted 
recipients

Yes

(Continued )
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Reference Summary MiCA biomarker

Cai et al. (111) Transplant recipients had Abs against denatured HLA class I, II, and MICA antigens. However, only C1q-fixing Abs 
were associated with graft failure, which was related to AMR

Yes (only for c1q-fixing 
denaturated MICA Abs)

Sanchez-Zapardiel et al. 
(112)

Occasionally, preformed anti-MICA Abs may be cytotoxic by activating and fixing complement. This could lead to a 
reduced function in early kidney grafts

Yes

Relevant published works regarding NKG2D and transplant

Feng et al. (113) Ischemia/reperfusion injury (IRI) caused mRNA expression of Rae-1 and protein expression of Rae-1 in ischemic 
kidneys. This study suggested that the expression of the NKG2D ligand, Rae-1, may play a potential role in innate 
immunity associated with IRI

Zheng et al. (114) The absence of enhancement of NKG2D expression in the kidney in AN in immunodeficient mice suggested that the 
populations expressing NKG2D were likely to be CD8 or γδ T cells, which were not present in the immunodeficient 
mice, rather than macrophages, which were present and activated in both models of AN

Seiler et al. (62) Unlike previous reports, in this paper, the researchers could not detect elevated MICA mRNA levels in kidney 
biopsies derived from patients undergoing AR or chronic allograft nephropathy. In contrast, they observed a strong 
mRNA induction of NKG2D during renal-allograft rejection, which could be verified by immunohistology in kidney 
biopsies

Hadaya et al. (115) The results of this paper have shown an expansion of the NKG2D+ NK cell population during acute cytomegalovirus 
(CMV) infection (after kidney transplantation), which decreased over time to a level very similar to that of the control 
group. This suggests that the NKG2D receptor could play a similar role in NK and CD4+ T cells

Zhang et al. (116) In this study, the researchers demonstrated for the first time that NK cells could induce kidney TEC death in vitro 
and that NKG2D and Rae-1 interactions played a critical role in this killing in mice

Shabir et al. (117) Cytotoxic CD4+ CD28null cell is an important biomarker for and potential mediator of adverse events after kidney 
transplantation. NKG2D represents an integral component of CMV immunosurveillance and immunoevasion and 
was upregulated on CD4+ CD27− CD28null cells isolated from patients of this study. The researchers proposed it as 
an important component of the cytotoxic effects (either protective or pathogenic) of these cells

“Yes” and “No” labels have been used if, in the studies analyzed, MICA has been valued as a possible biomarker (“Yes”) or not (“No”).
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present, while HIF-1α has a unique O2-dependent degradation 
domain, which leads to its degradation under normoxia condi-
tions. The authors speculate that HIF-1α upregulates the surface 
expression of MICA on grafts during renal IRI, causing NK cells 
cytotoxicity against the organ (89).

Possible Causes of end-stage Renal 
Disease
A 2009 study of the possible causes of end-stage renal disease 
(ESRD) (70), while note directly related to kidney transplants, 
inevitably reported findings of consequences for kidney trans-
plantation. Peraldi et al. evaluated seven patients with ESRD that 
were treated with peritoneal dialysis, and not with the hemodi-
alysis procedure; NKG2D expression on NK cells was signifi-
cantly decreased in these patients compared to healthy donors, 
indicating that reduction in NKG2D expression was independent 
of the dialysis procedure and linked with chronic renal failure. 
The authors also discovered that oxidative stress in presence of 
increased ROS production is one of the most significant conse-
quences of chronic renal failure, alone or in concert with other 
mediators, and it seems to decrease the NKG2D levels on NK cells 
in ESRD and to favor the upregulation of MICA expression (70).

Anti-MiCA Abs and Rejection
Some mechanisms have been proposed for MIC-mediated organ 
rejection. MICA antigens expressed in the allograft could induce 

the generation of anti-MICA Abs, which in turn might injure cells 
in the presence of complement.

This section contains no works that focus solely on NKG2D 
since most of the manuscripts are almost exclusively conserved 
with anti-MICA Abs: NKG2D is often just a side note; its presence 
and the link with MICA are given.

MICA-Sensitized Kidney Recipients and Higher 
Percentage of CD19+CD27+B Cells
CD19+CD27+ B cells are the subset of memory B cells that have 
the potential ability to secrete Abs. Li et  al. (104) assessed the 
serum from 68 long-term survival kidney recipients and found 
11 subjects who were MICA positive. They analyzed six MICA-
sensitized kidney transplant recipients and six healthy volunteers 
who did not receive a transplant (control group). Healthy con-
trols had a higher percentage of CD19+CD27− in PBMCs than 
transplant patients, while the percentage of CD19+CD27+ in B 
cells was higher in transplant patients. The MICA-sensitized 
transplant patients had a significantly lower average percentage of 
CD19+ B cells in PBMC than healthy controls (3.58 ± 0.80 versus 
8.53 ± 1.04%; P < 0.01). These results suggest that CD19+CD27+ 
B cells from sensitized patients have the potential ability to secrete 
Abs. In the same study, PBMC cells were isolated and cultured and 
stimulated with different molecules [toll-like receptor-9 ligand 
ODN-2006 CpG, PMA, B-cell activating factor (BAFF), CD40 
ligand (CD40L), human recombinant IL-2 (rhuIL-2), rhuIL-10, 
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rhuIL-4, rhuIL-21, CD40L, and BAFF] including MICA antigens. 
After stimulation, B cells from healthy controls and transplant 
patients had a lower percentage of apoptosis than non-stimulated 
cells. The average percentage of apoptosis cells from transplant 
patients was significantly higher than from healthy controls, and 
the IgM production (the first Ab produced by B cells after antigen 
stimulation) was higher in stimulated B cells from transplant 
patients than from healthy controls. The authors speculate that 
the B-cell population may be compromised by the transplant 
because patients are under immunosuppressive regimens, which 
may alter the apoptosis of B stimulated cells compared with 
healthy controls. The same study also performed an in vitro study 
with drugs and found that bortezomib and mycophenolic acid 
could inhibit B-cell Ab secretion (104).

MICA Abs
Hankey et al. (77) first reported that MICA and MICB expression 
on epithelial cells in transplanted kidneys and pancreases with 
histological evidence of rejection and cellular injury played a role 
in allograft rejection. The study showed that in a healthy kidney 
there was no immunochemical evidence of MIC expression. In 
contrast, the majority of biopsies with histologic proof of rejection 
or acute tubular necrosis (ATN) showed MICA positive staining 
of the tubular epithelium in the proximal and distal tubules. For 
this reason, it was concluded that alloantibodies against MICA 
might play a role in allograft rejection.

Zwirner et  al. (76) found that several patients who had 
undergone a kidney transplant had specific Abs against MICA, 
and most of them were detected in serum samples collected at 
different times after organ rejection. However, these Abs were 
not directed against the alleles expressed by the patients, and it 
was speculated that if the presence of MICA Abs was probably 
caused by multiple blood transfusions received by the patients 
while awaiting a transplant, or resulting from a pregnancy or a 
previous transplant (76).

Lemy et  al. (87) analyzed the MICA Abs from 494 controls 
and 597 patients with chronic kidney disease. They found a three 
times higher prevalence of MICA Abs in patients with chronic 
kidney disease when compared with controls (14.9 versus 4.7%). 
Nevertheless, they speculated that even if the increase in MICA 
Abs prevalence among patients affected by chronic kidney dis-
ease was probably related to previous renal transplantation and 
transfusions. Logistic regression analysis and analysis of chronic 
kidney disease patients who have not been subjected to transfu-
sions and renal transplantations suggest that the increase of urea 
(and other nitrogenous waste) in the blood is connected to an 
increase of MICA immunization. The authors also reported that 
MICA Abs were more frequent in men than in women, despite 
pregnancy being an independent risk factor for the development 
of MICA Abs (87). This finding is in sharp contrast with other 
published work. The fact that nearly one-third of MICA chronic 
kidney disease stage V patients have never experienced any 
identifiable immunizing event indicates that there must be other 
causes for MICA sensitization. At the same time, one-fifth of the 
same patients showed the presence of autoreactive MICA IgG 
Abs, distinctly rare with respect to HLA Abs. The authors showed 
that patients with MICA Abs had a somewhat better overall graft 

survival than MICA Abs− patients. Finally, Lemy et  al. found 
in MICA Abs+ and MICA Abs− patients a similar incidence of 
AR episodes during the first year (10.2 versus 12.8%), as well as 
similar levels of proteinuria and creatinine (87).

Another study of MICA Abs screened 147 recipients with 
end-stage renal disease; 82 of these patients were Abs+ (55.8%). 
Forty patients had both anti-HLA and anti-MICA, 33 had only 
anti-HLA, and 9 only anti-MICA Abs in the posttransplant 
period. The authors found that patients who developed HLA 
alone, or both HLA and MICA Abs, rejected their grafts more 
frequently than Abs− recipients. The rates of HLA class I, class II, 
or both Abs+ were greater in the rejection patients than the non-
rejection patients (P = 0.011, 0.037, and 0.0275, respectively). So 
the authors speculated that HLA class II and MICA Abs+ were the 
only important predictors of graft failure when both of them were 
present with HLA class I Abs+ (96).

In a retrospective study, Solgi et al. (98) analyzed sera samples 
of 40 living unrelated donor kidney recipients, looking at anti-
HLA and anti-MICA Abs and the levels of soluble CD30 (sCD30) 
and sMICA. They found that patients with pre- and posttransplant 
HLA Abs had a higher incidence of AR episodes (P = 0.01 and 
P = 0.02), more graft loss (P = 0.001), and lower graft survival 
during a mean follow-up of 3 years. This group of patients also 
had higher levels of sCD30 and serum creatinine and decreased 
contents of sMICA early after transplantation, as compared to 
the patients without HLA Abs. Anti-MICA Abs were observed in 
8/40 (20%) and 5/40 (12.5%) of all patients pre- and posttrans-
plant, respectively. HLA and MICA Abs were both found in two 
out of four cases with graft loss. In a comparison of transplant 
rejecting to functioning graft groups, sCD30 levels increased at 
day 14 (P = 0.001), while sMICA levels were insignificantly lower 
in the first group (98).

Chaudhuri et  al. (100) studied the evolution of humoral 
immunity in low-risk pediatric patients during the first 2 years 
after renal transplantation. They correlated the presence of serum 
anti-HLA DSA and serum MICA Abs with clinical outcomes 
and histology (the biopsies were performed at 0, 6, 12, and 
24 months). They found anti-HLA Abs in 22% of patients, 6% 
of which were donor-specific, while 6% developed anti-MICA 
Abs. Three percent of patients developed de novo Abs to both 
HLA and MICA. The presence of de novo Abs was associated with 
significantly higher risks for AR (P = 0.02), chronic graft injury 
(P = 0.02), and decline in graft function (P = 0.02). Graft function 
was monitored by the difference between creatinine clearances. 
Anti-MICA and -HLA Abs were found in 25% of unsensitized 
pediatric patients. This was correlated with a greater risk of acute 
and chronic rejection (100).

Zhang et al. (107) associated the presence of de novo MICA 
Abs and proteinuria with graft failure, after renal transplantation. 
They investigated 275 patients without preexisting anti-HLA and 
-MICA Abs. Five years after renal transplantation, 25.8% showed 
de novo anti-HLA Abs, 12% showed de novo anti-MICA Abs, and 
26.5% proteinuria. De novo anti-HLA Abs were associated with 
increased proteinuria after transplantation (relative risk, 3.12). 
Anti-HLA Abs and proteinuria were both associated with poor 
5-year graft survival (P  =  0.027 and P  =  0.006, respectively). 
Patients with de novo anti-MICA Abs were also apt to have 
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proteinuria. The authors concluded that de novo anti-HLA and 
-MICA Abs and proteinuria are all associated with poor graft 
survival (107).

Pretransplant Panel-Reactive Abs and Preexistent 
Circulating Abs
Opelz (78) studied the influence of pretransplant panel-reactive 
antibody (PRA) status on the long-term outcome of kidney 
grafts from HLA-A, -B, and -DR, identical sibling donors. In 
over 10 years of follow-up, he discovered that non-HLA-directed 
immunity and Abs against HLA had a similar influence for the 
long-term results for kidney recipients with PRA. Opelz sug-
gested that the targets for Abs causing late rejections could be the 
so-called minor histocompatibility antigens (78).

Sanchez-Zapardiel et  al. (105) studied 727 transplanted 
patients and showed that the effect of anti-MICA Abs occurs 
independently of the presence of anti-HLA Abs. Pacients were 
categorized into four groups according to the presence (+) or 
absence (−) of anti-HLA and anti-MICA Abs: HLA+MICA+ 
(n  =  27); HLA−MICA− (n  =  510); HLA+MICA− (n  =  165), 
and HLA−MICA+ (n = 25). A notable difference was observed 
3  months after transplantation, when HLA−MICA+ patients 
had a graft rejection rate of 8% compared with 2% in HLA− 
MICA− patients. The patients were also grouped according to the 
presence of preexisting anti-HLA Abs, as measured by % PRA 
(PRA+ or PRA−): PRA+MICA+ (n = 7), PRA−MICA− (n = 610), 
PRA+MICA− (n = 65), and PRA−MICA+ (n = 45). The incidence 
of rejection was found to be superior in PRA+MICA− cohort 
versus PRA−MICA− patients (24 months after transplantation), 
but allograft rejection rate was the highest when comparing 
PRA+MICA+ patients with PRA−MICA− patients 3 months after 
transplantation, a finding which was repeated at 6 months (105). 
This work is of interest because it performed a comparative 
study on the effects of anti-MICA and anti-HLA Abs on kidney 
transplants.

The Rodriguez Ferrero et al.’s (97) study included 22 recipi-
ents of kidney transplantations from deceased donors, and no 
differences between patients that showed preexistent circulating 
antibodies (CA) and those that did not were reported. In regards 
to the incidence of AR episodes, the only factor associated with 
CA was re-transplantation. So the authors concluded that CA 
monitoring is important for highly sensitized renal transplants, 
but they did not observe a difference in graft survival or renal 
function in the first 3-month follow-up (97).

Cd4 Deposition and C1q-Fixing Abs
A study of patients with acute antibody-mediated rejection 
(AAMR), who had MICA*008 Ab, showed that the presence of 
anti-MICA Abs and the deposition of C4d in biopsies performed 
at the time of AAMR was associated with the detection of DSA or 
Abs against HLA (80). The observation that the control group of 
30 patients with long-term functioning grafts did not have anti-
MICA*008 Abs provided indirect evidence of the importance of 
anti-MICA Abs in chronic rejection. Furthermore, all patients 
receiving an allograft fully matched at MICA had functioning 
grafts (80). It is also important to mention that MICA Abs are 
able to activate complement in in vitro experiments (80).

Alvarez-Marquez et al. (85) selected 58 patients that under-
went a kidney biopsy because of primary non-function, delayed 
graft function or acute dysfunction of a previously functional 
graft, suspected by oliguria, increase of serum creatinine levels, 
or proteinuria. At the time of the transplant, all patients showed 
negative complement-dependent cytotoxicity crossmatches. 
Researchers demonstrated that 80% of a group of 19 patients with 
clinically evident graft dysfunction and with C4d deposition in 
kidney biopsies had Abs directed against donor-specific HLA 
class I, class II, MICA, or GSTT1 (glutathione-S-transferase T1) 
antigens (85).

In the Li et al.’s (88) study, a human ProtoArray platform was 
used to study 37 serum samples from 15 renal transplant patients 
(pediatric and young adult) with (n = 10) and without (n = 5) 
AR, and seven normal controls. To test serum Abs, they used 
a ProtoArray containing 5,056 non-redundant human proteins 
expressed in a baculovirus system, purified from insect cells 
and printed in duplicate onto a nitrocellulose-coated glass slide. 
Moreover, all patients were primary transplant recipients, and 
the biopsies were graded by the Banff classification. The authors 
found that the mean immune response signal in posttransplant 
patient serum showed an increase in anti-MICA Abs when com-
pared with healthy normal controls (n = 7), but anti-MICA Abs 
signal intensity was unrelated to the sampling time interval post-
transplantation. Mean MICA Abs signal intensity was higher in 
transplant patients with C4d+AR (121.4) versus C4d−AR (4.3), so 
a correlation between high MICA Abs levels and C4d+ graft rejec-
tion r = 0.54 (P = 0.039) was observed. On ProtoArray, each gene 
on the cDNA platform was compared between a specific kidney 
compartment versus all other compartments, by a two-unpaired 
class comparison and a multi-class comparison. The signal 
intensity of anti-MICA Abs ranked in the top 15 for glomerulus, 
so the MICA antigen was found to have a 2.7-fold higher expres-
sion in the glomerulus when compared to the other 6 normal 
kidney compartments. Cytoplasmic granular staining for MICA 
in normal and stable transplanted kidneys was observed solely in 
podocytes within glomeruli. In AR, in addition to the persisting 
glomerular staining, the infiltrating mononuclear lymphocytes 
also showed strong positive staining for MICA. So the authors 
demonstrated that Ab responses in patients are modulated by 
MICA after transplantation in patients, irrespective of graft 
rejection (88).

Another study correlates Cd4 deposition and creatinine levels. 
Ding et al. (101) evaluated serum anti-MICA Abs before and after 
kidney transplant, and they also examined PRA, serum creatinine, 
urine, graft ultrasound, lymphocyte subsets, and the pathology of 
graft biopsy. The study was split into two parts. In the first part, 
patients with AR were grouped into MICA+, MICA− (P < 0.05) 
and control groups. There were a significantly higher number 
of anti-MICA Abs positive patients with acute graft rejection 
compared with stable renal functions patients (control group).

Two to three days after the occurrence of AR, the anti-MICA 
Abs level increased gradually. Anti-rejection treatment had no 
effect on anti-MICA Abs but lowered serum creatinine to a 
normal level. In the second part, the authors analyzed chronic 
graft rejection patients. The number of anti-MICA Ab positive 
patients was significantly higher than those with stable renal 
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function (P  <  0.05), and the serum creatinine levels were sig-
nificantly higher in MICA+ than in MICA− cases (P < 0.05). The 
authors also found that graft biopsy of all MICA+ cases showed 
C4d deposition (101).

Jin et al. (103) studied 53 cases of AR that showed C4d deposi-
tion in the peritubular capillaries, 50 cases of ARs without C4d 
deposition, 30 with peritubular capillaries alone, 28 with ATN, 
and 78 patients with surveillance biopsies (control group). The 
authors observed that the prevalence of PRA and anti-MICA Abs 
was increased among the peritubular capillaries alone group (30.0 
and 43.3%, respectively), albeit not significantly different from 
the group with C4d+ AR (49.1 and 39.6%, respectively). They 
also observed that the immunophenotype of infiltrating T lym-
phocytes and serum Abs (85.9% of control biopsies presented) 
had a regulatory phenotype while in the peritubular capillaries 
cohort, 93.3% of biopsies showed the cytotoxic phenotype. These 
results showed that peritubular capillaries in biopsy specimens 
from patients with early renal-allograft dysfunction could be an 
indicator of AR, especially acute humoral rejection (103).

Cai et al. (111) collected samples from 975 kidney transplant 
recipients, and they tested for C1q-fixing Abs against denatured 
HLA class I, class II, and MICA antigens. Among 169 patients 
who lost renal grafts, 44% had c1q-fixing Abs against denatured 
HLA/MICA antigens, which was significantly higher in patients 
with functioning renal transplants (25%). They concluded that 
C1q-fixing Abs were significantly associated with graft failure 
caused by AMR (72.73%) and they affirmed that only c1q-fixing 
Abs were associated with graft failure and AMR (111).

MICA Allele Epitopes and Eplets
Regarding the anti-MICA Abs, Duquesnoy et al. (118) developed 
an eplet-based version of the HLA-Matchmaker algorithm as a 
tool to assess the epitope specificity of these Abs. A repertoire of 
38 potentially immunogenic MICA eplets was selected (based on 
MICA structure molecular viewing and the amino acid sequence 
differences between MICA alleles). These eplets are based on a 
functional epitope structure (a configuration of amino acids 
within a 3 Å radius of an Ab accessible polymorphic residue on 
the molecular surface). In this study, the eplet frequencies were 
calculated from MICA allele frequencies in 1,245 European-
Americans and 605 African-Americans. Many eplets are shared 
by very similar groups of MICA alleles. For instance, the com-
bination of eplets called CMGWS “supereplet” is composed by 
36C, 129M, 206GW, and 215S epitopes and shared by the same 
group of MICA alleles (A*001, A*002, A*007, A*011, A*012, 
A*015, A*017, A*018, A*021, A*030, A*041, A*043, A*045, 
A*046, A*047, A*014, A*020, A*023, A*026, A*029, A*036, 
A*040, A*050, A*052, and A*055). The random chance that these 
eplets are a mismatch is 20.1% in African-Americans and 24.0% 
in European-Americans. Alternatively, the combination of eplets 
named AYVE “supereplet” is composed by 25AY, 129V, and 173E 
and was shared by another group of MICA alleles (A*004, A*006, 
A*008, A*009, A*010, A*016, A*019, A*024, and A*044). The 
random chance of their being a mismatch is 28.2% in African-
Americans and 20.1% in European-Americans (118).

Panigrahi et al. (82, 119) analyzed the presence of Abs against 
MICA*001, MICA*002, MICA*004, MICA*008, and MICA*009 

in serum samples of 185 patients transplanted with live related 
donor kidneys. Sixteen percent of all recipients developed anti-
MICA Abs during the posttransplant period, 83% of the patients 
whose grafts eventually failed had both anti-HLA and anti-MICA 
Abs as compared to 29% patients who had only anti-MICA Abs, 
and 11% of those without any of the Abs (HLA or MICA) (82, 
119).

Analysis of anti-MICA*001, MICA*002, MICA*004, 
MICA*008, and MICA*009 Abs in serum samples from 1,910 
kidney recipients showed that a correlation between the presence 
of anti-MICA Abs and the reduced in kidney-allograft survival 
was not influenced by the simultaneous presence of Abs against 
HLA (120). In this study, decreased renal-allograft survival is 
associated with anti-MICA Abs formed before transplantation. 
It was also found that patients with Abs against MICA before 
transplantation did not received more transfusions than patients 
without such Abs, in contrast with the Zwirner et al.’s study (76). 
So the authors speculate that cross-reactivity with substances 
from the environment may play a role in priming the immune 
system, facilitating anti-MICA Ab production (120).

Suarez-Alvarez et  al. (84) screened 284 kidney transplant 
sera for anti-MICA Abs and mapped the epitopes of MICA by 
screening a library of synthetic overlapping peptides from the 
extracellular domains of the protein against the sera from kidney 
transplant patients with anti-MICA Abs. Anti-MICA Abs were 
detected in 50 of 284 patients (17.6%), and they correlated with 
the development of AR. The authors found that nine regions 
were reactive with anti-MICA Abs. Five epitopes were located in 
constant regions (II, III, IV, VI, and IX) and were present in all 
MICA alleles, while the other four regions (I, V, VII, and VIII) 
mapped to variable sites of polymorphic amino acids among the 
different alleles products of MICA. In particular, regions V, VII, 
and VIII were the regions with the highest amino acid variability. 
Three polymorphic residues, 173 (E/K), 175 (S/G), and 181 
(R/T), had determined allele-specific epitopes. The aminoacid 
208Y and 213T, instead, contributed in the cross-reactivity 
among alleles (84).

Cox et  al. (90) identified MICA IgG Abs directed against 
MICA*001, *002, *004, *007, *008, *009, *012, *017, *018, *019, 
and *027. Analysis of 116 healthy control subjects revealed only 
one subject with anti-MICA Abs (0.9%) and five subjects (4%) 
with anti-HLA class II Abs, while in a subgroup of 227 transplant 
recipients and their donors the coproduction of Abs to HLA 
and MICA significantly associated with acute cellular rejection 
(ACR). Analysis of patients with AAMR established strong 
associations with the presence of Abs against HLA class I and 
II, but not anti-MICA. By aligning MICA allele profiles present 
in the subgroup of 227 renal graft recipients and their respective 
donors, it was possible to establish the precise position of amino 
acid mismatches that correlate strongly with MICA Ab produc-
tion. Mismatching at residues 36, 129, 173, 175, 213, and 251 
showed the strongest association with anti-MICA Ab production 
in transplant recipients, while 91, 125, 156, and 221 residues were 
also mismatched between recipients and donors, but were not 
significantly associated with anti-MICA Ab production. There 
are two immunodominant motifs: MICA-G1 is characterized by 
residues 36 cysteine (C), 129 methionine (M), 173 lysine (K), 206 
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glycine (G), 210 tryptophan (W), and 215 serine (S). Alternatively 
MICA-G2 epitopes share residues 36 tyrosine (Y), 129 valine 
(V), 173 glutamic acid (E), 206 serine (S), 210 arginine (R), and 
215 threonine (T). The majority of these recipients (10 out of 17 
individuals, 59%) developed de novo donor-specific anri-MICA 
Abs posttransplantation, and there was a significant association 
of graft dysfunction with the presence of anti-MICA DSA alone 
after 2 years. In conclusion, it was discovered that mismatching 
MICA alleles lead to the development of anti-MICA Abs in some 
renal graft recipients, and the presence of anti-MICA DSA was 
independently associated with decreased glomerular filtration 
rate (eGFR) and poorer graft outcome (90).

Tonnerre et al. (106) went beyond the usual studies of anti-
MICA Abs and focused on searching for a specific allele that 
could lead to a poorer outcome. The authors performed a study 
that showed that the MICA*008 (A5.1) molecule is a major 
antigenic determinant and target for recipient sensitization of 
kidney transplant patients. MICA A5.1 is associated with four 
alleles: *023, *028, *053, and *008. The authors divided primary 
EC cultures from transplant donors in MICA A5.1 homozygous, 
heterozygous, and control. The MICA surface expression was 
significantly higher on ECs from A5.1/A5.1 donors than from 
controls. The MICA A5.1 allele also leads to a reduction of sMICA 
and an increase in the MICA level in exosomes in ECs. Anti-
MICA (A5.1) Abs intensities in the sera of recipients with anti-
MICA Abs were not higher than intensities observed for other 
anti-MICA (control) Abs. However, when tested on EC cultures 
expressing physiologic levels of membrane-bound MICA, the 
sera only bound to ECs from MICA A5.1 donors. This seemed to 
show that anti-MICA Abs bind ECs’ targets in an allele-specific 
manner.

In fact, the combination of the donor carrying MICA A5.1 and 
the recipient having a non-MICA A5.1 allele was overrepresented 
in the group of MICA-sensitized patients compared with the 
group of non-immunized recipients (106).

Sapak et al. (108) concluded that anti-MICA Abs could not 
be responsible for the rejection if they were not directly detected 
in the transplanted graft. In the sera of 124 renal recipients, the 
authors found only 22 patients positive for anti-MICA Abs. The 
most frequent anti-MICA Abs were directed against MICA*018 
and MICA*001. MICA*008 had the highest gene frequency (31%), 
followed by MICA*002 (14%). Comparing MICA allele profiles of 
donors and anti-MICA Ab epitopes of their respective recipients, 
Sapak et  al. found a match in only in 9 donor–recipient pairs 
(41%) while the sera of the other 13 patients was negative for Abs 
against graft MICA molecules, but positive for Abs against other 
MICA antigens. The majority (59%) of anti-MICA Abs in patients 
were not donor-specific, so the authors suggested that anti-MICA 
Ab induction was not caused by renal graft allogeneic stimulation 
but was also probably stimulated by other still unknown immune 
mechanisms (108).

Sanchez-Zapardiel et al. (112) studied 727 kidney recipients. 
They found that PRA+MICA+ recipients exhibited a longer time 
to reach optimal serum creatinine level after transplantation 
(P = 0.005) had the lowest eGFR at 3 months and PRA+MICA+ 
status independently increased the risk for chronic kidney 
disease stage 5 at month 3. Pretransplant anti-MICA Abs were 

poly-specific; anti-AYVE supereplet reactivity was higher in 
HLA+MICA+ versus HLA−MICA+ patients and superior than 
anti-CMGWS supereplet within HLA+MICA+ patients. The 
authors also found that some preformed anti-MICA Abs might 
bind complement, using the C1q Luminex assay. Sanchez-
Zapardiel et al. analyzed 13 anti-MICA+ pretransplant sera that 
were positive for the C1q binding assay and one of them (serum 
3) exclusively recognized the AYVE supereplet with a strong 
reactivity against MICA*027 antigen. The authors concluded that 
these preformed anti-MICA Abs are able to mediate cell death by 
fixing and activating the complement cascade. So they speculated 
that the anti-MICA Abs might contribute to worse early kidney 
graft function (112).

Correlation between Anti-MICA Abs and Creatinine 
Levels or Estimated Glomerular Filtration Rate 
(eGRF) or Death-Censored Graft Survival (DCGSs)
Yao et al. (92) included 29 sensitized recipient patients who had 
undergone living-related donor renal transplantation between 
2007 and 2009. They found a statistical difference in postopera-
tive serum creatinine levels within 1 week between anti-MICA 
Ab-positive (135.4  ±  21.4  mol/L) and anti-MICA Ab-negative 
groups (108.6  ±  31.6  mol/L), but no significant difference 
between the two groups at discharge. To decrease the preexisting 
Abs (mainly IgG, IgM, and IgE), all recipients were treated with 
protein A immunoadsorptions, and this therapy was effective in 
decreasing anti-MICA Abs (92).

Zhang et  al. (93) studied patients receiving primary kidney 
transplants (all from deceased donors) between 2004 and 2007. 
No significant association was found between the presence of 
anti-MICA and -HLA Abs, nor between the presence of anti-
MICA Abs and 1-year graft survival rate. However, during the 
follow-up period, eGFR decreased 24.0 ± 3.4% in the anti-MICA 
Abs positive group, while it decreased only 8.4 ± 3.0% in anti-
MICA Abs negative patients. A strong correlation between the 
production of anti-MICA Abs and renal impairment was also 
found. For these reasons, the authors concluded that patients with 
anti-MICA Abs had a more rapid deterioration of graft function, 
compared to those without anti-MICA Abs (93).

In another study that did not recognize MICA as a biomarker, 
sera from 779 kidney transplant recipients was tested with two 
single-antigen flow bead assays 1  year after transplantation. 
Thirteen of the 779 patients were lost to follow-up, 50 had lost 
their graft, and 33 died with a functioning graft. The prevalence 
of anti-MICA Abs was 5.3% at 1-year posttransplantation, and 
that MICA+ patients were more frequently HLA sensitized and 
regrafted. However, 4-year DCGSs were not different between 
MICA+ and MICA− patients (97 versus 94%, P = 0.28), and 4- and 
8-year survival rates were similar in MICA+ and MICA− patients. 
Thus, the hypothesis of an independent pathogenic role for MICA 
in long-term renal graft injury was not supported, and the authors 
questioned the utility of monitoring anti-MICA Abs posttrans-
plant with single-antigen flow bead assays (94).

MICA Abs in Case Study
Narayan et al.’s (91) case study focused on a 14-year-old girl with 
branchiooto renal syndrome who underwent re-transplantation 

161

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Risti and Graça Bicalho MICA and NKG2D in Kidney Transplant

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 179

with an HLA crossmatch-negative deceased donor kidney. She 
lost her first kidney transplant to chronic rejection at the age of 10 
and underwent allograft nephrectomy. She was highly sensitized, 
and to improve her chances for transplantation, she underwent 
desensitization with high-dose IVIG and rituximab. When she 
received a deceased donor renal transplant, the pretransplant 
anti-HLA Ab testing showed no anti-donor HLA Abs. The patient 
maintained good allograft function until postoperative day 10 
when she presented with fever and anuric renal failure. The only 
Ab found was donor-specific anti-MICA Ab, specifically directed 
against MICA*012 protein. Evaluation of the pretransplant 
serum revealed preformed anti-MICA*012 Abs with levels that 
were elevated both before transplant and at the time of rejection. 
Anti-MICA Abs levels declined with the initiation of plasmapher-
esis and IVIG and correlated well with normalization of renal 
function and resolution of ACR and AMR. The authors specu-
lated that the sensitization to the MICA*012 protein was caused 
by prior sensitization from the first renal transplant or previous 
infections or transfusions. The conclusion of their research is 
that donor-specific anti-MICA Abs can be associated with both 
AMR and Banff type IIA ACR and may require treatment with 
plasmapheresis (91).

Ming et al. (109) studied a patient who suffered early aggres-
sive AMR in the presence of DSA against MICA after her first 
renal transplant. The researchers found that anti-MICA–DSA in 
recipient serum could bind MICA-G1 antigens expressed in the 
cultured human umbilical cord vein endothelial cells (HUVECs). 
The recipient serum was cytotoxic to these HUVECs, but not 
against HUVECs that did not express MICA-G1 antigens in the 
presence of complement. The researchers discovered that the 
patient had been sensitized to MICA antigens and HLA, before 
transplantation, and the HLA alloantibodies were not specific to 
the first kidney donor, but the MICA alloantibodies were. In light 
of this discovery, the second renal transplant was with a negative 
MICA virtual crossmatch, and it was successful (109).

microRNA and mRNA’s Analysis
Seiler et al. (62) showed that an elevated NKG2D mRNA expres-
sion in biopsy material was correlated with the severity of AR 
and detected NKG2D+ cells located in clusters around tubules in 
biopsies derived from patients diagnosed with acute and chronic 
rejection. The expression of NKG2D mRNA was also detected 
in urinary sediments obtained 2–3 days before the AR episode. 
However, significant levels of MICA mRNA were not detected in 
the patient groups analyzed (62). For the first time, the focus was 
on the importance of the role of the NKG2D molecule, which is 
responsible for MICA signal transduction.

Another controversial paper regarding the role of MICA is the 
Racca et al.’s study (86), in which the authors obtained peripheral 
blood samples from 29 renal-transplanted patients (19 men). 
They classified patients it into three groups: AR group (9 patients 
with acute grade I/II allograft rejection), chronic rejection group 
(10 patients with chronic allograft rejection), and stable evolution 
group (10 patients with clinically stable allograft evolution). The 
authors observed that MICA mRNA levels in peripheral blood 
mononuclear cells showed similar expression levels in all groups 
evaluated and in the control group. They also found similar levels 

of MICA expression in a comparison of biopsy specimens from 
AR and nephrotoxic ATN patients. They did not find a correlation 
between MICA expression and renal graft state (86). It is interest-
ing to note that the MICA expression in biopsies did not have 
a healthy control group, while expression of MICA mRNA may 
be a posttranscriptional control that modules MICA expression 
on the cell surface. The Racca et  al.’s (86) study still represents 
an interesting opportunity to discuss the role of MICA as a 
biomarker.

Xu et al. (110) studied miR-338-5p, a microRNA downregulated 
in AMR renal allografts, and negatively correlated with BAFF. This 
molecule plays an important role in the differentiation, develop-
ment, and proliferation of B lymphocytes. BAFF could be released 
in a soluble form (sBAFF) after cleavage and would bind to BAFF 
receptor. The receptor-associated factor 3 is a sort of adaptor for 
the BAFF–BAFF-R connection, it is implicated in a signal trans-
duction, and it appeared to be a candidate target for miR-338-5p. 
In the study, 49 follow-up renal-transplanted recipients and a 
healthy control group were examined, and it was found that anti-
HLA II Ab, anti-MICA Ab, and anti-HLA + MICA mixed Abs 
were all statistically increased in recipients. Serum miR-338-5p 
was significantly downregulated in renal-transplanted recipients 
compared with healthy volunteers and was inversely correlated 
with sBAFF. The authors speculate that miR-338-5p may regulate 
the BAFF signal, and they suggested that sBAFF was significantly 
negatively correlated with anti-MICA Abs (110).

Cytomegalovirus (CMv) and Polyomavirus 
and Transplantation
Cytomegalovirus infection is the most common viral complica-
tion after renal transplantation and solid organ transplantation 
in general. One hundred ninety-six recipients who underwent 
kidney transplantation during the past 6 years were assessed with 
at follow-up of at least 12 months. In this study, it was shown that 
the activating receptor NKG2D was expressed in a significantly 
higher number of NK cells at day 0 and day 20 compared to day 
180 (P = 0.01 and P = 0.003, respectively) and compared to the 
control group (P = 0.0003 and P = 0.0004, respectively) (121). 
This finding suggests a possible mechanism for the activation of 
NKG2D that goes beyond organ rejection, but it is closely related. 
In fact, in the Hadaya et  al. (121) study, it was shown that an 
expansion of the NKG2D+ NK cell population occurred during 
acute CMV infection which decreased over time to a level very 
similar to that of the control group.

An interesting study that involved NKG2D, performed by 
Shabir et al. (117), demonstrated that CD4+CD28null T cell expan-
sion is driven by latent CMV infection inflammation. The immune 
surveillance of CMV may have an unwanted consequence in 
the development of endothelial injury, which was proven to be 
mediated by CD4+CD27−CD28null cells in in vitro experiments. 
NKG2D was upregulated on CD4+CD27−CD28null cells isolated 
from patients in this study and might have an important compo-
nent of the cytotoxic effects of these cells. In fact, CD4+CD28null 
cells were found predominantly in CMV-seropositive patients, 
and expanded in the posttransplantation period, and expressed 
markers of cytotoxicity (NKG2D and perforin) and endothe-
lial homing (CX3CR1). Isolated CD4+CD27−CD28null cells 
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CONCLUSiON

Since the MICA gene was first described, it has been the subject 
of many studies aiming to comprehend its immunobiology and 
the role it plays in fine-tuning the innate and adaptive immune 
response. MICA appears to be involved in transplant rejection, 
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chance for positive outcomes in solid organ transplantation by 
allowing better matching. MICA’s biological function is achieved 
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of transplanted grafts, in fact, the overexpression of NKG2DLs 
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cal impact of these interactions will remain unclear until further 
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Human cytomegalovirus (HCMV) infection promotes the differentiation and persistent 
expansion of a mature NK cell subset, which displays high surface levels of the acti-
vating CD94/NKG2C NK cell receptor, together with additional distinctive phenotypic 
and functional features. The mechanisms underlying the development of adaptive 
NK cells remain uncertain but some observations support the involvement of a cog-
nate interaction of CD94/NKG2C with ligand(s) displayed by HCMV-infected cells. 
To approach this issue, the heterodimer and its adaptor (DAP12) were expressed 
in the human Jurkat leukemia T cell line; signaling was detected by transfection of 
a reporter plasmid encoding for Luciferase (Luc) under NFAT/AP1-dependent con-
trol. Engagement of the receptor by solid-phase bound CD94- or NKG2C-specific 
monoclonal antibodies (mAbs) triggered Luc expression. Moreover, reporter activation 
was detectable upon interaction with HLA-E+ 721.221 (.221-AEH) cells, as well as 
with 721.221 cells incubated with synthetic peptides, which stabilized surface expres-
sion of endogenous HLA-E; the response was specifically antagonized by soluble 
NKG2C- and HLA-E-specific mAbs. By contrast, activation of Jurkat-NKG2C+ was 
undetectable upon interaction with Human Fetal Foreskin Fibroblasts (HFFF) infected 
with HCMV laboratory strains (i.e., AD169, Towne), regardless of their differential ability 
to preserve surface HLA-E expression. On the other hand, infection with two clinical 
isolates or with the endotheliotropic TB40/E strain triggered Jurkat-NKG2C+ activa-
tion; yet, this response was not inhibited by blocking mAbs and was independent of 
CD94/NKG2C expression. The results are discussed in the framework of previous 
observations supporting the hypothetical existence of specific ligand(s) for CD94/
NKG2C in HCMV-infected cells.

Keywords: human, natural killer cell, cytomegalovirus, cD94, nKg2c, hla-e, Ul40
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inTrODUcTiOn

Inhibitory receptors specific for MHC class I molecules with 
immunoreceptor tyrosine-based inhibitory motifs play a key 
role in preventing NK cell responses against normal autologous 
cells. This function is mainly fulfilled by members of the human 
killer-cell immunoglobulin-like receptor (KIR) family, which 
recognize sets of classical HLA class I (HLA-I) molecules, and 
by the CD94/NKG2A lectin-like heterodimer specific for HLA-
E. Conversely, other KIRs and CD94/NKG2C, which display a 
lower affinity for HLA-I ligands trigger protein tyrosine kinase 
pathways through DAP12, an adaptor with immunoreceptor 
tyrosine-based activation motifs. Similar inhibitory and activat-
ing NK  cell receptors (NKR) have been identified among the 
murine Ly49 and NKG2 lectin-like receptor families (1, 2). The 
hypothesis that MHC-specific activating NKR may contribute 
to the innate response against pathogens was supported by the 
evidence that Ly49H specifically interacts with the MHC class 
I-related murine cytomegalovirus glycoprotein m157, triggering 
NK cell effector functions and the development of a memory-
like response that confers resistance against the viral infection 
in some mice strains (3–5).

With this remarkable exception, no formal proof has been 
thus far obtained supporting the involvement of other activating 
KIR, NKG2, or Ly49 receptors in direct recognition of pathogen 
molecules (6). In this regard, human cytomegalovirus (HCMV) 
infection has been shown to promote the differentiation and 
persistent expansion of a mature NK  cell subset, which dis-
plays high surface levels of the activating CD94/NKG2C NKR 
(NKG2Cbright), together with additional distinctive phenotypic 
and functional features (7–12). The magnitude of such adaptive 
NK cell subset redistribution appears variable in healthy blood 
donors, being undetectable in some HCMV+ individuals. This 
NK  cell response pattern has been as well observed following 
active HCMV infection in newborns and immunocompromised 
patients (13–17). Although expansions of NKG2C+ NK  cells 
have been reported in the context of other infections (18–21), 
the effect appears restricted to individuals coinfected by HCMV, 
thus suggesting that it is specifically induced by this herpes virus, 
being potentially amplified along the immune response to other 
pathogens.

The mechanisms underlying differentiation and expansion of 
NKG2Cbright NK cells remain uncertain. Engagement of CD94/
NKG2C by specific monoclonal antibodies (mAbs) or HLA-E, 
expressed in the 721.221 (.221) HLA-I defective cell line, trig-
gered NKG2C+ NK-cell effector functions and proliferation in 
response to IL-2 or IL-15, strongly suggesting that the receptor 
might play a direct role in the response to HCMV infection 
(22, 23). In vitro proliferation of NKG2C+ cells was observed 
coculturing PBMCs or purified NK cells from some HCMV+ 
donors with HCMV-infected fibroblasts. The response required 
the participation of cytokines (i.e., IL-12, IL-15) and was 
antagonized by anti-CD94 (22), -NKG2C, or -HLA-E mAbs (23). 
These observations supported the hypothesis of an instructive 
process driven by a cognate interaction of the CD94/NKG2C 
receptor with ligand(s) displayed by HCMV-infected cells (24). 
Paradoxically, no formal evidence has been obtained supporting 

an active role of the CD94/NKG2C receptor in triggering 
in vitro NK cell effector functions against HCMV-infected cells, 
suggesting that NKG2C-mediated NK  cell activation might 
be hampered by viral immune evasion mechanism(s) (25). By 
contrast, antibody-dependent stimulation via CD16 (FcγR-IIIA) 
efficiently activates adaptive NKG2C+ NK  cells to mediate 
specific cytotoxicity, cytokine production, and proliferation in 
response to HCMV- and other virus-infected cells (26–29). CD2 
has been shown to play an important co-stimulatory role in anti-
body-dependent activation of NKG2C+ cells (30, 31). Recently, 
increased baseline proportions of adaptive NKG2C+ NK cells 
in kidney transplant recipients have been directly related with a 
reduced incidence of posttransplant HCMV infection (32), sug-
gesting that they may play a role in antiviral defense, involving 
CD94/NKG2C and/or CD16-dependent activation (33).

Previous reports revealed that binding of HLA-E to a 
peptide from the HCMV UL40 leader sequence preserves 
its expression in infected cells, engaging the CD94/NKG2A 
inhibitory receptor (34, 35). On the other hand, viral MHC 
class I-modulating molecules (i.e., US2-US11) were shown 
to play a prevalent role in governing the response of NK cells 
against infected targets (36).

In the present study, we approached the identification of 
putative ligand(s) for CD94/NKG2C in HCMV-infected cells, 
reducing the complexity of NK cell-infected target interactions. 
To this end, both receptor subunits and DAP12 were stably 
expressed in the human Jurkat leukemia T cell line. Signaling 
was detected by transient transfection of a reporter plasmid 
encoding for Luciferase (Luc) under NFAT/AP1-dependent 
control. Our results are discussed in the hypothetical frame-
work on the development of adaptive NKG2C+ cells in response 
to HCMV.

MaTerials anD MeThODs

mabs and Flow cytometry analysis
Flow cytometry was performed using mAbs specific for the 
following surface molecules: anti-NKG2C-PE (clone 134591) 
R&D Systems (Minneapolis, MN, USA), anti-HLA-I-APC 
(clone HP-1F7) generated in our laboratory and conjugated by 
Immunostep (Salamanca, Spain). The following indirect antibod-
ies were used as purified or culture supernatants: anti-HLA-E 
(clone 3D12) provided by Dr. D. E. Geraghty (Fred Hutchinson 
Cancer Research Centre, Seattle, WA, USA), anti-CD3 (clone 
SpvT3B); anti-NKG2A (clone Z199), anti-NKG2D (clone 
BAT221), anti-NKp46 (clone Bab281), anti-NKp30 (clone AZ20), 
anti-DNAM1 (clone F22), anti-CD16 (KD1) provided by Dr. A. 
Moretta (University of Genova), and Dr. D. Pende (National 
Institute for Cancer Research, Genova); anti-LFA1 (clone TS/18), 
anti-ICAM1 (clone HU5/3) provided by Dr. F. Sánchez-Madrid 
(Hospital Univ. de la Princesa, Madrid); anti-KIR3DL1 (clone 
DX9) provided by Dr. L. Lanier (University of California San 
Francisco, CA, USA); anti-KIR2DL2/S2/L3 (clone CH-L) pro-
vided by Dr. S. Ferrini (National Institute for Cancer Research, 
Genova, Italy); anti-KIR3DL1/3DL2/2DS4/2DS5/2DS2/3DS1 
(clone 5.133), provided by Dr. M. Colonna (University of Saint 
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Louis, MO, USA). Anti-CD94 (clone HP-3B1), anti-ILT2 (LILRB1, 
LIR1) (clone HP-F1), anti-CD2 (clone MAR206), anti-KIR2DL1 
(clone HP-DM1), anti-KIR2DL1/2DS1/2DS3/2DS5 (clone 
HP-MA4), anti-KIR2DL5 (clone UP-R1), and anti-KIR2DL1/S1/
S4 (clone HP-3E4) were produced in our laboratory.

Briefly, cells were pretreated with human IgG (10 µg/ml) to 
block Fc receptors, incubated with individual NKR-specific 
mAbs for 30  min, washed, and further incubated with a sec-
ondary PE-tagged F(ab’)2 rabbit anti-mouse Ig (The Jackson 
Immunoresearch, West Grove PA, USA); anti-myc mAb (9E10, 
IgG1) was used as negative control. Data were acquired on 
FACSCalibur flow cytometer (BD Biosciences) and processed 
using FlowJo software (TreeStar, OR, USA).

cell lines and culture conditions
The Jurkat leukemia T cell line and its transfectants were grown 
in RPMI-1640 medium (Gibco, Grand Island, New York, NY, 
USA) supplemented with 10% heat-inactivated Fetal Bovine 
Serum (Gibco), 100 U/ml penicillin, and 100 µg/ml streptomy-
cin (Gibco), termed as complete medium. Jurkat-CD94+ cells 
were kindly provided by Dr. Lewis Lanier, obtained as previously 
described (37) and cultured in complete medium with G418 
(1 mg/ml) (InvivoGen, San Diego, CA, USA).

The 721.221 (.221) HLA-I-deficient EBV-transformed B 
lymphoblastoid cell line and its transfectant .221-AEH (kindly 
provided by Dr. D. E. Geraghty, Fred Hutchinson Cancer Research 
Centre, Seattle, WA, USA) were cultured in RPMI-1640 complete 
medium .221-AEH cells were generated by stable transfection of 
.221 cells with a construct in which the leader sequence of the 
HLA-E*0101 allele was replaced by that of HLA-A2 and were 
selected in the presence of 300 µg/ml hygromycin B (Invitrogen, 
Carlsbad, CA, USA) (38).

Synthetic leader sequence peptides from HLA-G 
(VMAPRTLFL) or the AD169 UL40 viral protein (VMAPRTLIL) 
were purchased from CRG-UPF proteomic core facility (Parc de 
Recerca Biomèdica de Barcelona, Spain). As described (39), to 
stabilize HLA-E surface expression, HLA-Ia-defective 721.221 
cells were incubated overnight with peptides (10 mM) at 26°C; 
HLA-E surface expression was monitored before and after incu-
bation with peptides by flow cytometry.

Human Fetal Foreskin Fibroblast (HFFF) cells provided 
by Prof. John Trowsdale (University of Cambridge, UK), and 
the human lung fibroblast cell line MRC-5 provided by Dr. A. 
Angulo, were maintained in Dulbecco modified essential medium 
(DMEM) (Gibco) supplemented with 10% FBS, penicillin, and 
streptomycin.

generation of Jurkat-nKg2c+ reporter 
cells
Jurkat-NKG2C+ cells were established using a retroviral expres-
sion system to stably express DAP12 and NKG2C proteins in 
Jurkat-CD94+ cells. DAP12 and NKG2C cDNA constructs 
were subcloned from pJFE14 expression vector to pBABE-puro 
retroviral vector using XbaI-EcoRI (DAP12) and BamHI-EcoRI 
(NKG2C) restriction sites. As described (40), the retroviral con-
structs were individually transfected using the non-modified 

polyethyleneimine reagent (PEI, Sigma-Aldrich, St. Louis, MO, 
USA) into the helper-virus free amphotropic producer cell line 
Phoenix-A, a derivative of the human embryonic kidney cell 
line 293T (provided by Dr. Ramon Gimeno, IMIM, Barcelona, 
Spain). At 48, 72, and 96  h post-transfection, supernatants 
containing retroviral particles of DAP12 and NKG2C were col-
lected, filtered with 45 µm filter (Millipore, Billerica, MA, USA), 
and centrifuged with Beckman SW28 rotor at 25,000  rpm for 
90 min at 4°C. Pelleted virus were resuspended in 1 ml of RPMI 
medium and used to transduce Jurkat-CD94+ cells. To this end, 
500,000 cells were plated (48 well/plates) in 1 ml mixed concen-
trated retroviral medium (0.5 ml DAP12 and 0.5 ml NKG2C) 
in the presence of 8  µg/ml polybrene (Sigma-Aldrich) and 
spinned for 90 min at 930 g. Cells were supplemented with fresh 
medium at 6 h post-transduction and selected with 1.5 µg/ml 
puromycin (Sigma-Aldrich) for 48 h; subsequently, cells positive 
for NKG2C surface expression were sorted (Influx Cell sorter, 
BD Bioscience), cloned by limiting dilution and expanded.

hcMV Preparations and infection of 
human Fetal Foreskin Fibroblasts (hFFF)
This work was carried out in an authorized UPF p2-level 
biohazard facility, in compliance with the official requirements 
for CMV manipulation. Stocks of concentrated HCMV strains 
AD169 and Towne, provided by Dr. A. Angulo, TB40/E, provided 
by Dr. C. Sinzger (Institute for Medical Virology, University of 
Tübingen), and two HCMV clinical isolates: UL1271 (41) and 
#119, provided by Dr. H. Hengel, were prepared as follows. 
Almost confluent MRC-5 fibroblasts were infected at low mul-
tiplicity of infection (MOI) and supernatants were recovered 
when maximum cytopathic effect was reached (7–10 days) fol-
lowed by clearing of cellular debris by centrifugation at 1,750 g 
for 10 min (42). Thereafter, the virus was concentrated for 3 h 
by centrifugation at 29,000 g at 15°C. Pelleted virus was resus-
pended in serum-free Dulbecco medium, stored at −80°C, and 
titrated by standard plaque assays.

Human fetal foreskin fibroblasts were seeded in 48-well plates 
2 days prior infection at 4 × 104 cells/well. Confluent cells were 
incubated alone (mock) or with different viral strains at MOI of 
10. After 2 h of absorption at 37°C, cells were washed twice with 
PBS and then fresh DMEM medium was added. Depending on 
the experimental design, HFFF cells were washed again at 24, 48, 
or 72 h postinfection. The infection rate was assessed by monitor-
ing expression of the IE1 protein by indirect immunofluorescence 
with mAb MAB810R (clone 8B1.2) (Millipore) and Alexa Fluor 
488-Labeled F(ab’)2 goat anti-mouse secondary (Invitrogen, 
Carlsbad, CA, USA). Alternatively, infected cells were indirectly 
identified assessing down-modulationof surface HLA-I expres-
sion at 72 h postinfection.

Preparation and activation  
of cD94-nKg2c+ reporter cells
Human cytomegalovirus-infected HFFFs were cocultured with 
Jurkat-NKG2C+ cells previously transfected with a reporter 
plasmid encoding Luciferase (Luc) under the control of NFAT/
AP1 promoter (3X NFAT/AP1-Luc) generated as described (43) 
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FigUre 1 | Phenotypic characterization of Jurkat-NKG2C+ reporter cells. 
(a) Jurkat-CD94+ cells were transduced with retroviral particles carrying the 
sequences encoding for NKG2C and DAP12 as described in Section 
“Materials and Methods.” After sorting, expansion, and limiting dilution, clone 97, 
which expressed high levels of the CD94/NKG2C heterodimer was selected. 
(B) Jurkat-NKG2C+ cells were stained for the indicated receptors and 
analyzed by flow cytometry. KIRMIX corresponds to a mixture of the following 
monoclonal antibodies: HP-MA4 (KIR2DL1/2DS1/2DS3/2DS5), CHL 
(KIR2DL2/2DL3/2DS2), 5.133 (KIR3DL1/3DL2/2DS4/2DS5/2DS2/3DS1), 
DX9 (KIR3DL1), UP-R1 (KIR2DL5). Gray histograms correspond to the 
isotype control.
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and provided by Dr. Jose Aramburu (Universitat Pompeu Fabra, 
Barcelona, Spain). Transfection of Jurkat cells was carried out using 
the Neon Transfection System (Thermo Fisher Scientific, Waltham, 
MA, USA) following the protocol provided by the manufacturer. 
Luc-transfected Jurkat cells were cocultured with the different 
targets for 18–24 h. After coculture, cells were collected, lysed, and 
Luc activity was measured using Promega Luciferase Assay system 
(Promega, Madison, WI, USA). The data were normalized refer-
ring the specific luminescence counts to those of non-treated (NT) 
Jurkat-NKG2C+ cells and are represented as fold-change induc-
tion. Stimulation of Jurkat with plate-bound anti-CD3, -CD94, 
-NKG2C, or co-culture with 721.221 and .221-AEH cells were 
used as controls. To verify the involvement of NFAT/AP1 in the 
reporter activation, experiments were carried out in the presence 
of 1 µM FK506 calcineurin inhibitor (Sigma-Aldrich), pretreating 
Jurkat-NKG2C+ cells with the drug for 2 h. For antibody-blocking 
assays, Jurkat-NKG2C+ cells or infected HFFF cells were, respec-
tively, preincubated for 2 h with anti-NKG2C (clone 134522, R&D 
Systems) or anti-HLA-E (clone 3D12) mAbs (5 µg/ml) prior to 
coculture; anti-CD94 F(ab’)2 fragments obtained from the HP-3B1 
clone (37) were employed in some experiments.

statistical analysis
Jurkat-NKG2C+ cell activation, assessed by induction of Luc 
activity in response to control stimuli (i.e., anti-NKG2C or .221-
AEH cells) in different experiments (n = 15), was verified to follow 
a normal distribution applying the conventional Shapiro–Wilk 
test. Statistical analysis of the results was carried out applying the 
Student’s t-test.

resUlTs

generation and Phenotypic 
characterization of a human  
cD94/nKg2c+ reporter T cell line
To study the role of the CD94/NKG2C NKR in recognition of 
HCMV-infected cells, a reporter cell system was developed 
expressing the receptor segregated from other NKR. For this 
purpose, NKG2C and DAP12 were stably transduced in an 
available CD94-transfected human Jurkat leukemia T  cell line. 
Jurkat-NKG2C+ cells were sorted and cloned by limiting dilution 
assessing the expression of adhesion molecules and NKR. A clone 
(97), which expressed CD94/NKG2C was selected (Figure 1A). 
These cells had downregulated CD3, displayed adhesion/co-
stimulatory molecules (i.e., LFA-1, CD2, ICAM-1, and DNAM-
1), but lacked activating (i.e., NKG2D, NKp46, NKp44, NKp30, 
CD16, aKIR) and inhibitory (i.e., iKIR, NKG2A, TIGIT, ILT2) 
NKR (Figure 1B). The marginal expression of ILT2 was particu-
larly important as this HLA-I specific inhibitory receptor, which 
interacts with the UL18 HCMV molecules, was detectable in the 
parental Jurkat-CD94+ cells (not shown).

specific recognition of hla-e by Jurkat-
nKg2c+ reporter cells
In order to detect signaling by the CD94/NKG2C-DAP12 com-
plex, Jurkat-NKG2C+ cells were transiently transfected with 

a plasmid encoding for Luciferase (Luc) under the control of 
NFAT/AP1-dependent promoter. Engagement of the receptor 
by solid-phase bound CD94- or NKG2C-specific mAbs trig-
gered Luc expression (Figure  2A). Of note, a slightly higher 
background in Jurkat-NKG2C+ cells compared to the parental 
cell line suggested that the low constitutive HLA-E expression 
in Jurkat-NKG2C+ cells promoted a limited self-activation of 
the reporter (Figure S1 in Supplementary material). However, 
coculture of Jurkat-NKG2C+ cells with the .221-AEH cell line, 
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FigUre 2 | Specific engagement of the CD94/NKG2C receptor by HLA-E activates the Jurkat-NKG2C+ reporter. (a) Jurkat-NKG2C+ cells were electroporated 
with 3× NFAT/AP1-Luc plasmid, followed by stimulation with: (a) anti-NKG2C or anti-CD94 monoclonal antibodies (mAbs) pre-adsorbed to culture plates or (b) with 
.221 or .221-AEH cells. After 18–24 h, cells were collected, lysed, and Luc activity was measured. Blocking experiments were carried out pretreating .221 and 
.221-AEH cells with anti-HLA-E 3D12 mAb (gray bars) or Jurkat-NKG2C+ cells with anti-NKG2C mAb (white bars); NT, not treated. Data correspond to three 
independent experiments (mean ± SD). (B) HLA-E expression by .221 and .221-AEH was assessed prior to coculture with Jurkat-NKG2C+ cells (gray histograms 
represent the isotype control). Statistically significant differences are indicated (**p < 0.01).
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which displays HLA-E in the absence of classical HLA-I, induced 
Luc expression and the response was specifically antagonized 
by soluble NKG2C- and HLA-E-specific mAbs (Figures 2A,B). 
Similar results were obtained stimulating Jurkat-NKG2C+ cells 
with the .221 cell line preincubated with synthetic HLA-I leader 
sequence peptides, known to stabilize surface HLA-E expres-
sion (Figures  3A,B). These results validated the sensitivity 
and specificity of the reporter system to detect CD94/NKG2C 
receptor–ligand interaction.

response of Jurkat-nKg2c+ reporter 
cells to Fibroblasts infected by hcMV 
laboratory strains
On that ground, experiments were carried out incubating Jurkat-
NKG2C+ cells with HFFF, infected at different time-points 
(24–72 h) with HCMV laboratory strains (AD169 and Towne). 
As compared to positive controls stimulated with anti-NKG2C 
mAb or .221-AEH cells, no differences were perceived compar-
ing Luc expression in Jurkat-NKG2C+ cocultured either with 
mock- or HCMV-infected HFFF (Figure  4A); similar results 
were obtained incubating the reporter with MRC5 fibroblasts 
(not shown). Total HLA-I expression was downregulated in 
cells infected by both HCMV strains. By contrast, HLA-E was 

preserved by AD169, which displays a canonical UL40 leader 
peptide (VMAPRTLIL) binding to the HLA class Ib molecule, 
but was lost in Towne-infected cells (Figure 4B). As reported 
(44) and according to the annotated GenBank sequences, this 
HCMV strain contains a deletion spanning the UL40 leader 
sequence. These results point out that the undetectable response 
of Jurkat-NKG2C+ to fibroblasts infected by laboratory 
strains was unrelated to their ability to sustain surface HLA-E 
expression.

response of Jurkat-nKg2c+ reporter 
cells to Fibroblasts infected by hcMV 
clinical isolates
TB40/E HCMV strain retains the ability to replicate in 
endothelial and myelomonocytic cells, differing from AD169 
and Towne (45). Moreover, it is well established that HCMV 
clinical isolates substantially diverge from laboratory strains, 
rapidly undergoing important genomic changes upon in vitro 
passage, as reviewed in Ref. (46). Thus, additional experi-
ments were carried out coculturing Jurkat-NKG2C+ cells with 
HFFF infected with TB40/E, which encodes for a UL40 leader 
peptide variant unable to preserve HLA-E surface expres-
sion (VVAPRTLIL) (25), or with two HCMV clinical isolates 
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FigUre 3 | Activation of Jurkat-NKG2C+ cells by HLA-E loaded with the canonical human cytomegalovirus UL40 leader sequence-derived synthetic peptide on 
721.221 cells. (a) As described for Figure 2, Jurkat-NKG2C+ cells were: (a) untreated (NT), (b) stimulated with plate coated anti-NKG2C, or (c) cocultured with the 
.221 or .221-AEH cells (black bars). In parallel, the response of Jurkat-NKG2C+ cells was assessed coculturing them with .221 cells preincubated at 26°C overnight 
with synthetic peptides corresponding to HLA-G (VMAPRTLFL) and AD169 UL40 (VMAPRTLIL) leader sequences, reported to stabilize HLA-E expression (gray 
bars). Data correspond to three independent experiments (mean ± SD). (B) HLA-E expression by .221-AEH and .221 cells preincubated with peptides prior to 
coculture with Jurkat-NKG2C+ cells; gray histograms represent the isotype control. Statistically significant differences are indicated (**p < 0.01).
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(#UL1271 and #119), which share the canonical UL40-nonamer 
and preserved HLA-E expression (Figures 5A,B). Remarkably, 
a specific response of the reporter was detected upon infection 
with these viruses, which appeared greater for #119 and gradu-
ally increased along postinfection time. Yet, controls indicated 
that Luc expression in response to HFFF infected with HCMV 
clinical isolates was not inhibited by pretreatment with anti-
NKG2C or -HLA-E mAbs (Figures 6A,B); similar results were 
obtained with anti-CD94 F(ab′)2 fragments (data not shown), 
ruling out the potential influence of an overlapping agonistic 
effect mediated by anti-NKG2C bound to virus-encoded FcR. 
Moreover, the effect was also induced in CD94+ and wild-type 
Jurkat cells, which lacked NKG2C, unequivocally revealing that 
reporter activation was independent of this NKR (Figure 6C); 
similar results were obtained with TB40/E-infected cells (data 
not shown). As this response was dominant, the possibility that 
it might eventually mask a subtle involvement of CD94/NKG2C 
cannot be entirely ruled out.

DiscUssiOn

A number of observations indirectly support the hypothesis that 
a specific and direct interaction of CD94/NKG2C with infected 
cells contributes to drive the adaptive NK  cell response; yet, 

molecular evidence remains thus far elusive (10). To explore 
the presence of putative ligand(s) for CD94/NKG2C in HCMV-
infected cells, the receptor was stably expressed along with 
DAP12 in the human Jurkat leukemia cell line, transiently trans-
fected with an NFAT/AP1-dependent Luc-encoding reporter. 
The rationale for using a human parental cell line was based 
on our previous experience with heterologous CD94/NKG2C+ 
rat basophilic leukemia cells (RBL), which failed to respond to 
receptor engagement by HLA-E+ .221-AEH cells (not shown). 
A Jurkat-NKG2C+ clone that shared with NK cells key adhesion 
receptors (i.e., LFA-1, CD2, and DNAM1) but lacked inhibitory 
NKR, was selected.

The possibility that constitutive HLA-E expression by Jurkat-
NKG2C+ cells might promote self-activation of the reporter, 
potentially impairing its responsiveness to external stimuli, was 
beforehand considered a potential drawback. Yet, Luc expression 
in Jurkat-NKG2C+ cells was induced following stimulation with 
CD94 or NKG2C-specific mAbs. Importantly, reporter activa-
tion was detectable upon interaction with HLA-E+  .221-AEH 
cells, as well as with .221 cells incubated with synthetic peptides 
which stabilized surface expression of endogenous HLA-E; in 
these settings, inhibition by anti-NKG2C and -HLA-E mAbs 
supported specific receptor-ligand engagement. By contrast, 
reporter activation was undetectable upon interaction of 
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FigUre 4 | Cells infected with AD169 or Towne human cytomegalovirus (HCMV) strains do not activate the Jurkat-NKG2C+ reporter independently of HLA-E 
expression. (a) HFFF cells infected with AD169 or Towne HCMV strains (multiplicity of infection = 10) were cocultured at 24, 48, and 72 h postinfection with 
Jurkat-NKG2C+ cells electroporated with the reporter plasmid. The average infection rate for each experiment was >50%. As a control, reporter activation following 
CD94/NKG2C receptor engagement by specific monoclonal antibodies or HLA-E was assessed in parallel, as described in Figure 2. Data correspond to three 
independent experiments (mean ± SD). (B) Total HLA-I and HLA-E expression at 72 h postinfection in mock-treated and HCMV-infected HFFF cells. Statistically 
significant differences are indicated (**p < 0.01).
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Jurkat-NKG2C+ cells with HFFF or MRC5 fibroblasts following 
infection with common HCMV laboratory strains (i.e., AD169, 
Towne), regardless of their ability to preserve surface HLA-E 
expression in infected cells.

Among variables that may potentially condition the 
expression of CD94/NKG2C ligand(s) by HCMV-infected 
cells, genomic differences between viral strains and changes 
associated to in  vitro passage of the virus were considered 
potentially important. In fact, cells infected with two different 
clinical isolates and, to a lesser degree, with the endotheliotropic 
TB40/E strain, triggered Jurkat-NKG2C+ activation. Yet, this 

response was not inhibited by NKG2C- nor HLA-E-specific 
blocking mAbs and, furthermore, was independent of CD94/
NKG2C expression. Experiments were carried out to explore the 
molecular basis of this dominant effect, which might potentially 
mask CD94/NKG2C-specific signaling. Pretreatment of Jurkat-
NKG2C+ with a calcineurin inhibitor (FK506) hampered Luc 
expression triggered by anti NKG2C mAb or .221-AEH cells, but 
did not prevent the response of Jurkat-NKG2C+ cells to HCMV 
clinical isolates (data not shown), pointing out that a non- 
conventional activation of the reporter plasmid was induced 
under these experimental conditions. Further studies are required 
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FigUre 5 | Activation of Jurkat-NKG2C+ reporter cells by HFFF infected with human cytomegalovirus TB40/E or clinical isolates is independent of HLA-E 
expression. (a) The Jurkat-NKG2C+ reporter was cocultured with HFFF cells at different time-points (24–72 h) postinfection with TB40/E or two different clinical 
isolates (UL1271 and #119) (multiplicity of infection = 10). Data correspond to three independent experiments (mean ± SD). Average infection rate for each 
experiment was >50%. (B) Total HLA-I and HLA-E surface expression was monitored at 72 h postinfection. Statistically significant differences are indicated 
(*p < 0.05; **p < 0.01).
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to assess the possibility of controlling this drawback, eventually  
re-designing the system.

NKG2C+ NK  cells were reported to be activated upon 
interaction with primary aortic endothelial cells infected by the 
VHL/E HCMV strain (47); nevertheless, no data supporting an 
involvement of the receptor (e.g., blocking with anti-CD94 or 
-NKG2C mAbs) were provided. In our hands, Jurkat-NKG2C+ 
did not detectably respond to HCMV-infected MRC5 fibro-
blasts nor to human umbilical vein endothelial cells. Yet, the 
possibility that expression of putative CD94/NKG2C ligands 
might vary depending on the infected cell lineage is not ruled 
out.

Our observations should be discussed in the framework 
of previous indications supporting a CD94/NKG2C recep-
tor interaction with infected cells. In this regard, NKG2C+ 
NK  cells were shown to undergo in  vitro expansion upon 
coculture with AD169 or Towne-infected fibroblasts (22, 23). 
The effect was dependent on cytokines (i.e., IL-12, IL-15) and 
was prevented by blocking anti-CD94, -NKG2C, or -HLA-E 

mAbs. The response was observed only in samples from some 
HCMV+ blood donors displaying baseline NKG2Cbright NK cell 
expansions, indicating that these experimental conditions 
promoted their proliferation, but did not strictly reproduce 
the differentiation process induced in vivo by primary HCMV 
infection. Of note, in  vitro expansion was prevented upon 
infection by an HCMV BACmid mutant lacking the whole set 
of viral genes (i.e., US2-US11), which target HLA-I molecules, 
thus preserving their expression in infected cells (22). These 
experiments were interpreted as an indication of a relatively 
weak stimulation via CD94/NKG2C that was overridden by 
inhibitory KIR-HLA-I interactions which, by contrast, did not 
impair CD16-triggered NK cell effector functions against cells 
infected by the same virus (28).

On the other hand, a relation of NKG2C gene copy number 
with the magnitude of NKG2C+ NK cell expansion has been 
reported in HCMV+ healthy blood donors, in children with 
congenital infection and in renal transplant recipients (9, 14, 
32, 48). Moreover, CD94/NKG2C surface expression levels and 
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FigUre 6 | Jurkat-NKG2C+ activation by cells infected with human cytomegalovirus (HCMV) clinical isolates is independent of the CD94/NKG2C receptor.  
(a) Response of Jurkat-NKG2C+ reporter to HFFF infected by HCMV clinical isolates or .221-AEH cells preincubated with the 3D12 anti-HLA-E monoclonal 
antibody (mAb) (5 µg/ml). (B) The blocking effect of an anti-NKG2C mAb (clone MAB1381) (5 µg/ml) on the response of Jurkat-NKG2C+ cells to stimulation with 
either plate-bound anti-NKG2C mAb, .221-AEH cells or HFFF infected by HCMV clinical isolates (white bars) was assessed in parallel. Data correspond to three 
independent experiments (mean ± SD); the average infection rate for each experiment was >50%. (c) Jurkat-NKG2C+ (black bars), Jurkat-CD94+ (gray bars), and 
wild-type Jurkat (WT) (white bars) were stimulated with 1 µg/ml of plate-bound anti-CD3, -NKG2C, -CD94 mAbs, or cocultured with .221 or .221-AEH cells 
(negative and positive controls). Confluent HFFF cells infected with UL1271 and #119 clinical isolates (multiplicity of infection = 10) for 72 h were cocultured with the 
different Jurkat cell lines (NKG2C+, CD94+, and WT) previously electroporated with the reporter plasmid. Data correspond to three independent experiments 
(mean ± SD); the average infection rate for each experiment was >50%. Statistically significant differences are indicated (*p < 0.05; **p < 0.01).
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activation upon engagement by HLA-E were also greater in 
NKG2Cbright NK cells from NKG2C+/+ than NKG2C+/del individu-
als (9). These data supported that subtle differences in CD94/
NKG2C surface density may quantitatively influence adaptive 
NK  cell differentiation/activation in response to HCMV, thus 
providing another indirect indication for a relatively low avidity 
of the hypothetical receptor–ligand interaction. The increased 
surface expression of CD94/NKG2C in differentiated adaptive 
NK cells (NKG2Cbright) from HCMV+ subjects as compared to 
the profile detected in non-infected individuals (NKG2Cdim) 
is also in line with this view. Of note, a limited affinity and/or 
reduced expression levels of the putative CD94/NKG2C ligand 

in infected cells may presumably render this pathway particu-
larly sensitive to viral immune evasion mechanisms, eventually 
accounting for the undetectable activation of NKG2C+ NK cell 
effector functions and of Jurkat-NKG2C+ cells, in that case, 
independently of HLA-specific inhibitory receptors.

Despite the negative results obtained with the reporter 
system, the existence of specific ligand(s) for CD94/NKG2C 
in HCMV-infected cells still remains a plausible hypothesis, 
compatible with the involvement of a viral glycoprotein or/and 
an HLA-E-peptide complex. The latter option is suggested by 
the blocking effect of an anti-HLA-E mAb in the expansion of 
NKG2C+ NK cells cocultured with infected fibroblasts (23). A 
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first candidate to be considered is the UL40 leader sequence-
derived peptide reported to promote HLA-E expression in 
HCMV-infected cells by a mechanism refractory to the viral US6 
TAP inhibitor (34) and favored by the intrinsic HLA-E resistance 
to other viral molecules targeting HLA-I (49). UL40-dependent 
HLA-E expression in infected cells was shown to inhibit NK cell 
activation by engagement of the CD94/NKG2A inhibitory 
receptor, presumably contributing to immune evasion (34). 
The canonical UL40-derived nonamer (VMAPRTLIL) binding 
to HLA-E is identical to that displayed by some HLA-I leader 
sequences, predictably promoting a low affinity interaction with 
CD94/NKG2C (50). Heatley et al. (51) compared the ability of a 
panel of UL40-nonamer variants to stabilize HLA-E in RMA-S 
cells, assessing the interaction of the corresponding HLA-E/pep-
tide complexes with CD94/NKG2A or CD94/NKG2C by surface 
plasmon resonance assays, as well as their recognition by NK cell 
subsets, respectively, displaying these NKR. Of note, quantitative 
differences in the interaction of distinct HLA-E-peptide com-
plexes were noticed, but none appeared preferentially recognized 
by CD94/NKG2C.

It is conceivable that HLA-E expression by HCMV-infected 
cells, in which HLA-I ligands for inhibitory KIRs are downregu-
lated, might promote specific activation of NKG2C+ NKG2A- 
NK cells. Supporting this hypothesis, Jurkat-NKG2C+ cells were 
activated by .221 cells displaying HLA-E bound to the synthetic 
AD169 UL40-derived peptide (VMAPRTLIL), shared by some 
HLA-I alleles. Nevertheless, no reporter response was perceived 
following interaction with AD169-infected cells expressing HLA-
E, pointing out to the influence of additional factors, and indicat-
ing that experimental approaches based on loading target cells 
with synthetic peptides provide valuable information but do not 
precisely reflect the complexity of HCMV infection. A putative 
role of UL40 in NKG2C+ NK cell expansion, detected following 
coculture with AD169-infected cells, was addressed employing 
a UL40 deletion mutant generated in an AD169 BACmid (HB5) 
(22, 23). In this setting, cells infected with ΔUL40 HB5 retained 
the ability to promote in vitro expansion of NKG2C+ NK cells; 
however, a caveat for interpreting these experiments is the gene 
deletion encompassing US2-US6 introduced for the generation 
of the HB5 BACmid. In fact, HCMV impairs surface expression 
of HLA-I molecules but not their biosynthesis and, therefore, 
endogenous HLA-I leader sequences in the absence of US6 
may be presented by HLA-E in HB5-infected cells, eventually 
competing with the UL40-derived nonamer, or even replacing 
it in ΔUL40 HB5-infected HFFF. On the other hand, NKG2C+ 
NK cell expansions detected in cocultures with Towne-infected 
fibroblasts (22) may indirectly provide a case against the involve-
ment of HLA-E expression, which was downregulated consistent 
with the existence of a genomic deletion spanning the UL40 
leader sequence of this HCMV strain (44). Of note, no relation 
of the HLA-E dimorphism with the expansion of NKG2C+ cells 
was noticed in previous studies (7, 9).

In summary, molecular evidence supporting that a specific 
interaction of CD94/NKG2C with infected cells drives the 
adaptive NK  cell response to HCMV remains elusive, leaving 
unanswered key interrelated questions, particularly, the cellular 
mechanisms underlying the stable expansion of NKG2Cbright 

NK  cells and the basis for the wide variability of this effect in 
HCMV+ individuals. Observations in immunocompromised 
patients suggested that this pattern of response may compensate 
an inefficient T-cell-mediated control of the primary infection, 
eventually determined in healthy individuals by viral/host genetic 
factors as well as by other circumstantial variables (e.g., age at 
infection, viral load, etc.).

We hypothesize that primary HCMV infection promotes 
the differentiation, proliferation, and survival of a pool of 
progenitors, possibly stemming from NKG2Cdim NKG2A- 
NK cells present in seronegative individuals. Increased surface 
expression of CD94/NKG2C presumably constitutes a key 
early event, facilitating activation of this NK cell subset upon 
interaction with low-avidity ligand(s) displayed by infected 
cells. Such NKG2C-driven selection is dependent on cytokines 
required for adaptive NK  cell differentiation/expansion and 
may be tuned by specific KIR-HLA-I interactions, consistent 
with the oligoclonal KIR expression profile of adaptive NK cells 
(8, 52). Following a contraction phase after viral replication 
is controlled, a pool of long-lived NKG2Cbright NK  cells with 
clonal expansion potential survive, and homeostatic prolifera-
tion contributes to their persistent increased numbers in the 
circulation. The process is reminiscent of the generation of 
memory cytotoxic T lymphocytes as proposed for the response 
of Ly49H in mice (53); in fact, responsiveness of differentiated 
NKG2Cbright NK  cells to cytokines (e.g., IL-15, IL-2) becomes 
dependent on signaling by activating NKR (e.g., NKG2C or 
CD16). HCMV reactivation/reinfection as well as other infec-
tious pathogens may boost antibody- and cytokine-dependent 
activation of adaptive NK  cells, leading to their progressive 
acquisition of late differentiation features (e.g., FcRγ down-
regulation). Further efforts are warranted to understand how 
HCMV infection resets the NK-cell compartment homeostasis 
in some individuals, and the implications that such persistent 
reconfiguration of the NK cell compartment may have in the 
development of the immune response under different patho-
logical conditions.
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The natural cytotoxicity receptor (NCR) family is constituted by NKp46, NKp44, and 
NKp30 in humans, which are expressed mainly on natural killer (NK) cells and are encoded 
by the ncr1, ncr2, and ncr3 genes, respectively. NCRs have classically been defined as 
activating receptors that trigger cytotoxicity and cytokine responses by NK cells upon 
engaging with ligands on tumor cells. Several new findings, however, have challenged 
this model and identified alternative mechanisms regulating the function of NCRs. 
Recent reports indicate that ligand matters, since the interaction of NKp44 with distinct 
ligands on target cells can either activate or inhibit NK cells. Also, the NCRs have been 
found to interact with distinct specificities to various heparan sulfate glycosaminogly-
cans, which are complex polysaccharides found in extracellular matrix or on cell surface 
heparan sulfate proteoglycans (HSPGs). The NCRs can engage with HSPGs in trans as 
a co-ligand on the target cells or in cis on the NK cell surface to regulate receptor–ligand 
interactions and NK cell activation. A number of splice variants of ncr2 and ncr3 have 
also been identified, and a predominant expression of certain variants results in inhib-
itory signaling through NKp44 and NKp30. Several recent studies have found that the 
selective expression of some of these inhibitory splice variants can significantly influence 
outcome in the contexts of cancer, infection, and pregnancy. These findings establish 
that NCR functions are more diverse than originally thought, and better understanding 
of their splice variant expression profiles and ligand interactions are needed to establish 
their functional regulation in the context of human health.

Keywords: natural cytotoxicity receptors, natural killer cells, RNA splice variants, cytotoxicity, cancer immunology, 
virus immunity, human immunology, pregnancy
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iNTRODUCTiON

It has become increasingly clear that human natural killer (NK) 
cells use an array of germline-encoded cell surface receptors 
to spontaneously recognize and respond to the abnormal sta-
tus of tumor cells, virus-infected cells, and stressed cells (1). 
Different NK cell surface receptors transduce either activating 
or inhibitory signals, directly or through associated adaptor 
proteins, to dynamically regulate the activation state of NK cells 
(2–4). Inhibitory receptors, such as killer cell Ig-like receptors 
(KIRs) and CD94/NKG2A, provide NK cells with a dominant, 
tolerizing immune checkpoint through their recognition of 
the MHC class I (MHC-I) molecules ubiquitously expressed 
on the surfaces of most normal cells. The loss of MHC-I by 
many transformed cells, however, overcomes this inhibitory 
checkpoint to favor activation. The loss of inhibitory restraint 
allows activating receptor signals to predominate and trig-
gers exocytosis of perforin and granzymes to induce targeted 
apoptosis of the MHC-I-deficient cell and localized secretion 
of pro-inflammatory cytokines [especially interferon (IFN)-γ, 
TNF-α, and several chemokines].

The activation signals transduced in NK cells are derived from 
adhesion molecules (especially LFA-1), co-stimulatory receptors 
(such as NKG2D, DNAM-1, and SLAM family receptors), and 
several activating receptors physically linked to the immu-
noreceptor tyrosine-based activation motif (ITAM)-containing 
transmembrane proteins, DAP12, TCR-ζ, and/or FcεRI-γ (2–4). 
The key ITAM-coupled activating receptors on human NK cells, 
include CD16 (FcγRIIIa), an activating subfamily of KIR (KIR2DS 
or KIR3DS receptors), CD94/NKG2C, and the natural cytotoxic-
ity receptors (NCRs).

The human NCRs consist of three receptors, named NKp46 
(NCR1, CD335), NKp44 (NCR2, CD336), and NKp30 (NCR3, 
CD337). These NCR were classically defined as germline-encoded 
receptors that play important roles in the activation of human 
NK cells toward transformed target cells (5, 6). Recent work, how-
ever, has established that the NCRs can also generate inhibitory 
responses under certain circumstances. Here, we will review our 
current understanding of the expression and function of NCRs 
on NK cells, particularly in humans, although it is important to 
note that the NCRs are also expressed on other innate lymphoid 
cells (ILCs) and a subset of T cells, which has been previously 
reviewed elsewhere (7, 8).

NCRs AND THeiR STRUCTUReS

The NCRs were initially discovered and characterized by the 
laboratories of Alessandro and Lorenzo Moretta in the late 
1990s (9–13). They are type I transmembrane glycoproteins that 
were originally recognized as activating receptors and named in 
accordance with their molecular weight on SDS-PAGE (NKp30, 
NKp44, and NKp46). NKp46 is the only NCR also expressed in 
mice, although a receptor analogous to NKp30 has been shown 
to be expressed in 1 of 13 mouse strains examined (14) and in 
rats (15, 16). While the ncr2 and ncr3 genes encoding NKp44 and 
NKp30, respectively, are localized to human MHC class III locus 
on chromosome 6, the NKp46 encoding gene, ncr1, is found 

near the leukocyte regulatory complex on human chromosome 
19 (10, 12, 13).

NKp46 has been shown to be a highly selective marker of all 
NK cells in mouse and man, although surface expression can be 
low on some NK  cells, particularly in humans, and the recep-
tor is also expressed on some ILCs and a small subset of T cells  
(9, 17, 18). Importantly, NKp46 is not expressed by CD1d-
restricted invariant NKT cells in mice and humans (17). NKp46 
has been shown to provide NK cells with the capacity to recognize 
and kill a variety of tumor target cells (19–21). NKp46 ligands have 
been reported to be enriched in areas of high malignant potential 
and high proliferation within melanoma lesions, whereas sur-
rounding normal melanocytes were found to lack NKp46 ligands 
(22). Evidence in mice also suggests that NKp46 also contributes 
to the development of type 1 diabetes by interacting with an 
uncharacterized ligand on pancreatic islet beta cells (21). As a 
tumor immunosuppressive mechanism, the surface expression 
of NKp46 on NK cells can be down-modulated by exposure to 
l-kynurenine, which is a tryptophan catabolism product gener-
ated by the indoleamine 2,3-dioxygenase (IDO) enzyme in tumor 
microenvironments (23).

NKp30, similar to NKp46, is expressed on nearly all human 
NK  cells (13). This NCR has been shown to play important 
roles in crosstalk between NK  cells and dendritic cells (DCs) 
through promoting both the maturation of and the cytotoxicity 
of immature DC (24, 25). Surface expression levels of NKp30 
and NKp46 can be upregulated by IFN-α, IL-2, and prolactin 
and downregulated by cortisol and methylprednisolone (26–28). 
In addition, both receptors are also commonly downregulated 
in “adaptive” or “memory-like” NK cells that are found in some 
cytomegalovirus-infected individuals (29, 30). TGF-β has been 
shown to selectively down-modulate the expression of NKp30, 
but not NKp46 on NK cells (31).

NKp44 is distinct among NCRs, since it is unique to humans 
and only expressed constitutively on some CD56bright NK  cells 
in a subset of individuals, but expression can be upregulated on 
essentially all NK cells after culture with IL-2, IL-15, or IL-1β (11, 
32). Similarly, NKp44 can be upregulated on plasmacytoid DCs 
upon culture with IL-3 (33). Therefore, NKp44 may also be con-
sidered a marker of cytokine-activated NK cells in humans. IL-2-
induced upregulation of NKp44 on NK cells can be inhibited by 
prostaglandin E2, which is readily produced by tumor-associated 
fibroblasts, especially when exposed to NK cells in culture (34). 
Similarly, prednisolone can suppress IL-2-mediated upregulation 
of NKp44 (26).

The extracellular domains of NCRs consist of one (NKp30 and 
NKp44) or two (NKp46) Ig-like domains that are responsible for 
ligand binding (10, 12, 13). Ligand binding and signaling function 
by NKp30 is highly dependent upon integrity of the membrane 
proximal stalk region (35). Crystal structures have revealed that 
NKp30 and NKp44 can form homodimeric structures with NKp30 
dimerizing in a head-to-tail fashion to form an I-type Ig-like fold 
and two NKp44 V-type Ig-like domains form a saddle-shaped 
dimer with unique disulfide bridging (36, 37). On the other 
hand, the crystal structure of NKp46 demonstrates two C2-type 
Ig-like domains that are folded and oriented similar to the Ig-like 
domains of KIRs (38). Evidence for a homodimerization interface 
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within the membrane proximal Ig-like domain of NKp46 has also 
been reported, and disruption of this dimerization interaction 
prevented ligand binding and activating function of the receptor 
(39). In conclusion, the three NCRs have unrelated structures, 
and grouping these receptors together is based more on their 
shared functional properties than related structure or genetic 
evolution (13).

The transmembrane domains of all three NCRs contain a 
positively charged lysine (NKp44) or arginine (NKp30 and 
NKp46) residue that interacts with acidic aspartic acid residues 
found in the transmembrane regions of the adaptor proteins 
DAP12 (NKp44) or TCR-ζ and/or FcεRI-γ (NKp30 and NKp46) 
(10). Physical association with DAP12 via these transmembrane 
charged residues is essential for surface expression of NKp44 
(40). The reductions in surface expression levels of NKp30 
and NKp46 on “adaptive” or “memory-like” NK cells is associ-
ated with the lack of FcεRI-γ expression in these cells (29, 30), 
exemplifying the importance of associating with this specific 
adaptor to transport a functional receptor to the cell surface. In 
addition to promoting surface expression, physical association 
with these associated transmembrane adaptors provides potent 
activation signaling function to the NCRs, since the tyrosine 
phosphorylation of their cytoplasmic ITAM domains results in 
the recruitment and activation of the Syk and ZAP-70 protein 
tyrosine kinases (2, 41). A unique activation signaling crosstalk 
has been reported between the NCRs, in which engagement of 
one NCR appears to initiate signaling through the others (41). 
Curiously, while several mRNA splice variants encoding NKp44 
have been described, the major protein product or isoform was 
found to also contain a cytoplasmic ITIM-like domain. Although 
early work suggested that this domain was incapable of providing 
inhibitory signaling function in an NK-like cell line (40), more 
recent work has demonstrated ITIM-mediated inhibitory func-
tion by NKp44 upon recognition of a specific ligand, proliferating 
cell nuclear antigen (PCNA), as detailed below (42).

LiGANDS OF THe NCRs

Despite a great deal of work by numerous research groups, our 
understanding of the ligands for NCRs is still not clearly estab-
lished. A diverse array of molecules have been report to interact 
with the extracellular domains of NCRs, including carbohydrate-
based contacts, cell surface proteins, and surprisingly, several 
intracellular-localized proteins that appear to reach the surface 
of infected or transformed cells. While engagement with most of 
these reported ligands stimulates activation of NK cells, some have 
been found to inhibit their functions. Our current understanding 
of putative ligands for NCRs and their functions are described 
below and summarized in Figure 1 and Table 1.

viral Ligands
Several viral-derived NCR ligands have been reported. Early 
work showed that the viral hemagglutinin (HA) of influenza virus 
on the surface of infected cells can readily engage with branched 
α-2,3- and α-2,6-sialylated O-glycan sequences conjugated 
on NKp46, and influenza-infected target cells can be killed by 
human NK cells in a NKp46-dependent manner (65–68). In fact, 

exposure of NK cells to influenza virions or free HA has been 
found to decrease NCR-mediated cytotoxicity, which was associ-
ated with loss of TCR-ζ protein expression (71). In addition, influ-
enza virus-infected DCs stimulate IFN-γ production by NK cells 
in an NKp46- and HA-dependent manner (69). Furthermore, it 
has been demonstrated that NKp46-deficient mice are more sus-
ceptible to death after infection with influenza virus (72). These 
interactions are consistent with the known sialic acid-binding 
properties of viral HAs. HAs from influenza and Sendai viruses 
have further been shown to also interact with NKp44, but not 
NKp30, and NKp44+ NK cells can kill cells infected with these 
viruses (54, 55). Similarly, both NKp46 and NKp44 were found to 
interact with the HA from avian Newcastle disease virus and this 
interaction potentiates cytotoxicity of target cells infected with 
this paramyxovirus (56).

Hemagglutinin from the orthopox family viruses, human 
vaccinia virus, and murine ectromelia virus has been shown to 
interact with NKp46 and NKp30 (43). Late-stage vaccinia virus-
infected target cells were further shown to be less susceptible to 
NK  cell cytotoxicity compared to uninfected targets, and this 
reduced killing was dependent upon viral HA in the target cells 
and NKp30 in the NK cells (43). The results from this study sug-
gest that the HA on the surface of vaccinia virus-infected cells 
interacts with NKp30 to either block its activating function or to 
mediate inhibitory signaling in NK cells, whereas NKp46 engage-
ment with vaccinia virus-derived HA on target cell surfaces 
stimulates cytotoxicity responses.

NKp44 has been shown to recognize the envelope glycopro-
teins from West Nile and Dengue flaviviruses (57). In particular, 
NKp44 was found to directly bind domain III of WNV envelope 
protein, but does not appear to involve viral HA, since independ-
ent of sialylation of oligosaccharides on NKp44. Consistent with 
this finding, West Nile virus-infected cells more readily bind a 
soluble recombinant form of NKp44 and stimulate NK cells to 
degranulate and produce IFN-γ in an NKp44-dependent manner 
(57). It should be noted that expression of Dengue viral non-
structural proteins in target cells reduces susceptibility to NK cell 
cytotoxicity through upregulating MHC-I expression (73).

In addition, NKp30 has been shown to directly interact with 
pp65, which is the main tegument protein of human cytomegalo-
virus (HCMV) (44). HCMV infected target cells were found to 
be less susceptible to NK cell-mediated killing, and this inhibi-
tion was lost if the target cells were infected with pp65-deficient 
HCMV or if anti-NKp30 blocking antibodies were added (44). 
The authors of this report further provided evidence that treating 
NK  cells with a recombinant soluble form of pp65 resulted in 
the dissociation of the TCR-ζ signaling adaptor protein from 
NKp30 (44). In this way, pp65 appears to provide HCMV with a 
mechanism to avoid NK cell-mediated immunity by disrupting 
activation signaling through NKp30.

Other Ligands expressed by Pathogens or 
Pathological Conditions
Natural cytotoxicity receptors have also been shown to directly 
recognize bacterial and parasite pathogens. It has been demon-
strated that NKp30 (and to a lesser extent, NKp46) can interact 
with the Duffy binding-like (DBL)-1α domain of Plasmodium 
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FiGURe 1 | Ligands for natural cytotoxicity receptors (NCRs). Schematic representation of NCR ligands on tumor cell and their interaction with NKp30, 
NKp44, and NKp46 on natural killer (NK) cells. B7-H6 is an activating ligand for NKp30 upregulated on tumor cells and absent on normal cells. HLA-B-associated 
transcript 3 (BAT3)/Bcl2-associated anthogene 6 (BAG6) expressed in the nucleus moves to the plasma cell membrane or is released in exosomes. NKp44L is a 
splice variant isoform of the nuclear protein Mixed-lineage leukemia-5 protein that localizes to the tumor cell plasma membrane to serve as an activating ligand for 
NKp44. Proliferating cell nuclear antigen (PCNA) is a nuclear protein involved in DNA replication and repair mechanisms that relocalizes to the plasma membrane to 
serve as an NKp44 inhibitory ligand. Cytoskeleton type III filamentous vimentin is an intracellular protein but can be upregulated on the cell surface of infected cells, 
where it serves as a ligand for NKp46. Heparan sulfate proteoglycans (HSPGs) can interact with all NCRs. Heparan sulfate (HS) expressed on NK cell surface (cis 
interaction) can mask interactions with HSPG or other ligands on target cells (trans interactions).
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falciparum erythrocyte membrane protein-1 to mediate cytolysis 
of malaria-infected erythrocytes (45). The interaction appears 
to be direct, since the effect can be inhibited by the addition of 
recombinant soluble forms of these NCRs or peptides matching 
the sequence of DBL-1α (45).

It has been reported that Mycobacterium bovis bacillus 
Calmette-Guérin (BCG) can directly interact with NKp44, and 
exposure to BCG can increase NKp44 expression on CD56bright 
NK cells (58). This study also found that additional Mycobacterium 
family members can bind NKp44, such as Nocardia farcinica 
and Pseudomonas aeruginosa. Interactions of these bacteria 
with NKp44 did not activate NK cell functions, however, so the 
relevance of these interactions is currently unclear.

NKp44 has been reported to recognize an uncharacterized ligand 
on cartilage-derived chondrocytes, and cytotoxicity of primary 
chondrocytes by long-term IL-2 activated-NK cells was inhibited 
by an NKp44-blocking antibody (59). These results suggest that 
NKp44 activation signaling may promote NK cell-mediated auto-
immunity in chronic inflammatory cartilaginous disease.

Heparan Sulfates
Heparan sulfate (HS) glycosaminoglycans (GAGs) have also been 
shown to interact with all of the NCRs, with different affinities 

for the three receptors (46–48, 60). While these carbohydrate-
directed interactions likely do not represent primary ligands 
for the NCRs, they appear to have the capacity to regulate NCR 
function or may play a supporting role as co-ligands (61). HS 
GAGs consist of long, unbranched, anionic polysaccharides 
that are found on cell surfaces and the extracellular matrix (74). 
The HS GAG polysaccharides are composed of repeating disac-
charide units of uronic acid (iduronic or glucuronic acid) and 
glucosamine that are differentially sulfated at N, 2-O, 3-O, and 
6-O positions to generate highly diverse structures with unique 
protein binding properties (75). HS GAG can be conjugated to 
a small subset of proteins to form HS proteoglycans, including 
syndecans and glypicans, and their negative-charged configura-
tions can provide docking sites for basic domains on chemokines, 
FGF, and wnt ligand family members, thereby “presenting” them 
to cell surface receptors (76–79).

Interestingly, HS GAG are highly diverse structures, and the 
three NCRs preferentially recognize highly sulfated HS structures 
via basic amino acid patches on the receptor surfaces, and each 
NCR demonstrates distinct HS binding specificity (47, 48, 60). 
Therefore, it is conceivable that each NCR has the capacity 
to distinguish particular configurations of HS GAG primary 
and tertiary structures that might be uniquely expressed in the 
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TAbLe 1 | Ligands for natural cytotoxicity receptors.

Receptor Ligands Function Reference

NKp30 Hemagglutinin (HA) of human vaccinia 
virus

Inhibition (43)

pp65, Main tegument protein of human 
cytomegalovirus

Inhibition (44)

(DBL)-1α domain of Plasmodium 
falciparum erythrocyte membrane 
protein-1

Activation (45)

Heparan sulfate (HS) glycosaminoglycans 
(GAGs)

Activation/
regulation

(46–48)

BAT3/BAG6 Activation (49–51)

B7-H6 Activation (52, 53)

NKp44 Redirected cytotoxicity and blockade of 
natural cytotoxicity with NKp44 antibody

Activation (11)

HA of influenza and Sendai viruses Activation (54, 55)

HA from avian Newcastle disease Activation (56)

Domain III of WNV envelope protein of 
West Nile and Dengue virus

Activation (57)

Mycobacterium bovis bacillus Calmette-
Guérin (BCG)

Unclear (58)

Unknown ligand on cartilage-derived 
chondrocytes

Activation (59)

HS GAGs Activation/
regulation

(47, 60, 61)

NKp44L Activation (62, 63)

Proliferating cell nuclear antigen Inhibition (42, 64)

NKp46 HA of influenza virus Activation (65–69)

HA of avian Newcastle disease Activation (56)

HA of human vaccinia virus Activation (43)

(DBL)-1α domain of Plasmodium 
falciparum erythrocyte membrane 
protein-1

Activation (45)

HS GAGs Activation/
regulation

(47)

Vimentin Activation (70)
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contexts of tumor microenvironments or sites of infection or 
inflammation. We have also shown the HS GAGs can interact with 
another NK cell receptor, KIR2DL4, and the binding can modu-
late receptor function (80). In addition, an interaction of NKp44 
with the heparan sulfate proteoglycans (HSPGs), syndecan-4, in 
cis on the NK cell surface can modulate the surface distribution 
and function of the receptor (61). Based on this and other reports 
(47), we have proposed that interactions with HSPGs in cis (on 
the surface of NK cells) may be impacting KIR2DL4 and NCR 
functions through masking interactions with HS GAG or other 
ligands on adjacent target cells (trans interactions) and/or may 
be affecting the trafficking of NCR to intracellular degradation 
and recycling pathways upon endocytosis (61, 81). In this way, cis 
interactions between NCR and HSPGs may provide an allosteric 
regulation mechanism. It is also intriguing to speculate that treat-
ment of patients with structurally related heparin as a therapeutic 
agent could impact NK cell functions through binding to NCRs 
and other NK cell surface receptors, including KIR2DL4.

intracellular Proteins As Cell Surface 
Ligands
The expression of a ligand for NKp44, named NKp44L, was first 
shown to be induced by the HIV-1 envelope protein gp41 on 
infected CD4+ T cells, and the expression increased in patients 
with increasing viral load (62). NKp44L is an activating ligand, 
since NK cell-mediated lysis of HIV-infected CD4+ T cells was 
inhibited by antibodies to NKp44 or NKp44L (62). The NKp44L 
was subsequently identified as a unique splice variant isoform of 
mixed-lineage leukemia-5 (MLL5) protein (63). While full-length 
MLL5 is a nuclear protein, the NKp44L splice variant is local-
ized near the plasma membrane in the cytoplasm and expressed 
in several tumor tissues and transformed cell lines, but not in 
normal tissues (63).

It was reported that NKp46 is involved in NK cell-mediated 
cytolytic attack of monocytes infected with Mycobacterium 
tuberculosis (20). Subsequent work established that this is due to 
an interaction with vimentin, which is expressed at high levels in 
infected monocytes and appears on the cell surface (70). Since 
vimentin is a type III intermediate filament of the cytoskeleton, 
however, it is unexpected to find on the cell surface, but this fol-
lows an emerging theme of several traditionally intracellular pro-
teins serving as putative cell surface ligands for NCRs. NK cells 
were more efficient at lysing target cells transfected to overexpress 
vimentin, and this cytotoxicity was inhibited by antibodies target-
ing NKp46 or vimentin (70).

In addition, NKp30 has been shown to interact with the HLA-
B-associated transcript 3 (BAT3)/Bcl2-associated anthogene 6 
(BAG6) protein to stimulate NK cytolytic responses (49). BAT3/
BAG6 is predominantly expressed in the nucleus, but can move 
to the plasma membrane in cells exposed to heat shock and can 
be secreted in exosomes by tumors and stressed cells (49, 82). 
BAT3/BAG6-expressing exosomes can stimulate cytokine release 
from NK cells upon interaction with NKp30, and BAT3/BAG6 
expression by DC is responsible for activation NK cells to mediate 
the crosstalk with DC (49, 50). Similarly, RIG-I stimulation of 
melanoma cell lines was shown to trigger the extracellular release 
of BAT3/BAG6-containing vesicles that can stimulate NK  cell 
cytolytic responses (51). In contrast, a soluble form of BAT3/
BAG6 has been found at high levels in the plasma of CLL patients 
and can suppress NK cytolytic responses, apparently by blocking 
recognition of this and other ligands on tumor cells (82, 83).

It was also reported that NKp44 can interact with PCNA, 
at target cell surfaces (42). PCNA is highly expressed in prolif-
erating cancer cells, where it is usually tightly associated with 
DNA and involved in DNA replication and repair mechanisms 
(84). Surprisingly, PCNA was found to migrate to the plasma 
membrane of target cells within the immunological synapse 
with NKp44-expressing NK cells, and this interaction inhibited 
cytolytic function and IFN-γ production by the NK cells (42). A 
second report has also described the interaction of PCNA and 
NKp44 and the association of PCNA with MHC-I molecules 
at the plasma membrane of tumor cells as a potential surface 
transport mechanism (64). The PCNA-induced inhibition was 
found to be mediated through the ITIM-like sequence in the 
cytoplasmic domain of NKp44 (42), despite earlier work in 
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which the ITIM-containing NKp44 cytoplasmic domain was 
shown to lack inhibitory function in the context of a chimeric 
receptor construct (40). It appears that PCNA interaction with 
the full NKp44 receptor establishes a unique conformation that 
transduces an inhibitory signal. Inhibitory function was also pre-
viously reported for NKp44 expressed on ILCs and plasmacytoid 
DCs (33, 85).

b7-H6
NKp30 has been found to bind to a cell surface protein member 
of the B7 family, named B7-H6 (52). B7-H6 is not normally 
expressed on healthy cells, but can be upregulated on human 
tumor cells through a Myc-mediated mechanism (86) or upon 
stimulation of monocytes and neutrophils with TLR ligands or 
pro-inflammatory cytokines (87). Upon recognition by NKp30, 
B7-H6 triggers cytotoxicity and cytokine production by NK cells 
(52). The interaction of B7-H6 with NKp30 is the most rigorously 
characterized of NCR ligands, since it is the only NCR–ligand 
interaction so far confirmed in an X-ray crystallography structure 
(53). It has also been shown that some tumors can escape NKp30 
recognition by shedding B7-H6 from their surfaces with the 
metalloproteases, ADAM-10, and ADAM-17 (88). Soluble and 
tumor-associated expression of B7-H6 in the peritoneum of ovar-
ian cancer patients has also been shown to correlate with reduced 
surface expression of NKp30 on peritoneal NK cells, presumably 
due to chronic interaction with ligand (89).

SPLiCe vARiANTS OF NCRs ReSULTiNG 
iN DiSTiNCT ReCePTOR iSOFORMS

A variety of mRNA splice variants encoding different isoforms 
of NCRs have been recognized for many years, but only recent 
work has established that some of these variant NCR isoforms 
can facilitate inhibitory functions. Distinct splice variant expres-
sion patterns have also been shown to correlate with outcomes 
in cancer and infectious disease, suggesting potential prognostic 
value in patients. A summary diagram of current reported func-
tions of distinct isoforms of NKp30 and NKp44 is presented in 
Figure 2.

Splice variants of ncr3
The expression of distinct isoforms of NKp30 is of great inter-
est, because this NCR is involved in DC-to-NK  cell crosstalk 
(25), can facilitate tumor cell recognition (13, 49, 90), and can 
influence the prognosis of different infectious diseases (91). Six 
splice variant transcripts have been identified from the ncr3 
gene, which was originally called 1C7 (92, 93). The most highly 
expressed ncr3 variants are designated a, b, and c that encode 
NKp30 proteins with an extracellular V-type Ig domain, while d, 
e, and f isoforms encode NKp30 receptors possessing a C2-type 
Ig domain that lacks 25 amino acids (93). The three members of 
each subgroup share three distinct cytoplasmic domains encoded 
by splice variations within exon 4. Although the d, e, and f protein 
isoforms of NKp30 have not been studied to date, several groups 
have examined the functions and interesting clinical outcomes 
associated with differential expression of the a, b, and c isoforms, 
as discussed below.

Alternative splicing of the ncr3 gene impacts functions of 
NKp30 isoforms that can be immunosuppressive or immu-
nostimulatory. Delahaye and colleagues expressed isoforms 
NKp30a, NKp30b, and NKp30c in the human NK cell line NKL 
to characterize their functions. It was shown that antibody- or 
B7-H6-mediated engagement of NKp30 on NKL transfected 
with either NKp30a or NKp30b isoforms stimulated produc-
tion of large amounts of IFN-γ, degranulation, and cytotoxicity 
responses. In contrast, engagement of NKp30c on NKL cell 
transfectants did not result in degranulation or elicit cytotoxicity, 
but instead produced the inhibitory cytokine IL-10 and very little 
IFN-γ (94). Similar immunostimulatory functions for NKp30a 
and NKp30b isoforms were observed when NKp30 transfectants 
were cocultured with DCs, whereas NKL-NKp30c transfectants 
demonstrated minimal responsiveness in these assays. In all of 
these experiments, NKp30a stimulated the most potent activating 
responses, whereas NKp30c was inhibitory or non-responsive, 
and NKp30b induced intermediate activation (94).

It was also shown that NKp30a associated more tightly 
with TCR-ζ upon crosslinking, as compared to NKp30c (94). 
Surprisingly, p38 MAP kinase activation was more pronounced 
when NKp30 was engaged in NKL-NKp30c cells then for NKL 
cells transfected with NKp30a or NKp30b. Furthermore, treat-
ment of NKL-NKp30c cells with a p38 inhibitor produced IFN-γ 
upon exposure to immature DCs (94). Therefore, NKp30b and 
especially NKp30a are stimulatory isoforms that can induce cyto-
toxicity and cytokine production, whereas NKp30c induces an 
immunosuppressive response that appears to involve activation 
of p38 and the production of IL-10.

NKp30 isoforms and Cancer
In addition to characterizing different functions for distinct 
NKp30 isoforms, Delahaye performed a retrospective analysis 
of NKp30 expression profiles in 80 patients with gastrointestinal 
stromal tumors (GIST), which is a malignancy that expresses 
NKp30 ligands. In that analysis, predominant expression of the 
immunosuppressive NKp30c isoform over the immunostimula-
tory NKp30a/b isoforms was found to be associated with reduced 
overall survival in imatinib-treated patients (94). Moreover, a 
subset of GIST patients with predominant expression of the 
NKp30c isoform and a distinct haplotype involving two SNPs in 
the ncr3 gene were found to be associated with particularly poor 
survival (94). For GI carcinomas and variety of other cancers, 
we observed that both cancerous and matched normal tissues 
manifested balanced NKp30c inhibitory and NKp30a/b activa-
tion profiles; yet, we found skewed NKp30 splice variant profiles 
in about 50% of a variety of tumor tissues compared to their 
matched normal tissues (95).

Neuroblastoma is another malignancy where NCRs are 
involved in the tumor cell recognition (96–98). Semeraro et al., 
found that neuroblastoma tumor samples express the NKp30 
ligand, B7-H6, and some patients with metastatic neuroblastoma 
had high levels of soluble B7-H6 in their serum, which was 
associated with reduced expression of NKp30 on the surface of 
NK  cells and higher degree of metastases (99). Furthermore, 
serum from patients with high soluble B7-H6 suppressed NK cell 
IFN-γ responses (99). Analysis of NKp30 isoform expression 
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FiGURe 2 | Differential functions of different isoforms of NKp30 and NKp44. Immunostimulatory NKp30a and NKp30b isoforms interaction with ligands on 
tumor target cells or immature DCs (iDCs) to stimulate degranulation responses and interferon (IFN)-γ production. Inhibitory NKp30c isoform instead produces 
inhibitory cytokine IL-10 upon engagement. NKp30c is also less tightly associated with TCR-ζ and triggers stronger activation of p38 MAP kinase. The NKp44-1 
isoform contains a cytoplasmic ITIM that can transduce inhibitory signals when engaged with proliferating cell nuclear antigen (PCNA) ligand on target cell surface 
(pathway “A”), leading to decreased cytotoxicity and IFN-γ production. In contrast, all three NKp44 isoforms can engage with NKp44L to transduce activation 
signaling through DAP12 (pathway “B” for NKp44-1) that triggers cytotoxicity and IFN-γ production.
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suggested lower expression of NKp30a/b isoforms in patients with 
metastatic neuroblastoma compared to patients with localized 
disease or healthy donors. Comparison of the ratios of expres-
sion of mRNA for individual NKp30 isoforms revealed that high 
expression of the suppressive NKp30c isoform over the activating 
NKp30b isoform was associated with shorter progression-free 
survival of patients with metastatic disease (99). Surprisingly, 
IFN-γ was found to suppress the expression of B7-H6 and BAT3 
mRNA, whereas IL-10 increased B7-H6 mRNA expression on 
neuroblastoma tumors. The results of this study suggest that 
high expression of IL-10 by NKp30c-expressing NK cells induces 
B7-H6 expression on tumor, thereby potentiating further expres-
sion of this immunosuppressive cytokine.

The potential prognostic value of NKp30 isoforms was also 
recently investigated in melanoma patients (100). The overall 
mRNA expression levels of each of the NKp30 isoforms were 
found to be reduced compared to expression in healthy donors, 
but expression ratios between the isoforms did not differ. Levels 
of mRNA expression of the immunosuppressive NKp30c isoform 
were found to be higher on NK cells from stage IV melanoma 
patients, but relative expression levels of each NKp30 isoform did 
not predict overall survival of patients. Interestingly, long-term 

surviving melanoma patients were found to express higher levels 
of stimulatory NKp30a transcript. In accordance with this finding, 
the long-term survivors were more likely to have SNPs associated 
with reduced expression of suppressive NKp30c and increased 
expression of NKp30a. Furthermore, NK  cells from long-term 
surviving patients exhibited increased degranulation potential in 
response to NKp30 stimulation (100). Therefore, higher expres-
sion of NKp30a in melanoma patients appears to be beneficial.

NKp30 isoforms and infectious Diseases
Surface expression NKp30 on NK cells was found to be down-
regulated in HIV-1 patients, but expression patterns of NKp30 
isoforms do not affect disease progression or survival (101). 
NK  cells from hepatitis C virus (HCV)-infected patients also 
showed reduced expression of NKp30 on the surface of NK cells, 
and expression of the immunosuppressive NKp30c transcript 
was found to be significantly decreased in infected patients com-
pare to healthy controls (102). Also NKp30a/NKp30c ratio was 
significantly higher compared to healthy individuals suggesting 
an immunostimulatory profile in infected patients. If stratified 
according to mRNA expression levels, patients with low expres-
sion of all three isoforms had lower surface expression of NKp30 
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on NK cells, but higher ratio of NKp30a/NKp30c isoform tran-
scripts. Accordingly, NK cells from these patients exhibited more 
potent degranulation and cytokine production responses upon 
engagement of the receptor, as compared to healthy controls 
(102). Interestingly, positive correlations were observed between 
NKp30a isoform mRNA levels and liver stiffness and between 
NKp30a/NKp30c ratio and a measure of liver fibrosis, suggest-
ing that reduction of immunosuppressive NKp30c isoform and 
increase of immunostimulatory NKp30a isoform is associated 
with advanced liver disease in HCV-infected patients.

NKp30 in the Decidua of Pregnant women
Natural killer cells from decidual tissue in pregnant uterus (dNK) 
have unique phenotypical and functional properties compared 
to NK cells found in peripheral blood (pNK) (103). Mouse stud-
ies originally demonstrated that dNK cells function to support 
embryo implantation by secretion of numerous factors, including 
IFN-γ, to promote angiogenesis and trophoblast invasion (104). 
Comparison of freshly isolated pNK and dNK  cells from the 
same pregnant donors showed that pNK cells express high levels 
of NKp30a and NKp30b isoforms and low levels of NKp30c iso-
form, while dNK cells had high levels of NKp30c but significantly 
lower amounts of NKp30a/b (105). While crosslinking NKp30 
on IL-15-stimulated pNK  cells induced degranulation, freshly 
isolated dNK  cells did not degranulate, and co-crosslinking 
NKp30 in dNK cells did not inhibit NKp46-mediated degranula-
tion, consistent with the lack of activation by NKp30c in previ-
ously described studies by Delahaye et al. (94, 105). Coculturing 
pNK  cells in presence of IL-15 and IL-18 induced increased 
expression of NKp30a/b isoforms, whereas further addition 
of TGF-β suppressed the induction of expression of all three 
isoforms, although expression of NKp30b and NKp30c isoforms 
was greater than NKp30a upon addition of TGF-β (105). Overall, 
the combination of IL-15, IL-18, and TGF-β, which are found 
together in the decidual stromal microenvironment, shifted 
pNK cells toward higher expression of inhibitory NKp30c isoform 
and expression of other markers characteristic of dNK cells (105).

Shemesh et al. found significantly increased mRNA encoding 
the activating NKp30a/b isoforms in the placenta of women 
who had experienced sporadic or recurrent miscarriage within 
the first trimester, whereas this shift toward activating isoforms 
was not evident in the peripheral blood (106). The increase in 
activating isoforms did not correlate with higher expression of 
TNF-α, IFN-γ, IL-10, and placental growth factor mRNAs in 
the placental tissue of those women who experienced sporadic 
miscarriage, as compared to those that had undergone elective 
abortions. These results suggest that increased expression of these 
activating isoforms of NKp30 on dNK cells may be in some way 
contributing to failed pregnancies through promoting dysregu-
lated cytokine production in the placenta.

Splice variants of ncr2
Three major mRNA splice variants of ncr2 have been recognized, 
and one of these (NKp44-1) encodes the classic receptor that 
possesses a cytoplasmic ITIM, while the others (NKp44-2 and 
NKp44-3) have alternative sequences in the cytoplasmic region 
that lack ITIMs. It has long been known that IL-2-cultured 

NK  cells upregulate expression of an activating form of 
NKp44-1 associated with the transmembrane signaling protein, 
DAP12, which becomes tyrosine phosphorylated upon recep-
tor engagement with an antibody (11, 40, 41). Recent analysis 
of the major NKp44 isoforms, however, has demonstrated that 
isolated human NK cells cultured in IL-2- or IL-15 express pre-
dominantly NKp44-1 mRNA and have reduced capacity to kill 
PCNA-transfected target cells in an NKp44-dependent manner 
(12, 107). Furthermore, NK-92 cells transduced to overexpress 
NKp44-1 show suppressed cytotoxicity and diminished immune 
synapse formation toward PCNA-transfected target cells, as 
compared to NK-92 transduced to overexpress the other isotypes. 
These results indicate that the NKp44-1 isoform is an inhibitory 
receptor when engaged with the PCNA ligand expressed by 
target cells, whereas NKp44-2 and NKp44-3 do not transduce 
inhibitory signals (107).

NKp44 isoforms in Cancer
Shemesh et al. studied the impact of NKp44 isoforms on overall 
survival of patients with acute myeloid leukemia (AML) using 
TCGA RNA-Seq data (107). Whereas no survival advantage 
was found in newly diagnosed patients who expressed mRNA 
encoding NKp44, as compared to those lacking expression, 
survival was significantly diminished in patients who exclusively 
expressed NKp44-1, as compared to patients who also expressed 
at least some detectable level of NKp44-2 and/or NKp44-3 or 
lacked NKp44 expression altogether. These results imply that 
NKp44 plays a key role in NK  cell responsiveness toward 
AML tumors, but exclusive expression of the ITIM-containing 
NKp44-1 isoform can stifle these beneficial responses, presum-
ably through inhibitory signaling, thereby resulting in poor 
patient outcome.

The same group found higher incidence of NKp44 mRNA in 
various solid tumor tissues, as compared to surrounding normal 
tissues (95). Those tumor samples that expressed NKp44 mRNA 
were found to consist of predominantly NKp44-1 isoform. Thus, 
NK cells in the tumor microenvironment predominantly express 
the inhibitory NKp44 isoform.

NKp44 in the Decidua of Pregnant women
Siewiera et  al. found that while NKp44-2 mRNA is expressed 
more by freshly isolated pNK cells than NKp44-1 and NKp44-
3, dNK  cells from women undergoing elective first trimester 
abortions (healthy pregnancies) express all three isoforms of 
NKp44 at similar levels (105). While crosslinking NKp44 on 
IL-15-stimulated pNK cells induces degranulation, crosslinking 
on freshly isolated dNK  cells did not result in degranulation 
and co-crosslinking suppressed degranulation in response to 
crosslinking NKp46, demonstrating predominant inhibitory 
function for NKp44 in decidual/placental NK cells (105).

Shemesh et  al. also found that NKp44-2 and NKp44-3 
isoforms predominated in decidual tissue obtained from the 
majority of first trimester spontaneous abortions, while a NKp44-
1-dominant (inhibitory) profile was found in dNK  cells from 
most elective abortions or term deliveries (healthy pregnancies), 
which is consistent with the inhibitory function of dNK cells in 
the study by Siewiera et al. (95).
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Splice variants of ncr1
Recent work by Shemer-Avni et  al. has also provided new 
insights on differential splicing of ncr1 (108). Five major splice 
variants of ncr1 have been described, and three of these encode 
NKp46 protein isoforms containing both extracellular domains, 
while two lack the first Ig-like domain (D1, encoded by exon 
3). Surprisingly, NK-92 cells transduced with a D1-negative 
ncr1 cDNA degranulated significantly more efficiently toward 
HEK293T target cells, as compared to NK-92 cells transduced 
to express conventional NKp46 protein containing both Ig-like 
domains (108). Using NKp46-reactive antibodies, D1-negative 
NKp46 was not observed in fresh peripheral blood from healthy 
donors, but a subset expressing the NKp46 D1-negative receptor 
was found after long-time culturing of NK cells in IL-2 (108). This 
subset of NK cells containing D1-negative NKp46 degranulated 
more robustly in response to a combination of plate-bound anti-
NKp46 and anti-NKp30 antibodies (108).

This group also studied NKp46 isoform expression in upper 
airway lavage samples from pediatric patients with respiratory 
tract viral infections. While most of these samples expressed both 
NKp30 and NKp46 mRNA, none contained mRNA encoding 
NKp44. When ncr1 splice variants were analyzed, most of the lav-
age samples from virus-infected patients were found to contain 
D1-negative NKp46 isoform transcripts (108). Taken together, 
these results suggest that NK cells by IL-2 or viral infection can 
express isoforms of NKp46 lacking the D1 Ig-like domain, and 
NK  cells expressing these domain-deficient receptors exhibit 
increased functional capacity.

CONCLUSiON

Significant progress has been made in recent years to improve our 
understanding of the functions and ligand recognition capacities 
of NCRs. Clearly these receptors play important roles in NK cell 
recognition of tissue changes in cancer, viral infections, decidual 
tissues in pregnancy, and immature DC. This new knowledge 
is crucial for establishing the basis of molecular mechanisms 
controlling NK cell responses under these diverse conditions. In 

contrast to the original dogma that NCRs are exclusively acti-
vating receptors, several new findings have revealed inhibitory 
functions for these receptors.

Numerous ligands or co-ligands for NCRs have now been 
described. Several of these can surprisingly trigger inhibitory sig-
nals or induce production of inhibitory cytokines when engaged 
with NCRs. Furthermore, some of these putative ligands are classi-
cally nuclear or cytosolic proteins that appear to relocate to the cell 
surface in cancer cells, where they can engage with NCRs. Also, 
heparan sulfates seem to have capacity to interact with all three of 
the NCRs and may regulate their functions in trans and cis.

The study of differentially spliced isoforms of NCRs has 
revealed surprising insights, since some of these isoforms elicit 
inhibitory function. Furthermore, dominant expression of the 
inhibitory forms has been linked to poor outcome in the context 
of cancer, but healthy outcome in pregnancy. Nonetheless, our 
understanding of the complexities of NCR isoforms is still in its 
infancy and requires a great deal of additional study.

Future work is clearly needed to sort out true NCR ligands 
and functional mechanisms responsible for the functions of some 
NCR isoforms, and their complexities are growing. Importantly, 
a firmer foundation of understanding promises to provide 
potential opportunities as prognostic indicators of disease status 
or opportunities to develop therapeutic strategies to manipulate 
NCRs on NK cells that could be beneficial to treat a wide variety 
of human pathologies.
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Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since 
they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an 
attractive option to increase NK cells in numbers and to improve their antitumor potential 
prior to clinical applications. Consequently, various strategies to generate NK cells for 
adoptive immunotherapy have been developed. Here, we give an overview of different 
NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. 
So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture 
and expand NK cells. The selection of the respective cytokine combination is an import-
ant factor that directly affects NK cell maturation, proliferation, survival, distribution of 
NK cell subpopulations, activation, and function in terms of cytokine production and 
cytotoxic potential. Importantly, cytokines can upregulate the expression of certain 
activating receptors on NK cells, thereby increasing their responsiveness against tumor 
cells that express the corresponding ligands. Apart from using cytokines, cocultivation 
with autologous accessory non-NK cells or addition of growth-inactivated feeder cells 
are approaches for NK  cell cultivation with pronounced effects on NK  cell activation 
and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the 
killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells 
become frequently dysfunctional in cancer patients, for instance, by downregulation of 
NK cell activating receptors, disabling them in their antitumor response. In such scenario, 
ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to 
overcome immunosuppression. In this review, we summarize the current knowledge 
on NK cell modulation by different ex vivo cultivation strategies focused on increasing  
NK cytotoxicity for clinical application in malignant diseases. Moreover, we critically 
discuss the technical and regulatory aspects and challenges underlying NK cell based 
therapeutic approaches in the clinics.

Keywords: natural killer cells, natural killer cell cultivation, natural killer cell expansion, natural killer cell therapy, 
natural killer cell cytotoxicity, ex vivo stimulation
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iNTRODUCTiON

As an important part of the innate immune system, natural killer 
(NK) cells are deployed as first line of defense against aberrant 
cells caused by viral infections or malignancies. Human NK cells 
can be identified via their morphology as large granular lym-
phocytes, and via their surface marker profile, as they express 
by definition CD56, but not CD3. The NK  cell compartment 
can be further divided into subpopulations. There are two main 
NK cell subsets that can be distinguished, the CD56highCD16neg 
subpopulation, which has mostly immune modulatory function, 
mainly accomplished by interferon (IFN)-γ secretion, and the 
CD56lowCD16pos fraction with direct cytotoxic capacity (1–3). 
NK  cell activation is based on a balanced system integrating 
signals from activating and inhibitory receptors. Inhibitory sig-
nals derive mainly from germ-line encoded inhibitory killer cell 
immunoglobulin-like receptors (KIRs). Ligands for inhibitory 
KIRs, in humans major histocompatibility complex (MHC) class 
I molecules, are highly expressed by healthy cells and thereby 
prevent NK cell activation. Malignant cells often downregulate 
MHC class I molecules on their surface to evade T  cell attack 
(4). However, these so-called “missing-self ” cells are recognized 
by NK  cells through inhibitory receptors, and as signals from 
activating receptors prevail, NK  cells become active and react 
against the encountered targets. Alternatively, NK  cells can be 
activated by overexpression of stress-induced surface ligands on 
infected or abnormal cells, which are recognized by activating 
receptors, such as the natural cytotoxicity receptors (NCRs) 
NKp30, NKp44, and NKp46, and the so-called C-type lectin-like 
receptors, such as NKG2D (1, 5–9). In this case, activating signals 
outbalance inhibitory self-signals and lead to NK cell activation. 
Furthermore, NK  cells become activated upon encounter of 
antibody-coated targets by CD16, which binds to the Fc portion 
of the antibody and mediates a strong activating signal. By means 
of activating and inhibitory receptors, NK  cells, unlike T and 
B-lymphocytes, can react immediately without prior priming or 
antigen presentation.

Activated NK  cells execute effector functions through dif-
ferent mechanisms. NK cells mediate direct cytotoxicity via the 
exocytosis pathway with release of cytotoxic granules, which 
contain granzymes and perforin, resulting in lysis of the target 
cell (10). In addition, NK cells induce apoptosis of target cells by 
expression of death receptor ligands, such as Fas ligand or tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL) (11). 
Production and release of IFN-γ by NK cells after activation also 
has multiple functional consequences, with particular relevance 
in tumor surveillance, as IFN-γ inhibits tumor angiogenesis, has 
antimetastatic activity, and acts pro-apoptotic (12, 13).

The ability of tumor cells to bypass the immune response is a 
basic prerequisite for cancer formation and progression. Within 
immune editing, tumors undergo genetic, epigenetic, and pheno-
typic changes, thereby becoming a heterogeneous cell population 
that is hardly visible to or assailable by immune cells due to down-
regulation of tumor antigens and NCR ligands (14). Additionally, 
malignant cells suppress NK cells by blocking the NKG2D recep-
tor via shedding of NKG2D ligands (15–17) or upregulation of 
inhibitory MHC class I molecules (18, 19). Immunosuppressive 

cytokines such as transforming growth factor-β, interleukin 
(IL)-10, or immunosuppressive enzymes, such as indoleamin 
2,3-dioxigenase, further impair antitumor NK  cell responses of 
cancer patients (20–22).

Ex vivo modulation of NK  cell receptor expression is 
therefore an important tool to overcome immune response 
inhibition. A number of studies reported an upregulation of 
DNAM-1, NKG2D, and other NK  cell-activating receptors 
under certain culture conditions, mostly involving stimulation 
by IL-2 (23–26). In addition, other ILs such as IL-12, IL15, IL-18, 
or IL-21 and Type I IFNs shape the NK cell receptor expression 
profile (27–31).

Natural killer cells can play an important role for cellular 
immunotherapy and the adoptive transfer of NK cells represents 
an attractive strategy to treat cancer patients (32, 33). In this 
context, ex vivo expansion of NK cells prior to their clinical appli-
cation is not only required to increase the applicable cell doses but 
it is also reasonable to pre-activate and modify their antitumor 
features. For ex vivo cultivation, NK cells from different sources 
can be stimulated with different cytokines, and, to reach efficient 
expansion rates, NK cells are cultured among autologous acces-
sory cells or together with different types of growth-inactivated 
autologous or allogeneic feeder cells (Figure  1). Of note, it is 
possible to genetically engineer NK cells ex vivo to further aug-
ment their antitumor activity, for example, to integrate chimeric 
antigen receptors against distinct tumor antigens (34, 35). In this 
review, we focus on the cultivation of NK cells without genetic 
modifications. Many different protocols exist for ex vivo expan-
sion of NK cells, all with different features and capacities. Here, we 
give a comprehensive overview of strategies to obtain appropriate 
amounts of functional NK cells. We will discuss starting material 
and culture systems as well as the use of cytokines, feeder cells, 
and other additives.

STARTiNG MATeRiAL FOR NK CeLL 
eXPANSiON AND ROLe OF NK  
CeLL PURiTY

Until recent, 92% of clinical studies used NK cells from peripheral 
blood, either donor (79% of recruiting trials) or patient derived 
(13% of recruiting trials) (36). Alternatives are the use of NK cell 
lines, or the differentiation of NK cells from umbilical cord blood 
or pluripotent stem cells (37–39). NK cell lines, such as NK-92, 
avoid the need for donor selection and enable the production 
of large cell doses to treat patients on a flexible schedule (40). 
Nevertheless, NK  cell lines require growth inactivation mainly 
achieved by irradiation, possibly reducing their antitumor poten-
tial due to short in vivo persistence. Differentiation of NK cells 
from cord blood CD34+ cells is attractive because of the “off-the-
shelf ” availability from a cord blood bank. Similarly, NK  cells 
from pluripotent stem cells are a promising concept for the future 
but still in early development (39, 41). In this overview, we focus 
on peripheral blood-derived NK cells, currently the main source 
for NK cells for clinical use.

The NK cell purity, meaning the frequency of NK cells among 
other cells, is an important factor for the intended therapeutic 
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FiGURe 1 | Scheme showing main components utilized for ex vivo natural killer (NK) cell activation and expansion procedures.
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application. For ex vivo expansion, NK cells are often cultured 
within a mixture of cells, such as PBMC, thereby avoiding further 
purification. Whereas the cultivation of NK  cells among other 
accessory cells is a practical strategy for autologous therapeutic 
settings, it may be critical for allogeneic applications, since non-
NK cells may induce unwanted side effects. Alloreactive T cells 
are a major risk factor for the patient, as they mediate “graft-
versus-host disease” (GvHD), a severe complication following 
allogeneic hematopoietic stem cell transplantation (HSCT) 
(42). Furthermore, donor-derived B cells can lead to B cell lym-
phoproliferative disorder after reactivation of an Epstein–Barr 
virus (EBV) infection (43, 44), and they can cause the passenger 
lymphocyte syndrome (45), both critical side effects for the 
patient. Therefore, purification of NK  cells might be required 
and is realized so far in most clinical settings by magnetic cell 
separation, for instance, by depletion of CD3-expressing cells and 
subsequent enrichment for CD56-expressing cells (26, 46–49). 
In addition, a first proof of concept is shown for good manu-
facturing practice (GMP)-compliant fluorescence-activated cell 
sorting to purify for NK cell subsets, such as NK cells expressing 
a single KIR (50).

CYTOKiNe-iNDUCeD NK CeLL 
eXPANSiON

Aims of adoptive transfer of ex vivo expanded NK cells are the 
enhancement of natural cytotoxicity and homing to tumor sites 
under maintenance of “self ” protection. Studies performed with 
cytokine-stimulated NK  cells or PBMC have shown the safety 
of this approach and indicated some clinical responses upon 
adoptive NK cell transfer following HSCT. In the next paragraph, 
we summarize ex vivo NK cell expansion protocols starting with 
purified NK cells (Table 1) or PBMC (Table 2). Concepts admin-
istering cytokines in the presence of growth-inactivated feeder 
cells will be discussed in later sections of this article.

THe ROLe OF iL-2

Interleukin-2 plays an important role in activation of NK  cells 
via binding to the IL-2 receptor (IL-2R), a heterotrimeric protein 
expressed on NK cells and other immune cells. This led to the 
interest in both (i) using IL-2 for stimulation of autologous 
NK cells in cancer patients and (ii) ex vivo activation and expan-
sion of allogeneic donor NK cells for adaptive immunotherapy. 
At the beginning of the 1980s, researchers around Rosenberg 
and colleagues showed that IL-2 exposed lymphokine-activated 
killer (LAK) cells were able to attack autologous fresh tumor cells 
and that this effect could mainly be ascribed to NK cells (71, 72). 
Nevertheless, in first clinical trials using adoptive transfer of LAK 
cells and IL-2 therapy, the clinical response did not exceed the 
efficacy of IL-2 monotherapy (73).

Importantly, during the last 20 years, it has been elaborated 
that NK cells play a major role in the regulation of the balance 
between GvL and GvHD after allogeneic HSCT, especially haploi-
dentical HSCT (33, 74–78), demonstrating improved anticancer 
activity while avoiding GvHD. In order to make haploidentical 
NK  cells available for clinical use, large-scale GMP-conform 
manufacturing protocols were established. After starting with 
a leukapheresis product that was depleted for CD3+ cells and 
enriched for CD56+ cells, cultivation in medium containing IL-2 
(1,000 U/mL) for up to 2 weeks yielded 0.1–3 × 109 CD56+CD3− 
NK cells (Table 1), sometimes sufficient for multiple infusions to 
patients with hematological malignancies (26). Median NK cell 
expansion was fivefold and median NK  cell purity was >94 
with <0.1% T cell contamination (26). Ex vivo stimulation with 
IL-2 induced elevated cytokine secretion by NK cells, enhanced 
intracellular STAT3/AKT signaling, and upregulation of various 
NCRs and NKG2D receptors (52). Depletion of CD3 cells from 
leukapheresis products without subsequent CD56 enrichment 
and short-term activation with IL-2 overnight led to a final prod-
uct containing 40% NK cells (Table 2). In all cases, IL-2-activated 
NK cells demonstrated a much higher cytotoxic activity against 
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K562 target cells compared to unstimulated NK cells (26, 43, 52, 
53, 60). In addition, after cryopreservation and thawing, NK cells 
showed a moderate to high viability when activated with IL-2, 
whereas the viability of unstimulated NK cells was low (26).

Transfer into the clinic in 2004 and 2005 with first patient stud-
ies using those IL-2-activated donor NK cells were performed in 
parallel in Europe and the US, for both, haploidentical HSCT (53), 
and in the non-transplant setting (43). In the latter one, Miller 
and coworkers used IL-2 expanded haploidentical NK to treat 
43 patients with advanced cancer (43), with 19 of them suffering 
from acute myeloid leukemia, followed by studies in patient with 
ovarian and breast cancer and B-cell non-Hodgkin lymphoma 
(60, 79). Importantly, the authors reported in  vivo persistence 
and even expansion of the alloreactive donor NK cells in patients 
pretreated with high dose preparative regimen, consisting of 
5 days of 60 mg/kg intravenous cyclophosphamide and 25 mg/m2 
intravenous fludarabine (43). Of note, successful NK cell engraft-
ment was dependent on the patients’ pretreatment regimen, 
which was also responsible for the patients’ elevated IL-15 plasma 
concentrations (43). In addition, it was demonstrated that in vivo 
persistence of donor NK cells at day 7 after infusion and success-
ful in vivo expansion (more than 100 donor-derived NK cells per 
microliter of patient blood 14 days after transfer) correlated with 
leukemia clearance (60). Expansion of host regulatory T cells was 
associated with low numbers of NK cells (60). In parallel, Koehl 
et al. reported on three pediatric patients with multiply relapsed 
leukemia (still in blast persistence at HSCT) treated with repeated 
transfusions of IL-2-activated donor NK cells post-haploidentical 
HSCT (53), which led to complete remission remaining for sev-
eral weeks up to some months. In the following clinical study, 
they also demonstrated a small clinical benefit in patients with 
various malignancies receiving IL-2-activated compared to 
patients receiving resting NK cells only (80). Interestingly, IL-2-
stimulated NK  cells but not unstimulated NK  cells promoted 
NK cell trafficking and changes in the distribution of leukocyte 
subpopulations in the peripheral blood. In the meanwhile, safety 
and feasibility using IL-2-activated and -expanded NK cells for 
adaptive immunotherapy has been demonstrated in various 
clinical studies as summarized in a recent review by Koehl and 
others (33).

iMPACT OF iL-15 ON NK CeLL 
eXPANSiON

Carson et  al. postulated that NK  cells might be dependent on 
other cytokines than IL-2 such as IL-15 (81, 82). The trimeric 
IL-15 receptor on NK cells shares two subunits with the IL-2R, 
but not CD25 forming the high affinity IL-2R. Therefore, they 
also share some functions, e.g., maintenance of NK cell survival 
(82). Similarities and differences between IL-2 and IL-15 effects 
on NK cells have been extensively reviewed elsewhere, and IL-15 
might be the preferable cytokine for cancer therapy as it inhibits 
activation-induced cell death and it is considered safe (83–85). In 
addition, compared to IL-2, IL-15 leads to more sustained antitu-
mor capacity of NK cells via signaling through mammalian target 
of rapamycin and stress-activated gene expression (86). However, 
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TAbLe 2 | Ex vivo cultivation of natural killer (NK) cells with accessory cells.

Protocol features Starting material/
culture system

NK cell expansion 
rate

NK cell purity NK cell phenotype NK cell function Setting Reference

IL-2 PBMC, CD3 depleted 
in bags and flasks

N/A (overnight) 33% NK 0.1% T cells N/A N/A Clinical (60)

N/A (14–16 h) 26.7% Enhanced cytotoxicity In vitro (61, 62)

N/A (overnight) 40% NK 0.9% T cells Enhanced cytotoxicity In vitro (43)

IL-15 PBMC, CD56 enriched 23 (20 days) 98% NK Expression of NKp30, NKp44, NKp46, 
NKG2D, and 2B4

Cytotoxic in vitro Clinical (63)

IL-15  
+ IL-21

PBMC, CD3 depleted 3.7 CD56+/CD122+ 
(2–3 weeks)

>90% CD56+/CD122+

<0.3% CD3+/CD56−

<3% CD3+/CD56+

67% CD56+CD16+ Cytotoxic against K562 and patient bone 
marrow blasts

Clinical (64)

OKT-3  
+ IL-2

PBMC in plates 193 (21 days) ~55% NK
~22% T cells

N/A Substantial cytotoxicity against K562 In vitro (65)

PBMC in flasks 1,625 (20 days) ~65% NK
~22% T cells

Upregulated: 2B4, CD8, CD16, CD27, 
CD226, NKG2C, NKG2D, NKp30, NKp44, 
NKp46, LIR-1, KIR2DL3, and CXCR3
Downregulated: CCR7

Increased cytotoxicity against tumor cell 
lines and primary MM cells In vitro

In vitro (25)

PBMC 1,036 (total cells) 
(19 days)

~30% NK
~40% T cells

Upregulated: NKG2A, LILR-B1, NKG2D, 
NKp30, NKp44, and NKp46

In vitro cytotoxicity increases during culture Clinical (66)

PBMC in a bioreactor, 
flasks, and plates

77—bioreactor
530—bags
770—flasks (20 days)

38%—bioreactor
31%—bags
44%—flasks

Bioreactor compared to flasks: higher 
expression of CD11b, NKG2D, and NKp44

Bioreactor compared to flasks: higher 
cytotoxicity

In vitro (67)

OKT-3  
+ IL-2 + Alemtuzumab

PBMC in plates, flasks, 
and bags

646 (14 days)
1,537 (18 days)

60% NK
37% T cells
<0.1% B cells

Upregulated: 2B4, NKG2D, NKp30, NKp44, 
KIR2DL1, LIR-1, and CD16
Downregulated: CCR7

Increased cytotoxicity
In vitro and in vivo

Clinical (68)

OKT-3  
+ IL-2 + IL-15

PBMC or 
CD56+ + CD56− (1:1) 
in flasks and bioreactor 
(Cellbag)

PBMC: 112 With PBMC: 34% Upregulated: NKp30, NKp44, DNAM-1, 
NKG2D, and CD11a

Increased activity against neuroblastoma 
cell lines in vitro and in vivo

Preclinical 
model

(69)
1:1 Mix: 89 (21 days) With “1:1 Mix”: 92%

aCD16 mAb  
+ OK432 + IL-2

PBMC in flasks and 
bags

637–5,712 (day 21) 79% NK 8.4% T cells 
(day 21)

Upregulated: NKG2D, NKp44, and CD69

Downregulated: CD16 (transient)

Increased cytotoxicity against tumor cell 
lines and primary cancer cells in vitro

In vitro (70)

ADCC activity
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recent data revealed that continuous IL-15 signaling causes  
functional exhaustion of NK cells by decreased fatty acid oxidation, 
resulting in lower cytotoxicity in vitro and decreased tumor control 
in vivo (87). Thus, optimal dosing and timing of IL-15 is critical for 
ex vivo NK cell activation. Purified NK cells expanded using IL-15 
exhibit upregulation of NCRs and CD69 and cytolysis of leukemia 
and primary ALL blasts (51). Enhanced cytotoxicity of IL-15-
stimulated NK cells against leukemia and rhabdomyosarcoma cell 
lines could be attributed to NCRs, DNAM-1 and NKG2D (54). 
Using IL-15 to expand NK cells from CD56-enriched PBMC for 
20 days resulted in a 23-fold expansion of CD3−CD56+ NK cells with 
a final purity of about 98% (63). NK cells generated with the latter 
protocol were transferred to 15 non-small lung cancer patients in a 
phase I clinical trial in two to four doses of 0.2–29 × 106 NK cells/
kg, showing the safety of the approach (63).

iL-21 eNHANCeS NK CeLL eFFeCTOR 
FUNCTiONS

The cytokine IL-21, in combination with IL-2 or IL-15, is utilized 
in some protocols for NK cell stimulation (55, 64). IL-21 belongs 
to the IL-2 family and signals through a heterodimer consisting 
of the common γ-chain and the IL-21 receptor α-chain. Activated 
CD4+ T cells are the main producers of IL-21 and IL-21 affects 
many different cell types expressing the IL-21 receptor, including 
NK cells (88). IL-21 plays a role in the development of NK cells 
from bone marrow progenitors (89), and, in mice, it dampens 
the expansion of NK cells but is required for functional NK cell 
maturation (90, 91). Recently, expansion of “memory-like” 
NK cells has been shown to be IL-21 dependent in the context of 
tuberculosis infection (92). Wendt et al. observed increased pro-
liferation of CD56bright human NK cells (55), but another group 
reported no effect of IL-21 on the proliferation of NK cells from 
healthy human donors and from HIV patients (93). Moreover, 
IL-21 is known to trigger apoptosis, resulting in a shorter lifespan 
of NK  cells in  vitro (90, 94). Thus, the time span NK  cells are 
exposed to IL-21 appears critical (95, 96). Besides its effect on 
NK  cell proliferation, IL-21 enhances the effector functions of 
NK cells, including secretory and cytotoxic functions as well as 
enhanced ADCC responses (93, 97, 98). Culturing CD3-depleted 
PBMC for 13–20 days with IL-21 and IL-15 without additional 
feeder cells yields activated NK cells with a purity of >90%, which 
were applied in a clinical trial with 41 leukemia patients receiving 
infusions of donor-derived NK cells 2–3 weeks after HSCT (64). 
Although the NK  cells expanded weakly under this condition 
(3.7-fold), they possessed potent cytotoxic activity against pri-
mary bone marrow blasts prior to transplantation, and infusions 
with a median dose of 2 × 108 NK cells/kg were well tolerated and 
correlated with a reduction in leukemia progression compared to 
historical controls (64).

iL-12/15/18 iNDUCeD MeMORY  
NK CeLLS

Interleukin-12 was originally discovered as NK cell-stimulating 
factor, inducing proliferation, enhanced cytotoxicity, and 

production of IFN-γ by NK cells when added to PBMC (99, 100).  
IL-12 is produced by DCs, macrophages, and B  cells, and its 
receptor consists of two subunits (α and β), which mediate 
signaling through members of the JAK–STAT family (101). 
IL-2 enhances the response of NK  cells to IL-12 by increasing 
the expression of the IL-12 receptor and STAT4, a relevant fac-
tor for IL-12 signaling (102). Furthermore, it was revealed that 
IL-12-mediated IFN-γ production of NK cells requires priming 
with IL-18, a cytokine also known to enhance IL-15-induced 
NK cell proliferation (103, 104). Due to the synergistic effects, it 
seems reasonable to combine the different cytokines for ex vivo 
stimulation of NK cells. In this context, the combination of IL-12, 
IL-15, and IL-18 raised special interest, as it leads to the so-called 
“cytokine-induced memory-like” (CIML) NK cells in mice and 
humans, which exhibit an increased capacity to produce IFN-γ 
upon re-stimulation at later time points (56, 105). Importantly, 
this memory response is a cell intrinsic effect that is passed on 
to offspring cells and is maintained up to several months (56). 
In mice, the intrinsic ability for mediated IFN-γ production 
coincided with demethylation of the conserved non-coding 
sequence 1 in the IFN-γ locus (106). Furthermore, adoptive 
transfer of CIML NK cells had a clear antitumor activity against 
established melanoma or lymphoma in  vivo, which required 
IL-2 from CD4+ T cells (57, 106). For both, murine and human 
NK cells, IL-12, IL-15, and IL-18 together induce an increased 
expression of CD25, making CIML NK cells responsive to low 
concentrations of IL-2 in vitro and in vivo (57, 58). Thus, there is 
a clear rationale to apply adoptive transfer of ex vivo-generated 
CIML NK cells together with IL-2 injections as a combination 
therapy. Recently, CIML NK  cells together with low dose IL-2 
therapy were evaluated in a first-in-human phase I clinical trial 
with promising results, as clinical response was observed in five 
of nine treated patients (107).

AUTOLOGOUS ACCeSSORY CeLLS AND 
AUTOLOGOUS FeeDeR CeLLS FOR NK 
CeLL eXPANSiON

Although cytokines efficiently activate NK cells and result in cell 
products with advanced effector functions, cytokines alone do 
not allow pronounced ex vivo expansion (Table 1). Consequently, 
in addition to the activation with cytokines, stimuli from autolo-
gous accessory cells can be used to further enhance the expansion 
of NK cells to overcome the hurdle of limited NK cell doses for 
adoptive NK cell therapy (Table 2). Outgrowth of NK cells from 
the whole PBMC fraction is more effective than cultivation of 
pure NK cells, because other cell types provide additional factors 
for NK cell proliferation. CD14+ cells, for instance, enhance the 
ex vivo NK cell proliferation via direct cell contact and soluble 
factors (108, 109). After activation, for instance by concanavalin 
A, T cells also trigger NK cell proliferation (110).

Stimulation of PBMC with IL-2 and the clinically approved 
anti-CD3 antibody OKT-3 leads to a profound outgrowth of 
NK cells (25, 65–67, 111), probably by activation of T cells and 
this is utilized by several clinical protocols for NK cell cultivation. 
Nevertheless, starting the culture from PBMC goes along with 
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extensive coexpansion of unwanted CD3+/CD56− T  cells and 
CD3+/CD56+ NK-like T (NKT) cells, accounting for the majority 
of cells in the final cellular product. Surprisingly, infusion of this 
heterogeneous cell product without removal of potentially allore-
active T cells did not cause side effects, such as GvHD, in a safety 
trial with five cancer patients, evaluating the cultivated cellular 
product in an allogeneic setting (66). This can be explained by 
the fact that T cells may lose their alloreactivity during extended 
ex vivo expansion (112). Thus, low NK cell purities may be less 
critical for long-term cultivated cellular products compared to 
NK cells directly obtained from a donor, but more clinical data 
are required to prove this hypothesis. Of note, the approach also 
allows efficient expansion of functional patient-derived NK cells, 
as shown for B cell chronic lymphocytic leukemia and multiple 
myeloma patients, enabling therapy with autologous NK  cells 
and further circumventing possible safety risks of therapy with 
donor-derived cells (25, 111).

Starting with PBMC enriched for CD56 cells together with the 
corresponding non-CD56 PBMC in a 1:1 mixture favors a 89-fold 
NK cell expansion with a final product consisting of 92% NK cells 
after 21  days (69). Alternatively, adding irradiated autologous 
PBMC to the culture is a strategy to benefit from these “feeder 
cells” for NK  cell activation and expansion but to avoid their 
coexpansion (Table 3). Of note, to make a clear difference, we use 
the term “feeder cells” for all inactivated cells that are added to the 
culture, whereas cocultured non-NK cells that are not inactivated 
are defined as “accessory cells.” Besides its growth inactivating 
function, irradiation can induce upregulation of stress-regulated 
surface molecules on PBMC, such as ULBP1–3, that further trig-
ger NK cell activation, e.g., through NKG2D (113). Still, irradiated 
autologous PBMC induce only weak NK cell proliferation without 
additional activation of the feeder cells (e.g., only 16-fold expan-
sion within 2 weeks) (24). Whereas irradiated autologous PBMC 
previously activated with IL-2, OKT-3 and RetroNectin allow a 
median 4,720-fold NK cell expansion after 3 weeks with a NK cell 
purity of 91% starting from PBMC (114). To obtain a more pure 
final product with 98% NK cells, it is possible to start the culture 
with already CD3-depleted PBMC and add irradiated autologous 
PBMC as feeder cells together with IL-2 and OKT-3 (23). The 
highest purity can be achieved by cell sorting, representing also 
the method of choice to expand defined NK cell subpopulations. 
As demonstrated by Siegler et al., GMP-sorted and highly pure 
single KIR+ NK cells can be expanded 160- to 390-fold in 19 days 
with IL-2, IL-15, OKT-3, and irradiated autologous PBMC (50).

NK CeLL eXPANSiON wiTH ALLOGeNeiC 
FeeDeR CeLLS

Using irradiated allogeneic cells as feeder cells is another option 
to stimulate NK cell expansion ex vivo (118) (Table 4). Compared 
to autologous PBMC, allogeneic PBMC may be even more effi-
cient as feeder cells for NK stimulation. Accordingly, in a study 
testing the expansion of NK cells from patients with advanced 
lymphomas or terminal solid tumors, 300-fold NK expansion 
was obtained with irradiated allogeneic PBMC feeder cells from 
healthy donors, whereas only 169-fold expansion was achieved 
with irradiated autologous PBMC feeder cells from the patients 

(115). Furthermore, whereas the availability of autologous feeder 
cells is limited, as they have to be obtained directly from the 
patient, for allogeneic feeder cells it is possible to utilize estab-
lished cell lines. Cell lines can be grown easily to sufficient num-
bers and different cell lines in fact trigger NK cell proliferation, 
such as HFWT, K562, RPMI 1866, Daudi, KL-1, MM-170, and 
different EBV-transformed lymphoblastoid cell lines (EBV-LCL) 
(99, 119–122).

Culturing PBMC together with the Wilms tumor cell line 
HFWT and IL-2 leads to significant NK cell expansion (124, 145), 
and interestingly under this condition NK  cells not only arise 
from mature CD3−CD56+ NK cells but also from CD3−CD14−C
D19−CD56− NK cell precursors expressing CD122 (146). In 2004, 
early clinical data showed that adoptive transfer of autologous 
NK cells generated by coculture with irradiated HFWT is safe and 
patients with recurrent malignant glioma partially responded to 
the treatment (125).

Another advantage of cell lines is that it is relatively easy to 
genetically modify them and to integrate additional factors for 
NK  cell stimulation. In recent years, modified K562 cells have 
been utilized, such as K562 expressing membrane-bound IL-15 
and 41BBL (K562-mb15-41BBL) (126). While unmodified K562 
only induce a weak NK cell proliferation (2.5-fold NK cell expan-
sion in 1 week), with K562-mb15-41BBL the NK cell number can 
be significantly increased by 20- or 1,000-fold in 1 or 3  weeks 
(126). In addition, stimulation of NK  cells with K562-mb15-
41BBL demonstrated that NK  cells actually have a substantial 
proliferative potential ex vivo, with up to 30 population doublings 
and 5.9 × 104-fold NK cell expansion (147). NK cells expanded 
with K562-mb15-41BBL exhibit enhanced natural cytotoxicity 
against several allogeneic and autologous tumors in  vitro, effi-
ciently mediate ADCC and showed antitumor efficacy in mouse 
xenograft models for the treatment of sarcoma and myeloma  
(128, 148, 149). Of note, in a clinical trial assessing adoptive 
transfer of K562-mb15-41BBL following HSCT, acute GvHD 
occurred in five of nine patients, although the donors were 
completely HLA matched and the doses of injected NK  cells 
and cotransferred T cells were low (1–10 × 105 and ≤2 × 104/kg) 
(131). These observations suggested that the acute GvHD was 
T cell mediated, but NK cells apparently may promote this severe 
side effect indirectly (150). Importantly, another group utilized 
NK cells expanded with a similar K562 variant expressing 41BBL 
and IL-15 in another treatment setting and did not observe GvHD, 
although up to 1 × 108 NK cells/kg were administered (129).

Furthermore, Denman and colleagues revealed that K562 
expressing 41BBL and membrane-bound IL-21 instead of IL-15 
are even more effective for ex vivo expansion of NK  cells, and 
weekly restimulation with this cell line supports a sustained 
NK cell proliferation over several weeks (134). In coculture with 
K562 expressing membrane-bound IL-21 and 41BBL, NK cells 
show an increased telomere length and enhanced activation 
of the STAT-3 signaling pathway, explaining the positive effect 
for sustained expansion of NK cells over long time (134, 151). 
Adoptive transfer of NK  cells expanded with K562 expressing 
membrane-bound IL-21 and 41BBL into tumor-bearing mice 
improved the survival of the animals, indicating a therapeutic 
effect of these NK cells (135).
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TAbLe 3 | Ex vivo cultivation of natural killer (NK) cells with autologous feeder cells.

Protocol features Starting material/culture 
system

NK cell 
expansion 
rate

NK cell 
purity

NK cell phenotype NK cell function Setting Reference

Irr. autologous 
PBMC (depleted 
for CD3−/CD56+ 
cells) + IL-2 + IL-15

PBMC, CD3 depleted, and CD56 
enriched in flasks

16 (14 days) 97% NK

0.2% T cells

Upregulated: NKG2D, DNAM-1, 
NKp30, NKp44, CD158a, and 
CD158e

Efficient degranulation and lysis of K562 In vitro (24)

In vitro

Irr. autologous PBMC 
activated with OK432, 
FN-CH296 and 
OKT-3 + IL-2

PBMC in flasks and bags 4,720 
(21–22 days)

91% NK Strong expression of NKG2D and 
CD16

Elevated cytotoxicity that is maintained for up to 4 weeks 
after infusion to patients

Clinical (114)
~12% NK-like 
T and T

Irr. autologous 
PBMC + OKT-3 + IL-2

PBMC, CD3 depleted, and CD56 
enriched in plates

169 (14 days) 84% NK Upregulated: CD16, CD56, NKG2D, 
NKp30, and NKp44

Increased cytotoxicity against tumor cell lines in vitro In vitro (115)

PBMC, CD3 depleted in flasks 
and bags

278–1,097 
(21–26 days)

91–98% NK Most cells express NKG2D, CD16, 
CD94, NKp46, KIR2DL1, KIR3DL1, 
and KIR2DL2/3

Efficient lysis of tumor cell lines in vitro; persistence in 
patients up to several months; cytotoxic potential is lost 
in vivo, while ability for ADCC is maintained

Clinical (116)

PBMC, CD3 depleted in bags 691 (14 days) 98% NK Upregulated: NKG2C, NKp30, 
NK44, CXCR4, CD25, CD62L, and 
CD69

Increased cytotoxicity against tumor cell lines in vitro; 
antitumor effect and ADCC activity in a leukemia xenograft 
mouse model; up to 4 days persistence in patients

Preclinical 
model

(23)
0.06% T cells

758 (14 days) 98% NK Clinical (117)
0.4% T cells

Irr. autologous 
PBMC (depleted 
for CD3−/CD56+ 
cells) + OKT-3 + IL-2

PBMC, CD3 depleted, and CD56 
enriched in plates and flasks

546 (14 days) 94.9% NK

2.2% T cells

Upregulated: NKG2D, NKp30, 
NKp44, tumor necrosis factor-
related apoptosis-inducing ligand, 
and DNAM-1

Downregulated: NKp80

Increased cytotoxicity against tumor cell lines in vitro In vitro (113)

Irr. autologous 
PBMC + OKT-3  
+ IL-2 ± IL-15

PBMC, CD3 depleted, and CD56 
enriched in plates and bags

117/63 in 
bags (±IL-15)

Bags:  
45% NK

Upregulated: NKG2D, NKp44 High cytotoxicity against K562 and high productivity of 
IFN-γ

In vitro (50)

993 in plates 
(19 days)

0.6% T cells

Good manufacturing practice 
killer cell immunoglobulin-like 
receptor (KIR) sorted NK cells 
in bags

160–390 ~100% NK Single KIR + NK cells Anti-leukemic activity against primary acute myeloid 
leukemia cells in vitro and in vivo

Preclinical 
model

(50)
>0.01% 
T cells
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TAbLe 4 | Ex vivo cultivation of natural killer (NK) cells with allogeneic feeder cells.

Protocol features Starting material/culture 
system

NK cell 
expansion 
rate

NK cell 
purity

NK cell phenotype NK cell function Setting Reference

Irr. allogeneic PBMC activated 
with ConA + IL-2

In vivo IL-2 primed PBMC 
depleted for non-NK cells 
in flasks

1–148 (14 days) 64–98% NK N/A Cytotoxic activity against leukemic  
cell lines

Clinical (123)

Irr. allogeneic PBMC activated 
with ConA, PHA and 
ionomycin + IL-2 + IL-15

PBMC, depleted for CD3, 
CD4, CD19, and CD33 
in bags

80–200 
(15 days)

91% CD56

0.3% CD3 
(day 12)

Upregulated: CD16, CD25 Increased cytotoxicity against tumor  
cell lines in vitro; decreased frequency  
of INF-g producing cells

In vitro (118)

Irr. allogeneic 
PBMC + OKT-3 + IL-2

PBMC, CD3 depleted, and 
CD56 enriched in plates

300 (14 days) 94% NK Upregulated: CD16, CD56, NKG2D, 
NKp30, and NKp44

Increased cytotoxicity against tumor cell  
lines in vitro

In vitro (115)

Irr. HFWT + IL-2 PBMC in flasks 113 (2 weeks) 86% CD56+/
CD16+

N/A Cytotoxic against tumor cell lines in vitro Clinical (124, 125)

Irr. Jurkat/KL-1 + IL-2 PBMC in flasks ~130 (2 weeks) 40–90% NK Upregulated: CD54, CD11a, CD48, CD2, 
CD49d, CD58, NKp30, NKp44, 2B4, 
DNAM-1, NKG2D, CD25, and CD69

Downregulated: CD16

Increased cytotoxicity against tumor cell  
lines in vitro and antitumor activity in vivo

Preclinical 
model

(121)

Irr. K562 expressing 
membrane-bound IL-15 and 
41BBL + IL-2

PBMC in plates 1,089 (3 weeks) “Virtually 
pure”

N/A N/A In vitro (126)

PBMC in bags 23, 152, and 
277 after 7, 14, 
and 21 days

96.8% NK

3.1% T cells  
(day 21)

Marked differences of gene expression 
profile compared to unstimulated or IL-2-
stimulated NK cells

Increased cytotoxicity against tumor cell  
lines in vitro and antitumor activity in vivo

Preclinical 
model

(127)

PBMC 447 (days 
10–14)

88% NK

2.2% T cells  
(day 14)

Upregulated genes for cytolytic activity, 
cytokines, chemokines, activating 
receptors, adhesion molecules, cell cycle 
regulators, and multiple pathways

Increased cytotoxicity against primary MM cells  
in vitro and in vivo; high productivity of IFN-γ

Preclinical 
model

(128)

PBMC in G-Rex, bags 442—G-Rex

227—bags 
(10 days)

70% NK

5–35% 
T cells

Upregulated: NKp30, NKp44, NKG2D, 
CD26, CD70, and CXCR3

Downregulated: CD16, CD62L

Increased cytotoxicity and ADCC against primary  
tumor cells in vitro; robust in vivo proliferation  
post-infusion

Clinical (129, 130)

Irr. K562 expressing 
membrane-bound IL-15 and 
41BBL + IL-15

PBMC, CD3 depleted, and 
CD56 enriched

1,000 (21 days) N/A Upregulated: CD56, NKG2D, tumor 
necrosis factor-related apoptosis-inducing 
ligand (TRAIL), CD158a, CD158b, and 
CD158e1

Increased cytotoxicity in vitro independent  
of killer cell immunoglobulin-like receptor mismatch;  
NK infusion contributed to acute graft-versus- 
host disease in first clinical trial

Clinical (131, 132)

Plasma membrane particles 
of K562 expressing IL-15 and 
41BBL + IL-2

PBMC in plates and flasks 1,265 (17 days) 86% 
NK cells

9% T cells

2% NK- 
like T

Upregulated: NKp30, NKp44, NKp46, 
NKG2D, 2B4, NKG2A, TRAIL, and Fas 
ligand (FasL)

Downregulated: CD16

Increased cytotoxicity against leukemic cell lines  
and primary acute myeloid leukemia (AML)  
cells in vitro

In vitro (133)

Irr. K562 expressing 
membrane-bound IL-21, 
41BBL, CD64, CD86, and 
CD19 + IL-2

PBMC in flasks 4.8 × 104 
(21 days)

21.7% 
T cells

High expression of natural cytotoxicity 
receptors, CD16, and NKG2D

Cytotoxic against tumor cell lines in vitro;  
capable of ADCC; increased telomere length

In vitro (134)

2,363  
(14 days)

83% NK Upregulated: DNAM-1, NKG2D, CD16, 
and CD56

Cytotoxic and capable of ADCC against  
neuroblastoma cell lines in vitro and in vivo

Preclinical 
model

(135)
9.1% T cells

(Continued)
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Protocol features Starting material/culture 
system

NK cell 
expansion 
rate

NK cell 
purity

NK cell phenotype NK cell function Setting Reference

Plasma membrane particles 
of K562 expressing 
membrane-bound IL-21 and 
41BBL + IL-2

PBMC 825 (14 days)

>105 (28 days)

>90% NK 
(day 14)

N/A Increased cytotoxicity against leukemic  
cell lines and primary AML cells in vitro;  
enhanced proliferation in vivo

Preclinical 
model

(136)

Irr. allogeneic PBMC; irr. EBV 
transformed lymphoblastoid 
cell lines (EBV-LCL) (LAZ 388 
cells) + PHA + IL-2

PBMC depleted for CD3 
and monocytes in bags 
and plates

~43 
(31–21 days)

90% NK
<5% T cells

N/A Increased cytotoxicity against tumor  
cell lines in vitro

Clinical (137, 138)

Irr. EBV-LCL (TM-LCL) + IL-2 PBMC, CD3 depleted, and 
CD56 enriched in bags

800–1,000 
(2 weeks)

98% NK Upregulated: TRAIL, FasL, NKG2D, 
NKp30, NKp44, NKp46, CD48, CD25, 
LTB, MX1, and BAX

Increased cytotoxicity against tumor  
cell lines in vitro

In vitro (139, 140)

Irr. EBV-LCL (SMI-LCL) + IL-2 PBMC, CD3 depleted, and 
CD56 enriched in bags

3,637 
(24–27 days)

99.7% NK Clinical (141)

PBMC, CD3 depleted, 
and CD56 enriched in 
CliniMACS Prodigy

850 (14 days) >99% NK Upregulated: TRAIL, FasL, NKG2D, 
NKp30, NKp44, and DNAM-1

Increased cytotoxicity and ADCC  
against tumor cell lines in vitro

In vitro (142)

Irr. EBV-LCL 
(SMI-LCL) + IL-2 + IL-21

PBMC depleted for non-
NK cells (research kit) in 
plates and flasks

2,900 (14 days)
2.7 × 1011 
(46 days)

>99% NK Upregulated: TRAIL, NKG2D, and 
DNAM-1

Cytotoxic against tumor cell lines in vitro  
and in vivo; enhanced and  
sustained production of IFN-γ and TNF-α

Preclinical 
model

(96)

Lysate of CTV-1 PBMC, CD3 depleted, and 
CD56 enriched

N/A (overnight) 97–98% NK Upregulated: CD69 Cytotoxic against NK-resistant leukemia  
cell lines and primary tumors in vitro

Clinical (143, 144)
Downregulated: CD16

TAbLe 4 | Continued
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The stimulatory effect of EBV-LCL on NK cell proliferation 
was discovered more than 30 years ago (152). In 1994, an early 
clinical trial already evaluated the adoptive transfer of autologous 
NK cells expanded with the LAZ 388 cell line to treat 10 patients 
with metastatic renal cell adenocarcinoma (137). More recently, 
the cell lines TM-LCL and SMI-LCL were reported for NK cell 
expansion, allowing around 800-fold expansion of highly pure 
NK cells within 2 weeks (139–142). NK cells generated with these 
EBV-LCL feeder cells are currently applied in a study testing them 
for adoptive transfer in an autologous setting with intended doses 
up to 1 × 109 NK cells/kg (141). Recently, it was reported that 
repeated stimulation with SMI-LCL in IL-2-containing medium 
and adding IL-21 only at start of cultivation enables 1011-fold 
NK cell expansion after 6 weeks, to our knowledge representing 
the most efficient protocol to expand NK  cells at the moment 
(96). NK cells generated with the latter method are highly cyto-
toxic in vitro, show a sustained high productivity of IFN-γ and 
TNF-α, similar to CIML NK cells, and they efficiently controlled 
melanoma in a xenograft mouse model (96).

Although feeder cells, and allogeneic feeder cell lines in 
particular, make it possible to generate substantial numbers of 
NK cells for adoptive therapy, from a regulatory point of view this 
strategy has drawbacks as feeder cell lines must be qualified as 
safe for human use. The cell line qualification of modified K562 
cells, for instance, includes costly viral testing and assays to prove 
absence of bacterial and Mycoplasma contamination (153). In this 
context, lysates from cell lines containing the NK cell-stimulating 
factors could be an alternative to the intact feeder cells to minimize 
regulatory concerns. It was demonstrated that short cultivation of 
NK cells with lysate of the leukemia cell line CTV-1 primes NK cells 
to specifically lyse cell lines that are resistant to resting NK cells 
(143). Interestingly, the priming effect of CTV-1 on NK cells is KIR 
independent and does not require supplementation of cytokines, 
such as IL-2 or IL-15, making this an unique approach for NK cell 
activation (154). NK cells primed with CTV-1 were evaluated in 
the first UK clinical trial of a cell therapy regulated as a medicine, 
with an anti-leukemia effect in four of seven treated patients and no 
evidence of NK cell infusion-related toxicities (144). Another step 
forward from a regulatory standpoint could be to add only specific 
fragments of feeder cells to the culture that are responsible for the 
desired NK cell activation, instead of using intact feeder cells or 
their lysates. Of note, NK cells can be expanded ex vivo with IL-2 
and plasma membrane particles prepared from K562-expressing 
membrane-bound IL-15 and 41BBL with a rate of expansion that 
is comparable to stimulation with intact feeder cells and far bet-
ter than stimulation with soluble IL-15, 41BBL, and IL-2 (133). 
Plasma membrane particles from K562 expressing membrane-
bound IL-21 and 41BBL work for ex vivo NK cell expansion as well  
and may be an option for in vivo NK cell expansion, as demon-
strated in a first proof of concept using a mouse model (136).

TeCHNiCAL ASPeCTS OF NK CeLL 
eXPANSiON

In general, one encounters technical challenges and opportunities 
when manufacturing NK cells as medicinal products, as reviewed 
recently (155). In this section, we focus on technical options for 

NK cell culture, ranging from simple cell culture plates for small 
scale experiments to highly standardized and automated systems 
for clinical scale. The selection of the adequate culture system is 
based on the intended application of the cells. Most preclinical 
experimental studies grow NK cells in cell culture plates or tissue 
culture (T) flasks. These are commonly used and very convenient 
to test and compare different culture additives in parallel, e.g., 
different cytokine concentrations. However, for clinical applica-
tions in large scale, cultivation in plates and flasks is rather inap-
propriate for different reasons. First, due to the small volume of 
T flasks, numerous T flasks have to be handled at the same time, 
with for instance 51 T flasks for the treatment of a single patient 
(116). In addition, T flasks have to be opened from time to time 
for medium exchange or harvesting of cells, bearing the risk of 
contaminating the cellular product. Although the likelihood of 
contamination for each T flask is reduced to a minimum by sterile 
workflows in safety cabinets, the remaining risk potentates by the 
number of flasks.

To overcome the drawbacks of small cell culture vessels, clini-
cal NK cell cultivation is often done in cell culture bags, which 
make it possible to culture high volumes in a closed system, 
as all required steps can be done by sterile welding of tubing 
connections for the transfer of media, harvesting of cells, etc. 
Unfortunately, different reports describe that the NK cell expan-
sion performance is reduced after transition of a protocol from 
T flasks to larger scale in cell culture bags (50, 67). In addition, 
bag systems still require several labor-intensive interventions 
during the culture, especially when different cultures are set up 
in parallel.

The G-Rex vessel is another system avoiding frequent process-
ing steps for exchange of medium during the culture. In contrast 
to normal cell culture flasks, the bottom of the G-Rex is highly gas 
permeable, ensuring optimal CO2 exchange and O2 supply for the 
cells. Thus, by its design, G-Rex flasks can be filled directly with a 
high level of cell culture medium and exchange of medium is not 
necessary for long time. For NK cell culture, G-Rex were used for 
example for 10 days of culture without any cell manipulation or 
feeding, and resulted in higher fold expansion of NK cells com-
pared to cell culture bags (130). Unfortunately, although G-Rex 
are scalable in general, multiple G-Rex flasks are still required to 
achieve high cell numbers for clinical trials, which can be cum-
bersome and costly, and G-Rex flasks are still an open system and 
may require adaption to a closed system (156).

Automated systems combine the need for reduced interven-
tions during the culture with a closed system. Automation of the 
cell manufacturing ensures constant product quality without the 
need for highly skilled experts, is finally cost saving, and may 
be required for cellular therapy to become available beyond 
specialized academic centers (157). Although early integration of 
automation is associated with higher capital costs in the develop-
ment phase, it allows a smooth transition at later stages of clinical 
development (158). A first feasibility study of automated NK cell 
cultivation with a stirred bioreactor was already published in 
1996, showing advantages of the bioreactor culture over manu-
ally handled controls (159). More recently, different investigators 
report automated NK cell expansion procedures with a rocking 
motion bioreactor (67, 69, 156, 160), yielding 2–10 × 109 NK cells 
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under GMP-compliant conditions. However, the latter system 
still needs preceding manual cultivation, because relatively high 
cell numbers are required as inoculum for the automated culture  
(67, 69, 156, 160). Alternatively, fully automated NK cell expan-
sion with an automated cell processing device can be performed 
for clinical use, with as little as 106 NK  cells being sufficient 
to initiate the automated culture that can yield up to 2.7 × 109 
NK cells after stimulation with clinical grade feeder cells (142). Of 
note, in addition to the culture process, the cell processing device 
is designed for GMP-compliant cell separation, concentration, 
and washing applications, so that combined NK cell purification, 
cultivation, and final formulation of the cellular product is pos-
sible fully automated (161). Thus, the whole processing, from the 
starting material, such as a leukapheresis product, to the finally 
expanded NK cells, readily prepared for infusion, can be covered 
by a single instrument.

Centralized processing of NK cell products probably will be 
carried out mainly in specialized centers for manufacturing of 
cellular products. Consequently, after ex vivo cultivation, storage 
of the NK cell product and shipment to the location of use will 
be needed. Compared to naive NK cells, IL-2-activated NK cells 
are less sensitive to freezing, as they show higher recovery and 
viability after thawing (26). Still, different groups state that cryo-
preservation of cultivated NK cells goes along with a drop in cell 
viability and cytotoxicity, whereas the latter can be restored by a 
short re-stimulation, e.g., by a short resting in IL-2-containing 
medium (139, 156). Poor survival of the NK cells can be an issue 
during further in vitro culture post thawing, so that shipping of 
freshly formulated cells for direct infusion may be advantageous 
(129). Interestingly, some groups recently claim that freezing 
and thawing does not influence the cytotoxicity or the prolifera-
tive ability of cultivated NK cells in their hands (24, 68). These 
divergent observations possibly result from different cultivation 
methods and different protocols for freezing and thawing, which 
should be investigated further. Without freezing, transport of 
the readily prepared cells in an appropriate time frame is chal-
lenging, and any delay during the shipment affects the quality of 
the cellular product with critical consequences for the patient. 
Alternatively, automated and closed systems for cell processing 
open the way for scale out strategies and de-centralized NK cell 
manufacturing directly at the location of intended use, avoiding 
the freezing and shipment process (142). But, although de-cen-
tralized manufacturing in the clinics seems promising, cellular 
therapeutics are very complex and still in early development, so 
that manufacturing by well-trained specialists in specific facilities 
is reasonable at that state.

ReGULATORY ASPeCTS OF NK CeLL 
CULTivATiON FOR CLiNiCAL USe

Apart from technical difficulties, one has to consider regulatory 
aspects for the use of ex vivo-generated NK cells with regulations 
varying in time and geographical policies (153). In Europe, 
for instance, cytokine-activated and -expanded NK  cells are 
currently classified as advanced therapy medicinal products 
and will be regulated accordingly either centralized or under 
the hospital exemption by the member states [Regulation (EC) 

No 1394/2007; Directive 2001/83/EC and Regulation (EC)  
No 726/2004]. Quality aspects related to somatic cell therapy 
medicinal product as defined in guidelines (CPMP/BWP/3088/ 
99; EMEA/CHMP/410869/2006; Ph. Eur. 0784: Ph. Eur. 5.14) will 
apply to the identity, potency, and activity. The establishment of 
correspondingly adequate in process and quality controls as well 
as of process target values and product specifications will have  
to take into account the variability of the primary effector cell as 
the starting material (162).

CONCLUSiON AND OUTLOOK

Comparing different protocols for NK cell cultivation in detail is 
challenging as these are extremely heterogeneous. The duration 
of ex vivo NK cell cultivation ranges from a few hours for short 
NK cell activation up to several weeks for long-term expansion, 
different starting materials are in use with varying NK cell purities, 
different cytokines are combined at different doses, and NK cells 
often are cocultured with different feeder cells at different NK-to-
feeder ratios. Nevertheless, overall differently ex vivo expanded 
NK cells exhibit some common characteristics.

In general, ex vivo cultivated NK cells show an increased cyto-
toxicity and may become even responsive against tumor targets 
previously appearing resistant to NK cell lysis. This explains the 
use of IL-2 or IL-15 in virtually every protocol, as it is known 
since a long time that both cytokines amplify NK  cell activity  
(81, 163). However, upon NK cell activation with different stimuli, 
including IL-2 and IL-15, downregulation of CD16 surface 
levels occurs by metalloproteases-mediated shedding of CD16 
(164–166). The Fc receptor CD16 is crucial for NK cells to per-
form ADCC and would be of particular importance for potential 
combination therapies using NK cells together with therapeutic 
antibodies. Of note, although reduced levels of CD16 on NK cells 
are observed for several NK cell cultivation protocols the NK cells 
still mediate ADCC (70, 129, 142). Nevertheless, inhibition of the 
relevant metalloproteases to maintain CD16 on NK cells could 
be an option to further increase the ADCC function of ex vivo 
activated NK cells (164, 167).

Another clinically highly relevant aspect is the tumor-induced 
immunosuppression as important challenge for all cell therapeu-
tic strategies. Remarkably, it ruled out from most preclinical and 
clinical NK cell studies that NK cells may gain the capability to 
overcome tumor immunosuppression. Different research groups 
have reported signs of NK cell suppression in cancer patients such 
as a lower expression of NK cell receptors, e.g., NCRs, NKG2D, 
DNAM-1, and 2B4 (22, 25, 168–170), the shedding of tumor cell 
ligands, such as NKp30 and NKG2D (171–174), or the release 
of blocking NKG2D ligands, such as MICA and ULBP3, via 
tumor-derived exosomes (175, 176). Notably, ex vivo cultivation 
of patient-derived NK cells is often possible with same efficacy 
as for donor-derived NK cells (25, 111) and can normalize the 
NK  cell phenotype and activation (25). Additionally, elevated 
levels of NKG2D on ex vivo-activated NK  cells can scavenge 
shed NKG2D ligands and counter their inhibitory effect (177). 
Furthermore, the high cytotoxicity of ex vivo expanded NK cells 
has been shown to be independent of KIR inhibition for some 
protocols (107, 132).
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In comparison to other cell therapeutic approaches using,  
e.g., T cells, donor-derived allogeneic NK cells mediate GVL with-
out an elevated risk for GVHD or even with a GVHD-reducing 
effect, as reported in mice and men (74, 75, 77, 78). However, con-
tradictory results regarding GVHD induction have been reported 
in clinical trials assessing adoptive transfer of NK cells expanded 
with K562 feeder cell variants expressing 41BBL and IL-15 (129, 
131). These reports show that there are still open questions that 
have to be unraveled to better understand the complex role of 
NK cells and their specific subsets in the bidirectional regulation 
of GVL and GVHD.

In conclusion, many different protocols are in use to expand 
NK cells in vitro, each with its specific advantages and disadvan-
tages in regard of cell numbers, function, and handling efforts. 
The data summarized in this review underline the complexity 
related to the design of an optimal NK cell therapeutic protocol 
that should be not only reliable and safe in use but also highly 
efficient in targeting different forms of malignancies. With this 
in mind, additional studies need to be envisioned that not only 
further address ex vivo NK  cell purification, expansion, and 
activation strategies but also the final clinical setting including 
pre-conditioning, dosing, and timing of the NK cell application. 
Efforts for harmonization of protocols at the European and 
worldwide level should be undertaken to ensure highest quality 

and efficacy of the NK cell product for clinical application. Finally, 
with regard to the possible tumor-mediated immunosuppression, 
therapeutic concepts have to be developed that either directly 
strengthen NK cells to deal with the hostile tumor environment 
and/or specifically counteract tumor-induced immunosuppres-
sive mechanisms.
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In Vitro culture with interleukin-15 
leads to expression of activating 
receptors and recovery of natural 
Killer cell Function in acute Myeloid 
leukemia Patients
Beatriz Sanchez-Correa1*, Juan M. Bergua2, Alejandra Pera3,4, Carmen Campos3,  
Maria Jose Arcos2, Helena Bañas2, Esther Duran5, Rafael Solana1,3 and  
Raquel Tarazona1

1 Immunology Unit, University of Extremadura, Cáceres, Spain, 2 Department of Haematology, Hospital San Pedro de 
Alcantara, Cáceres, Spain, 3 Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University 
Hospital, University of Cordoba, Red Espanola de Investigacion en Patologia Infecciosa (REIPI), Córdoba, Spain, 4 Brighton 
and Sussex Medical School, University of Sussex, Brighton, United Kingdom, 5 Histology and Pathology Unit, Faculty of 
Veterinary, University of Extremadura, Cáceres, Spain

Despite recent progress in the therapeutic approach of malignant hemopathies, their 
prognoses remain frequently poor. Immunotherapy could open a new window of great 
interest in this setting. Natural killer (NK) cells constitute an important area of research 
for hematologic malignancies, because this subpopulation is able to kill target cells 
spontaneously without previous sensitization, representing a novel tool in the treatment 
of them. Abnormal NK cytolytic function is observed in several hematological malignan-
cies, including acute myeloid leukemia (AML) and myelodysplastic syndromes. Several 
mechanisms are involved in this abnormal function, such as decreased expression of 
activating receptors, increased expression of inhibitory receptors or defective expression 
of NK cell ligands on target cells. New immunotherapies are focused in identifying factors 
that could increase the expression of these activating receptors, to counteract inhibitory 
receptors expression, and therefore, to improve the NK cell cytotoxic capacities against 
tumor cells. In this work, we analyze the effect of interleukin (IL)-15 on the expression 
of NK cell-activating receptors that play a crucial role in the lysis of blasts from AML 
patients. Our results showed that IL-15 increased the surface expression of NKp30 on 
NK cells from healthy donors and AML patients with the consequent improvement of 
NK cell cytotoxicity. Besides, the upregulation of NKp30 induced by IL-15 is associated 
with an improvement of NK-mediated myeloid dendritic cells (DCs) maturation. NK cells 
cultured with IL-15 showed an upregulation of NKp30, which is associated with an 
increase anti-tumor activity and with an improved maturation of immature DCs. In our 
in  vitro model, IL-15 exerted a great activating stimulus that could be used as novel 
immunotherapy in AML patients.

Keywords: natural killer cell, acute myeloid leukemia, interleukin-15, nKp30, dendritic cells, natural killer cell 
degranulation
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inTrODUcTiOn

Natural killer (NK) cells constitutively possess lytic machinery 
and are able to spontaneously lyse virally infected or malignant 
cells without any prior sensitization to antigen. Their function is 
tightly controlled through a balance of signals from activating 
and inhibitory receptors, by cytokines and chemokines (1–3), as 
well as by cross talk with other immune cells, such as dendritic 
cells (DCs) (4), effector CD4+ T cells (5), and regulatory T cells 
(Tregs) (6, 7).

There are several major histocompatibility complex (MHC) 
class I-specific inhibitory receptors with different molecular 
structures and specificities for different alleles of human 
leukocyte antigen (HLA) class I molecules. These receptors 
act as negative regulators of NK cytotoxicity ensuring that 
normal autologous cells are preserved (4, 8, 9). The two main 
groups of inhibitory receptors are the killer Ig-like receptors 
(KIR) (8), which recognize polymorphic determinants of 
HLA-A, -B, or -C molecules and the heterodimeric receptors 
CD94-NKG2A/B, which recognize peptides derived from the 
leader sequences of different HLA class I molecules presented 
by the non-classical MHC class I molecule HLA-E (10–13). 
Normal autologous cells that express HLA class I molecules 
are protected from NK-mediated attack, but cells that have 
reduced expression because of malignant transformation 
become susceptible to NK cell attack. Loss or downregulation 
of a single HLA-I allele, a relatively frequent event in cancer, 
can be sufficient to make tumor cells susceptible to NK  cell 
cytotoxicity (8, 9).

In the absence of inhibitory signals, NK  cell cytotoxicity 
requires signaling through activating receptors upon interaction 
with their ligands on target cells. An ample set of activating recep-
tors have been described including, among others, members of 
the C lectin-like family as NKG2D and members of the immu-
noglobulin superfamily as natural cytotoxicity receptors (NCRs) 
and DNAM-1 (also known as CD226) (4, 8, 9, 14). NKG2D 
ligands are a group of MHC class I-like molecules, the expression 
of which is induced by cellular stress. NKG2D ligands included 
MHC-I polypeptide-related sequences A (MICA) and B (MICB), 
and UL16-binding proteins (ULBP1–6) (15, 16). DNAM-1 
specifically recognizes CD155 and CD112, two members of the 
nectin family, that are also expressed on different types of tumors 
(17–20).

Natural cytotoxicity receptors are major activating receptors 
involved in tumor cell detection and lysis. NCRs include NKp46 
(21–23), NKp30 (24, 25), and NKp44 (26), which mediate cell 
lysis of many cancer cells. NKp30 and NKp46 are expressed both 
in resting and activated NK cells, whereas NKp44 expression is 
restricted to activated NK  cells (4, 9, 14, 21, 27). NCR ligands 
include pathogen-associated as well as stress-related molecules. 
The identity of NCR ligands on tumors remains in part elusive. 
The nuclear factor HLA-B-associated transcript 3 (BAT3) and 
B7H6 have been described as NKp30 ligands (24, 28, 29). NKp46 
and NKp44 were shown to interact with the viral hemaggluti-
nin protein (24, 30–32). A truncated isoform of mixed lineage 
leukemia 5 is an activating ligand for NKp44 (33). By contrast, 
proliferating cell nuclear antigen is an inhibitory tumor ligand for 

NKp44 (34). No tumor ligands for NKp46 have been identified 
so far.

We have recently demonstrated that acute myeloid leukemia 
(AML) patients have depressed NK  cell function as well as 
altered cytokine production (35–37). NK cell-mediated rejection 
of leukemic blasts may be limited by the reduced expression 
of NK  cell-activating receptors such as DNAM-1, NKp46, and 
NKp30 observed in AML patients (36, 37). Besides, NKp46 
downregulation has been associated with decreased survival in 
AML patients (38).

In the last years, several cytokines have been extensively 
studied as potential therapeutic agents to manipulate the immune 
response against malignant cells due to their capacity of stimulate 
cell growth and survival as well as increase the cytotoxicity or 
cytokine production to boost immune reactivity (39–42). So 
far, only a small number of cytokines have reached clinical use 
probably due to the complexity of cytokine network. Among 
these cytokines tested in different in  vitro and in  vivo settings, 
interleukin (IL)-2 and IL-15 should be highlighted (40, 41, 43, 
44). IL-2, initially described as a T cell growth factor, promotes 
CD8+ T cell and NK cell cytolytic activity and modulates T cell 
differentiation in response to antigen. Moreover, IL-2 is essential 
for the development and maintenance of Tregs that may repre-
sent a limitation for its use in patients with cancer. The major 
disadvantage of IL-2 is its toxicity, including severe capillary leak 
syndrome that can accompany this treatment (43). Recently, IL-15 
has emerged as a potential immunotherapeutic candidate for the 
treatment of cancer. IL-2 and IL-15 are structurally related and 
have overlapping functions including their role in T cell prolifera-
tion, promotion of cytotoxic T cell differentiation, production of 
immunoglobulin by B  cells, and generation, proliferation, and 
activation of NK cells. In contrast to IL-2, IL-15 is not required 
for the maintenance of Tregs and, based on preclinical studies, 
IL-15 causes less vascular capillary leak (42). These factors sup-
port the role of IL-15 for cancer immunotherapy, boosting both 
innate and adaptive immunity against tumors (45). However, so 
far, few clinical trials have analyzed the security and efficacy of 
IL-15 in cancer patients. Thus, a Phase I study (NCT01572493) 
assessing the safety and efficacy of IL-15 in adults with advanced 
malignancies has been suspended for undisclosed reasons. IL-15 
is being tested as an immunological adjuvant to haploidentical 
NK cell transfer in AML patients (NCT02395822).

Due to the ability of NK cells to spontaneously kill tumor cells, 
this population represents an attractive tool for cancer immuno-
therapy (46–48). However, NK  cell defective function in AML 
patients may limit tumor control. The possibility of manipulating 
NK cells by cytokines for therapeutic purposes open new area of 
research in cancer.

The biological effects of IL-15 on NK cells will depend on the 
direct effect on NK cells as well as by indirect consequences medi-
ated by other cells stimulated by IL-15. Thus, in order to analyze 
the whole figure we have used peripheral blood mononuclear cell 
(PBMC) cultures stimulated with IL-15.

In this study, we aimed to assess (i) whether IL-15 induces 
and expansion of NK cells from healthy donors (HDs) and AML 
patients and its effect on the expression of activating receptors 
after short-term culture in vitro; (ii) whether IL-15 increases the 
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cytotoxic activity of NK cells; and (iii) whether the maturation 
of immature DCs (iDCs) is enhanced by culture with IL-15-
stimulated PBMCs.

MaTerials anD MeThODs

Patients and hDs
Peripheral blood mononuclear cells were obtained from 14 
newly diagnosed AML patients (ranged 18–89  years) at the 
Hospital San Pedro de Alcántara (Cáceres, Spain) prior to any 
treatment and from 20 HD volunteers (ranged 20–60 years). The 
study was approved by the local Ethics Committee and samples 
collected after written informed consent in accordance with the 
Declaration of Helsinki. Diagnosis was established by cytological 
criteria based on the French–American–British classification.

The collected blood was drawn into heparinized tubes 
and processed using Ficoll-Hypaque gradients. PBMCs were 
recovered and cell count and viability analysis were performed. 
PBMCs were immediately used for experiments. For co-culture 
experiments, we selected those patients with lower percentage of 
leukemic blasts and to eliminate leukemic blasts an adherence 
step was included in the protocol prior to co-culture with DCs.

Plasma was obtained after centrifugation and stored at −80°C 
for measurement of cytokine levels. Plasma samples from HDs 
and from AML patients used in the study had not been previously 
thawed.

Monoclonal antibodies (mabs)
Natural killer cell percentage and phenotype were evaluated in 
PBMC obtained from AML patients and HDs. The following 
anti-human mAbs were used for flow cytometry: CD56-FITC 
(NCAM16.2), CD56-PE (MY31), CD14-PE (MØP9), CD3-
PerCP (SK7) all from BD Biosciences (San Jose, CA, USA); 
CD56-PECy7 (B159), CD16-APC Cy7 (3G8), NKG2D-PE 
(1D11), CD226-PE (DX11), CD107a-FITC (H4A3), CD107b-
FITC (H4B4), CD86-FITC (2331(FUN-1)), CD1a-FITC (HI149) 
all from BD Pharmingen (San Diego, CA, USA); and NKp30-PE 
(AF29-4D12), NKp30-APC (AF29-4D12), NKp46-PE (9E2), 
NKp46-APC (9E2), CD3-VioBlue (BW264/56) all from Miltenyi 
Biotec (Bergisch Gladbach, Germany). Prior to use, mAbs were 
titrated to establish optimal staining dilutions. Isotype-matched 
immunoglobulins were included in all experiments as negative 
controls. Mean relative fluorescence intensity was calculated by 
dividing the mean fluorescent intensity (MFI) of the relevant 
mAb by the MFI of its isotype control.

cell culture and Flow cytometry analyses 
of nK cells
Peripheral blood mononuclear cells were cultured in complete 
medium (RPMI-1640 supplemented with 10% FCS, l-glutamine, 
sodium pyruvate, non-essential amino acids and penicillin/strep-
tomycin, all from BioWhittaker, Verviers, Belgium) and were 
stimulated with 100  ng/mL of recombinant human (rh)IL-15 
from Peprotech (Rocky Hill, NJ, USA) or 750  U/mL of rhIL-2 
(National Cancer Institute, Frederick, MD, USA) (49). Cells 
were harvested after 48 h, and the frequency and NK receptor 

repertoire were assessed by multi-parameter flow cytometry 
using a FACScan cytometer and the CellQuest software (BD 
Biosciences) or MACsQuant cytometer and the MACSQuantify 
software (Miltenyi Biotec). NK cells were defined as CD3−CD56+ 
cells within the lymphocyte gate and the expression of activating 
receptors analyzed was referred to this population. Analysis of 
NK cells at various time points after cytokine activation was per-
formed in order to select the best timing for functional analysis 
(data not shown).

analysis of il-15 in Plasma
Interleukin-15 concentrations in the plasma of patients and 
healthy controls were determined by enzyme-linked immu-
nosorbent assay (ELISA) using a Human IL-15 ELISA Ready-
SET-Go! Kit (eBioscience) according to the manufacturer’s 
instructions. The minimum detectable levels were 8 pg/mL, and 
the standard curve range was 8–1,000 pg/mL.

Two independent sets of experiments were performed. No sig-
nificant variations were observed among the experiments. Plate 
was read in an Infinite® 200 (Tecan, Switzerland) plate reader.

nK cell Degranulation assay
Cytokine-stimulated NK  cells were tested in a degranulation 
assay against the NK cell-susceptible target cell line K562. The 
analysis of NK cell degranulation was performed by measuring 
the expression of CD107a/b after activation with target cells 
at ratio 1:1 in the presence of BD GolgiStop (BD Biosciences) 
and a mixture of FITC-labeled anti-CD107a and anti-CD107b 
mAbs. After 4 h, cells were stained with PE-labeled anti-CD56 
and PercP-labeled anti-CD3 from BD Biosciences and analyzed 
by flow cytometry by measuring the frequency of CD107a/b 
expression on CD3−CD56+ NK cells. Spontaneous basal NK cell 
degranulation was always below 10%. Background expression of 
CD107a/b (CD107a+ NK cells in medium only) was subtracted 
from expression with target cells.

generation of Dcs
Monocyte-derived iDCs were obtained by adherence of mono-
cytes to plastic. Thus, PBMCs from HDs were resuspended at 
5 × 106 cells/mL in complete medium and allowed to adhere for 
2 h at 37°C in culture flasks. Then, the non-adherent cells were 
removed and the adherent cells, predominantly monocytes, were 
cultivated in complete medium supplemented with 50 ng/mL of 
recombinant human granulocyte-macrophage colony-stimulat-
ing factor (Peprotech) and 20 ng/mL of rhIL-4 (Peprotech). After 
6 days, the percentage of iDCs was analyzed by flow cytometry. 
iDCs were defined as CD14−CD1a+CD83−CD86− cells.

To generate mDCs, iDCs were plated either in the absence or 
in the presence of allogeneic PBMCs cells stimulated or not with 
rhIL15 or rhIL-2 at ratio 1:5. After 2 days, DCs were assessed for 
the expression of CD86. As positive control, optimal DC matura-
tion was induced by Escherichia coli lipopolysaccharide (LPS) 
1 µg/mL (serotype 055:B5, Sigma-Aldrich, St Louis, MO, USA).

statistical analysis
Statistical analysis was performed using SPSS Statistics version 19. 
Because the cell population counts were generally not normally 
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FigUre 1 | Effect of interleukin (IL)-15 and IL-2 on natural killer (NK) cell expansion in vitro. The increase in the percentage of NK cells after incubation for 48 h with 
cytokines was analyzed by flow cytometry in healthy donors (a,B) and acute myeloid leukemia (AML) patients (c,D) in the presence of IL-15 (a,c) or IL-2 (B,D).
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distributed, we report medians and ranges for parameter values. 
Non-parametric statistical methods were used to analyze the data. 
Paired differences between NK cells from the same patient with or 
without stimulation by cytokines were tested using the Wilcoxon 
signed-rank test. For comparison of NK cells between HDs and 
AML patients, the exact Wilcoxon rank sum test was used.

resUlTs

effect of il-2 and il-15 on nK cell 
expansion In Vitro
Natural killer cells were evaluated in HDs and AML patients 
at the time of diagnosis and prior to any treatment. In order 
to study the modulatory effect of IL-2 and IL-15 on NK  cell 
proliferation, we cultured PBMCs from HDs and AML patients 
in presence of these cytokines. Our results showed that IL-15 
but not IL-2 induced a significant increase (p  =  0.016) in 
the percentage of NK  cells from HDs after 48  h of culture 
(Figures  1A,B). By contrast, none of the cytokines had an 
effect on the percentage of NK  cells from AML patients 
(Figures 1C,D).

Upregulation of nK cell-activating 
receptors by il-2 and il-15 In Vitro
In order to assess the effect of IL-2 and IL-15 on the NK cell recep-
tor expression, we cultured PBMCs from HDs and AML patients 
in presence of these cytokines.

In HDs (Figure 2, left panels), we observed a statistically sig-
nificant upregulation of the NK cell-activating receptors NKp30 
and NKG2D after culture of PBMCs with IL-2 (p = 0.004 and 
p  =  0.013, respectively) (Figures  2A,D). IL-15 also induced a 
significant increase in the expression of NKp30 on NK cells sur-
face (p = 0.0044) (Figure 2A), but the upregulation of NKG2D 
induced by IL-15 was not statistically significant (p  =  0.08) 
(Figure 2D). No significant changes in the expression of NKp46 
and DNAM-1 were observed (Figures 2B,C).

The analysis of the effect of IL-2 on NK  cells from AML 
patients (Figure  2, right panels) only showed a statistically 
significant upregulation of DNAM-1 expression (p  =  0.046) 
(Figure  2C), without significantly affecting the expression of 
the other receptors considered. By contrast, the incubation with 
IL-15 induced a significant increase of NKp30 and NKG2D 
(p = 0.001 and p = 0.028) (Figures 2A,D). A representative exam-
ple of the effect of IL-15 is shown in Figure S1 in Supplementary  
Material.

cytotoxic activity of cytokine-stimulated 
PBMcs
Once we observed the effect of the different cytokines on 
NK  cell receptor expression, we analyzed if these phenotypes 
correlated with the cytotoxic capacity of NK cells against K562, 
a susceptible target cell line. A representative example is shown 
in Figure 3A. Our results demonstrated that concomitant with 
the upregulation of the activating receptors following 48  h of 
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FigUre 2 | Modulatory effect of interleukin (IL)-15 and IL-2 on natural killer cell activating receptor expression in healthy donors and acute myeloid leukemia 
patients. The expression of NKp30 (a), NKp46 (B), DNAM-1 (c), and NKG2D (D) was analyzed by flow cytometry. NK cell receptor expression was analyzed 
after 48 h of culture with medium alone (control), IL-15, or IL-2. Left panels represent HDs and right panels represent AML patients.  Mean relative fluorescence 
intensity (MRFI) was calculated by dividing the mean fluorescent intensity (MFI) of the relevant monoclonal antibody by the MFI of its isotype control. The lower 
boundary of the box indicates the 25th percentile and the upper boundary the 75th percentile. Bars above and below the box indicate the 90th and 10th 
percentiles. The line within the box marks the median. Circles (○) represent outliers values. (*p < 0.05, compared to control).
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FigUre 3 | Natural killer (NK) cell degranulation after cytokine stimulation. (a) Representative flow cytometry analysis of NK cell degranulation against K562 cells. 
(B) Column bars show the percentage of CD107a/b expression on NK cells from healthy donors (HDs) (left graph, n = 16) or acute myeloid leukemia (AML) patients 
(right graph, n = 8) in response to K562 cells. Error bars represent SD. (c) Individual representation of NK cell degranulation against K562 cells in HDs (right graph) 
and AML patients (right graph). NK cells were used after 48 h of culture with medium alone (control), interleukin (IL)-15, or IL-2 (*p ≤ 0.05, compared to control).
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IL-15 and IL-2 stimulation, there was a significant increase in 
NK cell cytotoxicity against K562 targets in both HDs and AML 
patients (Figure 3B). Although a high variability was observed, a 

positive effect of IL-15 on NK cell degranulation was found in all 
individuals analyzed but with different increases in degranulation 
(Figure 3C).
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FigUre 4 | Maturation of immature DCs (iDCs) co-cultured with cytokine-stimulated peripheral blood mononuclear cell (PBMC). Allogeneic iDCs were cultured in 
the presence cytokine-stimulated PBMC from healthy donors (HDs) or acute myeloid leukemia (AML) patients. Lipopolysaccharide (LPS) was used as positive 
control. Dendritic cell (DC) maturation was characterized by the expression of CD86. (a) Column bars show the MRFI of CD86 expression on DCs from HDs after 
culture in the presence of LPS- or cytokine-stimulated PBMC from HDs (light gray, n = 6) or AML patients (dark gray, n = 4). PBMCs were used after 48 h of culture 
with medium alone (control), interleukin (IL)-15 or IL-2. Error bars represent SD. (B) Comparative analysis of the effect of cytokines on PBMC-mediated DC 
maturation. Bars represent fold increase of CD86 expression on DCs cultured with PBMC treated with IL-15 or IL-2 relative to the expression in DCs co-cultured 
with unstimulated PBMCs.
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effect of il-15 and il-2-stimulated PBMcs 
on Maturation of iDcs
Recent studies demonstrated that human NK  cells display the 
ability to kill or induce maturation of both autologous and 
allogeneic monocyte-derived iDCs This function depends on the 
engagement of NKp30 with its cellular ligands expressed by DCs. 
Considering that IL-15 and IL-2 have a potent effect in the expres-
sion of NKp30 on NK cell surface, we decided to study if these 
modifications affect iDC maturation mediated by NK cells. iDCs 
were generated as described in Section “Materials and Methods,” 
harvested, counted and analyzed by FACS. After culture with 
cytokine-stimulated PBMCs, DC maturation was evaluated by 
the expression of CD86. Unstimulated PBMCs were used as 
control to compare the effect of IL-15 and IL-2 stimulation on 
PBMCs capacity to induce DC maturation. LPS-stimulated iDCs 
were used as positive control.

Our result showed that PBMCs from HDs and AML patients 
stimulated with IL-15 induced higher maturation of iDCs than 
unstimulated PBMCs although due to the high variability observed 
the differences were not statistically significant (Figure 4A; Figure 
S2). In response to cytokine-stimulated PBMCs, DCs displayed 
a onefold increase in the expression of CD86 compared to their 
response to unstimulated PBMCs (Figure 4B).

Presence of il-15 in Plasma of hDs and 
aMl Patients
Finally, we characterized the concentration of IL-15 in the plasma 
of HDs and AML patients. Our results showed that IL-15 was 
significantly higher in AML serum than in HDs (p  <  0.001) 
(Figure 5). No correlation was observed between IL-15 levels in 
plasma and NKp30 expression on NK cells probably due to the 
high variability observed among donors (data not shown).

DiscUssiOn

Acute myeloid leukemia is a heterogeneous disease that presents 
with different phenotypic and genotypic alterations in hematopoi-
etic progenitors with the subsequent accumulation of immature 
hematopoietic stem cells that prevent the production of adequate 
amount of healthy hematopoietic cells. AML is more common in 
the elderly and co-morbidities and frailty often impact on patient 
tolerance to intensive treatment regimens. Thus, the prognosis of 
elderly AML patients remains poor, despite recent advances in the 
management and treatment options of AML patients including 
novel immunotherapies (50).

The role of NK  cells against leukemia is supported by the 
discovery of NK cell spontaneous cytotoxicity against leukemia 
cell lines in vitro and the clinical benefits observed in KIR ligand 
mismatched allogeneic stem cell transplantation. Evidence for 
graft-versus-leukemia effect mediated by NK cells is observed 
in clinical studies with haploidentical donor transplants where 
the presence of alloreactivity due to KIR ligand mismatch was 
correlated with higher survival rates (51). NK  cell-mediated 
cytotoxicity preserves healthy cells, and consequently, tumor 
control can be achieved in the absence of graft-versus-host 
disease (52). In addition, donor-derived NK  cells have dem-
onstrated to play a relevant role after hematopoietic stem cell 
transplantation (53).

Natural killer cells in AML patients habitually present defects 
in their cytotoxicity against autologous leukemic blasts probably 
as consequence of a reduced expression of activating receptors 
such as NCRs or DNAM-1 (36–38). Besides, the low expression 
of NKp46 and the NCRdull (NKp46dullNKp30dull) phenotype have 
been associated with decreased survival in AML patients (38). 
NK cell phenotype and function at diagnosis of AML associate 
with clinical outcome. Thus, AML patients with low expression of 
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FigUre 5 | Comparison of plasma IL-15 concentration in healthy donors 
(HDs) and acute myeloid leukemia (AML) patients. The horizontal bars 
represent the mean values. *p ≤ 0.05.
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activating receptors and decreased IFN-γ production had higher 
risk of relapse (54).

Previous reports demonstrated that IL-2 and IL-15 play an 
important role in the development, homeostasis, and function 
of T and NK  cells. The administration of IL-2 as well as the 
adoptive transfer of IL-2-activated lymphocytes represented 
the first effective cancer immunotherapy for solid tumors such 
as melanoma. However, high doses of IL-2 were required to 
obtain therapeutic effect but a dose-related increase in toxicity 
was noted. Thus, IL-2 treatment was associated with adverse 
events including severe capillary leak syndrome that represent 
a major concern in IL-2 treatment. Besides IL-2 promotes the 
maintenance of Tregs that can reduce antitumor response (55). 
Since recombinant IL-2 was introduced, several clinical trials 
examining the role of IL-2 in preventing AML relapse have been 
developed. However, its use as monotherapy is not effective in 
terms of leukemia-free survival and overall survival (56). In a 
phase IV trial, AML patients in first complete remission received 
cycles of immunotherapy with histamine dihydrochloride and 
low dose of rIL-2 for 18 months to prevent leukemic relapse. The 
presence of high CD56bright NK cell counts and high expression 
of NKp30 or NKp46 on CD16+CD56+ NK cells independently 
predicted leukemia-free survival and overall survival in this 
clinical trial (57).

Other cytokines have been proposed for cancer treatment, 
and, in the last years, IL-15 has emerged as a potential immu-
notherapeutic candidate (43). Preclinical studies suggest that 
IL-15 may represent a more efficacious cytokine for cancer 
immunotherapy with less toxicity obtained with intermittent 
administration of IL-15 compared with daily administration 
(45, 58).

We have analyzed in  vitro the effect of IL-15 and IL-2 on 
NK  cell phenotype and function including NK  cell cross talk 
with DCs. In our study, IL-2 was included as positive control 
since its role on NK cell activation both in vitro and in vivo has 
been extensively reported. Recently, IL-15 has been proposed as 
an ideal candidate for the expansion of NK cells in vivo since it 
does not promote expansion of Tregs (59). In our study, IL-15 but 
not IL-2 induced a significant expansion of NK cells in HDs after 

48 h of culture. By contrast, NK cell expansion was very limited 
in AML patients showing higher variability.

Our results also show that short time culture with IL-15 
induces upregulation of NKp30 and NKG2D on NK cells from 
AML patients in concordance with previous reports (60). Other 
studies have also shown an increment of DNAM-1 and NKp46 
expression after culture with IL-15 (40, 60). We have also observed 
an increment of DNAM-1 and NKp46 but this increase did not 
reach statistical significance. The upregulation of activating 
receptor expression induced by IL-15 is related to the increased 
NK cell degranulation against K562 cell line in concordance with 
previous reports (60, 61). Altogether, these results suggest that 
AML-induced defective function of NK cells could be overcome 
by IL-15. Besides, we detect a significant increased production 
of IFNγ and granzymes A and B after culture of NK cells with 
IL-15 (data not shown). These observations are consistent with 
previous reports supporting the pivotal role of IL-15 in NK cell 
antitumor activity (40, 60, 61).

Natural killer cell-mediated induction of DCs maturation 
was mediated by NKp30 and cytokines released after NK  cell 
activation such as TNF-α and IFN-γ (62, 63). We have also found 
that IL-15-activated PBMCs from AML patients and HDs have a 
higher capacity to support maturation of DCs than untreated or 
IL-2 treated PBMCs, suggesting that the increased expression of 
NKp30 after IL-15 culture improves the capacity of NK cells to 
collaborate in the maturation of DC.

These results suggest that IL-15 in addition to enhance 
NK cell cytotoxicity could also collaborate with the development 
of adaptive immunity by promoting NK cell-mediated matura-
tion of DCs. Further analysis will be required to confirm this 
function.

Cytokines present in the tumor microenvironment modulate 
antitumor responses. In AML patients, cytokine profile at diag-
nosis is frequently aberrant and associates with pathogenesis, 
disease progression, and survival. We have previously shown 
that plasma levels of TNF-α, IL-6, and IL-10 are increased in 
AML patients. Low levels of IL-6 and high levels of IL-10 were 
associated with longer event-free survival and patient survival 
(35). In the present work, since IL-15 has demonstrated a role 
in NK cell activation, we analyzed IL-15 plasma levels in AML 
patients. We found higher plasma IL-15 levels in AML patients 
compared to HDs confirming previous results (64). In lymphoid 
leukemia, it has been described an increase of IL-15 and IL-5R 
(65). It has been also shown that IL-15 could act as a growth 
factor for a minor fraction of AML cell lines expressing IL-2Rβ/γ 
promoting their survival and proliferation (66). In addition, 
the finding that AML patients have higher levels of IL-15 in 
plasma than HDs together with the possibility that IL-15 may 
promote blast growth has to be considered in protocols using 
IL-15 as adjuvant. We were surprised by the contradictory results 
showing high levels of plasma IL-15 in AML patients, whereas 
NKp30 expression on NK  cells is diminished. It has recently 
been described that maintained levels of IL-15 may induce 
NK cell exhaustion (67), and it has been suggested that for ex 
vivo expansion optimal dosing and timing of IL-15 is critical to 
get adequate NK cell activation (68). We can hypothesize that 
maintained levels of IL-15 induce changes on NK cell phenotype 
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(e.g., activating receptor expression) that further contribute to 
the diminished NK cell activity observed in AML patients.

Thus, in spite of the encouraging data of IL-15 immunotherapy 
in murine models, together with its low toxicity in mice and pri-
mates that has led to the design of clinical trials in AML patients, 
the use of IL-15 in vivo as monotherapy or combined therapy in 
AML patients requires special caution.

A better understanding of IL-15/IL15R axis will allow the 
identification of novel therapeutic strategies directed to increase 
IL-15 immunomodulatory effect contributing to antitumor 
immune response but avoiding the promotion of leukemic cells 
survival. Our in  vitro results support the relevance of IL-15 to 
induce functional active NK cells in AML patients with enhanced 
capacity to destroy leukemic cells and induce DCs maturation.

eThics sTaTeMenT

The study was approved by the local Ethics Committee and sam-
ples collected after written informed consent in accordance with 
the Declaration of Helsinki.

aUThOr cOnTriBUTiOns

BS-C performed experiments. BS-C, CC, and AP analyzed data. 
JB, MJA, and HB selected the patients. BS-C, ED, RS, and RT 

designed the project and discussed data. BS-C and RT wrote the 
manuscript with support of all other co-authors.

acKnOWleDgMenTs

The following reagent was obtained through the NIH AIDS 
Reagent Program, Division of AIDS, NIAID, NIH: human rIL-2 
from Dr. Maurice Gately, Hoffmann-La Roche Inc.

FUnDing

This work was supported by grants SAF2013-46161-R (to RT) 
from the Ministry of Economy and Competitiveness of Spain, 
IB16164 from Junta de Extremadura (to RT), PI13/02691 and 
PI16/01615 (to RS) from Spanish Ministry of Health and CTS-
208 from Junta de Andalucia (to RS), and grants to INPATT 
research group (GR15183) from Junta de Extremadura and 
University of Extremadura (to RT) cofinanced by European 
Regional Development Funds “Una manera de hacer Europa.”

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at 
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00931/
full#supplementary-material.

reFerences

1. Farag SS, Caligiuri MA. Human natural killer cell development and biology. 
Blood Rev (2006) 20:123–37. doi:10.1016/j.blre.2005.10.001 

2. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer 
cell responses: integration of signals for activation and inhibition. Annu Rev 
Immunol (2013) 31:227–58. doi:10.1146/annurev-immunol-020711-075005 

3. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural 
killer cells. Nat Immunol (2008) 9:503–10. doi:10.1038/ni1582 

4. Moretta L, Bottino C, Pende D, Castriconi R, Mingari MC, Moretta A. 
Surface NK receptors and their ligands on tumor cells. Semin Immunol (2006) 
18:151–8. doi:10.1016/j.smim.2006.03.002 

5. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-
talk between activated human NK cells and CD4+ T cells via OX40-OX40 
ligand interactions. J Immunol (2004) 173:3716–24. doi:10.4049/jimmunol. 
173.6.3716 

6. Ghiringhelli F, Menard C, Martin F, Zitvogel L. The role of regulatory T cells 
in the control of natural killer cells: relevance during tumor progression. 
Immunol Rev (2006) 214:229–38. doi:10.1111/j.1600-065X.2006.00445.x 

7. Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, et  al. 
CD4+CD25+ regulatory T  cells inhibit natural killer cell functions in a 
transforming growth factor-beta-dependent manner. J Exp Med (2005) 
202:1075–85. doi:10.1084/jem.20051511 

8. Bottino C, Moretta L, Pende D, Vitale M, Moretta A. Learning how to dis-
criminate between friends and enemies, a lesson from Natural Killer cells. Mol 
Immunol (2004) 41:569–75. doi:10.1016/j.molimm.2004.04.004 

9. Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Different 
checkpoints in human NK-cell activation. Trends Immunol (2004) 25:670–6. 
doi:10.1016/j.it.2004.09.008 

10. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG. Recognition of 
human histocompatibility leukocyte antigen (HLA)-E complexed with 
HLA class I signal sequence-derived peptides by CD94/NKG2 confers pro-
tection from natural killer cell-mediated lysis. J Exp Med (1998) 187:813–8. 
doi:10.1084/jem.187.5.813 

11. Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, 
et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. 
Nature (1998) 391:795–9. doi:10.1038/35869 

12. Carretero M, Palmieri G, Llano M, Tullio V, Santoni A, Geraghty DE, et al. 
Specific engagement of the CD94/NKG2-A killer inhibitory receptor by 
the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment 
to tyrosine-phosphorylated NKG2-A: evidence for receptor function in 
heterologous transfectants. Eur J Immunol (1998) 28:1280–91. doi:10.1002/
(SICI)1521-4141(199804)28:04<1280::AID-IMMU1280>3.0.CO;2-O 

13. Iwaszko M, Bogunia-Kubik K. Clinical significance of the HLA-E and CD94/
NKG2 interaction. Arch Immunol Ther Exp (Warsz) (2011) 59:353–67. 
doi:10.1007/s00005-011-0137-y 

14. Bottino C, Moretta L, Moretta A. NK  cell activating receptors and tumor 
recognition in humans. Curr Top Microbiol Immunol (2006) 298:175–82. 
doi:10.1007/3-540-27743-9_9

15. Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host 
immune responses. Immunol Rev (2010) 235:267–85. doi:10.1111/j.0105- 
2896.2010.00893.x 

16. Kasahara M, Yoshida S. Immunogenetics of the NKG2D ligand gene family. 
Immunogenetics (2012) 64:855–67. doi:10.1007/s00251-012-0638-9 

17. Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, 
Town L, et  al. The receptors CD96 and CD226 oppose each other in the 
regulation of natural killer cell functions. Nat Immunol (2014) 15:431–8. 
doi:10.1038/ni.2850 

18. de Andrade LF, Smyth MJ, Martinet L. DNAM-1 control of natural killer cells 
functions through nectin and nectin-like proteins. Immunol Cell Biol (2014) 
92:237–44. doi:10.1038/icb.2013.95 

19. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M. Cutting edge: CD96 
(tactile) promotes NK  cell-target cell adhesion by interacting with the 
poliovirus receptor (CD155). J Immunol (2004) 172:3994–8. doi:10.4049/
jimmunol.172.7.3994 

20. Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, et al. PVR 
(CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) 
activating receptor: involvement in tumor cell lysis. Mol Immunol (2005) 
42:463–9. doi:10.1016/j.molimm.2004.07.028 

21. Bottino C, Biassoni R, Millo R, Moretta L, Moretta A. The human natural cyto-
toxicity receptors (NCR) that induce HLA class I-independent NK cell trig-
gering. Hum Immunol (2000) 61:1–6. doi:10.1016/S0198-8859(99)00162-7 

22. Mandelboim O, Porgador A. NKp46. Int J Biochem Cell Biol (2001) 33:1147–50. 
doi:10.1016/S1357-2725(01)00078-4 

218

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00931/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00931/full#supplementary-material
https://doi.org/10.1016/j.blre.2005.10.001
https://doi.org/10.1146/annurev-immunol-020711-075005
https://doi.org/10.1038/ni1582
https://doi.org/10.1016/j.smim.2006.03.002
https://doi.org/10.4049/jimmunol.
173.6.3716
https://doi.org/10.4049/jimmunol.
173.6.3716
https://doi.org/10.1111/j.1600-065X.2006.00445.x
https://doi.org/10.1084/jem.20051511
https://doi.org/10.1016/j.molimm.2004.04.004
https://doi.org/10.1016/j.it.2004.09.008
https://doi.org/10.1084/jem.187.5.813
https://doi.org/10.1038/35869
https://doi.org/10.1002/(SICI)1521-4141(199804)28:04 < 1280::AID-IMMU1280 > 3.0.CO;2-O
https://doi.org/10.1002/(SICI)1521-4141(199804)28:04 < 1280::AID-IMMU1280 > 3.0.CO;2-O
https://doi.org/10.1007/s00005-011-0137-y
https://doi.org/10.1007/3-540-27743-9_9
https://doi.org/10.1111/j.0105-
2896.2010.00893.x
https://doi.org/10.1111/j.0105-
2896.2010.00893.x
https://doi.org/10.1007/s00251-012-0638-9
https://doi.org/10.1038/ni.2850
https://doi.org/10.1038/icb.2013.95
https://doi.org/10.4049/jimmunol.172.7.3994
https://doi.org/10.4049/jimmunol.172.7.3994
https://doi.org/10.1016/j.molimm.2004.07.028
https://doi.org/10.1016/S0198-8859(99)
00162-7
https://doi.org/10.1016/S1357-2725(01)00078-4


Sanchez-Correa et al. IL-15-Induced NK Cell Activation in AML

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 931

23. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, et al. 
p46, a novel natural killer cell-specific surface molecule that mediates cell 
activation. J Exp Med (1997) 186:1129–36. doi:10.1084/jem.186.7.1129 

24. Kaifu T, Escaliere B, Gastinel LN, Vivier E, Baratin M. B7-H6/NKp30 interac-
tion: a mechanism of alerting NK cells against tumors. Cell Mol Life Sci (2011) 
68:3531–9. doi:10.1007/s00018-011-0802-7 

25. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, et  al. 
Identification and molecular characterization of NKp30, a novel triggering 
receptor involved in natural cytotoxicity mediated by human natural killer 
cells. J Exp Med (1999) 190:1505–16. doi:10.1084/jem.190.10.1505 

26. Cantoni C, Bottino C, Vitale M, Pessino A, Augugliaro R, Malaspina A, et al. 
NKp44, a triggering receptor involved in tumor cell lysis by activated human 
natural killer cells, is a novel member of the immunoglobulin superfamily. 
J Exp Med (1999) 189:787–96. doi:10.1084/jem.189.5.787 

27. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, et  al. 
Activating receptors and coreceptors involved in human natural killer 
cell-mediated cytolysis. Annu Rev Immunol (2001) 19:197–223. doi:10.1146/
annurev.immunol.19.1.197 

28. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, et al. The B7 family 
member B7-H6 is a tumor cell ligand for the activating natural killer cell 
receptor NKp30 in humans. J Exp Med (2009) 206:1495–503. doi:10.1084/
jem.20090681 

29. Pogge von Strandmann E, Simhadri VR, von TB, Sasse S, Reiners KS,  
Hansen HP, et  al. Human leukocyte antigen-B-associated transcript 3 is 
released from tumor cells and engages the NKp30 receptor on natural killer 
cells. Immunity (2007) 27:965–74. doi:10.1016/j.immuni.2007.10.010 

30. Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O. 
Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur 
J Immunol (2001) 31:2680–9. doi:10.1002/1521-4141(200109)31:9<2680:: 
AID-IMMU2680>3.0.CO;2-A 

31. Glasner A, Zurunic A, Meningher T, Lenac RT, Tsukerman P, Bar-On Y, 
et al. Elucidating the mechanisms of influenza virus recognition by Ncr1. 
PLoS One (2012) 7:e36837. doi:10.1371/journal.pone.0036837 

32. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, et  al. 
Recognition of haemagglutinins on virus-infected cells by NKp46 acti-
vates lysis by human NK  cells. Nature (2001) 409:1055–60. doi:10.1038/ 
35059110 

33. Baychelier F, Sennepin A, Ermonval M, Dorgham K, Debre P, Vieillard V. 
Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. 
Blood (2013) 122:2935–42. doi:10.1182/blood-2013-03-489054 

34. Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, et  al. 
Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural 
cytotoxicity receptor NKp44. J Immunol (2011) 187:5693–702. doi:10.4049/
jimmunol.1102267 

35. Sanchez-Correa B, Bergua JM, Campos C, Gayoso I, Arcos MJ, Banas H, et al. 
Cytokine profiles in acute myeloid leukemia patients at diagnosis: survival 
is inversely correlated with IL-6 and directly correlated with IL-10 levels. 
Cytokine (2013) 61:885–91. doi:10.1016/j.cyto.2012.12.023 

36. Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R, 
et al. Decreased expression of DNAM-1 on NK cells from acute myeloid leu-
kemia patients. Immunol Cell Biol (2012) 90:109–15. doi:10.1038/icb.2011.15 

37. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG,  
Arcos MJ, et  al. Human NK  cells in acute myeloid leukaemia patients: 
analysis of NK cell-activating receptors and their ligands. Cancer Immunol 
Immunother (2011) 60:1195–205. doi:10.1007/s00262-011-1050-2 

38. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D, et  al. 
Deficient expression of NCR in NK cells from acute myeloid leukemia: evo-
lution during leukemia treatment and impact of leukemia cells in NCRdull 
phenotype induction. Blood (2007) 109:323–30. doi:10.1182/blood-2005-08- 
027979 

39. Cany J, van der Waart AB, Spanholtz J, Tordoir M, Jansen JH, van der Voort R,  
et al. Combined IL-15 and IL-12 drives the generation of CD34-derived natu-
ral killer cells with superior maturation and alloreactivity potential following 
adoptive transfer. Oncoimmunology (2015) 4:e1017701. doi:10.1080/21624
02X.2015.1017701 

40. de Rham C, Ferrari-Lacraz S, Jendly S, Schneiter G, Dayer JM, Villard J. The 
proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of 
mature human natural killer cell receptors. Arthritis Res Ther (2007) 9:R125. 
doi:10.1186/ar2336 

41. Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: 
immunotherapy for cancer. Cytokine Growth Factor Rev (2002) 13:169–83. 
doi:10.1016/S1359-6101(01)00021-1 

42. Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic 
implications in cancer. Trends Pharmacol Sci (2012) 33:35–41. doi:10.1016/j.
tips.2011.09.004 

43. Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector 
responses, tolerance, and immunotherapy. Immunity (2013) 38:13–25. 
doi:10.1016/j.immuni.2013.01.004 

44. Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in 
the life and death of lymphocytes: implications for immunotherapy. Immunity 
(2001) 14:105–10. doi:10.1016/S1074-7613(09)00091-0 

45. Berger C, Berger M, Hackman RC, Gough M, Elliott C, Jensen MC, et al. Safety 
and immunologic effects of IL-15 administration in nonhuman primates. 
Blood (2009) 114:2417–26. doi:10.1182/blood-2008-12-189266 

46. Carotta S. Targeting NK  cells for anticancer immunotherapy: clinical and 
preclinical approaches. Front Immunol (2016) 7:152. doi:10.3389/fimmu. 
2016.00152 

47. Chester C, Fritsch K, Kohrt HE. Natural killer cell immunomodulation: tar-
geting activating, inhibitory, and co-stimulatory receptor signaling for cancer 
immunotherapy. Front Immunol (2015) 6:601. doi:10.3389/fimmu.2015.00601 

48. Iannello A, Thompson TW, Ardolino M, Marcus A, Raulet DH. 
Immunosurveillance and immunotherapy of tumors by innate immune cells. 
Curr Opin Immunol (2016) 38:52–8. doi:10.1016/j.coi.2015.11.001 

49. Lahm HW, Stein S. Characterization of recombinant human interleukin-2 
with micromethods. J Chromatogr (1985) 326:357–61. doi:10.1016/
S0021-9673(01)87461-6 

50. Almeida AM, Ramos F. Acute myeloid leukemia in the older adults. Leuk Res 
Rep (2016) 6:1–7. doi:10.1016/j.lrr.2016.06.001 

51. Ruggeri L, Capanni M, Tosti A, Urbani E, Posati S, Aversa F, et  al. Innate 
immunity against hematological malignancies. Cytotherapy (2002) 4:343–6. 
doi:10.1080/146532402760271127 

52. Rezvani K, Rouce RH. The application of natural killer cell immunotherapy 
for the treatment of cancer. Front Immunol (2015) 6:578. doi:10.3389/
fimmu.2015.00578 

53. Pittari G, Fregni G, Roguet L, Garcia A, Vataire AL, Wittnebel S, et  al. 
Early evaluation of natural killer activity in post-transplant acute myeloid 
leukemia patients. Bone Marrow Transplant (2010) 45:862–71. doi:10.1038/
bmt.2009.265 

54. Khaznadar Z, Boissel N, Agaugue S, Henry G, Cheok M, Vignon M, et  al. 
Defective NK cells in acute myeloid leukemia patients at diagnosis are asso-
ciated with blast transcriptional signatures of immune evasion. J Immunol 
(2015) 195:2580–90. doi:10.4049/jimmunol.1500262 

55. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. 
J Immunol (2014) 192:5451–8. doi:10.4049/jimmunol.1490019 

56. Buyse M, Squifflet P, Lange BJ, Alonzo TA, Larson RA, Kolitz JE, et  al. 
Individual patient data meta-analysis of randomized trials evaluating IL-2 
monotherapy as remission maintenance therapy in acute myeloid leukemia. 
Blood (2011) 117:7007–13. doi:10.1182/blood-2011-02-337725 

57. Martner A, Rydstrom A, Riise RE, Aurelius J, Anderson H, Brune M, et al. 
Role of natural killer cell subsets and natural cytotoxicity receptors for the 
outcome of immunotherapy in acute myeloid leukemia. Oncoimmunology 
(2016) 5:e1041701. doi:10.1080/2162402X.2015.1041701 

58. Romee R, Leong JW, Fehniger TA. Utilizing cytokines to function-enable 
human NK cells for the immunotherapy of cancer. Scientifica (Cairo) (2014) 
2014:205796. doi:10.1155/2014/205796 

59. Miller JS, Rooney CM, Curtsinger J, McElmurry R, McCullar V, Verneris MR, 
et al. Expansion and homing of adoptively transferred human natural killer 
cells in immunodeficient mice varies with product preparation and in vivo 
cytokine administration: implications for clinical therapy. Biol Blood Marrow 
Transplant (2014) 20:1252–7. doi:10.1016/j.bbmt.2014.05.004 

60. Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M. 
Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute 
myeloid leukemia by upregulating the activating NK  cell receptors. Cancer 
Immunol Immunother (2010) 59:73–9. doi:10.1007/s00262-009-0724-5 

61. Rettinger E, Kuci S, Naumann I, Becker P, Kreyenberg H, Anzaghe M, et al. 
The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer 
cells against leukemia cells. Cytotherapy (2012) 14:91–103. doi:10.3109/1465
3249.2011.613931 

219

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1084/jem.186.7.1129
https://doi.org/10.1007/s00018-011-0802-7
https://doi.org/10.1084/jem.190.10.1505
https://doi.org/10.1084/jem.189.5.787
https://doi.org/10.1146/annurev.immunol.19.1.197
https://doi.org/10.1146/annurev.immunol.19.1.197
https://doi.org/10.1084/jem.20090681
https://doi.org/10.1084/jem.20090681
https://doi.org/10.1016/j.immuni.2007.10.010
https://doi.org/10.1002/1521-4141(200109)31:9 < 2680::AID-IMMU2680 > 3.0.CO;2-A
https://doi.org/10.1002/1521-4141(200109)31:9 < 2680::AID-IMMU2680 > 3.0.CO;2-A
https://doi.org/10.1371/journal.pone.0036837
https://doi.org/10.1038/
35059110
https://doi.org/10.1038/
35059110
https://doi.org/10.1182/blood-2013-03-489054
https://doi.org/10.4049/jimmunol.1102267
https://doi.org/10.4049/jimmunol.1102267
https://doi.org/10.1016/j.cyto.2012.12.023
https://doi.org/10.1038/icb.2011.15
https://doi.org/10.1007/s00262-011-1050-2
https://doi.org/10.1182/blood-2005-08-
027979
https://doi.org/10.1182/blood-2005-08-
027979
https://doi.org/10.1080/2162402X.2015.1017701
https://doi.org/10.1080/2162402X.2015.1017701
https://doi.org/10.1186/ar2336
https://doi.org/10.1016/S1359-6101(01)00021-1
https://doi.org/10.1016/j.tips.2011.09.004
https://doi.org/10.1016/j.tips.2011.09.004
https://doi.org/10.1016/j.immuni.2013.01.004
https://doi.org/10.1016/S1074-7613(09)00091-0
https://doi.org/10.1182/blood-2008-12-189266
https://doi.org/10.3389/fimmu.
2016.00152
https://doi.org/10.3389/fimmu.
2016.00152
https://doi.org/10.3389/fimmu.2015.00601
https://doi.org/10.1016/j.coi.2015.11.001
https://doi.org/10.1016/S0021-9673(01)87461-6
https://doi.org/10.1016/S0021-9673(01)87461-6
https://doi.org/10.1016/j.lrr.2016.06.001
https://doi.org/10.1080/146532402760271127
https://doi.org/10.3389/fimmu.2015.00578
https://doi.org/10.3389/fimmu.2015.00578
https://doi.org/10.1038/bmt.2009.265
https://doi.org/10.1038/bmt.2009.265
https://doi.org/10.4049/jimmunol.1500262
https://doi.org/10.4049/jimmunol.1490019
https://doi.org/10.1182/blood-2011-02-337725
https://doi.org/10.1080/2162402X.2015.1041701
https://doi.org/10.1155/2014/205796
https://doi.org/10.1016/j.bbmt.2014.05.004
https://doi.org/10.1007/s00262-009-0724-5
https://doi.org/10.3109/14653249.2011.613931
https://doi.org/10.3109/14653249.2011.613931


Sanchez-Correa et al. IL-15-Induced NK Cell Activation in AML

Frontiers in Immunology | www.frontiersin.org August 2017 | Volume 8 | Article 931

62. Vitale M, Della CM, Carlomagno S, Pende D, Arico M, Moretta L, et  al. 
NK-dependent DC maturation is mediated by TNFalpha and IFNgamma 
released upon engagement of the NKp30 triggering receptor. Blood (2005) 
106:566–71. doi:10.1182/blood-2004-10-4035 

63. Wehner R, Dietze K, Bachmann M, Schmitz M. The bidirectional crosstalk 
between human dendritic cells and natural killer cells. J Innate Immun (2011) 
3:258–63. doi:10.1159/000323923 

64. Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR. 
Recurrent expression signatures of cytokines and chemokines are present 
and are independently prognostic in acute myelogenous leukemia and 
myelodysplasia. Blood (2010) 116:4251–61. doi:10.1182/blood-2010-01- 
262071 

65. Xiong Y, Bensoussan D, Decot V. IL-15 as a potential target in leukemia. Blood 
Lymphat Cancer (2015) 2015(5):55–63. doi:10.2147/BLCTT.S78347

66. Meazza R, Basso S, Gaggero A, Detotero D, Trentin L, Pereno R, et  al. 
Interleukin (IL)-15 induces survival and proliferation of the growth factor- 
dependent acute myeloid leukemia M-07e through the IL-2 receptor beta/
gamma. Int J Cancer (1998) 78:189–95. doi:10.1002/(SICI)1097-0215 
(19981005)78:2<189::AID-IJC12>3.0.CO;2-6 

67. Felices M, Lenvik A, Chu S, McElmurry R, Cooley S, Tolar J, et al. Continuous 
IL-15 signaling leads to functional exhaustion of human natural killer cells 
through metabolic changes that alters their in vivo anti-tumor activity. Blood 
(2016) 128:551. 

68. Granzin M, Wagner J, Kohl U, Cerwenka A, Huppert V, Ullrich E. Shaping 
of natural killer cell antitumor activity by ex vivo cultivation. Front Immunol 
(2017) 8:458. doi:10.3389/fimmu.2017.00458 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Sanchez-Correa, Bergua, Pera, Campos, Arcos, Bañas, Duran, 
Solana and Tarazona. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are 
credited and that the original publication in this journal is cited, in accordance with 
accepted academic practice. No use, distribution or reproduction is permitted which 
does not comply with these terms.

220

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1182/blood-2004-10-4035
https://doi.org/10.1159/000323923
https://doi.org/10.1182/blood-2010-01-
262071
https://doi.org/10.1182/blood-2010-01-
262071
https://doi.org/10.2147/BLCTT.S78347
https://doi.org/10.1002/(SICI)1097-0215
(19981005)78:2 < 189::AID-IJC12 > 3.0.CO;2-6
https://doi.org/10.1002/(SICI)1097-0215
(19981005)78:2 < 189::AID-IJC12 > 3.0.CO;2-6
https://doi.org/10.3389/fimmu.2017.00458
http://creativecommons.org/licenses/by/4.0/


June 2017 | Volume 8 | Article 676

Original research
published: 12 June 2017

doi: 10.3389/fimmu.2017.00676

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Gianfranco Pittari,  

Hamad Medical Corporation, Qatar

Reviewed by: 
Nicolas Dulphy,  

Paris Diderot University, France  
Raquel Tarazona,  

University of Extremadura, Spain

*Correspondence:
Evelyn Ullrich  

evelyn.ullrich@kgu.de

†Present address: 
Judith W. J. Bergs,  

Imagerie et Modélisation pour la 
Neurobiologie et la Cancérologie, 
UMR 8165, CNRS, IN2P3 Institut 

national de physique nucléaire et de 
physique des particules,  

d’Orsay, France

Specialty section: 
This article was submitted to 

Alloimmunity and Transplantation,  
a section of the journal  

Frontiers in Immunology

Received: 23 February 2017
Accepted: 24 May 2017

Published: 12 June 2017

Citation: 
Wagner J, Pfannenstiel V, 

Waldmann A, Bergs JWJ, Brill B, 
Huenecke S, Klingebiel T, Rödel F, 

Buchholz CJ, Wels WS, Bader P and 
Ullrich E (2017) A Two-Phase 

Expansion Protocol Combining 
Interleukin (IL)-15 and IL-21  
Improves Natural Killer Cell 

Proliferation and Cytotoxicity  
against Rhabdomyosarcoma.  

Front. Immunol. 8:676.  
doi: 10.3389/fimmu.2017.00676

a Two-Phase expansion Protocol 
combining interleukin (il)-15 and  
il-21 improves natural Killer cell 
Proliferation and cytotoxicity against 
rhabdomyosarcoma
Juliane Wagner1,2,3, Viktoria Pfannenstiel1,2,3, Anja Waldmann4, Judith W. J. Bergs5,6,7†,  
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8 German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany, 9 Molecular Biotechnology and Gene 
Therapy, Paul-Ehrlich-Institut, Langen, Germany

Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children. 
Despite intensive research in recent decades the prognosis for patients with metastatic 
or relapsed diseases has hardly improved. New therapeutic concepts in anti-tumor 
therapy aim to modulate the patient’s immune system to increase its aggressiveness 
or targeted effects toward tumor cells. Besides surgery, radiotherapy and chemother-
apy, immune activation by direct application of cytokines, antibodies or adoptive cell 
therapy are promising approaches. In the last years, adoptive transfer of natural killer 
(NK) cells came into the focus of translational medicine, because of their high cytotoxic 
potential against transformed malignant cells. A main challenge of NK cell therapy is that 
it requires a high amount of functional NK cells. Therefore, ex vivo NK cell expansion 
protocols are currently being developed. Many culturing strategies are based on the 
addition of feeder or accessory cells, which need to be removed prior to the clinical 
application of the final NK  cell product. In this study, we addressed feeder cell-free 
expansion methods using common γ-chain cytokines, especially IL-15 and IL-21. Our 
results demonstrated high potential of IL-15 for NK cell expansion, while IL-21 triggered 
NK  cell maturation and functionality. Hence, we established a two-phase expansion 
protocol with IL-15 to induce an early NK cell expansion, followed by short exposure to 
IL-21 that boosted the cytotoxic activity of NK cells against RMS cells. Further functional 
analyses revealed enhanced degranulation and secretion of pro-inflammatory cytokines 
such as interferon-γ and tumor necrosis factor-α. In a proof of concept in vivo study, we 
also observed a therapeutic effect of adoptively transferred IL-15 expanded and IL-21 
boosted NK  cells in combination with image guided high precision radiation therapy 
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using a luciferase-transduced RMS xenograft model. In summary, this two-phased 
feeder cell-free ex vivo culturing protocol combined efficient expansion and high cytolytic 
functionality of NK cells for treatment of radiation-resistant RMS.

Keywords: natural killer cells, radiotherapy, rhabdomyosarcoma, rh30 cells, rD cells, interleukin-15, interleukin-21

inTrODUcTiOn

With their ability to detect and directly destroy virally infected 
or malignant cells, natural killer (NK) cells form an important 
part of the first line defense of the immune system. They can be 
activated rapidly via germ-line encoded receptors that recognize 
the presence of stress ligands or absence of self-antigens on target 
cells (1–5).

In vivo development and survival of NK cells require cytokines 
(6–8). In this context, cytokines have been shown to activate 
NK  cells potently during ex vivo expansion (9–12). The group 
of common γ-chain receptor cytokines encompassing interleukin 
(IL)-2, IL-4, IL-9, IL-15, and IL-21 has been studied intensively 
over the recent years. IL-2 and IL-15 have similar impacts on 
NK  cells (13, 14). However, direct injection of IL-2 has been 
shown to be accompanied by severe side effects, such as vascular 
leak syndrome, activation-induced cell death, and strong induc-
tion of regulatory CD4pos T cells, which did not occur after IL-15 
administration (15, 16).

More recently, research has been focusing on IL-21 biology, but 
its effects on NK cell development are controversially discussed. 
IL-21 is known to be involved in the development and prolifera-
tion of NK cells from progenitor cells (17) and to induce receptor 
expression (18), interferon (IFN)-γ secretion and cytotoxicity 
(19). Conversely, IL-21 has also been reported to trigger apoptosis 
and to diminish IL-15-based benefits (20–22). These less favorable 
effects may be ascribed to the variability of experimental designs 
such as timing, cytokine concentration, additives, or accessory 
cells in culture as well as the developmental or maturation state 
and origin of NK cells. Of note, positive effects have been reported 
mostly upon cultivation of NK cells in the presence of auxiliary 
cells such as other peripheral blood mononuclear cells (PBMCs) 
(23), genetically modified feeder cells equipped with membrane-
bound IL-21 (24, 25), or feeder-cell particles (26). The downside of 
these protocols is the necessity of elimination of hazardous cells, 
such as possibly graft-versus-host-disease (GvHD)-triggering 
cells or tumor-derived feeder cells, that might induce harmful 
side-effects in  vivo. On the contrary, safer expansion strategies 
based on the exclusive application of cytokines, result in much 
lower absolute NK cell numbers (27). Thus, risk-free protocols 
for efficient expansion of functional NK cells are urgently needed.

Immune cell therapy is an effective anti-cancer strategy and 
hematopoietic stem cell transplantation (HSCT) has been shown 
to positively influence the outcome of patients with different 
hematologic diseases (28, 29). However, studies using HSCT did 
not achieve satisfactory improvement against high-risk rhabdo-
myosarcoma (RMS) (30–34). RMS is a rare malignant disease but 
the most common soft tissue cancer in children. The outcome of 
treatment for patients with stage IV RMS, relapsed or metastatic 
diseases arising from RMS, has scarcely improved during recent 

decades and, in general, is unfortunately considered to be poor 
even upon combination of surgery, chemotherapy, radiotherapy 
(RT), and HSCT (35, 36).

Natural killer cells are considered to potently initiate graft-
versus-tumor (GvT) effects without provoking, but even prevent-
ing GvHD (37–41), a possible risk of HSCT (42–44).

Here, we present a two-phase protocol that combines IL-15-
triggered NK  cell expansion with an IL-21 boost to exert the 
stimulatory effects of both cytokines. To avoid contamination 
by other cell types, we employed enriched NK cells and circum-
vented the addition of any accessory or feeder cells. The NK cell 
product was characterized intensively in terms of proliferation, 
phenotype, and functionality. Finally, IL-15-expanded and IL-21-
boosted NK cell products from different human donors were used 
for combined adoptive immune cell and radiation therapy in a 
xenograft model of RMS.

MaTerials anD MeThODs

Purification of Primary human nK cells
This study was approved (approval no. 329/10) by the Ethics 
Committee of the Goethe University Frankfurt (Frankfurt, 
Germany) and was performed in accordance with the Declaration 
of Helsinki with written informed consent given by every par-
ticipant. NK  cells were isolated from freshly generated donor 
buffy coats provided by the German Red Cross Blood Donation 
Service (DRK-Blutspendedienst Baden-Württemberg-Hessen, 
Frankfurt, Germany), using immunomagnetic negative selec-
tion (EasySep™ Human NK Cell Enrichment kit, StemCell 
Technologies, Vancouver, BC, Canada) according to the manu-
facturer instructions.

Briefly, PBMCs obtained from buffy coats by density gradient 
centrifugation were diluted to a final concentration of 100 × 106 
cells/mL. Then, 50 µL of enrichment cocktail were applied per 
milliliter cell suspension and incubated for 10 min. Subsequently, 
100 µL of microbead suspension were added and incubated for 
another 5 min. After incubation for 2.5 min in “The Big Easy” 
EasySep™ Magnet, the NK  cell-enriched suspension was 
decanted into a new tube.

cultivation of Primary cells and cell lines
Purified primary NK  cells were cultured at a concentration of 
2  ×  106 cells/mL in X-VIVO 10 medium (Lonza Group Ltd., 
Basel, CH) supplemented with 5% heat inactivated human fresh 
frozen plasma (FFP; provided by DRK-Blutspendedienst Baden-
Württemberg-Hessen, Frankfurt, Germany) and 100  U/mL  
penicillin and 100 µg/mL streptomycin (Gibco, New York, NY, 
USA). Correlating to the batch, the cells were provided with 
IL-2 (ProleukinS, Novartis Pharmaceuticals, Horsham, UK), 100  
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U/mL (IL-2100) or 1,000 U/mL (IL-21000), 10 ng/mL IL-15 (IL-15), 
25 ng/mL IL-21 (both PeproTech, Rocky Hill, CT, USA) (IL-21)  
or combinations of those (IL-2100  +  15, IL-2100  +  15  +  21, 
IL-15 + 21). Every 3–4 days, half of the medium was replaced by 
fresh medium containing the corresponding cytokines or combi-
nations. One batch was treated with IL-15 and boosted with IL-21 
only 3–4 days before harvest and analysis (IL-15 + 21boost).

Chronic myologenous erythroleukemia cell line K562 and 
RMS cell lines RH30 and RD (45) were purchased from the 
American Type Culture Collection (Manassas, VA, USA). Cells 
were maintained in Roswell Park Memorial Institute (RPMI) 1640 
medium supplemented with 10% heat inactivated fetal calf serum 
(Invitrogen, Paisley, UK), 100  U/mL penicillin and 100  µg/mL  
streptomycin. The cells were splitted twice a week.

GFP/luciferase-expressing RD cells (RDGFP/Luc) were generated 
via lentiviral transduction using vector particles pseudotyped with 
vesicular stomatitis virus G protein that were produced using the 
transfer plasmid pSEW-luc2, which encodes firefly luciferase and 
enhanced green fluorescent protein linked via a 2A peptide (46). 
GFP positive cells were enriched by fluorescence activated cell 
sorting (FACS) using a FACSAria II™ device (BD Biosciences, 
San Jose, CA, USA). Culture conditions for transduced cells were 
the same as for non-transduced cells.

Flow cytometry
In order to check the quality of enriched NK cells and to moni-
tor the phenotype of ex vivo expanded NK cells, samples were 
analyzed with a FACSCanto 10c™ system (BD Biosciences). 
Post-harvesting cells were resuspended in FACS buffer contain-
ing CellWASH (BD Biosciences), 0.5% bovine serum albumin 
(Sigma Aldrich, Taufkirchen, Germany) and 0.01% NaN3 (0.1 M, 
Sigma Aldrich).

Intracellular staining was accomplished using formaldehyde 
(AppliChem GmbH, Darmstadt, Germany) for fixation and 90% 
methanol for membrane perforation.

The following antibodies were used: CD3-APC (#UCHT1), 
TRAIL-R-APC [#DJR2-4(7-8)], FAS-BV421 (#DX2), CD56-
FITC (clone #HCD56), FAS-L-PE (#NOK-1), TRAIL-PE 
(#RIK-2), CD19-PerCP (#HIB19), CD16-PE/Cy7 (#3G8) all 
from Biolegend (San Diego, CA, USA); CD3-V450 (#UCHT1), 
CD19-V450 (#HIB19), CD14-V450 (#MφP9), CD45-BV510 
(#HI30), NKp30-AF488 (#P30-15), DNAM-1-FITC (#DX11), 
NKp44-PE (#P44-8.1) CD45-APC (#2D1), CD137/4-1BB-APC 
(#4B4-1), CD107a-APC/H7 (#H4A3), IFN-γ-FITC (#B27), 
pAKT-AF647 (#F29-763), pERK1/2-AF647 (#20A), from BD 
Biosciences; CD56-APC/AF700, NKG2D-APC (#ON72), 
CD11a/LFA-1-FITC (#25.3) from Beckman Coulter Immunotech 
(Brea, CA, USA); CD45-PE (#HI30) from Invitrogen (Carslbad, 
CA, USA); and NKp46-APC (#9E2), KIR2D-FITC (#NKVFS1), 
CD158e/k-PE (#5.133), NKG2A-APC (#Z199) from Miltenyi 
Biotec (Bergisch-Gladbach, Germany). Depending on the panel 
Zombie Violet Fixable Viability Kit (BioLegend), 7AAD (BD 
Biosciences) or strongly diluted DAPI were used for live/death 
discrimination.

Data were acquired on a FACSCanto 10c™ instrument (BD 
Biosciences, San Jose, CA, USA) and analyzed using Flowjo (Tree 
Star Inc., Ashland, OR, USA).

cytotoxicity assay
To investigate the killing capacity of ex vivo expanded NK cells 
a FACS-based cytotoxicity assay was employed. NK effector 
cells were harvested after 6 days of cytokine stimulation. Target 
cells were harvested and stained for 5 min with Celltrace CFSE 
(Molecular Probes, Eugene, OR, USA) in a final concentra-
tion of 5  µM. After all cells had been washed with Dulbecco’s 
Phosphate Buffered Saline (DPBS, Gibco), they were resuspended 
in X-VIVO 10 medium supplemented with 5% heat inactivated 
human FFP, 100 U/mL penicillin and 100 µg/mL streptomycin. 
NK cells and target cells were combined in a U-bottom 96-well 
plate at effector to target (E:T) ratios of 1:1, 5:1, and 10:1, adjusted 
to 25,000 target cells per well in a total volume of 200 µL. After 
5  h of co-incubation the supernatant was removed, cells were 
harvested and resuspended in a 1:6,000 dilution of DAPI for live/
death discrimination. From each well, the same amount of target 
cells was acquired using a FACSCanto 10c™ device. Samples 
exclusively containing target cells served as spontaneous lysis 
controls. Spontaneous lysis was subtracted from each sample to 
obtain specific lysis values. All experiments were conducted in 
triplicates for each NK cell donor.

To address additional antibody-dependent cellular cytotoxic-
ity (ADCC) by NK  cells, in a separate experiment, 10  µg/mL  
of anti-ErbB2 antibody Trastuzumab (Herceptin, ROCHE, 
Mannheim, Germany) were added and cytotoxicity compared to 
NK cell cytotoxicity in the absence of Trastuzumab.

Conjugation capacity of stimulated NK  cells was addressed 
by staining NK cells with Celltrace CFSE, while target cells were 
stained with Celltrace Calcein Violet AM for 20 min at 4°C. After 
intensive washing, effector and target cells were co-incubated for 
0–90 min, then shortly vortexed and fixed with 1–2% formalde-
hyde. Flow cytometry data were acquired on a FACSCanto 10c™ 
instrument.

Due to limited availability of NK  cell numbers, cytotoxicity 
and conjugation assays were performed with cells from other 
donors than were used for proliferation assays.

Functional activity and Degranulation 
assay
Degranulation potential of cytokine stimulated NK  cells was 
assessed as described (47), with cells harvested on day 6 of cul-
tivation. Cells were washed and resuspended in fresh X-VIVO 
10 medium supplemented with 5% heat-inactivated human FFP, 
100 U/mL penicillin, and 100 µg/mL streptomycin. After 1 h, cells 
were incubated with anti-human CD107a, followed by an addi-
tional hour of incubation with GolgiStop™ (BD Biosciences). 
Cells were washed, blocked with human IgG and stained with 
Zombie Violet™ Fixable Viability Kit for live/death discrimina-
tion. Post washing, cells were stained for CD45, CD56, and CD16, 
fixed with formaldehyde solution (2% final concentration) and 
permeabilized with saponin buffer [0.2% saponin, 1% bovine 
serum albumin (both Sigma Aldrich) in DPBS]. In the end, cells 
were stained intracellularly with anti-human IFN-γ, washed, and 
measured by flow cytometry.

For Phosflow analysis freshly harvested cells were stained 
on the surface for CD45, CD3, and CD56, fixed and permeabli-
lized with 90% methanol and intracellularly stained for pAKT, 
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pERK1/2, and pMAPK. Flow cytometry data acquisition was 
performed on a FACSCanto 10c™ instrument.

Due to limited availability of NK  cells numbers, degranula-
tion assays were performed with cell preparations from different 
donors than proliferation or cytotoxicity assays.

immunoblot analyses
Western blotting was deployed for the assessment of production 
and release of apoptosis-mediating perforin and granzyme B. 
NK  cells and culture supernatants were harvested on day 6 of 
cytokine stimulation. Cells were lysed using RIPA buffer supple-
mented with cOmplete™ Protease Inhibitor Cocktail (ROCHE) 
followed by sonification. Protein concentrations were determined 
via Bradford assay (Protein Assay Dye Reagent Concentrate, 
Bio-Rad, Munich, Germany). Separation of proteins was 
accomplished by SDS-PAGE followed by semi-dry blotting onto 
polyvinylidenfluoride membranes. Before antibody application, 
membranes were blocked with 5% skim milk powder in DPBS. 
Mouse monoclonal antibodies against human perforin (1:1,000, 
LifeSpan BioSciences, Seattle, WA, USA), granzyme B (1:200, 
#2C5, Santa Cruz, Heidelberg, Germany) and a rabbit antibody 
against human γ-tubulin (1:2,000, Sigma Aldrich) were used 
as primary antibodies. HRP conjugated rabbit anti-mouse IgG 
(1:15,000, Sigma Aldrich) and goat-anti rabbit (1:16,000, Sigma 
Aldrich) served as secondary antibodies. The antigen–antibody 
complexes were detected using an ECL-chemiluminescence 
system (Pierce™ ECL, Thermo Scientific, Waltham, MA, USA) 
according to the manufacturer’s instructions, and visualized 
using X-ray films (Fujifilm, Tokyo, Japan).

Due to limited availability of NK cell numbers, immunoblot 
assays were performed with cells from other donors than used for 
proliferation or functional assays.

cytometric Bead array
Cytokine secretion was examined by cytometric bead array analy-
ses (CBA) on supernatants of stimulated NK cells on the sixth day 
of cultivation using BD CBA Flex Sets for IFN-γ, tumor necrosis 
factor (TNF)-α, macrophage inflammatory protein (MIP)-1α, 
monocyte chemoattractant protein (MCP)-1, IL-8, IL-10, and 
granulocyte-macrophage colony-stimulating factor (GM-CSF) 
(BD Biosciences). The tests were performed according to the 
manufacturer’s instructions using a mixture of PE-conjugated 
antibodies against the cytokines listed above. Data were acquired 
with the BD FACSVerse™ Bioanalyzer and were quantitated 
using the FCAP Array™ software (v3.0.1; BD Biosciences).

Murine rMs Xenograft Model and 
Treatment Protocol
The in vivo experiments were approved by the government com-
mittee (Regierungspräsidium Darmstadt, Darmstadt, Germany) 
and were conducted in accordance to the requirements of the 
German Animal Welfare Act.

Female, 12- to 16-week-old NOD/SCID/IL-2Rγc−/− mice 
(NSG) mice were injected subcutaneously with 105 luciferase 
expressing RDGFP/Luc cells. After visual detection of tumor nodes 
about 3 weeks post-cell injection, mice were imaged by perform-
ing a Cone-Beam CT (CBCT) operating at 65 kV, 0.5 mA and 

irradiated while immobilized with 2.5% isoflurane anesthesia 
(AbbVie, Wiesbaden, Germany) using a Small Animal Radiation 
Research Platform (SARRP, Xstrahl Ltd., Camberley, UK). CBCT 
images were transferred to MuriPlan™ Software and individual 
isocenters were selected for targeted radiation therapy applying 
a two-field geometry. Fractionated single doses of 2.5 Gy using 
a 1–10-mm collimated beam operating at 175 kV, 15 mA were 
applied four times a week to reach a total dose of 27.5 Gy. Post-
termination of RT, adoptive transfer of IL-15 expanded and IL-21 
boosted NK  cells was accomplished in three injections, once a 
week. NK  cells were purified from 11 buffy coats as described 
above and maintained separately during cultivation in 25  cm2 
suspension cell culture flasks (Cellstar, Frickenhausen, Germany) 
using the IL-15 + 21boost protocol as described before. After 10–11, 
17–18, and 24–25  days of ex vivo expansion and stimulation, 
NK cells were harvested, washed, and pooled. The NK cells were 
injected intravenously via the tail vein with 107 NK cells in a total 
volume of 100 µL per mouse. Due to limited availability of NK cell 
numbers, in vivo application was performed with cells from other 
donors than used for proliferation or functional assays.

Tumor growth was monitored by caliper measurements and 
bioluminescence imaging (BLI) using an IVIS Lumina II system 
(Perkin Elmer, Waltham, MA, USA). For the latter method, 
mice were anesthetized by isoflurane inhalation and subcutane-
ously injected with 150 µg of in vivo grade VivoGlo™ luciferin 
(Promega, Madison, WI, USA) dissolved in 100  µL DPBS per 
mouse. Images were acquired after an incubation time of 15 min. 
BLI data analysis was performed using Living Image® software 
(Perkin Elmer).

statistical analyses
Results were analyzed using repeated measures one-way ANOVA 
with the Geisser–Greenhouse correction. For in  vivo experi-
ments, two-way ANOVA was used to compare the tumor-growth 
curves of different treatment groups. Statistical calculations were 
performed using GraphPad Prism v6 (GraphPad, La Jolla, CA, 
USA), and p values <0.05 were considered statistically significant.

resUlTs

il-15-Driven nK cell expansion is not 
impaired by a short-term Boost with il-21
The primary goal of ex vivo expansion of NK cells is to yield high 
cell numbers for adoptive transfer with an appropriate quality 
and optimal cytotoxic functionality of the NK cell product. To 
this end, NK cells were isolated by an immunomagnetic negative 
selection (as described in Section “Materials and Methods”) and 
expanded ex vivo under feeder-cell free cultivation conditions 
addressing the impact of different cytokines. NK cells were cul-
tured with IL-2100 (100 U/mL), IL-21000 (1000 U/mL), IL-15 (10 ng/
mL), IL-21 (25 ng/mL), combinations of these cytokines or IL-15 
and a 3-day IL-21 boost (IL-15 + 21boost). Purity of the enriched 
NK  cells was determined and cell numbers as well as viability 
were monitored over a period of 4–6 weeks (Figures 1A–D).

The average content of starting material after NK cell purifi-
cation consisted of 89% NK  cells. Purity of the CD3negCD56pos 
NK cells decreased slightly on day 3, but increased afterward during 
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FigUre 1 | Expansion and viability of natural killer (NK) cell products. Purified CD56posCD3neg cells were cultivated for 4–6 weeks in the presence of different 
cytokines or cytokine combinations. (a) Proliferation is presented as expansion rate. Here, the mean values of 6–14 donors are shown over time. (B) Viability of 
CD56posCD3neg NK cells was analyzed by DAPI staining at the indicated time points. (c,D) show the donor dependent distribution of values on day 10 for 
proliferation and viability, respectively. Lines represent mean values and SDs. Significant differences are indicated by asterisks (**p < 0.01, ***p < 0.005, one-way 
ANOVA). Although not indicated in the graph, IL-2100 and IL-21 alone induced significantly smaller expansion rates than all other protocols.
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the culturing process. With protocols using IL-15, IL-15 + 21, and 
IL-15 + 21boost, the purity reached over 95% from day 10 on. In 
cultures containing exclusively IL-2 also CD3pos, cells expanded 
and diminished NK  cell purity especially at late culture time 
points after 2–3 weeks (data not shown).

Remarkably, all protocols involving the addition of IL-15, 
such as IL-15 alone, IL-2100  +  15, and IL-15  +  21boost, led to a 
high increase in the number of NK cells over the first 10 days 
reaching a plateau until day 21. Permanent stimulation with 
IL-21 (IL-2100 + 15 + 21 and IL-15 + 21) also provoked rapid but 
less distinct expansion. In general, all expansion rates decreased 
slowly after 3 weeks of ex vivo cultivation (Figure 1A).

High levels of IL-2 (IL-21000) evoked proliferation of NK cells 
during the first 6  days, but average expansion rates declined 

subsequently. Cultivation in the presence of low IL-2 levels  
(IL-2100) or IL-21 alone did not induce proliferation, instead 
NK cells died (Figures 1A–D).

Irrespective of donor-dependent differences, stimulation with 
IL-15, IL-2100 + 15, and IL-15 + 21boost performed better than all 
other stimulation protocols. Of note, permanent exposure to 
IL-21 dampened IL-15-driven expansion, while a short boost 
with IL-21 did not disturb proliferation of NK cells, but, in some 
cases, even increased the expansion rate. With the IL-15 + 21boost 
protocol, expansion rates ranged between 2- and 10-fold depend-
ing on the donor, exhibiting an average 4.5-fold increase on day 
10 of culture (Figure 1C).

Percentages of viable cells decreased during the first days, 
but then recovered upon further stimulation (Figure  1B). 
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Comparisons on day 10 of cultivation indicated significantly 
higher frequencies of viable cells in the product of IL-15-stimulated 
cells than in products obtained from expansion protocols with 
permanent addition of IL-21. Nevertheless, a short boost with 
IL-21 did not significantly affect cell viability compared to IL-15 
mono treatment (Figure 1D).

il-21 Triggers a Mature Phenotype  
of nK cells
Next, we investigated changes in the phenotype and subset com-
position of NK cells triggered by cytokine-induced ex vivo expan-
sion. To monitor their maturation state, NK cells were analyzed 
for the distribution of the CD56highCD16neg and CD56dimCD16pos 
subset over 4–6 weeks (Figures 2A,B). As all stimulation proto-
cols induced an upregulation of the NK cell marker CD56, only a 
discrimination of CD16pos and CD16neg NK cells was implemented 
for further analysis of the maturation state.

Depending on the expansion protocol, the frequency of 
CD16pos NK cells was reduced. Only protocols with permanent 
IL-21 exposure (IL-21, IL-15  +  21, and IL-2100  +  15  +  21) 
maintained a mature phenotype (Figure 2A). This effect became 
more pronounced the longer the ex vivo expansion endured 
(Figures 2A,B). In parallel with the decrease in mature phenotype, 
the proportion of less mature CD16neg NK  cells was increased 
(Figure 2B).

Furthermore, cytokine stimulation induced upregulation 
of activating and inhibitory receptors on the NK  cell surface 
(Figure 2C). Interestingly, different cytokine combinations led to 
a significant increase of apoptosis inducing TRAIL or FAS ligand 
(FAS-L) in line with enhanced expression of TRAIL-R and FAS. 
We further observed that the presence of IL-21 had an additive 
effect with IL-15 regarding an enhanced surface expression 
of TRAIL, TRAIL-R, DNAM-1, FAS, FAS-L, NKp46, but also 
inhibitory NKG2A. For NKG2D, NKp30, NKp44 and inhibitory 
KIR2D and CD158 e/k (KIR3DL1/DL2), IL-21 counteracted the 
up-regulating effect of IL-15.

TRAIL, DNAM-1, NKp46, and NKG2A were rapidly upregu-
lated upon short exposure to IL-21 if cells were pre-stimulated 
with IL-15 (IL-15 + 21boost) and reached expression levels similar 
to those of NK cells stimulated permanently with IL-15 and IL-21 
(IL-15 + 21). By contrast, changes in the levels of other surface 
markers were less rapid, showing significant differences for cells 
stimulated following the different protocols.

Almost all CD16neg NK cells expressed two of the three acti-
vating receptors, NKG2D, DNAM-1, and NKp44, only a small 
fraction of these cells expressed only one (NKG2D) and an even 
smaller fraction none. After 6 days of NK cell expansion, almost 
all CD16neg NK cells co-expressed all three receptors (Figure S1 
in Supplementary Material, left panels). Among the CD16pos 
fraction, half of it expressed only NKG2D and half co-expressed 
NKG2D and DNAM-1. After expansion with IL-15 alone or an 
additional short-term IL-21 boost, on day 6 of culturing, half of 
the CD16pos fraction expressed all three receptors, and half co-
expressed two. Permanent exposure to IL-21 further increased 
the fraction of CD16pos NK cells that co-expressed all three recep-
tors. Altogether, no prominent difference in the co-expression of 
NKG2D, NKp44, and DNAM-1 was observed upon expansion 

with the three different protocols (Figure S1 in Supplementary 
Material, right panel).

To analyze the kinetics of the receptor expression induced by 
the different expansion protocols based on the use of IL-15 and/or 
additional IL-21, flow cytometry data were acquired at three time 
points, before stimulation, early at day 6, and late at day 18 (Figure 
S2 in Supplementary Material). Permanent presence of IL-21 
diminished the expression of NKG2D, NKp30, and NKp44 on 
the NK cell surface. In contrast, it had hardly any influence, when 
applied after an IL-15-induced expansion phase. Expression of 
NKp46 was only slightly reduced by long-term IL-21 treatment. 
The higher expression level of DNAM-1, aroused by perma-
nent presence of IL-21, stayed stable over time (Figure S2A in 
Supplementary Material).

Inhibitory receptors of the KIR family (KIR2D and CD158e/k/
KIR3D) did not show any relevant changes during NK cell expan-
sion, while NKG2A was strongly upregulated during NK  cell 
expansion, independent from the cytokines used (Figure S2B in 
Supplementary Material).

Besides DNAM-1, expression of the adhesion molecules LFA-1 
(CD11a) and 4-1BB (CD137) was addressed. Expression of LFA-1 
was early increased under all tested cytokine conditions. In con-
trast, 4-1BB (CD137) was upregulated only after a longer culture 
period (Figure S2C in Supplementary Material). Accordingly, 
no prominent differences in conjugate formation were observed 
comparing the NK  cells of all three tested cytokine expansion 
protocols (Figure S2D in Supplementary Material).

short stimulation with il-21 increases  
nK cell cytotoxicity
Besides an increase in the yield of of NK cells, another aim of 
the ex vivo expansion is to obtain a therapeutic cell product that 
mediates optimal anti-tumor activity. In case of NK cell immuno-
therapeutics, cytotoxicity is a valuable indicator of functionality. 
Accordingly, cytotoxicity of cytokine-expanded NK  cells was 
tested against targets such as the erythroleukemia cell line K562 
and the RMS cell lines RD and RH30. The RD cell line represents 
the embryonal subtype of RMS while RH30 represents the alveo-
lar subtype, which is more difficult to treat.

A short boost with IL-21 increased the cytotoxic effect of 
NK  cells toward all three cell lines compared to stimulation 
with IL-15 alone or permanent exposure to IL-21 (Figure 3). An 
increase in specific lysis of approximately 10% was achieved by 
an IL-21 boost for all three cell lines as compared to sole IL-15 
stimulation.

Cytotoxicity of expanded NK cells decreased with longer cul-
ture periods and reduced from 60% on day 6 to 40% on day 10 and 
14 (E:T = 10:1). Still cytotoxicity of continuously expanded cells 
was superior to cytotoxicity of NK cells that were cryoconserved 
after 6 days of cytokine expansion (Figure S3A in Supplementary 
Material).

Despite the decrease in CD16pos NK cell numbers, no decrease 
of ADCC was observed with NK cells expanded with the IL-15 
or IL-15 + 21boost protocols compared to NK cells expanded with 
the IL-15 + 21 protocol in an assay against ErbB2pos RD cells sup-
plemented with anti-ErbB2 antibody Trastuzumab. All expan-
sion protocols resulted in an additional lysis of about 5 to 10% 
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FigUre 2 | Regulation of surface markers. Purified CD56posCD3neg cells were cultivated for 4–6 weeks with different cytokines or cytokine combinations. (a) At 
indicated time points, frequencies of CD16pos natural killer (NK) cells were assessed by flow cytometry. The graph represents means of 5–11 independent donors. 
(B) The graphs show the distribution of CD16pos cells and their CD16neg counterpart within CD56pos NK cells on days 10 and 21. Bars represent mean values of 5–11 
independent donors, lines indicate SDs. (c) Expression of various activating and inhibitory receptors after 6 days of cultivation is shown for selected protocols. Bars 
represent mean values of three independent donors, lines indicate SDs. Significant differences are indicated by asterisks (*p < 0.05, one-way ANOVA).
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FigUre 3 | Cytotoxic capacity of ex vivo expanded natural killer (NK) cells against erythroleukemia cell line K562 and RMS cell lines RD and RH30. NK cells were 
expanded for 6 days utilizing the stimulation protocols indicated. Data are given as mean values and SDs obtained with E:T ratios of 10:1 after 5 h of co-incubation. 
Specific lysis was calculated by substracting spontaneous lysis values from frequencies of dead target cells. Spontaneous lysis was determined from target cells 
cultured without NK cells. Here, combined results from independent donors are shown (n = 10; n = 5 for NK cells expanded with IL-15 + 21 vs. RH30). Assays 
were performed in tripliates for each donor. Asterisks indicate significant differences (*p < 0.05, **p < 0.01, ***p < 0.005; vs. K562 and vs. RD: one-way ANOVA; vs. 
RH30: Student’s t-test).
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by ADCC at an E:T ratio of 10:1 (Figure S3B in Supplementary 
Material).

The il-21-Dependent increase in nK cell 
cytotoxicity is Based on elevated 
Degranulation
To execute cytotoxicity upon activation by target cell recognition, 
one basic mechanism of NK cells is to degranulate and release 
cytolytic enzymes. In order to assess the impact of IL-21 to the 
cytolytic capacity and the underpinning mechanism, we stained 
for CD107a (lysosomal-associated membrane protein 1), which 
is located in the membranes of lytic granules and is expressed on 
the NK cell surface upon degranulation when lytic granules fuse 
with the outer membrane (47, 48).

Exposure to IL-21 during cultivation significantly increased 
the number of degranulating cells compared to IL-15 mono-
treatment. This effect was rapidly induced after a short boost 
with IL-21. Permanent stimulation with IL-21 evoked similar 
results, suggesting that degranulation activity is maintained in 
the continuous presence of IL-21 (Figure 4A).

To further investigate if granule exocytosis is associated with 
cytolytic functionality, the expression of the pore-forming protein 
perforin and the serine protease granzyme B was addressed by 
immunoblotting. Indeed, expression and release of both proteins 
were induced strongly upon continuous stimulation with IL-21, 
but not subsequent to a short boost with IL-21 (Figures 4B–D). In 
particular, permanent presence of IL-21 in the culture provoked 
roughly a doubling of the relative expression of granzyme B and 
perforin in comparison to short-term or no IL-21 (Figures 4C,D).

In accordance with the slower induction of de novo produc-
tion of granzyme B and perforin after short-term compared with 
continuous exposure to IL-21, apoptosis-inducing enzymes were 

released to a lesser extent despite similar degranulation levels 
were observed under both conditions (Figures 4A,B).

To further evaluate if this increase of degranulation was cor-
related with an increase of PI3K pathway signaling, we measured 
the phosphorylation of AKT and ERK1/2. Both were upregulated 
using IL-15 for expansion and even more with additional IL-21 
(Figure S4 in Supplementary Material).

il-21 exposure increases cytokine 
release by nK cells
Natural killer cells can mediate direct cytotoxicity but also have an 
immunoregulatory function. The latter is achieved by secretion of 
cytokines. Hence, we analyzed the release of different cytokines 
after ex vivo expansion of NK cells using cytometric bead arrays 
(Figure 5).

Secretion of TNF-α was induced slightly by IL-15 and increased 
significantly upon stimulation with IL-21. Remarkably, after 
short-term exposure to IL-21, the TNF-α level was even higher in 
comparison with a continuous exposure to IL-21. A similar effect 
was observed for GM-CSF, although to a lesser extent. IFN-γ con-
centrations were significantly elevated with both protocols that 
utilized IL-21 causing a 10-fold increase in IFN-γ levels compared 
to IL-15 alone. Similarly, MIP-1α was secreted to a higher extent 
in the presence of IL-21 compared with IL-15 alone, independent 
of the duration of administration (Figure 5).

Levels of MCP-1 were similar for all three stimulation proto-
cols, while IL-8 release was gradually more induced by IL-21 as 
compared to IL-15 alone and was further increased depending 
on the duration of IL-21 exposure. Also the levels of anti-inflam-
matory IL-10 were increased depending on the duration of IL-21 
presence. In contrast, IL-15 application alone almost prevented 
secretion of IL-10 by NK cells (Figure 5).
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FigUre 4 | Natural killer (NK) cell degranulation capacity, intracellular production, and release of apoptosis-mediating enzymes induced by selected ex vivo 
expansion protocols. Purified NK cells were kept in culture for 6 days using indicated protocols. (a) CD107a levels on the surface of cells were acquired by flow 
cytometry. Bars express mean values from four independent donors, lines indicate SDs. (B) Exemplary immunoblot analysis of supernatants and lysates of NK cells 
from one representative donor after stimulation with selected ex vivo expansion protocols. Proteins were detected using monoclonal antibodies against human 
perforin, γ-tubulin, and granzyme B. (c,D) Mean values and SDs of intracellular production of granzyme B and perforin obtained from three independent donors. 
Values are calculated in relation to γ-tubulin expression. Asterisks indicate significant differences (*p ≤ 0.05, **p ≤ 0.01, one-way ANOVA).
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il-21-Boosted stimulation enables In Vivo 
cytotoxicity of nK cells following 
adoptive Transfer in a Xenograft Model
Given that NK  cells cultured with the IL-15  +  21boost protocol 
exhibited the highest expansion rate and cytotoxic activity toward 
different target cells, we finally aimed to validate the in vivo effec-
tiveness of NK cells expanded with the two-phase protocol in a 
RMS xenograft model. To this end, NOD/SCID/IL-2Rγc− (NSG) 
mice were subcutaneously injected with the RDGFP/Luc cell line and 
after establishing tumors, mice were locally irradiated by an image 

guided high precision local RT (Figure 6A). Subsequently, adop-
tive transfer of IL-15 + 21boost continuously expanded NK cells was 
performed by three consecutive injections of 107 NK cells. Tumor 
burden was monitored by caliper measurement (not shown) or 
BLI analysis of eight mice per group over 79 days (Figure 6B). 
Animals treated with RT monotherapy displayed a significant 
decrease in luciferase intensity indicating a growth retardation 
(Figures  6C,D). Following combined RT and NK  cell therapy, 
the cytostatic effect was even more pronounced as compared to 
untreated or irradiated tumor-bearing controls (Figures 6B–E).
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FigUre 5 | Release of cytokines by purified natural killer (NK) cells upon stimulation with selected expansion protocols. Purified NK cells were cultured using 
different stimulation protocols. On day 6, release of tumor necrosis factor (TNF)-α, IFN-γ, macrophage inflammatory protein (MIP)-1α, monocyte chemoattractant 
protein (MCP)-1, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-8, and IL-10 were assayed by cytometric bead array analyses. Graphs show 
mean values and SDs obtained from four independent donors, except GM-CSF, which was measured for three independent donors. Asterisks indicate significant 
differences (*p < 0.05, one-way ANOVA).
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DiscUssiOn

Immunotherapy represents a promising approach against malig-
nant diseases. In this context, NK cells have been explored for 
several years because they exhibit prevailing anti-tumor activity 
(9, 49–54). A major advantage of NK cell-based immunotherapy 
is the possibility to employ these cells in an allogeneic or haploi-
dentical setting (6, 55, 56) without causing, or even preventing, 
GvHD (37–41). Numerous attempts have been made to expand 
NK cells efficiently for adoptive cell transfer focusing on different 
aspects such as high yields, efficient activation, cytotoxic poten-
tial, and/or good manufacturing practice (GMP) adequacy (27). 
Unfortunately, there are only limited publications available that 
state expansion rates after stimulating NK  cells with cytokines 
only. Especially protocols using IL-21 on purified NK  cells are 
quite rare. Wendt et al. did not mention absolute NK cell numbers 
but found an increased proliferation upon an IL-2 + 21 expansion 
over 72 h as shown by [3H] thymidin incorporation. Researchers 
around Koehl et al. repeatedly reported expansion rates between 
four and five times after 12–14 days of culturing with high dose 
IL-21000. These results are similar to ours obtained with IL-15 or 

IL-15  +  21boost, although our IL-21000 expansion did not exceed 
a three times increase in our tests. Compared to that, protocols 
allowing additional accessory PBMCs resulted in an expansion 
rate of 23-fold by IL-15 (57), while under addition of IL-21 only 
a 3.7-fold expansion rate was reached (23). Addition of gene 
modified feeder cells resulted in several hundreds of multiplica-
tions. When IL-21 was added to such culturing conditions, an 
expansion of up to 2.7 × 1011 was reached after 46 days (24). The 
use of membrane bound IL-21 and 4-1BB ligand still led to an 
expansion of more than 105-fold (26).

In order to avoid contamination by possible GvHD causing cell 
subsets or genetically modified, tumor-derived feeder cells, we 
used purified NK cells for defining efficient expansion protocols. 
The major goal of the present study was to establish a feeder-cell 
free protocol for efficient expansion of primary NK cells and the 
improvement of their cytolytic capability to target highly aggres-
sive and radiation-resistant RMS.

Natural killer cells were purified from buffy coats and stimu-
lated with selected common γ-chain cytokines in different com-
binations. In the case of IL-2 stimulation, this study confirmed 
that the number of NK cells decreased under a low level of IL-2 
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FigUre 6 | Adoptive transfer of ex vivo IL-15-expanded and IL-21 boosted natural killer (NK) cells into RMS-bearing NSG mice subsequent to radiotherapy (RT). 
Mice were subcutaneously injected with 105 RD cells and 3 weeks later, tumor-bearing mice underwent local RT, followed by adoptive transfer of 107 NK cells by 
three weekly injections. NK cells were generated using the IL-15 + 21boost protocol. (a) Exemplary CT-image guided planning of high precision tumor irradiation with 
a two-field geometry and RT isocenter presented in a horizontal and lateral view. (B) Time course of tumor growth, showing mean average radiance values from 
eight mice per group. The gray area indicates the period of RT, arrows indicate time points of NK cell administration. Significant differences are given as asteriks 
(*p ≤ 0.05). (c) Pictures from bioluminescence imaging (BLI) of exemplary mice from each treatment group obtained before starting treatment (day 20), after 
termination of RT (day 41), and at the end of the experiment (day 72). (D) Kinetics of relative tumor growth rates normalized to tumor size at onset of NK cell 
treatment and (e) at day 72 after tumor inoculation. Displayed are mean values from eight mice per group and single values for each mouse (e). Dead mice are 
shown as empty circles, asterisks indicate significant differences (*p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.001, two-way ANOVA).
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(100  U/mL) and increased only slightly upon administration 
of a high concentration of IL-2 (1000 U/mL) (Figure 1A) (14). 
However, as low IL-2 levels were shown to reduce CD3pos T cell 
outgrowth from contaminating cells remaining after NK  cell 
purification (58), combinations of a low IL-2-dosis with other 
cytokine stimulants more specifically improve NK cell expansion 
(59, 60). Of note, all IL-15-based expansion protocols, which 
were tested in this study, induced an increase in the amount of 
NK  cells in the early expansion phase. In contrast, long-term 
presence of IL-21 negatively influenced NK  cell proliferation 
capacity, while a short-time IL-21 boost up to 3 days enhanced 
proliferation and NK cell cytotoxicity (Figures 1A,C and 3). In 
fact, the effects of IL-21 in NK cell proliferation are controversial. 
Immobilized or membrane-bound IL-21 has a positive effect on 
NK cell expansion (25, 61). Also, the longer survival of human 
NK  cells following combined IL-21 and IL-2 stimulation has 
been reported (18). Conversely, an IL-21-induced apoptosis 
resulting in limited life span of NK  cells has been described  
(20, 62). Overall, IL-21 appears to play an essential role in NK cell 
activation and cytotoxicity (21, 62).

Here, we observed a decline in the viability of NK cells after 
long-term exposure to IL-21 when added to other cytokines. 
Based on this observation, we developed a two-phase protocol 
first using IL-15 for the optimal expansion of NK cells, comple-
mented by short-term addition of IL-21 to support proliferation 
and enhance the cytotoxic potential (IL-15 + 21boost; Figures 1A,B 
and 3). Regarding the cytokine-induced expansion of NK cells, 
it is important to note that most published and also our own 
results demonstrate a strong donor-dependent variability. It will 
be of high interest and potential clinical relevance to address and 
better understand underlying mechanisms of a donor-dependent 
variation in cytokine-induced NK cell response.

Cytokine stimulation and ex vivo expansion modulate the phe-
notype and function of NK cells (52). CD56 surface expression 
has been reported to be reduced during the purification process, 
down to complete absence of CD56 from the cell surface, but to 
be upregulated upon in vitro stimulation (63). Accordingly, we 
also found an increased expression of NK cell activating recep-
tors upon cytokine stimulation (Figure 2). The CD16-expressing 
NK  cell population was diminished during stimulation with 
IL-2 or IL-15 (Figure  2A), as previously reported to be medi-
ated by metalloproteinase ADAM17 (64–66). In contrast, IL-21 
maintained surface expression of CD16, hence, increasing 
the frequency of the more mature CD16pos NK  cell population 
(Figure 2B).

In parallel with the changes in CD16 expression, apoptosis-
mediating receptors and ligands such as TRAIL, FAS, and 
FAS-L were upregulated upon cytokine-induced expansion. In 
this respect, we observed a marked increase in FAS expression 
triggered by all protocols (Figure 2C), confirming recent reports 
(67, 68). Usually, this mechanism is employed for the killing of 
tumor cells but also plays a part in the achievement of lymphocyte 
homeostasis following immune responses against infections (69). 
Herein, we observed TRAIL, FAS-L, DNAM-1, and NKp46 to be 
expressed strongly on the NK cell surface under IL-21 stimula-
tion when compared with IL-15 stimulation alone (Figure 2C). 
In contrast, the expression of NKG2D, NKp30, and NKp44 was 

reduced under the influence of IL-21. It has been reported that 
NKp44 is downregulated by IL-21 treatment post-IL-15 stimula-
tion (70, 71). Also, a decreased expression of NKp44 and NKG2D 
was attributed to IL-21-mediated inhibition of DAP10 and 
DAP12 (71, 72). In contrast, our results showed that the down-
stream signaling of DAP10 via the PI3K pathway was activated 
by IL-15, and even increased upon usage of IL-21 for NK  cell 
expansion (Figure S4 in Supplementary Material). Upregulation 
of AKT phosphorylation is known to correlate with proliferation 
and cell survival. The even more activated ERK1/2 is associated 
with NK cell cytotoxicity, mediated by perforin and granzyme B 
mobilization (73, 74).

The maturation and activation state of NK  cells in the final 
product is important, but the ability to carry out cytolytic func-
tions is crucial. In line with that, we analyzed specific killing of 
the K562 erythroleukemia cell line as well as rhabdomyosarcoma 
cell lines RD and RH30. We observed an increase of cytotoxic-
ity upon using the IL-15  +  21boost protocol compared to IL-15 
mono-treatment (Figure 3). For repeated NK cell applications, 
we tested continuously expanded cells and compared their 
cytotoxicity to that of cryopreserved cells. In line with reports 
on IL-15-stimulated NK cells (75), in our study, we observed a 
reduced cytotoxic capacity of cryopreserved cytokine-stimulated 
compared to continuously expanded NK  cells (Figure S3A in 
Supplementary Material) and therefore performed analysis with 
the latter if several rounds of NK cell application were necessary. 
Another advantage of NK  cell expansion using a feeder cell 
free IL-15 + 21boost protocol will be that it easily fulfils the GMP 
criteria required for clinical application. Previous reports showed 
that IL-15-stimulated NK cells may attack various RMS cell lines 
more efficiently than unstimulated NK  cells. Moreover, these 
investigations indicated that DNAM-1 and NKG2D may com-
prise initiators of cytotoxicity for resting NK cells, while killing by 
IL-15-stimulated NK cells involves additional factors including 
NKp30 and NKp46 (76). In our study, IL-21 enhanced NK cell 
cytotoxicity compared to IL-15 mono-treatment, increased 
DNAM-1 but reduced NKG2D expression. Although, LFA-1, 
among others, has been shown to be involved in the degranula-
tion process (77) and we observed an increase in degranulating 
cells after prolonged IL-21 exposure or an IL-21 boost, we did not 
notice any difference in the expression levels of CD11a between 
the different stimulation protocols and also no prominent differ-
ences in the ability to form target cell conjugates (Figures S2C,D 
in Supplementary Material).

As previous reports showed that IL-21 induced killing can be 
independent from death receptor expression (62), but mediated 
by perforin (78), we investigated the release of lytic granules as 
one main mechanism mediating NK  cell cytotoxicity. Indeed, 
IL-15 + 21boost-stimulated NK cells showed an increased exposure 
of CD107a (Figure  4A), which is known to be an indicator of 
NK cell activity and degranulation (48). We further found that 
IL-21 strongly induced synthesis and release of granzyme B and 
perforin, but only after prolonged exposure. This is in accordance 
with reports on an increased production of perforin and IFN-γ in 
cytotoxic CD8pos T cells from HIV patients upon IL-21 stimula-
tion (79). Moreover, upregulation of intracellular perforin was 
reported for CD56pos cells from HIV-infected individuals (80), 
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from stimulated PBMCs (18) and from patients with malignant 
melanoma upon IL-21 stimulation (81). Moreover, the increased 
activation of AKT and ERK signaling that we observed with IL-21 
has been reported to be accompanied by intracellular perforin 
and granzyme B redirection (73).

Although cytokine release follows pathways distinct from lytic 
granule exocytosis, both mechanisms often are regulated simi-
larly (82). In parallel to the release of lytic granules, secretion of 
TNF-α and IFN-γ was elevated after IL-21 stimulation (Figure 5). 
In the context of an immunocompetent host, NK cells not only 
contribute to the immune response by direct cytotoxicity but 
also as mediators at an intersection between innate and adaptive 
immunity (83, 84). Surprisingly, secretion of IL-10 was strongly 
induced by IL-21, but not by IL-15. As IL-10 is reported to play a 
crucial role in immune suppression, its function following IL-21 
stimulation remains to be evaluated. Nevertheless, opposing 
effects were reported for IL-12, which was shown to activate 
NK cells and trigger pro-inflammatory T cell responses (85, 86), 
but also to induce IL-10 secretion (87).

Finally, we addressed the in  vivo anti-tumor efficacy of 
IL-15  +  21boost expanded NK  cells if combined with ionizing 
radiation in a RMS xenograft model. Adoptive NK cell immu-
notherapy in combination with RT has been addressed only in 
a few studies so far. Ames et al. recently reported that NK cell 
inoculation was effective at targeting cancer cells with a stem cell 
phenotype from a variety of solid malignancies, which was most 
effective when combined with RT before application (88). It has 
further been shown that a combined transfer of IL-12 + 15 + 18 
activated NK  cells and high dose (5  Gy) synchronous irradia-
tion resulted in a growth retardation of RMA-S lymphoma and 
B16-RAE-1ε tumor cells (84). Consequently, in our proof of 
principle approach, we performed a multimodal treatment with a 
preceding local RT followed by adoptive transfer of IL-15 + 21boost 
expanded NK cells. Here, we confirmed that combined NK cell 
immunotherapy and RT was superior to RT monotherapy in 
terms of growth retardation, which reaches a level of significances 
at 7.5  weeks. Moreover, for that purpose, a mouse CT-image 
guided and individually planed local irradiation procedure 
was applied using a SARRP with a fractionated daily 2.5 Gy RT 
protocol that to higher extent reflects the clinical situation where 
patients were treated with single 1.8 to 2 Gy fractions. Notably, 
combined modality treatment failed to cure the tumor burden 
(Figures 6B,D) indicating the necessity for advanced protocols 
with several repeated NK transfers or additional in vivo cytokine 
injections to further increase therapeutic efficacy. This will be 
addressed in future investigations.

In conclusion, we presented an optimized protocol for ex vivo 
NK cell expansion that combines the positive effects of both IL-15 
and IL-21 on proliferation and activity of NK cells and that offers 
an ideal expansion protocol also under GMP conditions due to 
the absence of feeder cells. Additionally, our findings demonstrate 

the high in vitro and in vivo antitumor efficacy of IL-15 + 21boost 
expanded NK cells, which may become useful for the develop-
ment of innovative combined modality treatment strategies for 
radiation-resistant RMS.
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Clinical studies with adoptive immunotherapy using allogeneic natural killer (NK) cells 
showed feasibility, but also limitation regarding the transfused absolute cell numbers. 
First promising results with peripheral blood mononuclear cells (PBMCs) as feeder 
cells to improve the final cell number need further optimization and investigation of the 
unknown controlling mechanism in the cross-talk to NK cells. We investigated the influ-
ence of irradiated autologous PBMCs to boost NK cell proliferation in the presence of 
OKT3 and IL-2. Our findings demonstrate a requirement for receptor–ligand interactions 
between feeders and NK cells to produce soluble factors that can sustain NK cell pro-
liferation. Thus, both physical contact between feeder and NK cells, and soluble factors 
produced in consequence, are required to fully enhance NK cell ex vivo proliferation. 
This occurred with an indispensable role of the cross-talk between T cells, monocytes, 
and NK  cells, while B  cells had no further influence in supporting NK  cell prolifera-
tion under these co-culture conditions. Moreover, gene expression analysis of highly 
proliferating and non-proliferating NK cells revealed important phenotypic changes on 
5-day cultured NK cells. Actively proliferating NK cells have reduced Siglec-7 and -9 
expression compared with non-proliferating and resting NK cells (day 0), independently 
of the presence of feeder cells. Interestingly, proliferating NK cells cultured with feeder 
cells contained increased frequencies of cells expressing RANKL, B7-H3, and HLA 
class II molecules, particularly HLA-DR, compared with resting NK cells or expanded 
with IL-2 only. A subset of HLA-DR expressing NK  cells, co-expressing RANKL, 
and B7-H3 corresponded to the most proliferative population under the established  
co-culture conditions. Our results highlight the importance of the crosstalk between 
T  cells, monocytes, and NK  cells in autologous feeder cell-based ex vivo NK  cell 
expansion protocols, and reveal the appearance of a highly proliferative subpopulation 
of NK  cells (HLA-DR+RANKL+B7-H3+) with promising characteristics to extend the 
therapeutic potential of NK cells.

Keywords: natural killer cells, ex vivo expansion, immunotherapy, hla-Dr, ranKl, B7-h3
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inTrODUcTiOn

Among the different approaches of immunotherapy to treat 
cancer, natural killer (NK) cells are very promising cell types with 
impressive outcomes in clinical studies. NK cells are innate lym-
phoid cells (1). They are characterized by their potent cytotoxic 
responses against virus-infected and malignantly transformed 
cells, without the need of prior immune sensitization, and in a 
major histocompatibility complex-unrestricted manner (2, 3). In 
addition, NK cells produce cytokines such as TNF-α and IFN-γ,  
which enhance immune responses, and engage in reciprocal 
interactions with other immune cells that contribute to different 
immune responses including anti-tumor effects (4).

To date, allogeneic NK cells for adoptive immunotherapy have 
already entered clinical studies successfully for both applications, 
post stem cell transplantation (5, 6), and in non-transplant set-
tings to treat cancer patients (7–9). However, manufacturing of 
NK cells directly isolated from apheresis products can result in 
varying quantity (10, 11) and yield not always sufficient amounts 
to carry out multiple applications (12–14). An increase in the 
number of functional NK cells by ex vivo expansion methods is 
therefore of high interest and has recently been summarized (13).

Natural killer cells require multiple signals for their ex vivo 
survival, proliferation, and activation, involving soluble factors and 
the necessity of physical interactions with other cells. All of these 
components can be conveniently supplied by feeder cells (14, 15). 
Different types of feeder cells have been tested for their potential 
in supporting NK cell ex vivo expansion from both, autologous or 
allogeneic origin. Typically, they are irradiated prior to use and sup-
plemented with survival and activating factors such as the cytokines 
IL-2 and IL-15 and/or the anti-CD3 monoclonal antibody (mAb) 
OKT3. Several approaches using autologous peripheral blood 
mononuclear cells (PBMCs) as feeder cells have demonstrated their 
utility to generate sufficient NK cell numbers for clinical applications 
(16–19). In terms of clinical manufacturing, autologous PBMCs are 
the preferable choice to avoid safety issues that allogeneic feeder 
cells may rise. Despite these advantages, little is known about the 
positive effect of autologous feeder cells on NK cell proliferation 
and activation. A beneficial role of monocytes in promoting NK cell 
ex vivo proliferation has been proposed (20). However, the under-
lying cellular and molecular changes that NK cells undergo during 
active proliferation yet need to be unraveled.

In this study, we established a co-culture system with autolo-
gous PBMCs to examine which components have a significant 
influence concerning the enhancement of NK cell proliferation. 
We further characterized the cellular and molecular changes 
occurring in actively proliferating NK cells. Our data provide a 
better understanding of mechanisms influencing and modulating 
ex vivo NK cell proliferation and might be the base to improve 
harmonized manufacturing protocols for future clinical NK cell 
studies.

MaTerials anD MeThODs

cells and cell lines
Buffy coats from healthy donors (Klinikum Dortmund) were 
used for PBMC isolation. Daudi JP cells were a kind gift of  

Dr. R. Seggewiss-Bernhardt, University Hospital of Wuerzburg, 
who obtained them from Prof. P. Fisch, University of Freiburg 
(21), and K562 cells were obtained from the German Collection of 
Microorganisms and Cell Cultures (DSMZ). Both cell lines were 
maintained in complete RPMI medium, RPMI 1640 (Biowest) 
supplemented with 10% fetal bovine serum (Biochrom), and 
2 mmol/L L-glutamine (PAA), in a humidified atmosphere with 
5% CO2 at 37°C.

nK cell isolation and co-culture with 
autologous PBMcs
Peripheral blood mononuclear cells were isolated from buffy 
coats by density gradient centrifugation using Pancoll (PAN-
Biotec). To obtain different feeder cell fractions, PBMCs were 
depleted first of CD56+ cells by MACS sort using anti-CD56 
microbeads (Miltenyi Biotec), and when indicated they were 
further depleted of CD19+ and CD3+ or CD14+ cells using the 
corresponding microbeads (Miltenyi Biotec). The differently 
depleted PBMCs fractions were X-ray irradiated (20 Gy) (RS 2000  
Biological Research Irradiator, Radsource) and used as autolo-
gous feeder cells for co-culture with NK  cells within 1–1.5  h 
post-irradiation. The irradiated autologous CD56-depleted 
PBMCs (“IAPs”) were used as the major feeder cells. NK cells 
were purified from PBMCs using the human NK cell isolation kit 
(Miltenyi Biotec), and expanded in 24-well plates, either in co-
culture with autologous feeder cells at a 20:1 feeder-NK cell ratio, 
based on protocol from Ahn et al. (16), or without feeder cells, in 
complete culture medium; TexMACS medium (Miltenyi Biotec) 
supplemented with 5% human AB serum (Life Technologies) 
and 1,000 U/mL of Proleukin S (rhIL-2) (Novartis). Co-cultures 
were additionally supplemented with 10  ng/mL of anti-CD3 
mAb (functional grade OKT3, Miltenyi Biotec). When indi-
cated, NK cells were labeled prior cultivation with CellTrace™ 
Violet Cell Proliferation Kit [cell trace violet (“CTV”) dye] 
(Life Technologies). Initial total cell densities of cultures were 
1 × 106 cells/mL. Culture plates were incubated in a humidified 
atmosphere with 5% CO2 at 37°C. To determine NK  cell fold 
expansions, NK cell densities were checked at different indicated 
time points by volumetric counting and detection of viable 
CD3−CD56+ cells using MACSQuant Analyzer 10 (Miltenyi 
Biotec). For 12-day expansions, NK cells were harvested from 
24-well plates on day 7 and transferred to 25 or 75 T-flasks with 
replenishment of fresh medium without OKT3. Fresh medium 
was additionally replenished on day 9 or 10.

co-cultures in Transwell® Plates
Purified NK cells were cultured for up to 5 days with or without 
IAPs in 12-well polystyrene plates equipped with Transwell® 
inserts (Costar). The insert system consisted of a 500 µL upper 
well (12 mm diameter), separated from the bottom well (1.5 mL) 
by a 0.4 µm microporous tissue culture-treated polycarbonated 
membrane. All cells were resuspended in complete culture 
medium and IAPs suspensions were supplemented with OKT3 as 
described. Four different culture conditions were established, all 
of them containing 1 mL of NK cells (5 × 105 cells/mL) at the bot-
tom wells. In two conditions, either 1 mL of complete medium or 
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1 mL of IAP suspension were added to the NK cells on the bottom 
wells, and upper wells were left empty. In two other conditions, 
either 1 mL of IAP suspension (10 × 106 cells/mL) was inoculated 
through the insert, or a combination of 0.5 mL of IAPs (10 × 106 
cells/mL) and 0.5 mL of purified NK cells (5 × 105 cells/mL) was 
inoculated, remaining the inoculated cells in both situations on 
the upper well of the insert. Transwell plates were incubated in a 
humidified atmosphere with 5% CO2 at 37°C.

Flow cytometry
Natural killer cell frequencies were determined using the follow-
ing panel of mAbs from Miltenyi Biotec: CD45-VioGreen (5B1), 
CD3-FITC (BW264/56), BDCA1-PE (AD5-8E7), CD14-PE 
(TÜK4), CD19-PEVio770 (LT19), CD16-APC (VEP13), and 
CD56-APCVio770 (REA196). In experiments with feeder cell 
fractions containing additional depletions of CD19+ and CD3+ 
or CD14+ cells, the mAb BDCA-2-PE (AC144) was included 
instead of CD14-PE, and CD16-APC replaced by CD14-APC. 
The human FcR Blocking Reagent from Miltenyi was also used 
to block unspecific antibody binding to Fc receptors on CD14+ 
enriched feeder cell fractions. Propidium iodide (Miltenyi Biotec) 
was used at a final concentration of 1 µg/mL to exclude dead cells 
from the analysis.

To study the phenotypic differences between resting, prolif-
erating, and non-proliferating NK cells, cells were labeled prior 
cultivation with or without IAPs, with the cell trace proliferation 
dye eFluor®670 (eBioscience), in order to differentiate proliferat-
ing and non-proliferating cells. Different candidate molecules 
were analyzed using several antibody panels designed based on 
previous work (22). These panels shared a backbone of mAbs: 
CD45-VioGreen, CD3-VioBlue, TCRγδ-VioBlue (11F2), CD14-
VioBlue, CD19-VioBlue, and CD56-APCVio770, and SYTOX® 
Blue (Life Technologies) was used to exclude dead cells from the 
analysis. The backbone was combined with groups of the following 
mAbs (Miltenyi Biotec unless otherwise indicated): KLRB1-FITC 
(191B8), CTLA-4-PE (BNI3), Siglec-9-PEVio770 (REA492), 
Siglec-7-PerCP700 (REA214), LILRB1-FITC (GHI/75), 
KLRG1-PE (REA261), CD16-PerCP700 (VEP13), RANKL-PE 
(DN254), B7-H3-PEVio770 (FM276), NKp44-PEVio770 (2.29), 
NKp80-FITC (4A4.D10), 4-1BB-PE (4b4-1), 2B4-PEVio770 
(REA112), NKG2D-PerCPCy5.5 (1D11) (Biolegend), HLA-DP/
DQ/DR-FITC (REA332), ALCAM-PEVio770 (REA442), HLA-
A/B/C-PerCPVio700 (REA230), and HLA-DR-FITC (AC122). 
The corresponding mouse immunoglobulin (Ig) G1, IgG2A, 
IgG2B, IgM, or REAs conjugated with the respective dyes were 
used as isotype controls. Cells were acquired using MACSQuant 
Analyzer 10 and analyzed using MACSQuantify 2.8 software 
(Miltenyi Biotec).

cytokine Detection
Supernatants from co-cultures of NK  cells with IAPs further 
depleted of CD19+, and CD3+ or CD14+ cells were collected 
after 5 days and cytokine production was detected using the flow 
cytometry bead-based array MACSPlex Cytokine 12 kit, human 
according to manufacturer’s instructions (Miltenyi Biotec). The 
MACSPlex Cytokine 12 kit allows for the detection of human 
GM-CSF, IFN-α, IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, 

IL-12p70, IL-17A, and TNF-α. Samples were acquired using a 
MACSQuant Analyzer 10 and analyzed using the Express Mode 
option of the MACSQuantify 2.8 software (Miltenyi Biotec).

cytotoxicity assays
Target cell killing of K562 and Daudi JP cell lines was analyzed 
using a flow cytometry-based assay (23). Briefly, target cells were 
labeled with CTV dye and seeded in 96 well U-bottom plates 
at a cell density of 2  ×  105 cells/mL, and incubated alone, or 
with expanded NK cells (2 × 106 cells/mL) at different effector-
to-target (E:T) ratios, for 4 h in a humidified atmosphere with 
5% CO2 and 37°C. Antibody-dependent cellular cytotoxicity 
(ADCC) of expanded NK cells was further analyzed against the 
CD20+ Daudi cells, by adding 5 µg/mL of the anti-CD20 mAb 
rituximab (Hoffman-La Roche). After 4  h incubation, plates 
were transferred to 4°C for at least 30 min to stop cell killing 
before quantifying viable CTV-positive target cells using the 
MACSQuant Analyzer 10. The frequency of killed target cells 
was calculated by the difference between the number of viable 
target cells in samples with effector NK cells and samples with 
targets cells containing no effector cells. Representative flow 
cytometry data are included in Figure S1 in Supplementary 
Material.

Preparation of nK cells for sorting
Natural killer cells from five different donors were labeled with 
the cell trace proliferation dye eFluor®670 (eBioscience) and 
co-cultured for 5 days with IAPs. On day 5, cells were harvested 
and proliferating and non-proliferating NK  cells were sorted 
according to the brightness of the cell trace dye in a FACSAria 
III cytometer (BD Bioscience, cell sorting facility of the Center 
for Molecular Medicine of Cologne, Cologne, Germany). 
7-AAD (BD Pharmigen™) was used to exclude dead cells.  
To ease the sorting process, prior to sort, samples were enriched 
on NK cell content using the human NK cell isolation kit from 
Miltenyi. Sorted fractions containing the proliferating and non- 
proliferating (≈0.8  ×  105 cell in each fraction) were lysed in 
RA1 buffer (Macherey-Nagel) for total RNA isolation, and 
stored at −20°C until use. For comparison, resting NK  cells 
(1 × 106 cells) were lysed and stored under identical conditions.

rna Microarrays
Total RNA from sorted samples was isolated using the 
NucleoSpin® RNA kit (Macherey-Nagel), amplified and 
labeled using the Agilent Low Input Quick Amp Labeling Kit 
(Agilent Technologies), prior to hybridization to Agilent Whole 
Human Genome Oligo Microarrays 8 × 60K V2 chips (Agilent 
Technologies) according to manufacturer instructions. A 
detailed description of microarray processing can be found in 
Supplementary Material.

Pre-Processing of Microarray Data
Raw intensity data from feature extraction output files (FES 
10.7.3.1, Agilent Technologies) were analyzed using the Rosetta 
Resolver® software (Rosetta Biosoftware). The following 
calculations were performed with software packages within  
R/Bioconductor (24, 25). Intensity values were corrected with 
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background subtraction and normalized by quantile normaliza-
tion (26). Reliable signal intensities were considered significant 
when p ≤ 0.01, using the Rosetta error model (27). Subsequent sta-
tistical analysis was performed on normalized Log2-transformed 
intensity values. The data set can be found at the NCBI GEO 
public database with the accession number GSE92512.

statistical analysis
Conventional statistics including parametric un-paired Student’s 
t-test and one-way ANOVA with Tukey’s post hoc test, or the non-
parametric Wilcoxon test and Kruskal–Wallis test with post hoc 
Dunn’s test were performed with Graph Pad Prism 7 software 
(GraphPad). All statistical analysis were two-sided and p < 0.05 
considered statistically significant, and indicated as *p  <  0.05, 
**p  <  0.01, and ***p  <  0.001. Only statistical differences are 
shown.

Description of the statistical analysis of the microarray data 
can be found in Supplementary Material.

resUlTs

enhancement of Ex Vivo nK cell 
Proliferation and Preservation of  
Function Using irradiated autologous 
cD56-Depleted PBMcs
We first established an NK cell expansion method using irradi-
ated autologous CD56-depleted PBMCs (IAPs) as feeder cells to 
achieve high expansion rates compared with culture with rhIL-2 
only. We compared the proliferation kinetics over 7  days of 
NK cells cultured with IAPs or with rhIL-2 only. NK cells cultured 
with IAPs showed significantly higher cell counts visible already 
at day 5 (mean fold expansion: 3.2, range: 1.4–5.7) compared with 
cultivation with rhIL-2 only (mean fold expansion: 1.3, range: 
0.4–1.9). This differential NK  cell expansion rate between the 
two cultivation methods became much more pronounced after 
prolonged cultivation, as observed in a set of NK cell expansions 
over 12 days. Here, cells cultured with IAPs reached particularly 
high cell numbers (mean fold expansion: 212, range: 80–419) 
compared with rhIL-2 cultivation only (mean fold expansion: 
22.5, range: 6.2–57.3) (Figure  1A). The killing capacity of the 
differently expanded NK  cells was tested against two different 
leukemia tumor cell lines, the K562 cell line to analyze natural 
cytotoxicity, and the CD20+ Daudi cells to also determine ADCC 
after opsonization of these cells with anti-CD20 mAb rituximab. 
The killing capacity of the differently expanded cells was preserved 
in all tested settings. NK cells displayed comparable natural kill-
ing rates toward K562 and Daudi targets (Figures 1B,C; Figure S1  
in Supplementary Material), as well as comparable ADCC 
responses upon rituximab opsonization of Daudi cells. In vitro 
ADCC responses can be monitored best at low E:T ratios, where 
read-out of natural killing activity is lower. Independent of the 
expansion method, NK  cells showed a clearer ADCC effect of 
rituximab-coated target cells at low E:T ratios (Figure 1C; Figure S1  
in Supplementary Material). Taken together, co-culture with IAPs 
significantly enhanced ex vivo NK  cell proliferation preserving 
their cytotoxic capacity.

cross-Talk of nK cells with Both T cells 
and Monocytes is necessary to Produce 
soluble Factors that enhance Ex Vivo  
nK cell Proliferation
Next, we sought to determine whether the enhancement of 
NK cell ex vivo proliferation with our established protocol is a 
consequence of direct cell-to-cell interactions between NK and 
feeder cells, or of exposure to soluble factors released by feeder 
cells. To address this question, we cultured NK cells for 5 days 
at the bottom of Transwell® plates, alone or with IAPs either 
in close contact or separated through a permeable membrane, 
allowing only traffic of soluble factors. NK cell fold expansions 
were significantly decreased when IAPs were separated through 
the membrane, reaching similar fold expansions as NK  cells 
cultured alone. On the other hand, the addition of NK cells to 
IAPs separated by the membrane, rescued the expansion of the 
NK cells at the bottom of the Transwells (Figure 2A). These data 
indicate that cell-to-cell interactions between IAPs and NK cells 
are necessary to produce soluble factors beneficial for NK  cell 
proliferation.

IAPs are composed of different immune cells, mainly T cells, 
B cells, monocytes, and dendritic cells. In this respect, we specu-
lated whether any of these cells could have a predominant role in 
stimulating NK cell proliferation. NK cell fold expansions were 
compared after co-culture with a standard IAP feeder cell frac-
tion and three other fractions that were depleted from CD19+ 
cells (B cells and a small subset of dendritic cells), or additionally 
further depleted from CD3+ (T cells) or CD14+ cells (monocytes), 
respectively (Figure  2B). Depletion of CD19+ cells from the 
standard IAP fraction, had no effect on NK  cell proliferation, 
whereas further depletion of T cells or monocytes significantly 
reduced NK cell expansion, with a more dramatic effect upon the 
absence of monocytes (Figure 2C). Differences in NK cell fold 
expansions correlated with differences in number of dividing cells 
as observed with dilution of CTV dye labeling (Figure 2D).

We hypothesized that the differences in stimulating NK cell  
proliferation could be mirrored in the cytokine composition 
released by the different feeder cell fractions. GM-CSF, IFN-γ, 
IL-6, TNF-α, IL-5, and IL-9 could be detected at high levels 
(>100 pg/mL) and were produced at a similar extent in co-cultures 
of NK cells with IAPs or with CD19-depleted IAPs. A remarkable 
reduction in cytokine production was observed in co-cultures 
with further depletion of T  cells or monocytes, respectively 
(Figure 2E). This, indeed, supported the differences observed in 
NK cell proliferation kinetics due to the different cellular com-
position of the feeder cell fractions. The presence of NK cells in 
co-culture with the different feeder cell fractions influenced the 
cytokine production, as observed when feeders were maintained 
in culture without NK cells (Figure S2 in Supplementary Material). 
Low detectable levels (<100 pg/mL) of IL-4, IL-10, IL-17A, IFN-α,  
and IL-12 were also found in all co-culture conditions, without 
prominent changes upon differential cell subsets depletions from 
IAPs (data not shown). IL-2 was detected at levels exceeding the 
maximum standard value (>10.000  pg/mL) in any co-culture 
condition, as a result of its supplementation at the beginning of 
the culture (data not shown); which was sufficient to support 

240

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 1 | Natural killer (NK) cell expansion using autologous CD56-depleted peripheral blood mononuclear cells (PBMCs) and cytotoxic responses compared with 
standard culture with rhIL-2 only. (a) Proliferation kinetics of NK cells in expansion with irradiated autologous CD56-depleted PBMCs (IAPs) or NK cells from the 
same donors but cultured with rhIL-2 only were determined by flow cytometry (n = 9). A separate set of samples was cultured using both methods to compare 
expansions up to 12 days (also n = 9). Fold expansion of cultured relative to resting CD56+ NK cells are shown for each group per donor including mean ± SD.  
The non-parametric Wilcoxon test was used for statistical analysis. Natural cytotoxicity of 12-day expanded NK cells with and without IAPs was assessed against 
K562 (B) and Daudi cell lines, including antibody-dependent cellular cytotoxicity triggered by rituximab (c). Frequencies of killed target cells were determined by flow 
cytometry and shown as mean, minimum to maximum, and SD. Statistical analysis was performed using un-paired Student’s t-test. Figure S1 in Supplementary 
Material shows representative raw flow cytometry data of cytotoxicity assays.
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NK  cell growth independently of the presence or absence of 
T cells and monocytes. Taken together, our data indicate that the 
cross-talk between NK cells, T cells, and monocytes, is crucial to 
enhance ex vivo NK cell proliferation when using IAPs, not only 
due to occurrence of receptor–ligand interactions among these 
cells but also possibly due to the production of soluble factors as 
consequence of this cross-talk.

Transcriptional analysis of expanded  
nK cells co-cultured with iaPs helps  
to Unravel characteristics of highly 
Proliferating nK cells
The multitude of signals occurring during the co-culture of 
NK cells with IAPs helped to boost the ex vivo proliferation of 
NK cells. However, at early time points during culture (day 5) not 
all NK cells are actively proliferating, but some remain quiescent. 
We aimed at identifying molecules or pathways responsible for the 
boost of ex vivo NK cell proliferation under the co-culture condi-
tions. For this purpose, we performed a whole genome microarray 
analysis, with five different donors, to study the transcriptome of 

resting (R0) NK cells, isolated on day 0, and compare it to pro-
liferating (P), and non-proliferating (NP) NK cells co-cultured 
for 5  days with IAPs (Figure S3 in Supplementary Material). 
Principal components analysis (PCA) of the unfiltered transcrip-
tomes separated the samples in three groups corresponding to 
resting, proliferating, and non-proliferating NK cells, respectively 
(Figure 3A). The expression differences between R0 and 5-day 
cultured samples appear to contribute most to the variation 
(principal component 1, 63.1%), while differences between P and 
NP can be ascribed to the second principal component (principal 
component 2, 11.5%). A total of 10,299 transcripts were differ-
entially expressed among the three groups, only 2,902 of these 
transcripts were unique candidates (Figure  3B). Hierarchical 
clustering of the differentially expressed transcripts confirmed the 
PCA results of the unfiltered data by the formation of two main 
clusters according to the samples of resting and 5-day expanded 
NK  cells, the latter separated in sub-clusters corresponding to 
P and NP (Figure  3C). A functional annotation analysis of all 
differentially expressed transcripts revealed to which biological 
processes and pathways the transcripts were related to. In addi-
tion to the anticipated associations with IL-2 pathway, the great 
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FigUre 2 | Influence of cell-to-cell interactions from different IAP feeder cell fractions on natural killer (NK) cell expansion and cytokine production upon co-culture. 
(a) NK cell counts were assessed on day 5 of culture in Transwell® plates either alone (NK bottom) or co-cultured with IAPs. For co-cultures, NK cells were either 
kept in close contact with IAPs (NK + IAP bottom), or IAPs were kept separated from NK cells through an insert with microporous membrane in two conditions: 
IAPs alone in the insert (IAP insert/NK bottom), or with NK cells (NK + IAP insert/NK bottom). Mean values and SD of NK cell fold expansions from six different 
donors are depicted. Statistical analysis was performed using one-way ANOVA with Tukey’s post hoc test and Greenhouse–Geisser adjustment for unequal 
variances. (B) Composition of different IAP fractions analyzed by flow cytometry on day 0 after differential depletions of CD19+ (IAP CD19−) and additional CD3+  
(IAP CD19−CD3−) or CD14+ (IAP CD19−CD14−) cells. Average frequencies shown are of four donors. (c) NK cell fold expansions analyzed on days 5 and 7 of 
co-culture with differently depleted IAP fractions (n = 4) were determined by flow cytometry. Statistical analysis was performed using one-way ANOVA with Tukey’s 
post hoc test. (D) Cell trace violet dilution of NK cells expanded with the differently depleted IAP fractions was measured by flow cytometry on days 5 and 7 of 
co-culture. A representative result of four different donors is shown. (e) Cytokine expression levels in supernatants after 5 days of NK cell co-cultures with the 
differently depleted IAP fractions were determined by cytometric bead array (n = 4).
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FigUre 3 | Differential transcriptome signatures between resting, proliferating, and non-proliferating natural killer (NK) cells expanded with IAPs.  
(a) Unsupervised principal component analysis of the transcriptomes of all samples (n = 5) for resting (R0); proliferating (P), and non-proliferating (NP) NK cells, 
displays the samples in a scatterplot of principal component 1 and principal component 2. The prediction ellipses are indicative of that with a 95% probability a new 
observation from the same group will fall inside the ellipse. (B) Venn diagram (top) displaying the overlap between the numbers of differentially expressed transcripts 
of each pairwise comparison, PvsR0, PvsNP, and NPvsR0. The columns diagram (middle) indicate the total number of differentially expressed reporters per pairwise 
comparison, and the horizontal bar (bottom) summarizes the number of transcripts specific or shared between two or three groups. (c) Heat map of all differentially 
expressed transcripts after hierarchical clustering (Euclidean distance, complete linkage method). Fold-change differences (row-wise centered to the median) are 
displayed within color saturation limits −4 (green) to +4 (red).
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majority of the identified transcripts were associated with nucleo-
tide metabolism and categories principally related to regulation 
of cell proliferation and activation (Figure S4 in Supplementary 
Material). This demonstrates that the sorted fractions indeed 
represented proliferating and non-proliferating cells.

In this regard, among the top 20 most highly expressed 
transcripts in proliferating NK  cells compared with resting 
cells, were several positive regulators of the cell cycle and 
mitosis, such as cyclin A2 (CCNA2) and centrosomal protein 
of 55  kDa (CEP55), or the zinc finger proteins ZBED2 and 
ZBTB32 (Figure  4A). Zinc finger proteins are structurally a 

heterogeneous group of molecules which regulate gene expres-
sion by binding to DNA and RNA (28). Particularly, Tramtrack 
bric á brac zinc finger proteins (BTB-ZF) have important roles 
in controlling development and functional activity of lympho-
cytes (29, 30). Our data show that in proliferating NK  cells, 
ZBED2 was the zinc finger protein with highest transcript levels, 
and the transcription factor ZBTB32 was the family member of 
BTB-ZF proteins with highest transcript levels (Figure S5A in 
Supplementary Material). These results point to a potential role 
of zinc finger proteins in modulating human ex vivo NK  cell 
proliferation.
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FigUre 4 | Transcriptional characteristics of proliferating natural killer (NK) cells compared with their non-proliferating counterparts and resting NK cells. (a) Top 20 
transcripts with highest expression in proliferating NK cells (P) compared with resting cells (R0). Values in the heat map correspond to mean log2 intensities per 
group (n = 5) for each transcript. (B) Pairwise analysis (PvsR0, PvsNP, NPvsR0) of differentially expressed transcripts corresponding to activating receptors and 
co-receptors, or inhibitory receptors (c). Pairwise comparisons are reported as mean values of log2 ratios of signal intensities with SD (n = 5). Only transcripts with 
differential expression levels (mean log2 ratios ≥1 or ≤−1, equivalent to ≥2 or ≤−2-fold difference) in at least one of the pair wise group comparisons are displayed.
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Natural killer cell receptors and co-receptors play key roles 
in controlling NK cell activation. We additionally screened for 
the most well-known activating and inhibitory receptors and 
co-receptors differentially expressed among the groups. In 
general, transcript levels of activating receptors were increased 
in proliferating cells, meanwhile transcripts of many inhibitory 
receptors, were decreased (Figures 4B,C). Interestingly, among 
activating receptors and co-receptors, we found that proliferating 
NK cells compared with resting or non-proliferating contained 
increased transcript levels of receptor activator of the nuclear 
factor kappa-B ligand, RANKL, and CD276 molecule known as 
B7-H3. On the contrary, they had decreased transcript levels of 
the activating receptors FCGR3A (CD16), KLRF1 (NKp80), or 
KLRB1 (CD161) compared with resting and non-proliferating 

cells (Figure 4B). Furthermore, we noticed that transcriptional 
changes in proliferating NK cells extended also to differences 
in expression of HLA class I and II molecules. Remarkably, 
proliferating NK cells expressed high transcript levels of HLA 
class II, that correlates with their activated status, whereas 
transcripts corresponding to HLA class I molecules were 
decreased in comparison with resting and non-proliferating 
NK  cells, representing an unexpected finding (Figure S5B in 
Supplementary Material). Altogether these results suggest the 
existence of differential activation responses of NK cells toward 
the stimuli provided by IAPs, which may translate into a rapid 
proliferation of certain subsets of NK  cells compared with 
others with delayed or no proliferative response to the same 
stimuli.
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Phenotypic hallmarks of Proliferating nK 
cells
The changes observed in transcript levels of activating and inhibi-
tory receptors and co-receptors are likely to extend at the protein 
level, and may reveal phenotypic characteristics of proliferating 
and non-proliferating NK cells. In addition, the detected phe-
notypic differences may depend on the stimuli used to promote 
ex vivo NK  cell expansion. Therefore, we analyzed by flow 
cytometry, the expression of several selected molecules (Table 
S1 in Supplementary Material) in resting, proliferating, and non-
proliferating NK cells expanded for 5 days with IAPs or rhIL-2 
only. Most of the observed changes in protein content confirmed 
the results obtained by transcriptional profiling, with significant 
differences especially between resting and proliferating cells 
(Figure 5; Figure S6 in Supplementary Material). Among them, 
we identified that proliferating NK cells contained significantly 
decreased frequencies of cells expressing the inhibitory recep-
tors Siglec-7 and -9, independently of the expansion protocol, 
compared with both non-proliferating and resting cells. Also, 
independently of the expansion method was a significant 
reduced expression of the activating receptors KLRB1, NKp80, 
CD16, and the inhibitory receptor KLRG1 within proliferating 
cells compared with resting cells (Figure S6 in Supplementary 
Material). All other analyzed activating receptors and co-recep-
tors were expressed at higher levels in proliferating NK  cells, 
except the NKG2D co-receptor 2B4. Despite almost all resting 
NK cells expressed 2B4 at the beginning of the culture, this could 
not be detected on day 5 of expansion with none of the expan-
sion methods used (data not shown). This suggests an oscillating 
expression of 2B4 on NK cells during expansion, since expres-
sion of 2B4 has been reported after longer culture periods (23). 
Moreover, we could confirm RANKL and B7-H3 expression, 
absent in resting cells, appeared after 5 days of expansion. Their 
expression was mainly restricted to proliferating NK cells and 
reached higher levels when NK cells were expanded with IAPs 
instead of with rhIL-2 only (Figures  5A,B). Similarly, expres-
sion of HLA class II molecules and particularly HLA-DR, were 
increased after 5  days of expansion with IAPs compared with 
rhIL-2 only. Expression of HLA-DR persisted after longer term 
culture (data not shown). Interestingly, the reduction observed 
earlier in the expression of HLA class I molecules after 5 days 
of culture was verified here too, independently of the expansion 
protocol used.

co-expression of hla-Dr, ranKl, and 
B7-h3 Define a subset of highly 
Proliferating nK cells
Given that co-culture with IAPs for 5 days produced an enrichment 
of HLA-DR expressing cells and induced expression of RANKL 
and B7-H3, we investigated the correlation of the co-expression 
of these three molecules with the proliferative status of NK cells 
by flow cytometry. HLA-DR expressing NK cells contained a sub-
population of double positive RANKL and B7-H3 NK cells that 
corresponded to the most highly proliferating NK cells (Figure 6; 
Figure S7 in Supplementary Material). This was substantiated by 
NK cells co-cultured with IAPs in contrast to cultures with rhIL-2 

only. The HLA-DR+RANKL+B7-H3+ NK  cell population was 
minimally represented in cultures with rhIL-2 only, but enlarged 
in co-cultures with IAPs. In summary, we identified a subset of 
NK  cells that preferentially expand in response to the stimuli 
provided by IAPs and is characterized by expression of HLA-DR, 
RANKL, and B7-H3.

DiscUssiOn

Recent developments in ex vivo NK cell expansion protocols for 
clinical applications have exploited the use of autologous feeder 
cells in combination with cytokines to boost NK cell proliferation 
and their activation status (16–19). However, the components 
responsible for this enhancement remain somewhat elusive, and 
little is known regarding the phenotypic and intracellular changes 
occurring when NK cells start to actively proliferate under these 
conditions. In this study, we established a co-culture protocol 
using irradiated autologous CD56-depleted PBMCs (IAPs) as 
feeder cells, to use it as a tool for the analysis of factors influencing 
ex vivo proliferation of NK cells. After ascertaining the achieve-
ment of higher numbers of functional NK  cells by co-culture 
with IAPs compared with standard culture with rhIL-2 only, we 
subsequently analyzed the influence of cell-to-cell interactions, 
soluble factors, and specific PBMCs subpopulations on NK cell 
proliferation. The need of homotypic and heterotypic cell-to-cell 
interactions for NK cell survival, activation, and proliferation has 
been previously reported (20, 31, 32). Consistent with this, dis-
ruption of cell-to-cell interactions between NK cells and IAPs by 
using Transwell® plates results in lower NK cell proliferation than 
when feeder cells and NK cells are in close contact. Additionally, 
here we report that NK cell interactions with IAPs induce changes 
in production of soluble factors that improve NK cell ex vivo prolif-
eration. The role of certain soluble factors, mostly of the cytokines 
IL-2, IL-15, and IL-21, in inducing mature human NK cell ex vivo 
proliferation has been well acknowledged (33, 34). In our set-up, 
sufficient IL-2 levels were achieved by supplementation of high 
concentrations of rhIL-2 at the beginning of the expansions, and 
also possibly by additional IL-2 production by T cells within the 
IAPs upon stimulation in culture. Concerning IL-15 and IL-21, 
we assessed their production using commercial enzyme-linked 
immunosorbent assays during a preliminary test on supernatants 
from 5-day expanded NK cells with and without IAPs. Levels of 
soluble IL-15 were undetected, and only background levels of 
IL-21 could be detected, without differences upon the presence 
or absence of IAPs. With this, we concluded that there was no sig-
nificant production of neither IL-15 nor IL-21 in our co-culture 
system. Thus, our findings point to additional cytokines and 
other soluble factors produced during IAPs-NK cell co-cultures 
that should be further investigated, and may be used to improve 
ex vivo NK cell expansion methods without the use of feeder cells.

Considering the heterogeneous composition of IAPs, we ana-
lyzed the influence of subpopulations (mainly T cells, B cells, and 
monocytes) in promoting NK cell proliferation. In our co-culture 
method, the presence of both T cells and monocytes is sufficient 
to completely enhance ex vivo NK cell proliferation, whereas the 
presence of B  cells is dispensable. We observed that monocyte 
depletion substantially reduces the production of cytokines from 
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FigUre 5 | Phenotypic characteristics of proliferating and non-proliferating natural killer (NK) cells compared with resting NK cells. Surface expression of selected 
inhibitory, activating, and co-stimulatory receptors in 5-days proliferating (P) and non-proliferating (NP) NK cells compared with resting (R0) cells prior culture with 
IAPs (a) or with rhIL-2 only (B) were determined by flow cytometry (n = 6). Of note, values shown for HLA-DR correspond to a repeated analysis with six other 
donors. Results are represented for each marker as percentage of positive cells (white circles, referred to the left scale of the plots) and mean fluorescence intensity 
of positive cells (orange circles, referred to the right scale of the plots) showing mean values and SDs. Statistical analysis was performed using the Kruskal–Wallis 
test applying Dunn’s post hoc test. Only significant differences are shown as # for PvsR0 and * for PvsNP. (c) Representative histogram of Siglec-9 expression on 
NK cells at the different time points and proliferative status analyzed R0, P, or NP.
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remaining feeder cells, which correlates with the lowest NK cell 
expansions. On the other hand, the presence of monocytes without 
T cells almost completely hindered cytokine production, although 
this caused a less prominent reduction of NK cell expansion. This 
indicates that the irradiated monocytes besides participating in 
promoting cytokine production from T cells, may also produce 
other soluble factors, or express certain surface molecules that 
result in promoting ex vivo NK  cell proliferation. To a certain 

extent, this correlates with previous observations showing the 
potential of monocytes to boost ex vivo NK cell expansion (20, 35),  
but it is in contrast with the exclusion of a beneficial effect of 
T cells shown in one of the studies (20). The reason of this dif-
ference may be explained by the use of non-irradiated accessory 
cells and only rhIL-2 supplemented in this former study, while 
in our set-up the T cells are irradiated and OKT3 is additionally 
supplemented together rhIL-2. It is important to remark that full 
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FigUre 6 | Identification of a subset of HLA-DR expressing natural killer (NK) cells co-expressing RANKL and B7-H3 with high proliferative capacity. eFluor®670 
labeled NK cells were expanded in co-culture with IAPs or using rhIL-2 only for 5 days. Co-expression of HLA-DR, RANKL, and B7-H3 was analyzed at this time 
point by flow cytometry, and compared between the two different culture methods used. First, HLA-DR expressing NK cells were gated and used to assess 
expression of RANKL and B7-H3. A double positive RANKL and B7-H3 subpopulation of HLA-DR expressing cells was mainly detected in NK cells in co-culture 
rather than with rhIL-2 only. This subpopulation of HLA-DR+RANKL+B7-H3+ corresponded to the most highly proliferating as observed when depicted (red) against 
the total pool of expanded NK cells (black) based on the dilution of the eFluor®670 cell trace dye. Plots shown are representative of six different donors.  
The complete gating strategy is shown in Figure S7 in Supplementary Material.
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activation of peripheral blood T cells by OKT3 requires additional 
signals from accessory cells and the presence of IL-2 (36). These 
accessory cells are mainly monocytes that through their Fc recep-
tors, bind OKT3, and induce crosslinking of the CD3 molecule 
on T  cells leading to a proper stimulation (36–38). This may 
explain that upon the absence of monocytes, despite the presence 
of OKT3 and IL-2, cytokine production by T  cells is severely 
hampered. Moreover, the effect of OKT3, murine IgG2a mAb, 
on NK cell activation through the Fc receptor CD16 would be 
minimal, as CD16 has no or low binding affinity to IgG2a isotype 
(37, 39). In summary, in our co-culture system, the interaction of 
irradiated T cells and monocytes through bidirectional binding 
of OKT3, together the presence of IL-2 seems sufficient to induce 
production of soluble factors at the beginning of the co-culture 
with clear further beneficial effects on NK cell ex vivo growth.

Several studies have performed transcriptional and micro-
RNA expression analysis in human NK cells to determine global 
changes after short activation or long-term expansion (23, 40, 41).  
Using also whole genome expression analysis and functional 
annotation, we focused on transcriptional differences between 
proliferating NK  cells and their remaining non-proliferating 
counterparts after 5-days in co-culture with IAPs. By choosing 
this time point for analysis, we assured the emergence of pro-
survival and proliferation pathways, absent at earlier time points, 
or extinguished at later ones. Certainly, we identified among 

the most highly expressed transcripts in proliferating NK  cells 
many molecules involved in regulation of cell cycle and mitosis. 
Interestingly also transcripts corresponding to the zinc finger 
proteins, ZBED2 and ZBTB32 were upregulated. While only little 
is known about ZBED2 (42), the transcription factor ZBTB32 
recently has been described to play a role in controlling prolifera-
tion of mouse cytomegalovirus (MCMV)-specific NK cells (43). 
Since in that study ZBTB32 was predominantly involved in the 
context of infection and inflammation, but was not required for 
homeostatic proliferation of mouse MCMV-specific NK cells, it 
was surprising to find increased levels of a transcript correspond-
ing to ZBTB32 in proliferating human NK cells in our co-culture 
system. Therefore, it will be interesting to analyze which role zinc 
finger proteins, particularly, ZBED2 and ZBTB32 play in modu-
lating the ex vivo expansion of mature human NK cells.

We describe also several phenotypic characteristics of highly 
proliferating NK cells compared with non-proliferating and resting 
ones. Actively proliferating NK cells lose expression of the inhibi-
tory receptors Siglec-7 and -9 compared with both resting and 
non-proliferating counterparts. Several studies have shown that 
blocking of Siglec-7 and -9 receptors enhances NK cell cytotoxic-
ity against target tumors, allowing for a better activation (44, 45).  
The reduced expression of Siglec-7 and -9 in proliferating 
NK cells may reflect a differential activation status related to high 
proliferation. Also in this regard, we detected reduced expression 

247

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Delso-Vallejo et al. NK Properties Influenced by IAPs

Frontiers in Immunology | www.frontiersin.org July 2017 | Volume 8 | Article 854

of the activating receptors NKp80 and CD16 preferentially in the 
population of proliferating NK cells. Down-regulation of NKp80 
and CD16 is known to occur early after NK cell activation (46–48). 
Therefore, decreased Siglec-7/-9, NKp80, and CD16 expression 
evidence that differential activation responses within the original 
pool of NK  cells result in either active ex vivo proliferation or 
quiescence. Moreover, the expression of the molecules RANKL 
and B7-H3 was significantly induced in NK  cells particularly 
proliferating in co-culture with IAPs, as opposed to cultures with 
rhIL-2 only. Although up-regulation of RANKL has been previ-
ously reported to occur in CD56bright NK cells (49) little is known 
about its function in NK  cells. On the other hand, B7-H3, a 
member of the B7/CD28 superfamily of costimulatory molecules 
is expressed in many human cancers and induced in several 
immune cells such as activated monocytes and dendritic cells 
with a controversial role in modulating T cell activity (50, 51).  
It would be interesting to determine whether B7-H3 is also a 
marker of activated NK cells in vivo and learn about its func-
tional role.

Co-culture with IAPs also increased expression of particularly 
HLA-DR molecules in proliferating NK  cells compared with 
culture with rhIL-2 only. Further analysis of the expression of 
RANKL and B7-H3 in HLA-DR expressing NK  cells, revealed 
that a subpopulation of double positive RANKL and B7-H3 
HLA-DR expressing NK cells, corresponds to the most actively 
expanded upon co-culture with IAPs. Increased frequencies of 
HLA-DR expressing NK cells have been observed already after 
few days of culture with IL-2, possibly due to clonal expansion 
of an original HLA-DR expressing NK cell subpopulation (52). 
Recently, the expression of HLA-DR molecules was described as 
a surrogate marker for NK cell clonality in chronic lymphopro-
liferative disorders (53). Our data support the hypothesis of a 
preferential clonal expansion of HLA-DR expressing NK  cells 
possibly due to differential activation upon mitogens provided 
by IAPs as opposed to other NK  cell subsets un-responsive to 
the same stimuli. Identification of the corresponding receptor(s) 
and pathway(s) responsive to pro-proliferative signaling will be 
key to optimize NK  cell expansion protocols. Additionally, we 
describe a subset of HLA-DR+RANKL+B7-H3+ NK cells as the 
subset with the highest proliferative potential emerging under 
co-culture with IAPs. Subsequent studies may help to elucidate a 
functional role of RANKL and B7-H3 molecules in these highly 
proliferating NK cells. In addition, it will be interesting to verify 
the occurrence of a preferential expansion of HLA-DR expressing 
NK cells with other ex vivo expansion protocols, and whether this 
confers antigen presenting characteristics to NK cells, as it has 
been previously shown (54). Confirmation of antigen presenting 

properties of expanded NK  cells may be further considered to 
extend the therapeutic potential of NK cells.

In summary, our findings uncover molecular and phenotypic 
characteristics of ex vivo proliferating NK cells and roles of autol-
ogous feeder cells that may have an impact in the development 
of new expansion methods and analysis strategies of expanded 
NK  cells. In addition, we propose that characterization of the 
newly described subpopulation of HLA-DR+RANKL+B7-H3+ 
NK  cells will be of interest for the further optimization of 
NK cell expansion protocols, and improved immunotherapeutic 
applications.
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Kyra Fischer1,2, Sara Tognarelli1,2, Stefanie Roesler3,4,5, Cathinka Boedicker3,4,5,  
Ralf Schubert6,7, Alexander Steinle8, Thomas Klingebiel2,6, Peter Bader1,2,  
Simone Fulda3,4,5† and Evelyn Ullrich1,2*†
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Immunology, Goethe University, Frankfurt, Germany, 2 LOEWE Center for Cell and Gene Therapy, Goethe University, 
Frankfurt, Germany, 3 Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt, Germany, 
4 German Cancer Consortium (DKTK), Heidelberg, Germany, 5 German Cancer Research Center (DKFZ), Heidelberg, 
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Rhabdomyosarcoma (RMS), the most common cancer of connective tissues in pedi-
atrics, is often resistant to conventional therapies. One underlying mechanism of this 
resistance is the overexpression of Inhibitor of Apoptosis (IAP) proteins, leading to a 
dysfunctional cell death program within tumor cells. Smac mimetics (SM) are small 
molecules that can reactivate the cell death program by antagonizing IAP proteins and 
thereby compensating their overexpression. Here, we report that SM sensitize two 
RMS cell lines (RD and RH30) toward natural killer (NK) cell-mediated killing on the one 
hand, and increase the cytotoxic potential of NK cells on the other. The SM-induced 
sensitization of RH30 cells toward NK cell-mediated killing is significantly reduced 
through blocking tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on NK 
cells prior to coculture. In addition, the presence of zVAD.fmk, a pancaspase inhibitor, 
rescues tumor cells from the increase in killing, indicating an apoptosis-dependent cell 
death. On the NK cell side, the presence of SM in addition to IL-2 during the ex vivo 
expansion leads to an increase in their cytotoxic activity against RH30 cells. This effect is 
mainly TNFα-dependent and partially mediated by NK cell activation, which is associated 

Abbreviations: (A/E)RMS, (alveolar/embryonal) rhabdomyosarcoma; CIK cells, cytokine-induced killer cells; CFSE, carboxy-
fluorescein succinimidyl ester; DAPI, 4’,6-diamidino-2-phenylindole; DC, dendritic cell; DLI, donor lymphocyte infusions; 
DNAM, DNAX accessory molecule; FasL, Fas ligand; FBS, fetal bovine serum; ICAM, intercellular adhesion molecule; IFN, 
interferon; KIR, killer immunoglobulin like receptor; LFA, lymphocyte function-associated antigen; MIC, MHC class I 
polypeptide-related sequence; MHC, major compatibility complex; NF-κB, nuclear factor “kappa-light-chain-enhancer” of 
activated B-cells; NK cells, natural killer cells; NKG2D, natural killer group 2, member D; PenStrep, penicillin/streptomycin; 
PVR, poliovirus receptor; RING, really interesting new gene; RPMI, Roswell Park Memorial Institute 1640; rt-PCR, real-
time polymerase chain reaction; Smac, second mitochondria-derived activator of caspases; SM, Smac mimetic; TNFα, tumor 
necrosis factor α; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; ULBP, UL16-binding protein; (X/c) IAPs, 
(X-linked/cellular) inhibitor of apoptosis proteins.
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inTrODUcTiOn

Cancer is the second leading cause of death in children after 
accidents (1). The most common type of cancer is leukemia, fol-
lowed by cancer of the brain and nervous system, and soft tissue 
sarcomas including rhabdomyosarcomas (RMS) (2). The survival 
of pediatric cancer has improved through progress in treatment 
(1, 3). However, the outcome greatly depends on the type of 
cancer. RMS ranks second to last in the 5-year survival rate, four 
out of five high-risk patients are defeated by their disease (4, 5). 
Especially the histological subgroup referred to as alveolar RMS 
(ARMS) is known for its aggressive growth, while embryonal sar-
comas (ERMS) are correlated to a slightly better outcome (3). The 
low overall survival rate is due to resistance against established 
therapy regimens comprising chemo- and radiotherapy in first 
place or relapse after initial therapy, underlining the necessity of 
new treatment approaches. Here, we address two possibilities of 
improving anticancer therapy for ARMS with one single drug: 
sensitizing tumor cells on the one hand, and activating immune 
effector cells on the other.

The essential idea of the first approach is to overcome one of 
the key features of malignant cells: the resistance to apoptosis 
(6). This resistance is frequently caused by an imbalance between 
pro- and antiapoptotic proteins, resulting in a dysfunctional 
intrinsic cell death program. Since anticancer therapies such 
as chemo- and radiotherapy function by triggering cell death 
pathways, the intrinsic defect within the cell leads to treatment 
failure, associated with tumor progression and poor survival 
(7). Proteins known to play a role in the regulation of apopto-
sis are the IAP proteins and their physiological antagonists: 
second mitochondria-derived activator of caspases (Smac). 
Overexpression of IAP proteins (8–11), as well as the reduced 
expression of Smac (12, 13) in human malignancies have been 
correlated with treatment resistance and tumor growth. This 
has led to the development of small-molecule compounds 
that antagonize IAP proteins, i.e., Smac mimetics (SM). SM 
assume the function of the endogenous Smac by neutralizing 
IAP proteins, thereby rendering cancer cells more susceptible 
to the induction of apoptosis (14). While X-linked IAP (XIAP) 
proteins directly bind and inhibit caspases (15–17), cellular IAP 
(cIAP) proteins play an important role in regulating signaling 
pathways within a cell through an intrinsic ubiquitin ligase 
activity in their C-terminal RING domain (18). One signaling 
pathway known to be regulated by cIAP proteins is the nuclear 
factor “kappa-light-chain-enhancer” of activated B-cells (NF-κB)  
pathway. The NF-κB family comprises several transcription 
factors that regulate genes that are involved in cell survival, as 
well as innate and adaptive immune response (19) such as the 

tumor necrosis factor α (TNFα), TRAIL, interferon γ (IFN-γ), 
and MHC class I (20).

Research over the last years revealed the broad field of immune 
therapy as a promising anticancer strategy (21, 22). Especially 
NK cells, immune effector cells that physiologically recognize 
and eliminate cancer cells, are of great interest for adoptive cell 
therapy. NK cells are equipped with a broad range of receptors 
on their surface, allowing the discrimination between healthy 
and malignantly transformed or virus-infected cells. Once 
activated, NK cells have different strategies to kill their targets 
such as exocytosis of secretory lysosomes containing cytolytic 
proteins (perforin, granzymes, Fas ligand) (23, 24), induction 
of apoptosis in the death receptor-bearing target cell through 
ligation with FasL or TRAIL expressed on the NK cell surface 
(25, 26), or further immune activation through the secretion of 
cytokines such as IFN-γ and TNFα (27). Considering the current 
state of knowledge and understanding, NK cell infusions can be 
referred to as safe in autologous and allogeneic settings (28, 29). 
Some antitumor effects have been shown for hematological as 
well as several solid tumors (30–32). Current limitations of NK 
cell therapy are the exhaustion of cellular cytotoxicity (33) and 
the resistance of tumor cells to the induction of apoptosis per se. 
In this work, we investigate the potential of the small-molecule 
SM BV6 to influence both effector and target cells simultaneously, 
enhancing the susceptibility of tumor cells to NK cell-mediated 
killing on the one hand and increasing the cytotoxic activity of 
NK cells on the other.

MaTerials anD MeThODs

cell culture
All work with cell lines was performed under sterile conditions, 
using sterile media, buffer, and material. Both RMS cell lines used, 
RH30 as an alveolar and RD as an embryonal RMS cell line, were 
cultured in Roswell Park Memorial Institute 1640 GlutaMAX 
medium (RPMI 1640) with 10% fetal bovine serum and 1% 
penicillin/streptomycin (PenStrep). The cells were split approxi-
mately twice a week depending on the growth rate and stored in 
an incubator at 37°C, 5% CO2, and 90% relative humidity.

This study was approved by the Ethics Committee of the 
Goethe University Frankfurt, Germany and carried out in 
accordance with the Declaration of Helsinki. All subjects gave 
written informed consent in accordance with the Declaration 
of Helsinki. NK cells were isolated out of freshly generated male 
donor buffy coats provided by the GRC-Blood Donor Service 
(DRK-Blutspendedienst) in Frankfurt, using immunomagnetic 
negative selection (EasySep Human NK Cell Enrichment Kit, 

with transcriptional upregulation of NF-κB target genes such as IκBα and RelB. Taken 
together, our findings implicate that SM represent a novel double-hit strategy, sensitizing 
tumor and activating NK cells with one single drug.

Keywords: natural killer cells, second mitochondria-derived activator of caspases mimetic, rhabdomyosarcoma, 
rh30 cells, rD cells, BV6
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StemCell Technologies, Canada) according to manufacturer’s 
instructions. The purity of the resulting cell suspension was ana-
lyzed through flow cytometry, using fluorochrome-conjugated 
antibodies against CD56 (clone: HCD56), CD19 (clone: HIB19), 
CD14 (clone: HCD14), CD16 (clone:3G8), CD3 (clone: UCHT1) 
(Biolegend, USA), and CD45 (clone: HI30) (Invitrogen, UK). 
Only cell suspensions that showed more than 85% NK cells were 
taken into culture and used for further experiments. The freshly 
isolated cells were cultured at a concentration of 2 × 106 cells/ml 
of the hematopoietic medium xVivo (Lonzagroup, CH), which 
was enriched with 5% heat-inactivated human plasma, 1% 
PenStrep, 100 U/ml IL-2, and the Smac mimetic BV6 if neces-
sary. The Smac mimetic BV6, which neutralizes XIAP, cIAP1, 
and cIAP2 (34), was kindly provided by Genentech, Inc. (South 
San Francisco, CA, USA). NK cells were fed approximately every 
3 days through discarding half of the medium and adding the 
equivalent amount of fresh medium, containing the doubled 
amount of additives.

Determination of cell Viability and 
Proliferation
To determine at which concentrations SM become toxic to RH30 
and NK cells, the cells were challenged with increasing doses of 
SM, harvested, and stained with 4′,6-diamidino-2-phenylindole 
(DAPI; BioLegend, USA) after 24 and 48 h. The cell suspensions 
were measured by flow cytometry using a BD FACSCanto10c™ 
instrument (BD Bioscience, San Diego, CA, USA) and data were 
analyzed using FlowJo (FlowJo LLC, Ashland, Oregon, USA), first 
gating on single cells, then defining the DAPI negative population 
as viable cells. To analyze the effect of SM on the proliferation 
of NK cells, the cells were isolated and taken into culture as 
described above with increasing doses of SM in addition to IL-2. 
On days 0, 3, 6, and 10, NK cells were harvested and counted 
using the COULTER® Ac·T diff™ Analyzer (Beckman Coulter, 
Germany), an automatic cell counter.

surface Marker Profile analysis
In search of SM-induced alterations in the expression of surface 
markers, unstimulated and SM-stimulated RH30, RD, and NK 
cells were stained with a panel of fluorochrome-conjugated anti-
bodies and analyzed using flow cytometry. NK cells cultured with 
IL-2 alone, as well as cells that were additionally stimulated with 5 
and 10 μM SM were harvested on day 7 of culture, which complies 
with the timepoint of harvest for cytotoxicity assays. First, the 
harvested cells were incubated with 50 μg/ml human IgG (Kiovig, 
Baxter, Germany) in order to saturate the Fc receptors of NK cells 
prior to the staining with fluorochrome-conjugated antibodies. 
This procedure ensured that the antibodies added afterwards 
marked their specific antigen, instead of being captured by 
their Fc fragment through the Fc receptors, which would cause 
a false-positive rate of the particular antigen. Then, a complex 
staining pattern was established including following antibodies: 
CD3/19/14-V450, CD45-BV510 (clone: HI30), CXCR4-PE-Cy7 
(clone: 12G5), DNAX accessory molecule (DNAM)-1-FITC 
(clone: DX11), NKp44-PE (clone: p44-8.1), CD25-PE (clone: 
2A3), CD62L-APC (clone: DREG-56), CD69-BV605 (clone: 

FN50), and CD107a-APC-H7 (clone: H4A3) from BD 
Biosciences, San Diego, CA, USA; CD16-PE-Cy7, CD16-PE, 
and CD253(TRAIL)-PE (clone: RIK-2) from Biolegend, USA; 
NKp30-AlexaFluor488 (clone: 210845), and CCR7-FITC (clone: 
150505) from R&D Systems; KIR2D-FITC (clone: NKVFS1), 
CD158e/k-PE (clone: 5.133), and NKp46-APC (clone: 9E2) from 
Miltenyi, Germany; NKG2A-APC (clone: 1D11) from Beckman 
Coulter, Germany; CX3CR1-PerCPeFluor710 (clone: 2A91) 
from eBiosciences, USA, and DAPI (Biolegend, USA), serving 
as a life–dead stain.

The data were analyzed using FlowJo (FlowJo LLC, Ashland, 
Oregon, USA), analyzing the antigen of interest in the population 
defined as NK cells (DAPI−/CD3−/CD19−/CD45+/CD56+).

For the analysis of the surface marker profile of RH30 and 
RD cells, cells were pretreated according to the conditions used 
as targets in cytotoxicity assays: 0, 5, or 10  μM SM for 24  h. 
Afterwards, these cells were harvested and stained with a stain-
ing panel comprising the following antibodies: MICA (clone: 
AMO1), MICB (clone: BMO2), UL16-binding protein (ULBP)-1 
(clone: AUMO3), -2 (clone: BUMO1), -3 (clone: CUMO3), and 
-4 (clone: 3B6) according to Ref. (35), B7-H6 (kind gift of Prof. 
Adelheid Cerwenka DKFZ, Germany (36)), followed by the 
secondary antibody GAM-APC from Jackson Immunoresearch, 
USA; intercellular adhesion molecule (ICAM)-1-PE (clone: 
HA58), ICAM-2-FITC (clone: CBR-IC2/2), ICAM-3-APC (clone: 
CBR-IC3/1), CD262 (TRAIL-R)-PE, and Nectin-2-PE (clone: 
TX31) from Biolegend, USA; poliovirus receptor (PVR)-FITC 
(clone: 300907) from R&D Systems, as well as DAPI (Biolegend, 
USA). The established data were also analyzed using FlowJo 
(FlowJo LLC, Ashland, Oregon, USA).

cytotoxicity assays
All cytotoxicity assays were performed using a flow cytometry-
based method and an effector to target (E: T) ratio of 10:1. 
Herein, the target cells were stained with carboxyfluorescein 
succinimidyl ester (CFSE; Life Technologies, USA) for 5 minutes 
at room temperature, then washed three times prior to cocul-
ture with unstained effector cells. Coculture was completed in a 
round-bottom 96-well plate for four (pretreated tumor cells) or 
16 h (pretreated NK cells). The RMS target cells were pretreated 
with 5 or 10 μM SM for 3 or 24 h, harvested, and the cell sus-
pension was adjusted to a concentration of 0.25 × 106/ml. The 
NK cells used as effectors were cultured with 100 U/ml IL-2 
alone or with 5 or 10 μM SM in addition to IL-2, harvested on 
day 6 or 7 of culture and the cell suspension was adjusted to a 
concentration of 2.5 × 106/ml. For the analysis of NK cell medi-
ated cytotoxicity, 100 μl of the target and 100 μl of the effector 
cell suspension were pipetted into one well. For each combina-
tion, three wells were filled, representing technical replicates. 
In addition, control wells for all tumor conditions used in the 
experiment were added, containing target cells only in order to 
determine the spontaneous lysis. In the final evaluation of the 
experiment, the specific lysis was calculated as the percentage 
of dead cells in the wells containing target and effector cells 
minus the specific lysis of the respective tumor cell condition. 
Through this calculation of the specific lysis, the percentage of 
killed tumor cells was attributed completely to the NK cells. In 
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addition, three wells were added containing tumor cells and 
ethanol, serving as a positive control for the live-dead stain with 
DAPI. Once the coculture time was over, 100  μl supernatant 
was taken from each well for further analyses (cytometric bead 
assay) and immediately frozen at −80°C. Then, each well was 
harvested using 50  μl Trypsin (Gibco Invitrogen, Germany), 
resuspended in 400 μl of a 1:6,000 DAPI dilution, measured at 
the flow cytometer, and analyzed with FlowJo.

The cytotoxicity assays as described above were repeated 
with different additives, with the aim to elucidate mechanisms 
behind the SM-induced increase in NK cell-mediated killing. 
The role of TNFα was analyzed through the addition of 0.25 mg/
ml Enbrel (Pfizer, Germany); the role of caspases was analyzed 
through the addition of zVAD.fmk (Sigma, Germany) at a 
concentration of 40 μM; and the role of TRAIL was analyzed 
through blocking TRAIL on NK cells with an antibody from 
BD Biosciences, USA (cat. 550515) at a concentration of 50 μg/
ml for 2  hours prior to coculture. The efficiency of the block 
was tested by staining the blocked cells with an antibody of the 
same clone.

Determination of mrna levels of TnFα, 
Trail, relB, iκBα, Trail-r1 (Dr4), and 
Trail-r2 (Dr5)
TRAIL mRNA levels were determined by quantitative real-time 
PCR analysis. Total RNA extraction and cDNA synthesis were 
performed as previously described (37). TRAIL and TNFα 
mRNA levels were assessed by Taqman Gene Expression Assay 
purchased from Life Technologies (TRAIL: Hs00921974_m1; 
TNFα: Hs01113624_g1) and the levels of RelB, IκBα, TRAIL-R1 
(DR4), TRAIL-R2 (DR5), and 28S rRNA by SYBR®Green qPCR 
assay from Applied Biosystems (Darmstadt, Germany) according 
to the manufacturer’s instructions using the 7900HT fast real-time 
PCR system from Applied Biosystems (Darmstadt, Germany); 
RelB forward primer: GCTCTACTTGCTCTGCAGACA; 
reverse primer: GGCCTGGGAGAAGTCAGC; IκBα forward  
primer: GTCAAGGAGCTGCAGGAGAT; reverse primer: ATGG 
CCAAGTGCAGGAAC; DR4 forward primer: GGGTCCACA 
AGACCTTCAAGT; reverse primer: TGCAGCTGAGCTAGGT- 
ACGA; DR5 forward primer: AGACCCTTGTGCTCGTTGTC; 
reverse primer: TTGTTGGGTGATCAGAGCAG; 28S rRNA  
forward primer: TTGAAAATCCGGGGGAGAG; reverse primer:  
ACATTGTTCCAACATGCCAG.

The relative expression of the target gene transcript and refer-
ence gene transcript was calculated as ΔΔCt. 28S rRNA was used 
as reference gene.

cytometric Bead array
In order to screen supernatants of NK and RMS cells in culture 
as well as after coculture in cytotoxicity assays for changes in 
secreted cytokines through treatment with SM, supernatants 
were frozen at −80°C. Cytokine concentrations in these culture 
supernatants were determined by flow cytometry using the 
BD™ CBA Flex Set System (BD Bioscience, San Diego, CA, 
USA). Tests were performed according to the manufacturer’s 
instructions using a mixture of PE-conjugated antibodies against 

the cytokines listed above. Data were acquired with the BD 
FACSVerse™ Bioanalyzer and analysis was carried out by using 
the FCAP Array™ software (v3.0.1).

statistical analysis
Prior to analyses, the Shapiro–Wilk normality test was performed 
in order to prove normal distribution of the analyzed data. The 
statistical analyses of cytotoxicity assays as well as SM-induced 
changes in NK cell surface markers and viability experiments 
were performed using the repeated measures one-way ANOVA 
with Dunnett’s multiple comparison in GraphPad Prism 6 (Inc. 
LA JOLLA, CALIFORNIA, USA). In case of the blocking experi-
ments, which require the comparison of each group with every 
other group rather than the comparison to a control column, 
Turkey’s multiple comparisons test was added to the repeated 
measures one-way ANOVA. Changes in mRNA levels and 
amounts of secreted cytokines upon stimulation with SM were 
analyzed through paired t-tests. All significant differences with a 
p-value less than 0.1 are marked in the results.

resUlTs

nK cells Tolerate higher sM 
concentrations than rMs cells
When testing a substance for its therapeutic potential, such as 
SM for the sensitization of tumor and the stimulation of NK 
cells, a first important piece of information is the optimal dose 
and the concentration of SM that becomes toxic to the respec-
tive cells. In order to investigate this, NK and RMS cells were 
incubated with increasing concentrations of SM and cell viabil-
ity was analyzed after 24 and 48 h using flow cytometry. RH30 
cells already reacted to 10 μM SM with a significantly decreased 
viability after 24 h (IC50 24 h: 15 μM), RD cells showed similar 
results (data not shown). NK cells, however, tolerated doses of 
up to 30 μM (IC50 24 h: 68 μM) (Figures 1A,B). Considering 
the objective of using SM to optimize NK cell therapy, the 
impact of SM on the proliferative behavior of NK cells is also 
of interest. Up to a concentration of 2.5 μM, SM did not affect 
the proliferation of NK cells (Figure 1C). Increasing the dose to 
5 μM SM led to a balance between cell death and proliferation, 
while the presence of 10 μM resulted in a significantly decreased 
cell number (Figure 1C).

Pretreatment of either rMs or nK cells 
with sM increases nK cell-Mediated 
Killing of rMs cells
Following the hypothesis, that SM can restore the defective 
apoptotic machinery in tumor cells and therefore sensitize 
them toward NK cell-mediated killing, cytotoxicity assays were 
performed using targets that were pretreated with SM prior 
to coculture. Indeed, pretreating the ARMS cell line RH30 
cells for 24  h with subtoxic concentrations of SM that had no 
or little effects on cell viability significantly increased the per-
centage of lysed cells from 24 to 54% regarding pretreatment 
with 10  μM SM (Figure  2A). Also, embryonal RD cells were 
rendered more susceptible to NK cell-mediated killing by SM as 
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FigUre 1 | natural killer (nK) cells tolerate higher concentrations 
of smac mimetics (sM) than rh30 cells. (a) RH30 and (B) NK cells 
were challenged with increasing doses of SM (0, 2.5, 5, 10, 20, 30, and 
50 μM). The percentage of viable cells was determined with a life–dead 
stain (DAPI) in flow cytometry after 24 and 48 h. (c) NK cells were isolated 
and cultured in medium containing increasing doses of SM in addition to 
IL-2. On day 3, 6, and 9, they were fed with fresh medium including both 
additives and their proliferative behavior was tracked through cell counts. 
The determined cell numbers were considered in relation to the absolute 
number of cells on day 0. Data concerning the impact of SM on RMS cells 
are always depicted in orange (RH30) or red (RD), and NK cells in green 
color. Three individual experiments were performed for each setting 
(n = 3). Statistical analysis with repeated measures one-way 
ANOVA + Dunnett’s multiple comparison, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001, each referred to 0 μM.
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pretreatment with 10  μM SM increased the specific lysis from 
24 to 45% (Figure S1A in Supplementary Data). To ensure that 
the effectors, IL-2-stimulated NK cells, were responsible for  
the killing, specific lysis was calculated as the difference 
between the percentage of all dead cells (absolute lysis) and the  
percentage of RMS cells that simply died due to pretreatment in 
absence of effectors during the coculture period (spontaneous 
lysis). Furthermore, we observed that a 3-h pretreatment is insuf-
ficient to sensitize RH30 cells toward NK cell-mediated killing 

(Figure S1B in Supplementary Data), similar observations were 
made regarding RD cells (data not shown).

In a next step, we investigated whether SM alter the cytotoxic 
potential of NK cells. For this purpose, cytotoxicity assays were 
performed using NK cells which were stimulated with SM in 
addition to IL-2 during their expansion period as effectors, and 
untreated RH30 cells as targets. The presence of SM during the 
7  days of culture significantly increased the NK cell-mediated 
killing of targets compared to the killing through NK cells 
stimulated with IL-2 alone (Figure  2B). On average, NK cells 
that were stimulated with 10 μM SM in addition to IL-2 killed 
67% of the untreated targets, while IL-2-stimulated NK cells 
only killed 43% (Figure 2B). This SM-stimulated increase in the 
cytotoxic potential of NK cells was seen in every tested donor, 
although the extent of the effect differed. The most impressive 
increase was observed during the experiment with donor four, 
where pretreated cells killed more than twice as much tumor 
cells as the untreated counterpart. We further observed that the 
increase in the cytotoxic potential is limited to the late phase 
killing. Evaluating the same cytotoxicity assays after a coculture 
time of only 4 instead of 16 h did not show comparable results 
(Figure S1C in Supplementary Data). Interestingly, the posi-
tive effect of pretreating NK cells was restricted to the more 
aggressive histological subtype of RMS tested: the ARMS cell 
line RH30. Testing the pretreated NK cells against the untreated 
ERMS cell line RD did not show a comparable result (Figure S1D 
in Supplementary Data).

Trail signaling contributes to sM-
induced sensitization of rMs cells to nK 
cell Killing
Next, we aimed at unveiling the mechanisms that are responsible 
for the SM-conferred sensitization of RMS cells toward NK cell-
mediated killing. Motivated by the hypothesis, that SM induce 
changes within the surface marker profile of RMS cells, untreated 
as well as pretreated cells were stained with fluorochrome-
conjugated antibodies against a broad range of ligands for NK 
cell receptors: ULBP-1, -2, -3, -4, MHC class I polypeptide-related 
sequence (MIC)A, and -B as ligands for natural killer group2, 
member D (NKG2D); ICAM-1, -2, and -3 as ligands for lympho-
cyte function-associated antigen-1; Nectin-2 and PVR as ligands 
for DNAM-1, as well as B7-H6 as a ligand for NKp30. The markers 
were screened for their surface expression and changes in their 
mean fluorescence intensity normalized to the untreated control. 
However, none of the tested surface markers showed a significant 
change in their expression level upon treatment with SM (Figure 
S2 in Supplementary Data). The analyses were performed with 
RH30 (Figure S2A in Supplementary Data) as well as RD cells 
(Figure S2B in Supplementary Data), leading to similar results.

Since SM have been described to stimulate TNFα production, 
which contributes to SM-induced cell death in an autocrine/
paracrine manner (34), we tested whether the increased suscep-
tibility of RH30 cells is dependent on TNFα by adding Enbrel, 
the inhibiting soluble TNF receptor (TNFR2) fused with an IgG1 
Fc part, to the coculture. However, the addition of Enbrel did not 
protect RH30 cells from NK cell-induced killing (Figure  3A), 
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FigUre 2 | Pretreatment with sM effects both rh30 and nK cells. (a) SM sensitize RH30 cells toward NK cell mediated killing. RH30 cells were pretreated 
with 0, 5, or 10 μM SM for 24 h prior to being used as targets for IL-2-stimulated NK cells on day six of culture (as depicted in the scheme on the right-hand side). 
The cytotoxicity assay was repeated with NK cells of four different donors (n = 4). E:T ratio = 10:1, coculture time 4 h. (B) SM increase the cytotoxic potential of NK 
cells. NK cells were cultured with different doses of SM (0, 5, and 10 μM) in addition to IL-2 for 7 days (as depicted in the scheme on the right-hand side). On day 
seven, cytotoxicity assays were performed using untreated RH30 cells as targets. The experiment was repeated with NK cells from seven different donors (n = 7). 
E:T ratio = 10:1, coculture time 16 h. Statistical analysis through repeated measures one-way ANOVA + Dunnett’s multiple comparison, ***p < 0.001, 
****p < 0.0001, each referred to 0 μM.
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while Enbrel prevented SM-induced cell death in MDA-MB231 
cells that were used as a positive control, since they have been 
reported to die in a TNFα-dependent manner upon treatment 
with SM (38) (Figure S6A in Supplementary Data). Also, the 
amount of secreted cytokines during the described cytotoxicity 
assays was not altered by pretreatment of RMS with SM (Figure 
S3 in Supplementary Data).

Further, we recently identified TRAIL receptor ligand sign-
aling as another critical mediator of SM-induced cell death 
(38). We therefore asked whether TRAIL is required for the 
SM-mediated sensitization of RH30 cells to NK cell-mediated 
killing. To address this question, we used a TRAIL-blocking 
antibody to neutralize TRAIL on NK cells prior to coculture 
(Figure S6B in Supplementary Data). The presence of the TRAIL-
blocking antibody significantly reduced the SM-conferred sensi-
tization of RH30 cells to NK cell-mediated killing (Figure 3B). 
While neither surface expression of TRAIL-R1 or TRAIL-R2 

on RH30 cells, nor TRAIL expression on NK cells was altered 
by treatment with SM (Figure S4 in Supplementary Data), SM 
significantly increased mRNA levels of the NF-κB target genes 
TRAIL-R1, TRAIL-R2 and TRAIL in RH30 cells (Figure  4). 
SM-stimulated upregulation of TRAIL-R1, TRAIL-R2, and 
TRAIL mRNA expression was confirmed in RD cells (Figure 
S5 in Supplementary Data).

Furthermore, SM have been reported to promote activation 
of caspases by neutralizing XIAP proteins (34), wherefore we 
tested whether caspases are required for the SM-mediated 
sensitization of RH30 cells. To this extent, we added the pan-
caspase inhibitor zVAD.fmk to the medium during cytotoxicity 
assays after functionality of this caspase-blocking inhibitor on 
RH30 cells has been proven in standardized cell death assays 
(Figure S6C in Supplementary Data). Importantly, the presence 
of zVAD.fmk significantly rescued RH30 cells from NK cell-
induced killing (Figure 3C).
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FigUre 4 | sM induces upregulation of nF-κB target genes in rh30 cells. Tumor cells pretreated with 10 μM SM for 24 h as well as untreated cells were 
analyzed for mRNA levels of the NF-κB target genes (a) TRAIL-R1, (B) TRAIL-R2, and (c) TRAIL through real time (rt)-PCR. The experiment was repeated with 
RH30 cells from four to six different cell passages, depicted is the fold increase normalized to 0 μM. Statistical analysis through paired t-test, **p < 0.01, +p < 0.1.

FigUre 3 | Defining underlying mechanisms behind the sM-induced sensitization of rh30 cells. Cytotoxicity assays with pretreated RH30 cells as targets 
for IL-2-stimulated natural killer (NK) cells as shown in Figure 2a were performed with the additional presence of (a) Enbrel, a TNFα blocker (concentration 250 μg/
ml) or (c) zVAD.fmk (concentration 40 μM) during coculture. In panel (B), TRAIL on NK cells was blocked through incubation with an antibody (concentration 50 μg/
ml) prior to coculture. Each experiment was repeated with NK cells from three different donors (n = 3), E:T ratio = 10:1, coculture 4 h. Statistical analysis with 
repeated measures one-way ANOVA with Turkey’s multiple comparison, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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TnFα signaling contributes to sM-
induced increase in the cytotoxic 
Potential of nK cells against rh30 cells
To elucidate which mechanisms are responsible for the 
SM-induced increase in the cytotoxic potential of NK cells, we 
first screened a broad range of NK cell surface molecules for 
changes upon treatment with SM: activating NK cell receptors 
(NKp30, NKp44, NKp46, NKG2D, DNAM-1, and CD16) (Figure 
S7A in Supplementary Data), chemokine receptors (CCR7, 
CX3CR1, and CXCR4) (Figure S7B in Supplementary Data), 
inhibitory NK cell receptors (NKG2A and KIR2D) (Figure S7C 
in Supplementary Data), and activation markers (CD25, CD107a, 
CD69, CD62L) (Figure S7D in Supplementary Data). Generally 
speaking, we observed a donor-dependent influence of SM on 
the expression of NK cell surface proteins. Only two of the tested 
molecules showed a consistent, donor-independent change: 
CX3CR1, a chemokine receptor, was upregulated, while NKp46 
was downregulated upon treatment with SM.

In further search of underlying mechanisms, we investigated 
the role of TNFα during cytotoxicity assays with SM-pretreated 
NK cells against RH30 cells by adding Enbrel to the medium 
during coculture. In fact, the SM-induced increase in NK 
cell-mediated killing was reduced by the presence of Enbrel 
(Figure 5A). Although this protection by Enbrel was partial, it was 
consistently found in each of the four tested donors (Figure 5A). 
Correspondingly, we detected a significant increase in secreted 
TNFα in supernatants of SM-pretreated compared to untreated 
NK cells at the end of the coculture period of the cytotoxicity 
assays. Besides TNFα, the levels of IFN-γ were significantly 
increased in these supernatants (Figure  5B), while IFN-α and 
FasL levels remained unchanged (data not shown). Interestingly, 
we could only observe this increase in TNFα and IFN-γ levels 
when the untreated and SM-pretreated NK cells were challenged 
with their target cells and not upon SM-induction alone (Figure 
S8 in Supplementary Data).

There are probably further mechanisms contributing to the 
increased level of activation of NK cells. In line with our findings 

257

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 5 | Defining mechanisms behind the sM-mediated stimulation of nK cells. (a) Cytotoxicity assays with pretreated NK cells (SM in addition to IL-2 
for 7 days) against untreated RH30 cells (as shown in Figure 2B) were repeated under the presence of Enbrel, a TNFα blocker (concentration 250 μg/ml). The 
experiment was performed with NK cells of four different donors (n = 4), E:T ratio = 10:1, coculture time 16 h. Statistical analysis through repeated measures 
one-way ANOVA were not significant. (B) At the end of coculture of the experiments described under (a), supernatants were taken away and analyzed using 
cytometric bead array. The graph shows the fold increase in the amount of TNFα and IFN-γ normalized to 0 μM. The experiment was repeated from three different 
cytotoxicity assays (n = 3). Statistical analysis through paired t-test, +p < 0.1, ***p < 0.001.
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in tumor cells, we detected an increase in RelB and IκBα mRNA 
levels, also indicating an activation of NF-κB signaling in 
SM-treated NK cells. Also, the NF-κB target gene TRAIL was 
found to be upregulated, while mRNA levels of TNFα were 
lower than in the untreated control (Figure 6).

DiscUssiOn

Since immune effector cells including NK cells mainly function 
by inducing apoptosis in their targets, the efficacy of immuno-
therapy critically depends on intact apoptosis signaling pathways 
within the targeted cancer cells. Here, we report that SM, which 
antagonize IAP proteins, can prime RMS cells toward NK cell-
mediated cytotoxicity (as shown for RD and RH30 cells), and 
increase the cytotoxic potential of NK cells toward RH30 cells. Of 
note, the simultaneous targeting of tumor and immune cells with 
one single drug was restricted to the more aggressive alveolar 
RH30 cell line.

Importantly, we found that TRAIL signaling contributes to 
SM-induced sensitization of RMS cells toward NK cell-mediated 
cytotoxicity, as the addition of a neutralizing TRAIL antibody 
on NK cells prior to coculture with tumor cells significantly 
reduced tumor lysis. While we confirmed the overall expression 
of TRAIL on IL-2-stimulated NK cells, as well as the upregulation 
of the NF-κB target gene TRAIL in RMS cells upon treatment 
with SM, we did not detect any changes in neither TRAIL-R1 or 
TRAIL-R2 expression on RMS cells, nor TRAIL expression on 
NK cells upon exposure to SM. Overall, our findings are consist-
ent with our previous reports showing that SM or Smac peptides 
can prime cancer cells toward TRAIL in  vitro and in  vivo (39, 
40). In addition, we recently identified TRAIL receptor ligand 
signaling as one critical mediator of SM-induced cell death (38). 
Also, cooperative TRAIL production has been shown to mediate  

SM/IFNα-induced cell death in TNFα-resistant solid cancer cells 
(41). By comparison, TRAIL signaling turned out to be dispen-
sable for SM/glucocorticoid-induced cell death in leukemia cells 
(42) or in SM/temozolomide-triggered cell death in glioblastoma 
cells (43). This indicates that the TRAIL system contributes to 
SM-induced cell death in a context-dependent manner.

Interestingly, we found a differential role of TNFα in 
SM-imposed sensitization of RMS cells to NK cell killing, 
depending on whether RMS or NK cells were pretreated with 
SM. TNFα contributes, at least to some extent, to the enhanced 
cytotoxicity when NK cells were pretreated with SM, since the 
addition of TNFα-blocking Enbrel to the medium during the 
killing assay significantly, although partially, decreased the NK 
cell-mediated killing of RH30 cells. In addition, SM-pretreated 
NK cells produce significantly higher amounts of TNFα and 
IFN-γ than their untreated counterpart, when cocultured with 
their tumor target cells. However, beside the possible relevance 
of TNFα, there are likely additional mechanisms contributing to 
the SM-induced activation of NK cells, for example, activation of 
NF-κB signaling through SM.

On the contrary, TNFα was found to be dispensable for the 
enhanced cytotoxicity of NK cells when RMS cells were pretreated 
with SM, since the addition of Enbrel to cytotoxicity assays failed 
to rescue RMS cells from NK cell-mediated killing. This is under-
lined by the fact that the supernatants of pretreated RMS cells did 
not contain more TNFα than the untreated cells. These findings 
are consistent with previous studies on a context-dependent 
impact of TNFα as a mediator of SM-induced cytotoxicity. On 
the one hand, there are several studies showing that an autocrine/
paracrine TNFα loop plays a critical role in SM-induced cell death 
(34, 44–48). On the other hand, blockage of TNFα signaling has 
also been reported to fail in providing protection against SM 
in other settings (38, 42, 43). We previously demonstrated that 
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FigUre 6 | sM induces upregulation of nF-κB target genes in natural killer (nK) cells. NK cells cultured for 7 days with IL-2 alone and in addition with SM 
were analyzed for mRNA levels of the NF-κB target genes (a) RelB, (B) IκBα, (c) TRAIL, and (D) TNFα through rt-PCR. The experiment was repeated with NK cells 
from three to six different donors, depicted is the fold increase normalized to 0 μM. Statistical analysis through paired t-test, *p < 0.05, ***p < 0.001.
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cell type-dependent sensitivity to TNFα can determine whether 
a cell line depends on TNFα signaling to mediate BV6-induced 
cell death (41). In TNFα-resistant types of cancer, we showed that 
TRAIL as another death receptor ligand can mediate SM-induced 
cell death instead of TNFα (41). Also, differential upregulation of 
TNFα upon SM might explain TNFα dependency in some but 
not other instances.

While the monovalent SM LCL161 has previously been 
reported to upregulate ligands for the activating NK cell recep-
tor NKG2D such as MICA and MICB (49), we did not detect 
changes in NK cell receptor ligands on RMS cells upon treatment 
with the SM BV6, which might be due to different tumor types 
or different SM.

Moreover, caspase-dependent as well as caspase-independent 
effector pathways may be involved in the SM-conferred increased 
sensitivity of RH30 cells toward NK cell killing. Our finding 
that the presence of zVAD.fmk, a pancaspase inhibitor, rescues 
tumor cells from the increase in killing indicates an apoptosis-
dependent cell death in line with previous reports that zVAD.
fmk rescues tumor cells from increased cytotoxicity of NK or 
cytokine-induced killer cells (50, 51).

It is also interesting to note that a 24-h pretreatment with 
BV6 was necessary to adequately sensitize RMS cells to NK cell 
cytotoxicity, while a pretreatment of only three hours turned 
out to be insufficient. By comparison, we previously reported 
that a 4-h pretreatment with BV6 primed RMS cells for CIK 
cell-mediated killing (50). One possible explanation for the dif-
ferent requirement of preincubation time is a difference in the 
cytotoxicity of NK versus CIK cells. Alternatively, these findings 
may indicate that neither the depletion of cIAPs, nor the direct 
release of caspases from XIAP proteins, which has been reported 
to occur within minutes or hours upon exposure to BV6 (34), 
are responsible for the BV6-conferred sensitization of RMS cells 
to NK cell-mediated killing. Rather, induction and subsequent 
expression of proteins or cytokines, for example, as the result of 
SM-stimulated engagement of alternative NF-κB signaling upon 
cIAP1/2 depletion, might be necessary which requires some 
time. Consistently, we found upregulation of several NF-κB 
target genes, including proapoptotic genes such as TRAIL-R1, 
TRAIL-R2, and TRAIL, in SM-treated RMS cells.

On the NK cell side, the expression of killer immunoglobulin 
like receptors (KIRs) was slightly decreased as detected by an 
antibody recognizing the common extracellular Ig-like domains 
of the KIR2D receptor family—a family whose greater part 
belongs to the inhibitory receptors. Therefore, the decrease 
observed might minimize the inhibitory signals within the 
NK cell and lower the threshold for NK cell activation. This 
in addition to the increase of CX3CR1 might contribute to 
the activating effect, even though it is difficult to envisage 
one of these molecules operating as a key player. In contrast, 
NKp46, another activating receptor, shows a clear tendency to 
be downregulated upon exposure to SM, possibly lowering the 
state of activation in NK cells. All in all, as the increase of 
the cytotoxic potential through stimulation with SM observed 
during the cytotoxicity assays was clearly donor-independent, 
we conclude that the activating effect of SM on NK cell function 
is not absolutely attributable to changes in the expression of 
surface molecules.

Consistent with our findings demonstrating that SM at 
non-toxic concentrations enhance NK cell cytotoxicity, there 
is increasing evidence showing that SM can potentiate cancer 
immunotherapy not only by promoting apoptosis of cancer cells 
but also by modulating immune cell functions without induc-
ing cell death in the majority of immune cells. For example, SM 
have been shown to augment human and mouse T-cell responses 
to physiologically relevant stimuli via activation of alternative 
NF-κB signaling (52). In addition, SM were described to increase 
in vitro expansion of antigen-specific naive and memory T cells 
to enhance T-lymphocyte function (53), to trigger phenotypic 
maturation of monocyte-derived dendritic cells (DCs) (53), and 
to stimulate maturation of immature DCs (54).

Taken together, SM represent an interesting strategy in opti-
mizing NK cell therapy for the treatment of RMS by sensitizing 
the tumor cells to NK cell-mediated cell death on the one hand, 
and by directly activating NK cells on the other (Figure 7).
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FigUre 7 | impacts of sM on rMs and nK cells. Schematic picture 
illustrating the mechanisms of interaction between NK cells and their targets 
that are influenced by SM.
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Natural killer (NK) cells have therapeutic potential for cancer due to their capacity for 
targeting tumor cells without prior sensitization. Our laboratory has developed an NK cell 
expansion protocol that generates large quantities of NK cells for therapeutic infusion 
that secret 20 times the amount of interferon gamma (IFNγ) than resting NK cells. IFNγ 
can upregulate major histocompatibility complex (MHC)-class I, an inhibitory ligand for 
NK  cells, but can also upregulate intercellular adhesion molecule 1 (ICAM-1) which 
promotes NK:target cell interaction for an efficient lysis. Due to the opposing effects 
reported for IFNγ on tumor sensitivity to NK cells, we evaluated a panel 22 tumor cell 
lines from the pediatric preclinical testing program corresponding to different tumor 
types. We determined the impact of IFNγ on their expression of NK cell activating and 
inhibitory ligands, death receptors, and adhesion molecules using mass cytometry. We 
also evaluated the effect of IFNγ on their sensitivity to NK cell-mediated lysis. Our results 
show upregulation of PD-L1, ICAM-1, MHC-class I, HLA-DR, CD95/FasR, and CD270/
HVEM after IFNγ treatment, this upregulation is variable across different tumor types. 
We also observed a variable impact of IFNγ in NK cell-mediated lysis. For six of the 
cancer cell lines IFNγ resulted in increased resistance to NK cells, while for three of them 
it resulted in increased sensitivity. Modeling of the data suggests that the effect of IFNγ 
on NK cell-mediated tumor lysis is mostly dependent on changes in MHC-class I and 
ICAM-1 expression. For three of the cell lines with increased resistance, we observed 
higher upregulation of MHC-class I than ICAM-1. For the cell lines with increased sensi-
tivity after IFNγ treatment, we observed upregulation of ICAM-1 exceeding MHC-class 
I upregulation. ICAM-1 upregulation resulted in increased conjugate formation between 
the NK cells and tumor cells, which can contribute to the increased sensitivity observed. 
However, the effects of MHC-class I and ICAM-1 are not readily predictable. Due to 
the high IFNγ secretion of NK cell infusion products, a better understanding of the NK 
ligands on tumor cells and how they are affected by IFNγ is essential to optimize NK cell 
immunotherapy.

Keywords: interferon gamma, natural killer cells, pediatric cancer, mass cytometry, natural killer ligands, 
immunotherapy, intercellular adhesion molecule 1, major histocompatibility complex
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inTrODUcTiOn

Current chemotherapeutic approaches for pediatric cancer are 
associated with high morbidity and late effects in survivors. By 
the age of 50, many survivors experience cardiovascular, renal, 
and hepatic complications, in addition to the risk of subsequent 
malignancies (1). Therefore, there is a need to develop new 
therapies capable of eradicating disease with reduced late effects. 
Immunotherapy has emerged as a promising new approach for 
cancer treatment. Natural killer (NK) cells, an important compo-
nent of our first-line innate immunity, have activity against tumor 
cells without prior sensitization and are increasingly recognized 
for their important role in preventing and eradicating cancer. 
Because NK cells have the ability to selectively target tumor cells 
without affecting healthy cells, they are an attractive approach for 
pediatric cancer therapy.

Natural killer cells are typically defined as CD56+/CD3− 
lymphocytes. Their activity is regulated by a series of inhibitory 
and activating receptors that recognize ligands on target cells. 
The balance between activating and inhibitory signals will 
determine whether an NK  cell is activated. The three main 
receptor families present on NK cells include natural cytotoxic-
ity receptors (NCRs), C-type lectin (CD94/NKG2), and killer 
cell immunoglobulin-like receptors (KIRs) (2). NCRs (NKp30, 
NKp44, NKp46) are activating receptors, as are CD244/2B4, 
CD226/DNAM-1, and CD314/NKG2D. KIRs and C-type lectin 
receptors may be activating or inhibitory. Among the most 
important NK cell, inhibitory receptors are the KIRs and NKG2A 
because they recognize major histocompatibility complex 
(MHC) on target cells as evidence of self, leading to inhibition 
of NK cell activity (3). Many tumor cells downregulate MHC to 
escape T cell immunity, and upregulate activating ligands, mak-
ing them susceptible targets for NK cell attack (4–7). However, 
in tumor cells where both inhibitory and activating ligands are 
present, the balance of these signals determines whether the 
NK cell is activated.

We developed an expansion protocol that allows production of 
large quantities of NK cells for adoptive immunotherapy (8). We 
have observed that, as compared to primary NK cells or IL-15-
expanded NK cells, IL-21-expanded NK cells secrete 20-fold or 
100-fold more interferon gamma (IFNγ, median 2,493 vs. 24 or 
111 pg/mL, respectively), in response to target recognition (8). 
IFNγ has been reported to upregulate the inhibitory MHC-class 
I in target cells, making them more resistant to NK cell-mediated 
lysis (9, 10). However, IFNγ has also been reported to promote 
NK:target cell interaction through upregulation of intercellular 
adhesion molecule 1 (ICAM-1), promoting increased target cell 
death (11, 12). These findings suggest that IFNγ can have oppos-
ing effects on tumor cell sensitivity to NK cell-mediated lysis. To 
optimize the use of expanded NK cells as an immunotherapy it is 
imperative that we better understand how IFNγ affects NK cell-
mediated lysis of the tumor cells.

Opposing effects reported for IFNγ may be due to a focus on 
specific tumor types, therefore this study aimed to evaluate the 
effect of IFNγ on a broad selection of 22 tumor cell lines from the 
pediatric preclinical testing program (PPTP) in vitro panel. This 
panel was designed to evaluate new therapies against childhood 

leukemias and solid tumors and has already been used for in vitro 
testing of over 50 pediatric cancer therapies (13). Using these 
cancer cells corresponding to six different types of pediatric 
malignancies, we evaluated the effects of IFNγ treatment in tumor 
cell sensitivity to NK cell-mediated lysis. Also we evaluated the 
effects of IFNγ treatment on tumor expression of NK cell ligands, 
including activating and inhibitory ligands, death receptors, and 
adhesion molecules.

MaTerials anD MeThODs

isolation and expansion of human nK 
cells
Buffy coats from four anonymized donors were obtained 
from Gulf Coast Regional Blood Center (Houston, TX, USA). 
Exemption and waiver of consent for the research use of buffy 
coat fractions obtained from anonymized donors at Gulf Coast 
Regional Blood Center (Houston, TX, USA) was granted by 
the Institutional Review Board of the University of Texas 
MD Anderson Cancer Center under protocol PA13-0978. 
NK cells were isolated using the RossetteSep Human NK cell 
enrichment cocktail (Stem Cell Technologies) and expanded 
as described previously using K562 Clone9.mbIL21 as feeder 
cells for 21 days (8). Expanded NK cells were cryopreserved, 
and subsequently thawed and recovered for 1–2 days prior to 
their use. During recovery NK cells were cultured in NK cell 
media consisting of RPMI 1640 (Corning) supplemented with 
50  IU/mL recombinant human IL-2 (Proleukin, Novartis 
Vaccines and Diagnostics, Inc.), 20% Fetal Bovine Serum 
(Thermofisher), l-glutamine (Gibco), and penicillin/strepto-
mycin (Corning).

Tumor cells
TC-71, NALM-6, and Ramos-RA1 were obtained as kind gifts 
from colleagues (Drs. Eugenie S. Kleinerman, L. J. N. Cooper, 
and J. Chandra, respectively). Karpas-299 was obtained from 
the German Collection of Microorganisms and Cell Cultures 
(DSMZ). RS4;11, MOLT-4, and CCRF-CEM were obtained from 
the America Type Culture Collection (ATCC). The remaining cell 
lines were obtained from the Children’s Oncology Group (COG) 
Cell Line and Xenograft Repository. Brain tumor cell lines BT-12, 
SJ-GBM2, CHLA-266, Ewing sarcoma (EWS) cell lines CHLA-9, 
CHLA-10, CHLA-258, TC-71, neuroblastoma (NB) cell lines 
NB1643, NB-EBc1, CHLA-90, CHLA-136, rhabdomyosar-
coma (RMS) cell line RD, and leukemia cell line COG-LL-317 
were cultured in IMDM (Lonza) supplemented with 20% FBS 
(Thermofisher), 4  mM l-glutamine (Gibco), 1× ITS (Lonza), 
and penicillin/streptomycin (Corning). Lymphoma cell lines 
Karpas-299, Ramos-RA1, leukemia cell lines NALM-6, RS4;11, 
MOLT-4, CCRF-CEM, Kasumi-1, and RMS cell lines Rh41, 
Rh30, were cultured in RPMI 1640 (Corning) supplemented with 
10% Fetal Bovine Serum (Thermofisher), l-glutamine (Gibco), 
and penicillin/streptomycin (Corning). Cultures were periodi-
cally tested to confirm absence of mycoplasma using MycoAlert 
Mycoplasma Detection Kit (Lonza). Identity was confirmed by 
STR DNA fingerprinting either using the AmpFlSTR Identifiler 
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kit (Applied Biosystems) or the Power Plex 16HS Kit (Promega) 
according to manufacturer instructions. The STR profiles were 
compared to known fingerprints as published by ATCC or the 
COG cell STR Genotype Database (http://strdb.cogcell.org). 
STR profiles were last performed on March 2016 (SJ-GBM2, 
NB1643, MOLT-4), October 2015 (RD, Rh41, Rh30, BT-12, 
CHLA-10, NB-EBc1, NALM-6, and Ramos-RA1), or September 
2012 (CHLA-266, CHLA-9, CHLA-258, TC-71, CHLA-90, 
CHLA-136, RS4;11, COG-LL-317, CCRF-CEM, Kasumi-1, and 
Karpas-299). Banks of STR validated, mycoplasma-free cell lines 
were cryopreserved. Cell lines were kept in culture no longer than 
eight passages or 4 weeks prior to use.

iFnγ Treatment of Tumor cells
Cell lines that grow in suspension were seeded at 0.5  ×  106 
cells/mL and treated with 50  ng/mL of IFNγ (Peprotech) for 
48 h. Adherent cells were cultured to a 60–70% confluence and 
treated with 50 ng/mL of IFNγ (Peprotech) for 48 h. Untreated 
tumor cells were seeded in parallel. After treatment cells were 
washed in IFNγ free media, and adherent cells were detached 
with non-enzymatic cell dissociation buffer (Gibco) to avoid 
degradation of cell surface proteins. Treated and untreated cells 
were evaluated for surface expression of NK cell ligands by mass 
cytometry and sensitivity to NK cell-mediated lysis by calcein 
release assay.

cytotoxicity
The fluorescence based calcein release assay was used to assess 
cytotoxicity, as previously described (8, 14). Adherent cells 
were detached with non-enzymatic cell dissociation buffer 
(Gibco) and cells were filtered by using a 70  μm cell strainer 
(Corning) to obtain a single-cell suspension. Target cells were 
labeled with 5  μg/mL of calcein-AM (Sigma-Aldrich) for 1  h 
at 37°C. NK cells were cocultured with target cells at different 
effector to target (E:T) ratios (10:1, 5:1, 2.5:1, 1.25:1, 0.6:1, and 
0.3:1) for 4  h at 37°C. Supernatant fluorescence was deter-
mined at 485  nmExc/530  nmEmm using the SpectraMax Plus384 
spectrophotometer.

Mass cytometry
Antibodies for mass cytometry were labeled with heavy met-
als using Maxpar-X8 labeling reagent kits (DVS Sciences) 
according to manufacturer’s instructions and titrated for 
determination of optimal concentration. The antibodies and 
their respective heavy metal labeling can be found in Table 
S1 in Supplementary Material. Since NK  cell receptors may 
have multiple ligands (e.g., NKG2D binds to MICA, MICB, 
and ULBP1-5), or unknown ligands, chimeric receptor:IgG-
Fc fusion proteins were tagged with heavy metals and used 
for identification of ligands on tumor cells. Then, 1.5  ×  106 
cells were stained for viability with 2.5  µM cell ID cisplatin 
(Fluidigm, 201064) in serum free RPMI for 1 min and washed 
twice with complete media. Subsequently, surface staining 
was performed as previously described (15). Staining media 
were prepared by adding 5% FBS and 0.1% sodium-azide to 
PBS. During the intracellular staining step of tumor cells, two 

different isotopes of cisplatin Pt-194 (Fluidigm, 201194) and 
Pt-198 (Fluidigm, 201198) were used to barcode untreated 
and IFNγ-treated samples, respectively, allowing samples to 
be combined in a single tube, minimizing acquisition time, 
and variability between runs. Data were acquired on a CyTOF 
instrument (DVS Sciences). Files containing only live single 
cells were exported using FlowJo V10 Software and uploaded 
into Cytobank for further analysis (Figure S1 in Supplementary 
Material) (16).

conjugation assay
The determination of effector conjugation to target cells was per-
formed as described by Burshtyn et al., with some minor modi-
fications (17). Briefly, NK cells and tumor cells were stained with 
green dye PKH67-GL (Sigma, MINI67) and red dye PKH26-GL 
(Sigma, MINI26), respectively, in 5 µM dye at 5 × 106 cells/mL for 
5 min at room temperature. Dye staining was stopped by adding 
two volumes of FBS and two volumes of complete media. Cells 
were washed twice with complete media and let rest for at least 
1 h at 37°C. Then, 105 NK cells were combined with 2 × 105 tumor 
cells in 200 µL, centrifuged at 20 g for 1 min (to initiate contact), 
and incubated at 37°C for 30  min. Cells were resuspended by 
gentle vortexing, fixed with 200  µL of 4% formaldehyde, and 
analyzed by flow cytometry. For antibody blocking experiments, 
NK cells were pre-incubated with 5 µL of Fc blocker (Biolegend, 
422302) for 10 min to avoid antibody-dependent cell cytotoxicity. 
ICAM-1 was blocked on tumor cells by adding 10 µg/mL of anti-
CD54/ICAM-1 clone HCD54 (Biolegend, 322703) for 20 min at 
room temperature.

statistical analysis
Statistics were performed in GraphPad Prism Software. For 
determination of Δ in % Lysis after IFNγ treatment (Figure 1), 
we used data from six different E:T ratios. For each cell line, we 
calculated the average difference in lysis after IFNγ treatment 
(%lysis IFNγ treated  −  %lysis untreated) using four NK  cell 
donors. Significance was determined by using the t-test with 
a hypothetical value of 0 for comparison. Heatmaps were 
generated using Cytobank (16). Conjugation data significance 
was determined by using the t-test, statistical significance was 
determined by a p < 0.05.

resUlTs

iFnγ has a Variable impact on Tumor cell 
sensitivity to nK cell-Mediated lysis
We determined whether tumor IFNγ treatment affected NK cell-
mediated lysis for 22 pediatric cancer cell lines from the PPTP 
in vitro panel. Tumor cell lines evaluated were derived from brain 
tumors, EWS, NB, leukemia, lymphoma, and RMS. The Rh18 cell 
line was excluded because of repeated problems maintaining the 
cell line in culture. We observed that 6 of the 22 cell lines evalu-
ated show a significant decrease in NK  cell-mediated lysis after 
IFNγ treatment (Figure 1). The group of cell lines with decreased 
lysis after IFNγ treatment includes leukemia cell lines Molt-4 
(p = 0.0030) and Kasumi-1 (p = 0.0231), EWS cell lines CHLA-9 

264

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://strdb.cogcell.org


FigUre 1 | Waterfall plot of change in lysis by natural killer (nK) cells after treatment of pediatric cancer cell lines with iFnγ. NK cell cytotoxic activity 
toward IFNγ-treated and -untreated cancer cells was evaluated using calcein release assays. Changes in lysis (Δ% Lysis) of treated compared to untreated cancer 
cells were quantified for each NK cell donor. Each shape represents a different NK cell donor (the same four donors were used for all cell lines). Color coding 
corresponds to cell line cancer type. p-Values are for probability that Δ% ≠ 0 (t-test). Squares with dashed lines indicate cancer cell lines with significant (p ≤ 0.05) 
changes in NK cell-mediated lysis after IFNγ treatment.
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(p  =  0.0037) and CHLA-10 (p  =  0.0292), lymphoma cell line 
Ramos-RA1 (p = 0.0007), and NB cell line CHLA-136 (p = 0.0065). 
The NB cell line NB-EBc1 appears to have a decreased lysis after 
treatment, however, it was not statistically significant. When 
decreased lysis after treatment was observed, it was consistent for 
all four donors tested and across E:T ratios (Figure 2A).

By contrast, two of the cell lines showed an increase in 
NK  cell-mediated lysis after IFNγ treatment. These cell lines 
include the glioblastoma cell line SJ-GBM2 (p = 0.0155) and 
the NB cell line NB1643 (p = 0.0371) (Figure 1). In addition, 
although the brain tumor cell line BT-12 shows a non-significant 
increase in sensitivity, we observed that for three of the four 
NK  cell donors there was an increased sensitivity after IFNγ 
treatment, this increase is significant if these three donors are 

evaluated (p = 0.0061). Increased lysis after IFNγ treatment was 
a consistent finding with most donors mostly at high NK cell 
doses (Figure 2B). The remaining cell lines evaluated showed 
no differences in NK cell-mediated lysis after IFNγ treatment, 
and this group includes cell lines corresponding to all the 
tumor types evaluated (Figure 1). After stratifying our data by 
tumor type, we can observe that the only tumor type for which 
IFNγ had no effect on lysis was RMS. In EWS, leukemia, and 
lymphoma IFNγ had no effect or resulted in decreased lysis, 
whereas IFNγ had no effect or resulted in increased lysis for 
brain tumors. Interestingly, for NB cell lines, the effect of IFNγ 
on NK cell-mediated lysis was variable. Lysis of some NB cell 
lines was unaffected by IFNγ treatment, some became more 
resistant, and some more sensitive.
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FigUre 2 | iFnγ has a variable impact on natural killer (nK) cell-mediated cancer lysis. NK cell cytotoxic activity toward IFNγ-treated (gray) and -untreated 
(black) cancer cells was evaluated at six different effector to target (E:T) ratios using calcein release assays. (a) Cell lines showing decreased lysis [leukemia (Molt-4, 
Kasumi-1), Ewing sarcoma (CHLA-9, CHLA-10), lymphoma (Ramos-RA1), and neuroblastoma (NB) (CHLA-136)] and (B) cell lines showing increased lysis [brain 
tumors (BT-12, SJ-GBM2) and NB (NB1643)] after IFNγ treatment. The four NK cell donors are represented for all cell lines, except for BT-12 with three donors 
represented.
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iFnγ alters surface expression of nK cell 
ligands in Pediatric cancer cell lines

The 22 pediatric cancer cell lines obtained from the PPTP 
in vitro panel were evaluated by mass cytometry for the expres-
sion of 16 NK cell ligands. Baseline expression of NK cell ligands 
in terms of median expression and percentage positive cells is 
provided in Figure  3. The inhibitory ligands MHC-class I and 
HLA-E are homogeneously expressed (>70%) for all PPTP cell 
lines with the exception of the RMS cell line Rh41 where MHC-
class I was expressed in only 35% of the cells (Figure  3, right 
panel). Interestingly, we observe that solid tumor cell lines (RMS, 
brain tumor, EWS, and NB) have higher median expression levels 
of TRAIL receptor CD262/DR5, and ligands for the activating 

receptors NKG2D, DNAM-1, and NCRs, when compared to 
leukemia cell lines (Figure 3, left panel).

Baseline expression levels of NK cell ligands were compared 
to the levels after IFNγ treatment and changes were quantified. 
The percentage change in mean mass intensity (MMI) after 
IFNγ treatment was determined for each of the 22 cell lines 
(Figure  4A). CD274/PD-L1, CD54/ICAM-1, HLA-DR, MHC-
class I, CD95/FasR, and CD270/HVEM were the most affected 
by IFNγ (Figure 4A), with at least three cell lines showing fivefold 
increase or more in MMI. Data were also evaluated in terms of 
median expression. IFNγ induced changes in median expres-
sion were quantified, and a heatmap corresponding to the fold 
increase in median expression (obtained from the arcsinh ratio 
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FigUre 3 | expression of natural killer (nK) cell ligands in pediatric cancer cell lines. Pediatric cancer cell lines were evaluated by mass cytometry for the 
baseline expression level of multiple NK cell ligands. The evaluated markers and their function can be found at the table above. Left panel: median expression level 
normalized by row minimum (obtained by evaluating the arcsinh ratio of the median expression compared to the row minimum). Right panel: percent positive cells 
for each given marker.
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of median) was generated (Figure 4B). The changes in median 
expression were similar to changes in mean expression. CD274/
PD-L1, CD54/ICAM-1, HLA-DR, MHC-class I, CD95/Fas, and 
CD270/HVEM were the markers mostly upregulated by IFNγ 
(Figure  4B). When stratified by tumor type (Figure  5; Figure 
S2 in Supplementary Material), we observe that PD-L1 was 
most upregulated by IFNγ in solid tumor cell lines (RMS, brain, 
EWS, and NB), but was relatively unaffected on leukemia and 
lymphoma cell lines. ICAM-1 upregulation was higher for brain 
tumors, EWS, NB and leukemia, and lower for RMS and lympho-
mas. HLA-DR was upregulated by IFNγ on some brain tumor, 
EWS, and NB cell lines. MHC-class I upregulation was variable 
even within the same tumor type. However, IFNγ-induced MHC-
class I upregulation was consistently observed in all NB cell lines. 
Finally, CD270/HVEM upregulation was induced by IFNγ in 
some brain tumor, EWS, and NB cell lines. Our data show that 
lymphoma cell lines were the least affected by IFNγ in terms of 
NK cell ligand expression (Figure 5; Figure S2 in Supplementary 
Material).

iFnγ-induced Upregulation of Mhc-class i 
and icaM-1 correlates with changes nK 
cell-Mediated lysis
Next, we wanted to determine whether there was a correlation 
between changes in ligand expression after IFNγ treatment and 
changes in NK cell-mediated tumor lysis. We first assessed our 
expanded NK cells for expression of the receptors corresponding 
to the most upregulated ligands—PD-L1, ICAM-1, and MHC-
class I. Expression of PD-1, the receptor for PD-L1, was observed 

on only 7% of the expanded NK cells (Figure 6). This low percent-
age of PD-1+ NK  cells in our expanded product suggests that 
PD-L1 upregulation is unlikely to play a role in the IFNγ-induced 
changes in lysis we observed.

By contrast, LFA-1, the integrin that binds ICAM-1, was 
expressed in 99.6% of our expanded NK cells (Figure 6), and inhibi-
tory KIR receptors were also highly expressed in our expanded 
NK cells. KIR2DL2/3 expression was 83.9%, KIR2DL1/2DS5 was 
97.18%, and KIR3DL1 was 89.15% (Figure 6). Also we observed 
expression of the inhibitory receptor NKG2A in 97% of expanded 
NK  cells. Knowing that the majority of our expanded NK  cells 
express LFA-1, KIR, and NKG2A receptors, we focused on 
changes in ICAM-1 and MHC-class I expression (Figure 7). The 
ratio of change in MHC-class I over change in ICAM-1 after IFNγ 
treatment was evaluated and plotted for cell lines with altered 
sensitivity (Figure  7C). We observed that all the cell lines that 
became more resistant after IFNγ treatment had an increase in 
MHC-class I expression (Figures 2A and 7A). However, MHC-
class I upregulation was also observed in some of the cell lines 
with increased sensitivity after IFNγ treatment (Figures 2B and 
7B). Interestingly, MHC-class I/ICAM-1 change ratio was <1 and, 
indicating that upregulation of ICAM-1 exceeded MHC-class I 
upregulation, for all the cell lines with increased sensitivity after 
IFNγ treatment (Figures  7B,C). The opposite pattern, with an 
MHC-class I/ICAM-1 change ratio >1 and MHC-class I upregu-
lation exceeding ICAM-1 upregulation, was observed in three 
of the six cell lines where IFNγ induced resistance (Kasumi-1, 
MOLT-4, and CHLA-136) (Figures  7A,C). However, ICAM-1 
upregulation exceeded MHC-class I upregulation (ratio <1) in 
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FigUre 4 | impact of iFnγ treatment on the surface expression of natural killer (nK) cell ligands for pediatric cancer cell lines. (a) Change in 
expression level [mean mass intensity (MMI)] was determined by quantifying the mean of each parameter at baseline and after IFNγ treatment for each cell line. 
Percent change in MMI after IFNγ treatment was calculated for each cell line and box plots were generated for each parameter using data obtained from all 22 cell 
lines. (B) Fold change in median expression for each parameter in all cell lines. Heat corresponds to the fold change in median expression after IFNγ treatment 
(obtained as the arcsinh ratio of median expression for the given markers compared to untreated cell line control). Cancer type color coding is the same as in 
Figure 1. Squares with dashed lines indicate cancer cell lines with significant changes in NK cell-mediated lysis after IFNγ treatment.
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the EWS cell lines CHLA-9 and CHLA-10 and the lymphoma cell 
line Ramos-RA1, for which IFNγ treatment resulted in decreased 
NK cell-mediated lysis.

iFnγ-induced icaM-1 Upregulation 
increases conjugate Formation for cell 
lines with increased sensitivity
Since IFNγ is known to enhance MHC-class I expression, 
resulting in resistance of target cells to NK  cell-mediated lysis 
(9, 10), we investigated possible mechanisms for the enhanced 
sensitivity observed after treatment for the cell lines SJ-GBM2, 
NB1643, and BT-12. These showed increased sensitivity to 
NK  cell-mediated lysis after IFNγ treatment despite presence 
of high levels of MHC-class I. Since upregulation of the adhe-
sion molecule ICAM-1 exceeded MHC-class I upregulation for 
these tumors, we determined whether IFNγ-mediated ICAM-1 
upregulation was capable of overcoming MHC-class I inhibition 
through increased conjugate formation between the NK cells and 
the target cells (Figure 8A). For comparison, we also evaluated 
IFNγ-mediated changes in conjugate formation between NK cells 
and Ramos-RA1, a cell line having high ICAM-1 expression but 
for which IFNγ resulted in more resistance. We observed that 
treatment of BT-12, SJ-GBM2, and NB1643 with IFNγ resulted in 

increased conjugate formation (Figure 8B) and this was statisti-
cally significant for BT-12 (p = 0.026) and SJ-GBM2 (p = 0.011). 
By contrast, IFNγ treatment did not increase conjugate forma-
tion for Ramos-RA1. Next, to confirm whether the increased 
conjugate formation was specifically mediated by ICAM-1 
upregulation, we used monoclonal antibodies to block ICAM-1 
on IFNγ-treated cells (BT-12, SJ-GBM2, and NB1643). Blocking 
of ICAM-1 resulted in a significant decrease in conjugate forma-
tion for BT-12 (p = 0.042), SJ-GBM2 (p = 0.008), and NB1643 
(p = 0.041) (compared to isotype control, Figure 8C).

DiscUssiOn

Natural killer cells are an attractive approach for cancer immuno-
therapy. Our laboratory has developed an ex vivo NK cell expan-
sion platform that allows us to generate large quantities of NK cells 
for patient infusion. We have shown that our expanded NK cells, 
currently used in several clinical trials for myeloid malignancies 
and posterior fossa tumors (NCT01787474, NCT01904136, 
NCT01823198, NCT02271711), secrete large amounts of IFNγ 
compared to primary NK  cells (8). Similarly, memory-like 
NK  cells used for adoptive transfer to AML patients exhibited 
enhanced IFNγ production when compared to control NK cells 
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FigUre 6 | Phenotyping of expanded natural killer (nK) cells. 
Expression of PD-1, LFA-1, killer cell immunoglobulin-like receptors (KIRs), 
and NKG2A on the expanded NK cells was obtained by mass cytometry 
(n = 4 donors).

FigUre 5 | Major ligands affected by iFnγ classified by tumor type. IFNγ induced changes in NK cell ligand expression were evaluated by cancer type. Y-axis 
corresponds to the fold increase in marker median expression after IFNγ treatment, this was obtained by evaluating the arcsinh ratio of median expression for the 
given marker compared to untreated cell line.
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(18). Due to the high levels of IFNγ secreted by NK cell infusion 
products, we sought to determine the effects of IFNγ on NK cell 
interactions with the tumor cells.

Through this study we evaluated a broad selection of pediatric 
tumor cells, representing at least six different types of malignan-
cies, for the effect of IFNγ on their sensitivity to NK cell-mediated 
lysis using expanded NK cells from four independent donors. This 
enabled a broad study across tumor types demonstrating oppos-
ing effects of IFNγ, a finding that may not have been evident in 
other studies that focus on a single tumor type or modulation of 
a single surface ligand. Of the 22 cell lines evaluated, six showed 
a significant decrease in NK cell-mediated lysis after IFNγ treat-
ment, including leukemia, EWS, lymphoma, and NB  cells. By 
contrast, treatment with IFNγ resulted in enhanced sensitivity to 
NK cells for three cell lines, BT-12, SJ-GBM2, and NB1643 (two 
brain tumors and a NB, respectively). For the remaining cell lines, 
IFNγ treatment did not significantly affect NK cell-mediated lysis, 
though some showed trends that may be significant with more 
donor replicates. The effect of IFNγ treatment was variable within 
the same tumor type, with the exception of RMS cell lines for which 
IFNγ treatment had no effect. These results suggest that the effect 
of IFNγ on NK cell-mediated lysis of tumor cells is variable and 
cell line dependent. Our findings warrant more focused investiga-
tion and validation for specific tumor types using primary tumor 
samples or patient-derived xenografts where feasible.

To better understand this variability, we used mass cytometry to 
evaluate the effect of IFNγ on expression of NK cell ligands by cancer 
cells. First, we observed broad heterogeneity in baseline expression 
levels of ligands between and within tumor types (Figure 3B). Solid 
tumor cell lines had higher median expression of TRAIL receptor 
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FigUre 7 | effect of iFnγ treatment on intercellular adhesion molecule 1 (icaM-1) and major histocompatibility complex (Mhc)-class i expression 
for cancer cell lines with altered sensitivity. The effect of IFNγ on ICAM-1 and MHC-class I expression for cell lines in which IFNγ treatment conferred  
(a) resistance or (B) sensitivity to NK cell-mediated lysis. Histograms compare ICAM-1 (left) and MHC-class I (right) expression for untreated cancer cells (top) and 
IFNγ-treated cells (bottom). Bar graphs represent ICAM-1 and MHC-class I fold change in median expression after IFNγ treatment. (c) Ratio of MHC-class I/ICAM-1 
change after IFNγ treatment for cell lines with altered sensitivity. Fold change in median expression after IFNγ treatment for each parameter was quantified and the 
ratio was calculated. Ratio <1 indicates higher ICAM-1 upregulation and ratio >1 indicates higher MHC-class I upregulation after IFNγ treatment.
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CD262/DR5 and ligands for the activating receptors NKG2D, 
DNAM-1, and NCRs, compared to leukemia cell lines (Figure 3A). 
This suggests NK cells may be a promising therapy for solid tumors. 
We also observed that none of these ligands were downregulated 
by IFNγ; however, CD274/PD-L1, CD54/ICAM-1, HLA-DR, 
MHC-class I, CD95/FasR, and CD270/HVEM were upregulated in 
a variety of tumor types. Other than CD270/HVEM, these findings 
are consistent with previously published studies (11, 12, 19–24). 
HVEM is involved in T cell regulation (25), but no studies have yet 
reported regulation of this ligand by IFNγ and its role in NK cell 
biology has not been well described.

Although IFNγ-mediated upregulation of MHC-class I, PD-L1, 
and ICAM-1 has been previously described, this study uncovers 
the variability of IFNγ responses across different pediatric tumor 
types. In terms of PD-L1, our results show upregulation by IFNγ 
for most pediatric solid cancers (RMS, brain tumors, EWS, and 
NB), but no effect on pediatric leukemia and lymphoma cells. On 
the other hand, the adhesion molecule ICAM-1 was upregulated 
by IFNγ on brain tumors, EWS, NB, and leukemia, but not on 
RMS and lymphoma cells. Although IFNγ-induced ICAM-1 
upregulation has been previously described in NB and leukemia 
cells (11, 12), to our knowledge no studies have shown its upregu-
lation on EWS.

According to our data, the ligands most upregulated by IFNγ 
were PD-L1, ICAM-1, and MHC-class I; therefore, we deter-
mined whether changes in their expression correlated to changes 
in tumor lysis after IFNγ treatment. PD-1/PD-L1 is associated 
with immune cell suppression; however, we observed that <7% 
of expanded NK  cells express PD-1. In addition, changes in 
expression of PD-L1 did not correlate with changes in cytotox-
icity, suggesting that PD-L1 did not play a role in our model. 

By contrast, changes in ICAM-1 and MHC-class I cooperate 
in affecting NK cell responsiveness. For the cell lines in which 
IFNγ increased sensitivity to NK  cells, we observed ICAM-1 
upregulation exceeding MHC-class I upregulation (MHC-class 
I/ICAM-1 < 1). This suggests that the LFA-1/ICAM-1 interaction 
augments NK cell-mediated lysis even in the presence of high lev-
els of inhibitory MHC-class I molecules. MHC-class I molecules 
mediate NK cell inhibition through binding with KIRs (HLA-A, 
HLA-B, HLA-C) and NKG2A (HLA-E). The anti-MHC-class 
I antibody clone used in this study, W6/32, recognizes both 
classical (HLA-A, HLA-B, HLA-C) and non-classical (HLA-E) 
HLA (26). We observed that for three of the six cell lines with 
increased resistance after IFNγ treatment, MHC-class I upregula-
tion exceeded ICAM-1 upregulation (MHC-class I/ICAM-1 >1). 
This suggests that the NK cell balance was shifted toward inhibi-
tion due to the increased expression of MHC-class I, which binds 
NK  cell inhibitory receptors. However, in the other three cell 
lines with increased resistance after IFNγ treatment we observed 
that ICAM-1 upregulation exceeded MHC-class I upregulation 
(MHC-class I/ICAM-1 <1) for which this model would have 
predicted increased sensitivity after IFNγ treatment. Our results 
suggest that the differential effects on MHC-class I and ICAM-1 
expression can explain some but not all of the effects of IFNγ on 
sensitivity to NK cell lysis.

We investigated possible mechanisms for the enhanced sensi-
tivity observed after IFNγ treatment for the cell lines SJ-GBM2, 
NB1643, and also BT-12. After IFNγ treatment these cell lines 
showed increased sensitivity to NK cell-mediated lysis, even in 
the presence of high levels of MHC-class I (Figures 2B and 7B). 
Since IFNγ treatment caused ICAM-1 upregulation exceeding 
MHC-class I upregulation in these cells lines (MHC-class I/
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ICAM-1 <1), we evaluated conjugate formation after IFNγ 
treatment. Our results show an increase in the formation of 
conjugates between the NK cells and the target cells SJ-GBM2, 
BT-12, and NB1643 after IFNγ treatment, and conjugate forma-
tion was decreased for IFNγ-treated cells after blocking ICAM-1 
on the target cells. Ramos-RA1 did not show increased conjugate 
formation or killing in response to IFNγ, possibly because it has 
such high baseline ICAM-1 expression and conjugate formation. 

FigUre 8 | conjugation assay for cell lines with increased sensitivity after iFnγ treatment. (a) y-Axis represents fluorescence of labeled target cells and 
x-axis represents fluorescence of labeled natural killer (NK) cells, and Q2 indicates dual fluorescence of NK cells conjugated with target cells. (B) Quantification of 
%NK cells in conjugate with BT-12, SJ-GBM2, NB1643, and Ramos-RA1. (c) Quantification of %NK cells in conjugate after ICAM-1 block for IFNγ-treated BT-12, 
SJ-GBM2, and NB1643 (n = 3 donors, Student’s t-test).

This suggests that the mechanism of increased sensitivity from 
IFNγ treatment is, at least in part, mediated by increased ICAM-1 
upregulation leading to enhanced effector-target conjugation.

Our study uncovers the complexity behind cancer cell responses 
to IFNγ. Published literature has shown increased resistance to 
NK cell-mediated lysis due to MHC-class I upregulation in some 
cancers (9, 10), but increased sensitivity to NK cell-mediated lysis 
due to ICAM-1 upregulation in others (11, 12). These studies 
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better understanding of the effects of NK cell-mediated inflam-
mation on the tumor microenvironment is essential to optimize 
cellular immunotherapy of cancer.

aUThOr cOnTriBUTiOns

Conceived and designed the experiments: AA-L, VS, EK, and DL. 
Performed the experiments and acquired data: AA-L, VS, and ZV. 
Analyzed the data: AA-L, EK, and DL. Wrote the paper: AA-L 

and DL. All authors read and accepted the final version of the 
manuscript.

acKnOWleDgMenTs

Mass cytometry was performed by the MD Anderson Flow 
Cytometry Core, with assistance from Duncan H. Mak. The 
flow core is funded by NCI Cancer Center Support Grant 
P30CA16672. STR DNA fingerprinting was performed by the 
CCSG-funded Characterized Cell Line Core, NCI # CA016672. 
The authors would like to acknowledge the American Legion 
Auxiliary Fellowship in Cancer Research and the George M. 
Stancel, Ph.D. Fellowship in Biomedical Sciences for support-
ing AA-L.

FUnDing

This work was funded in part by the Cancer Prevention Institute 
of Texas (CPRIT) and the St. Baldrick’s Foundation.

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at 
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00391/
full#supplementary-material.

272

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1200/JCO.2013.51.1055
https://doi.org/10.1111/j.1365-2567.2009.
03045.x
https://doi.org/10.1111/j.1365-2567.2009.
03045.x
https://doi.org/10.1016/0167-5699(90)90097-S
https://doi.org/10.1002/jcp.10290
https://doi.org/10.1002/pbc.25359
https://doi.org/10.1038/nri2604
https://doi.org/10.1038/ni1582
https://doi.org/10.1371/journal.pone.0030264
https://doi.org/10.1371/journal.pone.0030264
https://doi.org/10.1002/ijc.2910250504
https://doi.org/10.1002/ijc.2910470410
https://doi.org/10.1002/ijc.2910470410
https://doi.org/10.1189/jlb.0611308
https://doi.org/10.1002/pbc.21078
https://doi.org/10.3791/2540
https://doi.org/10.1126/science.1198704
https://doi.org/10.1002/0471142956.cy1017s53
https://doi.org/10.1016/S0960-9822(00)00568-6
https://doi.org/10.1126/scitranslmed.aaf2341
https://doi.org/10.1016/j.febslet.2005.12.093
https://doi.org/10.1038/nm0902-1039c
https://doi.org/10.1126/science.8016643
https://doi.org/10.1126/science.8016643
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00391/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fimmu.2017.00391/full#supplementary-material


Aquino-López et al. Variable NK-Ligand Responses to IFNγ

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 391

22. Propper DJ, Chao D, Braybrooke JP, Bahl P, Thavasu P, Balkwill F, et al. Low-
dose IFN-gamma induces tumor MHC expression in metastatic malignant 
melanoma. Clin Cancer Res (2003) 9(1):84–92. 

23. Munker R, Andreeff M. Induction of death (CD95/FAS), activation and 
adhesion (CD54) molecules on blast cells of acute myelogenous leuke-
mias by TNF-alpha and IFN-gamma. Cytokines Mol Ther (1996) 2(3): 
147–59. 

24. Li JH, Kluger MS, Madge LA, Zheng L, Bothwell AL, Pober JS. Interferon-
gamma augments CD95(APO-1/Fas) and pro-caspase-8 expression and 
sensitizes human vascular endothelial cells to CD95-mediated apoptosis. Am 
J Pathol (2002) 161(4):1485–95. doi:10.1016/S0002-9440(10)64424-0 

25. del Rio ML, Lucas CL, Buhler L, Rayat G, Rodriguez-Barbosa JI. HVEM/
LIGHT/BTLA/CD160 cosignaling pathways as targets for immune regulation. 
J Leukoc Biol (2010) 87(2):223–35. doi:10.1189/jlb.0809590 

26. Nattermann J, Nischalke HD, Hofmeister V, Ahlenstiel G, Zimmermann 
H, Leifeld L, et  al. The HLA-A2 restricted T  cell epitope HCV core 35-44 

stabilizes HLA-E expression and inhibits cytolysis mediated by natural 
killer cells. Am J Pathol (2005) 166(2):443–53. doi:10.1016/S0002-9440(10) 
62267-5 

Conflict of Interest Statement: DL declares a potential conflict of interest in licens-
ing of intellectual property to Intrexon Corporation and Ziopharm Oncology, and 
equity/leadership in Cyto-Sen Therapeutics. The other authors declare no conflict 
of interest.

Copyright © 2017 Aquino-López, Senyukov, Vlasic, Kleinerman and Lee. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

273

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/S0002-9440(10)64424-0
https://doi.org/10.1189/jlb.0809590
https://doi.org/10.1016/S0002-9440(10)
62267-5
https://doi.org/10.1016/S0002-9440(10)
62267-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


May 2017 | Volume 8 | Article 631

Review
published: 31 May 2017

doi: 10.3389/fimmu.2017.00631

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Gianfranco Pittari,  

Hamad Medical Corporation, Qatar

Reviewed by: 
Evelyn Ullrich,  

Goethe University Frankfurt,  
Germany  

Bjarne Kuno Møller,  
Aarhus University Hospital,  

Denmark

*Correspondence:
Jan Spanholtz  

jan@glycostem.com

†These authors have contributed 
equally to this work.

Specialty section: 
This article was submitted to 

Alloimmunity and Transplantation,  
a section of the journal  

Frontiers in Immunology

Received: 04 March 2017
Accepted: 12 May 2017
Published: 31 May 2017

Citation: 
Veluchamy JP, Kok N, 

van der Vliet HJ, Verheul HMW, 
de Gruijl TD and Spanholtz J (2017) 
The Rise of Allogeneic Natural Killer 

Cells As a Platform for Cancer 
Immunotherapy: Recent Innovations 

and Future Developments.  
Front. Immunol. 8:631.  

doi: 10.3389/fimmu.2017.00631

The Rise of Allogeneic Natural Killer 
Cells As a Platform for Cancer 
immunotherapy: Recent innovations 
and Future Developments
John P. Veluchamy1,2†, Nina Kok2†, Hans J. van der Vliet1, Henk M. W. Verheul 1,  
Tanja D. de Gruijl 1 and Jan Spanholtz 2*

1 Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands, 
2 Glycostem Therapeutics, Oss, Netherlands

Natural killer (NK) cells are critical immune effector cells in the fight against cancer. As 
NK cells in cancer patients are highly dysfunctional and reduced in number, adoptive 
transfer of large numbers of cytolytic NK  cells and their potential to induce relevant 
antitumor responses are widely explored in cancer immunotherapy. Early studies from 
autologous NK cells have failed to demonstrate significant clinical benefit. In this review, 
the clinical benefits of adoptively transferred allogeneic NK  cells in a transplant and 
non-transplant setting are compared and discussed in the context of relevant NK cell 
platforms that are being developed and optimized by various biotech industries with a 
special focus on augmenting NK cell functions.

Keywords: hematopoietic stem cell transplantation, autologous natural killer cells, allogeneic natural killer cells, 
adoptive natural killer cell therapy, natural killer cell biotech companies, natural killer cell combinatorial studies

NATURAL KiLLeR (NK) CeLLS iN ONCOLOGY

So far T cells have been the mainstay of cancer immunotherapy; however, it is generally recognized 
that NK  cells also play an essential role in antitumor immunity. Certainly in the prevention of 
metastases through the elimination of circulating cancer stem cells with a high metastatic poten-
tial, NK cells are recognized as main immune effector cells (1). Moreover, as solid tumors have a 
propensity to particularly down-regulate MHC-I, NK cells provide a failsafe mechanism in these 
circumstances where cytotoxic T cells, which depend on MHC-I for tumor recognition and elimina-
tion, are debilitated. NK cells have recently been more intensely explored as a viable therapeutic 
platform next to T cell-based approaches. This review aims to summarize the latest developments in 
the clinical translation of adoptive transfer of NK cells in the oncology field.

NK CeLLS AND THeiR ACTivATiNG AND iNHiBiTORY 
ReCePTORS

Human NK cells are generally categorized by their level of CD56 and CD16 expression into two subsets: 
CD56brightCD16dim and CD56dimCD16bright NK cells. Most NK cells in the peripheral blood and spleen 
are CD56dimCD16bright and are cytotoxic against a variety of tumor cells, whereas CD56brightCD16dim 
NK cells are immune regulatory in function and constitute the majority in secondary lymphoid tis-
sues, producing abundant cytokines but exerting weak cytotoxicity compared to CD56dimCD16bright 
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NK  cells (2). The ability of NK  cells to discriminate between a 
cancer cell and a healthy cell is regulated by a balance between its 
activating and inhibitory receptors. NK-activating receptors such 
as DNAM-1 and NKG2D; natural cytotoxicity receptors (NCRs) 
such as NKp30, NKp44, NKp46, CD94/NKG2C, CD94/NKG2E, 
and CD16a; and activating killer cell-immunoglobulin like 
receptors (KIRs) contribute to NK cell activation, triggering the 
release of cytotoxic granules and proinflammatory cytokines such 
as interferon gamma (IFNγ) from NK  cells to lyse cancer cells 
(3). The NK cell-activating receptor NKG2D (CD314) recognizes 
MHC class-I-chain related proteins A and B (MICA and MICB) 
and ULBPs (1–6), while DNAM-1 binds to CD112 (Nectin-2) and 
CD155 (poliovirus receptor) (5) on stressed, infected, and cancer 
cells. The ligands for NCRs are widely expressed on cells infected 
by viruses or by intracellular bacteria and on tumor cells, but their 
exact modes of action are yet to be characterized to define their 
role in NK cytotoxicity (6). In addition to this, the heterodimers 
of the NKG2 family; CD94/NKG2C and CD94/NKG2E recognize 
the non-classical MHC class I molecule HLA-E and associate with 
DAP-12 molecule to trigger an NK activation signal (7, 8). Another 
very important activation mechanism of NK cells is through the 
interaction of CD16a (FcγRIIIa, a low affinity Fc receptor) with 
the Fc portion of IgG1 antibodies, forming an immunological syn-
apse to engage antibody opsonized targets for NK cell-mediated 
antibody-dependent cell mediated cytotoxicity (ADCC) (9). 
Besides engaging activating receptors, NK cells also induce target 
cell death using tumor necrosis factor α (TNF-α), Fas ligand, 
and TNF-related apoptosis-inducing ligand (TRAIL) (10). The 
most prominent NK cell inhibitory receptors include inhibitory 
KIRs that recognize MHC class I (HLA-ABC) molecules, which 
are universally expressed on healthy tissues. Similarly, CD94/
NKG2A, an inhibitory receptor from the NKG2 family, binds to 
HLA-E and induces NK cell tolerance through the activation of 
an intracellular immunoreceptor tyrosine-based inhibitory motif 
(ITIM) (8). Hence, knowing that NK cell functions are determined 
by an array of receptors, which can either potentiate an activating 
or inhibitory signal, depending on different ligand interactions 
with tumor cells, it is critical to shift the balance in a therapeutic 
setting toward an activating NK phenotype to expedite enhanced 
NK tumor killing mechanisms.

NK CeLL DYSFUNCTiONALiTY iN 
CANCeR

Natural killer cells can control circulating tumor cells and prevent 
formation of tumor metastases (11). However, tumors employ 
different strategies to evade killing by NK cells. Upregulation of 
inhibitory ligands such as MHC class I molecules (HLA-ABC, 
HLA-G and HLA-E) has been associated with a stronger inhibitory 
signal to NK cells (12–15). Furthermore, increased expression of 
the inhibitory NKG2A receptor reported in renal cell carcinoma 
resulted in decreased functionality of tumor infiltrating NK cells 
(16). On the other hand, downregulation of NK-activating ligands 
for NKG2D such as MICA and MICB and increased shedding 
of tumor-derived soluble MIC also impair NKG2D-mediated 
NK cell tumor recognition (17). Another important necessity for 

optimal NK cell function is the ability to home and migrate to 
tumor sites. Several studies have correlated increased homing of 
NK cells to tumor tissues with improved treatment outcomes in 
solid tumors (18–22). However, the immunosuppressive tumor 
stroma comprising regulatory T cells (T-regs) (23), myeloid-de-
rived suppressor cells (MDSCs) (24), M2 macrophages (25), and 
immature dendritic cells severely restricts NK cell functionality 
and their entry into solid tumors. In chronic diseases, such 
as those associated with human immunodeficiency virus and 
cytomegalovirus infections, mainly exhausted NK  cells with 
decreased cytokine production and reduced cytolytic activity 
are observed (26, 27). In a study with breast cancer patients, 
the NK  cell expression levels of activating receptors (NKG2D, 
DNAM, CD16, and NKp30) were decreased, whereas inhibi-
tory receptor (NKG2A) expression levels were increased and 
this apparent dysfunctionality of NK cells was found to directly 
affect NK cell cytotoxicity (28). Similarly, the effector subset of 
NK cells (CD56dimCD16+) from head and neck and breast cancer 
patients, when tested in vitro, was highly prone to apoptosis, thus 
pointing to low NK cell activity in these patients (29). Impaired 
NK cell functionality may result from tumor-imposed suppressive 
mechanisms and presents a major hurdle for NK  cell-targeted 
immunotherapies. Therefore, approaches to restore or replace 
impaired NK cell cytotoxicity may prove essential for an effective 
host defense against cancers.

NK CeLLS iN THe CLiNiC

Novel NK  cell-based immunotherapeutic strategies are being 
developed to overcome the functional limitations of the use of 
cancer patients’ autologous NK cells. To increase the number of 
functional NK cells even in case of a high tumor load, adoptive 
transfer of autologous NK cells served as a very feasible approach, 
as this ruled out the need for immunosuppression, HLA-matching, 
and prevented the risk of graft versus host disease (GvHD). These 
advantages sparked the initiation of large-scale expansion proto-
cols and clinical trials using autologous NK cells as a treatment 
modality for cancer. Though adoptive transfer of autologous 
NK cells resulted in an increased number of circulating NK cells 
in peripheral blood, it failed to produce significant therapeutic 
effects in hematological malignancies, metastatic melanoma, and 
renal cell carcinoma patients due to the inhibition by self-HLA 
molecules (30–32). Moreover, the expansion efficiency and 
functional status of autologous NK cells were still limited when 
compared to allogeneic NK cells, as autologous cells were often 
obtained from heavily pretreated patients (33). In addition to this, 
it was difficult to track infused autologous NK cells in patients 
and to study their antitumor effects from peripheral blood 
analyses due to the inability to differentiate ex vivo manipulated 
and transferred autologous NK cells from the non-manipulated 
circulating NK  cells. These limitations motivated researchers 
shifting their focus to allogeneic NK cells to treat cancer.

In patients with leukemia undergoing allogeneic hematopoi-
etic stem cell transplantation (HSCT), NK cells, being the first 
lymphoid subset to appear after allogeneic HSCT (34), play a 
crucial role in controlling host defense against infections and 
residual cancer cells before T cells are reconstituted (35). These 
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donor T cells are prime mediators of GvHD (36), and the life-
threatening complications that arise due to GvHD have com-
pletely overshadowed the beneficial effects of alloreactive NK and 
T cells, fueling efforts to use T cell depleted grafts (37). Further, 
this led to the development of NK cell-based therapies coupled 
with T  cell depleted HSCs to enhance the graft versus tumor 
effect (GvT) without causing GvHD. Unlike autologous NK cells, 
allogeneic NK cells are not restricted by the patient’s tumor’s HLA 
expression, which is an added advantage to mount an improved 
anti-tumor effect (38, 39). Current translational efforts that are 
explored as anticancer therapies include adoptive transfer of ex 
vivo activated and/or expanded allogeneic NK cells, either alone 
or in combination with HSCT.

SOURCeS OF ALLOGeNeiC NK CeLLS 
USeD iN THe CLiNiC

Commonly used allogeneic NK cells are apheresis products col-
lected from haploidentical and unrelated donor PBMC (40). 
Another source is umbilical cord blood (UCB), where NK cells 
are generated from CD34+ progenitor cells that undergo expan-
sion and differentiation using cytokines and growth factors and 
thereby mature into cytolytic NK cells (41). Apart from PBMC 
and UCB, NK cells have also been obtained from the clonal cell 
line NK-92, derived from immortalized lymphoma NK  cells 
(42, 43).

ALLOGeNeiC NK CeLL THeRAPY iN A 
TRANSPLANT SeTTiNG

Autologous or allogeneic HSCT serves as a curative regimen by 
reconstituting the immune system in hematological malignan-
cies. At an earlier stage post HSCT, NK and T cells developing 
from the graft are immature and less in number with reduced 
functionality. Under those circumstances, the infusion of purified 
allogeneic NK cells was explored as a viable option to target mini-
mal residual disease (MRD), prevent graft failure, and relapse. 
Grafts for allogeneic HSCT and allogeneic NK  cell treatments 
were obtained from HLA matched/mismatched and related/
unrelated donors (38, 39). Earlier clinical trials performed by 
Passweg et al. (44), Koehl et al. (45), Shi et al. (46), Yoon et al. (47), 
Rizzieri et al. (48), and Brehm et al. (49) have shown that NK cells 
can be safely administered prior to or post HSCT in patients with 
different types of hematological diseases. Immune suppression is 
a prerequisite prior to most of the allogeneic HSCT and NK-cell 
infusions. A non-myeloablative conditioning regimen usually 
consisting of cyclophosphamide (Cy) and fludarabine (Flu) was 
found to facilitate NK cell persistence and expansion in vivo (50). 
High doses of Cy/Flu caused pancytopenia and resulted in high 
plasma IL-15 levels, which also correlated with the detection of 
adoptively transferred NK cells up to 14 days after infusion, thus 
suggesting that excess IL-15 was probably utilized by the NK cells 
to proliferate and persist longer in vivo (51). A summary of clini-
cal trials with allogeneic NK-cell infusions in a HSCT setting with 
published data is summarized in Table  1, and selected clinical 
trials from recent years are reviewed below.

In 2013, Stern et al. treated acute myeloid leukemia (AML), 
Acute Lymphocytic Leukemia, Hodgkin’s lymphoma (HL), and 
sarcoma patients with allogeneic NK  cells (CD3 depleted and 
CD56 selected) after a haploidentical HSCT, using the same donor 
as NK cell source. An overall survival (OS) of 25% was achieved 
during a median follow-up of 5.8 years. And 4/16 patients devel-
oped acute GvHD (aGvHD) due to high T-cell impurities present 
in two NK cell products and two from stem cell grafts, both con-
taining ≥0.5 × 105 cells/kg T cells (52). Although this prospective 
Phase II study reported the safety and feasibility of NK-cell infu-
sion following allo-HSCT, it failed to yield results in support of 
anti-leukemia effects, raising questions as to whether the NK cell 
dosage of 0.3–3.8 × 107 cells/kg used was sufficient to induce a 
clinical effect. In the same year, Klingemann et al. published data 
highlighting the safety and alloreactivity of HLA-mismatched 
(CD3 depleted) NK cells, transfused after autologous HSCT in 
multiple myeloma (MM), non-Hodgkin’s lymphoma (NHL), 
and HL patients. In this study, 13 patients were enrolled; 6/13 
relapsed and 7/13 were in remission during a follow-up between 
144 and 1,158 days following autologous stem cell transplanta-
tion. The allogeneic NK cells were well tolerated without GvHD. 
In addition, this study also demonstrated that NK cells generated 
and processed at distant centers can be shipped and transfused 
without significantly affecting the viability and cytotoxicity of the 
NK cell product (53).

Choi et al. (54) summarized their observations from a study,  
in which allogeneic ex vivo expanded and activated NK  cells 
derived from the same donor were administered 14 and 21 days 
post HLA haploidentical HSCT to patients with hematological 
malignancies (n = 41). The data set from this study was compared 
with a group of 31 patients, who underwent only HLA haploiden-
tical HSCT. A significantly higher progression-free survival (PFS) 
was seen in the HSCT + NK group compared to HSCT only group 
(74% versus 46%). In addition to this, the occurrence of chronic 
GvHD (cGvHD) (15% versus 10%) and transplant-related mor-
tality (27% versus 19%) was reduced in the HSCT + NK group 
compared to the HSCT only group (54). In another study by Killig 
et al. (55), AML patients were treated with haploidentical HSCT 
followed by NK-cell infusions (CD3 depleted and CD56 selected) 
from the same donor, on days +1 and +2 post HSCT. aGvHD was 
highly prevalent in 20/24 patients in this study and histological 
analysis of skin revealed that GvHD was associated with infiltra-
tion by perforin+CD8+ T cells. Allogeneic NK cells contributed 
to an increased OS in the HSCT + NK group compared to the 
HSCT only group (37% versus 14%) over a median follow-up of 
2 years (55).

Subsequently, Shah et al. published data from a Phase I study 
treating patients with Ewing sarcoma, rhabdomyosarcoma, and 
desmoplastic small round cell tumors (n  =  9), using donor-
derived IL-15/4-1BBL-activated allogeneic NK  cells (CD3 
depleted and CD56 selected) following allogeneic HSCT from 
the same donor. aGvHD was highly prevalent in the patient 
group that received stem cells from matched unrelated donors 
and was directly linked with a faster T cell recovery and higher 
T  cell chimerism from reconstituted HSCT grafts. About 4/9 
patients were alive in this study with a median follow-up of 
23.1 months (56). Lee et al. reported results from a Phase I study 
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TABLe 1 | Summary of allogeneic NK cell clinical trials in a transplantation setting.

Study Malignancy Clinical trial design Culture methoda infused dose NK cells Final product characteristics Outcome

Phase I 
(NCT01729091) Shah 
et al. (59)

MM (n = 12) Conditioning with Mel on day 7 
and Lnd from days 8 to 2 prior 
to UCB-NK-cell infusion (day 5), 
followed by autologous-HSCT 
on day 0

Ex vivo expanded MNCs from 
unrelated UCB donors. Culture 
duration: 14 days with irradiated 
K562 clone 9.mbIL-21 aAPCs and 
IL-2 aCD3 depleted (on day 7)

Four escalating doses: 
5 × 106, 1 × 107, 5 × 107, 
and 1 × 108 cells/kg

Mean purity: 98.9% 
CD56+/CD3− cells

Well tolerated. No GvHD. 4/12 
progressed or relapsed (median 
of 21 months follow-up)

Phase I 
(NCT01795378) Choi 
et al. (58)

AML (n = 45) and 
ALL (n = 6)

Haplo-HSCT followed by DNKI 
from the same donor on days 6, 
9, 13, and 20 post HSCT

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: 
2–3 weeks with IL-15 and IL-21

Four escalating doses: 
median DNKIs are 
5 × 107, 5 × 107, 1 × 108, 
and 2 × 108 cells/kg

Median viability: 80%. Purity: 
48–98% CD56+ CD122+ cells. 
0–22% CD3+ CD56+ cells. 
0–10.4% CD3+ CD56− cells

Toxicity observed in 73% of 
patients, 9/45 aGvHD. 29/51 
CR (9.3–34.7 months follow-up), 
35/51 PD

Phase I 
(NCT00402558) 
Phase II 
(NCT01390402) Lee 
et al. (57)

AML (n = 8), MDS 
(n = 6), and CML 
(n = 7)

Conditioning with Flu/Bu prior 
to haplo-allo NK-cell infusion, 
followed by IL-2 therapy (5×, 
daily); conditioning with Thy/Tac 
prior to HLA-matched related 
unrelated allo-HSCT

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: o/n with 
IL-2. aCD3 depleted and CD56 
selected (in three infusions)

Four escalating doses: 
1 × 106, 5 × 106, 3 × 107, 
and 3 × 107 cells/kg 
in Phase I study. Four 
escalating doses of 
5 × 106 cells/kg in Phase 
II study

Median purity: 0.02% CD3+ cells. 
11.41% CD14+ cells. 21.84% 
CD19+ cells. 14.1% CD56+ 
CD3− cells

Well tolerated, no GvHD. 5/21 
CR, 5/21 died of transplantation 
related issues and 11/21 died of 
relapse

Phase I 
(NCT01287104) Shah 
et al. (56)

EWS (n = 5), 
DSRCT (n = 3), 
RMS (n = 1)

HLA matched haplo- or unrelated 
allo-HSCT followed by aNK-DLI 
from the same donor on day 7 
and 35 post HSCT

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: 
9–11 days with KT64.4-BBL 
artificial antigen presenting cells. 
aCD3 depleted and CD56 selected

Repeated doses (2× 
doses 1, 2, and 3): 
1 × 105 cells/kg (dose 1), 
1 × 106 cells/kg (dose 
2), and 1 × 107 cells/kg 
(dose 3)

Median purity: CD3+ cells 
1.4 × 104 cells/kg. CD56+ cells 
≥90%. Viability: ≥70%

5/9 aGvHD. 2/9 SD, 7/9 CR. 4/9 
are still alive (12.5–27.4 months 
after treatment)

Phase I/II 
(NCT01220544) Killig 
et al. (55)

AML (n = 24) Haplo-HSCT followed by NK-cell 
infusion from same donor and 
OKT3 treatment from days −5 
to +3

PBNK cells from haploidentical 
donors. aCD3 depleted and CD56 
selected

Single dose: 1.61–
32.2 × 106  
CD56+/CD3− cells/kg

Purity: CD56+ CD3− cells 
99.97%. CD3+ cells 0.95–
7.4 × 104 cells/kg

Toxicity correlated with haplo-
HSCT. Deaths: 2/24 GvHD, 
6/24 infections and 7/24 died of 
relapse. 9/24 CR (0.1–8.6-year 
follow-up)

Phase I/II 
(NCT00823524) Choi 
et al. (54)

AML (n = 32), 
ALL (n = 7), MDS 
(n = 1), DLBCL 
(n = 1)

HLA haplo-HSCT followed by 
DNKI from the same donor, 
14 days and 21 days after HSCT

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donor. Culture duration: 
13–20 days with IL-15, IL-21, and 
hydrocortisone

Escalating doses (2×): 
0.2 × 108 cells/kg (3 pts), 
0.5 × 108 cells/kg (3 pts), 
1.0 × 108 cells/kg (8 pts), 
and ≥1.0 × 108 cells/kg 
(27 pts)

Viability: 71–85%. Median purity: 
CD56+ CD122+ cells >90%. 
CD3+ CD56+ cells <3%. 
Fold expansion: 0.8–70 (after 
13–20 days of culture)

Well tolerated. 9/41 aGvHD, 
10/41 cGVHD. In total, 11 
patients died of TRM. In AML 
(21/29) (4/8) ALL/lymphoma are 
in CR

Phase I (IND # 12971) 
Klingemann et al. (53)

NHL (n = 6), MM 
(n = 5), and HL 
(n = 2)

MHC-mismatched haploidentical 
NK-MC infusion, 49–191 days 
post auto-HSCT

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: o/n with 
IL-2

4 Escalating doses: 
1 × 105, 1 × 106, 1 × 107, 
and 2 × 107 MC/kg

Median purity: 26% CD56+ CD3− 
cells. 0.15% CD3+ cells. Median 
viability: 95% post wash

Well tolerated. No GvHD. 6/13 
relapsed and 7/13 in remission

Phase II 
(NCT01386619) Stern 
et al. (52)

AML (n = 8), ALL 
(n = 5), HL (n = 2) 
sarcoma (n = 1)

Haplo-HSCT followed by NK-DLI 
from the same donor, +day 3, 
+day 40, and +day 100 post 
HSCT

PBNK cells from haploidentical 
donors. aCD3 depleted and CD56 
selected

Repeated doses (2–3): 
0.3–3.8 × 107 cells/kg

Median purity: CD3+ cells 
0.03 × 105 cells/kg. Median 
viability: 84%

Safe and feasible. 4/16 aGvHD. 
Median follow-up of 5.8 years 
4/16 are alive. 3/16 died from 
graft failure

(Continued )
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Study Malignancy Clinical trial design Culture methoda infused dose NK cells Final product characteristics Outcome

Phase I/II 
(NCT01386619) 
Brehm et al. (49)

AML (n = 6), ALL 
(n = 5), NB (n = 5), 
RMS (n = 1) HL 
(n = 1)

Haplo-HSCT followed by IL-2 
stimulated NK-cell infusion (cryo) 
or unstimulated NK-cell infusion 
(fresh) from the same donor, +da 
3, +day 40, and +day 100 post 
HSCT

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: 
9–14 days with (group II) or without 
(group I) IL-2 (fresh or cryo). aCD3 
depleted and CD56 selected

Repeated doses 
(1–3 doses): Group I: 
3.2–38.3 × 106 cells/kg 
Group II: 6.0–45.1 × 106 
cells/kg

Purity: CD56+ CD3− cells 
84.4–98.6%. CD3+ cells group 
I: 0.4–53.4 × 103 cells/kg. CD3+ 
cells group II: 7.7–98.3 × 103 
cells/kg. Viability: freshly NK-cell 
unstimulated median 93%. Cryo 
NK-cell IL-2 stim 30–70%

Well tolerated without GvHD 
>grade II. Group I: 5/9 died 
(126–498 days post SCT), 3/9 
CR (742–2,218 days). Group II: 
5/9 died (27–373), 2/9 CR, and 
2/9 in remission

Phase I 
(NCT00586690) 
Rizzieri et al. (48)

Lymphoma 
(n = 30)

3–6/6 HLA-matched 
haploidentical NK-cell infusion, 
–8 weeks post haplo-HSCT from 
the same donor

PBNK cells from haploidentical 
donors. aOnly CD56 selected

Repeated dose (1–3): 
median dose in 3–5/6 
HLA match: 9.21 × 106 
CD3+/CD56− cells/kg, 
median dose 6/6 HLA 
match: 10.6 × 106 CD3+/
CD56− cells/kg

6/6 HLA-matched: Purity: 
87–100% CD56+ cells. 
0.53 ± 1.1 × 106 cells/kg CD3+ 
CD56−. 3–5/6 HLA-matched: 
Purity: 86–100% CD56+ cells. 
0.27 ± 0.78 × 106 cells/kg CD3+ 
CD56−

Safe. Low toxicity. 6/6 HLA-
matched: 6/14 aGvHD (1 severe) 
and median OS 12 months. 
3–5/6 HLA-matched: 8/16 
aGvHD and median OS 
27 months

Phase I 
(NCT00569283) Yoon 
et al. (47)

AML (n = 12) MDS 
(n = 2)

HLA-mismatched HSCT followed 
by allo NK-cell infusion from the 
same donor

Ex vivo expanded, differentiated 
and activated CD34+ progenitor 
cells (PB-derived) from 
haploidentical donors. Culture 
duration: 21 days with FLt3, IL-7 
and hydrocortisone followed by 
21 days with IL-15, IL-21 and 
hydrocortisone

Single dose: 0.33–
24.5 × 106 cells/kg

Mean purity: CD56+ CD122+ 
cells 64%. CD3+ cells 1.0%. 
Mean viability: 88%

1/14 aGvHD and 4/14 cGvHD. 
9/14 died (between 1.7 and 
15.5 months), 4/14 CR (between 
16.2 and 21.6 months) 1/14 PD 
(25.9 months)

(BB-IND-11347) Shi 
et al. (46)

MM (n = 10) Conditioning with Flu/Dex/Mel 
followed by haplo-KIR-ligand-
mismatched NK-cell infusion on 
day 0 and day +2; IL-2 therapy 
daily (11×) starting on day +1 
after NK-cell infusion; auto-HSCT 
on day +14

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: o/n with 
IL-2 (pts 1–5) and brief incubation 
with IL-2 and anti-CD3 beads  
(pts 5–10)

Combined dose 
(day 0 and day +2): 
2.7–92 × 106 cells/kg

Purity: median CD3+ cells 
5.5 × 104 cells/kg. Viability: 95%

Safe and no GvHD. 5/10 CR, 
1/10 PR, 1/10 MR, 1/10 SD, 
and 2/10 PD. 4/10 are alive at 
1.4, 1.5, 2.3, and 3 years post 
NK-cell therapy

Pilot study Koehl et al. 
(45)

AML (n = 1) ALL 
(n = 2)

Haplo-HSCT followed by KIR-
mismatched NK-cell infusion 
on day +1 or +2 post HSCT 
and additional infusions every 
4–6 weeks; IL-2 therapy +2 days 
post HSCT, every second day for 
2–4 weeks

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: >12 days 
with IL-2. aCD3 depleted and 
CD56 selected (in three infusions)

Repeated doses (1–3): 
8.9–29.5 × 106 cells/
kg (first infusion), 3.3 
and 11.1 × 106 cells/
kg (second infusion), 
33.8 × 106 cells/kg (third 
infusion)

Purity: CD56+ CD3− cells 95%. 
Median CD3+ cells 0.04%, 
45–1,100 × 103 cells. Viability: 
95%. Fold expansion: median 5 
(after 14 days of culture)

Well tolerated, no GvHD. 1/3 CR 
(152 days), 2/3 died (80 days and 
45 days after NK-cell infusion)

Passweg et al. (44) AML (n = 4), CML 
(n = 1)

Haplo-HSCT followed by 
NK-DLI from the same donor 
3–12 months post HSCT

PBNK cells from haploidentical 
donors. aCD3 depleted and CD56 
selected

Single dose: 0.21–
1.41 × 107 cells/kg

Median purity: CD56+ CD3− cells 
97.3%. T-cell 0.22 × 105 cells/kg

Well tolerated and feasible. 
4/5 continuous remission 
(8–18 months), 1/5 PD

CNS, central nervous system; MPDs, myeloproliferative disorders; LPD, lymphoproliferative disorder; MM, multiple myeloma; MDS, myelodysplastic syndromes; MDN, myelodysplastic neoplasms; MPN, myeloproliferative neoplasms; 
AML, acute myeloid leukemia; LBLL, lymphoblastic leukemia-lymphoma; ALL, acute lymphoblastic leukemia; NB, neuroblastoma; RMS, rhabdomyosarcoma; CML, chronic myelogenous leukemia; NHL, non-Hodgkin’s lymphoma; 
MCL, mantle cell lymphoma; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; ALCL, anaplastic large cell lymphoma; HL, Hodgkin’s lymphoma; RCC, renal cell cancer; SCLC, small cell lung cancer; CLL, chronic 
lymphocytic leukemia; HCC, hepatocellular carcinoma; PNET, primitive neuroectodermal tumor; ACC, adrenal cortical carcinoma; EWS, Ewing sarcoma; DSRCT. desmoplastic small round cell tumor; Cy, cyclophosphamide; Flu, 
fludarabine; Bor, bortezomib; Dex, dexamethasone; Clo, clofarabine; Eto, etoposide; Cis, cisplatin; Pac, paclitaxel; Doc, docetaxel; Vin, vinorelbine; Gem, gemcitabine; Car, carboplatin; Pem, pemetrexed; TBI, total body irradiation; 
Tac, tacrolimus; Pred, prednisolone; mPred, methylprednisolone; Thy, thymoglobulin; Vin, vincristine; Adr, adriamycin; Predn, prednisone; Mel, melphalan; OKT3, muromonab-CD3; HSPC, human stem and progenitor cells; aGvHD, 
acute graft versus host disease; DNKI, donor NK-cell infusion; Stim, stimulated; Unstim, unstimulated; DFS, disease-free survival, CR, complete remission; PR, partial response; MR, minimal response; SD, stable disease; PD, 
progressive disease; aNK-DLI, donor-derived IL-15/4-1BBL activated NK-cell infusion; TRM, transplant-related mortality; MC, mononuclear cell; TLS, tumor lysis syndrome; PLS, passenger lymphocyte syndrome; NE, not evaluable.
aCulture method displays CD3 depleted PBMC’s, otherwise deviated selection method is mentioned.
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in patients with AML, myelodysplastic syndromes (MDS), and 
chronic myelogenous leukemia (CML), in which alloreactive 
haploidentical NK cells (CD3 depleted and CD56 selected) were 
administered along with IL-2 injections, followed by thymo-
globulin conditioning and allogeneic HSCT. Thymoglobulin  
was administered to prevent NK cells from hampering engraft-
ment of allogeneic HSCT. Out of 20 evaluable patients, 16 had 
GvHD (10/16 aGvHD and 6/16 cGvHD) after transplantation. 
In this study, GvHD was not directly associated with donor 
T cell or NK cell contents. From this study, also it was concluded 
that the lack of anti-leukemic effect was mainly due to the low 
dose of infused NK cells and it was further suggested that thy-
moglobulin conditioning could also have potentially affected 
NK cells survival in vivo (57).

Later, Choi et al. presented results from a modified treatment 
protocol of four consecutive infusions of ex vivo activated and 
expanded haploidentical NK cells after HLA-matched HSCT and 
compared the outcomes to their previous study, in which they 
administered two infusions. In the subsequent study, additional 
donor NK-cell infusions were given on days 6 and 9 (i.e., at days 
6, 9, 13, and 20). Out of 51 patients with ALL (n = 6) and AML 
(n = 45), 24/51 (47%) had four NK infusions. Out of 45 evalu-
able patients, the 3-year OS rate was 9% in AML and 21% for 
ALL and 9/45 had aGvHD. Early administration of NK cells after 
HSCT caused significant toxicities with no improvements in anti-
leukemic effects, compared to the previous study. In this study 
group, a higher CR rate correlated with higher expression levels 
of NK activating receptors NKG2D and NCRs (NKp44, NKp46, 
and NKp30) on donor NK cells. In addition, NKp30 expression 
was significantly higher than that of NKG2D and other NCRs, 
thus suggesting a role for NKp30 as a predictive biomarker for 
anti-leukemic effects of NK cells (58).

In 2017, Shah et  al. published data from a Phase I study, 
treating MM patients with UCB-derived NK  cells (day 5) 
along with autologous-HSCT (day 0), following high-dose 
chemotherapy and low-dose lenalidomide. Mononuclear 
cells (MNCs) isolated from UCB units (CD3 depleted) were 
cultured with K562-based artificial antigen presenting cells 
(aAPCs) expressing membrane bound IL-21. No treatment 
related toxicities or GVHD was reported in this study. During 
a median follow-up of 21 months in 12 patients, 4/12 patients 
had progressive disease (PD) or relapsed. Stable expression 
of NKG2D and increased expression of CD16 and NKp30 of 
UCB-NK cells were observed in six patients. This study further 
reiterates the safety of NK-cell infusions in high doses; however, 
due to combinatorial set up with HSCT and lenalidomide, it is 
difficult to interpret the clinical efficacy of UCB-NK cells alone 
from this study (59).

Taken together, it is evident from these studies, as well as from 
many others, that GvHD, which is mainly caused by T cells from 
transplanted grafts, is a major concern in the field of allogeneic 
HSCT. Under these circumstances, it is difficult to reliably study 
the safety of allogeneic NK-cell infusions. The timing of NK-cell 
infusion, NK  cell dosage and NK  cell promoting conditioning 
regimens are critical factors that need to be more extensively 
studied to assess the safety and efficacy of allogeneic NK-cell 
infusions.

ADOPTive NK CeLL THeRAPY iN A  
NON-TRANSPLANT SeTTiNG

To gain a better understanding of the safety and efficacy of alloge-
neic NK cell transfer, investigators started to study NK cells in a 
non-transplant setting. Landmark clinical trials were performed 
by Miller et  al. (50), Iliopoulou et  al. (60), Rubnitz et  al. (61), 
Bachanova et  al. (62) Curti et  al. (63), and Geller et  al. (33) 
predominantly in hematological malignancies, but also in vari-
ous solid tumors. These studies demonstrated the safety and in 
part the efficacy of allogeneic NK-cell infusions in the absence of 
GvHD. A summary of allogeneic NK cell clinical trials in a non-
transplant setting with published results is presented in Table 2.

Here, we focus on the latest reports from clinical trials using 
allogeneic NK cells in a non-transplant setting. Bachanova et al. 
developed a recombinant cytotoxic protein, i.e., an IL-2/diphteria 
toxin fusion protein (IL2DT), which functions by selectively 
depleting the IL-2 receptor CD25 expressing cells, including 
regulatory T cells (T-regs). In total, 57 AML patients were treated 
with KIR and HLA-mismatched haploidentical NK cells and 15 
of them in cohort 3 received IL2DT, 1 or 2 days prior to NK-cell 
infusion, to deplete T-regs. In addition to IL2DT treatment, three 
different processing methods were used, i.e., a CD3-depleted 
cohort (cohort 1, n = 32), a cohort using CD3 depletion followed 
by CD56 selection (cohort 2, n = 10), and a cohort using CD3 
and CD19 depletion (cohort 3, n =  15). Higher NK  cell doses 
were obtained from cohort 3, and it could possibly be the reason 
for the observed longer disease-free survival (DFS) (33% versus 
5% at 6 months) in cohort 3 compared to cohorts 1 and 2. In this 
study, endogenous IL-15 serum levels correlated with reduced 
T-reg levels in patients treated with IL2DT (64).

Szmania et al. investigated the effect of infusing cryopreserved 
and freshly prepared NK cells (CD3 depleted), either allogeneic 
or autologous, given after bortezomib with or without lym-
phodepletion in high risk relapsed MM patients. NK cells were 
cocultured with K562-mb15-41BBL cells for 8–9 days. Initially, 6 
out of 8 NK products were cultured with low dose IL-2 (10 U/ml), 
however, increasing the dosage of IL-2 to 500 U/ml resulted in 
enhanced expression of NKp30 and NK cytolytic activity without 
affecting the T cell content of the NK cell product and, therefore 
the last 2 patients in this study were treated with high dose IL-2 
cultured NK cells. The highest post-transfer number of circulat-
ing NK cells was observed in the high dose IL-2 group. Patients 
treated with fresh NK cells showed a median 21-fold increase in 
peripheral NK cell rates by day 7, while no in vivo expansion of 
NK cells was seen in patients treated with cryopreserved NK cells. 
Overall, the NK-cell infusions were well tolerated and no GvHD 
was observed. From 7 evaluable patients, 6 had (PD), and 1 had a 
partial response (PR) for up to 6 months post infusion (65).

In the same year, Kottaridis et al. presented data from a clini-
cal trial in AML, for the first time using tumor-primed NK cells 
from related haploidentical donors. During a 6-month follow-up 
period (n = 7), three patients in CR remained in CR, one patient 
in PR achieved CR, two patients relapsed, and one patient died. 
Median OS was 468 days post NK-cell infusion (66).

Rubnitz and his team reported on the safety and feasibility 
of haploidentical NK  cell therapy in children with relapsed or 
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TABLe 2 | Summary of allogeneic NK cell clinical trials in a non-transplantation setting.

Study Malignancy Clinical Trial design Culture methoda infused dose NK cells Final product 
characteristics

Outcome

Phase I  
(EudraCT number: 
2010-018988-41) 
Dolstra et al. (73)

AML (n = 10) Conditioning with Cy/Flu 
followed by KIR-mismatched 
UCB-NK-cell infusion

Ex vivo expanded, differentiated and 
activated UCB-NK cells from unrelated 
donors. Culture duration: 42 days with 
GM-CSF, G-SCF, IL-6, SCF, Flt3L, 
TPO, IL-7, IL-2, and IL-15 aCD34+ 
selected HSPC’s

Escalating doses: 3 × 106 
cells/kg (cohort 1), 
10 × 106 cells/kg (cohort 
2), and 30 × 106 cells/kg 
(cohort 3)

Mean purity: 74 ± 13% 
CD34+ cell product. 
75 ± 12% generated 
CD56+ CD3− NK cells. 
0.03 ± 0.04% CD3+ cells. 
0.16 ± 0.21% CD19+ 
cells. Mean viability: 94%

Well tolerated, no GvHD nor toxicity. 
4/10 DFS for 55, 47, 17, and 
12 months after infusion

Phase I 
(NCT01898793) Romee 
et al. (72)

AML (n = 13) Conditioning with Cy/Flu 
followed by cytokine-induced 
memory-like NK-cell infusion 
and subsequent IL-2 therapy 
(every other day, 6×)

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: 12–16 h with 
IL-15, IL-12, and IL-18. aCD3 depleted 
and CD56 selected

Repeated dose: level 1: 
0.5 × 106 NK cells/kg level 
2: 1 × 106 NK cells/kg 
level 3: 10 × 106 NK  
cells/kg

Purity: >90% CD56+ 
CD3− cells

Well tolerated, no GvHD. 4/13 NE, 
4/13 TF-PD, 3/13 CR, 1/13 Cri, and 
1/13 MLFS

Phase I 
(NCT00799799) Curti 
et al. (71)

AML (n = 16) Conditioning with Cy/Flu 
followed by KIR ligand-
mismatched NK-cell infusion; 
IL-2 therapy (3× weekly for 
2 weeks)

PBNK cells from haploidentical 
donors. aCD3 depleted and CD56 
selected

Single dose: 1.29–
5.53 × 106 cells/kg

Median purity: infused 
CD3+ cells: 0.65 × 105 
cells/kg. Mean viability: 
95%

Feasible study, moderate toxicity. 9/16 
DFS, 7/16 in relapse (3–51 months), 
1/16 died of bacterial pneumonia

Phase II 
(NCT00526292) Shaffer 
et al. (70)

AML (n = 6) and 
MDS (n = 2)

Conditioning with Cy/Flu 
followed by HLA-mismatched 
NK-cell infusion; IL-2 therapy 
(6×) starting 1 day before and 
after NK-cell infusion

PBNK cells from haploidentical 
donors. aCD3 depleted and CD56 
selected

Single dose:  
4.3–22.4 × 106 cells/kg

Purity: ≥90% CD3− 
CD56+ cells. CD3+ cells 
<0.1%. Viability: 82–100%

No GvHD. 3/8 PR, 5/8 no response. 
Median survival is 12.9 months

Phase I 
(NCT01212341) Yang 
et al. (69)

Lymphoma (n = 2) 
and solid tumor 
(n = 18)

KIR ligand-mismatched 
NK-cell infusion

Ex vivo expanded and activated 
PBNK cells from unrelated donors. 
Culture duration: 14 days with 
irradiated auto-PBMCs, OKT3  
and IL-2

Single dose: 1 × 106  
cells/kg (cohort 1) 1 × 107 
cells/kg (cohort 2) 
Repeated dose: 1 × 106 
cells/kg (cohort 3) 3 × 106 
cells/kg (cohort 4) 1 × 107 
cells/kg (cohort 5), and 
3 × 107 cells/kg (cohort 6)

Purity: CD16 +/CD56+ 
cells: 98.13 ± 1.98%; 
CD3+ cells: 0.41 ± 0.43%; 
CD14+ cells: 
0.40 ± 0.37%; CD19+ 
cells: 0.15 ± 0.25%. Fold 
expansion: 757.5 ± 232.2. 
Viability: 92.9 ± 2.1%

No GvHD nor severe toxicities. 8/20 
SD, 9/20 PD, 3/20 NE. Median PFS in 
SD patients: 4 months (2–18 months)

Phase I  
(NKAML: 
NCT00697671) 
Pilot study (NKHEM: 
NCT00187096) Rubnitz 
et al. (67)

Relapsed 
leukemia post 
HSCT (n = 15) 
Refractory/
relapsed leukemia 
(no prior HSCT) 
(n = 14)

Conditioning with Clo/Eto/Cy 
followed by KIR-matched or 
-mismatched NK-cell infusion; 
IL-2 therapy (6×) starting 1 
day before and after NK-cell 
infusion

Ex vivo expanded PBNK cells from 
haploidentical donors. Culture 
duration: >12 h. aCD3 depleted and 
CD56 selected

Single dose:  
3.5–103 × 106 cells/kg

Median purity: 98.4% 
CD56+ cells. 0% CD3+ 
CD56− T cells. 0.31% 
CD19+ B-cells

Well tolerated, no GvHD. 6/29 PR, 
14/29 CR, 8/29 no response, and 
1/29 NE. 4/29 are alive and DFS

Phase I  
(EudracT number: 
2005-006087-62) 
Kottaridis et al. (66)

AML (n = 7) Conditioning with Flu and TBI 
followed by haploidentical 
tumor primed NK-cell infusion

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: o/n with 
CTV-1 lysate and cryopreserved for 
infusion. aOnly CD56 selected

Single dose: 1 × 106 
cells/kg

Purity: CD56+ cells 
97.17% of which 80% 
CD56+ CD3− cells

Serious adverse reactions, no GvHD. 
3/7 in CR remained in remission, 1/7 
in PR achieved CR, 2/7 relapsed and 
1/7 died (6 months follow-up). Median 
OS: 141–910 days
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Study Malignancy Clinical Trial design Culture methoda infused dose NK cells Final product 
characteristics

Outcome

Phase I 
(BB-IND-14560) 
Szmania et al. (65)

MM (n = 8) Conditioning with Bor (+/−Cy/
Flu/Dex) followed by fresh 
haplo-(n = 6) or cryopreserved 
auto (n = 2) NK cells

Ex vivo expanded and activated 
PBNK cells from haploidentical (fresh) 
and autologous (cryopreserved) 
donors. Culture: 8–9 days with K562-
mb15-41BBL stimulator cells and IL-2

Single dose:  
2 × 107–1 × 108 cells/kg 

Median purity: 78% 
CD3− CD56+ cells. 
CD3+/CD56– 0.1%. 
Viability cryopreserved: 
94%. Viability fresh: 93%. 
Recovery cryopreserved: 
16%. Recovery fresh: 
119%

Feasible and safe. 1/8 PR, 6/8 PD, 
1/8 NE, and 3/8 died between days 
11 and 98 after NK-cell infusion

Phase II 
(NCT00274846) 
Bachanova et al. (64)

AML (n = 57) Conditioning with Cy/Flu; 
IL2DT in cohort 3 followed by 
haploidentical NK-cell infusion 
1 day later; IL-2 therapy  
(14×, daily)

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: o/n with 
IL-2. aCD3 depleted (cohort 1) or CD3 
depleted/CD56 selected (cohort 2) or 
CD3/CD19 depleted (cohort 3)

Single dose: 
0.96 ± 0.3 × 107 
cells/kg (cohort 1) 
0.34 ± 0.05 × 107 cells/kg 
(cohort 2) 2.6 ± 1.5 ×  
107 cells/kg (cohort 3)

Purity: NK cells 39 ± 9%, 
T cells: 0.7% (cohort 1) 
NK cells 75 ± 6%, T cells: 
1.3% (cohort 2) NK cells 
54 ± 16%, T cells: 0.3% 
(cohort 3)

Well tolerated, no GvHD and mild 
toxicities. 9/42 in remission (1.8–15  
months) (cohorts 1 and 2, n = 42). 
8/15 in remission (1–32 months) 
(cohort 3, n = 15). DFS: 5% (cohorts 
1 and 2) and 33% in cohort 3

Tonn et al. (43) Solid tumors/
sarcoma (n = 12) 
Leukemia/
lymphoma (n = 2)

Pretreatment with mPred 
following NK-92 cell infusion

Ex vivo expanded and activated 
allogeneic NK-92 cells. Culture 
duration: 100–300 h with IL-2. aNo 
selection

Repeated doses (2 × 48 h 
apart): 1 × 109 (cohort 1),  
3 × 109 (cohort 2) and 
1 × 106 (cohort 3) cells/m2 
and additional dose level 
of 1010 cells/m2 in some 
patients

Viability: >80%. Fold 
expansion: 32

Infusion of 1010 NK-92 cells/m2 were 
well tolerated. 12/15 PD, 2/15 MR, 
1/15 SD for 2 years, OS: 13–801 days

Pilot study 
(NCT00799799) Curti 
et al. (63)

AML (n = 13) Conditioning with Cy/Flu 
followed by KIR ligand-
mismatched NK-cell infusion; 
IL-2 therapy (3× weekly for 
2 weeks)

PBNK cells from haploidentical 
donors. aCD3 depleted and CD56 
selected

Single dose: 1.11–5 ×  
106 CD3− CD56+ cells/kg

Mean viability: 95%. 
Median purity: 93.5% 
NK cells. Maximum T-cell 
dose 105 cells/kg

Feasible and safe, no GvHD. 5/13 
active disease: 1/5 CR (6 months), 
4/5 died of PD. 3/6 treated in CR are 
DFS (34, 32, and 18 months), 2/13 in 
MR in CR (4 and 9 months)

Phase II  
(BB-IND 8847) Geller 
et al. (33)

Refractory 
metastatic breast 
cancer (n = 14) 
Ovarian cancer 
(n = 6)

Conditioning with Cy/Flu with 
or without TBI followed by 
allogeneic NK-cell infusion; 
IL-2 therapy (3× weekly for 
2 weeks)

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: o/n with IL-2

Single dose: 8.33 ×  
106–3.94 × 107 cells/kg

Viability: >70%. Median 
T cells: 0.11% CD3+ cells

TLS and PLS and limited infusion or 
IL-2 related toxicities. 1/20 died due 
to grade 5 toxicity. 4/20 PR, 12/20 
SD, and 3/20 PD (between 31 and 
109 days)

Pilot study Bachanova 
et al. (62)

B-cell NHL (n = 6) Conditioning with Cy/Flu and 
mAb (rituximab, 4×) before 
and after haplo NK-cell 
infusion followed by IL-2 
therapy (6×, every other day)

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: 8–16 h  
with IL-2

Single dose: 
21 ± 19 × 106 NK cells/kg

Purity: 43 ± 11% NK cells. 
0.16 ± 0.12% T cells

Feasible and safe. 2/6 CR, 2/6 
relapsed at 6 months, 2/6 died

Pilot study NKAML 
Rubnitz et al. (61)

AML (n = 10) Conditioning with Cy/Flu 
followed by KIR-mismatched 
NK-cell infusion; IL-2 therapy 
(6×) starting 1 day before and 
after NK-cell infusion

PBNK cells from haploidentical 
donors. aCD3 depleted and CD56 
selected

Single dose: 5–81 ×  
106 cells/kg

Median purity: B-cells 
0.097 × 106 cells/kg. 
T cells 1 × 103 cells/kg

Feasible and safe. 10/10 in remission 
(569–1,162 days)

TABLe 2 | Continued

(Continued )

281

Velucham
y et al.

R
ise of N

K
 C

ell Therapies

Frontiers in Im
m

unology | w
w

w
.frontiersin.org

M
ay 2017 | Volum

e 8 | A
rticle 631

281

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Study Malignancy Clinical Trial design Culture methoda infused dose NK cells Final product 
characteristics

Outcome

Phase I  
(EudraCT number: 
2005-005125-58) 
Iliopoulou et al. (60)

Non-SCLC 
(n = 16)

Haploidentical NK-cell infusion 
after chemotherapy

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: 21–23 days 
with IL-15 followed by 1 h with IL-15 
and hydrocortisone. aOnly CD56 
selected

Repeated doses (2–4): 
0.2–29 × 106 cells/kg per 
dose

Median purity: (T cells) 
CD3+ CD56+ CD28− 
0.12 × 106 cells/kg. 
CD56+ CD3 cells 97.9% 
(after 20 days culture).  
Fold expansion: 23

Safe, no GvHD. 2/16 PR, 6/16 SD, 
7/16 PD, 1/16 not treated. 1-year OS 
56% (9/16), 2-year OS 19% (4/16)

Phase I  
Arai et al. (42)

Metastatic 
RCC (n = 11) 
or Malignant 
Melanoma (n = 1)

NK-92-cell infusion Ex vivo expanded and activated 
allogeneic NK 92 cells. Culture 
duration: 15–17 days with or without 
IL-2. aNo selection

Repeated doses (3× in 
cohort): 1 × 108 (cohort 1), 
3 × 108 (cohort 2), 1 × 109 
(cohort 3), and 3 × 109 
(cohort 4) cells/m2

Fold expansion: 200 over 
15–17 days. Viability: 
≥80%

Safe and feasible, mild toxicities  
(1 grade 4, hypoglycemia). 10/12 
PD (died between day 101 and 
1,059), 1/12 alive (1,450 days) and 
1/12 died of bronchopneumonia 
(day 832)

Phase I  
(BB-IND 8847) Miller 
et al. (50)

Metastatic 
Melanoma 
(n = 10), 
Metastatic 
RCC (n = 13), 
Refractory HL 
(n = 1), and  
AML (n = 19)

Conditioning with low Cy/
mPred or Flu or high-Cy/Flu 
followed by NK-cell infusion; 
IL-2 therapy (14×, daily)

Ex vivo expanded and activated 
PBNK cells from haploidentical 
donors. Culture duration: o/n with IL-2

Escalating doses: low cy/
mPred: 1 × 105, 1 × 106, 
1 × 107, or 2 × 107 cells/
kg (at least three per 
cohort). Flu or high-Cy/Flu: 
2 × 107 cells/kg

Viability: >70%. Purity: 
NK cells 40 ± 2%. T cells 
1.75 ± 0.3 × 105 cells/kg 
is 0.9 ± 0.1%. Monocytes 
25 ± 1.6% and B-cells 
19 ± 2%

Feasible and tolerated without 
toxicities. Low-Cy/mPred: 2/17 with 
MRCC SD for 20 and 21 months. 
4/17 with MM SD for 4–9 months 
(n = 17) High-Cy/Flu: 5/19 AML pts  
in CR (n = 19)

CNS, central nervous system; MPDs, myeloproliferative disorders; LPD, lymphoproliferative disorder; MM, multiple myeloma; MDS, myelodysplastic syndromes; MDN, myelodysplastic neoplasms; MPN, myeloproliferative 
neoplasms; AML, acute myeloid leukemia; LBLL, lymphoblastic leukemia-lymphoma; ALL, acute lymphoblastic leukemia; NB, neuroblastoma; RMS, rhabdomyosarcoma; CML, chronic myelogenous leukemia; NHL, non-
Hodgkin’s lymphoma; MCL, mantle cell lymphoma; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; ALCL, anaplastic large cell lymphoma; HL, Hodgkin’s lymphoma; RCC, renal cell cancer; SCLC, small cell 
lung cancer; CLL, chronic lymphocytic leukemia; HCC, hepatocellular carcinoma; PNET, primitive neuroectodermal tumor; ACC, adrenal cortical carcinoma; EWS, Ewing sarcoma; DSRCT, desmoplastic small round cell tumor; 
Cy, cyclophosphamide; Flu, fludarabine; Bor, bortezomib; Dex, dexamethasone; Clo, clofarabine; Eto, etoposide; Cis, cisplatin; Pac, paclitaxel; Doc, docetaxel; Vin, vinorelbine; Gem, gemcitabine; Car, carboplatin; Pem, 
pemetrexed; TBI, total body irradiation; Tac, tacrolimus; Pred, prednisolone; mPred, methylprednisolone; Thy, thymoglobulin; Vin, vincristine; Adr, adriamycin; Predn, prednisone; Mel, melphalan; OKT3, muromonab-CD3; HSPC, 
human stem and progenitor cells; aGvHD, acute graft versus host disease; DNKI, donor NK-cell infusion; Stim, stimulated; Unstim, unstimulated; DFS, disease-free survival, CR, complete remission; PR, partial response; MR, 
minimal response; SD, stable disease; PD, progressive disease; aNK-DLI, donor-derived IL-15/4-1BBL activated NK-cell infusion; TRM, transplant-related mortality; MC, mononuclear cell; TLS, tumor lysis syndrome; PLS, 
passenger lymphocyte syndrome; NE, not evaluable.
aCulture method displays CD3 depleted PBMC’s, otherwise deviated selection method is mentioned in product characteristics.
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refractory leukemia. NK cells were administered along with IL-2 
injections in 29 patients, out of which 14 had not undergone HSCT 
(cohort I) and the other 15 have relapsed after HSCT (cohort II). 
In total, 90% of the NK cell donors were KIR mismatched and 
when the outcomes from both cohorts were combined, 14/29 were 
in CR, 6/29 showed PR, and 8/29 patients showed no response to 
the treatment (67).

The first clinical trial to adoptively transfer allogeneic NK cells 
derived from peripheral blood of unrelated donors without 
immune suppression was performed by Yang et al. In this study, 
allogeneic IL-2-activated NK cells (MG4101) were expanded at 
Green Cross Lab Cell (68) and administered to patients with 
advanced lymphoma and recurrent solid tumors. Following 
NK  cell-adoptive transfer, an increase in NKG2D expression 
levels on CD8+ T cells, a reduction in the number of T-regs, and 
MDSCs followed by a decrease in serum levels of transforming 
growth factor-beta were noted. An enhanced PFS was noted in 
KIR-mismatched NK cell recipients. In addition, a KIR B hap-
lotype was associated with a higher incidence of stable disease 
(SD). This study demonstrated that KIR-ligand mismatched 
donor NK cells can be safely administered without any sign of 
GvHD and with a GvT effect. Though an antitumor effect of the 
adoptively transferred NK cells could be observed, their persis-
tence in vivo was shorter (between 1 and 4 days) in comparison 
to other clinical trials. This stresses the potential need for an 
effective NK  cell-promoting conditioning regimen, to increase 
the life span and migration of NK cells in patients (69).

Shaffer et al. published results from a Phase II study in patients 
with relapsed or progressive AML (n = 6) or MDS (n = 2), treated 
with allogeneic NK-cell infusions and supported by IL-2 injec-
tions in  vivo. NK  cell donor chimerism was not detected post 
infusion, and no signs of GvHD were reported from this study. 
About 3/8 patients achieved PR of which 1/6 patients with AML 
and 1/2 patients with MDS achieved a CR after treatment but 
relapsed within 2 months. Of note, both these patients survived 
for 20.2 months post NK infusion, while the remaining 5 patients 
without response had a median survival of 5.4 months (70).

Around the same time, Curti et  al. published results from 
a Phase I trial using KIR ligand-mismatched haploidentical 
NK cells to treat AML patients in CR (n = 16). About 7/16 patients 
relapsed, while 9/16 remained disease free at a median follow-up 
of 22.5 months. Overall, 69% (11/16) responded to therapy, with 
no signs of GvHD. Prolonged DFS was higher in patients with 
an absolute increase in the number of circulating alloreactive 
NK cells in this study (71).

Romee et  al. investigated the antitumor effects of cytokine 
induced memory-like NK  cells, which were adoptively trans-
ferred in relapsed or refractory AML patients after overnight 
activation with IL-12, IL-15, and IL-18. They were defined as 
memory-like NK cells based on their enhanced responsiveness 
upon restimulation with cytokines. NK-cell infusions were safe 
and well tolerated and no GvHD was reported in this study. Out 
of nine evaluable patients, four had CR and five showed disease 
responses (72).

Most recently, a first clinical trial using UCB CD34+ progeni-
tor cell-derived NK cells was published by Dolstra et al. Allogeneic 
NK cells were generated from UCB CD34+ cells using an ex vivo 

expansion and differentiation method developed by Glycostem 
Therapeutics (41). In this study, 10 AML patients in morphologic 
CR, who were ineligible for HSCT transplantation, received 
partially HLA-matched (5/10 KIR ligand-ligand mismatched and 
7/10 KIR receptor-ligand mismatched) UCB-NK cells (oNKord®). 
Following Cy/Flu conditioning, lymphocytopenia was induced 
and found to correlate with elevated IL-15 levels, which peaked 
at day 6 after NK-cell infusion. Out of 10 treated patients, 5 were 
alive and 4 had a DFS of 60, 52, 22, and 16 months after infusion. 
About 2/4 patients with very poor prognosis (i.e., with detect-
able MRD in bone marrow before NK infusion) became MRD 
negative for 6 months post NK infusion, indicating a potential 
GvT effect. UCB-NK-cell infusions were safe and well tolerated 
without signs of GvHD. Interestingly, UCB-NK cells expressing 
low levels of KIRs and CD16a at the end of the ex vivo culture, 
underwent further maturation post-transfer in vivo, resulting in 
the upregulation of KIRs and CD16a, but continued to preserve 
the activated phenotype denoted by high expression of NKp30, 
NKp44, NKp46, NKG2D, and DNAM (73).

In addition to NK cells from PBNK and UCB-NK, two clinical 
studies reported on the use of the NK-92 cell line. A Phase I trial 
conducted by Arai et al. investigated the safety and feasibility of 
allogeneic NK-92 cells in advanced renal cancer and melanoma. 
A total of 12 patients were evaluated and 6/12 had PD, 4/12 had 
SD, while 1/12 had minor response and 1/12 had mixed response, 
4  weeks post infusion (42). Similarly, in another study with 
NK-92 conducted by Tonn et al., 15 patients were included with 
advanced solid (n = 13) and hematological malignancies (n = 2). 
About 1/7 tested patients produced antibodies against the HLA 
antigens expressed by NK-92 cells, 1/15 showed SD, 1/15 a mixed 
response, and the rest of the patient group had disease progres-
sion, being treated with a maximum tolerated dose of 1010 cells/
m2. NK-92 cells had a very short persistence (48 h) in vivo (43). 
As NK-92 cells are derived from cancer (lymphoma) cells and 
require irradiation before infusion, which could hamper their 
ability to proliferate and home in vivo, potentially limiting their 
efficacy.

Overall, analyzing the data from adoptive allogeneic NK cell 
therapy trials in a non-transplant setting, we conclude that such 
treatments are very safe and well tolerated and efficacious in 
hematological malignancies, especially in AML, but as yet rela-
tively ineffective in solid tumors. Trials using allogeneic NK cells 
alone yielded valuable information on the in  vivo persistence, 
donor chimerism, and antitumor potential in different indica-
tions. Furthermore, unlike combined approaches with HSCT, the 
absence of life-threatening GvHD and major treatment-related 
toxicities makes this method advantageous and provides an 
opportunity to further enhance the cytotoxic effects of allogeneic 
NK cells.

APPROACHeS TO AUGMeNT NK CeLL 
FUNCTiONS: A view ON BiOTeCH 
iNDUSTRieS

As reviewed above, various clinical trials have been published, 
mainly initiated by academia, proposing allogeneic NK cells as an 

283

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Veluchamy et al. Rise of NK Cell Therapies

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 631

effective therapeutic option. As a result of these studies, interest 
in NK cell-based immunotherapy strategies has been engendered 
in an increasing number of biotech companies. Clinical trials 
conducted in academia are often restricted to Phase I or II, as 
progression of experimental therapies to Phase III clinical trials 
and further on to commercialization and marketing requires a 
level of funding that surpasses the capacity of academic institu-
tions. The financing of market enabling studies is coming mainly 
from industry. Although NK cells can be effective in some types 
of cancer as a monotherapy, considering their heterogeneity, 
complex networking, and the inherent adaptability of several 
tumors to evade killing by immune cells, one believe is that it is 
necessary to improve on the efficacy of currently available NK cell 
products. In this respect, it is worthwhile to consider combinato-
rial approaches of different treatment strategies involving NK cell 
functions. A summary of biotech companies involved in NK cell 
research is listed in Table 3 and Figure 1. Here, we review for 
a selected group of NK cell companies, which develop NK cell-
specific treatments, the underlying scientific principles and 
findings of their product pipelines, revealing highly innovative 
concepts that herald future clinical applications.

Fc OPTiMiZeD MONOCLONAL 
ANTiBODieS (mAbs)

The potential of NK cells to mediate ADCC with therapeutic mAbs 
has been well described over the years (74). However, concerns 
have been voiced based on results from certain clinical trials, 
showing that polymorphisms in NK CD16 (V158V, V158F, and 
F158F) could influence the efficacy of mAb treatment and ADCC 
(75). To address this issue and limit the variations between differ-
ent CD16 sequences, Fc glyco-engineered (defucosylated) mAbs 
with enhanced binding affinities to NK CD16a were developed. 
The Fc optimized anti-CCR4 mAb mogamulizumab (76) (Kyowa 
Hakko Kirin) has entered Phase III clinical testing in patients 
with adult T cell leukemia, emerging as the lead NK cell ADCC 
product to reach the market soon. Fc-optimized anti-CD20 mAbs 
Obinutuzumab (Genentech) (77) and Ocaratuzumab (Mentrik 
Biotech, LLC) (78) are currently tested in patients with chronic 
lymphocytic leukemia and follicular lymphoma. Similarly, the 
Fc-optimized anti-EGFR mAb imgatuzumab (Roche Glycart) is 
tested in Phase I/II clinical trials for head and neck cancer and in 
KRAS mutant colorectal cancer (79, 80). Although Fc-engineered 
mAbs address NK-mAb-binding issues, reports of serious side 
effects, like from the imgatuzumab study (81), have made the 
scientists rethink this strategy and call for the careful study of the 
advantages and disadvantages of this approach.

BiSPeCiFiC ANTiBODieS

In the last decade, several bispecific and trispecific Ab platforms, 
simultaneously targeting immune cells and tumor cells, have been 
developed in the field of cancer immunotherapy (82). To date, the 
majority of bispecific Abs that has been developed targets T cells, 
while only a limited number of bispecific approaches targets 
NK cells (83). Affimed is a clinical stage pharmaceutical company 

developing bifunctional antibodies that recruit immune cells such 
as T and NK cells to tumor sites. These bispecifics (TandAbs) are 
tetravalent in nature, thus offering four binding sites, two aimed 
at tumor antigens and two aimed at immune cells. Currently, 
Affimed’s AFM13 that targets CD30 on cancer cells and CD16a 
on NK cells is in clinical Phase II testing in patients with HL. In 
Phase I studies AFM13 was found to be safe and well tolerated 
and resulted in an overall response rate of 23%. Furthermore, 
AFM13 treatment resulted in an increase in NK  cell activa-
tion and a decrease in soluble CD30 levels in peripheral blood 
(NCT01221571) (84). Further, two other bispecific CD16a-based 
tumor targeting antibodies are in preclinical phase development, 
i.e., AFM22 and AFM24 that bind to EGFRvIII expressed by sev-
eral solid tumors, including glioblastoma (GBM), and wild-type 
EGFR, respectively. Another promising NK cell-focused bispecific 
platform is developed by AvidBiotics to target tumors that evade 
NK killing via downregulation or shedding of the NKG2D ligand 
MICA, which is a major limiting step in NK-mediated tumor 
targeting. To overcome this, AvidBiotics designed MicAbody 
proteins that bind to the NK cell NKG2D receptor with high affin-
ity. Further, this MicAbody was engineered with an additional 
binding site to target tumor antigens of interest, thus enabling 
recruitment of NK cells to tumors (85).

NK CeLL CHeCKPOiNT iNHiBiTORS

Another strategy to increase NK cell functionality is the disrup-
tion or blocking of NK inhibitory signals. Innate Pharma is a 
clinical stage pharmaceutical company focused on developing 
NK cell checkpoint inhibitors. Lirilumab (IPH2102/BMS 986015) 
is a fully humanized IgG4 anti-KIR mAb against the inhibitory 
KIRs KIR2DL1, L2, and L3, which are expressed predominantly 
on NK cells and on some T cells. Lirilumab induced significant 
anti-tumor activity of NK cells against HLA-C-expressing tumor 
cells, contributing to increased survival in lirilumab-treated mice 
(86). Similar to KIRs, the NK  cell inhibitory receptor NKG2A 
binds to its ligand HLA-E on tumor cells resulting in an inhibition 
of NK cell function. HLA-E is overexpressed in colon, cervical, 
and ovarian cancers, thus serving as an escape mechanism for 
NK killing in these tumors (87, 88). The anti-NKG2A mAb 
monalizumab was developed to block the interaction between 
NKG2A and HLA-E and is currently under clinical investiga-
tion. IPH4102, which targets KIR3DL2, is under Phase I clinical 
investigation in cutaneous T  cell lymphoma (CTCL). Clinical 
trials testing lirilumab, monalizumab, and IPH4102 are listed in 
Table 3.

GeNeTiC MODiFiCATiON OF NK CeLLS

In addition to successful expansion, differentiation, and demon-
strable anti-tumor effects of NK cells, NK cell tumor targeting 
can be made more specific by employing chimeric antigen 
receptors (CARs) as demonstrated for T cell adoptive transfer 
strategies (89). CARs are recombinant Ab-based molecules 
that upon expression in immune effector cells bind antigens 
of interest on target cells, resulting in immune activation 
and enhanced immune effector cell survival through specific 
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TABLe 3 | List of biotech NK cellular therapies and NK cell function enhancing compounds.

Company NK cell product Product characteristics Disease target Product stage

Fortress Biotech 
Inc.

CNDO-109 Tumor primed NK cells AML Phase I/II

Multimmune 
GmbH

ENKASTIM-ev A synthetic peptide which mimics Hsp70 and activates 
NK cells ex vivo

Metastatic colon and non-small cell lung 
cancer

Phase II

Glycostem 
Therapeutics

oNKord® NK cells derived from umbilical cord blood (UCB) 
progenitor cells

AML and solid tumors Phase I (AML)

NantKwest Inc. Activated NK-92 cells 
(aNK cell)

IL-2-dependent tumor cell-derived NK cell line Solid tumors and hematological 
malignancies

Phase I

High affinity NK cells 
(haNK)

aNK cells genetically modified to express CD16 for 
ADCC with therapeutic mAbs

Ideally in combination with IgG1 therapeutic 
mAbs in solid tumors (e.g., cetuximab) and 
hematological malignancies (e.g., rituximab)

Preclinical

Target-activated NK cells 
(taNK)

aNK cells genetically modified to express CARs NK-92 CARs are developed targeting tumor 
antigens in neuroblastoma, melanoma, 
breast cancer, MM and leukemias

Preclinical

Green Cross Lab 
Cell

MG4101 Ex vivo expanded NK cells derived from CD3 depleted 
unrelated donors

Solid tumors and lymphoma 
(NCT01212341)

Phase I

Gamida Cell NAM-NK cells Nicotinamide-based PBNK cell culture system Solid tumors and hematological 
malignancies

Preclinical

Celgene Cellular 
Therapeutics

NK cells NK cells derived from UCB and placenta. Solid tumors and hematological 
malignancies

Preclinical

Fate 
Therapeutics Inc.

iNK cells NK cells derived from induced pluripotent stem cells Solid tumors and hematological 
malignancies

Preclinical 

Sorrento 
Therapeutics Inc

CARs to enhance tumor 
homing of NK-92 cells

NK-92 cells CAR targeting programming death ligand-1 
and NK-92 CAR targeting receptor tyrosine kinase like 
orphan receptor to increase NK-92 tumor homing

Solid tumors and hematological 
malignancies

Preclinical

Nkarta 
Therapeutics

NKG2D CARs NKG2D CARs developed with NK-92 and PBNK to 
enhance the functions of NKG2D receptor in NK cells

Osteosarcoma and hepatocellular 
carcinoma

Preclinical

Ziopharm 
Oncology Inc.

HLA gene editing Zinc finger nuclease technology to delete HLA-A 
sequences from allogeneic NK cells, allowing them to 
evade recipient T cell killing

Solid tumors and hematological 
malignancies

Preclinical

Company NK cell enhancing 
products

Product characteristics Disease target Product stage

Kyowa Hakko 
Kirin

Mogamulizumab Fc optimized anti CCR4 CD20 mAb CTCL Phase III

Genentech Obinutuzumab Fc optimized anti CD20 mAb CLL Phase II

Mentrik Biotech, 
LLC

Ocaratuzumab Fc optimized anti CD20 mAb CLL Phase II

Roche Glycart Imgatuzumab Fc optimized anti EGFR mAb Head and neck and KRAS mutant 
colorectal cancer

Phase I/II

Affimed N.V. AFM13 Bispecific antibody binding to CD16a on NK cells and 
CD30 on tumor cells

Hodgkin’s lymphoma and lymphomas Phase II

AFM22 Bispecific antibody binding to CD16a on NK cells and 
EGFR vIII on tumor cells

Head and neck and solid tumors Preclinical

AFM24 Bispecific antibody binding to CD16a on NK cells and 
wild type EGFR on tumor cells

EGFR-expressing solid tumors Preclinical

Innate Pharma 
S. A.

Lirilumab mAb to block NK cell inhibitory signaling from KIRs 
(KIR2DL1–3)

As monotherapy (Phase II, NCT02399917), 
with nivolumab (Phase I, NCT01592370), 
with ipililumab (Phase I, NCT01750580), 
5-azacytidine (Phase I, NCT02399917), with 
nivolumab + 5-azacytidine (Phase II,  
NCT02599649), with elotuzumab 
(NCT02252263) and with rituximab (Phase I,  
NCT02481297)

Phase I/II

(Continued)
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Company NK cell product Product characteristics Disease target Product stage

Innate Pharma 
S. A.

Monalizumab mAb to block NK cell inhibitory receptor NKG2A As monotherapy (Phase I/II, 
NCT02459301, NCT02331875) with 
cetuximab (NCT02643550), with ibrutinib 
(NCT02557516) and with durvalumab 
(NCT02671435)

Phase I/II

IPH4102 mAb to block NK cell inhibitory receptor KIR3DL2 As monotherapy in CTCL (NCT02593045) Phase I

IPH4301 mAb to target NKG2D ligands MICA/MICB and it also 
mediates ADCC with NK cells

Solid tumors and hematological 
malignancies

Preclinical 

Altor Biosciences 
corporation

ALT-803 IL-15 super agonist reported to stably express IL-15. 
Increases NK cell proliferation in vivo, also enhances 
expansion of migratory NK subsets

Advanced solid tumors (NCT01946789), 
MM (NCT02099539), HIV patients 
(NCT02191098), with nivolumab in 
NSCLC (NCT02523469), with rituximab 
(NCT02384954) in B cell Non-Hodgkin 
Lymphoma (NHL) (NCT02384954), 
with (BCG) in Non-Muscle Invasive 
Bladder Cancer (NCT02138734), with 
chemotherapy drugs gemcitabine and Nab-
paclitaxel in advanced pancreatic cancer 
(NCT02559674)

Phase I/II

NOXXON 
Pharma

NOX-A12 Functions as chemokine receptor CXCL12 inhibitor, 
enables the release of CXCL12 from the surface of 
tumor stromal cells, thus facilitating migration of tumor 
cells toward NK cells

Solid tumors and MM Preclinical

AvidBiotics MicAbody proteins Dual role: binds to NKG2D receptor in NK cells and to 
target antigens of interest simultaneously

Solid tumors and hematological 
malignancies

Preclinical

KIRs, killer cell immunoglobulin-like receptors; ADCC, antibody-dependent cell mediated cytotoxicity; aNK, activated NK cells; haNK, high affinity NK cells; taNK, target activated 
NK cells; mAbs, monoclonal antibodies; NAM, nicotinamide; CARs, chimeric antigen receptors; EpCAM, epithelial cell adhesion molecule; AML, acute myeloid leukemia; KIR2DL1–3, 
killer cell immunoglobulin like receptor two domains long cytoplasmic tail 1–3; KIR3DL2, killer cell immunoglobulin like receptor three domains long cytoplasmic tail 2; MICA/MICB, 
MHC class-I-chain related protein A and B; HIV, human immunodeficiency virus; NSCLC, non-small-cell lung cancer; BCG, Bacillus Calmette Guerin; MM, multiple myeloma; CLL, 
chronic lymphocytic leukemia; CTCL, cutaneous T cell lymphoma; EGFR, epidermal growth factor receptor.

FiGURe 1 | Summary of natural killer (NK) cell clinical milestones from academia and biotech industries.
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intracellular signaling motifs fused to the antigen binding 
domain [usual a single-chain Fv fragment (scFv)]. PBNK-CARs 
against breast cancer (HER-2), NB (CD244), and CD19 + B-cell 
precursor cell ALL (CD19) (90) have demonstrated efficacy in 
preclinical studies, while two clinical trials are ongoing using 
modified haplo-identical PBNK cells with anti-CD19 CARs in 
B  cell malignancies (NCT00995137 and NCT01974479) (89). 
NantKwest, is actively involved in enhancing the functions of 
its lead product, parental NK-92 cells (activated NK cells, aNK), 
through gene modifications employing CARs to make them 
target specific. NK-92 CARs (taNK) are developed against tumor 
markers in NB (GD2), melanoma (GPA7) (91), breast cancer 
(EpCAM, HER-2, EGFR) (92, 93), MM [CS1 (94), CD138 (95)], 
and leukemias (CD19, CD20) (96) and have shown efficacy in 
preclinical studies. In an alternative approach, NK-92 cells have 
also been modified to express CD16a (high affinity NK  cells, 
haNK) to promote ADCC (97). NantKwest has also partnered 
with Sorrento Therapeutics to develop NK-92 CARs targeting 
programmed death-ligand1 (PD-L1) (98) and receptor tyrosine 
kinase-like orphan receptor 1 (ROR-1) (99).

Besides specific targeting of tumor antigens and strategies to 
promote ADCC, Nkarta therapeutics developed NKG2D CARs 
(NKG2D-CD3ζ-DAP10) using NK-92 cells and PBNK  cells, 
which exhibited enhanced cytotoxicity against osteosarcoma 
and hepatocellular carcinoma when compared to activated and 
expanded PBNK cells (100, 101). mRNA-based genetic engineer-
ing has been used to enhance migration of NK cells to tumors.

Apart from gene modification, gene editing is also widely 
used to overexpress or knock out genes of interest to augment 
NK cell function. Expression of HLA-A on allogeneic NK cells 
leads to rejection of allogeneic NK cells by the recipient’s T and 
NK  cells. Cooper and colleagues from Ziopharm Oncology 
used zing finger nuclease (ZFN) technology to remove HLA-A 
sequences from allogeneic NK cells, thus enabling these immune 
effector cells to escape rejection from recipient T cells. However, 
in that case, there is yet a high probability of being attacked by 
endogenous NK cells targeting HLA-A negative allogeneic cells. 
This was further addressed by retaining HLA-B and HLA-C genes 
in donor NK  cells (102–104). To increase NK  cell persistence 
in vivo, scientists at oNKo-innate identified a group of proteins 
called suppressor of cytokine signaling (CIS, SOCS 1–7), which 
negatively regulate CIS pathways. SOCS1 and SOCS3 bind 
to JAK1, JAK2, and TYK2 molecules and inhibit JAK activity. 
Similarly, CIS protein binds to JAK1 and suppresses IL-15 signal-
ing in NK cells. It became evident from in vivo studies in mice 
with Cish−/− knockout NK cells that loss of CIS led to prolonged 
IL-15 signaling, resulting in an increased proliferation, survival, 
and functionality of NK cells (105).

NK CeLLS FROM iPSCs

In recent years, NK  cells generated from induced pluripotent 
stem cells (iPSC-NK) and human embryonic stem cells (hESC-
NK) have been gaining more interest as an NK cell therapeutic 
product. Fate Therapeutics developed a platform technology to 
generate NK cells from iPSC. hESC/iPSC were made into aggre-
gates by centrifugation to form so-called embryoid bodies (spin 

EBs) (106), giving rise to hematopoietic progenitor cells express-
ing CD34 and CD45, which were then differentiated into mature 
NK cells using a specific cytokine cocktail. iPSC/hESC-derived 
NK cells were shown to express common NK cell markers, such 
as KIRs, CD16, NKp44, NKp46, NKG2D, and TRAIL, and were 
cytotoxic against several hematological and solid tumor cells 
in vitro (107, 108). In the next stage, iPSC/hESC-derived NK cells 
were successfully expanded using IL-2 and K562-based aAPCs 
with membrane-bound IL-21 to generate sufficiently high num-
bers for clinical applications (109).

NK CeLLS FROM HUMAN UCB CeLLS

Stem cell progenitors from cord blood offer a unique platform 
to be expanded and differentiated into cytotoxic NK  cells. 
The low immunogenicity of cord blood cells strongly reduces 
the risk of relapse and GvHD after transplantation (110). 
Considering the advantages of using cord blood, Glycostem 
Therapeutics, a clinical stage biotech company, which in the last 
decade has developed a flexible platform technology to expand 
and differentiate NK  cells from CD34+ cells (111), upgraded 
this into a large scale GMP UCB-NK platform for clinical 
implementation (oNKord®) (41). UCB-NK  cells were infused 
at up to 30 × 106 cells/kg/bodyweight in elderly AML patients, 
resulting in excellent safety and initial efficacy in a Phase I trial. 
Infused oNKord® cells showed active migration to the marrow 
and further matured in the absence of any exogenous cytokine 
injections. This confirms previous findings from a preclinical 
model, showing migration to the bone marrow and upregula-
tion of KIRs and CD16a in vivo as well as antileukemic activity 
(112). oNKord® is well characterized and was found to have a 
similar functionality and gene expression profile as PBNK cells 
(113). Furthermore, oNKord® is highly cytotoxic against solid 
tumor targets such as cervical cancer cells, in which killing was 
independent of HLA expression levels, tumor histology and 
HPV types (114), or colorectal cancer cells, in which killing was 
independent of tumor EGFR levels, and RAS and RAF muta-
tions (115), thus paving the way for oNKord® as immunotherapy 
for advanced solid tumors.

CYTOKiNeS TO eNHANCe NK CeLL 
FUNCTiONS

To improve the antitumor activity of autologous NK cells, sys-
temic administration of clinical grade recombinant IL-2 (rIL-2) 
and single chain IL-15 (scIL-15) has been used in high doses 
and this has resulted in severe grade 3/4 toxicities (116–118). 
Since then, their safety and efficacy have been tested in low doses 
following NK  cell-adoptive transfer in cancer patients (50, 63, 
119). However, IL-2 resulted in expansion and mobilization of 
inhibitory T-regs, severely limiting NK  cell cytotoxicity (120). 
This shifted the focus toward the use of IL-15 for clinical trials 
involving NK  cells. Currently more potent and advanced het-
erodimeric IL-15, which has a longer shelf life than scIL-15, is 
being tested in several studies (121). IL-15 is known to be more 
effective in membrane-bound form (i.e., bound to its receptor), 
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engaging target immune cells in a cell contact dependent manner. 
Campana and his team (from Nkarta Therapeutics) addressed 
this by stably transducing the membrane bound IL-15 (mbIL-15)  
gene into proliferating PBNK cells, which were stimulated with 
K562-mb15-41BBL. mbIL-15 resulted in increased survival, 
proliferation, and enhanced cytotoxic functions of NK cells (122). 
Further, Cyto-Sen Therapeutics compared mbIL-15 to K562-
based aAPCs with mbIL-21. From their findings, it was evident 
that mbIL-21 NK  cells have a significantly higher expansion 
and proliferation ability compared to mbIL-15 NK  cells (123). 
Cyto-Sen also developed plasma membrane particles (PM21) 
engineered from K562-mb21-41BBL cells and found that these 
PM21 particles stimulated efficient NK cell expansion in AML 
patient’s PBMC samples (124).

Compared to IL-2, the use of IL-15 minimizes capillary leak 
syndromes and has less side effects overall, thus providing a 
strong rationale to use IL-15 instead of IL-2. However, the use 
of mammalian recombinant IL-15 in the clinic has been limited 
due to its short half-life and decreased functional activity in vivo. 
Altor BioSciences corporation came up with a unique design to 
overcome these limitations. It developed an IL-15 super agonist 
known as ALT-803. It consists of a human IL-15 mutant N72D 
variant, which is stably complexed with a soluble human IL-15Rα 

sushi-Fc dimer protein. Enhanced biological activity of ALT-803 
was reported in several preclinical studies showing durable anti-
tumor activity in various solid and hematological malignancies 
(125–128). Furthermore, ALT-803 facilitated expansion of effec-
tor and migratory NK  cell subsets and significantly decreased 
the metastatic activity of tumor cells in a murine colon cancer 
pulmonary metastasis model (129). ALT-803 stimulated primary 
human NK cells to exhibit increased degranulation, IFNγ pro-
duction, and ADCC when exposed to B cell lymphoma cell lines 
coated with IgG1 therapeutic anti-CD20 mAbs (130). Several 
clinical trials are currently ongoing with ALT-803 as mono-
therapy in patients with advanced solid tumors, hematological 
malignancies, and AIDS as summarized in Table 3.

PRiMiNG NK CeLLS TO eNHANCe 
TUMOR KiLLiNG

Mark Lowdell and his team proposed that for a NK cell to be able 
to kill tumor cells, it requires a priming and triggering signal. 
NK cells failing to kill tumor cells, though they are exposed to the 
triggering signal, remain inactive due to the absence of a prim-
ing ligand. To address this, Fortress Biotech (previously known 

FiGURe 2 | Strategies to augment natural killer (NK) cell functions.
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as Coronado Biosciences) developed a technology to increase 
NK  cell tumor killing using cell lysates from the leukemia cell 
line CTV-1, known as CNDO-109, to prime NK cells. A Phase 
I/II clinical trial of activated PBNK  cells from haploidentical 
donors coincubated with CNDO-109, infused at doses of up 
to 3  ×  106  kg/recipient/body weight was tolerable without any 
adverse reactions. Out of seven evaluable patients, four remained 
disease relapse free for more than 1 year (131).

Another NK cell-activating product is ENKASTIM-ev, devel-
oped by Multimmune GmbH, which mimics the functions of heat 
shock protein 70 (Hsp70). ENKASTIM-ev resulted in NK specific 
activation and actively targeted Hsp70 expressing tumors. Safety 
of Hsp70-activated autologous NK cells has been documented in 
a Phase I study in patients with metastatic colorectal and non-
small cell lung cancer (132).

eNHANCiNG NK CeLL HOMiNG 
FUNCTiONS

Gamida-cell developed a feeder cell-free NK  cell culture and 
expansion system containing nicotinamide (NAM) to gener-
ate NK  cells from PBMC apheresis products. Nicotinamide, a 
derivative of vitamin B3, serves as a potent inhibitor of NAD 
dependent enzymes. Results from in vivo studies in mice showed 
that PBNK  cells expanded with NAM in feeder free cultures 
exhibited increased homing potential toward lymphoid organs, 
with a significant increase in the expression of CD62L (L-selectin) 
compared to cultures without NAM (133).

TUMOR DiSRUPTive TeCHNOLOGY 
AiDiNG NK TUMOR ReCOGNiTiON

NOXXON Pharma target chemokine receptor CXCL12, with 
the aim of increasing the sensitivity of tumor cells to drugs and 
immune cells. Their product NOX-A12 functions as a CXCL12 
inhibitor and enabled the release of CXCL12 from the surface 
of tumor stromal cells and blocked its interaction with cell sur-
face receptors CXCR4 and CXCR7. This mechanism facilitated 
the mobilization of CXCR4-expressing tumor cells from their 
tissue niches to areas, where they become easily accessible by 
NK cells or T cells (134, 135). Using tumor spheroids, increased 
mobilization of T and NK cells toward tumor cells in the tumor 
microenvironment was demonstrated. NOX-A12 also enhanced 
NK killing of obinutuzumab-coated Raji cells in vitro, mediated 
by ADCC (136).

CONCLUSiON

From this literature review, we conclude that adoptive transfer of 
allogeneic NK cells in a non-transplant setting is safe and shows 
early signs of clinical efficacy against hematological and certain 
solid tumors. Current data are mostly based on Phase I clinical 
trials, and hence it is still too early to get an overall picture of 
NK cell alloreactivity in different kinds of cancer. Most of the clini-
cal studies conducted so far have used primary NK cells but with 
limited efficacy, pointing to the need to improve the functionality 
of these NK  cells after their transfer to patients. The growing 
opportunities to augment NK cell functions have attracted several 
biotech companies to invest in NK  cell research, spearheading 
NK therapy development with different innovative approaches. 
This review also stresses the need for combining adoptive transfer 
of allogeneic NK  cells with NK function-augmenting products 
to achieve a maximum anti-tumor effect. As NK cells are safe to 
infuse, the use of CAR-NK cells may be instrumental in providing 
a much safer but still very effective platform, to bring CAR-based 
therapies to broader clinical applications. It may also facilitate 
effective tumor targeting of NK cells. oNKord® and iPSC-derived 
NK cells could serve as alternative allogeneic platforms to develop 
CAR-NK products, besides NK cell lines. In a solid tumor setting, 
NK cells are challenged by several factors that affect their homing 
and penetration into the tumor tissues. Moreover, they should 
achieve and maintain an activated effector state, even in the face 
of immune suppressive conditions, that are prevalent in patients 
with cancer. To overcome these bottlenecks in NK therapy of 
solid tumors, a plethora of creative solutions are being pursued 
by numerous research labs as well as by biotech companies in 
clinical or close to clinical phase. Strategies to enhance NK cell 
functions from leading NK  cell products are summarized in 
Figure 2. With all these exciting developments, NK cells are set 
to make a considerable impact on the future treatment of patients 
with hematological as well as with solid tumors.
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Natural killer (NK) cells are lymphocytes of the innate immune system able to kill different 
targets such as cancer cells and virally infected cells without prior activation making 
then attractive candidates for cancer immunotherapy. Umbilical cord blood (UCB) has 
become a source of hematopoietic stem cells for transplantation but as we gain a better 
understanding of the characteristics of each immune cell that UCB contains, we will 
also be able to develop new cell therapies for cancer. In this review, we present what is 
currently known of the phenotype and functions of UCB NK cells and how these cells 
could be used in the future for cancer immunotherapy.

Keywords: natural killer cells, umbilical cord blood, immunotherapy, cancer, hematopoietic stem cells

inTRODUCTiOn

Natural killer (NK) cells are lymphocytes of the innate immune system that exhibit cytotoxicity 
toward cancer cells and virus-infected cells and have the capacity to produce cytokines such as 
interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in response to stimuli. NK  cells are 
defined as CD56+CD3− cells and can be divided into two main subsets according to their expression 
of CD56 and CD16. CD56dimCD16+ NK cells (CD56dim NK cells) are cytotoxic NK cells capable to 
mediate direct killing of target cells via exocytosis of granules containing granzyme B and perforin, 
activation of cell death pathways such as TRAIL or FAS/FAS-L or via antibody-dependent cellular 
cytotoxicity. CD56brightCD16−/low NK  cells (CD56bright NK  cells) are the main cytokine-producing 
NK  cells (1). In peripheral blood (PB), up to 90% of NK  cells are CD56dim NK  cells while most 
NK cells are CD56bright NK cells in lymph nodes.

Natural killer cell functions are regulated by signals delivered through activating and inhibitory 
receptors. As opposite to T cells, NK cells are “ready to go” and can eliminate target cells without 
prior stimulation. However, stimulation of NK cells by cytokines leads to NK cell activation and 
enhanced functions, in particular enhanced cytolytic activity and proliferation. NK cells have long 
been considered potential candidates for cancer immunotherapy and their versatility makes them 
attractive cells to explore. Phase I clinical trials showed autologous NK cell therapies to be feasible 
and safe without adverse effects in patients with breast cancer or non-Hodgkin’s lymphoma; however, 
these therapies had no or little impact on relapse rates (2). The potential impact of NK cell alloreactiv-
ity in hematopoietic stem cell transplantation (HSCT) was suggested by Valiante and Parham (3). 
The first evidence that allogeneic NK  cells could exert strong anti-leukemic activity and impact 
on the outcome of haploidentical transplantation stems from the study of Ruggeri et al. (4) who 
reported NK cell alloreactivity against leukemic cells while reducing the risk of graft-versus-host 
disease (GvHD) in the context of human leukocyte antigen (HLA) mismatch settings. Other trials 
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FigURe 1 | Comparison of phenotypic characteristics between umbilical cord blood (UCB) natural killer (nK) cells and peripheral blood (PB) 
nK cells. In comparison to PB NK cells, UCB NK cells exhibit similar levels of CD56, NCRs (NKp46 and NKp30), and NKG2D but a lower expression of CD16, 
adhesion molecules (e.g., CD2, CD11a, CD18, CD62L), KIRs, DNAM-1, NKG2C, IL-2R, and CD57 and CD8 (receptors associated with terminal NK cell 
maturation) together with a higher expression of inhibitory receptor NKG2A indicating that UCB NK cells possess an immature phenotype and reduced 
cytotoxicity compared to PB NK cells. Further UCB NK cells have a higher expression of the bone marrow homing receptor, CXCR4, compared to PB NK cells 
proposing that cord blood NK cells may contain a greater potential to home to the bone marrow. Abbreviations: KIRs, killer-cell immunoglobulin-like receptors; 
NCRs, natural cytotoxicity receptors.
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have showed that allogeneic NK cells alone can target different 
types of cancers such as acute myeloid leukemia (AML), mela-
noma, renal cell carcinoma, Hodgkin lymphoma (5), breast and 
ovarian cancer (6), or refractory lymphoma (7). The same group 
has shown the importance of NK cell expansion in vivo, which 
can be accomplished by infusion of interleukin (IL)-2. However, 
regulatory T cells were also found to compete for this cytokine 
and beneficial effects on NK cell expansion were observed when 
regulatory T  cells could be depleted (8). Interestingly, other 
studies also have indicated that NK cell therapy could also be of 
interest to treat glioma (9) or neuroblastoma (10).

Umbilical cord blood (UCB) has become an established source 
of hematopoietic stem cells (11) for transplantation. Advantages 
for the use of UCB include low risk of viral transmission from 
donor to recipient, rapid availability of UCB units serving as an 
immediate “off-the-shelf ” product, less stringent requirements 
for HLA matching, and lower risk of GvHD. However, UCB 
contains between 10- and 100-fold fewer nucleated cells than 
other sources of HSC, limiting how many cells of interest can 
be retrieved from one UCB unit. Interestingly, NK cells are the 
first lymphocytes to recover after HSCT including after umbilical 
cord blood transplantation (UCBT) (12). In addition, NK cells are 
key effectors of the graft-versus-leukemia (GvL) effect. Especially 
after UCBT, as T cell immune reconstitution is delayed and there 
is no increased incidence of relapse, it is likely that NK cells are 
actually the main effectors of the GvL effect in the first year post-
UCBT. However, UCB also contains different types of immune 
cells including NK cells and as we learn more about their specific 
characteristics, we will identify the conditions which might ben-
efit of an UCB NK cell therapy. This review focuses on providing 
an overview of the characteristics of UCB NK cells compared to 
NK cells from PB and explain how they could be used as a cell 
therapy to cancer.

CHARACTeRiSTiCS OF UCB nK CeLLS

Natural killer cells constitute up to 10% of lymphocytes in PB 
and up to 30% in UCB (13, 14), and both CD56dim NK cells and 
CD56bright NK cells can be found in PB and UCB with some groups 
reporting similar proportions of both subsets or higher frequency 
of CD56bright NK cells in UCB (14–16). Regarding the phenotype 
and functions of UCB NK cells, some groups have identified dif-
ferences when compared to PB NK cells while others found them 
to be similar to PB NK cells (17) (Figure 1).

Advantages of UCB-Derived nK Cells
Aside from the higher percentage of NK cells present in UCB, the 
ability to cryopreserve UCB together with the ease of collecting 
UCB units offers a unique clinical advantage of making UCB an 
off-the-shelf source for NK  cell immunotherapy. Moreover, a 
more rapid recovery of NK cells was reported after UCBT than PB 
HSCT (18, 19). This faster recovery could be explained by the fact 
that UCB contains different NK cell progenitor populations that 
have the capacity to differentiate into NK cells and are typically 
absent in PB (20–22). Further, PB and UCB NK cells produced 
similar amounts of IFN-γ and TNF-α in response to different 
stimuli (14, 23) and could proliferate in response to cytokines 
such as IL-2 or IL-15 (14, 16, 24) despite UCB NK cells exhibiting 
lower expression of the IL-2 receptor subunits and lower phos-
phorylation of STAT5 (25). Additionally, UCB NK cells have also 
been described to have a higher expression of the bone marrow 
homing receptor, CXCR4, compared to PB NK cells indicating 
that UCB NK cells may contain a greater potential to home to the 
bone marrow (14). Finally, IL-15 activated UCB NK cells have 
been reported to impact positively on UCB HSC engraftment 
by enhancing their migration and clonogenic capacity, and their 
engraftment in humanized animal model (26).
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Drawbacks of UCB-Derived nK Cells
The use of cord blood (CB) as a source of NK cells for immuno-
therapy, however, is also limited as a result of the low numbers 
and immaturity of CB NK cells. Although, UCB NK cells have 
been reported to be fully mature and functional (16, 27), some 
groups found them to have an immature phenotype (14, 28), 
exhibiting normal levels of degranulation but lower cytotoxicity 
against K562 cells as compared to PB NK cells (14, 23). This lower 
activity could be explained by the fact that UCB NK cells have 
decreased expression of certain adhesion molecules on their sur-
face such as CD2, CD11a, CD18, and CD62L (15, 16), decreased 
expression of CD16 (15), decreased expression of perforin and 
granzyme B (14, 23), and lower killer-cell immunoglobulin-like 
receptors (KIRs) expression together with a higher expression 
of inhibitory molecules such as NKG2A when compared to PB 
NK cells indicating an immature phenotype (14, 23). However, 
activation with cytokines such as IL-2 or IL-15 or the combination 
of IL-15 with IL-2 or IL-18 was able to restore or enhance their 
cytotoxicity to the levels observed for PB NK cells (14, 16, 23, 25, 
29). Moreover, although the frequencies of NK cells present in 
UCB is greater than PB (14), low numbers of UCB NK cells are 
obtained as a result of the limited volume of an UCB unit, which 
is a major obstacle in obtaining sufficient numbers of NK cells 
for clinical application. However, different strategies to increase 
NK cell doses have been developed.

eXPAnSiOn OF UCB nK CeLLS

A number of studies have recently explored different platforms 
to expand UCB NK  cells. Increased NK  cell numbers can be 
achieved either by large-scale expansion techniques using 
artificial antigen-presenting cell (aAPC) or cytokines including 
IL-2, IL-15, and/or FLT-3 ligand. One such strategy employed 
to expand purified UCB-derived NK  cells on a large scale has 
been reported using good manufacturing practice (GMP)-grade 
K562-based aAPCs expressing membrane-bound IL-21 (30). 
Shah and colleagues have shown that following 14 days of culture 
in a gas permeable culture system, a 2,389-mean fold expansion 
of NK cells derived from frozen UCB was achieved. The expanded 
NK  cells presented >95% purity of CD56+CD3− NK  cells and 
displayed efficient killing capacity against multiple myeloma 
in vitro and in vivo, highlighting the use of aAPCs as an attractive 
approach to generate large numbers of functionally competent 
UCB NK  cells. A further strategy to evaluate the potential use 
of expanded NK cells was reported by using aAPCs in the form 
of genetically modified K562 cells expressing membrane-bound 
IL-15 and 41BBL (31). The aAPCs were cultured with CB mono-
nuclear cells for 7 days, which led to the generation of expanded 
UCB NK  cells that displayed increased expression of NK  cell 
activating receptors, increased perforin and granzyme expres-
sion, and increased cytotoxicity against B-cell non-Hodgkin 
lymphoma in  vitro and in  vivo. The study merits the use of 
expanded NK  cells for adoptive cellular therapy specifically to 
target relapse or refractory disease after UCBT. Finally, the use 
of irradiated Epstein–Barr virus-transformed lymphoblastoid 
cell lines and IL-2 was also recently reported to generate large 
numbers of CD56+ NK  cells derived frozen UCB (32). The 

generated NK cells exhibited higher levels of cytotoxicity against 
K562 leukemic cells than expanded PB-derived NK  cells (32). 
The unique advantage of this platform is that only 1 ml of the 
UCB unit is selectively used to generate expanded NK cells for 
adoptive therapy and the remaining UCB from the same unit can 
be cryopreserved and used for future transplantation. It would be 
interesting to assess whether the use of the same UCB for early 
NK cell adoptive therapy and transplantation can help to prevent 
relapse and augment GvL post-UCBT.

DiFFeRenTiATiOn OF nK CeLLS FROM 
UCB CD34+ CeLLS

Natural killer cells can be directly isolated from PB and UCB 
but an alternative to these cell sources is the differentiation of 
NK cells from HSC as a way to generate high numbers of cells 
(33). NK cells can be differentiated from CD34+ cells from the 
bone marrow, from embryonic stem cells, mobilized PB, or 
UCB CD34+ cells. The expansion of NK cells derived from both 
fresh and frozen UCB CD34+ cells using a cocktail of cytokines 
in a culture system has also been described as an efficient 
system to generate large numbers of NK cells. We and others 
have reported the characteristics of NK cells produced in vitro 
from UCB CD34+ cells (34–36). These cells are mostly similar 
to PB NK cells with the exception that they express low levels 
of inhibitory receptors. However, NK cells produced in such a 
way have been shown to be functional, able to kill leukemic cell 
lines and patient cells in vitro and in vivo and produce cytokines 
in response to diverse stimuli (34, 36–38). Interestingly, 
NK cells produced in vitro have been shown to expand to high 
numbers while preserving their phenotype and functions after 
cryopreservation (39). Thus, frozen UCB CD34+ cells were 
found to be the best source of NK cells when compared to fresh 
UCB-derived CD34+ cells and frozen PB CD34+ cells and could 
therefore be a readily available off-the-shelf product for NK cell 
immunotherapy.

nK Cells Alloreactivity in UCBT Setting
Umbilical cord blood NK  cells express both inhibitory and 
activating receptors, which are highly important in mediating 
self-tolerance or NK cell activity (40). Inhibitory receptors are 
part of the immunoglobulin superfamily including the KIRs, 
the immunoglobulin-like transcripts, and C-type lectin recep-
tors CD94/NKG2A. Inhibitory receptors recognize the classical 
MHC class I molecules on target cells and inhibit NK cell lysis 
(41). Most KIRs are inhibitory receptors but a limited number 
of KIRs also function as activating receptors; however, the func-
tion and ligands of the later are less well understood. Since KIR 
genes are not on the same chromosome as HLA, these genes 
are inherited independently. This allows for donor and recipi-
ent HLA-matched UCBT and mismatching between KIRs and 
their ligands, maintaining the appropriate matching required for 
HSCT but providing NK cell alloreactivity, which triggers NK cell 
activation leading to tumor cell lysis (42). This phenomenon of 
NK  cell alloreactivity was proposed as beneficial in reducing 
relapse after HSCT; however, variable results have been reported 
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from different studies (4, 43–47). In UCBT setting, only few 
studies have evaluated the outcome of UCBT using mismatched 
KIR and its ligands (48–51) with only some of them reporting 
beneficial results (52, 53). KIR haplotype has also been shown 
to influence the outcome of HSCT. In this context, the higher 
the number of activating KIR a donor has the higher NK  cell 
alloreactivity might be. Some studies have reported the beneficial 
effect of the donor B haplotype that contains more activating 
gene than a A haplotype on HSCT outcome in particular show-
ing a lower incidence of relapse for patients with AML or lower 
GvHD incidence depending on the study considered (47, 54–56). 
Whether KIR haplotype can also influence UCBT outcome needs 
to be investigated.

Finally, NK  cell licensing (57), arming/disarming (58), or 
education (59) is another factor to be considered. NK cells can 
express one or more inhibitory receptors recognizing HLA 
molecules. The process by which NK cells become functional 
and tolerant to self-HLA can be referred to as NK cell licens-
ing and is defined by the fact that to be functional NK  cells 
must express inhibitory receptors recognizing self-HLA. This 
concept has been well studied in mice and there are now also 
evidence in humans (59, 60). However, it has been reported that 
unlicensed NK  cells are able to mount an immune response 
against cytomegalovirus in mice (61) and can kill neuroblas-
toma cells in humans (10). Therefore, moving forward it will be 
essential to gain a better understanding of the impact of NK cell 
licensing on their functions especially in the context of HSCT 
including UCBT.

CURRenT CLiniCAL STUDieS invOLving 
UCB nK CeLLS

Natural killer cells can be isolated from UCB based on CD56 
purification methods. One step isolation method can be used in 
UCB as opposite to PB where two steps are needed in order to 
eliminate NKT cells. This is not necessary when considering UCB 
as it contains a very low percentage of that cell subset. In addi-
tion, UCB has the advantage of being readily available as UCB is 
cryopreserved and can be obtained from accredited UCB banks. 

Therefore, a NK cell product derived from UCB has the potential 
to be off-the-shelf. Another advantage of UCB is that HLA is less 
stringent, although it is not clear what level of matching will be 
necessary to develop a third party NK cell product from UCB. 
However, because of the limited volume of blood collected from 
the umbilical cord there are only a limited number of NK cells that 
can be isolated from UCB. In addition, as they are immature and 
have lower functionality as compared to PB NK cells; taking UCB 
NK cells to the clinics will require a prior activation/expansion 
step. Several clinical trials are currently ongoing to evaluate the 
safety and feasibility of UCB NK cells as an “off the shelf product” 
in transplant and non-transplant settings (Table 1). GMP grade 
expansion methods for UCB NK cells are currently available as 
previously described. Notably, only a handful of clinical trials 
are currently ongoing and recruiting patients using the latest 
method to expand UCB NK cells to reach the cell dose required. 
Two clinical phase I studies aim to use expanded UCB NK cells 
for the treatment of patients with chronic lymphocytic leukemia 
(NCT01619761, NCT02280525), while another aims to evaluate 
NK cell therapy in the context of autologous HSCT for patients 
with myeloma (NCT01729091).

Only a few groups have focused on developing cell therapy 
approaches based on the differentiation of NK cells from HSC 
in vitro. However, NK cells produced in vitro have been shown 
to be safe and their use feasible when considered in the context 
of allogeneic HSCT (62). In addition, another trial, oNKord®, is 
currently ongoing testing the use of NK cells produced in vitro 
from UCB CD34+ cells in patients with AML (EudraCT number 
2010-018988-41).

COnCLUDing ReMARKS

Immunotherapy is a promising treatment for different types 
of cancer allowing the possibility of personalized medicine 
for each cancer patient. UCB provides distinct advantages 
and is an increasingly attractive source for HSCT and cellular 
therapy. Despite low NK  cell numbers within a single UCB 
unit and their immature phenotype, strategies to expand 
UCB NK cells using aAPCs or cytokines and feeder cells are 

TABLe 1 | UCB nK cells currently in the clinic.

Clinical trial 
identifier

Diseases Trial 
phase

Type of transplant Conditioning Method of expansion Sponsor

NCT01619761 ALL, AML, CLL, CML, 
HL, MDS, MM, NHL, SLL

I Double umbilical cord 
blood transplantation

Fludarabin, melphalan, 
lenalidomide ± rituximab

Ex vivo expansion of NK cells 
from 20% UCB unit fraction

MD Anderson 
Cancer Center

NCT02280525 CLL, ALL, AML, CML, 
NHL, HL

I Non-HSCT Fludarabin, cyclophosphamide, 
lenalidomide, and rituximab

Ex vivo expansion of NK cells 
from thawed from UCB unit

MD Anderson 
Cancer Center

NCT01729091 MM I//II Autologous Melphalan, lenalidomide Ex vivo expansion of NK cells 
from thawed from UCB unit

MD Anderson 
Cancer Center

EudraCT number 
2010-018988-41

AML I Non-HSCT Fludarabin, cyclophosphamide NK cells generated in vitro 
from UCB progenitor cells

Radboud Medical 
Centre, Nijmegen, 
Netherlands

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CB, cord blood; CLL, chronic lymphoblastic leukemia; CML, chronic myeloid leukemia; HL, Hodgkin lymphoma; 
HSCT, hematopoietic stem cell transplantation; MDS, myelodysplastic syndromes; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; NK, natural killer; SLL, small lymphocytic 
lymphoma; UCB, umbilical cord blood.
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paving the way for NK cell adoptive immunotherapy. NK cells 
have shown great potential in eliminating different types of 
cancer cells in vitro and in animal models. A few clinical trials 
are currently underway to evaluate the safety and feasibility 
of using UCB NK  cells as an “off the shelf ” product for the 
prevention of relapse. The results from these studies will help 
in understanding how to maximize the beneficial potential of 
UCB NK cells for the treatment of hematological malignancies 
and solid tumors.
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Primary human natural killer (NK) cells recognize and subsequently eliminate virus infected 
cells, tumor cells, or other aberrant cells. However, cancer cells are able to develop tumor 
immune escape mechanisms to undermine this immune control. To overcome this obsta-
cle, NK cells can be genetically modified to express chimeric antigen receptors (CARs) 
in order to improve specific recognition of cancer surface markers (e.g., CD19, CD20, 
and ErbB2). After target recognition, intracellular CAR domain signaling (CD3ζ, CD28, 
4-1BB, and 2B4) leads to activation of PI3K or DNAX proteins (DAP10, DAP12) and 
finally to enhanced cytotoxicity, proliferation, and/or interferon γ release. This mini-review 
summarizes both the first preclinical trials with CAR-engineered primary human NK cells 
and the translational implications for “off-the-shelf immunotherapy” in cancer treatment. 
Signal transduction in NK cells as well as optimization of CAR signaling will be described, 
becoming more and more a focal point of interest in addition to redirected T cells. Finally, 
strategies to overcome off-target effects will be discussed in order to improve future 
clinical trials and to avoid attacking healthy tissues.

Keywords: natural killer cells, chimeric antigen receptor, chimeric antigen receptor-associated signaling domain, 
intracellular chimeric antigen receptor-dependent signaling, cancer immunotherapy

inTRODUCTiOn

Natural killer (NK) cells are peripheral blood lymphocytes that mediate immune surveillance in 
regard to virus infected and malignant cells (1–3). For early disease detection and killing NK cells 
rely on several mechanisms such as inflammatory cytokine secretion [e.g., interferon gamma (IFNγ), 
tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10)], receptor ligand binding (e.g., tumor 
necrosis factor-related apoptosis inducing ligand, Fas ligand) (4), or release of cytoplasmic granule 
toxins (e.g., perforin, granzyme A, granzyme B, and granulysin) (5, 6) as a result of antibody-
dependent cellular cytotoxicity (ADCC) (7).

Recognition of aberrant and stressed cells occurs by means of activating cell surface receptors 
including natural killer group 2 member D (NKG2D) (CD314), NKp30 (CD337), NKp46 (CD335), 
and NKp44 (CD336) (8), receptor complex CD94/NKG2C (9), or FCγRIII (CD16) for ADCC 
(10–12). The counterpart of these activating complexes comprises various inhibitory receptors that 
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usually bind to a variety of different major histocompatibility 
complex I (MHC I) molecules. Examples for these receptors 
are several receptors of the killer cell Ig-like receptors (KIRs) 
family (CD158), NKG2A that pairs with CD94 to a heterodimer 
(binding the non-classical MHC molecule HLA-E), leukocyte 
immunoglobulin-like receptor (LILR), natural killer cell recep-
tor protein 1 (CD161), sialic acid-binding immunoglobulin-like 
lectin-7 (CD328), leukocyte-associated Ig-like receptor 1 (LAIR-1; 
CD305), killer cell lectin-like receptor G1, carcinoembryonic 
antigen-related cell adhesion molecule (CD66a), paired immu-
noglobulin-like receptor α, and CD300a. Each NK cell expresses 
individually a composition of inhibitory and activating receptors 
(9). In the resting state, NK cells are in balance receiving signals 
from activating and inhibitory ligands and no signaling pathway 
dominates. After adaption to self-MHC I environment, NK cells 
respond to ligands for activating receptors resulting in killing of 
malignant cells. Presence of self-MHC I demonstrates inhibitory 
response. Contrarily, lack of constitutive self-MHC I enhances 
elimination of aberrant cells (13). At least, NK cell activation by 
ligand receptor interaction sum up signals received from inhibi-
tory and activation receptors, which cumulates to release perforin 
and granzymes (cytotoxicity) as well as cytokine production  
(e.g., IFNγ and TFN-α) mediated by adaptor proteins (DNAX 
activation proteins DAP10 and DAP12, CD3ζ). These peptides 
contain immunoreceptor tyrosine-based activation motifs 
(ITAMs) that become phosphorylated by Src kinase family mem-
bers and result in at least cytotoxicity and cytokine production.

However, tumors can develop tumor immune escape mecha-
nisms to protect themselves from NK cell attack, e.g., by matrix 
metalloproteinase-dependent proteolytic cleavage of MHC class I  
polypeptide-related sequence A and B (MICA and MICB) (14). 
These soluble immunosuppressive molecules decrease NK  cell 
cytotoxicity by reduction of NKG2D expression that leads to 
attenuated recognition of target cells. Strategies has been devel-
oped to overcome this inhibition using cell modifications such as 
vector transduction (15) or antibodies bound to the NK cell sur-
face. These bi- and trispecific killer engagers recognize, e.g., CD33 
in  vivo on myelodysplastic syndrome target cells, and induce 
cell lysis (16). Also, a promising approach is the use of chimeric 
antigen receptors (CARs) to improve NK cell cytotoxicity. CARs 
consist of an external recognition domain [single-chain variable 
fragment (scFv)] combined with a transmembrane domain fol-
lowed by one or more signaling domains. It has been shown that 
CARs using CD3ζ and CD28 domains and/or additional 4-1BB 
(CD137) or 2B4 domains demonstrate an enhanced killing  
activity (see Table 1).

Most published preclinical and clinical studies with CAR-
modified immune cells comprise T  cells. On the NK  cell side, 
publications are mainly restricted to NK  cell lines as reviewed 
in Ref. (31, 32). Less is known about CAR-engineered primary 
human NK cells as alternative effector cells since the advantages 
of NK cells are the limited lifespan of several weeks or months 
(2, 33) and the absent formation of memory cells that persist in 
patients as observed in CAR T cells. That means multiple dose 
of CAR NK cells might be safely administered to patients. The 
present review will discuss the use of primary NK cells isolated 
from peripheral blood for CAR engineering.

SiGnAL TRAnSDUCTiOn in nK CeLLS

There is a competitive equilibrium between different opposing 
pathways (13, 34) that culminate at least in activation or inhibi-
tion of NK  cells depending on the cell surface complexes that 
are formed by non-covalent associations between distinct trans-
membrane ligand-binding and signaling adaptor proteins. The 
Src (sarcoma) family kinases seem to be essential in these interac-
tions because the enzymes are involved in receptor clustering in 
these microdomains that may facilitate receptor phosphorylation 
(35, 36).

Starting with NK-cell–target-cell interactions on the surface, 
this leads to induction of signaling pathways and at least to release 
of cytotoxic granules (e.g., perforin, granzyme A/B, and granuly-
sine) and/or secretion of cytokines (e.g., IFNγ and TNF-α).

Activation Receptors
Natural cytotoxicity receptors (NCRs) as NKp30 and NKp46 can 
couple to CD3ζ that contains several ITAMs (37). NKp44 instead 
associates with the ITAM-bearing adaptor DAP12. In the next 
step, tyrosine residues of the ITAM sequences are phosphoryl-
ated by protein tyrosine kinases of the Src family. This leads to 
recruitment of protein tyrosine kinases of the Syk family (e.g., 
Syk or ZAP70; spleen-associated tyrosine kinase or zeta-chain- 
associated protein kinase 70) and transmembrane adaptor mole-
cules (e.g., linker for activation of T cells and non-T cell activation 
linker) that provide multiple docking sites for Syk family kinases. 
These associations of different signaling partners initialize 
activation and phosphorylation of multiple partners of signaling 
pathways such as PI3K (phosphatidylinositol-4,5-bisphosphate 
3-kinase) or members of Vav family resulting in release of lytic 
granules and leading to cytotoxicity (9). The activation of a single 
NCR seems to start an activation cascade in which different  
NCRs cross talk to each another for amplifying activating signals 
(e.g., cross talk between NKp30, NKp44, and NKp46) (38).

Natural killer group 2 member D (CD314) is non-covalent 
associated with transmembrane adaptor protein DAP10. This 
pathway is independent of Syk family tyrosine protein kinases 
(39) and involved PI3K in its signaling cascade. After ligand bind-
ing (MICA, MICB, or divers UL16-binding proteins), phospho-
rylation of a tyrosine-based DAP10 motif by Src family kinases 
creates binding sites for p85 subunit of PI3K or for the adaptor 
protein complex Grb2–Vav1 (growth factor receptor-bound 
protein 2-vav guanine nucleotide exchange factor 1). The result 
is exocytosis of lytic granules (e.g., perforin, granzyme A/B, and 
CD107a) in response to PLC (phospholipase C)-γ2-induction 
(40–43).

For NK cell activation, Vav proteins are essential. Depending 
of the NCR and of the DNAX proteins, different Vav proteins are 
involved, e.g., Vav1 is part of the signaling with NKG2D/DAP10 
(39–41), whereas Vav2 and Vav3 take part of the DAP12 signaling 
cascade (44). Vav proteins are involved in a GTPase-dependent 
reorganization of the cytoskeleton to mediate the directed release 
of the granules (9).

The NK  cell-activating receptor CD226 (DNAX accessory 
molecule 1) lacks any ITAM. Instead, intracellular signaling 
starts with phosphorylation of a serine and a tyrosine residue by 
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TAbLe 1 | Preclinical and clinical investigations of CAR-modified primary human natural killer cells.

Antigen Signaling domain Target cells efficacy Reference or 
ClinicalTrials.gov 

identifier

Preclinical studies with 
cell lines as targets

CD19 4-1BB/CD3ζ Acute lymphatic leukemia cell lines +++ (15)
HER-2 CD28/CD3ζ Ovarian cancer cell line and breast cancer cell line + (17)
Disialoganglioside 2 (GD2) 2B4/CD3ζ Neuroblastoma cell line +++ (18)
CD19 2B4/CD3ζ ALL cell lines +++ (18)
CD19 4-1BB/CD3ζ B-ALL cell line +++ (19)
CD19 4-1BB/CD3ζ B-ALL cell lines and B cell lymphoma cell lines ++ to +++ (20)
Natural killer group 2  
member D ligands

DAP10/CD3ζ ALL cell lines and several solid tumor cell lines + to +++ (21)

HER-2 CD28/CD3ζ HER-2-expressing cell lines n.a. (22)
CD19 4-1BB/CD3ζ B-ALL cell lines + (23)
CS1 CD28/CD3ζ Myeloma cell lines Data not 

shown
(24)

CD20 4-1BB/CD3ζ CD20+ B-cell non-Hodgkin lymphoma cell lines ++ to +++ (25)
Epidermal growth factor 
receptor (EGFR)

CD28/CD3ζ Glioblastoma cell lines + (26)

Prostate stem cell antigen 
(PSCA)

DAP12 several PSCA+ tumor cells (+) to +++ (27)

CD19 CD28/4-1BB/CD3ζ CD19+ leukemia cell line + to +++ (28)
EGFR CD28/CD3ζ Breast cancer cell lines + (29)
GD2 CD28/4-1BB/CD3ζ Ewing sarcoma cell lines + to ++ (30)

Preclinical studies with 
patient malignant cells 
as targets

CD19 4-1BB/CD3ζ Acute lymphatic leukemia +++ (15)
CD19 2B4/CD3ζ Acute lymphatic leukemia +++ (18)
CD19 4-1BB/CD3ζ B-CLL cells +++ (19)
CD19 4-1BB/CD3ζ B-ALL cells + (23)
EGFR CD28/CD3ζ Glioblastoma stem cells (+) (26)

Clinical trials CD19 4-1BB/CD3ζ B-lineage acute lymphoblastic leukemia n.a. NCT 00995137
CD19 4-1BB/CD3ζ B-lineage acute lymphoblastic leukemia n.a. NCT 01974479
CD19 CD28/CD3ζ B-lymphoid malignancies n.a. NCT 03056339

(+), cytotoxicity <25%; +, cytotoxicity 25–49%, ++, cytotoxicity 50–75%, +++, cytotoxicity >75%.
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protein kinase C. This step is critical for association of CD226 
to lymphocyte function-associated antigen 1 at the cell surface 
and facilitates simultaneously cytoplasmic signaling involving Src 
kinase, Vav1, and PLC-γ2 leading to NK cell activation (45).

The receptor 2B4 has been characterized as costimulatory 
for activation receptors (e.g., for CD226). A complex formed of 
CD226 and 2B4 triggers NK cell degranulation, activates PLC-γ2, 
and increases Ca2+ intracellular flux (46). On one hand, 2B4 is 
sufficient to induce IFNγ release alone (47), on the other hand, 
2B4 demonstrated enhanced cytokine secretion after cross link-
ing with NKG2D (48).

inhibitory Receptors
After binding of MHC class I molecules to inhibitory receptors, 
the inhibitory signaling cascade starts with phosphorylation of 
one or more ITIM sequences (immunoreceptor tyrosine-based 
inhibitory motif). Detailed mechanism of phosphorylation is 
unknown but tyrosine kinases that are involved in activation 
pathways have been expected. After tyrosine phosphorylation, 
the phosphatases Src homology 2 domain-containing protein 
tyrosine phosphatase 1 (SHP1) and SHP2 bind to ITIMs (49) 
and subsequently recruit additional molecules such as inhibitory 
C-terminal Src kinase Crk (for LILR and LAIR-1) or β-arrestin 2  
(for KIRs). ITIM-bound SHP starts to dephosphorylize spe-
cifically Vav1 or other pivotal proteins to inhibit clustering of  
receptors and cytoskeleton rearrangements (50).

Killer cell Ig-like receptor and CD94/NKG2A initiate an 
alternative signaling pathway that also results in inhibition. The 
binding of the tyrosine kinase c-Abl and the subsequent phos-
phorylation of adaptor protein Crk (CT10 regulator of kinase) by 
c-Abl cause dissociation of Crk from protein complexes that are 
involved in NK cell activation (51, 52). Inhibition of NK cells is 
achieved and lysis of target cells decreased.

A second MHC class I independent pathway is composed of 
the inhibitory receptor T cell immunoglobulin and ITIM domain 
(TIGIT) and the putative weak-activating receptor CD96. For 
inhibitory signaling of TIGIT, the intracellular motifs immuno-
globulin tail tyrosine and/or ITIM are phosphorylated after ligand 
binding following recruitment of SHP1 and Grb2 that result in 
blocking the pathways of PI3K and mitogen-activated protein 
kinase. CD96 contains a cytoplasmic ITIM as well as a YXXM 
motif that is a putative binding sites for the p85 subunit of PI3K 
that may lead to NK cell activation. Both receptors, TIGIT and 
CD96, were found to counterbalance the costimulatory receptor 
CD226 and limit NK cell-mediated cytotoxicity and IFNγ release 
(46, 53).

OPTiMiZATiOn OF CAR SiGnALinG  
in nK CeLLS

Chimeric antigen receptors contain an extracellular region of a 
scFv that was fused to transmembrane domain and cytoplasmic 
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signaling components. The antibody-derived scFv domain is 
involved in antigen recognition and immune synapse formation, 
whereas the endodomains are responsible for cell activation. 
Because CAR constructs are premised on a modular system, it 
is feasible to combine any scFv with any signaling or cosignal-
ing domain. First-generation CARs that included only signaling 
motifs derived from CD3 (ζ or γ chain) (13, 54) were fully 
capable to activate murine CTL hybridoma cells (55), although 
no additional intracellular signaling region was added. But some 
tumors were able to inactivate CAR-engineered cells and leading 
them to anergy (54). To prevent this effect and to improve CAR 
functionality, subsequent CAR designs incorporated additional 
costimulatory domains (CD28, 4-1BB, OX40, and 2B4) and 
evolved to CARs of the second- (addition of one costimulatory 
domain) or third-generation (addition of more than one costi-
mulatory domain) (Figure 1A).

The motif CD28 is most common in these CAR constructs 
but is not naturally expressed in human NK cells (56). In T cells, 
the mode of action of this costimulatory molecule starts with 
phosphorylation of its intracellular tyrosine residues by PI3K 
following recruitment of Grb2 and results in activation of protein 
kinase B (PKB/Akt) and in IL-2 production (57). The advantage 
for NK cells is still in discussion although for T cells CD28 dem-
onstrates high effectivity (58).

4-1BB is a surface protein discovered on activated T cells (59) 
that is often used in CAR constructs for NK cells (28). For domain 
4-1BB (CD137), costimulation could be clearly detected in T cells 
(60), but there are conflicting data for NK cells. Navabi et al. dem-
onstrated neither improved NK  cell cytotoxicity nor enhanced 
IFNγ production (61) after NK cell stimulation by 4-1BB ligands 
in contrast to augmented NK cell-killing capacity as reported in 
Ref. (62, 63).

The transmembrane adaptor polypeptide DAP10 is originally 
associated with NKG2D. Comparing the CAR constructs anti-
CD19-DAP10 and anti-CD19-CD3ζ, both CARs evoke NK cell 
cytotoxicity but anti-CD19-CD3ζ exhibited higher antitumor 
activity than anti-CD19-DAP10 molecules (15). The combina-
tion of both signaling domains DAP10 and CD3ζ resulted in 
secretion of several cytokines (e.g., IFNγ and TNF-α) as well as 
in a vast release of cytotoxic granules that both increased NK cell 
cytotoxicity (21).

DAP12 is involved in signal transduction of activated NK cells 
and is associated with activating receptors such as NKG2C or 
NKp44. Transmission of intracellular signaling occurs via a single 
ITAM compared to CD3ζ containing three ITAMs (9). Therefore, 
DAP12 provides an alternative signaling pathway resulting 
in antitumor activity of NK  cells. First investigations assessed 
DAP12-based CARs in NK cell line YTS (64) as well as in primary 
human NK cells (27). Combinations of scFv against prostate stem 
cell antigen (PSCA) with DAP12 exhibit an improved cytotoxicity 
and increased IFNγ release in primary NK cells compared to CAR 
NK  cells expressing the first-generation CD3ζ-based construct 
anti-PSCA-CD3ζ (53). This concept without CD3ζ-signaling 
domain may promise new opportunities to redirect NK cells to 
resistant target cells.

2B4 (CD244) is a member of the signaling lymphocytic 
activation molecule family and contains four immunoreceptor 

tyrosine-based switch motifs (ITSMs) of which the first and 
second is associated with activation of stimulatory pathways in 
NK cells (65). Altvater et al. (18) investigated the signaling com-
ponent 2B4 combined with CD3ζ in primary human NK cells and 
compared this CAR construct with CAR molecules incorporated 
either 2B4 or CD3ζ signaling element. As a result, induction of 
cytokine secretion failed when 2B4 is the sole sign aling compound 
in CAR molecules.

Instead, combination of the domains 2B4 and CD3ζ dem-
onstrated enhanced cytokine secretion (IFNγ and TNF-α) and 
release of cytolytic granules. In addition, comparable results 
were observed for a 4-1BB-CD3ζ CAR construct demonstrating 
equality of 2B4 and 4-1BB signaling domains in combination 
with CD3ζ.

Similar to 4-1BB, OX40 (CD134) is a TNF receptor on 
the surface of lymphatic cells (e.g., T  cells, NK  cells, and 
NK-like T cells) (66). This costimulatory molecule is involved 
in recruitment of TNF receptor-associated factor adaptor 
proteins and leads to cell survival and cytokine release (67, 
68). OX40 is often part of third-generation CARs in T  cells 
that show improved signaling capacities based on putative 
upregulation of PI3K pathway and lead to enhanced cytokine 
production and cytotoxicity (69), but was not integrated yet 
in CAR constructs neither for NK  cell lines nor for primary 
NK  cells. Because of its costimulatory potential, OX40 may 
present a promising candidate for improved endogenous CAR 
signaling in NK cells.

PReCLiniCAL inveSTiGATiOnS wiTH 
PRiMARY HUMAn CAR nK CeLLS

To date, several preclinical studies have been investigated primary 
human CAR-modified NK cells directed against various antigens 
(Table 1). However, compared to CAR T cells that already entered 
clinical studies, there is only a small number of clinical investiga-
tions using CAR NK cells (Table 1).

Most preclinical data describe primary human CAR NK cells 
directed against CD19 and few against CD20, human epidermal 
growth factor receptor 2, disialoganglioside 2, epidermal growth 
factor receptor, and PSCA (references see Table 1).

Mostly, second-generation CARs use CD3ζ in combination 
with 4-1BB, DAP10, or 2B4, respectively, and result in strong 
efficacy based on upregulation of the PI3K/AKT pathway. By 
contrast, CD3ζ constructs with CD28 led to less cytotoxic-
ity. High efficacy could also be revealed by third-generation 
CARs (CD28/4-1BB/CD3ζ) (28, 30) and a DAP12-based 
first-generation CAR (27). There is a long-standing discus-
sion that costimulatory domain combines best to CD3ζ. For 
CAR T cells, investigations suggest that constructs containing 
4-1BB may be superior (70), but this has not been yet evaluated 
for CAR NK cells. In addition, so far safety aspects have not 
been addressed extensively in CAR NK  cells and are under 
discussion.

Although feasibility and efficacy could be shown for all men-
tioned constructs in Table 1, safety aspects have to be clarified in 
detail in an ongoing discussion.
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NK cell therapy. Autologous NK cells or donor NK cells (allogeneic) are isolated, expanded, and activated by cytokines. After modification of NK cells to express 
CAR, NK cells are expanded, activated, and administered to the patient or frozen for long-term preservation. PSCA, prostate stem cell antigen; EGFR, epidermal 
growth factor receptor; HER-2, human epidermal growth factor receptor 2; GD2, disialoganglioside 2; CS1, CD2 subset 1; MICA/B, MHC class I polypeptide-
related sequence A/B; ULBP1-6, UL16-binding proteins 1–6; DAP, DNAX-activation protein; ITAM, immunoreceptor tyrosine-based activation motif; Syk, spleen-
associated tyrosine kinase; ZAP70, zeta-chain-associated protein kinase 70; TRAF, tumor necrosis factor receptor-associated factor; ERK, extracellular signal-
regulated kinase; JNK, c-Jun N-terminal kinase; I3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; ITSM, immunoreceptor tyrosine-based switch motif; Fyn, Src 
family tyrosine kinase; Vav, vav guanine nucleotide exchange factor; YXXM, phosphorylation motif; Grb2, growth factor receptor-bound protein 2; AKT, protein 
kinase B.
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First clinical studies followed the success of CAR T cell trials 
redirecting NK cells against CD19. These antiCD19-4-1BB-CD3ζ 
CAR NK cells were administered to patients with B-ALL (NCT 
00995137; NCT 01974479) but results have not been published 
to date. The first study comprises expansion of donor-derived 
NK cells cocultured with irradiated and gene-modified K562 cells 
that expressed surface bound IL-15 and 4-1BB 1. The second trial 
expands IL-2-activated haploidentical NK  cells before admin-
istering to pediatric and adult patients. Recently, a third study 
(NCT 03056339) started for patients suffering from relapsed 
and/or refractory B-cell lymphoma or leukemia. Genetically 
engineered NK cells derive from umbilical cord blood (CB) and 
express antiCD19-CD28-CD3ζ CAR, the iCasp9 safety switch as 
well as IL-15.

OFF-THe-SHeLF (OTS) iMPLiCATiOnS 
FOR CAnCeR TReATMenT

Antigen specificity of CAR NK  cells is independent of the 
recipient’s human leukocyte antigen (HLA) type. This feature 
is the prerequisite for targeting the same antigen on several 
tumor types even if recipients demonstrate a high variability of 
HLA. There may be no need any more to customize individual 
therapies for each patient. Implementation of a cell bank with 
cryopreserved immune cells that are allogeneic and genetically 
modified may solve availability and reduce cost of treatment. 
Developing OTS therapies means that portions of immune 
cells will be manufactured (and modified) in advance, stored 
in cryopreservation, and infused on demand as required by 
attending physicians (Figure  1B). It has been shown in sev-
eral studies that administration of haploidentical NK  cells to 
patients with relapsed acute myelogenous leukemia cause good 
clinical effects without graft versus host disease (GvHD) as 
reviewed in Ref. (71). For this reason, it seems to be a successful 
strategy to set a strong focus on CAR NK cell-based immuno-
therapies (see Table 1), although Shah et al. recently observed 
GvHD after infusion of ex vivo expanded activated allogeneic  
NK cells (72).

The ideal source for CAR NK cells as OTS products is still in 
discussion. The cell line NK92 has been described as an option 
that can be easily transduced and irradiated before administra-
tion (73, 74). On the other hand, umbilical CB is well known to 
be a good source for primary NK cells (75, 76). But limitations 
as immature phenotype or restriction of NK cell amount should 
be kept in mind (77, 78), which might be circumvent by refined 

protocols for primary NK cell ex vivo expansion and activation 
(79) especially in regard to GMP compliance.

A subset of NK cells has been described in mouse and human 
that demonstrated long-lived capacity for several months (80). 
These “memory-like” NK cells respond to antigens in second con-
frontation and show enhanced effector function and expansion. 
They even may prevent leukemia relapse by a robust cytokine 
production (81, 82) and may therefore be beneficial in general in 
long-term antitumor responses. For safety reason, a CAR suicide 
system should be integrated in CAR NK cells to limit circulation 
of CAR effector cells in patients (83) and to restrict putative toxic 
side effects as demonstrated for CAR T cells (84, 85).

STRATeGieS TO OveRCOMe  
OFF-TARGeT TOXiCiTieS

The choice of tumor antigens that can be recognized by CARs 
depends on the unique and selective character of the antigen for 
target cancer cells. These regular antigens mainly show increased 
expression on tumor tissues but are also detectable on normal 
tissues, often in a minute amount. For this reason, on-target 
toxicities may appear in clinical studies that have been described 
for CAR T  cells (86–88). On the other hand, off-target toxicity 
attacks tissues and organs that do not express the antigen but 
CAR constructs can bind unspecifically. For primary human CAR 
NK cells, toxicity reports have not been published yet but recogni-
tion of specific tumor targets are the base for safe and effective 
CAR constructs.

To increase selectivity of CAR molecules and reduce putative 
off-target effects, different strategies have been developed, e.g., 
combination of two extracellular domains in a tandem structure 
(89, 90) or of two independent constructs to form bispecific CAR 
molecules (91). A second concept describes CAR constructs that 
triggers the release of pro-inflammatory IL-12. The composition 
of CAR resulted in expression of IL-12 after antigen binding to 
the extracellular CAR domain (92). Recently, Wu et al. developed 
a split CAR construct that needs a dimerizing small molecule to 
form a functional unit. This new strategy promises control of tim-
ing, location, and dosage of CAR activity and thereby a possible 
mitigation of toxicities (93). A similar concept demonstrates the 
use of an inducible molecular switch off (94). When exposed to a 
dimerizing drug, the fusion protein iCasp9 is activated and trig-
gers apoptosis in all gene-modified cells. In general, all strategies 
have been shown for engineered CAR T cells, except the last one 
that has also been evaluated in the murine model using modified 
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NK cells (95) and even for primary CB-derived NK cells express-
ing antiCD19 CAR molecules [unpublished data mentioned in 
Ref. (96)].

COnCLUSiOn

In the next years, the possibility of unlimited access to 
cryopreserved NK  cells from CB or third party donors may 
revolutionize therapy options for cancer patients. Although 
discussions about best source of NK cells and the question of 
long-living NK cells have not been finished yet, generation of 
redirected NK  cells against new targets is in rapid progress. 
Demonstrated results using CAR technologies are auspiciously 
and may improve cancer therapy also by implemented novel 
safety strategies. Furthermore, combined immunotherapies 

using checkpoint blockade monoclonal antibodies to overcome 
inhibitory signals (e.g., anti-KIR or anti-TIGIT) may enhance 
CAR NK cell activity.
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an off-the-shelf Cellular therapeutic 
for targeted elimination of Cancer 
Cells and induction of protective 
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Germany, 5 Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany, 6 German Cancer Consortium (DKTK), 
Partner Site Dresden, Dresden, Germany

Significant progress has been made in recent years toward realizing the potential of 
natural killer (NK) cells for cancer immunotherapy. NK  cells can respond rapidly to 
transformed and stressed cells and have the intrinsic potential to extravasate and reach 
their targets in almost all body tissues. In addition to donor-derived primary NK cells, 
also the established NK cell line NK-92 is being developed for adoptive immunotherapy, 
and general safety of infusion of irradiated NK-92 cells has been established in phase 
I clinical trials with clinical responses observed in some of the cancer patients treated. 
To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric 
antigen receptors (CARs) composed of a tumor-specific single chain fragment variable 
antibody fragment fused via hinge and transmembrane regions to intracellular signaling 
moieties such as CD3ζ or composite signaling domains containing a costimulatory pro-
tein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory 
signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, 
CAR-engineered NK-92 cell lines suitable for clinical development can be established 
from molecularly and functionally well-characterized single cell clones following good 
manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, 
potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed 
by hematologic malignancies, and overexpressed or mutated self-antigens associated 
with solid tumors has been found, encouraging further development of CAR-engineered 
NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous 
antitumor immunity after treatment with CAR-expressing NK-92 cells has been demon-
strated, resulting in cures and long-lasting immunological memory protecting against 
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tumor rechallenge at distant sites. Here, we summarize the current status and future 
prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with 
special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical 
application.

Keywords: natural killer cells, nK-92, chimeric antigen receptor, adoptive cancer immunotherapy, leukemia, 
lymphoma, solid tumors

NK cells can override inhibitory signals deployed by tumor cells 
and directly trigger the effector cells’ intrinsic cytolytic effector 
functions as well as the release of pro-inflammatory cytokines  
(23, 24). Nevertheless, despite the close similarity of NK  cells 
to T  cells with respect to their cytotoxic mechanisms, the 
development of CAR-engineered NK  cells for adoptive cancer 
immunotherapy is still in its early stages, owing mainly to the 
complexity of isolating, activating, expanding, and manufactur-
ing large numbers of peripheral blood-derived NK cells, the lower 
efficiency of gene transfer when compared to T  cells, and the 
limited in vivo proliferation and persistence in recipients. While 
efforts are being made to overcome these hurdles by improving 
ex vivo expansion of NK cells to allow multiple infusions (25), 
results from clinical trials with CAR NK cells are not yet available.

Continuously expanding NK cell lines provide an unlimited 
source of effector cells to investigate and improve concepts for 
genetic engineering of NK cells (23, 26–29) but also hold poten-
tial for development as standardized off-the-shelf therapeutics for 
adoptive cancer immunotherapy. Different human NK cell lines 
have been established, including NK-92, HANK-1, KHYG-1, 
NK-YS, NKG, YT, YTS, NKL, and NK3.3 (30). Among them, 
NK-92 cells (also termed “aNK” for activated NK) have been 
investigated most thoroughly and already been applied in a 
clinical setting (31, 32). NK-92 express many activating NK-cell 
receptors such as NKp30, NKp46, and NKG2D but lack most of the 
inhibitory KIRs, except for low levels of KIR2DL4 (33, 34). Other 
inhibitory receptors expressed by NK-92 are Ig-like transcript 2 
(ILT-2) and NKG2A/CD94. This unique profile renders NK-92 
cells highly cytotoxic against a broad spectrum of malignant cells 
of hematologic origin and other cancers (32). General safety of 
infusion of irradiated NK-92 cells has been established in phase 
I clinical trials in patients with advanced cancers (35, 36), and 
results from other phase I and phase II studies may soon become 
available (NCT00990717, NCT00900809, NCT02465957; https://
clinicaltrials.gov).

As outlined in the following sections, the robust ex vivo expan-
sion of NK-92 cells to high cell numbers, their exquisite safety 
profile, as well as the ease of genetic modification make this cell 
line an ideal platform for the development of CAR-engineered 
variants. Here, we provide an overview of the diverse approaches 
that have been taken to date to target NK-92 cells to various 
hematological malignancies and solid tumors, summarize pre-
clinical in  vitro and in  vivo studies with special emphasis on 
ErbB2 (HER2)-specific CAR NK-92 cells (NK-92/5.28.z) that 
are ready to enter clinical trials, and discuss general advantages 
and challenges associated with the use of CAR NK-92 cells as an 
off-the-shelf cellular therapeutic.

introdUCtion

Natural killer (NK) cells are specialized effectors of the innate 
immune system and central players in the defense against viral 
infections and cancer. Natural cytotoxicity of NK cells can be trig-
gered rapidly upon appropriate stimulation and is regulated by a 
complex balance of signals from germ-line encoded activating 
and inhibitory cell surface receptors (1, 2). The antitumoral activ-
ity of NK cells has been well documented in mouse models (3, 4). 
In humans, a correlation between low peripheral blood NK-cell 
activity and an increased cancer risk was demonstrated (5), and 
numbers and phenotype of tumor-infiltrating NK  cells likely 
influence the course of the disease (6–8). Mechanisms involved 
in tumor immune evasion can be diverse and include upregula-
tion of the non-classical MHC molecules HLA-E and HLA-G that 
trigger inhibitory NK-cell receptors (9), selective loss of ligands 
for activating NK-cell receptors (10, 11), as well as shedding 
of soluble forms of MHC class I polypeptide-related sequence 
A/B (MICA/B) and B7-H6 (12–14). Furthermore, the tumor 
microenvironment plays a crucial role in preventing infiltration 
by NK and other immune cells and interfering with the activity of 
NK cells already present in the tumor (15, 16). Hypoxia as well as 
immunosuppressive factors such as transforming growth factor 
(TGF)-β, indoleamine 2,3-deoxygenase (IDO), prostaglandin 
E2, nitric oxide (NO), and reactive oxygen species (ROS), which 
are produced by regulatory immune cells like regulatory T (Treg) 
cells and myeloid-derived suppressor cells, by stromal cells like 
cancer-associated fibroblasts, and by tumor cells themselves can 
inhibit expression of activating NK-cell receptors, disrupt the 
interactions between NK and other immune cells, and avert the 
contact of NK cells with tumor cells (17).

To bypass deficiencies in endogenous NK-cell activity, cur-
rent NK-cell therapies are typically based on adoptive transfer of  
ex vivo-expanded allogeneic NK cells derived from a suitable donor 
(18–20). While displaying graft-versus-leukemia (GvL) or graft-
versus-tumor (GvT) activity, such donor-derived NK cells do not 
carry a high risk of inducing graft-versus-host-disease (GvHD) 
frequently associated with donor lymphocyte infusion (DLI) of 
allogeneic T cells (20). In addition, antibodies that block inhibi-
tory NK-cell receptors such as killer cell immunoglobulin-like 
receptors (KIRs) and NKG2A/CD94, or link activating NK-cell 
receptors to tumor cell surface antigens are being investigated 
as activity enhancers for endogenous or adoptively transferred 
NK  cells (21, 22). Sparked by the clinical success of chimeric 
antigen receptor (CAR)-engineered T  cells in the treatment of 
B-cell malignancies, genetic modification of NK cells with CAR 
constructs is receiving increasing attention. CAR engagement in 
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adVanCes FroM tHe Car t CeLL FieLd 
enaBLinG tHe Generation oF 
tUMor-speCiFiC nK CeLLs

Since introduction of the basic CAR design with a single chain 
fragment variable (scFv) antibody for target recognition fused 
to CD3ζ or FcεRIγ chains for signaling (first-generation CARs) 
by Eshhar and colleagues (37), many groups have contributed 
to further improve and develop this concept, facilitating the 
clinical success of CAR T cell therapy seen today (38, 39). The 
most significant CAR modification was thereby the inclusion 
of costimulatory protein domains derived from CD27, CD28, 
CD134 (OX40), CD137 (4-1BB), CD244 (2B4) or CD278 (ICOS) 
(second-generation CARs), or their combinations (third- 
generation CARs) in addition to CD3ζ to improve T-cell 
activation, proliferation, and persistence (40). Other advances 
enhancing CAR functionality and providing additional benefits 
with respect to stimulating innate immunity, improving safety, or 
alleviating tumor immune escape have been reviewed extensively 
by Fesnak et al. (41). They include for instance interleukin (IL)-12-
armed T cells redirected for universal cytokine-mediated killing 
(TRUCKs) (42), universal CARs activated by modular antibody-
based targeting molecules (43), and dual-targeting tandem CARs 
(TanCARs) (44, 45). In patients with lymphomas and leukemias 
of B-cell origin, remarkable efficacy was demonstrated and dura-
ble responses were achieved with both, T-cell products harboring 
CD19-specific second-generation CD28- or CD137-containing 
CARs. While in experimental models CD28-CD3ζ CARs led to 
stronger T-cell activation, CD137-CD3ζ CARs prolonged in vivo 
T-cell persistence and reduced exhaustion (46, 47).

Already early on, it was postulated for first-generation CARs 
that they would be functional in NK cells (37), which was for-
mally demonstrated for a CAR-like CD4-CD3ζ fusion receptor 
in human NK3.3 cells (26). In the first report proposing CAR-
engineered NK-92 cells as a continuously expanding off-the-shelf 
cell therapeutic, we also applied a first-generation CAR consisting 
of an ErbB2-specific scFv antibody fused to CD3ζ through a 
CD8α hinge region, which resulted in high and specific cytotox-
icity of the genetically modified cells toward ErbB2-expressing 
breast cancer cells and other targets of solid tumor origins (23). 
Similar first-generation CAR designs were successfully used 
in subsequent studies with NK-92 cells targeting the B-cell 
differentiation antigens CD19 and CD20 (48–53), CD138 for 
recognition of multiple myeloma (54), and various surface anti-
gens expressed by solid tumors including the disialoganglioside 
GD2, epithelial cell adhesion molecule (EpCAM), and a peptide 
epitope of the melanoma antigen gp100 in complex with HLA-
A2 (55–59) (Table 1). In studies with CD19- and GD2-targeted 
primary human NK cells, inclusion of costimulatory CD137 or 
CD244 domains in the CAR in addition to CD3ζ enhanced both 
specific cytotoxicity and production of interferon (IFN)-γ and 
granulocyte-macrophage colony stimulating factor (GM-CSF) 
when compared to first-generation CARs (24, 60). This clearly 
demonstrates that at least primary NK cells benefit from CAR-
induced costimulatory signals. In preclinical studies, also an 
ErbB2-specific CD28-CD3ζ CAR and a CD20-specific CD137-
CD3ζ CAR were shown to be functional in donor-derived human 

NK cells, but no comparison with respective CD3ζ-only CARs 
was performed (61, 62). Clinical trials with CAR-engineered 
primary NK cells for the treatment of B-cell acute lymphoblastic 
leukemia (B-ALL) employ CD19-specific CD137-CD3ζ recep-
tors (NCT00995137, NCT01974479; https://clinicaltrials.gov), 
but results from these trials are not yet available.

inFLUenCe oF tHe Car desiGn on 
FUnCtionaLity oF retarGeted  
nK-92 CeLLs

In the presence of IL-2, NK-92 cells persistently exhibit a pheno-
type similar to activated NK cells (33). Hence, CAR-engineered 
NK-92 variants may be less dependent on costimulation than 
T cells and primary NK cells (80). Nevertheless, second-genera-
tion CARs employing a composite CD28-CD3ζ signaling domain 
have been shown to be functional in NK-92 cells targeting EpCAM 
and ErbB2 on breast cancer cells (28, 67, 68), epidermal growth 
factor receptor (EGFR) on glioblastoma cells and breast cancer 
brain metastases (70–72), EGFRvIII, a glioblastoma-specific 
mutant form of EGFR arising from an in-frame deletion of exons 
2-7 of the receptor (71, 72), CD19 on B-cell malignancies (74), 
CS1 on multiple myeloma cells (77), and CD33 on acute myeloid 
leukemia cells (81). Likewise, second-generation CARs harbor-
ing CD137-CD3ζ domains and targeting ErbB2 (67), CD19 (74), 
or peptide epitopes of Epstein–Barr virus (EBV) latent protein 
EBNA3C, and Wilms tumor protein in complex with HLA-A2 
(78, 79) have been used successfully with NK-92 cells as well as 
third generation CD28-CD137-CD3ζ CARs that recognize CD3 
or CD5 for elimination of malignant T cells (75, 76) (Table 1).

Only two reports compared the functionality of NK-92 cells 
harboring CD3ζ-based first-generation or CD28-CD3ζ- and 
CD137-CD3ζ-based second-generation CARs directly (67, 74), 
using a general CAR design as depicted in Figure 1A. NK-92 cells 
express high levels of CD3ζ and moderate levels of CD28 and 
CD137 (23, 34, 67) (Figure 1B), suggesting that the CARs could 
readily link to respective endogenous signaling pathways. Indeed, 
while differences were relatively small, ErbB2-targeted NK-92 cells 
expressing CD28-CD3ζ and CD137-CD3ζ CARs displayed more 
pronounced cytotoxicity in short-term assays when compared 
to a corresponding CD3ζ-only CAR (67). Conversely, CD19-
targeted NK-92 cells harboring a CD137-CD3ζ CAR were much 
less effective in cell killing than cells expressing a CD3ζ-only or 
a CD28-CD3ζ CAR containing the same cell targeting domain 
(74). With respect to cytokine production, highest amounts of 
IFN-γ were found in cultures of CD19-specific NK-92 expressing 
a CD28-CD3ζ CAR, while less pronounced levels were secreted 
upon CAR activation by cells harboring a CD3ζ-only CAR, and 
only marginally enhanced levels by cells carrying the CD137-
CD3ζ CAR.

The first-generation CARs included in these studies for 
comparison utilized the endogenous transmembrane domain 
of CD3ζ. This allowed formation of both, disulfide-linked CAR 
homodimers, and heterodimers of the CAR with endogenous 
CD3ζ of NK-92 cells (67, 74). Such preformed receptor com-
plexes may get activated more rapidly and by lower target antigen 
densities than the CARs with CD28-CD3ζ and CD137-CD3ζ 
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taBLe 1 | preclinical studies with Car nK-92 cells.

target antibody Hinge tM signaling Gene transfer Cancer type In vivo 
model

treatment reference

ErbB2 (HER2) FRP5 mCD8α mCD3ζ mCD3ζ Retrovirus Breast ca. CD-1 nude Local 
co-injection

Uherek et al. (23)
Ovarian ca.
SCC

ErbB2 (HER2) FRP5 mCD8α mCD3ζ mCD3ζ Retrovirus Breast ca. BALB/c 
nude

Systemic Daldrup-Link et al. (63),  
Meier et al. (64)

ErbB2 (HER2) FRP5 mCD8α mCD3ζ mCD3ζ Retrovirus Brain metastasis Athymic 
nude rats

Systemic (with 
FUS)

Alkins et al. (65),  
Alkins et al. (66)

ErbB2 (HER2) 4D5-8 hIgG2 hFcεRIγ hFcεRIγ Retrovirus Breast ca. NSG Systemic Clemenceau et al. (58)

ErbB2 (HER2) FRP5 hCD8α hCD3ζ hCD3ζ Lentivirus Breast ca. NSG Systemic Schönfeld et al. (67)
hCD28 hCD28-CD3ζ Ovarian ca.
hCD137 hCD137-CD3ζ Melanoma

RCC

ErbB2 (HER2) n.s. hCD8α hCD28 hCD28-CD3ζ Electroporation Breast ca. BALB/c 
nude

Systemic Liu et al. (68)

ErbB2 (HER2) FRP5 hCD8α hCD28 hCD28-CD3ζ Lentivirus GBM NSG Local Zhang et al. (69)
C57BL/6

Epidermal 
growth factor 
receptor (EGFR)

528 n.s. n.s. hCD28-CD3ζ Lentivirus Brain metastasis NSG Local 
(combined with 
HSV-1)

Chen et al. (70)

EGFR R-1 hCD8α hCD28 hCD28-CD3ζ Lentivirus GBM NSG Local Genßler et al. (71)

EGFR/EGFRvIII 528 n.s. hCD28 hCD28-CD3ζ Lentivirus GBM NSG Local Han et al. (72)

EGFR/EGFRvIII 225 hCD8α hCD28 hCD28-CD3ζ Lentivirus GBM NSG Local Genßler et al. (71)

EGFRvIII MR1-1 hCD8α hCD28 hCD28-CD3ζ Lentivirus GBM NSG Local Genßler et al. (71)

GD2 ch14.18 mCD8α mCD3ζ mCD3ζ Retrovirus NB NSG Local Esser et al. (56),  
Seidel et al. (59)Breast ca.

Melanoma

Epithelial cell 
adhesion 
molecule 
(EpCAM)

MOC31 mCD8α mCD3ζ mCD3ζ Retrovirus Prostate ca. Athymic 
nude rats

Systemic Tavri et al. (55),  
Meier et al. (73)

EpCAM MOC31 hCD8α hCD28 hCD28-CD3ζ Lentivirus Breast ca. – – Sahm et al. (28)

CD19 FMC63 mCD8α mCD3ζ mCD3ζ Retrovirus B-ALL – – Romanski et al. (48),  
Romanski et al. (53)

CD19 FMC63 mCD8α mCD3ζ mCD3ζ mRNA 
transfection

B-ALL – – Boissel et al. (50)
CLL

CD19 FMC63 mCD8α mCD3ζ mCD3ζ mRNA 
transfection

B-ALL
CLL
Burkitt’s lymphoma

– – Boissel et al. (51)

Lentivirus

CD19 FMC63 mCD8α mCD3ζ mCD3ζ Lentivirus B-ALL NOD/SCID Local Boissel et al. (52)
CLL NSG Systemic

CD19 FMC63 hCD8α hCD3ζ hCD3ζ Lentivirus B-ALL NSG Systemic Oelsner et al. (74)
hCD28 hCD28-CD3ζ Burkitt’s lymphoma
hCD137 hCD137-CD3ζ

CD20 Leu-16 mCD8α mCD3ζ mCD3ζ Retrovirus B-ALL NSG Local 
co-injection

Müller et al. (49)
CLL
Burkitt’s lymphoma

CD20 Leu-16 mCD8α mCD3ζ mCD3ζ mRNA 
transfection

B-ALL
CLL
Burkitt’s lymphoma

– – Boissel et al. (51)

Lentivirus

CD20 Leu-16 mCD8α mCD3ζ mCD3ζ Lentivirus B-ALL NOD/SCID Local Boissel et al. (52)
CLL NSG Systemic

(Continued)
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target antibody Hinge tM signaling Gene transfer Cancer type In vivo 
model

treatment reference

CD3 n.s. hCD8α hCD8α hCD28-CD137-
CD3ζ

Lentivirus PTCL NSG Systemic Chen et al. (75)
T-ALL

CD5 n.s. hCD8α hCD8α hCD28-CD137-
CD3ζ

Lentivirus PTCL NSG Systemic Chen et al. (76)
T-ALL
Sézary syndrome

CD138 4B3 hCD8α hCD3ζ hCD3ζ Lentivirus MM NOD/SCID Systemic Jiang et al. (54)

CS1 Luc90 n.s. n.s. hCD28-CD3ζ Lentivirus MM NSG Systemic Chu et al. (77)

EBNA3C 
peptide

EBNA 
Clone 315

hCD8α hCD8α hCD137-CD3ζ Retrovirus BLCL – – Tassev et al. (78)

gp100209–217 
peptide

GPA7 n.s. HLA-A2 hCD3ζ Electroporation Melanoma NOD/SCID Systemic Zhang et al. (57)

WT1126 peptide Q2L hCD8α hCD8α hCD137-CD3ζ Retrovirus B-ALL – – Zhao et al. (79)
AMoL
NB

TM, transmembrane domain; n.s., not specified; m, murine; h, human; SCC, squamous cell carcinoma; RCC, renal cell carcinoma; GBM, glioblastoma; NB, neuroblastoma; B-ALL, 
B-cell acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; PTCL, peripheral T-cell lymphoma; T-ALL, T-cell acute lymphoblastic leukemia; MM, multiple myeloma; 
BLCL, Epstein–Barr virus (EBV)-transformed lymphoblastoid B cell line; AMoL, acute monocytic leukemia; FUS, MRI-guided focused ultrasound.

taBLe 1 | Continued
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domains, which contained the transmembrane domains of CD28 
and CD137 and did not form covalent dimers as assessed by SDS-
PAGE and immunoblot analysis (74) (Figure 1C). Of note, while 
this was not the case for the CD19-specific CD137-CD3ζ CAR 
tested in NK-92 cells, a different CD19-specific CD137-CD3ζ 
CAR that contained the transmembrane domain of CD8α and 
formed covalent CAR homodimers showed enhanced activity in 
comparison to a respective CD3ζ-only CAR in primary NK cells 
(24). Also sterical effects such as distance of the target epitope 
to the cell surface and CAR accessibility can play a role in deter-
mining the activation threshold of individual CARs (82, 83). This 
may explain why in NK-92 cells otherwise identical ErbB2- and 
CD19-targeted CD137-CD3ζ CARs in one case led to higher and 
in the other case to lower-specific cell killing when compared to 
the respective CD3ζ-only CAR (67, 74). Hence, while the data 
available so far suggest that inclusion of a costimulatory protein 
domain in the CAR can be beneficial at least for particular func-
tions of NK-92 cells, continuing research efforts are needed to 
clarify whether cytotoxicity, cytokine production, and resistance 
to immunosuppressive mechanisms can be improved with a 
single, generalized CAR design. Possibly, the most optimal CAR 
composition has to be determined experimentally in each case, 
taking into consideration CAR-binding affinity, location of the 
binding epitope within the target antigen, length of hinge region, 
and nature of the transmembrane domain (84).

ContinUoUs eXpansion oF Car  
nK-92 CeLLs

Isolation and ex vivo expansion of peripheral blood-derived 
NK  cells for therapeutic applications can be demanding, time-
consuming, and costly (85). Since KIR-mismatched allogeneic 
NK cells are superior to autologous cells, a suitable donor needs 
to be identified to allow for efficient GvL or GvT activity (18–20). 

Moreover, owing to the intricate heterogeneity of human NK cells 
with respect to cytotoxic and regulatory activity, NK-cell licens-
ing, unlicensing, and memory, selecting the most appropriate NK 
subpopulations for cancer therapy is difficult (86, 87). Sufficient 
numbers of NK  cells are critical for a better clinical outcome, 
which is complicated by the limited ex vivo expansion potential 
of NK cells that remains a challenge despite the development of 
genetically engineered feeder cells supporting NK-cell growth and 
improved protocols for cytokine stimulation (25, 88, 89). These 
issues are also relevant for the development of CAR-engineered 
primary NK cells, which may explain the slow progress in this 
field with respect to CAR T cells.

Chimeric antigen receptor-engineered NK-92 could offer 
a valid and cost-effective alternative to primary CAR NK or 
T cells, in particular, in cases, where a suitable donor is not avail-
able or the sophisticated infrastructure needed for cell isolation, 
expansion, and genetic modification is missing. Methodology 
for continuous good manufacturing practice (GMP)-compliant 
expansion from an established master cell bank has been validated 
in the framework of early phase clinical trials with unmodified 
NK-92 cells and can easily be adapted for large-scale production 
in centralized facilities (32, 90). This advantage may readily be 
extended to CAR-engineered NK-92 variants. In contrast to CAR 
approaches based on autologous or donor-derived primary cells, 
genetic modification of NK-92 cells is thereby not performed in 
a patient-individual setting under tight time constraints. Instead, 
a molecularly and functionally well-characterized cell product 
can be established for a particular target specificity independent 
from the time point of therapeutic application. The resulting 
cells are stable with respect to CAR expression and functional-
ity during extended expansion, as recently demonstrated for 
ErbB2-specific NK-92/5.28.z cells (also termed “HER2.taNK” 
for HER2-specific target-activated NK), a single-cell clone 
derived under GMP-compliant conditions that is intended for 
clinical use (67).
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FiGUre 1 | expression of first- and second-generation chimeric 
antigen receptors (Cars) in nK-92 cells. (a) Schematic representation of 
first- and second-generation CARs for expression in NK-92 cells that consist 
of an extracellular single chain fragment variable (scFv) antibody domain for 
target recognition fused via a hinge region derived from CD8α (hinge) to 
transmembrane and intracellular domains of CD3ζ (left), transmembrane and 
intracellular domains of CD28, and the intracellular domain of CD3ζ (middle), 
or transmembrane and intracellular domains of CD137 (4-1BB) and the 
intracellular domain of CD3ζ (right). (B) To assess endogenous expression of 
CD28 and CD137, lysates of NK-92 cells were subjected to SDS-PAGE and 
subsequent immunoblotting with CD28- and CD137-specific antibodies as 
indicated. Lysates of peripheral blood mononuclear cells (PBMCs) from 
healthy donors were included for comparison. (C) For analysis of CAR 
expression, lysates of NK-92 cells transduced with lentiviral vectors that 
encode CD19-specific CARs containing CD3ζ, composite CD28-CD3ζ, or 
CD137-CD3ζ signaling domains as represented in (a) were subjected to 
SDS-PAGE under reducing (R, left panel) or non-reducing conditions (NR, 
right panel) and subsequent immunoblotting with CD8α-specific antibody, 
which detects the hinge domain. The positions of CAR monomers, 
homodimers of the CD3ζ CAR, and heterodimers of the CD3ζ CAR with 
endogenous CD3ζ are indicated. Data in panel (C) are from 
Oelsner et al. (74).
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As NK cells, NK-92 as well as their CAR-expressing derivatives 
are dependent on exogenous IL-2 for growth and maintenance of 
their activated phenotype (23, 33). To ease cell expansion, differ-
ent groups have engineered NK-92 by retroviral transduction or 
particle-mediated non-viral gene transfer to ectopically produce 
IL-2, leading to IL-2 secretion and growth of the cells in the 
absence of IL-2 supplementation (91, 92). Similarly, IL-15 and 
stem cell factor (SCF) have been ectopically expressed in NK-92 
using plasmid DNA transfection (93, 94). While the resulting 
cells proliferated in medium with lower IL-2 concentrations than 
parental NK-92, in contrast to the IL-2-engineered variants, they 
were not completely independent from exogenous cytokines. In 
humans, high concentrations of IL-2 are associated with severe 
toxicity. Furthermore, in contrast to IL-15, IL-2 preferentially 
enhances the activity of Treg cells, which is not desired in the con-
text of cancer immunotherapy (95). Hence, a modified version 

of IL-2 was developed for expression in NK-92, which carries a 
C-terminal KDEL endoplasmic reticulum retention signal. This 
still allowed activation of IL-2 receptor complexes in the secretory 
pathway of the producer cells but limited release of IL-2 and avail-
ability to bystander cells (96, 97). A similar effect was achieved 
by expression of unmodified IL-15 in NK-92 using a lentiviral 
vector, which supported growth in the absence of exogenous IL-2 
but also restricted cytokine activity to the producer cells. When 
IL-15 was coexpressed with an EpCAM-specific CAR from a 
bicistronic lentiviral vector, transduced cells could be enriched 
merely by IL-2 withdrawal, with the selected CAR NK-92 cells 
displaying high and specific cytotoxicity in the absence of exog-
enous cytokines (28).

Car-enGineered nK-92 CeLLs eXHiBit 
antiBody-dependent CeLL-Mediated 
CytotoXiCity (adCC)-LiKe aCtiVity 
and seriaL KiLLinG

Antibody-dependent cell-mediated cytotoxicity of NK  cells is 
triggered by FcγRIIIa (CD16), which associates with CD3ζ and 
FcεRIγ that are linked to overlapping as well as distinct intracel-
lular signaling pathways (98, 99). NK-92, which is phenotypically 
CD16-negative, readily mediates ADCC in the presence of a 
suitable IgG antibody when engineered to express FcγRIIIa  
(27, 97, 100). This has sparked efforts to clinically develop geneti-
cally modified NK-92 cells that harbor the high affinity V158 
variant of CD16 (termed haNK) in combination with antibodies 
of IgG1 isotype (32, 97). Initial safety assessment of such cells in 
cancer patients is expected to begin soon (NCT03027128; https://
clinicaltrials.gov). Interestingly, side by side comparison of 
NK-92 cells carrying a CD20-specific first-generation CAR with 
a CD3ζ domain showed more pronounced killing of otherwise 
NK-resistant primary CLL cells than CD16-engineered NK-92 
applied together with rituximab (52). Similarly, NK-92 cells 
harboring an EBV EBNA3C-specific CAR lysed peptide-pulsed 
B-cell lymphoblastic cells more efficiently than CD16-engineered 
NK-92 in the presence of an anti-EBNA3C-Fc fusion protein (78) 
and NK-92 cells expressing a trastuzumab-based ErbB2-specific 
CAR with an FcεRIγ signaling domain displayed more enhanced 
cytotoxicity against breast carcinoma cells than NK-92 harboring 
a CD16-FcεRIγ hybrid receptor in combination with trastuzumab 
antibody (58).

Successful triggering of ADCC through CD16 requires its 
non-covalent interaction with the Fc portion of an antibody 
that is simultaneously bound to its antigen on the surface of a 
neighboring target cell, as well as association with intracellular 
CD3ζ and FcεRIγ. Direct linkage of extracellular target recog-
nition and intracellular signaling functions in one molecule as 
implemented in a CAR can bypass such complex stoichiometry 
and intermolecular interactions, likely accelerating kinetics of 
NK-cell activation. CAR signal strength is further enhanced by 
integrating CD3ζ, which in monomeric form contributes three 
immunoreceptor tyrosine-based activation motifs (ITAMs) that 
are crucial for downstream signaling, while an FcεRIγ monomer 
only provides one ITAM sequence (101). Accordingly, specific 
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FiGUre 2 | activity of nK-92/5.28.z against erbB2-expressing breast carcinoma cells. Cytotoxicity of CAR-engineered ErbB2-specific NK-92/5.28.z cells 
(filled circles) against ErbB2-overexpressing and trastuzumab-sensitive MDA-MB453 (left), or ErbB2-overexpressing and trastuzumab-resistant JIMT-1 (middle) and 
CAL-51 (right) breast carcinoma cells was investigated in flow cytometry-based cytotoxicity assays after coincubation of NK cells and tumor cells at different effector 
to target ratios (E/T) for 2 h. Parental NK-92 cells were included for comparison (open circles). Mean values ± SEM are shown; n = 3.
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target-cell recognition by CAR NK-92 results in immediate and 
effective ADCC-like activity, characterized by orientation of 
cytotoxic granules toward the immunological synapse, release 
of high levels of perforin and granzyme B, and rapid induction 
of target-cell apoptosis as demonstrated for various tumor-
associated antigens (23, 49, 67, 71, 74). Live cell imaging and 
cytotoxicity experiments at effector to target ratios below 1:1 
showed that one CAR-engineered NK-92 cell can thereby kill 
multiple targets within a few hours (49, 67, 74). This includes 
tumor cells exhibiting only moderately enhanced expression of 
the chosen target antigen, as demonstrated for established and 
tumor-initiating primary glioblastoma cells exposed to ErbB2-
specific NK-92/5.28.z cells (69). NK-92/5.28.z cells also killed 
trastuzumab-sensitive and trastuzumab-resistant ErbB2-positive 
breast carcinoma cells to a similar extent (Figure  2), attesting 
to the different mode of action of the retargeted NK  cells and 
suggesting their application in a disease setting with existing 
resistance to other targeted therapies.

IN VIVO antitUMor aCtiVity  
oF Car nK-92 CeLLs

Initial studies performed with ErbB2-, CD20-, and GD2-targeted 
CAR NK-92 cells showed that these cells retain specific cytotoxic-
ity in simplified in vivo models in immunocompromised nude 
and NOD-SCID IL2R γnull (NSG) mice, where effector cells were 
either subcutaneously coinjected together with tumor cells, or 
established subcutaneous tumors treated by peritumoral NK-cell 
injection. This resulted in delayed tumor onset and extended sur-
vival when compared to animals receiving parental NK-92 cells 
(23, 49, 59). Similar intratumoral treatment may be an option 
for cancer indications such as glioblastoma and brain metastasis, 
where disease is locally restricted. This has been investigated 
with NK-92 cells-expressing second-generation CARs targeting 

ErbB2, EGFR, or mutant EGFRvIII, which are expressed by a large  
proportion of human glioblastomas. In orthotopic xenograft mod-
els in NSG mice, repeated stereotactic injection of ErbB2-specific 
NK-92/5.28.z cells into the tumor area effectively inhibited tumor 
progression and resulted in a marked extension of survival, while 
parental NK-92 cells were ineffective (69). Similar effects were 
seen upon local application of NK-92 cells equipped with CARs 
that recognize EGFR, mutant EGFRvIII, or both antigens against 
orthotopic EGFR- and/or EGFRvIII-positive glioblastoma xeno-
grafts or breast cancer brain metastases growing in NSG mice 
(70–72). In contrast to EGFR- or EGFRvIII-targeted monospe-
cific NK-92 variants, dual targeting of EGFR and EGFRvIII with 
a cetuximab-based CAR recognizing a common epitope of the 
receptors, thereby circumvented immune escape in mixed tumors 
that similar to the clinical situation, consisted of EGFR-positive 
and EGFR/EGFRvIII-double positive glioblastoma cells (71).

For broad applicability in metastatic and disseminated 
disease, CAR effector cells must cross tissue barriers and reach 
distant tumor sites to be effective. Magnetic resonance imaging, 
bioluminescence imaging, and positron emission tomography 
experiments as well as direct analysis of tumor infiltration revealed 
rapid and specific accumulation of intravenously injected NK-92 
carrying first- and second-generation ErbB2-specific or EpCAM-
specific CARs in orthotopic breast and subcutaneous prostate 
carcinoma xenografts in rodents (55, 63, 64, 67, 73), while parental 
NK-92 cells showed no tumor homing and were mainly localized 
to spleen and liver (55). Focused ultrasound has been demon-
strated to allow systemically applied CAR NK-92 cells to cross the 
blood–brain barrier and reach breast cancer brain metastases in 
a xenograft model in immunocompromised rats (65, 66). Specific 
antitumor activity of intravenously applied CAR NK-92 cells has 
also been found in a model of locally growing breast carcinoma 
(68), in an experimental renal cell carcinoma metastasis model 
(67), and models of disseminated leukemia, lymphoma, and 
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FiGUre 3 | reciprocal natural killer (nK)—dendritic cell (dC) cross talk. Upon activation by target tumor cells or cytokines, NK cells produce IFN-γ and 
tumor necrosis factor (TNF)-α that can promote DC maturation. DC maturation is also strongly dependent on the engagement of activating receptors on NK cells 
such as NKp30 and NKG2D. Mature DCs (mDCs) will in turn produce interleukin (IL)-12, IL-15, and IL-18, which enhance cytotoxicity and IFN-γ secretion of 
NK cells. NK cells can also distinguish immature (iDC) and mDCs through activating NKp30 and inhibitory killer cell immunoglobulin-like receptors and NKG2A/CD94 
and eliminate immature DCs (iDCs), thereby maintaining the quality of the mDC population (DC editing). NK-cell cytotoxicity can be further augmented by IFN-α 
secreted by plasmacytoid DCs (pDCs). NK-induced tumor cell lysis provides antigens, which can be taken up by DCs for antigen presentation. Once maturated, 
antigen-loaded mDCs will migrate into tumor-draining lymph nodes, cross-present tumor antigens to naïve T cells, and induce their differentiation toward tumor-
specific CD8+ cytotoxic T cells and CD4+ T helper 1 (Th1) cells.
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multiple myeloma (52, 74–77), underscoring the potential of 
CAR-engineered NK-92 cells for the treatment of a large variety 
of different cancers.

nK CeLLs: a BridGe BetWeen innate 
and adaptiVe antitUMor iMMUnity

Natural killer cells do not only play a critical role in antitumor 
immunity by directly eliminating malignant cells, but also by 
regulating tumor-specific adaptive immune responses through 
cross talk with other immune cells. In particular, the interaction 
between NK cells and dendritic cells (DCs) is important in this 
context (Figure  3). On the one hand, DCs enhance the direct 
antitumor activity of NK cells (102). On the other hand, NK cells 
regulate DC maturation, thereby determining the effectiveness 
of subsequent DC-mediated T-cell activation (103, 104). Once 
activated by target cells or soluble factors, NK cells secrete high 
amounts of IFN-γ and tumor necrosis factor (TNF)-α, which 
synergistically contribute to the maturation of immature DCs 
(iDCs). This leads to enhanced expression of costimulatory 
molecules such as CD80, CD83, and CD86 by the DCs and 

favors Th1 polarization during subsequent DC-mediated T-cell 
activation (105–107). Mature DCs (mDCs) release IL-12, IL-15, 
and IL-18, which in turn enhance IFN-γ expression by NK cells 
and NK-cell cytotoxicity against virus-infected and tumor cells 
(103, 108). Likewise, cytotoxicity of NK cells can be boosted by 
type I interferons such as IFN-α secreted by plasmacytoid DCs 
(pDCs) (109).

Dendritic cell maturation and reciprocal NK-cell activation are 
also strongly dependent on the engagement of activating recep-
tors like NKp30, NKG2D, and NKp46 on NK cells (107, 110–113). 
Concurrent with inducing DC maturation, NK cells control the 
quality of the mDC population by killing iDCs (DC editing), 
which can otherwise induce immune tolerance through T-cell 
depletion or Treg expansion. Discrimination and lysis of iDCs by 
NK cells is mainly regulated by activating signals through NKp30 
and inhibitory signals through KIRs and the NKG2A/CD94 
complex (107, 114). Accordingly, inhibition of NKp30 signaling 
or reduced NKp30 expression results in impaired NK-mediated 
killing of iDCs (110, 115, 116). Both mDCs and iDCs express 
NKp30 ligands. However, higher amounts of HLA class I and 
HLA-E molecules expressed by mDCs protect them from lysis 
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by NK cells, whereas lower HLA class I and HLA-E expression 
makes iDCs vulnerable (114, 117). Importantly, by direct lysis of 
malignant cells, NK cells also provide tumor antigens for uptake 
and processing by DCs, which upon maturation and migration 
into a tumor-draining lymph node can cross-present such anti-
gens to T cells, thereby inducing Th1 polarization of CD4+ T cells 
and differentiation of CD8+ T cells into tumor-specific cytotoxic 
T-lymphocytes (CTLs). NK  cells can also migrate into tumor-
draining lymph nodes and provide an early source of IFN-γ for 
Th1 polarization (118).

Car-enGineered nK-92 CeLLs 
oVerCoMe iMMUnosUppressiVe 
MeCHanisMs and enHanCe adaptiVe 
antitUMor iMMUnity

As discussed above, efficient NK-cell activation is a prerequisite 
for productive NK–DC interaction. However, in cancer patients, 
NK-cell abnormalities are frequently found, including reduced 
NK-cell numbers, impaired cytotoxicity, and inefficient tumor 
infiltration (119). Especially in solid tumors, NK-cell activity is 
negatively affected by immunosuppressive factors in the tumor 
microenvironment (17, 120). High levels of TGF-β, IDO, and 
PGE2, as well as hypoxic conditions strongly inhibit the ability 
of NK cells to upregulate cytokine production and expression of 
activating cell surface receptors, while decreasing expression of 
ligands for activating NK-cell receptors by tumor cells. Under 
these conditions, tumor cells can also upregulate the non-
classical MHC class I molecule HLA-G, a ligand for the NK-cell 
inhibitory receptors KIR2DL4 and ILT-2 (17, 121). Hence, 
therapeutic approaches that restore diminished NK-cell function 
may not only enhance direct NK-mediated tumor cell lysis but 
also improve clinical outcome by reinforcing DC activity and 
induction of adaptive antitumor immune responses.

Killing of cancer cells by CAR-engineered NK-92 is largely inde-
pendent from the activation of endogenously expressed activating 
NK receptors and the presence of their ligands on target cells but 
mainly mediated by CAR-activation through binding to a cognate 
tumor-associated surface antigen (23, 49, 56, 67, 69, 71, 74). As 
recently demonstrated for ErbB2-specific NK-92/5.28.z carrying 
a CD28-CD3ζ CAR, such cells retain efficient CAR-mediated 
cell killing even under hypoxic conditions and in the presence 
of TGF-β concentrations exceeding the elevated TGF-β levels 
found in the plasma of cancer patients (69, 122). Furthermore, 
target tumor cells ectopically overexpressing human HLA-G were 
unable to block specific cell killing by CAR-engineered NK-92 
(Zhang et  al., unpublished data), although NK-92 cells express 
the immunoregulatory receptors KIR2DL4 and ILT-2, which are 
activated by HLA-G (34, 123). These findings show that activated 
CAR NK-92 cells can maintain their cytotoxic potential in an 
immunosuppressive environment similar to the one found within 
a solid tumor. In addition, NK-92 readily express activating NK 
receptors such as NKp30 and NKG2D while most of the inhibi-
tory KIRs are absent (34), which may make CAR NK-92 cells 
particularly effective in aiding DC maturation and editing, and 

enhancing DC-mediated cross-priming of tumor-specific T cells 
and induction of adaptive antitumor immunity.

We recently investigated this possibility in an immunocompe-
tent mouse model for glioblastoma and could indeed demonstrate 
the induction of endogenous antitumor immunity following 
therapy with CAR-engineered NK-92 cells (69). In this model, the  
majority of mice carrying syngeneic intracranial GL261/ErbB2 
glioblastomas were cured upon repeated intratumoral injec-
tion of ErbB2-specific NK-92/5.28.z cells, while unmodified 
parental NK-92 cells were unable to inhibit tumor progression 
(Figure 4A). Human NK-92 and CAR NK-92 cells do not perma-
nently engraft in immunodeficient mice and are quickly rejected 
by immunocompetent animals (67, 69, 124, 125). Nevertheless, 
without any further treatment, all mice that were cured from their 
initial tumors also rejected a rechallenge with GL261/ErbB2 cells 
injected into the other brain hemisphere 4 months after initial 
therapy, mediated by an endogenous memory immune response 
induced in the animals by initial treatment with NK-92/5.28.z 
(69). Sera from these mice contained IgG antibodies reactive with 
both GL261/ErbB2 and ErbB2-negative, but otherwise isogenic 
GL261 cells (Figure 4B), indicating that the induced protective 
antitumor immune response was broadly directed against the 
glioblastoma cells and not limited to the CAR target antigen. 
Accordingly, mice that were cured of GL261/ErbB2 tumors also 
rejected a subsequent challenge with GL261 cells (Zhang et al., 
unpublished data). When animals that had rejected the initial 
tumor and the first rechallenge with GL261/ErbB2 were injected 
once again with GL261/ErbB2 cells but this time after depletion 
of CD4+ and CD8+ T cells, tumors formed in a large proportion of 
the mice. This demonstrates that protective immunity induced by 
initial treatment with NK-92/5.28.z cells was also dependent on 
T-cell memory (Figure 4C). Similarly, in a later study by Boissel 
et al., intratumoral injection with NK-92 cells expressing a CAR 
specific for murine CD19 induced protective antitumor immu-
nity in a syngeneic A20 lymphoma model in immunocompetent 
mice (126).

These data suggest that the release of tumor antigens through 
the cytotoxic activity of CAR NK-92 cells, most likely augmented 
by the demonstrated CAR-induced production of high levels of 
pro-inflammatory cytokines (67, 69, 71, 74), can not only induce 
a humoral immune response directed against the tumor but also 
enhance cross-presentation of tumor antigens by murine DCs 
for the activation of tumor-specific CTLs. In a clinical setting, 
this may be further enhanced by IFN-γ, which is released at high 
levels by activated CAR NK-92. In murine models, the effects of 
human IFN-γ are limited due to the species-specificity of IFN-γ/
IFNGR1 interactions (127, 128). Of note, apoptotic tumor cells 
have been shown to be superior to cell lysates or tumor cell RNA 
in inducing a tumor-specific T-cell response (129, 130). Hence, 
tumor-cell apoptosis induced by the release of cytotoxic granules 
from activated CAR NK-92 cells provides tumor antigens in a 
most effective form for uptake, processing, and presentation by 
DCs. Whether this vaccine or adjuvant effect of CAR NK-92 cells 
is a particular consequence of direct intratumoral administration 
as performed in our study and the study by Boissel et al. (69, 126) 
is subject of ongoing investigations.
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FiGUre 4 | induction of protective antitumor immunity by Car-engineered nK-92 cells. (a) Murine GL261/ErbB2 glioblastoma cells (5 × 103) stably 
expressing human ErbB2 were stereotactically injected into the right striatum of syngeneic C57BL/6 mice. Seven days later, animals were treated once per week for 
3 weeks by intratumoral injection of 2 × 106 parental NK-92 (n = 6) or NK-92/5.28.z cells (n = 8), which express an ErbB2-specific CAR with CD28 and CD3ζ 
signaling domains. Animals that were cured upon NK-92/5.28.z treatment (n = 5) were rechallenged at day 126 by injection of 5 × 103 GL261/ErbB2 cells into the 
left brain hemisphere without further NK-cell therapy and symptom-free survival was followed. Naïve C57BL/6 mice injected into the brain with GL261/ErbB2 cells at 
day 126 served as a control (n = 5) (69). (B) Induction of IgG serum antibodies against glioblastoma cells in NK-92/5.28.z-treated animals (n = 4) from the 
experiment summarized in (a) was investigated by flow cytometry with GL261/ErbB2 (upper panel) and ErbB2-negative parental GL261 cells (lower panel) using 
sera collected at day 210. Sera from naïve C57BL/6 mice (n = 2) served as controls. MFI, mean fluorescence intensity (geometric mean). Data for GL261/ErbB2 
cells are from Zhang et al. (69). (C) T cells in the NK-92/5.28.z-pretreated and rechallenged mice were depleted by intravenous injection of CD4- and CD8-specific 
antibodies at days 568, 573, 578, 582, 587, and 592 (left and middle panels). At day 575, these animals were rechallenged a second time with 5 × 103 GL261/
ErbB2 cells injected into the left brain hemisphere without further NK-cell therapy. Tumor development was assessed by MRI at day 595 (right panels).
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GeneraL saFety aspeCts oF Car 
nK-92 CeLLs

In addition to the well-defined chimeric receptor, polyclonal 
CAR T  cells carry endogenous, MHC-restricted T-cell recep-
tors (TCRs) of unknown specificity. In an autologous setting, 
it can be expected that due to thymic selection, only very few 
autoreactive T  cells are present in the periphery. Nevertheless, 
in donor-derived CAR T  cells, CAR-induced activation and 
expansion may accidentally result in increased TCR-mediated 
reactivity with the recipient’s tissues, leading to severe GvHD 
(131). Unlike T cells, NK cells do not carry genetically rearranged 
clonogenic receptors. Ligands for germline-encoded activating 

NK-cell receptors are typically upregulated only by stressed cells 
after virus infection or malignant transformation, which is the 
basis of the NK cells’ intrinsic antitumor activity (2). Hence, the 
activating receptors NKp30, NKp46, and NKG2D expressed by 
NK-92 can be expected to contribute to the antitumor activity 
of CAR-engineered variants rather than causing adverse effects 
(34). The natural cytotoxicity of NK-92 is largely retained by 
CAR-expressing variants as demonstrated in different studies 
using K562 cells as targets (23, 49).

Donor lymphocyte infusion with allogeneic NK  cells is 
mostly performed in the context of hematopoietic stem cell 
transplantation and generally considered safe, without a high 
risk of inducing GvHD (20). Nevertheless, depending on donor 
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selection and ex vivo activation, development of acute GvHD 
after NK DLI has been described, attributed to NK-dependent 
augmentation of T-cell alloreactivity (132). In two clinical tri-
als with NK-92 cells, only mild infusion-related side effects 
were noted, while no severe treatment-related toxicities were 
observed even at a cell dose as high as 1 × 1010/m2 body surface  
(31, 35, 36). While HLA-specific antibodies reactive with the 
allogeneic cells were found in some patients after NK-92 therapy, 
this was not linked to adverse effects. To prevent potential engraft-
ment of NK-92 that was initially derived from a non-Hodgkin 
lymphoma patient (33), the cells were irradiated with 10 Gy prior 
to infusion, prohibiting further proliferation but only resulting in 
a gradual decline of cytotoxicity over several days (31). Since it 
is presently unknown whether non-irradiated NK-92 cells have 
the potential to form secondary lymphoma in a human host, 
irradiation of the cells before infusion will also be included as 
a safety measure in a planned phase I clinical trial investigating 
intratumoral injection of ErbB2-specific NK-92/5.28.z cells in 
patients with recurrent ErbB2-positive glioblastoma (69, 133). 
Like parental NK-92, CAR-engineered NK-92 variants tran-
siently retain specific cytotoxicity after γ-irradiation with 10 Gy, 
with unchanged in vitro and in vivo antitumor activity (23, 56, 
67, 69). This extends to the immunostimulatory activity of CAR 
NK-92 cells, which was also found for irradiated ErbB2-specific 
NK-92/5.28.z cells in an immunocompetent glioblastoma mouse 
model similar to the one described in Figure  4 (Zhang et  al., 
unpublished data). Hence, in contrast to CAR T cells, which are 
capable of uncontrolled in vivo expansion, the effective dose of 
CAR NK-92 cells can be tightly managed to establish a therapeutic 
window, albeit at the price of potentially higher cell numbers and 
more frequent treatment intervals needed.

A major concern with CAR T-cell therapy is cytokine release 
syndrome (CRS) frequently observed in clinical trials with CD19-
specific effector cells, which can be severe and even cause fatalities. 
IL-6 production and IL-6 trans-signaling after massive activation 
of infused CAR T cells were found to play a critical role in CRS 
(134). CRS can be managed with the IL-6 receptor (IL-6R) block-
ing antibody tocilizumab or steroid treatment (134–136). While 
the latter inhibits CAR T-cell expansion and activity, it constitutes 
an important option for patients who do not respond to the IL-6R 
antagonist. In contrast to CAR T cells, activated CAR NK-92 cells 
do not produce measurable amounts of IL-6 and IL-4 as demon-
strated for NK-92 variants targeted to EGFR, EGFRvIII, ErbB2, or 
CD19 (67, 69, 71, 74). Instead, upon CAR activation, these cells 
secrete high levels of IFN-γ, macrophage inflammatory protein 
(MIP)-1α (CCL3), GM-CSF, and moderate levels of TNF-α. This 
cytokine/chemokine profile appears more favorable and less likely 
to induce CRS, while supporting the CAR NK-92-induced activa-
tion of endogenous antitumor immunity described above.

potentiaL on-tarGet/oFF-tUMor 
toXiCity

Chimeric antigen receptor effector cells specifically targeting 
mutated tumor antigens and viral antigens not expressed in 
normal tissues do not carry the risk of inducing on-target/ 
off-tumor toxicity. This safety feature is given for CAR NK-92 

cells selective for the tumor-specific EGFR mutant EGFRvIII 
frequently expressed in glioblastoma (71) and genetically modi-
fied NK-92 cells recognizing an epitope of the EBV latent protein 
EBNA3C in complex with HLA-A2 (78). However, most CARs 
currently available are directed to non-mutated self-antigens 
differentially expressed by the cancer cells. Consequently, there 
is a possibility for on-target/off-tumor activity against antigen-
positive healthy tissues, which can result in severe toxicities. 
B-cell aplasia is typically observed after CD19 CAR T-cell therapy 
but can easily be managed by infusion of immunoglobulins. This 
may be different if a tumor-associated target antigen is also pre-
sent in vital tissues. In a clinical trial conducted at the National 
Cancer Institute, a fatal adverse event occurred after infusion of 
autologous T  cells modified to express an ErbB2-specific third 
generation CAR based on trastuzumab (137). Although antigen-
independent CAR activation due to the combination of three 
signaling domains (CD137, CD28, CD3ζ) cannot be excluded 
(46), massive T-cell activation and respiratory failure immedi-
ately after CAR T-cell infusion may have been triggered at least in 
part by ErbB2 expressed at low levels on normal lung epithelium.

In addition to CAR affinity, the location of the CAR-binding 
epitope within the target antigen can play a decisive role in effector 
cell activation and influence on-target/off-tumor effects (82, 138). 
In the case of CAR T cells, CARs directed to membrane-distal 
epitopes were shown to be superior in binding but less potent in 
mediating activation than CARs directed to membrane-proximal 
epitopes of the same antigen (82, 83). We recently showed a simi-
lar effect for CAR NK-92 cells targeting EGFR, where a second-
generation CAR based on antibody cetuximab, which interacts 
with domain III of EGFR mediated more potent cytotoxicity than 
an otherwise identical CAR based on antibody R1 that recognizes 
an epitope within the N-terminal EGFR domain I (71). The tras-
tuzumab-derived ErbB2-specific scFv antibody fragment used by 
Morgan et al. binds to the juxtamembrane region (domain IV) of 
the target receptor (137, 139). In contrast, antibody FRP5 used for 
the generation of ErbB2-specific NK-92/5.28.z cells recognizes 
a discontinuous epitope within domain I of ErbB2 facing away 
from the cell surface (44, 140). Consequently, FRP5-based CARs 
are less likely than trastuzumab-based CARs to get activated by 
ErbB2 expressed at moderate levels, which is supported by data 
from a clinical trial in sarcoma patients with ErbB2-specific 
T cells carrying an FRP5-based second-generation CAR, where 
no on-target/off-tumor toxicities were observed (141).

Irradiated CAR NK-92 cells do not expand and persist in vivo. 
Hence, they may even be applicable in a clinical setting to target 
more abundantly expressed self-antigens such as non-mutated 
EGFR (70–72), since side effects due to reactivity with normal tis-
sues would be expected to be transient. In the future, more sophis-
ticated safety measures like expression of inducible caspase-9  
(iCasp9) as a suicide gene may thereby replace γ-irradiation of 
NK-92 and CAR NK-92 cells, allowing to rapidly eliminate the 
cells in case of toxicities, but also to extend in vivo activity with 
a reduction in the cell dose and treatment frequency needed. 
iCasp9 represents a fusion of the human FK506-binding protein 
FKBP12 harboring an F36V mutation, and truncated human 
caspase-9 lacking the caspase activation and recruitment domain 
(142). In the presence of otherwise inert FK506 analogs such as 
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FiGUre 5 | inducible caspase-9 (iCasp9) as a safety switch for 
Car-engineered nK-92 cells. (a) NK-92 cells transduced with a lentiviral 
vector that encodes iCasp9 and ErbB2-specific CAR 5.28.z separated by a 
Thosea asigna virus self-cleaving peptide (T2A) (NK-92/iCasp9_T2A_5.28.z) 
were incubated in the presence of 10 nM of the homodimerizer AP20187 for 
iCasp9 activation. Lysates of cells collected after 10, 20, 30, or 60 min of 
exposure to AP20187 were subjected to SDS-PAGE and subsequent 
immunoblotting with a caspase-9-specific antibody. Lysates of NK-92/
iCasp9_T2A_5.28.z cells kept without dimerizer and parental NK-92 cells 
incubated in the absence or presence of AP20187 served as controls. (B) 
Cytotoxicity of NK-92/iCasp9_T2A_5.28.z cells against ErbB2-
overexpressing MDA-MB453 breast carcinoma cells was investigated in flow 
cytometry-based cytotoxicity assays after co-incubation of NK cells and 
tumor cells at different effector to target ratios (E/T) for 2 h in the absence 
(filled circles) or presence of AP20187 (open circles). Parental NK-92 cells 
were included for comparison (gray boxes). Mean values ± SEM are shown; 
n = 2.
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AP1903 or AP20187, iCasp9 dimerizes, inducing caspase activa-
tion and apoptotic cell death. NK-92 cells coexpressing iCasp9 
and a CAR are viable in the absence of dimerizer and retain high 
and specific CAR-mediated cytotoxicity. In contrast, addition of 
AP20187 rapidly induces activation of iCasp9 and cleavage of 
endogenous caspases, precluding any further cell killing by the 
CAR-engineered cells (Figure 5).

ConCLUsion and FUtUre 
perspeCtiVes

Over the past 25  years, NK-92 cells have transformed from a 
readily available model for studies on human NK cell biology to 
a promising cell therapeutic for applications in adoptive cancer 
immunotherapy. As outlined above, genetic modification of 
NK-92 with CARs has emerged as a successful strategy to enhance 
the cells’ intrinsic antitumor activity and provide them with 
the capacity for selective target recognition. The ability of CAR 
NK-92 cells to bypass the immunosuppressive effects of TGF-β 

and hypoxia in preclinical studies and to enhance or initiate adap-
tive antitumor immunity is encouraging (69). Nevertheless, the 
potential impact of immunosuppressive factors like IDO, PGE2, 
IL-4, NO, and ROS abundant in the tumor microenvironment 
has not yet been investigated. Concurrent interference with 
these mechanisms may offer an opportunity to further improve 
the direct antitumor activity of CAR NK-92 and enhance their 
immunostimulatory potential. Also, clarifying the relevance of 
checkpoint regulators such as PD-1 for CAR NK-92 functional-
ity (74) and investigating combination therapies with checkpoint 
inhibitors and other immunomodulatory regimens appears 
warranted. Specific cytotoxicity of the NK cells may be enhanced 
by ectopic expression of components of the cytolytic machinery 
(143). Chemoattractants like CXCR3 ligands and chemerin can 
increase accumulation of NK cells at tumor sites (144, 145) and 
modulation of chemokine receptor expression would likely aug-
ment the tumor homing capability of CAR NK-92 cells (146).

Clinical responses seen in individual patients treated with 
parental NK-92 and ease of improvement by genetic modification 
with Fc receptors and CARs not only increased efforts of academic 
researchers to design tailor-made variants for specific disease enti-
ties and target antigens but also sparked commercial interest, which 
is essential to address the challenges associated with standardization 
of such cell products, large-scale expansion, logistics for distribu-
tion, and advanced clinical development (32, 90). Current efforts 
in the CAR T-cell field are aimed at generating similar universal 
cell products by eliminating endogenous TCR and MHC with 
the help of sophisticated gene editing procedures (147–149). This 
underscores the relevance of truly off-the-shelf CAR cell products 
like CAR NK-92 for broader applicability of this therapeutic strat-
egy. Early phase clinical trials with CAR NK-92 cells are expected 
to commence in the near future. Insights from these studies will 
be essential to judge the therapeutic potential of CAR NK-92 in 
comparison to ex vivo expanded and CAR-engineered primary 
NK cells and determine the direction of further development.
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Therapeutic monoclonal antibodies against the epidermal growth factor receptor 
(EGFR) act by inhibiting EGFR downstream signaling and by eliciting a natural killer (NK) 
cell-mediated antitumor response. The IgG1 mAb cetuximab has been used for treat-
ment of RASwt metastatic colorectal cancer (mCRC) patients, showing limited efficacy. 
In the present study, we address the potential of adoptive NK cell therapy to overcome 
these limitations investigating two allogeneic NK cell products, i.e., allogeneic activated 
peripheral blood NK cells (A-PBNK) and umbilical cord blood stem cell-derived NK 
cells (UCB-NK). While cetuximab monotherapy was not effective against EGFR− RASwt, 
EGFR+ RASmut, and EGFR+ BRAFmut cells, A-PBNK were able to initiate lysis of EGFR+ 
colon cancer cells irrespective of RAS or BRAF status. Cytotoxic effects of A-PBNK (but 
not UCB-NK) were further potentiated significantly by coating EGFR+ colon cancer cells 
with cetuximab. Of note, a significantly higher cytotoxicity was induced by UCB-NK in 
EGFR−RASwt (42 ± 8 versus 67 ± 7%), EGFR+ RASmut (20 ± 2 versus 37 ± 6%), and 
EGFR+ BRAFmut (23  ±  3 versus 43  ±  7%) colon cancer cells compared to A-PBNK 
and equaled the cytotoxic efficacy of the combination of A-PBNK and cetuximab. The 
antitumor efficacy of UCB-NK cells against cetuximab-resistant human EGFR+ RASmut 
colon cancer cells was further confirmed in an in vivo preclinical mouse model where 
UCB-NK showed enhanced antitumor cytotoxicity against colon cancer independent 
of EGFR and RAS status. As UCB-NK have been proven safe in a recently conducted 
phase I clinical trial in acute myeloid leukemia, a fast translation into clinical proof of 
concept for mCRC could be considered.

Keywords: egFr, ras mutation, cetuximab, metastatic colorectal cancer, a-PBnK, UcB-nK, allogeneic nK cell 
immunotherapy

inTrODUcTiOn

Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths in the world (1). Despite 
substantial advances in the treatment of metastatic CRC (mCRC) over the last decades that have 
contributed to better survival rates (2, 3), the disease is still frequently fatal. Monoclonal antibodies 
(mAbs) targeting the epidermal growth factor receptor (EGFR) pathway, such as panitumumab 
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and cetuximab, are approved for the treatment of patients with 
advanced CRC either in combination with chemotherapy or, as 
monotherapy, in chemorefractory conditions (4). Cetuximab 
(CET) and panitumumab block the interaction between EGFR 
and its ligands, thus inhibiting the downstream RAS-signaling 
cascade and tyrosine kinase activation (5). However, mutations in 
tumor suppressor genes and proto-oncogenes in EGFR signaling 
pathways, such as in RAS, BRAF, and PIK3CA, are common in 
patients with CRC. These mutations represent a poor prognostic 
marker and render anti-EGFR mAbs ineffective, leaving 42% of 
the chemorefractory mCRC population without this standard 
treatment option (6, 7).

Besides the blockade of the EGFR–ligand interaction on tumor 
cells, therapeutic mAbs can also interact with natural killer (NK) 
cells triggering antibody-dependent cell-mediated cytotoxicity 
(ADCC) (8–10), and this can translate into superior antitumor 
effects (11). Two NK cell subsets can be identified based on the 
expression of CD16, the low affinity FcγRIIIa receptor. The major-
ity of NK cells are CD56dimCD16+ and play an active role in NK 
cell cytotoxicity and are capable of performing ADCC upon IgG1 
engagement via CD16, whereas CD56brightCD16− NK cells are 
mainly immune regulatory in function, secreting cytokines, and 
are less cytotoxic than CD56dim cells (12). NK cell functions are 
tightly regulated by a delicate balance between activating recep-
tors (like the natural cytotoxicity receptors NKp46, NKp30, and 
NKp44, or C-type lectin-like receptor NKG2D) (13) and major 
histocompatibility complex (MHC) class I binding inhibitory 
receptors, including killer cell immunoglobulin-like receptors 
(KIRs), LIR1/ILT2, and NKG2A/CD94 (14). The importance of 
NK cells in controlling tumors has been extensively demonstrated 
since their identification 40 years ago (15–17).

Several studies have shown a dysfunctional phenotype and 
poor infiltration of NK cells in the CRC tissue from early stages 
on, together with an immunosuppressive tumor microenviron-
ment (18, 19). Hence, various strategies, e.g., using cytokines 
or therapeutic ADCC enhancing mAbs, have been explored to 
increase NK cell numbers and function and to enhance their traf-
ficking to tumor sites (20). Another approach entails the adop-
tive transfer of in  vitro manipulated and expanded autologous 
or allogeneic NK cells. Autologous NK cells so far have failed 
to demonstrate significant therapeutic benefits in solid tumors 
(21–23). Therefore, the focus has shifted to the development 
of allogeneic NK cells as a potential adoptive cell therapy for 
treatment in solid tumors. Previously, we demonstrated that the 
combination of allogeneic activated peripheral blood NK cells 
(A-PBNK) and CET can effectively target RAS mutant (RASmut) 
CRC tumors (24).

Here, we compared two feeder cell-free allogeneic NK cell 
products, i.e., A-PBNK and umbilical cord blood stem-cell derived 
NK cells (UCB-NK), alone or in combination with cetuximab for 
antitumor effects against RASmut CRC.

MaTerials anD MeThODs

cell lines
Cell lines A431 (epidermoid carcinoma), COLO320, SW480, and 
HT-29 (colon carcinoma) were obtained from American Type 

Culture Collection and cultured in Dulbecco’s modified medium 
(DMEM; Invitrogen, Carlsbad, CA, USA) containing 100 U/ml 
penicillin, 100  µg/ml streptomycin, and 10% fetal calf serum 
(FCS; Integro, Zaandam, The Netherlands). Cell cultures were 
passaged every 5 days and maintained in a 37°C, 95% humidity, 
5% CO2 incubator.

PBnK isolation and activation
Peripheral blood mononuclear cells (PBMCs) were isolated 
from the heparinized blood of healthy donors (six males, four 
females, age range = 56–64 years and CRC patients (eight males, 
two females, age range  =  66–74  years) after written informed 
consent and according to protocols approved by the institutional 
review board of VU University Medical Center, Amsterdam 
(NCT01792934). Blood samples were collected at baseline and 
after the first cycle of first-line palliative chemotherapy consisting 
of oral capecitabine (1,000 mg/m2, bid, days 1–14), i.v. oxaliplatin 
(130 mg/m2, day 1), and i.v. bevacizumab (7.5 mg/kg, day 1, in 
4/10 mCRC patients). PBMCs were isolated using Lymphoprep™ 
(STEMCELL Technologies, Cologne, Germany) density gradient 
centrifugation. CD56+ NK cells were isolated from PBMC using 
a MACS Human NK cell isolation kit (Miltenyi Biotec, Bergisch 
Gladbach, Germany) according to the manufacturer’s instruc-
tions. PBNK cells purity and viability were checked using CD3 
VioBlue, CD56 APC Vio 770, and CD16 APC (Miltenyi Biotech) 
and 7-AAD (Sigma Aldrich, Zwijndrecht, The Netherlands). 
Isolated PBNK cells were activated overnight with 1,000 U/ml 
IL-2 (Proleukin®; Chiron, München, Germany) and 10  ng/ml 
IL-15 (CellGenix) for use in cytotoxicity assays. The parameters 
compared before and after stimulation with cytokines were NK 
purity (87  ±  5 versus 84  ±  2%), NK CD16+, (92  ±  12 versus 
88 ± 8%) and NK viability (89 ± 5 versus 84 ± 8%), respectively.

Flow cytometry
The antibody staining mix for the assessment of NK cell func-
tionality consisted of CD45 VioGreen, CD14 VioBlue, CD19 
VioBlue, and SYTOX® Blue, together with CD3 PerCP-Vio 700 
and TCRγδ PerCP-Vio700 to exclude dead cells, debris, and 
non-NK populations from PBMCs. NK cells were identified by 
the expression of CD45+CD3−CD56+ cells, and further character-
ized for NK functionality by plotting against CD16 APC, CD25 
VioBrightFITC, CD107a PE, and NKp44 PE-Vio770 and for NK 
cell phenotype by plotting against NKG2A PE-Vio770, NKG2C 
PE, NKG2D PerCP-Cy5.5, and PanKIR2D FITC. All antibodies 
were supplied by Miltenyi Biotec except SYTOX® Blue (Thermo 
Fisher Scientific, Berlin, Germany).

UcB-nK cultures
Allogeneic NK cells (UCB-NK) were generated from cryopre-
served umbilical cord blood (UCB) hematopoietic stem cells as 
previously described (25). CD34+ UCB cells from six UCB-donors 
were plated (4 × 105/ml) into 12-well tissue culture plates (Corning 
Incorporated, Corning, New York, NY, USA) in Glycostem Basal 
Growth Medium (GBGM®) (Clear Cell Technologies, Beernem, 
Belgium) supplemented with 10% human serum (HS; Sanquin 
Bloodbank, Amsterdam, The Netherlands), 25  ng/ml of SCF, 
Flt-3L, TPO, and IL-7 (CellGenix, Freiburg, Germany). In the 
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expansion phase II, from day 9 to day 14, TPO was replaced with 
20 ng/ml IL-15 (CellGenix). During the first 14 days of culture, 
low molecular weight heparin (Clivarin®; Abbott, Wiesbaden, 
Germany) in a final concentration of 20 µg/ml and a low-dose 
cytokine cocktail consisting of 10 pg/ml GM-CSF (Neupogen), 
250 pg/ml G-CSF and 50 pg/ml IL-6 (CellGenix) were added to 
the expansion cultures. Cells were refreshed with new medium 
twice a week and maintained at 37°C, 5% CO2. On day 14, the 
NK cell differentiation process was initiated by addition of NK 
cell differentiation medium consisting of the same basal medium 
with 2% HS but with high-dose cytokine cocktail consisting 
of 20  ng/ml of IL-7, SCF, IL-15 (CellGenix), and 1,000  U/ml 
IL-2 (Proleukin®; Chiron, München, Germany). Cultures were 
refreshed every 2–3 days and maintained till day 42. Five UCB-NK 
cultures were used for cytotoxicity assays and one UCB-NK cul-
ture for in vivo studies (both with a CD56+ cell purity of >95%). 
UCB-NK CD16 levels in matured UCB-NK cells were monitored 
using an antibody mix of human CD45VioGreen (1:11), CD56 
APC-Vio770 (1:11), and CD16 APC (1:11). Similarly, UCB-NK 
CD16 expression in BRGS mice was monitored using an antibody 
mix of BV650 anti-mouse CD45 (clone 30-F11), Alexa Fluor® 700 
anti-human CD45 (clone HI30), PE-CF594 anti-human CD56 
(clone B159), all from BD, and APC-Vio770 anti-human CD56 
(clone REA196) and APC CD16 (clone REA423) both from 
Miltenyi Biotec.

nK cell cytotoxicity assays
Flow cytometry was used for the readout of cytotoxicity assays. 
Target cells (COLO320, SW480, and HT-29) were labeled 
with 5  µM pacific blue succinimidyl ester (PBSE; Molecular 
Probes Europe, Leiden, The Netherlands) at a concentration of 
1 × 107 cells/ml for 10 min at 37°C. The reaction was terminated 
by adding an equal volume of FCS, followed by incubation 
at room temperature for 5  min after which stained cells were 
washed twice and suspended in DMEM  +  10% FCS to a final 
concentration of 5  ×  105/ml. Overnight activated PBNK cells 
and UCB-NK cells were washed with PBS and suspended in 
GBGM + 2% FCS to a final concentration of 5 × 105/ml. Target 
cells were cocultured with effector cells at an E:T ratio of 1:1 in a 
total volume of 250 µl in 96-well flat-bottom plates (5 × 104 targets 
in 100 µl of DMEM + 10% FCS incubated with 5 × 104 effectors 
in 100 µl of GBGM + 2% FCS, further supplemented with 25 µl 
of GBGM + 2% FCS and DMEM + 10% FCS medium). NK cells 
and target cells alone were plated out in triplicate as negative 
controls. Target cells were coated with 5 µg/ml cetuximab (Merck, 
Darmstadt, Germany) for 1 h at 4°C. To measure degranulation of 
NK cells, anti-CD107a PE (Miltenyi Biotech) was added in 1:20 
dilution at the beginning of the assay. After incubation for 4 h 
at 37°C, cells were harvested and stained with CD56 APC Vio 
770 (1:25) and CD16 APC (1:25) (Miltenyi Biotech) and 7-AAD 
(1:500) (Sigma Aldrich). Degranulation of NK cells was measured 
by detecting cell surface expression of CD107a.

In Vivo studies
The EGFR+RASmut SW480 cell line and EGFR+++RASwt A431 
cell line were stably transduced with Gaussia Luciferase (Gluc) 
for in  vivo studies. Lentiviral (LV) supernatant of Cerulean 

Fluorescent Protein (CFP)-positive Gluc virus (LV-CFP-Gluc) 
was kindly provided by Dr. Tom Würdinger (26). SW480 and 
A431 cells with Gluc expression of 95% were used for mouse 
studies.

Immunodeficient BRGS mice (BALB/c Rag2tm1Fwa Il2rgtm1Cgn 
SirpaNOD) were used in this study. Twenty-four adult mice (male, 
8 weeks old) received an intravenous (i.v.) tail vein injection with 
0.5 × 106 SW480 Gluc cells at day 0 and were randomized into 
four groups. Group A only received SW480 cells, group B received 
SW480 in combination with cetuximab intraperitoneally (i.p., 
0.5 mg, days 1, 4, and 7), group C received SW480 in combination 
with UCB-NK i.v. (1 × 107, days 1, 4, and 7), and group D received 
SW480 cells in combination with UCB-NK i.v. (1 × 107, days 1, 4, 
and 7) and cetuximab i.p. (0.5 mg, days 1, 4, and 7). Groups C and 
D received i.p. 0.5 µg IL-15 + 7.5 µg IL-15Rα every 2–3 days from 
day 0 till day 14. Further, three adult mice received i.v. tail vein 
injection of 0.5 × 106 A431 Gluc cells at day 0 and were treated 
with 0.5  mg cetuximab (i.p., 0.5  mg, days 1, 4, and 7), which 
were used as a cetuximab efficacy control. Treatment effects were 
monitored using blood Gluc levels and bioluminescence imaging 
(BLI). All manipulations of BRGS mice were performed under 
laminar flow conditions.

Blood gluc Quantification In Vitro
Secreted Gluc was measured according to a protocol described 
previously (27). A total of 10 µl of blood was collected by capillar-
ity into EDTA containing Microvette® CB tubes. Blood samples 
were distributed in 96-well black plates then mixed with 100 µl 
of 100 mM Gluc substrate native coelenterazine in PBS (P.J.K. 
GmbH, Kleinblittersdorf, Germany), and 5 min later, light emis-
sion was quantified. Blood that was withdrawn before tumor 
inoculation served to determine a baseline value. Measurements 
were done twice a week until day 35. Gluc activity was measured 
using IVIS spectrum luminescence detector (PerkinElmer, 
Villebon-sur-Yvette, France). Data obtained were quantified 
using Living Image 4.0 software (PerkinElmer, Villebon-sur-
Yvette, France).

Bli In Vivo
Mice were anesthetized using isofluorane gas in an induction 
chamber at a gas flow of 2.5 pm. Retro-orbital injection of coelen-
terazine (4 mg/kg body weight) was administered and mice were 
placed in the anesthesia manifold inside the imaging chamber 
and imaged within 5 min following substrate injection. Mice were 
placed into the light chamber and overlay images were collected 
for a period of 15  min using IVIS spectrum in  vivo imaging 
system (PerkinElmer, Villebon-sur-Yvette, France). Images were 
then analyzed using Living Image 4.0 software (PerkinElmer, 
Villebon-sur-Yvette, France).

ethics statement
Animals were housed in isolators under pathogen-free condi-
tions with humane care and anesthesia was performed using 
inhalational isoflurane anesthesia to minimize suffering. 
Experiments were approved by the Institut Pasteur’s ethical 
committee for animal use in research, Comité d’étique en expéri-
mentation animale (CETEA) #89, protocol reference # 2007–006 
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FigUre 1 | low prevalence and functionally impaired natural killer (nK) cells in colorectal cancer (crc) patients. (a) Frequency of NK cells within 
peripheral blood mononuclear cells from healthy controls and from metastatic CRC (mCRC) patients at baseline and after the first cycle of chemotherapy. (B) NK cell 
degranulation in healthy controls and mCRC patients after a 4-h coculture of resting NK cells with A431 cells in the presence (open symbols) or absence (closed 
symbols) of cetuximab at an E:T ratio of 1:1. (c) Expression levels of resting NK cell CD16 and (D) NKp44 in healthy controls and in mCRC patients before and after 
one cycle of chemotherapy. Data represent mean ± SEM from 10 mCRC patients and 10 age- and sex-matched healthy controls. *P < 0.05, **P < 0.01, 
***P < 0.005, calculated with one-way ANOVA, multiple comparison between column means.
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and validated by the French Ministry of Education and Research 
(Reference # 02162.01).

statistical analysis
Data were analyzed using GraphPad Prism version 6 (GraphPad 
Software, San Diego, CA). Differences between conditions were 
determined using one-way ANOVA or two-way ANOVA with 
multiple comparisons between column means, unpaired t test and 
log-rank (Mantel–Cox) test as deemed appropriate. A P-value of 
<0.05 was considered statistically significant.

resUlTs

highly Dysfunctional nK cells in crc 
Patients
Flow cytometry was used to determine the frequency, phenotype, 
and functionality of NK cells in PBMC of healthy volunteers 
(n = 10, age range 56–64 years, 6 males/4 females) and patients with 
metastatic CRC (n = 10, age range 66–74 years, 8 males/2 females) 
before and after the first cycle of first-line palliative chemotherapy 
consisting of oral capecitabine (1,000 mg/m2, bid, days 1–14), i.v. 
oxaliplatin (130  mg/m2, day 1), and i.v. bevacizumab (7.5  mg/
kg, day 1, in 4/10 mCRC patients). As illustrated in Figure 1A, 
mCRC patients harbored on average a 20% lower percentage of 
CD3−CD56+NK cells in the total CD45+ lymphocyte population 

as compared to healthy controls (P < 0.05). These lower NK rates, 
which are in line with a previous report in CRC (28), further 
declined after the first cycle of chemotherapy (P < 0.01).

We next evaluated whether this quantitative NK cell defect was 
also accompanied by functional defects in the NK cell population. 
For this purpose, the ability of NK cells from healthy volunteers 
and mCRC patients to induce both natural cytotoxicity and medi-
ate ADCC of the epidermoid carcinoma cell line A431 (MHC-Ilow, 
EGFRhigh, KRASwt) was assessed. For ADCC, tumor target cells 
were coated with cetuximab before the addition of NK cells. It 
was evident that the cytotoxic potential of NK cells from mCRC 
patients, as reflected by degranulation (i.e., CD107a surface 
expression), was highly impaired both before chemotherapy and 
after the first cycle of chemotherapy. Though NK cells of mCRC 
patients were capable of ADCC, as evidenced by significant 
increases in degranulation when target cells were coated with 
cetuximab (P  <  0.05), levels were still low compared to those 
observed in healthy volunteers (Figure  1B). Of note, although 
the NK cells of healthy volunteers and mCRC patients expressed 
similar levels of CD16 (Figure  1C), this did not translate into 
comparable levels of ADCC. NKp44 expression, known to reflect 
the activation status of NK cells, was similar between the HD and 
mCRC groups used in NK cytotoxicity experiments (Figure 1D). 
Furthermore, no significant differences were observed in expres-
sion levels of NK activating (NKG2D, NKG2C) and NK inhibiting 

329

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 2 | Ex vivo cytotoxic efficacy of a-PBnK and UcB-nK cells against colorectal cancer (crc) cells. CRC cell lines COLO320 (EGFR−, RASwt), 
SW480 (EGFR+, RASmut), and HT-29 (EGFR+, RASwt, BRAFmut) were subjected to natural killer (NK) killing using two allogeneic NK cell products, i.e., A-PBNK and 
UCB-NK cells. 7-AAD (a,B,c) and CD107a (D,e,F) were measured after a 4-h coculture of A-PBNK and UCB-NK cells with CRC targets in the presence or 
absence of cetuximab at an E:T ratio of 1:1. Experiments were carried out in triplicate. Bars represent mean ± SEM, n = 5. *P < 0.05 and **P < 0.01, calculated 
with two-way ANOVA, multiple comparison between column means.
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(NKG2A, KIR2D) receptors between healthy controls and CRC 
patients (Figure S1 in Supplementary Material).

enhanced In Vitro cytotoxicity of colon 
cancer cells Mediated by UcB-nK cells
In order to explore novel therapies to replace dysfunctional NK 
cells in patients with advanced CRC, we tested two different sources 
of allogeneic NK cell products (A-PBNK and UCB-NK) that 
could eventually be used for adoptive transfer strategies. We next 
compared the activity of A-PBNK cells (age range 22–37 years) 
and UCB-NK cells using a flow based NK cell cytotoxicity assay 
based on detection of 7-AAD accumulation in tumor cells. Three 
different cell lines of colon cancer origin were compared, i.e., 
COLO320 (EGFR− RASwt), SW480 (EGFR+ RASmut), and HT-29 
(EGFR+ RASwt BRAFmut). As expected, addition of cetuximab to 
EGFR− RASwt COLO320 cells did not result in increased kill-
ing. Of interest, lysis was consistently and significantly higher 
(P <  0.01) using UCB-NK compared to A-PBNK. As reported 
previously, the combination of cetuximab and A-PBNK resulted 
in increased killing of EGFR+RASmut SW480 and EGFR+ BRAFmut 
HT-29 via ADCC (24). CD16 was expressed by 88 ± 8% (n = 5) 
of A-PBNK after overnight stimulation with cytokines and by 
7 ± 2% (n = 5) of UCB-NK cells at the end of the 35-day culture 
period. No added effect of cetuximab was observed when using 
UCB-NK cells, which is possibly related to their lower in vitro 

CD16 levels (29). Of note, tumor cell lysis induced by UCB-NK 
cells was comparable to that observed with the combination of 
A-PBNK and cetuximab (Figures 2A,B,C). Measurements of NK 
cell degranulation reflected equivalent trends observed for tumor 
cell lysis (Figures  2D,E,F). These results show that UCB-NK 
cells have superior cytotoxic efficacy over A-PBNK cells against 
cetuximab-resistant colon cancer cells in vitro.

UcB-nK cells inhibit In Vivo Tumor 
growth and increase survival
To address whether UCB-NK cells exhibit similar antitumor 
efficacy in  vivo, we transferred Gluc transduced SW480 cells 
to immunodeficient mice (BRGS; see Materials and Methods). 
SW480 cells are EGFR+RASmut and cetuximab monotherapy 
resistant. Mice were divided into four groups of six mice per 
group: SW480 only (group A), SW480 + cetuximab (group B), 
SW480 + UCB-NK (group C), and SW480 + UCB-NK + cetuxi-
mab (group D). Gaussia luciferase activity in whole blood was 
measured every 3 days to monitor the tumor burden (Figure S2 
in Supplementary Material). These data confirmed our in vitro 
observations that SW480 cells were resistant to cetuximab-
mediated growth inhibition (blue line). Of note, while treatment 
with UCB-NK cells alone significantly decreased the tumor load 
(green line), this effect was not increased by combining UCB-NK 
cells with cetuximab and thereby further confirmed both the 
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FigUre 3 | significant antitumor effects of UcB-nK cells in vivo. Real-time monitoring of tumor progression and treatment response was performed 
measuring Gluc levels from mice blood twice a week. Baseline Gluc values were obtained from all mice a day before tumor injection (day 1), and further monitoring 
continued until day 35. Blood Gluc levels were compared between control SW480 only (A) group and treatment groups SW480 + cetuximab (B), SW480 + UCB-NK 
(C), and SW480 + UCB-NK + cetuximab (D) for statistical significance. Data presented is from six mice per group (n = 6). Scatter plots represent mean ± SEM. 
*P < 0.05, calculated with unpaired t test.
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inefficacy of cetuximab in treating RAS mutated tumors as 
well as the inability of cetuximab to induce ADCC of UCB-NK 
cells in  vivo (orange line) (Figure  3). CD16 expression levels 
on UCB-NK cells were monitored in two mice upon adoptive 
transfer and increased from 6.0% before transfer to 14.0% (mouse 
1) and 19.1% (mouse 2) at day 5 post UCB-NK cell infusion (data 
not shown).

While the blood Gluc assay measurements provided evidence 
of a reduction in the total tumor burden after UCB-NK treatment, 
we wanted to explore the impact of the therapy on the localization 
and size of the metastases. For that purpose, BLI was performed at 
day 35 after tumor inoculation. Figure 4A depicts four representa-
tive BLI images from each group at day 35 posttumor injection and 
average radiance from range of interest measurements are shown 
in Figure 4B. It is clear that mice from groups A and B showed 
a higher and more diffuse tumor load compared to mice treated 
with UCB-NK alone or in combination with cetuximab. In order 
to demonstrate the possibility of antitumor efficacy of cetuximab 
in the BRGS mouse model, we performed a similar tumor chal-
lenge using the cetuximab-sensitive A431 cell line, which bears 
wild-type RAS and overexpresses EGFR. A significant decrease 
in tumor load was observed when A431 tumors were treated 
with the same concentration of cetuximab as in the SW480 study 
(Figure 4C), confirming the in vivo functionality of cetuximab. 
We next assessed whether treatment of SW480 bearing mice with 
UCB-NK cells alone or in combination with cetuximab translated 

into a survival advantage (Figure 5). Indeed, treatment of mice 
with UCB-NK cells alone resulted in a significant prolongation in 
their life span (P = 0.01), whereas combinatorial therapy did not 
add significantly to this. Treatment with cetuximab alone did not 
translate into a significant survival advantage, consistent with the 
observed effects on tumor growth.

DiscUssiOn

In order to test the cytotoxic potential of NK cells for treating 
advanced CRC patients, we compared their functional status 
before and after chemotherapy. We observed that peripheral 
blood NK cell numbers were reduced in mCRC patients and 
that residual NK cells were dysfunctional and unable to mount a 
strong effector response when stimulated with an NK cell sensi-
tive tumor target. Though an increase in NK cell cytotoxicity was 
observed when tumor target cells were coated with the anti-EGFR 
mAb cetuximab, reflecting a capacity for ADCC, cytotoxicity was 
still significantly lower (both before and after chemotherapy) than 
that observed in healthy controls. These data indicate a decreased 
functional state of NK cells in patients with mCRC, which is in 
line with studies in mice where the cytokine production and 
antitumor activity of adoptively transferred NK cells were highly 
affected following long-term exposure to tumors (30). Through 
recognition of MHC class I molecules, KIRs prevent NK cells from 
targeting healthy cells while allowing them to detect tumor or 
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FigUre 5 | significant survival benefit in cetuximab-resistant ras mutant tumor bearing mice treated with UcB-nK cells. Kaplan–Meier survival curves 
were plotted for the total experimental study period from day 0 until day 65. Survival rates of SW480 (EGFR+, RASmut) tumor-bearing mice (n = 6 per group) following 
treatment with PBS only (black line), cetuximab only (blue line), UCB-NK only (green line), and UCB-NK + cetuximab (orange line) were plotted over time to monitor 
treatment outcome. Statistical differences between groups were calculated using log-rank (Mantel–Cox) test and indicated in the figure.

FigUre 4 | continued 
successful tumor elimination by UcB-nK cells as revealed by bioluminescence imaging in vivo. (a) Four mice from control and treatment groups were 
imaged at day 35 for tumor load and distribution. Mice were injected retro-orbitally with Gluc substrate coelenterazine and images were acquired for 5 min. In 
SW480 control and SW480 + cetuximab groups, tumor growth was extensive and highly disseminated, spreading to most parts of the body. However, in UCB-NK 
and UCB-NK + cetuximab groups, there was a significantly lower tumor load, which was further verified by calculating the average radiance between groups as 
shown in panel (B) (n = 4 mice per group). (c) Cetuximab functionality against EGFR+++ RASwt A431 cells was tested in parallel to SW480 studies in BRGS mice 
(n = 3 mice per group). For panels (B,c), bars represent mean ± SEM. *P < 0.05 for panels (B,c) was calculated with unpaired t test.
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infected cells with low or downregulated expression of MHC class 
I in a process known as “missing self ” (31). Severely diminished 
or aberrant expression of MHC class I has been reported in the 
majority of colorectal adenocarcinomas (32, 33), which makes 
them an ideal target for NK cell-mediated killing. Although NK 
cells are infrequent in colorectal tissues (18), several independent 
studies investigated the clinical impact of NK cell infiltration on 
the prognosis of CRC, as well as in other types of carcinoma. These 
clinical studies, including a recent tissue microarray of 1,414 CRC 
biopsies, led to the conclusion that NK cell infiltration in tumors 
correlated with better overall response rates and progression-free 
survival in CRC patients (34–37), suggesting that therapies aimed 
at boosting NK cell functions could be beneficial in mCRC and 
possibly also in other types of cancer.

We evaluated and compared the cytotoxic efficacy of two dif-
ferent sources of feeder cell free allogeneic NK cells, i.e., A-PBNK 
cells and in vitro expanded and differentiated UCB-NK cells. In 

vitro NK cell cytotoxicity experiments revealed that the cytotoxic 
activity of UCB-NK cells against CRC cells was significantly 
higher than that of A-PBNK cells and in addition demonstrated 
that, while an increase in cytotoxicity through ADCC was not 
evident with UCB-NK cells, their cytotoxic potential was still 
comparable to that observed with A-PBNK potentiated by 
cetuximab-mediated ADCC. It is possible that the stronger 
cytotoxic effects of UCB-NK cells result from a more intense 
stimulation with cytokines in comparison to A-PBNK cells. The 
failure to observe ADCC-enhanced cytotoxicity with UCB-NK 
cells in vitro can be explained by their low expression levels of 
CD16 (29). As we previously observed in  vivo upregulation of 
CD16 on UCB-NK cells upon their transfer to NOD/SCID/
IL2Rgnull (NSG) mice (38), we decided to also test the efficacy 
of cetuximab treatment in combination with UCB-NK cells in an 
in vivo model. Treatment of SW480 RASmut tumors in BRGS mice 
with UCB-NK cells resulted in control of disease progression 
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and translated into a significantly longer survival. As expected, 
cetuximab monotherapy did not result in a decreased SW480 
tumor load or improvement in survival, recapitulating the clinical 
data from patients bearing RASmut CRC tumors. Unexpectedly, we 
failed to demonstrate superior in vivo antitumor effects or survival 
when we combined the transfer of UCB-NK cells with cetuximab 
infusions. The underlying causes for this latter finding remain 
obscure but may be related to suboptimal in vivo upregulation 
of CD16 in the used mouse model or CD16 polymorphisms in 
the employed batch of UCB-NK cells, both of which could have 
hampered efficient ADCC.

Taken together, UCB-NK cells displayed significant antitumor 
efficacy, suggesting a potential beneficial role for UCB-NK cells in 
the treatment of RAS and BRAF mutant CRC. As an important 
present limitation in treating mCRC patients is related to resist-
ance to anti-EGFR mAbs, adoptive transfer of cytolytic UCB-NK 
cells could thus constitute a viable treatment option. Our in vitro 
and in vivo data demonstrating that adoptive transfer of UCB-NK 
cells alone was as effective as the combination of A-PBNK and 
cetuximab raises the possibility that UCB-NK administration 
could obviate the use of cetuximab in RASwt mCRC. Furthermore, 
UCB-NK can also lyse RASmut CRC cells at levels higher than 
those observed with A-PBNK. Importantly, allogeneic NK cells 
have demonstrated their safety in clinical trials in several solid 
tumors (39, 40), and more specifically, the UCB-NK cell product 
used in our experiments was found to be safe in a clinical trial 
in acute myeloid leukemia (AML) patients (Dolstra et al., 2016 
manuscript submitted).

Several features make UCB-NK attractive for further clini-
cal development. For example, our GMP-based expansion and 
differentiation protocol reproducibly resulted in a more than 
10,000-fold expansion of cytotoxic UCB-NK cells from single 
donors. Furthermore, UCB-NK cells can be supplied as an “off 
the shelf ” product, stored in large aliquots facilitating multiple 
infusions. Also, the low immunogenicity by UCB grafts prevents 
adverse reactions that are prevalent after repeated PBNK transfu-
sions (41). In this respect, it is relevant to mention that while 
NK cells in general are often inhibited by recognition of MHC 
class I molecules on the surface of tumor cells, UCB-NK display 
relatively low levels of KIRs supporting their ability to effectively 
lyse MHC class I-expressing tumor cells (29). Finally, the ability 
of UCB-NK cells to proliferate and home to liver, lungs, spleen, 
and bone marrow after adoptive transfer has been previously 
demonstrated in NSG mice (38), though additional studies are 
required to determine whether UCB-NK cells have a similar 
migratory pattern upon adoptive transfer in solid tumor patients. 
Together, these features and observations provide UCB-NK cells 
with several unique advantages for further development as a 
universal NK cell platform.

Considering the size and heterogeneity of the tumor mass 
in advanced stages of CRC and other types of cancer, UCB-NK 
may not provide a sufficient therapeutic effect as a single agent. 
However, rational combinations of UCB-NK cells with existing 
drugs or drugs that are in clinical development can be envisioned 
to further increase their efficacy. Previous studies have pointed 
out that the proteasome inhibitor (bortezomib) (42) and the 
immunomodulatory drug (lenalidomide) (43) sensitize tumor 

cells to NK-mediated killing. In addition, UCB-NK cell applica-
tion together with bispecific or trispecific antibodies that bind to 
tumor and UCB-NK cell-activating receptors can also increase 
NK cell tumor specificity (44). Though we did not specifically 
assess ADCC induced by other mAbs, it is very likely that the 
failure of UCB-NK to mediate ADCC is a more general phe-
nomenon as this depends on binding to CD16/FcγRIII, which 
was found to be expressed at only low levels in the UCB-NK cell 
product. However, recent data from a clinical phase 1 study with 
the same UCB-NK cell product in patients with AML revealed 
significant upregulation of CD16 on UCB-NK cells post transfu-
sion suggesting that the UCB-NK cell product may acquire the 
capacity to mediate ADCC in patients following adoptive transfer 
(Dolstra et al., manuscript submitted). Further, this phenomenon 
may also provide a strong rationale for combining UCB-NK 
cells with bispecific or trispecific killer cell engagers (45). Taken 
together, these approaches can substantially increase UCB-NK 
cell responses to advanced solid tumors, including mCRC.

In conclusion, in this study, we have demonstrated the in vitro 
efficacy of UCB-NK cells against multiple CRC cell lines inde-
pendent of EGFR expression and EGFR downstream signaling 
mutations, and in addition have demonstrated the in vivo anti-
tumor efficacy of adoptively transferred UCB-NK cells against 
EGFR+RASmut tumors. As the adoptive transfer of UCB-NK cells 
(oNKord®) has been shown to be safe in patients with AML 
(CCMO no. NL31699 and Dutch trial register no 2818), our data 
provide a rationale for the clinical exploration of UCB-NK cells 
in the treatment of mCRC.
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cells and impairs Viability of Their 
cD33-expressing nK subset
Stephan Kloess1*, Alessa Ede Valverde da Silva1, Olaf Oberschmidt1, Tanja Gardlowski1, 
Nadine Matthies1, Maulik Vyas2, Lubomir Arseniev1, Michael Heuser3,  
Elke Pogge von Strandmann4 and Ulrike Köhl1
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Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany, 4 Experimental Tumor Research, Center for 
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Natural killer cells (NK) are essential for the elimination of resistant acute myeloid and 
acute lymphoblastic leukemia (AML and ALL) cells. NK cell-based immunotherapies 
have already successfully entered for clinical trials, but limitations due to immune 
escape mechanisms were identified. Therefore, we extended our established NK cell 
protocol by integration of the previously investigated powerful trispecific immu-
noligand ULBP2-aCD19-aCD33 [the so-called triplebodies (TBs)] to improve the 
anti-leukemic specificity of activated NK cells. IL-2-driven expansion led to strongly 
elevated natural killer group 2 member D (NKG2D) expressions on donor NK cells 
which promote the binding to ULBP2+ TBs. Similarly, CD33 expression on these 
NK cells could be detected. Dual-specific targeting and elimination were investigated 
against the B-cell precursor leukemia cell line BV-173 and patient blasts, which 
were positive for myeloid marker CD33 and B lymphoid marker CD19 exclusively 
presented on biphenotypic B/myeloid leukemia’s. Cytotoxicity assays demonstrated 
improved killing properties of NK cells pre-coated with TBs compared to untreated 
controls. Specific NKG2D blocking on those NK cells in response to TBs diminished 
this killing activity. On the contrary, the observed upregulation of surface CD33 on 
about 28.0% of the NK cells decreased their viability in response to TBs during cyto-
toxic interaction of effector and target cells. Similar side effects were also detected 
against CD33+ T- and CD19+ B-cells. Very preliminary proof of principle results 
showed promising effects using NK cells and TBs against primary leukemic cells. 
In summary, we demonstrated a promising strategy for redirecting primary human 
NK cells in response to TBs against leukemia, which may lead to a future progress in 
NK cell-based immunotherapies.

Keywords: natural killer cells, natural killer group 2 member D, triplebodies, UlBP2, cD19, cD33, immunoligands, 
acute myeloid leukemia
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inTrODUcTiOn

Natural killer (NK) cells are a subset of lymphoid effector cells 
within the innate immune response and have been shown to 
be a suitable tool for adoptive immunotherapy because of their 
ability of anti-tumor surveillance (1–6). In contrast to T cells, 
NK  cells identify and eliminate malignant and virus-infected 
target cells in a major histocompatibility complex (MHC)-
unrestricted way by engaging natural cytotoxicity receptors 
(NCRs), such as NKp30, NKp44, NKp46, and the activating 
receptor NKG2D (natural killer group 2 member D) which 
recognizes a variety of well-defined ligands expressed by trans-
formed cells (7–9).

Major histocompatibility complex class I-related chain A and 
B (MICA/B) and the UL-16 binding protein family are cancer cell 
surface ligands that interact with NKG2D on NK cells. These spe-
cific bindings between NKG2D and their corresponding ligands 
(NKG2DL) on cancer cells are responsible for improved cytotoxic 
properties of NK cells against tumor and leukemia cells (10–12). 
Based on these receptor–ligand bindings between effector and 
target cells, an increased secretion of granzyme A (GraA) and 
B (GraB), granulysin, and perforin induced in NK cells could be 
demonstrated (13–15).

However, several types of cancer have developed a broad 
spectrum of immune escape mechanisms that down-modulate the 
NKG2D-mediated immune surveillance by metalloproteinases-
driven proteolytic shedding and release of soluble NKG2DLs 
(16–20). In addition, elevated DNA-“hyper”-methylations for 
NKG2DLs could be detected in some malignant cells, mainly in 
acute myeloid leukemia (AML) cells, resulted in a clearance of 
NKG2DL surface cell expression, also detected for MICA, ULBP1/2 
in AML patients (21–23). Enhanced tumor-shedding and DNA-
methylation could contribute to an unhampered proliferation and 
evasion of immune control in AML patients (21).

Previous reports indicated that human leukocyte antigen 
(HLA) class I diversities could be responsible for induction 
of NK  cell alloreactions by KIR (killer-cell immunoglobulin-
like receptors)-ligand mismatch as shown in acute leukemia 
patients. The efficacy of this donor NK  cell alloreactivity in 
mismatched hematopoietic transplants resulted in strong graft-
versus-leukemia effects, prevented graft rejection and graft 
versus host disease and protected against AML relapse (24–26). 
Increased eliminations of AML blasts could be also shown by 
adoptive transfer of haploidentical NK cells and IL-2 infusions 
to stimulate ex vivo donor NK cell expansion. However, limita-
tions have been observed by lacking of antigen specificity and 
long-lasting increase of immunosuppressive regulatory T cells 
that resulted in a reduction of NK  cell proliferations and/or 
cytotoxic properties (27–30).

Some of the current anti-leukemia therapy studies focus on 
developing antibody constructs that target activated NK  cells 
to specific leukemia antigens to overcome those limitations 
listed here on the functionality, expansion, and persistence of 
NK cells. Recent advances were made, including manipulation 
of receptor-mediated activation, augmentation of antibody-
dependent cellular cytotoxicity reactions, gene-modified 
NK  cells engineered by chimeric antigen receptors or, finally, 

mono-, bi-, and tri-specific engagers for antigen retargeting on 
cancer cells (31).

In the past, therapeutic monoclonal antibodies (mAbs)  
[e.g., rituximab (anti-CD20), cetuximab (anti-EGFR), lintu-
zumab (anti-CD33), and alemtuzumab (anti-CD52)] against the 
corresponding surface antigens on leukemia cells have positively 
contributed to the treatment but still lead to the development of 
resistance and an unsatisfactory response rate. Moreover, several 
high expressed antigens appear on non-transformed cells and, 
thus, therapeutic antibodies that recognize those target molecules 
may be scavenged and turned ineffective (32–37). Recently, 
with the advance in recombinant DNA technology, bispecific 
(CD16 × CD19 or CD16 × CD33) and trispecific killer engager 
(CD16  ×  CD19  ×  CD22) were developed to redirect NK  cell 
cytotoxicity toward malignant cells, demonstrating significant 
increase of NK  cell cytotoxicity and cytokine release against 
several CD19 expressing B cell lines. Miller et al. have shown that 
efficacy with CD16 × CD33 bispecific (BiKE) or IL-15-trispecific 
killer cell engagers (TriKE) successfully reversed CD33-positive 
myeloid-derived suppressor cells and stimulated NK cell-induced 
target cell lysis (38, 39).

Vyas et  al. showed clearly that trispecific immunoligands 
(ULBP2-aCD19-aCD33 and ULBP2-aCD19-aCD19), designated 
as triplebodies (TBs), successfully retargeted short-time-activated 
(24  h) NK  cells demonstrating increased NK  cell-dependent 
killing activities of several target cells (MEC1, HL60, BV-173, 
and SEM) by using ULBP2 as a natural ligand to induce high 
expression levels of NKG2D receptors on activated NK  cells. 
Moreover, activated NK cells in response to control TBs without 
ULPB2 domains showed a reduced IFNγ release and killing 
properties compared to full-constructed TBs (ULBP2-aCD19-
aCD33) (40).

Based on our review from a clinical phase I/II study using IL-2 
activated haploidentical NK  cell for adaptive immunotherapy 
(Clin-Gov-No-NCT01386619) showing not only benefits but also 
limitations due to tumor immune escape mechanisms (TIEMs), 
we focused on those TBs in response to NK cells to overcome 
TIEMs (6, 41, 42). All experiments were performed to investigate 
specifically the efficacy of the employed ULBP2-aCD19-aCD33 
against only CD19/CD33-expressing leukemia cells, which 
are mainly found in resistant antigen loss variants especially 
described as mixed lineage leukemia (MLL). In combination with 
primary donor NK cells, activated up to 14 days, we analyzed the 
TB-dependent improvement of retargeted recognition and cyto-
toxicity of those effector cells. In addition, possible side effects 
due to activated NK cells in the crosslink to these TBs should be 
evaluated.

MaTerials anD MeThODs

construction, expression, and Purification 
of the Trispecific immunoligand  
UlBP2-acD19-acD33
The ULBP2-aCD19-aCD33 TBs, kindly provided by Prof. Elke 
Pogge von Strandmann and Dr. Maulik Vyas, was constructed 
from immunoligands with high specificity for NKG2D receptors 
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on NK  cells and for CD19 and CD33 on AML cells that were 
efficiently expressed and secreted by HEK293T  cells as previ-
ously reported (40).

BV-173 cell line
The B  cell precursor leukemia cell line BV-173 was pur-
chased from Leibnitz Institute DSMZ (German Collection 
of Microorganisms and Cell Cultures) and maintained in 
RPMI-1640 Medium supplemented with 10–20% fetal calf 
serum (FCS). Cells were split every 3 days under cell culture 
conditions (37°C, 5% CO2). For functional assays, the cells 
were washed once with phosphate-buffered saline (PBS), cen-
trifuged and adjusted to a final concentration of 2.5 × 105/ml  
in TexMACS (Miltenyi Biotec) containing 5% human serum 
albumin (HSA).

Toxicity studies containing T and B cells
For toxicity experiments in response to TBs (ULBP2-aCD19-
aCD33), T and B cells were isolated from fresh whole blood of 
healthy donors. The EasySep™ HLA Whole Blood B Cell and 
CD3 Positive Selection Kit (STEMCELL™ TECHNOLOGIES, 
Germany) was used to separate CD19+/CD20+ B or CD3+ 
T cells, respectively, by positive selection according to the man-
ufacturer’s recommendations. The isolated cells were expanded 
in RPMI-1640 medium containing 10% FCS and in presence 
of a cytokine composition [final concentration: 50  IU/ml  
(IL-2), 100 IU/ml (IL-4), and 20 IU/ml (IL-10)]. The cells were 
split every 2–3 days under culture conditions (37°C, 5% CO2). 
These cells were washed once with PBS and adjusted to a final 
concentration of 2.5 ×  105/ml in TexMACS (Miltenyi Biotec) 
supplemented with 5% HSA. For toxicity assays, CD33 on T cells 
and CD19 surface expression on B cells were characterized by 
10-color flow cytometry (FCM) analysis and then co-incubated 
with IL-2 activated NK  cells (E/T ratio: 1:1) pretreated with 
1 µg/ml TBs.

Thawed Primary human aMl cells
Thawed primary AML samples from three different patients 
[French-American-British classification system: M0 or M5, 
respectively, kindly provided from Prof. M. Heuser, Hannover 
Medical School (MHH)] disclosing myeloid CD33 and B lym-
phoid CD19 surface marker expression were used as examples 
for antigen loss variants such as MLLs. These primary blasts 
were washed twice with PBS containing 10% FCS and treated 
with DNase I to avoid cell clumping. Cells were cultured up 
to 2 weeks in IMDM supplemented with 10% FCS, Penicillin/
Streptavidin, l-Glutamine, and 20  ng/ml each of IL-3, IL-6, 
SCF, G-CSF, and GM-CSF. As an essential control for differen-
tiation, marker expression, and stability, CD33, CD19 surface 
levels and cell viability of thawed AML samples were monitored 
every 2–3 days over a time period about 2 weeks (Figure 1A). 
Afterward, primary leukemic cells were washed with PBS and 
adjusted to 2.5  ×  105/ml in TexMACS (Miltenyi Biotec) con-
taining 5% HSA and used for cytotoxicity assays in different 
E/T ratios in response to NK cells and TBs. Additional mono-
cultured primary target cell controls were monitored during 
cytotoxicity assays under normal culture conditions (37°C, 5% 

CO2) and analyzed by FCM to estimate the viability, CD33 and 
CD19 surface expressions.

Untouched isolation and expansion of 
Primary cD56+cD3− nK cells
Up to 30  ml anticoagulated whole blood from different 
healthy donors was used to separate “non-touched” primary 
human NK cells without density gradient centrifugation using 
MACSxpress® NK Cell Isolation Kit (Miltenyi Biotec, Germany) 
according to the manufacturer’s recommendations. Based on 
the expansion protocol from the previous clinical phase I/II 
NK  cell study (42), we improved the protocol and expanded 
these freshly isolated NK  cells (purity: 97.8  ±  1.4%) in NK 
MACS® basal medium (Miltenyi Biotec, Germany) containing 
5% AB serum (human) and 1,000 IU/ml IL-2 up to 14 days (d) 
as described previously (43).

cytotoxicity assay
To assess the NK cell-mediated killing activity in the presence 
and absence of TBs (ULBP2-aCD19-aCD33), we optimized 
a no-wash, single platform cytotoxic assay based on FCM 
(Navios, Beckman Coulter, Germany). This functional assay is 
based on the recovery of the viable effector and target cells after 
cytotoxic interaction within a predefined period of time (4 h). 
Initially, the surface expression of relevant antigens on cultured 
effector and target cells were determined by FCM as an essential 
control prior to each approach of this cytotoxicity assay. These 
phenotypic determinations included specific markers, such as 
CD45, CD56, CD16, CD33, and NKG2D (CD314) for NK cells 
and CD9, CD19, CD33, and HLA-DR for target leukemia cells. 
Further on, freshly isolated and cultured (0–14 days of expan-
sion) NK cells were pre-incubated with various TB doses (TBs: 
0.1–30  µg/ml). To determine TB-mediated cytotoxic effects 
against CD33+/CD19+ leukemia target cells, pre-coated or 
non-treated (control) NK cells were co-incubated in different 
ratios (E:T ratio: 1:1, 5:1) with the leukemic cell line BV-173 
and/or primary leukemia blasts. To prevent insufficient stirring 
of incubated samples or cell sedimentations during cytotoxic 
cell contacts the co-cultured suspensions were shaken in an 
CO2-incubator (CO2 cell, 170-400 Plus, RS Biotech, Scotland) 
for up to 4  h (37°C, 5% CO2, 250  rpm). Afterward, effector 
cells were stained with mAbs by using CD45 KO (Krome 
Orange), CD56 PC-7 (Phycoerythrin-Cyanine-7) and CD16 
APC (Allophycocyanin) in order to exclude the effector cells 
from leukemia cells stained with CD9 FITC (Fluorescein 
Isothiocyanate), CD34 PE (Phycoerythrin) and HLA-DR PB 
(Pacific Blue). Toxicity against effector and/or target cells with 
and without TBs was calculated as the increased loss of viable 
cells (43–46):

 
Cytotoxicity =

1 concentration
o

co-cultured target cells/ l− µ[ ]

vver concentration
100%

target control cells/ l[ ]µ









×

 

To prove TB specificities, the primary NK  cells were pre-
incubated (20 min, 37°C, 5% CO2, 250 rpm) with 1 µg/ml anti-
NKG2D to block the redirected cytotoxicity in response to TBs 
against leukemia blasts.
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cD107a-Degranulation assay
Concurrent to our cytotoxicity assays, we assessed the NK  cell 
degranulation by monitoring the cell surface expression of the lyso-
somal protein CD107a via FCM. NK cells were also co-incubated  
with leukemia cells at the same E:T ratios in response to TBs 
(ULBP2-aCD19-aCD33). Cells were stained with PE-conjugated 
anti-CD107a mAbs and incubated for 1  h at 37°C, 5% CO2. 
Phorbol 12-myristate 13-acetate and Ionomycin (I) (Cell stimula-
tion cocktail from eBioscience) were used as a positive control 
whereas NK cells alone served as unstimulated baseline parameter. 
After stimulation, Monensin (1:1,000; eBiosciences) and GolgiPlug 
(1:1,000; BD Biosciences) were added to the samples. These batches 
were incubated for additional 3 h. Subsequently, cells were washed, 
stained and analyzed by FCM (see chapter: “Cytotoxicity Assay”).

cytokine analysis
The multi-analyte flow assay kit (LEGENDPLEX™, BioLegend®, 
USA) was used for detection of soluble cytokines and pro-
apoptotic markers, especially IFNγ, TNFα, perforin, GraA and 
GraB, and granulysin. Two sets of beads with known size and 
fluorescence allowed detections of those soluble molecules in 
supernatants that previously contained co-cultured effector and 
target cells. All analysis and evaluations were carried out accord-
ing to manufacturer’s recommendations.

Time-lapse Microscopy
Redirected cell contacts and interactions between effector and 
target (E/T) or effector and effector (E/E) cells in presence of 
TBs could be monitored and followed by fluorescence scanning 
microscope (IX81, Olympus, USA). As a control before starting 
for those imaging experiments, surface expression levels of IL-2-
expanded NK  cells and cultured leukemia cells (BV-173) were 
characterized for CD3 (PB), CD9 (FITC), NKG2D (PE), CD33 
(PE), CD56 (PC-7), CD16 (APC), CD19 (ECD), 7-AAD (PC-
5.5), HLA-DR (PB), and CD45 (KO). Afterward, NK cells and 
BV-173 cells were intracellular stained with cell proliferation dyes 
(CFSE/eFluor® 450, affymetrix eBiosience, USA). In the follow-
ing, NK and BV-173 cells were co-incubated (E/T ratios: 5:1) on  
chamber slides over a time period of 8 h in response to 10 µg/ml  
TBs under culture conditions (37°C, 5% CO2). Beside time-lapse 
movie experiments to follow specific cell migrations and inter-
actions by designed tracking protocols (time-lapse movie: see 
Figure S1 in Supplementary Material), it was also possible to 
evaluate all recorded images containing specific E/T- and E/E-
cell contacts and cluster formations by quantitative analyses using  
the Olympus scanR automated image and data analysis (quantita-
tive evaluations/gating strategy: see Figure S2 in Supplementary 
Material).

statistical analyses
Statistical analysis has been performed using GraphPad Prism 
v6.02 (GraphPad Software, San Diego, CA, USA). Results of 
different cytotoxic experiments were compared by the paired 
Student’s t-test in order to assess the significance of the NK cell-
mediated cytotoxicity incubated in absence and presence of 
TBs (ULBP2-aCD19-aCD33). Statistical evaluations of surface 

expression levels are indicated as median with range in the 
individual text parts. Differences were stated significant for 
a p ≤  0.05 and p ≤  0.01 (indicated as * and **, respectively). 
Minor differences were defined as statistically non-significant 
(n.s.). Unless otherwise declared, results of statistical evalua-
tions from functional assays are indicated as mean ± SD and 
represent 4–6 independent experiments and measured in 
duplicates by FCM.

resUlTs

TBs increase Killing activities of  
il-2-expanded nK cells against  
leukemia cells
The capability of ULBP2-aCD19-aCD33 TBs to induce specific 
NK cell cytotoxicity against human leukemic cells was deter-
mined using the CD19- and CD33-double-positive BV-173 
cell line with pre-B phenotype. Purified NK cells (97.8 ± 1.4% 
CD56+CD3−) were IL-2 activated and expanded for 14  days. 
The moderate-to-low expression levels of the NCRs on freshly 
isolated NK cells were markedly increased approximately 5.2-, 
4.9-, and 1.4-fold for NKp30, NKp44, and NKp46, respectively 
(data not shown). Concomitantly, NKG2D revealed higher 
median expression levels on these expanded NK  cells with 
86.4% (range: 64.5–99.2%; 10–14  days) and 57.2% (range: 
15.1–97.3%; 6–9  days) compared to unstimulated and early 
cultured NK cells (Figure 1A, right graph). Activated NK cell 
cytotoxicity rises with increasing duration of expansion time 
which correlates also with elevated NKG2D levels on these 
NK cells (Figure 1A). However, the NK cell-mediated cytotoxic-
ity against BV-173 cells could be further enhanced at increased 
expansion periods by pre-incubation of NK cells with 1 µg/ml  
TBs (ULBP2-aCD19-aCD33) (Figure  1B). Accordingly, the 
NK  cell killing activity in presence of TBs reached a maxi-
mum of cytotoxic average value of 33.2 ± 5.1% (E/T: 1:1) and 
55.2 ± 8.8% (E/T: 5:1) with IL-2-cultured NK cells expanded 
for 10–14 days compared to significant lower cytotoxic levels 
of untreated NK cells [24.8 ± 9.4% (E/T: 1:1) and 26.8 ± 5.0% 
(E/T: 5:1)] (Figure 1B).

In opposite to corresponding control TBs containing dep-
leted ligand (ULPB2) or receptors (anti-CD33/anti-CD19), 
respectively, specific blocking antibodies were used to 
inhibit TB-induced cytotoxicity. For these NKG2D blocking 
experiments, different concentrations of TBs were used to 
show specific competitive inhibition by saturation of the target 
epitope with defined concentrations of blocking antibodies 
(anti-NKG2D) adjusted in several pre-experiments by titration 
of anti-NKG2D. Thus, inhibition of TB-dependent cytotoxicity 
by specific blocking of the receptor-ligand-(NKG2D-ULPB2)-
binding sites could be achieved partially by pre-incubation of 
IL-2-expanded NK cells (10–14 days) with anti-NKG2D mAbs 
(1 µg/ml, 20 min) following treatment with 1 and 10 µg/ml TBs. 
This resulted in a reduction of cytotoxicity against BV-173 of 
20.2-fold (1 µg/ml TB) or 25.8-fold (10 µg/ml TB) (Figure 1D). 
These results of cytotoxicity assays against BV-173 were largely 
consistent with the data from the degranulation assays. NK cells 
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FigUre 1 | Continued

in different expansion periods were pre-incubated in absence 
or presence of 1 µg/ml TBs and co-cultured for 4 h (E/T ratios: 
1:1, 5:1) to detect the lysosomal-associated membrane protein-1 
(LAMP-1/CD107a) on NK  cells as an mobilized cell surface 
marker following stimulation-induced granule exocytosis. 

TBs were able to elevate the degranulating subpopulation of 
NK cells in response to BV-173 cells at the indicated ratios with 
a maximum degranulation average of 11.1  ±  6.3% (E/T: 1:1) 
and 9.9 ± 4.6% (E/T: 5:1) on NK cells expanded for 10–14 days 
(Figure 2A). Interestingly, in some cases, non-significant lower 
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FigUre 1 | Phenotyping, effector cell stability and cytotoxic properties of activated natural killer (NK) cells alone or in combination with triplebodies (TBs) (ULBP2-
aCD19-aCD33)-inducing effects against BV-173. (a) In vitro rearrangement of the NK cell phenotype was assayed immediately after effector cell separation as well 
as every 2–3 days within IL-2 expansion (1,000 IU/ml) for the following 14 days. In addition to monitoring of natural cytotoxicity receptors, co-expression of CD33, 
and natural killer group 2 member D (NKG2D) was also quantified for these unstimulated and expanded effector cells. (B) Effector cells were co-incubated for 4 h 
(37°C, 5% CO2, 250 rpm) with BV-173 cells at 1:1 or 5:1 E/T ratios, respectively, and killing activities (%) were determined in presence (+TB) and absence (w/o TB) 
of 1 µg/ml TBs (ULBP2-aCD19-aCD33) by flow cytometry. (c) Impact of 1 µg/ml TBs on the NK cell stability during effector-target-interactions corresponding to E/T 
samples. (D) To inhibit TB effects on NK cell killing and stability, receptor–ligand-(NKG2D-ULPB2)-binding to activated NK cells (expansion period: 10–14 days) were 
blocked by pre-incubation with anti-NKG2D monoclonal antibodies (1 µg/ml for 20 min) in presence of 1 or 10 µg/ml TBs, respectively. NKG2D-dependent killing 
rates (white columns) of those incubated NK cells in response to BV-173 cells and NK cells stability (columns with squared pattern) were analyzed after 4 h (“NKG2D 
blocking,” ratio: 5:1, 37°C, 5% CO2). Data of cytotoxic results are shown as mean ± SD from 4 to 6 experiments for each sample in duplicates. Statistically 
significant difference: *p ≤ 0.05 and **p ≤ 0.01.
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degranulation of the effector cell at higher (5:1) compared to 
lower E/T ratios (1:1) in a TB-independent manner was observed 
(Figure  2A). Correspondingly, the analysis of cytokines and 
apoptotic markers released from TB-incubated NK cells during 
cytotoxic interaction against BV-173 cells showed increased 
concentrations for perforin, GraA and GraB, but no significant 
alterations of TNFα, IFNγ, or granulysin could be detected 
(Figure 2C).

TBs improve Killing activity against native 
aMl Blasts by il-2-activated nK cells
In order to demonstrate that TBs-(ULBP2-aCD19-aCD33)-
treated NK cells also promote a cytotoxic effect against primary 
AML blasts, three different patient samples were thawed and 
NK cell cytotoxicity was assessed by FCM analyses. In the pres-
ence of TBs, the NK cell-mediated cytotoxicity against primary 
blasts from three AML patients was significantly enhanced com-
pared to NK cell killing activities in absence of TBs. Moreover, the 
TB-mediated cytotoxic response was more pronounced at higher 
E/T ratios and TB concentrations. This resulted in improved kill-
ing activities of 1.4-fold (1.3-fold) with 1 µg/ml TBs and 1.8-fold 
(1.6-fold) with 10 µg/ml at E/T ratios of 1:1 or 5:1, respectively 
(Figure  3A). In accordance with our previous degranulation 
assays in response to BV-173 cells, increased CD107a-positive 
NK cell subsets could be identified during cytotoxic interaction 

at the indicated ratios with a maximum degranulation mean of 
9.7 ± 5.2% (E/T: 1:1, 10 µg/ml TBs) and 8.9 ± 4.3% (E/T: 5:1, 
10  µg/ml TBs) (Figure  2B). Cytokine and apoptotic marker 
detections in response to AML blasts revealed that pre-incubation 
of NK  cells from expansion period 10–14  days with 1  µg/ml 
TBs resulted in elevated levels of perforin and GraA and GraB 
without changes in the amount of TNFα, IFNγ, and granulysin 
(Figure 2D). Corresponding to previous experiments in response 
to BV-173 cells, TNFα, and IFNγ showed a non-significant ten-
dency to lower cytokine release at higher (5:1) compared to lower 
E/T ratios (1:1) which was also independent of the impact from 
TBs (Figure 2D).

TBs Decrease nK cell Viability during 
cytotoxic interactions against leukemia 
cells
Surface expression levels of CD33 were monitored within 
NK cell expansion over 14 days (Figure 1A, left graph). Beside 
increased NCRs and NKG2D, CD33 levels were also elevated on 
IL-2-activated NK cells with median expression levels of 27.9% 
(range: 15.8–33.8%; 10–14 days) and 21.6% (range: 11.0–28.2%; 
6–9  days) compared to very low amounts in early expansion 
stages (Figure 1A, left graph). This led to the upcoming question 
whether the cytotoxic potential of the applied TBs analogous to 
the shown directed killing effects against AML blasts also has 
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FigUre 2 | Continued

an unfavorable impact on the expanded NK  cells themselves. 
Therefore, in addition to cytotoxic determinations against AML 
cells, the stability of the NK cells during cytotoxic interactions 
in the presence and absence of TBs was investigated in all 

cytotoxic experiments. Interestingly, in all E/T ratios pre-
incubated with TBs, a marked decrease of these effector cells 
could be demonstrated both in response to BV-173 cells or AML 
blasts. Accordingly, TB-induced effector cell decrease reached 
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FigUre 2 | Functional activities of natural killer (NK) cells against BV-173 and primary leukemia cells in response to triplebodies (TBs). (a,B) Activated NK cells from 
latest expansion periods (10–14 days) were co-cultured with BV-173 cell line or with primary blasts from all acute myeloid leukemia patients, respectively. Afterward, 
the NK cell degranulation were detected by flow cytometry (FCM) analysis using the lysosomal protein CD107a in presence of 1 or 10 µg/ml TBs, respectively, under 
same experimental conditions as described in Figure 1. (c,D) Supernatants of different effector–target cell ratios against BV-173 (c) or primary patient blasts  
(D), respectively, were collected after co-incubations over 4 h. Afterward, NK cell-mediated secretion of cytokines and pro-apoptotic markers were quantified by 
FCM at the indicated ratios in presence or absence of 1 µg/ml TBs. Data show mean ± SD from six experiments measured in duplicates. Statistically significant 
difference: *p ≤ 0.05 and **p ≤ 0.01.
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a maximum average of 31.0  ±  6.4% (E/T: 1:1; 1  µg/ml TBs)  
co-cultivated with BV-173 cells (Figure  1C) or 24.9  ±  5.8%  
(E/T: 1:1, 10 µg/ml TBs) in response to primary blasts (Figure 3B), 
respectively. Interestingly, the NK  cell viability seemed to be 
more reduced in 1:1 than in 5:1 E/T ratios only in presence of 
1 µg/ml TBs (Figures 1C and 3B). By blocking of the receptor–
ligand-(NKG2D-ULPB2)-binding (anti-NKG2D mAbs, 1 µg/ml, 
20 min) in presence of TBs and BV-173 cells, this unfavorable 
effect on the stability of the NK cells could be almost completely 
abolished (Figure 1D).

Dose escalations of TBs (UlBP2-acD19-
acD33) in regard to effector and Target 
cell stability
In order to estimate in which concentrations those TBs 
(ULBP2-aCD19-aCD33) affect efficiently CD33+/CD19+ target 
cells and the stability of CD33+ effector cells, several dose-
escalation experiments with highly activated NK (expansion 
period: 10–14 days) containing elevated CD33 levels in response 
to BV-173 cells were performed. Dose-escalation experiments 
of at least 0.1–30  µg/ml resulted in a maximum cytotoxic 
against target cells average of 60.2 ± 2.6% (52.4 ± 0.7%) from 
NK  cells in response to BV-173 cells starting from a TBs 
concentration of at least ≥1 μg/ml and an E/T ratio of 5:1 or 
≥7.5 μg/ml and an E/T ratio of 1:1 (Figure 3C). Moreover, a 
maximum toxicity mean response of 41.2 ± 1.5% (33.1 ± 0.8%) 
against co-cultured NK cells could be achieved from TBs con-
centrations of at least ≥7.5  μg/ml and an E/T ratio of 5:1 or 
≥1 μg/ml at an E/T ratio of 1:1 (Figure 3D). Further toxicity 
experiments with activated NK  cells and without any other 

target cells in presence of 1 or 10 µg/ml TBs (4 h), respectively, 
also demonstrated a pronounced decrease in the viability of 
the effector cells. Accordingly, a maximum reduction of 31.8% 
(24.0%) for effector cell stability after 4 h could be determined 
by 10 µg/ml (1 µg/ml) TBs (Figure 4A). However, pretreatment 
of NK cells with anti-NKG2D mAbs (1 µg/ml, 20 min) could 
partially neutralize the TB-mediated destabilization effects 
with a maximal blocking efficiency of 62.7% (64.0%) after 4 h in 
presence of 10 µg/ml (1 µg/ml) TBs (Figure 4A). These toxicity 
data raised the question whether these TBs, in addition to the 
demonstrated toxicity against activated NK cells, also revealed 
side effects against other lymphocytes, especially CD33+ T cells 
or CD19+ B cells. Therefore, we co-incubated (E/T ratios: 1:1) 
activated NK cells pretreated with 1 µg/ml TBs in response to 
T or B  cells. This resulted in a moderate decrease of T  cells, 
exhibiting only a weak CD33 surface expression, by approxi-
mately 12.1% after 4 h in contrast to higher reductions of 25.1% 
for B cells containing high CD19 expression levels (Figure 4B). 
However, pre-coating (20 min) of both lymphocyte subsets with 
the respective AK constructs (anti-CD33 or anti-CD19, respec-
tively; each with 1 µg/ml) allowed blocking of the TB-induced 
toxicity (1 µg/ml TBs) down to 0.3% for T cells and 10.2% for 
B cells after 4 h co-incubations (Figure 4B).

TBs (UlBP2-acD19-acD33) Promote cell 
cluster Formations between nK and 
leukemia cells
Previous toxicity studies showed that our TBs also bind high-
activated CD33+ NK  cells resulted in reduced effector cell 
stability during the cytotoxic attack on leukemia cells. This led to 
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FigUre 3 | Continued

the hypothesis that, in addition to increased cytotoxic contacts 
between NK and leukemia cells, elevated effector-to-effector cell 
contacts are responsible for higher effector cluster formations in 
the presence of TBs. This could partially neutralize the improved 

effect of TB-mediated NK cell killing activity. Therefore, CD33+ 
NK cells from late expansion periods (10–14 days) and BV-173 
cells were intracellular stained with cell proliferation dyes  
(see Materials and Methods). Before fluorescent microscopy 
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FigUre 3 | ULBP2-aCD19-aCD33-mediated natural killer (NK) cell killing of primary acute myeloid leukemia (AML) cells. (a) Activated NK cells were co-incubated 
with primary blasts from three different AML patients in presence of 1 or 10 µg/ml triplebodies (TBs), respectively, under same experimental conditions as described 
in Figure 1. (B) TBs-induced effects on the stability of NK cells were also determined corresponding to E/T samples (1:1, 5:1). (c,D) Estimate the maximum 
efficiency of ULBP2-aCD19-aCD33 against effector and target cells, different concentrations (0.1–30 µg/ml) of TBs were applied to activated NK cells (time period: 
10–14 days) and BV-173 cells at the indicated ratios after 4 h (37°C, 5% CO2). Data present mean ± SD from six independent experiments measured in duplicates 
for each patient’s sample. Statistically significant difference: *p ≤ 0.05 and **p ≤ 0.01.
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experiments were started, activated NK cells were also analyzed 
for NKG2D or CD33 (PE), respectively, CD56 (PC-7), CD16 
(APC), CD3 (PB), and CD45 (KO) surface expression levels. 
Similarly, target cells were examined for following markers: CD9 
(FITC), CD33 (PE), CD19 (ECD), 7-AAD (PC-5.5), HLA-DR 
(PB), and CD45 (KO). Subsequently, NK and BV-173 cells (E/T 
ratios: 5:1) were co-cultured over 8 h in presence of TBs (10 µg/ml)  
monitored by designed tracking protocols. Generated transmis-
sion and fluorescent images were quantitatively evaluated by 
described Olympus scanR acquisition analysis (quantitative 
evaluations/gating strategy: see Figure S2 in Supplementary 
Material). It was shown that specific E/T and also E/E cell con-
tacts had increased significantly in presence to TBs (Figure 5A) 
compared to time-limited and unspecific/confused cell contacts 
in untreated controls (Figure 5B), exemplarily shown for two 
separated tracking runs (time-lapse movie: see Figure S1 in 
Supplementary Material). Accordingly, subsequent quantitative 
analyses confirmed the results of time-lapse monitoring by 
elevated numbers of E/T and/or E/E cell contacts in presence 
of TBs and resulted in higher cell cluster formations contain-
ing up to eight different effector and/or target cells shown in 
Tables 1 and 3. By contrast, only unspecific cell clumping and 
lower cell clustering containing smaller E/T or E/E cell numbers 
could be detected in absence of TBs (Tables 2 and 4) exemplarily 
presented for three independent experiments.

DiscUssiOn

In our experiments, we could confirm the effectiveness of the 
(ULBP2-aCD19-aCD33) TBs in the crosslink with activated 
NK cells showing increased specific killing against a leukemia 

cell line (BV-173) and primary AML samples from three differ-
ent patients compared to single use of NK cells only. Successful 
targeting was directed against both, the CD19 and CD33 anti-
gen. The transmembrane glycoprotein CD19 (95 kDa) and the 
early myelopoietic antigen CD33 (approximately 67–75 kDa), 
seemed to be suitable and prominent surface markers to 
distinguish myelogenous leukemia cells from lymphoid or 
erythroid leukemia and were also clinically validated antigens 
for development of antibody-based immunotherapeutic (bi- or 
tri-specific) construct’s (47–49). However, it should be noted 
that human-activated NK cells also show a diversity of CD33 
surface expression levels within different developmental  
stages (50–52).

Similar to our cytotoxic assays with the (ULBP2-aCD19-
aCD33) TBs in response to leukemia cell lines and primary 
AML blasts, designed NKG2D-stimulating TBs that contained 
targeting against CD19 antigens (ULBP2-aCD19-aCD19) only 
displayed strong affinity to CD19 surface molecules on CLL cells. 
Vyas et al. (40) showed a significantly higher NK cell-mediated 
cytolytic activity in response to TBs (ULBP2-aCD19-aCD33 
and ULBP2-aCD19-aCD19) against both, target cell lines 
(MEC1, BV-173, and SEM) and primary CLL blasts. The effects 
were independent from different E/T ratios (40). In our study 
as a proof-of-principle-experiment, we were able to inhibit the 
TB-induced cytotoxic specificity of IL-2-activated NK  cells 
against BV-173 cells by blocking of NKG2D using anti-NKG2D 
mAbs. However, specific inhibition of these cytotoxic reactions 
could be achieved only partially and not fully by 1 µg/ml anti-
NKG2D. This shows that in addition to the TB-induced killing 
activity, other cytotoxic mechanisms of activated NK cells are 
also present, which are NKG2D independent and could not be 
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FigUre 4 | Continued

blocked in those analyses. In analogous experiments, Vyas et al. 
(40) achieved a decreasing specificity of TBs by pre-blocking 
the target antigens CD19 and CD33 on the surface of BV-173 
cells. It was also shown that the NK  cell-mediated cytotoxic-
ity was strictly NKG2D dependent because control constructs 
lacking the ULBP2 domain could not induce IFNγ secretion 
and killing activity of co-incubated NK  cells in response to 
leukemia cells (40). Further functional experiments revealed 
correlations of TBs-stimulated NK cell degranulations detected 

by increased CD107a+ effector cell populations. IFNγ secretion 
were also enhanced in presence of CD33-/CD19-expressing 
target cells that were inhibited by control constructs lacking the 
natural ligand ULBP2 for retargeting the NK cells via NKG2D 
receptors (40). By contrast, in our study, the functional assays 
showed no significant alterations for IFNγ or TNFα in col-
lected supernatant samples after cytotoxic reactions. However, 
we detected TBs-dependent elevated NK secretion levels of 
apoptotic markers (perforin, GraA, and GraB) in response to 
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FigUre 4 | Adverse effects of ULBP2-aCD19-aCD33 against CD19- or CD33-positive lymphocytes. (a) Cell viability/stability experiments with activated 
natural killer (NK) cells alone in presence (dotted lines) or absence (black line) of 1 or 10 µg/ml triplebodies (TBs) (4 h), respectively, were performed for 4 h 
under culture conditions. To inhibit TB-induced toxicity effects, NK cells were pretreated with anti-natural killer group 2 member D monoclonal antibodies 
(mAbs) (1 µg/ml, 20 min; dashed line). (B) Co-incubation of activated NK cells and T or B cells (E/T ratios: 1:1) with (dotted line) or without (black line) 1 µg/ml 
TBs for 4 h (37°C, 5% CO2). TB-mediated effects could be blocked by pre-coated T and B cells with corresponding mAbs (1 µg/ml anti-CD33 or 1 µg/ml 
anti-CD19, respectively) for 20 min. Data present mean ± SD from 4 to 6 independent experiments measured in duplicates. Statistically significant difference: 
*p ≤ 0.05 and **p ≤ 0.01. (c) After thawing of three primary acute myeloid leukemia samples, the viability (○, left y-axis) and surface expression (mean 
fluorescence intensity) for CD33 (□, right y-axis) and CD19 (◊, right y-axis) were monitored every 2–3 days over a time period of 2 weeks as an internal control 
for the followed cytotoxicity assays.
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both BV-173 cells and primary blasts. This correlated with an 
increased CD107a+ NK cell subset, but showed no alterations 
in the granulysin releases. This could be explained by the fact 
that probably the maximum time for intracellular productions 
of IFNγ and TNFα has long been exceeded by the long-term 
IL-2-driven NK cell expansion over 14 days. In contrast to our 
NK cell expansion protocol, Vyas et al., cultivated freshly puri-
fied NK cells only overnight (37°C, 5% CO2) in IMDM medium 
supplemented with 10% heat-inactivated FCS and human IL-2 
(200 IU/ml) +  IL-15 (10 ng/ml) (40). We concluded that this 
overnight cultivation in combination with both cytokines could 
induce an earlier IFNγ and TNFα secretion for these short-
activated NK cells. Nevertheless, Vyas and our workgroup were 
able to show clearly improved cytotoxic properties of activated 
NK cells that were consistent with an optimized anti-leukemic 
efficiency. However, we detected a marked decrease in the stabil-
ity of activated CD33+ NK  cells during cytotoxic interactions 
against leukemia blasts confirmed by increased E/E cell contacts 
and higher effector cell clustering analyzed using fluorescence 
scanning microscope.

Future immunotherapy approaches containing primary 
NK cells in combination with examined TB-constructs should 
ensure that sufficient NK cell numbers and a strongly elevated 
NKG2D expression are available for an efficient receptor– 
ligand-(NKG2D-ULPB2)-binding as well as for complete 
eliminations of remaining leukemia cells, especially shown in 
high-risk patients. The significance of NKG2D could be also 
confirmed by several reports dealing with immunosurveillance 
and development of novel NK-based immunotherapies by 
using bispecific immunoligands targeting NKG2D receptors (7, 
53–55). Concomitant experiments within our previous clinical 

phase I/II NK cell study (42) demonstrated that the NKG2D-
dependent cytotoxicity against resistant neuroblastoma cells 
was strongly affected by immunosuppressing NKG2DLs, as 
one of multiple strategies to escape from immune-mediated 
eradication. This effect could be blocked by scavenging soluble 
NKG2DLs with IL-2-activated donor NK  cells. As a result, 
NKG2D-dependent cytotoxic response was restored (41, 56). 
These results suggest that, in addition to a permanent charac-
terization of NKG2D levels on NK cells, a closed monitoring of 
such critical immunosuppressive markers in patients’ plasma 
appears to be necessary before TBs are administered.

Since only controversial data concerning myeloid antigen CD33 
(SIGLEC-3) expression on NK  cells were published so far, this 
expression was also closely monitored concomitantly to NCRs/
NKG2D characterizations. During 14 days of NK cell expansion, 
we could detect a transient higher CD33 surface expression level 
on late-expanded NK cells compared to unstimulated and early 
cultured primary NK  cells. In accordance with these results, 
several subsets of NK cells were also found in human umbilical 
cord blood (CB) and in diverse distributions at different devel-
opment stages in the peripheral blood (PB), lymph nodes, and 
spleen. Because of this distributions NK cell differentiations could 
occur at different anatomical locations (51). Interestingly, CD56+/
CD33+ NK  cell subpopulations identified in human umbilical 
CB revealed only a low cytotoxic effect against K562 target cells 
after IL-2-triggered expansion, whereas higher cytolytic effects 
were observed in response to activated CD56+/CD33− NK  cell  
subsets (50, 52).

Correspondingly to our experiments, increased CD33 
expression levels were proven only in a subset of IL-2-cultured 
NK  cells compared to ubiquitous elevations of NCRs and 
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FigUre 5 | Redirected effector–target cell interactions in response to ULBP2-aCD19-aCD33. Activated natural killer (NK) cells (expansion period: 10–14 days) and 
BV-173 cells were labeled with CFSE (green NK cells) or eFluor® 450 (red target cells), respectively, and co-cultured on chamber slides at the indicated E/T ratio for 
8 h (37°C, 5% CO2) in presence (a) or absence (B) of 10 µg/ml triplebodies (TBs) (ULBP2-aCD19-aCD33) exemplarily shown for three different experiments. 
Specific Effector-to-target (E/T)- and Effector-to-Effector (E/E)-contacts were monitored by scanR analysis allowed the time-limiting tracking of cell migrations 
[0–86.5 min (a) and 0–105.5 min (B)] evaluated with a fluorescence scanning microscope (IX81, Olympus, USA), visualized in response to cell morphology and 
fluorescence.
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NKG2D surface expressions detected on all NK  cells during 
14 days of expansion. The viability of these CD33-expressing 
effector cells was adversely affected in presence of TBs 
(ULBP2-aCD19-aCD33) and resulted in a diminished cyto-
toxic response against leukemic blasts. In addition to the 
shown toxicity against CD33+ NK cell subsets, adverse effects 
toward the viability of T and B lymphocytes could also be 
observed, which were explained according to target antigen 
expressions (CD19 or CD33) on those lymphocytes. Besides 
the well-studied CD19 surface levels that are expressed during 

all development stages of B  cells with the exception of dif-
ferentiated plasma cells (57, 58), human T cells express also a 
low amount of CD33. Interestingly, both T and NK cells show 
similarly high surface expressions of activation markers (CD25, 
CD28, CD38, CD45RO, or CD95) (52). This could explain 
the observed toxicity of activated NK cells in the presence of 
TBs (ULBP2-aCD19-aCD33) against T and B lymphocytes. 
Therefore, a close-meshed patient monitoring and examina-
tion of PB-derived immune status from AML patients should 
be implemented.

349

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 1 | Quantitative evaluations of E/T cell cluster formations.

evaluation of e/T cell cluster formations (e/T ratio: 5:1 + TB)

Viable 
cells

Total cell 
clusters

T:T cell 
clusters

e:T cluster  
(1×)

e:T cluster 
(2×)

e:T cluster 
(3×)

e:T cluster 
(4×)

e:T cluster 
(5×)

e:T cluster 
(6×)

e:T cluster 
(7×)

e:T cluster 
(8×)

Gates R01 R01/R02 R01/R02/
R03

R01/R02/R04 R01/R02/
R05

R01/R02/
R06

R01/R02/
R07

R01/R02/
R08

R01/R02/
R09

R01/R02/
R10

R01/R02/R11

Cell umbers 8,157 3,334 650 679 1,003 715 132 95 41 16 3
(%) 100 40.9 8.0 8.3 12.3 8.8 1.6 1.2 0.5 0.2 0.04

32.9% (2,684 E/T cell clusters)

Activated natural killer and BV-173 cells were co-cultured (E/T ratios: 5:1) on chamber slides over 8 h in presence of 10 µg/ml triplebodies (TBs) (37°C, 5% CO2). Specific cell 
interactions between effector and target (E/T) cells were analyzed by fluorescence scanning microscope (IX81, Olympus, USA).

TaBle 2 | Quantitative analyses of E/T cell cluster formations in absence of triplebodies (TBs).

evaluation of e/T cell cluster formations (e/T ratio: 5:1 w/o TB)

Viable 
cells

Total cell 
clusters

T:T cell 
clusters

e:T cluster 
(1×)

e T cluster 
(2×)

e:T cluster  
(3×)

e:T cluster 
(4×)

e:T cluster 
(5×)

e:T cluster 
(6×)

e:T cluster 
(7×)

e:T cluster 
(s×)

Gates R01 R01/R02 R01/R02/
R03

R01/R02/
R04

R01/R02/
R05

R01/R02/R06 R01/R02/
R07

R01/R02/
R08

R01/R02/
R09

R01/R02/
R10

R01/R02/
R11

Cell numbers 8,588 1,287 602 589 609 44 – – – – –
(%) 100 15.0 7.0 6.9 7.1 0.5 – – – – –

14.5% (1,242 E/T cell clusters)

Natural killer and BV-173 cells were co-incubated (E/T ratios: 5:1) over 8 h (37°C, 5% CO2).  
Clustering effector and target cells were analyzed by fluorescence scanning microscope.

TaBle 4 | Quantitative evaluations of E/E cell clusters in absence of triplebodies (TBs).

evaluation of e/e cell cluster formations (e/T ratio: 5:1 w/o TB)

Viable 
cells

Total 
e:e cell 
clusters

e:e cluster 
(1×)

e:e cluster 
(2×)

e:e cluster 
(3×)

e:e cluster 
(4×)

Gates R01 R01/
R02

R01/R02/
R04

R01/R02/
R05

R01/R02/
R06

R01/R02/
R07

Cell 
numbers

8,588 2,661 2,367 229 65 3

(%) 100 31.0 27.6 2.7 0.76 0.03

Natural killer and BV-173 cells were co-cultured (E/T ratios: 5:1) over 8 h (37°C,  
5% CO2). Clustering effector cells were analyzed by fluorescence scanning  
microscope.

TaBle 3 | Quantitative analyses of E/E cell cluster formations.

evaluation of e/e cell cluster formations (e/T ratio: 5:1 + TB)

Viable 
cells

Total 
e:e cell 
clusters

e:e cluster 
(1×)

e:e cluster 
(2×)

e:e cluster 
(3×)

e:e cluster 
(4×)

Gates R01 R01/
R02

R01/R02/
R04

R01/R02/
R05

R01/R02/
R06

R01/R02/
R07

Cell 
numbers

8,157 7,537 6,394 955 157 31

(%) 100 92.4 78.4 11.7 1.9 0.4

Activated natural killer in response to BV-173 cells (E/T ratios: 5:1) were co-incubated 
over 8 h in presence of 10 µg/ml triplebodies (TBs) (37°C, 5% CO2). Specific effector-
to-effector cell contacts were analyzed by fluorescence scanning microscope.
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cOnclUsiOn

Our results indicate that TBs, especially ULBP2-aCD19-aCD33, 
are able to increase cytolytic properties of activated NK  cells. 
This could be clearly demonstrated against both leukemic cell 

line BV-173 and primary AML blasts, but with some unfavorable 
toxicity effects against own effector cells and further adverse 
effects against T and B lymphocytes.

In summary, the experiences of our previous clini-
cal phase I/II NK  cell study for adaptive immunotherapy 
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Since mid-1990s, the field of cancer immunotherapy has seen steady growth and 
selected immunotherapies are now a routine and preferred therapeutic option of certain 
malignancies. Both active and passive cancer immunotherapies exploit the fact that 
tumor cells express specific antigens on the cell surface, thereby mounting an immune 
response specifically against malignant cells. It is well established that cancer cells 
typically lose surface antigens following natural or therapy-induced selective pressure 
and these antigen-loss variants are often the population that causes therapy-resistant 
relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lym-
phocytic leukemia, respectively, and lineage switching in leukemia associated with mixed 
lineage leukemia (MLL) gene rearrangements are well-documented evidences in this 
regard. Although increasing number of novel immunotherapies are being developed, 
majority of these do not address the control of antigen loss variants. Here, we review 
the occurrence of antigen loss variants in leukemia and discuss the therapeutic strate-
gies to tackle the same. We also present an approach of dual-targeting immunoligand 
effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. 
Novel immunotherapies simultaneously targeting more than one tumor antigen certainly 
hold promise to completely eradicate tumor and prevent therapy-resistant relapses.

Keywords: antigen loss, leukemia, NK cells, t cells, dual-targeting immunoligand

iNtrODUctiON

In what is known as cancer immunoediting, the immune system not only tries to eradicate the evolv-
ing tumor but, in doing so, also shapes the immunogenicity of the tumor that may escape the immune 
control (1). Ultimately, the tumor cells that progress despite the immunosurveillance consist of one 
or more clones with lower visibility and/or higher resistance to the immune cells (1). For example, 
tumors often decrease the expression of components required for antigen presentation (MHC) and/
or T cell activation (costimulatory molecules) as well as ligands for the NK cell-activating recep-
tors in order to hide from the T and NK cells, respectively (1–4). Alternatively, tumor cells express 
ligands, which, upon binding to the respective checkpoint receptors such as CTLA-4 and PD-1 on T 
cells and KIR and CD94/NKG2A on NK cells, suppress their effector functions (5–9). The following 
sections review the current targeted therapies and the evidences of relapses associated with antigen 
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loss variants in leukemia. Several therapeutic approaches includ-
ing a dual-targeting immunoligand to manage this challenging 
clinical scenario are discussed.

tArGeteD iMMUNOtHerAPies—
cUrreNt stAtUs iN LeUKeMiA

Acute leukemia represents an uncontrolled proliferation of the 
immature immune precursor cells and are further classified based 
on the lineage of the affected immune cell. Acute lymphocytic 
leukemia (ALL) affects the cells from the lymphoid lineage in 
contrast to the leukemia of myeloid cells, collectively known as 
acute myeloid leukemia (AML) (10). Both lymphoid and myeloid 
leukemia exploit the abovementioned and several other immune 
evasive strategies [reviewed in Ref. (6)]. However, the fact that 
tumor cells have to evade the immune system in order to be clini-
cally relevant disease also supports the idea that immune system, 
when properly activated, can fight the cancer.

Over the last three decades, the cancer immunotherapy field 
has seen much progress and most of its success can be attributed 
to the targeted therapies against leukemia (11). The most prom-
ising immunotherapeutic options for leukemia include targeted 
approaches such as chimeric antigen receptor (CAR) modified 
T cells (CAR-T cells) and antibody-based therapies that activate 
T and NK cells (11). Within the CAR construct, extracellular 
antibody-derived scFv confers the antigen specificity, while the 
intracellular signaling domains (from T cell receptor and costim-
ulatory molecule) provide the activation signal to the engineered 
T cells (12). Various CAR-T cells have entered the clinical studies 
for leukemia and the most advanced CAR is against CD19, which 
is being tested for ALL (13, 14). Blinatumomab, a bispecific T 
cell engager against CD19 and CD3 that recently got the FDA 
approval for the treatment of ALL, is an antibody-based molecule 
that also activates T cells, albeit via CD3, against the CD19-bearing 
target cells (15). NK cells, like T cells, have equally contributed to 
the clinical success of cancer immunotherapy against leukemia. 
For example, NK cells serve as an important effector population 
in chronic lymphocytic leukemia (CLL) patients who mediate 
antibody-dependent cell-mediated cytotoxicity through FcγRIIIa 
(CD16a) receptor engagement by the FDA-approved anti-CD20 
antibodies (rituximab, obinutuzumab, and ofatumumab), anti-
CD52 antibody alemtuzumab, and other promising anti-CD19 
antibodies (MEDI-551 and XmAb5574) that are currently in 
clinical trials (16). In addition to the conventional antibodies, 
there are numerous novel approaches currently in preclinical 
development that aim to harness NK cell activity against cancer 
[reviewed in Ref. (8)].

Although many of the targeted immunotherapies have 
produced unprecedented responses in leukemia, especially in 
chemorefractory patients, the complete remissions observed 
following such therapies are not long-lasting and a large variety 
of leukemia cases are presented with relapses that are aggressive 
and difficult to manage. This dismal scenario emphasizes the 
intratumoral heterogeneity that is driven by the intrinsic factors 
such as accumulation of genetic and epigenetic mutations during 
tumor progression and extrinsic factors imposed by therapeutic 
pressure and tumor microenvironment (17, 18).

OccUrreNce OF ANtiGeN LOss 
vAriANts iN LeUKeMiA

Around 30% of acute leukemia patients experience a relapse with 
occasional co-presentation of a phenomenon known as “lineage 
switch.” Lineage switching occurs when acute leukemia that was 
initially classified as lymphoid or myeloid subtype according 
to the standard French–American–British guidelines shows 
opposite lineage when relapsed (10, 19). This phenomenon is 
often associated with poor prognosis and therapy resistance 
regardless of whether it emerged due to the lineage conversion 
of the original malignant clone or the selective outgrowth of a 
new leukemic clone (10). Out of the two possibilities, lymphoid 
to myeloid lineage switch is more frequently observed with more 
cases reported in children and often associated with the mixed 
lineage leukemia (MLL) gene rearrangements on chromosome 
11q23 (20, 21).

Most cases of lineage switch have been reported in patients who 
had undergone some sort of targeted therapy. CD19-targeting 
immunotherapies including a bispecific antibody blinatumomab 
and CAR-expressing T cells have been very effective in chem-
orefractory B cell ALL. Anti-CD19/CD3 antibody blinatumomab 
redirects endogenous T cells in patients (15), while anti-CD19 
CAR T cells are genetically engineered to be specifically activated 
against CD19 expressing target cells when infused in patients 
(22). Despite exceptional responses associated with these targeted 
therapies, some patients relapse and in many cases loss of CD19 
antigen is reported. Duffner et al. reported a patient who was diag-
nosed with B-ALL associated with MLL-gene rearrangements but 
with no evidence of mixed lineage phenotype. Although blinatu-
momab therapy led to the complete disappearance of leukemic 
B cells, the patient relapsed with a more aggressive monocytic 
AML, which was negative for typical lymphoid markers such as 
CD19 (20). Similarly, CD19-specific CAR-T cell therapy could 
achieve complete response in all seven MLL-rearranged B-ALL 
patients. However, two of the seven patients relapsed with clon-
ally related AML with no expression of B lymphoid antigens (21). 
Interestingly, both patients who showed lineage switch also had 
the presentation of cytokine release syndrome (21). Interleukin-6 
(IL6), a key mediator of cytokine release syndrome, has also been 
shown to induce lymphoid to myeloid dedifferentiation in vitro 
(23) and in vivo (24). Although this is an indication of myeloid 
dedifferentiation of the original lymphoid blasts as an indirect 
effect of CAR-T cell therapy, it is also possible that myeloid clone 
is already present along with the lymphoid blasts, albeit below 
detection level, and is selected following the lymphoid-directed 
therapy. Ruella et al. recently described the presence of a small 
CD19-negative population in B-ALL patients before the admin-
istration of anti-CD19 CAR-T cell therapy (CTL019). Although 
there were no cases involving lineage switch, patients relapsed 
with CD19-negative B cell tumor following the CAR-T cell therapy 
(CTL019) and, as proposed by the authors, was most likely due to 
the selective outgrowth of the original CD19-negative subclone 
(13, 25). Beyond targeted immunotherapies, the phenomenon of 
lineage switch has also been observed following chemotherapy. 
As reported by Park et al., four patients of childhood B cell lineage 
ALL were treated with chemotherapy and were later presented 
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with the relapse of clonally related AML (one patient) or a novel 
AML clone (three patients) (19).

While the link between treatment and lineage switching is 
not clear, the precise mechanism of antigen loss following mAb 
therapy is identified in several B cell malignancies. Rituximab, a 
chimeric antibody against CD20, has become a standard thera-
peutic option for various B cell (CD20+) malignancies including 
non-Hodgkin lymphoma (NHL), follicular lymphoma, diffuse 
large B cell lymphoma, and CLL (26, 27). The loss of CD20 
antigen following rituximab therapy has been observed for fol-
licular lymphoma (27), B cell NHL (28), and CLL (29). Two main 
mechanisms have been reported for CD20 loss from the CLL cells 
following rituximab (anti-CD20 mAb) treatment. While CD20 
internalization by malignant B cells plays a minor role, the major-
ity of CD20, along with the bound rituximab, is removed by the 
Fcγ receptor-expressing monocytes and macrophages in a pro-
cess called as trogocytosis or shaving (30–32). This does not only 
result in the rapid clearance of rituximab following the infusion 
but also leads to selection of CD20-negative CLL cells that are 
resistant to anti-CD20 therapy. Similarly, CD19 internalization 
is also reported by anti-CD19 antibody XmAb5574 in CLL (33). 
Interestingly, Jones et al. reported the loss of CD19 from the CLL 
cells during the shaving (trogocytosis) of anti-CD20 rituximab. 
It was shown that CD19 was also transferred from B cells to 
monocytes in Fc receptor-dependent manner (34). Moreover, 
antigen loss in CLL is not only associated with the mAb therapy, 
for example, decrease in the cell surface expression of CD20 is 
observed by an immune modulating agent lenalidomide (26) or 
following the long-term in  vitro coculture with mesenchymal 
stromal cells (29).

tHerAPeUtic strAteGies tO cOMBAt 
tHe ANtiGeN LOss vAriANts

As most tumor relapses involving antigen loss have been observed 
following antigen-specific therapies, one plausible solution is 
to use therapeutic approaches that are more general in their 
specificity and do not depend upon a particular tumor antigen. 
Immunotherapy with cytokine(s) such as IL2, IL12, and IL15 act 
via enhancing NK and T cell-mediated immune response against 
tumor (35). Although side effects associated with cytokines (e.g., 
IL2 and interferons) greatly limit their current use in the clinics, 
this approach still holds promise especially at lower doses and in 
combination with other anti-cancer therapies (35). Alternatively, 
checkpoint blockade involves blocking of the inhibitory receptors 
on immune cells to reverse the immune suppression by tumor 
cells (36, 37). Recent success in blocking of inhibitory receptors 
on T cells such as CTLA-4 and PD-1 by FDA-approved antibod-
ies (checkpoint inhibitors) has led to the development of novel 
checkpoint inhibitors blocking NK cell inhibitory receptors KIR 
(lirilumab, Innate Pharma) and CD94/NKG2A (IPH2201, Innate 
Pharma) (36–38). The advantage is that such immune-modulatory 
approaches aim to promote an overall antitumor environment 
and are predicted to be less susceptible to the limitations associ-
ated with tumor heterogeneity and antigen loss (39). However, 
treatment options with no specificity for tumor are less likely 
to be curative as mono-agents and are often associated with the 

systemic side effects as observed in the form of immune-related 
adverse events following the checkpoint blockade approach (40).

Another strategy is to broaden the specificity of the current 
targeted therapies that have already shown promise in the clin-
ics. CAR-T cells with dual specificities have been developed to 
improve T cell targeting of tumor cells even when one of the 
antigens is lost from the cell surface. A prototype CAR T cell with 
two distinct antigen-specific scFvs in tandem (TanCAR) retained 
T cell activity against antigen loss variants (41). The treatment 
of B-ALL patients enrolled in the pediatric CTL019 trial (the 
University of Pennsylvania/Children’s Hospital of Philadelphia) 
with CD19-specific CAR-T cells led to the outgrowth of CD19-
negative malignant clone, which retained the expression of an IL3 
receptor α chain (CD123) (25). Taking advantage of this, Ruella 
et al. developed CD19/CD123 CAR-T cells and proved its ability 
to completely eradicate the primary B-ALL blasts (CD19+CD123+ 
and CD19-CD123+) and to prevent the CD19 antigen loss relapse 
in an immunodeficient (NSG) mouse model (25). Despite 
the encouraging progress with the dual-specific CAR-T cell 
approach, major safety concerns typically associated with CAR-T 
cell therapy such as “on-target, off-tumor toxicity” and “cytokine 
release syndrome” would demand an equal attention (42).

Alternatively, NK cells, unlike T cells, express a diverse array 
of activating and inhibitory receptors to sense for the presence 
of stressed, virally infected or malignant cells. Moreover, there 
are multiple ligands for some of the activating receptors on NK 
cells (43). For example, the natural killer group 2 member D 
(NKG2D), an activating receptor on NK cells, can induce NK cell 
effector functions upon binding to any of the natural ligands such 
as UL16-binding proteins (ULBP1-6) and MHC-I-related chains 
(MICA/B) (43). This makes NK cells unlikely to succumb to the 
tumor heterogeneity and antigen loss provided that malignant 
cells remain visible to the NK cell scanning. However, the ligands 
for the NK cell-activating receptors, including NKG2D, are occa-
sionally lost from the surface of leukemic cells in order to evade 
NK cell immunity (2, 3, 44). Of note, as shown by the recent work 
of Deng et al., soluble MULT1, a murine NKG2D ligand, played 
an indirect role in promoting NK cell immunity suggesting that 
soluble ligands may be more than inhibitory for overall NK cell 
activity (45). Our group has developed a therapeutic strategy to 
resensitize leukemic cells for NKG2D-dependent NK cell attack. 
To this end, we have developed and tested several bi- and trispe-
cific recombinant immunoligands containing an NKG2D ligand 
ULBP2 fused to the various tumor antigen-specific scFvs (46–48). 
The idea is that these immunoligands will bind specifically to the 
tumor antigens and will coat the tumor cells with ULBP2 ligand. 
This will turn the otherwise NK cell-resistant tumor cells visible to 
NK cells for the attack. This was recently tested for the trispecific 
immunoligands (triplebodies) against CLL and MLL cells, which 
showed successful NK cell-mediated killing of leukemic cells in 
both, in vitro and in vivo settings (47).

The ability of a dual-targeting triplebody ULBP2-aCD19-
aCD33 to target antigen loss variants is showed in the present 
report. The term “dual-targeting triplebody” represents a trispe-
cific immunoligand targeting two distinct antigens such as CD19 
and CD33 in the case of ULBP2-aCD19-aCD33 against a B-cell 
precursor leukemic cell line BV173. The rational of this approach 
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FiGUre 1 | Harnessing NK cells to control antigen loss variants: rational for the dual-targeting immunoligand approach. Emergence of antigen loss 
variants in most cases is seen following targeted therapy and can be associated with lineage switching (A), shaving or trogocytosis of antigen–antibody complexes 
from the tumor cells (B) or selective outgrowth of antigen-negative cells (c). NK cell activating dual targeting immunoligand (triplebody) consists of two scFvs against 
distinct antigens on tumor cells and a natural ligand to activate NK cells. As an example, ULBP2-aCD19-aCD33 (dual targeting triplebody) binds not only to the 
double antigen-positive (CD19+CD33+) target cells but also to the antigen loss variants. ULBP2, now coated on the target cells, activates NK cell effector functions 
via NKG2D receptor resulting in the killing of tumor cells by perforin and granzymes and secretion of IFNγ and TNFα. For simplicity, cross-linking is only shown 
between CD19+CD33+ target cells and NK cell; however, identical NK cell targeting is possible in response to antigen loss variants.
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is that ULBP2-aCD19-aCD33 would coat not only the CD19- and 
CD33-positive target cells such as leukemic cells with MLL pheno-
type but also any existing or newly emerging clones that lost one of 
the antigens (Figure 1). ULBP2-aCD19 and ULBP2-aCD33, the 
bispecific immunoligands either targeting CD19 or CD33, would 
fail in this regard. To mimic the antigen loss variants of BV173 cell 
line, CD19 and/or CD33 antigens were preblocked using molar 
excess of CD19- or CD33-specific scFv moieties (aCD19scFv or 
aCD33scFv) that lacked an ULBP2 ligand. This has previously 
shown to completely abolish binding of the immunoligands 
and subsequent killing of target cells in an antigen-specific 
manner (47). As shown in Figure  2, when both antigens were 
accessible on BV173 (CD19+CD33+), all three immunoligands 
significantly enhanced the NK-cell-dependent killing of BV173 
cells, albeit depending upon the expression level of the respective 
antigen. Of note, the surface expression of CD19 on the BV173 
is several fold higher compared to CD33 (47, 49). When CD19 
antigen was blocked (CD19blockCD33+) by preincubation with  
aCD19scFv construct, BV173 killing induced by ULBP2-aCD19 
was completely abolished while ULBP2-aCD33 and ULBP2-
aCD19-aCD33 retained their toxic effects. Similarly, CD33 
blocking on BV173 (CD19+CD33block) by aCD33scFv could 

abolish killing by ULBP2-aCD33 but not by ULBP2-aCD19 
and the triplebody. Only, simultaneous blocking of both CD19 
and CD33 antigens could abolish the killing induced by the 
dual-targeting triplebody ULBP2-aCD19-aCD33. This prototype 
immunoligand can also be modified to target a different com-
bination of antigens such as CD19 and CD20 in case of CLL. 
Theoretically, it is also possible that tumor clones that have lost 
the expression of both antigens preexist within the heterogeneous 
tumor population and can be further selected even after dual-
targeting approach. Moreover, this is also relevant in the context 
of antigen loss following targeted therapy as simultaneous loss 
of CD19 and CD20 antigens has been noted following rituximab 
therapy (34). Therefore, clinical success of the dual-targeting 
strategy will require careful selection of the tumor antigen pair 
and combination therapies should be considered in the case of 
double antigen loss.

Although this study focused on NK cell-dependent effects, 
NKG2D is also a shared activating receptor on γ/δ T cells and 
a coactivating receptor on CD8+ T cells. NKG2D-dependent 
antitumor effector functions of both of these T cell populations 
have been reported by us and others. Therefore, we believe that 
NKG2D targeting would facilitate a more dynamic immune 
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FiGUre 2 | continued 
A dual targeting triplebody ULBP2-acD19-acD33 mediates NK cell-dependent killing of antigen loss variants. (A) NK cells were purified from healthy 
donor by negative selection and were primed by IL2 (200 U/ml) + IL15 (10 ng/ml) cytokines for 15–18 h (overnight). Next day, primed NK cells were incubated with 
DiR dye-labeled BV173 cells at indicated effector to target (E:T) ratio for 3 h. The incubation was continued either alone (No construct) or in the presence of 100 nM 
of immunoligand (U-19: ULBP2-aCD19, U-33: ULBP2-aCD33, U-19-33: ULBP2-aCD19-aCD33). After incubation, 7-AAD was added and 7-AAD-positive cells 
within DiR-positive gate indicated dead BV173 cells. One representative toxicity assay is shown. (B) Cumulative analysis of four independent toxicity assays at 2.5:1 
(E:T) ratio (N = 4; each N represents an independent healthy NK cell donor). Error bars indicate SEM and statistical analysis by one-way ANOVA.
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reaction involving both, innate and adaptive arms. In human 
and mice, chronic stimulation of NKG2D receptor by membrane 
bound ligands leads to the reduced surface expression of NKG2D 
receptor (50, 51). However, ULBP2 is not as effective as MICA in 
causing downmodulation of NKG2D receptor (51), and we do 
not anticipate that the recombinant protein will be retained in the 
body fluids for a relevant period to cause significant downmodu-
lation of NKG2D receptor.

Taken together, incorporating additional tumor specificity 
to the current mono-targeting T and NK cell-based therapies 
appears to be a promising approach to prevent or treat antigen loss 
relapse. Their ultimate clinical benefits may be more accurately 
predicted by addressing whether there are any additional adverse 
effects that are particularly associated with dual specificities.
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Natural killer (NK) cells are potent antitumor effectors, involved in hematological malignancies  
and solid tumor immunosurveillance. They infiltrate various solid tumors, and their 
numbers are correlated with good outcome. The function of NK cells extends their lytic 
capacities toward tumor cells expressing stress-induced ligands, through secretion of 
immunoregulatory cytokines, and interactions with other immune cells. Altered NK cell 
function due to tumor immune escape is frequent in advanced tumors; however, strat-
egies to release the function of NK infiltrating tumors are emerging. Recent therapies 
targeting specific oncogenic mutations improved the treatment of cancer patients, but 
patients often relapse. The actual development consists in combined therapeutic strat-
egies including agents targeting the proliferation of tumor cells and others restorating 
functional antitumor immune effectors for efficient and durable efficacy of anticancer 
treatment. In that context, we discuss the recent results of the literature to propose 
hypotheses concerning the potential use of NK cells, potent antitumor cytotoxic effec-
tors, to design novel antitumor strategies.

Keywords: tumour immunosurveillance, natural killer ligands, immune checkpoint inhibitors, BrAF inhibitor, 
AMLMDs, melanoma

iNtrODUctiON

Natural killer cells have been known and actively studied for more than four decades. They were first 
described as large granular lymphocytes cytotoxic for various tumor cells without prior stimulation 
(1, 2). In addition to their cytolytic activity against neoplastic and virus-infected cells, NK  cells 
also display immunomodulatory functions by their ability to release cytokines, like interferon-γ 
(IFNγ) and tumor necrosis factor-α (TNFα), and chemokines. NK cells represent 5–15% of blood 
lymphocytes. They are present in the bone marrow, liver, uterus, spleen, lungs, in mucosa-associated 
lymphoid tissues, thymus, and secondary lymphoid tissues (SLT) and are recruited in inflamed sites. 
In SLT, NK cells provide an early source of IFNγ and interact with dendritic cells to promote T helper 
cell type 1 responses (3).

Natural killer cells are now grouped in the system of innate lymphoid cells (4). These populations, 
mostly tissue resident and characterized by their capacity to produce high amounts of cytokines, 
constitute innate homologs of T helper cell (CD4) and cytotoxic T cell (CD8) subsets. ILCs are impli-
cated in tissue homeostasis and autoimmune diseases. Their distribution and capacity to produce 
cytokines suggest that they may also be involved in the development or evolution of cancer. NK cells 

361

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00683&domain=pdf&date_stamp=2017-06-12
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00683
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:anne.caignard@inserm.fr
https://doi.org/10.3389/fimmu.2017.00683
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00683/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00683/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00683/abstract
http://loop.frontiersin.org/people/429453
http://loop.frontiersin.org/people/426558
http://loop.frontiersin.org/people/429259
http://loop.frontiersin.org/people/31018
http://loop.frontiersin.org/people/39235
http://loop.frontiersin.org/people/318801


Messaoudene et al. NK Cells and Cancer Therapies

Frontiers in Immunology | www.frontiersin.org June 2017 | Volume 8 | Article 683

are considered as cytotoxic counterparts of ILC1, both depending 
on the T-bet transcription factor for their development.

Human NK  cells, defined as CD45+/CD3−/CD56+ cells (5), 
are classically subdivided in two subsets based on the relative 
membrane expression of CD56 and CD16, the low-affinity 
receptor for the Fc portion of IgG (FcγRIIIA): CD56dim NK cells 
that express high levels of CD16 mediate antibody dependent 
cell cytotoxicity (ADCC), whereas CD56bright NK cells express no 
or low levels of CD16. These two subsets are present in different 
proportions in the different tissues. CD56dim NK cells represent 
90% of blood and splenic NK  cells, while CD56bright NK  cells 
predominate over CD56dim in the SLT [lymph nodes (LN) and 
tonsils] representing up to 90% of NK cells and also constitute 
the major NK subset in tissues. It is accepted that CD56bright 
NK cells are less mature than CD56dim NK cells and display an 
immunoregulatory function, secreting high amounts of IFNγ 
and TNFα. CD56dim NK cells represent mature NK cells with a 
high cytotoxic activity (6).

The activation of NK  cells is tightly regulated by a balance 
between activating and inhibitory signals delivered through 
engagement of numerous activating and inhibitory receptors 
with ligands on the target cell. Natural cytotoxicity receptors 
(NCRs), such as NKp46 and NKp30, are expressed by resting 
NK cells while NKp44 is induced after activation by cytokines, 
such as IL-2 and IL-15 (7, 8). The NCRs are implicated in the lysis 
of various tumor cells (9). The activating NK group 2 member 
D (NKG2D) receptor is expressed by most circulating NK cells 
and binds the stress-induced MHC-class I polypeptide-related 
sequence (MIC)-A/B molecules and UL16-binding proteins 1–6 
(ULBP1–6) (10). DNAX accessory molecule-1 (DNAM-1) binds 
Nectin family molecules CD155 and CD112.

Natural killer cell activation is efficiently controlled by spe-
cific inhibitory NK receptors binding human leukocyte antigen 
of class I (HLA-class I) molecules. The C-type lectin CD94/
NKG2A receptor binds HLA-E molecules (11) sensing the global 
HLA-class I molecules on the target while killer Ig-like receptors 
(KIRs) bind classical HLA-class I molecules, including HLA-C, 
HLA-Bw4, and some HLA-A alleles.

NK ceLLs iN tUMOr 
iMMUNOsUrveiLLANce

A link between NK  cell function and cancer development was 
reported in a Japanese 11-year follow-up study including 3,625 
patients in which cancer incidence was negatively correlated 
with blood NK-mediated cytotoxicity (12). Authors further 
showed that individuals with particular NKG2D haplotypes, 
HNK1/HNK1 haplotype (correlated with high NK activity) had a 
decreased risk of cancer compared to those with an LNK1/LNK1 
haplotype (correlated with low NK activity) (13).

Additional results including ours showed the impact of NCR 
transcripts in the evolution of melanoma, lung cancers, and 
gastrointestinal stromal tumors (GIST) patients (14–16). High 
NKp46 correlated with better survival in metastatic melanoma 
patients and particular profiles of NKp30 isoforms was associated 
with better outcome and response to treatment in GIST patients.

The cancer immunoediting process (17) resumes cancer 
progression in three phases. In the elimination phase, immune 
cells and among them NK cells eradicate developing tumor cells. 
During the equilibrium phase, the immune system may select 
tumor variants with less immunogenicity gradually leading to 
the tumor escape phase and tumor progression. It is considered 
that most tumors at diagnosis are in the phase of immune escape 
associated with functionally altered tumor infiltrating NK cells 
(18). Tumor immunoediting selecting variants with decreased 
expression of stress-induced ligands provide tumor escape to 
NK cell-mediated lysis through activating receptors NKG2D or 
NKp46 (19, 20).

The challenge is thus to overcome tumor immunosuppres-
sion and restore NK  cell activities. To this aim, understand-
ing the mechanisms that lead to NK  cell defects in tumor is 
required.

NK ceLLs iN HeMAtOLOGicAL 
MALiGNANcies

Numerous studies showed that severe quantitative and 
qualitative alterations of NK cells are associated with different 
hematological malignancies, particularly in myeloid disorders. 
In chronic myelogenous leukemia patients, low numbers of 
NK cells are associated with defects in their proliferation, and 
weak NK  cell cytolytic functions in comparison with healthy 
donor blood NK cells (21). Furthermore, profound alterations in 
the activating receptors profile have also been reported including 
downregulation of NKp30 and NKp46 as well as DNAM-1, 2B4, 
and NKG2C on NK cells from acute myeloid leukemia (AML) 
patients. Decreased NKp30 and NKp46 expression was corre-
lated with reduced NK cell killing and poor leukemia prognosis 
(22–25). Recently, Khaznadar et  al. analyzed by cell imaging 
the lytic NK immunological synapse following interaction with 
AML cells and showed defective lytic granule polarization in 
NK cell-AML conjugates leading to impaired NK cell cytotoxic 
function (26).

Importantly, the intimate relationship between immune 
pressure and leukemogenesis has been suggested in two recent 
studies. Stringaris et  al. described an immunoediting process 
induced by AML blasts that limits NK cell control of leukemia. 
They showed that abnormal NKG2A expression and TNFα 
production predict a poor response to chemotherapy in AML 
patients (27). Conversely, Khaznadar et al. showed that NK cell 
defects in AML patients at diagnosis could be associated with a 
specific transcriptional program in AML blasts and with patient’s 
outcome including relapse occurrence (28).

Furthermore, the beneficial role in the graft-versus-leukemia 
(GvL) of allogeneic NK  cells for leukemic patients receiving 
allogeneic hematopoietic stem cell transplantation (HSCT) is 
well documented (29). Several studies showed that NK cells have 
a potent GvL effect in both KIR/HLA-class I-mismatched and 
-matched donor–recipient combinations after allogenic HSCT in 
AML patients (30–32). Moreover, rapid NK recovery after HSCT 
is also associated with a greater GvL effect and improved outcome 
in AML patients (33).
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NK ceLLs iN sOLiD tUMOrs

In situ detection of NK cells infiltrating various human tumors/
tissues was carried out, leading sometimes to divergent results due 
to the disparity of NK cell markers used (CD57, CD56, NKp46, 
double CD3/CD56 staining). However, several reports showed 
that NK  cells can infiltrate clear-cell renal cell carcinoma (34), 
melanoma (35), non-small cell lung cancer (NSCLC) (36), breast 
cancer (BC) (37), GIST (38), and colorectal carcinoma (CRC) (39) 
although NK cells were mainly localized at the tumor’s periphery. 
In several tumors, infiltrations by NK cells were reported to have 
a prognostic value. Increased overall survival was associated with 
a high NK  cell infiltrate within the tumor or tumor stroma in 
lung adenocarcinoma (40), metastatic renal carcinoma (41), and 
lung metastasis of renal cancer (42). Elevated number of NK cells 
was associated with reduced risk of cancer progression in prostate 
cancer (43), with a reduced risk of death in squamous cell lung 
cancer (44), and a better prognosis in gastric carcinoma (45) and 
CRC (46). In addition, the number of NKp46+ NK cells was found 
inversely correlated with metastasis occurrence in patients with 
GIST (47). Furthermore, a positive association between a high 
numbers of tumor infiltrating CD56+ NK cells with a regression 
of melanocytic lesions was observed (48).

In most tumor types studied, ex vivo tumor-infiltrating NK cells 
displayed severe phenotypic and functional alterations compared 
to blood NK cells and more interestingly compared to NK cells 
present in adjacent normal tissues. Those alterations affected 
the expression of activating receptors including NKp30, CD16, 
DNAM-1, and ILT2 on NK cells from patients with non-invasive 
and invasive BC (49) or NSCLC (36). A concomitant-increased 
expression of the inhibitory molecule NKG2A was also observed 
in BC (49). This deficient phenotype was associated with impaired 
functions including decreased cytotoxicity against tumor cells 
(36, 49) and reduced IFNγ production (36). Recently, Carrega 
et al. reported that lung and BC tissues were highly enriched in 
CD56brightperforinlow NK  cell subset compared to matched nor-
mal tissues (37). It is of note that comparison between NK cells 
from tumor and normal adjacent tissue is required for better 
understanding of the effect of the tumor environment on their 
activation.

Interestingly, our team recently identified in tumor draining LN 
from melanoma and BC patients, the presence of a CD56brightCD16+ 
NK-cell subset that displays higher expression of activating 
receptors, perforin molecules, and performs ADCC (50). We 
found that different NK receptors regulate the two LN-NK cell 
subsets in melanoma and BC (personal communication)  
and that NK-infiltrating LN recapitulate the alterations reported 
in the primary tumors. The presence of CD16+ NK cells in certain 
tumors (51) and metastatic LN emphasizes the interest for ADCC 
function of such NK cells.

Alterations in Blood NK cells  
from Patients with solid tumors
Alterations in blood NK  cells from patients with solid tumors 
were also reported, but in a lesser extent than in tumor infiltrat-
ing NK  cells. Compared to healthy donors, a downregulation 

of NKG2D and an increase of the inhibitory receptor CD158b 
expression were correlated with impaired NK  cell function 
(52–54) in metastatic melanoma patients. Our group showed 
a progressive decrease of NKp46 expression on blood NK cells 
with the disease progression in melanoma patients (55). In BC 
patients with invasive tumor, blood NK  cells display altered 
expression of activating receptors NKp30, NKG2D, DNAM-1, 
2B4, and CD16 and an upregulation of the inhibitory receptors 
NKG2A and CD85j. This phenotypic change was correlated with 
decreased NK cell cytotoxicity function and cytokine production 
(IFNγ and TNFα) (49). Blood NK cells from soft-tissue sarcoma 
patients displayed reduced proportions of CD56dim NK cells. Low 
percentages of blood NK cells associated with a reduced NKp30, 
NKp46, and NKG2D expression were reported in patients with 
invasive squamous cervical cancer (56).

NK ceLLs: A POteNtiAL PArtNer  
FOr tArGeteD tHerAPies

The advent of targeted therapies that counteract a vital cellular 
process within the tumor cell greatly improved cancer treatment 
strategies. Thus, mitogen-activated protein kinase (MAPK) 
inhibitors that control the mutation-driven oncogenic pathway 
present in most cancers are new efficient players in the arsenal of 
therapies for cancer patients. In addition, monoclonal antibod-
ies (mAbs) that recognize tumor-associated antigens have been 
established as one of the most successful therapeutic strategies 
for both hematologic malignancies and solid tumors. These mAbs 
may activate antibody-dependent cell-mediated cytotoxicity 
involving NK cells.

Combining targeted therapies and methods to stimulate 
patient’s immune players is actively evaluated and represents a 
promising and natural evolution in cancer treatment as this could 
ally immediate efficiency, specificity, and long-term antitumor 
efficacy.

It is of note that targeted therapies also display off-target 
effects, connecting oncogenesis to immunosurveillance. We dis-
cuss below the interest of NK cell-based therapies in the context 
of such tumor-targeted therapies (Figure 1).

effect of cancer treatment on NK cells
Most melanoma patients (65%) bear a BRAF-mutated tumor 
and receive specific inhibitors targeting mutated BRAFV600E 
alone or in combination with MEK inhibitors, upstream of ERK 
(57). These inhibitors may exert bystander effects on certain 
immune cells that depend on MAPK for their activation and/or 
proliferation. BRAF inhibitors do not affect NK cell phenotype 
in vivo and in vitro, but blood NK cell numbers were increased 
in vemurafenib-treated patients (58, 59). MEK inhibition alters 
the expression of the main NK receptors and the function of 
cytokine-activated NK cells, but the combined BRAF and MEK 
inhibitors did not (60).

In addition, targeted therapies may interfere with the NK/
target interactions through modulation of NK ligands on cancer  
cells. We have shown that a BRAF inhibitor modulates the 
expression of MICA and ULBP2 (ligands of NKG2D), changing 
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FiGUre 1 | Natural killer (NK) cells infiltrating various tumor types display altered functions. Tumor-specific therapies may potentiate NK cell activation. Inhibitors 
targeting MAP kinase reduce tumor growth and display off-target effect modulating NK ligands expression and immune cell activation. Tumor-specific monoclonal 
antibodies (mAbs) may trigger ADCC by CD16+ NK cells. In that context, target NK-based immunotherapies may be proposed. Combined mitogen-activated protein 
kinase inhibitors with cytokines release NK function by inhibitory NK receptors [killer Ig-like receptor (KIR), NKG2A] blockade and promote NK-mediated ADCC of 
tumor antigen-specific mAbs and combined immunocytokines, anti-NK receptors (NKG2D, CD137, KIR, NKG2A).
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the ratio between membrane expression and soluble form, and 
increases B7H6 (ligand of NKp30) expression and HLA-A,B,C 
and HLA-E molecules expression that engage inhibitory recep-
tors (KIRs, NKG2A), thus interfering with NK cell-mediated lysis 
(in revision). Resistance to a BRAF inhibitor is accompanied by 
higher NK ligands expression (personal communications).

Our findings and recent results from the literature emphasize 
that therapeutics designed to limit cancer cell growth by acting 
through kinase inhibitors should also be considered in terms of 
their impact on immunosurveillance (61). In a murine model 
of BRAF-mutated melanoma, host NK  cells and perforin were 
required for the effect of a BRAF inhibitor (62) and correlated 
with the reduction of tumor growth, and an increased NK and 
T cell infiltration of the tumors (63).

Combining specific MAPK inhibitors with immunotherapies 
to increase response rates is evaluated leading to yet discordant 
results. BRAF inhibition augments melanoma antigen expression 
and maintains T cell function (64). However, inhibition of BRAF 
in a murine model of human melanoma was associated with 
decreased tumor-resident lymphocytes and resistance to CTLA-4 
mAb (65). MEK inhibitors increased antigen-specific T  cell 

within the tumor sparing their cytotoxicity and combined with 
anti-PD-L1 mAb they exerted a synergic effect of tumor growth 
inhibition (66). Other kinase inhibitors such as those targeting 
Jak involved in the signaling cascade of cytokine receptors may 
influence NK (67).

A better understanding of off-target efficacy of MAPK inhibition 
affecting tumor–host interactions is required to develop strategies 
aimed at facilitating antitumor immune responses. The emerging 
findings indicate a potential synergy between targeted therapies, 
which change the balance between ligands of activating and inhibi-
tory NK receptors, and NK-based immunotherapies, opening new 
interesting opportunities for the design of clinical trials.

Anti-Kir/Anti-NKG2A mAbs: increasing 
NK Function by Blocking Negative 
signaling
One promising approach is to release NK  cell function with 
anti-KIR or anti-NKG2A mAbs as NK cells are strictly controlled 
by receptors specific for HLA-class I molecules. Fully human 
anti-KIR mAbs, 1-7F9 mAb, and then lirilumab (recombinant 
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version with a stabilized hinge) were generated (68). They prevent 
the binding of KIR2DL1, KIR2DL2, and KIR2DL3 receptors to 
their HLA-C ligands and blocking their inhibitory signaling.  
In vitro and in vivo studies showed that anti-KIR mAbs augmented 
NK cell-mediated lysis of HLA-C+ tumor cells, including autolo-
gous AML blasts and autologous CD138+ multiple myeloma cells 
(68–71). In addition, transient increases of TNFα and MIP-1β 
serum concentrations and CD69 expression on NK  cells were 
observed from treated patients (72). In a clinical trial, Benson 
et  al. showed that 1-7F9 mAb is safe in patients with multiple 
myeloma and enhances ex vivo patient-derived NK cell cytotoxic-
ity against tumor cells (73).

Other immune receptors highly expressed by NK cells are in 
development, such as anti-NKG2A (monalizumab).

Targeting inhibitory pathways in NK cell/tumor interactions 
may be complementary to small-molecule inhibitors for the 
treatment of advanced tumors such as melanoma. The prospect 
of combining NK  cell-based immunotherapy with approaches 
to target the immunosuppressive tumor microenvironment or 
immune checkpoints, such as KIR blockade, is especially relevant 
to the treatment of solid tumors (74, 75) and particularly for 
tumors refractory to targeted therapies.

NK cell-Mediated ADcc Using  
tumor-specific mAb
Natural killer cells express activating low-affinity FcgRIIIa 
(CD16) and are key mediators of antibody-dependent cellular 
cytotoxicity. The relevance of ADCC in tumor control using 
therapeutic mAbs was evaluated in several cancers. The contri-
bution of ADCC to the clinical efficacy of a therapeutic mAb 
has been observed in non-Hodgkin’s lymphoma patients treated 
by anti-CD20 (rituximab) (76). Other therapeutic mAbs likely 
inducing NK  cell-mediated ADCC are anti-CD19 in patients 
with B malignancies, anti-GD2 in neuroblastoma patients, and 
anti-HER2 mAbs (trastuzumab) in metastatic breast and gastric 
cancer patients (76–78). Anti-EGFR mAb (cetuximab) was 
shown to increase ADCC-mediated lysis of colon tumor cells by 
blood NK cells from colorectal cancer patients that display altered 
natural cytotoxic activity (51).

Several modifications of the antibody structure, such as class 
switching, humanization, and point mutations to reduce comple-
ment interaction/activation, are developed to engineer mAbs 
with increased NK cell ADCC function and limit their toxicity. 
Thus, humanized anti-GD2 mAb (hu3F8-IgG1) exerts reduced 
toxicity compared to other anti-GD2 mAbs, by leveraging ADCC 
over complement-mediated cytotoxicity (79). Higher FcγRIIIA-
binding affinity of anti-CD19 antibody significantly increased 
NK  cell-mediated ADCC, leading to malignant B-cell clearing 
in non-human primates (78, 80). Other strategies to enhance the 

effect of ADCC include the coadministration of cytokines, IL-12 
with anti-HER2/neu (trastuzumab) (81) to stimulate IFNγ pro-
duction by NK cells and T cells and promote the CD56dimCD16+ 
NK  cell differentiation to mediate ADCC (82). Co-infusion of 
anti-CD20 (rituximab) and TLR9 agonist (CpG) that is known 
to raise the membrane expression of CD20 on malignant B cells 
enhances ADCC (83). The infusion of immunocytokines, 
cytokines linked to the Fc terminus of humanized Abs, is also 
evaluated to potentiate ADCC. In preclinical study, Buhtoiarov 
et  al. demonstrated that the humanized anti-GD2 immuno-
cytokine hu14.18-IL-2 exerts higher antitumor effect than the 
reagents given separately (84).

Combining tumor-specific mAbs and mAbs targeting NK 
receptors (NKG2D, costimulatory molecule CD137) is another 
option. Anti-CD137 coadministred with rituximab led to a 
subsequent stimulation of these NK cells and enhanced rituxi-
mab-dependent cytotoxicity against the lymphoma cells (85). 
Furthermore, combination of rituximab with antibodies that 
block KIR2DL1 significantly improved NK cell-mediated lysis of 
tumor targets (86).

cONcLUsiON

Restoring NK  cell functions in addition to administration of 
tumor-specific therapies with kinase inhibitors or tumor-specific 
mAbs may benefit patients. It would increase the control of 
residual tumor cells, enhance mAbs efficiency, and promote the 
adaptive immune response necessary for long-lasting protective 
immunity. In that context, cytokines, blockade of inhibitory  
NK receptors (KIRs, NKG2A), or transfer of alloreactive NK cells 
are promising NK-based therapies.
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Transformed plasma cells in multiple myeloma (MM) are susceptible to natural killer 
(NK) cell-mediated killing via engagement of tumor ligands for NK activating receptors 
or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell 
immunosurveillance by reprogramming tumor microenvironment and editing cell surface 
antigen repertoire. Along disease continuum, these effects collectively result in a pro-
gressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical 
determinant of MM progression. In recent years, unprecedented efforts in drug devel-
opment and experimental research have brought about emergence of novel therapeutic 
interventions with the potential to override MM-induced NK cell immunosuppression. 
These NK-cell enhancing treatment strategies may be identified in two major groups: (1) 
immunomodulatory biologics and small molecules, namely, immune checkpoint inhibi-
tors, therapeutic antibodies, lenalidomide, and indoleamine 2,3-dioxygenase inhibitors 
and (2) NK cell therapy, namely, adoptive transfer of unmanipulated and chimeric anti-
gen receptor-engineered NK cells. Here, we summarize the mechanisms responsible 
for NK cell functional suppression in the context of cancer and, specifically, myeloma. 
Subsequently, contemporary strategies potentially able to reverse NK dysfunction in 
MM are discussed.

Keywords: multiple myeloma, immunotherapy, natural killer cells, killer immunoglobulin-like receptors, cytokines, 
immune checkpoint inhibition, daratumumab, elotuzumab, iDO inhibitors, chimeric antigen receptor 

iNTRODUCTiON

Multiple myeloma (MM) is a B-cell malignancy characterized by an abnormal growth of malignant 
plasma cells which derive from a post-germinal B-cell of the lymphoid cell lineage. The treatment 
paradigm for MM has undergone a dramatic evolution in the past decade given a considerable 
improvement in the understanding of disease pathogenesis. Despite the development of novel 
therapeutic agents such as proteasome inhibitors—bortezomib, carlfizomib—and immunomodu-
latory drugs—lenalidomide, pomalidomide—which target not only MM cells but also their inter-
play with the microenvironment, MM remains an incurable disease and the prognosis of patients 
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with relapsed/refractory MM remains very poor. A number 
of factors concur to make MM a hard-to-treat hematologic 
malignancy. Drug resistance remains a major concern. MM 
is a highly heterogeneous disease with pathogenic processes 
that may greatly differ among newly diagnosed patients and 
others that may arise during the disease course. In recent years, 
several studies have focused on mechanisms of drug resistance 
even though many are not yet completely understood. It is 
widely assumed that cytogenetic and epigenetic abnormalities, 
deregulated signaling pathways, the MM bone marrow (BM) 
microenvironment, and the MM stem cell itself are all elements 
which play significant roles in drug resistance. Deletion 17p13 
is one of the most relevant chromosomal abnormalities present 
in approximately 10–15% of newly diagnosed patients and 
observed more frequently in refractory-relapsed patients. It has 
been associated with resistance to new agents such as bortezomib 
and lenalidomide (1, 2). Aberrant drug transport processes and 
anti-apoptosis mechanisms have also been correlated with drug 
resistance (3, 4). Moreover, a pivotal role is played by the intense 
cell–cell crosstalk between the BM microenvironment and MM 
cells and their interplay with the extracellular matrix (5). All 
the abovementioned mechanisms make MM very challenging 
to eradicate with single-agent or combination modalities. Thus, 
an urgent need exists for new therapeutic strategies to overcome 
resistance to current therapies. MM is also characterized by a 
gradual and progressive immune dysregulation with impairs 
functions of B and T  cell immunity, natural killer (NK) cells, 
and antigen-presenting/dendritic cells that allow malignant 
plasma cells to escape immunosurveillance. The combination 
of an “immunosuppressive” microenvironment and clonal 
evolution activate signaling pathways that invariably promote 
disease survival and progression. Several immunotherapies have 
recently been proposed and, among others, they have included 
monoclonal antibodies, antibody–drug conjugates, chimeric 
antigen receptor T cell therapy (CAR-T cells), tumor vaccines, 
and immune checkpoint inhibitors. This review provides an 
overview of the biological functions and potential clinical role 
of NK cells as a form of immunotherapy that may improve MM 
clinical outcomes.

PHYSiOLOGY OF NK CeLLS  
AND THeiR ReCePTORS

Missing-Self Recognition and inhibitory 
NK Cell Receptors
In the early 1970s, immune effectors isolated from mice and 
humans were found to display in  vitro antitumor cytotoxicity 
without prior immunization by tumor antigens in  vivo (6–9). 
These cells were functionally defined as N-cells or NK cells and 
were believed to belong to the lymphoid lineage, but to be 
distinct from B and T  cells (10–13). Mechanisms regulating 
NK  cell-mediated target recognition and killing remained 
obscure for more than a decade after natural cytotoxicity was 
first described. In 1986, Karre et  al. reported that resistance 
of mice lymphoma cells to NK  cell-mediated rejection was 
dependent on major histocompatibility complex (MHC) class 

I antigen expression on cancer surface (14). This observation 
led to the assumption that NK cell would possess receptors able 
to transduce negative signals upon MHC class I engagement, 
thus sparing putative targets. Lack of MHC class I would instead 
trigger NK cell activation, a phenomenon known as missing-self 
recognition (15).

In humans, the NK cell inhibitory receptors able to recognize 
HLA class I are type I transmembrane structures belonging to 
the immunoglobulin (Ig) superfamily, known as killer immu-
noglobulin-like receptors (KIR). Inhibitory KIR share a long 
(L) cytoplasmic tail containing immunoreceptor tyrosine-based 
inhibitory motifs that can process signals through the recruit-
ment and activation of the SH2-domain-containing tyrosine 
phosphatase 1 protein (16–20). Three inhibitory KIR engaging 
HLA class I ligand groups are critical regulators of NK cell func-
tion: KIR2DL1, specific for HLA-C2 group antigens (sharing 
Asn at position 77 and Lys at position 80 of the HLA-Cw heavy 
chain); KIR2DL2/3, specific for HLA-C1 group antigens (sharing 
Ser at position 77 and Asn at position 80 of the HLA-Cw heavy 
chain) (21, 22); and KIR3DL1, specific for the HLA-Bw4 epitope 
(located at position 77–83 of the heavy chain of certain HLA-B 
and HLA-A alleles) (23–25).

In the last two decades, multiple additional inhibitory 
NK cells receptors have been identified, leading to the currently 
accepted notion that NK cell effector function is dependent on 
the overall balance of signals transduced by multiple inhibitory 
and activating receptors recognizing cognate ligands on virally 
infected and cancer cells. Examples of non-KIR inhibitory NK 
receptors include the c-type lectin-like CD94/NKG2A (CD159a) 
heterodimer and ILT2 (LILRB1, CD85j), respectively, engaging 
HLA-E and various HLA class I antigens (26, 27); NKR-P1A 
(CD161) recognizing the lectin-like transcript 1 (28, 29); and 
the carcinoembryonic antigen-related cell adhesion molecule 1 
(CD66a) recognizing the CD66 ligand (30–32).

Activating NK Cell Receptors
Activating NK  cell receptors are also described. Among them, 
NKG2D (CD314) has ligand specificity for a wide range of 
stress-induced cell surface ligands (NKG2D-L), including the 
MHC-related ligands MICA and MICB (33) and the human 
cytomegalovirus glycoprotein (UL16)-binding proteins ULBP1-6 
(33, 34). Natural cytotoxicity receptors (NCRs) NKp46 (NCR1, 
CD335) (35, 36), NKp44 (NCR2, CD336) (37), and NKp30 (NCR3, 
CD337) (38) are potent activating receptors almost exclusively 
restricted to NK cells. Ligands for NCR are currently incompletely 
characterized. NKp46 and NKp44 are known to bind several viral 
hemagglutinins (39, 40), while NKp30 recognizes the HLA-B-
associated transcript 3 (BAT3) (41) and B7-H6, a member of the 
B7 immunoreceptor family (42). CD94/NKG2C (CD159c) binds 
the non-classical HLA-E, similar to its inhibitory CD94/NKG2A 
counterpart (25). CD16 (FcγRIIIA) (43) is the low-affinity IgG 
receptor, strongly expressed on mature NK  cells, mediating 
antibody-dependent cellular cytotoxicity (ADCC) (44). Other 
important activating receptors include the SLAM-related 2B4 
(CD244) (45) engaging the pan-leukocyte surface antigen CD48 
(46) and the adhesion molecule DNAM-1 (47) involved in recog-
nition of PVR (CD155) and nectin-2 (CD112) (48).
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NK CeLL iMMUNiTY DYSFUNCTiON  
iN MM

Tumor-induced Microenvironment 
Transformation
Accumulating evidence indicates that microenvironment 
transformation may significantly impair NK  cell effector func-
tion in MM (49). Plasma cells and T regulatory (Treg) cells from 
patients with MM secrete high levels of TGF-β (50, 51), a potent 
immunosuppressive cytokine known to downregulate multiple 
NK-activating receptors and to impair NK cytotoxicity (52–54). 
IL-10 and IL-6 are increased in MM (55–57) and independently 
act as powerful growth factors for malignant plasma cells (58, 
59). IL-10 inhibits production of pro-inflammatory IFN-γ and 
TNF-α (60, 61) and promotes development of NK-resistant 
tumor phenotypes (62), although it may also enhance NK 
cytotoxicity in response to IL-15 exposure in vitro (63). IL-6 has 
been shown to impair NK cell activity in experimental models, 
human disease, and when administered to patients with advanced 
cancer (64–66). Altered levels of IFN-γ may also contribute to 
NK cell dysregulation in MM. In two studies, serum IFN-γ levels 
were found to be significantly lower in subjects with MM than 
in normal controls (55, 56), potentially affecting NK cell activity. 
Besides cytokines, other soluble factors are known to suppress 
NK-mediated antitumor capabilities. Prostaglandin E2 inhibits 
activating signals transduced by NCR, NKG2D, and CD16 (67) 
and has been shown to be actively produced in cultures of BM 
from patients with MM (68). Indoleamine 2,3-dioxygenase (IDO) 
promotes cancer cell immune escape through potent immu-
noregulatory effects on antigen-presenting cells via enzymatic 
degradation of l-tryptophan (69) (see IDO inhibitors). Della 
Chiesa et al. described that IDO-mediated immunosuppression 
also involves NK  cells via l-kyreunine (Kyn), a l-tryptophan 
(Trp) degradation product impairing NKp46/NKG2D-specific 
lysis (70). Interestingly, interaction between CD28 on MM cells 
and CD80/86 stimulates IDO production by stromal dendritic 
cells (71), in agreement with the observation that CD28 expres-
sion on MM plasma cells is a marker correlating with poor disease 
outcome (72).

Additional microenvironmental factors may contribute to 
blunted NK  cell cytotoxicity and cytokine production in MM. 
Among them, myeloid-derived suppressor cells (MDSCs) have 
been found to be expanded in MM (73, 74) and to directly 
contribute to downregulation of NK cell responsiveness via the 
NKp30-activating receptor (75), membrane-bound TGF-β (76), 
and TIGIT-mediated inhibitory signaling (77). Furthermore, 
reduced oxygenation described in MM BM (78, 79) may inhibit 
NK cell anti-myeloma responsiveness (80).

effect of Soluble Ligands on NK  
Cell-Mediated immunity in MM
MICA and MICB (collectively named MIC) are stress-inducible 
NKG2D ligands frequently overexpressed in response to malig-
nant transformation (81). When bound to tumor surface, they 
act as markers of “abnormal self ” and may trigger NK  cell 
cytotoxicity via NKG2D signaling. Conversely, cleavage of 

membrane-bound MIC is a strategy employed by MM and 
other tumors to evade NK  cell immunosurveillance (82–85). 
In individuals with MIC+ tumors, soluble MIC (sMIC) ligands 
induce internalization of surface NKG2D (but also NCR and 
chemokine receptors) and substantial impairment of NK effec-
tor functions (86–88). In addition, sMIC has been shown to 
promote the accumulation of MDSC and macrophages with an 
immunosuppressive phenotype (89), potentially contributing 
to NK  cell suppression. Not surprisingly, presence of sMIC is 
associated with poor cancer survival (90–92). In MM, shedding 
of MIC may result from exposure of MM cells to the genotoxic 
agents, doxorubicin and melphalan (93). Proteolytic cleavage by 
ADAMTS10 has been described to mediate this phenomenon, 
suggesting that the combination of metalloproteinase inhibitors 
with chemotherapy would exert a protective effect against escape 
of MM cells from NK-mediated recognition (93). Similar to 
NKG2D-L, NCR-specific soluble ligands may in some instances 
induce NK  cell functional impairment. For example, circulat-
ing BAG6/BAT3 may inhibit NK  cell cytotoxicity by inducing 
NKp30-specific hyporesponsiveness (94). Shedding of these 
ligands in the context of MM has not been investigated.

effect of Cell Contact on NK  
Cell-Mediated immunity in MM
Derangement of NK  cell effector functions may be further 
amplified by tumor ligand surface expression patterns favoring 
dominance of inhibitory NK signals. Ligands recognized by 
NK-activating receptors are often poorly expressed in cancer. 
Downregulation of membrane-bound NKG2D-L is common 
in multiple tumors, resulting in impaired NKG2D-dependent 
NK cell cytotoxicity (95–97) and unfavorable clinical outcomes 
(97). In the context of monoclonal gammopathy, expression of 
MICA is known to decrease upon transition from pre-cancerous 
monoclonal gammopathy of undetermined significance (MGUS) 
to MM (84). Of note, various pharmacological interventions may 
counter NKG2D-L downregulation in MM: vincristine, via p38 
MAPK pathway activation (98); doxorubicin, melphalan, and 
bortezomib as a result of oxidative stress, DNA damage, and 
tumor senescence (99, 100) the heat shock protein-90 (HSP90) 
chaperone protein inhibitors 17-allylaminogeldanamycin and 
radicicol (101); and inhibition or degradation of bromodomain 
and extra-terminal proteins (102). Exposure to therapeutic agents 
with activity on MM has similarly been shown to induce upregu-
lation of PVR (an activating ligand for DNAM-1) on malignant 
plasma cells (98, 100, 103). Besides NKG2D-L, surface expression 
of the B7-H6 ligand, engaging the NKp30 NCR, has been found 
to be downregulated in cell lines generated from multiple cancers, 
including MM, resulting in NKp30-dependent NK cell functional 
impairment (104).

Upregulation of tumor-bound HLA class I antigens is another 
mechanism of protection against NK  cell immunosurveillance. 
Malignant plasma cells obtained from the BM of early-stage 
myeloma patients display low HLA class I expression potentially 
favoring NK-mediated killing (105). In contrast, high HLA class I 
levels are observed on plasma cells derived from pleural effusions 
of patients with advanced MM (105). HLA-E is a non-classical 
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FiGURe 1 | (A) Antitumor cytotoxic activity of NK cells in healthy individuals 
is not impaired by PD-1 expression. (B) NK cells from MM patients express 
PD-1, which promotes MM escape from NK cell-mediated 
immunosurveillance upon engagement with cognate ligand PD-L1 on plasma 
cells. PD-1/PD-L1 blocking monoclonal antibodies may potentiate NK cell 
effector functions against MM. NK, natural killer; PD-1, programmed death 
receptor-1; MM, multiple myeloma.
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HLA class I antigen frequently upregulated on cancer cells, a 
phenomenon correlating with poor prognosis (106). In MM pri-
mary cells, high HLA-E expression results in restrained in vitro 
degranulation of NK cell subsets expressing the HLA-E-specific 
inhibitory NK receptor NKG2A (107).

Surface overexpression of ligands for inhibitory NK receptors 
is not restricted to HLA class I antigens. Notably, the CD200 
glycoprotein is also commonly overexpressed on cancer surface, 
specifically in myeloid and lymphoid leukemias, where it is a 
marker of poor prognosis (108, 109). Leukemia blasts overex-
pressing CD200 escape NK-mediated immunosurveillance by 
dampening NK  cell cytolytic capabilities and NKp44/NKp46 
receptor expression (110), a phenomenon that can be reversed 
by CD200 blockade (111). CD200 is also frequently expressed in 
patients with MM, where it adversely affects clinical outcomes 
following stem cell transplantation (112).

Numerical, Phenotypic, and Functional 
Characteristics of NK Cells in MM
Multiple reports describe numerical, phenotypic, and functional 
NK cell alterations in MM. Subjects with MGUS and untreated, 
early-stage MM have been generally found to have higher (113–
115) or similar (116–118) numbers of circulating and BM NK cells 
than healthy donors. Upregulation of CD57 and CD16 on NK cell 
surface is also observed (119, 120), suggesting the emergence of 
terminally differentiated subsets with high-cytotoxic potential. 
While these findings suggest efficient response to malignant 
clones subject to NK-mediated immunosurveillance, several lines 
of evidence favor the view that such early anti-MM effects are 
rather to be interpreted as a sign of immunological stress resulting 
in poor disease control. In fact, the effector function of expanded 
NK cells from MM subjects has been unexpectedly found to be 
similar to that of NK cells obtained from healthy donors (114), 
and NK cells obtained from untreated or previously treated MM 
patients show a lower increase in cytotoxicity to the K562 cell 
line in response to pre-incubation with IFN-γ (121). Moreover, 
NK  cell effector functions positively correlate with presence of 
adverse prognostic factors, including anemia, low albumin, high 
β2-microglobulin, and renal failure (115), suggesting a “stressed” 
immunoresponse under the pressure of an aggressive clonal 
expansion (115). Notably, NK cells from patients with MM display 
an “exhausted” phenotype signature that includes downregulation 
of multiple activating receptors and upregulation of programmed 
death receptor-1 (PD-1). Surface expression of activating 2B4 is 
reduced in both PB (122) and BM (123) NK cells obtained from 
untreated subjects with MM, potentially preventing killing of 
plasma cells despite low HLA class I expression (105). NKG2D 
and NCR are also downregulated in MM, but preferentially in the 
BM (122, 123), supporting the concept that downregulation of 
certain activating NK cell receptors is both dependent on soluble 
ligands and direct cell–cell contact. Negative signaling from PD-1 
is a well-established marker of exhaustion on T cells, but can also 
disrupt NK cell cytotoxicity and cytokine production (124). In 
MM, both expression of PD-1 on NK cells and of its ligand PD-L1 
on plasma cells has been described (125, 126). PD-1/PD-L1 inter-
actions may therefore promote NK  cell functional exhaustion 

in MM, a phenomenon potentially reversible by checkpoint 
blockade inhibition (see Inhibitors of the PD-1/PD-L1 Pathway; 
Figure 1).

Natural killer cell-mediated immunity further deteriorates 
in advanced MM. Compared to MGUS and untreated MM, PB 
NK cell numbers are substantially reduced in advanced disease 
(113). Altered distribution of NK cell subsets in human BM may 
be likewise hypothesized based on studies in mice demonstrating 
selective decrease of KLRG1− NK cells during MM progression 
(127). Evolving phenotype editing further promotes tumor escape 
from NK  cell-mediated immunosurveillance. Furthermore, the 
activating receptor DNAM-1, expressed on NK cells from healthy 
donors and with MM in complete remission, is downregulated on 
NK cells from patient with active MM (128). This phenomenon is 
particularly relevant for late-stage cancer immune escape, as kill-
ing of malignant plasma cells is in certain circumstances critically 
dependent on DNAM-1 engagement of PVR and nectin-2 (128, 
129). In line with these findings, NK  cell activity in advanced 
MM is significantly impaired (130). Taken together, these data 
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TABLe 1 | Microenvironment alterations potentially promoting natural killer (NK) immunity suppression in multiple myeloma.

Factors Function effect of TM impact on NK cell immunity Reference

Soluble
TGF-β Anti-inflammatory cytokine ⇑ Reduced NK effector functions

Downregulation of activating receptors
Castriconi et al. (52); Lee et al. (53);  
Mamessier et al. (54)

IL-10 Anti-inflammatory cytokine ⇑ Resistance to NK cytotoxicity
Reduced NK cytokine production

Tsuruma et al. (62); Sharma et al. (55);  
Zheng et al. (56)

IL-6 Pro-inflammatory cytokine ⇑ Reduced NK effector functions Bataille et al. (57); Scheid et al. (66)

IFN-γ Pro-inflammatory cytokine ⇓ Reduced NK effector functions Sharma et al. (55); Zheng et al. (56)

PGE2 Prostaglandin ⇑ Reduced NK effector functions
Inhibition of positive intracellular signaling

Lu et al. (68); Martinet et al. (67)

sMIC NKG2D ligand ⇑ Reduced NK effector functions
Downregulation of NK activating receptors

Groh et al. (86); Jinushi et al. (84); Xiao et al. (89)

Cell bound
mMIC NKG2D ligand ⇓ Resistance to NK cytotoxicity Jinushi et al. (84)

B7-H6 NKp30 ligand ⇓ Resistance to NK cytotoxicity Fiegler et al. (104)

HLA class I KIR/NKG2A ligands ⇑ Resistance to NK cytotoxicity Carbone et al. (105); Bossard et al. (106);  
Sarkar et al. (107)

CD200 Membrane glycoprotein ⇑ Reduced NK effector functions
Downregulation of NK activating receptors

Moreaux et al. (112); Coles et al. (110)

2B4 Activating receptor ⇓ Reduced NK effector functions Fauriat et al. (122); Costello et al. (123)

NKG2D Activating receptor ⇓ Reduced NK effector functions Fauriat et al. (122); Costello et al. (123)

NCRs Activating receptors ⇓ Reduced NK effector functions Fauriat et al. (122); Costello et al. (123)

DNAM-1 Activating receptor ⇓ Reduced NK effector functions El-Sherbiny et al. (128)

PD-1 Immune checkpoint  
receptor

⇑ Reduced NK effector functions Benson et al. (125); Gorgun et al. (126);  
Beldi-Ferchiou et al. (124)

KLRG1 Co-inhibitory receptor ⇑ Reduced NK effector functions Ponzetta et al. (127)

TM, tumor microenvironment; PGE2, prostaglandin E2; sMIC, soluble MIC; mMIC, membrane-bound MIC; KIRs, killer immunoglobulin-like receptors; NCRs, natural cytotoxicity 
receptors; PD-1, programmed cell death protein 1/programmed cell death protein ligand 1; KLRG1, killer cell lectin-like receptor subfamily G member 1.
⇑ denotes increase; ⇓ denotes decrease.
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indicate that NK cell immunity alterations, already detectable in 
early myeloma, progress in a clinical stage-dependent manner 
and that immunotherapy modalities based on efficient NK cell 
effector function such as (i.e., mAbs) are likely to exert a more 
effective anti-myeloma effect when used in early-stage disease.

Factors promoting NK immunity suppression in MM are 
summarized in Table 1.

iMMUNe CHeCKPOiNT BLOCKADe  
OF NK CeLLS

inhibitors of the PD-1/PD-L1 Pathway
Programmed death receptor-1 is a transmembrane protein 
expressed on the surface of antigen-activated T and B cells. It has 
two ligands, PD-L1 and PD-L2. PD-L1 is expressed on both anti-
gen-presenting cells/dendritic cells and a wide spectrum of non-
hematopoietic cells. PD-1/PD-L1 interactions physiologically 
counter T cell stimulatory signals and allow T cell homeostasis 
and self-tolerance by suppressing activation and proliferation of 
autoreactive T cells. PD-1/PD-L1 binding delivers an inhibitory 
costimulatory signal that induces a state of T cell exhaustion that 
prevents activation and proliferation of T cells. Unlike NK cells 
from healthy donors, NK cells from MM patients express PD-1 
(Figure 1A), suggesting that NK cells from healthy donors do not 

express PD-1 (Figure 1A), however, NK cells from MM patients 
do. This may show that a functional change in NK cells in response 
to MM may cause an immunosuppressive microenvironment for 
MM to grow. In the light of these observations and the broad 
expression of PD-1 and its ligands in the MM microenvironment, 
the PD-1/PD-L1 pathway may play a pivotal role in the immune 
evasion of MM cells (Figure 1B).

A role for the PD-1/PD-L1 signaling pathway in the NK cell 
immunoresponse against MM and of the anti-PD1 antibody 
CT-011 was first shown by Benson et  al. (125). CT-011 was 
demonstrated to enhance human NK  cell function against 
autologous, primary MM cells by affecting NK cell trafficking, 
immune complex formation with MM cells, and cytotoxicity 
toward MM cells expressing PD-L1 while sparing normal cells 
(Figure 1B).

It was also shown that lenalidomide had the ability to down 
regulate PD-L1 on primary MM cells and, by so doing, increase 
NK cell functions against MM. Thus, targeting the PD-1/PD-L1 
pathway may become a feasible clinical strategy in MM, especially 
in patients with persistent residual disease (131).

One preliminary phase I study reported on 17 patients treated 
with pembrolizumab, a PD-1 inhibitor, in combination with 
lenalidomide and dexamethasone (132). Overall response and 
very good partial response rates were 76 and 23%, respectively. 
Some 75% of patients achieved stable disease. Many patients were 
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heavily pretreated with other lines of therapy. Almost all patients, 
however, experienced at least one adverse event with anemia, 
neutropenia, thrombocytopenia, fatigue, hyperglycemia, and 
muscle spasms being the most common. Two other recent stud-
ies with nivolumab showed acceptable toxicity but no objective 
responses (133, 134). Efficacy assessment of nivolumab, alone or 
in combination, is ongoing.

More recently, a novel subpopulation of human NK  cells 
expressing high levels of PD-1 have been identified in ovarian 
cancer, characterized by low proliferative responses, and impaired 
antitumor activity that can be partially restored by antibody-
mediated disruption of PD-1/PD-L1 interaction (135).

Future studies to evaluate the real therapeutic role of anti-PD-1 
antibodies, maybe in combination with other agents with potent 
anti-myeloma activity such as lenalidomide, are warranted.

KiR-Specific immune Checkpoint 
inhibition
The role of NK  cells as graft-vs.-myeloma effectors was first 
investigated in preclinical models. Frohn et al. described for the 
first time the killing ability of NK cells against three different MM 
cell lines. The mean NK cell killing ability on MM samples ranged 
from 23 to 34.5% (136). Moreover, KIR-ligand mismatch in T cell-
depleted allogeneic stem cell transplantation reduced the relapse 
incidence in MM recipients. The impact of KIR-ligand mismatch 
was assessed in a cohort of 73 MM patients who received reduced-
intensity unrelated donor transplants. KIR-ligand mismatch in 
the graft-vs.-host disease direction was significantly associated 
with lower risk of relapse (HR: 0; p < 0.0001) (137).

To exploit this pathway, Romagné et  al. generated an IgG 
monoclonal antibody, 1-7F9, against three different KIRs 
(KIR2DL-1, KIR2DL-2, and KIR2DL-3) to enhance the NK cells 
antitumor effect. This checkpoint inhibitor augmented NK cell-
mediated lysis of HLA-C-expressing tumor cells without interfer-
ing with normal peripheral blood (PB) mononuclear cells (138) 
(Figure 2A). The therapeutic potential of 1-7F9 was then demon-
strated in preclinical mouse models, providing the platform for 
translational studies in humans (139).

The drug IPH2101, formerly 1-7F9, was tested in a phase I 
trial in 32 patients with relapsed/refractory MM. IPH2101 was 
administered for up to four 28-day cycles, in 7 dose-escalated 
cohorts (0.0003–3  mg/kg). Only one patient developed severe 
toxicity, characterized by grade 4 acute renal failure with hyper-
kalemia and hyperuricemia. From a biological point of view, the 
drug determined the full saturation of NK inhibitory KIRs (140). 
Furthermore, lenalidomide and IPH2101 were investigated as a 
novel, steroid-sparing, dual immunotherapy in 15 MM patients: 
the biological endpoint of full KIR occupancy was achieved, 
5 patients had a response, and 5 severe adverse events were 
reported (141).

In an open-label, single arm two-stage phase II trial, IPH2101 
was employed at the dose of 1 mg/kg every other month for six 
cycles in nine patients with smoldering MM. Despite the prom-
ising results from preclinical and phase I studies, the trial was 
terminated before planned second stage due to lack of patients 
meeting the primary objective (50% decline in M-protein) (142).

A recombinant version of IPH2101 was developed with a 
stabilized hinge (lirilumab). A phase I study of the safety and 
tolerability of lirilumab with elotuzumab in myeloma patients 
is currently in progress. Of note, lirilumab recognizes both the 
inhibitory KIR2DL1, -L2, and -L3 and the activating KIR2DS1-2. 
Therefore, lirilumab-mediated modulation of intracellular sig-
nals is expected to vary according to patient’s HLA class I genetic 
background and KIR receptor repertoire.

In vitro experiments showed that KIR2D molecules are 
removed from NK  cells surface by trogocytosis. This phenom-
enon culminated in a strong reduction of NK cell cytotoxic func-
tion correlating with the loss of free KIR2D surface molecules 
(143). These data favor future protocol designs where lirilumab 
is administered in combination with other NK  cell-activating 
agents, rather than as single agent.

iMMUNOMODULATORY DRUGS  
AND MONOCLONAL ANTiBODieS

Lenalidomide
Lenalidomide, a thalidomide analog, is an immunomodulatory 
drug with multiple mechanisms of action in MM. It is currently 
approved in both EU and USA in association with dexamethasone 
for the maintenance treatment of patients with newly diagnosed 
MM who have undergone an autograft. Four pivotal phase III stud-
ies have associated lenalidomide with improved progression-free 
survival and better overall response rates (144–147). Although 
lenalidomide has also been associated with increased risk of a 
second primary cancer, the overall survival benefits outweigh the 
risk (148).

Due to failure of single-agent anti-KIRs in phase II studies, 
researchers from multiple institutions investigated possible 
combined therapies. In vitro, the immunomodulatory agent 
lenalidomide was responsible of NK cell expansion and activation 
associated with malignant cells apoptosis (149). On this platform, 
Benson et al. tested the cytotoxicity of IPH2101 in combination 
to lenalidomide against MM cell lines U266 and K562 (139, 
140). Healthy donor NK  cells pretreated with lenalidomide or 
IPH2101 alone and combined showed increased IFN-γ produc-
tion against primary MM cells compared to controls (p < 0.05). 
Furthermore, NK  cells pretreated with both lenalidomide and 
IPH2101 led to the highest IFN-γ peak. The statistical interaction 
of p-value was 0.0182, suggesting a synergistic effect between 
the two drugs. Then, healthy donor PB mononuclear cells 
(PBMCs) incubated as control or with lenalidomide and/or with 
IPH2101 were used as effectors against U266 MM cell targets. 
Lenalidomide increased the specific release, a surrogate for 
cytotoxicity, by around 1.39-fold relative to control (p < 0.01). 
IPH2101 increased the specific release by 1.48-fold (p < 0.01). 
The two drugs combined increased the specific release by 2.09-
fold relative to control (p < 0.001), which means a significantly 
higher cytotoxic effect than either lenalidomide or IPH2101 
alone. Patient-derived NK  cell cytotoxicity against autologous 
MM targets was enhanced by the combination of lenalidomide 
plus IPH2101 (128 ± 9 spots/well) compared with control condi-
tions (81 ± 7 spots/well). Based on in vitro results, the authors 
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FiGURe 2 | (A) Engagement of self-MHC class I by inhibitory KIR results in dominant-negative signals blocking competing activation responses; lack of MHC class I 
molecules triggers NK cell killing (missing-self recognition); inhibitory KIR blockade by anti-KIR mAbs abrogates KIR-mediated inhibition regardless of MHC class I 
ligand expression on target surface (“induced” missing self). (B) Negative signals transduced by inhibitory KIR antagonize anti-CD38 (DARA)-induced antibody-
dependent cellular cytotoxicity, potentially dampening NK cytotoxicity to plasma cells; addition of KIR checkpoint inhibitors may potentiate the positive effects of 
DARA on NK cytotoxicity of malignant plasma cells (see also main text). NK, natural killer; KIR, killer cell immunoglobulin-like receptor; MHC, major histocompatibility 
complex; DARA, daratumumab.
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evaluated the efficacy of the anti-KIR 5E6 in lenalidomide pre-
treated mice. The tumor burden was significantly reduced when 
the combination of 5E6 and lenalidomide was employed, in 
comparison to controls (p < 0.005). These data provide the basis 
for the translation of IPH2101 and lenalidomide combination in 
phase I and II studies.

Daratumumab (DARA)
Daratumumab is an IgGk monoclonal antibody targeting CD38, 
a cell surface protein that is overexpressed on MM cells (150, 
151). Preclinical studies have shown that DARA induces MM 
cell death through several mechanisms, including complement-
dependent cytotoxicity (152), ADCC (153), antibody-dependent 
cellular phagocytosis (154), and apoptosis (155). The drug showed 
efficacy as single agent in heavily pretreated MM patients or in 

combination with bortezomib and dexamethasone (156). When 
combined to lenalidomide, the DARA cell-mediated MM cell 
clearance was enhanced due to lenalidomide-dependent NK cell 
activation. In the light of preclinical results of lenalidomide in 
combination with anti-KIR agents, Nijhof et al. hypothesized that 
the NK  cell-mediated cytotoxicity induced by DARA could be 
enhanced by anti-KIRs (Figure 2B). The effect could be further 
improved through the association with lenalidomide which 
stimulates the proliferation of NK cells and activates them (157), 
overcoming NK cells depletion induced by DARA itself (158).

elotuzumab
Initially, Hsi et  al. described a humanized antibody, HuLuc63, 
which specifically targeted CS1 (CCND3 subset 1, CRACC, and 
SLAMF7), a cell surface glycoprotein that had not previously been 
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FiGURe 3 | Elotuzumab activates NK cells via (1) an indirect mechanism, i.e., binding of the extracellular portion of SLAMF7 and recruitment of the EAT-2 adaptor 
protein and (2) a direct mechanism, i.e., antibody-dependent cellular cytotoxicity in response to SLAMF7 tagging on plasma cells. Owing to the absence of EAT-2 in 
plasma cells, elotuzumab engagement does not cause activation of plasma cells. NK, natural killer; EAT-2 Ewing’s sarcoma-associated transcript 2; Fc, fragment 
crystallizable; Fab, fragment antigen binding.
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associated with MM cells. By flow-cytometry, HuLuc63 showed 
specific staining of CD138+ myeloma cells, NK  cells, NK-like 
T cells, and CD8+ T cells. HuLuc63 showed significant in vitro 
ADCC against primary myeloma cells as targets and allogeneic 
or autologous NK cells as effectors. The authors concluded that 
HuLuc63 could eliminate MM partly through NK-mediated 
ADCC and targeting CS1 with HuLuc63 could become a novel 
treatment strategy (159). Tai et al. also showed that HuLuc63 was 
effective in inducing ADCC against primary MM cells resistant 
to novel therapies such as bortezomib and HSP90 inhibitor. 
Moreover, pre-treatment with conventional or novel anti-MM 
agents enhanced HuLuc63-induced MM cell lysis (160). Collins 
et  al. also hypothesized that elotuzumab may have other 
mechanisms of action. A number of findings clearly suggested 
that elotuzumab may enhance NK cell function beyond ADCC. 
Elotuzumab was shown to induce NK cell activation by binding 
to CS1 which promotes cytotoxicity against CS1+ MM cells but 
not against autologous CS1+ NK cells. Moreover, NK cell activa-
tion was shown to be dependent on differential expression of the 
signaling intermediary EAT-2 which is present in NK cells but 
absent in primary, human MM cells (161). Therefore, HuLu63 
enhances NK  cell cytotoxicity to MM via a dual mechanism 
(Figure  3). The synergy between current anti-CS1 antibody 
elotuzumab, formerly known as HuLuc63, and bortezomib was 
also shown by van Rhee et al. (162). Elotuzumab was approved 
by FDA in 2015 for the treatment of MM, specific for signaling 
lymphocytic activation molecule-F7 (SLAMF7, or CS1) (163). 
As previously mentioned, SLAMF7 is a member of the Ig gene 
superfamily, almost universally expressed (>95%) on the surface 
of marrow MM cells, but not on normal tissues, with restricted 
expression on specific lymphocytes including NK cells. SLAMF7 
determines activating or inhibitory effects on NK cells depending 
on the expression or not of EAT-2, an adapter protein (Figure 3). 
Given that MM cells lack EAT-2, the molecular mechanism by 
which SLAMF7 mediates inhibition in NK cells was investigated 

by Guo et al. It was shown that the inhibitory effects of SLAMF7 
in EAT-2− NK cells was mediated by a mechanism implicating 
lipid phosphatase SHIP-1, Src kinases, and protein tyrosine 
phosphatase CD45. Coupling of SLAMF7 to SHIP-1 was highly 
compromised in MM cells. This correlated with a lack of CD45, 
which is required to activate Src family kinases in hematopoietic 
cells and was needed to initiate SLAMF7 inhibitory signals. This 
defect may explain why elotuzumab eliminates MM cells by an 
indirect mechanism that involves NK cells activation (164, 165). 
An elegant preclinical model clearly showed that elotuzumab 
activates NK cells and promotes myeloma cell death in healthy 
donor PB lymphocyte (PBL)/myeloma cell cocultures (166). 
Moreover, the combination of elotuzumab plus lenalidomide 
demonstrated higher anti-myeloma activity on established in vivo 
MM xenografts and in in vitro PBL/myeloma cell cocultures than 
either agent alone. In the same study, it was interestingly shown 
that the increased NK  cell anti-myeloma functions were also 
due to increased secretion of IL-2 and production of TNF-α that 
combined to enhance NK cell activation and MM cell killing. All 
these findings supported the clinical application of combination 
strategies. Elotuzumab initially showed activity in combination 
with lenalidomide and dexamethasone in a phase I and a phase 
Ib-2 clinical studies in relapsed/refractory MM (167, 168). In a 
subsequet randomized study, patients with relapsed/refractory 
MM received either elotuzumab with lenalidomide and dexa-
methasone, or lenalidomide and dexamethasone alone. Patients 
who received a combination of elotuzumab, lenalidomide, and 
dexamethasone had a significant relative reduction of 30% in the 
risk of disease progression or death (169). Finally, Jakubowiak 
et  al. reported on a phase II study in relapsed/refractory MM 
patients where combined elotuzumab/bortezomib/dexametha-
sone were compared with bortezomib/dexamethasone until pro-
gression or unacceptable toxicity. Overall, elotuzumab appeared 
to provide clinical benefit without clinically significant toxicity 
when combined with bortezomib (170).
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iDO inhibitors
Indoleamine 2,3-dioxygenase plays a pivotal role in the metabolic 
cascade that converts the essential amino acid l-tryptophan 
(Trp) into l-kynurenine (Kyn). Moreover, IDO has also been 
shown to be involved in the establishment and maintenance of 
peripheral tolerance. This function may partly be due to IDO1 
capacity to restrict the microenvironmental availability of Trp 
and to increase the accumulation of Kyn and derivatives. The 
expression of IDO on neoplastic lesions may help cancer to 
escape immunosurveillance. IDO inhibitors (i.e., 1-methyl-
tryptophan) have therefore become a new class of anti-cancer 
agents. Current models imply that IDO limits both innate and 
adaptive immunoresponses by depleting immunoeffector cells 
of Trp (171, 172) and by promoting the accumulation of Kyn and 
its derivatives 3-dydroxykynurenine and 3-hydroxyanthranilic 
acid (173, 174). These derivatives have been shown not only to 
exert cytostatic and cytotoxic effects on several immunoeffec-
tors including CD8 T cells, NK cells, and invariant NKT cells 
(173–175) but also to inhibit TH17 cells and to promote the 
differentiation of naıve CD4 T  cells into Tregs and tolerogenic 
activity of dendritic cells (174–181). Interestingly, Bonanno 
et al. investigated IDO expression in 25 symptomatic MM and in 
7 with either MGUS or smoldering MM (182). IDO-driven tryp-
tophan breakdown was correlated with the release of hepatocyte 
growth factor (HGF) and with the frequency of Treg cells and 
NY-ESO-1-specific CD8 T  cells. Kyn was increased in 75% of 
MM patients and correlated with the expansion of Treg cells and 
the contraction of NY-ESO-1-specific CD8 T cells. In vitro, pri-
mary MM cells promoted the differentiation of allogeneic CD4 
T cells into Treg cells and suppressed IFN-γ/IL-2 secretion while 
preserving IL-4 and IL-10 production. Both Treg expansion and 
inhibition of Th1 differentiation were partly reverted by d,l-1- 
methyl-tryptophan, an inhibitor of IDO. Of note, HGF levels 
were higher within the marrow microenvironment of patients 
with IDO(+) MM as compared with patients with IDO(−) MM. 
The antagonism of MET receptor for HGF with SU11274, a MET 
inhibitor, prevented HGF-induced AKT phosphorylation and 
resulted in reduced IDO protein levels and functional activity. 
These findings suggest that IDO expression may contribute to 
immunosuppression in patients with MM. IDO inhibitors are 
currently being tested either as single agent or in combination 
with other anti-cancer drugs in a number of solid tumors even 
though this class has not yet been evaluated in MM.

NK CeLLS AND THeiR ROLe iN 
ALLOGRAFTiNG: LeSSONS  
FROM ACUTe LeUKeMiAS

Some of the most convincing proofs of the potential of NK cells 
as immunotherapeutic tools derive from evidences accumulated 
over the past two decades in the setting of allogeneic hematopoi-
etic stem cell transplantation (allo-HSCT). The interest in NK cell 
immunobiology stemmed mainly from two observations: (a) 
NK cells are the first lymphocyte subset to recover after transplan-
tation, often reaching percentages and absolute counts superior 
to those commonly observed in healthy subjects (183, 184), 

and (b) since KIRs and HLA ligands are encoded on different, 
independently inherited, chromosomes (chromosome 19 and 6, 
respectively), the KIR gene repertoire transferred from the donor 
into the host is often different posing the issue whether, and how, 
an efficient NK cell functionality can be achieved (185–187).

Two hallmark studies came from the Stanford group (188, 
189) where it was demonstrated that after a variable number of 
months following HLA-matched, KIR-mismatched allo-HSCT, 
the NK cell repertoire is dominated by lymphocytes displaying an 
immature phenotype (CD56bright and CD94/NKG2A+) and then it 
stabilizes and becomes similar to that of donor origin. Moreover, 
these studies highlighted significant differences in the repertoire 
recovery kinetics among patients, and clearly correlated impaired 
NK cell reconstitution with occurrence of post-transplant com-
plications. The development of a HSCT platform which allowed 
to safely infuse HLA-haploidentical grafts set the stage for some 
of the most exciting discoveries in transplant biology and trans-
lational potential of NK cells.

Starting from preclinical studies on the tolerogenic potential 
of “stem cell megadoses” (190), the Perugia team developed a 
protocol which combined a highly immunosuppressive myeloa-
blative conditioning regimen with the infusion of high doses of 
extensively T  cell-depleted HLA-haploidentical hematopoietic 
stem cells (HSCs). Full donor engraftment of the partially 
incompatible HSCs was successfully achieved, and despite the 
absence of post-transplant pharmacological prophylaxis, neither 
acute nor chronic GvHD ensued (191). This elegant and tech-
nologically advanced HSCT platform offered the opportunity 
to investigate the metrics of NK cell reconstitution in a partially 
HLA-mismatched host and in the absence of confounding factors 
such as alloreactive T  cells or immunosuppressive drugs. This 
highly favorable environment further boosted the early expansion 
of NK cells that had been already described in other transplant 
settings, and, importantly, led to the appearance of donor-derived 
NK cells with alloreactivity against the host (192).

Velardi et  al. brilliantly described the principles by which 
NK  cell alloreactivity developed and designed an algorithm 
to easily predict it. Based on this model—later defined as 
“ligand-ligand” or “KIR-ligand mismatch” model—post-transplant 
alloreactivity is unleashed when the donor carried one or more 
KIR ligands (i.e., HLA class I alleles encompassing the Bw4, C1, 
or C2 motifs) absent in the host. In this setting, inhibitory KIRs 
expressed on the surface of donor-derived NK cells—which, in 
the host, are continuously engaged by their respective ligands in 
the pre-transplant phase—do not find their cognate HLA mol-
ecules on host cells and tissues leading to a perception of “missing 
self ” that activates an alloreactive response (193, 194).

One of the most striking observations by the Perugia group 
was that NK alloreactivity did not result in clinical GvHD, but, 
conversely, led to a potentially eradicating mechanism of residual 
leukemic cells reducing relapse incidence and risk of graft failure 
and GvHD (195, 196). Over the following years, several studies 
confirmed and consolidated the evidence that in T cell-depleted 
haploidentical HSCT NK cell alloreactivity represents the main 
driver of the graft-vs.-leukemia effect and a major predictor of 
overall clinical outcomes in both adults (197–199) and children 
(200, 201). In addition, these studies were a major drive for the 
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development of cell therapy protocols in which haploidentical 
KIR ligand-mismatched NK  cells were infused in leukemic 
patients after lymphodepleting chemotherapy with highly prom-
ising results (202–204).

In more recent years, several new platforms of haploidentical 
HSCT have been developed, mainly with the aim at improving 
T  cell immune reconstitution and at reducing post-transplant 
infectious complications (205). In this “new era,” studies on 
the impact of KIR-ligand mismatches on transplant outcomes 
reported some conflicting results. For instance, it was shown that 
infusion of unmanipulated BM grafts or of donor post-transplant 
T cell add-backs may mask, or blunt, the effectiveness of NK cell 
alloreactivity (206–208). By contrast, other recent haploidentical 
HSCT platforms based on the selective depletion of αβ T cells or 
on the infusion of balanced doses of conventional and regula-
tory T cells appeared to better preserve the positive effect of KIR 
ligand mismatches (209, 210).

In partially HLA-mismatched unrelated donor HSCT, either 
from adult volunteers or cord blood (CB) units, the potential role 
of NK alloreactivity has also been a matter of debate. Some studies 
supported a positive role of KIR ligand mismatches (211–213) 
and others found no significant advantage or even adverse effects 
(214–216).

To overcome these inconsistencies, several alternative immu-
nogenetic models have been developed to better predict NK cell-
driven effects on transplant outcomes. In particular, Cooley et al. 
focused on the donor genetic repertoire and demonstrated in a 
number of independent studies that donors with a KIR gene asset 
enriched in activating receptors—group B KIR haplotypes—can 
provide a superior relapse-free survival after unrelated HSCT for 
leukemias (217–219). Another model which takes into account 
both donor activating KIR asset and donor/recipient HLA typing 
has been proposed and validated by Venstrom et al. In an analysis 
on more than 1,200 unrelated HSCTs, the authors observed that 
the presence of donor-activating receptor KIR2DS1 and of HLA-
C1 ligands provided a significant protection from relapse, further 
enhanced in case of recipient HLA-C1 positivity (220).

Despite the multiplicity of models proposed over the years in 
the setting of allo-HSCT, not all the immunogenetic mechanisms 
that regulate NK  cell interactions and alloreactivity have fully 
been understood. However, it is widely assumed that NK  cell 
alloreactivity is instrumental in control and eradication of hema-
tological malignancies.

NK CeLL THeRAPieS

expanded NK Cells for MM Treatment
Expansion of NK cells from PBMC of patients with MM has been 
achieved using a culture system supplemented with IL-2 and 
OKT3 (221). NK cells could be extensively propagated (average 
1,625-fold expansion in 20 days) and displayed increased levels of 
activating receptors as well as cytotoxicity to the NK-susceptible 
K562 line and to autologous MM cells (222). Another NK cell 
expansion strategy for MM immunotherapy is based on the 
artificial feeder K562 transfected with CD137L and membrane-
bound IL-15. This technique allowed extensive in vitro NK cell 

propagation (average 447-fold, range 20–10,430 on harvest day, 
i.e., days 10–14). Transfer of these cells into a xenogeneic model 
of high-risk MM resulted in myeloma growth inhibition and 
protection against osteolysis (223). The same group tested the 
safety, persistence, and activity of expanded NK  cells in seven 
heavily pretreated patients with high-risk relapsed myeloma: no 
serious adverse events related to NK cell infusion was observed. 
Moreover, the infusion of fresh, rather than cryopreserved, cells 
resulted of fundamental importance for their in  vivo expan-
sion. Two/seven patients showed some responses which lasted 
for at least 6 months (224). More recently, human studies were 
performed with allogeneic, KIR ligand-mismatched NK  cells 
from haploidentical family donors. NK  cells were cytotoxic to 
K562, the myeloma line U266, and recipient primary MM cells. 
Fifty percent of the patients with advanced MM achieved near 
complete remission when these cells were infused prior to autolo-
gous SCT (225). Another phase I clinical trial (NCT02481934) 
evaluated safety and efficacy of multiple infusions of activated 
and expanded NK  cells in combination with lenalidomide- or 
bortezomib-based regimens (226). Five heavily pretreated refrac-
tory/relapsed patients were enrolled. NK cells were activated and 
expanded for 3  weeks with K562mb15-41BBL cells. Patients 
received four cycles of new drug-based treatment with two infu-
sions of 7.5 × 106/kg NK cells. Four patients showed stable disease 
while on NK cell treatment, two showed a 50% reduction in BM 
plasma cell infiltration and one obtained a response >1 year. No 
major toxicities were reported. Expanded NK  cells showed a 
highly cytotoxic phenotype and in vitro killing and were detected 
in both BM and PB of treated patients. While efficacy and safety 
of multiple NK cell infusions need further assessment, these data 
suggest that repeated transfer of in vitro activated and expanded 
NK cells into MM patients is feasible and may result in clinical 
benefit when combined with anti-myeloma drugs.

CB NK Cells
Umbilical CB represents a promising source of allogeneic 
NK cells. However, GMP-grade large scale ex vivo expansion is 
indispensable to generate CB-derived NK (CB-NK) cell doses that 
may be used in the clinical setting. Shah et al. recently described 
a strategy for the expansion of NK cells from cryopreserved CB 
units (227). By co-culturing for 14 days CB units using artificial 
antigen-presenting feeder cells (aAPC), a highly expanded cell 
product (average 1,848- and 2,389-fold in 14  days from fresh 
and cryopreserved samples, respectively) of 95% purity for 
CB-NK cells and less than 1% CD3+ cells was obtained. Despite 
differences in the expression of certain cytotoxicity receptors, 
aAPC-expanded CB-NK cells were phenotypically very similar 
to CB-NK  cells expanded with IL-2 alone. Most importantly, 
aAPC-expanded CB-NK cells clearly showed cytotoxicity against 
both in vitro MM targets and in vivo anti-myeloma activity in a 
xenogenic mouse model. The same group investigated the mecha-
nisms of CB-NK-mediated cytotoxicity against MM cells (228). 
Interestingly, a mechanism of transmissible cell death between 
cells induced by lipid–protein vesicles transferred from CB-NK 
to MM cells was described. Moreover, these vesicles were capable 
of migrating from recipient MM cells to neighboring MM cells 
enhancing cytotoxicity of CB-NK. Altogether, these findings 
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TABLe 2 | Summary of current treatments with novel agents for multiple myeloma (MM) potentially affecting natural killer (NK) cell activity.

Agent Mechanism of action on NK cells Clinical trials Reference

PD-1/PD-L1 
checkpoint inhibitors

Block of the recognition of PD-L1 by PD-1 on 
NK cells
PD1 blockade may neutralize competitive negative 
signals resulting in enhanced trafficking, immune 
complex formation, and cytotoxicity of NK cells 
(Figures 1A,B)

Phase I trial of pembrolizumab with lenalidomide and 
dexamethasone.
Two Phase I trials involving nivolumab showed acceptable 
tolerability. Efficacy assessment of nivolumab, alone or in 
combination is ongoing.

Benson et al. (125);  
San Miguel et al. (132);  
Suen et al. (133);  
Lesokhin  et al. (134)

HLA-KIR checkpoint 
inhibitors

Prevent inhibitory KIR recognition of cognate HLA 
class I ligands
Blockade of KIR-HLA interactions may neutralize 
negative signals transduced by inhibitory 
KIR2DL1/2/3 (Figure 2A)

Anti-KIR monoclonal antibody IPH2101 (1-7F9) determined 
the full saturation of NK inhibitory KIR in a phase I trial 
enrolling patients with RR MM. Full KIR occupancy was also 
achieved in a study combining lenalidomide and IPH2101. 
In this study, 5 (33%) patients had a response. In a single 
arm two-stage phase II trial, IPH2101 was employed in 9 
patients with smoldering MM. The study was stopped before 
planned second stage due to lack of patients meeting the 
primary objective (50% decline in M-protein). A phase I study 
combining elotuzumab with lirilumab, a recombinant version 
of IPH2101, is currently in progress

Frohn et al. (136); Benson 
et al. (139); Benson et al. 
(140); Benson et al. (141); 
Korde et al. (142);  
Carlsten et al. (143)

Daratumumab 
(DARA)

ADCC to CD38+ MM cells
Cytolytic activity to MM cells triggered by CD16 
signaling upon recognition of antibody tagged 
to CD38 antigen. NK cell-mediated cytotoxicity 
induced by DARA could be enhanced by 
lenalidomide and KIR blockade.
Other mechanisms: complement-dependent 
cytotoxicity, antibody-dependent cellular 
phagocytosis, and apoptosis (Figure 2B)

DARA was tested in combination with bortezomib and 
dexamethasone in RRMM. The primary end point was 
progression-free survival. DARA in combination with 
bortezomib and dexamethasone resulted in a significantly 
longer progression-free survival than bortezomib and 
dexamethasone alone

Palumbo et al. (156)

Elotuzumab Direct effect: ADCC to MM cells expressing 
SLAMF7
Indirect effect: activation of SLAMF7+ NK cells
Dual mechanism of action: (1) NK cell activation 
via SLAMF7 binding and recruitment of the EAT-2 
adaptor proteins; (2) NK-mediated ADCC to 
SLAMF7+ MM cells (Figure 3)

Elotuzumab showed activity in combination with lenalidomide 
and dexamethasone in a phase I and a phase IIb-II clinical 
studies in RRMM. In a phase III study, patients with 
RRMM patients were treated with either elotuzumab with 
lenalidomide and dexamethasone, or lenalidomide and 
dexamethasone alone. Patients treated with the combination 
of elotuzumab, lenalidomide, and dexamethasone had a 
significantly reduced risk of disease progression or death. 
In a phase II study in RRMM patients, elotuzumab showed 
clinical benefit without significant toxicity when combined 
with bortezomib

Lonial et al. (167);  
Lonial et al. (169); 
Jakubowiak et al. (170)

IDO inhibitors Inhibition of l-tryptophan degradation
Reversal of NK immunosuppression by 
increased availability of l-tryptophan and reduced 
accumulation of l-kyreunine

IDO inhibitors are currently used as single agent or in 
combination in a number of solid tumors. This class has not 
yet been evaluated in clinical trials in myeloma patients

Uyttenhove et al. (172); 
Fallarino et al. (173); 
Bonanno et al. (182)

PD-1/PD-L1, programmed cell death protein 1/programmed cell death protein ligand 1; KIRs, killer immunoglobulin-like receptors; RR MM, relapsed/refractory MM; ADCC, 
antibody-dependent cellular cytotoxicity; SLAMF7, signaling lymphocytic activation molecule family 7; IDO, indoleamine 2,3-dioxygenase.
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supported the development of CB-NK-based cellular therapies 
for the treatment of MM. An encouraging first-in-human study 
of CB-NK cells for MM patients undergoing high dose chemo-
therapy and autologous transplantation was recently conducted 
(229). Patients received lenalidomide at a dose of 10  mg from 
day −8 through −2, standard melphalan at 200  mg/m2 on day 
−7. CB-NK cells were infused on day −5 and the autograft per-
formed on day 0. Twelve patients were treated with different dose 
levels. Most patients were heavily pretreated and had high-risk 
cytogenetics. Overall CB-NK cells with an activated phenotype 
(NKG2D+/NKp30+) were detected in  vivo in six patients. 
Importantly, no signs/symptoms of GVHD were observed. 
Eight patients achieved at least near complete remission and two 
additional patients a very good partial response. After a median 
follow-up of 21  months, four patients relapsed or experienced 
progressive disease.

CAR-NK for Myeloma
The impressive clinical results obtained in patients with B  cell 
malignancies with the infusion of T  cells genetically modified 
to express synthetic chimeric antigen receptors (CARs) against 
the lineage-specific surface antigen CD19 represented a turn-
ing point in the history of cancer immunotherapy (230–236) 
Intriguingly, T  cells engineered with an anti-CD19 CAR were 
capable to induce complete remission also in a patient with MM. 
However, given that the large majority of malignant plasma cells 
do not express CD19, studies to understand the mechanism that 
underlie this unexpected observation are currently in progress 
(237). More recently, a number of CARs have been developed 
to specifically target surface antigens expressed by pathological 
plasma cells, including CD38 (238, 239), CD138 (240), B  cell 
maturation antigen (241, 242), κ light chains (243), SLAMF7 
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To address these issues, genetic modifications with CARs of 
cells belonging to the innate immune system, and of NK cells in 
particular, may yield several potential advantages. For instance, 
most innate cells recognize and eliminate tumors by stereotyped 
patterns and have been infused into allogeneic recipient without 
excessive toxicities and with some promising intrinsic antitumor 
efficacy. Moreover, the short-lived persistence of innate immu-
nocells in an allogeneic host, considered up to now one of the 
major limitations, may become an added value in case of CARs 
targeting antigens that are shared with mature cell types for 
which prolonged aplasia may be a concern (i.e., memory B cells, 
monocytes, or plasma cells) (248, 249).

Genetic modification of the human NK  cell lines NKL and 
NK-92 by means of a lentiviral vector encoding for anti-SLAMF7 
and anti-CD138 CARs has proven feasible. This did not sub-
stantially modify the expression profile of transduced cells and 
conferred selectivity for the target and the ability to kill human 
malignant plasma cells both in ex vivo and in an orthotopic 
xenograft models (250, 251). Overall, several steps to optimize 
and validate CAR-modified NK cells should be taken before their 
possible clinical use. In particular, the choice of the most appro-
priate NK cell source to be modified is a matter of intense debate 
(252). Whether freshly isolated NK cells may represent the most 
physiological choice to achieve sufficient cell doses and transduc-
tion efficiency remains unknown. Conversely, NK cells expanded 
from PB or from progenitor cells may be more easily modified 
even though their expression profile and functional competence 
may be negatively affected by prolonged ex vivo culture. Finally, 
immortalized human NK cell lines, such as NK-92, can be very 
efficiently transduced and expanded in desired numbers even for 
“off-the-shelf ” use even though their cell surface expression of 
activating receptors is lower than in freshly isolated or expanded 
NK cells. Moreover, the need to irradiate the cell product before 
infusion would further limit their in vivo persistence (252, 253). 
A new modality that exploits the combination of the anti-CR38 
monoclonal antibody DARA with CD38(−) NK  cells armed 
with CS1 CAR has very recently been described by Wang et al. 
to treat relapsed MM (254). Given that both CS1 and CD38 

are MM-associated antigens, their simultaneous targeting may 
prevent progression. The same authors previously showed that 
DARA induces apoptosis in CD38(+) NK cells but not in CD38(−) 
NK cells. It was then hypothesized that DARA in combination 
with CD38(−) CS1-CAR NK cells may show a synergistic effect 
and possibly lead to MM eradication. Long-term follow-up of 
clinical outcomes of this study are eagerly awaited.

FUTURe PeRSPeCTiveS

The potent crosstalk between malignant plasma cells and their BM 
microenvironment plays a central role in MM progression and 
resistance to current therapies. Novel forms of immunotherapy 
against MM represent a rapidly developing area in cancer therapy. 
They include treatment strategies that may be delivered either 
alone or in combination with currently employed therapy lines 
such as IMiDs and proteasome inhibitors as well as newer agents 
(Table 2). Moreover, immunotherapy may attenuate the systemic 
toxicity of cytotoxic chemotherapy. A robust body of evidence 
has clearly shown that enhancing host anti-myeloma immunity 
within the BM microenvironment may lead to a more efficient 
disease control. NK cells play a pivotal role in the intricate network 
of cells and signaling pathways that may prevent immune escape 
mechanisms. NK cells were clearly shown to have potent in vivo 
antileukemia activity in patients undergoing allografting. Recent 
observations on NK cell functions in MM have become promis-
ing immunotherapeutic strategies. New avenues of research have 
included expansion of NK cells from PB as well as CB, and the 
generations of specific CAR-NK cells against myeloma-specific 
antigens. Moreover, MM NK cells express PD-1 whereas NK cells 
from healthy individuals do not. This phenotypic characteristic 
may indicate that immunocheckpoint blockade of NK cells may 
be an area to fully explore given the remarkable results obtained 
with anti-PD 1 inhibitors in cancer treatment. Altogether, the 
studies reported in this review show that NK cells hold promise 
in changing the natural course of MM and that may help restore 
immunity to MM and thereby improve survival outcomes.
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Animal models have extensively contributed to our understanding of human immunobi-
ology and to uncover the underlying pathological mechanisms occurring in the develop-
ment of diseases. However, mouse models do not reproduce the genetic and molecular 
complexity inherent in human disease conditions. Human immune system (HIS) mouse 
models that are susceptible to human pathogens and can recapitulate human hemato-
poiesis and tumor immunobiology provide one means to bridge the interspecies gap. 
Natural killer cells are the founding member of the innate lymphoid cell family. They exert 
a rapid and strong immune response against tumor and pathogen-infected cells. Their 
antitumor features have long been exploited for therapeutic purposes in the context 
of cancer. In this review, we detail the development of highly immunodeficient mouse 
strains and the models currently used in cancer research. We summarize the latest 
improvements in adoptive natural killer (NK) cell therapies and the development of novel 
NK cell sources. Finally, we discuss the advantages of HIS mice to study the interactions 
between human NK cells and human cancers and to develop new therapeutic strategies.

Keywords: humanized mouse models, innate lymphoid cell, natural killer cells, cancer immunotherapy, natural 
killer cell immunotherapy

iNTRODUCTiON

Since the generation of the first inbred mouse strains in the early 20th century, mice have served as 
model organisms to study mammalian biology. This approach has given birth to some of the most 
important scientific breakthroughs and discoveries that, in many cases, led to the development of 
successful treatments for previously untreatable diseases (e.g., acute promyelocytic leukemia) (1). 
However, Mus musculus and Homo sapiens have been evolving divergently for 85 million years, 
adapting to very different environments and undergoing selection for many traits, from the circa-
dian rhythm to our body size (2). Thanks to the genome decoding, we can now appreciate that the 
one fifth of the genetic divergence between mice and humans is enriched in regions implicated in 
the immune system, metabolic processes, and stress responses (3). It is, therefore, not surprising 
that only less than 8% of the cancer studies in animal models reach clinical trials and that more than 
80% of these eventually fail when tested in humans (4). The increasing knowledge of the molecular 
differences between mice and humans should allow us to evaluate the degree in which animal 
models may be suitable for translational research and when this is not the case, to then search for 
better systems.

With this aim, mice have been “humanized” by introducing human genes or genomic regions and 
by transferring human tissues or cells to study various aspects of human biology. The engraftment 
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of human blood cells or blood-forming cells and organs into 
immunodeficient mice has opened a new era for translational 
immunology and the improvement of immunotherapies against 
human cancer and infectious diseases caused by pathogens with 
exclusive human tropism, such as HIV, HBV, and HCV.

DeveLOPiNG HUMAN iMMUNe SYSTeM 
(HiS) MiCe

Since the discovery of the nude athymic mutations in the 1960s, 
our knowledge of the host immune system and its ability to 
reject xenografts have led to the development of several mouse 
strains that permit long-term “take” and function of the human 
tissue grafts (5). Experiments performed in the 1980s with severe 
combined immunodeficient (SCID) mice (that lacked functional 
mouse adaptive lymphocytes due to mutations in the DNA-
dependent protein kinase Prkdc) showed that these mice could 
be reconstituted with human peripheral blood mononuclear cells 
(PBMCs) or hematopoietic stem cells (HSCs) (6, 7). However, 
some residual adaptive (leakiness) and an essentially intact innate 
immunity in SCID mice limited the complete reconstitution of all 
human immune subsets. Moreover, SCID mice failed to engraft 
human tumor xenografts, thereby limiting the development of 
preclinical cancer models. An alternative system with analogous 
immunodeficiency was obtained by mutating the recombinant 
activating genes (Rag1, Rag2) loci that avoided genetic “leakiness” 
and, in contrast to SCID mice, did not result in host radiosensitiv-
ity (8, 9). Additional genetic modifications followed to further the 
immunodeficiency of host mice in order to promote tolerance to 
human cells. Two breakthroughs have remarkably boosted the 
advancement of the field. First, Greiner and colleagues found that 
the NOD strain supported an enhanced tolerance compared to 
other strains and, several years later, Takenaka’s team revealed that 
the molecular basis for this lies in the signal regulatory protein 
alpha (Sirpa) allele polymorphism (10–13). Contrarily to other 
strains, SIRPα from NOD mice binds to human CD47 ligand 
triggering a negative signal in mouse macrophages that prevents 
their phagocytosis (13, 14). This finding prompted the generation 
of transgenic mice expressing the human or NOD strain Sirpa 
allele thus conferring enhanced human cell engraftment (15–17). 
The second turning point for achieving a successful xenotrans-
plantation was the common cytokine receptor gamma chain (γc, 
encoded at Il2rg), which leads to complete impairment of natural 
killer (NK) cell development and dendritic cell (DC) dysfunction 
(18, 19). Mice carrying Il2rg mutations were developed in various 
genetic backgrounds [NSG or NOG (both NOD PrkdcSCIDIl2rg−/−) 
and BRG (Balb/c Rag2−/−Il2rg−/−)] allowing robust, long-lasting de 
novo multilineage development of the HIS, including human thy-
mopoiesis, and are the basis for most of the currently used models 
(20–23). From that point forward, a number of model variants 
have been developed to address specific questions or improve 
particular aspects of immunity, either by genetic manipulation, 
engraftment of additional human tissues, or exogenous adminis-
tration of human factors. This is the case of the recently described 
Balb/c Rag2−/−Il2rg−/−Flt3−/− (BRGF) model with specific boost of 
conventional and plasmacytoid DCs after exogenous Flt3 ligand 

treatment. This model offers a great platform for screening of 
immune adjuvants and DC targeting therapies (24).

HUMAN CANCeR MODeLS iN 
“HUMANiZeD” MiCe

Immunodeficient mice allow great flexibility for the study of 
human tumor immunobiology. Human tumors can be generated 
in NSG, NOG, BRGS, and other strains using established tumor 
cell lines, after transplantation of human primary tumors or fol-
lowing de novo induction of hematological neoplasms (Figure 1). 
These different models provide systems that better reflect the 
complexity of the disease. In order to allow human tumor to 
engraft and grow in mice, the host immune system is generally 
compromised leading to tumor kinetics that may not reflect 
the true patient situation. As discussed earlier, human immune 
components can be generated in vivo from human HSCs or other 
progenitors and “supported or potentiated” later on or infused 
once the tumor is established. These approaches provide “mixed” 
systems in which human immune cells and human tumors can 
co-exist allowing the dissection of immune deviation as well as 
studying immunotherapy.

A wide range of established tumor cell lines from different 
origins (brain, colon, breast, melanoma, ovarian, prostate, etc.) 
have been engrafted in immunocompromised mice and have 
greatly contributed to drug development and the preclinical 
assessment of potential therapies. However, the gradual accumu-
lation of genetic and phenotypic aberrations in these cells due 
to their long-term culture impacts the surface markers and the 
tumorigenicity of the malignancy (25). These limitations have 
set aside these models to preliminary studies addressing specific 
questions like the ability of a potential therapy to target a certain 
molecule that has been overexpressed in the cell line. In recent 
years, the field has been, therefore, switching toward the engraft-
ment of patient-derived primary tumors (PDX, patient-derived 
xenografts) that retain the phenotypic and genetic complexity 
observed in clinical samples thus better predicting drug efficacy 
and clinical translatability (26, 27). These include tumor stromal 
cells and tumor-associated lymphocytes that contribute greatly 
to tumor growth and metastasis and, therefore, to the therapeutic 
response. These PDX-HIS mouse models can engraft the tumor as 
efficiently as the non-humanized mice, they respond to standard 
chemotherapeutic drugs similarly to patients and they have 
proven to be responsive to newly derived immune modulators.

One of the better-characterized PDX models is the AML that 
has contributed to the identification of leukemia stem cells (LSC) 
by transplanting different stem-like cell fractions and analyzing 
the leukemia-initiating activity of each in SCID mice (28–31). 
The discovery of the concept of cancer stem cell (CSC) has been a 
breakthrough in cancer biology due to the clinical benefits for the 
long-term disease-free survival. CSC presence has been identified 
in numerous other malignancies through transfer into immuno-
compromised mice and, interestingly, markers associated to CSCs 
have been correlated to the tumorigenic potential (32, 33). Recent 
improvements in HIS mouse models by the transgenic expres-
sion of certain factors, like the NSG-SGM3 expressing human 
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FiGURe 1 | Human immune system (HiS) mouse models used in cancer research. PBMC, peripheral blood mononuclear cells; NSG, NOD PrkdcSCIDIl2rg−/−; 
BRG, Balb/c Rag2−/−Il2rg−/−; BRGS, Balb/c Rag2−/−Il2rg−/− SirpaNOD; HSC, hematopoietic stem cell; FT, fetal thymus; BM, bone marrow; CAR, chimeric antigen 
receptor; UCB, umbilical cord blood; ATLL, T-cell leukemia/lymphoma; AML, acute myeloid leukemia; EBV, Epstein–Barr virus (37–56).
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SCF, GM-SCF, and IL-3, have further ameliorate the engraftment 
and growth of human leukemia allowing the study of the tumor 
initiating cells (34). The demonstration that HIS mouse models 
reproduce the heterogeneity and behavior of human tumors cre-
ates great expectation on the better phenotyping of these tumor-
initiating cells and the identification of drugs targeting this key 
population (35).

One of the advantages of modeling cancer in humanized mice 
is that we can study the systemic environment and the contribu-
tion of nearly all the immune cells to the pathogenesis. In this 
regard, a NSG model of treatment-refractory B-cell leukemia 
revealed that infiltration of leukemia cells into the bone marrow 
rewires the tumor microenvironment to inhibit engulfment of 
antibody-targeted tumor cells. This resistance could be overcome 
by combination regimens involving therapeutic antibodies 
and chemotherapy that lead to macrophage infiltration and 
phagocytic activity in the bone marrow improving the efficacy of 
targeted therapeutics (36).

TARGeTiNG NK CeLLS FOR CANCeR 
iMMUNOTHeRAPY

To date, most immunomodulatory strategies have focused on 
agents or cell therapies targeting T  cell immunity. In contrast, 

innate immune cells, such as NK cells, have been less exploited. 
Nevertheless, the fundamental role for these cells has been for 
long justified by the higher cancer incidence in individuals with 
defective NK function (57). Furthermore, a number of mouse 
models lacking or deficient for NK cell function have corrobo-
rated their importance in tumor immunosurveillance (58).

Natural killer cells exert an immediate cytotoxicity when 
encountering a malignant cell and they do so without a specific 
antigen priming but instead, by the integrated signal of an array 
of activating and inhibitory receptors. Among the first group, 
the C-type lectin-like receptors CD94/NKG2C and NKG2D and 
the natural cytotoxicity receptors NKp30, NKp44, and NKp46 as 
well as the Ig-like receptor DNAM-1 (CD266) mediate NK cell 
activation when they recognize tumor cells. On the other hand, 
polymorphic inhibitory killer cell immunoglobulin-like recep-
tors (KIRs) with their cognate human–leukocyte–antigen (HLA) 
ligands as well as CD94/NKG2A with the non-classical class I 
molecule HLA-E as ligand provide inhibitory signaling. In addi-
tion to the contact mediated regulation of the activity, NK cells 
also respond to cytokines like IL-2, IL-12, IL-15, IL-18, and IL-21, 
as well as toll-like receptor ligands that shape their differentiation, 
proliferation, and activation status (59). Cytotoxicity activity is 
triggered through activation of the low-affinity activating recep-
tor FcγRIIIa (CD16) that binds the Fc portion of immunoglobulin 
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G1, which has been exploited in monoclonal antibody immuno-
therapies. NK  cells kill virus-infected and tumor cells using a 
cargo of perforin and granzymes contained in cytotoxic granules 
and less efficiently by a mechanism dependent on FAS ligand, 
TNF, or TNF-related apoptosis-inducing ligand (60).

Given that NK cells in HSC-derived humanized mice express 
all the afore-mentioned receptors and respond similarly to the 
same cytokines (61, 62), these in vivo models represent a pow-
erful platform to explore the pivotal role of NK cells in cancer 
immunosurveillance (63–65) (Lopez-Lastra et  al., in revision). 
Additionally, environmental components such as inhibiting fac-
tors (TGF-β, IL-10, prostaglandin E2…) and immunosuppressive 
cells (Tregs, MDSCs) that influence the NK cell antitumor activity 
have also been described in HIS mice, enabling the evaluation of 
therapeutic strategies targeting the suppression of NK cells (66).

Although chemotherapy is still the core of the current clinical 
anticancer treatments, immunomodulators have now regained 
expectations after the revolutionary discovery of the CTLA-4 
and PD-1 checkpoint inhibitors targeting T-cell activation (67). 
Humanized mice have proven to recapitulate the therapeutic 
effect of those antibodies as well as the side effects and have 
began to provide insights about the mechanism behind and 
possible strategies to improve them (68–70). The expression of 
these receptors on human NK cells suggests that they could also 
be targeted by checkpoint molecules and, therefore, contributes 
to the outcome of the therapy (71, 72). Indeed, mouse studies 
on a glioma model treated with activated NK cells preincubated 
with an anti-PD-1 blocking antibody showed an enhancement of 
the survival suggesting a role that must be explored in a human 
system (73).

ADOPTive TRANSFeR OF NK CeLLS FOR 
CANCeR THeRAPY

The potential of NK cells as innate effectors in cancer has been 
studied by the adoptive transfer of ex vivo expanded and/or 
activated NK cells in immunodeficient mice. Mice treated with 
adoptively transferred human NK cells show NK-mediated rejec-
tion of the engrafted human tumor and further administration 
of cytokines, such as IL-2 and IL-15 greatly improve the NK cell 
pool and their cytotoxic activity against transformed cell. These 
observations initially made in mice laid the foundation for 
the autologous NK  cell infusion therapies started in the 1980s 
for metastatic cancers (74). Preclinical assessment of cytokine 
regimens in other cancer models, such as the low-dose IL-2 in 
the spontaneous EBV-associated B-cell lymphoma in PBL-SCID 
mice, demonstrated reduction of the tumor load and survival 
prolongation (75), and preceded a number of clinical trials for 
both hematological and solid tumors (76–79).

The discovery that inhibitory KIRs binding to MHC-I mediate 
inhibition of NK cells opened a new path on NK cell immuno-
therapies. NOD/SCID cancer models served as a platform to 
confirm the higher efficacy of alloreactive NK cells for the treat-
ment of leukemia. Contrarily to T cells, NK cell do not provoke 
graft-versus-host disease (GVHD) in hematopoietic stem cell 
transplantation (HSCT) contexts but, instead, protect the patient 
against it and eliminate leukemia relapse and graft rejection (80). 

Later on, safety and efficacy of alloreactive NK cell infusion was 
confirmed in the clinic by Miller and colleagues in non-HSCT 
settings with patients suffering from metastatic melanoma, renal 
cell carcinoma, Hodgkin’s lymphoma, and refractory AML (81). 
For many years, allogeneic NK  cell infusions have been tested 
in the clinic with positive results and rare cases of mild toxicity 
(82). Strikingly, a recent pediatric clinical study has reported 
some patients suffering from acute GVHD after infusion of ex 
vivo expanded donor NK  cells in HLA-matched HSCT (83), 
rising the necessity to perform more robust preclinical testing 
in humanized models. One strategy to do so was illustrated in 
a recent study performed in NSG mice, in which an alloreactive 
NK cell subpopulation expressing KIR2DS2 but lacking inhibi-
tory KIR-HLA mismatch had dominant functional activation 
advantage to kill patient-derived glioblastoma cells (84). The 
regulation of the activity on infused NK cells has been classically 
based on HLA-KIR matching; however, other inhibitory recep-
tors are implicated on the inhibition of NK cell cytotoxicity. A 
recent study in NSG mice engrafted with human HSC has shown 
that anti-NKG2A antibodies can stimulate human NK cell kill-
ing in AML and ALL models bypassing the need to search for 
NK cell alloreactive donors (85). In vitro experiments have also 
pointed to an increased NK cell-mediated lysis of lymphoma and 
myeloma cells with allogeneic NK cell infusion in combination 
with monoclonal antibodies blocking inhibitory KIRs but this 
effect need to be confirmed in vivo (86, 87).

Another strategy to increase NK cell activity without aggravat-
ing the side-effects is the expression of chimeric antigen receptors 
(CARs) directed against tumor antigens. Preclinical evaluation of 
CD20 targeting primary NK cell infusion in humanized mice has 
led to a clinical trial on B-lineage acute lymphoblastic leukemia 
currently undergoing (88). Other preclinical trials using CAR-
engineered primary human NK cells are now being performed 
in lymphoma, leukemia, carcinomas, and neuroblastoma mouse 
models.

Natural killer cells are often infused in combination with 
immunomodulators that boost their antitumor effects or regulate 
their activity. CD16 receptor is targeted by many of those modu-
lators since it mediates antibody-dependent cellular cytotoxicity 
(ADCC) when it recognizes an antibody on a tumor cell, leading 
to target cell lysis. This mechanism has been exploited by using 
monoclonal antibodies targeted tumor antigens thus stimulating 
the endogenous or adoptive NK  cells. Evidences of NK  cell-
mediated ADCC and mild to moderate toxicity were observed 
in preclinical models and then confirmed for some cases in the 
clinical setting. Malignancies such as non-Hodgkin lymphoma 
with rituximab (anti-CD20), metastatic breast cancer with tras-
tuzumab (anti-HER2) or metastatic colorectal, and squamous cell 
carcinoma of the head and neck have been treated with monoclo-
nal antibodies together with NK cell infusions or in combination 
regimes extending the disease-free survival and overall survival 
of thousands of patients (89–91).

As mentioned before, CSCs are emerging as necessary targets 
to achieve cancer cures since current treatments eliminate the bulk 
of the tumor cells but rare resistant CSCs persist and lead to later 
tumor relapse (92). The upregulation of stress-induced antigens 
together with the ability of NK cells to target non-proliferating 
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cells suggest that NK  cells could effectively eliminate CSCs. 
Indeed, recent studies in pancreatic carcinoma-bearing NSG 
mice demonstrated the capacity of activated transferred NK cells 
to reduce intratumoral CSCs and tumor burden (93–95).

NOveL NK CeLL SOURCeS FOR 
ADOPTive THeRAPY OF CANCeR

Two of the parameters to consider when evaluating the safety of 
NK cell products in clinical applications are the cell source and 
the culture conditions before the infusion. GM-CSF mobilized 
PBMCs, bone marrow, or umbilical cord blood (UCB) are the 
main sources of NK cells. With GM-CSF effects on NK function 
still to determine and BM being logistically difficult to obtain, 
UCB derived NK  cells have been revealed as the best source 
of human material. Researchers are working on improving the 
expansion yield and purity as well as to enhance the activity of 
UCB derived NK cells before infusion in the patients. NSG mice 
demonstrated the capacity of these cells to migrate to BM, spleen, 
and liver and the inhibition of leukemia growth and prolongation 
of mice survival when combined with low-dose IL-15 (96). This 
preclinical result prompted a phase I clinical study in elderly 
AML patients that confirmed the safety and capacity of these cells 
to migrate and repopulate BM even in the absence of cytokine 
administration (97). This NK cell product aims at overcoming the 
major limitation of NK cell therapies in solid tumors, the delivery 
of high enough numbers of activated NK cells to the tumor site, 
and it is now under preclinical evaluation in the context of cervi-
cal and colorectal carcinomas (37, 98).

Alternative sources for NK  cell therapy include embryonic 
stem cell (hESC)- or induced pluripotent stem cell (iPS)-derived 
NK  cells, which are still under experimental development. 
Efficient generation of NK cells from hESC and iPS cells has been 
achieved, showing in  vitro functional cytolytic activity against 
tumor cells, IFN-γ production, and expression of functional 
receptors (99). Very few reports are available regarding the in vivo 
activity of these products, with the most encouraging being in 
a NOD/SCID mouse model in which hESC-derived NK  cells 
efficiently cleared a leukemia cell line tumor (100). Nevertheless, 
feeder-free conditions of NK cell generation need to be improved 
and the stability and safety of these NK cells products should be 
further proved in preclinical humanized models.

Finally, there is great prospect in NK cell lines as a potentially 
unlimited “pure” NK cell source. A clonal NK cell line NK-92 has 
shown the highest and most consistent cytotoxicity due to the 
combination of activating receptors it expresses and the absence 
of inhibitory KIRs (101). AML, myeloma, and melanoma are 
some of the numerous malignancies that have been partially 
eliminated from SCID mice after infusion of NK-92 (102–104). 
Clinical trials have further confirmed the safety and efficacy of 
this cell line in both solid and hematologic malignancies (105, 
106). One further advantage of NK-92 is the ease of transfection 
with non-viral vectors allowing them to express IL-2 (required for 
their proliferation), thus representing a powerful “off-the-shelf ” 
cell therapeutic (107). Additionally and inspired by the remark-
able responses obtained by CAR-T cells and the early results in 
primary NK  cells, NK-92 can be very easily transfected with 

a gene that expresses a tumor-CAR (108). The first preclinical 
tests in NSG mice have shed very optimistic results in leukemia 
models after CD19- or CD20-specific NK-92 infusions as well as 
in patient-derived glioblastoma with EGFR-specific NK-92 (109, 
110). Still, these cellular therapies retain safety concerns including 
on-target/off-tumor effects and unregulated cytotoxicity. As such, 
suicide genes (including herpes-simplex-thymidine-kinase and 
inducible caspase-9) have been integrated into these cell products 
thus allowing their subsequent selective destruction (111, 112).

The latest of the NK cell therapeutic strategies was developed 
by Vallera and colleagues with the bi- or tri-specific killer cell 
engagers, BiKEs and TriKEs that are small molecules containing 
two or three single chain variable fragments from antibodies of 
different specificities (113). These are generated to bind CD16 
on NK cells and one or two tumor antigens such as CD19 and 
CD20 (B-cell non-Hodgkin’s lymphoma) (114), CD33 or CD33 
and CD123 (AML) (115), CD30 (Hodgkin’s lymphoma) (116), 
EGFR or EpCAM (EGFR/EpCAM overexpressing carcinomas) 
(117, 118), and many others. The initial preclinical evaluation in 
humanized mice proved very promising translational potential 
with results exceeding those of monoclonal antibodies, like in 
the case of CD16-CD19-CD20 TriKE versus rituximab, and also 
proved efficient for overpassing HLA-mediated inhibition in 
refractory AML blasts.

IL-15 is the master cytokine necessary for NK cell differentia-
tion and survival and it is currently used in clinical trials alone 
or as an adjuvant for certain types of metastatic solid tumors to 
promote in vivo cell expansion and NK cell function (63, 119). 
Taking advantage of this, novel TriKE structures have been 
developed that use a human IL-15 as a modified cross-linker 
between the anti-CD16 and the antitumor antigen in order to 
promote in vivo NK cell proliferation. Assessment of the activity 
of a CD33 specific TriKE in an AML NSG model of NK cell adop-
tive transfer has shown in vivo persistence, high cytotoxic activity, 
and no toxicity to the construct (120). Clinical development is 
currently under progress and will probably obtain FDA approval 
in the upcoming months to be tested in patients.

MODeLiNG viRALLY iNDUCeD HUMAN 
TUMORS USiNG HiS MiCe

While NK  cell first identification was based on its antitumor 
activities, it is also a critical innate effector against pathogen 
invasions particularly viral infections. Human NK  cells have 
been proven essential for the immune response against members 
of the herpesvirus, poxvirus, and papillomavirus families, as 
demonstrated by the predisposition of NK deficient individuals 
to suffer from these virus infections (121, 122). Remarkably, in 
one fifth of human cancers viral infection and oncogenesis are 
intimately linked. Viruses act on carcinogenesis either by directly 
promoting the initiation of the disease or by interacting in the 
immune response and/or immune evasion (123). Particularly, 
Epstein–Barr virus (EBV), hepatitis B virus (HBV), hepatitis C 
virus (HCV), human papillomavirus, human T-cell lymphotropic 
virus, Kaposi’s sarcoma herpesvirus, and Merkel cell polyomavi-
rus account for the majority of tumor cases linked to viral infec-
tion. Humanized mice offer a platform to access the molecular 
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mechanisms behind that causal role and the receptor–ligand 
interactions occurring at the interface “NK cell-infected cell” that 
could eventually have therapeutic value. The engrafted human 
cells occupy relevant physiological sites, where they proliferate 
and function, and eventually interact with oncogenic viruses that 
spread and replicate to other cells or organs thus recapitulating 
the physiological human infection. Additionally, their unique 
susceptibility to infection by virus with exclusive human tropism 
and the possibility to manipulate the timing and dose of the 
infection render them indispensable for better understanding 
the virus–tumor interplay and disease progression as well as for 
developing therapeutic approaches.

Epstein–Barr virus is the most common human tumor virus 
worldwide (more than 200,000 associated malignancies every 
year) and is also the cause of infectious mononucleosis. It has 
been extensively studied in humanized mice modeling the dif-
ferent protein expression patterns of the virus that lead to latent 
infection 0, I, II, and III as well as low level lytic replication, 
although only latency III has been unequivocally demonstrated 
(124–129). Several studies have reported specific adaptive cellular 
and humoral immune response to EBV in humanized mice (128, 
130, 131). Furthermore, transformation of B-cell in vivo has been 
also reported and this model has disclosed one of the viral genes 
(EBNA3B) responsible for tumor formation (125). Preclinical 
studies in HIS mice have been pivotal for the development of 
the therapeutic vaccines that are now undergoing clinical trials, 
including the EBV gp350 neutralizing antibody and infusion of 
EBV-specific T cells (132). The involvement of NK cells in EBV 
infection and disease progression was demonstrated by depletion 
of NK cells from EBV-infected NSG mice resulting in higher EBV 
DNA load in the spleen, exaggerated CD8+ T-cell responses to the 
virus and an increased risk of EBV-induced lymphoproliferation 
(65). Current investigations try to deepen our understanding 
of the NK  cell-mediated control of primary EBV infection in 
HIS mice and will likely provide insight on the NK cell subset 
responsible for that viral control (133).

About 80% of hepatocellular carcinomas (HCC) are due 
to HBV or HCV infections. There are more than 250,000 new 
cases of HCC and an estimated half a million deaths due to 
this disease annually (123, 134). We and others have developed 
mouse models harboring both the immune system and human 
hepatocytes, allowing the natural course of acute infection and 
also chronic hepatitis, characterized by advanced liver disease 
and hepatocellular carcinoma genesis (17, 135, 136). In addition 
to the immunodeficiency, these mice have liver defects that allow 
engraftment and expansion of transplanted human hepatocytes. 
Several immune system–liver humanized models have been 
developed, including BRGS-uPA (BALB/c Rag2−/−Il2rg−/−SirpaNOD 
uPAtg/tg) (17), uPA-NOG (uPA-NOD PrkdcSCIDIl2rg−/−) (135), 
and FRGN (Fah−/−Rag2−/−Il2rg−/− NOD) (136). These doubly 
humanized mice show high level of human liver chimerism 
and immune engraftment in primary and secondary lymphoid 
organs with reconstitution of myeloid and lymphoid populations 
at levels similar to the single HIS models. In BRGS-uPA mice, 
NK cells are present in spleen and liver in numbers even higher 
than BRGS mice and display the same NK receptor expression 
profile (unpublished data). Infection with HBV and HCV has 

been achieved in these mice and human immune responses have 
been detected as well as associated liver diseases that resemble the 
human pathology. Furthermore, both mimic the clinical response 
upon treatment with anti-HBs neutralizing antibodies and 
IFNα-2an, respectively, and prevented the leukocyte infiltration 
and liver fibrosis (137, 138). Any in depth analysis of the NK cell 
response against the virus or the role in tumorigenesis has been 
so far performed in these mice, other than the detection of CD56+ 
cells, to our knowledge.

iMPROviNG THe NK CeLL 
COMPARTMeNT iN HiS MiCe

Given the central role of NK cells in immune responses in infec-
tion, malignancy and inflammation and the great therapeutic 
potential they hold, it is necessary to optimize the available 
models for understanding their biology and preclinically evaluate 
new therapies.

In previous sections, we discussed about two types of HIS 
mice for the study of NK cell biology, those in which the human 
immune cells develop in  vivo from injected hematopoietic 
precursors and a second category that adoptively receive mature 
NK cells freshly isolated or derived from an ex vivo expansion or 
activation process, a cell line or an ES or iPS cell. The later have 
fewer requirements in terms of niche, cell–cell interactions, and 
soluble growth factors that are needed for NK cell development, 
and instead require cytokines for their survival and homeostatic 
proliferation. Common cytokine receptor γc cytokines (IL-2, IL-4, 
IL-7, IL-9, IL-15, and IL-21) play critical roles. In particular, 
IL-15 is responsible for NK  cell maintenance and homeostatic 
proliferation through IL-15Rα presentation (139, 140), while 
IL-2 effect in vivo is oriented to the activation and induction of 
cytotoxicity through the regulation of the peripheral NK subsets. 
These humanized mice serve as platforms to understand the 
mechanisms underlying NK survival and function and provide 
preclinical information for the design of new therapeutics. 
Furthermore, they give valuable information about the cell 
migration capacity and synergistic effects with other cell types or 
immunomodulators.

As mentioned earlier, several immunodeficient hosts (NSG, 
NOG, BRG, BRGS) support multilineage development of human 
immune cells, including low levels of NK  cells. In the BRGS 
model (16, 141), NK cells expressed CD56 and NKp46 as well as 
some level of CD16 and were able to degranulate moderately after 
stimulation with a cancer cell line. However, in both BRGS and 
NSG mice, NK cell displayed defects in maturation, functionality, 
and heterogeneity in comparison with the human counterparts 
due to a deficient cytokine signaling (142). The absence of human 
appropriate MHC class I expression on hematopoietic or stromal 
cells may result in the failure to “educate” or “license” develop-
ing NK cells in HIS mice. This could explain the abundance of 
immature NK cells (CD56brightCD16−KIR−) and their functional 
defects. In line with this idea, recent publications showed 
improved NK cell licensing in a HIS models expressing diverse 
educating HLA alleles (143, 144). This approach may allow better 
definition of the mechanisms underlying human NK cell educa-
tion in vivo.
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Based on their cytokine requirements, IL-15 has been exog-
enously administered either alone or as a complex with IL-15Rα 
resulting in an extensive NK cell proliferation and accumulation of 
CD16+KIR+ NK cells. Also, NK cell differentiation progressed from 
CD56+ to CD56lowCD16+, and finally to CD56lowCD16+KIR+ mim-
icking the human model (63). On the other hand, the constitutive 
high expression of the high-affinity heterotrimeric IL-2 receptor 
complex in CD56brightCD16± NK-cell subset and the effect of IL-2 
in NK expansion and activation prompted the development of and 
IL-2 transgenic NOG mouse strain (145). When IL-2TgNOG mice 
were engrafted with human HSC, CD56+ massively developed with 
a highly active phenotype including IFN-γ production and cyto-
toxicity against tumor cells. Interestingly, treatment of these mice 
with a therapeutic humanized anti-CCR4 Ab (mogamulizumab) 
suppressed the growth of a CCR4+ lymphoma, suggesting that the 
human NK cells in the mice exerted active Ab-dependent cellular 
cytotoxicity in vivo. These cells expressed various NK receptors, 
including NKp30, NKp44, NKp46, NKG2D, and CD94, as well 
as a diverse set of killer cell Ig-like receptor molecules at levels 
comparable to normal human NK cells from the peripheral blood 
(62). Nevertheless, there are several limitations in this model due 
to the supra-physiological levels of IL-2 and, therefore, the high 
activation status of the NK cells.

It is well known that NK homeostasis and function are 
regulated by the interaction with other immune cells, particu-
larly macrophages, DCs, and T cells. In addition, soluble factors 
released by those cells, like NKG2D ligands, IL-2, IL-12, or IL-15, 
signal on NK cells leading to proliferation and activation. Based 
on these crosstalk events, others and we have developed human-
ized mice that through the enhancement of the myeloid compart-
ment, NK cell development results improved. As it happens for 
other lineages, human myelopoiesis is driven by soluble factors 
normally present in the BM niche and periphery, which are from 
murine origin in HIS mice. Some of these mouse cytokines cross-
react to some extent with the human cells but others, the species-
specific cytokines, do not. In order to circumvent this deficiency, 
human cytokines have been administered to HIS mice either as 
recombinant proteins (63) by cytokine-encoding plasmids (146) 
or by insertion of the cytokines either as transgenes in the mouse 
genome or by knocking in the human gene to replace the mouse 
counterpart (147, 148). As mentioned before, transgenic models 
provoke supra-physiological levels of the cytokine in the periph-
ery and in the case of pro-myeloid factors, such as TPO, IL-3, 
GM-CSF, or M-CSF, also lead to the exacerbated mobilization 
and HSC exhaustion limiting the utility of the system. Swapping 
mouse coding exons for M-CSF, IL-3/GM-CSF, TPO, and SIRPα 
with their human counterparts allowed for the creation of the 
MISTRG strain (149). This host expresses these human cytokines 
under control of mouse regulatory elements and show superior 
human myeloid cell engraftment. Subsequently, MISTRG HIS 
mice showed an increased number of functional NK  cells, 
including higher expression of KIR, CD94, and CD161 receptors 
(149). Nevertheless, cellular and humoral immune responses 
in MISTRG HIS mice are poor and these mice develop severe 
anemia.

The transpresentation of IL-15 occurs mainly through the 
IL-15Rα expressed by DCs, so efforts have been made to increase 

specifically this cell population in order to increase the NK 
pool avoiding the overdevelopment of other myeloid subsets. In 
our laboratory, Flt3-deficient BRG mice (BRGF) were created 
and after reconstitution with human HSC, human Flt3L was 
administered to the mice. The result was a specific increase of 
all the DC subsets and the promotion of NK cell hematopoiesis, 
with enhanced CD94, CD16, and KIR receptor expression. The 
combination of this system with the expression of the SirpaNOD 
protein in the BRGSF model has led to further augmentation of 
NK cell numbers and also an enhanced functional competency 
as demonstrated by their degranulation capacity and cytokine 
production activity (unpublished data). This HIS model provides 
a unique platform to study NK  cell development, crosstalk 
mechanisms with other immune cells, and the preclinical assess-
ment of new immunotherapies targeting innate cells.

The combination of the protocols detailed in the previous 
sections for modeling human cancer or infection with the 
abovementioned strategies to boost the NK  cells in HIS mice 
will raise the potential to understand how NK cell interact with 
malignant or infected cells. Moreover, HSC-HIS mice offer the 
possibility to study the tissue specific interactions, the reservoirs, 
the migration patterns, and the crosstalks within the immune 
compartment that may be important to develop combinatorial 
therapies that avoid metastasis, tumor relapse, and “relocation” 
of the viruses.

CONCLUDiNG ReMARKS AND FUTURe 
PeRSPeCTiveS

Therapies designed to induce or potentiate the immune response 
against tumors are an appealing strategy to control tumor growth 
and have been the object of intense research since their discovery 
in the 1970s. Despite representing the most promising cancer 
treatment since the emergence of chemotherapy, several cases of 
side effects or disappointing clinical results have downshifted the 
development of new immunotherapies. The better understand-
ing of the tumor heterogeneity, the mechanisms of the immune 
response, and the interaction with the tumor microenvironment 
is a required step for the development of safe and effective 
therapies. Humanized mice have the potential to reproduce the 
HIS, the tumor growth and immune evasion, and the response to 
treatments targeting immune effector cells or immunomodula-
tors. One of the most challenging aspects of tumor research has 
been to understand the variability within he same type of cancer 
among individuals and, therefore, the disparate responses and 
outcomes after therapy. Current efforts are being made to over-
come these limitations by creating truly personalized HIS-PDX 
mouse models in which both the immune system and the tumor 
are derived form the same individual. These models will provide 
an invaluable bridge between immunotherapy discovery and the 
clinic, increasing the success rate of new therapies in human trials 
and improving the chances to beat cancer.

Natural killer cells have been for long time considered the only 
innate effectors of the lymphoid system but nowadays we appreci-
ate that they belong to a larger family, the “innate lymphoid cells” 
(ILCs) (150). These recently described populations lack cytotoxic 
capacity but instead, they exert very potent cytokine production. 
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In recent years, there has been a rapid advance in our understand-
ing of their development, phenotypic, and functional diversity, 
which has been nicely reviewed elsewhere (151–155). ILCs 
come in three groups mirroring the cytokine and transcriptional 
profile of CD4+ helper T cells (Th1, Th2, and Th17/22). Given the 
myriad of cytokines they produce, ILCs have been involved in 
the early orchestration of immune responses against a number of 
pathogens, in tumor immunosurveillance and in inflammatory 
diseases. Recent works in mice have proven the antitumor effects 
of ILC1s whereas ILC3s have been found to exert both beneficial 
and tumor-promoting effects depending on the circumstances 
(156–158). The multifaceted functions of ILCs suggest new alter-
natives for immunotherapeutic approaches against tumors that 
need to be explored in in vivo humanized models. The improve-
ment of human helper ILCs in HIS mice could open new avenues 

for harnessing innate immunity to treat cancer and inflammatory 
diseases.
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Natural Killer cell-Based cancer 
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evasion to Promising targeted 
cellular therapies
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1 Department of Vascular Biology, Medical University of Vienna, Vienna, Austria, 2 Institute of Cellular Therapeutics,  
IFB-Tx, Hannover Medical School, Hannover, Germany

Immunotherapies based on natural killer (NK) cells are among the most promising 
therapies under development for the treatment of so far incurable forms of leukemia 
and other types of cancer. The importance of NK cells for the control of viral infections 
and cancer is supported among others by the findings that viruses and tumors use 
a multitude of mechanisms to subvert and evade the NK cell system. Infections and 
malignant diseases can further lead to the shaping of NK cell populations with altered 
reactivity. Counter measures of potential therapeutic impact include the blocking of inhib-
itory interactions between NK cell receptors and their cellular ligands, the enhancement 
of activating receptor signals, and the infusion of large numbers of ex vivo generated 
and selected NK cells. Moreover, the specific cross-linking of NK cells to their target 
cells using chimeric antigen receptors or therapeutic bi-/trispecific antibody reagents 
is a promising approach. In this context, NK  cells stand out by their positive effects 
and safety demonstrated in most clinical trials so far. Based in part on results of the 
recent EC-sponsored project “NATURIMMUN” and considering additional published 
work in the field, we discuss below new developments and future directions that have 
the potential to further advance and establish NK cell-based therapies at the clinics on 
a broader scale.

Keywords: immunotherapy, natural killer cells, immune evasion, cell therapy, checkpoint inhibitors, chimeric 
antigen receptors, bispecific antibodies

iNtrODUctiON

Natural killer (NK) cells have been classically defined as part of the innate immune system providing 
immediate reactivity against their main targets, virally infected and tumor cells (1). This view has 
been substantially extended over the recent years based on the findings that NK cells are calibrated 
to provide self-tolerance, can develop a memory, and play a role in the regulation of the adaptive 
immune response (2–5). Furthermore, NK cells have turned out to be part of a larger family of 
innate lymphoid cells (ILCs) that include ILC1–3 (6).

Natural killer reactivity, including cytokine secretion and cytotoxicity, is controlled by a balance 
of several germ-line encoded inhibitory and activating receptors such as killer immunoglobulin-
like receptors (KIRs) and natural cytotoxicity receptors (NCRs) (1, 5, 7, 8). Evidence for the 
anticancer efficacy of NK cells comes from allogeneic or haploidentical hematopoietic stem cell 
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(HSC) transplantations that have been used in combination with 
chemotherapy in the treatment of different forms of leukemia 
(9). This has shown that NK cells formed from the transplant not 
only are efficient in killing of allogeneic leukemia cells but are 
also instrumental in reducing the incidence of graft versus host 
disease due to their killing activity for dendritic cells (10). Taken 
together with clinical NK infusion trials in leukemia patients, 
which have shown exciting antitumor activities and generally 
safety of the procedure (11–13), it appears that NK cells could 
be the cells of choice in cellular therapies of leukemia not dis-
playing the critical graft versus host activities of T lymphocytes. 
Although it is currently less clear whether NK  cells will be 
similarly active in solid cancers, this is a further important area 
of interest.

iMMUNe evAsiON MecHANisMs  
AND sHAPiNG OF tHe NK ceLL 
cOMPArtMeNt

Given the importance of NK cells, it is not astonishing that viruses 
and tumors use a wide array of mechanisms to avoid recogni-
tion by NK cells. A paradigm is represented by the Herpes virus  
family. Many mechanisms such as expression of viral ligands for 
inhibitory receptors have been described (14). Important is fur-
ther the downregulation of human stress-induced ligands recog-
nized by the activating NKG2D receptor present on the majority 
of NK cells. Normally, these stress ligands appear on the cell sur-
face whenever a cell is virally infected or undergoes oncogenic 
transformation. Whereas internalization and miRNA-mediated 
downregulation of several stress ligands have been shown pre-
viously (15), additional novel mechanisms have been recently 
identified within the EC-funded project NATURIMMUN. For 
example, in the case of HHV-6B the expression of stress ligands 
is suppressed by proteasomal degradation induced by the virus. 
Consequently, HHV-6B-infected cells can evade immune sur-
veillance by NK  cells (16). These various evasion mechanisms 
of Herpes viruses are reviewed (17) within this research topic 
(“Tailoring NK Cell Receptor-Ligand Interactions: an Art in 
Evolution”).

Extending the importance of NKG2D ligands to tumors, 
Schmiedel et al. have shown within the NATURIMMUN project 
that the stress ligand ULBP2 can be suppressed by an RNA-
binding protein that is frequently overexpressed in tumor cells. 
By binding of this oncogenic protein to ULBP2 mRNA the stabil-
ity of the mRNA is reduced and ULBP2 levels on the cell surface 
are downregulated. In consequence, the tumor cells are protected 
from NK  cell recognition (18). This strongly supports that 
modulation of stress ligands is an important escape mechanism 
used by cancer cells to diminish NK cell recognition. Involving a 
different inhibitory receptor, another unexpected novel evasion 
mechanism could be shown by the same group for colon cancer. 
NK cell killing was inhibited by the presence of fecal bacteria in 
the tumor environment. Bacterial proteins interacted with the 
inhibitory TIGIT receptor on NK cells leading to the inhibition of 
NK cell cytotoxicity (19). Inhibition of NK cells can also occur by 
blocking of NKG2D via soluble forms of the stress ligand MICA 

as shown for neuroblastoma as well as head and neck carcinoma. 
This tumor escape can be overcome in part by highly activated 
NK cells with upregulated NKG2D (20, 21).

Viruses and human cancers can further have profound effects 
on and shape the NK cell compartment. Human cytomegalovi-
rus (HCMV), a herpes family member, can trigger an adaptive 
NK  cell response leading to the expansion of NK  cell subsets 
with specific receptor expression (22–24), e.g., the activating 
NKG2C receptor. The adaptive NKG2C NK  cells have been 
implicated in improved survival of leukemia patients receiving 
a HSC transplant from HCMV-positive donors (23, 25). Given 
the potential higher antitumor reactivity of the NKG2C NK cells, 
this subset is of therapeutic interest and was investigated within 
the frame of the NATURIMMUN project. Obtained results sup-
port that different adaptive NK cell subsets develop in response 
to viral infection and this is influenced by the copy number of 
the NKG2C gene (26).

It has been established that certain forms of leukemia display 
a defective NK  cell compartment (27) rendering these forms 
priority cases for the exploration of NK cell-based therapies. In 
regard of acute myeloid leukemia (AML), we investigated within 
the NATURIMMUN project NK  cells in patients receiving a 
novel maintenance therapy with histamine plus IL-2. In this 
study, AML patients displayed diminished and partly defective 
NK cells. The therapy strongly induced the immunomodulatory 
CD56brightCD16− and CD56brightCD16low NK  cell subtypes and 
contributed to the restoration of the NK cell compartment (28). 
This is in line with the described positive effects of the therapy on 
disease-free survival of AML patients (29, 30). In addition, our 
cooperation partner S. Huenecke describes in this research topic 
that during immune reconstitution after HSC transplantation 
the degree of development of the two CD56bright and the CD56dim 
NK cell subpopulations can serve as prognostic marker for both 
graft versus host disease and viral infections (31).

MODULAtiON OF iNHiBitOrY NK 
recePtOr–LiGAND iNterActiONs  
AND NOveL LiGANDs OF ActivAtiNG 
recePtOrs

Unprecedented rates and durations of clinical responses have 
been recently achieved in cancer patients by the treatment with 
antibody reagents that block inhibitory “checkpoint receptors” 
(32). Whereas these therapies have so far been restricted to the 
blockade of inhibitory pathways acting on T  lymphocytes, the 
inhibition of NK  cells by the interaction of inhibitory NK  cell 
receptors with MHC class I ligands can be regarded as typical 
checkpoint inhibition. In fact, efforts are currently been under-
taken to evaluate blockade of the inhibitory NKG2A/CD94 
receptor and of inhibitory KIRs to elicit NK reactivity to cancer 
cells. The company Innate Pharma has developed first-in-class 
monoclonal antibodies that target inhibitory NK  cell receptors 
and these are currently in preclinical and clinical evaluation (33).

While the ligands for inhibitory NK  cell receptors are well 
established, ligands bound by important activating receptors are 
still incompletely identified. This is the case for the activating 

401

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


standard therapy novel therapy 

chemotherapy 

hematopoietic  
stem cell 
transplantation 

checkpoint inhibitors 

relapse 
refractory 

NK cell infusion 
(PB-derived, 
CBSC-derived) 

NK cell infusion 
(CAR-modified) 

bi-/tri-specific  
reagents 
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NKG2C/CD94 receptor, several activating KIRs, and the NCRs. 
In this regard, a group participating in NATURIMMUN has 
studied how HCMV stimulates NK  cells via the activating 
KIR2DS1 receptor. The ligand was identified as a specific class 
I molecule, HLA-C2, which in its normal form is recognized 
by the related inhibitory KIR2DL1 receptor. Possibly, a con-
formational change in normal HLA-C2 triggered by HCMV 
was required for KIR2DS1-mediated NK  cell activation (34). 
Other participants in NATURIMMUN have developed assay 
systems and have work in progress to identify virally induced 
and potentially tumor ligands for the activating NKG2C recep-
tor (Pupuleku et al., manuscript in preparation for this research 
topic) and the NCRs The clarification of the molecular nature 
and mechanism of action of the corresponding activating ligands 
on virally infected and tumor cells will allow novel pathways of 
NK cell activation to be triggered.

GeNerAtiON OF LArGe-scALe 
tHerAPeUtic NK ceLLs AND 
tecHNOLOGY tO tArGet AND crOss-
LiNK NK ceLLs tO cANcer ceLLs

Exploiting and strengthening the NK  cell response is a highly 
promising approach for future successful immunotherapies of 
cancer. This could be achieved by infusion of ex vivo expanded 
and activated NK cells, by genetic modification of NK cells with 
chimeric antigen receptors (CAR), by multivalent reagents cross-
linking NK  cells to cancer cells, or by a combination of these 
methods (Figure 1).

In regard of ex vivo expansion of peripheral donor NK cells 
several groups have developed corresponding technologies and  
some were or are being applied in clinical trials of NK  cell  
infusions (11, 12, 35). Important for broader availability of these 
therapies are commercial sources of the necessary equipment 
and reagents and further development of automated systems for 

production of GMP-compliant clinical-grade NK cells. A pio neer 
in this regard is the company Miltenyi Biotec. In part as partici-
pant of NATURIMMUN, this company has further developed a 
protocol to expand peripheral NK cells using irradiated autolo-
gous peripheral blood mononuclear cells as feeder cells. NK cell 
isolation and expansion were further fully automated for future 
clinical applications (36, 37). NK cells generated by this procedure  
have been evaluated in detail (Delso-Vallejo et al., submitted to 
this research topic).

Another possibility is the generation of therapeutic NK cells 
from umbilical cord blood stem cells (UCBSC), which was pio-
neered by the company Glycostem (38). Within NATURIMMUN, 
NK cells differentiated in this system were characterized in detail 
and the procedure improved to yield more mature NK cells (39). 
Furthermore, an important role of the transcription factor ZNF683/
HOBIT for NK cell differentiation could be shown supporting that 
the factor could be used to modulate NK cell generation [(40), 
this research topic]. This research topic. UCBSC-derived NK cells 
have been evaluated in a phase I clinical trial in elderly AML 
patients and found to be safe (41). Furthermore, recent evidence 
obtained in NATURIMMUN supports that the cells possess high 
cytotoxicity against metastatic colorectal cancer cells (42, 43)  
and could be used in the therapy of solid cancers [(44), this 
research topic].

An important topic in the field is to harmonize the manufac-
turing of GMP-compliant therapeutic NK cell products, which 
was initiated within NATURIMMUN and has been described 
in a summary of the worldwide experience obtained so far with 
allogeneic adaptive NK cell therapies (12). It is conceivable that 
expanded therapeutic NK  cells could be stored frozen and be 
shipped on demand. These NK cells could, therefore, qualify as 
off-the-shelf-products, and to what extent this will be possible is 
a relevant question for future research.

It has been shown that expanded and cytokine-activated 
NK  cells can be functional in certain cancer types. However, 
evidence suggests that specific targeting and cross-linking of 
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NK cells to cancer cells would strongly enhance their reactivity 
and the applicability of NK cell therapies. A paradigm in the field 
is currently the exciting successes of targeting of T lymphocytes 
to CD19 via genetic CAR modification (45, 46) or corresponding 
bispecific reagents (46). We believe that NK  cells will provide 
important advantages to the use of T lymphocytes based on their 
comparable reactivity but much higher safety. We have achieved 
increased NK  cell cytotoxicity against leukemia cells using  
transduction of NK cells with CAR constructs (47, 48) or by cross- 
linking with trispecific reagents (Kloess et al., submitted to this 
research topic). Furthermore, it is conceivable that procedures to 
achieve redirected primary human NK cells as an “off-the-shelf-
immunotherapy” can be developed. For this, optimizing both the 
respective antigen binding and the triggering of the intracellular 
signaling cascade by the CAR will be desirable (49).

A possibility to target NK cells to cancer cells can be the use 
of monoclonal antibody therapeutics already approved for clini-
cal application. Examples of these are the anti-CD20 antibody 
rituximab (50) for B  cell leukemia and the anti-EGF receptor 
antibody cetuximab (51–53). The latter is in use for the therapy 
of colon carcinoma and head and neck cancer. It displays limited 
efficacy in colon with better activities in head and neck cancer. 
It is possible that synergistic activities could be gained by coap-
plication of NK cell infusions as these antibodies trigger ADCC 
via binding to the low-affinity Fcγ receptor present on NK cells. 
It could be shown within NATURIMMUN that NK cytotoxic-
ity toward EGFR+ colon and cervical cancer cells was strongly 
enhanced by cetuximab (42, 43). This provides a rationale to 
strengthen NK cell immunotherapy through a combination with 
cetuximab for metastatic colorectal cancer patients [(44), this 
research topic].

PrecLiNicAL MODeLs FOr evALUAtiON 
OF HUMAN NK ceLL-BAseD cANcer 
tHerAPies

The preclinical evaluation of NK cell-based therapies in mouse 
models is hampered by the inherent problem that reagents 
designed to trigger human immune cell would not react at all 
or only partially with murine NK cells. Similarly, the evaluation 
of human NK cell infusions in mice does not provide a human 
immune cell compartment necessary for full functioning. This 
problem can be partly circumvented by mouse models with 
humanized immune system (HIS) in combination with xeno-
transplantation models of human cancers.

In this regard, a novel method to boost the inefficient human 
NK  cell development in mice observed after engraftment of 
human HSC was recently developed. Normally, the differentia-
tion of NK cells depends on the interplay with myeloid cells, and 
human myeloid cells are poorly reconstituted in available HIS 
mice due to competition with the murine cells (54). Therefore, 
a new model was developed in the NATURIMMUN project 
using mice that lack the Flt3 receptor (55) and display reduced 
murine myeloid differentiation. In these mice, human dendritic 
cells and consequently human NK  cells could be successfully 
boosted by human Flt3 ligand providing a novel mouse model 

with increased NK cell numbers [(56), this research topic]. This 
will be valuable for future evaluations of immunotherapies 
involving reagents designed for human cells as well as human 
NK cell infusions.

As an exemplary preclinical evaluation, we tested within 
NATURIMMUN the efficacy of NK  cell infusions alone or in 
combination with the clinically approved cetuximab against 
human colon cancer. HIS mice were engrafted with a human 
colorectal carcinoma cell line and treated with cetuximab and 
infusions of PB-derived and UCBSC-derived NK  cells. Then 
the tumor load and survival rate were monitored. Significant 
inhibition of tumor growth and improvement of survival rates 
were observed. These results provide a rationale for NK infusion 
therapies not only for leukemia but also for solid cancer treatment 
[(44), this research topic].

MAiN FUtUre DirectiONs tO  
AcHieve NK ceLL-BAseD cANcer 
iMMUNOtHerAPies ON A  
BrOADer scALe

Collectively, the basic work on NK cells, their receptors, and NK 
evasion mechanisms have provided evidence for the importance 
of the NK cell system in the control of human cancers. Clinical 
trials of NK infusion therapies, performed mostly in different 
forms of leukemia, have uniformly shown safety of infused 
NK cells and in certain cases exciting effects on disease-free sur-
vival (11). This together underlines the feasibility and potential 
efficacy of NK cell-based immunotherapies. However, based on 
the currently available data a number of questions and major 
routes should be further explored in order for NK cell therapies 
to become clinically used on a broader scale. Among those are 
improved methods for the selection of the best donor NK cells 
to be able to optimally exploit the antitumor alloreactivity of 
NK cells (12). Then the question of best activation of NK cells by 
cytokines such as IL-2, IL-12, IL-15, IL-18, and IL-21 needs to be 
settled as reviewed within this research topic (57). In addition, the 
best expansion time points of clinical-scale NK cells have to be 
evaluated regarding both safety and efficacy with the overall goal 
to allow multiple adaptive NK cell application to the respective 
patients. The optimal application of the newly developed NK cell-
directed checkpoint inhibitors needs to be explored. Further 
additional reagents for targeting and cross-linking of NK  cells 
to cancer cells using bi-/trispecific antibody-based reagents 
should be developed to extend the range of targeted cancer cells. 
Similarly, additional CAR constructs for wider targeting should be 
derived and corresponding standard “off-the-shelf- procedures” 
developed for genetic modification of NK  cells. Of special 
importance for NK infusion therapies, available technologies for 
NK cell generation need to be fully automated and harmonized 
protocols developed for large-scale GMP-compliant generation of 
clinical-grade therapeutic NK cells that have been recently clas-
sified as advanced therapy medicinal products in Europe. They 
are regulated accordingly either centralized or under hospital 
exemption by the member states [Regulation (EC) No 1394/2007; 
Directive 2001/83/EC and Regulation (EC) No 726/2004]. Given 
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the accessibility of the tumor cells the primary focus should be on 
leukemia as it is to be expected that progress will be more rapid  
in this area. But in light of the high need of new therapies for solid 
cancers these should also be pursued.

cONcLUDiNG reMArKs

The recent years have seen significant progress in immunothera-
pies of cancer based on novel checkpoint inhibitors and reagents 
and technology to boost T and NK lymphocytes. We propose 
that based on the available knowledge of NK  cells, these cells 
will be much more amenable for therapeutic purposes based 
on their high cytotoxicity and generally demonstrated safety. 
Therefore, we suggest that a concerted effort in the development 
of NK cell-based immunotherapies has high potential to achieve 
novel therapies of hitherto untreatable and relapsed forms of 
leukemia and potentially also solid cancers. The development 
of broadly applicable NK cell-based therapies should extend the 
currently more restricted available T  cell-based therapies and 
could thus boost the long-standing promise of cellular cancer 
therapies.
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