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  The southeastern Indian Ocean (SEIO) exhibits prominent decadal variability in sea surface salinity (SSS), showing salinity decreases during 1995-2000 and 2005-2011 and increases during 2000-2005 and after 2011. These salinity changes are linked to the Indo-Pacific climate and have impacts on the regional marine environment. Yet, the underlying mechanism has not been firmly established. In this study, decadal SSS variability of the SEIO is successfully simulated by a high-resolution regional ocean model, and the mechanism is explored through a series of sensitivity experiments. The results suggest that freshwater transport of the Indonesian throughflow (ITF) and local precipitation are two major drivers for the SSS decadal variability. They mutually cause most of the variability, with a generally larger contribution of precipitation. Other processes, such as evaporation and advection driven by local winds, play a minor role. Further analysis shows that the decadal precipitation in the SEIO is mainly associated with the decadal variability of Ningaloo Niño. Ocean dynamic processes significantly modify the relationship between SSS and precipitation, greatly shortening their lag time. The changes in both volume transport and salinity of the ITF water can cause large salinity changes in the SEIO region. Although local wind forcing gives rise to considerable changes in evaporation rate and ocean current advection, its overall contribution to decadal SSS variability is small compared to local precipitation and the ITF.
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  1. Introduction.

Changes in ocean salinity are an essential aspect of climate change and effective indicators for measuring alterations in the global water cycle (e.g., Yu, 2011; Durack et al., 2012; Yu et al., 2020). Evaporation and precipitation over the oceans are major components of the global water cycle (Durack, 2015) and constitute the bulk of surface freshwater fluxes. The surface freshwater flux, e.g., evaporation minus precipitation (E - P), plays a fundamental role in shaping the large-scale distribution of sea surface salinity (SSS) in climatology. Existing studies attempted to explore changes in the global water cycle by analyzing changes in ocean salinity (e.g., Delcroix et al., 2007; Schmitt, 2008; Hosoda et al., 2009; Helm et al., 2010; Yu, 2011; Durack et al., 2012; Terray et al., 2012; Skliris et al., 2016; Zika et al., 2018). The global water cycle has been suggested to strengthen owing to anthropogenic greenhouse warming (e.g., Helm et al., 2010; Durack et al., 2012). Correspondingly, SSS shows a trend pattern of ‘salty gets saltier; fresh gets fresher’ (e.g., Yu, 2011; Durack et al., 2012; Cheng et al., 2020). While these long-term trends of broad-scale salinities have been predominantly attributed to freshwater fluxes associated with anthropogenic climate change, the short-term (interannual and decadal) variabilities of regional salinities are subjected to complexity and diversity in characteristics and mechanisms. Multiple physical processes of comparable importance may operate in these regional variabilities.

The Southeast Indian Ocean (SEIO) possesses active ocean-atmosphere interactions (e.g., Saji and Yamagata, 2003; Tozuka et al., 2013; Li et al., 2019) and receives strong influences of the Indonesian Throughflow (ITF) (e.g., Wijffels and Meyers, 2004; Qu and Meyers, 2005a). Salinity variability in the SEIO region exerts notable impacts on ocean stratification, sea level, ITF transport, and local circulation (e.g., Masson et al., 2002; Qu and Meyers, 2005; Llovel and Lee, 2015; Zhang et al., 2016a; Zhang et al., 2017; Hu and Sprintall, 2016; Li et al., 2020; Lu et al., 2022). In the sea-level rise of SEIO since the 1960s, the contribution of salinity change through the halosteric effect reached ~40% (Lu et al., 2022). The salinity decline in the upper SEIO since 2005 greatly enhanced the recent sea-level rise (Llovel and Lee, 2015; Li et al., 2017; Huang et al., 2020). Menezes et al. (2013) pointed out that the meridional salinity gradient in the SEIO is essential for the formation of the Eastern Gyral Current. Hu and Sprintall (2016; 2017) pointed out that salinity changes in the SEIO affect the interannual variability and long-term trends of the ITF transport. These significant aspects highlight the necessity of investigating the prominent salinity variability of the SEIO.

Research efforts have been devoted to understanding the multi-timescale variabilities of the SEIO salinity. Regarding the seasonality, the tropical SEIO surface salinity decreases in austral winter (“austral” omitted hereafter) and increases in summer, as dictated by surface freshwater flux (Qu and Meyers, 2005; Zhang et al., 2016a). On interannual timescales, El Niño (La Niña) events tend to cause SSS increases (decreases) in the SEIO, respectively, through the teleconnection signatures on rainfall and ocean circulation of the SEIO (e.g., Zhang et al., 2016a; Hu et al., 2019; Guo et al., 2021). The SEIO is also a region with pronounced decadal variability (e.g., Feng et al., 2010; Du et al., 2015; Feng et al., 2015; Li et al., 2017; Hu et al., 2019; Li et al., 2019; Li et al., 2022). The SEIO region showed a persistent SSS decrease during 2005-2013 (e.g., Du et al., 2015; Nie et al., 2020). Du et al. (2015) linked this decadal freshening to the slowdown of global surface warming (also dubbed the “hiatus”; e.g., Meehl et al., 2011) and the enhancement of the Pacific Walker Circulation (e.g., England et al., 2014). Other studies pointed out that the upper-ocean salinity of SEIO does not monotonically decrease but shows decadal fluctuations, with salinity increases occurring both before and after the 2005-2013 period (e.g., Hu et al., 2019; Guo et al., 2021; Wu et al., 2021).

Various datasets and approaches have been utilized to explore the mechanisms of the decadal salinity variability in the SEIO (e.g., Du et al., 2015; Zhang et al., 2017; Hu et al., 2019; Huang et al., 2020; Wu et al., 2021). By analyzing Argo data, Du et al. (2015) showed that changes in precipitation and advection of ocean circulation were responsible for the SSS decline during 2005-2013. Zhang et al. (2016b) revealed a salinity dipole mode of the Indian Ocean, with the SEIO region acting as the eastern pole. This dipole mode also shows decadal variability, in which fresh-water transport from lower latitudes and thermocline variability imported by the ITF control SSS changes in the SEIO (Zhang et al., 2017). Hu et al. (2019) performed a salt budget analysis using an ocean reanalysis product. They showed that horizontal advection by the ITF and the South Equatorial Current (SEC) are the main drivers of interannual and decadal changes in the SEIO salinity, while surface freshwater fluxes play a secondary role. The salt budget analysis of Huang et al. (2020) suggested that the salinity gradient between tropical low-salinity water and subtropical high-salinity water is favorable for strong meridional salinity advection anomalies, which is conducive for decadal salinity variability. Wu et al. (2021) also suggested the essence of meridional salinity advection and attributed it to local wind forcing. Thereby, they emphasized the importance of local oceanic and atmospheric processes rather than the remote forcing by the Pacific. One can see that previous studies have identified multiple processes regulating the decadal SSS variability of the SEIO. Yet, a consensus on their relative importance is still lacking.

In this study, the eddy-resolving hindcast of a regional ocean model successfully simulated the SSS variability in the SEIO, and a series of sensitivity experiments were used to assess the contribution of different processes. Different from existing studies that widely adopt the salt budget, the sensitivity experiments allow us to isolate the effect of each process (e.g., precipitation, winds, ITF, etc.) in a clean manner and clarify the sources of changes. This provides unambiguous insights into the mechanisms governing the SSS variability. Our efforts contribute to the understanding and prediction of the salinity dynamics and related changes in sea level, stratification, and circulation of the SEIO. The rest of this article is organized as follows. Section 2 presents the datasets and methods used in this study. Section 3 describes the spatial and temporal characteristics of the observed SSS variability and model simulations. Section 4 explores the key processes underlying the decadal SSS variability, focusing on the effects of local rainfall and the ITF. Conclusions and discussion are provided in Section 5.


 2. Data and model.

 2.1. Observation data.

Observational ocean datasets utilized in this study include the 1o×1o monthly salinity data of the International Pacific Research Center (IPRC) gridded Argo product (Lebedev et al., 2007) for 2005-2016, and the 1o×1o monthly Institute of Atmospheric Physics (IAP) ocean salinity product of 1993-2016. The IAP salinity product was constructed using a mapping technology of Ensemble Optimal Interpolation (EnOI) (Cheng et al., 2017) and incorporating dynamic training with simulations by phase 5 of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012). Cheng et al. (2020) showed that the IAP salinity data product can overcome the shortcomings of earlier reconstructions such as ‘no-data, no-signal’ and has uncertainties better constrained. To explore the atmospheric forcing effects, we also analyzed the 0.75o×0.75o monthly precipitation rate and 10-m wind data from the interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) for 1993-2016 (Dee et al., 2011). For all datasets, the anomaly of a variable is obtained by removing the monthly climatology. Among them, the monthly climatology of 2005-2016 is removed from the Argo data, while that of 1993-2016 is removed from the IAP and ERA-Interim data. To represent decadal variability of the Pacific climate, we compute the Interdecadal Pacific Oscillation (IPO) index using the monthly Met Office's Hadley Centre Sea Ice and Sea Surface Temperature (HadISST; Rayner, 2003). Following Henley et al. (2015), the IPO index is computed as the sea surface temperature (SST) anomaly difference between the equatorial Pacific (170°E-90°W, 10°S-10°N) and the northwest plus the southwest Pacific Ocean (140°E-145°W, 25°-45°N plus 150°E-160°W, 50°-15°S).


 2.2. ROMS.

We adopt the regional oceanic modeling system (ROMS) to carry out hindcasts for the SEIO salinity. ROMS is a hydrostatic, primitive equation model that implements a free surface, horizontal curvilinear coordinate, and a terrain-following (sigma-type) vertical coordinate system (e.g., Haidvogel et al., 2000). The model domain covers a sector-shaped region between 80°-122°E, 42°S-5°N, bordered by the Western Australian coast to the east and Sumatra-Java islands to the north (Guo et al., 2021; Li et al., 2022). The horizontal resolution is ~3 km near the Western Australian coast and degrades to ~12 km near the western boundary at 80°. As such, the enhanced mesoscale eddy variability in the Leeuwin Current system (e.g., Feng et al., 2005; Feng et al., 2007; Jia et al., 2011; Guo et al., 2020b) and complex coastal dynamics in the SEIO can be better resolved. There are 600 × 560 horizontal grid points and 30 sigma-type vertical layers over the entire model domain.

The 3-hourly ERA-Interim fields, including 10-m winds, precipitation, radiations, and 2-m air temperature and humidity, are used as surface atmospheric forcing, while the 1/12° Hybrid Coordinate Ocean Model (HYCOM) plus Navy Coupled Ocean Assimilation global reanalysis (Cummings, 2006) are adopted to provide the lateral boundary conditions. A strong relaxation toward climatology is exerted on lateral boundaries to damp artificial boundary waves. Readers are referred to Guo et al. (2021) for more detailed configurations. The spin-up of ROMS is 20 years, under monthly climatological surface atmospheric forcing and lateral boundary conditions. Then, the model was integrated forward under 3-hourly atmospheric fields and daily lateral boundary conditions from January 1993 to December 2016. This experiment includes the complete forced and internal processes affecting salinity, which is addressed as the control run (Ctr).

In addition to Ctr, sensitivity experiments were performed from January 1993 through December 2016 [see Table 1 of Guo et al. (2021) for the list]. The Exp-B adopts monthly climatology in all atmospheric forcing fields but realistic lateral boundary conditions as in Ctr. As such, Exp-B retains only the forcing effect from the lateral boundaries, as indicated by the “B” (for boundary) in its naming. As has been validated by previous studies (Guo et al., 2021; Li et al., 2022), variability in Exp-B mainly originates from the ITF. In other experiments, atmospheric forcing is exerted in addition to the ITF effect. For example, Exp-BW adopts realistic 3-hourly winds as in Ctr but fixes other forcing fields to monthly climatology. As such, Exp-BW measures the combined effect of both the ITF and local wind forcing (“W”). The difference between Exp-BW and Exp-B, e.g., Exp-BW minus Exp-B, roughly represents the local wind forcing effect. The Exp-BP experiment includes the effect of local precipitation ("P") and measures the joint effect of the ITF and precipitation. Exp-BP minus Exp-B isolates the effect of local precipitation (mainly rainfall in the SEIO). The Exp-BWTQ experiment adopts the realistic fields in winds (“W”), atmospheric temperature (“T”), and humidity (“Q”). As such, it contains all the atmospheric variability influential for evaporation.

The ITF’s effect on the SEIO salinity depends on not only the amount (volume transport) but also the salinity of its water. To distinguish these two effects, the Exp-Bv experiment is devised. Exp-Bv is the same as Exp-B except using the monthly climatological salinity in lateral boundary conditions so that it isolates the effect of the ITF’s velocity change (or volume transport change). Meanwhile, Exp-B minus Exp-Bv represents the salinity change of the ITF water.



 3. Decadal SSS variability and ROMS simulation.

We first compare the monthly SSS anomaly (SSSA) time series of the SEIO region (14o-28oS, 95o-115oE) from observational data (Argo and IAP) and ROMS Ctr ( Figure 1A ). The SSSA simulated by ROMS Ctr exhibits quite the same temporal evolution as those in observations. During the Argo era of 2005-2016, Ctr shows a correlation coefficient of 0.90 with Argo and a correlation of 0.92 with IAP, significant at the 95% confidence level. The standard deviation of SSSA is 0.12 psu for Ctr, quite close to those in IAP and Argo (0.12 and 0.13 psu, respectively), indicating similar variability amplitudes. It is worth noting that the three sets of data IAP and Ctr are highly consistent after 2005 but show evident discrepancies in many years before. Over the 1993-2004 period, the correlation between Ctr and IAP is 0.56. They are generally in phase, but the correlation is evidently lower than that after 2005. This is probably due to the insufficient data sampling to constrain the salinity estimate of IAP prior to the Argo era.

 

Figure 1 | (A) Time series of monthly sea surface salinity anomaly (SSSA; in psu) averaged over the SEIO region (14o-28oS, 95o-115oE) from ROMS Ctr (black), IAP (red), and gridded Argo data (green). The standard deviation is also shown in the legend box. (B) As in (A), but for 6-yr low-pass-filtered SSSA. (C) Linear trends of SSS in the SEIO for the periods of 1995-2000, 2000-2005, 2005-2011, and 2011-2016 derived from Ctr (black), IAP (red) and Argo (green). Error-bars denote the 90% confidence interval based on an F test. 



Both the observed and simulated SSSA show prominent decadal variations, including a salinity decrease from 1995 to 2000, an increase from 2000 to 2005, a decrease from 2005 to 2011, and a salinity increase after 2011. To highlight these decadal changes, we smoothed the SSSA using a 6-year low-pass Lanczos digital filter ( Figure 1B ). The above-mentioned decadal changes are clearly discernible in all the three datasets. Choosing a wider window for the filter (e.g., 7 or 8 years) yields roughly the same results. Decadal SSS variability in  Figures 1A, 1B  generally shows two cycles during 1995-2020, indicating a typical period of ~13 years. To better quantify the decadal variability, we calculated linear trends of the four periods ( Figure 1C ). The trends derived from the three datasets are also close; for example, during 2005-2011, the downward trends of SSS were -0.057, -0.058, -0.059 psu yr-1 in of Ctr, IAP and Argo, respectively. During 2000-2005, the SSS increase in Ctr is weaker than that in IAP data (0.048 versus 0.063 psu yr-1, respectively). These comparisons overall suggest the fidelity of ROMS in simulating of the decadal salinity variability.

We then examine the SSS climatology of 1995-2016, which is the background for the generation of salinity variability.  Figure 2  suggests that ROMS can realistically simulate the SSS distribution, with the low-salinity water in the tropical sector and the high-salinity water in the subtropical sector (e.g., Huang et al., 2020; Wu et al., 2021). There is a zonal SSS front formed approximately between 15o-25oS, and the cross-front salinity difference exceeds 1.6 psu (from 34.2 psu in the north to 35.8 psu in the south). This front is stronger in fall (April) and weaker in spring (October) in Ctr, which is however less obvious in IAP. The center of the subtropical salty salinity (Wang et al., 2020) locates at ~30oS, showing an SSS maximum~36.0 psu in ROMS simulation. The low-salinity tropical water is confined north of 15oS, with an SSS minimum of ~34.0 psu.

 

Figure 2 | Monthly climatology of SSS (psu) in January, April, July, and October of 1995-2016 derived from IAP (A-D) and ROMS Ctr (E-H). 



The spatial patterns of SSS trends over the four periods are shown in  Figure 3 . Salinity changes are strongest along the Western Australian coast and extend westward with decreasing amplitudes. Significant changes can extend to the western boundary of the model domain between 20o-24oS. Meanwhile, the Sumatra-Java coasts and the subtropical area south of 30oS tend to show opposite salinity changes, except for the 2000-2005 period. These spatial patterns are faithfully captured by ROMS ( Figures 3E–H ). The trend maps for a larger area derived from IAP data ( Figures 3A–D ) indicate that SSS changes in the SEIO are connected to those in Indonesian Seas and are out-of-phase to those in the western tropical Pacific. Therefore, changes in the SEIO are likely linked to the tropical Pacific climate (e.g., Du et al., 2015; Hu et al., 2019).

 

Figure 3 | Linear trend maps of SSS for the periods of (A) 1995-2000, (B) 2000-2005, (C) 2005-2011, and (D) 2011-2016 derived from IAP. (E–H) As in (A–D), but for derived from Ctr, respectively. Stippling indicates significant trends at 90% confidence level based on a Mann-Kendall test. Black lines denote the model domain (sector shape) and the SEIO region (rectangle). 




 4. The underlying mechanism.

 4.1. Key processes.

The mechanism governing SSS variability in the SEIO is complex and likely regulated by multiple processes (e.g., Du et al., 2015; Hu et al., 2019; Huang et al., 2020; Guo et al., 2021; Wu et al., 2021). In this section, we attempt to quantitatively evaluate the effects of different processes. Validations provided in Chapter 3 and previous studies (e.g., Guo et al., 2020a; Guo et al., 2020b; Guo et al., 2021) demonstrate that ROMS can realistically simulate the SEIO salinity variability, placing confidence for the usage of ROMS experiments to explore the mechanism.

The Exp-BP experiment contains the combined effect of the ITF and local precipitation. Its result is highly consistent with Ctr in SSS, with a correlation coefficient of 0.96 ( Figure 4A ). Its standard deviation is 0.13 psu, even exceeding that of Ctr (0.12 psu). This indicates that the two processes, the ITF and precipitation, drive the majority of the SSS variability, and the overall effect of other processes (such as evaporation and local winds). The Exp-B experiment only retains the variability arising from the ITF. Its result is basically in phase with Ctr, with a correlation of 0.77, and its standard deviation is 0.07 psu, accounting for half of that of Ctr. This confirms that changes in freshwater inflow from the Indonesian Seas contribute significantly to the SSS variability in SEIO. The difference between the two experiments, Exp-BP minus Exp-B, represents the effect of local precipitation. Compared to the ITF, the precipitation effect can better explain the total SSSA in Ctr, with a standard deviation of 0.09 psu and a correlation of 0.83 with Ctr ( Figure 4B ). Therefore, local precipitation is the leading driver of the large-scale SSS variability in the SEIO, and the role of ITF is overall secondary. Note that the SSS in  Figure 4  contains both interannual and decadal variations. The important role of local precipitation in interannual variability is in line with the results of Zhang et al. (2016b).

 

Figure 4 | (A) Time series of monthly SSSA (in psu) averaged over the SEIO from Ctr (black), Exp-B (blue), and Exp-BP (brown). (B, C) As in (A), but for Ctr (black), Exp-BP minus Exp-B (green), Exp-BW minus Exp-B (purple), and Exp-BWTQ minus Exp-B (orange). The standard deviation is also shown in the legend box. 



We also explored other processes. Exp-BW minus Exp-B represents the forcing effect of local winds. Winds affect ocean salinity through ocean current advection and evaporation. However, our results show that the local wind forced SSSA is relatively weak ( Figure 4C ). Its standard deviation is 0.03 psu, and its correlation with Ctr is merely 0.18 (insignificant at the 95% confidence level). Evaporation is affected by atmospheric temperature and humidity, and their effects are also contained in Exp-BWTQ. In addition, previous studies (e.g., Zhang et al., 2018; Li et al., 2019; Guo et al., 2020a) have shown that latent heat flux is the leading driver of sea surface temperature (SST) variability in this region, while the contribution of ITF to the interannual and decadal SST variability is <20%. By synthesizing the effects of winds, air temperature, humidity, and the majority of SST variability, Exp-BWTQ minus Exp-B contains most of the change in evaporation. However, its result is quite close to Exp-BW minus Exp-B (standard deviation ~0.03 psu, correlation of 0.26 with Ctr). These results suggest that in comparison with local precipitation and the ITF, the contribution of local winds and evaporation is quite limited. This differs from the conclusions of existing studies based on salinity budget analysis (e.g., Huang et al., 2020; Wu et al., 2021).

For better quantification, we calculated the salinity trends induced by ITF (Exp-B), precipitation (Exp-BP minus Exp-B), and local winds (Exp-BW minus Exp-B) over four periods ( Figure 5 ). The ITF and precipitation are of comparable importance, while the role of local winds is minor. For example, during 1995-2000, the contributions of the ITF and precipitation to the salinity decline are both ~50%, while winds act to slightly damp the salinity decline; for the salinity increase during 2000-2005, the contributions of ITF, precipitation, and winds are 24%, 68%, and 10%, respectively. Although the relative importance of ITF and precipitation varies with time, both are essential and jointly control the decadal trends of SSS. It is also noted that the sum of the contributions of ITF and precipitation significantly exceeds the total change in Ctr during the 2011-2016 period, which is also discernible in  Figure 4A . This is largely due to the attenuation effect of other processes, such as evaporation. The result of Exp-BWTQ minus Exp-B indicates that the evaporation change, induced by local winds, air temperature, and humidity, exerts a damping effect on the total SSS increase during 2011-2016 ( Figure 5 ).

 

Figure 5 | Linear trends of SSS in the SEIO for the periods of 1995-2000, 2000-2005, 2005-2011, and 2011-2016 derived from Ctr (black), Exp-B (blue), Exp-BP minus Exp-B (green) and Exp-BW minus Exp-B (purple), and Exp-BWTQ minus Exp-B (orange). Error-bars denote the 90% confidence interval based on an F test. 



We also examined the distributions of SSS changes driven by the ITF and local precipitation ( Figure 6 ). The signatures of the ITF are prominent in its exit area, along the Western Australian coast, and in the 20o-28oS band ( Figures 6A–D ). In contrast, changes forced by precipitation are more widespread, with significant trends extending from the Western Australia coast to the western boundary of the model domain within the entire 10o-30oS band ( Figures 6E–H ). The maximum salinity decrease and increase are about -0.06 psu yr-1 and +0.05 psu yr-1, respectively, both greater than those caused by ITF. The result of Exp-BP confirmed that the combined effect of ITF and precipitation explains most of the salinity changes in Ctr, showing the amplitude even stronger than that of Ctr ( Figures 6I–L ).

 

Figure 6 | Linear trends maps of SSS derived from Exp-B (A–D), Exp-BP minus Exp-B (E–H), and Exp-BP (I–L) for the periods of 1995-2000, 2000-2005, 2005-2011, and 2011-2016. Stippling indicates significant trends at 90% confidence level based on a Mann-Kendall test. Black lines denote the SEIO region. 




 4.2. The role of local precipitation.

Next, we attempt to understand how local precipitation drives SSS changes in the SEIO. During these four periods, there are large-scale changes of precipitation in the tropical sector of SEIO (north of about 20oS), showing mainly rainfall increases during 1995-2000 and 2005-2011 and rainfall decreases during 2000-2005 and 2011-2016 ( Figure 7 ). These trends in precipitation are favorable for SSS trends, with enhancing (weakening) precipitation corresponding to the decline (rise) of SSS. However, the center of precipitation changes locates to the north of SSS changes. This can be explained by the transport of ocean surface circulation; the rainfall-driven salinity changes are advected southward by the prevailing southward surface Ekman currents (induced by the southeast trade winds in climatology) in the region (e.g., Wang et al., 2020; Li et al., 2022) and spread to the entire SEIO region.

 

Figure 7 | Linear trends of surface precipitation (mm day-1 year-1) for the periods of (A) 1995-2000, (B) 2000-2005, (C) 2005-2011, and (D) 2011-2016 derived from ERA-Interim. Stippling indicates significant trends at 90% confidence level based on a Mann-Kendall test. Black lines denote the SEIO. 



  Figure 8A  compares the precipitation rate anomaly and the SSSA of Exp-BP minus Exp-B. The two show clear out-of-phase variations, with positive (negative) SSSAs coinciding with negative (positive) precipitation anomalies. Previous studies have demonstrated that precipitation changes on interannual and decadal timescales in the SEIO region are largely the response to SST variability in the SEIO (e.g., Tozuka et al., 2013; Doi et al., 2015; Li et al., 2019). We further compare the precipitation with the Ningaloo Niño index (NNI) and found a close relationship between the two (correlation coefficient 0.45;  Figure 8B ). Most of the large precipitation anomalies occur during Ningaloo Niño/Niña events. Therefore, local precipitation changes, which are crucial for SSS changes in this region, are largely generated by local air-sea interaction, with Ningaloo Niño/Niña being the leading mode (e.g., Kataoka et al., 2013; Tozuka et al., 2013; Doi et al., 2015). Note that this relationship also contains influence of interannual variability. The difference between interannual and decadal components will be discussed in the following analysis. The impact of Ningaloo Niño/Niña is further verified by the regression of precipitation anomalies onto NNI ( Figure 9 ). The regression map greatly resembles the observed decadal trends ( Figure 7 ) in spatial pattern, with enhanced rainfall in the tropical sector of the SEIO corresponding to the Ningaloo Niño condition. The regression performed on decadal timescale achieves even larger amplitude in precipitation change ( Figure 9B ).

 

Figure 8 | (A) Time series of averaged SSSA (psu) from Exp-BP minus Exp-B and surface precipitation anomalies (mm day-1) from ERA-Interim for the SEIO region. (B) compares the precipitation anomaly with the Ningaloo Niño index (NNI; in K). NNI is computed as the averaged SST anomaly of the 28o-22oS, 108oE to the coast region (Kataoka et al., 2013). (C) shows the SSSA from Exp-BP minus Exp-B and that simulated by the local rainfall-forced salinity model (LRSM) experiments S P using ε = 2.75 × 10-3 s-1. 



 

Figure 9 | (A) Regression of monthly precipitation anomaly onto NNI. (B) Same as (A) but using 6-year low-passed precipitation and NNI. 



Two questions arise from these results. First, the phase lag between precipitation and SSS is not obvious. Their maximum lead-lag correlation is -0.54, when precipitation leads SSS by 1 month. Theoretically, as the forcing and response, precipitation anomaly is supposed to lead the resultant SSSA by about 1/4 of the typical period, which is much longer than 1 month. Second, Ningaloo Niño/Niña is primarily an interannual variability mode, with much stronger interannual components than decadal components ( Figure 8B ). Then, why is the rainfall-forced decadal SSS variability so strong?

To answer the two questions, we devise a simple local rainfall-forced salinity model (LRSM), in which salinity change is governed solely by precipitation anomaly P,

 

where S P is SSSA, t is time, S 0 = 35.2 psu and H = 30 m are the reference salinity and mixed layer depth, respectively, both obtained from the climatology of ROMS simulation, and ε is the dissipation coefficient. The second term on the right-hand-side, εS P, represents the damping of S p by oceanic dynamic processes (e.g., circulation, eddy, and mixing). When only local precipitation produces SSSA, the role of these oceanic dynamic processes is to spread the anomalies elsewhere or to the subsurface ocean, so they generally play a damping role. By assuming the initial S P on January 1st 1993 to be zero, S p is predicted by integrating Equation (1) over time, with P obtained from ERA-Interim data. By changing the value of ε, LRSM achieves good agreement with Exp-BP minus Exp-B at ε = 2.75 x 10-3 s-1 ( Figures 8C ,  10 ).

 

Figure 10 | Results of LRSM simulations as functions of ε varying from 0 to 0.01 s-1. (A) The correlation coefficient between the SSSA from Exp-BP minus Exp-B and those from by LRSM. (B) The standard deviation of S p. (C) The time lag (in month) of decadal (6-year low-passed S p) to decadal precipitation as the function of ε, obtained through a lead-lag correlation analysis. (D) The response efficiency of salinity to precipitation (psu day mm-1), calculated as the ratio of standard deviation of S p to that of P. Blue and green lines show the results for interannual variability (6-year high-passed) and decadal variability, respectively. In all panels, ε = 2.75 × 10-3 s-1 and corresponding results are marked with dashed lines. 



We find that the lag time between precipitation and SSS depends on ε in LRSM. Without the damping effect, that is, ε = 0, S P is much stronger than ROMS simulation (Exp-BP minus Exp-B), with a standard deviation of 0.19 psu, and the correlation with ROMS simulation is merely r = 0.04 ( Figures 10A, B ). This inconsistency indicates that even in the rainfall-dominant simulation, ocean dynamics is still essential. At ε = 0, the lag time between S P and P is 46 months ( Figure 10C ). As ε increases, S P gradually decreases in amplitude, and its correlation with ROMS simulation increases. Meanwhile, the lag time between S P and P is shortened by the increased ε. This is because an anomaly generated early is subjected to a longer dissipation time, and therefore its signature retained in the present S P (t) is small. As such, the increased dissipation tends to raise the proportion of the newly generated S p in the present S P (t) and thereby shortens the lag time between S P and P. This indicates that the damping effect by ocean dynamics modifies the relationship between precipitation and SSS so that there is no evident phase lag between them.

It should be noted here that even if ε is increased to 0.01 s-1, the correlation between LRSM and ROMS remains <0.82, and the lag time between S P and P on decadal time scale is ~4 months, longer than ~1 month lag in the ROMS result. This lag time is still much shorter than the typical lead/lag time of decadal variability, given the ~13-year period of the variability discussed here. Meanwhile, the standard deviation of S P has been reduced to<0.04 psu. This reflects the limitation of the LRSM model, particularly the simplified representation ocean dynamics. Nevertheless, these LRSM experiments are helpful in understanding how SSS responds to local precipitation change.

We fix ε = 2.75 x 10-3 s-1 to examine responses of salinity to precipitation variations on interannual and decadal timescales, respectively. Specifically, we use interannual and decadal components of precipitation, represented by the 6-year high-passed and low-passed for integration precipitation anomalies ( Figures 11A, B ), in two LRSM integrations, respectively. It is obvious that the interannual precipitation is larger in amplitude than the decadal precipitation. As expected, the S P produced by interannual precipitation shows mainly interannual variability with very limited decadal variations ( Figure 11C ), while the S P produced by decadal precipitation shows strong decadal variations and a correlation of -0.78 with the low-passed NNI ( Figure 11D ). This confirms that decadal variations in precipitation, which are associated with decadal modulations of Ningaloo Niño/Niña (Feng et al., 2015; Li et al., 2019), give rise to decadal SSS variability in the SEIO. The Ningaloo Niño-like condition of the SEIO enhances local precipitation and cause a decrease in SSS.

 

Figure 11 | (A) interannual and (B) decadal precipitation variations (mm day-1) from ERA-Interim over the SEIO region, represented by the 6-year high-pass filtered (blue) and 6-year low-pass filtered (green) precipitation anomalies, respectively. (C, D) show S p from LRSM experiments forced by interannual and decadal precipitation anomalies, respectively. The thick curve in (C) denotes the 6-year low-passed S p. The red curve in (D) denotes the NNI (in K). 



Note that the amplitude of S P produced by decadal precipitation ( Figure 11D ) is no weaker than that produced by interannual precipitation ( Figure 11C ). This suggests that ocean salinity responds more efficiently to decadal precipitation than to interannual precipitation. We can measure this response efficiency with the ratio of the S P standard deviation to the P standard deviation, that is, s.d. (SP )/s.d. (P). At ε = 2.75 x 10-3 s-1, the response efficiency on decadal timescale is four-fold larger than that on interannual timescale ( Figure 10D ). This can be understood as follows. The typical period of precipitation variability is T, and we assume the sine function form,

 

where P 0 is the amplitude of the precipitation. In the case of ε = 0, the salinity anomaly S P driven by precipitation change can be obtained by integrating Eq. (1),



In the above, the amplitude  is proportional to the period T. This explains why the weak decadal precipitation drive strong SSS variability ( Figures 11 ). In our LRSM, the response efficiency also depends on ε. As ε increases, the response efficiency decreases ( Figures 10D ). Decadal variability is more sensitive to ε than interannual variability. Enhanced damping tends to reduce the dependence of response efficiency on the timescale.


 4.3. The role of ITF.

In this subsection, we attempt to understand the effect of ITF. The salinity advection by the ITF is determined by two factors, the intensity of the ITF velocities (or volume transport) and the salinity of the ITF water. In our ROMS simulation, both the volume transport and the surface salinity of the ITF show interannual and decadal variations at northeastern boundary of the model domain ( Figure 12 ). The decadal changes of the ITF transport are complicated by strong interannual and shorter-timescale fluctuations, and its relationship with the SEIO salinity is generally not obvious ( Figure 12A ). One discernible feature is the weakening of the ITF since 2011, which contributes to the SSS salinity increase. By contrast, the ITF’s surface salinity shows clear decadal variations, in agreement with those in the SEIO SSS ( Figure 12B ). Decadal variability of the ITF and its salinity have been primarily attributed to the tropical Pacific climate (e.g., Du et al., 2015; Feng et al., 2015; Li et al., 2017; Li et al., 2018), as represented by the IPO index ( Figure 12C ). Processes underlying this linkage are beyond the scope of the present study.

 

Figure 12 | (A) The volume transport of the upper 700 m and (B) the 0-100 m average salinity of the ITF at the northeast boundary of the model domain, derived from Ctr. (C) The IPO index. The 6-year low-passed time series (red) are also shown in (B, C). 



To determine the relative importance of the two, we compared the results of Exp-B (including the effect of both factors) and Exp-Bv (including only the effect of ITF intensity). In Exp-Bv, the salinities of the lateral boundary conditions are fixed to climatology, and therefore the ITF affects the SEIO salinity only through its velocities (“v”), while Exp-B minus Exp-Bv represents the influence of the ITF water salinity change. Both can produce strong salinity changes in SEIO ( Figure 13 ). In the two periods of 1995-2000 and 2011-2016, the contributions of the two were approximately equal, while during 2000-2011, the trend in Exp-Bv was larger than that in Exp-B minus Exp-Bv. Overall, both the ITF’s intensity and water salinity are important in causing SSS changes in the SEIO. Under the La Niña-like condition of the tropical Pacific and Ningaloo Niño-like condition of the SEIO (the two often co-occur; Feng et al., 2015; Zhang and Han, 2018; Li et al., 2019), the ITF is enhanced in volume transport and its surface water is freshened by enhanced rainfall over the Indonesian Seas (Du et al., 2015; see also  Figure 7 ). As such, the ITF leads to surface freshening of the SEIO through enhanced transport of fresher than normal water.

 

Figure 13 | Linear trends of SSS in the SEIO for the periods of 1995-2000, 2000-2005, 2005-2011, and 2011-2016 derived from Exp-B (blue), Exp-Bv (purple) and Exp-B minus Exp-Bv (orange). Error-bars denote the 90% confidence interval based on an F test. 



We further present a composite of the SSS-increasing period (averaged from 2000-2005 and 2011-2016) minus the SSS-decreasing period (average of 1995-2000 and 2005-2011) ( Figure 14 ). The weakened ITF intensity mainly caused SSS rise between 15o-30oS ( Figure 14A ). Meanwhile, the increase in the ITF salinity mainly affects its exit area, that is, near the northeast boundary of the model domain. This largely reflects the spreading of salinity changes from the ITF through the mean circulation. By contrast, the salinity increase caused by local winds (Exp-BW minus Exp-B) is quite weak ( Figure 14C ).

 

Figure 14 | (A) Linear trends maps of SSS derived from Exp-Bv for the composite of 2000-2005 and 2011-2016 minus that of 1995-2000 and 2005-2011. (B, C) As in (A), but for Exp-B minus Exp-Bv and Exp-BW minus Exp-B, respectively. (D) Linear trends maps of SSH derived from Exp-B for the composite of 2000-2005 and 2011-2016 minus that of 1995-2000 and 2005-2011. (E) As in (D), but for Exp-BW minus Exp-B. (D, E) The contour lines represent the climatic salinity of the Ctr data from 1995 to 2016. (F) Linear trends maps of wind stress curl anomaly (shaded) and wind anomaly (vector) derived from ERA-Interim for the composite of 2000-2005 and 2011-2016 minus that of 1995-2000 and 2005-2011. Stippling indicates significant at 90% confidence level based on a Mann-Kendall test. Black lines denote the SEIO. 



Sea surface height (SSH) provide useful hints for understanding of the role of these processes. Weakening of ITF transport leads to SSH falling over the SEIO (Feng et al., 2010; Feng et al., 2015; Li et al., 2017), especially at the salinity front between 15o-30oS ( Figure 14D ). The SEIO is governed by the southeasterly trade winds in climatology, and the southward Ekman transport carries low-latitude low-salt water to the south, forming a convergence in the subtropical sector (Wang et al., 2020; Li et al., 2022). This process acts to reduce the SEIO SSS, while the excessive evaporation in the region acts to raise SSS. The decline of SSH represents a divergence in the upper ocean, hindering the southward intrusion of fresh water, thereby causing the SSS rise. The SSH change in Exp-B minus Exp-Bv is quite small (figure not shown).

Local winds cause a weak SSH falling between 20o-28oS ( Figure 14E ), and the corresponding SSS rise there is also limited ( Figure 14C ). Yet, local winds lead to strong SSH rising between 10o-20oS in the SEC region, particularly west of 100oE. This convergence enhances the southward intrusion of low-latitude fresh water into the region, leading to a decline in SSS. The SSH rise in this region is mainly caused by upwelling Rossby waves excited by the anomalous anticyclonic winds ( Figure 14F ) via Ekman pumping (Li et al., 2022).

To further illustrate the roles of ITF and local winds, we examined sea surface freshwater flux (E - P) in each experiment (figure not shown). The change in freshwater flux in Exp-B is at least one order of magnitude smaller than that in Exp-BP minus Exp-B and therefore has a very weak effect on salinity. This further confirms that the ITF affects the SEIO salinity mainly through ocean dynamics (such as advection). The change in freshwater flux in Exp-BW minus Exp-B is sizable in magnitude, and it mainly represents wind-controlled evaporation rate. However, this effect is overall out-of-phase with precipitation-dominated freshwater flux, although the correlation is insignificant (-0.09). As such, local winds cannot contribute positively to SSS change through evaporation.

To confirm the roles of ITF and winds through ocean advection, we calculated the advection term for each experiment,

 

where u and v are zonal and meridional surface currents, respectively. In both Exp-B and Exp-Bv experiments, the correlation between ADV and SSS tendency reaches 0.66 ( Figures 15A, B ), and the amplitude of ADV is larger than SSS tendency. Most of the large SSS tendency anomalies correspond to ADV anomalies. This confirms that changes in the ITF transport can alter the local ocean circulation of SEIO, which in turn induces SSS changes through advection. The ITF water salinity can also cause strong ADV anomalies ( Figure 15C ), which mainly reflects the spreading of the salinity anomaly at the ITF boundary to the SEIO, but its correlation with SSS tendency is reduced to 0.37. In Exp-BW minus Exp-B, the correlation between SSS tendency and ADV is only 0.07 ( Figure 15D ). Although local winds can cause strong salinity advection (Huang et al., 2020; Wu et al., 2021), ADV has a weak control effect on SSS. It is possible that the evaporation change and advection driven by winds do not form a synergistic effect or even cancel each other, reducing the overall contribution of local winds to salinity change.

 

Figure 15 | Time series of monthly SSS tendency (black; in psu/s) and ADV (red; in psu/s) averaged over the SEIO derived from (A) Exp-B, (B) Exp-Bv, (C) Exp-B minus Exp-Bv and (D) Exp-BW minus Exp-B. 





 5. Summary and discussion.

The SEIO exhibits prominent decadal variability in SSS, with notable impacts on ocean stratification, sea level, and regional circulation. There still lacks a consensus among existing studies on the underlying mechanism. In this study, the ROMS high-resolution model is used to simulate the SSS variability of the SEIO, and a series of sensitivity experiments are used to evaluate contributions of different processes. The findings are summarized as follows.

1) Analysis of observational data suggests that the SEIO showed SSS decreases during 1995-2000 and 2005-2011 and SSS increases during 2000-2005 and post-2011 periods. These decadal changes are faithfully reproduced by ROMS simulation.

2) Through a series of sensitivity experiments, we find that the ITF and local precipitation are major drivers of decadal SSS variability, and the overall contribution of local precipitation is larger. In comparison, local winds and evaporation play minor roles.

3) Further analysis suggests that the phase lag between precipitation anomaly and its resultant SSSA is merely ~1 month, much shorter than expected. Through experiments of the LRSM, we find that oceanic dynamics modify the relationship between precipitation and SSS, greatly shortening their phase lag time. Precipitation change in the SEIO is mainly associated to the decadal variations of Ningaloo Niño/Niña. The response efficiency of salinity to decadal precipitation is significantly higher than that to interannual precipitation.

4) Both the intensity and water salinity of the ITF can drive SSS changes in the SEIO through advection, and their contributions are approximately equal. The ITF intensity change causes large-scale SSS anomalies between 15o-30oS, while the ITF salinity change mainly affects its exit area. Although local winds can also cause strong advection, its effect on SSS is small.

The conclusions drawn from our results over the mechanism likely differs from those of existing studies. Salinity budget analysis for the SEIO region indicates that the ocean advection term likely plays a more important role than the surface freshwater forcing term in causing decadal SSS changes (Huang et al., 2020; Wu et al., 2021), while our ROMS experiments suggest the leading role of precipitation. This can be largely reconciled by considering the differences in methodology. In fact, the ocean advection term in the salt budget of a specific box region (such as the SEIO box) has already contained the contribution of precipitation. For example, the SSS anomalies generated north of the SEIO box by precipitation changes ( Figure 7 ) can access the SEIO box via the southward Ekman flows. This part of precipitation-driven change is attributed to advection rather than surface freshwater forcing in budget analysis. With this regard, results based on model sensitivity experiments can better clarify the source of SSS variability.

Simulations in this study were performed using a forced ocean model, which cannot provide insights into the ocean-atmosphere interactions. Nevertheless, the Ctr of ROMS has well reproduced the observed of SSSA in both amplitude and spatial-temporal characteristics, placing confidence for our conclusions. Another issue worthy of discussion is the nonlinearity. Our model experiment design overall adopts the linear assumption, potentially leading to underestimate or overestimate the contribution of a nonlinear process, such as evaporation. Our results indicate that this effect is generally small, given that the sum of individual processes close to the total change. Our simulation stops in December 2016, while Argo data suggest a continued SSS increase till 2020. Whether this trend has reversed during the “multi-year” La Niña condition of 2020-2022 is unknown. This issue will be explored with extended observational data and model simulation, which may provide further insights into the SEIO salinity variability on decadal timescales.
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  The Madden–Julian oscillation (MJO) and its associated air–sea interactions during the onset process of the 2018/2019 Indonesian–Australian summer monsoon (IASM) are investigated based on the in situ data from a moored buoy off the coast of northwest Australia, along with ERA5 reanalysis and satellite data. The results verify that the IASM onset in mid-December 2018 was triggered by the first-branch eastward-propagating MJO (FEMJO) originating from the tropical Indian Ocean. However, the strong negative SST anomaly (SSTA) was evident off northwest Australia, which weakens FEMJO over northern Australia and shifts the convective center further northward. The mixed layer heat budget analysis based on the buoy observations reveals that the increased latent heat loss that occurred before the arrival of the FEMJO convection was primarily attributed to the large air–sea temperature difference and strong winds, resulting in the pronounced SSTA.
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  1. Introduction.

The Indonesian–Australian monsoon (IAM) in the Southern Hemisphere, as an important component of the Asian–Australian monsoon system, covers a wide region of the southern maritime continent and northern Australia. The seasonal transition of the Indonesian–Australian summer monsoon (IASM), which normally occurs in late December, is typically characterized by abrupt dry–wet changes and prevailing winds shifting from southeasterly to northwesterly (Hendon and Liebmann, 1990a; Chang et al., 2004; see also  Figure 1 ). The timing of the IASM onset has a substantial impact on the regional climate and marine ecosystem, which makes it one of the most crucial foci of monsoon research, prediction, and application. The significantly delayed IASM onset in 2019/2020 is such an example, which directly induced extreme warm-dry weather and heatwave conditions from December 2019 to January 2020 and caused severe coral bleaching and increased wildfire activity in the IASM region (Wang and Cai, 2020). Therefore, it is crucial to explore the detailed process of the IASM onset and its underlined mechanisms in order to improve regional monsoon forecasting.

 

Figure 1 | The seasonal patterns of the IAM system for (A) August–November 2018 and (B) December 2018–March 2019: GPCP precipitation (shaded; mm day−1), NOAA OLR (black contours; only values lower than 240 W m−2 are shown), and ERA5 wind field (vectors; m s−1). The red (black) vectors indicate that the zonal component of the wind is westerly (easterly). The blue box (0°–15°S, 110°–150°E) superimposed on the plot indicates the region of the IAM system in the present study. The magenta dot in (A) indicates the Darwin airport station (station number: 14015), Australian Bureau of Meteorology. 



With the longer station records available from Darwin and reanalysis datasets, the large-scale circulation changes, associated mechanisms, and multi-time-scale variations of the IASM onset have been much discussed in previous literatures (e.g., Holland, 1986; Hendon and Liebmann, 1990a; Hendon and Liebmann, 1990b; Suppiah, 1993; Drosdowsky, 1996; Hung and Yanai, 2004; Wheeler and McBride, 2005; Kullgren and Kim, 2006; Kim et al., 2006; Kajikawa et al., 2010). It is well noted that the remarkable sea-surface temperature (SST) warming occurs off the coast of northern Australia during the premonsoon period, and the subsequent IASM onset always coincides with the arrival of the active Madden–Julian oscillation (MJO; Hendon and Liebmann, 1990a; Kawamura et al., 2002; Wheeler and McBride, 2005). It was recently further revealed that a robust phase-locking relationship exists among the regional SST maximum north of Australia, the first-branch eastward-propagating MJO (FEMJO) originating from the tropical southwestern Indian Ocean, and the IASM onset (Duan et al., 2019).

The MJO is one of the major systems affecting the IASM, typically causing large-scale heavy rainfall across northern Australia and the maritime continent (Hendon and Liebmann, 1990b; Berry and Reeder, 2016). The 2018/2019 IASM experienced three pulses of the MJO, as shown in  Figures 2A, B . From December 2018, MJO originating from the tropical Indian Ocean began to veer southeastward from its previous northeastward propagation route in the eastern Indian Ocean and passed through the IASM region. In its active phases, the prevailing northwesterly winds strengthen and widespread rainfall moves across the monsoon region. In contrast, the suppressed phases of the MJO are generally associated with weakened northwesterlies and even transient reversals and reduced rainfall conditions. The IASM finally retreated in early April 2019, with the southeasterly once again dominating the monsoon region ( Figure 2B ).

 

Figure 2 | Longitude-time diagram of the meridionally averaged (A) SST (shaded; °C), wind field (vectors; m s−1), 30–60-day bandpass-filtered OLR anomaly (contours; W m−2; only values lower than −10 W m−2 are plotted), and (B) precipitation (shaded; mm day−1) and repeated 30–60-day OLR anomaly (contours) from September 2018 to May 2019, all averaged between 15°S and 0°. The magenta box in (A) indicates the IASM region. The green (black) vectors in (A) mean that the zonal winds are westward (eastward). The thin magenta line in (B) denotes the position and available observation period of the moored buoy. Time series of (C) the daily area-averaged zonal wind (black line; m s−1) and precipitation (gray bars; mm day−1) over the IASM region and (D) the zonal wind (black line; m s−1), precipitation (gray bars; mm day−1, reduced by a factor of 5), and climatological daily mean precipitation (gray line) at Darwin airport station. The thick red bar indicates the onset date of the 2018/2019 IASM defined in the present study (C) and that officially declared by the Australian Bureau of Meteorology (D). 



The IASM onset is traditionally defined as the arrival of northwesterly winds accompanied by widespread rainfall (Lisonbee et al., 2020). Following this criterion, the time series of area-averaged zonal wind and rainfall shows that the dry regime of low-level easterlies persisted until early December ( Figure 2C ). Subsequently, the zonal wind became westerly, and rainfall increased dramatically. Thus, the onset of the 2018/2019 IASM occurred in mid-December and was concurrent with the arrival of the FEMJO, which is well consistent with our previous theory (Duan et al., 2019). However, based on the station observations at Darwin ( Figure 2D ), the Australian Bureau of Meteorology has declared that the official onset data for the 2018/2019 IASM is 23 January 2019, which is the third latest monsoon onset on record at Darwin (see the analysis in the weekly Tropical Climate Note archive, www.bom.gov.au/climate/tropical-note/archive.shtml). It is very confusing to have different onset dates for the 2018/2019 IASM following the different onset definitions.

How to understand such significantly conflicting onset data of the 2018/2019 IASM? And what processes are responsible for it? We attempt to address these questions and reveal their associated mechanisms in the present study. Recently, a field campaign under the umbrella of the Years of the Maritime Continent (YMC; Yoneyama and Zhang, 2020) was conducted off northwest Australia to capture the air–sea interactions during the 2018/2019 IASM (Feng et al., 2020; Song et al., 2021). This gave us the valuable chance to decipher the mystery of the 2018/2019 IASM onset. The focus of the present study is (1) to describe the detailed evolution of the 2018/2019 IASM from the pre- to postmonsoon period and (2) to quantitatively examine the air–sea interactions that modulate the IASM onset.


 2. Data and methods.

One Bailong buoy was deployed on 21 November 2018 at 16°51.432′S, 115°13.314′E and retrieved on 4 January 2020. It measured the surface meteorological parameters including air temperature, pressure, wind speed and direction, relative humidity, downward shortwave, longwave radiation, and rainfall (see Supplementary Tables ES1, ES2 of Feng et al. (2020) for the sensors’ configuration and technical specifications). The buoy also measured the upper ocean temperature at 1 (nominally designated SST), 10, 20, 40, 60, 80, 100, 120, 140, 200, 300, and 500 m depth levels. The oceanic conductivity was measured at 1, 10, 20, 40, 60, 80, 100, 140, and 300 m. The surface meteorological and subsurface oceanographic measurements were all observed at 10-min intervals. Hourly ocean currents were measured at depths of 10 and 100 m.

In this study, the air–sea heat fluxes are calculated from the buoy data with COARE 3.0 bulk formula (Fairall et al., 2003). The observed upper ocean temperature, salinity, and current data at discrete depths are used to examine the daily mixed layer heat budget. The mixed layer heat budget equation is written as:

 

The individual terms of the equation above represent, from left to right, the mixed layer temperature (MLT) tendency, net surface heat flux (NSHF), horizontal advection (ADV), vertical processes (VER; the combination of entrainment and vertical advection), and residual term (Res). T is the average MLT, ρ is the density of seawater, C p is the specific heat capacity of seawater, and  h is the mixed layer depth (MLD). The net surface heat flux Q net is the sum of the latent heat flux, sensible heat flux, and longwave and shortwave radiation, and Q pen is the penetrative component of the shortwave radiation through the base of the mixed layer. u and v , representing the mixed layer currents, are obtained by interpolating the buoy observations at depths of approximately 10 and 100 m. The ocean current in the upper 10 m is simply using the current measured at 10 m from the mooring. Since the MLT well represents the SST as displayed later in the next section, the horizontal temperature gradients,  and  , are estimated using the upstream difference of OISST around the buoy location by following the methods of Bond and McPhaden (1995) and McPhaden and Foltz (2013). W  h  is inferred from the change rate at the depth of the 25°C isotherms below the mixed layer, and T  h  is the temperature at 5 m below the MLD that is entrained into the mixed layer. H is the Heaviside step function. In the present study, MLD is estimated as the depth where the density is 0.15 kg m−3 denser than the sea-surface density (Girishkumar et al., 2017). The isothermal layer depth (ILD) is defined as the depth at which the temperature is 0.3°C lower than the SST. The barrier layer thickness (BLT) is thus obtained as the difference between ILD and MLD. To compare the governing mechanisms for the SST evolution during the premonsoon period with the buoy observation, the 5-day SODA 3.4.2 output (Carton et al., 2018) is also used to conduct the mixed layer heat budget.

For the atmospheric variables, 850-hPa wind data from the ERA5 reanalysis dataset (Hersbach et al., 2018), with a spatial resolution of 0.25° × 0.25°, are employed to display the 2018/2019 IASM evolution. In addition, daily outgoing longwave radiation (OLR; Lee et al., 2011), precipitation from the Global Precipitation Climatology Project (GPCP; Robert et al., 2017), and NOAA Optimum Interpolation SST (OISST; Reynolds et al., 2008) data are also used to illustrate the MJO patterns.


 3. Results.

First, we need to examine detailed evolutions of the FEMJO and wind field in December 2018. In early December 2018, as shown in  Figures 3A, B , the FEMJO was first initiated in the southwestern Indian Ocean and then strengthened and moved eastward across the central and eastern parts of the Indian Ocean. During this period, the suppressed cloudiness and dry conditions dominated the IASM region. The low-level wind was also weak there. The concurrent low cloudiness and weak wind prior to the arrival of FEMJO induced more shortwave radiation into the ocean and less latent heat loss from the ocean, thus leading to the pronounced warming of the SST north of Australia. This clearly shows that the meridionally averaged SST north of Australia reached its annual maximum in early December, just before the monsoon onset ( Figure 2A ), which is consistent with the composite results of Duan et al. (2019). At this time of the year, this high SST over the IASM region usually preconditions the monsoon onset by providing the atmospheric convective instability that favors the convection system to pass through the maritime continent (Duan et al., 2019). The FEMJO for 2018/2019, however, weakened markedly as it started to cross the maritime continent on 16–20 December ( Figure 3D ). Meanwhile, the main route of the FEMJO for 2018/2019 shifted much further northward compared to its climatological position, as shown in Figure 8 by Duan et al. (2019). This then resulted in little rainfall over northern Australia (Feng et al., 2020; see also  Figure 3D ). So, the rainfall criterion for monsoon onset was not technically met at Darwin, and the monsoonal westerly did not last long enough for monsoon criteria to be met until late January, as analyzed in the weekly Tropical Climate Note archive (www.bom.gov.au/climate/tropical-note/archive.shtml ; see also  Figure 2D ). When the FEMJO convection was over the region, however, the concurrent westerly winds and heavy rainfall indicated that the IASM was officially established ( Figure 3D ). Following the IASM onset definition in Duan et al. (2019), the first day when the maximum FEMJO convection arrived at 120°E, the 2018/2019 IASM onset date was 16 December. This FEMJO afterward passed over the MC, and it veered southward and strengthened in the eastern part of the maritime continent during late December with enhanced rainfall and northwesterly winds ( Figures 3E, F ). It did bring rainfall and westerly wind to Darwin. However, the Bureau of Meteorology did not announce the monsoon onset due to its limited, persistent period of rainfall and westerly wind over Darwin not meeting the criteria ( Figure 2D ). This divergence of monsoon onset conclusions comes from the specific choice of the regional criteria or the local one. It is evident that confusion is sometimes inevitable.

 

Figure 3 | Evolution of the pentad-averaged precipitation (shaded; mm day−1), wind field (vectors; m s−1), and 30–60-day OLR anomaly (contours; only values lower than −10 W m−2 are plotted) for December 2018. 



It is worth mentioning that the FEMJO’s apparent northward shift over the western part of the IASM region and its later on southward veering and intensification over the eastern part of the IASM region happen to coincide with the strong negative/positive SST anomalies (SSTAs) over the western/eastern IASM region ( Figure 4A ), which could be attributed to the extended positive Indian Ocean dipole (IOD) event in the tropical Indian Ocean and the El Niño-like conditions in the tropical Pacific Ocean (Saji et al., 1999; Shinoda et al., 2004; Meyers et al., 2007; Zhang et al., 2017; see also  Figures 4B, C ). It is then necessary to explore the relationship between the SSTA and MJO routes, which will help compromise the conflicting conclusions on IASM onset. Existing studies suggest that the high SST warming between Indonesia and Australia helps shape the atmospheric convection instability conditions that favor MJO’s eastward propagation and southward veering as it crosses the maritime continent (Kawamura et al., 2002; Zhang, 2005; Hsu and Li, 2012; Wang et al., 2017; Wang et al., 2018; Duan et al., 2019; Wang and Li, 2020a; Wang and Li, 2020b; Zhou and Murtugudde, 2020). A natural question is what kind of air–sea interaction processes are responsible for this strong negative SSTA prior to the 2018/2019 IASM onset. To address this question, the mixed layer heat budget is conducted with the buoy observations, which are coincidently located in the center of the negative SSTA region (see  Figure 4A ).

 

Figure 4 | (A) Distribution of the tropical SST (shaded; °C) and wind (vectors; m s−1) anomalies in December 2018. The magenta diamond denotes the position of the moored buoy. Time series of 3-month running mean (B) DMI (bars; °C) and (C) NINO3.4 SST anomalies (bars; °C) from May 2018 to May 2019. The dotted lines indicate the threshold of ±0.4°C (B) and 0.5°C (C) for the warm and cold periods, respectively. 



The detailed evolution of the 2018/2019 IASM has been well recorded by buoy observations. The active phases of the MJOs (see black horizontal bars in  Figure 5B ) are defined using the meridionally averaged OLR anomalies at the buoy longitude as described in Feng et al. (2020). Because of the far north path of the FEMJO (also denoted as MJO1 in  Figure 5B ), its associated shortwave radiation, SLP, and rainfall were not as significant as those of the later second MJO (MJO2) event ( Figures 5B–D ). However, a remarkable increase in the relative humidity in early December was well observed ( Figure 5A ), which is quite consistent with the composite results of Duan et al. (2019). The relative humidity is a good indicator of the dry–wet transition in the IAM region. Based on the buoy-observed humidity, we can easily distinguish the different stages of the 2018/2019 IASM. The near-surface relative humidity was low (below 70%) during the premonsoon period and was significantly high (over 80%) during the summer monsoon. The high humidity was interrupted during 16–20 December, which was influenced by the very northern-shifted FEMJO position and the hence transient dry-cold southwesterly winds from northwestern Australia (Feng et al., 2020; see also  Figures 3C, D ). The wet state was quickly restored in late December.

 

Figure 5 | Daily time series of the buoy-measured (A) relative humidity (%); (B) sea-level pressure (black line; mb) and rainfall (red line, mm day−1); (C) wind speed (black line, m s−1) and wind direction (red line); (D) shortwave radiation (thin black line; W m−2), longwave radiation (magenta line; W m−2), latent heat flux (blue line; W m−2), sensible heat flux (green line; W m−2), and net air–sea heat flux (thick black line; W m−2); (E) air temperature (blue line; °C), SST (black line; °C), and MLT (red line; °C); (F) upper ocean temperature (°C); (G) salinity (psu); and (H) the 5-day running averaged MLT budget components (°C day−1) from November 2018 to February 2019. Dry and wet stages of the 2018/2019 IASM are shaded and labeled based on the humidity evolution in (A), with the thick magenta bar indicating the IASM onset date in the present study. Black horizontal bars in (B) denote the active periods of the MJO events as in Figure 2A. Positive heat flux in (B) represents a gain to the ocean. The green and black lines in (F, G) represent the MLD and ILD, respectively. 



In contrast to MJO1, the buoy-observed variables associated with MJO2 exhibit more pronounced fluctuations ( Figure 5 ). During the active phases of the MJOs, low sea-level pressures, enhanced rainfall, high wind speeds, and reduced air–sea net heat fluxes typically occurred at the buoy site. The corresponding air temperature and SST both experienced a sharp drop of 2°C–3°C in a few days. The observed upper ocean temperature from the moored buoy also exhibits considerable intraseasonal fluctuations, which are especially noticeable in the upper 40 m, with persistent warming during the suppressed phases of the MJOs and abrupt cooling as the active MJOs pass the buoy site ( Figure 5F ).

From the MLT budget as displayed in  Figure 5H , we observe a sustained warming tendency (0.066°C day−1) prior to the IASM onset until the convectively active MJO1 induced a remarkable cooling. During the MLT warming period, the NSHF heating (0.046°C day−1) of the mixed layer is always positive. The VER (−0.032°C day−1), on the other hand, always cools the MLT. Though the NSHF plays an important role, it cannot completely explain the observed evolution of MLT warming tendency. It is worth pointing out that there are substantial ADV (0.023°C day−1) and Res (0.029°C day−1) terms in the MLT budget. Note that there were no direct current observations in the upper 10 m from the buoy, which would considerably underestimate the ADV and overestimate the Res in our analysis. In addition, the formation of a mean 10-m BLT limited the turbulent vertical transfer between the mixed layer and the thermocline (McPhaden and Foltz, 2013; see also  Figures 5F, G ). In contrast, the result based on the SODA climatological data shows that the MLT warming tendency in November–December is almost entirely determined by the NSHF, with VER and ADV having only a minor effect (see  Figure 6 ).

 

Figure 6 | Time series of the (A) daily OISST (black line; °C), pentad-averaged SST (blue line; °C), and MLT (red line; °C) from SODA climatology; (B) daily shortwave radiation (thin black line; W m-2), longwave radiation (magenta line; W m−2), latent heat flux (blue line; W m−2), sensitive heat flux (green line; W m−2), and net air–sea heat flux (thick black line; W m−2) from TropFlux; (C) upper ocean temperature (°C) and (D) MLT budget components (°C day−1) from November to January. Positive heat flux in (B) represents a gain to the ocean. The green and black lines in (C) represent the MLD and ILD, respectively. 



In general, the comparison between the MLT heat budget for 2018 and climatology indicates that the reduced NHSF is the primary reason for the negative SSTA off northwest Australia. This is consistent with the previous studies, which noted that the MLT variation off northwest Australia is dominated by the air–sea heat flux (Qu et al., 1994; Du et al., 2005), especially latent heat flux (Kawamura et al., 2002; Santoso et al., 2010). Considering the four heat flux components separately, as shown in  Figure 5D , since the values of the daily shortwave radiation from pre- to postmonsoon periods are almost the same (~310 W m−2), more shortwave radiation is absorbed by the ocean mixed layer because of the existence of a deeper MLD before the monsoon onset. Additionally, both the variations of longwave radiation and sensible heat flux are near zero and can be neglected. Therefore, the large variations in the NHSF are primarily due to the enhanced latent heat loss of approximately 75 W m−2 from the ocean to the atmosphere in response to the stronger wind speed (5.7 m s−1) and larger air–sea temperature difference (1.60°C), as displayed in  Figures 5C, E .


 4. Summary and conclusions.

In this study, we examined the onset process of the 2018/2019 IASM associated with the air–sea interactions using upper oceanographic and surface meteorological observations from the Bailong buoy off northwest Australia, in conjunction with ERA5 reanalysis and various satellite data. The extensive observations provide an excellent opportunity to study the onset process of the IASM and to quantify the MLT budget and air–sea interactions associated with the MJOs. The results show that the IASM onset in mid-December 2018 appears to be triggered by the FEMJO originating from the tropical Indian Ocean. However, in response to the sustained El Niño-like conditions in the Pacific Ocean and weak positive IOD event in the Indian Ocean, a strong negative SSTA presents off northwest Australia, which acts to modulate the FEMJO characteristics by reducing its activity over Australian longitudes and shifting the convective center further northward. Two subsequent MJO pulses contribute to enhanced monsoon westerlies and rainfall over the monsoon region and thus result in strong intraseasonal IASM variability.

The mixed layer heat budget analysis based on buoy observations is conducted to evaluate the air–sea interaction processes responsible for the strong negative SSTA off northwest Australia. The MLT displays a relatively weak warming tendency prior to the monsoon onset. Also, this is primarily attributed to the positive surface heat flux into the ocean. However, the variability of net surface heat flux is largely controlled by the modulation of latent heat flux. Our analysis reveals that the large air–sea temperature difference and strong winds before the arrival of the FEMJO convection both contribute to the enhanced latent heat loss and then result in the pronounced negative SSTA off northwest Australia.

In summary, the present study demonstrates the critical value of unique observations of simultaneous air–sea exchanges and upper-ocean variability in the Indonesian–Australian Basin for the first time to study the IASM onset process during the 2018/2019 austral summer. More importantly, the present results provide a reasonable explanation for the divergence on the 2018/2019 IASM onset and emphasize the importance of the air–sea interactions associated with the MJO. In addition, the collected high-frequency data will be used to explore the diurnal cycle of the air–sea exchanges and its role in modulating the MJO and to evaluate the quality of the reanalysis products in reproducing the MJO process.
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The Karimata Strait (KS) throughflow between the South China Sea (SCS) and Java Sea plays an essential role in heat and freshwater budget in the SCS and dual roles in strengthening/reducing the primary Indonesian throughflow (ITF) in the Makassar Strait. A sustained long-term monitoring of the ITF is logistically challenging and expensive; therefore, proxies are needed. Here, we use a combination of in situ measurement of the KS throughflow and satellite-derived sea surface height (SSH) and sea surface wind (SSW) to determine the interannual and decadal modulations in seasonal amplitude of the KS throughflow associated with El Niño-Southern Oscillation (ENSO), Indian Ocean dipole (IOD), Pacific Decadal Oscillation (PDO). Linear regression, correlation, harmonic and power spectrum analyses are used. The results manifest that there are significant interannual to decadal modulations in the seasonal amplitude of the KS throughflow. The modulations of the seasonal amplitude in the volume and heat transports range 1.36-1.92 Sv (1 Sv = 106 m3 s-1) and 126.41-173.36 TW (1 TW = 1012 W), respectively, with a significant cycle of ~9 years. From 1994 to 2020, the seasonal amplitude of volume transport through the KS shows an increasing trend of 37.75 ± 15.69 mSv decade-1 (1 mSv = 103 m3 s-1). The seasonal amplitude of the heat transport also increases, at a rate of 4.78 ± 1.52 TW decade-1. The KS volume transport is positively correlated with PDO and ENSO indices (r2 = 0.69 and r2 = 0.58), with a lag of 12 and 10 months, respectively. The results of composite analysis suggest that the interannual variability of the KS transport is related to the interannual anomalies of the SSH gradient and the local SSW fields in boreal winter.




Keywords: Karimata Strait throughflow, water exchange, seasonal variability, amplitude modulations, interannual to decadal variations



1 Introduction

The Karimata Strait (KS) and Gaspar Strait (GS) are located between the South China Sea (SCS) and Java Sea (JS) (Fang et al., 2002; Fang et al., 2010). The KS is located between the Belitung Island and Kalimantan Island, with about 220 km width and less than 50 m in depth. The width of the GS between Banka Island and Belitung Island is only about half the width of the KS, and the depth is less than 40 m (Figure 1). For convenience, the two straits are generally referred to as the KS (Wang et al., 2019; Xu et al., 2021). The water is of lower sea surface temperature (SST) and higher sea surface salinity in the southern SCS than that in the JS during boreal winter (hereinafter referred to as winter), and vice versa during boreal summer (hereinafter referred to as summer) (Kok et al., 2021). In winter, the SCS water flows southward through the KS and the JS and ultimately drains into the Indonesian throughflow (ITF) (Fang et al., 2010). Comparing with its direct contribution to ITF transport, it plays a more important role in the seasonal and interannual variations of volume, heat, and fresh water transports because of its features of relatively low salinity and high temperature (Gordon et al., 2003; Tozuka et al., 2007; Tozuka et al., 2009; Kok et al., 2021; Samanta et al., 2021; Purba et al., 2021).




Figure 1 | Study region and the observation sites in the KS. (A, B) are the areas selected to calculate the sea surface height gradient.



Research on the KS throughflow (KSTF) can be traced back to Wyrtki (1961). Using ship observational data, he found that the surface current in the KS has a seasonal reversal; it flows southward from the SCS to the JS in winter with a volume transport of -4.5 Sv (1 Sv = 106 m3s-1, positive northward), and flows northward from the JS to the SCS in summer with a volume transport of 3.0 Sv. According to model simulations, scientists determined that the KS is not only a direct connection between the SCS and Indonesian Seas (Fang et al., 2002), but also an important part of the SCS branch of the Pacific-to-Indian-Ocean throughflow (Fang et al., 2005; Qu et al., 2005; Wang et al., 2006; Yaremchuk et al., 2009; Susanto et al., 2010). The KSTF contributes to the ITF volume transport (Fang et al., 2005), accounting for 13% of the ITF annual transport (He et al., 2015). The interaction between the KSTF and ITF has also been studied using a HYCOM/FVCOM model simulation. It is found that in winter, the low-salinity water from the SCS is transported to Makassar Strait through the KSTF to block the southward ITF, whereas in summer part of the ITF is advected into the SCS through the KS with advection onto the Peninsular Malaysia’s east coast (Gordon et al., 2012; Xu and Malanotte-Rizzoli, 2013; Kok et al., 2021), and part of the inflow has a contribution to the deep meridional overturning circulation in the SCS (Shu et al., 2014).

The South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration (SITE) project was launched in 2006 to directly measure variations in the KSTF through observations (Susanto et al., 2010; Wei et al., 2019). Fang et al. (2010) and Susanto et al. (2013) analyzed early data from SITE and confirmed the existence of the SCS branch of Pacific-to-Indian-Ocean throughflow through the KS with a stronger southward flow in winter and weaker northward flow in summer. They also found that bottom currents flow southward all year, although the flow was close to zero in summer. Wang et al. (2019) and Xu et al. (2021) used the long-term data from SITE to discuss the seasonal and interannual variations of KSTF and proposed that the seasonal cycle is dominant forced by the local monsoon winds and sea surface height (SSH) gradient. They also found an interannual variation with a period of 2.5-4.5 years, but without a significant correlation to the Indian Ocean Dipole (IOD) or El Niño-Southern Oscillation (ENSO).

Estimates of the KSTF annual mean transport vary considerably in the early studies, ranging from -0.3 to -4.4 Sv (Table 1). In recent years, results of both in situ observation and numerical simulation tend to fall between -0.7 and -1.0 Sv. Although the annual mean transport of the KSTF is smaller than that of the ITF, the KSTF does contribute a seasonal variability of more than 5 Sv, and plays a dual role in the total ITF volume transport (Fang et al., 2010). Combining in situ observation data with remote sensing data, Xu et al. (2021) constructed a long time series (from 1993 to 2017) of water transport through the KS that shows a strong seasonal variation (blue line in Figure 2) and a relatively weak interannual variation of annual mean transport (black line in Figure 2). In addition to these variations, the seasonal variability from year-to-year (red dotted line in Figure 2) are much greater than the interannual variability of annual mean transport (black solid line in Figure 2). Therefore, it is very important to investigate the interannual modulations of seasonal variability (Hamlington et al., 2019). In this paper, we focus on the seasonal amplitude modulations of the KSTF on interannual to decadal time scales.


Table 1 | Estimated volume transport values of KSTF (unit: Sv).






Figure 2 | Time series of monthly averaged volume transport through the KS (Xu et al., 2021). Blue solid line indicates the monthly values; black solid line indicates the yearly values; red solid lines indicate the envelopes of the blue line; and red dotted line indicates the difference between red solid lines.



The rest of this article is organized as follows. Section 2 describes the satellite remote sensing and field observation data used to calculate the KS transport. Section 3 introduces the methods for multiple linear regression and calculating volume transport, heat transport, and the seasonal amplitude. In Section 4 we show the interannual to decadal modulations in seasonal amplitudes. In Section 5 we discuss the potential influencing factors for the changes in the seasonal amplitude. Summary and discussion are given in Section 6.



2 Data


2.1 Satellite remote sensing data

Even though in situ observations of the KS transport have been conducted in collaboration among scientists from Indonesia, China and USA, the observations can’t last for longtime to observe the decadal variability. Hence, the satellite remote sensing data of SST, sea surface wind (SSW), and SSH are used as proxies to study the decadal modulations in the seasonal amplitudes of the KS volume and heat transports. The SST data are NOAA 1/4° Daily Optimum Interpolation of SST (OISST) using Advanced Very High-Resolution Radiometer (AVHRR) data (Reynolds et al., 2007; Huang et al., 2021) with temporal coverage from 1981 to the present. The SSW data are derived from version 2.0 and 2.1 NRT of Cross Calibrated Multi-Plantform (CCMP) with a time resolution of 6 h and spatial resolution of 0.25° × 0.25°. The temporal coverage spans from 1987 to 2019 for version 2.0 and from 2015 to present for version 2.1 NRT (Atlas et al., 2011; Wentz et al., 2015). The SSH data are the daily gridded product processed by the DUACS multi-mission altimeter data processing system, with metadata provided by the Copernicus-Marine Environment Monitoring Service (CMEMS). The SSH data cover from 1993 to present with a spatial resolution of 0.25° × 0.25°. The monthly averages of these data from 1993 to 2021 are calculated for use in this study.



2.2 Field observation data

A series of direct current and thermohaline observations in the KS from 2007 through 2016 were supported by SITE (Wei et al., 2019). Four trawl-resistant bottom mounts (TRBMs) were deployed in the south section of the KS from November 2008 to May 2016. The locations of the four stations were: B1 (2°34.625′S, 107°15.033′E), B2 (2°16.689′S, 108°14.816′E), B3 (1°54.618′S, 108°32.703′E), and B4 (2°34.623′S, 107°0.899′E) (Figure 1). Each TRBM carried one upward-looking acoustic Doppler current profiler (ADCP) for velocity profile observations, and one conductivity-temperature-depth (CTD) recorder or tide gauge (TG) recorder to measure the temperature and pressure on the bottom. In some of these cruises, the CTD or TG was not equipped in the TRBMs; Therefore, some of the time, the bottom temperature and pressure observations were missing.

Using in situ observation current data, the velocity time series at four stations in the KS and GS are daily averaged to remove the tidal signals, and projected to the normal directions of the sections. The normal directions of the KS (B2 and B3) and the GS (B1 and B4) sections are 309° and 0° (compared to true north), respectively. Finally, the time series of the along-strait velocity (ASV) at different depth layers are obtained (Xu et al., 2021).




3 Methods


3.1 Multiple linear regression

To cope with the gaps in the field observations data, we use remote sensing data to fill the gaps and extend the time series in order to investigate interannual to decadal modulations. The KSTF is forced by local winds and along-channel sea surface slope (Fang et al., 2010; Wang et al., 2019). Therefore, we can use remote sensing data to reconstruct the KSTF with a multiple linear regression model (Formula 1). The continuous and long-term ASV time series at each station can then be obtained based on the calculated regression coefficients of all depth layers (Supplementary Table 1). This method was used to study seasonal and interannual variations in the KSTF by Fang et al. (2010), Wang et al. (2019) and Xu et al. (2021). In this study we use this method to reconstruct a long-term time series of the KSTF to investigate modulations in the KSTF seasonal amplitudes. The details are shown in Wang et al. (2019) and Xu et al. (2021). The ASV is calculated from

 

Where Uwnd and Vwnd represent the zonal and meridional components of the local SSW, u0 is the magnitude of the basic current, ϵ represents the residual, and ΔADT is the difference of the regional mean SSH between the north (0.625°S - 0.625°N, 106.125°E - 108.625°E) and the south (4.375°S - 5.625°S, 106.125°E - 108.625°E) (Figure 1) parts of the KS, which were selected based on the correlation coefficients with the velocity of the KSTF (Wang et al., 2019; Xu et al., 2021). a1 , a2 , and a3 are the linear regression coefficients.



3.2 Volume and heat transports

The volume transport is calculated using the following formula (Fang et al., 2010; Wang et al., 2019):

 

where i and k represent the row and column number of each grid in the section, respectively, Δzk is the height of grid, Δli the width of grid, and vi,k is the average normal velocity of each grid.

The heat transport is calculated as follows:

 

where, Ti,k and ρi,k represent the average temperature and density of each grid respectively. T0 is the reference temperature, which is set to 3.72 °C (Fang et al., 2010; Kok et al., 2021), and specific heat capacity Cp is 3.89 × 103 J kg−1°C−1. To accurately calculate the heat transport through the KS, the temperature profile at each station is calculated based on the bottom temperature observed from the TRBMs and the SST remote sensing data. The specific process is shown in Xu et al. (2021).



3.3 The seasonal amplitude

Seasonal amplitude is an important factor for evaluating interannual differences in seasonal cycle or seasonal variability. In this paper, we employ two methods to estimate the seasonal amplitude of the KSTF.

a) Method 1: winter and summer difference algorithm

Since the seasonal cycle is mainly shown in the difference between the winter and the summer, we can use the difference to represent the intensity of this seasonal change. Half of the absolute value of this difference is used as the seasonal amplitude value, and the difference is defined as the monthly mean minimum occurring in winter minus the average of monthly mean maximums occurring in the preceding and following summers:

 

where Ai+1 is the seasonal amplitude value in the i+1th year,  Mini represents the monthly mean minimum value of a time series in winter of the ith to the i+1th year, Maxi represents the monthly mean maximum of a time series in summer of the ith year, and Maxi+1 represents the monthly mean maximum in summer of the i+1th year. These two summer averages are located on both sides of this winter. The time interval of seasonal amplitude time series calculated by this method is one year. While extracting the seasonal amplitude of SST, Maxi and Maxi+1 represent the monthly mean maximums of the ith year and the i+1th year, respectively.

b) Method 2: harmonic algorithm

The annual cycle is predominantly characterized by harmonic oscillations. Therefore, the harmonic parameters of the annual cycle can be estimated to study modulations in seasonal variability on interannual to decadal scales. Reconstructed KSTF is harmonically analyzed in 2-year windows at monthly time steps (Formula 5). The 2-year window is selected because it can maintain a better continuity of results and show subtle changes in the annual cycle, while minimizing the interference of high-frequency changes (Hamlington et al., 2019). The fitting step involves solving the least squares function to obtain the optimal linear trend and annual harmonics (Chandanpurkar et al., 2021). The value obtained from each fitting is assigned to the intermediate time.

 

where t, a and b are time, intercept, and linear slope respectively, c and d represent the amplitude of annual harmonic cosine and sine component respectively, and ω represents frequency of annual period. The seasonal amplitude A can be obtained by the formula below. The time interval of seasonal amplitude time series by this method is one month. The seasonal amplitude is defined as half of the difference between peak and trough, which is half of that from Chandanpurkar et al. (2021).

 

Both methods show the intensity of seasonal variability, however, Method 1 mainly shows the difference between winter and summer and Method 2 shows the whole annual cycle. Therefore, the seasonal amplitudes obtained using Method 1 are slightly larger than those obtained using Method 2. In addition, the time resolution for the results of Method 1 is one year, and it is one month for Method 2. Method 1 accurately describes the interannual variation of seasonal amplitude time series, while Method 2 has a potential role of smoothing the seasonal amplitude time series.




4 Interannual to decadal modulations in seasonal amplitude


4.1 The seasonal amplitudes of currents and SST

Using the multiple linear regression model described in the Section 3.1, the 29-year ASV time series of each layer at four stations in the KS are obtained from satellite remote sensing and field observation data. The vertically-averaged ASV time series at four stations in the KS show a dominant seasonal variation (Figure 3A). However, there are also significant interannual modulations in the seasonal amplitudes. Figures 3B and 3C show the seasonal amplitudes of vertically-averaged ASV time series at four stations derived by the two methods given in the Section 3.3. The results of winter and summer difference algorithm (Method 1) are shown in Figure 3B. Meanwhile, Figure 3C shows the seasonal amplitudes calculated by the harmonic algorithm (Method 2). It can be seen that the fluctuations in the seasonal amplitudes of the vertically-averaged ASVs at four stations are synchronized, with the highly consistent modulation ranges. The trends in the seasonal amplitudes of the velocities at different stations in the KS are consistent. All of them reach their minimum during the periods of 1997-1999, 2010-2011, and 2017-2018, and reach their maximum during 1995-1996, 2002-2004, and 2014-2016. Compared with the results obtained by Method 1, the seasonal amplitude time series from Method 2 are smoother and have a higher time resolution, clearly showing the interannual to decadal modulations.




Figure 3 | (A) Time series of vertically-averaged ASVs at four stations. (B) The seasonal amplitudes of vertical average ASVs obtained by the winter-summer difference algorithm (Method 1), (C) same as (B) but by the harmonic algorithm (Method 2).



By comparing the seasonal amplitudes calculated by the two methods (Figure 3 and Table 2), we note that the results obtained by different methods at same station are basically consistent in the means, ranges, and trends. This confirms the validity of the two methods to calculate the seasonal amplitude. The seasonal amplitude of the vertically-averaged ASV at B4 is always the largest, followed by B2 and B3. The amplitude at B1 is smallest, which is related to the stronger flow in the western strait. When the western boundary current of the SCS flows southward into the KS near the equator, it retains its characteristics of westward strengthening. This may be caused by the inertance of flow, as the westward intensification effect near the equator is always ignored (Fang et al., 2005). In general, the seasonal amplitude based on Method 1 are higher than that from Method 2, with an average value of 1.70 ± 0.45 cm s-1 higher for each of the four stations. Whereas the ranges are basically the same, with a difference of less than 0.80 cm s-1.


Table 2 | The mean and range of seasonal amplitude of velocity (unit: cm s-1).



Given that the KSTF plays an important role in the heat budget of the SCS and ITF heat transport (Qu et al., 2005; Tozuka et al., 2007; Tozuka et al., 2009; Zeng and Wang, 2009; Fang et al., 2010; Gordon et al., 2012), it is important to investigate SST variation in the KS except for the current velocity. The monthly SST time series in the KS (Figure 4A) is obtained by averaging the SST data at the four stations. In contrast to the time series for current, the SST time series have not only annual cycle, but also semi-annual cycle. However, we are still able to use Method 1 and Method 2 to calculate the seasonal amplitude. The seasonal amplitudes of SST (Figures 4B, C) and current velocity are all not synchronized. When the seasonal amplitude of velocity is at a maximum or minimum, there is no corresponding change in SST. The seasonal amplitude of SST has a more significant interannual signal than that of current. There are decreasing trends of -0.08 ± 0.13 and -0.10 ± 0.02 °C decadal-1 in the seasonal amplitudes obtained using Method 1 and Method 2.




Figure 4 | (A) Time series of monthly average SST data. (B) The seasonal amplitude of SST obtained by the winter-summer difference algorithm (Method 1), (C) same as (B) but by the harmonic algorithm (Method 2).





4.2 The seasonal amplitudes of volume and heat transports

In order to quantitatively evaluate modulations in the seasonal amplitude of the KSTF, the KS volume transport is firstly calculated according to Formula 2 (Figure 5A). During 1993-2021, the annual mean volume and heat transports through the KS are -0.76 ± 0.08 Sv and -71.23 ± 7.42 TW (1 TW = 1012 W), respectively. These values are similar to the annual average of -0.78 ± 0.12 Sv and -77.31 ± 4.99 TW from 1993 to 2017 reported by Xu et al. (2021). This confirms that the reconstructed monthly averaged time series of volume transport is reliable. The interannual variation is obtained by removing the seasonal variation from the monthly averaged time series of volume transport using a 3-year low-pass filter (Figure 5B). During 1993-2004 and 2005-2017, there are rapid changes in the volume transport, implying an enhancement and a decay in the southward total transport with linear trends of -10.10 ± 3.20 and 6.29 ± 2.18 mSv year-1 (1 mSv = 103 m3s-1), respectively.




Figure 5 | (A) Monthly mean volume transport through the KS sections, and (B) the interannual variation obtained using a 3-year low-pass filter.



Because the seasonal amplitude of volume transport can describe the intensity of seasonal variability in the KSTF, we can use two methods mentioned in Section 3.3 to extract seasonal amplitude from the transport time series. As shown in Figure 6, the seasonal amplitudes of the KS volume transport calculated using the two methods result in long-term and linearly increasing trends of 28.27 ± 67.10 and 37.75 ± 15.69 mSv decade-1. This data suggests that from 1994 to 2020 the difference in transport between winter and summer is gradually increasing. The water exchange between the SCS and the JS through the KS is in an enhanced state, thus affecting the hydrological characteristics of two areas, and also have an impact on the water transport and seasonal variation of ITF (Tozuka et al., 2007; Tozuka et al., 2009; Fang et al., 2010; Gordon et al., 2012; Li et al., 2021). Moreover, it can be seen that the time series obtained by the two methods are generally consistent with each other and show similar interannual to decadal modulations that range between 1.36 and 1.92 Sv. The seasonal amplitudes obtained using the two methods both reach the maximum during 1995-1996, 2003-2004, 2014-2015, and minimum during 1998-1999, 2009-2010, 2016-2017. Due to the low time resolution of Method 1 and the smoothing effect of Method 2, there are some other extreme points ignored in Figure 6A. The average seasonal amplitudes obtained using the two methods separately are 1.69 ± 0.14 and 1.60 ± 0.12 Sv, which are much larger than the annual mean value of water transport through KS, -0.76 ± 0.08 Sv. This indicates that seasonal variability and its amplitude modulations play important roles in KSTF transport, and it can reverse the KSTF in different season.




Figure 6 | The seasonal amplitude of the KS volume transport obtained (A) by the winter-summer difference algorithm (Method 1), (B) by the harmonic algorithm (Method 2). Black solid line indicates the seasonal amplitude values, and black dotted line indicates the linear fitting values.



The time series of heat transport through the KS is calculated using Formula 3. Next the time series of seasonal amplitude (Figure 7) is extracted using Formula 5 (Method 2). It can be seen that the trend in the seasonal amplitude of heat transport is almost consistent with that of volume transport. This implies that the current variation plays a more important role than the temperature variation. The seasonal amplitude of heat transport ranges between 126.41 and 173.36 TW, with an average value of 148.89 ± 11.47 TW. Similar to the volume transport, the seasonal amplitude of heat transport shows similar periodic changes. The linear fitting results in a gradually increasing trend with rising variability of 4.78 ± 1.52 TW decade-1. This increasing trend in seasonal amplitude of heat transport represent an enhancement in the heat exchange between the SCS and the JS, which influences not only the heat content of the two seas, but also the ITF heat transport.




Figure 7 | The seasonal amplitude of the KS heat transport obtained by the harmonic algorithm (Method 2). Black solid line indicates the seasonal amplitude values, and black dotted line indicates the linear fitting values.



In addition to linear trends, the seasonal amplitude time series of volume and heat transports also show periodic fluctuations (Figures 6, 7). The results by power spectrum analysis are shown in Figure 8. It can be seen that there are prominent interannual to decadal signals with the typical periods of ~9 and ~13.5 years for the seasonal amplitude time series of heat transport, and ~9 years for the volume transport. which are all above the 95% confidence level. According to the results obtained using the Method 2, the correlation coefficient between the two transports seasonal amplitude time series is up to 0.98 (above the 95% confidence level).




Figure 8 | Power spectrum of the seasonal amplitude time series of volume and heat transports. The black solid line represents the result of volume transport, and the black dotted line represents its 95% confidence level; the blue solid line represents the result of heat transport, and the blue dotted line represents its 95% confidence level.





4.3 Contributions to the seasonal amplitude of heat transport

The velocity and temperature of the KS sections can be decomposed into seasonal cycles and anomalies (  ,  ). Therefore, the formula for heat transport can be written as Formula 7 (Xu et al., 2021). The first three items on the right of the formula represent the contributions of climatologic state, velocity change, and temperature change, while the fourth term is a high-order term. For convenience, the water density is set as 1024 kg m-3. Figure 9 shows the seasonal amplitude time series of the four terms, where velocity and temperature anomalies both contribute to the interannual to decadal modulations in the seasonal amplitude of heat transport, accounting for 6.25 and 0.88 TW, respectively. The primary contribution to the amplitude modulations in seasonal heat transport is the velocity anomaly, followed by temperature anomaly. The velocity anomalies trigger an increasing trend of 2.11 ± 0.84 TW decade-1 of the seasonal amplitude of heat transport from 1994 to 2020, and the temperature anomalies induce a decreasing trend of -0.26 ± 0.12 TW decade-1 in the seasonal amplitude of heat transport.




Figure 9 | The Seasonal amplitude time series of (A) climatologic state, (B) velocity anomaly, (C) temperature anomaly, and (D) higher-order terms in the formula of heat transport. These seasonal amplitudes are extracted using the harmonic algorithm (Method 2). The time series in (B), (C), and (D) are smoothed by 13-month moving average before plotting.



 




5 Potential influencing factors on changes in the seasonal amplitude


5.1 Relationships with SSH and SSW

The KSTF is mainly forced by the local SSW field and along-channel SSH gradient in the KS (Wang et al., 2019; Xu et al., 2021), therefore, we can calculate the seasonal amplitudes of SSW and SSH and analyze the relationship between them (Figure 10). The results show that the fluctuations in the interannual modulations of the SSH gradient, local meridional SSW, and volume transport are highly consistent. Meanwhile the modulations in local zonal wind are relatively independent. The average seasonal amplitudes of SSH gradient, local meridional wind, and local zonal wind are 0.17 ± 0.01 m, 3.93 ± 0.45 m s-1, and 4.16 ± 0.40 m s-1, respectively. The partial correlation coefficients of the SSH gradient, local meridional and zonal winds with the volume transport seasonal amplitude are 0.72, 0.65 and 0.02, respectively. The first two correlations are significant at the 95% confidence level, but the local zonal wind is not. This indicates that interannual to decadal signals of seasonal amplitude also exist in the SSH gradient and local SSW field, and the SSH gradient and meridional component of local SSW fields are the main contributors to the volume transport seasonal amplitude. In addition, during 1994-2020 there is a upward trend of 0.25 ± 0.06 m s-1decade-1 in seasonal amplitude of local meridional wind, which is above the 95% confidence level. The trends in seasonal amplitudes of the SSH gradient and local zonal wind are -0.19 ± 0.17 cm decade-1 and 0.06 ± 0.05 m s-1decade-1 respectively, which are not significant.




Figure 10 | (A) Seasonal amplitudes of local meridional (blue thick line) wind field, zonal (blue thin line) wind field and volume transport (black solid line) obtained by harmonic algorithm (Method 2). (B) Seasonal amplitudes of SSH gradient (red solid line) and volume transport (black solid line) obtained using the harmonic algorithm (Method 2).





5.2 Relationships with ENSO, IOD, and the Pacific decadal oscillation

In previous studies on the annual mean variation of the KS, Gordon et al. (2012) and Xu et al. (2021) pointed out that the interannual variability of KSTF had an insignificant correlation with ENSO and IOD. Other studies have suggested that the interannual variability of the KSTF was modulated by ENSO and IOD (Du and Qu, 2010; He et al., 2015). In this study, we explain the interannual to decadal modulations in the KS from the perspective of seasonal amplitude and analyze correlations between the KSTF and the ENSO, IOD, and Pacific Decadal Oscillation (PDO). The Niño3.4 index, used to characterize the intensity of the ENSO is downloaded from https://psl.noaa.gov/data/timeseries/monthly/NINO34/. The strength of the IOD measured using the Dipole Mode Index (DMI) defined by Saji and Yamagata, 2003, is downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/. The PDO index, defined by Deser et al. (2016), is obtained from https://www.ncei.noaa.gov/access/monitoring/pdo/. Figure 11 shows the seasonal amplitude time series of volume transport and these climate indices. Since Method 2 (harmonic algorithm) has the function of moving average while extracting the seasonal amplitude, these indices are processed with 24-month running mean.




Figure 11 | Relationships between the seasonal amplitude of volume transport and the ENSO, IOD, and PDO, where these indices have passed a 24-month running mean. The seasonal amplitude of volume transport obtained by the harmonic algorithm (Method 2) is the black solid line which is detrended; PDO index is the red solid line; Niño3.4 index is the red dashed line; DMI index is the red dot-dashed line.



From the Figure 11, it can be seen that the seasonal amplitude of volume transport is consistent with the low-frequency variation of the ENSO and the PDO, but different from the IOD. The cross-correlations between the seasonal amplitude of volume transport and climate indices are carried out to understand the lead and lag time of the climate events. When the PDO, ENSO, and IOD events lag behind the seasonal amplitude by 12, 10, and 3 months, the correlation coefficients reach maximum values of 0.69, 0.58, and -0.38 (above the 95% confidence level), respectively. Qin et al. (2016) noted that the pressure difference between the West Pacific and East Indian Ocean is closely correlated to the KS transport on the decadal scale. The variability of the pressure difference is primarily controlled by the variability of SSH in the East Indian Ocean, which appears to be modulated by PDO.



5.3 Composite analysis results

Since the seasonal amplitudes of water transport has a good correlation with the PDO, we use composite analysis to investigate the differences in SSH and SSW of the adjacent seas during different phases of the PDO. The warm PDO phases are identified as 1996, 1997, 2003, 2004, 2014, and 2015, and the cold PDO phases are identified as 1998, 1999, 2010, and 2011 (Figure 11). Figures 12A–C show the composite analysis results of SSH and SSW field in winter, in summer and their difference in warm PDO phases. Figures 12D–F show the same information for cold PDO phases. The local meridional wind and the difference in regional mean SSH between the north and south areas of the KS (see Section 3.1) are calculated during these two phases.




Figure 12 | Composite analysis results of SSH and SSW field in winter (A) and summer (B) and the seasonal amplitude (C) in warm PDO phases. Composite analysis results of SSH and SSW field in winter (D) and summer (E) and the seasonal amplitude (F) in cold PDO phases.



During winter of warm PDO phases (Figure 12A), the northerly wind from the SCS reaches the KS with strong wind speed. The meridional component of the wind reaches up to -4.41 m s-1 while the along-channel SSH slope is about -27.89 cm. However, the SSW over the SCS in winter of the cold PDO phases is more easterly compared to that of the warm PDO phases (Figure 12D). This easterly SSW induces a substantial decrease to -2.92 m s-1 in the meridional wind over the KS, accompanying a decrease to -24.74 cm in the along-channel SSH slope. In summer during warm and cold PDO phases (Figures 12B, E), the southeast monsoon from the Indian Ocean covers the KS after crossing the JS. However, the differences in local meridional wind and SSH slope between that of two phases are only 0.04 m s-1 and 0.79 cm, respectively. Therefore, there are significant differences of the local SSW and SSH slope between warm and cold PDO phases in winter, but not in summer. Figures 12C, F show the winter-summer differences of the SSW and SSH in warm and cold PDO phases, respectively. The results indicate that the seasonal amplitudes of the local SSW and SSH slope in KS are stronger in warm PDO phases than that in cold PDO phases. As the ENSO displays low-frequency variability that is similar with the PDO (Newman et al., 2003; McGregor et al., 2010), the composite analysis results are consistent during the ENSO and PDO phases.




6 Summary and discussion

The variability in the seasonal Karimata Strait (KS) transport is often assumed to be time-invariant, however, it changes from one year to the next and needs a modified characterization to account for its variations. Therefore, it is necessary to investigate the amplitude modulations in seasonal KS throughflow (KSTF).

In this study, we use two methods (the winter-summer difference algorithm and harmonic algorithm) to calculate the seasonal amplitude of the KSTF based on the reconstructed time series of transports from 1993 to 2021. The results calculated by these two methods show the same significant interannual to decadal modulations in the seasonal amplitude of the KSTF. In general, the modulations in the seasonal amplitude of volume transport obtained by these two methods are consistent, both ranging between 1.36 and 1.92 Sv. The average seasonal amplitudes of the volume transport calculated using the two methods are 1.69 ± 0.14 and 1.60 ± 0.12 Sv, respectively, which are double the size of the annual mean volume transport. Meanwhile, there are increasing trends in them with rates of 28.27 ± 67.10 and 37.75 ± 15.69 mSv decade-1, respectively. If the linear trend is still increasing in future, it implies that the KSTF would be significantly strengthened in winter or summer. The average seasonal amplitude of heat transport calculated by harmonic algorithm is 148.89 ± 11.47 TW, with an increasing trend of 4.78 ± 1.52 TW decade-1. The seasonal amplitude of heat transport also exhibits significant modulations, ranging between 126.41 and 173.36 TW. The seasonal amplitudes of volume and heat transports both show a quasi-period of ~9 years, and the heat transport also has a significant quasi-period of ~13.5 years. The quasi-decadal signals are similar to a global mode with 10-12 years periodicities (Feliks et al., 2021). The overall increasing trends in the seasonal amplitudes of volume and heat transports indicate that the water exchange between the SCS and the JS is gradually strengthening, which directly affects the variation range of the heat/salt content in the two seas as well as the transports and seasonal variation of the ITF. The KSTF seasonally influences the surface Makassar ITF (Wei et al., 2016; Jiang et al., 2019), therefore, the interannual to decadal modulations in the seasonal amplitude of the KSTF would result in the corresponding variations in the seasonality of the surface ITF. In winter, the KSTF not only contributes directly to the heat and freshwater transports of the ITF, but also blocks the southward Makassar ITF through the “freshwater plug” effect (Gordon et al., 2012; Xu et al., 2021). In summer, the water from the JS flows into the southern SCS through the KS. Therefore, when the KSTF transport is enhanced in winter, the seasonal variability of ITF is uncertain by dual effect. When the KS transport increases in summer, this may be accompanied by a strengthened southward surface flow in the Makassar Strait, which enhances the seasonal ITF.

The partial correlation coefficients of the SSH gradient, local meridional and zonal winds with the seasonal amplitude of the volume transport are 0.72, 0.65 and 0.02, respectively. SSH gradient and local meridional wind are significant above 95% confidence level. This indicates that interannual to decadal signals in the seasonal amplitude of the volume transport has a high correlation with that of the SSH gradient and local meridional wind, but is independent on the local zonal wind. The SSH gradient and meridional component of local SSW field are the main contributors to the seasonal amplitude of the volume transport. In addition, we note a significant increasing trend of 0.25 ± 0.06 m s-1decade-1 in seasonal amplitude of local meridional wind during 1994-2020, but the linear trends in the SSH gradient and local zonal wind are not significant. Therefore, the local meridional wind plays an important role in the strengthening of seasonal KSTF during 1994-2020.

PDO, ENSO and IOD lag behind the seasonal amplitude of volume transport by 12, 10 and 3 months with the correlation coefficients up to the maximum values of 0.69, 0.58 and -0.38. The KS transport is highly positively correlated with the ENSO and PDO as they have the same quasi-decadal modulations. However, there is no interannual signals of 2-5 years in the seasonal amplitude like the ENSO. According to the results of the composite analysis, in winter of the warm PDO phases, the stronger monsoon wind from the SCS reaches the KS, resulting in a large along-channel SSH slope, and intensifying the southward KSTF. In summer of the warm PDO phases, the southeast trade wind comes from the southeast Indian Ocean and the larger SSH slope induces a stronger northward KSTF. The situations are opposite during the cold PDO phases. Furthermore, the seasonality of the KS transport is significantly modulated by the quasi-decadal variations of SSH and SSW, especially in winter. Meanwhile, this quasi-decadal modulation would influence the ITF transport through the dual effect.
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The Tibetan Plateau uplift has induced the formation of the largest sediment source-sink system in the northeast Indian Ocean, which has become an ideal region for investigating land-sea interaction processes. However, many questions regarding sediment transport patterns and their controlling factors at different time scales remain unanswered. Therefore, in the present study, a gravity core named BoB-79, based on the southern Bay of Bengal (BoB) was selected to investigate sediment provenance shift and its corresponding mechanism to sedimentary environment change since the last glacial maximum (LGM). The clay mineral compositions are analyzed and the whole core sediments reveal a feature dominated by illite (~55%), followed by chlorite (~24%) and kaolinite (~17%), and the content of smectite (~4%) is the lowest. A trigonometric analysis of provenance discrimination of clay minerals showed that the Himalayas, together with the Indian Peninsula, represent the main sources of southern BoB sediments, and the last glacial period might have been controlled by the dominant Himalayan provenance, with an average contribution of approximately 90%. However, as a secondary source, the influence of the Indian Peninsula increased significantly during the Holocene, and its mean contribution was 24%, thus, indicating that it had a crucial effect on the evolution process of BoB. The sediment transportation pattern changed significantly from the LGM to the Holocene: in the last glacial period, the low sea level exposed the shelf area that caused the Ganges River connected with the largest submarine canyon in BoB named Swatch of No Ground (SoNG), and the Himalayan materials could be transported to the BoB directly under a strong turbidity current, thereby forming the deep sea deposition center with a sedimentation rate of 4.5 cm/kyr. Following Holocene, the sea level increased significantly, and the materials from multiple rivers around the BoB were directly imported into the continental shelf area. The intensive Indian summer monsoon dominated the transportation process of the terrestrial materials, thereby forming a deposition center in the shallow water area of the continental shelf northeast Indian Ocean; subsequently, the material flux relative to the input to the deep sea area decreased significantly, and the sedimentation rate in the southern BoB decreased to 1.7 cm/kyr.




Keywords: last glacial maximum (LGM), sea level, Indian monsoon, dynamical process, Bay of Bengal (BoB), sedimentary pattern



1 Introduction

Source to sink is an important study topic in modern marine sedimentology research (Goodbred, 2003; Manville et al., 2009; Leithold et al., 2016; Shi et al., 2021). The transportation and sedimentation process of sediments in typical continental margins, the formation and primary control factors of shelf sedimentary systems, and the mechanism of the response of land-sea interactions to climatic and environmental changes are the core scientific issues in this research field (Allen, 2008; Yang et al., 2015; Sebastian et al., 2023). In sediment source-sink systems, rivers play a critical role in material transport processes, land-sea energy balance, and biogeochemical cycles (Gao and Jia, 2004; Selvaraj and Chen, 2006; Liu et al., 2008; Shi et al., 2015). Coupling studies on river-shelf systems have also become one of the hot topics in marine sedimentology research (Galy and France-Lanord, 1999). Therefore, a profound understanding of the material flux and composition characteristics of rivers entering the sea, the transportation of materials, material burial and circulation processes from the rivers to the marginal sea and the global ocean, and their responses to global climatic changes at different scales is very crucial to further elucidate land-sea interaction mechanisms and material balance of payments. This knowledge can also serve as appropriate reference materials for research on global changes in different latitudes and climate zones and further provide a theoretical basis for reconstructing past environmental and climate evolution.

The Tibetan Plateau uplift is globally the largest sediment source-sink system in the northeast Indian Ocean (Gaillardet and Galy, 2008; Ding et al., 2022). The BoB is the world’s largest bay in the northeastern Indian Ocean, and it is also one of the primary sinks for the seaward material transport from the Himalayas and the Tibetan Plateau, with the development of large deltas, shelves, slopes, submarine canyons, and deep-sea fan sedimentary systems (Curray and Moore, 1974; Curray et al., 2003). The abundant material supply of the BoB, the formation of large rivers, the multiple topographic types, and the typical monsoon climate make BoB the best natural laboratory to investigate land-sea interactions. The differences in geological background, climatic belt, biological ecosystems, and human activities among rivers such as Krishna-Godavari (K-G), Ganges-Brahmaputra (G-B), Mahanadi (M), and Irrawaddy (I) rivers distributed around the BoB have led to different compositions of the terrestrial sediments transported by these rivers into the sea (Colin et al., 1999; Tripathy et al., 2011; Tripathy et al., 2014; Joussain et al., 2016); this enables to quantitatively identify sediment contributions from complex multisource sediments from different provenances in the BoB. The BoB is located in a typical Indian monsoon region with distinct dry and wet seasons. The changes in the intensity of the Indian monsoon, especially the summer wind, play a critical role in the physical erosion, chemical weathering, and sediment transportation of the sediment provenance regions (Liu et al., 2020). Because of a unique climate and dynamic transport conditions, the distribution and contribution of marine sediments from different provenances have remarkable spatial and temporal differences. These differences contribute to understanding variations in past climate and hydrodynamic environments within a particular study area. Therefore, from a scientific perspective, it is very critical to find appropriate alternative indicators to clarify the temporal and spatial differences in the distribution and contribution of materials from different provenances in the ocean, interpret the climatic and environmental signals, and reveal their control mechanisms.

Sediment provenance in the BoB has been suggested to be mostly terrestrial detritus material, and the contribution of marine autogenous organic matter, wind dust, and volcanic material are relatively small (Weber et al., 2003; Tripathy et al., 2014; Li et al., 2018; Li et al., 2019; Ye et al., 2022). Recent studies have shown that the contribution of materials from Indian rivers to the BoB is >20% (Sun et al., 2019; Sun et al., 2020); however, it remains unclear how this material from different river sources has changed over a historical period. To date, few studies have been conducted on this topic. Therefore, in this study we comprehensively analyze the characteristics of clay minerals in core BoB-79 sediments from the southern BoB, quantitatively identifies the contribution of materials from different river provenances, reveals the response of sediment provenance changes to sea level fluctuations and Indian monsoon since the last glacial maximum, further to discuss the transport pattern and control mechanism of sediments at different times.



2 Materials and methods


2.1 Sample collection

A China-Thailand joint investigation cruise collected samples from one gravity core, namely BoB-79 (location: 9.96°E, 87.97°N; length: 1.67 m; water depth: 3427 m), in March 2014 (Figure 1). To comprehensively analyze the samples, this work collected 167 sub-samples from the core at 1 cm interval.




Figure 1 | Location of the core BoB-79 sediment and the related reference cores BoB-24 (Ye et al., 2022), BoB-56 (Li et al., 2018), and ADM-159 (Liu et al., 2020; Liu et al., 2021a) in the northeastern Indian Ocean. Ocean dynamic conditions driven by seasonal monsoons are presented by different color arrows, and the active submarine valley crossing the whole BoB is shown by the black dotted line. SoNG is presented by black dotted line (Curray et al., 2003; Chauhan and Vogelsang, 2006).





2.2 AMS 14C analysis

The radiocarbon age of the shells of the planktonic foraminifera Globorotalia menardii from nine typical layers was measured by the Accelerator Mass Spectrometry (AMS) method. The radiocarbon age was corrected for a local reservoir age of –60 ± 51 years (Dutta et al., 2001) and converted to calendar age (1σ errors) by using Calib Rev 7.0.4 (Reimer et al., 2013). The shells of the foraminifera were pretreated at the Key Laboratory of Marine Geology and Metallogeny, Ministry of Natural Resources, China, and AMS14C analyses were performed at the Beta Analytic Laboratory, USA.



2.3 Grain size analysis

The pretreatment of the samples for grain size analysis was performed as follows: a 15 mL H2O2 solution (30%) was added to remove organic matter from the shells, and the samples were then bathed in a 5 mL HCl solution (3 mol/L) for 24 h to remove calcareous cement and shell materials. All samples were fully desalted and dispersed before conducting the measurements. By using the Mastersizer 3000 instrument (Malvern Ltd., UK; resolution, 0.01 Φ; measurement range, 0.02–2000 µm), sample grain sizes were assessed in the Key Laboratory of Marine Geology and Metallogeny, Ministry of Natural Resources, China. After repeated measurements, the experimental error was predicted to be<3%. For data processing, the moment method was used for calculating grain size parameters, including sorting coefficient, mean grain size, kurtosis, and skewness (McManus, 1988).



2.4 Clay mineral analysis

X-ray diffraction (XRD) was conducted to identify clay-sized particles (<2 µm). Subsequently, the samples were treated with 30% H2O2 to remove organic matter and then with 1 M HCl to remove calcium carbonate. The samples were then rinsed continuously with distilled water until deflocculation occurred. In accordance with Stokes’ law, particles<2 µm in size were collected, sedimented, and centrifuged for determination. XRD was performed in three cycles in the 24-h air drying and ethylene glycol solvation condition, followed by heating for another 2 h at 490°C. Under CuK-α radiation, the D/Max 2500 PC diffractometer was used for obtaining XRD graphs at 100 mA intensity and 40 kV voltage. In the present study, diffraction patterns (2θ) were scanned in the range of 3°–30° at the 0.02° step size. Clay minerals were mostly identified based on (001) series of the basal reflection position observed from 3 XRD graphs for kaolinite+chlorite at 0.7 nm and illite at 1 nm together with smectite at 1.7 nm. Chlorite and kaolinite were separated according to their relative proportions based on the 0.357/0.354 nm peak ratio. By using Biscaye’s method (Biscaye, 1965), the intensity factors for kaolinite+chlorite, illite, and smectite were 2, 4, and 1, respectively. The error for the relative clay material level was predicted as <10%.




3 Results


3.1 Chronology and AMS 14C age model

In the present study, the BoB-79 core age model was constructed by linearly interpolating the 14C age data, and the entire core sediments covered the sequential record over the last 43.5 cal ka BP (Figure 2). The recently updated algorithm COPRA (Breitenbach et al., 2012) was used to optimize the BoB-79 age model for interpreting age uncertainty applied in determining proxy error estimates. The core deposition rate of BoB-79 was relatively stable, with an average sedimentation rate of approximately 3.8 cm/kyr; the core sedimentation rate had increased in the last glacial period as compared to that in the Holocene (approximate average: 4.5 cm/kyr vs. 1.7 cm/kyr).




Figure 2 | The AMS14C age model of the core BoB-79 and the calculated average sedimentation rate since the last glacial period; error bars represent the uncertainty of each dating point.





3.2 Lithology and grain size composition

The lithology of BoB-79 core sediment showed relative heterogeneity, with mostly gray-brown silt, while the sediment tended to have a dark color from top to bottom (Figure 3). According to the changes in sediment lithology, the entire core was classified into upper and lower sections at 38 cm: the 0–38 cm section was yellow-brown silt, and no apparent layering change was observed. There were two dark interlayers distributed at 21–23 cm and 32–34 cm. The layer at 38–167 cm had gray-brown silt with a uniform lithology and no apparent stratigraphic changes; the water content and viscosity of the sediment in this section were lower than those in the 0–38 cm section.




Figure 3 | Vertical distribution of sediment grain size parameter and sediment lithology from the core BoB-79; the red dotted line represents the boundary of the two stratum units, black triangles show the AMS14C data point.



The grain size results of BoB-79 core sediments showed the highest composition of silt, with an average of 68.5%, followed by clay components (14.7%–41.7%); the content of sand components was the lowest (range: 0.3%–17.2%). The variations in the characteristics of grain size composition and parameters (sorting coefficient, mean grain size, kurtosis, and skewness) of the core sediment could be roughly divided into two sections with 38 cm as the boundary. The detailed characteristics are described as follows.

In the bottom section (38–167 cm): the content of sand components was 0.27%–11.07%, with an average of 5.35%. The contents of silt sand components and clay components were 56.30%–84.14% and 14.70%–41.66%, respectively, with an average of 69.39% and 25.26%, respectively. The particle size range was 6.52–7.77Φ, with an average of 6.98Φ. The sorting coefficient was 1.32–1.93, and the sorting performance was poor. The range of the skewed state was –1.56 to 1.16; the sediments at this stage were mainly negatively skewed, and the positively biased sediments appeared only in individual layers. The peak state was 1.77–2.56, with a wide range of peak states. Apparent fluctuations were noted in each particle size parameter.

The top section (0–38 cm): The content of sand grade components was 3.03%–17.21%, with an average of 11.92%. The contents of silt sand components and clay components were 56.30%–68.98% and 22.22%–31.56%, respectively, with an average of 61.39% and 26.69%, respectively. The particle size range was 6.42–7.21Φ, with an average of 6.72Φ. The sorting coefficient was 1.57–2.51, and the sorting performance was poor to very poor. The skewed state was –1.28 to –0.39, all of which were negatively skewed. The peak state was 2.11–2.60, which indicated a wide range of peak state width. Each particle size parameter was stable within the range of their respective maximum/minimum values after consistent increase/decrease at this stage.



3.3 Clay mineral composition

Four main clay minerals in BoB-79 core sediments, together with changes of illite chemical weathering index and illite crystallinity, are shown in Figure 4. Illite showed the highest content (range: 43%–65%, mean: 55%), followed by chlorite (range: 15.14%–32.57%, mean: 24%); kaolinite and smectite exhibited lower contents, with an average content of 17% and 5% and ranges of 14%–22% and 0–16%, respectively.




Figure 4 | Vertical distribution of clay mineral composition, illite chemical index, and illite crystallinity from the core BoB-79; the red dotted line represents the boundary of the two stratum units, black triangles show the AMS14C data point.



Regarding the trend in clay mineral change, two stratum units could also be identified with the boundary of 38 cm. Illite and chlorite had higher content in the bottom stratum unit (38–167 cm) and showed fluctuations in the relatively high-value zone; the average value in this section was 56% and 25%, respectively. However, the changing trend of these two components at this stratum unit roughly manifested as a “mirror” form, the increase of illite was often accompanied by a decrease in chlorite content. The contents of kaolinite and smectite ware low and stable in this section, with the average content of 17% and 3%, respectively. In the top stratum unit (0–38 cm), both illite and chlorite showed a decreasing trend, with new averages of 48% and 22%, respectively. Kaolinite and smectite remained high after a rapid increase at 20 cm, the average content of kaolinite and smectite was 20% and 10% in this section, respectively.

The chemical weathering index of illite ranged between 0.31 and 0.95, and the fluctuation change in the bottom stratum unit showed a decrease trend upward. The crystallinity of illite was 0.23–0.48, and there was no apparent change in the whole core sediment.




4 Discussion


4.1 Sediment provenance discrimination based on clay mineral proxy

As an important component of fine fraction sediments, clay minerals are extensively present in marine sediments, and they show a high sensitivity to marine geological processes and sedimentary environments (Dou et al., 2010; Liu et al., 2012; Qiao et al., 2015; Shi et al., 2015). Because clay minerals are embedded in fine particulate matter, they can be transported in the ocean with suspended bodies over long distances and remain unaltered before entering the sea; this aspect makes the combined characteristics of clay minerals an effective indicator for identifying material sources and tracking sediment transport processes in marine sedimentology research (Xu et al., 2014; Shi et al., 2015; Sun et al., 2020). Previous studies have shown that clay mineral assemblages in sediments from rivers entering the sea around the northern Indian Ocean (Khan et al., 2019) show significant differences; this feature can be used to identify the sediment material source in the BoB (Sun et al., 2020). Therefore, we constructed an illite-smectite-(chlorite+kaolinite) end trigonogram to identify the sediment source in the southern BoB since the LGM by comparing the clay mineral composition of the BoB-79 core sediment and the surrounding potential source regions (Figure 5); this method has been successfully used for source discrimination in the Indo-Pacific intersection regions (Shi et al., 2015; Ye et al., 2022).




Figure 5 | Provenance identification of the sediment from the core BoB-79 based on clay mineral composition. Two stages (25.2–11.7 cal ka BP and 11.7–0 cal ka BP) sediment clay mineral results from the core BoB-79 are compared with the tentative sediment provenance regions of Brahmaputra River (Datta and Subramanian, 1997), Ganga tributaries from the Himalayan region (Sarin et al., 1989), Ganga tributaries from the Deccan Plateau (Sarin et al., 1989), Krishna-Godavari Rivers (Phillips et al., 2014), Mahanadi River (Phillips et al., 2014), and Irrawaddy River (Rodolfo, 1969). The gray shades represent sediments from the Himalayas (B) and the Indian Peninsula (A), respectively.



As shown in Figure 5, the coverage areas of the last glacial and Holocene phases were significantly separated, thus, indicating the different sediment sources of these two stages. The BoB-79 sediments had very low smectite content during the last glacial phase, while illite was the dominant mineral. As noted from the trigonogram, the clay mineral assemblage at this time almost completely settled in the Ganges-Brahmaputra River range, thus, indicating that the sediment source at this time was a single source dominated by the Himalayan materials. After entering the Holocene, the BoB-79 core sediments were still closest to the Ganges-Brahmaputra sediment drop, but the smectite content increased significantly during this period. Subsequently, the clay mineral settlement moved toward the Godavari-Krishna and Irrawaddy rivers and were closer to the Indo-Peninsular rivers; hence, we believe that the Indian Peninsula as a secondary source area had a substantial effect on the BoB-79 core sediments at this stage. It should be noted that the sediment clay mineral drop points in both stages were distant from the Irrawaddy River material, thus, suggesting that the material contribution from this river into the sea on the eastern side of the BoB could be negligible. Gravity core sediments, namely BoB-24 and BoB-56, in the central BoB also showed significant changes in the last glacial and Holocene material sources (Li et al., 2018; Ye et al., 2022); however, the timing of this transition was not consistent, which mainly reflects the difference in the deposition process of the different spatial locations, southern core sediment presented an earlier response to sea level rising than that in the central BoB. The core sediment investigated in the present study was located in the southern BoB, which belongs to the distal sink of the terrestrial material, and its deposition environment is relatively stable; this finding indicates the sedimentary pattern of the southern BoB and its primary controlling mechanism.

From the above source identification results, we selected the Himalayan and Indian peninsula source areas as the two main end elements of BoB-79 core sediments, with Ganges-Brahmaputra rivers and Krishna-Godavari rivers being the representatives, respectively, using clay minerals to combine smectite and illite+kaolinite levels. The relative contribution ratio of the two source areas was calculated according to the following equilibrium equation:



 

In the formula, Xi and Yi represent the contribution ratios of Himalayan and Indian source areas to the BoB-79 sediment, respectively. Si and IKi represent smectite and illite+kaolinite percentage contents in sample i, respectively, and the coefficients on the left of the equation represent the mean corresponding clay mineral combination contents of these two source areas, respectively (Sarin et al., 1989; Phillips et al., 2014).

The results revealed that the source of sediment in the BoB has been in the process of constant alteration after the last glacial period (Figure 6). The contribution of the Himalayan source area in the last glacial period was approximately 90%; this contribution significantly reduced in the Holocene period, with an average contribution of 76%. Correspondingly, the average contribution of the Indian source region in the last glacial period was approximately 10%, and it exhibited a clear increasing trend after entering the Holocene period, with an average contribution of 24%. Modern sediment source discrimination in the BoB also shows that Indian source material is mainly deposited on the west side of the BoB, and its main transport force is the seasonal monsoon flow (Li et al., 2017; Sun et al., 2019; Sun et al., 2020), the results of this study show that the inflow of materials from rivers such as the Godavari-Krishna River can be transported over long distances to the south, which plays an important role in the formation and evolution of turbidity fans in the BoB.




Figure 6 | Contributions of different provenances and comparison against the related records for the northern Indian Ocean since the LGM. (A) Relative global sea level estimates based on corals (Waelbroeck et al., 2002); (B) Greenland NGRIP ice core oxygen isotope composition (Andersen et al., 2006; Rasmussen et al., 2006); (C) Sea water oxygen isotope composition of the core ADM-159 in the central Andaman Sea (Liu et al., 2021a); (D) Sediment sorting coefficient of the core BoB-79 (present study); (E) Ratio of smectite and illite of the core BoB-79 (present study); (F) Contributions of Himalayan provenance (present study); (G) Contributions of India river provenance (present study); (H) sedimentation rate calculated based on the AMS14C data of the core BoB-79 (present study). 90% and 24% present the average contributions from Himalayas and Indian Peninsula, respectively.





4.2 Sedimentary pattern of the BoB after the LGM

Significant changes in the global climate after the LGM are clearly recorded in northern Indian Ocean sediments, where monsoon intensity, land-sea interactions, and ocean productivity show good remote correlations with high latitudes (Andersen et al., 2006; Rasmussen et al., 2006; Liu et al., 2021b). Based on the identification results of clay minerals, the BoB-79 core sediment in the southern BoB was a single Himalayan source during the last glacial period, and its contribution was approximately 90%. The Holocene period witnessed a mixed source of Himalayan and Indian source areas, among which the Himalayan source area was the primary source area that contributed approximately 80%, with the Indian peninsula acting as a secondary source area and contributing approximately 20%. From the last glacial period to the Holocene period, significant changes occurred in the sea level, leading to changes in the marine sedimentary environment in the southern BoB; moreover, significant changes in climatic conditions from the last glacial period to the Holocene period have led to changes in sediment transport forces and ultimately patterns of sediment formation (Liu et al., 2021a; Ye et al., 2022; Sebastian et al., 2023).

During the last glacial period, the sea levels decreased, especially in the LGM period, the sea level was approximately 120 m lower than the present level (Fairbanks, 1989; Chappell, 2002; Cutler et al., 2003; Arz et al., 2007) (Figure 6). The northern shelf of the BoB is exposed, the estuary extends seaward, and the northern SoNG receives sediments transported into the sea from the Ganges-Brahmaputra rivers (Curray et al., 2003; Li et al., 2019). A sufficient supply of sediments causes strong turbidity in the active submarine canyon, and massive sediments from the Himalayas are delivered to the deep sea through turbidity; moreover, the overflow waterway is deposited on the surface of the BoB during transportation (Kuehl et al., 1989; Curray et al., 2003). Turbidity and its overflow were the main drivers of the transport of terrestrial detritus material to the BoB during this period. The BoB-79 core is located in the eastern part of the SoNG, and it is affected by turbidity overflow. The channel-levee system formed by turbidity current along the seafloor has continuously transported sediments from rivers and the shelf to the deep sea over geological history, forming the characteristic deep-sea turbidite layers (Weber and Reilly, 2018; Fauquembergue et al., 2019; Li et al., 2021). The last glacial stage had a high sedimentation rate (mean: 4.5 cm/kyr), and the ratio of smectite to illite in this stage was stabilized in the low range of vibration, thus, indicating the control of materials from the Himalayan source area. The quantitative calculation results also showed that the Himalayan source area contributed more than 90% during this period (Figure 6), and the deposition center was formed in the BoB (Figure 7). Because of the lack of huge submarine canyons in the Indian peninsula, the estuary of the river is disconnected from the BoB, and sediments cannot be transported to the sea in large quantities; moreover, a very small amount of material entering the sea mainly relies on the transport of surface circulation. The flux of the river is also significantly smaller than that of the Ganges-Brahmaputra rivers; thus, even if few sediments are delivered to the deep waters of the BoB, their source signal is masked by the Himalayan material.




Figure 7 | Sedimentary pattern of Bengal fan during the last glacial period (A) and the Holocene period (B), the size of grey arrows presents the relative contributions of different material prevenances, color arrows represent Indian summer monsoon, monsoon current and turbidity current in the BoB, black ellipses show deposition center at the Bengal Fan during the last glacial period and submerged shelf during the Holocene.



After entering the Holocene period, there was a rapid increase in sea levels to above –60 m, and the northern shelf was gradually submerged by seawater (Contreras-Rosales et al., 2014). The direct link between the SoNG and the Ganges-Brahmaputra rivers was cut off (Curray and Moore, 1971), and more sediments were captured by the shelf, thus, forming a deposition center in the shelf area (Figure 7). The sedimentary environment during this period also caused insufficient sediment supply to the BoB, thereby weakening the turbidity activity. Turbidity and its overflow occurred only in the northern and central BoB, thus, making it difficult to affect the southern BoB where the BoB-79 core is located (Curray et al., 2003; Weber et al., 2003; Weber and Reilly, 2018); this also became a watershed for changes in the sediment source area of the study area. Consequently, clay mineral provenance was identified. Holocene sediments remained closest to Ganges-Brahmaputra sediment drop, but smectite content increased significantly during this period. As shown in Figure 5, the clay mineral plots moved toward the rivers of the Indian Peninsula. The intensity of the early Holocene Indian summer monsoon was significantly enhanced, and the climate was warmer and wetter than that in the LGM (Liu et al., 2021a). The remarkably elevated smectite content in the Holocene period may be caused by changes in the climate environment (Cao et al., 2015). However, the chemical index of illite decreased during this period, and the crystallinity of illite improved (Figure 4); this finding was inconsistent with the trend of climate shifting toward warm and moist conditions, thus, indicating that the increase in smectite in BoB-79 during the Holocene period reflects a change in sediment provenance. The significant increase in the sorting coefficient during the Holocene period (Figure 3) also indicates that the sediments at this stage were likely to be from mixed sources. Based on the qualitative identification of clay minerals, the secondary source area after entering the Holocene period should be the Indian Peninsula material. In the Holocene phase, because of the absence of turbidity activity in the BoB, the monsoon-driven surface circulation system was the predominant movement factor for sediment transport in the southern BoB; this obviously greatly reduced the supply of the Himalayan material to the study area, as confirmed by the significant decline in the deposition rate during the Holocene period. The results of quantitative calculations revealed that the relative contribution of the Indian source areas increased significantly by more than 20% during the Holocene period (Figure 6), mainly because of the reduction in the material supply from the Himalayas.




5 Conclusions

In the present study, clay mineral characteristics from BoB-79 sediments in the southern BoB were comprehensively analyzed, and the source identification of the fine-grained sediment was performed using the illite-smectite-(chlorite+kaolinite) end trigonogram. The Himalayas and the Indian peninsula represent the two major sediment sources in southern waters from the BoB, among which the last glacial stage was controlled by a single Himalayan source; the influence of the Indian source area as a secondary source increased significantly in the Holocene period. Based on the quantification results, the Himalayan source area in last glacial stage had a mean contribution of 90%, while that in the Holocene stage was 76%. Correspondingly, the average contribution of the Indian source area during the last glacial phase was 10% and 24%, respectively, during the Holocene period.

Controlled by sea level elevation, the transportation of sediments within our study area changed remarkably from last glacial to the Holocene period. The low sea level and frequent turbidity flow activity during the last glacial period were the main driving forces for the transportation of the terrestrial detritus material to the BoB, mainly transporting erosion products from the Himalayas to the study area with the sedimentation rate as high as 4.5 cm/kyr. After entering the Holocene period, the sea level increased significantly, the turbidity activity weakened and these conditions no longer affected the southern BoB, while the surface circulation system driven by the Indian summer monsoon became the predominant factor of sediment delivery to the BoB. The material supply in the Himalayan source area decreased significantly, the sedimentation rate decreased to 1.7 cm/kyr, and the relative material contribution from the Indian peninsula as the secondary source area increased.
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  The Indonesian Throughflow (ITF) connects the tropical Pacific and Indian Oceans and is critical to the regional and global climate systems. Previous research indicates that the Indo-Pacific pressure gradient is a major driver of the ITF, implying the possibility of forecasting ITF transport by the sea surface height (SSH) of the Indo-Pacific Ocean. Here we used a deep-learning approach with the convolutional neural network (CNN) model to reproduce ITF transport. The CNN model was trained with a random selection of the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations and verified with residual components of the CMIP6 simulations. A test of the training results showed that the CNN model with SSH is able to reproduce approximately 90% of the total variance of ITF transport. The CNN model with CMIP6 was then transformed to the Simple Ocean Data Assimilation (SODA) dataset and this transformed model reproduced approximately 80% of the total variance of ITF transport in the SODA. A time series of ITF transport, verified by Monitoring the ITF (MITF) and International Nusantara Stratification and Transport (INSTANT) measurements of ITF, was then produced by the model using satellite observations from 1993 to 2021. We discovered that the CNN model can make a valid prediction with a lead time of 7 months, implying that the ITF transport can be predicted using the deep-learning approach with SSH data.
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  1. Introduction.

The Indonesian seas have active exchanges with neighboring oceans through multiple channels and the Indonesian Throughflow (ITF) passing by these channels (Wyrtki, 1961; Gordon, 1986; Sprintall et al., 2019). As the unique oceanic passage between tropics, the ITF links the Pacific low-latitude western boundary current and the Indian Ocean circulation system and hence plays an important role in the Indo-Pacific Ocean circulation system (Wyrtki, 1987; Hu et al., 2015; Sprintall et al., 2019; Phillips et al., 2021). Under the context of global warming, ocean circulations, including the ITF, are expected to change significantly (e.g., Sen Gupta et al., 2016; Hu et al., 2020; Ma et al., 2020; Hu et al., 2021; Santoso et al., 2022; Shilimkar et al., 2022). Changes in the ITF may cause fluctuations in the Indo-Pacific exchange rate and have an impact on regional and global climates (Gordon, 1986; Sprintall et al., 2014; Feng et al., 2015; Lee et al., 2015; Liu et al., 2016; Hu and Sprintall, 2017; Feng et al., 2018; Li et al., 2018; Hu et al., 2019).

The Indonesian seas have complex topographies and ocean dynamic processes (e.g., Wijffels and Meyers, 2004; Gordon, 2005; Hu and Sprintall, 2016; Wei et al., 2019; Sun and Thompson, 2020; Xu et al., 2021). Several notable observational experiments have been conducted in this region, such as the Indonesian-US Arlindo program (Gordon et al., 1999), the International Nusantara Stratification and Transport (INSTANT) program (Sprintall et al., 2004; Sprintall et al., 2009; van Aken et al., 2009; Gordon et al., 2010), Monitoring the ITF (MITF; Susanto et al., 2012; Gordon et al., 2019), and the expendable bathythermograph (XBT) deployments along the IX1 section (Meyers et al., 1995), as well as the Northwestern Pacific Ocean Circulation and Climate Experiment (NPOCE; Hu et al., 2011). These observations are crucial for recovering the characteristics and underlying dynamics of the ITF. However, the lack of long-term and continuous ITF time series makes it difficult to gain a deeper understanding (Sprintall et al., 2019).

Previous studies suggested finding a proxy of ITF transport in addition to direct observations (e.g., Sprintall and Révelard, 2014; Susanto and Song, 2015; Hu and Sprintall, 2016). Wyrtki (1961) proposed that the large-scale pressure gradient between the Pacific Ocean and the Indian Ocean is the driver of the ITF on an annual to longer time scale, and the wind field changes in the Pacific and Indian oceans affect ITF transport. Susanto et al. (2007) suggested an ITF proxy using SSH anomalies from T/P altimeters and thermocline depth anomalies along the Lombok Strait. Using numerical simulations, Shinoda et al. (2012) found that sea-level differences between the eastern Indian Ocean and the western Pacific were highly correlated with ITF transport. Sprintall and Révelard (2014) used remotely sensed altimeter data to develop proxy time series of ITF transport, focusing on the three outflow passages of Lombok, Ombai, and Timor. Susanto and Song (2015) developed an ITF transport proxy from satellite altimetry and gravimetry ocean bottom pressure (OBP) data, which they validated with measurements in the Makassar Strait. Hu and Sprintall (2016) proposed an ITF transport proxy on the basis of steric height from hydrologic data to separate the salinity effect on ITF transport.

Previous research indicates a close connection between ITF transport and SSH in the Indo-Pacific Ocean. Nevertheless, the proxy of ITF derived from SSH using conventional methods, such as linear regression, is typically based on the difference of SSH between two regions within the Indo-Pacific Ocean and hence ignores SSH signals of certain regions, resulting in significant inconsistency between the proxy and observations and a lack of ability to predict ITF transport. By contrast, approaches based on machine learning may be more promising for developing a better ITF proxy and predicting ITF variability. Li et al. (2018) used a backpropagation (BP) neural network to create a multidecadal time series of 0–300 m Makassar Throughflow.

Deep learning is a more powerful tool for extracting critical information from large amounts of image data than machine learning, such as the simple BP neural network. Deep learning is capable of optimizing a non-linear function from a large amount of trainable data. Theoretically, deep neural networks can approximate non-linear mappings of any complexity (Cybenko, 1989; Hornik, 1991), and deep learning has been widely used in oceanography, e.g., automatic detection and prediction of mesoscale eddies (Zeng et al., 2015; Xu et al., 2019), prediction of El Niño–Southern Oscillation, studies of climate model parameter sensitivity, and parameterization of unresolved atmospheric processes (Ham et al., 2019; Esteves et al., 2019; Anderson and Lucas, 2018). Bolton and Zanna (2019) demonstrated the powerful potential of deep learning for estimating ocean currents using satellite observations. Deep learning was shown to accurately predict subsurface ocean currents by George and Manucharyan (2021) using synthetic data generated from a simplified ocean turbulence model.

The goal of this study is to create a proxy-ITF transport using deep learning and SSH data. The remainder of the paper is organized as follows: the Data and Methods section introduces the convolutional neural network (CNN) processing methods and architecture diagram, and the Results section investigates the performance of the CNN model with different data in estimating the transport of ITF through SSH. The final section contains a summary and a discussion.


 2. Data and methods.

 2.1. Data.

The data we used for training came from 36 climate models that took part in the Coupled Model Intercomparison Project Phase 6 (CMIP6; see details in  Tables 1  and  2 ). These models have been used to simulate the historical climate since 1850, and they are driven by a variety of observational and time-varying external forces.

 Table 1 | The specifics of the data used for this study. 



 Table 2 | Details of the CMIP6 models used in this study. 



The data for transfer learning and testing are a reanalysis dataset from the University of Maryland’s Simple Ocean Data Assimilation (SODA 2.2.4; details in  Table 1 ). The SODA dataset assimilates ocean station data, mooring temperature and salinity time series, various types of surface temperature and salinity observations, and nighttime infrared satellite SST data. The physical output quantity is mapped to a uniform 0.5°×0.5°×40 grid in the form of a monthly average.

The observational data for comparison and verification of the model results come from the INSTANT program, the MITF program, Ocean Surface Current Analysis Real-time (OSCAR, Lagerloef et al., 2002), and the Archiving, Validation, and Interpretation of Satellite Oceanographic data (AVISO; see details in  Table 1 ). The INSTANT moorings were deployed simultaneously to measure the ITF from the Pacific inflow at Makassar Strait and Lifamatola Passage to the Indian Ocean export channels of Timor, Ombai, and Lombok, from 2004 to 2006 (Sprintall et al., 2004). The mooring array was designed to measure the ITF’s velocity, temperature, and salinity profiles. In this study, we used the sum of volume transports at three outflow straits, i.e., the Lombok strait, the Timor Passage, and the Ombai Strait, as the ITF transport.

The MITF moorings were deployed simultaneously to measure the ITF from the Pacific inflow at Makassar Strait; the mooring data in the Makassar Strait spans more than 13 years (Susanto et al., 2012; Gordon et al., 2019). The XBT survey along the IX1 section between Fremantle, Western Australia and the Sunda Strait, Indonesia has been operating for more than 30 years. The time series of geostrophic transport of ITF can be obtained through the IX1 temperature data (Liu et al., 2015). The OSCAR is an experimental processing system and data center that provides surface velocity fields in the tropical Pacific Ocean. Surface currents from the OSCAR were calculated from satellite altimeters and vector wind data using methods developed during the TOPEX/Poseidon altimeter research mission (Bonjean and Lagerloef, 2002). The sea surface height data are a multisource altimeter sea surface height fusion product provided by AVISO, with a spatial resolution of 0.25°×0.25° and a temporal resolution of 1 month. The data were primarily fused with satellite data from several altimeters, including TOPEX/POSEIDON, Jason. 1, and ERS/Envisat (AVISO, 2020).

To facilitate deep learning, the SSH data from SODA and CMIP6 were linearly interpolated. Given that the ITF is controlled by a large-scale gradient over the Indo-Pacific Ocean, we used SSH from a broad region 30°E–286°E and 44°S–44°N (Figure 1). In SODA and CMIP6 models, ITF transport was defined as the volume of transport across the section at 113.5°E (8.5°S–22.5°S). The CMIP6 data was divided into three sets: train set, verification set, and test set.  Figure 2  presents a schematic diagram of the training and operation of the CNN model with the above datasets.

 

Figure 1 | Annual mean sea surface currents (vectors, OSCAR) and sea surface height (color, AVISO) in 2018. 



 

Figure 2 | A schematic diagram displaying the training and operation of a CNN model with various datasets. 



The train set contains model data from 1850 to 1974, the verification set contains data from 1974 to 1994, and the test set contains data from 1994 to 2014. SODA data from 1871 to 1974 was used for transfer learning, while SODA data from 1980 to 2010 was used for testing. ITF transport was standardized before being incorporated into the deep-learning model.

The standardized z-score method is based on the following equation:

 (1)

where μ is the mean value of the train data, σ is the standard deviation of the train data, X is the transport of ITF, and Z is the standardized ITF transport. The z-score method can be applied to numerical data and is not affected by the magnitude of the data, because its function is to eliminate the inconvenience caused by the magnitude of the analysis.


 2.2. Methods.

  Figure 3  shows the CNN architecture used in this study, which consists of four convolutional layers and four pooling layers. The variables of the input layer correspond to the SSH from time t−2 months to time t (in months), between 30°E–286°E and 44°S–44°N. Each convolution layer was convoluted by a 4×4 convolutional filter. To filter the output of previous layers, a predefined non-linear activation function and batch normalization were applied. After the four convolutions, the features are flattened into one-dimensional vectors and transferred to a two-layer fully connected neural network to predict ITF transport. ReLU (Pedamonti, 2018) was used as a non-linear activation function. The role of the activation function is to add non-linear properties to the network, allowing it to learn highly complex mappings.

 

Figure 3 | CNN Architecture diagram. 



The convolution layer works by convolving a small convolution filter ( Figure 3 ) onto the input image and then passing each output pixel through the activation function, mapping the input (SSH image) to the output (ITF transport). The CNN’s convolutional filtering matrices are not present, but the gradient descent algorithm is used to optimize input and output data until they reach the minimum value of the target error function (Kingma and Ba, 2014).

The horizontal dimension of the pooling kernel is 4×4. The pooling kernel continuously reduces the previous layer’s data by selecting the most significant pixel among the locally selected pixels. The cost of transport prediction error is calculated by taking the derivative of the network’s weight value. The weight value of the convolution filter and the entire connection is then trained using backpropagation to update each weight value to reduce the loss. The power of CNN lies in the fact that the filters of each convolutional layer are learned from data as part of the training process rather than being prespecified.

Deep learning necessitates the selection of hyperparameters to optimize the network, specifically: the horizontal dimension of the convolution matrix is 4×4, the Adam Optimiser algorithm (Kingma and Ba, 2014) is used to achieve gradient descent, and the default learning rate is set to 0.001. The dropout probability is set to 30% to reduce overfit and is implemented between the first and second fully connected layers. The neural network loss function is defined as the mean square error between the actual transport of ITF and the predicted transport by CNN. The network is coded in Python and employs Google’s machine-learning package TensorFlow (Abadi et al., 2016).

Insufficient training data causes overfitting or skill reduction in any neural network. High-complexity networks with more trainable parameters typically achieve better prediction skills, but they require more training data (George et al., 2021). The number of free parameters in the CNN in this paper was O(106), and this was updated iteratively using the random gradient descent method and training data with a number of O(104). Regularization techniques are used in CNN optimization to detect and prevent overfitting. This method divides data into independent train sets, verification sets, test sets, and random dropout of neurons.

We also compared results from various methods, including: (1) support vector machines (SVM); (2) logistic regression with the penalty term set to L2 and the regularization coefficient set to 1; (3) random forest, in which we implemented a random forest with 1,000 tree estimators; (4) deep fully connected neural networks (DNN), in which we used four layers of neural networks with 8,000, 1,250, 256, and 64 neurons, ReLU activation function, mean square error as the loss function, and no dropout; (5) a residual network (ResNet) with over 17 million parameters; and a (6) convolutional LSTM network with two convolutional LSTM layers, one convolutional layer, and two fully connected layers. All of the methods described above used the same dataset.

To evaluate the performance of CNN and other data-driven methods, skill S and correlation coefficient R were defined as:

 (2)

where y  p  and  y  t  are the predicted transport and the actual transport and σ  y  p   and σ  y  t   are the standard deviations of the actual and predicted transport of ITF.

The skill and correlation coefficient of perfect prediction is approaching. However, there are significant differences between these two indicators. Skill S is the monotone decreasing function of mean square error, which is negative when the prediction is worse than the data average (George et al., 2021). Anyway, it is not sensitive to measurement accuracy in some cases and often needs to be multiplied by a constant.



 3. Results.

The ITF transport of verification and test data was built using CNN training of CMIP6 data. CNN’s epoch was set to 100. One epoch indicates that all data have been sent to the network, completing the forward computation and backpropagation process.  Figure 4  demonstrates that the predictive skill of verification data reached a high level around epoch 30. The average S showed a peak of 0.69 ( Figure 4 ), corresponding to a high correlation coefficient of 0.95 that was significant at a 99% confidence level between deep-learning transport and actual transport of CMIP6. This suggests that the CNN was very efficient at extracting the required information from the SSH to infer the ITF transport of CMIP6. Training for too many epochs does not result in better verification and test data results. The training skill was expected to improve further with the development of the CNN model. Nonetheless, the skill of verification and test data was approximately 0.69. The skill stabilized in a short epoch, indicating that excessive training may lead to overfitting.

 

Figure 4 | Evolution of skills with deep learning. The solid lines represent deep-learning skills with CMIP6, whereas the dotted lines (except black) represent SODA skills. The solid blue line represents the verification data, the orange line the test data, and the black dotted line represents the average of the top 10 skills using CMIP6. The green dotted line represents verification data, the red dotted line represents test data, and the pink dotted line denotes the average of the top 10 skills with SODA. 



  Figures 5A, B  show the distribution of inferred and actual ITF of CMIP6 qualitatively and quantitatively, and the inferred ITF corresponded well with the actual ITF. A comparison of CNN-inferred and actual ITF transports of CMIP6 revealed that the CNN is capable of producing a reasonable ITF transport time series ( Figure 5C ). Despite the fact that the CNN explained up to 90% of ITF transport variation ( Figure 5A ), it appeared that the results inferred by CNN had a systematic bias, which may be a result of the limitations of using only SSH data. The CNN consistently underestimated the peak values of ITF transportation ( Figures 5B, C ). Even when increasing the number of extreme ITF transport training examples, testing various optimizers (e.g., stochastic gradient descent [SGD], Adam), loss functions (mean absolute error and mean square error), and weight regularization (L1, L2), this underestimation is unavoidable.

 

Figure 5 | A comparison of CNN-inferred and actual ITF CMIP6 transports. (A) The x-axis represents the range of CMIP6 actual ITF, while the y-axis represents the inferred ITF for each actual ITF. The black dotted lines show where the inferred ITF equals the CMIP6-actual ITF. The scatter diagram shows that the CNN explains more than 90% of the traffic variance (max achieves R2 = 0.90). (B) The histogram demonstrates the bias of underestimated transportation extremes. The actual ITF transport is shown in black, while the inferred ITF transport is shown in red. (C) Time series of actual transport (black) and inferred ITF transport (red) when the skill is 0.69. 



The CNN showed excellent performance in inferring the ITF transport and we then directly substituted the data from SODA and AVISO into the model trained by the CMIP 6 (ITF without transfer, i.e., all the samples for training, test, and prediction were from CMIP 6 simulations). The average test skill of SODA data acquired by the CNN peaked at 0.54 ( Figure 4 ). Owing to overfitting, the skill dropped rapidly after the training epoch reaches approximately 70, so the training step size should be set between 30 and 70. When compared with the CNN model based on CMIP6, SODA’s test skills were significantly lower, and its inferring ability is less stable.

To compensate for the small sample size of the reanalysis data, we conducted transfer learning on SODA using the training model with CMIP6 data. The R of inferred SODA ITF transport with transfer learning was 0.91, while the R of inferred SODA ITF transport without transfer learning was 0.86. The correlation of inferring with transfer learning was slightly improved when compared to the model without transfer learning ( Figure 6 ). In inferring extreme transport, transfer learning was slightly inferior to that without transfer learning, but the degree of fitting was better than the model without transfer learning ( Figure 6 ).

 

Figure 6 | Comparison between CNN-inferred SODA with transfer (red), CNN-inferred SODA without transfer (blue), and actual ITF transports of SODA (black). 



  Figure 7  shows a comparison of various statistical methods. We found that the CNN explains more than 90% of the variance and shows a better performance than other statistical methods (logistic regression, random forest, SVM, or DNN), as expected ( Figure 7 ). We also put different CNN variants to the test, such as the ResNet and convolutional LSTM. It is interesting to note that ResNet performed similarly to the CNN, despite having more parameters ( Figure 7 ). The addition of recurrent neural networks did not improve the CNN’s capability. Given that the CNN has an excellent ability to infer ITF transport with the SSH, we used the same model to further investigate the deep-learning approach of predicting long-term ITF transport with the CNN. It should be noted that these various statistical methods contain very different parameters that may potentially influence the comparison.

 

Figure 7 | A comparison of various statistical methods for inferring with CMIP6. The y-axis represents the inference abilities of various technologies, such as SVM, logistic regression, random forest, DNN, CNN, ResNet, and convolutional LSTM network. The R2  of each column represents the proportion of inferred variance. 



We then generated an updated long-term and continuous time series of ITF transport using the CNN-based deep-learning approach and updated satellite observations of SSH ( Figure 8 ). The CNN model’s inference of ITF transport was validated by comparing it with observations ( Figure 8 ). It appeared that the ITF from deep learning captures the general variability of ITF: the correlation coefficient was 0.43 between IX1-observed ITF and 13-month-running-mean time series of CNN-inferred ITF with satellite observation, 0.57 between INSTANT-observed ITF and CNN-inferred ITF with satellite observations, and 0.52 between MITF-observed ITF and CNN-predicted ITF with satellite observations, all of which were significant at the 99% confidence level ( Figure 8 ). The deep-learning ITF differed from the observations primarily in terms of peaks and valleys, which may be associated with the ability of CMIP6 models to reproduce the ITF’s extremes (figure not shown).

 

Figure 8 | Comparison between CNN-inferred and actual ITF transports of observations. (A) inferred-predicted (black), ITF transports from INSTANT observation (red), and MITF (blue). (B) Thirteen-month-running-mean CNN-inferred (black) and actual ITF transports of IX1 (red). 



  Figure 9  compares the predicted ITF transport of SODA with the actual ITF after transfer learning with different time leads. As shown in  Figure 9 , the R decreased overall as the time lead increased, and the CNN model could make a valid prediction (R>0.5) with a lead time of up to approximately 7 months. It should be noted that a 12-month moving average is used before calculating the correlation coefficient between the actual ITF and predicted ITF transports to reduce the influence of the ITF’s strong seasonality, and it shows that including of seasonality leads to a higher correlation coefficient between the actual ITF and predicted ITF transports. Figure 10 compares the predicted ITF transport from various models with the actual ITF transport (time series are 12-month smoothed to focus on interannual variability). The CNN was more effective and produced a longer forecast than other models ( Figures 9  and  10 ).

 

Figure 9 | Comparison of actual ITF and predicted ITF transport of SODA using various models. 



 

Figure 10 | Comparison between actual ITF and inferred ITF transport of SODA with different models. (A) CNN. (B) Resnet. (C) Convolutional LSTM. (D) Forest. (E) Logic. (F) DNN. 




 4. Discussion and conclusion.

In this study, we investigated the deep-learning approach for inferring and predicting ITF transport with SSH images using model simulations from CMIP6 and reanalysis data products. We discovered that the CNN-based deep-learning approach with SSH images can generate a reasonable time series of ITF transport that captures approximately 90% of the actual ITF variance. CNN-based deep learning with reanalysis data sets performed similarly well, reproducing approximately 80% of the variance of actual ITF transport. These findings imply that the CNN, which explicitly relies on two-dimensional pattern analysis, outperforms other traditional data-driven technologies, such as logistic regression (R2 =0.56), random forest (R2 =0.74), statistical vector machines (R2 =0.22), and primary fully connected neural networks (R2 =0.84).

Although the CNN performed admirably in predicting ITF transport, it appears that the CNN’s prediction has a systematic bias, and the peak values of ITF transport were consistently underestimated by the CNN. Even when some methods, such as increasing the number of extreme ITF transport training examples, testing various optimizers, loss functions, and weight regularization, were used, bias and underestimation remained unavoidable. The bias and underestimation indicate that the skill limitations are due to the inherent incompleteness of the information in SSH, rather than a lack of training data or weaknesses in the CNN architecture.

It is well known that the network parameters most likely influence deep-learning performance. Different network parameters were also tested in this study. We employed various sizes of convolutional filters (3×3, 4×4, 5×5, and 7×7) and pooling filters (2×2 and 4×4). Larger convolutional filters produced worse predictions than smaller convolutional filters. We discovered that a 3×3 convolutional filter predicts similarly to a 4×4 convolutional filter, but a larger convolutional filter means fewer parameters. Additionally, we tested various optimizers (SGD and Adam), loss functions (mean absolute error and mean square error), and weight regularization (L1 and L2), and the CNN was found to be the most efficient choice. We attempted to improve the performance of the CNN by increasing the number of parameters and the cyclic neural network, which can improve the performance at month 0. However, as prediction time increased, the prediction ability of the two remained inferior to that of the CNN. This means that in some cases, more complex networks do not produce better results. We also tried increasing the size of the input from t−9 months to time t (in months), and the performance of ResNet and convolutional LSTM improved slightly.

The performance of the CNN in the model and reanalysis data demonstrates that there is enough information in SSH to predict ITF transport. However, further improvement in predicting ITF transport using a deep-learning approach is required and is dependent on at least two factors. On the one hand, the amount of training data required for the CNN supervised learning is quite large, necessitating a sampling size of O(104). As a result, advanced deep-learning techniques that reduce the amount of essential training data by at least one order of magnitude are required, as is the ability to forecast in the long term. On the other hand, considering that the ITF is influenced by baroclinic processes as well, the subsurface information is also important for inferring and predicting ITF transport. As a result, a better deep-learning approach should use subsurface information in training the model, even though observing the subsurface ocean is obviously very different from satellite-based sea surface observation. Furthermore, as the large-scale pressure gradient between the Pacific Ocean and the Indian Ocean is the driver of ITF and some key regions seem to determine the ITF (e.g., Susanto et al., 2007; Tillinger and Gordon, 2009), the deep-learning approach might be further improved if we additionally consider the SSH in these key regions. All of this points to a bright future for monitoring and predicting important large-scale ocean circulations, such as the ITF.
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Cross-equatorial pathways of heat and salt in the Eastern Indian Ocean are analyzed using Lagrangian trajectories based on the ECCO2 model simulation and drifter-derived currents combined with Argo data. The results show that most of the particles released in the Bay of Bengal move across the equator near the eastern boundary of the upper Indian Ocean (< 50m) during the southwest monsoon season and join the South Equatorial Current of the wind-driven circulation. Meridional salt and heat transports associated with the cross-equatorial currents feature significant seasonal variations, with stronger southward transports during the southwest monsoon than northward transports during the northeast monsoon, which are correlated significantly with the surface Ekman transports. The estimated annual mean salt and heat transports, based on the model (observational) data, are -0.06×109 (-0.11×109) kg·s-1 and -0.20 (-0.38) PW (1PW = 1015 W), respectively, southward across the equator.
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1 Introduction

The Indian Ocean climate is dominated by the monsoon system. The circulation of the eastern tropical Indian Ocean presents significant seasonal variability under the influence of the monsoon. In winter, the westward Northeast Monsoon Current (NMC) transports low salinity water from the Bay of Bengal (BOB) to the Arabian Sea; In boreal summer, the eastward Southwest Monsoon Current (SMC) transports high salinity water from the Arabian Sea to the BOB (Shetye et al., 1996; Jensen, 2001; Shankar et al., 2002; Jensen, 2003; Zhang and Du, 2012). During the monsoon transition seasons, the Wyrtki Jets (WJs) transport high salinity water from the western Indian Ocean eastward along the equator between 2°S and 2°N (Wyrtki, 1973; Han et al., 1999). In contrast, the circulation in the southern Indian Ocean is less affected by the northern Indian Ocean monsoon and the currents are relatively stable. The South Java Current (SJC), forced by the Northwest monsoon through the equatorial Kelvin waves flows eastward along the west coast of Sumatra and Java. The Indonesian throughflow (ITF) carries Indonesian seas waters with higher temperature and lower salinity than the Indian Ocean waters westward into the southeastern tropical Indian Ocean year-round. The SJC and ITF feed the South Equatorial Current (SEC), forming a low-salinity tongue between 10°S and 20°S and influencing the stratification and salinity balance south of the equator (Gordon et al., 1997; Song and Gordon, 2004; Wijffels and Meyers, 2004; Wijffels et al., 2008; Zhang et al., 2016; Chen et al., 2022).

The cross‐equatorial cell (CEC) of the Indian Ocean is a wind-driven, shallow overturning circulation, which plays an important role in maintaining the ocean heat and salt balances of the Indian Ocean (Hsiung, 1985; Wacongne and Pacanowski, 1996; Lee and Marotzke, 1997; Lee and Marotzke, 1998; Lee, 2004; Chirokova and Webster, 2006; Horii et al., 2013). During the summer monsoon, southwesterly winds in the Northern Hemisphere and southeasterly in the Southern Hemisphere form an antisymmetric zonal wind straddling the equator. Southward Ekman transports on both sides of the equator result in cross-equatorial meridional transport. The southward transport during the boreal summer connects the upwelling area in the Northern Hemisphere and the subduction area in the southeastern Indian Ocean, forming a meridional overturning cell. During the winter monsoon, the southwesterly winds become northeasterly winds in the Northern Hemisphere, and southeasterlies become northwesterly in the Southern Hemisphere so that the surface Ekman transports reverse directions (Garternicht and Schott, 1997; Schott and McCreary, 2001; Miyama et al., 2003; Chen et al., 2017; Wang and McPhaden, 2017).

The Indian Ocean warm pool is located in the tropical eastern Indian Ocean basin with the warmest surface temperature distributed predominantly north of the equator. The heat gained by the northern Indian Ocean must be transported southward to maintain the heat balance of the BOB (Yu et al., 2007; Han et al., 2014). The surface branch of the CEC transports the heat obtained in the North Indian Ocean to the south across the equator, while the subsurface branch transports colder thermocline water to the north, connecting with the upwelling offshore of Somalia and Oman. The annual mean heat transport (MHT) of the upper layer across the equator is estimated from the observational data to be greater than -0.5 PW (Hsiung et al., 1989; Hastenrath and Greischar, 1993). The study of Horii et al. (2013) shows that the heat transport across the equator in the Indian Ocean is approximately -0.65 PW based on the acoustic Doppler current profiler (ADCP) data from the RAMA moorings on the equator. The MHT estimated by Loschnigg and Webster (2000) and Garternicht and Schott (1997) using numerical models are -0.4 PW and -0.2 PW, respectively.

The BOB receives the largest net precipitation in the world, with the lowest salinity waters of the Eastern Indian Ocean (EIO) located mainly north of the equator. The BOB low salinity is enhanced by the large volume of river discharge and is in contrast with the higher salinity Swaters of the equatorial EIO (Dai and Trenberth, 2002; Rao and Sivakumar, 2003; Sengupta et al., 2006; Vinayachandran and Kurian, 2007; Gonaduwage et al., 2019). To maintain the salt balance, the fresh water in the BOB must be transported away by the upper ocean circulation. Part of the low-salinity water is transported to the Arabian Sea (Stramma et al., 1996; Shankar et al., 2002; Prasanna Kumar et al., 2004; Gopalakrishna et al., 2005), but the majority of the low-salinity water is concentrated on the eastern BOB, which is transported to the equator along the eastern boundary (Han and McCreary, 2001; Jensen, 2003; Miyama et al., 2003; Benshila et al., 2014). Sengupta et al. (2006) show that the freshwater transport across the 6°N section (80°E-100°E) in the BOB is 0.13 Sv to the south. Hormann et al. (2019), based on surface drifters and Argo float trajectories, indicate that there are two export pathways for the freshwater of the BOB: 1) entering the Arabian Sea south of Sri Lanka carried by the NMC during the northeast monsoon and, 2) crossing the equator along the western coasts of Sumatra into the Southern Hemisphere.

The Lagrangian tracking method has been widely applied to study the water mass transportation in the Indian Ocean. Miyama et al. (2003) used the Lagrangian tracking method in a hierarchy of numerical models to investigate the structure and dynamics of the cross-equatorial currents over the western and central Indian Ocean. Jensen (2003) used passive tracers in a 4.5-layer numerical model to analyze the pathway of the cross-equatorial currents originating in the BOB and the Arabian Sea. L'Hégaret et al. (2018) diagnosed three cross-equatorial gyres of the northern Indian Ocean driven by seasonally reversing monsoon using simulated tracers. However, most studies of the cross-equatorial pathways have focused on the western and central Indian Ocean based on numerical models. The seasonal cycle of the surface branch of the CEC near the eastern boundary in the Indian Ocean lacks studies, the details of which are yet to be disclosed. The cross-equatorial transport in the eastern Indian Ocean is important for the balance of salt and heat in the Indian Ocean due to the concentration of freshwaters near the eastern boundary and the collision of the equatorial currents with the Sumatra coasts and island chains generating complicated circulation patterns. The latest high-resolution ocean models provide an opportunity to study the structure of ocean currents near the eastern boundary.

The remainder of this paper is organized as follows. In section 2, the data and method are described. The seasonal distributions of the surface temperature and salinity in the EIO are shown in section 3.1. The cross-equatorial pathways of fresh water in the EIO are analyzed using Lagrange particle trajectories in section 3.2. The annual and seasonal variations of MST and MHT in the EIO are analyzed in section 3.3.  Conclusions and discussions are summarized in section 4.



2 Data and methods


2.1 Datasets

We use the high-resolution model ECCO2 (Estimating the Circulation and Climate of the Ocean Phase II, cube92 version), based on the Massachusetts Institute of Technology general circulation model (MITGCM, Marshall et al., 1997), with a spatial resolution of 0.25° longitude× 0.25° latitude and temporal resolution of 3 days. There are 50 levels covering 5-5906 m in the vertical. The model includes variables such as temperature, salinity, three-dimensional currents, etc. The current climatology is calculated based on 13 years from 2005 to 2017.

The surface current velocity data used in this study are from drifter-derived climatology of Global Near-surface Currents developed by Laurindo et al. (2017), which is updated to July 2020. This dataset builds on the climatology of Lumpkin and Johnson (2013), derived from satellite-tracked surface drifter data. The data provide monthly near-surface (15-m) currents climatology. Uncertainties in the dataset are related to the number of observations and the variance, but, the Indian Ocean is reasonably well sampled. Following the study of L’Hegaret et al. (2018), the daily currents are derived from the monthly current data, with a spatial resolution of 0.25° longitude× 0.25° latitude.

The surface drifter data used are obtained from the Global Drifter Program (GDP), which is a plan of the Atlantic Oceanographic and Meteorological Laboratory (AOML). The drifters provide 15-m currents, location, velocity, and sea surface temperature (Lumpkin and Pazos, 2007). The data are screened through the quality control procedures by the Drifter Data Assembly Center (DAC) of the AOML and interpolated into 6-hour intervals using the Kriging method (Hansen and Poulain, 1996; Lumpkin and Centurioni, 2019). Previous studies have shown that the drifter trajectories represent the characteristics of the Indian Ocean current field well (e.g. Wu et al., 2020).

The monthly salinity and temperature from the Argo dataset obtained from the International Pacific Research Center (IPRC) are used to validate the model output. The gridded Argo data cover the period of 2005 to 2017 with 27 vertical layers from 0 m to 2000 m, and a horizontal resolution of 1° longitude ×1° latitude. The monthly wind data used to calculate the Ekman transport are from the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim). We use the data from 2005-2017, with a spatial resolution of 1° longitude×1° latitude.



2.2 Lagrangian tool

The Lagrangian analysis is an effective way of identifying the origin and destination of water particles. Herein, we used a diagnostic Lagrangian tool, a. k. a. the CMS (Connectivity Modelling System, Paris et al., 2013), which is an open-source Fortran toolbox, created by the University of Miami, for the multiscale tracking of biotic and abiotic particles in the ocean. The CMS uses a 4th-order Runge-Kutta integration method to calculate particle advection and position. The CMS has been used in many topics in a variety of studies (e.g. Peña-Izquierdo et al., 2015; Cheng et al., 2016; Tamsitt et al., 2017; Kourafalou et al., 2018). The CMS has been used on velocity fields from many high-resolution models such as OFES, HYCOM, ECCO2, and many other ocean models. To analyze the pathways of cross-equatorial currents in the EIO, the trajectories of water masses are described using the Lagrangian analysis method.



2.3 Estimates of upper layer MHT and MST

The thermocline of the Indian Ocean is strong and stable. The heat and salt transports of the upper ocean can be estimated using ECCO2, Argo temperature, and salinity data. The MHT and MST are estimated as shown in Equation (1) and Equation (2), respectively:

 

 

where xE is the east boundary; H =50 m; ρ, s, v, cp, θ denote the density, salinity, meridional current, specific heat, and potential temperature, respectively.




3 Results


3.1 General features

The seasonal distributions of observed and simulated currents, SSS, and SST are cross-validated in Figures 1, 2. The results suggest that the ECCO2 model can reproduce the seasonal and spatial structure of the observed data fairly well in the EIO. In boreal winter, driven by the northeast monsoon, a strong westward NMC appears in southern Sri Lanka. The NMC extends from the southeast of the BOB to the southern Arabian Sea, which transports the low salinity water from the BOB into the Arabian Sea. As the surface circulation is adjusted with the monsoonal forcing in spring, the NMC disappears gradually. Under the influence of the westerly wind, strong eastward WJs appear between 2°S and 2°N, which force the formation of the SJC (Clarke and Liu, 1993; Clarke and Liu, 1994; Qu and Meyers, 2005) entering the southeastern Indian Ocean along the Sumatra-Java coasts before joining the westward SEC. In boreal summer, influenced by the strong southwest monsoon, the SMC appears on the southeast side of Sri Lanka with a maximum of 0.5 m·s-1, which transports high salinity waters from the Arabian Sea eastward into the BOB. The southwest monsoon weakens gradually in fall, forcing stronger WJs north of the equator than in the south. The eastward SMC (WJs) in summer (fall), the southward current along the western coasts of Sumatra, and the westward SEC form a cyclonic circulation system.




Figure 1 | Seasonal distribution of (A–D) currents (arrows), meridional velocity (shading), (E–H) SSS, and (I–L) SST provided by the drifter-derived currents and Argo data. The seasons are winter (DJF, December- February), spring (MAM, March-May), summer (JJA, June-August), and fall (SON, September-November), respectively.






Figure 2 | Same as Figure 1, but obtained from the ECCO2 data.



Low salinity waters are located in the BOB and the eastern boundary, with a minimum of 32.0 psu (Figures 1E–H, 2E–H). In contrast, the salinity of the Arabian Sea is much higher, with a maximum exceeding 36.0 psu; Associated with the salinity distributions in the Arabian Sea and the BOB, the SSS near the equator has a large zonal gradient, which is generally high in the west and low in the east. During the monsoon transition seasons, the WJs carry high salinity waters from the western Indian Ocean to the east, forming a high salinity tongue along the equator. In addition, salt exchange between the BOB and the Arabian Sea occurs through the SMC (NMC) during the summer (winter), forming a high (low) salinity tongue south of Sri Lanka. South of the equator, there is a westward extending low salinity tongue, which is due to the transport of low salinity waters by the ITF and SEC.

The SST in the EIO is higher year-round in climatology, with the SST in most sea areas higher than 28 °C (Figures 1I–L, 2I–L). Generally, the SST is higher near the equator than that off the equator, and north of the equator than in the south. In spring, the Pacific-Indian Ocean warm pool SST is the highest. In boreal summer and fall, the spatial temperature difference is the smallest. In winter, the SST in the north decreases due to the change in sea surface thermal conditions.



3.2 Trajectories of Lagrangian particles and surface drifters

Surface particles are tracked using the Lagrangian analysis method. Here we select two background fields: ECCO2 and drift-derived currents. The seasonal variation in the drift-derived current is consistent with the ECCO2 simulation, suggesting the reality of the model simulation.

The particles are released in the EIO on the first day of each month and tracked for a year following the vertically averaged currents in the upper 15 m. The 501 particles in total are released along 5°N from 85°E to 95°E, with an interval of 0.02° in the zonal direction. For the sake of clarity, only 10% of the particle trajectories are shown in the plot. Seasonal variations of the trajectories in Figures 3, 4 suggest that the BOB waters move southward across the equator along the eastern boundary of the Indian Ocean during spring through summer, whereas they are transported into the Arabian Sea all through winter before crossing the equator in the central basin. Almost all the particles released at the mouth of the BOB move southward in summer, consistent with the southward surface Ekman transport of the southwest monsoon. In fall through winter, nearly no particles move southward, except near the western boundary, suggesting the north advective by the surface Ekman transport of the northeastern monsoon.




Figure 3 | Trajectories of particles released on the 1st of each month and tracked forward in time for a year using the ECCO2 currents data. The solid black line in (A) represents the initial locations (85°E-95°E, 5°N) of the particles released with an interval of 0.02° in the zonal direction. For clarity, only 10% of the particle trajectories are shown. The black dotted lines in (A) mark the three regions: NEIO, northern part of the EIO; SEIO, southern part of the EIO; WIO, western Indian Ocean.



According to the spatial distribution of particles, we divide the study region into three parts (Figure 3): the northern part of the EIO (NEIO, east of 80°E and north of the equator), the southern part of the EIO (SEIO, east of 80°E and south of the equator), and the western Indian Ocean (WIO, west of 80°E). There are significant seasonal variations of particles (Figures 3, 4). During the monsoon transition period (March-May, Figures 3C–E, 4C–E), the equatorial region was controlled by strong westerly winds as the northeast monsoon subsided gradually and the southwest monsoon began to strengthen. The surface circulation of EIO is adjusted in two states: the mouth of the BOB is dominated by eastward currents and southward surface Ekman transport, which prevented the particles from entering the BOB; The strong eastward WJs near the equator between 2°S and 2°N force the particles to concentrate near the eastern boundary region. In summer (June-August, Figures 3F–H, 4F–H), the WJs disappear and the particles are to spread westward. However, most of the particles are still concentrated on the east boundary due to the strengthening of the southwest monsoon, which forces the eastward SMC to reverse directions. At this time, a southward surface Ekman transport across the equator dominates the eastern mouth of the BOB and the western Sumatra coastal areas. This surface branch of the CEC forms a cyclonic circulation system with the eastward SMC, the SJC, and the westward SEC in the Southern Hemisphere, which forces most of the particles to travel across the equator into the Southern Hemisphere and eventually join the SEC.




Figure 4 | Same as Figure 3, but tracked using the drifter-derived currents data.



In boreal fall, the surface circulation changes with the wind field. Advected by the WJs, most particles are concentrated near the eastern boundary. With the strengthening of the northeast monsoon, the Ekman transport is northward and particles are transported northward to join the NMC. In addition, the north branch of the WJs contributes to the northward movement of particles along the eastern boundary (Wang, 2017). Under the influence of both, the particles enter the BOB (Figures 3I–K, 4I–K).

In boreal winter (December-February, Figures 3B, L, 4A, B, 4L), the northeast monsoon forces the NMC south of Sri Lanka to intensify. The NMC extends from southeast of the BOB to the region west of 65°E, resulting in some particles entering the western Indian Ocean. The intensity of NMC peaks in January, with a maximum velocity of 0.5 m·s-1, introducing the largest number of particles into the western Indian Ocean. Moreover, due to the northward surface Ekman transport and the anticyclonic circulation in the BOB, particles move to the north and enter the bay off the east coasts of India. During the northeast monsoon season, the cyclonic circulation of the EIO is similar to that in the southwest monsoon season, except that the northern boundary is occupied by the SMC and WJs. The southern boundary is still the SEC as in the southwest monsoon season. However, the northward surface Ekman transports prevents the particles from moving southward across the equator. The number of cross-equatorial trajectories is much less than that in spring and summer.

To further quantify the seasonal variations of the trajectory, the percentage distribution of particles released from the different months in the NEIO, the SEIO, and the WIO is calculated (Figure 5). The largest number of particles is seen in the NEIO where particles are released. The concentrations of particles also exhibit apparent seasonal variability. In May, the numbers of particles in the NEIO and SEIO reached the minimum and maximum, respectively. At the time, Ekman transport was southward since the southwest monsoon recently began, and the particles have enough time to cross the equator. Many particles are transported northward in the fall before reaching the equator since southward Ekman transport reverses directions. When the northeast monsoon strengthens and the NMC intensity reaches its maximum, the largest number of particles concentrate in the WIO in winter. The statistical analysis using drifter-derived currents shows similar and consistent seasonal distributions of the particles.




Figure 5 | Percentage distributions of particles in the three regions (in Figure 3A) released in different months based on the (A) ECCO2 and the (B) drifter-derived currents.



Three representative paths of the particle trajectories are identified according to the distribution of particles, and the three-dimensional trajectories of particles under three typical paths selected from the Figure 3 are shown in Figure 6. In path I, particles move northward into the BOB and are trapped in the bay; In path II, the particles move swiftly westward into the western Indian Ocean with the NMC, and then across the equator in the central and western basin; In path III, the particles move southward across the equator along the west coasts of Sumatra-Java and join the SEC. Compared with the vertical movement, path I and path III are dominated by the horizontal movement (Figures 6A, B, E). The cross-equatorial trajectories in the EIO show significant differences from those crossing the equator in the central and western basin in Path II. Particles crossing the equator along Paths I and III are mainly concentrated in the upper layer (<50 m), whereas, the particles following path II show significant vertical movement down to as deep as 80 m depths after crossing the equator. The particles in path II first move westward, then cross the equator southward and descend to 60-80 m, due to the subduction of the off-equatorial waters (Figures 6C). At the peak of the summer monsoon, northward surface currents and southward subsurface currents in the Indian Ocean (a. k.a. the equatorial roll) appear in the western and central Indian Ocean (Wacongne and Pacanowski, 1996; Schott et al., 2002; Miyama et al., 2003). Under the influence of the equatorial roll, the cross-equatorial particles in path II move to the deeper waters. In contrast, the movement of the particles across the equator is mainly confined in the surface layer in the EIO due to the surface Ekman transports.




Figure 6 | Three typical drifter trajectories tracked forward in time for a year using the ECCO2 currents, showing horizontal (A, C, E) and vertical (B, D, F) views. Path I-III are shown in (A–F), respectively. Trajectories illustrate the types of common paths for particles. The circles and crosses represent the initial and final positions of the particles, respectively.



The trajectories and velocity of the surface drifters in the EIO are analyzed based on the GDP data. We selected 151 drifters in total passing through the study area (5°N, 85°E-95°E) for each season, and their trajectories are analyzed throughout their lifetime (Figure 7). The trajectories of the surface drifters show three main paths, which are consistent with the model results. The drifters released in winter are difficult to move southward due to the northward surface Ekman transports. Some drifters entered the BOB while others drifted with the NMC into the western Indian Ocean (Figure 7). Similar to in winter, the drifters are influenced by the eastward WJs in fall, most of which cannot move westward (Figure 7). Due to the southward surface Ekman currents, some of the drifters released in summer are transported to the south, also consistent with the model results. In the ensuing months, as the direction of the monsoon reverses, the drifters that do not reach the Southern Hemisphere turn back to the north, and finally end in the BOB (Figure 7). In comparison, the drifters released in spring have enough time to move southward, with only a few of them ending in the BOB (Figure 7).




Figure 7 | Trajectories of surface drifters (Total number = 151) from the GDP starting within the northern reach of the EIO (5°N, 85°E-95°E). The surface drifters are released in boreal (A) winter, (B) spring, (C) summer, and (D) fall, respectively. The gray lines indicate the trajectories of the surface drifter. The blue circles and plus signs represent the initial and final positions of the trajectories, respectively.





3.3 Meridional heat and salt transports in the upper EIO

The cross-equatorial exchange of the particles directly affects the balance of the salt and heat budgets of the North and South Indian Ocean. The Lagrangian trajectories of the particles have shown that most particles cross the equator near the eastern boundary. Therefore, we select the eastern boundary region (east of 90°E) to estimate the MST and MHT of the upper layer. The annual mean transport (Figure 8) is calculated as the zonally accumulated MST and MHT integrated from the eastern boundary, showing an alternating zonal distribution, with southward transport south of 5°N, northward transport between 5°N and 15°N, and southward transport north of 15°N. The MHT and MST on the equator are southward, indicating cross-equatorial southward transport of salinity and heat, with the transport intensity increasing with latitude in the South Indian Ocean. The annual mean cross-equatorial MST and MHT estimated by the model (observational) data are -0.06 ×109 (-0.11 ×109) kg·s-1 and -0.20 (-0.38) PW, respectively (Table 1).




Figure 8 | Annual mean meridional (A, B) salt (unit: 109 kg·s-1) and (C, D) heat (unit: PW) transports from (A, C) ECCO2 and (B, D) observational data (drifter-derived currents and Argo data). Positive values are northward transports.




Table 1 | Annual means of the MST and MHT. The western boundary of the integral is 90°E. Positive values are northward transports.



The MHT and MST show sizable seasonal variations in the EIO (Figures 9, 10), especially in the region north of the equator where the southward currents dominate from May to September, and northward currents from October to April. The change of the transport direction is associated with the monsoon climate of the Indian Ocean. The southwest and northeast monsoons prevail in the northern Indian Ocean in summer and in winter, respectively, with the surface Ekman transports changing directions under the influence of the monsoon, hence the strong seasonal variability. The seasonal variations inside the BOB are significantly different from those on the equator, which may be due to the complicated circulation in the bay.




Figure 9 | Monthly meridional salt transports (A-L) based on the ECCO2 (shading) and the observational data (drifter-derived currents and Argo data, contours), respectively. Positive values are northward transports. Unit: 109 kg·s-1.






Figure 10 | Monthly meridional heat transport (A-L) based on the ECCO2 (shading) and the observation data (drifter-derived currents and Argo data, contours), respectively. Positive values are northward transports. Unit: PW.



The meridional transport on the equator is governed by the equatorial Sverdrup transport [i. e.,   where τx is the zonal wind stress, β=∂f/∂y f is the Coriolis parameter, y is the latitude, and ρ is the water density], since the Coriolis parameter vanishes on the equator (Horii et al., 2013). North of the equator, the zonally integrated MST and MHT are southward from May to September, and northward from October to April. On and south of the equator, the zonally integrated MST and MHT are southward throughout the year except in winter, when the northeast monsoon peaks, and there is weak northward transport on and south of the equator (Figures 11B). The seasonal variations in zonally integrated MST and MHT are dominated by the surface Ekman transports (Figure 11). The Ekman transports at different latitudes exhibit different seasonal variations, with significant correlations with the MHT and MST above the 95% confidence level in ECCO2 (observation) data. The correlation coefficients are 0.94 (0.98) at 5°N, 0.93 (0.86) at the equator, and 0.65 (0.51) at 5°S, suggesting the strong influence of the monsoon in the North Indian Ocean than in the south.




Figure 11 | Zonally integrated (A) MST, (B) MHT, and (C) Ekman transports at 5°N, 0°, and 5°S, respectively, from the observations (solid lines) and the ECCO2 data (dashed lines). The western boundary of the integral is 90°E. Positive values are northward transports.






4 Conclusions and discussions

In this study, the cross-equatorial pathways of particle movement and the associated salt and heat transports in the EIO are investigated using the ECCO2 model, Argo profiling data, surface drifter data, and the Lagrangian analysis tool. Tracking of the particle trajectories suggests that there are three output pathways of the freshwater from the BOB (Figure 12): 1) During the winter monsoon, the Ekman transport is northward and the freshwater is carried by the northward Ekman currents into the BOB. This water can not cross the equator (Path I). 2) During the winter monsoon, the other part of freshwater moves to the western basin transported by the westward NMC into the central equatorial Indian Ocean. This amount of freshwater moves acrosses the equator in the central basin to the Southern Hemisphere as the monsoon direction changes in summer, resulting in the Ekman transport turning to the south. (Path II). 3) During the summer monsoon, the surface Ekman transport is southward and the freshwater from the BOB is carried by the Ekman currents southward in the upper ocean (< 50 m). Pushed to the east by the SMC and the WJs, the freshwater moves to the eastern boundary in the equatorial eastern Indian Ocean and finally crosses the equator in a Eastern Boundary Current off the west coasts of Sumatra and Java, before joining the westward SEC in the Southern Hemisphere (Path III). Statistical analyses suggest that most of the freshwater crosses the equator along Path III.




Figure 12 | Three typical pathways as described in section 3.2 and the seasonal currents of the EIO. The solid and dashed arrows represent winter and summer, respectively. The red (ME) and gray arrows indicate the directions of meridional Ekman currents and wind stress, respectively. The green, orange, and blue arrows represent path I, path II, and path III, respectively. The purple-dotted arrow indicates the WJs which appear in the monsoon transition seasons. The black arrows south of 10°S are the SEC and ITF which appear throughout the year.



The cross-equatorial transport in the EIO is significant for the balance of salt and heat in the Indian Ocean, and the freshwater and heat obtained from the Northern Hemisphere are carried along the path III to the Southern Hemisphere. This study discloses the dynamic of the cross-equatorial path, and analyses the seasonal variations of the pathways, enriching the research of the CEC in the Indian Ocean. Besides, the freshwater and heat along the pathways contribute to the development of the ecosystem environment, economy, and fisheries in the EIO, especially for the Sumatra-Java coast.

The annual means of the cross-equatorial MST and MHT in the upper EIO are estimated to be -0.06 ×109 (-0.11 ×109) kg·s-1 and -0.20 (-0.38) PW, based on the simulated (observational) data east of 90°E. The estimate is within the range of the previous estimates of the southward cross-equatorial transport (Hsiung et al., 1989; Hastenrath and Greischar, 1993; Garternicht and Schott, 1997; Loschnigg and Webster, 2000; Horii et al., 2013). The estimated MST and MHT from the model are smaller than the observational data. The MST and MHT in the upper EIO show significant seasonal variability north of the equator: southward from May to September, whereas northward from October to April. On and south of the equator, southward MST and MHT occur throughout the year except in winter, when significant northward transports of salt and heat are associated with the northeast monsoon. The seasonal variability of MST and MHT is found significantly correlated with the surface Ekman transport seasonality in the Northern Hemisphere, whereas insignificantly correlated with the Ekman transports in the south, suggesting strong impact of the surface Ekman transports in the north. The southward MHT and MST suggest upwelling and overturning circulation in the North Indian Ocean, the investigation of which is postponed to a later study.
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Exact knowledge on the seasonal variations of main tidal constituents is beneficial for improving tidal prediction. The semi-annual cycles in K1 and S2 tides are abnormally exaggerated by astronomical P1 and K2 tides, which interferes with our understanding on tidal seasonality. The widely-used tidal inference method in previous studies cannot fully separate astronomical P1 and K2 tides from seasonal P1 and K2 tides due to inaccurate inference relationship. In this study, on the basis of the ‘credo of smoothness’ which indicates that tidal admittances are smooth functions of tidal frequencies, we develop a novel but simple method to address this intractable issue and applied this method to explore the seasonality of tidal currents observed in the deep Timor Passage at the depth of 1800m. We find that the timing and range of seasonal modulations of M2, S2, K1, and O1 tides are distinct. Annual variations in tidal currents are much stronger than semi-annual variations in tidal currents. The annual and semi-annual ranges of M2 tide can reach 2.69 cm/s and 1.51 cm/s, which are largest among main constituents. Although the annual range of K1 tide is only 1.85 cm/s, considering the relatively small amplitude of time-averaged K1 tide (2.87cm/s), K1 the most affected tide by the annual cycle. The seasonal cycles of semi-diurnal tides (M2 and S2) are basically synchronous while those of diurnal tides (K1 and O1) are generally out-of-phase. As a general method, the proposed method can be widely applied to other sea areas to explore local tidal seasonality.
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1 Introduction

Originated from astronomical forcing, tides and tidal currents are omnipresent in the global ocean and fundamental for ocean activities such as maritime logistics and ocean engineering (Amin, 1985; Pan et al., 2022a; Pan et al., 2022b; Wei et al., 2022). The interplay of barotropic tides with rough topography in the stratified ocean can generate baroclinic tides (Wunsch, 1975; Zhao et al., 2019). As an indispensable intermediate process in tide-to-turbulence cascade, baroclinic tides play a vital role in ocean mixing processes (Munk and Wunsch, 1998; Egbert and Ray, 2000; Li et al., 2021). Egbert and Ray (2000) indicated that deep sea mixing needs ~2TW energy to maintain deep-water circulation and at least 1TW energy is provided by baroclinic tides. As a result of seasonal changes in ocean environment (such as river flow, ocean stratification and sea ice), tides and tidal currents display significant seasonal variations which have been explored in the global ocean (Corkan, 1934; Foreman et al., 1995; Kang et al., 2002; St-Laurent et al., 2008; Kagan and Sofina, 2010; Georgas, 2012; Müller, 2012; Devlin et al., 2018; Wang et al., 2020; Du and Yu, 2021; Ray, 2022).

The seasonality of tidal currents in the deep sea are mainly derived from ocean stratification and astronomical factors (Xu et al., 2014; Cao et al., 2017; Li et al., 2021). The frequency of K2 (P1) tide is equal to that of the S2 (K1) tide add (minus) 2 cycle per year. Therefore, the semi-annual cycles of K1 and S2 tides are significantly enhanced due to the existence of astronomical P1 and K2 tides. To keep pace with the seasonal variations of M2 and O1 tides which are not influenced by nearby astronomical tides, nearly all researches applied tidal inference method to infer and eliminate the contribution of astronomical P1 and K2 tides when discussing the seasonal variations of K1 and S2 tides. The inference relationship between K2 (P1) and S2 (K1) tides can be determined based on the actual tidal constants from observed time series longer than half a year. It should be noted that the observed K1 tide is nearly astronomical while the observed P1 tide has two major energy sources: One is the astronomical P1 tide, the another is the real seasonal variations of K1 tide originated from semi-annual variations in ocean environment (labeled as the seasonal P1 tide). Although the astronomical P1 tide and the seasonal P1 tide have same tidal period, their amplitudes and phases are totally different because they are forced by distinct physical processes (see section 3 for details). It is well known that astronomical P1 and K1 tidal waves have similar physical properties, thus, the astronomical P1 tide can be simply inferred from the astronomical K1 tide while the seasonal P1 tide cannot. The observed P1 tide is the vectorial synthesis of the seasonal P1 tide and the astronomical P1 tide. Similarly, the observed K2 tide is the vectorial synthesis of the seasonal K2 tide and the astronomical K2 tide. Hence, the inference relationship derived from the observed P1 (K2) and observed K1 (S2) tide may be problematic due to the interference of the seasonal P1 (K2) tide.

To the best of our knowledge, there are no valid methods to take the place of the potentially problematic inference method to fully remove astronomical P1 and K2 tides from observed P1 and K2 tides. The aim of this research is to revisit this noteworthy issue and propose a new method according to the ‘credo of smoothness’ (Munk and Cartwright, 1966) to solve the problem. The new method is applied to the deep Timor Passage to explore the seasonality of local tidal currents. Our paper is organized as follows. Study area and tidal current observations are introduced in section 2. Section 3 displays the methods and results, followed by the discussions and conclusions in section 4 and section 5, respectively.



2 Study area and data

As a long, deep and narrow trench between the Australian continental shelf and the Timor Island with average depth of ~2000m (
Figure 1
), the Timor Passage is one of the major corridors for the Indonesian Throughflow (ITF). Fresh and warm sea waters from the western Pacific Ocean are transported to the tropical Indian Ocean via the Timor Passage and the Lombok and Ombai Straits, which are important and essential for maintaining the thermohaline balance in the global ocean (Sprintall et al., 2009). The deep current transport through the Timor Passage shows significant semi-annual and annual variations, which are related to remote Kelvin waves from the Indican Ocean and local monsoonal forcing, respectively (Wang et al., 2022).




Figure 1 | 
The location of the mooring (black dot). Water depths are from ETOPO1 dataset (Amante and Eakins, 2009).




Due to complex coastlines and topography, tides and tidal currents near the Indonesian archipelago are among the most complicated in the global ocean (Ray et al., 2005; Robertson, 2010). The mixing induced by tides has significant influences on ocean ecology and climate system (Sprintall and Révelard, 2014; Katavouta et al., 2022). Based on EOT20 tidal model (Hart-Davis et al., 2021) derived from multi-satellite altimeters, at the observation point, M2 tide has the largest amplitude (88.39cm), followed by S2 (48.78cm), K1 (27.33cm), and O1(17.00cm). Local tidal form factor, which is defined by the ratio of the sum of O1 and K1 tidal amplitudes to the sum of S2 and M2 tidal amplitudes (Pan et al., 2023a), is only 0.32, indicating that local tides are dominated by semi-diurnal tides.

Hourly current observations at depth of 1800m from the mooring (black dot in 
Figure 1
) located in the southeast of the Timor Passage (122.9598°E, 11.3683°S) as part of the INSTANT program are analyzed. The Timor Passage mooring observations cover the period from January 1, 2004 to December 20, 2006. However, there are numerous missing values during January 1, 2004 to June 25, 2005. Thus, we only use 18 months observations from June 25, 2005 to December 20, 2006 to ensure the robustness and reliability of the results. The completeness of studied current data can reach 98.55%. More details of mooring observations can be found in Sprintall et al. (2009).

As shown in 
Figure 2
, eastward tidal currents are significantly stronger than northward tidal currents due to the direction of the Timor Passage. Thus, we decompose eastward and northward currents into currents along and perpendicular to the trench. Only currents along the trench are focused and harmonically analyzed using S_TIDE toolbox (Pan et al., 2018a). It should be noted that to avoid the interference of strong non-tidal background currents on tidal estimation, we use Iteratively Reweighted Least Squares (IRLS) regression (Huber, 1996; Leffler and Jay, 2009) to take place of widely-used ordinary least squares (OLS) regression in the course of harmonic analysis. IRLS regression is much complicated than OLS regression and readers can refer Leffler and Jay (2009) for details. The effectiveness and accuracy of IRLS regression in tidal estimation have been verified by numerous studies (Leffler and Jay, 2009; Matte et al., 2013; Matte et al., 2014; Pan and Lv, 2021; Pan et al., 2022a; Pan et al., 2023a). Local tidal currents are highly non-stationary, with strong intraseasonal vairiability (
Figure 2
), which deserves further investigation. 
Table 1
 displays tidal constants of major tidal constituents in the deep Timor Passage. Ssa tide with a period of half a year has the largest amplitude (21.65cm/s). which is consistent with Wang et al. (2022). Sa tide with a period of a year has an amplitude of 4.27cm/s. Among semi-diurnal and diurnal tides, M2 has the largest amplitude (9.05cm/s), followed by S2 (4.38cm/s), K1(2.87cm/s), and O1(2.31cm/s).




Figure 2 | 

(A) Eastward current velocities (red line) and their hindcast (black line) via harmonic analysis. (B) Northward current velocities (red line) and their hindcast (black line) via harmonic analysis.





Table 1 | 
Amplitudes and phase lags of major diurnal, semi-diurnal, and shallow water tides estimated from long-term current observations along the trench. SNR means signal-to-noise ratio.




Although long-period tides like Sa, Msm and Mf have large amplitudes, they are not significant due to low signal-to-noise ratios (SNRs). Generally, the SNR of a significant constituent should be no less than two (Pawlowicz et al., 2002). M4 tide is the strongest shallow water constituent, with an amplitude of only 0.33cm/s. 
Figure 3A
 shows the combination of observed K1, O1, and P1 tides. The sum of K1 and O1 tides can induce semi-monthly variations (13.66 days) of high tide. Note that P1 tide can semi-annually modulate K1 tide, thus, fortnightly variations of high tides (
Figure 3A
) are not stationary but modulated by semi-annual cycles. The combination of observed M2, S2, and K2 tides also has semi-annually modulated fortnightly cycles (
Figure 3B
).




Figure 3 | 

(A) The combination of observed K1, O1, and P1 tidal currents. (B) The combination of observed M2, S2, and K2 tidal currents. Note that the results are estimated from currents along the trench.




O1 and Q1 tidal frequencies are close, which means that O1 and Q1 tides have similar physical properties. As a result, tidal phase lags of O1 and Q1 tides are very close, and the difference of O1 and Q1 tidal phase lags is only 3.76° (
Table 1
). The difference of K1 and P1 frequencies is much smaller than that of O1 and Q1 frequencies, which means that the difference of K1 and P1 phase lags should be smaller than 3.76°. However, the observed difference of K1 and P1 phase lags is as high as 11.32°, which clearly indicates that the observed P1 tide is not purely astronomical, but contains a non-negligible contribution of K1 seasonality. In the next section, we will introduce a novel method which can fully separate the seasonal P1(K2) tide from the astronomical P1 (K2) tide.



3 Methodology and results


3.1 Methodology

The proposed method is based on the ‘credo of smoothness’ (Munk and Cartwright, 1966) which implies that tidal admittances are smooth functions of tidal frequencies (Feng et al., 2015; Pan et al., 2023b). Defined by the ratios of observed amplitudes to equilibrium amplitudes (normalized amplitude) and phase differences of observed phases and equilibrium phases, tidal admittances represent the response of astronomical forcing to local topography and coastlines. In general, tidal waves with close periods always have similar responses which means that their admittances should also be close. Note that such smoothness is built on the premise that tides are purely astronomical. The existence of non-astronomical tides may destroy the nature of smoothness, but also provides an opportunity to eliminate non-astronomical tides.

Equilibrium tidal amplitudes are obtained via s_equilibrium_tide function in S_TIDE toolbox. Phase differences of observed phases and equilibrium phases (i.e. phase lags) are directly estimated via classical harmonic analysis. The admittances of minor tidal constituents such as J1, 2Q1, 2N2, L2 are not used because their SNRs are too small (generally less than 0.5) which means that they may be contaminated by strong non-tidal background noises. As shown in 
Figure 4A
, normalized diurnal amplitudes are parabolic functions of tidal frequencies (dash line). Unknown coefficients (i.e. a, b, c) in Eq.(1) can be estimated by ordinary least squares. f is tidal frequency. Cubic polynomials or higher-order polynomials are not recommended to avoid over-fitting(Feng et al., 2015; Pan et al., 2023b).




Figure 4 | 
Normalized tidal amplitudes (A) and phase differences (B) for main diurnal tides at depth of 1800m from the mooring. Black dots are observed tidal admittances while red dots are interpolated admittances. Dash lines are determined via ordinary least squares.






Due to the interfere of non-astronomical contributions, normalized observed P1 amplitude significantly deviates from the fitting curve. Similarly, phase differences are also quadratic functions of frequencies (
Figure 4B
). The observed P1 phase difference noticeably deviates from the quadratic curve. By the quadratic interpolation, the normalized astronomical P1 amplitude and astronomical P1 phase difference can be calculated (red dots in 
Figure 4
). Based on known equilibrium amplitudes, the astronomical P1 amplitude (0.90 cm/s) and phase lag (139.04°) are calculated. The astronomical P1 phase lag (139.04°) is very close to the astronomical K1 phase lag (142.01°). The ratio of the astronomical P1 amplitude (0.90 cm/s) to the astronomical K1 amplitude (2.87cm/s) is 0.314 which is slightly smaller than the equilibrium theoretical value (0.331). At last, subtracting the astronomical P1 tide vectorially from the observed P1 tide generates the seasonal P1 tide (
Figure 5A
). The amplitude and phase of the seasonal P1 tide is 0.181cm/s and 84.4°, respectively.




Figure 5 | 

(A) The vectorial synthesis of the seasonal P1 tide (blue arrow) and the astronomical P1 tide (red arrow) generates the observed P1 tide (black arrow). (B) Same as A, but for K2 tide.




As displayed in 
Figure 6A
, normalized semi-diurnal amplitudes range from 0.55 to 0.6 except K2. Phase differences for semi-diurnal tides are nearly linear (
Figure 6B
). Based on the fitting curve and equilibrium amplitudes, the astronomical K2 amplitude (1.221cm/s) and phase lag (129.72°) are calculated. Via vector operation, the seasonal K2 amplitude (0.06cm/s) and phase lag (110.93°) are derived. Because the seasonal K2 tide is very weak, therefore, the observed K2 tide is nearly same to the astronomical K2 tide (
Figure 5B
).




Figure 6 | 
Same as 
Figure 4
, but for semi-diurnal tides.





3.2 Seasonal variations of main tidal constituents

The seasonality of main tidal constituents can induce minor constituents whose frequencies are near main constituents. For example, the annual modulation of K1 tide can induce S1 and PSI1 tides, whose frequencies are w
K1-w
Sa and w
K1+w
Sa, where w
K1 and w
Sa mean the frequencies of K1 and Sa tides, respectively. The semi-annual modulation of K1 tide can induce P1 and PHI1 tides, whose frequencies are w
K1-2*w
Sa and w
K1+2*w
Sa. The annual modulation of S2 tide can induce T2 and R2 tides, whose frequencies are w
S2-w
Sa and w
S2+w
Sa. Like P1 and K2, T2 tide can also directly obtain considerable energy from astronomical forcing. According to the fitting curve in 
Figure 6
, the astronomical T2 amplitude (0.256cm/s) and phase lag (122.93°) can be calculated. The observed T2 amplitude and phase lag are 0.578cm/s and 182.03°, respectively. Through vectorial operation, the seasonal T2 amplitude (0.498cm/s) and phase lag (208.22°) are obtained.

The combination of S1 and PSI1 tides represents the annual cycle of K1 tide while the combination of P1 (astronomical contribution removed) and PHI1 tides represents the semi-annual cycle of K1 tide (
Figure 7
). The seasonal variations of M2, S2, and O1 tides can be obtained in similar ways (
Figures 7
, 
8
). As shown in 
Figures 7
, 
8
, seasonal variations of four main constituents are significant and their features are distinct. M2 tide has the largest annual range (2.69cm/s), followed by S2 (1.85cm/s), K1 (1.85cm/s), and O1 (0.93cm/s). Considering the relatively small amplitude of K1 tide (2.87cm/s), it is the greatest affected tide by the annual cycle. The range of the semi-annual cycle is much smaller than that of the annual cycle. M2 tide has the largest semi-annual range (1.51cm/s), followed by S2 (0.72cm/s), O1 (0.45cm/s), and K1 (0.27cm/s). Among four major tidal constituents, O1 tide has the largest ratio of the range of the semi-annual cycle to tidal amplitude (0.195), which means that the semi-annual cycle has the strongest influence on O1 tide.




Figure 7 | 
Annual (A) and semi-annual (B) variations of K1 tidal currents. Annual (C) and semi-annual (D) variations of O1 tidal currents.







Figure 8 | 
Annual (A) and semi-annual (B) variations of M2 tidal currents. Annual (C) and semi-annual (D) variations of S2 tidal currents.




The annual variations of M2 and S2 tides are precisely synchronous (
Figure 8
). Both of them peak at the end of September while reach the minimum value in early April. Compared to semi-diurnal tides, the annual variations of K1 and O1 tides are basically synchronous (
Figure 7
). K1 tide peaks in early December while reach the minimum value at the end of May. The annual variation of O1 tide has a delay of about one month compared to that of K1 tide.

The semi-annual variations of K1 and O1 tides are generally opposite. The semi-annual variation of K1 reaches the minimum value at the end of August and peaks in early December while that of O1 peaks in mid-August and reaches the minimum value in mid-December (
Figure 7
). The semi-annual variations of M2 and S2 tides are generally synchronous while a delay of about 20 days exists (
Figure 8
). The semi-annual variation of M2 reaches the minimum value at the end of December and peaks at the end of September while that of S2 peaks in early September and reaches the minimum value in early December. 
Figures 7
, 
8
 indicate that tidal response to seasonal changes in ocean environment is frequency-dependent.




4 Discussions


4.1 Application to surface tides

The proposed method is not limited to deep currents but can also be applied to surface tides because the principle of smoothness is generally credible for all tidal signals. Surface tides at the mooring also have noticeable seasonal variations. 
Figures 9
, 
10
 display tidal admittances for main semi-diurnal and diurnal tides which are totally different. Tidal admittances for diurnal tides are parabolic functions of tidal frequencies while those for semi-diurnal tides are nearly linear functions. The structure of functions should be related to the local topography and coastline which can influence tidal propagation, reflection, refraction, and dissipation. It is obvious that diurnal tides and semi-diurnal tides which have vastly different periods and wave lengths must show distinct tidal responses to the astronomical forcing in the same sea areas.




Figure 9 | 
Same as 
Figure 4
, but for surface tides at the mooring. Tidal constants are derived from EOT20 model.







Figure 10 | 
Same as 
Figure 6
, but for surface tides at the mooring. Tidal constants are derived from EOT20 model.




Like tidal currents, the seasonality of surface tides makes P1 and K2 tidal admittances deviate from the fitted curves. Based on the method described above, the seasonal P1 (K2) tide can be separated from the astronomical P1 (K2) tide. The seasonal (astronomical) P1 tide has an amplitude of 0.46 (8.44) cm and a phase lag of 34.32° (175.64°) while the seasonal (astronomical) K2 tide has an amplitude of 1.49 (13.69) cm and a phase lag of 37.02° (126.56°). The ratio of the astronomical P1 amplitude (8.44cm) to the astronomical K1 amplitude (27.33cm) is 0.309 which indicates that tidal inference using the equilibrium theoretical value (0.331) may be not accurate enough even in the deep sea.



4.2 Limitation of the proposed method

Near-inertial currents are generated by ubiquitous changing wind stress (Munk and Wunsch, 1998; Hu et al., 2023). The frequency of near-inertial currents is near F (i.e. Coriolis frequency), which can be expressed as following:



Where L is latitude while w is the angular velocity of the earth rotation. It is obvious that the period of near-inertial currents changes with latitude. At 26.45°N/S, 27.61°N/S, 29.82°N/S, 30.00°N/S, the periods of near-inertial currents are same to the periods of Q1, O1, P1, and K1 tides, respectively. Also, at 70.98°N/S, 74.48°N/S. 85.78°N/S, the periods of near-inertial currents are same to the periods of N2, M2 and S2 tides. Therefore, at these latitudes, near-inertial motions can contribute to semi-diurnal and diurnal tides, and the credo of smoothness may be interfered. Note that no near-inertial motions can contribute to K2 tide.

In addition, in the development of the principle of smoothness, Munk and Cartwright (1966) did not consider the potential influence of tidal resonance which may influence the smoothness of tidal admittances. Hence, care must be taken when applying the proposed method to resonant sea areas, such as the Gulf of Tonkin in the South China Sea, which is well-known for strong diurnal resonance (Pan et al., 2022a; Pan et al., 2023a).




5 Conclusions and summary

Tides and tidal currents display noticeable seasonal variability in numerous sea areas especially in the river estuaries and polar regions. Knowledge on tidal seasonality is fundamental for accurate tidal prediction which is beneficial for substantial human activities in the ocean like navigation and ocean engineering (Müller et al., 2014; Pan et al., 2018a; Pan et al., 2018b; Gan et al., 2021; Pan and Lv, 2021; Wei et al., 2022). Due to different tidal periods and wave lengths, the seasonal variations of main tidal constituents are distinct. The existence of astronomical P1 and K2 tides anomalously exaggerate the semi-annual cycles in K1 and S2 tides. The method of tidal inference which is widely used in previous studies cannot fully separate astronomical P1 and K2 tides from seasonal P1 and K2 tides. In this research, a novel but simple method based on the ‘credo of smoothness’ is developed to solve this nettlesome problem. Since tidal admittances are smooth functions of frequencies, astronomical P1 and K2 tides can be obtained via the interpolation. The seasonal P1 (K2) tide has totally different amplitude and phase compared to the astronomical P1 (K2) tide.

We applied the proposed method to explore the seasonality of tidal currents observed in the deep Timor Passage at the depth of 1800m. It is found that the timing and range of seasonal variations of four main constituents are discrepant. The annual and semi-annual ranges of M2 tide are largest among main constituents. O1 tide has the smallest annual range while K1 has the smallest semi-annual range. The peak times of seasonal variations of M2 and S2 tides are generally consistent while those of K1 and O1 tides are basically not synchronous. Except tidal currents in the deep sea, our method is also suitable for surface tides. It is expected that the proposed method can be widely used in the exploration of tidal seasonality in the global ocean.
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Eddy-induced sea surface salinity (SSS) changes are systematically studied in the South China Sea (SCS) by using Soil Moisture Active Passive (SMAP) satellite salinity data from 2015 to 2021 for the first time. All eddies in the SCS during this period are analysed, and two normalized eddy composites are reconstructed under the long-term basin mean. In general, anticyclonic eddies (AEs) tend to result in lower salinity than cyclonic eddies (CEs) in the upper ocean. The salinity anomalies of the AE and CE composites are dominated by dipole and monopole structures, respectively. The different patterns in eddy-induced salinity anomalies are generally controlled by horizontal and vertical advections, which is further confirmed by their seasonal evolutions. A spatiotemporal decomposition of these salinity anomaly patterns suggests that the dipole and monopole patterns account for more than 70% of the salinity variability. All the eddies in the SCS are monopole-dominated and dipole-supplemented overall. This finding infers a relatively uniform eddy-induced salinity structure across the SCS and provides an observational-based metric for future model studies.
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1 Introduction

More than 50% of the variability over much of the world’s ocean is accounted for by eddies (Chelton et al., 2011). Nonlinear eddies can significantly impact the redistribution of oceanic tracers and energy through horizontal and vertical transport (Melnichenko et al., 2021; Guo and Bishop, 2022) and play an essential role in modulating ocean mean circulation and its variability (Storch et al., 2012; Guo et al., 2022). As a tropical marginal sea connecting the Indo-Pacific oceans, the South China Sea (SCS) features vigorous mesoscale eddy activity. Previous studies have examined the statistical characteristics of eddies (Wang et al., 2003; Xiu et al., 2010; Chen et al., 2011; He et al., 2018), their influence on near-sea-surface characteristics (He et al., 2016; Sun et al., 2018; He et al., 2019) and their induced ocean tracer transport in the SCS (Chen et al., 2012; Yang et al., 2019; Ding et al., 2021; Yang et al., 2021).

Sea surface salinity (SSS) is one of the important physical parameters of the global water cycle, profoundly influencing the thermal and dynamic structural characteristics of the ocean (Durack, 2015). Zeng et al. (2019) suggested a high correlation between springtime SSS in the central SCS and summer precipitation over the middle and lower Yangtze River Valley. Analyses show that the SCS is one of the lowest SSS areas that experienced the most significant freshening during the 1950–2000 period (Durack et al., 2012; Zeng et al., 2014). On the other hand, the SCS Throughflow brings a large amount of saline Kuroshio water through the Luzon Strait, which contributes to salinity variations in the SCS to some extent (Qu et al., 2006; Gordon et al., 2012). The spatial relationship between eddy kinetic energy (EKE) and SSS is shown in Figure 1, where high EKE occurs in the western boundary flow area and west of the Luzon Strait. EKE maps are computed using the formula   where   and   indicate meridional and zonal geostrophic velocity anomalies, respectively. To date, studies have confirmed the capability of eddies to transport saline Kuroshio water into the SCS (Jia and Liu, 2004; Zhang et al., 2017; Yang et al., 2019; Yang et al., 2021).




Figure 1 | Seven-year (2015-2021) averaged EKE (shading, unit: m2·s-2) and SSS (black contours, unit: psu) distributions in the SCS.



For many years, only a few studies have investigated the mesoscale variability in SSS based on ship measurements due to the lack of high-resolution observational data (Delcroix et al., 2005; Boutin et al., 2016). Using Argo profiles, He et al. (2018) evaluated the surface features and 3-D structures of mesoscale eddies in the SCS. However, traditional observations do not have high spatial and temporal resolutions and sufficient regional coverage. In recent years, satellite observations with global coverage have greatly enriched our knowledge of the variability in global SSS. For example, the Soil Moisture and Ocean Salinity (SMOS) mission was conducted by the European Space Agency (ESA) in 2010 (Kerr et al., 2010). The Aquarius mission of the National Aeronautics and Space Administration (NASA) and the Soil Moisture Active Passive (SMAP) observation program, which are primarily focused on monitoring land conditions, can still be used to invert SSS data. With satellite salinity data derived from the Aquarius, the correlation between mesoscale eddies and SSS variations was studied in the Gulf Stream region (Umbert et al., 2015), Mediterranean Sea (Isern-Fontanet et al., 2016), South Indian Ocean and North Atlantic subtropical sea regions (Melnichenko et al., 2017), and tropical Pacific Ocean (Delcroix et al., 2019). Using Aquarius satellite salinity data, Umbert et al. (2015) showed that negative salinity anomalies coincide well with the locations of cyclonic eddies identified based on sea level anomalies. Melnichenko et al. (2017), using SMOS satellite salinity data, showed that the typical salinity anomaly of the eddy composite is 0.03-0.05 psu in the southern Indian Ocean and North Atlantic subtropical region. Delcroix et al. (2019) showed a dipole (monopole) mode in the central (eastern) tropical Pacific Ocean by analyzing the structure of the salinity anomalies of the eddy composite.

In summary, a thorough investigation of eddy-induced salinity anomaly patterns has yet to be discovered with eddy-permitting consistent observations in the SCS. This study aims to analyze the SSS changes modulated by eddies with SMAP satellite data and historical in situ observations from 2015 to 2021. This paper is organized as follows: section 2 describes the satellite and eddy datasets and the eddy composite methods; section 3 presents the results of the spatial and seasonal characteristics of the eddy salinity anomaly; section 4 is a discussion of the dipole/monopole patterns of eddy-induced salinity anomaly; and finally, a summary is provided in section 5.




2 Data and methodology



2.1 Datasets

The satellite observations, in situ hydrographic profiles, and an eddy-census dataset used in this work are summarized in this section.

1) The 8-day averaged SMAP satellite L3 salinity product is used in this study with spatial and temporal resolutions of 1 day and 0.25°, respectively, spanning from January 2015 to December 2021. The satellite salinity data products are obtained based on NASA’s SMAP satellite observations and produced with remote sensing systems. To obtain mesoscale SSS variability signals, 6° × 6° 2D Gaussian and 10-120 day bandpass filtering is conducted on the salinity data (Melnichenko et al., 2017; Delcroix et al., 2019). Such filtering will retain eddy-induced SSS changes (i.e., SSS anomalies) and remove the large-scale and seasonal signals that are not associated with eddies. Simultaneous daily averaged Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) sea surface geostrophic current anomaly data are also used, which share the same temporal and spatial resolution with the salinity data mentioned above in 2015-2021.

2) Eddy products for 2015-2021 are based on the scale-selective eddy identification algorithm (SEIA), which is SLA-based (Yang et al., 2023, under review). SEIA uses a scale-selective scheme, which restricts the eddy boundary based on the data resolution and eddy spatial scale. During the detection, one-core eddies with radii smaller than the dataset resolution (0.25° in this work) are removed and the eddy boundary is constrained by a scale parameter. The tracking process of SEIA is based on the overlap rate of time-continuous eddies which can effectively guarantee the continuity of the eddy movement path. The validation of eddy statistical features and mesoscale eddy effects based on the SEIA output confirms its effectiveness (Yang et al., 2023, under review). Over 7 years, approximately 24,000 specific eddies existed within the SCS based on daily detection, with a nearly 1:1 ratio of anticyclonic eddies (AEs) to cyclonic eddies (CEs). Weak and abnormal eddies with radii of less than 0.5° are removed considering their trivial effect on local transport and energetics (Xiu et al., 2010; Chen et al., 2011).

The distribution of the number of eddies is shown in Figure 2. To couple the satellite salinity data, eddies with lifetimes shorter than 10 days are also removed. Distinguished by red and blue colors, the AEs and CEs cover the entire SCS, with a total number up to approximately 120 in each 0.5°×0.5° geographical grid over 7 years. A larger number of eddies is mainly distributed to the west of the Luzon Strait, the middle of the basin and offshore Vietnam, which is consistent with previous studies (Wang et al., 2003; Xiu et al., 2010; Chen et al., 2011; He et al., 2018). As shown in the histogram, under a Euler perspective, more eddies are found in boreal spring and summer, and fewer eddies exist in autumn, with a difference of approximately 4000 eddies in the entire basin (Figure 2C). The numbers of the two types of eddies are similar in each season, but the overall number of AEs is slightly higher (AE 9766: CE 9011). Figures 2D, E show that the vast majority of eddies counted in full lifetime have a duration within 30 days and a mean radius span of 0.5-1° for both types of eddies.




Figure 2 | The distribution of (A) AEs and (red) (B) CEs (blue) in the SCS. The shaded area indicates the eddy number. The bar charts show the (C) seasonal distribution of eddies in the whole SCS (eddies are counted at each time step), distribution of (D) lifetime (unit: days) and (E) mean radius (unit: °) of eddies with full lifetime.



3) A total of 2317 salinity profiles of the South China Sea Physical Oceanic Dataset (SCSPOD) inside mesoscale eddies are chosen to verify the vertical salinity structure of AE and CE. SCSPOD is an SCS physical oceanography database combining observations with Argo, World Ocean Database (WOD), and mooring and ship-based data from the South China Sea Institute of Oceanology (Zeng et al., 2016).




2.2 Normalized eddy composite

Ocean eddies dominate the mesoscale process in the ocean (Melnichenko et al., 2021), so the normalized eddy composite method is frequently used in studies on eddy structure (Chelton et al., 2011; Hausmann and Czaja, 2012; Gaube et al., 2013). The SSS mesoscale variability accounts for 40% to 60% of the total SSS variability in the tropical Pacific (Delcroix et al., 2019). With the SSS dataset form SMAP, the eddies from SEIA will utilize boundary information to search for the simultaneous interior SSS region. For each gridded SSS anomaly (x, y) inside the eddy boundary, its position is normalized by the eddy radius (R) under eddy-centric coordinates as:  . With such processing, each eddy will be converted into a circular structure spanning an n-standard radius. An averaging of many of these circular structures will yield eddy composites. Following this process, some unrealistic eddy-like structures with irregular boundaries can also be obtained, which do not truly represent the true eddy signal and may cause uncertainty in the overall eddy statistics. As suggested in Chen et al. (2021), oceanic eddies have a significant mean egg-like shape rather than a circle or ellipse considering the geophysical anisotropy in eddy properties. To eliminate unrealistic abnormal eddies in the detection process, some geometric-based constraints need to be incorporated in the algorithm, such as the eddy shape error (the ratio between the eddy boundary and the standard circle) and the eccentricity of the fitted ellipse of the eddy boundary (Kurian et al., 2011; Martínez-Moreno et al., 2019). In this work, only eddies with an eccentricity of less than 0.5 are considered to remove the singular boundary. As a result, a total of 3368 AEs and 1410 CEs are finalized and used to calculate the eddy composites for two eddy polarities in the SCS. Both climatological mean and seasonal eddy composites are provided in this study.

The empirical orthogonal function (EOF; Legendre and Legendre, 2012), also known as eigenvector analysis or principal component analysis (PCA), is a method for analyzing structural features in matrix data to extract the principal data features. It is now very widely used in geophysics and other disciplines. Here, EOF is performed to extract different salinity modes for eddy composites in the SCS. In this study, EOF analysis is adopted to decompose normalized circular eddy SSS structures in the SCS to evaluate the spatial patterns of eddy-induced SSS signals.




3 Results


3.1 Mean characteristics of eddy composites

From 2015 to 2021, a total of 3368 AEs and 1410 CEs are selected for normalization into eddy composites in the SCS (Figure 3). The area of the composites within a normalized radius of 1 indicates the actual eddy interior. Notably, there is a difference in the sampling of the two types of eddies, with more than twice the number of AEs than CEs (Figures 3A, B). However, the uncertainty in these salinity composites is small, with a standard deviation of approximately 0.02 psu (with a standard error on the order of   psu), which is consistent with the fact that the standard deviation of the intraseasonal variability in salinity is less than 0.02 psu (Yi et al., 2020). Thus, the difference in the mean salinity anomaly between AEs and CEs is significant. A subsampling test with randomly selecting the same amount of both types of eddies is performed, and a low sensitivity of the overall spatial patterns in eddy composites to subsampled eddy numbers is found.




Figure 3 | Normalized eddy salinity anomaly (shading, unit: psu) and current anomaly (vector, unit: m·s-1) composites of (A) AE and (B) CE in the SCS. The number of eddy samples and eddy vorticity (Ω) are marked on each subgraph. The mean SSS anomaly (red line) and meridional velocity (blue line) of the AE and CE along the zonal section are shown in (C, D), respectively. (E) Mean salinity anomaly profiles of AE (dotted red line) and CE (blue line) in the SCS based on the SCSPOD dataset.



The eddy-induced composite-averaged salinity anomaly can be obtained from Figure 3, and the results show that the minimum and maximum AE-induced salinity anomalies may reach -0.10 and 0.05 psu, respectively, while the CE varies from -0.06 to 0.08 psu. The mean salinity anomalies in the eddies due to the presence of both types of eddies can be either positive or negative. However, the negative salinity anomaly related to the AE is more pronounced than that of the CE; instead, the CE induces a much stronger positive anomaly than does the AE. The AE salinity anomaly composite shows a clear dipole mode, with the eddy current anomaly being isotropic and rotating clockwise (Figure 3A). The salinity gradient is oriented from west to east, with low (~-0.01 psu) and high (~0.01 psu) salt cores located in the southwest and southeast of the eddy composite, respectively. In contrast to the AE, the CE composite presents a regular monopole structure, and the eddy current anomaly swirls in a counterclockwise direction. The CE composite basically exhibits a positive salinity anomaly except at the eastern edge, with the high-salinity (~0.03 psu) core slightly shifting to the northeast compared to the eddy center. The monopole pattern observed in the CE composite is mainly due to vertical eddy isothermal displacement and the dipole pattern is largely driven by lateral eddy advection of the background salinity gradient (Delcroix et al., 2019). Similarly, studies of eddy-induced chlorophyll anomalies also confirm the dominant role of background current fields on the distribution of eddy normalization (Gaube et al., 2013; He et al., 2016). In conclusion, the salinity anomaly signal within the CE composite is much more pronounced than that within the AE composite in terms of a multiyear climatology.

As suggested by Delcroix et al. (2019), the salinity anomaly pattern inside eddies is modulated by eddy-induced horizontal and vertical advection. To clarify these two advective effects, the mean SSS anomaly and meridional velocity (V) along the zonal section are depicted in Figures 3C, D. From west to the east of the AE composite, the SSS anomaly curve gradually increases from negative to positive values, reaching a peak at a 0.2 normalized radius. Generally, the meridional velocity decreases gradually, forming a quasi-symmetric structure around the eddy center together with the SSS anomaly curve. Such a dipole mode of the SSS anomaly of the eddy composite is out of phase with the meridional velocity, which will cause net salt transport over the eddy wavelength (Melnichenko et al., 2017) along the north−south direction. For the CE composite, the SSS anomaly along the zonal section is positive overall and peaks at a 0.1 normalized radius. Combining the east−west reversal meridional velocity, salinity advections in the western and eastern parts of the CE composite cancel each other, resulting in weaker net horizontal transport (approximately 30% smaller than that of AE), and the high-salinity anomalies concentrated near the eddy center, as shown in Figure 3B, may be induced by strong vertical advection (Delcroix et al., 2019).

The general perception of vertical motions in a mesoscale eddy is that the CE tends to upwell subsurface, salty seawater toward the surface, while the opposite is true for the AE. As shown in Figures 3A, B, the vorticity of the CE composite (0.076×103 s-1) has a larger magnitude than that of AE (-0.057×103 s-1). Based on the consideration of the vorticity, we may infer that the CE in the SCS is stronger than the AE in terms of vertical advection. To verify this hypothesis, mean eddy salinity anomaly profiles are calculated from the SCSPOD dataset and presented in Figure 3E, and the results are consistent with the results of He et al. (2018) that AE (CE) shows large salinity anomalies of approximately 0.14 psu (-0.16 psu) at the subsurface of approximately 50 m depth. The values of the AE salinity anomaly are negative in the upper layer (<120 m), with a peak at approximately 50 m and a value of -0.16 psu, and stable positive values remain in the lower layer (>120 m). The salinity anomaly profile of the CE has a quasi-symmetric trend with that of the AE.

The dominant effect of upwelling leads to a monopole mode in the CE composite. In contrast, the horizontal advection of the AE composite overrides the vertical advection. The most direct result is that the AE composite is not a monopole mode with a low salinity core, as we had previously thought. The difference in dipole/monopole patterns due to eddy polarity is not unique in the SCS, as the same phenomenon is also found in the central tropical Pacific region (Delcroix et al., 2019). This difference is presumably caused by the competition between vertical and horizontal advection.




3.2 Seasonal evolution of eddy composites

It has been shown that eddy activity in the SCS displays a strong seasonal signal (Figure 2C; Xing and Yang, 2021). Here, we evaluate the seasonal evolution of the eddy salinity anomaly composites in four seasons in the Northern Hemisphere, namely, boreal spring (December-January-February, DJF), summer (March-April-May, MAM), autumn (June-July-August, JJA) and winter (September-October-November, SON). The details are shown in Figure 4.




Figure 4 | The seasonal evolution of the AE (A-D) and CE (E-H) eddy composites. The shading and vectors are the salinity anomaly (shading, unit: psu) and current anomaly (vector, unit: m·s-1), respectively. The number of eddy samples and eddy vorticity (Ω) are marked on each subgraph.



During the spring, there is strong salinity advection in the eastern part of the AE composite compared with its western part (Figure 4A). By summertime, the salinity anomaly composite gradually develops into a significant dipole mode with low- and high-salinity cores in the west and east, respectively (Figure 4B). The SSS anomaly is not in phase with the meridional velocity, which will inevitably lead to large net transport as well. The AE composite is largely covered by the negative salinity anomalies during autumn, the season of the weakest eddy activity (N=634), except for the northwestern margin (Figure 4C). When winter arrives, the dipole mode reappears, but the salinity anomaly is slightly weaker in intensity than that in the summer, and the salinity gradient is in a northwest−southeast direction (Figure 4D). Overall, the east−southeast part of the AE salinity anomaly composite is dominated by positive salinity anomalies, accompanied by strong salinity advection, for most of the year, resulting in a prominent dipole mode (Figure 3A).

The situation for the CE differs from that of the AE, as the salinity anomaly composite exhibits obvious (quasi-) monopole modes in the spring, summer and winter (Figures 4E, F, H). It is conceivable that it will eventually behave as a monopole mode with a positive high-salinity core, as shown in Figure 3B. In autumn, the salinity anomalies appear more chaotic than those in other seasons (Figure 4G), but they still basically have a structure of low salinity in the west and high salinity in the east. In conclusion, the monopole mode of the CE composite initially forms in the winter, strengthens the following spring, and weakens and gradually shifts to the dipole mode the subsequent summer and autumn. The seasonal variation in the composite vorticity is consistent with the cycle of the salinity modes, as shown in Figure 4. The effect of vertical advection directly affects the maintenance of the monopole modes of the CE salinity anomaly composites. The larger amplitude in vorticity may be related to strengthened vertical advection, which in turn affects the seasonal mixed layer depth variation. Strong vorticity in the spring of the CE composite (Figure 4E) indicates prominent eddy-induced upwelling and thus shows a significant monopole mode. In investigating eddy effects on chlorophyll anomalies in the SCS, He et al. (2016) shows that the associated CHL anomalies are most apparent in winter and diminish in the following summer without polarity differences. The SSS anomaly patterns for both AE and CE are basically evident in winter and spring, while the diminishing time is delayed until autumn. Such seasonal variation in eddy-induced SSS anomalies generally corresponds to seasonally varying eddy activities in the SCS (Figure 2C). Active basin-scale eddy activities are more conducive to the formation of stronger eddies, thus maintaining more significant SSS anomaly patterns.





4 Discussion

It’s clearly indicated by Figure 3 that a dipole (monopole) pattern appears in the AE (CE) salinity anomaly composite in the long-term mean over the SCS basin. A seasonal partition further shows that the SSS anomaly patterns generally follow the trend of strengthening in winter and spring and weakening in autumn. To explore the possible mechanism of such characteristics, the EOF analysis is performed following Dufois et al. (2014), who successfully implemented such method to study the impact of eddies on surface chlorophyll in the Indian Ocean.



4.1 Multi-modes of eddy-induced salinity anomalies

The 7-year AE composites are decomposed by EOF analysis to obtain the spatial and temporal modes of eddy-induced salinity anomalies (Figure 5). The shading inside the composites indicates the spatial patterns of the salinity anomalies corresponding to EOF modes. The first three typical modes account for 79.7% of the variance, which basically represents the main characteristics of the original field. The first mode has an explained variance of up to 44.5% and exhibits a clear pattern of slightly off-center monopole (Figure 5A). The composite is covered with positive values. Combined with the time series of PC1 and its power spectrum, it can be seen that the variation in salinity anomalies of AE has no obvious dominant frequency but is influenced by (intra) seasonal and interannual variations (Figures 5B, C). The second mode exhibits a northwest to southeast dipole pattern with an explained variance of 22.2%, and its evolution is composed of variations at multiple time scales from seasons to years (Figures 5D–F). The third mode also exhibits a dipole pattern but is distributed in a northeast−southwest direction (not shown). For the of the CE composites, the decomposition results are similar to those of AE (Figures 5G–L). The first three typical modes exhibit the same spatial patterns of monopole, dipole and dipole, accounting for 68.2% of the variance. Its temporal variation may be determined by different processes from seasonal to interannual scales, even though there is no significantly dominant periodic variation found in the power spectral analysis (Figure 5I).




Figure 5 | The (A) spatial pattern (unit: psu), (B) PC of EOF1, and (C) power spectrum of PC of the AE in the SCS. The shading indicates the salinity anomaly mode of the eddy composites and the purple area indicates the 95% confidence interval. Subgraphs (D-F) are for EOF2 of the AE in the SCS. Panels (G-L) are the same as (A-F) but for the first two modes of EOF of the CE in the SCS.



The results from EOF analysis show that the monopole pattern plays a dominant role in the salinity anomalies of the two types of eddies, followed by the dipole pattern. However, the composite analysis shows dipole and monopole patterns for AE and CE, respectively (Figure 2). This suggests that the climatological salinity anomalies of eddies are affected by the multi-patterns, but also by the magnitude of variability in each spatial pattern. Merging the first three EOF modes of the two types of eddies also yields the results of AE-dipole and CE-monopole, which are likely related to the modulation effect of advection. The upwelling inside the CE brings saline water from the lower layer and concentrates in the center, leading to a monopole mode, while the salinity reduction caused by the downwelling inside the AE is not strong enough and eventually results in a dipole mode by horizontal advection. This is consistent with the salinity situation reflected in Figure 3.

The power spectrum analysis of the PC time series cannot explain the seasonal variation in eddy-induced salinity anomalies well, since the intensity of the variations on multiple time scales is comparable. However, Dufois et al. (2014) demonstrated that the multipattern codominance of eddy normalization is partly related to seasonal adjustment of the mixed layer depth within eddies. Similarly, the weakening/strengthening in vertical advection due to seasonal adjustment of the mixed layer depth may also partly explain this seasonal variation in eddy-induced salinity anomalies.




4.2 Distribution of monopole and dipole modes

To clarify the distribution of the pattern characteristics of eddies, eddies in each 2.5° × 2.5° geographical subregion are normalized into composites for 7 years, and then the EOF analysis is applied individually. The first EOF mode in the normalized salinity anomaly is shown in Figure 6. For the AE, the average variance contribution of the first mode for the whole SCS is 46.6%, with the basin showing a monopole mode as a whole except for several subregions in the southwest and southeast (Figure 6A), where the shallower topography and islands make the eddies in these regions prone to odd boundaries and undersampling during the construction of the eddy composite. The poles of the monopole mode are slightly shifted from the center and exhibit quasi-isotropy. The monopole pattern of normalized CE composites predominantly appears in the west of the Luzon Strait and in the central part of the basin with a basin-mean variance contribution of 41.3%, and the subregions of the dipole pattern increase compared with that of AE. Different salinity anomaly patterns of eddies in each subregion are the result of modulation by multiscale processes.




Figure 6 | The first spatial pattern of the EOF of the (A) AE and (B) CE in the SCS. The shading indicates the salinity anomaly mode of the eddy composites.



The variance contribution of the second EOF modes for both types of eddies is approximately 30% (Figure 7). In EOF2, the AE and CE are consistent, with the whole basin being dominated by the dipole mode for the eddy composites. The directions of the salinity gradient inside the composites vary between subregions. For the formation of dipole modes, the initial SSS condition at the beginning of eddy formation and the background salinity gradient during subsequent evolution are very important to the salinity changes inside eddies. For both the AE and CE composites, the salinity gradient in the northern SCS is basically in a northeast−southwest direction, especially near the Luzon Strait. A possible explanation is that the Kuroshio intrusion brings much salty and warm Pacific water into the SCS via the Luzon Strait (Qu et al., 2004; Wang et al., 2020). This salt water moves along the northern slope of the basin, extending as far as the southeastern part of Hainan Island (Wang et al., 2015; Yi et al., 2020). Eddies can mix this part of the saltwater in the upper layer while moving northwestward, which has been confirmed as a key dynamic player in introducing and redistributing this Pacific water mass into the SCS (Yang et al., 2021).




Figure 7 | Similar to Figure 4 but for the second EOF mode of the (A) AE and (B) CE in the SCS.



The first two EOF modes explain more than 70% of the spatial variability in the eddy salinity anomaly, revealing that the SCS eddy is dominated by monopoles (EOF1) and supplemented by dipoles (EOF2). The interplay between relatively saline and freshwater in these monopole and dipole modes across the whole SCS basin gives rise to net salinity structures for AE and CE, as shown in Figure 3. The EOF analysis highlights the complexity of the spatial patterns of eddy-induced SSS anomalies in the SCS. The dipole (monopole) pattern in the first (second) mode may infer the role of horizontal (vertical) advection in driving the eddy-induced SSS anomalies. The complete mechanisms that are responsible for these spatial patterns need to be explored in the future studies based on model simulations.




5 Summary

Using SMAP satellite data, this study analyses the characteristics of the SSS anomaly associated with mesoscale eddies in the SCS. A total of 3368 AEs and 1410 CEs are detected and used for normalization into eddy composites from 2015 to 2021. The eddy-induced composite-averaged salinity anomalies of both types of eddies can be negative or positive, but the CE tends to have increased salinity overall, while the opposite is true for the AE. Moreover, the AE and CE eddy salinity anomaly composites feature dipole and monopole patterns, respectively. This leads to the SSS anomaly and meridional velocity being out of phase along the zonal section of the AE, causing net salt transport.

Furthermore, the climatological mean and seasonal characteristics of the salinity anomaly changes in eddies are examined under the long-term basin mean. The seasonal characteristics of the eddy salinity anomaly composites exhibit differences in eddy polarity. Dominated by horizontal advection, the AE composite exhibits a clear dipole mode, especially in boreal summer and winter, and strong positive salinity advection in the east−southeast part. The salinity changes inside the CE are basically controlled by vertical advection. From one winter to the next, the monopole mode of the CE composite experiences a whole cycle of formation, strengthening and weakening. The dominant advection process directly affects the salinity anomaly mode of the eddies.

By applying a spatiotemporal decomposition on eddy composites, for both AE and CE, the first three modes account for the vast majority of eddy-induced salinity anomaly variability, and the monopole pattern is dominant, followed by the dipole pattern. The eddy-induced salinity change is the result of the modulation of seasonal and (intra) annual processes, and the proportion of each is comparable. The spatial characteristics of the eddy-induced salinity anomaly in each 2.5°×2.5° geographical subregion further confirmed that the salinity anomaly distribution within eddies in the SCS is largely related to a monopole and a dipole spatial mode. The first two EOF patterns account for more than 70% of the spatial variability. The results show that the salinity anomaly composites of both types of eddies in the SCS are monopole-dominated and dipole-supplemented.

This work systematically investigates eddy-induced salinity changes with mesoscale-permitting satellite observations of the ocean surface salinity and geostrophic current in the SCS for the first time, along with its seasonal evolution and different spatiotemporal modes. Previous studies on eddy-induced features in the SCS were generally short in duration and used time series data from a limited spatial domain. The eddy composite and its different modes found in this work will provide an observational-based metric for model simulations. Previous studies have illustrated that background fields such as wind and current fields will have a significant effect on the eddy composite analysis (Frenger et al., 2013; Gaube et al., 2013; He et al., 2016). A complete mechanism for driving the observed dipole and monopole features in the eddy composite needs further investigation with numerical simulations in the near future.
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The island rule theory in the case of complex geometry with multiple islands referring to the Indo-Pacific Maritime Continent is investigated on the basis of Godfrey’s island rule theory. The bottom friction and lateral friction of multiple channels are considered by employing the Munk and Stommel boundary layer models. Five idealized cases with various spatial distributions of islands are designed to examine the influence of shape and size of the islands. The analytical solutions of the streamfunctions of the through-flows among the islands are obtained and the volume transport through each channel is estimated. The Indonesian Throughflow (ITF) transport is then calculated using the analytical solutions with wind stress and compared with observations and previous theoretical results. The ITF transport from the multiple island rule is about 14.5 Sv during 2004–2006, which is close to the observed ITF transport (about 15.0 Sv) from the International Nusantara Stratification and Transport. We find that the multiple islands rule reproduces well the mean value and interannual variability of the observed ITF transport, and inclusion of wind stress in the North Pacific Ocean may improve the estimate of ITF transport. Sensitivity experiments indicate that frictional boundary layer thickness and channel size influence the estimated ITF transport under the multiple island framework. These results imply that the multiple island rule shows improvements in estimating the ITF transport relative to previous studies, and the multiple island rule can be used to produce long time series of ITF transport and might have implications for paleo-ITF study.




Keywords: island rule, multiple islands, bottom friction, lateral friction, Indonesian Throughflow (ITF), Maritime Continent




1 Introduction

The Indonesian Seas are the only channel that connects ocean basins in the tropics through the Indonesian Throughflow (ITF), which transfers tropical Pacific waters to the Indian Ocean (Gordon, 1986; Hu et al., 2015; Sprintall et al., 2019). The ITF acts to shape the distribution of Indo-Pacific ocean heat and fresh water, links to the global thermohaline circulation, and influences the Indo-Pacific and global climate system (Lee et al., 2002; Lee et al., 2015; Feng et al., 2018; Forget and Ferreira, 2019; Hu et al., 2019; Pujiana et al., 2019; Santoso et al., 2022).

The ITF transport and its multi-scale variability have been investigated for decades (e.g., Godfrey, 1996; Gordon and Fine, 1996; Sprintall et al., 2019; Xin et al., 2023). For example, a series of observation-targeted international programs have been implemented in order to investigate the ITF-related issues, such as the Arlindo project (Gordon et al., 1999; Gordon, 2001), the International Nusantara Stratification and Transport (INSTANT) program (Sprintall et al., 2004), the Monitoring the Indonesian Throughflow (MITF) program (Gordon et al., 2008), and the Northwest Pacific Ocean Circulation and Climate Experiment (NPOCE) program (Hu et al., 2011). Observations indicate that the ITF transport is about 15 Sv (Sprintall et al., 2009; Sprintall et al., 2019), but possesses strong multi-scale variability associated with monsoon, El Niño-Southern Oscillation, Pacific Decadal Oscillation and long-term external forcing (e.g., Meyers, 1996; England and Huang, 2005; Hu and Sprintall, 2016; Hu and Sprintall, 2017; Lee et al., 2019).

The ITF and its variability are thought to be associated with large scale wind forcing that asserts on the Indo-Pacific Ocean with complex channels (e.g., Wyrtki, 1987; Wainwright et al., 2008). Godfrey (1989) (hereafter G1989) proposed the island rule — the theory derived from the Sverdrup model. This theory implies that, under idealized conditions, through the integration of the simplified equations of motion of the fluid, the flow of seawater around an island can be evaluated from wind stress (Godfrey, 1989). G1989 estimated the ITF transport using the island rule and concluded that the ITF transport was 16 ± 4 Sv. As the theory builds up the relationship between surface wind forcing, friction, geometry and ocean current, the theory is simple enough to be understood and one can understand how the ocean current response to wind forcing with this theory. Hence, the island rule theory has unique advantages comparing with other methodlogy like numerical modelling.

The Godfrey’s island rule theory has been applied in many previous studies. For example, Firing et al. (1999) derived a time-dependent island rule and investigated the North Hawaiian Ridge Current north of Oahu. Meng et al. (2004) used the island rule to examine the relationship between Pacific wind stress and ITF volume transport on an inter-decadal scale and found that the integral of zonal wind stress along the equator determined inter-decadal change of the ITF. Cai (2006) utilized the Godfrey’s island rule to investigate the linear trend of the Southern Ocean super-gyre circulation. Liu et al. (2007) assessed the ITF transport and the Luzon Strait transport with the island rule and suggested that the westerly component of the equatorial Pacific winds accounted for the decrease of ITF transport after 1976. Joyce and Proshutinsky (2007) evaluated the streamfunction of flow around the Greenland by using the island rule. Feng et al. (2011) and Feng et al. (2018) suggested that the island rule theory is able to capture the decadal and multi-decadal variations of the ITF to some extent.

Although the Godfrey’s island rule theory provides an invaluable approach for understanding observed features and changes in large scale ocean circulation like the ITF, further improvement of this theory is expected considering its extreme simplification and the nature of the complex geometry of the real oceans. Wajsowicz (1993) revised the Godfrey’s island rule through including bottom topography and frictional effects along eastern boundaries, and for the first time extended the island rule to two islands. Pedlosky et al. (1997) re-derived Godfrey’s island rule in a general form and discussed the role of dissipative boundary layers and inertial effects in estimating the net transport around an island. Pratt and Pedlosky (1998) took into account the dissipation on the northern, southern, and eastern boundaries of an island, and showed that lateral friction is a crucial factor in overestimating the ITF transport with Godfrey’s island rule. Lian et al. (2017) proposed a parameterized scheme of friction- topography resistance on the basis of Wajsowicz (1993) and investigated the throughflow in the South China Sea. Wang et al. (2018) suggested that the island rule theory might be further improved through using an optimized path integral and friction parameterization, considering a more complex geometry and bathymetry, and/or adding the time-dependent term.

Recently, Yang et al. (2019) and Yang et al. (2020) (hereafter Y2020) examined the streamfunction of each island under various geometries according to the different meridian lengths of the two islands, following Wajsowicz (1993) but considering both lateral and bottom friction. They found that the ITF transport, when considering both kinds of friction, was about 8.7 Sv, which was reduced by about 16.6% compared with that without considering friction (Yang et al., 2020). Although Y2020 considered the frictional effect, the ITF transport based on their new theory is significantly lower than the observed ITF transport (Sprintall et al., 2009).

Two key points can be drawn from previous research: 1) Importance of more realistic geometry in the island rule. The ITF consists of flows through several channels and/or straits, and considering multiple islands leads to including more channels and/or straits and hence may make the path of integration be more consistent with the real geometry. 2) Importance of including of wind forcing from the northern hemisphere in estimating the ITF with the island rule. Recent studies suggest that the north Pacific forcing is very important in determining the variability of ITF (e.g., Li et al., 2020), indicating that including the north Pacific wind forcing might be able to improve the estimate of ITF with island rule. Hence, in this study, we aim to further explore the island rule in the case of more complex geometry with multiple islands referring to the Indo-Pacific Maritime Continent on the basis of previous studies especially Y2020.

In the following, we will derive the analytical solutions of the streamfunctions of the through-flows among islands, and examine the ITF transport with the analytical solutions. The momentum equations and streamfunctions will be described in Section 2, followed by Section 3 presenting the estimated ITF transports and dynamic mechanism, and Section 4 examining the sensitivity of results to the frictional boundary layer thickness and channel size. We will discuss remaining issues and summarize the main results in Section 5.




2 Momentum equations and streamfunctions

In order to investigate the island rule in the case of complex geometry, we consider five idealized cases with different spatial distributions of three islands, including one of which referring to the Indo-Pacific Maritime Continent. It is well known that there are many smaller islands within the Indonesian region and the ITF is composed of several throughflows, but for simplification, three islands [i.e., Kalimantan Island, Philippine Islands and Australia-Papua New Guinea (PNG)] are considered in this study. Previous studies indicate that the Makassar Strait Throughflow, the major component of ITF, has a transport occupies about 78% of the total ITF (Gordon et al., 2019). So, the current across the straits between the three islands selected is the most component of ITF, and ignoring other small islands is expected to have neglecting contribution to the total ITF transport. Including more islands in this theory may further increase the accuracy, but also makes the analytical solutions be more complex.



2.1 Momentum equations

For simplification, we consider barotropic and steady flow with the time term and nonlinear term ignored, and the horizontal momentum equations is a simplified two-dimensional Navier-Stokes equations. In view of friction’s importance, we consider the lateral and bottom frictions between islands and the friction is determined by the width of channel and the frictional boundary layer’s thickness (see details in Section 2.3). Integrating the equations of motion from the bottom depth (i.e., z=-Z) to the sea surface (i.e., z=0) in the vertical direction with the Beta-plane approximation, the momentum equations are:





where   and   represent the velocity component of the depth integral, f denotes the Coriolis parameter, ρ0 is the fluid density, P is the pressure term of the vertical integration of the fluid, (F(x),F(y)) represents the friction term of the vertical integration of the fluid, and (τ(x),τ(y)) denotes the sea surface wind stress. Since the island rule calculates the volume transport in horizontal, the Ekman pumping caused by wind stress curl is not considered.




2.2 Distribution of islands and streamfunctions

The topography of Indo-Pacific Maritime Continent (from ETOPO1) and horizontal currents (vertically averaged over the upper 100 m layer) from the Simple Ocean Data Assimilation (SODA) are shown in Figure 1. In order to test the response of ITF to change of geometry (e.g., the latitudes of islands, spatial patterns, width and length of straits, etc) in Indonesian Seas under the framework of island rule, we simplify the real island geometries and design five idealized cases Case 1–Case 5. These cases are designed considering the nessary of univariate experiments with geometry changes and potential implications for paleo-ITF that was controlled by paleo-geometry. Case1 is directly simplified from the real geometry of the Indo-Pacific region, of which the western island represents the Kalimantan Island, the middle island represents the Philippine Islands, the eastern island represents the Australia-PNG, and the eastern boundary of the ocean is the western boundary of North and South America. Then, we design the other four cases Case 2–Case 5 by changing the spatial location or meridional extent of islands. From Case1 to Case5, only the latitude or size of one island is changed each time, which will cause the change of integral path. Below we present the streamfunctions in the five idealized cases.




Figure 1 | Topography of the Indo-Pacific Maritime Continent (shaded, unit in m) and mean horizontal currents averaged over the upper 100 m layer from SODA (black streamlines). Blue contour lines denote the 1000 m isobaths, and red contour lines denote the 5000 m isobaths.



Case 1: The geometry of Case 1 is shown in Figure 2. The western island partially overlaps with the middle and eastern islands in latitude, while the middle island and eastern island do not overlap with each other in latitude (Figure 2). In the original Godfrey’s island rule, the viscous effects of the interior ocean and the eastern boundary is ignored. But different from the single island, the frictional effects between the island channels for the multiple islands are considered in the present study. We integrate the wind stress and friction terms in Eq. (1), (2) along the closed curves C0, C1, and C2, and get:




Figure 2 | Map of islands and path of integration in Case 1.









Then,







Where Δfi,i=1,2,3,4 denotes the difference of Coriolis parameters between the north and south latitudes, and   represents the differential vector along the direction of the integral path. And the streamfunctions of the island without considering the friction effect are:







As shown in Figure 2, the integral path around the island is all along the western coastline of the island (similarly hereinafter). The path of the integral curve C0 is denoted by FBGHF, the path of the integral curve C1 is signified by IJCKI, the path of the integral curve C2 is represented by KCDLMABFK, and the curves AB and CD stand for the right-hand side (RHS) boundaries of the island channel.

Case 2: In this case, latitudes of the western island partially overlaps with that of the middle and eastern islands, and latitudes of the middle island partially overlaps with that of the eastern island (Figure 3). By integrating Eqs. (1) and (2) along the closed curves C0, C1, and C2, we get:




Figure 3 | As in Figure 2 but for Case 2.









where,





and



represent streamfunctions when omitting the friction term, the path of the integral curve C0 is specified by FBGHF, the path of the integral curve C1 is represented by IJDCBFI, the path of the integral curve C2 is denoted by IJEKLABFI, and the curves AB, CB, and DE stand for the RHS boundaries of the island channel.

Case 3: The western island contains the middle island in latitude and partially overlaps with the eastern island, and the middle island and the eastern island moderately overlap in latitude (Figure 4). Through integrating Eqs. (1) and (2) along the closed curves C0, C1, and C2, we get:




Figure 4 | As in Figure 2 but for Case 3.









In this formula,





and



denote streamfunctions when not considering friction. Further, the paths of the integral curve C0, C1, and C2 are represented by FBGHF, IEDCBFI, and JKLABFJ, respectively, and the curves AB, CB, and DE denote the RHS boundary of the island channel.

Case 4: The western island partially overlaps with the middle island in meridional, the middle island partially overlaps with the eastern island in latitude, and the western island and eastern island do not overlap (Figure 5). By integrating Eqs. (1) and (2) along the closed curves C0, C1, and C2, we have:




Figure 5 | As in Figure 2 but for Case 4.









Where,





and



are streamfunctions when omitting the friction term. Additionally, the paths of the integral curves C0, C1, and C2 in order are specified by FBGHF, IDJABFI, and KLMCDIK, and the curves AB and CD represent the RHS boundaries of the island channel.

Case 5: The setup of this case is the same as Case 1 but the width of M-A is reduced by 100 km.




2.3 Integral of lateral and bottom frictions

As shown in Section 2.2, the streamfunctions can be expressed as the sum of wind stress term and friction term. The wind stress term can be calculated from observed data of sea surface wind, but the friction force terms are not readily available, and the vorticity equations need to be solved firstly to establish the relationship between transport and friction term. Wajsowicz (1993) considered the situation of lateral and bottom frictions separately and modified the island rule. Yang et al. (2020) suggested that considering both the bottom and lateral friction may be of much importance. Hence in this study, we adopt the Munk-Stommel model (e.g., Stommel, 1948; Munk, 1950) following Yang et al. (2020), and the bottom and lateral frictions are substituted into Eqs. (1) and (2) at the same time:





Then the vorticity relation is given by:



where   and AH represent the coefficients of the bottom friction and the lateral friction respectively, and   denotes the gradient of Coriolis parameter. We take into account a combination of friction coefficients and geometric/integral paths, although the bottom and lateral frictions used are simplified and idealized frictions and may have potential influences. This simplification may affect the exact value of ITF shipments, but does not change the main result in terms of ITF variability. Eq. (32) is a fourth-order partial differential equation, and it is difficult to obtain its analytical solution. Hence, the island channel is assumed to be a rectangular channel with width and length denoted by W and L (Figure 6). For the case of  , we can rationally state that  , and thereby the vorticity equation is simplified to:




Figure 6 | Schematic map of the passage between the two nearby islands.





We first nondimensionalize Eq. (33), which is particularly important for the subsequent discussion of the contribution of bottom friction and lateral friction to transport and helps to diagnose the differences between the model and previous ones. We assume that there is a Sverdrup balance in the channel, then the last term on the left and the first term on the right of Eq. (33) are balanced. If U is the characteristic scale of horizontal velocity, W is the characteristic scale of horizontal length, and τ0 is the characteristic scale of τ , then there is U=τ0ρ0−1β−1W−1. If ψ is normalized by UW, we get the following formula:



	

where, δM is the Munk boundary layer thickness and δs corresponds to the Stommel boundary layer thickness. The lateral friction coefficient is set as AH=104 m2 s−1 (Wajsowicz, 1996), the bottom friction coefficient is set as   (The water depth is taken as 300m) following Yang et al. (2020), and the gradient of Coriolis parameter is set as  β=1.62×10−11 m−1 s−1 . Therefore, the Munk boundary layer is δM =85 km, the Stommel boundary layer is  δs = 412 km, and δM is less than δs. For simplification, friction is considered only when the strait width is less than the boundary layer thickness, and hence we choose different models according to the width of channel.

1) When 0<W≤δM<δs, both the bottom friction and lateral friction are considered and the model is similar to the Munk-Stommel model. Eq. (33) is then expressed as follows:



with the following boundary conditions:

	

By introducing boundary conditions, we get the general solution of Eq. (35):



where, r1, r2 and r3 represent the roots of the characteristic equation, l0, l1, l2 and l3 are constants. Please refer to the appendix for detailed derivation process.

Integrating the friction expression along the length and we have:



where

	

2) When δM<W≤δs, the bottom friction is considered and the lateral friction coefficient is zero, and in this circumstances, the model is similar to the Stommel model. Eq. (33) is expressed as follows:



with the following boundary conditions:

ψ(0,y)=ψ1,

	

By introducing boundary conditions, we get the general solution to Eq. (39):



Where, r1 represents the root of the characteristic equation, l0  and l1 are constants. Please refer to the appendix for detailed derivation process.

Integrate the friction expression along the length; therefore, we have:



In the formula,  , .

3) When δM<δs<W, the bottom friction and lateral friction are not considered, so the integral of friction is zero.




2.4 Influence of geometry on channel transport

To examine the influence of geometry on the channel transport, we then estimate the transport ψ0−ψ2, i.e., the through flow in the channel between the western island and the eastern island, in the five cases. The monthly average wind speed data at 10 meters above the sea surface based on the CCMP (Cross-Calibrated Multi-Platform) are employed. The CCMP wind speed data spans from 2004 to 2006 with a spatial resolution of 0.25°×0.25°, and the sea surface wind stress is obtained by using the empirical formula. It should be noted that, previous studies have suggested that wind stress calculated by actual wind and relative wind might have an impact on ocean current simulations (e.g., Wu et al., 2012; Sun et al., 2021), but in order to contrast with the previous island rule, only actual wind is considered in this paper. The drag coefficient of wind stress has been investigated in numerous previous studies (e.g., Garratt, 1977; Powell et al., 2003). Here, we employ the empirical formula associated with the wind stress and drag coefficient following Yelland and Taylor (1996):





where τx and τy represent the zonal and meridional wind stresses, ρa=1.29 kg m−3 is the air density, CD denotes the drag coefficient,   is the modulus of the wind vector, and u and v are the components of the wind speed in the east-west and north-south directions, respectively. We assumed that the width of the channel is constant in each case. The width (W2 ) of the channel between the western island and the middle island is set as 100km, the width (W1) of the channel between the western island and the eastern island is set as 200km (this assumption is valid only when there is a channel between the two islands), and the climatological wind stress curl between channels is adopted.

Table 1 presents the latitude ranges of the islands and corresponding channel transports in the five cases. Note that the total transport in Case 1 equals to the channel transport through the section M-A, in Case 2 equals to the channel transport through the section L-A, in Case 3 equals to the channel transport through the section L-A, and in Case 4 equals to the channel transport through the section M-C plus J-A. As shown in Table 1, the channel transport decreases from 14.47 Sv in Case 1 to 8.70 Sv in Case 2. The difference of islands’ setup between Case 1 and Case 2 is the latitude of the middle island, which leads to changes of channel friction and integral paths. The main changes of geometry in Case 3 from Case 2 are a reduction in length and southward shift of the middle island (Table 1 and Figure 4). As a result, the western island streamfunction in Case 3 would be no longer affected by the friction of the western boundary of the middle island, and the transport rises to 10.12 Sv. In Case 4, the western island is shifted to the north by 6° relative to Case 3 and does not coincide with the eastern island in latitude. Although the geometry changes in case 4 lead to an increase of friction, the streamfunction of the western island in Case 4 is affected by the middle island compared to Case 3, in which the transport is further increased to 12.75 Sv. The Case 5 is similar to Case 1. Compared with Case 1, the latitude range of islands in Case 5 remains unchanged, but the width of the channel between the middle and eastern islands is reduced by 100 km. As a result, the transport is decreased from 14.47 Sv in Case 1 to 9.02 Sv in Case 5, due to the narrowing down of the channel and a larger contribution of bottom friction. To summarize, the above comparison indicates that the channel’s transport is very sensitive to geometry through the effect of friction and integral paths.


Table 1 | Islands setup and corresponding channel transports in the five cases.







3 ITF transport estimate with inclusion of North Pacific winds



3.1 ITF transport estimate

The Indonesian Seas where the ITF passes by have a very complex geometry and bathymetry. Here we optimize the integral path for simplification. Figure 7 demonstrates the climatological sea surface winds in the Pacific Ocean and the integral path we used. Arrows represent the climatological winds from the CCMP product. The distribution of the three islands and the streamfunctions are represented by the idealized Case 1 discussed in Section 2.2. The Makassar Strait is the main inflow channel for the ITF (Wajsowicz, 1996; Susanto and Gordon, 2005; Vranes and Gordon, 2005), accounting for 75%-80% of the ITF water transport (Gordon et al., 2008; Li et al., 2018; Gordon et al., 2019). Case 1 is an idealized geometry, and it needs to be adjusted according to the actual geometry in the estimation of ITF. The channel’s width W1 shown in Figure 7 includes the width of the Makassar Strait and the Lifamatola Strait. Although the Lifamatola Strait is also an entrance to the ITF, its contribution to the ITF is small compared to the overall transport and its width is negligible compared to the Makassar Strait. Therefore, we only take into account the width of the Makassar Strait. Suppose that the width and length of the Makassar Strait are represented by W1 and L1, and the width and length of the Mindoro Strait are denoted by W2 and L2, respectively. Then the transports through the Mindoro Strait and Makassar Strait specified by T1 and T2 are:




Figure 7 | Integral paths (red, blue and black lines) and climatological sea surface winds (vectors). Color shading shows the topography (unit in m).







	

m1 and n1 are formally the same as the expression m and n in Section 2.3, except that L1 and W1 replace L and W in the formula. Same thing with m2 and n2 .

By simultaneous solving the relations in Eq. (43) and Eq. (44), the transport of the Makassar Strait is obtained as:



To calculate the ITF transports over a long period of time, we extend the time span of the monthly sea surface wind product of CCMP to 1988-2016. The geometry data of the Makassar Strait and Mindoro Strait are given by: W1=200km, L1=1200km, W2=100km, L2=700km, and the average wind stress curl between channels is set as  . Because δM<W1≤δs, the width of the channel is much larger than the Munk boundary layer thickness, and the lateral friction is not included in the calculation, so the Stommel model is adopted. The time series of ITF from 1988 to 2016 can be obtained by inserting parameters and wind stress data into the Eq (45).

Figure 8A illustrates the yearly mean transport of ITF from the INSTANT observations and that calculated with island rule during 2004–2006. The INSTANT program deployed 11 moorings in the major inflow and outflow passages of the ITF during 2004–2006, and the total transport through three passages (Lombok Strait, Ombai Strait, and Timor Passage) during the INSTANT period was 15.0 Sv (Sprintall et al., 2009). As shown in Figure 8A, the ITF transport predicted by G1989 and Y2020 are smaller than the observed value, and the ITF transport derived from the multiple islands rule of this study has the smallest difference from the observations. Figure 8B compares the 13-month running mean ITF transport anomalies during 2004–2006 and the INSTANT observations. The INSTANT observations show that the ITF transport had a peak in 2005 and was relatively weaker in 2004 and 2006. As shown in Figure 8B, the ITF transport from the triple island rule theory has a significant correlation coefficient of about 0.9 with the INSTANT ITF transport, while the correlation coefficient between original island rule transport and the INSTANT ITF transport is only 0.25, implying that the multiple islands rule of this study is able to infer a more reasonable time series and shows significant improvement in estimating the ITF transport comparing with the original island rule theory.




Figure 8 | (A) Annual mean ITF transports calculated by the island rule theory and measured by the INSTANT program. (B) Comparison between 13-month running mean anomalies of ITF transport from island rule theory and the INSTANT observations. “R” in the right panel denotes the correlation coefficients between island rule ITF and INSTANT ITF transport.



To further verify the multiple islands rule in a longer time period, we plot in Figure 9 the yearly transports during 1988–2016 from G1989, Y2020 and the present study, with a 6-month running mean of the data in advance. The annual and monthly average ITF transport by INSTANT during 2004–2006 and the annual mean ITF transport calculated using the MITF velocity are also added to the picture. Note that the monthly average has been subjected to a 13-month running mean to remove seasonal signals. The MITF program deployed two moorings in the Makassar Strait, on which two acoustic Doppler current profilers (ADCPs) measured the Makassar throughflow from surface to the 680 m sill depth (Gordon et al., 2003; Gordon et al., 2019). The time span of MITF velocity dataset is from November 2006 to December 2016 (Only eight months of data in 2017 and hence are not used). By splicing it with the INSTANT observation dataset, the time span is expanded to January 2004 – December 2016, and it was pre-processed into a time interval of one day. Since MITF program only conducted mooring observation in the Makassar Strait and not for the entire ITF, we use the INSTANT time series to correct the MITF transport through a formula to get a MITF-based transport of the total ITF.




Figure 9 | Yearly ITF transport during 1988-2016 derived from G1989 (red), Y2020 (blue) and the solution of this study (black). Yearly and monthly INSTANT observations during 2004-2006 (cyan and magenta respectively) and yearly MITF transport during 2004-2016 (gray) are also shown for comparison.



First of all, we averaged the single point velocity measured by ADCP in the vertical direction to obtain the average velocity of each day, and then averaged to get the average speed of the whole time period. The ratio of the two was multiplied by the average flow of INSTANT to obtain the MITF transport, and the corresponding expression is  ,   represents the vertical average of the horizonal velocity, the number 15 represents the average ITF transport during the INSTANT period, and   represents the average over the time dimension of  .

As shown in Figure 9, the average transports from G1989, Y2020 and the present study are 13.03 ± 3.30 Sv, 9.94 ± 2.52 Sv, and 13.00 ± 3.94 Sv during 1988–2016, respectively. Observations show that the ITF transport during 2004–2015 was about 15.64 Sv (Li et al., 2018), and for comparison, the average transports during 2004–2015 from G1989, Y2020 and the present study are 13.60 ± 0.87 Sv, 10.38 ± 0.51 Sv and 14.10 ± 1.02 Sv, respectively. Hence, in general, the multiple islands rule of this study predicts a reasonable mean transport that is consistent with observations.

Both the G1989 and the multiple islands rule predict a reasonable mean transport of about 13.03 and 13.00 Sv, but the G1989 transport show significant differences in interannual peaks and valleys comparing with observations. For example, geostrophic calculations indicate that the ITF in about 1988–1989 was smaller than that of the 1990s and 2000s (Liu et al., 2015), but in contrast, the transport from G1989 and Y2020’s island rule is greater in 1988 than that in 1990s and 2000s (Figure 9).

We then calculated the average errors of the three (G1989, Y2020, and this study) time series and their correlation coefficients with the MITF time series. Here, the average error is defined as the average of the difference between a time series and the MITF time series. The average errors of the former two (G1989 and Y2020) are 1.32 Sv and 4.48 Sv, respectively, which are much greater than that of the present study that is only 0.87 Sv. The correlation coefficient between the G1989 (Y2020) time series and the MITF is both 0.37 (0.37), while the time series from the multiple island rule and the MITF has a correlation coefficient of 0.81. Therefore, the comparison implies that the multiple islands rule might be improved from previous studies of island rule theory. It should be noted that, since the time series from the island rule shown in Figure 9 were calculated using the same wind stress data set, the significant differences between them should be attributed to from the optimizing of the fraction and path of integration related to the geometry.

As we mentioned, Pratt and Pedlosky (1998) examined the role of lateral friction in the island rule theory, and pointed out that lateral friction is an important factor in the overestimation of ITF in the original island rule. But it seems that the major straits (e.g., Makassar Strait) of the ITF passing by have a width greater than the thickness of Munk boundary layer except a few narrow passages, and the lateral friction from these narrow passages may have limited influence on the overall transport. As an alternative, the inter-channel bottom friction, which can significantly reduce the estimate of ITF, may play an important role. As we tested, the ITF transport can reach 27.6 Sv, which is obviously unreasonable, if the inter-channel bottom friction dissipation in the Indonesian sea is not taken into account.




3.2 The influence of including North Pacific winds

The island rule reflects the relationship between the ITF transport and the Pacific wind field. Previous studies suggest that the decadal variability of ITF is related to the North Pacific trade winds and the ITF is primarily drawn from North Pacific thermocline waters (e.g., Li et al., 2018; Li et al., 2020). The North Pacific trade winds has significant impact on the Northern Equatorial Current (NEC) bifurcation latitude and Mindanao Current (MC) and hence the ITF (e.g., Hu et al., 2016; Hu et al., 2020; Hu et al., 2021). One of changes in the present multiple islands rule from previous theories is the inclusion of wind stress of northern Pacific Ocean in the path of integration, and this change might play an important role in producing a better estimate of ITF transport.

The original island rule suggests that the major forcing for the ITF transport (T=ψ0, wind ) is the wind field in the eastern ocean of Australia-PNG. In other words, the magnitude and variability of the ITF would depend only on the zonal wind stress across the Pacific at the northernmost and southernmost latitudes of Australia-PNG and the alongshore wind stress along the western coasts of Australia and South America (Wajsowicz, 1993). The wind in the southern hemisphere definitely plays an important role in determining the ITF transport. However, the upstream of ITF include not only the southern Pacific ocean circulation, but also the major currents in the norther Pacific Ocean which are mainly controlled by wind forcing from the norther Pacific Ocean. For example, the MC, which comes from the wind-driven current the NEC (McCreary and Lu, 1994), is an important source of the ITF but controlled by the northern Pacific winds (e.g., Hu et al., 2016; Hu et al., 2021). Godfrey et al. (1993) proposed that the ITF is supplied by the MC, and Gordon (1995) suggested that the ITF mainly originates from the North Pacific Ocean, and the seawater from the MC is mainly transported southward through Makassar Strait.

In addition, the northern Pacific Ocean also feeds the ITF through the South China Sea (e.g., Gordon et al., 2019). The Kuroshio flows into the South China Sea through the Luzon Strait in winter under the influence of the Northeast monsoon (Wyrtki, 1961). Lebedev and Yaremchuk (2000) pointed out that the inflow of the Luzon Strait contributes significantly to the ITF, the seawater from the North Pacific flows into the South China Sea through the Luzon Strait, and part of it flows south through the Mindoro Strait, and then farther on until it joins a powerful current, which can be seen as an extension of the MC. So, changes of the North Pacific wind field cause the response of MC and Kuroshio and further affect the ITF.

As can be seen from Eq. (45), considering that the ITF volume transport of multiple islands is determined by the wind stress field in the South Pacific (0°-45°S) and the North Pacific (0°-20°N), the transport value includes the flow through Mindoro Strait (i.e., T=ψ1, wind−ψ2, wind, with a source of the South China Sea) and Makassar Strait (i.e., T=ψ0, wind−ψ2, wind , with a source of the MC). So, the optimizing of the path of integration related to the geometry (i.e., including the northern Paicific Ocean) expectedly acts to improve the ITF estimates.





4 Sensitivity to boundary layer thickness and channel size

In the case of multiple islands, several factors, including bottom and lateral friction, channel width and length, are able to influence the estimated throughflow. The frictional boundary layer thickness is a monotonically increasing function of the frictional coefficient. To test the sensitivity of ITF transport to frictional coefficient and channel size, we examined the response of ITF transport from the multiple island rule to these factors. For simplification, we assume that the frictional coefficient can be represented by the boundary layer thickness in exploring the relationship between frictional coefficients and ITF transport.

Figure 10A shows the relationship between ITF transport and Stommel boundary layer thickness when the channel’s width is 200 km. It can be seen from the graph that the transport decreases with the increase of δS , but the decreasing rate gradually reduces. When the channel’s width is set to 50 km, Munk-type friction is also taken into account, and the flow decreased to varying degrees with the increase of δS and δM (Figure 10B). The contribution of the two kinds of friction is different. When the passage is relatively narrow, the Munk type friction dominates and the blockage of the current is stronger. It is interesting that, with the increase of Munk and Stommel boundary layer thickness, the lateral friction’s blocking effect on the ocean current is enhanced, while the bottom friction’s blocking effect on the ocean current is weakened, which is different from the conclusion when the passage is wider.




Figure 10 | The idealized ITF transport as a function of various factors: thickness of Stommel boundary layer (A), thickness of both Munk and Stommel boundary layers (B), and channel size (C, D). The horizontal coordinates corresponding to the dot marks in (A) and the triangular marks in (C) are the parameters used in the estimation of ITF in this study.



We plot the derived ITF transport as a function of the channel’s width and length in the bottom panels of Figure 10. When δM<W1≤δs , there is only bottom friction, ITF transport increases with the increase of channel’s width, and the growth rate gradually increases (Figure 10C). When 0<W1≤δM<δs , both bottom friction and lateral friction play a role and the ITF transport still increases with the increase of channel’s width, but the rate of increase is accelerated (Figure 10D).

The reason why the rate of change is inconsistent is that when the channel is relatively narrow (less than δM ), the dominant lateral friction nonlinearity decreases rapidly with the increase of the channel’s width, and when the critical width (δM ) is reached, the lateral friction decreases to zero. When the width continues to increase, the current is completely controlled by the bottom friction, and the bottom friction obstructs the current more and more until the current rate changes stabilize. In contrast, the ITF transport is generally decreasing with an increasing of the channel’s length, which is not affected by the thickness of the boundary layer, and the rate of decrease gradually reduces (Figures 10C, D).




5 Discussion and conclusions

In this study, the island rule theory in the case of complex geometry with multiple islands referring to the Indo-Pacific Maritime Continent is investigated based on Godfrey’s island rule theory. To this end, the horizontal momentum equations were vertically integrated, the streamfunctions of islands under five cases with different geometry were calculated, and the transport through the channels was predicted. By comparing the transport in the five cases, we find that the geometry has a substantial influence on the transport of throughflow, due to changes in bottom and lateral friction and integral path associated with the geometry. The transport of the throughflow is negatively correlated with the frictional boundary layer thickness and channel length, but positively correlated with channel width, and the flow varies at different rates in different cases.

The ITF transport is estimated using this multiple islands rule with yearly wind stress data. During 2004-2006, the derived ITF transport is about 14.5 Sv, which is close to the observed ITF transport from INSTANT in the same duration (about 15.0 Sv). We compared the yearly ITF transport during 1988-2016 with that using G1989 and Y2020, and find that the multiple islands rule in this study is able to infer an improved estimate of ITF transport time series in terms of mean value and interannual variability. The ITF transport derived from the multiple islands rule is 13.00 ± 3.94 Sv, which is very close to direct observations. In addition, the island rule theory is applicable for low-frequency variability on which time scale the ITF adjustment to basin scale wind forcing is basically finished, so the theory is also applicable for variability of lower frequency like decadal variability.

Through a series of comparison between the multiple island rule, previous studies and observations, and sensitivity experiments, we suggest that the optimizing of the fraction and path of integration related to the geometry makes the multiple island rule be able to produce a time series of ITF transport that is in well agreement with observations. The comparison indicates that it is possible to produce a long time series of ITF transport from wind products using the multiple island rule, which is of much importance in monitoring the ITF and understanding the ocean circulation and climate system. It is worth mentioning that this study may have a potential value to the estimation of paleo-ITF transport.

Previous studies suggest that changes, including closures, opening and widening of the Indonesian seaway have happened in history (e.g., Kuhnt et al., 2013). The spatial features of the Indonesian straits might be similar with the paleo-geometry, hence the triple island rule theory is expected to be a good tool to estimate the paleo-ITF transport.

However, there is still room for further improvement in the multiple islands rule theory. For instance, in solving the vorticity equation, we assume that the width of the channel is much smaller than the length of the channel for simplification, and the problem has been not solved in the current investigation. In addition, time dependence may be important but is not explored here. In the near future, the theory might be further improved by adding the baroclinic term, time term, and other aspects.
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Appendix

This appendix describes the procedure for solving Eq. (35) and Eq. (38) in detail.

Eq. (35) is shown below:



with the following boundary conditions:



Eq. (A1) is a fourth-order inhomogeneous ordinary differential equation, the corresponding homogeneous equation is  , and its characteristic relation is r(r3+ar+b)=0 , Cardano’s formula shows that the type of solution to a cubic equation is related to the discriminant Δ=−27b2−4a3 (Deiters, 2002). Here, we perform scale analysis, AH has magnitude 104 , AS has magnitude 10−6 , and β has magnitude 10−11 , so Δ is always greater than zero. Therefore, the characteristic equation has four unequal real roots, which are 0, r1 , r2 and r3 . The general solution of a homogeneous equation is ψ(x,y)=l0+l1er1x+l2er2x+l3er3x , where l0 , l1 , l2 and l3 are constants. Using the constant variation method, let a particular solution of Eq. (A1) be  , then there is



Solve the system of equations and integrate to get:



so, a particular solution of the Eq. (A1) is  ,the general solution of the Eq. (A1) is   (here, b=−r1r2r3 ).

By introducing boundary conditions, l0 , l1 , l2 and l3 can be solved separately from Eq. (A5),



Eq. (38) is shown below:



with the following boundary conditions:

ψ(0,y)=ψ1,



Eq. (A6) is a second-order inhomogeneous ordinary differential equation, the corresponding homogeneous equation is  , and its characteristic relation is r(r+a)=0. Therefore, the characteristic equation has two unequal real roots, which are 0 and r1=−a . The general solution of a homogeneous equation is ψ(x,y)=l0+l1er1x , where l0 and l1 are constants. Using the constant variation method, let a particular solution of Eq. (A6) be  , then there is



Solve the system of equations and integrate to get:



so, a particular solution of the Eq. (A6) is  , the general solution of the Eq. (A6) is   (here, a=−r1 ).

By introducing boundary conditions, l0 and l1 can be solved separately from Eq. (A10),
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Surface and Subsurface currents in the Philippine Sea have been reported previously, and the debate persists regarding whether they are related to the strength of ENSO (El Niño/Southern Oscillation). We investigated the mean vertical structure and variability of the currents along the western boundary of the Philippine Sea using mooring observations at about 8°N, 127°E from August 2014 to January 2016. The southward Mindanao Current (MC) exists in the upper 600 m countered by the northward Mindanao Undercurrent (MUC) observed below 600 m to the depth of 2,000 m, with a core at approximately 1,000 m. During the development of El Niño from July to December 2015, the core velocity and depth of the MC were noticeably increased, consistent with the Niño 3.4 index, and the current at 2,000 m was observed to be southward, which indicated that the MC may extend to 2,000 m under the influence of El Niño. The MUC was stronger around November 2015, corresponding to the peak phase of the Niño 3.4 index. The intraseasonal variability with a period of 70-110 days from the surface to 2,000 m is also discussed based on power spectral analysis. Subsurface eddies are likely the source of the intraseasonal variability of current in the Philippine Sea from the model outputs.




Keywords: vertical structure, variability, western boundary, Philippine sea, 2015/2016 El Niño, mooring data




1 Introduction

Western boundary currents (WBCs) are swift, narrow oceanic currents found in all major oceanic gyres (Hu et al., 2015). The Pacific WBCs impact global ocean circulation and variability by supplying heat and moisture into the atmosphere, exchanging water with the Indian Ocean, and transporting mass between the equatorial and subtropical Pacific (Nakamura et al., 2004). In the Northern Hemisphere, the low-latitude WBC in the Pacific is characterized as the Mindanao Current (MC). Since the southward flow of the MC was indicated (Hu and Cui, 1989), various measurements, including satellite altimeters, hydrographic observations, and Argo floats, were used to analyze the structure and multiscale variability of the MC (Nakamura and Kazmin, 2003). Many previous studies have found that the MC is a stable, 200-km-wide coastal jet with a maximum speed of 1 m s-1 (Lukas et al., 1991; Wijffels et al., 1995; Wang et al., 2015). The Mindanao Undercurrent (MUC) is of particular interest because there have been few observations regarding its behavior at depth, and there is continuing debate regarding the nature of the MUC as being transient or a permanent current (Hu and Cui, 1989, Guan, 1990; Lukas et al., 1991; Wijffels et al., 1995; Qu et al., 2012).

The temporal variability of the MC/MUC was observed to consist of intraseasonal, seasonal, and interannual signals. For example, on the basis of 2-yr mooring measurements from 2010 to 2012 and from November 2017 to December 2019 using a subsurface mooring at about 8°N 127°E, intraseasonal variability with a period of 60-80 days was suggested through the entire water column, including the MC and MUC (Zhang et al., 2014; Azminuddin et al., 2022). Seasonal and interannual variability in the MC was investigated using mooring data at the same location with 4-yr observations (Hu et al., 2016; Wang et al., 2016). Combined with the high-resolution numerical model, the intraseasonal variability of the subthermocline current east of Mindanao was also characterized and determined to be caused by subthermocline eddies (Wang et al., 2014; Azminuddin et al., 2022).

The 2015-2016 El Niño was one of the strongest events of the tropical Pacific Ocean in the observed history, with the similar strength to the 1982-1983 and 1997-1998 events. The Pacific low latitude western boundary currents are believed to play a key role in the heat budget of the warm pool that is an important factor in the El Niño/Southern Oscillation (ENSO) (Lukas et al., 1996). However, debate persists regarding whether the MC/MUC is related to the strength of ENSO. Lukas (1988) found that fluctuations in MC have no apparent relationship with the strength of ENSO by analyzing sea level records. Qiu and Lukas (1996) and Zhang et al. (2014) also suggested that the interannual variation in the MC does not always correspond to ENSO. However, based on mooring observations, Kashino et al. (2005) suggested that the MC core velocity was high during the onset of the 2002/03 El Niño. A stronger MC was also measured during the 2006/07 El Niño using onboard observation measurements (Kashino et al., 2009). Meanwhile, results from a high-resolution ocean general circulation model (OGCM) showed that MC transport increased during El Niño (Kim et al., 2004). Moreover, the MUC was particularly strong in December 2006 (Kashino et al., 2009). It is therefore possible that the MUC is also affected by the ENSO phenomenon. Schonau and Rudnick (2017) reported that the transport in the subthermocline is strongly poleward during La Niña and equatorward during El Niño according to glider observations. Hui et al. (2022) also reported the interannual variation of EKE below the thermocline east of the Philippine coast which is closely related to the modulation of the ENSO events.

In this study, we analyzed direct mooring observations at 8°N, 127°E along the western boundary of the Philippine Sea from August 2014 to January 2016. The vertical structure and variability of the low-latitude western boundary current east of Philippines during the 2015/2016 El Niño were investigated as well.




2 Data and methods

In August 2014, a mooring was deployed at 8°N, 127°E (Figure 1A) during the cruise in the West Pacific conducted by the Institute of Oceanology, Chinese Academy of Science (IOCAS), which was recovered successfully by R/V Science in January 2016. To acquire the full-depth current velocity, self-contained instruments, including acoustic Doppler current profilers (ADCPs), and single point current meters (Aqds-6000), were mounted on the mooring (Figure 1B). Two 75-KHz ADCPs were equipped on the main float at a depth of 400 m, looking upward and downward respectively. The ADCPs were configured to measure velocities every hour in 60 bins with a bin size of 8 m. The observation period was from 30 August 2014 to 13 January 2016. Below 1000 m, three Aqds-6000 current meters produced by Nortek were moored at 1,000 m, 2,000 m, and 5,900 m, respectively. The measurement interval of Aqds-6000 current meters were also set to hourly. In this study, the data measured by ADCPs and Aqds-6000 at 1,000 m and 2,000 m were used to investigate variability in the flows of the MC and MUC.




Figure 1 | (A) Bottom topography and surface (red arrows) and subsurface (blue arrows) currents around Philippines. NEC, North Equatorial Current; NEUC, North Equatorial Current; MC, Mindanao Current; MUC, Mindanao Undercurrent; NECC, North Equatorial Counter Current; KC, Kuroshio Current; LUC, Luzon Undercurrent. The red triangle denotes the mooring at 8°N, 127°E. (B) Vertical structure of the mooring system.



Data quality was strictly controlled after being downloaded from all equipment. Current speeds larger than 2 m s-1 are cut off, and the percentage of good beams (PG) less than 60% was not considered. The pitch and roll of the current instrument of less than 20° is adopted. Due to the impact of surface refection of sound beams, the data at the upper 50 m were cut off. The resolution for the current measurement of the ADCPs and Aqd-6000 current meters is less than 1 mm s-1, while the accuracy of measurement is less than 1% of the measured value ±5 mm s-1. To remove the tidal signal, daily averaged data were used in the following analysis. Values of the Niño 3.4 index were provided by the Climate Prediction Center of the National Oceanic and Atmospheric Administration (NOAA) during the mooring period (http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). Therefore, mooring observations were conducted under the 2015/2016 El Niño conditions and are suitable for comparing differences in the ocean state between this condition and normal conditions.

The OFES (Oceanic General Circulation Model for the Earth Simulator) model is based on the third version of the Modular Ocean Model (MOM 3.0) and has a horizontal resolution of 0.1° and 54 vertical levels. The 3-day model outputs from 2014 to 2016 are used in this study. Detailed descriptions about this model can be found in Masumoto et al. (2004) and Sasaki et al. (2008). OFES outputs have been widely applied to the investigation of the general circulation in the western Pacific and these studies indicate that the model outputs are generally consistent with observations (e.g., Wang et al., 2014; Song et al., 2017; Zhang et al., 2021). Therefore, OFES is believed as a suitable model products to explore the ocean currents in the western Pacific.

The daily gridded and merged sea level anomaly (SLA) with a horizontal resolution of 0.25°×0.25° for the period from 2014 to 2016 is also used in this study. The data set is distributed by Copernicus Marine Environment Monitoring Service (CMEMS). The SLA is estimated by Optimal Interpolation, merging the L3 along-track measurement from the different altimeter missions available.




3 Results



3.1 Vertical structure

Figure 2 shows the horizontal currents and statistical values measured by ADCPs. From the time series of meridional velocity recorded by ADCPs (Figure 2A), the southward MC plays a dominant role in the upper 600 m and extends over 1,000 m at particular times. The data were first interpolated vertically onto 50-900 m of 5 m vertical resolution and then derived the annual mean values from 1 January 2015 to 31 December 2015. According to the lines of the mean value and standard deviation (Figure 2B), the annual mean value of meridional velocity reaches up to -102.77 cm s-1 at the depth of 85 m. The zonal velocity is weak compared with the meridional velocity. Therefore, the meridional velocity is used to approximate the intensity of MC and MUC. The observations reported by Zhang et al. (2014) and Hu et al. (2016) were made at the same location during the period from December 2010 to August 2014. The maximum mean MC velocity from August 2014 to January 2016 was stronger than that reported by Zhang et al. (2014) (-73 cm s-1) and Hu et al. (2016) (-78 cm s-1) but weaker than that at 6°50’N, 126°43’E reported by Kashino et al. (2005) (-138 cm s-1). This difference may be attributed to interannual variation. The standard deviation at 85 m was approximately 15 cm s-1, which is much smaller than the mean value, indicating that the MC is an exceptionally stable current. This is consistent with previous studies. Below 600 m, the mean current flows to the north are part of the MUC, which had a maximum mean velocity of 4.84 cm s-1 at the around depth of 865 m with a standard deviation of 10.9 cm s-1.




Figure 2 | Time series of daily averaged velocity (cm s-1) measured by ADCPs at 8°N, 127°E from September 2014 to January 2016, with annual mean velocity (red line), standard deviation (black line) in meridional (A, B) and zonal (C, D) currents (cm s-1).



To compare the velocity between the upper layer and 1,000 m, the velocity recorded by ADCPs at 800 m depth after interpolation is illustrated in Figure 3A. The horizontal currents recorded by Aqds-6000 current meters below 1000 m are shown in Figures 3B, C. As described above, the currents at 800-m and 1,000-m depths are regarded as part of the MUC. In particular, increased mean values of meridional velocities with depth are observed, from 5.71 cm s-1 at 800 m to 11.58 cm s-1 at 1,000 m (Table 1). This means that the northward-flowing MUC has a core at depth around 1,000 m or between 1000-2000 m from August 2014 to January 2016. For the 2,000-m depth, the mean zonal and meridional velocities are -2.09 and 1.49 cm s-1, with standard deviations of 4.21 and 7.08 cm s-1, respectively. Note that the maximum daily velocity magnitudes at the depth of 2,000 m exceed 12 cm s-1 and 20 cm s-1 for the zonal and meridional velocities, respectively, which are much stronger than the mean current. It should be noted that from mid-July to October 2015, the current at 2,000 m had a velocity around 10 cm s-1, consistent with the current above 1,000 m, which indicates that the MC extended to 2,000 m during the onset period of the 2015/2016 El Niño event. Actually, the depth of the current meters varies as the pressure sensors show in Figure 3 (green lines). The lines and vectors at depths of 800 m, 1,000 m, and 2,000 m show the velocity at deeper depths. For example, the pressure increased approximately 900 m, 800 m, and 600 m in October 2015, and the lines and vector at that time actually illustrated the velocity at depths of 1,700 m, 1,800 m and 2,600 m. This means that the depth of the MC can reach depths deeper than 2,000 m. The phenomena extend our understanding of the variation in the MC during El Niño events.




Figure 3 | Time series of daily averaged zonal (black line) and meridional (blue line) velocity and flow vector (red line) at 127°E/8°E by (A) ADCPs at 800 m, and Aqds-6000 current meters at (B) 1000 m, and (C) 2000 m from August 2014 to January 2016 (units are cm s-1).




Table 1 | Velocity statistics from mooring data at different layers in terms of mean values and standard deviation.



According to the Niño 3.4 index, the ENSO phase was positive (El Niño) during the mooring observations period, and was strongest in November and December 2015. To investigate the variability of the MC, the meridional velocity at 150 m and the depth of meridional velocity of little than -5 cm s-1 are regarded as the core velocity and depth of the MC. Figure 4 displays a monthly time series plot of the core velocity (blue line), the depth (black line) of the MC and the Niño 3.4 index (red line). During the development of El Niño from July to December 2015, the core velocity and depth of the MC were obviously increased and compared with the Niño 3.4 index. Notably, it seems that the variability of the MC precedes the El Niño by 2-3 months. The stronger MC during El Niño is consistent with the observations of (Kashino et al, 2005; Kashino et al, 2009) and the numerical results of Kim et al. (2004).




Figure 4 | Monthly time series of the core velocity (cm s-1) (blue) and depth (m) (black) of MC and Niño 3.4 index (°C) (red) from September 2014 to January 2016.



Another notable feature for the structure of velocity is the strength of the MUC during El Niño. The vertical averaged meridional velocity from the depth at that velocity is greater than 5 cm s-1 to the deepest record by ADCPs was calculated to represent the strength of the MUC. Figure 5 shows the time series of the smoothed velocity of the MUC and Niño 3.4 index. Over the observation duration, the peaks of the averaged velocity were observed in November 2014 and November 2015. Correspondingly, the crests of the Niño 3.4 index are observed in November 2015. The consistent between Nino 3.4 index and the strength of the MUC imply that the undercurrent was modulated by El Niño. It is possible that El Niño affected the MUC through active subsurface ocean eddies which are suggested to be closely related to the variability of the MUC (Firing et al., 2005; Wang et al., 2014). It is worth noting that the pressure (green lines in Figure 3) in late October and early November 2015 increased significantly and was consistent with the Niño 3.4 index but preceded about 1 months. The MUC could be strengthened by 2015/2016 El Niño, increased the displacement of ADCPs and the current meters on the mooring.




Figure 5 | Time series of smoothed vertical mean north meridional velocity (cm s-1) (blue) and Niño 3.4 index (°C) (red) from August 2014 to January 2016.






3.2 Variability from direct observations

Mooring measurements not only provide the mean velocity structure of the currents but also enable us to investigate the variability of these currents. To clarify the variability from observations measured by ADCPs and Aqds-6000 current meters, we used power spectral analysis. The power spectra of the zonal and meridional velocity time series at all depths between 50 m and 800 m with the ADCPs-measured data are shown in Figure 6. The coherent peak exhibiting zonal velocity for a period of around 70 days comprised almost the entire water column from the surface to 800 m. However, for meridional velocity, the peak of approximately 110 days is significant only above 300 m, and the period of 180 days is significant below 300 m. Figure 7 illustrates the power spectra of zonal and meridional velocity recorded by Aqds-6000 current meters below 1,000 m. For the zonal velocity, the strongest with a 95% confidence level peak corresponds to the period of 110 days at 1,000 m and 80 days at 2,000 m. For the meridional velocity, only the peak at approximately 80 days at 1,000 m is above 95% confidence level. If the confidence level was reduced to 90%, the peak of 80 days at 2,000 m passed the significance test. In total, the intraseasonal variability of a period of 80-110 days was detected in the upper 300 m and 1,000 m layers for the meridional velocity. For the zonal velocity, the whole water column from the surface to 2000 m had similar features. Zhang et al. (2014); Wang et al. (2014) and Wang et al. (2017) also mentioned the intraseasonal variability with a band of 60-80 days from the current meter measurements at the same mooring location. The difference from their studies may be attributed to the interannual variability.




Figure 6 | Power Spectral Density of velocity measured by ADCPs in (A) zonal and (B) meridional currents.






Figure 7 | Power Spectral Density of zonal (left) and meridional (right) velocity recorded by Aqds-6000 current meters at (A, B) 1000 m, and (C, D) 2000 m. Dashed lines means the significance test of 95% confidence level.



To better understand the intraseasonal variability from surface to bottom, the horizontal velocities were processed with a 30-150 days bandpass Butterworth filter. The mean current in the depth range of 50-150 m was regarded as the MC, and the current at the 1,000-m depth was regarded as the MUC. The filtered velocities clearly show the vertically coherent intraseasonal signal of the MC/MUC (Figure 8), and the amplitude of these signals reaches 20 cm/s and then decreases with depth. In this region, intraseasonal variability is most likely attributed to eddy activity (Qu et al., 2012; Wang et al., 2014).




Figure 8 | Flow vector anomaly (cm s-1) under a 30-180 days band-pass filter at 8˚N, 127˚E (A) between 50-150 m, (B) at 1000 m, and (C) 2000 m from September 2014 to January 2016 (unit are cm s-1).







4 Discussion

Zhang et al. (2014); Hu et al. (2016) and Azminuddin et al. (2022) reported results at the same mooring location from 2010 to 2014 and from 2017 to 2019. Complementary observations from 2014 to 2016 were investigated in this study. The difference from previous reports is the mean meridional velocity maximum exceeding 100 cm s-1 at the depth of 85 m, which is much stronger than the former but weaker than the one reported by Kashino et al. (2005). The reason for this is likely the response of the current to the 2015/2016 El Niño. Previous studies suggested that the MC is related to the ENSO (Kim et al., 2004; Kashino et al., 2005; Kashino et al., 2009). As described above in this study, the core velocity and depth of the MC obviously increased during the development of El Niño from July to October 2015. At the same time, the velocity at 2,000 m was observed southward, consistent with the MC. It seems that the MC can extend to 2000 m under the condition of El Niño. In particular, the variability of the MC precedes the El Niño by 2-3 months, which means that the stronger MC transported more cool water and likely exacerbated the development of El Niño. To better understand how the El Niño affects the MC and MUC and reaches at least 2000 m, we considered the SLA (Figure 9) at the mooring station. As illustrated, the strong MC during El Niño 2015/16 was associated with an increase in SLA around 8°N, 127°E, from July 2015 to January 2016. Remote effects caused by Rossby wave propagation (with a propagation speed of about 21 cm/s) from the east rather than local wind variability appear to have contributed to this change.




Figure 9 | Time-longitude diagram of Sea level anomaly along 8°N from CMEMS. The red line presents the mooring current observed period.



Below the MC, the reversed MUC is observed with the maximum mean value of 11.58 cm s-1 at 1,000 m depth. The velocity at 1,000 m is stronger than that at 800 m. This implies that the core of the MUC is likely at a depth of around 1,000 m or between 1000-2000 m. Over the observation period, the MUC was strengthened in November 2014 and November 2015. However, the intensity in November 2015 was stronger than in 2014. The strengthened MUC in May 2015 can be explained by the semiannual signal of MUC (Wang et al, 2016; Ren, et al., 2018). Correspondingly, the crests of the Niño 3.4 index are observed in November to December 2015. It seems that El Niño also affects the strength of the MUC. The relationship between the MUC and El Niño needs to be further researched. If the variability of the MC or MUC preceded the El Niño as described above, the prediction of MC or MUC will be helpful for the development of El Niño.

The other difference between our data and the results of previous studies is the intraseasonal variability of currents in the Philippine Sea, which may be attributed to the extended deeper MC and enhanced MUC during the 2015/2016 El Niño. We analyzed the OFES outputs to investigate the source of the intraseasonal variability of current in the Philippine Sea. The mean EKE at 605 m along 8°N from August 2014 to February 2016 (Figure 10) and the meridional velocity anomaly (Figure 11) show that locally enhanced subsurface eddies are possible energy sources. This result is in accordance with previous studies. Zhang et al, 2017 and Hui et al. (2022) suggested that the strong intraseasonal variability is induced by westward-translating subthermocline eddies. Wang et al. (2014) used mooring observations and a high-resolution numerical model to characterize the intraseasonal variability of the subthermocline current east of Mindanao. This variability was principally caused by the activity of subthermocline eddies from three different pathways. On the basis of OFES, Chiang and Qu (2013) found that subthermocline eddies with a 50-60 days period originating from the equatorial South Pacific Ocean can propagate northwestward and reach the Mindanao coast at a typical propagation speed of 12 cm s-1. Dutrieux (2009) and Zhang et al. (2014) suggested that most of the eddy energy might be attributed to the mixed horizontal and vertical shear instability of subthermocline currents. When El Niño occurs, negative sea surface height anomalies propagated westward in the form of the first-mode baroclinic Rossby wave, exerting impacts on the western boundary currents east of Philippine coast and further modulating the variation of subthermocline currents.




Figure 10 | Mean EKE at 605 m (A) and along 8°N (B) during September 2014 to February 2016 derived from the OFES outputs.






Figure 11 | The meridional velocity anomaly at 605 m along 8°N from September 2014 to February 2016 derived from the OFES outputs. Black dotted-line indicates the mooring position.






5 Conclusions

On the basis of direct mooring observations at 8°N, 127°E, the vertical structure and current variability in different ocean layers was investigated during the 2015/2016 El Niño. In the upper 600 m, the MC is characterized by a stable southward flow with an annual mean velocity maximum exceeding 102.77 cm/s at 85 m. In addition, the intraseasonal variability of currents in the Philippine Sea was described by investigating power spectra and bandpass filtered data. Moreover, changes in the MC and MUC during the 2015/2016 El Niño clearly show significant extension of the depth of the MC from July to October 2015 and enhancement of the MUC corresponding with the Niño 3.4 index. The intraseasonal variability of currents from the surface to the 2,000 m layer was also evaluated preliminarily. These results provide the first description of the vertical structure and variability of low-latitude western boundary currents east of Philippines during the 2015/2016 El Niño. However, although this study highlights the impact of ENSO events on the MC and MUC, the detailed dynamics regulating this process should be further investigated. The multicore structure of the MUC (Hu and Cui, 1989) must be considered to understand the vertical structure of western boundary currents. Moreover, as discussed above, subthermocline eddies should not be ignored in studying the MC/MUC. Therefore, further hydrographic observations and more numerical simulations are needed to produce a broad understanding of these vital current systems.
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Most climate forecast agencies failed to make successful predictions of the strong 2020/2021 La Niña event before May 2020. The western equatorial Pacific warm water volume (WWV) before the 2020 spring failed to predict this La Niña event because of the near neutral state of the equatorial Pacific Ocean in the year before. A strong Indian Ocean Dipole (IOD) event took place in the fall of 2019, which is used as a precursor for the La Niña prediction in this study. We used observational data to construct the precursory relationship between negative sea level anomalies (SLA) in the southeastern tropical Indian Ocean (SETIO) in boreal fall and negative Niño 3.4 sea surface temperature anomalies index one year later. The application of the above relation to the prediction of the 2020/2021 La Niña was a great success. The dynamics behind are the Indo-Pacific “oceanic channel” connection via the Indian Ocean Kelvin wave propagation through the Indonesian seas, with the atmospheric bridge playing a secondary role. The high predictability of La Niña across the spring barrier if a positive IOD should occur in the previous year suggests that the negative SETIO SLA in fall is a much better and longer predictor for this type of La Niña prediction than the WWV. In comparison, positive SETIO SLA lead either El Niño or La Niña by one year, suggesting uncertainty of El Niño predictions.
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1 Introduction

ENSO is one of the most important climate phenomena on interannual time scales, involving variations in sea surface temperature (SST) in the central and eastern tropical Pacific Ocean, influencing temperature and precipitation globally through variations in atmospheric circulation. Substantial efforts have been dedicated to predicting its onset and development because of its extensive repercussions worldwide. The ENSO has been shown to be predictable with one- to two-year lead times in certain numerical hindcast experiments (Kirtman and Schopf, 1998; Fedorov and Philander, 2000; Chen et al., 2004; Luo et al., 2008). However, considerable uncertainties still exist in real-time forecasts (Chen and Cane, 2008; Jin et al., 2008; Duan and Wei, 2012; Tang et al., 2018), and practical prediction skills are currently limited to six months (Latif et al., 1998; Barnston et al., 1999; Kirtman et al., 2002; Barnston et al., 2012; Mu and Ren, 2017; Barnston et al., 2019). The largest forecasting errors are associated with the prediction of ENSO across boreal spring (Tippett et al., 2012; Timmermann et al., 2018; Ham et al., 2019), the so-called spring predictability barrier (SPB), which is a major source of uncertainty in long-lead ENSO forecasting.

El Niño and La Niña are the warm and cool phases of the ENSO cycle, respectively. La Niña events occur when the SST in the cold tongue of the eastern equatorial Pacific is below average, inducing climate anomalies globally, including droughts in the southern United States and South America and floods in Australia, Indonesia, and the Philippines (Ropelewski and Halpert, 1987; Kiladis and Diaz, 1989; Nicholson and Selato, 2000; Cole et al., 2002; Cook et al., 2007; Hoyos et al., 2013; Chikamoto et al., 2015; Yoon and Leung, 2015; Fasullo et al., 2018; Jong et al., 2020). Cold winters induced by La Niña in the Northern Hemisphere increase the global demand for energy such as coal, natural gas, and oil. In the past, ENSO prediction efforts have focused on El Niño prediction, with less attention given to La Niña prediction (Zhang et al., 2013; DiNezio et al., 2017; Luo et al., 2017; Hu et al., 2019a). Therefore, it is important to explore the possibility and feasibility of transpiring SPB in La Niña prediction.

The latest extreme La Niña event took place in September 2020 and persisted for two years, with the center of the maximum negative SST anomalies (SSTA) located over the central-eastern equatorial Pacific Ocean. Most models from the International Research Institute for Climate and Society (IRI) failed to forecast the outburst of this event before May 2020, with the majority of the model plumes favoring a neutral or weak El Niño state (Niño 3.4 index between -0.5 °C and +0.5 °C). The historical La Niña events (1995/1996, 1998/1999, 2007/2008, and 2010/2011) were also failed to be predicted at the 1-year lead (Zhang et al., 2013; Luo et al., 2017). Thus, La Niña long-lead forecasting remains challenging to date.

Internal oceanic dynamics in the tropical Pacific associated with the recharge oscillator (Wyrtki, 1985; Jin, 1997) is considered a key ENSO mechanism. The most widely used index, the ocean heat content (OHC, Wyrtki, 1985) or warm water volume (WWV, Meinen and McPhaden, 2000) indices, have proven to provide a long-lead precursor for the occurrence of La Niña (Planton et al., 2018; Planton et al., 2021). However, the weak WWV anomalies prove to be ineffective in predicting the 2010/2011 and 2020/2021 La Niña events following weak-to-moderate El Niños. Lately, inter-basin interactions over the tropical Indo-Pacific Ocean and Atlantic-Pacific Ocean are suggested to play important roles in ENSO variability and predictability (Webster, 1995; Clarke and Van Gorder, 2003; Izumo et al., 2010; Ham et al., 2013; Cai et al., 2019; Wang, 2019; Capotondi et al., 2020). Some studies, therefore, have suggested that SSTA in the Atlantic and Indian Ocean may initiate the onset of these two La Niña events (Luo et al., 2017; Hasan et al., 2022).

Prediction of ENSO using the Indian Ocean Dipole (IOD, Saji et al., 1999; Webster et al., 1999) index as a precursor has the potential to increase the lead times of successful prediction to as long as one year across the spring barrier. Existing studies have focused on atmospheric teleconnection via the Walker circulation (Kug and Kang, 2006; Izumo et al., 2010; Ha et al., 2017). Other studies suggest that the “oceanic channel” of the Indonesian Throughflow (ITF) may provide an important connection between the Indian and Pacific Ocean climate variabilities (Yuan et al., 2011; Yuan et al., 2013; Mayer et al., 2018; Yuan et al., 2018; Wang et al., 2022; Xu et al., 2022; Yuan et al., 2022). The cold tongue SSTA were found to correlate significantly with sea level anomalies (SLA) in the southeastern tropical Indian Ocean (SETIO), the eastern pole of the IOD, one year before. The dynamics are through Kelvin wave propagation from the equatorial Indian Ocean into the western Pacific Ocean via the Indonesian seas. ENSO is characterized by asymmetry in amplitude, duration and transitions (Okumura and Deser, 2010). El Niño tend to decay rapidly followed by La Niña, whereas La Niña sometimes last for two years (Ohba and Ueda, 2009; Hu et al., 2014, 2016; DiNezio et al., 2017; Okumura et al., 2017; Iwakiri and Watanabe, 2020). So far, the role of the Indo-Pacific “oceanic channel” dynamics in the asymmetric predictability of El Niño and La Niña has not been investigated.

In this study, a simple linear regression model is developed to apply the “oceanic channel” dynamics to ENSO prediction, in which only the SLA in the SETIO are used as a precursor. Compared to the WWV in the western Pacific in fall, which could not transpire the spring barrier in general, the upwelling anomalies (negative SLA) in the SETIO is a more effective and longer-lead predictor of La Niña. The model predicts essentially all of the La Niña events following the outbursts of the positive IOD (pIOD) events successfully at the lead time of one year, including the 2020/2021 cold event. These results underline the importance of the “oceanic channel” dynamics in the predictability of one type of La Niña event preceded by pIOD.

The remainder of this paper is organized as follows. Section 2 introduces the observational dataset and methods used in this study. Section 3 presents the asymmetry in the lead relationship between the SETIO SLA and Niño 3.4 SSTA, which suggests that the negative SETIO SLA in the boreal fall is a better long-lead precursor for one type of La Niña event (those preceded by pIODs) at a lead time of one year. The paper closes with conclusions and discussions in Section 4.




2 Data and method



2.1 Data



2.1.1 Reanalysis and observation data

The sea level data from 1993 to 2021 was obtained from the Aviso satellite altimeter. The SST data included the ERSST v5 (Huang et al., 2017). Wind data were obtained from NCEP data (Kalnay et al., 1996). Other wind data were obtained from the ERA5 reanalysis, which have been regridded to a regular lat-lon grid of 0.25 degrees (Hersbach et al., 2020). The surface current data is provided by the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) reanalysis. The horizontal resolution is 1/4-deg. ORA-S5 was not used here because data after 2019 were not available. The annual cycle of each variable was removed by subtracting the monthly climatological means. Subsurface temperature anomalies from the global gridded Argo dataset are used, which has a 1°×1° horizontal resolution and 58 vertical layers from the surface to 1975 dbar (Roemmich and Gilson, 2009). The WWV index was derived from the ocean analyses of the Bureau National Operations Centre (BNOC) at the Australian Bureau of Meteorology (Smith, 1995), which are based on Tropical Atmosphere Ocean (TAO) array, Argo floats and XBT measurements. It is well known that the sea level rise in the tropical Indian Ocean in the last two decades has been significantly higher than before (Unnikrishnan et al., 2015). The SLA was detrended as we focused on interannual variability.




2.1.2 ENSO forecast data

The 2020/2021 ENSO forecast results were provided by the International Research Institute (IRI)/Climate Prediction Center (CPC) (Blumenthal et al., 2014) [https://iri.columbia.edu/our-expertise/climate/enso/]. The multi-model forecasts during 1995/96, 1998/99, and 2007/08 La Niña were obtained from the North American Multi-Model Ensemble (NMME) seasonal predictions system (Kirtman et al., 2014) [http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/], which consists of coupled models from US modeling centers including NOAA/NCEP, NOAA/GFDL, IRI, NCAR, and NASA, and Canada’s CMC. NMME hindcast (1982–2010) was used in the current work. Hindcasts of Niño 3.4 SSTA for fall (September-November) initialized in the previous fall (11.5-month lead) were considered. This criterion resulted in the selection of 12 models: CanCM4i, CanSIPSv2, CMC1-CanCM3, CMC2-CanCM4, COLA-RSMAS-CCSM3, COLA-RSMAS-CCSM4, GEM-NEMO, GFDL-CM2p1, GFDL-CM2p1-aer04, GFDL-CM2p5-FLORA06, GFDL-CM2p5-FLOR-B01, and NCAR-CESM1.





2.2 Method



2.2.1 Linear regression model of La Niña prediction

The La Niña prediction model was built as follows:



SLA_SETIO(t − 1) is the SLA over SETIO during the boreal fall when pIOD occurs. SSTA_Nino3.4 (t)  is the SSTA over the Niño 3.4 region during the next fall. b is the regression coefficient and a is a constant term. The data during 1993-2019 were used to calculate and b and to make the 2020/2021 La Niña prediction using the negative SETIO SLA during the fall of 2019.




2.2.2 Cross-validation method

To test the predictive capability of the linear regression model in La Niña prediction, the cross-validation method (Michaelsen, 1987) was used to hindcast the Niño 3.4 index during La Niña events. We chose the leaving-one-out strategy. This strategy systematically deletes one year from 1993 to 2021, builds a forecast model from the remaining years, and tests the prediction on the deleted case. For example, for the 2020/21 case, the 2020 data were deleted, and a forecast model was built from the remaining years to predict the 2020/2021 La Niña event. The assessment of the prediction was evaluated using the correlation between the linear regression model prediction (using the cross-validation method) and observed data from 1993 to 2021.




2.2.3 SETIO SLA calculated from the wind-forced Kelvin wave for the longer period

A linear coastal-trapped Kelvin wave model (Hu et al., 2019b) was used to calculate the Indian Ocean SLA since 1950. This model is based on an analytical Kelvin wave model (Gill, 1982; Sprintall et al., 2000), in which wind-forced Kelvin wave propagation along the Kelvin wave pathway from the western Indian Ocean (0°, 45°E) to the Maluku Channel (2 °N, 126.5 °E). The model use the momentum equation in the alongshore direction:



where Ak is the SLA along the Kelvin wave characteristics, g is the acceleration due to gravity, X is the projection of alongshore wind stress onto each baroclinic mode, and c is the wave speed (2.71 m/s for the first baroclinic mode). Equation (2) is integrated along the Kelvin wave characteristics to get the solution of Ak (Hu et al., 2019b).




2.2.4 Definition of indices

In this study, we defined the SLA index over the SETIO as the average SLA in the area of 10 °S–0 °N, 90 °E–110 °E. The Niño 3.4 index was calculated as the average SSTA in the area of 5 °S–5 °N, 170 °W–120 °W. The Indian Ocean dipole mode index (DMI) was constructed by the differences in SSTA in the western tropical Indian Ocean (50 °E–70 °E, 10 °S–10 °N) and southeastern tropical Indian Ocean (90 °E–110 °E, 0 °–10 °S). The WWV index is defined as the volume of water above the 20 °C isotherm in the equatorial Pacific (120 °E–80 °W, 5 °N–5 °S). The WWV_w index is defined as the WWV in the western equatorial Pacific (155 °E–120 °E, 5 °N–5 °S).






3 Results



3.1 A better long-lead precursor of the La Niña: negative SETIO SLA at the lead time of one year

Figure 1A shows the lead relation between SLA in the SETIO (10 °S–0 °, 90 °E–110 °E) in the boreal fall (September to November) and SSTA in the Niño 3.4 region (5 °S–5 °N, 170 °W–120 °W) one-year later. Only the relationship after 1993 is indicated because of the short time series of AVISO SLA data. Tide gauge sea level data along the Sumatra-Java Island chain are extremely rare and are unable to expand the time coverage of the SLA-Niño 3.4 relationship much longer in history.




Figure 1 | Relationship of the SETIO SLA (A) and SSTA (B) in fall with the Niño3.4 index one year later, respectively. Units are °C for Niño3.4 index and decimeter for SLA. Black dots stand for the annual observations, with the year 2020 highlighted in red. Blue dots denote IRI prediction of the fall 2020 Niño3.4 index made from the initial conditions in January through August of 2020. Blue line denotes regressed linear relation between the SLA and the Niño3.4 index one year later in the third quadrant. Orange dot denotes the prediction of the fall 2020 Niño3.4 index using the linear regression model with the fall 2019 SLA in the SETIO as the predictor. Correlation coefficients in the third quadrant are shown in the lower left of each panel.



A noteworthy feature is an asymmetry in the lead relationship between the SETIO SLA and Niño 3.4 SSTA. For a pIOD event, following the upwelling anomalies (negative SLA) off Java in the fall, a La Niña event will occur in the next fall (in the third quadrant of Figure 1A). Their correlation coefficient is 0.97 (exceeding the 99% confidence level according to Student’s t-test), which is much greater than the correlation coefficient of 0.39 (exceed the 95% confidence level) for the whole dataset. The relationship between the negative SETIO SLA and La Niña one year later is one-to-one since no strong warm events in the equatorial Pacific were found following pIOD events (no points far away from the origin in the second quadrant, Figure 1A). In contrast, for the negative phase of the IOD (nIOD), following the downwelling anomalies (positive SLA) off Java in the fall, the Niño 3.4 SSTA may be either positive (in the first quadrant) or negative (in the fourth quadrant) in the following year, suggesting either an El Niño or La Niña event following the nIOD. This result reveals an asymmetric lead relation between the SETIO SLA and Niño 3.4 SSTA, with negative SLA (upwelling anomalies) in the SETIO in the fall being a better predictor of La Niña one year later.

When strong upwelling anomalies (negative SLA) occurred over the SETIO during the boreal fall, strong La Niña events occurred in the following year. Since 1993, 1995/1996, 1998/1999, 2007/2008, 2016/2017, and 2020/2021 La Niña events followed the strong pIOD events in 1994, 1997, 2006, 2015, and 2019 (Figure 1A). Among them, three events are the multi-year lingering La Niña events, 1998/99/2000, 2016/17/18, and 2020/21/22. Notably, the relationship between the SETIO SLA in fall and the Niño 3.4 index a year later was different in the first and second years of the 2-year La Niña. La Niña in the first year was preceded by the pIOD (in the third quadrant of Figure 1A), whereas the SETIO SLA is positive in the previous year for the La Niña in the second year for the 1999/2000, 2017/18, and 2021/22 La Niña events (in the fourth quadrant of Figure 1A). This means that one type of La Niña events (those are preceded by pIODs) could be predicted at a lead time of one year based on the negative SETIO SLA during the pIOD events, whereas predictability of another type of La Niña events, the 2-year La Niña in the second year, does not arise from the factor in the Indian Ocean in the previous year. Anyway, the negative SLA in SETIO is a better precursor for most strong La Niña events, including the 2-year La Niña evens in the first year. Here, 2-year La Niña event on 2010/11/12 is a special case. The SETIO SLA are both positive in the previous first and second years.

The above lead relation was found to be not as good between SETIO SSTA and Niño 3.4 SSTA as between SETIO SLA and Niño 3.4 SSTA (Figure 1B). The correlation coefficient between the negative SETIO SSTA and Niño 3.4 SSTA one year later was 0.83. This is expected because the SSTA are a less direct representation of upwelling anomalies off Sumatra-Java than the SLA. The use of SSTA in SETIO as the precursor generally does not lead to successful La Niña predictions as SLA used as a precursor. Moreover, an asymmetric lead relation with Niño 3.4 SSTA does not exist for the SETIO SSTA in the longer dataset (see Section3.5), although the relationship between the negative SETIO SSTA in fall and La Niña one year later is one-to-one after 1993. Hasan et al. (2022) indicated that the Indian Ocean may contribute to the initiation and predictability of the 2020/21/22 La Niña, but they did not find that the negative SLA in the SETIO was a better long-lead precursor for a strong La Niña event.

The ENSO phase transition is asymmetric (Kessler, 2002; Larkin and Harrison, 2002; Okumura and Deser, 2010). La Niña often follows El Niño, but the reverse is not always true. Furthermore, El Niño often forces a response in the Indian Ocean in the form of IOD (Wang et al., 2019; Xue et al., 2022). Does the good relationship between La Niña and negative SETIO SLA at the lead time of one-year result from the preceding El Niño? As shown in Figure 2A, the asymmetry in the ENSO phase transition was also found in the relationship between the Niño 3.4 SSTA in the previous and following years. However, the correlation between positive Niño 3.4 SSTA in the previous fall and negative Niño 3.4 SSTA in the following year was not significant (-0.23). Thus, the Niño 3.4 SSTA in the fall is not a good precursor for La Niña events one year later.




Figure 2 | Relationship of the (A) Niño3.4, (B) WWV in the equatorial Pacific (WWV_all) and (C) WWV in the western equatorial Pacific (WWV_w) in fall with the Niño3.4 index one year later. Correlation coefficients in the fourth quadrant are shown in the lower right of (A, B), correlation coefficient in the third quadrant is shown in the lower left of (C).



Furthermore, according to the ENSO recharge oscillator (Jin, 1997), ENSO events tend to be preceded by anomalous WWV in the equatorial Pacific. The release of WWV in the equatorial Pacific can lead to La Niña events in the following year (Meinen and McPhaden, 2000). The negative WWV index in fall, especially the WWV in the western equatorial Pacific (WWV_w), has been consistently considered the best precursor of La Niña one-year before (Planton et al., 2018). As shown in Figures 2B, C, for the type of the La Niña events preceded by pIOD, 1995/96, 1998/99, 2007/08, and 2016/17 La Niña events, negative WWV anomalies in the western equatorial Pacific (in the third quadrant in Figure 2C) occurred in the previous fall but with positive WWV anomalies across the entire equatorial Pacific (in the fourth quadrant in Figure 2B). Although the correlation of the negative Niño 3.4 index with the discharged WWV_w one year before (0.43) was higher than that with the positive Niño 3.4 SSTA at the one-year lead time (-0.23), it was still not significant and far less than that with the negative SETIO SLA at a lead time of one year (0.97, with 99% confidence level). This result suggests that, at longer lead times, before the spring predictability barrier, the WWV or Niño 3.4 index is not a good predictor of the type of La Niña events preceded by the pIOD. Especially for the 2020/21 La Niña, WWV_w is not negative, meaning that the equatorial western Pacific is not in a discharge state.

Therefore, although the negative SLA in the SETIO in the fall may not be an independent predictor of La Niña (which is partly correlated with preceding El Niño), it is a better long-lead precursor for the type of La Niña events (preceded by pIOD) than the positive SSTA in Niño 3.4 and discharge WWV in the western Pacific as a predictor.




3.2 Prediction of the 2020/21 La Niña event

We noticed this long-lead relationship between SETIO SLA and Niño 3.4 SSTA in 2019 and applied it to the 2020/21 ENSO forecasting as soon as the 2019 pIOD was in a mature phase. We constructed a simple linear regression model based on the negative SETIO SLA in the fall and the Niño 3.4 index one year later during 1993–2019 (see section 2.2.1). Then, using the negative SETIO SLA during the fall of 2019 already observed as a precursor, we predicted the Niño 3.4 SSTA in the coming fall of 2020 to be -1.34°C (orange color dot in Figure 1A) with 95% confidence interval (-1.56°C, -1.12°C). One year later, the observed Niño 3.4 index (-1.11°C, red dot in Figure 1A) was very close to our prediction made one year earlier (with only 0.23°C difference), suggesting the success of the simple linear regression model in predicting the 2020/2021 La Niña beyond the lead time of 1 year. Our prediction is evidently much better than the real-time forecasts of the IRI models using initial conditions in earlymid-2020 (blue dots in Figure 1A), which were made much later than our prediction and were much weaker than the observation (red dot in Figure 1A) in approximately six months. The IRI forecasts made in January through May 2020 had predicted the Niño 3.4 SSTA to be near zero in the coming fall of 2020, while forecasts made in June through August of the majority of the models in the IRI plume continue to favor an ENSO-neutral state (Niño 3.4 index near 0.5°C) in the coming fall. Therefore, the 2020/21 La Niña event was not successfully predicted by the IRI models at lead times of one to three seasons.




3.3 Dynamics of the 2020/21 La Niña predictability

The 2020/21 La Niña followed a weak El Niño; thus, the discharge process in the tropical Pacific was not strong enough to energize the event (Figure 2). In the summer-fall of 2019, associated with the climax of the 2019 super pIOD, the anomalous easterly winds were strong to the west over the equatorial Indian Ocean, forcing the SSTA and SLA in the southeastern basin to grow quickly into a strong pIOD state (Figure 3). The equatorial Indian Ocean easterly wind anomalies in late 2019 forced strong upwelling Kelvin waves to propagate to the east along the Sumatra-Java island chain, which induces negative SLA in the SETIO and alters the pressure gradient across the Indonesian Seas. ITF transport increased significantly during the summer-fall of 2019 in response to pIOD forcing. Shortly thereafter, the SLA in the western equatorial Pacific Ocean began to propagate eastward along the equator around January 2020 (Figures 3, 4). The upwelling Indian Ocean Kelvin waves forced by easterly wind anomalies during the 2019 pIOD are thus suggested to propagate eastward through the Indonesian seas and reach the western equatorial Pacific, which triggered or enhanced the development of a strong La Niña in 2020. These results underscore the importance of inter-basin dynamic interactions between the Indian and Pacific Oceans through the “oceanic channel” in forcing the 2020/21 La Niña. None of the IRI dynamical coupled climate models can predict the 2020/21 La Niña one year in advance probably because they do not simulate the Indo-Pacific “oceanic channel” dynamics well although they include this oceanic channel.




Figure 3 | The “oceanic channel” dynamics of the 2020/21 La Nina predictability. Longitude-time plots of observed monthly anomalies of (A) surface zonal wind (SZW, m/s), (B) SSTA (°C) over the equatorial Indian and Pacific Ocean (5°S-5°N), and (C) SLA (cm) over the equatorial Indian and Pacific Ocean (1°S-1°N) and alongshore the Sumatra-Java island chain during the 2019 pIOD. The red dashed arrow indicates the eastward-propagating Kelvin wave.






Figure 4 | The propagation of the Kelvin waves over the Indo-Pacific Ocean during 2019-2020. Monthly Argo temperature anomalies (°C) over the equatorial Indian and Pacific Ocean (5°S-5°N) during 2019-2020.



The propagation of Kelvin waves into the Indonesian seas has been demonstrated by in situ direct mooring observations and ocean reanalysis data. Using moored current observations in the Makassar Strait and the Maluku Channel combined with high-resolution ocean modeling validated with satellite data, it has been shown that Indian Ocean Kelvin waves propagated into the Makassar Strait and arrived at the northeastern Indonesian seas during 2015–2016 (Hu et al., 2019b; Pujiana et al., 2019). The propagation of the strong upwelling equatorial Kelvin waves forced by the Indian Ocean easterly anomalies during the 2019 pIOD was simulated successfully by Estimating the Circulation and Climate of the Ocean Phase II (ECCO2) reanalysis (Figure 5), showing strong southward current anomalies in the Makassar Strait from October 2019 through February 2020. The currents and SLA in the Makassar Strait were evidently not forced by local winds, because the surface wind anomalies were southeasterlies (hollow arrow in Figure 5). The high resolution of ECCO2 simulations has resolved the channels and straits in the Indonesian seas well, showing a negative SLA propagating into the Indonesian seas along the south Java coasts in the winter of 2019 in agreement with the altimeter sea level anomalies. This suggests the propagation of Indian Ocean upwelling Kelvin waves through the Indonesian seas.




Figure 5 | The propagation of the Kelvin waves through the Indonesian seas during 2019-2020. SLA (cm, shading) and surface current anomalies (m s-1, vectors) from ECCO2 from October 2019 to February 2020. The hollow arrow indicates the direction of the surface wind anomalies over Indonesian Sea.



The upwelling Kelvin waves arrived in the western Pacific Ocean, as suggested by the strong westward current anomalies in the Sulawesi Sea in December 2019, coincides with the southward current anomalies in the Makassar Strait. The upwelling equatorial Kelvin waves propagated further eastward along the equator (Figure 4). From April to May, upwelling Kelvin waves induced negative subsurface temperature anomalies in the eastern equatorial Pacific, which moved to the surface associated with the shoaling thermocline in the eastern equatorial Pacific. These anomalies are suggested to trigger Bjerknes positive feedback, leading to an outburst of the 2020/21 La Niña event.

It is known that interbasin interaction between the tropical Indian and Pacific also involves an atmospheric bridge. The easterly wind anomalies in the western Pacific persist from spring to winter, triggering the cold SSTA in the eastern Pacific. Previous studies demonstrated that the pIOD can generate easterly wind anomalies in the western Pacific through the Indo-Pacific atmospheric bridge (e.g., Hasan et al., 2022). However, the lead relation between the SETIO SLA in fall and the easterly wind anomalies in the western equatorial Pacific during the following summer is not significant with the lag correlation coefficient of 0.4 (Figure 6), indicating that the atmospheric bridge is not the dominant process contributing to the long-lead good predictor of La Niña events preceded by pIOD. Moreover, Wang et al. (2022) compared the relative roles of the atmospheric bridge and the oceanic channel between the Indian and Pacific in ENSO forecasts through pacemaker experiments. Their model results suggested that the “oceanic channel” dynamics is dominant, whereas the 2020/21 La Niña cannot be generated by the atmospheric bridge alone. They demonstrated that La Niña event is induced by subsurface temperature anomalies in the tropical Indian Ocean propagating to the eastern equatorial Pacific Ocean at the end of 2020.




Figure 6 | The relationship between the SETIO SLA in fall and the surface zonal wind anomalies in the western equatorial Pacific (130°E -180°E, 5°N-5°S) in the following summer. Correlation coefficient in the third quadrant is shown in the lower left of this Figure.



The westerly anomalies in the western equatorial Pacific also forced upwelling Rossby waves with negative SLA in the far western Pacific Ocean from November 2019 to February 2020 (Figures 7A, B). The Rossby waves propagated westward and were reflected into upwelling Kelvin waves at the western boundary. This process may have contributed to the onset of the 2020/21 La Niña event (Figure 7C). However, the SLA off the east coasts of Mindanao (5 °N–8 °N, 127 °E–135 °E), representing the equatorial Rossby waves before reflection at the Pacific western boundary, shows poor correlation with the Niño 3.4 index at the one-year time lag (Figure 8), suggesting low predictability of long-lead La Niña using the western boundary reflection as a precursor. The variability of the western boundary reflection and the Niño 3.4 index are significantly correlated within approximately eight months, which does not break through the SPB in general (figure not shown). We emphasize the role of the Indo-Pacific “oceanic channel” dynamics in La Niña prediction at longer lead times, before the SPB.




Figure 7 | Evolution characteristics of 2020/2021 La Niña event. Longitude-time plots of observed monthly anomalies of (A) SZW (ms-1) over the equatorial Pacific Ocean (5°S-5°N), (B) SLA (cm) over the equatorial Pacific Ocean (1°S-1°N), and (C) SSTA (°C) over the equatorial Pacific Ocean (5°S-5°N).






Figure 8 | The relationship between equatorial Rossby waves at the Pacific Ocean western boundary and the Niño3.4 index one year later. Scatter plot of the fall Niño3.4 index (°C) with the preceding (A) SON, (B) DJF, and (C) MAM SLA (decimeter) off the east coasts Mindanao (127°E-135°E, 5°N-8°N) during 1993-2020. Correlation coefficients in the third quadrant are shown in the lower left of each panel.






3.4 1995/96, 1998/99, 2007/08 La Niña events preceded by the 1994, 1997, 2006 pIOD

Similar to the prediction of 2020/21 La Niña event, 1995/1996, 1998/1999, 2007/2008, and 2010/2011 La Niña events were not successfully predicted by the NMME models at one-year lead (Figure 9). A simple linear regression model, based on the lead relation between the negative SETIO SLA in fall and Niño 3.4 one year later, has been tested for its predictive capability to hindcast the historical La Niña events preceded by pIOD since 1993 (eight cases in the third quadrant of Figure 1A). Here, the cross-validation method (see section 2.2.2) was used to hindcast these La Niña events. Finally, for the eight La Niña events preceded by pIOD, the correlation between the predicted and observed Niño 3.4 indices is 0.95, above the 99% significance level. The small root-mean-square-error (RMSE) of 0.14°C suggests successful predictions of the La Niña events at a lead time of at least 12 months.




Figure 9 | Forecasts of the historical strong La Niña events from 1993. (A) The fall Niño3.4 index (°C) from the OISST data for the 1993-2010 period. (B) The fall Niño3.4 index of NMME model and multi-model mean forecasts (at lead 11.5 months) for 1993-2010. The Niño3.4 index based on observations is also shown for reference (red squares). Blue crosses denote the predictions of the fall Niño3.4 index using the linear regression model with the fall SLA in the SETIO as the precursor.



The forecasts of our linear regression model are not only good for the mature phase, but also for the evolution of strong La Niña since 1993. Figure 10 shows the predicted results of the 1995/96, 1998/99, 2007/08, and 2020/21 events preceded by the 1994, 1997, 2006 and 2019 pIOD. Using the linear regression between the SETIO SLA in the fall and the Niño 3.4 indices from June through March of the third year, the initial cold SSTA in the equatorial eastern Pacific in June are predicted successfully, which are strengthened gradually in the summer through winter owing to the Bjerknes positive feedback induced by the upwelling Kelvin waves. After reaching the mature state in winter, the La Niña anomalies begin to decay, presumably due to the arrival of negative feedbacks, including reflected Kelvin waves from the western boundary. The time evolution of La Niña predicted by our linear regression model was in reasonable agreement with the observations.




Figure 10 | Forecasts of linear regression model at the evolution of the strong La Niña events. Niño3.4 index during 2020/2021, 2007/2008, 1998/1999, 1995/1996 La Niña events from the observation (solid lines) and prediction (dot lines) using the SLA in the SETIO in fall of 2019, 2006, 1997, 1994. Grey columns indicate the root mean square error (RMSE).



The Indo-Pacific “oceanic channel” dynamics still work to trigger/enhance the development of a strong La Niña preceded by 1994, 1997, and 2006 pIOD events, because 1) it can been seen that, from the SLA evolution (Figure 11), the upwelling Kelvin wave propagate eastward through the Indonesian seas and reach the western equatorial Pacific, and 2) the Makassar Strait southward currents is also identified during the pIOD events of 1994, 1997, and 2006 (Figure 12), suggesting the propagation of Indian Ocean upwelling Kelvin waves through the Indonesian seas.




Figure 11 | The “oceanic channel” dynamics during the historical La Niña events. SLA (cm) over the equatorial Indian and Pacific Ocean (1°S-1°N) and alongshore the Sumatra-Java island chain during the 1994(A), 1997(B), 2007(C) pIOD. The red dashed arrows indicate the eastward-propagating Kelvin wave.






Figure 12 | The propagation of the Kelvin waves through the Indonesian seas during the historical pIOD events. SLA (color shading, cm) and surface current anomalies (vectors, ms-1) from ECCO2 during October and December of the (A) 1994, (B) 1997, (C) 2006 pIOD events.



Although easterly wind anomalies in the western Pacific followed the 1994, 1997, and 2006 pIOD (Figure 6), the lead relationship between the SETIO SLA in fall and the surface zonal wind anomalies in the western Pacific in the following summer is not significant. Thus, the atmospheric bridge is not the dominant process contributing to the long-lead good predictor of La Niña events in 1995/96, 1998/99, and 2007/08.

Similar to the 2020/21 La Niña event, the 1995/96 and 2007/08 La Niña events followed weak El Niño events in 1994/95 and 2006/07, respectively, which were insufficient to produce significant discharge processes (Figures 2A, C). The Indo-Pacific interaction potentially plausibly energized these La Niña events through “ocean channel”. However, the 1998/99 La Niña event was preceded by a strong El Niño event in 1997/98, which may be controlled by the discharge process. Meantime, the Indo-Pacific interaction may also play an important role, in which “ocean channel” dynamics potentially contribute to the La Niña event. The combined contributions of the discharge process in the tropical Pacific and remote forcing from the Indian Ocean may enhance the prediction of La Niña events.




3.5 Application the statistical model to longer time series in history

The statistical model above using oceanic signals from the Indian Ocean can be used to make La Niña forecasts back in history. To overcome the short time series of AVISO SLA data, wind data from a much longer time series were used to estimate the Kelvin wave SLA (Equation 2), which represent the Indo-Pacific “oceanic channel” connection through the Indonesian seas. Here, wind data from the ERA5 reanalysis of the ECMWF were used. Consistent results were obtained for the NCEP product (figures not shown). The Kelvin wave SLA, represented by integrating the wind stress anomalies along the characteristic line starting from the western Indian Ocean to the Maluku Channel, has shown a relationship with the Niño 3.4 index at a one-year time lag similar to that of AVISA SLA during 1993–2020 (Figure 13A).




Figure 13 | Application of the statistical model to longer SLA time series. (A) Scatter plot of the fall Niño3.4 index (°C) as a function of the fall SLA (decimeter) calculated from the wind-forced Kelvin wave (SLA_KW_SETIO) integrated along the pathway one year before during 1993-2020. Blue line denotes regressed linear relation between the fall SLA_KW_SETIO and the fall Niño3.4 index one year later. The value of 2010 is not included in calculating the blue line. (B) Same as in (A), but for the period of 1950-2020. Correlation coefficients in the third quadrant are shown in the lower left of each panel.



The high predictability based on the SETIO SLA also holds for the La Niña events back in history. For the longer period since 1950, the asymmetric relationship between the SETIO SLA and Niño 3.4 index at a one-year lag basically holds (Figure 13B). In particular, the linear relation between the negative SETIO SLA and Niño 3.4 SSTA one year later still exists for the longer data, suggesting that strong upwelling anomalies in the SETIO precede strong La Niña in the following year. The negative SLA (upwelling anomalies) clearly favored the occurrence of La Niña one year later with a correlation coefficient of 0.57 exceeding the 99% confidence level. The much larger number of samples in the longer time series (72 years in ERA5 versus 29 years in AVISO data) yielded a considerably smaller correlation coefficient still above the statistical significance. In addition, when downwelling anomalies dominate the SETIO, the Niño 3.4 index one year later may be either positive or negative, which is similar to the uncertainty during 1993–2021. The above analysis suggests that the simple linear regression model of La Niña prediction at a lead time of one year, based on Indo-Pacific “oceanic channel” dynamics, is likely useful notwithstanding the decadal variability of the Indo-Pacific Ocean and climate.

Historical SLA from oceanic data assimilation products extending back to 1950 is also examined for the IOD-ENSO predictability. The correlation coefficient between the negative SETIO SLA and Niño 3.4 SSTA one year later is 0.51 for the ECMWF Ocean Reanalysis System 4 (ORA4), but is only 0.37 for the German contribution to the Estimating the Circulation and Climate of the Ocean project 3 (GECCO3) (figures not shown). We speculate that the differences are caused by the coarse resolution of the ocean model in resolving the narrow channels of the Indonesian seas and topography, which could induce artificial eastern boundary reflection in the eastern Indian Ocean to contaminate the SLA signals.

The linear relationship between the negative SETIO SSTA and Niño 3.4 SSTA since 1950 (correlation coefficient is 0.34 in Figure 14) is not as good as between the negative SETIO SLA and the Niño 3.4 index (correlation coefficient is 0.57, Figure 13B). Although the correlation coefficient between the negative SETIO SSTA and Niño 3.4 SSTA exceeded the 99% significance level, it did not capture the one-to-one relationship between the negative SETIO SLA and Niño 3.4 SSTA one year later. When a strong negative SSTA occur over the SETIO during boreal fall, the Niño 3.4 SSTA can be either positive or negative in the following year, suggesting that La Niña prediction based on the SSTA in the Indian Ocean contains large uncertainties.




Figure 14 | Application of the statistical model to longer SSTA time series. Scatter plot of the fall Niño3.4 index with the SETIO SSTA in the preceding fall for the period of 1950-2020. Correlation coefficient in the third quadrant is shown in the lower left of this figure.







4 Conclusion and discussion

ENSO predictors used in most exiting statistical forecasts are variables in the tropical Pacific Ocean, especially WWV indices, which have proven to provide a precursor for the onset of La Niña. Other factors, including inter-basin interactions over the tropical Indo-Pacific Ocean, have been shown to play important roles in ENSO predictability. The previous studies have demonstrated that SSTA in the Indian Ocean may initiate the onset and contribute to the predictability of the 2010/2012 and 2020/2021 La Niña events (Luo et al., 2017; Hasan et al., 2022), which follow weak-to-moderate El Niño without large discharged WWV anomalies. These studies have only focused on atmospheric teleconnection via Walker circulation. The present study emphasizes that the upwelling anomalies in the STEIO provide a better predictor beyond the one-year lead for La Niña events preceded by the pIOD. The dynamics are suggested to occur through the “oceanic channel” of the ITF.

Our analysis suggests a clear asymmetry in the lead correlation between the SETIO SLA in boreal fall and Niño 3.4 SSTA one year later: negative SETIO SLA lead to La Niña, while positive SLA lead to either La Niña or El Niño. The negative SLA (upwelling anomalies) in the SETIO in boreal fall is a better long-lead precursor for one type of La Niña events (which are preceded by pIODs) at the lead time of one year, with a correlation coefficient of 0.97 (exceed the 99% confidence level) since 1993. This relationship is applicable to longer time series in history since 1950, with a correlation coefficient of 0.57 (exceed the 99% confidence level).

It is worth mentioning that some studies, e.g. Jiang et al. (2021), have argued that the IOD-ENSO link is a result of ENSO cycling and, therefore, “adds no additional information to ENSO prediction”. However, the auto-correlation of Niño3.4 at one year time lag is only -0.12 during 1950-2020, way below the statistical significance level. Moreover, the auto-correlation at one year lag is not statistical significant in any decade after 1970 (figure not shown). In contrast, the IOD-ENSO lag correlation is strong during the 1990s (Yuan et al., 2022). Clearly, the ENSO autocorrelation is not the major cause of the IOD-ENSO lead-lag relationship. Furthermore, the correlation of the negative Niño 3.4 index with the discharged WWV in the previous fall is insignificant. These results suggest that, at longer lead times across the SPB, the WWV or Niño3.4 index could not be good predictors of La Niña. The negative SLA in SETIO, which are partly correlated with the preceding El Niño, is mainly produced by the strong ocean-atmosphere coupling over the tropical Indian Ocean with intrinsic nonlinearity. The model of Jiang et al. (2021) does not include this process nor the IOD feedback on ENSO.

Here, we emphasize that the dynamics behind this long-lead predictability are the Indo-Pacific “oceanic channel” connection (Figure 15). When a pIOD occurs during fall, anomalous upwelling Kelvin waves propagate from the eastern Indian Ocean to the western Pacific through the Indonesian Seas and further to the eastern equatorial Pacific Ocean, elevating the thermocline and forcing a La Niña event to develop during the following year. However, the atmospheric bridge was not the dominant process contributing to the high long-lead predictability of strong La Niña events in 1995/96, 1998/99, 2007/08, and 2020/21. Although easterly wind anomalies in the western Pacific followed the 1994, 1997, 2006 and 2019 pIOD events, the lead correlation between the negative SETIO SLA in fall and the easterly wind anomalies in the western Pacific during the following summer was not significant. Recently, pacemaker experiments (Wang et al., 2022) depicted that the Indo-Pacific “oceanic channel” are dominantly important in ENSO forecasts, whereas the atmospheric bridge is secondary to the generation of 2020/21 La Niña. The present analysis emphasizes that the “oceanic channel” is likely to influence the predictive skill of La Niña.




Figure 15 | Schematic illustration for the negative SETIO SLA as a predictor of the La Niña events based on the tropical Indo-Pacific “ocean channel” dynamics. The upper (lower) part of this figure shows the SLA (subsurface temperature anomalies). The left (right) part of this figure shows the condition during the peak of pIOD (following spring). The red dashed arrows indicate the eastward-propagating Kelvin wave.



Our results suggest that the lead relationship between SETIO SLA and Niño 3.4 SSTA one year later is asymmetric between El Niño and La Niña. A strong pIOD event triggered the onset of a La Niña event in the following year. A warm event in the eastern equatorial Pacific in the year following a pIOD event does not exist. In contrast, after a nIOD event the tropical Pacific may evolve into either an El Niño or La Niña event or a neutral state. The predictability of this type of La Niña events, including the 2-year La Niña in the second year (1999/2000, 2017/18, 2021/22), did not result from the Indian Ocean in the previous year. The Indo-Pacific interaction, especially the “oceanic channel” dynamics, may partly explain the asymmetry of the warm and cold phases of ENSO predictability.

The asymmetry in predictive skills of negative and positive SETIO SLA may be due to the stronger coupling between the cold tongue SSTA and the eastern equatorial Pacific thermocline depth anomalies during La Niña than during El Niño (Yuan and Rienecker, 2003; Yuan, 2009; Tang et al., 2015). It is known that the surface heat balance is dependent on the depth of the surface mixed layer in the eastern equatorial Pacific. Upwelling currents elevate thermocline and mixed layer in the eastern equatorial Pacific, making the cold tongue SSTA more sensitive to vertical advection. In contrast, downwelling currents depress the thermocline and mixed layer in the eastern equatorial Pacific, resulting in the cold tongue SSTA de-coupled from the thermocline anomalies. Thus, stronger cooling anomalies occur following the pIOD than the warming anomalies produced by the downwelling of the same amplitudes following the nIOD. In addition, some of the La Niña events, such as the 2-year La Niña in the second year, are independent of the Indian Ocean interannual variations. For this type of La Niña events, the cold tongue SSTA are largely controlled by the internal dynamics in the Pacific basin, which explains the events in the fourth quadrant in Figure 1A. The physical mechanisms leading to the asymmetry in the lead correlation between the SETIO SLA and Niño 3.4 SSTA one year later deserve further investigations.

From the previous and current works, it can be observed that ENSO predictability results from a combination of the internal oceanic processes in the Pacific and interbasin interactions through the atmospheric bridge and oceanic channel. For some ENSO events, oceanic channels between the tropical Indian and Pacific Ocean were not the dominant process for the onset of El Niño/La Niña one year later. In any case, the present study emphasizes that an early upwelling anomalies (negative SLA) in the SETIO is an effective and long-lead predictor of La Niña onset timing and amplitude, especially for the 1995/96, 2007/08, and 2020/21 La Niña events following strong pIOD events with weak concurrent El Niño events.

Because of the limited number of La Niña events in the observational record, our statistical results still have some uncertainties. Model result of Wang et al. (2022) has demonstrated the dominate role of “oceanic channel” in the generation of 2020/21 La Niña event. Numerical model experiments are needed in the next step to test the relative roles of the “oceanic channel” and the atmospheric bridge between the tropical Indian and Pacific Ocean for the 1995/96, 1998/99, 2007/08 and 2016/17 La Niña events.
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The bottom friction is critical for the dissipation of the global tidal energy. The bottom friction coefficient is traditionally determined using the Manning’s n formulation in tidal models. The Manning’s n coefficient in the Manning’s n formulation is vital for the accurate simulation and prediction of the tide in coastal shallow waters, but it cannot be directly measured and contains large amounts of uncertainties. Based on a two-dimensional multi-constituent tidal model with the adjoint data assimilation, the estimation of the Manning’s n coefficient is investigated by assimilating satellite observations in the Bohai, Yellow and East China Seas with the simulation of four principal tidal constituents M2, S2, K1 and O1. In the twin experiments, the Manning’s n coefficient is assumed to be constant, and it is estimated by assimilating the synthetic observations at the spatial locations of the satellite tracks. Regardless the inclusion of artificial random observational errors associated with synthetic observations, the model performance is improved as evaluated by the independent synthetic observations. The prescribed ‘real’ Manning’s n coefficient is reasonably estimated, indicating that the adjoint data assimilation is an effective method to estimate the Manning’s n coefficient in multi-constituent tidal models. In the practical experiments, the errors between the independent observations at the tidal gauge stations and the corresponding simulated results of the four principal tidal constituents are substantially decreased under both scenarios of the constant and spatially-temporally varying Manning’s n coefficient estimated by assimilating the satellite observations with the adjoint data assimilation. In addition, the estimated spatial and temporal variation trend is robust and not affected by the model settings. The spatially-temporally varying Manning’s n coefficient is negatively correlated with the current speed and shows significant spatial variation in the shallow water areas. This study demonstrates that the Manning’s n coefficient can be reasonably estimated by the adjoint data assimilation, which allows significant improvement in accurate simulation of the ocean tide.




Keywords: Manning’s n coefficient, bottom friction coefficient, adjoint data assimilation, parameter estimation, spatial-temporal variation




1 Introduction

Tide is a ubiquitous oceanographic phenomenon in the global ocean (Wei et al., 2022) and is a significant source of power to drive the ocean interior mixing (Munk and Wunsch, 1998). Different from the tide in deep seas, the tide in shallow waters is pronouncedly effected by the bottom friction in the bottom boundary layer (Nicolle and Karpytchev, 2007), which is responsible for the dissipation of over 70% of the global tidal energy (Munk and Wunsch, 1998). The tide in shallow waters is an important research field of physical oceanography and is essential for ocean transport (Wei et al., 2022), coastal ocean engineering (Lee and Jeng, 2002; Chen et al., 2007), sediment and nutrient transport (Sana and Tanaka, 1997; Fan et al., 2019). Coastal tidal models have been the effective tool to simulate and predict the tide and to investigate the bottom friction dissipation in shallow waters. The bottom frictional stress in the coastal tidal models can be defined using a linear or quadratic drag law (Mayo et al., 2014). In the widely used quadratic drag law, the bottom frictional stress is a quadratic function of the bottom friction coefficient (BFC) and velocity (Taylor, 1920). BFC can be determined using the Manning’s n formulation and equal to gn2/h1/3, where g is the acceleration due to gravity, h is the water depth, and n is the Manning’s n coefficient (Mayo et al., 2014). The Manning’s n coefficient is defined as multiple types of resistance to water flow because of bottom surface characteristics and is vital for accurate simulation and prediction of the tide in shallow coastal waters, whereas it cannot be directly measured and contains large amounts of uncertainties caused by the empirical estimation (Budgell, 1987; Mayo et al., 2014).

As an empirically derived model parameter, the Manning’s n coefficient in the tidal models can be estimated by the traditional trial and error method, but it is unfeasible especially for the spatially varying or spatially-temporally varying Manning’s n coefficients (Siripatana et al., 2018). Blakely et al. (2022) estimated the optimal constant Manning’s n coefficient and internal tide dissipation coefficient in every region in a global tide model using the sequential frictional parameter optimization process. With development of computer power and satellite remote sensing observational technology, estimation of Manning’s n coefficient using data assimilation becomes more realistic and feasible. Ding and Wang (2005) estimated the Manning’s n coefficient in the one-dimensional flow model of a river by assimilating the synthetic observations of discharges and stages with the optimal control theories and adjoint analysis. Hostache et al. (2010) identified the optimal Manning’s n coefficient in the Mosel River by assimilating the water level obtained from Synthetic Aperture Radar images of river inundation into a shallow-water flood model with the variational data assimilation method. Pedinotti et al. (2014) estimated the Manning’s n coefficient by assimilating virtual water level observations obtained from satellite data into a coupled land-surface hydrology model with the extended Kalman filter method. Sraj et al. (2014) estimated the Manning’s n coefficient in two-dimensional (2D) shallow water equations by assimilating buoy-observed water surface elevation with a Bayesian inverse modeling method. Mayo et al. (2014) estimated the spatially varying Manning’s n coefficient by assimilating the synthetic water elevation observations with a statistical data assimilation method. Demissie and Bacopoulos (2017) estimated the anisotropic Manning’s n coefficient by assimilating temporally and spatially varying velocity observations with nudging analysis. Graham et al. (2017) estimated the Manning’s n coefficient in a storm surge model by assimilating the maximum free surface elevations at observation stations with the measure-theoretic algorithm. Slivinski et al. (2017) estimated the Manning’s n coefficient in a multiple-inlet system by assimilating the observations of Lagrangian drifter trajectories with the ensemble Kalman filter. Siripatana et al. (2017) estimated the Manning’s n coefficient by assimilating synthetic observations in a simplified ebb shoal associated with an idealize inlet using the ensemble Kalman filter method and Markov chain Monte Carlo method. Siripatana et al. (2018) further quantified the spatially varying Manning’s n coefficients by assimilating synthetic observations of water elevation with a sequential data assimilation framework. Ziliani et al. (2019) estimated the two-dimensional Manning’s n coefficients in a flood model by assimilating real measurements of water depth with the ensemble Kalman filter. Warder et al. (2022) estimated the Manning’s n coefficient in the numerical model of Bristol Channel tidal dynamics by assimilating tidal harmonic data at 15 locations with a Bayesian inference algorithm.

The adjoint data assimilation is one of the classical data assimilation methods and has been widely used in the parameter estimation in oceanography (Navon, 1998; Fringer et al., 2019). Ullman and Wilson (1998) used the adjoint data assimilation to estimate the BFC directly by assimilating the Acoustic Doppler current profiler data. Heemink et al. (2002) applied the adjoint data assimilation to estimate the open boundary conditions, the spatially varying BFC and viscosity parameter, and the water depth in a three-dimensional shallow sea model by assimilating tidal gauge data and satellite altimeter data. Gao et al. (2015) used the adjoint data assimilation to simultaneously estimate the spatially varying BFC and internal tide dissipation coefficient in the South China Sea by assimilating the tidal harmonic constants derived from both tidal gauge stations and satellite altimeter crossover points. Wang et al. (2021a) estimated the temporally varying BFC in the Bohai Sea by assimilating satellite-retrieved tidal harmonic constants with the adjoint data assimilation. Wang et al. (2021b) estimated the spatially-temporally varying BFC in multi-constituent tidal model in the Bohai, Yellow and East China Seas (BYECS) by assimilating satellite altimeter data with the adjoint data assimilation. Compared to the depth independent BFC, the extra depth dependency in the Manning’s n formulation redistributes resistance to the inner shelf from the outer and mid shelf, leading to much better simulated results of tides in marginal seas when the global ocean tides are simulated (Blakely et al., 2022). It is necessary to estimate the Manning’s n coefficient in the marginal seas. However, the adjoint data assimilation has not been used to estimate the Manning’s n coefficient in the Chinese shallow coastal waters.

The tidal dynamics in the BYECS are complex and has been simulated by many researchers. However, the Manning’s n coefficient in the BYECS is traditionally set as constant or spatially varying based on personal experiences and has not been systematically estimated using the data assimilation method. Therefore, the applicability of estimating the Manning’s n coefficient in the BYECS with the adjoint data assimilation are not clear at present. In order to investigate the feasibility and effectiveness of adjoint data assimilation in estimating Manning’s n coefficient in the BYECS, twin experiments of assimilating synthetic satellite observations and practical experiments of assimilating real satellite observations are conducted in this study. Remaining sections of this paper is organized as follows: Section 2 introduces models, observations and procedure of estimating the Manning’s n coefficient; Section 3 describes the twin experiments to investigate the feasibility and effectiveness of estimating the Manning’s n coefficient; Section 4 illustrates the practical experiments to synchronously simulate the four principal tidal constituents in the BYECS by estimating the Manning’s n coefficient; Section 5 gives discussions; Section 6 summarizes the key finds with conclusion.




2 Models and observations



2.1 2D multi-constituent tidal model

The governing equations of the 2D multi-constituent tidal model are as follows (Wang et al., 2021b):

 

 

 

where ζ is the sea surface elevation above the undisturbed sea level; t is time; λ and   are longitude and latitude, respectively; R is the radius of the earth;  ; h is the undisturbed water depth; u and v are the velocity components in the east and north, respectively; f is the Coriolis parameter; g is the acceleration due to gravity; k is the BFC; A is the horizontal eddy viscosity coefficient; Δ is the Laplace operator;  ; and   is the adjusted height of equilibrium tide.

The BFC k is calculated using the Manning’s n formulation, as follows:

 

where C is the Chezy friction coefficient and n is the Manning’s n coefficient.

The initial condition is that both the sea surface elevation ζ and the velocity (u and v) are zero in the computational domain. At the closed land boundaries, the normal velocity is zero. At the open sea boundaries, the sea surface elevation ζ is caused by the principal tidal constituents and calculated as follows:



where A and G are the amplitude and phase lag (UTC, the same below), respectively; F is the nodal factor; V is the initial phase angle of the equilibrium tide; U is the nodal angle; ω is the angular speed of the tidal constituent; m is the mth tidal constituent; and M is the number of the principal tidal constituents and can be specified according to the requirement. The specific number of the principal tidal constituents used in this study will be given when the model settings are described below. The harmonic constants (amplitude and phase lag) of the principal tidal constituents at the open sea boundaries are obtained from Oregon State University Tidal Inversion Software (Egbert and Erofeeva, 2002). The numerical schemes used for solving this 2D multi-constituent tidal model are the same as those in Lu and Zhang (2006).




2.2 Adjoint model

To evaluate the simulated errors, a cost function is defined based on the adjoint method and calculated as follows (Lu and Zhang, 2006; Zhang and Wang, 2014):

 

where   is the assimilated observations of sea surface elevation; ζ is the corresponding simulated sea surface elevation at the spatial-temporal location of the observations; Σ is the set of the observational spatial-temporal locations; Kζ is the weighting matrix and theoretically should be the inverse of the observation error covariance matrix (Yu and O’Brien, 1992). Assuming that the data errors are uncorrelated and equally weighted, the elements in Kζ are 1 where observations are available and are 0 otherwise (Wang et al., 2021b).

The Lagrangian function is defined as (Thacker and Long, 1988):

 

where  ,   and   are the adjoint variables of ζ, u and v, respectively.

In order to minimize the cost function using the Lagrange multiplier method (Thacker and Long, 1988), i.e., to generate the simulated results closest to the observations, the first-order derivate of the Lagrangian function with respect to the variables and parameters should be zero:

 

 

 

From Eq. (8), the adjoint model can be obtained. In the adjoint model, the adjoint variables  ,   and   are calculated backwards over time, as shown in Lu and Zhang (2006).




2.3 Procedure of estimating the Manning’s n coefficient with the adjoint data assimilation

Based on the derived gradient of the cost function with respect to BFC in Wang et al. (2021b) and the gradient of BFC with respect to the Manning’s n coefficient, the gradient of the cost function with respect to the Manning’s n coefficient can be obtained from Eq. (10), as follows:

 

When the gradient of the cost function with respect to the Manning’s n coefficient is determined, the Manning’s n coefficient can be estimated using the steepest descent method (Zhang and Lu, 2010; Wang et al., 2018) that is as efficient as the other widely used optimization algorithm (Zou et al., 1993b; Alekseev et al., 2009; Du et al., 2021), as follows:

 

where γ is the step size; l is the lth iteration step of the parameter estimation;   is the vector of the Manning’s n coefficient arranged in a sequence;   is the corresponding gradient vector of the cost function with respect to  . When the Manning’s n coefficient is assumed to be constant,   and   are degenerated to constants. When the Manning’s n coefficient is assumed to be spatially-temporally varying,   will be normalized by the maximum value of the gradient vector at the current iteration step.

The procedure of estimating the Manning’s n coefficient is similar to that for estimating BFC using the adjoint data assimilation in Wang et al. (2021b), as follows:

Step 1. Initialize the Manning’s n coefficient and other model settings, including the other model parameters and the open sea boundary conditions.

Step 2. Run the 2D multi-constituent tidal model (Eq. (1) to Eq. (5)) with current Manning’s n coefficient.

Step 3. Calculate the cost function using Eq. (6) and the error statistics between the observations and the corresponding simulated results, including the mean absolute errors (MAEs) of amplitude and phase lag, the vectorial error for every tidal constituent and the mean vectoral error. The mean vectorial error is calculated as follows (Fang et al., 2004; Wang et al., 2021b):

 

where MVE is the mean vectorial error;   and   are the observed amplitudes and phase lags, respectively; A and G are the simulated amplitudes and phase lags, respectively; and N and M are the number of observations and tidal constituents, respectively. When the vectoral error for one tidal constituent is calculated, M is equal to 1.

Step 4. Run the adjoint model, which is driven by the difference between the observations and the corresponding simulated results.

Step 5. Based on the calculated model variables (ζ, u and v) and adjoint variables ( ,   and  ), calculate the gradient of the cost function with respect to the Manning’s n coefficient using Eq. (11) and then adjust the Manning’s n coefficient using Eq. (12).

Step 6. Judge if the difference of the normalized cost functions between the last two steps is less than 5.0 × 10-5, with a maximum iteration step of 100. If satisfied, the estimated Manning’s n coefficient and the simulated results are obtained. If not, return to Step 2.




2.4 Observations

Similar to Wang et al. (2021b), the observed amplitudes and phase lags of the principal tidal constituents M2, S2, K1 and O1, retrieved from the TOPEX/Poseidon (T/P) satellite altimeter data in the BYECS, are taken as ‘assimilating observations’ (AOs), which are assimilated into the 2D multi-constituent tidal model using the adjoint data assimilation. The spatial locations of the used T/P satellite tracks in the BYECS are shown in Figure 1. The amplitudes and phase lags of the principal tidal constituents M2, S2, K1 and O1 observed at the coastal tidal gauge stations are considered more accurate for analysing the ocean tide (Fang et al., 2004), so they are not assimilated and instead they are taken as ‘checking observations’ (COs) to independently evaluate the results of the adjoint data assimilation. The spatial locations of the tidal gauge stations in the BYECS and their serial number in this study are shown in Figure 1.




Figure 1 | Bathymetric map of the BYECS (colors), and the positions of T/P satellite tracks (red points) and tidal gauge stations (black circles). The number in the black circles is the serial number of the tidal gauge stations in this study.






2.5 Model settings

The simulated area in this study was the BYECS (Figure 1), with a horizontal resolution of 10′×10′ and the time step of 80 s. The horizontal eddy viscosity coefficient A was set as a constant of 5000 m2/s (Wang et al., 2021b). Following Kang et al. (1998) and Wang et al. (2014), the default value of the Manning’s n coefficient was set to 0.023 s/m1/3 (the unit was hereafter omitted by convention). Four principal tidal constituents M2, S2, K1 and O1 in the BYECS were simulated. Following Wang et al. (2021b), the 2D multi-constituent tidal model was run for 30 d from 1 January 2010 and the initial 15 d was spun up. The simulated results in the final 15 d were analysed to separate the simulated four principal tidal constituents (Cao et al., 2015). The adjoint model was run for 15 d backward in time from 31 January 2010 with the same horizontal resolution and time step.





3 Twin experiments



3.1 Experimental design

To test the effectiveness of the adjoint data assimilation in estimating the Manning’s n coefficient, several twin experiments were designed. In the twin experiments, the synthetic ‘observations’ are the simulated results at the spatial and temporal locations of the actual observations by running the numerical model with the prescribed ‘real’ model parameters. In this study, the ‘real’ Manning’s n coefficient was assumed to be 0.023 in the twin experiments. The 2D multi-constituent tidal model was run to simulate the four principal tidal constituents (M2, S2, K1 and O1) with the ‘real’ Manning’s n coefficient and the other default model settings as shown in Section 2.5. The simulated sea surface elevation at the spatial locations of the T/P satellite tracks (tidal gauge stations) were analysed. The obtained amplitudes and phase lags of the four principal tidal constituents M2, S2, K1 and O1 at the spatial locations of the T/P satellite tracks (tidal gauge stations) were taken as synthetic AOs (COs) in the following twin experiments. In all the twin experiments, the Manning’s n coefficient was assumed to be constant. In twin experiment TE11, the constant Manning’s n coefficient was estimated with the initial guess value of 0.0115, which was half of the prescribed ‘real’ Manning’s n coefficient, by assimilating the synthetic AOs. Given the measurement errors associated with observations, the synthetic AOs were contaminated by adding 10%-30% artificial random errors with uniform distribution in twin experiment TE12. In addition, the initial guess value of Manning’s n coefficient was 0.0115 in TE12. In twin experiment TE13 and TE14, model settings were mostly the same as those in TE12 except that the artificial random errors were set as 40%-60% and 70%-90%, respectively. As the artificial errors were randomly added into the synthetic AOs, 10 scenarios with different random seeds were performed in TE12-TE14 and the averaged results were taken as the final results of the corresponding twin experiment. To test the effect of different initial guess value, the constant Manning’s n coefficient was estimated in twin experiment TE21-TE24 with the initial guess value of 0.0345 that was 1.5 times of the prescribed ‘real’ Manning’s n coefficient. 10 scenarios were also performed in TE22-TE24 by assimilating the same synthetic AOs in the 10 scenarios in TE12-TE14, respectively. The other model settings of all the twin experiments were the same as those described in Section 2.3 and Section 2.5, and some detailed model settings of the twin experiments are listed in Table 1. The vectorial errors and mean vectorial errors between the synthetic AOs (COs) and the simulated harmonic constants in the twin experiments, calculated using Eq. (13), were used to evaluate the effect of data assimilation.


Table 1 | Detailed model settings of the numerical experiments.






3.2 Results

As listed in Table 2, the vectorial errors of tidal constituents M2, S2, K1 and O1 between the synthetic AOs and the corresponding simulated results in all the twin experiments are significantly reduced. The mean vectorial error for AOs before data assimilation is 7.16 cm in TE11-TE14. After data assimilation, the mean vectorial error for AOs is decreased to 0.37 cm in TE11, 0.43 cm in TE12, 1.99 cm in TE13 and 2.92 cm in TE14 (Table 2). The mean vectorial error for AOs is decreased from 5.18 cm before data assimilation to 0.42 cm in TE21, 0.45 cm in TE22, 1.37 cm in TE23 and 2.27 cm in TE24 (Table 2). The results show that the synthetic AOs in all the twin experiments are fully assimilated. Meanwhile, the L1 norm of gradients of cost function with respect to the Manning’s n coefficient in all the scenarios in TE11-TE14 (Figure 2) and TE21-TE24 (Figure 3) are largely reduced and tend to be stable, indicating that the Manning’s n coefficients in all the twin experiments are adequately estimated.


Table 2 | Vectorial errors and mean vectorial error of the four principal tidal constituents between the AOs and the corresponding simulated results in the numerical experiments.






Figure 2 | Variations of (A) the mean vectorial error of the four tidal constituents M2, S2, K1 and O1 for COs and (B) the L1 norm of gradients of cost function with respect to the Manning’s n coefficient in TE11. (C, D) same as (A, B) but for TE12. (E, F) same as (A, B) but for TE13. (G, H) same as (A, B) but for TE14. The colored lines in (C–G) and (D–H) indicate the results in the 10 scenarios of the corresponding experiment.






Figure 3 | Same as Figure 2, but for (A, B) TE21, (C, D) TE22, (E, F) TE23 and (G, H) TE24.



The effect of the adjoint data assimilation in improving the simulation accuracy should be evaluated by the independent observations. As shown in Figure 2, the mean vectorial errors of the four principal tidal constituents between the synthetic COs and the corresponding simulated results in TE11-TE14 are gradually reduced and tend to be stable within 15 iteration steps. In addition, all the vectorial errors of M2, S2, K1 and O1 between the synthetic COs and the corresponding simulated results are largely decreased in TE11-TE14 (Table 3). The mean vectorial error for COs is reduced to 0.59 cm in TE11, 0.68 cm in TE12, 3.08 cm in TE13 and 4.55 cm in TE14 from an initial value of 10.97 cm (Table 3), indicating the model performance is improved with a reduction of 94.62%, 93.80%, 71.92% and 58.52% for the data misfit between the simulated results and independent observations in TE11, TE12, TE13 and TE14, respectively. As shown in Figures 3A, C, the mean vectorial errors for COs in TE21 and TE22 are gradually reduced and reach the minimum value within 35 iteration steps. Although the mean vectorial errors for COs in TE23 and TE24 are firstly reduced and then increased with the increase of iteration steps, the final results are still less than those before data assimilation, as shown in Figures 3E, G, respectively. As listed in Table 3, the vectorial errors of M2, S2, K1 and O1 for COs are significantly reduced in TE21-TE24, and the mean vectoral errors for COs are reduced by 92.50% in TE21, 91.91% in TE22, 73.27% in TE23 and 56.27% in TE24, respectively. The results evaluated by the independent COs show that the model performance of the 2D multi-constituent tidal model is significantly improved by assimilating the synthetic AOs, regardless of the initial guess value of the Manning’s n coefficient being less or larger than the prescribed ‘real’ value.


Table 3 | Vectorial errors and mean vectorial error of the four principal tidal constituents between the COs and the corresponding simulated results in the numerical experiments.



When the percentage of the artificial random observational errors becomes larger, the MAEs between the simulated harmonic constants (amplitudes and phase lags) and the synthetic COs for the four principal tidal constituents M2, S2, K1 and O1 are increased from TE11 (TE21) to TE14 (TE24), especially for TE13 (TE23) and TE14 (TE24), and the standard deviations of the 10 scenarios are also increased, as shown in Figures 4, 5). Meanwhile, the difference between the estimated and prescribed Manning’s n coefficient is increased from TE11 (TE21) to TE14 (TE24), and the dispersion of the finally optimized Manning’s n coefficient is also increased with the increased percentage of the artificial random observational errors, as shown in Figure 6. The vectorial errors of the four principal tidal constituents and the mean vectorial error in TE12 (TE22) are slightly larger than those in TE11 (TE21). In addition, the final estimated Manning’s n coefficient in TE11 (TE21) and TE12 (TE22) are 0.0234 (0.0231) and 0.0233 (0.0232) as shown in Figures 6A, B, E, F), respectively. The results indicate that the 10%-30% random observational errors have little influence on the adjoint data assimilation and the estimation of the Manning’s n coefficient. When the percentage of the artificial random observational errors increases to 40%-60% and 70%-90%, however, those vectorial errors are significantly increased with a nearly linear trend (Figures 4, 5) and the estimated Manning’s n coefficients become obviously deviate from the prescribed value (Figure 6). When the percentage of the artificial random observational error is 40%-60%, the contaminated synthetic observations are nearly 0.5 times or 1.5 times of the true values in the average sense. As a result, the mean vectorial error for COs after data assimilation in TE13 (TE23) is about 5.22 (3.56) times that in TE11 (TE21) and the estimated Manning’s n coefficient is only 0.0199 (0.0199) in TE13 (TE23). When the percentage of the artificial random observational error is 70%-90%, the contaminated synthetic observations are much deviated from the true observations, hence the mean vectorial error for COs is much larger and the estimated Manning’s n coefficient is further deviated from the prescribed value. The above results indicate that when the observational errors are within reasonable range, the Manning’s n coefficient can be successfully estimated and the model performance can be significantly improved by assimilating AOs with the adjoint data assimilation. When the observational errors are too large, although the results may not be perfect, the model performance can still be improved and the estimated Manning’s n coefficient can be much closer to the prescribed value than those before data assimilation.




Figure 4 | Variations of (A) MAEs of the M2 amplitude between the COs and the corresponding simulated results in TE11, TE12, TE13 and TE14. (B, C) same as (A) but for MAEs of the M2 phase lag and vectorial error of M2, respectively. (D–F) same as (A–C) but for S2. (G–I) same as (A–C) but for K1. (J–L) same as (A–C) but for O1. (M–O) same as (A–C) but for the averaged values of the above-mentioned four tidal constituents. Blue vertical bars indicate the standard deviation of the 10 scenarios in the corresponding experiment.






Figure 5 | Variations of (A) MAEs of the M2 amplitude between the COs and the corresponding simulated results in TE21, TE22, TE23 and TE24. (B, C) same as (A) but for MAEs of the M2 phase lag and vectorial error of M2, respectively. (D–F) same as (A–C) but for S2. (G–I) same as (A–C) but for K1. (J–L) same as (A–C) but for O1. (M–O) same as (A–C) but for the averaged values of the above-mentioned four tidal constituents. Blue vertical bars indicate the standard deviation of the 10 scenarios in the corresponding experiment.






Figure 6 | (A) Prescribed Manning’s n coefficient (red dashed line) and the estimated results (blue line) in TE11. (B) Prescribed Manning’s n coefficient (red dashed line) and the estimated results in the 10 scenarios (colored lines) in TE12. (C, D) same as (B) but for TE13 and TE14, respectively. (E–H) same as (A–D) but for TE21, TE22, TE23 and TE24, respectively.



Regardless of the inclusion of artificial random errors associated with synthetic AOs, the simulated four principal tidal constituents M2, S2, K1 and O1 after the data assimilation are consistently much closer to the COs than those before the data assimilation in all the twin experiments, demonstrating that the adjoint data assimilation can effectively improve the model performance. In addition, the estimated Manning’s n coefficient using the adjoint data assimilation is very close to the prescribed value when the observational errors are within reasonable range, no matter the initial guess value of the Manning’s n coefficient is less or larger than the prescribed value. Even if the observational errors are very large, the estimated Manning’s n coefficient is much closer to the prescribed value than the initial guess value. The results of the twin experiments demonstrate that the adjoint data assimilation can significantly improve simulation accuracy of the tide and is an effective method to estimate the Manning’s n coefficient in multi-constituent tidal models by assimilating reasonable observations.





4 Practical experiments



4.1 Experimental design

In the practical experiments, the actual AOs were assimilated to estimate the Manning’s n coefficient using the adjoint data assimilation. In PE11, the Manning’s n coefficient was assumed to be constant and the initial guess value was set to 0.023 that was generally used in the traditional numerical studies in the BYECS. In PE12 and PE13, the initial guess value of the Manning’s n coefficient was set to 0.5 and 1.5 times 0.023, respectively. The spatially varying Manning’s n coefficient was widely used in previous studies (Mayo et al., 2014; Demissie and Bacopoulos, 2017). Mohammadian et al. (2022) found that the calibrated Manning’s n coefficient on the ebb tide was nearly 60% of that on the flood tide in the Koksoak River Estuary, showing that the Manning’s n coefficient would be also temporally varying. Slivinski et al. (2017) found that the spatially varying Manning’s n coefficients estimated by assimilating the velocity observations in 2011 were no longer optimal in 2013, indicating the spatial and temporal variation of the Manning’s n coefficient. In order to further improve the model performance of the 2D multi-constituent tidal model, the Manning’s n coefficient was assumed to be spatially-temporally varying in PE21, in which the initial guess value of the Manning’s n coefficient was set to 0.023 that was used in PE11. The other model settings were the same as those described in Section 2.3 and Section 2.5, and some details are listed in Table 1.




4.2 Results

As shown in Figure 7, the normalized cost functions in all the practical experiments are gradually reduced and tend to be stable. The vectorial errors of M2 and S2 between the AOs and the corresponding simulated results after the data assimilation in all the practical experiments are less than those before data assimilation (Table 2). As listed in Table 2, the mean vectorial errors for AOs are reduced from 9.59 cm to 9.53 cm in PE11, from 12.43 cm to 9.62 cm in PE12, from 10.18 cm to 9.47 cm in PE13, from 9.59 cm to 3.65 cm in PE21. These considerable reductions indicate that the AOs are effectively assimilated. When the Manning’s n coefficient is assumed to be constant in PE11, the MAEs of M2 tidal amplitude and phase lag and the vectorial error of M2 between the COs and the simulated results are slightly reduced (Figures 8A–C), with similar pattern occurred to S2 (Figures 8D–F). Although the MAEs of tidal amplitude and phase lag and the vectorial errors of K1 and O1 between the COs and the simulated results in PE11 are increased after data assimilation (Figures 8G–L), the mean vectoral error for COs in PE11 is reduced from 12.62 cm to 12.52 cm (Table 3), suggesting that the model performance is slightly improved in PE11. The vectoral errors of K1 and O1 between the COs and the corresponding simulated results in PE12 are firstly decreased and then increased to be slightly larger than that before data assimilation as shown in Figures 8I, L, so as to achieve smaller errors overall considering that the amplitudes of K1 and O1 are much less than those of M2 and S2 in the BYECS (Fang et al., 2004). The mean vectoral error for COs in PE12 is still largely reduced from 16.54 cm to 12.64 cm, which is close to 12.52 cm obtained in PE11 (Table 3). In addition, the mean vectorial error for COs after data assimilation in PE13 is 12.44 cm and also close to that obtained in PE11. Similarly, the estimated constant Manning’s n coefficient after data assimilation is 2.506×10-2 in PE11, 2.503×10-2 in PE12, and 2.546×10-2 in PE13 (Figure 7D), which are close to each other. Overall, the aforementioned results show that regardless the initial guess value of the Manning’s n coefficient being too small or too large, the model performance can be effectively improved by the adjoint data assimilation. The Manning’s n coefficient can be successfully estimated and the optimal value is approximately 0.025 in the BYECS, which is nearly close to the averaged value of the globally optimized Manning’s n coefficients in this area in Blakely et al. (2022).




Figure 7 | Variations of (A) the normalized cost function, (B) the mean vectorial error of the four tidal constituents M2, S2, K1 and O1 between the AOs and the simulated results, (C) the mean vectorial error of the four tidal constituents M2, S2, K1 and O1 between the COs and the simulated results, and (D) the spatially and temporally averaged value of the estimated Manning’s n coefficient, in PE11 (blue line), PE12 (magenta line), PE13 (black line) and PE21 (red line).






Figure 8 | Variations of (A) MAEs of the M2 amplitude between COs and the corresponding simulated results in PE11 (blue line), PE12 (magenta line), PE13 (black line) and PE21 (red line). (B, C) same as (A) but for MAEs of the M2 phase lag and vectorial error of M2, respectively. (D–F) same as (A–C) but for S2. (G–I) same as (A–C) but for K1. (J–L) same as (A–C) but for O1. (M–O) same as (A–C) but for the averaged values of the above-mentioned four tidal constituents.



Although the model performance is improved by the adjoint data assimilation when the Manning’s n coefficient is assumed to be constant in PE11, PE12 and PE13, the mean vectorial errors after data assimilation with constant Manning’s n coefficient are much larger than the mean vectorial error of 6.90 cm obtained after data assimilation when the BFC is directly assumed to be spatially and temporally varying in Wang et al. (2021b). The Manning’s n coefficient has been confirmed to be spatially-temporally varying (Slivinski et al., 2017), so the spatially-temporally varying Manning’s n coefficient was estimated in PE21. As shown in Figure 7, the normalized cost function and the mean vectorial error for AOs in PE21 are significantly decreased and the values after data assimilation are much less than those in PE11, PE12 and PE13, indicating that the AOs are fully assimilated. As shown in Figure 8, the MAEs of the amplitude and phase lag of the four principal tidal constituents between the COs and the corresponding simulated results after data assimilation in PE21 are much less than those before data assimilation in PE21 and those after data assimilation in PE11, PE12 and PE13. In addition, the vectoral error between the COs and the corresponding simulated results in PE21 is reduced to 11.48 cm for M2, 6.10 cm for S2, 3.75 cm for K1 and 3.04 cm for O1 (Table 3), which are much less than those in PE11, PE12 and PE13. The mean vectorial error of the four tidal constituents between the COs and the corresponding simulated results in PE21 is reduced to 6.09 cm from an initial value of 12.62 cm (Table 3), indicating that the model performance is improved with a reduction of 51.74% for the difference between the independent observations without assimilated and the simulated results. The percentage of the reduction is nearly 65.3 times that in PE11. Moreover, the mean vectorial error for COs after data assimilation in PE21 is just 6.09 cm and less than the value of 6.90 cm in Wang et al. (2021b) in which the same four tidal constituents were simulated by assimilating the same AOs in the BYECS. As shown in Figure 9, the mean vectorial errors of the four principal tidal constituents for COs in PE21 at No. 3 and No. 21 tidal gauge stations, located at the central western boundary of the BYECS (Figure 1), are larger than those at other practical experiments, possibly because of the low resolution of bathymetry data or the low observation accuracy of T/P satellite altimeter data in this area. In addition, the mean vectorial errors for COs in PE21 at the stations near the southern and eastern open boundary with the serial number of 36, 42, 47, 48, 49, 52, 54, 55 and 62 (Figure 1) are slightly larger than those at the other practical experiments. At the other 55 tidal gauge stations other than those already mentioned, the mean vectorial errors for COs in PE21 are significantly less than those in PE11, PE12 and PE13, especially for the stations with the serial number less than 47. Model performance is obviously improved at most area in the BYECS by estimating the spatially-temporally varying Manning’s n coefficient with the adjoint data assimilation.




Figure 9 | The mean vectorial error of the four tidal constituents between the COs and the corresponding simulated results in PE11 (blue asterisk), PE12 (magenta triangle), PE13 (black circle) and PE21 (red square) at all the tidal gauge stations. The gray dashed line shows that the mean vectorial error in PE21 at this tidal gauge station is larger than that in either of the other three experiments.



Besides a few special observational stations, the model after data assimilation in PE21 captures almost all (no less than 97%) of both the observed amplitude and phase lag of the four tidal constituents in AOs and COs with a factor of 2 (Supplementary Figure 1). In addition, the correlation coefficients of the observed and simulated tidal harmonic constants are not less than 0.90, indicating that the model is reasonably accurate even though only the observations retrieved from the T/P satellite altimeter data are assimilated in the BYECS. Furthermore, both the cotidal charts (Supplementary Figure 2) and the tidal current ellipses (Supplementary Figure 3) of the four principal tidal constituents M2, S2, K1 and O1 obtained in PE21 show the same patterns as those in the previous studies (Fang, 1994; Guo and Yanagi, 1998; Fang et al., 2004; Wang et al., 2021b), indicating that the simulated results after data assimilation are adequate enough to show the tidal characteristics in the BYECS and the Manning’s n coefficient is reasonably estimated with the assumption of spatial and temporal variations.

Overall, the aforementioned results indicate that under both scenarios of the constant and spatially-temporally varying Manning’s n coefficient in the practical experiments, the model performance can be improved by estimating the Manning’s n coefficient with the adjoint data assimilation, as evaluated by the difference between the independent observations of tidal harmonic constants (amplitude and phase lag) and the corresponding simulated results. When the Manning’s n coefficient is assumed to be spatially-temporally varying, the model performance can be significantly improved with a reduction of 51.74% for the difference between the independent observations without assimilated and the simulated results, showing that the Manning’s n coefficient in multi-constituent tidal models can be reasonably estimated by assimilating satellite observations with the adjoint data assimilation.





5 Discussions



5.1 Spatial distribution and temporal variation of the estimated Manning’s n coefficient

As indicated by Wang et al. (2018) and Wang et al. (2021b), the spatially-temporally varying model parameters estimated by the adjoint data assimilation may be affected by the model settings and should be discussed by the sensitivity experiments using the local forward sensitivity analysis (Zou et al., 1993a; Cacuci, 2003). Therefore, several sensitivity experiments were carried out to test the robustness of the spatially-temporally varying Manning’s n coefficient estimated in PE21. In the sensitivity experiment SE1 (SE2), the initial guess value of the Manning’s n coefficient was set to 0.5 (1.5) times 0.023 that used in PE21 to test the influence of the initial guess value in the adjoint data assimilation. In the sensitivity experiment SE3 (SE4), the step size used in the estimation of the Manning’s n coefficient in Eq. (12) was set to 0.5 (1.5) times that used in PE21 to test the influence of the adjustment strategy. Only M2 and K1 were simulated in the sensitivity experiment SE5 and only M2 was simulated in the sensitivity experiment SE6, to test the influence of the number of the simulated tidal constituents. In the sensitivity experiment SE7, the starting time of the numerical experiment was set to 16 January 2010 to test the influence of the simulated period. The typical model settings of the sensitivity experiments are listed in Table 4, and the other model settings were the same as those in PE21.


Table 4 | Detailed model settings and results of the sensitivity experiments.



As listed in Table 4, the mean vectorial errors for COs in all the sensitivity experiments are substantially decreased, showing that the AOs are fully assimilated and the model performance is effectively improved. To evaluate the influence of the model settings on the estimated results, the spatially-temporally varying Manning’s n coefficient estimated by the adjoint data assimilation in PE21 and all the sensitivity experiments are temporally (spatially) averaged to get the spatial distribution (temporal variation) of the Manning’s n coefficient. The correlation coefficients between the temporal variation of the estimated Manning’s n coefficient in PE21 and those in the sensitivity experiments are not less than 0.74 (Table 4), suggesting a significant positive correlation at the 0.1 percent confidence level. Except for SE5 and SE6, the correlation coefficients were not less than 0.89. The correlation coefficients for the spatial distributions were not less than 0.78 in all the sensitivity experiments, indicating a significant positive correlation at the 0.1 percent confidence level. The results show that the trend of the spatially-temporally varying Manning’s n coefficient estimated in PE21 is not affected by the model settings and is relatively robust.

The simulated sea surface elevation and the estimated Manning’s n coefficient are spatially averaged to obtain the temporal variation. As shown in Figures 10A, B, the temporally varying sea surface elevation simulated in PE21 varies semi-diurnally and diurnally, while the variation period of the temporally varying Manning’s n coefficient estimated in PE21 is quarter-diurnal and one-third diurnal. The correlation coefficient between the temporally varying sea surface elevation and Manning’s n coefficient in PE21 is only -0.02. The temporally varying Manning’s n coefficient and current speed in PE21 have the similar variation period (Figures 10C, D) and the correlation coefficient is -0.43, indicating that the temporally varying Manning’s n coefficient is related to the current speed. When only M2 and K1 are simulated in SE5, the temporal variations of the Manning’s n coefficient and current speed become slightly simple (Figures 10E, F), and the correlation coefficient is -0.46. When only M2 is simulated in SE6, both the estimated Manning’s n coefficient and current speed vary quarter-diurnally (Figures 10G, H), and the correlation coefficient is -0.56. The above results show that the temporal variation of the spatially averaged Manning’s n coefficient estimated by the adjoint data assimilation is negatively correlated with the current speed on the whole.




Figure 10 | (A) Time series of the spatially averaged Manning’s n coefficient (red line) and sea surface elevation (blue line) in PE21, (B) power spectral densities of the spatially averaged Manning’s n coefficient (red line) and sea surface elevation (blue line) in PE21. (C, D) Same as (A, B) but for the spatially averaged Manning’s n coefficient (red line) and current speed (blue line) in PE21. (E, F) Same as (C, D) but for SE5. (G, H) Same as (C, D) but for SE6.



The estimated Manning’s n coefficient in PE21 is temporally averaged to obtain the spatial distribution (Figure 11). The spatial distribution of the Manning’s n coefficient is larger than 0.04 near the coastline of the BYECS, as shown in Figure 11A. The temporally averaged Manning’s n coefficient near the coastline of the Bohai Sea is much larger than that in the central area of the Bohai Sea, as shown in Figure 11B, which is consistent with that the estimation of the Manning’s n coefficient should be focused on the shallow areas (Mayo et al., 2014). Manning’s n formulation (Eq. (4)) suggests that the Manning’s n coefficient will have less effect on the simulated results for the large water depth. As a result, the temporally averaged Manning’s n coefficient is close to the initial guess value of 0.023 in most areas with water depth larger than 30 m. The temporally averaged Manning’s n coefficient is less than 0.002 near the Yangtze Estuary (Figure 11C), and the area is close to the mud area off the Yangtze Estuary where the sea bed is composed of fine sediment and the bed surface is smooth (Bian et al., 2013). In the Hangzhou Bay with rapid tidal current (Supplementary Figure 3), the temporally averaged Manning’s n coefficient is large, because the high tidal current tends to resuspend the fine sediments leaving a rougher surface or create ripples and dunes on the seabed (Blakely et al., 2022). In the middle of the BYECS with the centre of 126°E and 30°N, the estimated Manning’s n coefficient is larger than 0.03, which may be related to the spatial distribution of sand there as shown in Dutkiewicz et al. (2015). In some areas, the estimated Manning’s n coefficient may be not exactly correlated with the physical characteristics, which may be related to the low resolution of bathymetry data or the low observation accuracy of T/P satellite altimeter data in some area. Overall, the estimated Manning’s n coefficient in PE21 shows significant spatial variation in the shallow water areas.




Figure 11 | Spatial distribution of the temporally averaged Manning’s n coefficient in (A) the BYECS, (B) the Bohai Sea and (C) the Yangtze Estuary and the Hangzhou Bay, in PE21. The magenta line shows the bathymetric contours at 30 m.






5.2 Settings of the Manning’s n coefficient in tidal models

As discussed by Wang et al. (2021b), the Manning’s n formulation has been widely used in tidal models and the Manning’s n coefficient should be accurately determined. As shown in the practical experiments PE12 and PE13, when the Manning’s n coefficient is set to unreasonable constant value, the errors between the observations and the simulated results are large (Table 3). However, when the adjoint data assimilated is used to estimate the constant Manning’s n coefficient by assimilating the publicly available satellite observations, the errors can be considerably reduced (Figure 7C) and the estimated Manning’s n coefficient will tend to be the similar optimal value (Figure 7D). For the 2D multi-constituent tidal model used in this study, the optimal value of the constant Manning’s n coefficient is approximately 0.025 in the BYECS, which is suggested to the other tidal models using the constant Manning’s n coefficient in the BYECS. Although the optimal value of 0.025 is nearly close to the averaged value of the globally optimized Manning’s n coefficients in this area in Blakely et al. (2022), it is greater than the locally re-optimized Manning’s n coefficients in this area in Blakely et al. (2022). Therefore, when the internal tide dissipation is considered in the tidal model, it is necessary to simultaneously estimate the Manning’s n coefficient and the internal tide dissipation coefficient using the adjoint data assimilation, which will be the future work.

As shown by the twin experiments, the observational errors are important to estimate accuracy of the Manning’s n coefficient using the adjoint data assimilation. When the mean percentage of the observational errors reaches 50%, the estimated Manning’s n coefficients in both TE13 and TE23 are far deviated from the prescribed ‘real’ value. With the development of satellite remote sensing observational technology, the accuracy of the satellite observations is markedly improved. The accuracy of the observed amplitudes and phase lags by the T/P satellite altimeter data are about 2-4 cm and 5° in the BYECS (Fang et al., 2004), respectively, indicating that the publicly available satellite observations of the sea level are adequate enough for estimating the Manning’s n coefficient in the coastal tidal models. However, when the Manning’s n coefficient is assumed to be constant in PE11-PE13, only slight improvement exists for 2D multi-constituent tidal model in the BYECS, so it is necessary to set the spatially or temporally varying Manning’s n coefficient. Slivinski et al. (2017) found that the spatially varying Manning’s n coefficients estimated in 2011 were no longer optimal in 2013, indicating the spatial-temporal variation of the Manning’s n coefficient due to the changes of the geometry or bottom roughness (Sraj et al., 2014; Slivinski et al., 2017). When the Manning’s n coefficient is assumed to be spatially-temporally varying and estimated by the adjoint data assimilation in PE21, the mean vectorial error of the four tidal constituents is significantly decreased and the estimated spatially-temporally varying Manning’s n coefficient is robust. But it is difficult to propose a universal scheme to set the spatially-temporally varying Manning’s n coefficient in the tidal model at this stage. As well known, the Manning’s n coefficient is associated with the subaqueous land classifications (Bunya et al., 2010) and the theoretical Manning’s n coefficient can be determined according to the median grain size of the sediment of the seafloor (Warder et al., 2022). Therefore, it would be an important future research to establish a universal empirical formula of the Manning’s n coefficient considering the relationship between the Manning’s n coefficient and sediment type at seafloor. In addition, the unknown coefficients in this formula are further estimated by assimilating the observations with the adjoint data assimilation.





6 Conclusions

Tide is a ubiquitous oceanographic phenomenon in the global ocean (Wei et al., 2022) and is essential for the design and plan of coastal ocean engineering (Lee and Jeng, 2002; Chen et al., 2007; Wang et al., 2021a). The bottom friction is critical for the dissipation of the global tidal energy and is a quadratic function of BFC and velocity (Taylor, 1920). BFC is traditionally determined using the Manning’s n formulation in tidal models. So, the Manning’s n coefficient in the Manning’s n formulation is vital for the accurate simulation and prediction of the tide in shallow coastal waters, whereas it cannot be directly measured and contains large amounts of uncertainties. Based on a two-dimensional multi-constituent tidal model with the adjoint data assimilation developed in Wang et al. (2021b), the Manning’s n coefficient is estimated by assimilating satellite observations using the adjoint data assimilation in the BYECS with the simulation of four principal tidal constituents M2, S2, K1 and O1. The observed amplitudes and phase lags of the four principal tidal constituents retrieved from the satellite altimeter data are taken as AOs, while those at the tidal gauge stations are taken as COs to evaluate the simulation results.

In the twin experiments, the synthetic observations at the spatial locations of the satellite tracks are assimilated to estimate the constant Manning’s n coefficient. Regardless the inclusion of the artificial random observational errors associated with synthetic AOs, the simulated four principal tidal constituents M2, S2, K1 and O1 after the data assimilation are consistently much closer to the COs than those before the data assimilation in all the twin experiments (Table 3 and Figures 2, 3). In addition, the estimated Manning’s n coefficient is close to the prescribed value, especially when the percentage of the observational errors are not too large, no matter the initial guess value of the Manning’s n coefficient in the adjoint data assimilation is less or larger than the prescribed value (Figure 6). The results of the twin experiments demonstrate that the adjoint data assimilation can significantly improve simulation accuracy of the tide and is an effective method to estimate the Manning’s n coefficient.

In the practical experiments, under both scenarios of the constant and spatially-temporally varying Manning’s n coefficient, the model performance can be effectively improved by assimilating the satellite observations with the adjoint data assimilation. When the Manning’s n coefficient is assumed to be spatially-temporally varying, the model performance can be significantly improved with a reduction of 51.74% for the difference between COs and the simulated results (Table 3), showing that the Manning’s n coefficient in multi-constituent tidal models can be reasonably estimated by assimilating satellite observations with the adjoint data assimilation. In addition, the estimated spatial-temporal variation characteristics is robust and not affected by the model settings (Table 4). The spatially-temporally varying Manning’s n coefficient is negatively correlated with the current speed and show significant spatial variation on shallow areas.

This study demonstrate that the Manning’s n coefficient can be reasonably estimated by the adjoint data assimilation, which allows significant improvement in accurate simulation of the ocean tide. In the future, it is essential to propose a universal empirical formula of the Manning’s n coefficient considering the relationship between the Manning’s n coefficient and sediment type at seafloor. In addition, the unknown coefficients in this empirical formula should be estimated by assimilating the observations with the adjoint data assimilation, to further provide suggestions for setting the spatially-temporally varying Manning’s n coefficient in tidal models. Besides, it is also the future work to consider both the bottom boundary layer dissipation and the internal tide dissipation in the tidal model, and simultaneously estimate the Manning’s n coefficient and the internal tide dissipation coefficient using the adjoint data assimilation.
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We assessed the performance of state-of-the-art coupled models in reproducing the equatorial undercurrent (EUC) in the Indian Ocean based on the outputs of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models and compared with the Phase 5 (CMIP5) models. Our results showed that the CMIP6 models reproduced the boreal winter–spring Indian Ocean EUC more realistically than the CMIP5 models, although both generations of models underestimated the strength of the Indian Ocean EUC compared with the observations. This underestimation of the Indian Ocean EUC can be attributed to the excessively strong and westward-extended cold tongue in the equatorial Pacific. In the CMIP models, a stronger winter-mean cold tongue favors a stronger zonal sea surface temperature gradient, which forces a strong easterly wind bias over the equatorial western Pacific. This, in turn, contributes to an acceleration of the Walker circulation. This enhanced Walker circulation over the Indo-Pacific Ocean directly causes a lower level westerly wind bias over the equatorial Indian Ocean and drives a shallow west–deep east thermocline tilt bias, ultimately leading to an excessively weak EUC in the Indian Ocean via wind-induced thermocline processes. Compared with the CMIP5 models, the overall improvement in the strength of the winter–spring Indian Ocean EUC in the CMIP6 models can be traced back to the improvement in the degree of the strong and westward-extended cold tongue bias. Our results suggest that efforts should be made to reduce the bias in the mean-state equatorial Pacific sea surface temperature to further improve the simulation and projection of the atmospheric and oceanic circulations in the Indian Ocean.




Keywords: equatorial undercurrent, westerly wind bias, thermocline tilt, cold togue bias, walker circulation, CMIP models




1 Introduction

The subsurface of the equatorial Indian Ocean (EIO) is as energetic as its surface. The subsurface of the EIO is characterized by a vigorous eastward current, known as the equatorial undercurrent (EUC) in the boreal winter–spring, particularly in February–March–April (FMA), and in the boreal summer–fall in August–September–October (ASO) (Iskandar et al., 2009; Chen et al., 2015; Gnanaseelan and Deshpande, 2018). The EUC in the Pacific and Atlantic Oceans is seen throughout the year as a result of the quasi-permanent eastward pressure gradient forced by the prevailing easterly trade winds (Metcalf and Stalcup, 1967; Mcphaden, 1986; Izumo, 2005). By contrast, the EUC is a transient feature in the Indian Ocean and is associated with the seasonally varying component of the surface winds (Knauss and Taft, 1964; Bruce, 1973; Schott and McCreary, 2001; Chen et al., 2015). This transient and energetic EUC can modulate the variations in the volume transport and heat content of the EIO (Reppin et al., 1999; Nyadjro and McPhaden, 2014), which significantly influences the regional energy balance and global climate change through basin wave dynamics and air–sea thermodynamics (Schott and McCreary, 2001; Thompson et al., 2006; Godfrey et al., 2007; Schott et al., 2009; Wang and Dong, 2015; Huang et al., 2018).

Previous studies have indicated that the eastward EUC in the Indian Ocean shows a remarkable semiannual variability (Knauss and Taft, 1964; Schott et al., 2009; Phillips et al., 2021). The winter–spring EUC is caused by the eastward pressure gradient in the thermocline, which is closely associated with the upwelling equatorial Kelvin waves excited by the prevailing easterly winds, whereas the summer–fall EUC is attributed to both wind-driven equatorial Kelvin waves and Rossby waves reflected from the eastern boundary (Iskandar et al., 2009). This transient feature of the EUC also determines the semiannual variations of zonal volume transport in the EIO, with the maximum eastward subsurface transport occurring in April and October (Nyadjro and McPhaden, 2014). The EUC shows a remarkable interannual variability and is significantly modulated by the Indian Ocean dipole (IOD) (Nagura and McPhaden, 2010; Zhang et al., 2014; Sachidanandan et al., 2017). Gnanaseelan and Deshpande (2018) showed that the enhancement and eastward extension of the EUC during strong IOD events could intensify and maintain the IOD through the intensification of oceanic responses.

Coupled general circulation models (CGCMs) participating in the Coupled Model Intercomparison Project (CMIP) are effective tools for understanding the variabilities of oceanic and atmospheric circulations and projecting their associated climate changes under global warming. Unfortunately, most of the state-of-the-art CMIP models suffer from serious errors in simulating climate variability in the Pacific and Atlantic Oceans, including an excessive equatorial cold tongue bias in the Pacific Ocean (Li et al., 2016a; Ying et al., 2019; Jiang et al., 2020; Li et al., 2021), a basin-wide shallow thermocline bias in the southern tropical Pacific (Samuels et al., 2021), a spurious double intertropical convergence zone caused by the meridional pattern of the sea surface temperature (SST) bias over the tropical Pacific and Atlantic (Li and Xie, 2012; Li and Xie, 2014; Wang et al., 2014; Siongco et al., 2015; Samanta et al., 2019; Zhou et al., 2020), a weak zonal SST gradient along the equatorial Atlantic Ocean (Kozar and Misra, 2013; Liu et al., 2013), and a weak subtropical cell in the southern Atlantic Ocean (Fu et al., 2022).

Similarly, many CGCMs also show large biases in simulating the climate variability of the tropical Indian Ocean (TIO) (Cai and Cowan, 2013; Shashikanth et al., 2014; Li et al., 2016b; Cai et al., 2018; Long et al., 2020; Cai et al., 2021). The common easterly wind biases over the EIO (Cai and Cowan, 2013; Lee et al., 2013) can deepen the South Indian Ocean thermocline dome and suppress its related effects on the SST in the CMIP Phase 5 (CMIP5) models (Li et al., 2015b; Zheng et al., 2016). Levine et al. (2013) suggested that the excessively cold SST bias simulated in the northern Indian Ocean by CGCMs could enhance the Indian winter monsoon circulations and maintain them until the spring and summer seasons, which could significantly weaken the subsequent Indian summer monsoon rainfall (Sandeep and Ajayamohan, 2014; Wang et al., 2018). Li et al. (2015a) identified an IOD-like bias pattern in the CMIP5 models, with a strong equatorial easterly wind bias accompanied by physically consistent biases in precipitation, SSTs and subsurface ocean temperatures, which resulted from biases in the South Asian summer monsoon. Liu et al. (2016) also found that the Wyrtki jet simulated by most of the CMIP5 models is delayed by one month compared with the observations, primarily due to the late onset of westerly winds.

Many studies have reported simulation errors in the atmospheric and oceanic circulations over the TIO in CGCMs, but little attention has been paid to the performance of CGCMs in reproducing the subsurface oceanic circulation, especially the EUC in the Indian Ocean. The simulation of the Indian Ocean EUC might be influenced by the large biases in the surface atmospheric circulations. Recently, the outputs from the latest climate system models for the CMIP Phase 6 (CMIP6) models have been released (Eyring et al., 2016), and CMIP6 models have been improved in comparison to CMIP5 models in terms of the resolution in the atmosphere and ocean, the dynamic core and the model physics (Wu et al., 2019; McKenna et al., 2020; Wyser et al., 2020). Given the importance of the Indian Ocean EUC, we addressed the following questions: how well do the CMIP5 and CMIP6 models simulate the Indian Ocean EUC; do the CMIP6 models have higher skills in simulating the Indian Ocean EUC than the CMIP5 models; and, if so, what processes are responsible for the improvements?

The remainder of this paper is organized as follows. Section 2 introduces the datasets and methods. Section 3 demonstrates the biases in simulating the boreal winter–spring Indian Ocean EUC among the CMIP5 and CMIP6 models. The origins of the simulated Indian Ocean EUC biases from CMIP models are explored in Section 4. Section 5 compares the performance of the winter–spring Indian Ocean EUC between the CMIP5 and CMIP6 models. Summary and discussion are given in Section 6.




2 Data and methods

The monthly-mean outputs of the historical runs from 23 CMIP5 (Taylor et al., 2012) and 25 CMIP6 models (Eyring et al., 2016) were used in this study. Tables 1, 2 show the model names, modeling holders, used ocean model names, horizontal resolutions, and number of vertical levels in each of the CMIP5 and CMIP6 models (see also http://www-pcmdi.llnl.gov). Since some models contain multiple realizations in their historical runs, we only analyzed the first realization member (r1i1p1 for CMIP5 and r1i1p1f1 for CMIP6) run of each model, with the exception of the HadGEM3-GC31-LL (r1i1p1f3) and UKESM1-0-LL (r1i1p1f2) models in CMIP6. The monthly-mean three-dimensional ocean currents, ocean potential temperature, SST, and atmospheric winds for the period of 1970–2005 and 1979–2014 were extracted from the historical runs of the CMIP5 and CMIP6 models, respectively.


Table 1 | Basic information of the 23 CMIP5 coupled models used in this study.




Table 2 | Basic information of the 25 CMIP6 coupled models used in this study.



For comparison, we also used the observational and reanalysis datasets (for simplicity, both referred to as observations). Specifically, the monthly-mean ocean currents and ocean potential temperature were obtained from the Simple Ocean Data Assimilation (SODA version 3.4.2; Carton and Giese, 2008) reanalysis products, with a horizontal resolution of 0.5°×0.5° and 50 vertical levels. To validate the results from the SODA3.4.2, the zonal current data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis System 4 (ORAS4; Balmaseda et al., 2013) and the Global Ocean Data Assimilation System (GODAS; Behringer and Xue, 2004) were utilized. The monthly SST data used in this study were extracted from the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST version 1.1; Rayner et al., 2003) analysis dataset with a horizontal resolution of 1°×1°. The observed monthly atmospheric variables were taken from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis with a horizontal resolution of 2.5°×2.5° and 17 standard isobaric surfaces (Kalnay et al., 1996). The analysis period of the above observed datasets covers the year 1982–2017.

All the model outputs and observational data were first interpolated onto a uniform spatial grid of 1°×1° horizontal resolution using bilinear interpolation before analysis. The Taylor diagram (Taylor, 2001) was applied to investigate the simulation performance among the CMIP models, which is an advanced method to express the skill level of models by representing the correlation coefficient, standard deviation, and root-mean-square difference between the models and reference datasets (Lee et al., 2013). The multi-model ensemble-mean (MME) was calculated as the simple average of the results from all the selected models. The MME bias was defined as the difference between the results from the ensemble-mean of the CMIP models and the observations. We also used the intermodel consistency to evaluate the robustness of the MME bias. For the intermodel consistency to attain the 95% significance test, >70% of the models need to produce the same change in the bias sign for a particular variable based on a binomial distribution (Power et al., 2013; Xu et al., 2017). All the statistical significance tests of the differences were carried out using a two-tailed Student’s t-test.




3 Winter–spring Indian Ocean EUC biases in the CMIP5 and CMIP6 models

The EUC in the Indian Ocean, which exhibits significant semiannual variability, occurs regularly in the winter–spring across the entire EIO basin and primarily occupies the western EIO in the summer–fall (Iskandar and McPhaden, 2011; Chen et al., 2015; Chen et al., 2019). To evaluate the performance of the CMIP5 and CMIP6 models in simulating the Indian Ocean EUC, Figure 1 gives the climatological area-averaged zonal currents over the central EIO (2° S–2° N, 60–90° E) in the observations, the CMIP5 MME, and the CMIP6 MME. In observations, the subsurface zonal current captures a transient phenomenon of the typical Indian Ocean EUC, with the eastward undercurrent appearing during FMA and ASO. Note that the EUC is generally confined between 60 and 150 m depth in the upper Indian Ocean and its associated core depth is near the 20°C isotherm depth (D20) within the thermocline (Figure 1A). As a result of the downward propagation of equatorial wave energy (Reppin et al., 1999; Chen et al., 2015), the surface eastward Wyrtki jet emerges as the EUC weakens and disappears, characterized by a clear upward phase propagation (Figure 1A).




Figure 1 | Time–depth cross-section of the climatological zonal currents (units: m/s) averaged over the central EIO (60°–90° E, 2° S–2° N) in the (A) observations, (B) the MME of 23 CMIP5 models, and (C) the MME of 25 CMIP6 models.



Although the two generations of models roughly reproduce the spatial pattern and phase-locking of the Indian Ocean EUC, there still exist some biases in the strength of the EUC, with a significantly weaker winter–spring EUC and a slightly stronger summer–fall EUC in the CMIP models relative to the observations (Figures 1B, C), suggesting that the biases in the EUC strength simulated by the CMIP models are more significant in winter–spring. In addition to the intensity bias, the winter–spring EUC in the CMIP5 and CMIP6 models is at a shallower depth than the observations, which might be associated with the strength of the surface easterly winds simulated by the CMIP models. These biases in the winter–spring Indian Ocean EUC are slightly improved in the CMIP6 MME compared with the CMIP5 MME, but are still significant. The other ocean reanalysis products (i.e., ORAS4 and GODAS) are also able to reproduce the reasonable subsurface zonal currents in the EIO with reference to the SODA3.4.2 data, indicating that the underestimated winter–spring EUC biases are robust in both the CMIP5 and CMIP6 models.

Figure 2 shows the horizontal distributions of the FMA mean Indian Ocean EUC in the observations and its associated biases in the CMIP5 and CMIP6 models. The EUC core depth averaged from 60 to 150 m shows that the winter–spring EUC is characterized by a remarkable eastward zonal current with a maximum velocity of +0.35 m/s (Figure 2A), which can extend to the eastern EIO. However, a significant westward subsurface current bias in the EIO is clearly seen in both the CMIP5 and CMIP6 MMEs (Figures 2B, C). For the CMIP5 models, such reduced EUC signals with the intermodel consistency >70% are positioned in the central-eastern EIO around 2° S–2° N, 50–95° E (Figure 2B), suggesting that these biases in the underestimated winter–spring EUC in the CMIP5 models are robust. There is still a reduced winter–spring EUC in the CMIP6 MME, but the simulation skill with respect to the EUC pattern is improved in the CMIP6 models relative to that in the CMIP5 models as a result of a relatively weaker westward subsurface current bias (Figure 2C). Notable differences in the EIO subsurface zonal current between the CMIP6 and CMIP5 models (Figure 2D) also confirm that the simulated winter–spring EUC in the CMIP6 models is much closer to the observations, highlighting an overall improvement in the Indian Ocean EUC from the CMIP5 to CMIP6 models.




Figure 2 | (A) FMA mean observed subsurface (averaged from 60 to 150 m) zonal current (units: m/s) over the EIO from the SODA 3.4.2 dataset. The black box denotes the domain of the Indian Ocean EUC (2° S–2° N, 50–95° E). The MME biases of the EIO subsurface zonal currents in the (B) CMIP5 and (C) CMIP6 models, the gray dots denote locations over which >70% of models agree on the same sign of subsurface zonal current bias. (D) Difference in the EIO subsurface zonal current between the CMIP6 and CMIP5 models; the gray dots indicate signals that are statistically significant at the 90% confidence level.



To delineate the performance of the CMIP5 and CMIP6 models in capturing the winter–spring EUC, the Taylor diagram in Figure 3 shows a statistical comparison with the observations for the FMA mean subsurface zonal current over the TIO (5° S–5° N, 40–100° E). It is clear that the spatial correlations between the simulations and observations are greater than +0.60, indicating that the CMIP models are able to simulate the FMA mean EUC well. Their MMEs are better than almost all the individual models in simulating the winter–spring EUC climatology. Despite the fact that the correlation coefficient (+0.88) between the CMIP6 MME and the observations is almost identical to that (+0.82) for the CMIP5 MME, it is clear that the correlation coefficients in most of the CMIP6 models are higher than those in the CMIP5 models, suggesting that there is an improvement in the CMIP6 models in the simulated winter–spring Indian Ocean EUC pattern. However, the spatial standard deviations of the simulated EUC are still smaller in most of the CMIP models compared with the observations, indicating that there is a significant strength bias in the Indian Ocean EUC in the CMIP5 and CMIP6 models despite the overall good performance of the CMIP models in simulating the winter–spring Indian Ocean EUC pattern. Twenty of the 23 CMIP5 models (87%) and 18 of the 25 (72%) CMIP6 models significantly underestimate the magnitudes of the winter–spring EUC relative to the observations, implying that the winter–spring EUC is slightly better simulated in the CMIP6 models. This is because some of the CMIP6 models capture the large amplitude of the Indian Ocean EUC. These results suggest that most of the CMIP models show a weak winter–spring EUC in the Indian Ocean and that the simulated EUC pattern in the CMIP6 MME is much closer to the observations than that in the CMIP5 MME. The strength biases in the CMIP6 models are significantly reduced relative to the CMIP5 models.




Figure 3 | Taylor diagram of the simulated FMA mean Indian Ocean EUC from the CMIP5 and CMIP6 models compared with the corresponding observations. Colored markers indicate the results for the MME and individual models. The radius is the spatial standardized deviations normalized by the reference observations. The solid circles represent the root-mean-square difference relative to the reference value. The angular coordinates shown by dotted lines denote spatial correlations of +0.6 and +0.9.






4 Origins of the model biases in the winter–spring Indian Ocean EUC

Previous studies have shown that the surface easterly winds over the EIO pile up more surface waters toward the western boundary, which causes the equatorial thermocline to deepen in the western Indian Ocean and to shoal in the eastern Indian Ocean, eventually driving the EUC eastward (Chen et al., 2015; Phillips et al., 2021). To investigate the impact of the thermocline tilt in the EIO on the EUC, we examined the depth–longitude cross-section of the FMA mean equatorial ocean temperature in the observations and the CMIP5 and CMIP6 MMEs (Figure 4).




Figure 4 | Depth–longitude cross-section of the FMA mean ocean temperature (shading; units: °C) along the EIO averaged between 2° S–2° N in the observations. The 20°C (28°C) isotherms in the observations, the CMIP5 MME, and the CMIP6 MME are marked by the black, green, and purple solid (dashed) curves, respectively.



During the winter–spring season, both the CMIP5 and CMIP6 MMEs show a flatter thermocline along the EIO relative to the observations, which might contribute to the relatively weaker EUC. Comparing the performance of the CMIP5 and CMIP6 models, we found that the simulated EIO thermocline is generally improved in the CMIP6 models, with a shallower thermocline depth. Despite the fact that there is still a flatter thermocline, the vertical structure of the ocean temperature in the CMIP6 models closely resembles the pattern in the observations, implying that the improvement in the strength of the Indian Ocean EUC in the CMIP6 models can be traced back to the improvement in the simulated thermocline.

To further investigate the lead–lag relationship between the surface winds and the EUC, Figure 5 shows the time–longitude cross-section of the 925-hPa zonal wind and subsurface zonal current over the EIO from the previous December to May for the observations and their associated biases in the CMIP5 and CMIP6 models. In the observations, the climatological easterly winds prevail over the western and central EIO from January to March (Figure 5A). As a response to these easterly winds in winter, the eastward basin-scale EUC usually appears along the equator with a one-month delay (Figure 5A), indicating that the winter–spring EUC might be effectively controlled by the easterly winds over the EIO in the preceding winter. Compared with observations, the surface easterly winds in the CMIP5 models show decreased magnitudes over the western and central EIO during winter, which is characterized by the surface westerly wind biases from January to March (Figure 5B). The >70% intermodel consistency over the western and central EIO indicates that the underestimated easterly winds in winter are robust among the CMIP5 models, leading to a reduced and shallower EUC in the Indian Ocean (Figure 5B).




Figure 5 | (A) Time–longitude cross-section of the climatological zonal wind at 925-hPa (contours; units: m/s) and subsurface (averaged from 60 to 150 m) zonal current (shading; units: m/s) over the EIO (averaged between 2° S and 2° N) from the previous December to May from the SODA 3.4.2 dataset. The MME biases of the EIO zonal winds and subsurface zonal currents in the (B) CMIP5 and (C) CMIP6 models, the gray crosses denote locations over which >70% of models agree on the same sign of zonal wind bias. (D) Difference in the EIO zonal winds and subsurface zonal currents between the CMIP6 and CMIP5 models; the gray crosses indicate signals that are statistically significant at the 90%  confidence level.



Although there still exist excessively weak amplitudes of the easterly winds and EUC in the CMIP6 models, these biases are relatively smaller than those in the CMIP5 models (Figure 5C). The differences in the zonal winds and subsurface zonal flows between the CMIP6 and CMIP5 models show a reverse spatial pattern to that in the CMIP5 models (Figure 5D), showing the improvement of the CMIP6 MME over the CMIP5 MME in simulating the winter–spring Indian Ocean EUC. Both the poorer MME performance and the higher intermodel consistency in the CMIP5 models indicate that the EUC strength is more consistently underestimated in the CMIP5 models than in the CMIP6 models (Figure 5). There is therefore an overall improvement in the simulated Indian Ocean EUC in the CMIP6 models. These results also imply that the significantly reduced Indian Ocean EUC can be traced back to the excessively weak amplitude of the equatorial easterly winds simulated in most CGCM models.




5 Improvements in simulating the winter–spring EUC in the CMIP6 models



5.1 Role of the wind-induced thermocline tilt in the Indian Ocean EUC

The intermodel statistics also support the hypothesis that the winter–spring EUC strength biases in the CMIP5 and CMIP6 models are induced by biases in the equatorial easterly winds in January–February–March (JFM). Figure 6 shows that the JFM 925-hPa zonal wind is significantly correlated with the simulated west-minus-east D20 tilt in FMA, with an intermodel correlation coefficient among all the CMIP models of –0.51 (Figure 6A), indicating that a stronger easterly wind would develop a greater thermocline tilt in the following month, with deepening in the western EIO and shallowing in the eastern EIO. This stronger basin-scale zonally tilted thermocline further causes a larger eastward subsurface zonal pressure gradient in the EIO, leading to a stronger EUC (Figure 6B). This is supported by the significant intermodel correlation of +0.41 between the FMA mean D20 tilt and the amplitude of the EUC. Compared with the observations, the CMIP5 and CMIP6 MMEs show weak easterly winds and thermocline tilts, which contribute to the underestimation of the strength of the EUC. It is also found that the associated wind-induced thermocline tilt processes simulated in the CMIP6 models are more significant and stronger than those in the CMIP5 models as a result of the remarkably improved correlation coefficients in CMIP6 models (Figure 6). The intermodel relationships of the corresponding biases (not shown) are consistent with the results of this process (see Figure 6), suggesting that the commonly underestimated winter–spring Indian Ocean EUC among the CMIP models can be attributed to the weakened lower level easterly winds over the EIO and that the simulation skills of the Indian Ocean EUC have been improved in most CMIP6 models relative to the CMIP5 models.




Figure 6 | Scatterplots of (A) the JFM mean 925-hPa zonal wind averaged over the region (2° S–2° N, 50–80° E) versus the FMA mean D20 tilt (2° S–2° N, 50–70° E minus 70–90° E), and (B) the FMA mean equatorial D20 tilt vs the FMA EUC in CMIP5 and CMIP6 models. The black, blue, and red solid lines denote the best-fit line for all the CMIP models, the CMIP5 models, and the CMIP6 models, respectively, based on linear regression. The intermodel correlation coefficients for all the CMIP models (black font), the CMIP5 models (blue font), and the CMIP6 models (red font) are shown underneath each panel.



To quantitatively illustrate the capacities of capturing the intensity of the winter–spring EUC in the CMIP models, Figure 7 shows the area-averaged subsurface (averaged from 60 to 150 m) zonal current biases over the region (2° S–2° N, 50–95° E) in the individual models. Even though the strength of the simulated Indian Ocean EUC bias varies across the models, the majority of the models simulate a pronounced weak EUC with a negative bias, indicating an underestimated winter–spring EUC in the CMIP models. Negative EUC intensity biases are found in almost all the CMIP5 models (except for ACCESS1-0, NorESM1-M, and NorESM1-ME), which contribute to an overly weak EUC in the CMIP5 MME (Figure 7A). By contrast, the CMIP6 models show no clear consensus, with negative biases in 14 models and positive biases in 11 models. They therefore cause a smaller negative bias in the strength of the Indian Ocean EUC in the CMIP6 MME (Figure 7B). This result suggests that the CMIP6 models have a higher skill in simulating a more realistic intensity of the Indian Ocean EUC than the CMIP5 models.




Figure 7 | JFM mean EUC biases (units: m/s) averaged over the region (2° S–2° N, 50–95° E) among the (A) CMIP5 and (B) CMIP6 models. The first bar and its corresponding error bar indicate the MME bias and the standard deviation spread among the CMIP5 and CMIP6 models, respectively. The gray shading on the left and right of (B) indicate the four weak EUC models (WEUC group) and the four strong EUC models (SEUC group), respectively.



Based on the winter–spring EUC intensity bias index in the CMIP6 models, we selected four models (CMCC-CM2-HR4, MRI-ESM2-0, CESM2, and CESM2-WACCM-FV2) that simulated a strong intensity for the Indian Ocean EUC (the SEUC group) and four models (ACCESS-CM2, UKESM1-0-LL, HadGEM3-GC31-LL, and FIO-ESM3) that simulated a weak intensity of the Indian Ocean EUC (the WEUC group). We used these two groups to explore the physical processes responsible for the improvement among the CMIP6 models. Figure 8 shows the composite biases of the JFM 925-hPa zonal wind and the FMA subsurface zonal current for the SEUC and WEUC groups and their differences. The models in the SEUC group show a noticeably enhanced EUC over the western and central EIO during FMA as a response to the easterly wind bias over the entire EIO in the preceding JFM (Figure 8A). By contrast, the models in the WEUC group simulate the reduced winter–spring EUC over the EIO, corresponding to the robust underestimated easterly wind in the previous JFM (Figure 8B). These biases of the westerly wind and EUC over the EIO in the WEUC group are greater than those in the CMIP5 models (see Figure 2B and Figure 5B). The differences between the SEUC and WEUC groups are also characterized by the significant surface easterly wind biases in JFM and the eastward subsurface zonal current biases over the EIO in FMA (Figure 8C). These results suggest that the strength of simulated EUC might be closely related to the lower level easterly winds in the preceding season among the current CGCMs.




Figure 8 | Differences of the JFM mean 925-hPa zonal wind biases (contours; units: m/s) and FMA mean subsurface (averaged from 60 to 150 m) zonal current biases (shading; units: m/s) over the EIO between (A) the SEUC group and (B) the WEUC group and the observations. (C) Same as (A), but for the differences between the SEUC and WEUC groups. Gray crosses indicate the signals that are statistically significant at the 90% confidence level.



After inspecting the connection between the EUC and surface easterly winds over the EIO, we quantitatively assessed the wind-induced thermocline tilt processes in the CMIP models. Figure 9 shows the area-averaged zonal surface wind bias in JFM and the west-minus-east D20 tilt bias indices in FMA for the CMIP5 models and the models in SEUC and WEUC groups. For the models in the SEUC group, a pronounced JFM mean easterly wind bias (Figure 9A) leads to a deep west–shallow east thermocline tilt bias (i.e., a positive west-minus-east mean zonal D20 tilt bias, Figure 9B), which contributes to an overestimation of the winter–spring Indian Ocean EUC via the wind-induced thermocline processes. However, the models in the CMIP5 MME and WEUC group simulate a mean surface westerly wind bias (Figure 9A) and a shallow west–deep east (i.e., a negative west-minus-east mean) D20 tilt bias (Figure 9B) over the EIO in JFM, ultimately resulting in an underestimation of the winter–spring EUC. Note that the biases in the westerly winds and the zonal thermocline tilt in the WEUC group are stronger than those in the CMIP5 MME, which is consistent with a more serious underestimation of the Indian Ocean EUC in the WEUC group. Comparisons of the wind-induced thermocline tilt processes simulated in the CMIP5, SEUC, and WEUC groups also confirm that the lower level easterly wind bias in winter dominates the variability of the winter–spring Indian Ocean EUC among the models.




Figure 9 | Histograms of the (A) JFM mean 925-hPa zonal wind biases (units: m/s) averaged for 2° S–2° N, 50–80° E and (B) FMA mean D20 tilt (2° S–2° N, 50–70° E minus 70–90° E) biases in the MME of the CMIP5 models (yellow bars), the SEUC group (red bars), and the WEUC group (blue bars). The error bars indicate the standard deviation spread among the models.






5.2 Effect of the excessive cold tongue bias in the equatorial Pacific

Our findings show that the lower level westerly wind bias over the EIO in winter is the source of the underestimation of the strength of the winter–spring Indian Ocean EUC in the CMIP models. It is still not clear, however, which physical processes are dominant in the lower level zonal wind biases over the EIO in winter in CGCMs. Previous studies have shown that a strong and westward-extended cold tongue in the equatorial Pacific might significantly affect the air–sea coupling processes over the tropical Indo-Pacific Ocean simulated in the CGCMs (Li et al., 2016a; Jiang et al., 2018; Li et al., 2019; Wang et al., 2019; Ying et al., 2019; Jiang et al., 2021; Li et al., 2021; Jiang et al., 2022).

To further unveil the possible role of the excessive cold tongue bias on the performance of the models in simulating surface easterly winds over the EIO and the associated EUC, Figure 10 compares the JFM climatological equatorial Pacific SST from the observations, the CMIP5 models, and the models in the SEUC and WEUC groups. It can be clearly seen that the models in both the CMIP5 MME and WEUC group give a cooler mean Pacific SST than the observations, with WEUC group models having a more serve cold tongue bias and a more westward extension. However, the SEUC group realistically reproduces the observed equatorial Pacific SST, despite the fact that it is slightly higher to the west of 130° W.




Figure 10 | JFM mean SST (units: °C) averaged over the equatorial Pacific (2° S–2° N) from the observations (black curve), the MME of the CMIP5 models (brown curve), the composite of the SEUC group (red curve) and the WEUC group (blue curve). Light brown, red, and blue shading indicate the standard deviations among the models, respectively. The histograms at the lower left represent the cold tongue bias averaged over the region (2° S–2° N, 175° E–90° W) in the MME of the CMIP5 models (light brown bar), the composite of the SEUC group (red bar), and the WEUC group (blue bar). The error bars indicate the standard deviation spread among the corresponding models.



We also calculated the cold tongue bias index averaged over the region (2° S–2° N, 175° E–90° W) to distinguish the differences in the cold tongue bias simulated in the CMIP5 models and the models in the SEUC and WEUC groups (Figure 10, histogram). Excessively strong cold tongue biases in the equatorial Pacific are found both in the CMIP5 models and the models in the WEUC group, whereas the models in the SEUC group show warm cold tongue biases, implying that the cold tongue biases in the CGCMs would significantly affect the simulated strength of the EUC in the Indian Ocean. The CMIP5 models show a common bias of a strong cold tongue in the mean state, but the CMIP6 models show no consensus, with an overly warming cold tongue bias for the SEUC group and a cooling cold tongue bias for the WEUC group. This implies an overall improvement in the simulated cold tongue in the CMIP6 MME, ultimately improving the simulations of the surface winds and its induced-EUC over the EIO.

The spatially inhomogeneous SST across the tropical Pacific basin (i.e., the zonal SST gradient) is the key to the variability of the Walker circulation (Deser et al., 2010; Meng et al., 2012; Tokinaga et al., 2012; Sohn et al., 2013; McGregor et al., 2014). Figure 11 depicts the JFM mean Walker circulation for the observations, the CMIP5 models, and the models in the SEUC and WEUC groups and their differences. The climatological patterns of the Walker circulation from the CMIP5 MME and the two EUC groups show a double-cell pattern with an ascending branch over the Indo-Pacific warm pool flanked by descending branches over the eastern equatorial Pacific and the western EIO. These results resemble the observations, albeit with different magnitudes (Figures 11A–D). The ascending and descending branches associated with the Walker circulation from the CMIP5 models and WEUC group are shifted westward relative to the observations (Figures 11B, D), corresponding to the excessively strong equatorial Pacific cold tongue biases (Figure 10).




Figure 11 | JFM mean zonal wind and pressure velocity (vectors; m/s for zonal wind and −10−2 Pa/s for pressure velocity) averaged over the equatorial Pacific (2° S–2° N) based on (A) the observations, (B) the MME of the CMIP5 models, (C) the composite of SEUC group, (D) the composite of the WEUC group, (E) the differences between the CMIP5 models and the observations, and (F) the differences between the SEUC and WEUC groups. Shading denotes the pressure velocity (multiplied by a factor of −100 for clarity). Gray dots in (E) indicate the locations over which >70% of models agree on the same sign of the pressure velocity biases. Gray dots in (F) denote the signals above the 90% significance level.



The difference between the CMIP5 MME and the observations has a similar double-cell pattern to that found in the CMIP5 MME (Figure 11E), indicating that the Walker circulation simulated in the CMIP5 models is strengthened relative to the observations, in accordance with the significant lower level westerly (easterly) wind bias over the central EIO (equatorial Pacific), finally leading to the excessively weak Indian Ocean EUC in the CMIP5 models. In addition, the difference in the overturning circulation between the models in the SEUC and WEUC groups shows a reverse double-cell pattern to that found in the models in the SEUC group (Figure 11F), implying a slowdown of the winter-mean Walker circulation. The lower level easterly bias in the EIO associated with the weakened Walker circulation results in an enhancement of the winter–spring EUC in the models in the SEUC group.

The commonly underestimated strength of the winter–spring Indian Ocean EUC among the CMIP models can therefore be traced back to the strong and westward-extended cold tongue bias in the equatorial Pacific. This excessive cold tongue bias could give rise to a strong equatorial SST gradient in the Pacific, which, in turn, could accelerate the Walker circulation and lead to the lower level westerly wind bias over the EIO. This enhanced equatorial westerly bias could induce a shallow west–deep east thermocline tilt bias (Figure 9B), contributing to an underestimation of the EUC in the Indian Ocean. Although the negative winter–spring strength bias of the EUC still exists in the CMIP6 MME, the simulated EUC strength in the CMIP6 MME is much closer to the observations than that in the CMIP5 MME (Figures 2, 5) and the bias in the CMIP6 MME is significantly reduced relative to the CMIP5 models. Similarly, the improvement in the simulated cold tongue can be clearly seen in the CMIP6 models relative to the CMIP5 models (Figure 10), which further confirms the importance of the simulated strong cold tongue bias in the underestimated variability of the Indian Ocean EUC in the CGCMs. The improvement in the CMIP6 MME in the simulation of the Indian Ocean EUC can be traced back to the improvement in the degree of the strong and westward-extended cold tongue bias.





6 Summary and discussion

We evaluated the winter–spring EUC over the Indian Ocean based on 23 CMIP5 and 25 CMIP6 models. These state-of-the-art-models reasonably capture the winter–spring patterns of the EUC in the Indian Ocean, but most of them underestimate the strength of the EUC in the Indian Ocean and show a robust intermodel consistency. However, compared with the CMIP5 MME, the simulation skill of the winter–spring EUC is improved in the CMIP6 MME, with a more realistic EUC amplitude. Our results also show that this commonly underestimated winter–spring Indian Ocean EUC is primarily dominated by the excessive EIO westerly wind biases in the preceding winter among the CMIP5 and CMIP6 models. Specifically, the CMIP models with a weaker lower level easterly wind over the EIO in winter tend to simulate an underestimated strength of the EUC in the Indian Ocean in winter–spring through modulating the wind-induced thermocline tilt processes.

Further inspection showed that the commonly underestimated strength of the EUC in the Indian Ocean in winter–spring is closely linked to another long-standing system bias: the excessively strong and westward extended cold tongue in the equatorial Pacific (Li and Xie, 2014; Ying et al., 2019). Figure 12 summarizes the physical processes of the Indian Ocean winter–spring EUC bias in the CMIP models driven by the excessive cold tongue bias. For the CMIP models, a stronger cold tongue in the equatorial Pacific in winter favors a stronger zonal SST gradient, which, in turn, forces strong easterly winds over the western equatorial Pacific. This contributes to an enhanced Walker circulation, which can give rise to a lower level westerly wind bias over the EIO and drive a shallow west–deep east thermocline tilt bias. This ultimately leads to a weaker Indian Ocean EUC in the subsequent winter–spring through wind-induced thermocline tilt processes (Iskandar et al., 2009; Chen et al., 2015; Phillips et al., 2021). Comparisons of the performances of the CMIP5 and CMIP6 models suggested that the improvement in the strength of the Indian Ocean EUC in winter–spring in the CMIP6 models can be attributed to the improvement in the degree of bias in the strong and westward-extended cold tongue. We also examined the simulated SST–wind coupling relationship in winter in the CMIP models in the EIO, which may exert an influence on the winter–spring EUC, and found that the west-minus-east SST gradient along the EIO shows negative biases in the CMIP models which correspond to the surface westerly biases in the EIO, contributing to the overly underestimated EUC in winter–spring (not shown). Additionally, the surface westerly biases in JFM are also associated with the excessive cold tongue biases in the equatorial Pacific through enhancing the Walker circulation, consistent with our results in this study.




Figure 12 | Schematic diagram illustrating the origin and physical processes of the Indian Ocean winter–spring EUC bias in the CMIP models. Light blue shading represents the cold SST bias; the green vectors and thick black arrows denote the biases in the simulated surface zonal winds and the related Walker circulation in the CMIP models, respectively. The red arrow and orange curve indicate the simulated EUC bias and thermocline tilt bias, respectively.



This study assessed the abilities of the CMIP5 and CMIP6 models to simulate the winter–spring Indian Ocean EUC. Our results emphasize the importance of a realistic simulation of the cold tongue in the equatorial Pacific in improving the simulation of the winter–spring Indian Ocean EUC in CGCM models. This result also provides useful information for studying air–sea connections between the Indian and Pacific Oceans and indicates that more attention should be paid to understanding and improving the simulation of the mean-state equatorial Pacific SST in the CMIP models. Although previous studies have found that the excessively strong cold tongue biases could remarkably affect the simulation of the ENSO-related teleconnections and other climate modes in the CMIP models (Gong et al., 2015; Li et al., 2019; Wang et al., 2019), there is no consensus on the origin of the excessive cold tongue bias (Guilyardi et al., 2009; Zhang and Song, 2010; Li and Xie, 2014; Bayr et al., 2019). Previous studies have shown that the excessive cold tongue bias might be linked to various physical process biases in CGCMs, including the convection scheme (Zhang and Song, 2010), underestimated negative shortwave–SST feedback (Bayr et al., 2019), excessively strong upper ocean heat advection (Zheng et al., 2012), and a very shallow thermocline depth in the equatorial eastern Pacific (Li and Xie, 2012). More effort should therefore be made to reduce these biases in physical processes in the next generation of CGCMs to improve the simulation of the Indian Ocean EUC.

In addition to the underestimation of the winter–spring EUC, two generations of the CMIP models also overestimate the mean EUC bias in ASO (Figure 1). We found that the IOD-like biases show remarkable seasonal differences, with positive biases in June–July–August and September–October–November and negative biases in JFM (not shown). We infer that these positive IOD-like biases over the TIO might lead to a significantly overestimated summer–fall EUC. In addition, we only focused on the effect of the excessively strong cold tongue bias in the equatorial Pacific on the underestimation of the intensity of the EUC in winter–spring in the CMIP models. However, the other air–sea interactions and equatorial wave dynamics over the TIO also play important roles in the variability of the Indian Ocean EUC (Iskandar et al., 2009; Nyadjro and McPhaden, 2014; Chen et al., 2015). The CMIP models also have long-lasting biases in simulating atmospheric and oceanic circulations over the TIO (Cai and Cowan, 2013; Li et al., 2016b). The relative contributions of multiple air–sea processes and the mean-state climate biases to changes in the Indian Ocean EUC in the CGCM models therefore require further quantitative assessment.
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Accurately estimating the ocean’s subsurface thermohaline structure is essential for advancing our understanding of regional and global ocean dynamics. In this study, we propose a novel neural network model based on Convolutional Block Attention Module-Convolutional Neural Network (CBAM-CNN) to simultaneously estimate the ocean subsurface thermal structure (OSTS) and ocean subsurface salinity structure (OSSS) in the tropical Indian Ocean using satellite observations. The input variables include sea surface temperature (SST), sea surface salinity (SSS), sea surface height anomaly (SSHA), eastward component of sea surface wind (ESSW), northward component of sea surface wind (NSSW), longitude (LON), and latitude (LAT). We train and validate the model using Argo data, and compare its accuracy with that of the original Convolutional Neural Network (CNN) model using root mean square error (RMSE), normalized root mean square error (NRMSE), and determination coefficient (R²). Our results show that the CBAM-CNN model outperforms the CNN model, exhibiting superior performance in estimating thermohaline structures in the tropical Indian Ocean. Furthermore, we evaluate the model’s accuracy by comparing its estimated OSTS and OSSS at different depths with Argo-derived data, demonstrating that the model effectively captures most observed features using sea surface data. Additionally, the CBAM-CNN model demonstrates good seasonal applicability for OSTS and OSSS estimation. Our study highlights the benefits of using CBAM-CNN for estimating thermohaline structure and offers an efficient and effective method for estimating thermohaline structure in the tropical Indian Ocean.




Keywords: ocean thermohaline structure, satellite observations, machine learning, CNN, tropical Indian Ocean




1 Introduction

Ocean temperature and salinity are two of the most important parameters of seawater, playing an important role in regulating the transfer of heat (Johnson and Lyman, 2020), freshwater (Hall et al., 2008), and carbon (Smith et al., 2009) between the ocean and atmosphere (Watson et al., 2020). Changes in ocean temperature and salinity have significant impacts on ocean circulation, marine ecosystems, and the Earth’s climate system (Levitus et al., 2001; Sprintall et al., 2014). Accurately estimating the ocean subsurface thermal structure (OSTS) and ocean subsurface salinity structure (OSSS) is therefore important for understanding ocean dynamics, climate variability and predicting future climate scenarios. The tropical Indian Ocean is an important region for studying climate change as it has a significant impact on the regional and global climate (Luo et al., 2012; Cai et al., 2021). The ocean thermohaline structure in the tropical Indian Ocean exerts a significant influence on ocean circulation, climate variability and hydrological cycle by affecting the Earth’s energy budget, evaporation, and precipitation processes (Trenberth and Caron, 2001; Bao et al., 2019). Therefore, accurate estimation of the thermohaline structure in the tropical Indian Ocean is important for predicting the regional and global impacts of climate change on marine ecosystems, ocean circulation, and weather patterns (Schott et al., 2009; Ateweberhan and McClanahan, 2010).

The estimation of the OSTS and OSSS in the tropical Indian Ocean has traditionally relied on numerical simulation, data assimilation, and dynamical modeling techniques (Rao and Sivakumar, 2003; Liu et al., 2005; Rahaman et al., 2014; Yan et al., 2015). Although these traditional methods have achieved some successes, they are computationally intensive and require significant resources due to the complexity of the thermodynamic processes governed by a set of equations. Thus, an accurate and efficient approach to estimate OSTS and OSSS using acceptable computational resources is essential and remains an active research area.

Recent advances in remote sensing technology have brought about a revolution in ocean observations, providing continuous and widespread sampling of some sea surface parameters, such as sea surface salinity (SSS), sea surface height (SSH), and sea surface temperature (SST). Some earlier studies have demonstrated that many oceanic subsurface phenomena can be retrieved from surface manifestations using satellite observations, motivating exploration of the potential for estimating OSTS and OSSS from sea surface data (Khedouri et al., 1983; Fiedler, 1988; Ali et al., 2004; Klemas and Yan, 2014). Various approaches have been employed, such as statistical relationships (Khedouri et al., 1983; Yan et al., 2020), linear and geographically weighted regression models (Guinehut et al., 2012), empirical orthogonal functions (DeWitt, 1987; Maes and Behringer, 2000), and parametric models (Chu et al., 2000). For example, Maes and Behringer (2000) used the empirical orthogonal function (EOF) methodology to reconstruct subsurface salinity structure by utilizing sea level anomaly and SST data. Watts et al. (2001) utilized a gravest empirical mode (GEM) to reconstruct the temperature and salinity structures at various depths in the southern Australian region. This method has also been utilized in the Southern Ocean (Meijers et al., 2011). Guinehut et al. (2012) employed a linear regression model to reconstruct global temperature and salinity fields using sea surface data and in situ measurements with enhanced resolution. Despite their success, each method has its strengths and limitations. Therefore, researchers continue to explore new and innovative ways to retrieve the ocean interior structure using sea surface data.

Recently, the application of machine learning techniques in the ocean and atmosphere has received widespread attention, providing valuable insights to understand the intricate physical and dynamic processes between the ocean and the atmosphere (Reichstein et al., 2019). Among the various applications of machine learning, the estimation of the OSTS and OSSS has emerged as a prominent research area. In this regard, extensive efforts have been made to reconstruct ocean interior structures using machine learning techniques. For example, Ali et al. (2004) proposed a novel approach utilizing artificial neural networks (ANN) to reconstruct the temperature structure from sea surface data, including SSS, SST, net radiation, wind stress, and net heat flux. Wu et al. (2012) combined the self-organizing map neural network (SOM) algorithm with multiple satellite measurements to estimate subsurface temperature structure in the North Atlantic, showing that their model outperformed traditional methods and highlighting the potential of machine learning techniques in oceanography. Bao et al. (2019) proposed a generalized regression neural network with the fruit fly optimization algorithm (FOAGRNN) to reconstruct the three-dimensional salinity field in the Pacific Ocean via sea surface salinity data. Su et al. (2015; 2018a; 2018b, and 2021) successfully estimated OSTS using machine learning approaches such as support vector machine (SVM), Random Forest, light gradient boosting machine (LightGBM) and CNN. Meng et al. (2021) developed a CNN based deep neural network model to reconstruct the subsurface temperature anomalies and subsurface salinity anomalies in the Pacific Ocean and simultaneously enhance their resolution. Most recently, Pauthenet et al. (2022) presented a novel method for estimating the temperature and salinity structures in the Gulf Stream in combination with physical constraints.

While machine learning has emerged as a valuable tool for estimating ocean structure from sea surface data, pure machine learning models treat all input features equally, regardless of their relevance to the task at hand. This may result in the inclusion of irrelevant or noisy features, leading to a decrease in the model’s overall accuracy. Furthermore, these models may struggle to capture complex patterns or relationships in large or high-dimensional datasets. Recently, Li et al. (2022) demonstrated that the integration of various attention mechanisms into current deep learning-based ocean remote sensing models is a promising direction for the design and advancement of such models. Other studies have also incorporated the attention mechanism in their approach to ocean remote sensing processing. For example, Xie et al. (2022) utilized a combination of the U-net deep learning model and the attention mechanism to reconstruct a high-resolution subsurface temperature field in the South China Sea from satellite observations. The results revealed that the U-net model with the attention mechanism achieved superior performance compared to the pure U-net model, XGBoost machine learning model, and classical multiple linear regression model with the same inputs. In this study, we propose a novel model based on the Convolutional Block Attention Module-Convolutional Neural Network (CBAM-CNN) to estimate the OSTS and OSSS in the tropical Indian Ocean using satellite observations.

The rest of the study is organized as follows: Section 2 describes the data and methods, Section 3 presents the results, and Section 4 provides a summary and discussion.




2 Data and methods



2.1 Data

In this study, we use a range of sea surface data obtained from satellite observations to simultaneously estimate the OSTS and OSSS in the tropical Indian Ocean. Based on previous studies and analyses, we select SST, SSS, SSHA, and sea surface wind (SSW), which is separated into the eastward component sea surface wind (ESSW) and the northward component sea surface wind (NSSW), in combination with geographic information such as longitude (LON) and latitude (LAT), as independent input variables for the model (Qi et al., 2022). The SST data are obtained from the National Oceanic and Atmospheric Administration (NOAA), which combines AMSR, AVHRR, and in-situ observations with a spatial resolution of 1° latitude × 1° longitude (Reynolds et al., 2002). We also obtain SSS data from the Soil Moisture and Ocean Salinity (SMOS) Level-3 SSS product with a spatial resolution of 0.25° latitude × 0.25° longitude (Boutin et al., 2018), and SSHA data from the Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) data center with a spatial resolution of 0.25° latitude × 0.25° longitude (Hauser et al., 2020). Additionally, we utilize SSW data from the Cross-Calibrated Multi-Platform (CCMP) product, which has a high-resolution of 0.25° latitude × 0.25° longitude (Atlas et al., 2011). To train and evaluate the performance of the models, we also utilize the Roemmich-Gilson Argo Climatology (RG-Argo) gridded data, with a horizontal resolution of 1° × 1°, and covers the period from January 2004 to the present (Roemmich and Gilson, 2009).

To ensure consistency and accuracy in the model, we process all the data into monthly averages, and interpolate them onto a grid with a resolution of 1° latitude × 1° longitude, with the same temporal and spatial coverage of the tropical Indian Ocean (35°E–120°E and 30°S–30°N). Any data points with missing parameters within the tropical Indian Ocean are excluded. Additionally, to expedite model convergence during the training process, all remote sensing data and Argo measurements are normalized by utilizing the data’s mean and standard deviation before training. Table 1 provides a summary of the data used in this study.


Table 1 | Summary of data used in this study.






2.2 Methods

Recently, more and more deep learning models has used the attention mechanism, and it has also been an important development trend to add various attention mechanisms to deep learning models on ocean remote sensing (Li et al., 2022). In this study, we present an improved CNN model that incorporates the Convolutional Block Attention Module (CBAM) into the standard CNN architecture. The details of models used in this study are described in the following sections.



2.2.1 CNN and CBAM

CNN is a deep learning algorithm that has been extensively used in a variety of fields. In the geoscience community, CNN has gained widespread attention and has been successful in several applications (Ham et al., 2019; Meng et al., 2021). One of the key advantages of CNN is its ability to consider the spatial relationship between input data, making it particularly well-suited for geospatial data (Bolton and Zanna, 2019; Zheng et al., 2020). The ability of CNN to share weights also allows for efficient processing of high-dimensional data and automated feature extraction, making it a useful tool for estimating OSTS and OSSS accurately. However, the complex architecture of CNN can also lead to slow model parameter updates and difficulty in capturing the relationship between global and local information. A schematic of the CNN model used in this study is presented in Figure 1A.




Figure 1 | Structure of (A) CNN model and (B) CBAM module.



CBAM is a powerful attention mechanism that can enhance the performance of CNNs in computer vision tasks. It was developed by Woo et al. (2018), which consists of two modules, the Channel Attention Module (CAM) and the Spatial Attention Module (SAM) and can extract feature information from both the spatial and channel dimensions of the input data. As a lightweight architecture, CBAM can be seamlessly integrated into CNN-based models, making it an attractive option for improving the performance of deep learning models. In Figure 1B, the CBAM module is depicted, demonstrating its ability to enhance the performance of the CNN model.




2.2.2 CBAM-CNN

The CBAM-CNN model is an improved model of the CNN model, specifically designed to enhance the accuracy of estimating OSTS and OSSS from ocean surface parameters. By incorporating both the CAM and SAM, the CBAM-CNN model is capable of assigning weights to sea surface parameters along the channel and spatial dimensions, thus enabling it to focus its attention on key variables and informative features while excluding irrelevant factors. This attention mechanism significantly improves the model’s accuracy in estimating OSTS and OSSS and enhances its ability to generalize. The sequential utilization of CAM and SAM in the CBAM-CNN model allows for the efficient extraction of spatial and channel-wise feature information, leading to more accurate predictions. As shown in Figure 2, the CBAM-CNN model is composed of convolutional layers, a CBAM module, fully connected layers, an activation layer, and a global average pooling layer. The CBAM module is inserted after the convolutional and activation layers, and the Exponential Linear Unit (ELU) is used as the activation function, improving the model’s robustness and convergence speed by reducing the vanishing gradient effect (Clevert et al., 2015). To prevent overfitting, as well as exploding or vanishing gradients, we use Batch Normalization (BN) and Dropout algorithms after the convolutional and fully connected layers. We also employ the early stopping algorithm, which selects the best-performing model on the validation dataset, to prevent overfitting during training. Additionally, to optimize the training process, we include a global average pooling layer to reduce computational complexity.




Figure 2 | Flowchart of the CBAM-CNN model for estimating ocean subsurface thermohaline structure in the tropical Indian Ocean.



The CBAM-CNN model developed in this study consists of two primary steps for estimating the OSTS and OSSS in the tropical Indian Ocean. Firstly, we select the ocean surface parameters, including SST, SSS, SSHA, SSW, and geographic information (LON and LAT) as input data for the CBAM-CNN model, while the Argo data are used as training and testing labels. Secondly, we train and evaluate the model using the selected input and label data. Specifically, we input the training data from January 2010 through December 2019 into the CBAM-CNN model and randomly select 80% of the data for training and the remaining 20% for validation. Finally, we evaluate the performance of the CBAM-CNN model using data from 2020, based on the root mean square error (RMSE), normalized root mean square error (NRMSE), and determination coefficient (R²). Here, the RMSE is used as a metric to quantify the discrepancy between the predicted and observed values. It is calculated by taking the square root of the average of the squared differences between the predicted and observed values. The model’s performance is evaluated to determine its ability to accurately estimate OSTS and OSSS in the tropical Indian Ocean.

Optimizing the model parameters is a critical step in machine learning, as it directly impacts the performance of the models. In this study, we utilize the random search method to obtain the optimal combination of parameters for our models. The best combination of parameters for our models is presented in Table 2, which details the optimal values of hyperparameters for the CBAM-CNN model.


Table 2 | Optimal combination of parameters of CBAM-CNN and CNN.








3 Results



3.1 Validation of satellite-derived SST and SSS

To ensure accurate predictions of OSTS and OSSS in the tropical Indian Ocean, it is essential to evaluate the accuracy of input data to machine learning models. Previous studies have highlighted the importance of SST and SSS for OSTS and OSSS estimation (Ali et al., 2004; Pauthenet et al., 2022). Therefore, in this study, we compare them to Argo-observed data. Figure 3 presents a spatial comparison of long-term annual mean of satellite-derived data and Argo-observed data. The satellite-derived data’s spatial distribution is highly consistent with the Argo-observed data in terms of both overall pattern and main features. For example, both the Argo data and satellite-derived data show that a thermal ridge run along the equator up to 60°E and thereafter sloping southwestwards west of 60°E. The northern tropical Indian Ocean has higher SSTs than the southern tropical Indian Ocean. Argo data identifies a region of high SSTs in the southwest region of the Arabian Sea, and satellite-derived SST reproduces this feature. The SST discrepancies are mainly between -0.1 and 0.25°C (Figure 3C). Similarly, the SSS data from satellite and Argo observations display good consistency and similar spatial distribution features. They both indicate that the maximum SSS (>36 psu) occurs in the northern Arabian Sea, while the minimum (<33 psu) occurs in the Bay of Bengal. The SSS discrepancies are concentrated between -0.1 psu and 0.1 psu (Figure 3F). Although slight discrepancies exist, these comparisons confirm the accuracy of satellite remote sensing data and provide reliable support for further research.




Figure 3 | Long-term annual mean SST and SSS from Argo (left panel: A, D) and satellite observations (middle panel: B, E), as well as the differences between the two (right panel: C, F) in the tropical Indian Ocean from January 2010 to December 2020. Boxes (A–D) represent four boxes used in this study. Box A (64.5°E~76.5°E and 4.5°N~13.5°N), Box B (79.5°E~95.5°E and 7.5°N~23.5°N), Box C (87°E~105°E and 10°S~5°N), and Box D (40°E~55°E and 10°S~10°N).






3.2 Comparison of the CBAM-CNN model with CNN model

In this section, we compare the performance of the CBAM-CNN model and CNN model for estimating the OSTS and OSSS in the tropical Indian Ocean using data from 2020. Figure 4 illustrates the vertical distributions of RMSE and R2 for both models. The results indicate that the overall RMSE values for OSTS increase from the surface to a maximum value near 100 m depth, before decreasing with depth. Conversely, the overall R2 values show an opposite trend, decreasing from the surface to 100 m depth before gradually increasing and reaching their maximum around 1200 m before decreasing again. The same pattern is observed for OSSS, where the RMSE initially increase and then decrease, and the R2 first decrease and then rapidly increase before reaching its maximum around 1200 m and then gradually decreasing with depth. The results indicate that the accuracy of OSTS and OSSS estimation decreases at depths of approximately 100-150 m, possibly due to the presence of a thermocline layer, which makes it challenging to accurately estimate the OSTS and OSSS. In contrast, it is evident that the CBAM-CNN model outperforms the original CNN model, as demonstrated by the smaller RMSE and larger R2 values (as shown in Figure 4).




Figure 4 | Comparison of the CBAM-CNN model (black line) with CNN model (blue line) for OSTS and OSSS estimation at different depths based on (A, C) RMSE (°C) and (B, D) R2 in 2020.



To further compare the performance of the CBAM-CNN model and CNN model for estimating OSTS and SSS, we analyze the vertical averaged RMSE of the estimated temperature and salinity profiles in the tropical Indian Ocean. Figure 5 displays the spatial distribution of RMSE, and reveals that the CBAM-CNN model outperforms the CNN model. For example, in the southern tropical Indian Ocean (south of 15°S) and in the southeastern Arabian Sea, the RMSE of OSTS estimated by the CBAM-CNN model is significantly lower than that of the CNN model (Figures 5A, B). Likewise, the RMSE of OSSS estimated by the CBAM-CNN model is generally lower than that of the CNN model across most regions. For example, in the northern Bay of Bengal, the CBAM-CNN model demonstrates superior performance compared to the CNN model, as evidenced by the RMSE of OSSS estimates (Figures 5C, D). This superiority of the CBAM-CNN model can be attributed to its enhanced ability to capture spatial attention and represent complex oceanographic processes. Overall, these results demonstrate the CBAM-CNN model’s capabilities in accurately estimating OSTS and OSSS in the tropical Indian Ocean.




Figure 5 | Spatial distribution of vertical averaged temperature and salinity RMSE in 2020: (A) CNN and (B) CBAM-CNN models for OSTS, (C) CNN and (D) CBAM-CNN models for OSSS.






3.3 Evaluation of the CBAM-CNN model

In this section, we conduct a comprehensive evaluation of the performance of the CBAM-CNN model from multiple perspectives. The annual average OSTS and OSSS estimated by the CBAM-CNN model at six different depths (50 m, 100 m, 500 m, 1000 m, 1500 m, and 1900 m) in 2020 are shown in Figures 6, 7. The differences between the Argo data and the CBAM-CNN estimated data (the difference between Argo and CBAM-CNN model data) are used to evaluate the performance of the CBAM-CNN model. Figure 6 shows the spatial distribution of the CBAM-CNN estimated OSTS and demonstrates a high level of agreement with the Argo-derived OSTS at different depths. The CBAM-CNN model accurately captures prominent temperature features using sea surface data in the tropical Indian Ocean. At 50 m depth, both the CBAM-CNN model and Argo data reveal a higher temperature in the northern tropical Indian Ocean than in the southern region, with the highest temperature observed in the equatorial eastern Indian Ocean. The temperature gradually decreases from the equator towards the south, and a prominent temperature front appears near 20°S. The temperature differences in most regions range from -0.5°C to 0.5°C (Figure 6C). The CBAM-CNN model also demonstrates good agreement with Argo observations for OSTS estimation at a depth of 100 m. However, the differences at this depth are slightly larger than those at 50 m, ranging from −0.6°C to 0.6°C. Notably, relatively large differences are observed in the region between the equator and 10°S, which may be attributed to the presence of the thermocline layer and the impact of upwelling. As the depth increases, the temperature becomes more stable, and the differences between the temperature values derived from Argo data and the CBAM-CNN model estimation below 500 m are relatively small, ranging from -0.1°C to 0.1°C. Overall, these results demonstrate the high accuracy of the CBAM-CNN model in estimating OSTS in the tropical Indian Ocean.




Figure 6 | Annual average OSTS from Argo observation (left panel) and CBAM-CNN estimation (middle panel) and their differences (Argo minus CBAM-CNN, right panel) at different depths (50 m, 100 m, 500 m, 1000 m, 1500 m, 1900 m) in 2020.






Figure 7 | Same as Figure 6, but for OSSS.



Likewise, the CBAM-CNN model also exhibits good consistency with Argo observations for OSSS estimation, effectively reproducing the distribution characteristics of OSSS without significant differences observed between the CBAM-CNN estimated OSSS and the Argo-derived OSSS (Figure 7). In the upper ocean (50 m and 100 m), the differences of salinity in most regions range from -0.24 psu to 0.24 psu. As the depth increases, the OSSS becomes more stable, with the differences between the CBAM-CNN model estimated salinity and Argo-derived salinity are lower than 0.1 psu. These results confirm the effectiveness of the CBAM-CNN model in estimating OSSS in the tropical Indian Ocean. A more comprehensive evaluation of the CBAM-CNN model is presented in the subsequent section.

To comprehensively evaluate the performance of the CBAM-CNN model, we compare its estimated temperature and salinity profiles with Argo profiles in 2020 in four representative regions: Boxes A, B, C, and D (Figures 8, 9). Taking into consideration the spatial distribution characteristics of temperature and salinity, we carefully select four representative boxes, Boxes A, B, C, and D, as shown in Figure 3A. Box A (64.5°E~76.5°E and 4.5°N~ 13.5°N) is located in the SEAS area that have considerable influence on the marine ecosystem, Indian monsoon, and climate variability, Box B (79.5°E~95.5°E and 7.5°N~23.5°N) is situated in the BOB region where it has high rainfall and cyclonic activity, Box C (87°E~105°E and 10°S~5°N) is situated in the EEIO, which is influenced by the Walker circulation and the Indian Ocean Dipole (IOD), and Box D (40°E~55°E and 10°S~10°N) is located in the western equatorial Indian Ocean (WEIO), which is the western pole of the IOD and is an upwelling region where the Indian Ocean monsoon prevails. This selection allows us to comprehensively evaluate the performance of the CBAM-CNN model in capturing the complex features of temperature and salinity in these regions.




Figure 8 | Comparison of area-averaged temperature profiles [(A–D) Boxes A-D] at different depths by the CBAM-CNN model estimated (red dotted line) and Argo observed (blue star line).






Figure 9 | Same as Figure 8, but for salinity.



The comparison of estimated temperature profiles by the CBAM-CNN model with the Argo profiles in these four regions shows that the estimated temperature profiles are in good agreement with the Argo profiles (Figure 8). The vertical mean RMSE and R² values for each box are 0.0865°C and 0.9998 for Box A, 0.1170°C and 0.9998 for Box B, 0.2224°C and 0.9993 for Box C, and 0.1808°C and 0.9994 for Box D, respectively. These results suggest that the CBAM-CNN model can accurately reconstructs the vertical temperature profiles compared to the Argo observation data. Moreover, the CBAM-CNN model exhibits excellent performance in estimating OSSS (Figure 9). For example, the salinity profiles derived from Argo observations show two maxima in the WEIO, which the CBAM-CNN model accurately captures. The RMSE values between the Argo observations and the CBAM-CNN model are less than 0.04 psu, while the R2 values exceed 0.93. These findings emphasize the CBAM-CNN model’s ability to reproduce the temperature and salinity profiles with high accuracy compared to the Argo observations.

As discussed above, the CBAM-CNN model demonstrates strong performance in estimating annual mean OSTS and OSSS in the tropical Indian Ocean. However, it remains unclear how well the model performs in different seasons. To address this question, we conduct a quantitative evaluation of the model’s accuracy in estimating OSTS and OSSS across seasons, specifically February, May, August, and November of 2020 representing winter, spring, summer, and autumn respectively. Firstly, we present correlation density scatterplots between the CBAM-CNN estimated temperature (salinity) and the Argo measured temperature (salinity) in different seasons, as depicted in Figure 10 (Figure 11). The plots illustrate that most data points are evenly distributed along the equal value lines, indicating a strong correlation between the estimated and observed OSTS and OSSS in the tropical Indian Ocean. Moreover, the RMSE and R² values between the Argo-observed temperature (salinity) and the CBAM-CNN estimated temperature (salinity) are calculated, with values of 0.5707°C (0.0823 psu) and 0.9948 (0.9613) in February, 0.5506°C (0.0818 psu) and 0.9952 (0.9620) in May, 0.5546°C (0.0760 psu) and 0.9946 (0.9677) in August, and 0.5424°C (0.0811 psu) and 0.9950 (0.9633) in November. These results indicate that the CBAM-CNN model has reliable and accurate seasonal performance in estimating OSTS and OSSS in the tropical Indian Ocean.




Figure 10 | Scatter plots of temperature from Argo observation and CBAM-CNN model estimation in (A) February, (B) May, (C) August, and (D) November in 2020.






Figure 11 | Same as Figure 10, but for salinity.



We also evaluate the seasonal performance of the CBAM-CNN model at different depths. To make the model accuracy at different depths comparable, we normalize the RMSE values (NRMSE) by dividing the RMSE with the standard deviation of the Argo temperature and salinity values at that depth. The vertical distribution of the NRMSE and R2 at different depths for different seasons is presented in Figure 12. The results indicate that the CBAM-CNN model performs well overall. For both OSTS and OSSS estimation, the NRMSE values show an increasing trend followed by a decreasing trend, and then increasing again with depth. The maximum NRMSE values for OSTS estimation are observed around 70 m in February and 100 m in May, while the maximum NRMSE values for August and November occur at 150 m. Similarly, the maximum NRMSE values for OSSS estimation are observed around 70 m in February, May, and November, and at 100 m in August. Notably, the trend of R2 for both temperature and salinity is opposite and symmetrical to the trend of their respective NRMSE. The high NRMSE values observed at depths ranging from 70 to 150 m for OSTS and OSSS estimation may be related to the complex and dynamic processes of the upper ocean, as well as the potential disturbance caused by the mixing layer and thermocline and halocline.




Figure 12 | Seasonal performance of the CBAM-CNN model for ocean subsurface thermohaline structures estimation at different depths in the tropical Indian Ocean in 2020. Blue indicates February (winter), red indicates May (spring), green indicates August (summer), yellow indicates November(autumn), the histograms display the NRMSE, and the lines display R2. (A) for temperature, (B) for salinity.



The seasonal performance of the CBAM-CNN model varies, as seen from the NRMSE and R2 values for OSTS and OSSS estimation in different seasons. The vertical average NRMSE (R2) values for OSTS estimation are 0.2259 (0.9428), 0.2064 (0.9507), 0.2071 (0.9522), and 0.2110 (0.9510) for February, May, August, and November, respectively. The highest NRMSE is observed in February, and the lowest NRMSE in May, which may be attributed to changes in the monsoonal circulation system. During the winter months, the northeast monsoon winds in the tropical Indian Ocean can lead to strong upwelling of deeper layers of the ocean, which can result in large temperature variations and pose a challenge for accurate temperature estimation by the CBAM-CNN model. Conversely, during the spring months, ocean temperature tends to be more stable, with less variability, facilitating easier temperature estimation. For OSSS estimation, the vertical average NRMSE (R2) values are 0.1427 (0.9741), 0.1406 (0.9733), 0.1396 (0.9748), and 0.1451 (0.9706) for February, May, August, and November, respectively. These results suggest that the CBAM-CNN model performs better in estimating OSSS during the spring and summer seasons. In summary, the CBAM-CNN model exhibits high accuracy in estimating OSTS and OSSS for different seasons, demonstrating its robustness for the tropical Indian Ocean.

To evaluate the impact of sea surface parameters on the performance of the CBAM-CNN model, we calculate the Pearson correlation coefficients between SST, SSS, SSHA, ESSW, and NSSW with OSTS and OSSS at different depths (50 m, 100 m, 500 m, and 1000 m). By calculating the absolute value of the Pearson’s correlation coefficients, we can compare the magnitude of the correlation coefficients. Our results, presented in Figure 13, the influence of sea surface variables on temperature and salinity estimates decreases as depth increases. This suggests that sea surface variables play a more significant role in the upper ocean, especially in the shallow layers. The results show that the SST and SSHA are the two most significant factors for estimating OSTS (Figure 13A), with correlation coefficients of 0.58 and 0.44, respectively, at 50 m depth. Conversely, SSS, NSSW, and ESSW exhibit relatively weak correlations with OSTS, with most coefficients less than 0.21. In the case of OSSS estimation, SSS and SSHA are the two most influential factors (Figure 13B). Other parameters, such as SST, ESSW, and NSSW although less strongly correlated, should not be neglected, as they also affect estimation of the OSSS. Their exact role in estimation of OSTS and OSSS requires further investigation. Analyses show that the sea surface variables selected by us are effective variables for estimating the OSTS and OSSS.




Figure 13 | Correlation coefficients between the sea surface parameters (SST, SSS, SSHA, NSSW, and ESSW) and the Argo-observed (A) OSTS and (B) OSSS at 50 m (red), 100 m (blue), 500 m (golden), and 1000 m (green) from January 2010 to December 2020.







4 Summary and discussion

Accurately estimating ocean subsurface thermohaline structures is critical to understanding ocean dynamics and climate change. In this study, we propose a neural network model based on CBAM-CNN to estimate both OSTS and OSSS in the tropical Indian Ocean using sea surface data. The CBAM-CNN model integrates the attention mechanism in CNN architecture, enhancing its ability to capture spatial attention and represent complex oceanographic processes. We compare the performance of the CBAM-CNN model with the original CNN model for estimating OSTS and OSSS in the tropical Indian Ocean. The results demonstrate that the CBAM-CNN model outperforms the original CNN model, as evidenced by smaller RMSE and larger R2 values. The CBAM-CNN model accurately estimates the OSTS and OSSS at different depths, with overall high accuracy across the tropical Indian Ocean. This superior performance can be attributed to the CBAM-CNN model’s enhanced ability to capture spatial attention and represent complex oceanographic processes. The study also evaluates the performance of the CBAM-CNN model from multiple perspectives, including spatial distributions, vertical profiles, and seasonal variations.

We also compare the estimated OSTS and OSSS with Argo-derived data at different depths, and the results show that the CBAM-CNN model performs well and effectively reconstructs most observed OSTS and OSSS features. Most of the observed OSTS and OSSS features can be effectively reconstructed using sea surface data via the CBAM-CNN model. Furthermore, we compare the CBAM-CNN estimated temperature and salinity profiles with the Argo profiles in four representative regions. The results demonstrate that the CBAM-CNN model accurately captures the prominent features of temperature and salinity in the tropical Indian Ocean. However, the accuracy of OSTS and OSSS estimation decreases at depths of approximately 100-150 m due to the presence of a thermocline layer, which makes accurate estimation challenging. Nonetheless, the CBAM-CNN model performs well overall and could accurately estimate OSTS and OSSS at depths below 500 m. Additionally, we evaluate the impact of sea surface parameters on the performance of the CBAM-CNN model, showing that sea surface variables play a more significant role in the upper ocean, especially in the shallow layers. SST and SSHA are the two most significant factors for estimating OSTS, whereas SSS and SSHA are the two most influential factors for OSSS estimation. Our results show that the CBAM-CNN model performs well across all four seasons, indicating that the model has a good seasonal applicability for OSTS and OSSS estimation in the tropical Indian Ocean.

In conclusion, the proposed CBAM-CNN model exhibits superior performance compared to the CNN model for estimating OSTS and OSSS in the tropical Indian Ocean. The model demonstrates high accuracy in estimating OSTS and OSSS at different depths and during different seasons. The findings of this study have implications for the understanding of oceanographic processes in the tropical Indian Ocean and provide insights for further development of oceanographic models. Nevertheless, as a statistical tool, the CBAM-CNN model has limitations in estimating extreme anomaly events. In future studies, we will employ more advanced machine learning methods and incorporate oceanic dynamic mechanisms to further enhance the estimation accuracy. Furthermore, the application of this model can be extended to cover vast oceanic regions, thus enabling precise estimations of OSTS and OSSS, and facilitating practical applications such as sound propagation, MLD estimation, and ocean disaster prediction. Additionally, the model can be further utilized to estimate other critical oceanic parameters such as velocity fields and ocean density, thus presenting an extensive area for exploration in future studies.
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The Ninety-east Ridge (NER) is located in the southern Bay of Bengal in the northeast Indian Ocean and is composed of pelagic and hemipelagic sediments. In addition to contributions from marine biomass, the ridge also contains terrestrially sourced sedimentary material. However, considerable disagreement remains regarding the origin of these terrestrial materials and transport pathways. This paper discusses the collection of seafloor surface sediments and three sediment cores recovered from the northern region of the NER, as well as the analysis of clay minerals, Sr-Nd isotopes, and sediment grain size. The ages of the three core sediments are constrained by AMS 14C dating to better establish the source and transport pathways of the terrestrial materials within NER sediments over the past 35000 years. The research results show that the Qinghai-Tibet Plateau is the predominate source of terrigenous sedimentary material in the NER. In the plateau, the crustal materials were weathered and stripped and then transported to the Andaman Sea via the Irrawaddy River. From there, the material was transported westward by monsoon-driven circulation to the northernmost part of the NER before being transported to the south for final deposition. This transport mode has changed little over the past 35000 years. However, during the rapidly changing climate of the Younger Dryas (12.9~11.5 ka BP), there were some variations in the input amount, grain size, and Sr-Nd isotope value of the source material. The above conclusions are significant for re-evaluating the source of terrigenous sediments, the temporal and spatial changes in transport modes, and the sensitivity of the NER to climatic shifts.




Keywords: Ninety-east Ridge, Bay of Bengal, provenance analysis, transport mode, northeast Indian Ocean, Sr-Nd isotope




1 Introduction

The collision between the Indian and Eurasian plates and the resulting uplift of the Qinghai-Tibet Plateau are among the most important geological events affecting the global climate and environmental change since the Cenozoic era began (Hall, 2002; Clark et al., 2005). The uplift process produced a large volume of sediment via weathering and denudation of the landscape. The transportation and deposition of the resultant terrigenous materials into the ocean. This is considered a result of these “source-sink” interactions. The NER in the northeast Indian Ocean is located in the south of the Bay of Bengal. Its pelagic sediments contain records of past rapid palaeoceanographic and palaeoclimatological changes and constitute the sedimentary response of the source-sink process initiated by the uplift of the Qinghai-Tibet Plateau. The NER has important significance in the fields of environmental science, climatology, and geology.

The Bay of Bengal is a semi-enclosed ocean basin bounded at three sides by land and is open at the south, where it is connected to the Indian Ocean. Previous studies have suggested that the seasonally reversing monsoon currents (southwest in June–September and northeast in December–February) plays an important role in sediment and water exchange in the Bay of Bengal and the northern Indian Ocean (Schott and McCreary, 2001; Shankar et al., 2002; Durand et al., 2009; Scott and Xu, 2009; Webber et al., 2018), and the change of the current is also studied by numerical simulation (Prakash and Pant, 2019; Agarwal et al., 2022). In addition, the Bay of Bengal is well-fed with a large volume of freshwater flux from several rivers. Therefore, Large amount of sediment can be transported to the southern Bay of Bengal through currents, tidal and wind waves, and formed the largest sedimentary fan in the world (Curray et al., 2002; Weber et al., 2003).

The sediments of the NER, to the south of the Bengal fan, are mainly pelagic and hemipelagic, have a low rate of sedimentation and are less likely to be influenced by turbidity and contour current (Wei et al., 2007; Gopalakrishnan et al., 2020; Govil et al., 2022). The sediment composition differs from that of the Bengal fan, which is dominated by marine biomass and terrestrial materials. It is generally understood that the terrestrial material of the NER should have come from the Bengal fan to the north, but is this really the case? Controversies remain regarding the provenance and transport route of the terrestrial materials in the NER (Bastia et al., 2010; Joussain et al., 2016; Li et al., 2017). Terrigenous materials are an important part of marine sediments and can be transported to the sea via mechanisms such as rivers and ocean currents. If the terrigenous material from the Himalayas cannot reach the NER through the Bengal Fan, does the terrigenous material of the NER come from the Qinghai-Tibet Plateau, and if so, what is the mode of transport? The clay mineral composition, particle size and radioisotope composition of the sediments can reflect their provenance, and the sedimentary source and transport route can be determined from that information (McLennan, 1989). This study attempts to identify the source and transport route of terrestrial sediments in the northern portion of the NER based on the clay mineralogy, Sr-Nd isotopes, grain size and the AMS 14C of 77 seafloor surface sediments and three sediment cores recovered from the region. Additionally, this paper discusses the spatial and temporal variability recorded by the sediments over the past 35000 years. These results will provide an important reference for future studies of the marine palaeoenvironment, climate change and the relationship between the two and the Qinghai-Tibet Plateau.




2 Geological and oceanographic setting

The NER is located in the northeast Indian Ocean and is named after a series of seamount chains along the 90° E longitude line (Figure 1). The ridge is about 5,000 km long from north to south and 185 - 450 km wide from east to west. It is 1,000 to 3,500 meters above the ocean floor and lies 2,000 to 2,500 meters below the surface of the sea (Figure 1C). The NER is bounded by the Bengal Fan to the north, the Andaman Sea to the east, and Sri Lanka to the west. According to the 22 and 26 voyages data of the Deep Sea Drilling Program (DSDP) and the paleomagnetic data, the NER is the product of the Kerguelen hotspot during the late Cretaceous period when the Indian plate was rapidly drifting northward (Peirce, 1968; Curray et al., 1982). The Ar40/Ar39 dating data show that the formation age of NER decreases from north to south from 84 Ma to 37 Ma, which indirectly supports the conclusion that the ridge originates from hotspots (Pringle et al., 2002). The bottom of the NER is basalt, and its upper part is composed of calcareous ooze of pelagic and semi-pelagic pelagic deposits, as well as some terrestrial materials.




Figure 1 | Location of the study area (A), the source material of Bengal fan (B) and sample distribution (C).



The Bengal fan to the north of the NER is located at the eastern margin of the Indian plate, which is a collisional subduction zone where the Indian plate is subducted to the Eurasian plate (Figure 1). The Bengal fan belongs to a semi-closed marine environment and is the largest sedimentary fan in the world. It extends from 20°N to 10°S, is nearly 3,000 km long, 1,500 km wide, and covers an area of about 3×106km2. The water depth of the Bengal fan is 2000-4000 meters, it is deeper in the south, and the sediment thickness in the south is more than 10,000 meters (Stow, 1990). The fan sediments mainly come from the Himalayas and the Qinghai-Tibet Plateau and are transported through the Ganges River, the Yarlung Zangbo River, the Irrawaddy River, etc (Figure 1B). Turbidite deposition is apparent, and the provenance and transportation pathways of the sediments within the fan remains relatively constant (Fang et al., 2001, Fang et al., 2002; Phillips et al., 2014; Banerjee, 2018).




3 Materials and methods



3.1 Sample source

77 surface sediment samples and three core samples, A6, A28 and A34, were used in this analysis. The samples were recovered from the NER during the 2019 and 2020 voyages of the South China Sea Bureau of the Ministry of Natural Resources (see Figure 1 for the locations of the sampling points).




3.2 Particle size analyses

Particle size analyses were conducted on the three core samples. The pretreatment process was as follows: an appropriate amount of sediment was extracted every 1 cm downcore, 15 ml of 30% hydrogen peroxide was added, and the samples were allowed to stand for 24 h to remove any organic matter. Once the reaction was complete, approximately 5 ml of 3 M HCl were added to the samples which were then left for 24 h to acidify carbonate material. After the reaction was completed, the samples were centrifuged and then sonicated to mix the remaining sedimentary particles. Grain size was then measured in the School of Marine Science, Sun Yat-sen University by a Beckman Coulter (LS13320) laser diffraction particle size analyser with an analytical range of 0.4-2000 µm. The relative error of repeated measurements was less than 3%.




3.3 Sr-Nd isotope analysis

The Sr-Nd isotopes were measured from all of the 77 surface samples and the three sediment cores. After drying, grinding and sieving, the samples were sent to Nanjing FocuMS Technology Co. Ltd. for measurement of the Sr-Nd isotopic ratios. The organic carbon and carbonate in the sediments were removed by H2O2 and acetic acid, and then the samples were digested with concentrated HNO3 and HF. The sample solution was eluted by a Biorad AG50W-X8 cation exchange column, then the matrix elements and Rb were removed by 2.0mol/L HCl, then the Sr components were received by leaching with 2.5mol/L HCl, and finally the total rare earth components were received by leaching with 6.0mol/L HCl. The SR component of the previous step was further purified by SR special resin. In the purification of Nd, Sm and Nd were separated by LN exchange column. The internal calibration ratios used for mass fractionation during the analysis were, 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219. NIST SRM 987 and Nd isotope JNDI-1 were used as external calibration standards to account for instrument drift.




3.4 Clay mineral analysis

Qualitative tests of clay minerals were carried out on the sediments of A6, A28 and A34 at different downcore depths. Pretreatment before testing was done according to the following procedure (Liu et al., 2003; Trentesaux et al., 2003). To separate and extract the clay minerals, first dry a sample of the sediment, add a specific proportion of distilled water for soaking and rinsing, let stand, and remove the supernatant. Next add more distilled water, stir to suspend the sediment, let stand, and get a certain volume of the suspension. Due to the low clay mineral content of the samples, repeat the extraction process as needed. Once the suspension settles and the supernatant is removed, the remaining mud is the clay material needed for the analysis. Transfer the mud into the drying oven at 60 °C for 12 h. Once dry, grind the sample into a powder. Finally, sift the samples through a 2 μM sieve to concentrate the clay minerals. Saturate the samples with ethylene glycol for 24 hours at room temperature. Then heat the samples at 490°C for 2 h. Once the samples had been properly prepared, they were subjected to three X-ray powder diffraction (XRD) runs. XRD patterns were obtained using a d/max 2500 PC diffractometer with CuK radiation at a voltage of 40 kV and a current intensity of 100 Ma. Diffraction patterns (2θ) were scanned from 5° to 30° in steps of 0.02°. The mineral composition was identified by jade software and the PDF2 database.




3.5 AMS 14C analysis

Accelerator mass spectrometry (AMS) 14C dating analyses for the three sediment cores were done in the Beta laboratory, and the results were corrected for δ13C fractionation to obtain the conventional radiocarbon age. The experimental process was as follows: Appropriate amount of sediment samples were placed in a clean beaker, dried at 50°C, appropriate amount of mill - Q water was added, and the samples were fully soaked to disperse completely. Then transfer the sediment samples to a 63 μm stainless steel sieve and rinse samples under distilled water. Brush lightly with a brush until the sample is completely rinsed. Transfer the remaining sample in the sieve to a small beaker for drying and weighing. The uniform size of the foraminiferan G. menardii shells were selected under a solid microscope, and 3% H2O2 was added to remove the organic matter. After ultrasound, the turbidities were removed and the samples were dried. Finally, the G. menardii shell was collected into the plastic pipe and was performed 14C dating on Ac ⁃ celerator Mass Spectrometry (AMS) in Beta laboratory. The conventional radiocarbon ages were then calibrated with CALIB 7.2 software using a marine calibration curve to account for the marine reservoir effect (Liu et al., 2016a) and to convert the ages into the correct calendar age.





4 Results and analysis



4.1 Particle size analysis

We analysed the lithology of three sediment cores by particle size analyse experiments (Figure 2).




Figure 2 | The sediment composition and particle size variability over core depth for A6, A28 and A34 cores.



Core A6: The core is about 28 cm long. The colour of the sediment core is black from 1-2 cm, brown from 2 ~ 17 cm and gradually transitioning to black from 17 ~ 28 cm. The particle size measurement results show that the median particle size of the core varies from 6 to 48 μm, and the mean particle size is from 21.2 to 70.6 μm. The sediment composition of the core is clay and silty mudstone with clay minerals (<4 μm) and silty sand (4 ~ 63 μm) were 26.4% and 54.5%, respectively. The proportion of sand is less, the average content with sand size (> 63 μm) is 19.1%. The proportion of clay minerals decreased gradually from the bottom to the top of the core, while the sandy sediment showed an increasing trend. The average and median particle size suddenly increased at a depth of 9 ~ 10 cm (Figure 2).

Core A28: The core is about 45 cm long. The colour of the sediment core is white with a little black mixed in 1 ~ 3 cm, black on top and gradually lightened down to brown in 3 ~ 45 cm. The median particle size of the core is 21.4 ~ 73.6 μm, and the mean particle size is 39.6 ~ 96.1 μm. The sediment composition of the core is clay and silty mudstone with clay minerals (< 4 μm) and silty sand (4 ~ 63 μm) are 11.5% and 50.8%, respectively. The proportion of sand is larger than that of clay, and the average content with sand size (> 63 μm) is about 37.7%. The proportion of clay minerals increases gradually from the bottom to the top of the core, while the proportion of sandy sediments decreases.

Core A34: The core is about 40cm long. The colour of the sediment core is dark grey in 1 ~ 9 cm and brown in 9 ~ 40 cm. The median particle size of the core ranges from 5.1 to 10.3 μm, and the mean particle size varies from 15.1 to 48.1 μm. The sediment composition of the core is clay and silty mudstone with clay minerals (< 4 μm) and silty sand (4 ~ 63 μm) are 36.1% and 51.9%, respectively. The proportion of sand is less than that of clay, the average content with sand size (> 63 μm) is about 20%. The proportion of clay minerals in the core increases gradually from the bottom to the top of the core, while the proportion of sandy sediment decreases. The core contains a sudden increase in average and median particle size at a depth of 28 ~ 29 cm.




4.2 Sr-Nd isotopes and clay minerals

The Sr-Nd isotopic ratios for the 77 surface samples from the study area (Table 1, the duplicate sites in this table are two groups of parallel data, and the first data is used in mapping) show that the 87Sr/86Sr value ranges from 0.70919 to 0.71042, with an average value of 0.70951. This is close to the Sr isotope ratio of seawater (0.70924) and higher than the 0.7025 Sr isotope value for MORB (mid-ocean ridge basalt) (Goldstein et al., 1988). 144Nd/143Nd values ranged from 0.512042 to 0.512270, with an average of 0.512165, corresponding to ϵ Nd values. The ϵ Nd value varies from -11.631990 to -7.172703, with an average value of -9.238031, which is similar to that in the Indian Ocean ϵ Nd (- 7 ~ - 9) (Deng et al., 2012). Overall, the changes in isotopic ratios occur within a small range, with a positive (87Sr/86Sr) value and a negative ϵ Nd value.


Table 1 | Summary statistics for Sr-Nd isotope ratios of surface samples of the northern NER and compared adjacent regions.



The Sr-Nd isotope ratio results of the cores from the three NER stations, A6, A28 and A34, show that the core sediments and 144Nd/143Nd values vary little with depth. The 87Sr/86Sr ratio values fall between 0.7094321 and 0.7117061, with an average of 0.709937. The ratios of 144Nd/143Nd show minimal variability between 0.5121194 and 0.5122696, with an average of 0.512197, corresponding to the ϵ Nd range of -10.116300 to -7.1863576 (Table 2). The Sr-Nd ratio from the cores is similar to that of the surface samples, but the 87Sr/86Sr and 144Nd/143Nd ranges are slightly greater for the surface samples.


Table 2 | The Sr-Nd isotope ratios of some core sediments in the NER.



The analysis of mineral components less than 2 μM in cores A6, A28 and A34 of core samples shows that the main diffraction peaks are obvious in the measurement curves of natural slices of clay minerals, and it can be identified that the components are mainly montmorillonite, illite, kaolinite, chlorite and a small amount of quartz, of which illite is the main component, chlorite and kaolinite are the second, and the diffraction peaks of montmorillonite are not obvious (Figure 3).




Figure 3 | Diffraction spectrum of clay minerals in core sediments from stations A6, A28 and A34.






4.3 Chronological analysis

14C enters marine sediments after a series of long-term cycles and decays at a constant rate (half-life: 5730 years). In the sedimentary layer, when the burial depth increases, the 14C index decreases (Zhang and Zhou, 2012). The maximum age of the three sediment cores in the study is 35000 years before present, and the overall sedimentation rate is low, with an average of 1 cm ka-1 (Table 3). The deposition rate accelerated at 12 ~ 18 ka Bp. The deposition rate of core A28 peaked at 25 cm ka-1, but was followed by an extremely rapid decrease (Figure 4). Visual analysis of the core showed that the sediment colour at this interval (19 ~ 20 cm depth) is significantly darker, represented by a dark sediment layer as shown by Figure 2. This abrupt change in the rate of sediment deposition corresponds to the Younger Dryas (12.9 ~ 11.5 ka BP).


Table 3 | AMS 14C age data from A6, A28 and A34 cores.






Figure 4 | Depth versus calibrated calendar age plot of A6, A28 and A34 cores. The linear sedimentation rates are listed for each interval in cm ka-1..







5 Discussion



5.1 Provenance tracing

The Sr-Nd isotopes have a long half-life and can maintain relative stability as they undergo various geological processes (Huang et al., 2005). These isotopes have become a good tracer for determining sediment sources. It is generally believed that when the 87Sr/86Sr ratio in the sediment is > 0.710, the material source is considered to be from the crust; when 87Sr/86Sr is < 0.705, the material likely originated from the mantle (Fang et al., 2020). 143Nd/144Nd in the continental Erosion Products = 0.51204 ± 0.0002( ϵ Nd = − 11.4 ± 4), and the 143Nd/144Nd ratio of continental crust is close to 0.5119 (DePaolo, 1988; Goldstein et al., 1984). Therefore, sediments flowing through older crustal rocks usually have higher 87Sr/86Sr ratios and lower εNd values (< -6) (De Paolo and Johnson, 1979), such as the low εNd values (-14 to -15) and the high 87Sr/86Sr ratio (0.710 to 0.714) of the North China Dabie complex, that indicates the hybridization of the ancient crust (Jahn et al., 1999).

The obvious differences between different rivers around the Bay of Bengal make it a good location to trace sediment sources (Galy and France-Lanord, 1999; Kessarkar et al., 2005; Tripathy et al., 2014; Joussain et al., 2016). By analysing the Sr-Nd isotope ratios, the εNd values previously obtained from the river sediments around the Bay of Bengal, and the corresponding marine sediments, it is found that the distribution of Sr-Nd isotopes in the marine sediments is consistent with the potential terrigenous source of the river system that transport materials into these areas (Tripathy et al., 2011). For example, the 87Sr/86Sr value of the Eastern Bay of Bengal (Andaman Sea) is 0.712~0.722, which is close to the 87Sr/86Sr value of the middle Irrawaddy River (Colin et al., 1999), while the 87Sr/86Sr value of marine sediments in the west of the Bay of Bengal is 0.723~0.732, which is similar to the 87Sr/86Sr value of sediments in the Godavari River on the central and western coasts (Colin et al., 1999; Ahmad et al., 2005; Ahmad et al., 2009; Chaitanya et al., 2021).

Our Sr-Nd isotope test results (Tables 1 and 2) show that the surface sediments of the NER and the sediments from the three sediment cores all have low εNd values (- 11.631990 to -7.172703) and high 87Sr/86Sr ratios (0.70919 to 0.71042), indicating that their source rocks contain a large amount of ancient crustal materials.

The average value of 87Sr/86Sr of the surface sediments obtained from the NER is 0.7095, and the average value of 143Nd/144Nd is 0.5122, indicating that a large number of diagenetic materials in the sediments come from continental crust sources and have been eroded. It can be seen from the correlation distribution diagram of εNd and 87Sr/86Sr (Figure 5) that the 87Sr/86Sr values of the surface sediments and the core sediments are very close to the 87Sr/86Sr range of 0.712~0.719 (Colin et al., 1999), indicative of the Irrawaddy River, whose provenance is the Qinghai Tibet Plateau. These values are also similar to the value of the Eastern Bay of Bengal (Andaman Sea) (Figure 5). The average value of εNd for the surface sediment in the study area is -9.238, which is also within the range of the Irrawaddy River (- 6.9 ~ 10.86) (Figure 5). Only a small amount of surface sediments have εNd and 87Sr/86Sr values suggestive of an origin in the Ganges Brahmaputra River system close to the northern and southern foothills of the Himalayas.




Figure 5 | Correlation distribution diagram of εNd and 87Sr/86Sr in the sediments of the NER and the Bay of Bengal and its surrounding rivers.



The research method of Sr-Nd isotopes combined with clay mineral analysis is widely used. The fine-grained, clay dominated sediments are mainly transported by rivers, and there are obvious differences in the clay mineral composition representative of potential sources. Therefore, the study of clay composition within fine-grained sediments can be used as important evidence to determine sedimentary sources and transport pathways (Ahmad et al., 2012; Liu et al., 2016b). On the other hand, the formation and diagenesis of clay minerals are closely related to the environment in which they are located, and the effects of these processes may be reflective of local environmental conditions (Tang et al., 2002).

Various sediment inlets in the Northeast Indian Ocean have different clay mineral assemblages. The clay minerals in the surface sediments of the southeastern Andaman Sea are mainly composed of illite (45%), kaolinite (31%), chlorite (18%), and smectite (6%) (Cao, 2015). The sediments of the Mahanadi River are characterized by high illite content and low montmorillonite content (Li et al., 2018). The clay mineral contents in the sediments of the Ganges-Brahmaputra River system are illite (57%), kaolinite, chlorite and montmorillonite (less than 5%) from high to low (Khan et al., 2019). The sediment in the offshore basin near the Krishna-Godavari estuary has a high content of montmorillonite and a low content of chlorite (Phillips et al., 2014). Although the runoff and sedimentary input of the Ganges-Brahmaputra-Meghna River system is much larger than that of other basins (Milliman et al., 1983), Himalayan materials from the Irrawaddy River and Yarlung Zangbo River are more important and stable sources (Song et al., 2021). Illite is the predominate material in the clay mineral composition of the NER, followed by chlorite and kaolinite. Montmorillonite is the least abundant (Figure 3). The clay mineralogy of the NER is similar to that of the surface sediments of the Andaman Sea, indicating a shared provenanced, though small inputs from the Ganges Brahmaputra River and Mahanadi River affect the sedimentary source.

To summarize the Sr-Nd isotope and clay mineral analysis, the sediments in the study area contain a large amount of older continental crust materials from the Qinghai-Tibet Plateau, which have been subjected to certain erosional processes and may have been imported to the NER via the Irrawaddy River and the Andaman Sea.




5.2 Distribution of surface sediments on the NER

A large volume of surface sediments encompassing a wide area were collected in the NER. The Sr-Nd isotope test results can not only be used for provenance tracing but also to study the distribution pattern of terrestrial material after it enters the study area. The distribution of the εNd (0) value and 87Sr/86Sr isotope ratios of surface sediments are an important indication of the current source input pathways. By analysing the Sr-Nd isotope distribution characteristics of 77 surface samples obtained from the NER, we found that the 143Nd/144Nd isoline map (Figure 6A) showed that the values decreased from south to north. The 87Sr/86Sr contour map (Figure 6B) shows a decreasing trend from east to west.




Figure 6 | 143Nd/144Nd contour map (A) and 87Sr/86Sr contour map (B) in the study area. (Note: The dotted line represents the position of NER, and the asterisk represents the core sample position).



Sedimentation has little influence on Nd and its ratio in sediments. Nd isotopes can effectively identify and trace terrigenous sedimentary materials and indicate their evolutionary history (Shao et al., 2009). The εNd value of the materials imported into the sea from the land is smaller than that of marine biomass (Liu, 2004). According to the distribution pattern that the 143Nd/144Nd ratio in the study area gradually increases from north to south, it is inferred that the material sources are mainly transported from north to south. The larger the ratio of 87Sr/86Sr is, the older the sediments and the greater the chemical weathering (Meng et al., 2000). As the 87Sr/86Sr value decreases from east to west, the chemical weathering in the east of the NER is greater than that in the west. This may be because the monsoon weakens after it passed through the ridge, the hydrodynamic effect of the seawater carrying terrestrial materials was weakened, thus reducing its ability to further transport sediments from east to west. Therefore, the migration mode of the sediment transported to the NER is from east to west and from north to south.




5.3 Sediment transport mode and its temporal and spatial changes

The NER is relatively high and located in the open ocean far from the source area. Turbidity currents and isobaric currents have little impact on it. The isotope and clay mineral analysis results show that the winter monsoon and summer monsoon in the Bay of Bengal can transport the terrigenous sediments of the northern mountain system to the northern end of the NER (Wei et al., 2007; Zhang et al., 2007; Weber et al., 2018), but it is difficult to transport them further southward. However, after the sediments exported from the Irrawaddy River flow through the relatively closed Andaman Sea via the summer monsoon, the monsoon-driven circulation in this area can be used to transport more sediments to the northern NER (Schott and McCreary, 2001; Shankar et al., 2002; Joussain et al., 2016). This interpretation is supported by the observed decrease in 143Nd/144Nd and 87Sr/86Sr values from northeast to south and east to west, as shown in the isotope contour maps (Figure 6).

Therefore, we comprehensively analysed the Sr-Nd isotopes and their spatial distribution and clay mineralogy in the study area and proposed the following transport mode of terrigenous materials into the NER. In the Qinghai-Tibet Plateau, a large volume of continental crust materials was weathered and denuded and then transported into the Irrawaddy River. Terrigenous clastic materials were carried to the Andaman Sea with the flowing waters of the Irrawaddy River. It is transported westward to the north of the NER through the surface monsoon circulation of the Andaman Sea. Under the influence of the monsoon circulation in the study area, the terrigenous materials continue to be carried southward along the NER (Figure 7), and the Sr-Nd ratio remains relatively stable along the entire transport path.




Figure 7 | Transport path pattern of terrigenous sediments in the NER. (A) and migration model from the Qinghai - Tibet Plateau to the NER (B). (A: black arrow indicates winter monsoon, red arrow indicates summer monsoon, yellow arrow indicates transport path, cited by Joussain et al, 2016; A, B: ①- Weathering and denudation of the Qinghai-Tibet Plateau;②- Material from the Qinghai-Tibet Plateau was transported to the Irrawaddy River; ③- Material from the Tibetan Plateau drains into Andaman Sea, and then enters monsoon circulation system; ④- Material from the Tibetan Plateau are transported westward to the northern NER by the monsoon-driven circulation.).



To explore the temporal and spatial changes in this transport mode of sediments to the NER, we performed AMS 14C dating analysis on three core sediments.

The maximum ages of the A6, A34 and A28 cores are 18ka, 19ka and 35ka respectively. A6 and A34 cores in the northern part of the NER recorded the sedimentary and environmental changes after the last glacial maximum (LGM, 26.5 ka ~ 19 ka BP), including the Younger Dryas (12.6 Ka ~ 11.5 ka BP). The two cores reflect similar sedimentation rates, and there is no significant change during the Younger Dryas (12.6 Ka ~ 11.5 ka BP). After the Younger Dryas (12.6 Ka ~ 11.5 ka BP), the sea level rose and the sedimentation rates began to decrease, suggesting that the northern part of the NER may be mainly affected by sea level changes. The deposition of A28 core in the southern NER records the sedimentary and environmental changes since the late period of the last glacial period (70 ka ~ 11.5ka BP), including the LGM and the Younger Dryas. AMS 14C dating analysis of the core shows that the sediments in the southern NER were stable from 35ka BP to 15ka BP and were not affected by the LGM, indicating that the southern NER was not affected by provenance and sea level during this period. From 15ka BP to 12.6ka BP (before the Younger Dryas), A sudden increase in the sedimentation rate in the southern NER could be linked to a number of factors. The first factor may be that as the climate warms, the increase of provenance denudation and stream input amount during this period (Kolla and Pierre, 1973; Kolla et al., 1976). And the second reason may be that large amounts of volcanic material from the Indonesian archipelago were deposited, carried by the southeast monsoon or equatorial easterly winds (Dehn et al., 1991; Hovan and Rea, 1992; Zhang et al., 2004). Since the Younger Dryas (12.6ka BP), the sedimentation rate of the southern NER decreased, which may be affected by the decrease of provenance denudation and the stream input amount.

We also found that the mean particle size of the A6, A28 and A34 cores are relatively uniform, but there is a sudden change in sedimentation during the period of rapid climate change (12.9 ~ 11.5 ka BP) in the Younger Dryas (Broecker et al., 2010; Liu, 2012). The deposition processes at the NER may also be affected by this climatic change. The Sr-Nd isotope values of the A28 and A34 core samples had obvious changes after the Younger Dryas, especially the εNd values, which decreased rapidly, confirming the change in source (Figure 8). Core A6, located west of the ridge, differs from the other two cores potentially due to their different locations (east of the ridge). However, A6 also contains evidence of a change at approximately 15 ka BP, after the Younger Dryas. In general, the sediment transport regime in the study area has been relatively stable for the past 35000 years and is essentially the same as the current model. However, during the Younger Dryas (12.9 ~ 11.5 ka BP), the quantity of sedimentary input, particle size and Sr-Nd isotope ratio changed. The relationship between this change and the climate of the Younger Dryas needs to be further studied.




Figure 8 | Chronological framework of sediments in A6, A28 and A34 cores (the middle of the dotted line is the Younger Dryas).







6 Conclusion

	The sediments of the NER contain a large volume of terrigenous materials. The sedimentary source is mainly the older continental crust of the Qinghai-Tibet Plateau and there is less terrigenous material transported directly from the Bay of Bengal in the north.

	We propose a transport model of terrigenous sediments into the NER: In the Qinghai-Tibet Plateau, the crustal materials are weathered and denuded and then transported into the Andaman Sea via the Irrawaddy River. Then, under the influence of the summer monsoon, they are transported westward to the northern NER by the monsoon-driven circulation before finally being deposited further south.

	This mode of terrigenous sediment transport into the NER has changed very little over the past 35000 years. Only during the rapid climate change of the Younger Dryas (12.9 ~ 11.5 ka BP) did the input amount, grain size and Sr-Nd isotope value of sediments show substantial change.
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Introduction

The Indonesian Throughflow (ITF) connects the Pacific Ocean and the Indian Ocean. It plays an important role in the global ocean circulation system. The interannual variability of ITF transport is largely modulated by climate modes, such as Central-Pacific (CP) and Eastern-Pacific (EP) El Niño and Indian Ocean Dipole (IOD). However, the relative importance of these climate modes importing on the ITF is not well clarified.





Methods

Dominant roles of the climate modes on ITF in specific periods are quantified by combining a machine learning algorithm of the random forest (RF) model with a variety of reanalysis datasets.





Results

The results reveal that during the period from 1993 to 2019, the average ITF transport derived from high-resolution reanalysis datasets is -14.97 Sv with an intensification trend of -0.06 Sv year-1, which mainly occurred in the upper layer. Four periods, which are 1993–2000, 2002–2008, 2009–2012 and 2013–2019, are identified as Niño 3.4, Dipole Mode Index (DMI), no significant dominant index, and DMI dominated, respectively.





Discussion

The corresponding sea surface height differences between the Northwest Tropical Pacific Ocean (NWP) and Southeast Indian Ocean (SEI) in these three periods when exist dominant index are -0.50 cm, 0.99 cm and -3.22 cm, respectively, which are responsible for the dominance of the climate modes. The study provides a new insight to quantify the response of ITF transport to climate drivers.





Keywords: Indonesian throughflow (ITF), upper layer, lower layer, El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), random forest (RF) model




1 Introduction

The Indonesian Throughflow (ITF) originates from the western Pacific Ocean, and then passes through the Indonesian Sea to enter the Indian Ocean. The ITF carries a large amount of warmer and fresher waters with an annual average volume transport of approximately 15 Sv (1 Sv=106 m3 s-1) (Wijffels et al., 2008; Sprintall et al., 2009; Gordon et al., 2010; Susanto et al., 2012; Liu et al., 2015; Sprintall et al., 2019), and heat transport of 0.24–1.15 PW (1 PW = 1015 W) from the Pacific to the Indian Ocean (Hirst and Godfrey, 1993; Vranes et al., 2002; Tillinger and Gordon, 2009; Xie et al., 2019; Zhang et al., 2019). It has a significant impact on the thermohaline structure and velocity profiles flowing through the oceans (Lee et al., 2019; Pang et al., 2022). This provides an important low-latitude ocean channel for the transmission of climate signals and anomalies in the global thermohaline circulation. The ITF regulates the local atmosphere system by influencing air-sea exchange and precipitation at different time scales, which in turn has a far-reaching effect on the global climate (Gordon, 1986; Godfrey, 1996; Gordon, 2005; Sprintall et al., 2014; Hu et al., 2019; Yuan et al., 2022). Thus, the variability of ITF transport has to be understood to interpret climate change.

The ITF transport is not well determined observationally due to several inflow and outflow channels, such as the Makassar Strait, Maluku Strait, Halmahera Strait, Lombok Strait, Ombai Strait, and Timor Strait. Among them, the Makassar Strait accounts for approximately 77% of the ITF transport and is thus considered the main inflow channel of the ITF (Du and Qu, 2010; Gordon et al., 2010; Gordon et al., 2019). Therefore, several international observation programs have been conducted there to detect the changes in ITF transport, such as the Arlindo Mixing program, the International Nusantara Stratification and Transport program (INSTANT), and the Monitoring the ITF program (MITF). The long-term mooring data of the Makassar Strait reveals that the average thermocline (0–300 m) southward transport (9.1 Sv) contributed about 73% of the total transport (12.5 Sv) (Gordon et al., 2019). In addition to the mooring observation data, temperature data measured by repeated expendable bathythermograph (XBT) and Argo buoy data of IX1 section were also used to deduce the geostrophic current transport of the ITF (Wijffels et al., 2008; Liu et al., 2015). Based on 30 years of XBT data – from 1984 to 2013 ITF geostrophic transport experienced a strengthening trend of ~0.1 Sv year-1 (Liu et al., 2015). In addition, numerous numerical models and reanalysis data demonstrate a relatively consistent interannual variability with the observed data (Masumoto et al., 2004; Feng et al., 2013; Yuan et al., 2013).

The ITF variability is mainly driven by large scale sea level gradients between the Pacific and Indian Ocean basins (Wyrtki, 1987). Specifically, the sea surface height (SSH) difference between the northwest tropical Pacific (NWP) and the southeast Indian Ocean (SEI) is a favorable indicator of ITF transport, which is largely dominated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), respectively. The ITF is generally strong (weak) during La Niña (El Niño) events (Meyers, 1996). This is because the Pacific trade winds and the Walker circulation strengthening (weakening), which leads to an increase (decrease) of sea level in the western Pacific (Meyers, 1996; Gordon et al., 1999; Sprintall and Révelard, 2014; Hu and Sprintall, 2016). During negative (positive) IOD events, when the eastern and western surface water of the tropical Indian Ocean appear abnormally warm (cold) and cold (warm), downwelling (upwelling) occurs in the eastern sea surface of the tropical eastern Indian Ocean. This favors a positive (negative) sea level anomaly in that region and thus suppresses (strengths) the ITF (Cai et al., 2011; Yuan et al., 2011). Increasing number of studies show that IOD events have a more significant impact on the ITF (Sprintall et al., 2009; Sprintall and Révelard, 2014; Liu et al., 2015; Pujiana et al., 2019). However, ENSO and IOD events often occur concurrently (Murtugudde et al., 1998; Saji et al., 1999; Feng et al., 2001), and hence, it is hard to tease out the individual effects of each climate mode on ITF variability. Quantitative analysis of the influences of ENSO and IOD on ITF changes are not yet well clarified.

In this study, four high-resolution reanalysis datasets are used to detect the spatial-temporal variability of the ITF inflow and outflow. A machine learning method is adopted to express whether the ENSO or the IOD is the dominant climate driver for the ITF variability during different periods. The study is explained as follows. The four reanalysis datasets and the methods are depicted in section 2. The temporal and spatial changes of ITF transport are explained in section 3. The dominant climate indices affecting the ITF in different periods are studied in section 4. The possible mechanisms are discussed in section 5, and the conclusions are given in section 6.




2 Data and methods



2.1 Mooring data

Mooring data are obtained from three straits: the Makassar Strait, Ombai Strait, and Timor Strait. Among them, the Makassar mooring data is procured from the INSTANT and MITF observation projects, whereas the Ombai and Timor are from the Integrated Marine Observing System (IMOS, 2022).



2.1.1 INSTANT

In January 2004, two moorings were deployed in the Labani channel in the Makassar Strait as part of an international program to monitor the major ITF inflow routes: 2°51.9′S, 118°27.3′E, and 2°51.5′S, 118°37.7′E (Gordon et al., 2008; Gordon et al., 2010). In July 2005 and November 27, 2006, the moorings were repeatedly recovered and redeployed. The moorings measured the three-dimensional velocity components at 30 min intervals.




2.1.2 MITF

Only one mooring was deployed at 2°51.9′S, 118°27.3′E as part of the MITF program on 22 November 2006, after the INSTANT project. MITF was designed to receive data and was redeployed every two years. Due to equipment transportation problems, there are no data from August 2011 to August 2013. At the mooring location, upward-looking and downward-looking acoustic Doppler current profilers (ADCPs) were placed at 463 m and 487 m to record flow data for the entire channel at a depth of 680 m. The positions varied slightly throughout the observation period but remained roughly the same. In August 2015, two ADCPs were placed at the same buoy station at 498 m, and two χ‐pods (small autonomous instruments), which can measure the temperature gradient spectrum using a fast thermistor, were placed at the same position to measure the temperature microstructure (Gordon et al., 2019). The MITF data up to August 2017 is used in this study, though the project is still ongoing.




2.1.3 IMOS

The IMOS has moorings across both its National Mooring Network and Deep Water Moorings facilities. This system provides parameters such as temperature, salinity, dissolved oxygen, chlorophyll estimates, turbidity, down-welling photosynthetic photon flux (PAR), and current velocity, accompanied by depth and pressure when available. The observations were made using a range of temperature loggers, conductivity-temperature-depth (CTD) instruments, water-quality monitors (WQM), ADCPs, and single-point current meters. In this study, we use the single-point mooring data (OMB) for the Ombai Strait at 125.08°E, 8.52°S, which ranges from June 19, 2011, to October 21, 2015. For the Timor Strait, we mainly use three mooring data: Timor North (TNorth), Timor North Slope (TNSlope), and Timor South (TSouth), which cover from June 14, 2011 to April 15, 2014. These are the hourly mooring data, and the vertical depth reaches 520.95m.





2.2 Reanalysis data

Four reanalysis datasets are used: Copernicus Marine Environment Monitoring Service (CMEMS), OGCM For Earth Simulator (OFES), Hybrid Coordinate Ocean Model (HYCOM), and simple Ocean Data Assimilation Ocean/Sea Ice Reanalysis (SODA), respectively.



2.2.1 CMEMS

For the CMEMS, the version GLOBAL_MULTIYEAR_PHY_001_030 global reanalysis data with a monthly average from 1993 to 2019 is used. The data have a spatial resolution of 1/12° × 1/12° (about 8 km × 8 km at the equator) and a total of 50 standard layers in the vertical direction. The reanalysis data assimilate many available observations. The time range is from 1993 to 2020, which covers the most recent period of altimeter data (beginning with the launch of TOPEX/Poseidon and ERS-1 satellites in the early 1990s).




2.2.2 OFES

OFES data is a global 0.1° × 0.1° × 54 layers model data forced by NCEP winds. The output is an integration of more than 50 years. The OFES data used is the monthly average from 1993 to 2017.




2.2.3 HYCOM

The HYCOM versions of GLBu0.08/expt_19.0, GLBu0.08/expt_90.9, and GLBv0.08/expt_93.0 cover the time range 1993–2012, 2013–2017 and 2018–2019, respectively. The global 0.08° × 0.08° horizontal resolution and 40 vertical resolution of depth levels are daily reanalysis data from 1993 to 2019.




2.2.4 SODA

SODA is a reanalysis data set that covers the global ocean (except some polar sea areas) jointly developed by the University of Maryland and Texas A&M University. The latest version, SODA 3.4.2, which adopts the Modular Ocean Model (MOM5) of 0.5° × 0.5° × 50 layers (horizontal spacing at the equator 28 km, polar location less than 10 km) is used in this study. The time range of the monthly reanalysis data is from 1993 to 2019.





2.3 Methods



2.3.1 Transport calculation

Many methods are used to calculate the flow in channels, including the volume flux (Anderson et al., 1986) and the P-vector methods (Chu, 1995). The volume flux method is used to take full advantage of the high-resolution datasets:

 

Among them,   is perpendicular to the   th horizontal grid and the   th vertical grid on the cross-section flow velocity,   is the location of the cross-section grid point number,   is the number of grid points,   is the distance between two adjacent grid points,   is the number of vertical layers,   is the number of vertical layers, and   is the distance between two adjacent vertical layers.




2.3.2 Removal of potential dependency between climate drivers

ENSO and the IOD events often occur synchronously; hence, they can interact with each other. Therefore, linear regression is used to eliminate the possible influence of Niño 3.4 on IOD (Saji and Yamagata, 2003), as follows:

 

 

where   represents the linear fitting term of  ,   and   represent the trend and offset, respectively, and   indicates the new DMI, excluding the   trend item.




2.3.3 Random Forest model

A machine learning decision method, named Random Forest (RF) is employed to determine the contribution of climate drivers to the interannual variation of the ITF. RF is a kind of ensemble learning algorithm. The general idea of RF is to train multiple weak models to pack together to form a strong model. The performance of the strong model is much better than that of a single weak model. Hence, the results of the multi-models have higher accuracy and generalization performance.

Unlike the simple linear correlation and regression methods, RF methods can be used to study complex relationships between variables and can reveal nonlinear and hierarchical relationships between responses and predictors (Feng et al., 2022). RF builds the model by combining predictors and evaluates the relative importance of each predictor. In this study, an out-of-bag (OOB) generated accuracy-based materiality measure is used. When building the model, approximately one-third of the relevant data was randomly selected for model verification. When variables in the OOB samples are randomly disturbed, the average prediction accuracy is defined as the important value of the corresponding variable (Heung et al., 2014), which is expressed as the mean square error:

 

where   is the number of observations,   represents actual data and   indicates the average of all OOB predictions across all trees.






3 Variability of ITF

Mooring observation in the Makassar Strait reveals different water masses in the upper (0–300 m) and lower (300–760 m) layers, respectively. The ITF is separated into the upper and lower parts, with a depth boundary of 300 m, to reveal the impacts of climate modes on the vertical structures. To facilitate later research, the 0–300 m layer is defined as the upper layer and the 300–760 m layer as the lower layer. Due to the depth limitation of the Ombai and Timor Straits, the lower layer is 300–520 m. In accordance with Li et al. (2020), the inflow is defined as that the sections of Sulawesi Sea (125°E, 1°N–6°N), Maluku Sea (125°E–127.5°E, 0.5°N), and Halmahera Sea (128°E–131°E, 0.5°S), respectively, and the outflow is defined as that across the eastern tropical Indian Ocean section (114°E, 8°S–22°S) (Figure 1).




Figure 1 | The topographic map of the Indonesian sea and the main flow system of the ITF. The pathways of ITF are shown by orange lines with arrows. The red   indicates the mooring station in the Makassar Strait. The four red dots that appear in the enlarged view in the small window of the lower right corner denote the mooring positions of the Ombai and Timor Straits, and from north to south are Ombai Strait (OMB), Timor North (TNorth), Timor North Slope (TNSlope), and Timor South (TSouth), the first of which is the mooring position of the Ombai Strait and the remaining three are the mooring positions of the Timor Strait. The purple lines are the interception position of the corresponding strait data validation. The dotted arrows in orange represent the Pacific Ocean flow. The red and green solid lines indicate the inflow and outflow cross-sections, respectively.





3.1 Validation of model data

Performances of the four reanalysis datasets are validated by using the mooring observation located at the Makassar Strait, namely the INSTANT and MITF programs. In accordance with the two periods of INSTANT and MITF, the comparative results are divided into two stages, which are January 2004 to late November 2006 and November 2006 to August 2017, respectively. An approximate position at the same latitude as the mooring position is selected to conducted verification when calculating the Makassar Strait flow, which is 117°E–119°E, 2.5°S (Figure 1).

The comparative results are illustrated in Figures 2A, B. In the upper layer, the mean mooring transport is -7.94 Sv (negative means southward transport). It shows a prominent interannual variability. The transport intensified from 2004 to late 2008, with an intensification of -1.53 Sv, whereas from 2009 to mid–2011, it slightly weakened by 0.32 Sv. The transport quickly weakened from mid–2013 to mid–2016, whereas the ITF quickly intensified. The relativity between the upper and lower layers was negative and insignificant (correlation coefficient of -0.30). In the lower layer, the mean transport is -3.10 Sv. The trends of mean transport during 2004–2011 and 2013–2017 were the opposite: there is an intensified (weakened) trend in the former period and a weakened (intensified) trend in the latter period in the upper (lower) layer. In addition, in terms of interdecadal variability, the correlation between the upper layer Makassar flow and PDO and NPO were significantly opposite (Figures not shown). During 2004–2011 and 2013–2017, the correlation coefficients between PDO and flow in the upper layer were 0.78 and 0.75, respectively; whereas the correlation coefficients between NPO and flow changes in the upper layer were -0.44 and -0.35, respectively. All the correlation coefficients pass the 95% significance test. However, the contributions of PDO in the ITF transport are limited in the upper layer inflow and in the decadal timescales, which will not be further considered in this study.




Figure 2 | Transport anomaly of the four reanalysis datasets and the mooring observation at Makassar. (A) Transport in the upper layer. The red line is the mooring observation of INSTANT and MITF after a 13-month moving average. The black, blue, green, and pink lines are CMEMS, OFES, SODA, and HYCOM, respectively. Due to the discontinuity of mooring data between 2004 and 2017, the correlation coefficients of the first and second halves of the mooring after the 13-month moving average are calculated, respectively. (B) Same as (A) but for the lower layer. Negative values mean southward transport anomaly.



In the upper layer, the correlation coefficients of SODA and CMEMS in the first and second periods are R1 = 0.8 and R2 = 0.96, respectively, and the RMSE is 1.12 Sv, in comparison with the observed data. Similarly, the OFES data in this layer exhibit low correlation coefficients with the observed data in the first half and the second half, where R1 = 0.25 and R2 = 0.7, respectively, and the RMSE is 0.82 Sv. It can be found that between July 2005 and November 2006, the reanalysis data declined more than the mooring observation data, which may be explained by that single point data of Makassar mooring could not accurately reflect the whole change in the entire channel. In the lower layer, the correlation coefficients of OFES and CMEMS with the observed data in the first and second half are R1 = 0.73 and R2 = 0.98, respectively, and the RMSE is 0.89 Sv. The HYCOM data in this layer has relatively low correlation coefficients of R1 = 0.49 and R2 = 0.77, respectively, and the RMSE is 1.35 Sv, in comparison with the observed data. All the correlation coefficients pass the 95% significance test. It can be found that in the upper and lower layers, the correlation between the reanalysis and mooring observation data in the second period is better than in the first period, which may be attributed to the reanalysis datasets dependency and the limitation of mooring observations.

The mooring data of the Ombai and Timor Straits are comprehensively collected to verify the applicability of reanalysis data in the outflow area. Two sections along 125.08°E, 8.33°S–8.83°S and 127.35°E, 8.71°S–10.02°S in the Ombai and Timor Straits, respectively, are selected to conduct the calculation. The low resolution of SODA (only 0.1°) leads to a lack of lower layer data in the Ombai Strait, and hence, only the upper layer of SODA is given below.

Figures 3A, B illustrate the comparison results in the Ombai Strait. For SODA, the correlation with the observed data is low due to the low resolution in the upper layer (R = 0.31, which passes the 95% significance test; RMSE = 0.61 Sv). Apart that, the correlations of the other three reanalysis data are all high. Among them, correlation coefficient of OFES is maximum which reaches 0.90 and RMSE is 0.45 Sv. In the lower layer, HYCOM has the maximum correlation coefficient of 0.80 and lowest RMSE of 0.28 Sv, whereas OFES has a relatively low correlation coefficient of 0.69 and RMSE of 0.43 Sv. The validation results of the Timor Strait data are shown in Figures 3C, D. It is found that CMEMS has the maximum correlation coefficient of 0.71 and lowest RMSE of 0.14 Sv in the upper layer, whereas HYCOM has a relatively low correlation coefficient of 0.38 (passing the 95% significance test) and RMSE of 0.26 Sv. In the lower layer, CMEMS also exhibits a good correlation, with a correlation coefficient of 0.63 and RMSE of 0.11 Sv. However, the correlation coefficients of the other three data are low. Note that, all the correlation coefficients pass the 95% significance test, which demonstrate that all the four reanalysis datasets show consistency with the observations, which gives the confidences to use the reanalysis datasets to show the variability and mechanisms.




Figure 3 | Transport anomaly of the four reanalysis datasets and the mooring observation in the Ombai and Timor Straits. (A) Transport in the upper layer of Ombai Strait. The red line is the mooring observation of Ombai Strait after a 13-month moving average. The black, blue, green and pink lines are CMEMS, OFES, SODA and HYCOM, respectively. (B) Same as (A) but for the lower layer of Ombai Strait. (C, D) Same as (A, B) but for Timor Strait. Negative values mean southward transport anomaly.






3.2 Spatial and temporal variability of the ITF

Good performance of the eddy-resolving reanalysis datasets reveals, the detailed spatial structures of the ITF in the inflow and outflow.

Among the three inflow cross-sections (Figures 4A–C), the Sulawesi Sea has the widest entrance, which spans 3.58°N–5.5°N, 125°E. There are two opposite flows, which are westward in the northern channel and eastward in the southern channel, respectively. As the depth deepens, the eastward flow gradually expands to the north, while the westward flow decreases in scope. The eastward flow mainly exists in the range of 125°E, 1.83°N–3.5°N (the maximum depth is 350 m south of 3.25°N, while it can be extended to 760 m north of 3.25°N), with an average speed of 0.07 m s-1 and a maximum speed of 0.23 m s-1 at a depth of 20m near 2.25°N. The westward flow in the 3.58°N–4.66°N region mainly exists above the 115 m layer with an average speed of -0.14 m s-1. The large value zone of westward flow mainly exists in 4.5°N–5.33°N (the depth can be extended to 760 m) and a maximum speed is -0.59 m s-1 at a depth of 85 m near 5°N. There is a weak eastward flow near Mindanao Island. The standard deviation of the flow gradually decreases with the increase of depth overall. There has a larger standard deviation in the westward flow, which can reach 0.13 m s-1, mainly concentrated in the upper 90 m layer of 4.58°N–5.08°N. In the eastward flow range, the standard deviation of the flow can reach a maximum of 0.09 m s-1, mainly concentrated in the surface layer of 1.91°N–2.83°N.




Figure 4 | The four reanalysis datasets average velocity in the inflow (upper panel) and outflow (lower panel) cross-sections from 1993 to 2019. The profile color fill is the East-West (North-South) velocity of the flow perpendicular to the longitude (latitude). (A, D) are the zonal flow in the Sulawesi Sea and the eastern equatorial Indian Ocean cross-sections, respectively. (B, C) are zonal flows in the Maluku Sea and the Halmahera Sea cross-sections, respectively. The magenta contour is represented as the standard deviation of the flow velocity of each section on the interannual scale. The black contour line in the figures indicate that the velocity is 0. A negative value represents southward or westward flow.



The opposite flow structure is the same as the Maluku Sea meridional sections (Figure 4B). In the western Maluku Sea (125°E–126°E, 0.5°N): above 60 m layer, it flows northward with an average speed of 0.05 m s-1, and the maximum is 0.16 m s-1 at a depth of 10 m near 125°E; within a depth of 60 m–300 m, it flows southward with an average speed of -0.02 m s-1, and the flow gradually decreases as the depth increases; within a depth of 300 m–450 m, there is a weak northerly flow; under 450 m, there is a southward flow, which corresponds well to the observational finding of the Maluku Sea intermediate western boundary current (Yuan et al., 2022). In the eastern Maluku Sea (126°E–127.5°E, 0.5°N): above 60 m layer, there is a weak southward flow with an average speed of -0.03 m s-1 and the maximum southward flow velocity is -0.07 m s-1; under 60 m, except for the presence of weak southward flow in depth of 350 m–720 m and range of 126°E–126.41°E, it flows northward in the western side (126°E–126.83°E, 0.5°N) and southward on the eastern side (126.83°E–127.5°E, 0.5°N). The large standard deviation of the flow velocity is mainly concentrated in the western upper layer of Maluku Sea (125°E–126°E, 0.5°N), which can reach a maximum of 0.07 m s-1. With the increase of depth, the standard deviation gradually decreases. However, below 450 m in the western of Maluku Sea, there is still a relatively large variation zone with a standard deviation of 0.02 m s-1.

In the Halmahera Sea section (0.5°S) (Figure 4C), the flow structures are complicated. In the range of 128.5°E–129.75°E and 129.91°E–130.08°E, there are southward flows, which can reach a depth of 200 m. The maximum velocity (-0.36 m s-1) appears at 128.83°E and 50 m depth. The flow is northward at both sides of the Halmahera Sea section and in the lower layer. However, the northward flow is relatively weak, with a maximum of 0.08 m s-1. The large standard deviation of flow velocity is concentrated in the large value region of southward flow, which can reach a maximum of 0.14 m s-1 in the upper layer of 128.83°E. With the increase of depth, the standard deviation gradually decreases. At the maximum southward flow (at 128.83°E and 50 m depth), the standard deviation reaches 0.12 m s-1.

In the exit of the eastern equatorial Indian Ocean (Figure 4D), the outflow is a significant eastward flow in the 0–110 m range of 114°E, 8.75°S–9.33°S, and the maximum velocity is 0.22 m s-1 at a depth of 60 m at 8.83°S. The eastward flow corresponds to the upper ocean South Java Coastal Current (SJCC) (Atmadipoera et al., 2009; Sprintall et al., 2009; Liang and Xue, 2020). In the middle section of 114°E, 9.5°S–13.41°S, most of the flow is westward with a maximum of -0.28 m s-1, which exists at a depth of 10 m at 10.5°S. The eastward flow south of 14°S is closely related with the Eastern Gyral Current (EGC) and the Northwest Shelf Inflow (NWS-inflow) (Liang and Xue, 2020). The large standard deviation values of flow velocity are concentrated in the range of westward flow, which can reach 0.06 m s-1 in the upper layer.

The comparison results reveal a narrower and stronger inflow and a wider and weaker outflow. This opposite flow among the cross-sections implies complicated flow structures in the high-resolution reanalysis datasets. Detailed flow structures along with additional field experiments should be verified.

To understand the interannual variations of the ITF transport, the upper, lower and full depth layers of the inflow and outflow transport anomaly are illustrated in Figure 5. The results are averaged from the four reanalysis datasets. In the upper layer (Figure 5A), the linear trends of inflow and outflow are -0.08 Sv year-1 and -0.04 Sv year-1, respectively (negative linear trend indicates an increase in southwesterly flow). During the strong El Niño event (1997/1998), there was a significant decrease in the upper layer inflow, with a value of -3.38 ± 4.15 Sv. It applies to 2015/2016 as well, when the upper layer inflow is -4.90 ± 1.98 Sv. During positive IOD events (2004–2008), the upper layer inflow increased significantly, from -5.31 ± 2.76 Sv in 2004 to -14.31 ± 4.14 Sv in 2008. However, the upper layer outflow intensified only during 2005–2006, which was significantly weaker than the inflow. In the upper layer outflow, the interannual variation is similar to those of the inflow, the average correlation coefficient between the upper layer inflow and outflow of the four models is 0.63, which passes the 99% significance test. The average flow is more intensified than the upper layer inflow, and the difference is 3.23 Sv. In the upper layer, it can be found that the inflow is smaller than the outflow, which is mainly due to the reason that the South China Sea (SCS) branch of the ITF is not taken into account. Note that, the depth of the Karimata Strait that connects the SCS and Indonesian Sea is less than 50 m, so its inflow mainly contributes to the upper layer.




Figure 5 | Interannual variability of the ITF transport in different layers. (A) The four reanalysis datasets average the upper layer inflow and outflow from 1993 to 2019. The red and blue lines represent inflow and outflow, respectively. The shaded areas indicate the standard deviation. (B, C) Same as (A) but for the lower layer and full depth (0 to the maximum modeling depth), respectively. Negative values mean southward or westward transport anomalies (enhanced ITF).



Unlike the upper layer, the lower layer flow shows no significant trend in the interannual scale (Figure 5B). For the lower layer inflow, the flow decreased in 2015 and increased in 2016, but with a much smaller amplitude than that of the upper layer. The lower layer outflow in the same period was also similar. In 1997, the lower layer outflow showed a similar change as the upper layer. In the lower layer, it can be found that the outflow is greater than the inflow, which is closely related to the large inflow of HYCOM.

The total ITF transport is obtained in Figure 5C. The results show that the average ITF transport is -13.33 Sv and -16.62 Sv of the inflow and outflow, with linear strengthening trends of -0.06 Sv year-1 and -0.05 Sv year-1, respectively. On average, the outflow value is larger than the inflow. The outflow volume transport estimated in this study is -16.62 Sv, which is close to that by SODA (-16.9 Sv) and the multi-model ensemble means of phase 5 of the Coupled Model Intercomparison Project (CMIP5) (-15.3 Sv) (Santoso et al., 2022). In the Makassar Strait, the mooring average flow of the upper (-9.10 Sv) and lower layers (-3.40 Sv) from 2004 to 2017 (Gordon et al., 2019) are consistent with the reanalysis datasets, which is -9.36 Sv in the upper layer and -1.88 Sv in the lower layer. The difference in the outflow and inflow (3.29 Sv) is larger than in the Makassar Strait (1.26 Sv). Two possible reasons contribute to the mismatch between the inflow and the outflow. First, the SCS branch of the ITF and the inflow along the northern Australia coast are not taken into account in the inflow and outflow calculation, which results in small and large estimates of the inflow and outflow, respectively. Results of the previous particle tracking experiments present the interannual average of the ITF branch in the South China Sea to be approximately 1.6–1.98 Sv (He et al., 2015; Xu et al., 2021). Most of the reanalysis data show that the inflow after adding Karimata Strait flow is comparable to the outflow. And for the high spatial resolution data (CMEMS, HYCOM), the inflow adding Karimata Strait flow is comparable to the outflow after subtracting the inflow along the northern Australia coast. Second, different reanalysis data show large dispersions in the ITF estimation. The full-depth ITF obtained by four kinds of reanalysis data (CMEMS, SODA, OFES, HYCOM) at the inflow position is -14.22 Sv, -15.01 Sv, -6.44 Sv, and -16.94 Sv, respectively. At the outflow position, they are -17.28 Sv, -15.20 Sv, -8.95 Sv, and -24.29 Sv, respectively. The differences are 3.06 Sv, 0.19 Sv, 2.51 Sv, and 7.35 Sv, respectively. The largest deviation between the outflow and the inflow is derived from the HYCOM dataset. In addition, the selection of the outflow section also affects the amount of transport. Overall, it is reasonable to use reanalysis data in this study to reflect the interannual changes of ITF.





4 Contribution of ENSO and IOD to the ITF transport



4.1 Relationships between climate modes and ITF transport

Figure 6 illustrates the variabilities of ITF transport in different layers that further explain the correlations between the climate modes and the detailed flow structure. For the upper layer inflow, the correlation coefficients between flow data and Niño 3.4, DMI, and CP indices are 0.73, -0.28, and 0.56, respectively. Among the above results, Niño 3.4 and CP pass the 99% significance test, whereas DMI does not pass the 95% significance test. In the lower layer inflow, the correlation coefficient between flow anomaly and Niño 3.4, DMI and CP indices are 0.23, 0.01 and 0.12, respectively, none of them pass the 95% significance test. This concludes that the influence of the climate index in the upper layer is greater than that in the lower layer.




Figure 6 | Interannual variations of the ITF transport anomaly and the climate indices. (A) The four datasets average the upper layer inflow transport anomaly (purple shadow), superimposed with the three indices (Niño 3.4-blue, DMI-orange, CP-green) after a 13‐month running mean. The DMI is the   after removing the linear influence of Niño 3.4. (B) Same as (A) but for the lower layer inflow. (C, D) The upper layer and the lower layer outflow transport.



In the upper layer outflow, the correlation coefficients between flow data and Niño 3.4, DMI, and CP indices are 0.52, -0.55, and 0.32, respectively. Among the above results, Niño 3.4 and DMI pass the 99% significance test, whereas CP does not pass the 90% significance test. In the lower layer outflow, the correlation coefficients of flow anomaly with Niño 3.4 and CP indices are 0.65 and 0.41, respectively, and they pass the 99% significance test, whereas the correlation coefficient with the DMI shows a low correlation (0.12). The correlation between Niño 3.4 and CP indices, and the lower layer is greater than the correlation of the upper layer inflow. Whereas, the correlation between the DMI index and the lower layer with that of the upper layer inflow is the opposite.

Niño 3.4 and DMI have opposite correlations for ITF in comparison with the upper layer inflow and outflow. The linear correlation coefficients between Niño 3.4 and ITF anomalies remained high at 0.73 and 0.52 for the inflow and outflow, respectively. However, the DMI is -0.28 and -0.55 in the inflow and outflow, respectively, and the correlation changes are relatively large. The conclusion is consistent with Li et al. (2020). In the upper layer, the CP index maintains a positive correlation with both inflow and outflow, which is similar to the impact of the Niño 3.4 index. The difference with Li et al. (2020) is that the Niño 3.4 and CP indices have a strong positive correlation with the lower layer outflow, which may be related to the period selected.




4.2 Relative importance of climate modes in the ITF variability

To quantitively expose the climate drivers of ITF transport, the RF method is adopted in this subsection. Before that, the dominant periods of the ITF transport should be clarified. The average multi-models flow data in different levels (Figure 7) help to obtain the power spectra of the upper layer and the lower layer inflow and outflow during 1993–2019. Power spectral analysis reveals that the upper layer and the lower layer inflow exhibit peak periods of 4–9 and 5–7 years, respectively. The upper layer and the lower layer outflow exhibit peak periods of 5–7 and 2–6 years, respectively. Overall, the results characterize a common peak period flow of 5–7 years at four different locations. Comparatively, Niño 3.4, as well as DMI and CP indices have peak periods of 2–7, 2–4, and within 10 years (Sullivan et al., 2016; Santoso et al., 2022), respectively.




Figure 7 | The power spectrum of inflow and outflow at different levels. The flow data is the multi-models average monthly data after a 13-month sliding average from 1993 to 2019. (A) The black and blue solid lines represent the result of the upper layer (0–300 m) and the lower layer (300–760m) inflow, respectively. The black and blue dotted lines represent their 95% confidence level. (B) same as (A) but for outflow.



The calculation of the power spectrum of the four levels of flow data and climate indices concludes that the main change cycle is concentrated in 5–7 years; hence, it is taken as the cycle for RF model training. In addition, to make full use of the data and the experimental results more reliable, the data is recycled (consider the 6-year cycle as an example: 1993–1998, 1994–1999…). Niño and IOD events often occur simultaneously during RF model training. Therefore, the  , which removes the influence of the linear trend of Niño 3.4, is adopted and the corresponding RF models by using four model data training are obtained. The relative importance of the RF training results in the period of 5, 6, and 7 years, respectively, are considered. Significant differences are not revealed in the results (figures not given). Therefore, the 6–year period is considered to reveal the relative importance of different climate indices at different levels, beginning with different starting years (Figure 8). Due to the OFES data is up to 2017, the results for the starting year 2013–2014 are obtained from CMEMS, HYCOM, and SODA data. In this study, the dominant index is defined as the importance higher than 33% and which exceeds the other two indices without overlapping.




Figure 8 | The importance of climate indices on the ITF transport. (A) The importance of climate indices (Niño3.4 blue, DMI red, CP green) in the upper layer inflow with a 6–year cycle. The triangles represent the major ENSO and IOD events that occur in the corresponding starting year, where the upper and lower edges represent ENSO and IOD events, respectively, and the solid and hollow indicate positive and negative anomalies, respectively. (B–D) same as (A) but for the lower layer inflow, the upper layer outflow, and the lower layer outflow, respectively. The shaded areas indicate the standard deviation. The dominant driver defined in this study is the one with the largest proportion and does not overlap with the other two indices.



The RF results show that in the upper layer inflow, starting from 1993–1995 (end of 2008 and 2000), the importance of the Niño 3.4 was significantly higher than that of the other two indices which was greater than 40%. In the 1996–2001 period (end of 2001 and 2006), Niño 3.4 showed more important but insignificant results (shadow regions cover each other) under the average training results of multi-model data. In the starting year of 2002–2003 (end of 2007 and 2008), the DMI became the important index (without overlap of the other two indices). In the periods of 2004–2012 (end of 2009 and 2017), the relative importance of the three indices were comparative and the overlapping shadow covered each other. In the periods of 2013–2014 (end of 2018 and 2019), the importance of the DMI increased, whereas the importance of the Niño 3.4 decreased.

Different from the upper layer, in the lower layer inflow, in the starting year of 1993 (end of 1998), the DMI was relatively important. However, in the starting year of 1994 (end of 1999), the importance of DMI decreased and CP was relatively important. In the starting years of 1995–1999 (end of 2000 and 2004), the shadows of the three indices overlapped each other. On average, the CP was relatively important but insignificant. In the initial years of 2000–2007 (end of 2005 and 2012), the importance of DMI gradually increased, and during 2002–2003 (end of 2007 and 2008), DMI had significant importance. In the later period, starting from 2008–2014 (end of 2013 and 2019), the error bars of the three indices overlapped, and again, there was no dominant index.

In the upper layer outflow, the Niño 3.4 was always at a high level during the 1993–1999 period (end of 1998 and 2004), which implies the dominance of Niño 3.4. During 2000–2001 (end of 2005 and 2006), the influence of the DMI on the upper layer outflow increased, but the importance of the Niño 3.4 decreased. In the starting years of 2002–2004 (end of 2007 and 2009), the DMI became the dominant factor, with an average relative importance of more than 50% between 2002 and 2007. In the initial years of 2005–2007 (end of 2010 and 2012), the average relative importance of the CP increased, but the shadow region coincided with the shadow region of the DMI. In the starting years 2008–2012 (end of 2013 and 2017), the importance of all three indices was relatively close. This indicates the complexity of the influencing factors of ITF during this period, and a significant index was not identified. In the following starting years 2013–2014 (end of 2018 and 2019), the DMI became the dominant factor again, with an average relative importance of more than 40%.

In the lower layer outflow, starting from 1993–1995 (end of 1998 and 2000), the error bars of the three indices coincided, and the significant index was not dominated. In the starting years of 1996–1998 (end of 2001 and 2003) and 2013–2014 (end of 2018 and 2019), the CP was the important index, with an average proportion of 40%. In the starting years of 1999–2000 (end of 2004 and 2005) and 2009–2012 (end of 2014 and 2017), there was no dominating index. In the initial years of 2001–2005 (end of 2006 and 2010), the DMI was the important influence index, with an average proportion of 50%. In the starting years of 2006–2008 (end of 2011 and 2013), the Niño 3.4 was the dominant influence index, with an average proportion of 50% in 2007.

Figure 9 illustrates the relative importance of the different climatic factor indices and their partial dependence in different periods. In the partial dependence plots, the steeper the curve change, the greater the influence of the corresponding index. The results reveal that the curve of Niño 3.4 to be the steepest and the influence on the upper layer inflow to be the greatest during 1993–1998. In 2002–2007, the DMI curve was the steepest and became the dominant index. Similarly, in 2008–2013, the CP and Niño 3.4 were relatively important. During 2014–2019, the importance of DMI increased. The results are consistent with those in Figure 8. The partial dependences of the climate indices on the lower layer inflow, as well as the upper layer and lower layer outflows are similar to the upper layer inflow (figures not given).




Figure 9 | The partial dependence of the upper layer inflow in different sub-period from the RF model on each climatic factor index. (A) 1993–1998, (B) 2002–2007, (C) 2008–2013 and (D) 2014–2019. The blue, orange, and green lines are Niño 3.4, DMI and CP indices, respectively. The trend of the curve describes the correlation between the corresponding factor and the predictor. The shaded part represents a 95% confidence interval.







5 Discussion

The RF model shows the domination of different climate modes in different periods. To explore the underlying mechanisms, four periods of 1993–2000, 2002–2008, 2009–2012, and 2013–2019 are composited, which corresponds to the dominant factors of Niño 3.4, DMI, no significant dominant index, and DMI, respectively. Among them, the dominant DMI from 2013 to 2019 mainly exists in the upper layer outflow. Previous studies reveal that the sea surface height anomaly (SSHA) between two oceans (NWP and SEI) is regarded as a good indicator of ITF transport (Wyrtki, 1987; Shilimkar et al., 2022). This viewpoint is adopted to demonstrate the underlying mechanism.

Figure 10 presents the average of SSHA for different periods, with the spatial location of NWP and SEI marked. During the ENSO domination period (1993–2000), the mean SSH in the NWP and SEI are -0.68 cm and -0.18 cm, respectively, and the SSH difference is -0.50 cm. During the first IOD domination period (2002–2008), the NWP and SEI are 0.49 cm and -0.50 cm, respectively, and the SSH difference is 0.99 cm. During the period with no dominant climate indices (2009–2012), the NWP and SEI are 5.58 cm and 1.24 cm, respectively, and the SSH difference is 4.34 cm. During the second IOD domination period (2013–2019), the NWP and SEI are -3.59 cm and -0.37 cm, respectively, and the SSH difference is -3.22 cm. The SSH field variation in the two regions is related to the ENSO and IOD events, especially the El Niño and negative IOD events, respectively. The SSH differences between the different periods are consistent with the mechanism, that during El Niño (negative IOD) events, it reduces the Pac-Indian Ocean pressure gradient and makes a weak ITF. On the contrary, La Niña and positive IOD events help to enhance the ITF.




Figure 10 | SSHA in different periods. (A) 1993–2000, (B) 2002–2008, (C) 2009–2012, (D) 2013–2019. The ranges in the red and green boxes in (A) are NWP (6°N–16°N, 125°E–155°E) and SEI (6°S–16°S, 85°E–115°E), respectively. The solid gray line is the contour line with SSHA of zero.



To further explore the mechanisms, the ENSO and IOD events in the years 1993–2019 are summarized in Table 1. During 1993–2000 when ENSO dominates, a strong El Niño event occurred in 1997/1998 accompanied by a positive IOD event (Figure 8A). This strong El Niño event led to reduced precipitation in the western Pacific and Indonesia, which directly led to a lower SSH at the ITF inflow position (Chandra et al., 1998; Gordon et al., 1999). Moreover, the occurrence of the positive IOD event reduced the SSH at the ITF outflow location (Cai et al., 2011). Thus, both the upper layer inflow and outflow of the ITF showed a strong reduction of 4.21 Sv and 1.21 Sv, respectively (Figure 5A). After experiencing a significantly weakened ITF in 1997/1998, the ITF returned to its previous level in late 1998 under the combined effect of La Niña and negative IOD events. Overall, it is inferred that the occurrence of the El Niño event in 1997/1998 played a dominant role in the 1993–2000 period.


Table 1 | Classification of years when El Niño or La Niña is contacted with positive IOD or negative IOD events from 1993 to 2019.



During 2002–2008 when IOD dominates, two successive positive IOD events occurred in 2006 and 2007, corresponding to the El Niño and La Niña events, respectively (Figure 8A). The positive IOD events are strongly associated with the Indian Ocean surface temperature anomalies (unusually cold in the east and warm in the west), further leading to a low SSH in the eastern Indian Ocean (Behera et al., 2008). During 2004–2008, both the upper layer inflow and outflow were enhanced 2.08–2.79 Sv (Figure 5A). During 2002–2008, the SSH differences between NWP and SEI was 0.99 cm, which partly explains the dominant effect of the IOD events. This concluded that the IOD events dominated the variability of the ITF transport during 2002–2008.

During 2009–2012 when no climate indices dominate, the successive La Niña events in 2010 and 2011 and the successive positive IOD events in 2011 and 2012 (Figure 8A), which partly explained that there were no single climate mode playing the dominant role during this period.

During 2013–2019 when IOD dominates in the upper layer outflow, it also corresponded to the sharp decrease in the upper layer outflow during 2015–2016 (Figure 5A) and the SSH difference between NWP and SEI was -3.22cm. During this period, relatively strong negative IOD event occurred in 2015/2016 (Figure 8A). Pujiana et al. (2019) also revealed that the sharp decrease in the upper layer inflow and outflow in 2015/2016 was attributed to the strong negative IOD events. In addition, successive positive IOD events occurred from 2017 to 2019, which further illustrated the dominant effect of IOD events.




6 Conclusions

In this study, the spatial and temporal variabilities of ITF are obtained in the four high-resolution reanalysis datasets (three are eddy-resolving and one is eddy-permitting models). The ITF is further divided into the upper layer and the lower layer flow, respectively. The results of spatial structure analysis reveal that among the three inflow passages, the Sulawesi Sea is the main inflow area in terms of inflow and the maximum westward flow velocity reaches -0.59 m s-1. In terms of outflow, the range of 9.5°S–13.41°S and 114°E in the eastern equatorial Indian Ocean cross-section is the main outflow area, and the maximum westward flow velocity reaches -0.28 m s-1. The temporal analysis results reveal that the southwest flow of the upper layer inflow and outflow have interannual enhanced trends, which are -0.08 Sv year-1 and -0.04 Sv year-1, respectively, whereas the lower layer inflow and outflow do not have obvious linear trends on the interannual scale. The interannual average of ITF full-depth flow is -14.97 Sv, whereas the linear enhanced trend is -0.06 Sv year-1.

During 1993–2019, the linear correlation coefficients of Niño 3.4 index and flow change are greater than those of DMI index and CP index at the upper layer and the lower layer inflow and the lower layer outflow, while the upper layer outflow shows a strong correlation with DMI index. To quantify the relative importance of the three climate factors to ITF changes over time, RF models are conducted at different levels. Through the analysis of the model results, the dominant climate factors of the upper layer inflow and outflow are clear in the three periods of 1993–2000, 2002–2008, and 2009–2012, which are dominated by Niño 3.4 (relative importance reaching 40%), DMI (relative importance exceeding 50%), and no significant dominant index. During 1993–2000, the El Niño event in 1997/1998 and the -0.5 cm SSH difference between NWP and SEI dominated the Niño 3.4 index. During 2002–2008, the dominant DMI was reinforced by successive positive IOD events in 2006–2007 and the 0.99 cm SSH difference between NWP and SEI. In the upper layer outflow, the dominant climate factor is clear in 2013-2019 period, which are dominated by DMI (relative importance reaching 40%). In the upper layer outflow, during 2013–2019, relatively strong negative IOD event in 2015/2016, the -3.22cm SSH difference between NWP and SEI, and successive positive IOD events occurred from 2017 to 2019 dominated the DMI index.

The climate drivers can markedly regulate the ITF transport. However, due to the complexity of the climate modes and the interaction between them, it is difficult to clarify the relative importance of each period (Wang et al., 2022). This study provides a new insight to quantify the response of ITF transport to climate drivers. However, the effect of climate factors on ITF in specific years could not be analyzed in detail. The influence of these factors on ITF changes in a specific climatic event can be studied with this method using identified significantly important climate factors.
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The interannual-decadal variability in the upper-ocean salinity of the southeast Indian Ocean (SEIO) was found to be highly correlated with the El Niño-Southern Oscillation (ENSO). Based on multisource data, this study revealed that this ENSO-like salinity variability mainly resides in the domain between 13°S-30°S and 100°E-120°E, and at depths above 150 m. This variability is principally driven by meridional geostrophic velocity (MGV), which changes with the zonal pattern of the sea surface height (SSH). Previous studies have reported that the variability in the SSH in the south Indian Ocean is principally driven by local-wind forcing and eastern-boundary forcing. Here the eastern-boundary forcing denotes the influence of SSH anomaly radiated from the western coast of Australia. A recent study emphasized the contribution of local-wind forcing in salinity variability in the SEIO, for its significant role in generation of the zonal dipole pattern of SSH anomaly in the south Indian Ocean, which was considered to be responsible for the anomalous MGV in the SEIO. While our results revealed a latitudinal difference between the domain where the SSH dipole pattern exists (north of 20°S) and the region in which the ENSO-like salinity variability is strongest (20°S-30°S), suggesting that this salinity variability cannot be attributed entirely to the SSH dipole pattern. Our further investigation shows that, the MGV in the SEIO changes with local zonal SSH gradient that principally driven by eastern-boundary forcing. In combination with the strong meridional salinity gradient, the boundary-driven MGV anomalies cause significant meridional salinity advection and eventually give rise to the observed ENSO-like salinity variability. This study revealed the leading role of eastern-boundary forcing in interannual variability of the upper-ocean salinity in the SEIO.




Keywords: salinity, Indian Ocean, ENSO, sea surface height (SSH), geostrophic velocity, Rossby waves propagation




1 Introduction

Salinity plays an important role in ocean dynamics processes in the southeast Indian Ocean (SEIO). For example, the existence of the Eastern Gyral current (EGC) can be largely attributed to the strong meridional salinity gradient in the SEIO (Figure 1; Menezes et al., 2013). The halosteric contribution to sea level change in the SEIO is found to be more significant than the thermosteric contribution (Llovel and Lee, 2015). The significant freshening of upper-layer water in the SEIO during 2010-2011 led to a remarkable increase in Leeuwin Current (LC) transport and resulted in the subsequent strong marine heatwave near the western coast of Australia (Pearce and Feng, 2013; Feng et al., 2015), which is also known as a Ningaloo Niño named by Feng et al. (2013). Therefore, a better understanding of the variability of the upper-layer salinity in the SEIO is crucial for improving the ability to simulate and predict the regional oceanic and climate changes.




Figure 1 | Mean sea surface salinity (SSS; psu) from the MOAA GPV for 2005-2020. The solid black arrows denote surface currents: the Indonesian Throughflow (ITF); South Equatorial Current (SEC); East Gyral Current (EGC) and the Leeuwin Current (LC). The dashed red arrow represents the oceanic waveguide along which the Pacific ENSO signals propagate. The blue arrows demonstrate the walker circulation.



Previous studies have reported that, the interannual-decadal variability in the SEIO upper-ocean salinity is tightly related to the ENSO signal (Phillips et al., 2005; Zhang et al., 2016; Zhang et al., 2018; Hu et al., 2019; Nie et al., 2020; Wu et al., 2021). This ENSO-like variability was mainly attributed to the variability in horizontal advection, while surface freshwater flux was found to play a secondary role. Through salinity budget analyses, researchers have further noted that variability in horizontal advection is mainly determined by anomalous meridional velocity (Zhang et al., 2016; Zhang et al., 2018; Huang et al., 2020; Wu et al., 2021). This is largely due to the strong meridional salinity gradient that exists between 15°-28°S (Figure 1), which is formed by the northern freshwater conveyed by the Indonesian throughflow (ITF) and the South Equatorial Current (SEC), and the southern high-salinity water generated by strong evaporation in the subtropical South Indian (e.g. Rochford, 1962; Wijffels et al., 2002; Nie et al., 2022). Because of this salinity front, even small meridional velocity changes could result in significant meridional salinity flux and lead to remarkable changes in salinity.

Therefore, the physical mechanism for meridional velocity changes is key to understanding the ENSO-like variability in the SEIO upper-ocean salinity. A recent study by Wu et al. (2021) attributed the anomalous meridional transport to the zonal dipole pattern of sea surface height (SSH) anomalies in the south Indian Ocean, and emphasized the role of local-wind forcing for its dominant role in variations of the SSH in the western basin (the western pole of the dipole pattern). However, based on previous studies, this zonal SSH dipole pattern is used to represent basin-wide meridional geostrophic transport in the south Indian Ocean (Lee, 2004; Lee and McPhaden, 2008; Zhuang et al., 2013; Meng et al., 2020; Nagura, 2020), rather than regional meridional transport in the SEIO. In addition, the significant contribution from local-wind forcing to the SSH anomaly is confined to lower latitudes (between 10° and 18°S; Masumoto and Meyers, 1998; Zhuang et al., 2013; Nagura and McPhaden, 2021). It becomes relatively weak at midlatitudes (between 19° and 33°S), where the eastern-boundary forcing becomes dominant (Zhuang et al., 2013; Menezes and Vianna, 2019; Nagura and McPhaden, 2021). Based on our analyses (Figure 2), the region where salinity is most strongly affected by ENSO signal covers latitudes from 13° to 30°S, with the highest correlation coefficients in the southern part of this range (20°-30°S). Clearly, there is a latitudinal difference between the region where the local-wind forcing is significant and the SSH dipole pattern exists (north of 20°S) and the region where the ENSO-like salinity variability is strongest. This suggests that the anomalous meridional velocity and the associated salinity variability in the SEIO cannot be attributed entirely to the zonal SSH dipole pattern.




Figure 2 | The correlation coefficient between the Niño 3.4 index and salinity tendency (∂S/∂t) averaged at depths above 150 m (A, C, E). The correlation coefficient between the Niño 3.4 index and salinity tendency averaged at latitudes between 13°S and 30°S (B, D, F). The results are based on salinity data from the Argo (A, B; 2005-2020), ECCO V4r4 (C, D; 1992-2017) and ORAS5 (E, F; 1979-2018). Values exceeding the 95% confidence level are shown. The black box denotes the study area, referred to as the “SEIO ENSO zone”.



The eastern-boundary forcing is significantly modified by the remote forcing from the Pacific. This includes the effects of oceanic planetary waves generated by tropical Pacific winds, which enter the south Indian Ocean through the oceanic waveguide (Figure 1) crossing the Indonesian archipelago as coastal trapped Kelvin waves, and then propagate westwards as Rossby waves from the western coast of Australia (Clarke, 1991; Clarke and Liu, 1994; Meyers, 1996; Potemra, 2001; Wijffels and Meyers, 2004; Cai et al., 2005; Feng et al., 2010; Feng et al., 2011; Menezes and Vianna, 2019; Nagura, 2020). Recently, alongshore winds at the western coast of Australia were also found to play a sizeable role in setting up the eastern boundary conditions (Kersalé et al., 2022). As a consequence, the SSH variability driven by eastern-boundary forcing is tightly linked with ENSO events. Therefore, we speculate that the meridional velocity and the ENSO-related salinity variability in the SEIO is primarily driven by eastern-boundary forcing, while the influence from the western SSH anomaly driven by local winds in the interior ocean is limited.

To fully understand the underlying dynamics of the correlation between the upper-ocean SEIO salinity and ENSO signal, this study first clarified the domain where this correlation is most significant. Then, salinity budget analyses were conducted to verify the dominant role of the meridional geostrophic velocity (MGV) in salinity variability. Next, a one-dimensional (1D), 1.5-layer long Rossby wave model was used to evaluate the relative importance of local-wind forcing and eastern-boundary forcing in the variability of the SSH in the SEIO. The contributions of these factors to MGV and upper-layer salinity changes were computed and compared. Through these analyses, we clarified the dominance of eastern-boundary forcing in determining the ENSO-like salinity variability in the SEIO. The remainder of this paper is organized as follows: Section 2 provides a brief description of the datasets and methods used. Sections 3 and 4 describe the results. The main conclusions are summarized in Section 5.




2 Data and methods



2.1 Data

Salinity data from three dataset were adopted in this study. The Monthly Objective Analysis using Argo float data (MOAA GPV) is an Argo-based gridded products from the Japan Agency for Marine-Earth Science and Technology (Hosoda et al., 2008). It provides monthly salinity data from 2001 onwards with a horizontal resolution of   and vertical grid spacings ranging from 10 m near the sea surface to 250 m at 2000 m depth. The global ocean model product of Estimating the Circulation and Climate of the Ocean Version 4 release 4 (ECCO V4r4) is ECCO’s latest ocean state estimate (Forget et al., 2015; ECCO Consortium et al., 2021). It covers the period of 1992-2017 with a horizontal resolution that spatially varies from 22 km to 110 km, with the lowest resolution at mid latitudes and the highest resolution at high latitudes. The vertical grid intervals increase from 10 m near the surface to 457 m near the ocean bottom. The monthly data from ECCO V4r4 are also used for the salinity budget analyses in this study because they provide all the variables and enable the closure of the salinity budget equation. The ECMWF Ocean Reanalysis System 5 (ORAS5) is a global ocean ensemble reanalysis (Zuo et al., 2019) that assimilates the on-site temperature and salinity profiles from the quality-controlled EN4 dataset (Good et al., 2013). This reanalysis provides gridded monthly salinity data at 75 levels with a resolution of   and covers the period from 1979 to the present, with a backwards extension from 1958 onwards.

To analyze the variability of geostrophic velocities and run the linear, 1D, 1.5-layer long Rossby wave model (section 2.2), monthly multi-satellite merged SSH anomalies and the corresponding geostrophic velocities from the French Archiving, Validation, and Interpolation of Satellite Oceanographic Data (AVISO) project and surface winds from the ECMWF ERA5 reanalysis were also used in this study. The gridded global AVISO SSH data are available from January 1993 to present, with a horizontal resolution of  . ERA5 is the fifth generation ECMWF reanalysis product of the global climate and weather (Hersbach, 2020). It provides gridded monthly wind speed data at 37 pressure levels with a resolution of 0.25°×0.25° and covers the period from 1959 to the present.




2.2 Methods

The salinity budget in the SEIO is evaluated following the methods of Qu et al. (2011); Gao et al. (2014) and Zhang et al. (2018):









where S is salinity, t is time, and V and A are the volume and surface area of the studying region, respectively. E and P are evaporation and precipitation, respectively, and SEF represents surface external forcing due to E‐P. MIX is the tendency due to salinity diffusive fluxes, which consists of isopycnal and diapycnal components. In ECCO V4r4, the mixing coefficients for eddies are parameterized by the Gent and Mcwilliams (1990) scheme, those for isopycnal mixing are parameterized by Redi (1982) and those for diapycnal mixing by Gaspar et al. (1990). Res denotes the residual which is induced by interpolating the budget terms from the native grid of ECCO to the specific grid of our study area. The advection term (ADV) can be further decomposed as follows:



In Eq. (5), the overbars represent the climatological mean and primes represent the deviation from the mean value. The first and third parts on the right-hand side of the equation, representing the mean advection terms and higher-order nonlinear terms, are not discussed in this work due to their small contributions. The first two terms (-  ,  ) in the middle part represent the effect of the salinity anomaly that is advected by mean currents, and the last two terms ( ,  ) are advection terms linked with anomalous currents and the mean horizontal salinity gradient.

The SSH variability is examined using the linear, 1D, 1.5-layer long Rossby wave model (e.g. Qiu et al., 1997):



where   is the SSH, t is time, phase speed   is computed following the methods used by Nagura and McPhaden (2021), x is longitude,   and   are the acceleration due to gravity and reduced gravity, respectively,   is the horizontal gradient operator,   is the wind stress vector, f is the Coriolis parameter,   is the mean seawater density, and   denotes the damping coefficient.





3 Correlation between upper-ocean SEIO salinity and ENSO

The strong correlation between upper-ocean SEIO salinity and the ENSO index has been detected in both observations and reanalyzes (Phillips et al., 2005; Zhang et al., 2016; Zhang et al., 2018; Hu et al., 2019; Nie et al., 2020; Wu et al., 2021). In these studies, correlation estimation between upper-layer SEIO salinity and the ENSO index was commonly based on spatial mean salinity values. The spatial scales of the SEIO that were defined by different studies were remarkably different to achieve different research goals. For examples, Hu et al. (2019) analyzed the salinity anomaly in the domain of 100°-120°E and 12°-16°S within the upper 400 m depth, while Wu et al. (2021) defined the SEIO as the region between 90°-110°E and 12°-30°S at depths shallower than 200m. This study aimed to explore the relationship between upper-layer salinity changes and ENSO signals. Therefore, it was a precondition for us to clarify the domain where the effect of the ENSO signal is the most significant. However, we first needed to determine which variable should be studied, salinity or the salinity tendency (∂S/∂t)? Earlier studies investigated the relationship between the SEIO salinity anomalies and the ENSO signal and reported a positive correlation coefficient of roughly 0.5-0.6 (e.g., Zhang et al., 2016; Hu et al., 2019). More recent studies tended to emphasize the positive correlation between the salinity tendency and the ENSO signal (e.g. Nie et al., 2020; Wu et al., 2021) due to the higher correlation coefficient (approximately 0.7) between them. This could be attributed to the fact that the ENSO modulated ∂S/∂t more directly by influencing local advection velocities or freshwater flux, as can be referenced from Eq. (1). Therefore, this study also chose salinity tendency as the target variable.

The spatial distribution of the correlation coefficient between the Niño 3.4 index and upper-ocean salinity tendency is shown in Figure 2. We can observe that the ARGO-based results show the highest values (>0.5) along the western coast of Australia between approximately 13°S-30°S and 100°E-120°E (Figure 2A) and at depths above 150 m (Figure 2B). The ECCO-based results show a similar pattern but over a broader region (Figures 2C, D) and show the highest values at latitudes between 13°S-30°S. The highest values in the ORAS5-based results are narrowly confined to the northwestern coast of Australia at lower latitudes (13°S -20°S), but expand towards the west and cover a larger area at midlatitudes (20°S -30°S). They also vertically exist at depths shallower than 150 m, with the maxima residing at the subsurface between 80 m and 150 m. The differences between these results may result from the different lengths of their respective time periods. However, in general, a significant positive correlation can be found in the domain between 100°E -120°E and 13°S -30°S (black dashed boxes in Figure 1) and at depths above 150 m. Therefore, this should be the key region for estimating of the relationship between salinity changes and ENSO signals, and it was thus selected as the study region in this work and referred to as the “SEIO ENSO zone” hereafter. In particular, these results commonly show the strongest values at midlatitudes (20°S-30°S), where the eastern-boundary forcing play the dominant role in SSH variability. On the other hand, the ENSO-like salinity variability is relatively weak at lower latitudes (north of 20°S), where the zonal SSH gradient and basinwide meridional geostrophic transport are strongly modulated by local-wind forcing. This suggests that the contribution from local winds to variabilities in the MGV and salinity in the SEIO might be limited. For the regional mean results (Figure 3), the correlation coefficients between the salinity tendency and Niño 3.4 index for different time periods basically show positive values of approximately 0.7, demonstrating that this connection is not time dependent.




Figure 3 | Normalised time series of the Niño 3.4 index (black) and the averaged salinity tendency in the “SEIO ENSO Zone” based on ORAS5 (red), ECCO (blue) and Argo (green) datasets. The numbers in parentheses denote the correlation coefficients between the Niño 3.4 index and salinity tendency.



Since both the horizontal and vertical scales of our study area were remarkably different from those of former relevant studies, we re-examined the salinity budget in the “SEIO ENSO zone” (Figure 4). The terms of salinity tendency, air-sea freshwater flux, advection, and mixing data were extracted from the ECCO V4r4 outputs (Figure 4A). The horizontal geostrophic advection term was also illustrated in this figure, which was obtained by using geostrophic velocities based on AVISO SSH anomalies and temperature/salinity from ECCO. Our results were basically in accordance with those of former studies. There were good consistencies between the salinity tendency and the advection term, as well as the geostrophic horizontal advection. However, the contributions by freshwater flux and mixing were comparably much weaker. This indicated that horizontal geostrophic advection was the main contributor to salinity variability. Further analyzation reveals that, the non-geostrophic horizontal advection term changes oppositely with the advection term and horizontal geostrophic advection term (Supplementary Figure 1). This suggests that the non-geostrophic horizontal advection offset the contributions from the geostrophic horizontal advection. The reason is probably as follows, the surface winds in the SEIO show anticyclonic (cyclonic) anomaly during El Niño (La Niña) (Supplementary Figure 2), which induce a southward (northward) Ekman transport that opposite with the meridional geostrophic transport anomaly.




Figure 4 | (A) Anomalies of the salinity tendency (ST) and salinity budget terms (psu/mon) calculated in the “SEIO ENSO zone”: freshwater flux (E-P), mixing (MIX), residual (Res), advection (ADV) and its component due to effect of geostrophic flow (ADVg). (B) Same as (A) but for ADVg and its composite terms:  ,  ,  , and  .



Then, horizontal geostrophic advection was further decomposed into four terms according to Eq. 5 (Figure 4B). Higher-order nonlinear terms ( ) are not show due to their negligible contributions, which will be further discussed in section 5. The results demonstrated that, the   term, determined by anomalous MGV, was the predominant contributor to horizontal advection changes. The   and   terms represented advection of salinity anomalies from upstream regions and they clearly have no significant influence on geostrophic horizontal advection and salinity variability in the “SEIO ENSO zone”. The role of the   term, representing the contribution of anomalous zonal geostrophic currents, was also insignificant because of the weak climatological zonal salinity gradient. This can be further observed in the composite maps of the four terms during the El Niño events and La Niña events (Figure 5). The anomalies of the   term during different ENSO phases are significant in the SEIO, especially in the “SEIO ENSO Zone”. The anomalies of the other terms are comparably much weaker. Therefore, to understand the underlying dynamics between upper-ocean SEIO salinity changes and ENSO signals, we first need to clarify the role of ENSO events in the variability of the MGV.




Figure 5 | Composite of the advection terms (psu/mon) induced by geostrophic flow during El Niño and La Niña: (A, B)  , (C, D)  , (E, F)  , and (G, H)  .






4 The formation of MGV anomaly

To study the MGV changes in the “SEIO ENSO Zone”, we first investigated the variability in SSH and its connection with ENSO events based on observed SSH anomalies. The observed monthly SSH anomalies from January 1993 to December 2020 were obtained from satellite altimetry provided by the AVISO project. The seasonal variability of meridionally averaged SSH anomalies in the “SEIO ENSO Zone” during five typical El Niño events (1994, 1997, 2002, 2009, 2015) and five typical La Niña events (1998, 1999, 2007, 2010, 2011) are illustrated in Figures 6 and 7, respectively. During the El Niño events, the SSH gradually changed from a flat form to a pattern with higher values in the western part and lower values in the eastern part (Figure 6). The zonal SSH gradient became largest during boreal winters when ENSO events peaked in amplitude (Rasmusson and Carpenter, 1982; Trenberth, 1997). As a result, the MGV show northwards anomalies due to the geostrophic balance. In contrast, the SSH shifted to a pattern with lower values in the western part and higher values in the eastern part during La Niña events (Figure 7), and the MGV show southwards anomalies. Figures 8A, B further demonstrates that the zonal SSH difference in the “SEIO ENSO Zone” can be mostly attributed to SSH anomalies along the west coast of Australia, while the SSH anomalies near the western boundary at 100°E were comparatively small. The time series in Figure 8C demonstrates the simultaneous shift between the MGV and the local zonal SSH gradient within the “SEIO ENSO Zone”, with a correlation coefficient of -0.83, and both were closely related to the ENSO signal. Note that the variability in the zonal SSH gradient was represented by the zonal slope of the linear fitted results, as illustrated in Figures 6, 7. The above results indicated that the ENSO signal influenced the MGV in the SEIO by modulating the local SSH pattern.




Figure 6 | (A–I) Seasonal variability of the meridional mean SSH anomaly (m) between 13°S and 30°S in El Niño years (1994, 1997, 2002, 2009, and 2015; colored lines). The mean value for each month (solid black line) with a linear fit (dashed black line) is also illustrated.






Figure 7 | (A–I) Seasonal variability of the meridional mean SSH anomaly (m) between 13°S and 30°S in La Niña years (1998, 1999, 2007, 2010, and 2011; colored lines). The mean value for each month (solid black line) with a linear fit (dashed black line) is also illustrated.






Figure 8 | Composite of the SSH anomaly (m) in boreal winters of El Niño (A) and La Niña (B) years. The dashed black box on the left represents the region where the SSH shows significant opposite anomalies in compare with that in the “SEIO ENSO zone” (dashed black box on the right) in different ENSO events. (C) Normalized time series for the zonal slope of the linear fitted meridional mean SSH anomaly, meridional geostrophic velocity (MGV) in the “SEIO ENSO zone” and Niño 3.4 index. The slope is shown with an opposite sign for easier comparison.



Previous studies have noted that ENSO events interact with the Indian Ocean through both “atmospheric bridge” and oceanic routes. By zonally shifting the convective center of the Walker Circulation, local surface winds in the southern Indian Ocean are influenced by the ENSO via the atmospheric bridge (Yu et al., 2005; Volkov et al., 2020). Then, the wind-induced Ekman pumping anomalies alter the SSH in the interior region of the south Indian Ocean by generating westwards propagating Rossby waves. Through the oceanic waveguide crossing the Indonesian archipelago, oceanic planetary waves generated by tropical Pacific winds can be conveyed into the south Indian Ocean as coastally-trapped Kelvin waves and then propagate westwards as Rossby waves from the western coast of Australia influencing the SSH and geostrophic velocity in the south Indian Ocean (Clarke, 1991; Clarke and Liu, 1994; Meyers, 1996; Potemra, 2001; Wijffels and Meyers, 2004; Cai et al., 2005; Feng et al., 2010; Feng et al., 2011; Menezes and Vianna, 2019; Nagura, 2020; Nagura and McPhaden, 2021). Therefore, both local surface winds and the westwards propagating signals from the eastern boundary of the south Indian Ocean could be responsible for the ENSO-related SSH variability in the “SEIO ENSO Zone”. For simplicity, the effects of the local surface wind and signals from the eastern boundary will be referred to as local-wind forcing and eastern-boundary forcing respectively in the remainder of this paper.

To evaluate the relative role of local-wind forcing and eastern-boundary forcing in SSH variability, a linear, 1D, 1.5-layer long Rossby wave model was adopted in this study. By using this model, the SSH variability could be separated into parts that is forced by local winds and those forced by SSH anomalies radiating from the eastern boundary, thus allowing us to make comparisons and find the dominant dynamic process. Eq. (6) was integrated from 100°E to 120°E at each latitude. Surface wind stresses from ERA5 were adopted. SSH anomalies along the western coast of Australia based on satellite observations from the AVISO project, were set as the eastern-boundary condition, and the values in January 1993 were set as the initial condition. The equation was integrated from January 1993 to December 2020, during which both SSH anomalies and surface wind data were available. The first two years of the integration were considered the spin-up period, and the corresponding results were excluded. The time series of modeled SSH anomalies were compared with the observations. The components driven by the local winds and eastern boundary SSH anomalies were determined by setting the eastern boundary SSH anomalies to zero and the wind stress to zero, respectively.

The variability of the SSH at latitudes from 13°S to 30°S was simulated individually. Here, the results representing the lower (13°S), middle (19°S) and higher (28°S) latitudes of the “SEIO ENSO zone” are shown as examples (Figure 9). Modeled SSH anomalies were generally consistent with the observations despite some small discrepancies. Except for the slower westwards propagation speed of the SSH anomalies, the SSH anomalies at middle and higher latitudes were similar to those at lower latitudes. This can be explained by the fact that the observed SSH anomalies along the western coast of Australia are meridionally coherent, and the amplitude does not change much from 10° to 35°S as a result of the poleward propagation of coastal Kelvin waves (Menezes and Vianna, 2019). Generally, the total solution in the “SEIO ENSO Zone” is largely contributed by the boundary-driven part, whereas the variability of the wind-driven part is weak in this region. This indicates that the SSH variability in our study region is dominated by eastern-boundary forcing, rather than local-wind forcing.




Figure 9 | SSH anomalies (m) at 13°S (A–D), 19°S (E–H) and 28°S (I–L), representing lower, middle and higher latitudes in the “SEIO ENSO zone”, for observations (A, E, I), simulated results (B, F, J), the part of the simulated solution driven by eastern-boundary forcing C, G, K), and the part of the simulated solution driven by local-wind forcing (D, H, L). The seasonal cycle was removed by using the 13-month running mean method.



Then the MGV values were computed based on boundary-driven SSH anomalies and wind-driven SSH anomalies (Figure 10A). The simulated MGV values were generally consistent with the observed results from the AVISO project. The boundary-driven part was apparently the dominant component, while the contribution by the wind-driven part was insignificant. Their contributions to upper-ocean salinity variability in the “SEIO ENSO Zone” are shown in Figure 10B, from which we can observe that the simulated   term was consistent with the advection term from ECCO outputs, suggesting that the geostrophic advection induced by local SSH anomalies was the primary contributor to salinity variability in the “SEIO ENSO zone”. The variability of   was principally composed of the boundary-driven part, and the contribution of the wind-driven part was minor. This demonstrates the dominant role of eastern-boundary forcing in this region.




Figure 10 | (A) Anomaly of meridional geostrophic flow (m/s) based on observational SSH anomaly (solid black line) and modeled SSH anomaly (black dashed line), and its decomposition into the effects of eastern-boundary conditions (red) and local-wind forcing (blue). (B) Anomalies of the advection term for the salinity budget from ECCO (black), with   (psu/mon) term generated by simulated meridional geostrophic flow (dashed black line) and its two components (colored lines).



According to previous studies, the amplitude of wind-driven SSH anomalies increases to the west and plays a dominant role in SSH variability (Volkov et al., 2020; Nagura and McPhaden, 2021). These wind-driven SSH anomalies in the western part of the south Indian Ocean, in combination with the SSH anomalies along the eastern boundary, induced the zonal SSH difference in the south Indian Ocean and resulted in variabilities in the basinwide meridional geostrophic transport (Lee, 2004; Lee and McPhaden, 2008; Zhuang et al., 2013; Nagura, 2020). However, the significance of local-wind forcing is confined to low latitudes (equatorward of 20°S), and it becomes relatively weak at midlatitudes due to the weakened wind stress (Masumoto and Meyers, 1998; Zhuang et al., 2013; Nagura and McPhaden, 2021). This can also be observed from the composite SSH anomalies in Figure 8. During different ENSO phases, the SSH anomaly in the western south Indian Ocean mainly resides in region north of 20°S (dashed box to the western side), and there was a significant latitudinal difference between this domain and the region with the strong ENSO-related variations in SSH (dashed box to the eastern side) and salinity (Figure 2). Note that the salinity shows the strongest ENSO-like variability in latitudes between 20°S and 30°S. Thus, the SSH anomaly in the western south Indian Ocean driven by local winds in the interior ocean, and the associated SSH dipole pattern is apparently insufficient to explain those variabilities in the SEIO. On the other hand, without considering the SSH anomaly in the western basin, our results based on local SSH anomaly in the SEIO explained a major component of the variations in the MGV and salinity. Therefore, we conclude that the MGV and salinity tendency in the “SEIO ENSO Zone” is the primarily driven by local SSH variations that largely determined by easter-boundary forcing.




5 Conclusions and discussion

The close relationship between the interannual-decadal variability in the SEIO upper-ocean salinity and the ENSO signal has been discussed in plenty of previous work (Phillips et al., 2005; Zhang et al., 2016; Zhang et al., 2018; Hu et al., 2019; Nie et al., 2020; Wu et al., 2021). Based on multi-sources datasets, this work clarified the domain where this ENSO-like salinity variability mainly exists for the first time. Based on our results, the correlation between the salinity variability and ENSO signal is strongest in the region between 100°E and 120°E, 13°S and 30°S, and in depths above 150 m. And this relationship is not time-dependent.

This ENSO-like variability can be largely attributed to the MGV anomalies driven by the zonal SSH gradient, as had been suggested by several former works (Zhang et al., 2016; Zhang et al., 2018; Huang et al., 2020; Wu et al., 2021). The variability in the SSH in the south Indian Ocean is influenced by both local-wind forcing and eastern-boundary forcing (e.g. Menezes and Vianna, 2019; Nagura and McPhaden, 2021). A recent study by Wu et al. (2021) attributed the MGV changes in the SEIO to the zonal SSH dipole pattern in the south Indian Ocean and emphasized the contribution from local winds for its dominant role in SSH variability in the western basin. Their analyses supported the idea that local-wind forcing plays an important role in SSH variability in the western south Indian Ocean and forming of the zonal SSH dipole pattern across the basin. But their study did not verify the causality between the SSH dipole pattern and the MGV anomalies in the SEIO. On the other hand, our results revealed a latitudinal difference between the domain where the SSH dipole pattern exists (north of 20°S) and the region in which the ENSO-like salinity variability is strongest (20°S-30°S), suggesting that this salinity variability cannot be attributed entirely to the zonal SSH dipole pattern.

To find the dominant factor that modulating the interannual MGV variability in the SEIO, this study evaluated the relative contribution from local-wind forcing and eastern-boundary forcing. Results show that both local SSH and MGV are driven primarily by eastern-boundary forcing. In combination with the strong meridional salinity gradient, the significant boundary-driven MGV anomalies cause large meridional salinity advection and eventually lead to the observed ENSO-like salinity variability. Note that, even without considering the SSH anomaly in the western basin, our results based on local SSH anomaly explained a major component of the variations in the MGV and salinity. This demonstrates that the MGV and salinity in the SEIO is primarily determined by local SSH anomaly that driven mostly by the eastern-boundary forcing, while the influence from SSH anomaly in the western basin forced by local winds in the interior ocean is limited.

The eastern-boundary forcing is determined by eastern-boundary conditions along the western coast of Australia. Based on previous studies, the eastern-boundary conditions are principally driven by oceanic planetary waves associated with ENSO signals in the tropical Pacific, which are transported into the south Indian Ocean via the oceanic waveguide crossing the Indonesian archipelago (Clarke, 1991; Clarke and Liu, 1994; Meyers, 1996; Potemra, 2001; Wijffels and Meyers, 2004; Cai et al., 2005; Feng et al., 2010; Feng et al., 2011; Menezes and Vianna, 2019; Nagura, 2020). A recent study by Kersalé et al. (2022) suggest that the alongshore wind forcing also drives SSH anomaly along the coast and play an important role in setting up the eastern boundary conditions. And the alongshore winds are also tightly related with ENSO via the Walker circulation between the Pacific and Indian Ocean. Therefore, the eastern-boundary forcing is strongly modified by the remote ENSO events through both oceanic pathways and atmospheric bridge, and this may explain the strong ENSO signal preserved in the associated variations in the MGV and salinity in the SEIO.

One important caveat is that the contribution of ocean eddies to salinity variability in the SEIO is probably underestimated by existing research, as has already been suggested by former studies (e.g. Zhang et al., 2016; Huang et al., 2020; Wu et al., 2021). This is because the research so far, including this work, are mostly based on dataset with coarse resolution. The SEIO is known for energetic eddies propagating westward from West Australia coast with strong interannual variability associated with the ENSO (Zheng et al., 2018). And eddy-induced meridional salinity flux was found to play an essential role in freshwater balance in the SEIO (Qu et al., 2019). Therefore, a better understanding for the effect of the mesoscale process still requires further investigation based on eddy-resolving model outputs.

As has been emphasized by plenty of previous studies, salinity play an essential role in ocean dynamic processes in the SEIO and therefore have potential influence on changes of regional climate and the marine ecosystem (e.g. Feng et al., 2013; Menezes et al., 2013; Pearce and Feng, 2013; Llovel and Lee, 2015; Feng et al., 2015). This work clarified the domain where the upper-ocean salinity is strongly influenced by the remote ENSO events and the underlying dynamics. And thus provide a new theoretical basis for regional ocean modelling and help to promoting marine environmental protection.
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Tides are of great importance for ocean mixing and nearshore ocean engineering. Bottom friction is a major factor in tidal dissipation and is usually parameterized by the bottom friction coefficient (BFC). BFC is a critical parameter in numerical tidal models and is known to vary with time and space, as calculated with measured data. However, it is difficult to accurately adjust the spatially-temporally varying BFC in numerical tidal models. Based on the relationship between the spatially-temporally varying BFC estimated by adjoint data assimilation and the simultaneously simulated current speed, an empirical formula of BFC with a dependence on the current speed is proposed. This new empirical formula of BFC is compared with several traditional empirical formulas, including the constant BFC, the Chezy-Manning BFC, and two depth-dependent BFCs. When the four principal tidal constituents (M2, S2, K1, and O1) in the Bohai, Yellow and East China Seas (BYECS) are simulated, the mean vector error between the simulated results obtained using the current speed-dependent BFC and the TOPEX/Poseidon satellite altimetry data (the tidal gauge data) is 8.81 cm (10.62 cm), which is decreased by up to 8.1% (18.2%) compared with those using the several commonly used empirical formulas of BFC. Furthermore, in the sensitivity experiments where only the M2 tide in the BYECS, the M2, S2, K1, and O1 tides in the Bohai and Yellow Sea (BYS), and the M2, S2, K1, and O1 tides in the South China Sea (SCS) are simulated, the errors between the simulated results obtained by using current speed-dependent BFC and the tidal gauge data are less than those using the other empirical formulas of BFC, further demonstrating the superiority of the current speed-dependent BFC proposed in this study. From numerical model experiments, the current speed-dependent BFC can adequately reflect the spatial and temporal variations of BFC and improve the simulation accuracy of tides, thus having a broad application scope.
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1 Introduction

Bottom friction plays a critical role in the energy balance and dissipation of the ocean dynamical system (Munk, 1997; Kagan et al., 2012) as well as in the transport of sediments. In the Bohai, Yellow, and East China Seas (BYECS), tidal dissipation has a strong influence on M2 and S2 tides, and 80% of the tidal energy in this region is dissipated by bottom friction (Teng et al., 2016). The bottom friction coefficient (BFC), as an important parameter to characterize the bottom friction, is one of the key parameters affecting the accuracy of the simulation of tide, storm surge and suspended sediment transport (Fan et al., 2019; Qian et al., 2021). However, BFC cannot be obtained by direct observations and is difficult to accurately set in numerical models. The setting of BFC will affect the parameterization of bottom friction, and have a further influence on the effectiveness and accuracy of numerical simulations (Nicolle and Karpytchev, 2007; Zhang et al., 2011; Song et al., 2013). Therefore, it is important to choose a reasonable formula of BFC for the numerical simulation of tides and storm tides.

For numerically simulating tides and storm tides, the traditional settings of BFC are as follows. (1) Uniform constant throughout the simulated spatial and temporal regions (Fang and Yang, 1985; Lee and Jung, 1999; Egbert et al., 2004). Previous studies have shown that the optimization of the constant BFC from 1×10-3 to 1×10-2 has little effect on tidal simulations on a global scale, but it can improve simulation results regionally, especially for the continental shelf (Lyard et al., 2006; Pringle et al., 2018). In Teng et al. (2016), the BFC in BYECS is constant and the optimal value is 0.00125, which is different from the traditional BFC value of 0.0015 in BYECS. In addition, previous studies have determined the optimal value of the BFC for simulating tides in the Bohai Sea and Yellow Sea to be 2.6×10-3 and 1.3×10-3, respectively (An, 1977; Zhou and Fang, 1987), and for the Taiwan Strait, the optimal BFC value of 2×10-3 has been identified (Fang and Yang, 1985). (2) BFC is different among subregions, i.e., the simulated area is divided into several subregions and the BFC is set to be different constant values in different subregions. Zhao (1994) divided the study area into several subregions and set different BFC values (0.0035 for the Korea/Tsushima Strait and 0.0016 for other regions) when they simulated tides in the East China Sea. He et al. (2004) studied the shallow water tides in the Bohai and Yellow Seas by dividing the simulated area into five subregions with different BFCs and then using the adjoint data assimilation to optimize the constant BFCs in the five sub-areas simultaneously. The mean value of the optimized BFC was 1.346×10-3 in the Bohai Sea and 1.339×10-3 in the Yellow Sea. Wang et al. (2022) defined multiple subregions for the European shelf and Hudson Bay-Labrador region and a single subregion for other coastal regions for accurate estimation of the BFC. (3) Manning’s formula, in which the BFC is calculated as a function of water depth. Manning’s formula is one of the widely used formulations in oceanographic models such as FVCOM. Numerical experiments showed the smallest error was obtained in most basins and marginal seas when the Manning’s n coefficient was taken as 0.028 (Blakely et al., 2022). Gad et al. (2013) simulated sediment transport near the channel at the entrance of the harbor with different BFCs considered by defining two different Manning’s n coefficients for shallow and deep water. Relying on the sedimentological observations, the spatially varying BFC was represented as a segmented constant field based on the distribution of sediment types observed in different locations (Warder and Piggott, 2022). Similarly, Mackie et al. (2021) applied Manning’s n coefficients obtained from sedimentological observations to the model of Irish Sea. In addition, the BFC was enhanced around the target area to optimize model performance. (4) Spatially or temporally varying BFCs estimated using data assimilation methods. The data assimilation method can estimate the variable parameters of a model over time or space while minimizing differences between simulated results and observed data (Fringer et al., 2019). The adjoint data assimilation is gradually becoming widely used, and some work has estimated spatially or temporally varying BFCs in combination with a large number of observations from different parts of the world’s oceans. Utilizing ADCP data collected from mobile vessels, Ullman and Wilson (1998) applied the method of adjoint data assimilation to derive an estimation of the BFC for the Hudson Estuary. Assimilating multisource observational data using adjoint data assimilation, Heemink et al. (2002) estimated Chezy coefficients that vary spatially within the BFC formulation. The assimilation of satellite observations in the Bohai and Yellow Sea (BYS) (Lu and Zhang, 2006), the BYECS (Zhang and Lu, 2010; Zhang et al., 2011; Qian et al., 2021), and the South China Sea (Gao et al., 2015) has also enabled the estimation of spatially varying BFCs using the adjoint data assimilation method. Apart from utilizing adjoint data assimilation, a variety of different data assimilation methods have been employed to estimate the BFC in numerical models. Mayo et al. (2014) used a Manning’s form of the BFC and estimated the Manning’s n coefficient for the spatially varying bottom roughness in a circulation model in Galveston Bay with singular evolutionary interpolation Kalman filters. Slivinski et al. (2017) and Siripatana et al. (2018) similarly used a Manning’s form of the BFC and used the ensemble Kalman filter to improve the efficiency of estimating the spatially varying Manning’s n coefficient. Demissie and Bacopoulos (2017) applied Nudging analysis to optimize the anisotropic Manning’s n coefficient.

A number of observational studies have shown that the BFC varies spatially and temporally. Lozovatsky et al. (2008) found that the BFC in the northwestern East China Sea exhibited temporal variability. Fan et al. (2019) estimated the variability of the BFC caused by the currents through the analysis of observations in the shelf seas of the East China Sea, and the spatially and temporally varying BFC lied within the range of 10-3-10-2 at all stations. Further, there are many studies exploring the relationship between BFC and current speed through observations. Based on the observations in San Francisco Bay, Cheng et al. (1999) determined that the BFC varied from spring tides to neap tides, and established a critical value of 0.25-0.30 m/s for the change of relations between BFC and current speed. Wang et al. (2004) found that as the current speed surpassed 0.3 m/s, there was a reduction in the estimated BFC within northern Jiangsu intertidal area, China. Based on the observation data, the estimation of BFC in the Yellow Sea was found to vary over time and decrease with an increase in the average current speed, according to the findings of Liu and Wei (2007). Through the analysis of observations, Xu et al. (2017) estimated the BFC in Xiangshan Bay and found a correlation between the temporal variation in BFC and changes in current speed. As seen above, the temporally and spatially varying BFC is consistent with reality, but the inability to reasonably set the BFC to be temporally and spatially varying in oceanographic models has been a constraint on the development of the ocean models.

Wang et al. (2021) achieved significant results for the first time in the BYECS by implementing the adjoint data assimilation method to assimilate the tidal harmonic constants of the four principal tidal constituents M2, S2, K1, and O1 and estimate the spatially-temporally varying BFC. The relationships of the estimated BFC with water depth and that with current speed agree well with those observed by previous studies (Fan et al., 2019), showing the reasonability of the estimated spatially-temporally varying BFC. In this paper, based on the estimated spatial and temporal distribution of BFC and its relationship with current speed in Wang et al. (2021), an attempt is made to propose a new empirical formula of BFC with spatial and temporal variations. In addition, the new empirical formula of BFC is compared with several traditional empirical formulas to analyze its effectiveness and superiority. The structure of this paper is as follows: Section 2 outlines the proposed new empirical formula of the BFC; Section 3 presents the two-dimensional multi-constituent tidal model and the model setup; Section 4 shows the numerical experiments to compare the empirical formulas of BFC in the BYECS; the discussions is presented in Section 5; and Section 6 summarizes this work.




2 Empirical formula obtained from the relationship between BFC and current speed

The observations in different oceanographic regions of the world show that BFC is actually spatially and temporally variable, specifically, BFC is inextricably related to current speed, and the study of BFC variation with current speed dates back to the 1970s. Ludwick (1975) analyzed the current speed at the entrance of Chesapeake Bay with an average water depth of 12 m and found that BFC varied with current speed, even across multiple orders of magnitude. Cheng et al. (1999) and Wang et al. (2004) both pointed out that the nodal value of BFC variation with current speed was about 0.3 m/s and inversely proportional to the current speed. Safak (2016) investigated the variation of bed drag at a station with water depth of 5 m on a muddy shelf using field observations and found that BFC tended to decrease with increasing current speed, which may be due to that the greater current speed would take away the suspended mass. In the East China Shelf Seas, Fan et al. (2019) conducted an analysis of the measurements of waves, currents, and turbulence at eight mooring stations with varying water depths ranging from 6.3 m to 73.7 m. The study revealed that the variations in current-induced BFC exhibited no discernible correlation with water depth and demonstrated a decrease as the current intensified.

Wang et al. (2021) applied adjoint data assimilation to assimilate TOPEX/Poseidon (T/P) satellite altimetry data in the BYECS and to estimate the spatial and temporal distribution of BFC. The relationship between the estimated BFC and current speed was obtained by dividing the simulated current speed into groups with an interval of 0.01 m/s and averaging the estimated spatially-temporally varying BFC corresponding to the values of current speed within each group (Figure 1). The BFC exhibits an increasing trend when the current speed is below 0.31 m/s, whereas it shows a decreasing trend as the current speed increases when the current speed exceeds the critical speed above. The above relationship between the estimated BFC and current speed is very similar to those obtained by analyzing observed data in Cheng et al. (1999) and Wang et al. (2004).




Figure 1 | Relationship between BFC and current speed in Wang et al. (blue circle line) and the fitted empirical formula of BFC with a dependence on the current speed (red line). The light blue circles indicate the outliers and the black dashed lines indicate the breakpoints.



Based on the relationship between current speed and BFC obtained by Wang et al. (2021), we explored various approaches, including power, logarithmic, polynomial functions, and spatial fitting. Ultimately, we selected the polynomial fitting algorithm to propose a function describing the association of both variables in this study due to its superior fitting effect. Before fitting the data, outliers were removed, and the fitting interval was determined based on the trend of the curve. For the current speed range of 0-0.5 m/s, we opted for a cubic polynomial, as it demonstrated better fitting performance compared to a quadratic polynomial. In the range of 0.5-2.2 m/s, which exhibited a parabolic shape, a quadratic polynomial was employed for fitting, resulting in an R2 value exceeding 0.9. Furthermore, for the range of 2.2-3.2 m/s, linear fitting outperformed other methods with an R2 value above 0.7. Notably, when the current speed exceeded 3.2 m/s, one or several values significantly deviated from the rest, which were identified as outliers. In this case, the BFC was considered a constant of 0.000015. The resulting empirical formula of BFC with a dependence on the current speed was termed the “current speed-dependent BFC” and is presented below:



where s is the current speed (unit: m/s) and k is the BFC. As the current speed is spatially and temporally varying, the current speed-dependent BFC is also spatially and temporally variable.




3 Models



3.1 Two-dimensional multi-constituent tidal model

The governing equation of the two-dimensional (2D) depth-averaged multi-constituent tidal model is as follows (Wang et al., 2021):







Where   is the sea surface elevation above the undisturbed sea level; t is time; ϕ and λ are north latitude and east longitude, respectively; R is the radius of the Earth; a = Rcosϕ; h is the depth of water; u and v are the east-west and north-south velocity components, respectively; g is the gravitational acceleration; f is the parameter of Coriolis; k represents the BFC, which describes the bottom friction; A is the eddy viscosity coefficient in the horizontal direction,   is the adjusted height of the equilibrium tide, which was calculated according to Fang et al. (1999) and Gao et al. (2015); and Δ is the Laplace operator, which is expressed as:



At the solid boundary, the velocity components at normal direction are 0. At the open boundary, the variation of water elevation resulting from the tide is calculated as follows:



which involves various tidal parameters, including the amplitude (A), the phase lag (G) in UTC, the nodal factor (F), the initial phase angle (V) of the equilibrium tide, the nodal angle (U), the angular speed (ω) of the tidal constituent, the mth tidal constituent (m), and the number of tidal constituents (M). In addition, the discretization and scheme of the model are consistent with those shown in Lu and Zhang (2006).




3.2 Model settings

The study area was set to the BYECS with a horizon resolution of 1/6° × 1/6° (Figure 2). A time-step of 80s was chosen for the simulation. According to Fang (2004), the simulation included four fundamental constituents M2, S2, K1, and O1. And the open boundaries were selected along the Korean Strait, Tsushima Strait, Osumi Strait, Ryukyu Islands, Okinawa Trough, and Taiwan Strait (Figure 2). The tidal inversion software developed by Oregon State University was used to obtain the time series of tidal levels at the open boundary (Egbert and Erofeeva, 2002). The simulation was carried out for a period of 30 days, commencing from the static water state (ζ, u, v = 0) on 1 January 2010. The simulation in the first 15 days was sufficient to allow the simulated four tidal constituents to be stable (Cao et al., 2015). Consequently, the simulated results from the latter half of the simulation period (the last 15 days) were utilized for analysis, focusing on obtaining the simulated harmonic constants.




Figure 2 | (A) Location of the BYECS and SCS (rectangle with dashed lines); (B) Water depths and positions of tidal gauge stations (red circles), T/P satellite tracks (pink dots), open boundaries of the BYECS (blue circles) and BYS (purple circles). (C) Same as (B) but for the SCS.



In this work, the accuracy of the numerical tidal simulation was evaluated using T/P satellite altimetry and tidal gauge data. T/P satellite altimetry data included tidal harmonic constant data (amplitude and phase lag) of the four fundamental tidal constituents (M2, S2, K1, and O1) from CTOH/LEGOS, France (http://ctoh.legos.obs-mip.fr), and the spatial distribution is shown in Figure 2. For coastal regions, tidal gauge stations, a traditional tool for obtaining tidal observations, provided accurate tidal information. The harmonic constants of four fundamental tidal constituents (M2, S2, K1, and O1) at coastal tidal gauge stations were obtained from Lu and Zhang (2006), and the distribution is shown in Figure 2. For coastal regions, tidal gauge stations, a traditional tool for obtaining tidal observations, provided accurate tidal information. The distribution of coastal tidal gauge stations is also shown in Figure 2. The accuracy of the numerical tidal simulation was analyzed by two metrics: the mean absolute error (MAE) and the vector error (VE) between the simulated harmonic constants and the observed results from T/P satellite altimeters and tide gauge stations. And the VE is calculated as follows (Fang, 2004):



where VE is the vector error for one tidal constituent;   (A) and   (G) are the observed (simulated) amplitude and phase lag of this tidal constituent; and M is the number of observations.





4 Benchmark experiments



4.1 Experimental design

In order to evaluate the newly proposed empirical formula of BFC, the group of numerical experiment E1 was designed to compare it with the other widely used parameterization schemes of BFC in the BYECS. In numerical experiment E1-1, BFC was set as a constant value of 0.0015 in the BYECS (Lee and Jung, 1999), which was referred to as “constant BFC”. In numerical experiment E1-2, BFC was set with a form related to water depth, as used in Kang et al. (1998). In detail, BFC was defined as k=g/C2=gn2/h1/3, where g is the acceleration due to gravity, as above; C is the Chezy coefficient, and n is Manning’s n coefficient and set as 0.023 (Herrling and Winter, 2015; Mardani et al., 2020), its unit is s/m1/3. This empirical formula of BFC has been widely applied in ocean models, such as FVCOM, and was referred to as “Chezy-Manning BFC”. In numerical experiment E1-3, BFC was related to water depth according to the relationship between the estimated BFC and water depth in the BYECS obtained from Wang et al. (2021), as shown in Figure 3. The fitted relationship between BFC and water depth is shown in Equation (8) and Figure 3, with R2 of 0.89 for the 110 m-600 m segment and R2 above 0.9 for the other segments. The empirical formula of BFC used in E1-3 was called “depth-dependent BFC”. In numerical experiment E1-4, the new empirical formula of BFC named “current speed-dependent BFC” was used. In all the above numerical experiments numbered with the prefix of “E1”, four basic tidal constituents M2, S2, K1, and O1 were simulated in the BYECS. The specific model setup configurations for those experiments are provided in Table 1.




Figure 3 | Relationship between BFC and water depth in Wang et al. (blue circle line) and the fitted curve (red line). The black dashed lines indicate the interval end points.




Table 1 | Design of numerical experiments.





where h is the depth of water and k is the parameter BFC.




4.2 Experimental results

The simulated results in the experiment group E1 were compared with the satellite altimetry and tidal gauge data, and the results are presented in Table 2. As shown in Table 2, most results of numerical experiment E1-2 have the largest deviation from the satellite altimetry data. The VEs for the M2, S2, K1, and O1 tides are 21.54 cm, 8.21 cm, 3.81 cm, and 4.78 cm, which are larger than the other three experiments except for O1 in E1-3. The mean of VEs (MVE) of the simulated tidal constituents in E1-2 is 9.59 cm, which is the largest among all experiments, indicating that the simulated results obtained using Chezy-Manning BFC have the largest error. The VEs of the four tidal constituents in E1-4 are 19.83 cm, 7.52 cm, 3.41cm, and 4.47 cm, respectively. The MVE in E1-4 is 8.81 cm, which is decreased by 3.6%, 8.1%, and 1.0% compared to E1-1, E1-2, and E1-3, respectively. The above results show that the current speed-dependent BFC will improve the simulation accuracy of tides in the BYECS. As listed in Table 2, when compared to the tidal gauge data, the VEs for M2, S2, K1, and O1 in E1-2 are 28.18 cm, 11.16 cm, 5.53 cm, and 7.07 cm, respectively, which are much larger than those in other experiments. The VEs for M2, S2, K1, and O1 in E1-4 are 22.55 cm, 9.03 cm, 4.81 cm, and 6.10 cm, respectively, and all of them are less than those in other experiments. The MVE in E1-4 is 10.62 cm, which is less than 12.21 cm in E1-1, 12.98 cm in E1-2, and 12.09 cm in E1-3, showing again that the current speed-dependent BFC will improve the simulation accuracy of tides in the BYECS. Although the MVE is decreased by only 1 cm compared with the tidal gauge data, the simulation accuracy in E1-4 is improved by 18.2% compared to that in E1-2. The aforementioned results indicate that the current speed-dependent BFC proposed in this study is much more reasonable than the other schemes of BFC in the BYECS. The MVE for tidal gauge data after data assimilation in Wang et al. (2021) is just 6.90 cm and much less than 10.62 cm in E1-4, as the current speed-dependent BFC in E1-4 is in fact the smoothing and simplified result of the freely estimated BFC in Wang et al. (2021). As the estimated spatially and temporally varying BFC in Wang et al. (2021) cannot be used for other tidal models and other areas, the current speed-dependent BFC in E1-4 has the advantage to be widely used and decrease the simulation errors for other models and other areas.


Table 2 | Deviation of simulation results for M2, S2, K1, and O1..



Figure 4 shows the MVE between the simulated results in four experiments in E1 and tidal gauge data. The proportion of MVE ≤ 10cm in E1-4 is about 31%, which is significantly larger than those in E1-1, E1-2, and E1-3. The cumulative percentage of MVE ≤ 30cm and MVE ≤ 40cm in E1-4 are 70% and 87%, respectively, which are also significantly larger than those in the other three experiments. The above results show that the current speed-dependent BFC can increase the quantity of small MVEs while decreasing the number of large MVEs to improve the overall simulation accuracy. Figure 5 shows the MVE between the simulated results of the four experiments of Group E1 and the observation at each tidal gauge station in the BYECS. At most of the tidal gauge stations, the MVEs in E1-4 are not larger than those in E1-1, E1-2, and E1-3. In particular, at the tidal gauge stations numbered 4, 12, 18, 20, 21, 24, 25, 30-33, 36-38, and 41-45, the MVEs in E1-4 are significantly less than those in the other three experiments. The stations of the tide gauge where the simulation results obtained using the current speed-dependent BFC outperform the other three schemes are referred to as the improved stations. As shown in Figure 6, the improved stations in the Group E1 experiments are primarily located in the eastern part of the Bohai Sea, the Yellow Sea, off Hangzhou Bay, and near the Korean Strait.




Figure 4 | Distribution of the MVE between the simulated results and tidal gauge data in E1-1, E1-2, E1-3, and E1-4.






Figure 5 | MVE between the simulated results and each tidal gauge station data in E1-1, E1-2, E1-3, and E1-4.






Figure 6 | Distribution of the improved stations in E1-4, E2-4, and E3-4.



In summary, the simulation results for the four basic tidal constituents in E1-4 come closest to the satellite altimetry and tidal gauge data, indicating that the current speed-dependent BFC is more reasonable than the constant BFC, Chezy-Manning BFC, and depth-dependent BFC. Specifically, the scatterplot in Figure 7 illustrates that over 95% of the amplitude and phase lag calculated from the E1-4 simulation results fall within the range of 0.5 to 2 times those obtained from the tidal gauge observations. The correlation coefficients between the observed harmonic constants and the corresponding simulations for the four tidal constituents are at least 0.90. Similarly, the comparison between the E1-4 simulation and the satellite altimetry data (Figure 7) leads to a similar conclusion and the correlation coefficients between them are not less than 0.88. The cotidal charts of the four tidal constituents in E1-4 (Figure 8) show the same pattern as those in Fang (2004) and Wang et al. (2021) in terms of the distribution of amphidromous points, amplitudes, and co-phase lines. Furthermore, the tidal ellipses of the four tidal constituents obtained in E1-4 (Figure 9) are generally in agreement with the results in Fang (1994); Guo and Yanagi (1998), and Wang et al. (2021). These findings further demonstrate that the current speed-dependent BFC leads to improved simulation results for the four tidal constituents in the BYECS. Collectively, the aforementioned results provide strong evidence that the current speed-dependent BFC proposed in this study is considerably more reasonable compared to the other three empirical formulas of BFC, resulting in significantly improved simulated results for multi-constituent tides in the BYECS.




Figure 7 | Comparison of simulated results and tidal gauge data in E1-4 (red circle): (A) M2 amplitude, (B) M2 phase lag, (C) S2 amplitude, (D) S2 phase lag, (E) K1 amplitude, (F) K1 phase lag, (G) O1 amplitude, and (H) O1 phase lag. And comparison of simulated results and satellite altimetry data in E1-4 (blue plus): (I) M2 amplitude, (J) M2 phase lag, (K) S2 amplitude, (L) S2 phase lag, (M) K1 amplitude, (N) K1 phase lag, (O) O1 amplitude, and (P) O1 phase lag. For reference, the 1:1, 1:2, and 2:1 lines are shown in all figures (solid black line).






Figure 8 | Cotidal charts for (A) M2, (B) S2, (C) K1 and (D) O1 in the BYECS obtained in E1-4, where the colored shading and white lines indicate amplitude and phase lag, respectively.






Figure 9 | Tidal current ellipses for (A) M2, (B) S2, (C) K1 and (D) O1 in the BYECS obtained in E1-4.







5 Discussions

It is necessary to be noted that the newly proposed empirical formula of current speed-dependent BFC is based on the fitted results of the spatially-temporally varying BFC versus the current speed obtained by Wang et al. (2021) in the BYECS. Thus, it is unsurprising that the current speed-dependent BFC performs well in simulations of M2, S2, K1, and O1 in the same region. In the discussions, the current speed-dependent BFC was applied to simulate four tidal constituents in the BYS, only M2 in the BYECS, and four tidal constituents in the South China Sea (SCS) to further investigate the applicability and advantages of this new empirical formula. Furthermore, the spatial and temporal distribution of BFC obtained using this new empirical formula were also discussed.



5.1 Application in the simulation of four tidal constituents in the BYS

In the group of sensitivity experiment E2, simulations of the four main tidal constituents were carried out in the BYS to evaluate the applicability of different BFC schemes. The constant BFC, Chezy-Manning BFC, depth-dependent BFC, and current speed-dependent BFC were used in experiments E2-1 to E2-4, respectively. Some specific model settings for those experiments are shown in Table 1, and the rest of the settings were consistent with those of experiment E1.

The simulated results of sensitivity experiment E2 were compared with the satellite altimetry and tidal gauge data, as shown in Table 3. The MVE between simulation results and tidal gauge data in E2-4 is 10.61cm, which is less than 11.13 cm in E2-1, 11.87 cm in E2-2, and 11.17 cm in E2-3, amounting to an improvement of at least 4.7%. Specifically, VEs for all the four tidal constituents in E2-4 are less than those in E2-1, E2-2, and E2-3, of which the E2-2 results obtained with Chezy-Manning BFC show the largest error. As shown in Figure 6, improved stations in E2-4 account for about half of all gauge stations used for verification in the BYS, mostly located in coastal areas such as the Gulf of Korea and Gyeonggi Bay.


Table 3 | Comparison of the simulated and observed results of the four principal tidal constituents.



In addition, the MVE between the simulation results and the T/P satellite altimetry data in E2-4 is larger than those in E2-1, E2-2, and E2-3 by 4.4%, 4.9%, and 2.8% (Table 3), respectively. It should be pointed out that the BYS is shallow waters with a maximum depth of about 100 m. Shum et al. (1997) indicated that tidal root mean square accuracies derived from satellite altimetry data were within 2-3 cm in deeper waters, but their uncertainty increased significantly in coastal areas or near shallow seas. The reason is that satellite altimeter data exhibits geographical variability in shallow water compared to open oceans (Fok et al., 2010), and they may also be affected by factors such as coastline and topography (Cherniawsky et al., 2001) as well as tropospheric and ionospheric correction models (Lyard et al., 2006; Desportes et al., 2007). Xu and Chen (2021) characterized the global ocean tides using altimeter data and found that the amplitude deviation of the M2 tide could reach 7.49 cm where water depths were less than 200 m, but the deviation was only 2.15 cm in deeper waters. Taking into consideration the uncertainty of satellite altimetry data in shallow water, the negligible difference in the MVEs between the simulation results and the satellite altimetry data in these experiments could be ignored.

Overall, when simulating the four principal tidal constituents in the BYS, the current speed-dependent BFC proposed in this paper leads to smaller simulation errors than the constant BFC, Chezy-Manning BFC, and depth-dependent BFC in the MVEs between the simulated results and tidal gauge data, indicating that this new empirical formula of BFC is applicable in other sea areas.




5.2 Application in the simulation of only M2 tide in the BYECS

In the group of sensitivity experiment E3, only the tidal constituent M2 was simulated in the BYECS to compare the applicability of different schemes of BFC for simulating different tidal constituents. In sensitivity experiments E3-1 to E3-4, the constant BFC, the Chezy-Manning BFC, the depth-dependent BFC, and the current speed-dependent BFC were used, respectively. Some model preferences of those experiments are presented in Table 1. The remaining model setups were consistent with those in experiment E1.

As listed in Table 3, the simulated results were compared with the T/P satellite altimetry and tidal gauge data. The MVE between simulated results and tidal gauge data in E3-4 is 22.56 cm, which is significantly less than those of 26.59 cm in E3-1, 28.93 cm in E3-2, and 25.90 cm in E3-3, amounting to an improvement of at least 12.90%. Comparison between simulation and T/P satellite altimetry data shows similar results: the MVE in E3-4 is 19.97cm, which is less than 20.90 cm, 22.13 cm, and 20.15 cm for other three schemes. The above results indicate that, on the whole, the simulated results of M2 tide in the BYECS using the current speed-dependent BFC are much closer to both the tidal gauge data and the satellite altimetry data than others. The details of MVE for each experiment in E3 is shown in Figure 10. The tidal gauge stations with MVE less than or equal to 40 cm account for 87.3% of the total number of tidal gauge stations in E3-4, while those are 76.1% in E3-1, 69.0% in E3-2, and 76.1% in E3-3, indicating that the number of tidal gauge stations with large MVE significantly decreases. Meanwhile, the cumulative proportions of MVE less than or equal to 10 cm, less than or equal to 20 cm and less than or equal to 30 cm at the tide gauge stations in E3-4 are larger than the other three experiments. As shown in Figure 6, at most of the tide gauge stations, the simulation of the M2 tide using the current speed-dependent BFC in the BYECS in E3-4 are improved compared with the other schemes of BFC, especially in the Yellow Sea and the south of Hangzhou Bay. Moreover, the locations of improved stations in E3-4 are similar to those in the BYECS in E1-4 and in the BYS in E2-4, showing that the improvement of the newly proposed empirical formula of BFC is not limited to certain simulated areas or tidal constituent. The newly proposed empirical formula of BFC is also applicable to simulation of only M2 tide in the BYECS.




Figure 10 | Distribution of MVE between (A) the simulated results and tidal gauge data, (B) the simulated results and satellite altimetry data in sensitivity experiments E3-1 to E3-4.






5.3 Comparison with the spatial variation of BFC explained by water depth

The study of spatially varying BFC obtained through data assimilation was previously conducted by Wang et al. (2014), and an empirical formula derived from optimal fitting was found to yield superior results for M2 tidal simulation. Therefore, we included this scheme for analysis and comparison, as shown in Table 1. Wang et al. (2014) focused on the quantitative relationship between BFC and water depth when the water depth is below 100 m. The fitting function in Wang et al. (2014) is as follows:



Where k is the BFC and h is the water depth. In a similar manner, we incorporated this scheme as the fifth BFC scheme and conducted simulations in the base experiment (SE1-1) as well as two sets of sensitivity experiments (SE1-2 and SE1-3), while maintaining the remaining model conditions unchanged. The simulation results are presented in Tables 2, 3.

As shown in Table 1, the MVE between the simulated results and the tidal gauge (satellite altimetry data) is 11.88 cm (9.16 cm) in SE1-1 using the depth-dependent BFC in Wang et al. (2014), which is much larger than those in E1-4 using the proposed current speed-dependent BFC. When four tidal constituents were simulated in the BYS, the simulated results in SE1-2 using the depth-dependent BFC in Wang et al. (2014) are much far from both the tidal gauge data and satellite altimetry data than the simulated results using the current speed-dependent BFC in E2-4, as listed in Tables 2, 3. The similar result is also obtained when only M2 tide was simulated in the BYECS. From the experimental results, the depth-dependent BFC in Wang et al. (2014) has an advantage over the Chezy-Manning scheme in terms of its ability to simulate the M2, but its simulation error is still higher than that of the newly proposed current speed-dependent BFC scheme.




5.4 Application in the simulation of four tidal constituents in the SCS

The above experiments were implemented only in the BYECS, so the SCS was selected as a separate study area to verify the different schemes of BFC. Another group of sensitivity experiments (SE2) was set up in the SCS. The model boundaries and distribution of validation data are shown in Figure 2C, and the model setup remained unchanged except for the experimental region. The four principal tidal constituents (M2, S2, K1, and O1) were simulated in the SCS with five different schemes of BFC, as listed in Table 1.

From Table 3, the MVE between the tidal gauge data and the simulated results in SE2-1, SE2-2, SE2-3, SE2-4, and SE2-5 are 18.52 cm, 19.32 cm, 18.41 cm, 18.11 cm, and 18.87 cm, respectively, indicating that the smallest simulated error was achieved when the current speed-dependent BFC was used in SE2-4. Similarly, the MVE between the satellite altimetry data and the simulated results in SE2-4 is less than those in other experiments. The aforementioned results show that the proposed current speed-dependent BFC is also preferable than the other schemes of BFC in the SCS, further demonstrating the superiority of the current speed-dependent BFC proposed in this study.

In terms of MVE performance, despite the new formula’s improvement capability within 1cm, it still provides an enhancement of about 10% in the tidal gauge data, both in BYECS and in the sensitive experiments of SCS. In addition, as can be seen from the histograms in Figures 4, 10, the discrepancy of the simulation results of the new formula can be effectively reduced.

In physical terms, the new formula produces result that closely align with the observed behavior of the BFC in relation to current speed (Cheng et al., 1999; Wang et al., 2004; Safak (2016); Fan et al., 2019). Furthermore, in practical scenarios where the current speed undergoes temporal variations, such as in pipes or oceans, the Reynolds number of the current changes, and consequently, the current regime may also change. It is reasonable to believe that this introduces a potential time variation in the friction factor.




5.5 Spatial and temporal distributions of the current speed-dependent BFC

The BFC is of great importance for numerical simulations in shallow waters and must be accurately set. The new empirical formula of BFC with a dependence on the current speed in this paper yields better results than the constant BFC, the Chezy-Manning BFC, and the depth-dependent BFC in the simulation of four principal tidal constituents in both the BYECS and the BYS, and the single tidal constituent M2 in the BYECS. Therefore, the spatial and temporal distributions of BFC in the BYECS obtained using the new empirical formula were analyzed.

The spatially and temporally varying BFC calculated using the empirical formula of BFC with a dependence on the current speed and the simulated sea surface elevation in E1-4 is spatially averaged in the BYECS to obtain the temporal distribution, which is displayed in Figure 11A. The period of temporal variation of spatially averaged sea surface elevation is roughly half-day, which is about twice as long as the BFC variation, consistent with the findings in Wang et al. (2021). Furthermore, it is worth noting that the spatial average of BFC exhibits considerable variability in response to tidal range. As can be seen in Figure 11B, the temporal variability of spatially averaged BFC in E1-4 is akin to that of spatially averaged current speed in terms of both frequency and trend, exhibiting a correlation coefficient of 0.46. The positive correlation is mainly attributed to the fact that the current speed ranges from 0 to 0.2 m/s where BFC increases with the increased current speed as shown in Equation (1) and Figure 1.




Figure 11 | (A) Time series of spatially averaged BFC (red line) and sea surface elevation (blue line), and (B) time series of spatially averaged BFC (red line) and current speed (blue line) in E1-4.



Figure 12 displays the spatial distribution of the BFC that has been averaged over time and the current speed in E1-4. The mean current speed is relatively larger along the coast of Hangzhou Bay, West Korea Bay, and Gyeonggi Bay, where the BFC is lower than 0.0016. The temporally averaged BFC is small in the coastal regions near Hangzhou Bay, the Yangtze Estuary, and Gyeonggi Bay, which agrees with the pattern shown in Wang et al. (2014) and Lu and Zhang (2006). Furthermore, the analysis reveals the presence of local minimums in BFC, approximately around 0.0015, near the amphidromous points in the Bohai Sea and Yellow Sea. And relatively small values of BFC are observed in West Korea Bay and Gyeonggi Bay. In contrast, BFC remains relatively constant in the Okinawa Trough and open waters, potentially attributed to the stability of current speeds on a temporal scale.




Figure 12 | (A) Spatial distribution of temporally averaged BFC, and (B) spatial distribution of temporally averaged current speed in E1-4.







6 Conclusions

The accurate determination of BFC is essential for the simulation, forecasting, and analysis of tides and sediment transport. Extensive observational studies have consistently demonstrated that BFC exhibits spatial and temporal variability and is influenced by the current speed. However, incorporating the spatial and temporal variations of BFC into oceanographic models poses significant challenges. Based on the relationship between the spatially and temporally varying BFC and current speed obtained by Wang et al. (2021), a new empirical function of current speed-dependent BFC is proposed and compared with several traditional methods, including constant BFC, Chezy-Manning BFC and depth-dependent BFCs.

When simulating the four main tidal constituents in the BYECS, the MVE between the simulated results and the T/P satellite altimetry data in E1-4, in which the current speed-dependent BFC is used, is 8.81 cm and much less than those in other experiments. In addition, the number of the large MVE between the simulated results and the tidal gauge data in E1-4 is significantly decreased, resulting in the MVE in E1-4 being 10.62 cm and the model performance is improved by at least 10.6% compared to the other experiments. Furthermore, the simulated results in E1-4 captured the features of the tides and tidal currents in the BYECS. Similarly, whether simulating the four principal tidal constituents in the BYS, only the M2 tide in the BYECS and four principal tidal constituents in the SCS, the simulated results obtained using the current speed-dependent BFC are much closer to the tidal gauge data than those using the other empirical formulas of BFC. The results of this paper indicate that the current speed-dependent BFC is much more applicable and reasonable than the constant BFC, the Chezy-Manning BFC, and depth-dependent BFCs.

The current speed-dependent BFC, which is newly proposed in this study, can reflect the influence of current speed on BFC and show the spatial and temporal characteristics of BFC. So, it has much more meaningful in physical terms than the traditional schemes and it is much easier access than the parameter estimation by using data assimilation. It is much superior to the traditional empirical formula of BFC and provides a new option for the setting of BFC in the tidal model. In the future, the effect of current speed-dependent BFC on the research of temporally varying mixing and energy will be further studied.
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Scientific understanding of super typhoons (STYs) is essential for environmental and human-made disaster prevention. The interactive processes among the atmosphere, ocean, and surface waves have an intimate relationship within the STY system. This study chose STY Hinnamnor (2022) as an example and used multi-source data to investigate how it affected the upper ocean. First, Argo floats data at two positions were collected to investigate the variation of sea surface temperature (SST), sea surface salinity (SSS), isothermal layer depth (ILD), mixed layer depth (MLD), barrier layer thickness (BLT), and eddy viscosity (EV) during pre- and post-STY. The STY passed through two Argo floats; hence, the SST, ILD, and BLT significantly decreased post-STY, whereas the MLD and EV increased. The SSS decreased by 0.26 psu where the STY passed southwestward, whereas it increased by 0.11 psu where the STY began to move northward. Subsequently, the remote sensing data and re-analysis data were used to study the evolution of the SST, precipitation, runoff, and profiles of the upper ocean pre- and post-STY. The results reveal that intensive vertical mixing and upwelling occurred in the region where the direction of the STY movement switched. It also revealed that the runoff and heavy precipitation increased the water salinity in this area. In addition, the reanalysis data indicated that the significant wave height (SWH) and the mean wave period (MWP) near the cyclone center became longer than in other areas. The temporal evolution of the spectral peak period (SPP) demonstrated the generation of a swell zone on the right side of the typhoon track when the STY moved northward.
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1 Introduction

The Northwest Pacific region is famous for the formation of tropical cyclones (TCs). The vast tropical ocean is conducive to the intensification and development of TCs (also known as typhoons). Global cyclone statistics reveal that approximately 1/3 of the TCs occur in the Northwest Pacific annually and cause disasters in many Asian countries (Emanuel, 2003; He et al., 2018). TCs are natural hazards that often result in strong winds, high waves, torrential precipitation, and violent storm surges. Based on several observations and climate models, scientists have predicted the formation of more destructive typhoons in the future that result from intensified global warming (Emanuel, 2013; Jin et al., 2014). A better understanding of the physical processes of air–sea interaction in the TC system is imminent for oceanographers and meteorologists.

The China Meteorological Administration tropical cyclone data center (https://tcdata.typhoon.org.cn) classifies typhoons into six categories in terms of the maximum wind speed (Vmax) near the cyclone center: tropical depression (10.8 m s−1< Vmax< 17.1 m s−1), tropical storm (17.2 m s−1< Vmax< 24.4 m s−1), severe tropical storm (24.5 m s−1< Vmax< 32.6 m s−1), typhoon (32.7 m s−1< Vmax< 41.4 m s−1), severe typhoon (41.5 m s−1< Vmax< 50.9 m s−1), and super typhoon (Vmax > 51.0 m s−1). Super typhoon (STY) Hinnamnor, which occurred in 2022, is considered a top TC that led to destructive damage in the Republic of Korea. Typhoon-induced floods destroyed many buildings and submerged several coastal cities. Other countries located in the Northwest Pacific also experience similar disasters every year. STYs are worth a comprehensive study because of their devastating power. Therefore, for a long time, research has been focused on the mechanism and prediction of the track and intensity of STYs (Sanford et al., 2007; Wu et al., 2015; Meyers et al., 2016; Hong and Li, 2021).

The sea surface temperature (SST) essentially dominates the development and maintenance of typhoons. Almost all TCs form over warm oceans with SSTs higher than 26 °C and draw energy from the ocean surface through sensible and latent heat fluxes (Palmen, 1948; Bender et al., 1993; Mahapatra et al., 2007). Strong winds associated with TCs enhance the turbulent mixing of the upper ocean, and as a result, water bodies as deep as 100 m reach the sea surface. The typical phenomena include a distinct SST cooling within 6 °C and an increase in sea surface salinity (SSS) along the typhoon track (Price, 1981; D’Asaro et al., 2007; Cheung et al., 2013). In addition, freshwater discharged from terrestrial rivers and heavy precipitation significantly affect the features of the upper ocean, such as the SST, SSS, density stratification, mixing layer depth, barrier layer thickness, diapycnal diffusivity, and so forth, during the passage of TCs (Sprintall and Tomczak, 1992; Kashem et al., 2019; Qiao et al., 2022). During high winds, nearly 75%–90% of SST cooling is caused by the entrainment of subsurface colder water into the mixed layer. Turbulence enhancement induced by strong near-inertial currents is the main reason for this vertical mixing (Jacob et al., 2000; Huang et al., 2009). Some studies suggested that upwelling dominates SST cooling if the movement of TCs is slow (Chiang et al., 2011; Guan et al., 2014). Moreover, warm eddies and barrier layers in the upper ocean modulate the intensity of a typhoon (Zheng et al., 2010; Balaguru et al., 2012). For instance, the thick layer weakens TC-induced SST cooling and intensifies the typhoon, whereas the cold layer enhances TC-induced SST cooling and inhibits typhoon intensification (Jaimes and Shay, 2009; Yang et al., 2012). The development of observational methods, assimilation technology, and multi-source datasets, including in situ observations, satellite remote data, and numerical assimilation results, has helped to investigate air–sea processes during a typhoon. For example, Kashem et al. (2019) investigated the upper ocean response to tropical cyclone Viyaru based on Argo floats and reanalysis datasets. Oginni et al. (2021) depicted the air–sea boundary layer under super typhoon Haiyan using satellites, surface drifters, Argo floats, and reanalysis datasets and explored the potential mechanisms.

The translation speed, cyclone size, movement direction, and intensity affect the upper ocean features along the typhoon track (Emanuel et al., 2004; Zhu and Zhang, 2006; Wang et al., 2016; Lin et al., 2017). Hence, a typhoon that had two movement directions and intensified into an STY twice was selected in this study. This research investigated the responses of the upper ocean and surface waves during STY Hinnamnor (2022). The following three objectives were included in this study: (1) to explore the variation of six different oceanic parameters along the TC track: sea surface temperature (SST), sea surface salinity (SSS), isothermal layer depth (ILD), mixed layer depth (MLD), barrier layer thickness (BLT), and eddy viscosity (EV); (2) to discuss the anomaly in the thermal and salinity balance of the upper ocean pre- and post-TC; and (3) to investigate the characteristics of surface waves along the TC track based on three parameters: significant wave height (SWH), mean wave period (MWP), and spectral peak period (SPP).




2 Materials and methods

The present study selected super typhoon Hinnamnor (2022) that occurred in the Northwest Pacific within the 18°N–38°N and 120°E–140°E domains (Figure 1). In this study, the 6-hourly best track of the TC and oceanographic, atmospheric, and wave data were obtained from the following websites: China Meteorological Administration tropical cyclone center (http://tcdata.typhoon.org.cn), Argo data (ftp://ftp.ifremer.fr/ifremer/argo), Remote Sensing of SST (https://www.remss.com), HYCOM reanalysis data (http://www.hycom.org/data/glbv0pt08/expt-93pt0), European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 hourly reanalysis data (https://cds.climate.copernicus.eu), and ECMWF high-resolution operational forecasts data (NCAR RDA Dataset ds113.1 (ucar.edu)).




Figure 1 | Research zones and Argo positions along the track of the tropical cyclone Hinnamnor (2022). The times at 0000 UTC from August 30 to September 5 are labeled.



Kashem et al. (2019) defined the ILD as the depth where the temperature is one degree lower than that of the ocean at 5 m depth, and the BLT was estimated by subtracting the ILD and MLD. The MLD was evaluated based on the density criteria of Kara et al. (2000). The formulation of the criteria was defined as following Equation (1):

	(1)

where T, S, and p represent the temperature, salinity, and pressure, respectively, of the sea surface around the Argo floats. Here, the temperature and salinity at 3 m depth Argo profiles were considered the SST and SSS values, and the surface pressure was considered zero. The vertical eddy viscosity in the upper ocean was estimated by the K-profile parameterization (KPP) scheme, which was formulated as Equation (2) (Large et al., 1994; McWilliams et al., 2012; Song and Xu, 2013):

	(2)

where c1 is a constant taken as 0.4; u* is the oceanic friction velocity obtained from the ERA5 reanalysis data; z axis is along the vertical direction with a positive direction upward, and still water level is z = 0; and h is the depth of the boundary layer depth. The normalized depth -z/h increased from 0 at the sea surface to 1 at the bottom of the boundary layer, and the depth h was adopted at 200 m in this study.




3 Results and analyses



3.1 Synopsis of STY Hinnamnor (2022)

Hinnamnor initially originated as a tropical depression on the afternoon of August 28, 2022, in the Northwest Pacific (Figure 1). It moved westward and quickly intensified into a super typhoon at 1800 UTC on August 29 near the location 27°N, 139°E. After the replacement of the eye wall from August 30 to September 1, it began to move northward and weakened into a severe typhoon on September 2. On September 4, under the influence of the high surface temperature in the East China Sea, Hinnamnor (2022) absorbed more energy from the upper ocean and then reached the super level again. This situation persisted for one more day along its northward movement and was downgraded to a severe typhoon at 0600 UTC on September 5. After one day, the tropical storm finally landed on Geojedo Island in the south of the Republic of Korea.




3.2 Variations in the oceanic parameters from Argo data

Along the track of Hinnamnor (2022), two Argo profiling floats were selected with the following requirements. The location of the Argo float had to be within a vicinity of 200 km from the typhoon center and the observational profiles at pre-, during, and post-STY had to be captured. Since the life cycle of Hinnamnor was from August 28, 2022, to September 6, 2022, the pre- and post-STY periods were defined as the days before August 28 and after September 6, respectively. The temporal resolution of the Argo floats was one day. Their trajectories from August 21 to September 12 are illustrated in Figure 1. Table 1 lists the selected Argo ID numbers and the six estimated oceanic parameters [SST, SSS, ILD, BLT, MLD, EV (at 60 m)].


Table 1 | Information on Argo floats and estimated oceanic parameters in the research zones.



The Argo profiles in zone-1 (23°N–27°N, 128°E–132.5°E) were analyzed to explore the vertical profiles along STY Hinnamnor (2022). The STY passed zone-1 from 1800 UTC on August 30 to 1200 UTC on August 31, and the first Argo float (Argo ID 2903647) was active in this zone. At 0600 UTC on August 31, the position of the center of Hinnamnor (2022) was located (25.4°N, 129.1°E). At this time, the first Argo float was situated on the left-hand side of the typhoon and nearest to the center, at approximately 96 km. Before the STY passed zone-1, where the first Argo float was located (August 26, 2022), the SST and SSS were high, and their values were 30.32 °C and 34.46 psu, respectively. The depths of the ILD, MLD, and BLT were 35.40 m, 10.23 m, and 25.17 m, respectively. In this situation, the depth of the BLT was more than one time deeper than the MLD. The value of EV was 2.00 m2 s−1, which indicated a slight turbulence mixing. After the STY passed zone-1 (September 05, 2022), the SST and SSS were 29.15 °C and 34.20 psu, respectively. The SSS and SST decreased by 1.17 °C and 0.26 psu, respectively, because of strong winds or heavy precipitation. The MLD increased up to 34.93 m. Figures 2C, D demonstrate that the MLD deepened because of Hinnamnor (2022). The ILD exhibited only a slight change, which was up to 35.00 m. The BLT and EV were 0.07 m and 6.02 m2 s−1, respectively. The BLT was comparatively less than that pre-STY, whereas the EV was in reverse, which indicates that turbulence mixing was enhanced by STY Hinnamnor (2022). The variations of the six oceanic parameters measured by Argo 1 are illustrated in Figure 2.




Figure 2 | The vertical profiles of ocean temperature (red solid lines), salinity (green solid lines), density (purple solid lines), and eddy viscosity (pink solid lines) at Argo 1. Subplots (A, C) illustrate profiles at pre-STY (August 26, 2022) and subplots (B, D) illustrate post-STY profiles (September 05, 2022). The brown solid lines in subplots A and B denote the area where the IDL is located. The grey and orange lines in subplots C and D denote the area where the MLD and the BLT are located.



Research zone-2 was chosen within 19°N–23°N and 123.2°E–127.2°E. From 0000 UTC on September 1 to 0000 UTC on September 3, STY Hinnamnor (2022) passed this area, and the second Argo (Argo ID 2903642) was active near the track. A comparatively more dramatic variation occurred in the upper ocean because of the long stay time of the typhoon center in zone-2. At 0000 UTC on September 2, the position of the center of Hinnamnor (2022) was located at 21.4°N, 125.4°E. At this time, the second Argo float was situated at the left-hand side of the track and nearest to the typhoon center, at approximately 124.2 km. After the STY passed zone-1 where the second float was located (September 07, 2022), the SST decreased from 30.25 °C to 28.41 °C, the MLD deepened from 29.72 m to 50.31 m, the EV enhanced from 8.03 to 16.19 m2 s−1, and the BLT disappeared. The SSS was 34.02 psu before the STY passed the Argo and then increased to 34.13 psu after the STY passed the float, which is a reverse variation compared to zone-1. This increment of SSS in zone-2 indicates the impact of vertical mixing or subsurface upwelling on the distribution of oceanic salinity, which is more significant than precipitation. The BLT in zone-2 disappeared earlier. The vertical profiles of water temperature and salinity from the two Argo floats, before and after the passing of the STY, are illustrated in Figure 3. It also illustrates the changes in salinity near the ocean surface when the STY passed the two zones. This reveals that the typhoon-induced vertical turbulent mixing or upwelling in zone-2 was more intensive than that in zone-1. These physical processes carried high salinity water at the deep level up to the sea surface, which increased the SSS (D’Asaro et al., 2007; Cheung et al., 2013).




Figure 3 | The vertical profiles of ocean temperature and salinity along STY Hinnamnor at Argo 1 (A, B) and Argo 2 (D, E). The variation of SST and SSS at Argo 1 (C) and Argo 2 (F). The blue solid lines with a star symbol present the arrival time of the cyclone center.






3.3 SST cooling due to STY Hinnamnor (2022)

Here, the microwave optimally interpolated the SST data provided by the remote sensing system, which was used to study the SST evolution during the passage of Hinnamnor (2022) from August 26 to September 6. The spatial and temporal resolutions of the dataset are 0.25° and one day, respectively. The satellite-observed SSTs at six moments are presented in Figure 4. Previous studies have proposed that strong winds and a deepened mixed layer could result in SST cooling by several degrees along the typhoon track (Cheung et al., 2013; Kashem et al., 2019). Figure 4 illustrates the SST distribution during the passage of STY Hinnamnor (2022). On August 26, 2022, the SST of the majority of the Pacific within 18°N–27°N and 123°E–140°E was above 30.0 °C, and the SST near 135°E was even above 30.8 °C. The typhoon center entered this region at 1800 UTC on August 29, and the decrease of SST appeared along the track on September 1 (Figure 3B). On September 2, 2022, the STY switched its direction of movement from southwest to north. A day after, the SST in the majority of the region (20°N–25°N,123°E–127°E) was below 30.0 °C because of strong winds and enhanced MLD. The SST even dropped below 27.0 °C in the vicinities of the locations in which typhoon centers passed. On September 5, the reduction of SST further extended northward along the track of Hinnamnor (2022) because the typhoon intensified into the super level again on September 4. Similarly, strong winds and deepened MLD associated with the STY played a crucial role in SST reduction. The STY hit Geojedo Island in the south of the Republic of Korea on September 6, 2022, and the SST in a part of the area along the track of Hinnamnor (2022) slightly increased to the pre-STY status. The SST pattern in Figure 4 denotes that the maximum SST reduction was more prominent in zone-2 than in zone-1, and the greatest decrease was approximately 3 °C. The long duration of typhoon centers in zone-2 intensified the turbulent mixing so that more cold water was carried upward to the sea surface. The maximum depth of the mixed layer in zone-2 was nearly 60 m post-STY, whereas it was only 40 m in zone-1 (refer to Figures 3A, D).




Figure 4 | The evolution of SST because of STY Hinnamnor (2022). The time at 0000 UTC from August 30 to September 5 is labeled. The evolution of SST because of STY Hinnamnor (2022). The time at 0000 UTC on 26 Aug (A), 1st Sep (B), 2nd Sep (C), 3rd Sep (D), 5 Sep (E), and 6 Sep (F).






3.4 Comparison of the ocean temperature and salinity between pre- and post-STY

The HYCOM reanalysis data from the Global Ocean Forecasting System 3.1 (GOFS 3.1) are used in Figure 5 to demonstrate the vertical profiles of ocean temperature and salinity pre- and post-STY along the track of Hinnamnor (2022). The reanalysis data used in this study have a spatial resolution of 0.08°lon × 0.04°lat and a temporal interval of one day. Here, the data collected were along the latitude averaging 18°N–30°N. The vertical profiles of temperature along the longitude (123°E–140°E) are presented in subplots A and B in Figure 5. Pre-STY (Figure 5A) demonstrates that the SST was above 30.0 °C, and the depth with water temperature above 30.0 °C was as deep as 20 m near the longitude 125°E. High SSTs signify the potential for the formation of tropical cyclones in the Northwest Pacific. Post-STY (Figure 5B) denotes that the SST was reduced due to the vertical mixing and heavy upwelling associated with tropical cyclone Hinnamnor (2022). The SST was below 28 °C in the vicinities of 126°E longitude. In this area, the upwelling rushed up and mixed with the subsurface layer; hence, the BLT became shallower and then disappeared.




Figure 5 | The vertical profiles (123°E –140°E) of temperature and salinity in the ocean from August 26, 2022 (i.e., pre-STY) in subplots (A, C) to September 06, 2022 (i.e., post-STY) in subplots (B, D) along the track of STY Hinnamnor (2022).



The subplots C and D in Figure 5 present the pre-STY and post-STY vertical salinity profiles of the ocean along the track of STY Hinnamnor (2022). Pre-STY (Figure 5C) demonstrates that the SSS was approximately 34.64 psu near the longitude 132°E and below 34.44 psu near the longitude 125°E. Below the sea surface, salinity stratifications were much weaker within 30 m in both regions. This inhibition of vertical mixing is caused by the freshwater input from continental rivers, such as the Yangtze River in China. Based on the ECMWF HROF re-analysis dataset, Figures 6A–C classifies the daily runoff distribution at three typical dates. The runoff on August 26 could prove this view, which is also consistent with the previous insight that the SSS was significantly affected by freshwater input (Sprintall and Tomczak, 1992). The depth of the low saline area (below 34.34 psu) was almost 35 m at 123°E–128°E, as demonstrated in Figure 5C. Interestingly, Figure 5A illustrates that the water temperature in the top 35 m was warmer in this region. The low SSS at the top of the upper ocean effectively sustained the warm water temperature because of the little vertical mixing. Net heat was trapped within the thin oceanic stratified layer because of the freshwater input. Post-STY (given in Figure 5D), heavy precipitation caused the decrease of SSS from 34.6 psu to 34.5 psu at 129°E–135°E. The distribution of precipitation is presented in Figure 7 in accordance with the satellite data. Within this region, the accumulated results of precipitation and runoff were approximately 15728.72 mm and 753.91 mm, respectively, during the period of Hinnamnor (2022). However, there was no evident variation of SSS at 123°E–128°E pre- and post-STY. The dramatic reduction of SST (Figure 4) reveals that strong vertical mixing occurred in the area within 18°N–30°N and 123°E–128°E. The convex isotherm in Figure 5B indicates that induced upwelling also appeared in this region because of STY Hinnamnor (2022). The combined effects of these two physical processes should have increased the SSS, but that did not happen. The accumulated precipitation and runoff in Figures 6, 7 imply that freshwater input decreased the SSS in this region. The accumulated precipitation and runoff were approximately 50176.58 mm and 4111.71 mm, respectively, from August 26 to September 6. The saline profile in the western region (123°E–128°E) also denotes that the upwelling impact on salinity was absent at 60 m deep, as demonstrated in Figure 5D. This result shows that freshwater from runoff and precipitation diluted the near-surface dense saline water that was brought to the subsurface ocean by upwelling from the deep ocean.




Figure 6 | The evolution of daily runoff (units: mm) because of STY Hinnamnor (2022). Three typical times from August 26 to September 6 are labeled in subplots (A–C). Subplot (D) denotes the accumulated runoff from August 26 to September 6.






Figure 7 | The evolution of daily precipitation (units: mm) because of STY Hinnamnor (2022). Five typical times from August 26 to September 6 are labeled in subplots (A–E). Subplot (F). denotes the accumulated precipitation from August 26 to September 6.






3.5 Variations in air–sea heat fluxes and upper ocean heat budget during Hinnamnor (2022)

Based on the European Center for Medium-Range Weather Forecasts (ECMWF) ERA5 re-analysis hourly data, Table 2 classifies the daily averaged fluxes of net shortwave radiation (NSWF), net longwave radiation (NLWF), sensible heat (SHF), latent heat (LHF), total heat loss (THL), and net surface heat flux (NHF) in the region (18°N–35°N, 120°E–140°E) along the track of STY Hinnamnor (2022) from August 26 to September 6. The THL was estimated by adding the LHF, SHF, and NLWF. The NHF was estimated by the sum of NSWF and THL. The sky above this region was covered with higher cloudiness, and the speed of the near-surface airflow was stronger starting from August 30, 2022, under the influence of the tropical cyclone. As a result, the NSWF reduced, and the LHF, which is denoted as negative to present the heat loss component, increased. The NHF exhibited a decreasing trend until September 6 and became a negative value, signifying increasing heat loss from the sea surface to the atmosphere during the passage of STY Hinnamnor (2022). The NSWF exhibited the minimum value (148.11 W m−2) on September 3 and slightly increased on September 4. The LHF exhibited the maximum value (−217.11 W m−2) on September 3, which indicates the largest latent heat loss. On the same day, the largest NHF decrease reached 124.79 W m−2. The re-analysis data provide reliable evidence for the behavior of the surface fluxes pre-, during, and post-STY Hinnamnor (2022).


Table 2 | Based on the ERA5 re-analysis data, the heat budget of the upper ocean of the region (18°N–35°N, 123°E–140°E) along the track of Hinnamnor (2022).



Figure 8 presents the time series of the six fluxes in the cyclone track domain (18–35°N, 120–140°E). The ERA5 re-analysis data with low spatial resolution usually underestimates the TC intensity. The results obtained from the ECMWF high-resolution operational forecast (HROF) data with 0.08 degrees are also illustrated in Figure 8 for comparison. They denote that the daily maximum NSWF was lower from August 31 to September 5 than the previous and following days because of the strong winds and high cloudiness associated with Hinnamnor (2022). The variation of the daily maximum NSWF exhibited a symmetric pattern during this period: it first decreased to a minimum around September 4 and then increased. The mean LHF kept increasing from August 30 to September 4. Large quantities of water vapor (evaporation) formed condensation clouds in the sky, and high cloudiness decreased the NSWF during this period. The NSWF slightly returned to the pre-STY status on September 6, 2022, owing to the weakening of the tropical cyclone and the landfall on Geojedo Island in the Republic of Korea. The overall behavior of the maximum NSWF obtained from the HROF data from August 26 to 31 was prominently greater than 800 W m−2 because of its high resolution. Its time series also indicated the presence of dense cloudiness in the sky during Hinnamnor (2022).




Figure 8 | Time series of (A) SHF, (B) LHF, (C) NSWF, (D) NLWF, (E) THL, and (F) NHF during the passage of Hinnamnor (2022). The black and blue lines denote the re-analysis data from the ECMWF ERA5 and HROF, respectively.



The mean LHF during August 26–30 was less than that from August 31 to September 5. The LHF dramatically increased to 200 W m-2 after August 30 and reached the maximum of around 0000 UTC on September 4, which resulted in the formation of condensation clouds from water evaporation. This could explain the low NSWF demonstrated in Figure 8C during this period. Compared to the SHF, the LHF controlled the total heat loss from the ocean (refer to Figure 8E) and promoted further development of the tropical cyclone. The high LHF also caused a considerable decrease in the net heat flux (refer Figure 8F). On the morning of September 4, Hinnamnor (2022) intensified to the super level once again and continued moving northward. At this moment, the STY with moist airflow contained higher humidity than the previous one that formed on August 30. The LHF is proportional to the humidity difference between the atmosphere and the sea surface airflow. Hence, the LHF gradually decreased starting from September 4 because of the small humidity difference between the sea surface and airflow. After the landfall of Hinnamnor (2022) on September 6, the LHF increased a little but tended to decrease. The mean LHF obtained from HROF was two times that of ERA5 because of the high spatial resolution (in Figure 8B). Compared to the ERA5 re-analysis data, the HROF results presented a more dramatic increment of LHF from August 31 to September 4.

The variation of the SHF and the LHF has a similar pattern. The SHF presented a dramatic reduction from August 31 to September 4 because of the presence of strong winds and heavy precipitation. After September 4, the SHF decreased owing to the small temperature difference between the sea surface and the atmosphere. Lin et al. (2008) considered that SST cooling and the high temperature of the airflow over the sea surface restrained the air–sea sensible heat exchange. This view can also be used to interpret the decrease in mean SHF after September 4, which is given in Figure 8D. The high-resolution HROF data reveal greater SHF during the whole period, especially from August 31 to September 4, which was nearly twice the results from the ERA5 re-analysis data. The variations of the SHF (Figure 8A) and the LHF (Figure 8B) reveal a dynamic thermal equilibrium between the atmosphere and ocean during the passage of the STY. Initially, the tropical cyclone developed by absorbing heat from the ocean. The turbulent fluxes, which include the SHF and the LHF, played an important role in cyclone intensification. The magnitude of the SHF and the LHF increased continuously to lose the ocean heat. When the typhoon intensified into the STY, the energetic cyclone system with high temperature and humidity inhibited heat transport from the ocean to the atmosphere. The northward movement of STY Hinnamnor (2022) from September 4 to 6 stopped the incremental transfer of heat from the ocean to the atmosphere.

Both the ERA5 and HROF re-analysis data reveal that the NHF arrived at the lowest point from August 31 to September 4, as demonstrated in Figure 8F. Correspondingly, the greatest THL and the lowest NSWF occurred during this time (Figures 8E, C). The high heat losses and small heat acquisition point to the significant impact of STY on the heat budget of the research domain. The re-analysis data show that the magnitude of mean NLWF began to decrease on August 31 and reached the minimum on September 4 (Figure 8D). Following this, the mean NLWF began to increase.




3.6 Anomalies of the parameters of surface waves due to STY Hinnamnor (2022)

The ERA5 re-analysis data during the passage of STY Hinnamnor (2022) were used to investigate the anomalies of surface waves. The evolution of the mean significant wave height (SWH), mean wave period (MWP), and spectral peak period (SPP) is depicted in Figures 9, 10. On August 26, the mean SWH was below 2 m and uniformly distributed in the research domain within 18°N–35°N and 120°E–140°E (Figure 9A). At this moment, the MWP decreased from the east to the west: the maximum was approximately 9 s in the east and the minimum below 5 s in the west (Figure 9E). In the East China Sea (23°N–32°N, 117°E–131°E), the MWP in the middle was nearly 4 s lower than that in the north and south sides. On August 31, STY Hinnamnor (2022) entered the East China Sea from the east. The distributions of the SWH and the MWP are presented in Figures 9B, F. The maximum SWH over 7 m emerged on the right-hand side of the cyclone track, and the maximum MWP exceeding 9 s appeared on both sides of the track. The main reason for SWH spatial variation is that surface waves on the right side of the cyclone center obtained more momentum from strong surface winds. Large values of the MWP near the cyclone center imply the generation of swell driven by the STY, which was in accordance with the numerical study of Xu et al. (2017). Figure 9F also indicates that the MWP in the east of the research domain decreased by ~2–3 s compared with Figure 9E. This signifies the generation of wind waves in this region (134°E–140°E) after Hinnamnor (2022) passed.




Figure 9 | Anomalies of SWH (A-D) and MWP (E-H) at 0000 UTC on August 26, August 31, September 03, and September 06. Black lines denote the STY track.






Figure 10 | The temporal evolution of SPP (in subplot A) and 10-WSP (in subplot B) along the longitude during August 26–31 (track in subplot C); the temporal evolution of SPP (in subplot D) and 10-WSP (in subplot E) along the longitude during September 1–6 (track in subplot F).



On September 3, the typhoon center moved northward with a maximum wind speed of approximately 42 m s−1. The spatial distributions of the SWH and the MWP are summarized in Figures 9C, G. At this time, the maximum SWH increased to 10 m and positioned where the typhoon began to switch its direction of movement. Compared with Figure 9B, the region with SWH higher than 5 m was also further enlarged along the track of Hinnamnor (2022) because of the prolonged impact of strong winds on this sea area (20°N–25°N, 125°E–128°E). In addition, prolonged strong winds prominently increased the whole MWP of the research domain (Figure 9G). The maximum MWP also appeared on both sides of the typhoon center and reached above 10 s. In the area far away from the typhoon track, the MWP was generally as low as 6–7 s. Figure 9G also denotes that the MWP in the south of the track was 1–2 s greater than that in the north. This is attributed to the movement of the direction of the cyclone center before September 3. Hinnamnor (2022) kept moving southwest from August 29 and generated more swell in the south. On the morning of September 6, Hinnamnor (2022) landed, and no strong winds influenced the research domain. The SWH returned to a small value except for the area near the location where the typhoon landed (Figure 9D). At this time, the MWP increased in the north because the swell in the south propagated northward (Figure 9G). The anomaly of the SWH during the four typical moments reveals that the wave heights were associated with wind speeds, and its largest value occurred on the right side of the cyclone center. A massive swell was generated near the cyclone center when large MWPs emerged on both sides of the center. Along with the movement of the STY, the swell widely propagated northward after September 3.

Figure 10 illustrates how the SPP varied with time and longitude in the research domain. This can be used to further study the effect of Hinnamnor (2022) on the wave period. Correspondingly, the temporal and spatial evolution of the wind speed at 10 m above the sea surface (10-WSP) is also presented in Figure 10. Latitude averaging for the SPP and 10-WSP was conducted over the entire 18°N–33°N domain. Figure 10C presents the tropical cyclone track at 0000 UTC from August 29 to 1800 UTC on August 30. In the pre-STY status (during August 26–27), the averaged SPP was lower than 9 s (Figure 10A), and the mean 10-WSP was lower than 5 m s−1 (Figure 10B). On August 31, when the 10-WSP increased to 8 m s−1 near 130°E, the SPP slightly increased from 126°E to 130°E (Figure 10A). Before Hinnamnor (2022) intensified into an STY for the second time (during September 1–3), the 10-WSP within 123°E–128°E continued to enhance, whereas the SPP had little increment. This indicates the domination of wind waves over wave energy within this longitude range. After the northward movement, Hinnamnor (2022) developed into an STY on September 4 (Figure 10F), and the 10-m WSP within 123°E–127°E sustained above 10 m s−1 until September 6. In this region, the SPP increased to greater than 10 s during September 4–5 and then decreased to less than 10 s from September 5. The eastern region (133°E–140°E) demonstrated a significant SPP increase where the 10-m wind speed was lower than 5 m s−1. Swell appearance in this region is considered to be the result of the eastward propagation of wind waves near the cyclone center.





4 Conclusion and discussion

Every year, dozens of typhoons form and traverse the Northwest Pacific. The complicated mechanisms of typhoon formation and evolution demand continuous exploration. This study considered STY Hinnamnor that occurred in 2022 as an example to investigate the features of the upper ocean responses and surface waves during a typhoon. Argo (in situ) observations together with the satellite, meteorological, and oceanic re-analysis results were used to reveal the temporal and spatial variations of the upper ocean. Potential reasons for the formation of the phenomena associated with air–sea interactions were also discussed. The research is summarized as follows:

	(1) At the location where the STY passed southwestward (zone−1), the Argo profiles revealed that the post-STY SST, SSS, ILD, and BLT decreased by 1.17 °C, 0.26 psu, 0.4 m, and 25.1 m to pre-STY, respectively, whereas the post-STY MLD and EV increased by 24.7 m and 4.02 m2 s−1 to pre-STY, respectively. At the location where the STY began to move northward (zone-2), the Argo profiles revealed that the post-STY SST, ILD, and BLT decreased by 1.84 °C, 0.4 m, and 6.78 m to pre-STY, respectively, whereas the post-STY SSS, MLD, and EV increased by 0.11 psu, 20.59 m, and 8.16 m2 s−1 to pre-STY, respectively. The Argo data revealed that the reduction of SST and ILD and the increment of MLD and EV in zone-2 were two times greater than those in zone-1. This implies that the vertical mixing or the upwelling—which brought cold water upward to the mixed layer—that occurred in zone-2 was more intensive. The SSS in zone-1 decreased because the freshwater (i.e., precipitation or runoff) input suppressed its increase.

	(2) The remote sensing data provided the evolution of SST during the STY. The SST near the cyclone track significantly decreased and presented a more dramatic decrease in zone-2 than in zone-1. The longer strong winds and deeper MLD in zone-2 were the main reasons for this phenomenon.

	(3) The HYCOM reanalysis data were used for latitude averaging of the ocean temperature and salinity within the region where the STY passed. The vertical profiles of ocean temperature revealed a strong upwelling near the 126°E longitude post-STY. The typhoon center moved northward in the vicinities of the 126°E longitude from 0000 UTC on September 2 to 1200 UTC on September 5. Hence, persistent strong winds in this region led to the formation of upwelling. However, in the region within 123°E–128°E, the vertical profiles of ocean salinity near the sea surface had little change between the pre- and post-STY conditions. The freshwater input in this region significantly inhibited the increase in near-surface salinity. One source of freshwater was the runoff, mainly contributed by the Yangtze River in China. From August 26 to September 6, the accumulated precipitation of the runoff in the 18°N–35°N and 123°E–128°E domains was approximately 50176.58 mm. The other source of the freshwater input was heavy precipitation, and its accumulated results reached approximately 4111.71 mm during the period of Hinnamnor (2022).

	(4) The time series of the six fluxes within the research region was investigated based on the ECMWF ERA5 and HROF re-analysis datasets. The LHF began to decrease from August 31 and reached the maximum around September 4. The increment of LHF resulted in the formation of condensation clouds from water evaporation. High cloudiness in the sky made the NSWF reach its lowest point during this period. Compared with the SHF, the LHF dominated the total heat loss from the ocean to the atmosphere and promoted further development of the tropical cyclone. In addition, the variations of the SHF and LHF indicate a dynamic thermal equilibrium during the passage of the STY. Initially, the tropical cyclone developed by absorbing heat from the ocean. The SHF and LHF quickly increased to intensify the tropical cyclone. When the typhoon intensified to the super level, the cyclone system with high temperature and humidity inhibited heat transport from the ocean to the atmosphere. At this time, both the SHF and LHF began to decrease.

	(5) The ECMWF ERA5 re-analysis data were used to study the anomalies of mean SWH, MWP, and SPP. Evolutions of the SWH and MWP distributions at four typical moments demonstrate the crucial impact of the STY on the surface waves. Strong winds increased the SWH from 2 m to nearly 10 m, and the maximum SWH was located on the right side of the typhoon center. The emergence of large MWPs on both sides of the cyclone center indicates the massive generation of swell. After September 3, the swell propagated northward along with the movement of the typhoon center. In the 123°E–128°E domain, the variation of the latitude averaging SSP with time indicates that the SPP had little increment before the typhoon upgraded to the super level for the second time (September 4). During September 4–6, an obvious swell region appeared in the region within 133°E–140°E, where the 10-m wind speed was lower than 5 m s−1. The eastward propagation of wind waves near the cyclone center is speculated to have resulted in the appearance of the swell.
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