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Editorial on the Research Topic

The Covid-19 and TB syndemic: differences and similarities
Three years ago, in 2020, when the Covid-19 outbreak in China became a pandemic, the

World Health Organization (WHO) declared Covid-19 a global health emergency (1). The

consequences of this declaration were profound and led to the worldwide mobilization of

virtually unlimited funding for needed intervention strategies. As a result, in 2023, theWHO

could announce the end of Covid-19 as a global health emergency. Thirty years ago, when

tuberculosis (TB) caused 3 million deaths per year, an earlier declaration byWHO came to a

similar conclusion, namely that TB was a global health emergency (2). This announcement

was more or less ignored and the WHO could never declare the end of TB as a global health

emergency. Probably one major reason was that Covid-19 was a pandemic equally affecting

countries worldwide while TB is primarily a disease of low-to-middle-income countries.

Consequently, financial support for TB has remained insufficient with support for

research and development (R&D) in the order of 1 billion USD per year in the early 2020s.

In comparison, the 3 years of the Covid-19 pandemic witnessed financial support for R&D

in the order of 100 billion USD. There are other dissimilarities, but also similarities,

between TB and Covid-19, and they are discussed in this Frontiers in Immunology

Research Topic. The emphasis here is on the lessons learned from the successful handling

of the Covid-19 pandemic for mitigating the dire TB crisis. A further issue addressed is

whether interactions occur between the two infections, with one pathogen blocking or

promoting the disease induced by the other.

In describing epidemiologic aspects of Covid-19 and TB, Falzon et al. emphasize the

negative impact of Covid-19 on TB worldwide, which led to a reversal of the slight decline

in TB morbidity and mortality before the Covid-19 crisis.

Booysen et al. provide an update on immune interactions between the two causative

agents, SARS-CoV-2 and Mycobacterium tuberculosis (Mtb). They conclude that
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coinfections could impair immunity to SARS-CoV-2 due to

elevated inflammation. Furthermore, they find a lack of evidence

for a beneficial effect of the TB vaccine, BCG, against Covid-19.

These issues have been further analyzed in experimental

animal studies.

Hilligan et al. show in an experimental animal model that only

intravenous administration of BCG can provide protection against

Covid-19 and Baker et al. reveal in an experimental mouse model

that prior infection with SARS-CoV-2 did not affect subsequent

Mtb infection, whereas prior Mtb infection restricted replication of

SARS-CoV-2 after subsequent challenge.

Aiello et al. further elaborate on the immune response against

Mtb and SARS-CoV-2 in humans with an emphasis on the

initial stage.

Allué-Guardia et al. elaborate on another similarity between TB

and Covid-19, namely the increased susceptibility and the

heightened burden of disease in the elderly. As they point out, a

better understanding of mechanisms underlying TB, Covid-19, and

other respiratory infections should be harnessed for the design of

future intervention strategies to increase the health span of

the elderly.

Shaw et al. discuss one possible mechanism that could operate

as a disease magnifier in infectious diseases, such as Covid-19 and

TB, namely myeloid-deprived suppressor cells.

Kaufmann provides an overview of the current status of vaccine

R&D against TB and Covid-19 and provides possible explanations

for the differential speed of R&D for Covid-19 vs. TB vaccine

development with an emphasis on the mechanisms underlying

immune protection that were mobilized for the development of

preventive measures against the two diseases.

Corleis et al. provide an overview of different animal models

harnessed for TB and Covid-19 investigation and underline an

optimization of models, notably for pulmonary infectious diseases

such as Covid-19 and TB. A complementary, rather than alternate

approach, would be controlled human challenge studies.

Morrison et al. describe the state-of-the-art and potential future

developments for controlled human infection models for SARS-

CoV-2 and TB. Such models could also provide models for newly

emerging pathogens.

The rapid and highly efficient response against Covid-19 has

demonstrated the importance of public awareness of the threat of

infectious diseases including not only newly emerging but also

current threats. Hopefully, the lessons learned from the response to

Covid-19 will also impact efforts toward better control of TB. In

September 2023, the United Nations convened a high-level meeting

on TB, which resulted in a commitment to provide life-saving

treatment for up to 45 million people between 2023 and 2027,

including up to 4.5 million children and up to 1.5 million people

with drug-resistant TB (3, 4).
Frontiers in Immunology 025
Furthermore, they endorsed preventive treatment for up to 45

million people between 2023 and 2027, including 30 million

household contacts of TB patients and children, and 15 million

people living with HIV. To achieve these goals, an increase in

annual global TB funding to 22 billion USD annually by 2027 and to

35 billion USD by 2030 was promised. This also included the

mobilization of 5 billion USD per year by 2027 for R&D for TB.

Even though the UN declaration did not include clear

accountability of the signatories, it would be important for the

whole world to accomplish these goals since, without such

measures, an estimated 24 million deaths will be caused by TB

by 2050, leading to economic losses on the order of 13 trillion

USD. The example of Covid-19 has shown that this level of

financial support can make a difference (5). Therefore, while the

effects of the Covid-19 pandemic on TB control have been

predominantly negative, we learned that high investment, both

in labor and funding resources, brings impactful results. We

hope this lesson will be transferred from a new pandemic to an

old one.
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Controlled human infection
models in COVID-19 and
tuberculosis: current progress
and future challenges

Hazel Morrison †, Susan Jackson † and Helen McShane*

Jenner Institute, University of Oxford, Oxford, United Kingdom
Controlled Human Infection Models (CHIMs) involve deliberately exposing

healthy human volunteers to a known pathogen, to allow the detailed study of

disease processes and evaluate methods of treatment and prevention, including

next generation vaccines. CHIMs are in development for both tuberculosis (TB)

and Covid-19, but challenges remain in their ongoing optimisation and

refinement. It would be unethical to deliberately infect humans with virulent

Mycobacteria tuberculosis (M.tb), however surrogate models involving other

mycobacteria, M.tb Purified Protein Derivative or genetically modified forms of

M.tb either exist or are under development. These utilise varying routes of

administration, including via aerosol, per bronchoscope or intradermal

injection, each with their own advantages and disadvantages. Intranasal CHIMs

with SARS-CoV-2 were developed against the backdrop of the evolving Covid-

19 pandemic and are currently being utilised to both assess viral kinetics,

interrogate the local and systemic immunological responses post exposure,

and identify immune correlates of protection. In future it is hoped they can be

used to assess new treatments and vaccines. The changing face of the pandemic,

including the emergence of new virus variants and increasing levels of

vaccination and natural immunity within populations, has provided a unique

and complex environment within which to develop a SARS-CoV-2 CHIM. This

article will discuss current progress and potential future developments in CHIMs

for these two globally significant pathogens.

KEYWORDS

tuberculosis, COVID-19, CHIM, controlled human infection, challenge models
Introduction

Controlled human infection models (CHIMs) involve the deliberate inoculation of

volunteers with a pathogen under carefully controlled conditions, facilitating detailed study

of host-pathogen immunobiology. Validated models can then be used to expedite the

development of novel vaccines and therapeutics by allowing efficacy testing in small scale
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clinical trials, prior to field efficacy studies. Dating back to Edward

Jenner’s 18th century smallpox experiments, historically, the ethical

conduct of CHIMs has been controversial . With the

implementation of modern ethical frameworks and considered

study design (Figure 1), they have proven to be a safe and

efficacious tool, particularly in the field of vaccinology,

contributing to the development of vaccines for malaria,

influenza, typhoid and cholera (1–4).

Tuberculosis (TB) remains a major global health issue, second

only to COVID-19 as the leading cause of death from a single

infectious pathogen (5). The COVID pandemic has itself reversed

decades of progress towards meeting global TB reduction targets

and new tools to combat TB are urgently needed (6, 7). Whilst

astonishing research efforts worldwide have rapidly led to multiple

licensed COVID-19 vaccines and therapeutics (8, 9), the ongoing

potential of the virus to mutate, coupled with changing population

immunity, means we cannot be complacent in our quest to develop

new scientific tools and evaluate next generation vaccines and

treatments. CHIMs against these two different, but both highly

consequential, respiratory pathogens could be harnessed to help

accelerate progress.
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Tuberculosis controlled human
infection models

Background and need for a TB CHIM

The only licenced vaccine against TB, Bacillus-Calmette Guérin

(BCG), provides good protection against severe forms of infant TB,

but highly variable efficacy against pulmonary TB and therefore

limited impact on disease transmission. Ongoing challenges also

exist in the accurate diagnosis of both TB infection and active

disease, increasing drug resistance and treatment burden even for

fully sensitive disease (10). Despite huge research efforts,

developments in all of these areas are hampered by gaps in our

understanding of intricate host-pathogen interactions, the complex

spectrum of disease states that cannot be replicated fully in animal

models and lack of defined immune correlates of protection (CoP).

Judicious use of a mycobacterial CHIM could help facilitate

advances in many of these domains, as a complement to animal

and field studies (11). For example, a mycobacterial CHIM could

enable the prioritisation of vaccine candidates that most effectively

control mycobacterial growth, prior to larger, more costly field
FIGURE 1

Controlled human infection model design. A common framework of considerations for CHIM design should be employed. “Rescue” therapy:
treatment employed in CHIMs either to prevent the progression of volunteer symptoms experienced beyond mild disease or to abrogate infection,
DSMB: Data safety monitoring board.
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efficacy studies. Samples from such a CHIM could also be used to

interrogate immune parameters that correlate with control after a

defined timepoint infection, with any positive steps towards finding

a validated TB immune CoP proving potentially transformative.
Current and future approaches to
developing a TB CHIM

Intentionally infecting humans with virulent Mycobacterium

tuberculosis (M.tb) would not be ethical, with the potential for

significant morbidity and mortality. Even if these are avoided, long

treatment duration with the risk of significant drug side effects, risk

of M.tb transmission to others, inability to prove cure at the end of

treatment and possibility of disease recurrence are all substantial

arguments against a CHIM with wild-type M.tb. Therefore,

researchers must pursue the use of alternative challenge agents

(Summarised in Table 1), aiming to address key scientific questions

with an acceptable risk profile to both volunteers and the

wider community.

The tuberculin skin test (TST), where tuberculin Purified

Protein Derivative (PPD) is injected intradermally, has

traditionally been used as a diagnostic test for latent TB infection

(LTBI). It has been employed as a challenge agent to investigate

immunological responses to mycobacterial antigens at the site of

skin challenge, for example identifying exaggerated Th17 responses

in those with active TB disease as a potential target for host directed

therapies (12, 13, 24). PPD has also been used to assess local

respiratory mucosal responses following intrabronchial instillation

(14, 15, 21). Whilst these methods may contribute to our knowledge

of mycobacterial immunopathogenesis they cannot be utilised

directly to assess efficacy of vaccines or therapeutics.

A CHIM that is to be used to evaluate vaccine efficacy requires a

live replicating organism, for example an attenuated strain of

mycobacteria. BCG itself is such a live attenuated mycobacteria,

initially derived via passage from Mycobacterium bovis (M. Bovis),

that does not cause disease or latency in healthy humans (25). The

loss of key virulence genes encoded in the Region of Difference 1

(RD1) during this process confers the advantageous safety profile of

BCG but means the full immunopathogenic pathways of M.tb are

not entirely replicated and it could not be used to evaluate vaccines

which incorporate RD1-encoded antigens, such as ESAT-6 and

CFP-10. However, BCG has been shown to induce similar canonical

CD4+ T cell-mediated immune responses to M. tb in humans (26)

and assessment of vaccine efficacy using a BCG challenge in animal

models are comparable to results obtained using M.tb as the

challenge agent (27, 28). BCG manufactured under good

manufacturing practice (GMP) conditions for human use is

readily available and this therefore represents the only live

replicating TB CHIM agent currently available (11).

CHIMs using intradermal (ID) BCG as a mycobacterial

challenge agent have been developed and are able to detect a

known BCG vaccine effect in animals and humans (17, 18, 27–

29). The ID route allows straightforward quantification of

mycobacteria from an easily accessible site, for example via
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minimally invasive punch skin biopsies (17). However, the

natural route of M.tb infection is via the respiratory tract and

initial pathogen interactions with the specialised host respiratory

mucosal system cannot be evaluated using an ID CHIM.

Efforts are ongoing to develop pulmonary CHIMs that more

closely mimic the natural route ofM.tb infection. BCG delivered via

aerosol (Clinicatrials.gov NCT02709278, NCT03912207,

NCT04777721) or instilled directly into the lungs per

bronchoscope (21) are both being evaluated and have been shown

to be safe and well tolerated. A defined timepoint pulmonary

mycobacterial infection would allow examination of localised

mucosal immunology and the relationship to induced system

responses, which are key areas of research interest. Vaccines or

therapeutics tested using these CHIMs would have the advantage of

accounting for the contribution of the specialised respiratory

mucosa in conferring protective immunity. However, sampling of

the respiratory mucosa for immunological interrogation and

quantification of recoverable BCG in pulmonary models are both

more complex and invasive than in skin models (30).

Following on from initial studies using BCG, live mycobacterial

CHIMs could be enhanced by the use of rationally attenuated

genetically modified organisms. BCG which has been modified,

for example to include a fluorophore reporter gene or exhaled

volatile compound detectable by mass spectrometry could reduce

the need for invasive sampling for mycobacterial recovery and

quantification (31, 32). Use of current live vaccine candidates

such as MTBVAC, a rationally attenuated form of M.tb (33, 34)

or VPM1002, a recombinant BCG (35, 36), could allow

investigation of the antigens or immunological pathways missing

from BCG.

Whilst it is some way off from clinical evaluation, efforts are

underway to develop a conditionally replicating M.tb strain with a

genetically inserted suicide mechanism. This would aim to

recapitulate the initial immunological mechanisms of M.tb, whilst

ensuring complete eradication at a predefined timepoint and, if

successful, could hugely advance the field of human TB study

(22, 31).

Finally, for a TB CHIM to be truly useful, it should be safe,

acceptable and deliverable in TB endemic populations and settings.

Different environmental exposures, level of nutrition, microbiome

composition, prior exposure to mycobacteria and prevalence of co-

infections are just some of the known factors impacting vaccine

efficacy. Utilising an ethically appropriate CHIM in endemic

settings would ensure vaccines are tested in relevant populations

(11, 37).
SARS-CoV-2 controlled human
infection models

Background and need for a
SARS-CoV-2 CHIM

Early in the COVID-19 pandemic, the World Health

Organisation (WHO) acknowledged the potential benefits of a
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TABLE 1 Controlled Human Challenge Studies in Tuberculosis and Covid-19.

Studies,
country

Challenge
agent, route

Challenge overview Key findings Challenge method
comments

Tuberculosis

Tomlinson et al.
2011.
UK, South Africa
(12).

PPD 5 TU
ID

Volunteers with a spectrum of mycobacterial
exposure underwent concurrent TSTs in each
arm, with skin biopsies at 6 and 48 hours

• Recruitment of TH1-polarised
responses and cytotoxic T-cells at
TST site
• Immune responses predominantly
due to cell recruitment, not
proliferation

ID PPD
✓ Minimally invasive
✓ Allows dissection of immune
responses and interactions in
vivo
✗ Not at site of natural infection
✗ Unable to assess vaccine/
therapeutic efficacy as no
replication

Pollara et al. 2017.
South Africa, UK,
Peru (13).

PPD 5 TU
ID

PPD or saline control injection in individuals
with active TB, LTBI or cured disease,
followed by skin biopsy of TST site at 48
hours

• Elevated levels of IL17A/F and
enrichment of Th17 cells in active TB
compared to LTBI
• Associated with increased
neutrophils and MMP-1
• Changes reversed in cured group

Silver et al. 2003.
USA (14).

PPD 0.01-0.5 TU
Intrabronchial

Dose escalation study of PPD instillation per
bronchoscope followed by bronchoalveolar
lavage (BAL) at 48 hours in TST positive and
negative individuals

• Local inflammatory response at 0.5
TU, with increased mobilisation of
CD4+ T-cells and antigen-specific
IFNg producing cells in the lungs of
TST positive volunteers

Intrabronchial PPD
✓ Allows dissection of immune
responses and interactions in
vivo
✓ At mucosal site of natural
infection
✗ Invasive instillation and
sampling
✗ Unable to assess vaccine/
therapeutic efficacy as no
replication

Walrath et al.
2005.
USA (15).

PPD 0.5 TU
Intrabronchial

Follow on PPD per bronchoscope study to
examine mucosal immune responses by BAL
48 hours after installation in TST positive and
negative individuals

• IFN-g-inducible chemokines
including CXCR3 ligands increased in
TST individuals
• Evidence of compartmentalised
resident memory cell induction

Schreiber et al.
2010.
UK (16).

BCG Moreau 107

viable bacilli
Oral

Repeated oral challenge days 0, 28, 49 in
historically BCG vaccinated volunteers with
subsequent peripheral blood sampling

• Increase in PPD-specific IFNg seen
6 months after 1st challenge
• Increase in IL6-enriched pathways
at day 7, no changes after repeat
challenge

Oral BCG
✓ Non-invasive
✓ Live, replicating organism
✓ Challenge involves mucosal
site
✗ Not natural site of TB
infection
✗ Study designed as surrogate
CHIM for gastrointestinal
infections not TB
✗ Mucosal sampling difficult
✗ Minimally immunogenic
✗ Difficult/unable to quantify
viable BCG

Minassian et al.
2012.
UK (17).

BCG Danish 1331
1-4×105 CFU
ID

Feasibility study of ID BCG challenge in
BCG-naïve and historically vaccinated. Skin
biopsies and suction blisters used to quantify
BCG recovery and examine cellular infiltrate

• Peak BCG recovery in challenge site
at 2 weeks (detectable up to 4 weeks)
• CD15+ neutrophilic infiltration at
blister site
• Prior BCG vaccination lead to
reduction in recoverable BCG by PCR

ID BCG
✓ Same route as vaccination,
same safety profile
✓ Live, replicating organism
✓ Minimally-invasive (skin
biopsies)
✓ Easily controllable and
quantifiable
✓ Proven to detect a BCG
vaccine effect
✗ Cannot be used to study
vaccines based on RD1 deleted
antigens
✗ Not at natural site of infection
✗ Unable to assess involvement
of respiratory mucosal immunity
in control

Harris et al. 2013.
UK (18).

BCG Danish 1331,
2-8x105 CFU
ID

Use of ID BCG CHIM to asses vaccine
candidate MVA85A prime or as a booster
following historical BCG-vaccination, with
skin biopsies taken 2 weeks following BCG
challenge

• Protective BCG vaccine effect again
detectable by PCR
• No added benefit of MVA85A over
BCG (in keeping with field trials)

Minhinnick et al.
2016.
UK (19).

BCG Danish 1331
or BCG TICE,
standard ( 2-8
x105 CFU) or high
(3 x standard)
ID

Optimisation of ID BCG challenge model by
BCG strain and dose in BCG-naïve
volunteers, with skin biopsies taken 2 weeks
following BCG challenge

• No significant difference in BCG
recovery by strain
• High dose ID BCG was well
tolerated with improved BCG
recovery
• High-dose BCG Danish 1331
identified as optimal agent for future
studies

Blazevic et al.
2017.
USA (20).

BCG TICE 2x106

ID
ID BCG challenge to asses use of skin swabs
to detect BCG

• BCG detection possible via swabs,
but less reproducible and consistent

(Continued)
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TABLE 1 Continued

Studies,
country

Challenge
agent, route

Challenge overview Key findings Challenge method
comments

than biopsy
• Later recovery of BCG (3-4 weeks)

Davids et al. 2020.
South Africa (21).

BCG Danish 1331
1x103-1x105 CFU
Intrabronchial
Also PPD 0.2 TU
and 0.5 TU
Intrabronchial

Safety and feasibility study with per
bronchoscope instillation of BCG and PPD
(different lung segments) in volunteers with a
broad range of prior mycobacterial
sensitisation

• Highly compartmentalised immune
responses demonstrated, localised to
the challenged lung segments
• Frequency of Th17 homing cells
unexpectedly seen to decrease after
PPD or BCG challenge

Intrabronchial BCG
✓ At mucosal site of natural
infection
✓ Allows dissection of
pulmonary and systemic
immune responses in vivo
✓ Live, replicating organism
✓ Safety shown in sensitised
individuals
✗ Cannot be used to study
vaccines based on RD1 deleted
antigens
✗ Invasive challenge
✗ Invasive sampling
✗ Accurate quantification of
BCG recovery from pulmonary
samples challenging
Intrabronchial PPD
See comments on previous
studies

TB041, UK.
Clinicaltrials.gov
NCT02709278
Completed,
manuscript under
review (11)

BCG Danish 1331
/BCG Bulgaria
1×103 - 1×107

CFU
Aerosol inhaled

Dose escalation study of aerosol BCG in
BCG-naïve volunteers, with comparison ID
BCG am

• Aerosol BCG is safe, and
immunogenic in BCG naïve
volunteers
• Live BCG can be detected from
BAL samples

Aerosol BCG
✓ At mucosal site of natural
infection
✓ Non-invasive challenge, most
closely mimics natural
inoculation
✓ Allows dissection of immune
responses and interactions in
vivo
✓ Live, replicating
✗ Cannot be used to study
vaccines based on RD1 deleted
antigens
✗ Invasive sampling
✗ Accurate quantification of
BCG recovery from pulmonary
samples challenging

TB043, UK.
Clinicaltrials.gov
NCT03912207
Ongoing (22)

BCG Danish 1331
1X107 CFU
Aerosol inhaled

Exploratory study into innate and adaptive
immune response to aerosol mycobacterial
challenge

Trial protocol only, results awaited

TB044, UK.
Clinicaltrials.gov
NCT04777721,
Ongoing (22)

BCG Danish 1331
1x104 - 1 ×107

Aerosol inhaled

Dose escalation study of aerosol BCG in
historically BCG vaccinated volunteers

Trial protocol only, results awaited

COVID-19/ SARS-CoV-2

Killingley et al.
2022.
UK (23).

Wild-type
SARS-CoV-2 virus
(SARS-CoV-2
/human/GBR/
484861/2020)
10 TCID50

Intranasal

Dose finding study, healthy 18-30-year olds,
seronegative with no prior SARS-CoV-2
infection or vaccination

• 18/34 (53%) of volunteers
developed productive infection at 10
TCID50
• Accurate description of 1o infection
viral kinetics with pre-Alpha strain
• Virus detectable in throat
significantly earlier than the nose, but
reaching higher titres in nose
• Viral shedding started at 2 days
post inoculation and peaked at 5 days
at 8.87log10 copies per millilitre
• Viable virus was detected on FFA
for an average of 10 days (up to 12
days)
• Challenge was safe and well
tolerated. No evidence of lower
respiratory tract infection but 83% of
volunteers demonstrated measurable
smell disturbance.
• Strong correlation with lateral flow
positivity and viable virus on FFA

Wild type, seronegative
✓ Proof of concept, ethical
acceptability and safety
✓ Able to establish productive
infection
✓ Able to dissect primary
infection kinetics and immune
response under standardised
conditions
✗ No longer dominant variant
✗ Seronegative model cannot be
used for vaccine/ therapeutic
development given global
seroprevalence via vaccination/
infection
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SARS-CoV-2 CHIM, for example to allow rapid prioritisation of

vaccine candidates. A working group was promptly established to

consider the practicalities, feasibility and ethics (38). Initial expert

consensus was divided with concern about the lack of a

suitable “rescue” therapy, potential for severe illness and high

transmissibility, as well as the benefit and applicability of such a

model over field studies (39).

Accruing data suggested that infection of young, healthy adults

in whom disease was generally much milder could be justifiable.

This prompted UK manufacture of a challenge virus under GMP

conditions and development and rigorous ethical review of study

protocols for both a UK SARS-CoV-2 naïve CHIM (NCT04865237)

and one in previously infected volunteers (NCT04864548) (40).

GMP manufacture of challenge viruses is a time-consuming process

and enrolment did not commence in these studies until March

(NCT04865237) and May, 2021 (NCT04864548) respectively, by

which point several highly efficacious vaccine candidates were being

deployed in the UK population (41, 42).

Despite the widespread availability of highly effective vaccines

against SARS-CoV-2, there remains a justifiable role for SARS CoV-

2 CHIMs. A clear advantage of a CHIM over natural infection field

studies is the known-timepoint of infection; allowing the detailed

characterisation of both viral kinetics and the host immune response

post-exposure. The dose of virus can also be carefully controlled and

adjusted, providing crucial information about how the infectious dose

affects the clinical and immunological response to the virus.

Importantly, CHIMs also allow the collection of pre-exposure
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samples. These baseline samples can be assessed against clinical

outcomes to identify immune correlates of protection (CoP).

Whilst current literature clearly defines the role of neutralising

antibodies (nABs) as a correlate for sterilising immunity against

SARS-CoV-2 (43–46), emerging evidence, particularly with the

evolution of Variants of Concern (VoC) that escape nABs, is that

the immune response to SARS-CoV-2 is more complex. Cell-

mediated immunity, memory B cells and non-neutralising Fc-

mediated effector functions may all play a role (47–53). Local

mucosal immune responses have demonstrably protected against

infection from other respiratory pathogens (54, 55) but mucosal

immunity against SARS-CoV-2 remains poorly described in the

literature. A CHIM with infection at a controlled timepoint allows

the detailed interrogation of all aspects of the protective immune

response, particularly the early host mucosal responses that are

often missed in natural field infection studies.

Furthermore, the ability to control confounders such as inoculum

strain, route of exposure, viral load and patient heterogeneity in a

CHIM allows direct comparison of vaccine and therapeutic candidates

as well as dosing regimens. With the roll-out of successful vaccines, it is

unfeasible and unethical to maintain an unvaccinated placebo group

for the testing of new vaccine candidates. Non-inferiority trials require

large sample sizes and sufficient naturally acquired infection which can

be time consuming and expensive. A CHIM could be of particular use

in assessing novel vaccines, including those developed to be mucosally-

delivered, which may have differing end-points (such as prevention of

infection or viral shedding) that would be extremely difficult to study
TABLE 1 Continued

Studies,
country

Challenge
agent, route

Challenge overview Key findings Challenge method
comments

COV-CHIM01,
UK.
Clinicaltrials.gov
NCT04864548,
Ongoing

Wild-type
SARS-CoV-2 virus
(SARS-CoV-2
/human/GBR/
484861/2020)
10-1x105TCID50

Intranasal

Dose finding study, healthy 18-30-year olds,
prior SARS-CoV-2 infection +/- vaccination.
Utilising same pre-Alpha SARS-CoV-2 virus
as seronegative CHIM. Starting at dose of
1x101 up to 1x105TCID50.

Trial protocol only, results awaited Wild type, seropositive
✓ Seropositive studies needed
for real world utility
✗ Potent protection against re-
infection demonstrated in field
studies prior to emergence of
Delta & Omicron variants ?
feasibility (results awaited)

COVHIC002, UK.
ISRCTN94747181,
Ongoing

Delta SARS-CoV-
2 virus
Starting dose
1x102 TCID50

Intranasal

Dose finding study, healthy 18-30-year olds,
SARS-CoV-2 vaccinated (+/- prior infection).

Trial protocol only, results awaited Viral variants, seropositive
✓ Seropositive studies needed
for real world utility
✓ Use of variants allows
dissection of heterologous
immunity
✓ More reflective of real world
✓ Proof of concept with viral
variants could allow selection of
optimum challenge strain for
future use
✗ Viral mutation likely to
outpace GMP manufacture of
challenge strains
✗ Potent protection against re-
infection demonstrated in field
studies prior to emergence of
Omicron variant ?feasibility
✓ Positive aspect of model ✗ Drawback to model.
BAL, bronchoalveolar lavage; BCG, Bacillus-Calmette Guérin; ID, intradermal; FFA, focus forming assay; IL6, interleukin 6; IL17, interleukin 17; LTBI, latent TB infection; MMP-1, matrix
metalloproteinase-1; PPD, tuberculin purified protein derivative, TCID50, median tissue culture infectious dose; Th17, T-helper 17; TST, tuberculin skin test; TU, tuberculin Unit.
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without a defined timepoint of infection. Whilst field studies are

considered gold standard for vaccine licensure, there are instances

where CHIMs have been used directly as proof of efficacy (4).
Current and future approaches to
developing a SARS-CoV-2 CHIM

To date there are three registered SARS-CoV-2 CHIMs

(Summarised in Table 1). The wild-type (pre-Alpha) SARS-CoV-

2 CHIM in healthy, seronegative, UK 18-29-year olds demonstrated

infection in 53% (18/34) of volunteers using a low inoculum dose of

10TCID50 (50% tissue culture infectious dose). Challenge was safe

and well-tolerated with no evidence of lower respiratory tract

involvement, although smell disturbance was common and

prolonged in a small number of volunteers (23). Killingley et al.

were able to accurately delineate the viral kinetics of primary

infection and identified differences in viral dynamics depending

on swab site. Viable virus measured by focus forming assay (FFA)

persisted for on average 10 (maximum of 12) days, consistent with

pre-Alpha isolation guidance (23). FFA was shown to closely

correlate with lateral flow antigen (LFA) tests performed on the

same swab samples. This first in human SARS-CoV-2 CHIM has

demonstrated the broad utility of CHIMs, strengthening confidence

in the public health measures (such as isolation periods and use of

LFA tests) employed in the UK. Exploration of immune correlates

of protection in this seronegative cohort, such as cross-reactive

responses from seasonal coronaviruses, is ongoing.

With increasing global seroprevalence to SARS-CoV-2 from

vaccination and/or infection (56), a seropositive SARS-CoV-2

CHIM is needed in order to facilitate future vaccine and

therapeutic development in volunteers that reflects real world

immunity. Successfully establishing a re-infection model

additionally allows the identification of both local and systemic

immune markers attained via the infection or vaccination process

that are protective against re-infection, which could inform future

public health strategies as well as design of therapeutics and vaccines.

Ongoing use of a pre-Alpha strain for a seropositive CHIM has

several potential issues. Field data suggests that acquired immunity

(either by vaccination, natural infection or both – hybrid immunity)

offers strong resistance to homologous re-infection (57, 58).

Achieving consistent infection rates may therefore prove more

difficult than in a study of naïve participants.

Much of knowledge of re-infection rates was obtained prior to

the emergence of variants such as Delta and subsequently Omicron,

which are known to escape immunity. Both variants have antigenic

divergence due to mutations in the spike protein and have been

shown to demonstrate reduced neutralisation titres compared to

pre-Alpha strains in vaccinated and hybrid cohorts (59–62). One

approach which may circumvent any difficulty achieving infection

in seropositive volunteers is to use variants more likely to cause

breakthrough infections as the challenge agent, such as the Delta

variant (isrctn.com ISRCTN94747181). Manufacture of an

Omicron challenge agent is also being pursued (63).

There are pros and cons to the use of Delta or Omicron in a

CHIM. Neutralisation against the Omicron variant is more
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markedly reduced than delta and associated with a higher rate of

breakthrough infections (47, 61, 64) making it plausible that it

would be easier to achieve infection in a CHIM. Omicron may also

be a safer challenge agent demonstrating milder disease severity and

reduced lower respiratory tract disease (65–68). However, the

shorter infection course seen with the Omicron variant may also

make it difficult to assess post-infection therapeutics (69).

Studies using currently prevalent variants are arguably more

relevant both for the development pipeline of vaccines and

therapeutics and understanding CoP. Limitations to this approach

are that manufacturing a new challenge strain under GMP

conditions takes at least 6 months (70). Furthermore, any specific

clinical risks of that variant need to be understood from real world

data prior to use in an ethically sound CHIM. The high incidence of

SARS-CoV-2 and associated viral replication globally has resulted

in the relatively rapid acquisition of mutations and development of

new VoCs, meaning that by the time an inoculum strain is ready for

use in a CHIM it may no longer be the dominant variant in the real

world. However, developing several CHIMs that use variants

derived from different lineages will enable broad assessment of

different therapeutics and vaccines.
Discussion

Tuberculosis and Covid-19 represent two deadly, but distinct,

respiratory diseases. Whilst highly efficacious vaccines against

Covid-19 were developed at unprecedented speed against the

backdrop of the evolving pandemic, progress in improving on the

limited overall efficacy of the BCG vaccine against TB has been

much slower. All possible research approaches that can be utilised

to expedite progress should be harnessed to improve this situation.

We must also remain vigilant against the potential for further

SARS-CoV-2 mutations and need to have methods available to be

able to rapidly assess new vaccines and therapeutics.

CHIMs may prove to be useful tools in our armoury against both

of these pandemic pathogens, despite their unique situations and

challenges. There are no validated CoP in TB and use of CHIMs to

interrogate human immunological responses following a defined

timepoint infection could increase our understanding in this area.

Whilst validated CoP, for example in the form of nABs, do exist for

Covid-19, these are clearly not the only factor contributing to

immunity, particularly against initial infection and transmissibility.

The early host mucosal immune response to M.tb and SARS-CoV-2

represent an important knowledge gap for both pathogens. The ability

to abort infection at its point of entry could prevent LTBI and provide

epidemic control by blocking onward transmission of SARS-CoV-2.

These initial mucosal responses can only really be studied in an

experimental setting with a known timepoint of infection.

Identification of the ideal challenge agent for a CHIM remains an

issue for both of these diseases. Use of virulent M.tb is unethical and

therefore any deployable TB CHIM will only provide partial

information about the true protective efficacy of a tested vaccine or

therapeutic against M.tb. Progress is underway to identify surrogate

agents which could be utilised and, given the differing advantages and

disadvantages of various agents and routes of challenge (see Table 1),
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it may be that a combination of the available options will need to be

employed depending on the exact question to be answered or until

new modified organisms are available (11). In Covid-19, viral

mutations mean that manufacture of a challenge agent may lag

behind currently circulating variants. Utilisation of a variant with

optimal challenge properties (for example, high levels of infectivity

with low potential to cause severe disease), such as those seen in the

Omicron variant may be one approach. Or it may be that, similarly to

TB, a range of challenge agents could be developed and utilised

depending on the specific question to be answered.

A CHIM for the purpose of novel vaccine and therapeutic

evaluation needs to be able to accurately quantify pathogen load.

This is undertaken with quantitative PCR (qPCR) on minimally

invasive samples from the oral or nasal mucosa for SARS-CoV-2. The

sampling and quantification of mycobacteria, particularly from the

respiratory tract, for a TB CHIM remains much less straightforward,

for example due to the fastidious and slow growing nature of

mycobacteria and colonisation of the respiratory tract with

organisms including non-tuberculous mycobacteria. One potential

entirely non-invasive solution under development is the use of

specially adapted face masks, containing a collection matrix to

sample exhaled pathogens, which are then detected via qPCR.

Initially developed as a potential diagnostic tool for TB (71), these

are currently being evaluated in both TB (Clinicaltrials.gov

NCT03912207) and COVID (Clinicaltrials.gov NCT04864548),

highlighting how solutions initially designed for one pathogen can

be utilised in another.

Applicability of CHIMs utilised in young, healthy adults to real

world populations of interest is an area of consideration for both

pathogens. In TB, there is a drive to deliver CHIMs in TB endemic

settings, to ensure information derived and interventions tested are

relevant to eventual target populations (11). In Covid-19, applicability

of results obtained in a CHIM to those most at risk of disease,

including the elderly and immunocompromised, is not yet known.

There may be fundamental differences in the way these populations

respond to the virus that limit the generalisability of a CHIM

conducted purely in young, immunocompetent adults.

Interestingly, in more established respiratory pathogens, efforts are

underway to develop safe CHIMs in older adults (72), but it is not at

all clear that this would be ethical or feasible with SARS-CoV-2

With multiple studies ongoing to develop and optimise CHIMs

within both TB and Covid-19, this is an area of considerable scientific

interest and promise. Momentum gained in research during the

Covid-19 pandemic should be harnessed to ensure CHIMs for these,

and other, pathogens continue to be developed and to exploit their
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full potential, in particular the fields of vaccine development and to

further our understanding of host-pathogen immunobiology.
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Epidemiologic data show that both current and previous tuberculosis (TB)

increase the risk of in-hospital mortality from coronavirus disease-2019

(COVID-19), and there is a similar trend for poor outcomes from

Mycobacterium tuberculosis (Mtb) infection after recent SARS-CoV-2. A shared

dysregulation of immunity explains the dual risk posed by co-infection, but the

specific mechanisms are being explored. While initial attention focused on T cell

immunity, more comprehensive analyses revealed a dysfunctional innate

immune response in COVID-19, characterized by reduced numbers of

dendritic cells, NK cells and a redistribution of mononuclear phagocytes

towards intermediate myeloid subsets. During hyper- or chronic inflammatory

processes, activation signals frommolecules such as growth factors and alarmins

lead to the expansion of an immature population of myeloid cells calledmyeloid-

deprived suppressor cells (MDSC). These cells enter a state of pathological

activation, lose their ability to rapidly clear pathogens, and instead become

broadly immunosuppressive. MDSC are enriched in the peripheral blood of

patients with severe COVID-19; associated with mortality; and with higher

levels of inflammatory cytokines. In TB, MDSC have been implicated in loss of

control of Mtb in the granuloma and ineffective innate and T cell immunity to the

pathogen. Considering that innate immune sensing serves as first line of both

anti-bacterial and anti-viral defence mechanisms, we propose MDSC as a crucial

mechanism for the adverse clinical trajectories of TB-COVID-19 coinfection.

KEYWORDS
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1 Introduction

There is now ample evidence that regions with a high prevalence of tuberculosis (TB)

disease and latent TB infection (LTBI, where an asymptomatic person has a positive

interferon-g release assay or skin test), also have a high prevalence of recent SARS-CoV-2

infection (1–4). As a result, acute or chronic coinfection, or acute sequential infection with

Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 has become inevitable.
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We know from epidemiologic reports during the pandemic that

coinfection with Mtb and SARS-CoV-2 worsens patient outcomes.

Both current active TB disease (defined as culture, molecular test, or

other Mtb test positive, with symptoms or imaging changes that

justify the initiation of full TB treatment) and previous TB, increase

the risk of in-hospital mortality from coronavirus disease-2019

(COVID-19), and the case fatality rate for coinfection is higher

than for COVID-19 alone (5, 6). The lymphopaenia which

characterizes COVID-19 is exaggerated in coinfection, and

markers of inflammation such as D-dimer and ferritin are

increased over and above the COVID-19 levels (7, 8).

Transcriptomics and RNAseq data from whole blood, peripheral

blood mononuclear cells (PBMC) and bronchoalveolar lavage fluid

(BALF) of patients with COVID-19, and those with TB across the

clinical spectrum, has shown that there is similarity in the

immunopathogenesis of the two diseases through commonly

enriched genes in 12-gene disease-exacerbation hot spots (9).

Moreover, the inflammatory milieu from Mtb-infected human

macrophages increased SARS-CoV-2 infection in vitro, which

correlated with IFNA1, IFNB1, IFNG, TNF, and other

inflammatory gene induction. Interestingly, in Mtb-infected mice,

superinfection with SARS-CoV-2 resulted in increased Mtb

dissemination, but a lower SARS-CoV-2 viral load in the tissues

(10). In a different murine study, the protective effect of pre-existing

Mtb infection on the pathological consequences of SARS-CoV-2

occurred without adversely affecting TB outcomes (11). This

collection of findings shows that Mtb infection increases the risk

of severe COVID-19 in humans, and suggests the possibility that

SARS-CoV-2 coinfection may also trigger the progression of

subclinical TB to TB disease.

Patients with active TB disease and SARS-CoV-2 coinfection have

lower numbers ofMtb-specific T cells (12). They also produce less IFN-

g and other proinflammatory cytokines, chemokines and growth

factors on SARS-CoV-2 stimulation; produce less interferon-y (IFN-

y) and several other cytokines on Mtb stimulation (though to a lesser

extent than the reduction on SARS-CoV-2 stimulation); and have

different overall cytokine signatures compared to infection with each

pathogen alone (12–14). One possible mechanism underlying this

observed immune suppression in the presence of chronic stimulation

by Mtb or SARS-CoV-2 antigens, is the presence of suppressive

myeloid cells such as myeloid-derived suppressor cells (MDSC).

MDSC are known to inhibit many immune pathways, particularly T

cell responses. They have now been both directly and indirectly

implicated in the pathogenesis of both COVID-19 and TB (15–17).

However, their role in coinfection is yet to be explored. In this article we

will introduce the reader to MDSC, briefly review the evidence for their

involvement in TB disease and COVID-19, and then discuss the

potential role of these cells in determining the outcome of Mtb/

SARS-CoV-2 coinfection.
2 Suppressive myeloid cells

Suppressive myeloid cells are considered critical in immune

regulation and tolerance, maintaining the delicate balance between

healing and harm during the immune response. They limit
Frontiers in Immunology 0218
excessive inflammation and prevent immune-mediated tissue

damage in the early response to a tissue insult, promote immune

tolerance during tissue repair or pregnancy, and augment protective

anti-pathogen responses in acute infection (18–22). However, in

pathological conditions such as chronic inflammation, cancer, or

extensive tissue trauma, the scales tip toward more harm than help.

The function of MDSC in the pathophysiology of cancer is well

described (23–25), but in chronic infection and respiratory disease

is still in the early stages of investigation. Our understanding of their

role in these conditions is hampered by a few ongoing issues. Firstly,

the cell type terminology is not globally accepted. Secondly, the

nature of MDSC remains poorly defined, partly because these cells

likely differentiate into suppressive macrophage subsets upon

entering tissue sites. However, most agree that MDSC are cells of

myeloid origin which acquire a state of pathological (or alternative)

activation in response to the prolonged weak pro-inflammatory

signals that are present in chronic infection or cancer (25–27). As a

result, they lose their ability to rapidly and effectively clear

pathogens, instead becoming immunosuppressive by inhibiting

natural killer (NK) cell, B cell, and T cell responses, amongst others.

MDSC are generally divided into twomain subtypes (Figure 1). They

are named for their cell lineage of origin as polymorphonuclear or

granulocytic MDSC (PMN-MDSC) and monocytic MDSC (M-MDSC).

A third group which comprises only a small proportion of the total

MDSC population is known as ‘early MDSC’, and consists of potent

immunosuppressive myeloid progenitors (28). Other subtypes such as

eosinophilic MDSC have been proposed, but are not well characterized

as yet. In circulation, both PMN- andM-MDSChave a short lifespan of a

few days, though the latter survive longer in vitro (29) and the half-life

may well be prolonged in inflammatory states (30). Their continuous

recruitment to tissues is what results in long term effects (31). In tumors,

M-MDSC rapidly differentiate into tumor-associated macrophages

(TAMs) which are associated with tumor progression, and

inflammatory dendritic cells (32, 33). Tumor associated neutrophils

(TANs) are a heterogeneous population of cells which, in mice,

includes both neutrophils with anti-tumor (N1) and suppressive/pro-

tumor (N2) properties, the latter sharing some cell surface markers and

biochemical properties with PMN-MDSC (34, 35).

Identifying these cells is complex, and not always consistent

between studies. Cell surface markers which identify MDSC differ

between mice and humans. For the purpose of this review we will

focus on human-relevant markers only. PMN-MDSC are identified

as CD11b+CD14-CD15+/CD66b+ cells in the low density Ficoll

gradient fraction of PBMC. Other marker combinations have been

proposed which do not need a Ficoll gradient, such as CD15+/

CD66b+CD14-LOX1+ and CD15+/CD66b+CD14-CD84+. All

human MDSC are HLA-DRlo/-. M-MDSC are identified as

CD11b+CD14+CD15-HLA-DRlo/- cells in the low density Ficoll

fraction of PBMC, or alternatively CD14+/CD66b-CXCR1+ or

CD14+/CD66b-CD84+ (28, 31, 36). Early MDSC are identified as

Lin-HLA-DR-CD33+/hi (where Lin is CD3, CD14, CD15, CD19 and

CD56) (25, 28). Some of the newer markers such as LOX-1 have yet

to be validated in infection-induced MDSC.

Classical neutrophils and monocytes are activated by pathogen-

and damage-assoc ia ted molecu lar pat terns (such as

lipopolysaccharide and heat shock proteins respectively) binding
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to pattern recognition receptors such as Toll-like receptors (TLRs).

This interaction triggers the innate immune mechanisms for the

rapid clearance of microbes and infected cells, such as phagocytosis,

the respiratory burst, the production of proinflammatory cytokines

and upregulation of co-stimulatory molecules and MHC-II (25). In

contrast, MDSC are the result of prolonged but weak stimulation

with growth factors, cytokines and other stimuli (such as GM-CSF,

VEGF, NLRP3, and the S100A8/A9 alarmins), and activation is

triggered by further stimulation with inflammatory cytokines and

pathogen- or damage-associated molecular patterns including

iIFN-g, interleukin (IL)-1b, IL-4, IL-6, IL-13, tumor necrosis

factor (TNF), high mobility group box (HMGB)-1 (37–41). The

transcription factor STAT3 is also invariably upregulated in MDSC,

as the main regulator of genes controlling the expansion of MDSC

(31, 42).

Overall, the most important characteristic of these cells which

distinguishes them from classical neutrophils and monocytes is

their ability to inhibit immune responses, specifically T cell

activation and function (28, 31). They use multiple mechanisms

to achieve their suppressive effect. Depletion of L-arginine from the

microenvironment through upregulation of arginase-1 (ARG1) and

inducible nitric oxide synthase (iNOS), inhibits the key human T

cell receptor (TCR) signaling molecule CD3z in vitro (43, 44). Nitric
Frontiers in Immunology 0319
oxide from the iNOS also interferes with JAK/STAT signaling in the

T cells of mice in vitro (45, 46). In addition to this, increased

reactive oxygen species (ROS) in murine immature myeloid cells

and human low density granulocytes reduces the expression of

CD3z on T cells, and reactive nitrogen species (RNS) block T cell

activation ex vivo by nitrating the TCR and CD8 molecule (47–49).

MDSC of both humans and mice express programmed death-

ligand-1 (PD-L1) which causes T cell dysfunction, exhaustion and

IL-10 secretion when it interacts with programmed death protein-1

(PD-1) on the T cell surface ex vivo (50–52). Lastly, in murine

models MDSC exert their immunosuppressive effects by the

secretion of TGF-b and IL-10, which directly suppress T cells,

induce differentiation into T regs, and suppress macrophage IL-12

production. Expression of membrane-bound TGF-b also suppresses
NK cells (53–55).

Several host-directed therapies which target MDSC have shown

efficacy in cancer therapy, through several mechanisms. MDSC

expansion and recruitment can be inhibited with, for example, 5-

Fluorouracil or tyrosine kinase inhibitors (56, 57). MDSC function

can be inhibited through, for example, phosphodiesterase-5

inhibitors or PD-L1 inhibitors (58, 59). Lastly, agents such as All-

trans retinoic acid (ATRA) promote the differentiation of MDSC

into mature leukocytes or tumor-specific cells (60). Several of these
FIGURE 1

Characteristics of the two dominant subtypes of myeloid derived suppressor cells. The figure shows the two main types of myeloid derived
suppressor cells (MDSC), monocytic (M)- and polymorphonuclear (PMN)-MDSC. They are identified as cells in the low density portion of a Ficoll
gradient with a low expression of HLA-DR, as well as specific combinations of cell surface markers, and the upregulation of specific genes (shown
inside the nucleus). They arise in situations of prolonged weak activation signals, by which they are pathologically activated to become
immunosuppressive. They exert their immunosuppressive effects through several different mechanisms including suppression of CD4+ and CD8+ T
cell differentiation, cytokine release, and cytotoxic degranulation; promotion of T regulatory cell (Treg) and B regulatory cell (Breg) differentiation and
function; and inhibition of B cell, natural killer cell (NK), and antigen presenting cell (M, macrophage; DC, dendritic cell) functions. They are short
lived, either dying after a few days in circulation or differentiating into suppressive macrophages or suppressive neutrophils. ARG-1, Arginase-1; G-
CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; HMGB-1, high mobility box group-1; IFNg,
interferon-g; IL, interleukin; Lox-1, lectin- type oxidized LDL receptor 1; M-CSF, macrophage colony- stimulating factor; NO, nitric oxide; PD-1,
programmed cell death protein-1; PD-L1, programmed death ligand-1; PFA, polyunsaturated fatty acids; PG-E2, prostaglandin-E2; SCF, stem cell
factor; TGF-b, transforming growth factor-b; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor. Created with BioRender.com.
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MDSC targeting agents are in the experimental stages of

investigation for use in TB (61, 62). Tasquinimod causes

exhaustion of MDSC, and has been shown to enhance

mycobacterial clearance in mice (63). Both sildenafil and ATRA

initially showed promise as TB host directed therapies, but recent

data using human MDSC have been disappointing (64, 65). Many

of these MDSC-targeting therapies have been identified as possible

treatments for COVID-19, but little data is available on their

efficacy (66). The studies in cancer and TB demonstrate the

complexity of MDSC. It is likely that particular MDSC subsets

predominate in particular conditions, and that they employ

different suppressive mechanisms in different disease

microenvironments (64). This means that even if an agent is

effective in treating one condition, it may not be equally effective

in treating a second condition, even if the two conditions have a

similar immunopathogenesis. This must be kept in mind for SARS-

CoV-2 infection as well.
3 MDSC in tuberculosis

Classically activated myeloid cells are the initial effectors of

antimycobacterial responses. They sense Mtb through multiple

PRRs, phagocytose the bacteria, contain them, limit replication,

kill them, release cytokines and chemokines, and activate T cells

which in turn increase the activation state of the myeloid cells to

enable then to kill Mtb more effectively. However, while

alternatively activated myeloid cell subsets – initially labelled

natural suppressor cells but later renamed MDSC – also

phagocytose Mtb, they have less effective mycobactericidal

activity, low expression of MHC class II, secrete immune

mediators which suppress T cell responses, and promote lung

damage (17, 62, 67, 68).

Mtb contains structural moieties such as glycolipids, that are

known to induce MDSC generation (69). MDSC have been detected

in the blood of BCG vaccinated mice, where they were found to

reduce T cell priming through an IL-1R-dependent pathway (70).

Where mice are in the advanced clinical stages of TB disease, MDSC

accumulate in the lungs, bone marrow, spleen, and blood, and

suppress T cell proliferation and IFN-g production in vitro through

NO-dependent mechanisms (71). In humans, MDSC are enriched

in the peripheral blood, bronchoalveolar lavage fluid (BALF), and

pleural fluid of patients with active pulmonary and pleural TB

disease, to levels and phenotype comparable to lung cancer (17, 72).

The predominant subset seems to depend on the anatomical site, as

PMN-MDSC were preferentially found in BALF, but M-MDSC

were the main subset in the pleural fluid (17, 72). Moreover, after

successful TB treatment, not only do peripheral blood levels of

MDSC decline (particularly PMN-MDSC), but the MDSC express

more maturation surface markers (17, 72). During active TB

disease, MDSC inhibit T cell proliferation (possibly through a

NO-dependent mechanism), suppress CD4+ T-cell production of

IL-2, TNF-a, IFN-g in vitro (17). MDSC also inhibit IL-10

production by CD4+ T cells, thereby inhibiting the regulation of

IL-2, TNF and IFNs, and perhaps demonstrating the global

shutdown of T cell activation regardless of which cytokines they
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produce. Furthermore, MDSC suppress CD8+ T cell production of

TNF-a, IL-2, IFN-g, and IL-10 in active TB disease, and subvert

effector T-cell-mediated containment of Mtb in monocyte-derived

macrophages (17, 72, 73). MDSC impair T cell-mediated killing of

Mtb infected cells through down-regulation of Th1 cytokines (17,

70). In addition, CD8+ T cell mediated killing of infected cells using

cytotoxic granules such as perforin and granulysin, is critical for

Mtb control (74). Through skewing of the immune response toward

a regulatory phenotype, MDSC likely suppress granule-associated

effector molecules, and thereby impair killing of infected cells

(74–76).

Some of the most compelling evidence for MDSC’s role in TB

comes from granuloma research. In mouse models, MDSC

accumulate at the edges of necrotic granulomas in the lung

parenchyma of infected Mtb-susceptible mice, and this finding

has been associated with TB disease progression and uncontrolled

bacterial replication (62, 68). Conversely, mice that are Mtb-

resistant, with no necrotic granulomas, have very low levels of

MDSC in their lungs (68, 77). Suppressive neutrophils which

exhibit immunoregulatory functions resembling MDSC subsets

have also been identified in TB granulomas from non-human

primates (NHPs) (78). Another recent report in NHPs suggested

that PMN-MDSC in the periphery of TB granulomas may restrict T

cell access to the granuloma core and Mtb-infected cells (79). In an

in vitro human granuloma model, ex vivo generated human M-

MDSC promoted mycobacterial replication, changing the structure

of the granuloma and adversely affecting bacterial containment

(80). In lymph node granulomas from TB/HIV coinfected people

and TB-only controls, MDSC expressing Arg-1 were highly

expressed in TB/HIV granulomas (81), and the proportion of

CD15+ MDSC correlated with plasma HIV viral load and Mtb

antigen load in tissue, but was negatively correlated with peripheral

CD4+ T cell numbers. In the same study, PMN-MDSC were also

elevated in blood samples from TB/HIV coinfected patients (81).

Recently, multiplexed ion beam imaging by time of flight (MIBI-

TOF) was used to generate a comprehensive spatial map of 19 cell

subsets across 8 spatial microenvironments within TB granulomas

from multiple human tissues, including the lung (82). The myeloid

core of the granulomas was characterized by expression of the

tolerogenic proteins IDO1 and PD-L1, which was highest in

CD11b+CD11c+ macrophages (identical to immunosuppressive

TAMs). This expression was also associated with downregulation

of HLA-DR in the ‘intermediate monocyte’ subset. These data

support the existing evidence for a highly localized, myeloid-

mediated immune suppression in the granuloma (82). These

findings also seem to support the hypothesis that MDSC which

enter a granuloma differentiate into suppressive macrophages

which are permissive to Mtb growth, similar to their activity in

solid tumors (74, 83).

The role of MDSC in events early in the TB disease spectrum is

less clear. Recent attempts to define more clearly the spectrum and

pathogenesis of TB before clinical disease highlight the gaps in

knowledge of factors promoting progression from infection to

disease or to cure (84). Household contacts and people with

presumed LTBI have far lower median frequencies of MDSC in

peripheral blood than those with active TB disease, comparable to
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healthy donors (72, 73, 85). Higher frequencies of peripheral blood

M-MDSC have been correlated with more severe TB disease (based

on time to positivity of Mtb culture, cavitary disease on chest

radiography, symptoms score, ESR and monocyte/lymphocyte

ratio), but higher frequencies of PMN-MDSC have been

associated with a lower radiological TB severity score (85, 86).

This suggests that when considering the early TB spectrum, which

includes such entities as subclinical TB – where there are no

symptoms but may be radiographic changes, and which may or

may not progress to active TB disease – the function of the subsets

of MDSC need to be examined separately.
4 MDSC in COVID-19

As with TB and other viral infections, myeloid cells are the first

responders to infection with SARS-CoV-2. After navigating the

upper airways, the virus is taken up by alveolar macrophages,

without active viral replication, which become activated, and are

subsequently responsible for the proinflammatory anti-viral

immune response (87). Other innate cells are recruited to the site

of infection, and in most people the result is mild disease with

eventual eradication of the virus. Yet, a proportion of people

infected with SARS-CoV-2 will suffer a marked dysregulation of

the innate immune response, especially the myeloid cell

compartment, as a result of emergency myelopoiesis (88). This

dysregulated state is characterized by the emergence of immature

neutrophils and monocytes with suppressive features, including

MDSC, which have been directly implicated in the pathogenesis of

this dysregulated response, as well as shown to be predictive of

severe or fatal disease (88–91).

As we have come to expect from the pandemic literature, there

is an abundance of evidence on the topic of MDSC in COVID-19.

Several studies in humans have now provided direct evidence of

high peripheral blood frequencies of both subsets of MDSC in

COVID-19, across all levels of COVID-19 severity but particularly

in severe disease, fatal disease, and acute respiratory distress

syndrome (ARDS) (91–101). Again, the different roles of the

MDSC subsets are evident. Early M-MDSC frequency predicted

subsequent COVID-19 severity and mortality, but transient early

expansion of PMN-MDSC was associated with survivors of severe

COVID-19 (91, 99, 102–104). Studies using single cell RNA

sequencing (scRNAseq) in combination with flow cytometry,

CyTOF and other assays, have found that populations of

immature neutrophils with features of PMN-MDSC and, to a

lesser extent, monocytes with features of M-MDSC, emerge in the

blood and BALF of patients with severe COVID-19. These cells

differentiate them from patients with mild COVID-19, in whom

frequencies are still higher than healthy donors (15, 88, 105–107).

M-MDSC are not increased in airway samples from nasopharyngeal

and endotracheal aspirates, but large numbers of CD66b+ cells with

a high expression of intracytoplasmic Arg1, in line with PMN-

MDSC, were found in lung tissue from patients who died of

COVID-19 (91, 97).

The immunosuppressive abilities of these SARS-CoV-2-

induced MDSC have been demonstrated. Both PMN-MDSC and
Frontiers in Immunology 0521
M-MDSC from the peripheral blood of patients with moderate and

severe COVID-19 inhibit T cell proliferation and IFN-g production
in vitro (91, 94–96, 108). In bacterial sepsis, MDSC expansion, IFN-

g production, and TNF-a production reduced over time from

admission, but in COVID-19 these responses accelerated over

time, despite initial lesser physiological derangement (109). The

presence of PMN-MDSC increased the expression of Arg1 and

iNOS mRNA compared to PMN-MDSC-depleted PBMC, and

plasma levels of TGF-b directly correlated with PMN-MDSC

frequency. Moreover, PMN-MDSC depletion significantly

improved the SARS-CoV-2 specific T cell response of PBMC

(95). Similarly, PD-L1, ILT-3 and IDO-1-expressing M-MDSC

were the dominant producers of IL-10 and IL-6 in severe

COVID-19 patients, and this correlated with increased

inflammatory markers, as well as accumulation of regulatory T

and B cells (110). Cocultures with M-MDSC had high levels of

Arg1, the suppressive effect of M-MDSC on T cell proliferation was

reduced by the addition of L-Arginine, and plasma levels of Arg-1

and IL-6 were elevated in COVID-19 patients, which increased with

increasing severity of disease (91). Several other papers have also

reported elevated levels of Arg1, with low plasma levels of L-

Arginine in association with MDSC in COVID-19, which may

not only have implications for immune function but also for

increased platelet aggregation (97, 111–113).

Another consideration is the influence of MDSC on the genesis

of lung fibrosis in COVID-19 patients. MDSC can transdifferentiate

into extracellular matrix (collagen type I)-producing fibrocytes,

which interact with activated T-cells, resulting in the production

of IDO and leading to Treg expansion (114). Murine models have

suggested that MDSC promote lung fibrogenesis by inhibiting

collagen degradation through TGF-b production (115). Elevated

serum levels of TGF-b correlated with lung fibrosis in a cohort of

severe COVID-19 patients (108).This study also reported increased

serum levels of TGF-b and of MDSC in COVID-19 patients, as well

as a significant correlation between COVID-19 severity and serum

TGF-b levels; and showed that isolated M-MDSC from these

patients produced higher levels of intracellular TGF-b than non-

M-MDSC (108).

These effects do not appear to be short-lived. Elevations in

PMN-MDSC persist from hospital admission to convalescence, and

longer than three months after acute COVID-19 – across all

severities, but at higher levels in those with severe compared to

mild disease (94, 116, 117). Elevated levels of circulating M-MDSC

were found up to seven months after moderate to severe COVID-

19, along with elevated levels of the immune checkpoint marker

CD86 (characteristic of ongoing immune activation and chronic

inflammation) (118). In another report, MDSC numbers had

normalized by three months after acute COVID-19, but the

immune dysfunction persisted (119). When monocytes from

COVID-19 patients at three months after hospital discharge were

stimulated with LPS and R848, both TNF and IL-6 production was

impaired, and levels of other cytokines in plasma were also lower, in

both moderate and severe COVID-19 (119). At five months after

SARS-CoV-2 infection, levels of M-MDSC remained elevated

compared to healthy controls, and continued to suppress SARS-

CoV-2-specific T cell cytokine production through arginase, ROS
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and TGF-b dependent pathways (120). These data suggest a long-

lasting impairment in the immune response after COVID-19,

attributable to the suppressive effects of MDSC.

The evidence for MDSC involvement in COVID-19 and TB are

summarized in Table 1.
5 MDSC in SARS-CoV-2 and
Mtb coinfection

It is thought that up to a quarter of the world’s population have

been latently infected with Mtb, with at most 15% progressing to

active disease in their lifetime, often with a long latency period
Frontiers in Immunology 0622
between initial infection and active TB disease (121). This means

that a coinfection sequence of pre-existing LTBI followed by SARS-

CoV-2 infection is a highly likely scenario. However, the fact that

many patients present with a long history of symptoms and cavitary

lung lesions at TB diagnosis, implying chronicity of disease,

suggests that a scenario of active TB disease followed by SARS-

CoV-2 infection is also likely to be a common occurrence (Figure 2).

The number of Mtb-specific CD4 T cells is lower in coinfected

patients who have active TB disease/SARS-CoV-2, than in those

with TB alone (12). Also, COVID-19 itself is characterized by

reduced T cell numbers and T cell exhaustion (12, 122).

Therefore, SARS-CoV-2 infection could hypothetically trigger

progression from LTBI to active TB disease. As we have shown in

the sections above, MDSC may be responsible for the lower T cell
TABLE 1 Evidence for the role of myeloid derived suppressor cells in the pathogenesis of Tuberculosis compared to COVID-19.

MDSC in Mtb infection and disease MDSC in SARS-CoV-2 infection and disease

Peripheral blood
In mice
• Raised levels of MDSC in blood of BCG vaccinated mice, and Mtb
susceptible mice with advanced TB disease
In humans
• Raised levels of MDSC in blood of humans with active TB disease
• High frequencies of M-MDSC correlate with more severe clinical and
radiological active TB disease
• High frequencies of PMN-MDSC associated with lower radiological
severity
• Levels decline after successful TB treatment, cells express more
maturation markers
• Levels in LTBI comparable to healthy donors

Peripheral blood
• High frequencies of both M-MDSC and PMN-MDSC, highest in severe and fatal COVID-
19
• Early M-MDSC levels predict COVID-19 severity and mortality
• Transient early expansion of PMN-MDSC associated with surviving severe COVID-19
• High frequencies persist up to 7 months after acute COVID-19
• Convalescent MDSC levels are higher in those recovering from severe COVID-19 than
mild COVID-19

Lungs
In mice
• Accumulate in lungs (and bone marrow, spleen) in Mtb susceptible mice
with active TB disease
In humans
• Accumulate in BALF and pleural fluid of humans with active TB disease
• PMN-MDSC dominant in BALF of humans with pulmonary TB
• M-MDSC dominant in the pleural fluid of humans with pleural TB
disease
Granulomas
In mice
• Accumulate at the edge of necrotic granulomas
• Associated with TB progression and uncontrolled Mtb replication
In humans
• Found in the myeloid core
• Promote mycobacterial replication
• Impair Mtb containment

Lungs
• Not increased in nasopharyngeal and endotracheal aspirates
• Found in BALF of patients with COVID-19, higher in severe disease
• Likely PMN-MDSC found in lung tissue from deceased COVID-19 patients
• TGF-b levels correlates with lung fibrosis and COVID-19 severity

Immunosuppressive mechanisms
In mice
• Reduce T cell priming through an IL-1R-dependent pathway
• Inhibit T cell proliferation and IFN-g production in vitro through NO-
dependent mechanisms
In humans
• Upregulated ARG1 and PD-L1 expression
• Inhibit T cell proliferation (possibly through a NO-dependent
mechanism)
• Suppress CD4+ T-cell > CD8+ T cell production of IL-2, TNF-a, IFN-g
• Suppress CD4+ T cell > CD8+ T cell production of IL-10
• Subvert effector T-cell-mediated containment of Mtb in monocyte-
derived macrophages

Immunosuppressive mechanisms
• M-MDSC and PMN-MDSC inhibit T cell proliferation and IFN-g production
• Associated with increased expression of ARG1 and iNOS mRNA
• Levels of PMN-MDSC correlate with plasma levels of TGF-b
• M-MDSC are dominant producers of IL-10 and IL-6 in severe COVID-19
• M-MDSC produce higher levels of TGF-b than other MDSC
• M-MDSC correlated with increased inflammatory markers, B cell and Treg accumulation
• Associated with high levels of ARG1, low plasma L-Arginine
• Addition of L-Arginine partially inhibits suppressive effect of M-MDSC on T cell
proliferation
• Suppress T cell cytokine production at 5 months after recovery from COVID-19 through
ARG1, ROS, and TGF-b dependent pathways
ARG1, arginase-1; BALF, bronchoalveolar lavage fluid; BCG, Bacille Calmette Guerin intradermal vaccine; IFN, interferon; IL-1R, interleukin 1 receptor; iNOS, inducible nitric oxide synthase;
LTBI, latent tuberculosis infection; mRNA, messenger ribonucleic acid; Mtb, Mycobacterium tuberculosis; MDSC, myeloid-derived suppressor cells; M-MDSC, monocytic MDSC; NO, nitric
oxide; PMN-MDSC, polymorphonuclear MDSC; ROS, reactive oxygen species; TB, tuberculosis; TGF, transforming growth factor; TNF, tumor necrosis factor; Treg, regulatory T cell.
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numbers in COVID-19, and for reduced expression of key cytokines

required to maintain the immune response to Mtb.

The levels of IFN-g produced by whole blood on stimulation by

the SARS-CoV-2 spike protein-derived peptide CD4S were lower in

patients with active TB disease/COVID-19 coinfection than in those

with LTBI/COVID-19 and COVID-19 alone (13). In a more

comprehensive analysis by the same group, an immune signature

consisting of TNF-a, macrophage inflammatory protein-1b and IL-

9 associated with active TB disease/COVID-19 compared to

COVID-19 alone, and another signature including TNF-a, IL-1b,
IL-17A, IL-5, fibroblast growth factor-basic, and GM-CSF,

associated with active TB disease/COVID-19 compared to TB

alone (14). In addition to this they confirmed the reduced SARS-

CoV-2 specific response in coinfected patients for IFN-g, as well as
IL-10, IP-10, and other key cytokines (14). This suggests the

possibility that the pre-existing immune milieu of active TB

disease impaired the critical T cell response to SARS-CoV-2

infection. Hypothetically, MDSC induced by Mtb infection may

be responsible for this, through the expression of PD-L1 which

directly inhibits further T cell proliferation and induces both

dysregulation and an exhausted immune profile in T cells. If this

is the case, then the clinical implication may be a higher viral load,
Frontiers in Immunology 0723
more severe virus-related lung damage, and an increased immune

dysregulation which results in more severe clinical manifestations.

The impact of MDSC on initial or recent SARS-CoV-2 infection

with secondary Mtb infection must also be considered. As described

in detail above, on infection with SARS-CoV-2, emergency

myelopoiesis is stimulated and MDSC released into the peripheral

blood, accumulating in the lungs in severe COVID-19. Those who

die from COVID-19 will most likely have early and persistently

elevated M-MDSC, whereas survivors are more likely to have an

early peak of PMN-MDSC which reduces as they improve.

Nonetheless, the immune suppression mediated by these cells

persists for many months irrespective of severity. In theory, Mtb

infection during the acute phase of SARS-CoV-2 illness or in the

months thereafter, may therefore have a higher likelihood of a poor

outcome, as the key T cell responses to Mtb are impaired. This is

supported by reports of deficient IFN-g release assay (IGRA)

responses to Mtb antigens (and mitogen) in patients with severe

COVID-19, which suggest a generalized unresponsiveness of T cells

to all antigens, and specifically to Mtb (123, 124). Production of

IFN-g, IP-10, and IL-1b, amongst others, in response to Mtb-

antigen stimulation was impaired in the whole blood from

coinfected active TB disease/COVID-19 patients (14). On the
FIGURE 2

The hypothetical role of myeloid derived suppressor cells in Mtb/SARS-CoV-2 coinfection. The figure shows the bidirectional effects of myeloid
derived suppressor cells (MDSC) on the clinical outcomes in patients coinfected with Mycobacterium tuberculosis (Mtb) and SARS-CoV-2. In latent
infection with Mtb or active TB disease, the presence of cytokines such as IFN-g, IL-1b, IL-4, IL-6, TNF and IL-13, triggers the pathological activation
of MDSC (blue arrows), which become immune suppressive. The effects of MDSC, along with other effects of Mtb infection and disease
(hyperinflammation, T cell exhaustion etc.), predispose to worse clinical outcomes from SARS-CoV-2 infection including acute respiratory distress
syndrome (ARDS) and lung fibrosis. MDSC accumulate in the lungs of severe SARS-CoV-2 cases (shown in the cut-out on the right), further
exacerbating the immune suppression and profibrotic effects. Similarly, in current or recent SARS-CoV-2 infection, there is induction of
proinflammatory cytokines, often pathologically high (termed hyperinflammation), along with other aspects of SARS-CoV-2-related immune
dysfunction and dysregulation, and pathological activation of MDSC (pink arrows). These factors combined result in worse clinical outcomes from
active tuberculosis disease, as well as the potential loss of containment of Mtb within granulomas in latent infection. Suppressive neutrophils and
macrophages within the myeloid core of the granuloma (shown in the cut-out on the left) further contribute to the loss of Mtb control. Breg,
regulatory B cell; COVID-19, coronavirus disease-2019; DC, dendritic cell; F, fibroblast; IFN, interferon; IL, interleukin; M, macrophage; NK, natural
killer cell; TB, tuberculosis; Treg, regulatory T cell. Created with BioRender.com
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other hand, some data implies that the Mtb-antigen cytokine

responses are augmented by recent SARS-CoV-2 infection, and

immunosuppressive responses are reduced (125). The latter study

examined the baseline, Mtb antigen-, and mitogen-stimulated levels

of key cytokines and chemokines in elderly patients with positive

and negative SARS-CoV-2 serology, both with and without LTBI

(based on IGRA). They found higher baseline/unstimulated and

Mtb antigen-stimulated levels of IFN-g, IL-2, TNF-a, and others, in

patients with LTBI who were seropositive for SARS-CoV-2

compared to those with LTBI who were seronegative for SARS-

CoV-2. Moreover, the levels of immunosuppressive IL-10 were

lower in LTBI/seropositive SARS-CoV-2 individuals. There were no

differences in response to mitogen between groups in this study, and

the LTBI negative control group did not show any enhanced

cytokine response to Mtb antigen (125). These data show that if

SARS-CoV-2-induced MDSC are the mechanism underlying the

poor response of T cells to Mtb antigen, then their effects are likely

Mtb antigen-specific, rather than part of a non-antigen-specific

response. These observations also suggest that SARS-CoV-2-

induced MDSC may have a different effect on the outcome of

Mtb infection, in different COVID-19 severities.

Whilst it is not direct evidence for the effect of MDSC, the fact

that Mtb-specific T cell numbers are reduced in SARS-CoV-2

coinfection suggests that if MDSC are involved, then it is in an

antigen-specific manner (12). In other words, MDSC induced by

SARS-CoV-2 may well suppress Mtb-specific T cell responses, as

well as suppressing global T cell proliferation and cytokine

production in an antigen non-specific way. Similarly, evidence

that there is a reduced T cell response to stimulation with SARS-

CoV-2 antigen in patients with preexisting Mtb infection might

imply that Mtb-induced MDSC also suppress SARS-CoV-2 T cells

in both an antigen specific and non-specific way (14). This is not

unknown, as MDSC induced by HIV infection also suppress T cell

function in vitro by both antigen-specific and non-specific

mechanisms (126). However, this antigen-specific effect may be

limited to CD8 + T cells because of the low expression of MHC Class

II by MDSC – a theory supported by the inhibitory effects of tumor-

associated MDSC on CD8+ T cells demonstrated in human cells in

vitro and mouse models, which can be reversed by anti-MDSC host

directed therapies (127, 128).

Whether any of the MDSC-targeting host directed therapies

with efficacy in TB will also prove effective in Mtb/SARS-CoV-2 co-

infection remains to be seen. Because of the high prevalence of both

infections, it is likely that by default coinfected participants will be

included in any human trials in the future. An agent such as

Imatinib (a tyrosine kinase inhibitor which targets the ABL

kinase domain) which has experimental evidence in both diseases

– despite disappointing clinical disease outcomes in COVID-19 – is

an attractive option for future investigation in coinfection

(129–132).

Lastly, we must consider if preexisting Mtb infection (LTBI or

active TB disease) with MDSC induction might affect the efficacy of

a subsequent SARS-CoV-2 vaccination, and if recent COVID-19

might adversely affect a subsequent Mtb vaccine response. MDSC

impair both T and B cell responses, even inducing regulatory and

suppressive B cells in the tumor microenvironment (133).
Frontiers in Immunology 0824
Theoretically, the presence of MDSC from Mtb or SARS-CoV-2

infection might impair adaptive and cell-mediated responses to a

vaccine administered in their presence, resulting in reduced

immune memory to the vaccine (133). Adults with TB have lower

levels of anti-SARS-CoV-2 antibodies after three doses of

inactivated vaccine (134). Assuming antibody levels are a

correlate of protection, this would mean that a SARS-CoV-2

vaccinated person with preexisting Mtb infection would lose the

vaccine-mediated protection for severe COVID-19, and lead to

worse clinical outcomes. MDSC are known to be part of the

response to Bacillus Calmette-Guérin vaccination (BCG), possibly

contributing to incomplete protection against Mtb by restraining T

cell priming (70). BCG has immunomodulatory effects on myeloid

cells, including epigenetic reprogramming, which affect these cells’

ability to respond to pathogens (including Mtb) (135, 136). A

person receiving BCG or another Mtb vaccine candidate in a

clinical trial may not develop the desired immune response if

they have had recent COVID-19, and importantly, the SARS-

CoV-2-induced MDSCs continue to exert their effects months

after the acute infection. This would need to be adjusted for in

the analysis.

Overall, there is evidence supporting a potential role for MDSC

in determining the outcomes of Mtb/SARS-CoV-2 coinfection, in

all disease severities and iterations of the coinfection sequence.

More evidence is needed to find out if MDSC impact the outcome of

SARS-CoV-2 infection in early TB or LTBI; if there are any vaccine-

relevant interactions; and if a host directed therapy aimed at

modulating the effect of MDSC might improve the outcome of

active TB disease/COVID-19 coinfection.
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Respiratory infections cause tremendous morbidity and mortality worldwide.

Amongst these diseases, tuberculosis (TB), a bacterial illness caused by

Mycobacterium tuberculosis which often affects the lung, and coronavirus

disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome

Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of

global concern. Despite their unrelated etiology and distinct pathology, these

infections affect the same vital organ and share immunopathogenesis traits and

an imperative demand to model the diseases at their various progression stages

and localizations. Due to the clinical spectrum and heterogeneity of both

diseases experimental infections were pursued in a variety of animal models.

We summarize mammalian models employed in TB and COVID-19 experimental

investigations, highlighting the diversity of rodent models and species

peculiarities for each infection. We discuss the utility of non-human primates

for translational research and emphasize on the benefits of non-conventional

experimental models such as livestock. We epitomize advances facilitated by

animal models with regard to understanding disease pathophysiology and

immune responses. Finally, we highlight research areas necessitating

optimized models and advocate that research of pulmonary infectious

diseases could benefit from cross-fertilization between studies of apparently

unrelated diseases, such as TB and COVID-19.

KEYWORDS

animal model, mycobacteria, tuberculosis, SARS-CoV-2, COVID-19, immunology,
pathology, respiratory infection
1 Introduction

Animal models are essential for understanding disease pathophysiology in its complexity.

Pinning down coordinated immune processes as well as the continuous host reaction to

pathogen assault can only be achieved by investigating the infected host. Although controlled

human infection models and human challenge trials have been advanced for flu (1), malaria

(2), coronavirus disease 2019 (COVID-19) (3), and tuberculosis (TB) (4, 5), and studying
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infection in natural hosts in most circumstances is feasible for

livestock, disease pathogenesis is studied in great detail in surrogate

animals in experimental animal models. In such controlled settings

pathogen entry, replication and transmission, immune responses,

and pathology are elucidated unambiguously. Importantly, causality

can be established in animal models and thereby such experimental

approaches are instrumental for devising measures limiting pathogen

transmission and for developing vaccines and therapies. The

importance of animal models for vaccine testing should be

emphasized. Here, animal models are without alternative (6) and

should mimic the pathogenesis known in humans as closely as

possible to increase transfer of the results to the human host (7).

Standard laboratory animal models have been established to enable

applications in many laboratories worldwide. Such models have been

indispensable for the understanding, prevention and cure of two

major respiratory infectious diseases: TB and COVID-19. We

critically discuss experimental models in a comparative manner

and highlight commonalities and differences in the context of these

lung infections.

TB and COVID-19 are acquired respiratory infections which

primarily affect the respiratory tract and are usually transmitted via

aerosol droplets. TB represents one of the most ancient infectious

diseases, a continuous threat to public health and currently among

the top 10 causes of death worldwide (8). It was declared as a global

emergency by the WHO in 1993 (9). TB is caused by genetically

related microorganisms of theMycobacterium tuberculosis complex

(MTBC), with the human-adapted M. tuberculosis (Mtb) affecting

mankind worldwide. COVID-19 represents the 21st century

pandemic event and was declared as a global emergency by the

WHO in 2020 (10). The global emergency phase was ended in May

2023, yet the WHO emphasizes that COVID-19 still remains a

significant threat for human health1. It is caused by the severe acute

respiratory syndrome coronavirus type 2 (SARS-CoV-2). Both

infections are dynamic and provoke a spectrum of diseases and

pathologies. Their causative agents, although taxonomically

unrelated, undergo continuous adaptation to the human host.

The potential to evade immunity has been observed promptly

during the COVID-19 pandemic, for instance by the emergence

of virus variants, whereas for TB resistance to available therapies is

on the rise, as illustrated by heightened incidences of disease caused

by drug-resistant mycobacteria. Mtb enters alveolar macrophages,

rarely pneumocytes, and spreads to lung-resident and recruited

macrophages, whereas SARS-CoV-2 primarily infects ciliated and

alveolar epithelia (11). Although variable pathology is observed in

TB and COVID-19, recent systems analysis of human cohorts

revealed commonalities in immunopathogenesis (12). TB is

characterized by unique lesions termed granulomas, whereas

severe COVID-19 manifests as pneumonia. Given the preference

for respiratory tissue, mammalian animal models have been

developed for both infections. We discuss the experimental

models employed for the study of each disease and emphasize

advantages and limitations these models bring regarding disease
1 WHO. WHO Director-General's opening remarks at the media briefing,

Vol. 2023. (2023).
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pathophysiology and immune responses. Considering spectra of TB

and COVID-19, we identify challenges related to improving or

developing new animal models and propose purpose-oriented

approaches which extend beyond conventional animal models.

Finally, we elaborate on multi-species approaches and co-

infections, as these are currently feasible and inspired by recent

advances in high-resolution technologies.
2 Small animal models

Historically, small animal models, including rodents and

leporids, were paramount for the identification of Mtb as the

causative agent of TB and for the elucidation of TB pathogenesis

(13). They continue to be implemented in preclinical TB research and

have been equally instrumental for the accelerated progress achieved

for COVID-19 vaccines. Although murine infection models are by

far the most frequently used for TB and COVID-19 research, they

reproduce some, but not all aspects of the human disease. Other

rodent species, including rats, hamsters and guinea pigs, provide

important insights into pathophysiological aspects of the two

respiratory diseases that are not sufficiently covered by murine

models. Each model organism offers particular advantages and

bears certain limitations, which are detailed in the following sections.
2.1 Mouse models

Mice are easy to handle, accessible, inexpensive, and the broad

availability of immunological and genetic tools makes them very

attractive for preclinical investigations. Laboratory mice provide the

most established and implemented animal model in SARS-CoV-2 as

well as in TB studies (14, 15). Advantages and limitations of murine

models in the two respiratory infections are presented in Table 1.

2.1.1 Murine TB models
The experimental murine TB model has elucidated host fate

upon natural infection which is achieved by aerosol exposure. It has

unveiled the complexity of the kinetics of the infectious process in

great detail. This model has also enabled mutual integration of host

and pathogen traits in experimental studies. However, mice do not

fully recapitulate TB pathology. Granuloma liquefaction, cavitation

and fibrosis remain undetected in Mtb-infected mice, and hence

murine TB is an imperfect disease model. This model allows to

comprehensively study the immune responses to Mtb. Pulmonary

anatomy and immune mechanisms in mice have a great degree of

similarity to humans (16) which make them ideally suited for

studying immune dynamics within tissues and for testing vaccine

efficacy. Although mice are not natural hosts for Mtb and are

generally tolerant to TB (17), they have proven instrumental for

understanding some disease mechanisms.

Susceptibility of laboratory mice to Mtb depends on both host

and bacterial features. Among the host factors, mouse genetics, age,

sex, and immune status control TB outcome (18–21). The route of

infection (22), inoculum size and bacterial genetics, e.g. Mtb

lineages and virulence factors, impact as well on the course of TB.
frontiersin.org
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For instance, aerogenic exposure to the East/Asian Beijing strain

HN878, in contrast to infection with the reference Euro-American

strain H37Rv, triggers heightened susceptibility in C57BL/6 mice

(23) and granulomatous lesions resembling human-like pathology

(24). Various Mtb strains differ in propensity to infect myeloid cells

(25), disseminate (26) or trigger inflammation (27). Mtb

attenuation by deletion of the PhoP regulon (28), or deletion of

entire virulence coding genomic regions, e.g. region of difference 1

(RD1) (29), or pathogenicity factors such as the early secreted

antigenic target 6-kDa protein (ESAT-6) (30, 31) cause reduced

pathology. Such studies have also unveiled a dominant role of nitric

oxide in antimycobacterial immunity in the murine host, unlike in

humans (32). In addition, they confirmed the relevance of

subcellular pathogenicity events, such as cytosolic translocation of

the bacilli, for Mtb pathogenicity during lung infection.

Research on TB immunology and pathology heavily relies on

inbred and knock-out (KO) mouse strains and has recently been

enriched by the addition of the collaborative cross (CC) lines (33, 34),
Frontiers in Immunology 0331
diversity outbred (DO) (35–38) as well as humanized mice (39, 40).

Whereas inbred animals and respective KO lines have permitted

targeted characterization of host factors essential for the susceptibility

to disease, genetic diversity has contributed to unbiased identification

of host susceptibility or resistance traits. Of note, mice can be infected

by various MTBC bacteria, and usage of transgenic knock-in models

has facilitated analysis of particular cell types or molecules during

infection (e.g. fluorescent-tagged reporters), or enabled targeted cell

deletions (e.g. Cre-lox system). The transgenic mice used in TB

research offer opportunities to decipher disease pathogenesis. They

do not confer essential cell entry host factors to mycobacteria, a

situation common for COVID-19 murine models where infection is

usually abortive in wild type animals (see section 2.1.2).

TB outcome differs in various inbred mice which are classified as

TB-resistant and TB-susceptible based on the time to death or

bacterial outgrowth. TB-resistant mice, including C57BL/6 and

Balb/c strains, control aerosol infection with relatively high doses

(e.g. 500 colony forming units, CFU) of bacteria, do not develop
TABLE 1 Murine models for tuberculosis (TB) and coronavirus disease 2019 (COVID-19).

Mouse
models

Tuberculosis COVID-19

Advantage Disadvantage Advantage Disadvantage

Inbred
“resistant”
(C57BL/6/
Balb/c)

High reproducibility, availability
of gene knock-out mice, long-
term studies and kinetics,
correlates of protection,
immunological tools

Lack of human-like pathology (e.g.
liquefaction, fibrosis), lack of
relevant Mtb-induced cell types (e.g.
multinucleated giant cells)

Availability of gene knock-out mice,
long-term studies and kinetics,
correlates of protection,
immunological tools

Only mouse-adapted virus strains
or specific SARS-CoV-2 variants
(e.g. B.1.351), limited pathology

Inbred
“susceptible”
(C3HeB/FeJ,
129Sv, I/St,
DBA/2)

Investigation of pathology,
necrotic granuloma, correlates of
susceptibility, drug testing

Limited number of knock-out mice
available, no chronic or latent stage
of disease

More severe pathology (129Sv)
compared to C57BL/6, lung
pathology (compared to K18-
hACE2)

Only mouse-adapted virus strains
or specific SARS-CoV-2 variants
(e.g. B.1.351)

Outbred Genetic diversity, microbiome
diversity

Housing with inbred and pathogen-
free mice difficult, reproducibility

N/A N/A

Collaborative
cross (CC)
lines

Genetic diversity, gene
association studies

Low reproducibility, expensive,
resource intense

Genetic diversity, gene association
studies

Require further genetic
manipulation for usage as a model
for COVID-19 (e.g. cross-breeding
with K18-hACE2)

Humanized
mouse

Reflection of human specific cell
types or effector functions

Expensive, high variability,
technology intensive, highly
susceptible to attenuated strains (e.g.
BCG)

Better reflect COVID-19 pathology,
severe lung pathology, study of
drug or antibody therapy

Expensive, high variability,
technology intensive, cross-
reactivity of human-mouse
immune networks

Transgenic
(K18-hACE2)

N/A N/A Robust, highly permissive model,
suitable for all SARS-CoV-2
variants, excellent vaccine model

Limited lung pathology, brain
pathology, some SARS-CoV-2
strains interact with human and
mouse ACE2, expensive

Vector
hACE2
delivery
(AAV, Ad,
LV)

N/A N/A Mild lung pathology (reflects
COVID-19 in the majority of
patients), suitable for vaccine
studies, amenable for different
mouse strains and genetic
manipulations

Transient, low pathology (possible
disadvantage for vaccine studies),
immune response against vector

SARS-CoV-2
Mouse
adaptation

N/A N/A Lung pathology (compared to K18-
hACE2), can be used in
combination with different mouse
strains and genetic manipulations

Mouse adaptation might not reflect
human isolates, new variants
underrepresented
The various mouse models employed for the study of each disease are included, emphasizing on key advantages and limitations of each model. AAV, adeno-associated virus; Ad, adenovirus;
COVID-19, coronavirus disease 2019; hACE2, human angiotensin-converting enzyme 2; K18, keratin 18 promoter; LV, lentivirus; N/A, not applicable; SARS-CoV-2, severe acute respiratory
syndrome coronavirus type 2.
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typical granulomas and succumb rather due to aging. As such, they

have been proposed as potential latency TB models (41). Studies in

C57BL/6 mice have been critical for defining kinetics of the immune

events post exposure, requirements for priming of adaptive immunity

as well as kinetics and plasticity of T-cell responses in TB. Very early

in infection alveolar macrophages support Mtb replication, as

demonstrated in depletion studies (42), likely due to their

metabolic imprinting towards oxidative phosphorylation (43) and

anti-oxidant features (44). Elegant fate-mapping studies have

highlighted that alveolar macrophages translocate into the lung

interstitium (45) and Mtb gains access to less permissive glycolytic

lung macrophages (43). Subcellular virulence factors, notably

mycobacterial ESX1 secretion system (31), and host determinants

of susceptibility, for instance phagosomal proteolysis (46) have been

unveiled also in vivo in the context of macrophage plasticity in TB in

C57BL/6 mice. Cell types conferring an Mtb-permissive

environment, including lung monocyte-derived macrophages and

dendritic cells (47), and neutrophils (48, 49), have been defined also

in this murinemodel. Kinetics of T-cell responses (50) and the impact

of their localization on disease outcome (51, 52) have been established

in C57BL/6 mice receiving transgenic cells expressing anMtb-specific

T-cell receptor (TCR). T-cell depletion alone or combined with

adoptive transfer of antigen-specific T-cells has indicated an

essential role of CD4+ and CD8+ lymphocytes for TB control (53,

54) and highlighted Mtb escape strategies related to dominant

epitopes and misplaced T-cells (55). Thus, C57BL/6 mice have

substantially contributed to the delineation of immune events in

primary TB. The major caveat of the C57BL/6 model lies in the lack

of human-like pathology. Of note, application of ultra-low dose

infection (ULD) (56) may render these mice amenable for

pathology studies (57). Upon ULD, mice develop single, structured

lesions upon inhalation of 1-3 Mtb CFU of the laboratory strain

H37Rv. Organized granulomas have also been reported in C57BL/6

mice challenged with low-dose hypervirulent HN878 Mtb (24, 58).

These murinemodels mirror, to some extent, human TB lesions, have

organized granuloma-like lesions which contain foamymacrophages,

develop central necrosis, yet still miss certain cellular components

such as multinucleated giant cells and do not show fibrosis and

calcification. A further utility of C57BL/6 mice has recently been

reported. Intra-dermal Mtb infection resulted in localized spread of

Mtb (59, 60), unlike systemic dissemination seen upon aerosol or

intravenous challenge (22), and thus may represent a refined

experimental model for latent TB infection (LTBI). Besides

mechanistic understanding of immunity and pathology, C57BL/6

and Balb/c strains are also gold standards for chemotherapy studies

and TB vaccine development.

TB-susceptible inbred mice encompass the C3HeB/FeJ, 129Sv

(129S2/SvPas), I/St and DBA/2 mouse strains. C3HeB/FeJ mice are

best suited for investigating pathology. Exposure of these mice to

Mtb leads to the formation of well-formed, necrotic granulomas

showing hypoxic regions (61), with liquefaction observable

particularly upon i.v. challenge (62). Necrosis of Mtb-infected

macrophages is controlled by the sst1 locus (63) and has been

linked to the intracellular pathogen resistance 1 (Ipr1) gene (64). A

role for neutrophils in susceptibly to TB in C3HeB/FeJ by

controlling lesion progression (36, 62), likely via type I interferon
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(IFN-I)-driven NETosis (65), has been reported. The similarities to

lesion progression in humans (66–68) make this model useful for

pathology and immunopathogenesis studies. DBA/2 mice show a

fast TB course with bronchogenic dissemination (69). Their

susceptibility is driven by neutrophils (70) and limited

accumulation of regulatory T-cells (Treg) within infected tissue

(71). This phenotype is shared by the TB-susceptible inbred strain I/

St (72, 73), which unlike their A/Sn counterparts cannot control TB.

129Sv (129S2) mice succumb early during TB (74) with extensive

lung damage. Their susceptibility to TB is uncoupled from natural

resistance-associated macrophage protein 1 (Nramp1) allele gene

polymorphism (75). Mtb-triggered lethality is due to early

neutrophil recruitment (74), heightened necrotic cell death (76),

and likely Mtb-driven and acetyl-coenzyme A dependent foamy cell

differentiation (77). TB-susceptible mice are suitable for

deciphering host traits which favor a poor outcome in TB. They

are also helpful for testing drugs and host-directed interventions

given the development of lesions, notably well-structured

granulomas containing transformed cell types, and environments,

such as hypoxia and necrosis, characteristic of active TB.

Understanding of the immune control of TB has been nurtured

by failed immunity in KO and immunodeficient mice which mirror

catastrophic human genetic defects. Examples are mice with full or

cell-type specific deletion of IFN-g (78) or TNF-a (79, 80). Just as

reported in humans with mendelian susceptibility to mycobacterial

disease (81) or on suppressive anti-TNF-a immunotherapy (82) these

cannot control Mtb infection or reactivate LTBI, respectively. Since

immunity can be investigated within organs, KO mice also enriched

knowledge about in situ roles of host factors. For instance, IFN-g was
shown to regulate neutrophil apoptosis (83) and TNF-a to regulate

lesion stability by signaling in myeloid and lymphoid cells (80). Mice

lacking lymphocytes (Rag2 KO and Rag2/gc KO) have demonstrated

essential yet differential roles of T- and NK-cell derived IFN-g in TB

control (84). KO mice have supported reverse translation

investigations in TB, as exemplified for miRNAs. For instance,

miR-223 is enriched in human TB lesions and susceptibility of

miR-223 KO has been linked to the regulation of IL-6, as well as of

CCL3 and CXCL2, during acute disease (85). Thus, various KO mice

have supported the understanding of TB pathogenesis at a molecular

level. In contrast, susceptibility of certain KO lines has not translated

to observations in human TB. Some examples are heightened

mortality associated with mice lacking the adaptors MyD88 (86)

and CARD9 (87). Failed models with observations distinct from

human data are also exemplified by mice lacking NADPH oxidase

subunits (88, 89) or indolamin-2,3-dioxygenase (90). These mice do

not show a strong phenotype in TB despite susceptibility being linked

to deficiency in these pathways in humans (68, 91). The inbred

features of the most common murine models may contribute to such

discrepancies. In this context, CC lines and DO mice may better

mirror genetic diversity of the human host. CC lines have uncovered

genetic loci associated with uncontrolled infection, including IFN-g-
independent phenotypes (33). DO models have confirmed that

neutrophils are detrimental in progressive TB and highlighted roles

of neutrophil chemoattractants in this process (36). Since mice and

humans show variabilities in immune components, for instance cell

abundance (humans belong to neutrophil-high species) or molecular
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constituents (mice lack granulysin and CD1-type-1 molecules),

humanized murine models have been generated (39, 40). Their use

is restricted due to financial and technological constraints as well as

variability in immune reconstitution and persistence of a mixed

human-mouse tissue environment. However, their usage could be

critical for addressing co-infection of Mtb with viruses requiring

human host factors for entry such as human immunodeficiency virus

(HIV). Without doubt, KO models have substantially enriched the

knowledge about immune cells and immune pathways in TB and

provided causality proofs for disease pathogenesis. Embracing genetic

diversity by usage of CC line and DO mice offers unique

opportunities for mechanistic studies and may provide new ways to

guide TB prophylaxis (92).

Collectively, murine models for TB are diverse and offer a

spectrum of options to choose from (see Table 1). Experimental

tools and feasibility of gene editing in mice, which permit cell fate

mapping and tracing, will continue to support immunological

research. There are yet several limitations related to the usage of

mice in TB. Besides the drawback regarding TB pathology, mice are

not suitable for transmission studies. They have been extensively used

as models for primary TB. However, unlike humans, mice promptly

allow Mtb dissemination to distal sites following aerogenic infection.

Efforts to develop murine models for post-primary TB have been

undertaken (41) and require additional evaluation.

2.1.2 Murine COVID-19 models
Inbred laboratory mouse strains such as Balb/C and C57BL/6

are not susceptible to ancestral (B.1) SARS-CoV-2 infection. With

the emergence of SARS-CoV-2 variants (e.g. Alpha (B.1.1.7), Beta

(B.1.351), and Gamma (P.1)) with extensive mutations in the spike

protein, particularly the N501Y mutation, laboratory mouse strains

became susceptible to infection and virus replication, although

without showing significant pathology (93). However, the inbred

mouse strain 129S2 develops clinical disease and has been employed

to assess the efficacy of monoclonal antibodies and vaccines (94, 95).

Two major approaches have been pursued to amend the murine

model for COVID-19 study: genetic engineering of mice for

expression of the human ACE2 (hACE2) receptor protein, and

adaptation of SARS-CoV-2 to enter murine cells via endogenously

expressed receptors (96, 97). A comprehensive summary of the

frequently used genetically manipulated murine models as well as

adapted virus strategies that substantially contributed to reproduce

key characteristics of SARS-CoV-2 infection has been provided

recently (98). For comparative evaluation we integrate the murine

COVID-19 models with TB models and highlight benefits and

disadvantages for each model and infection (Table 1).

The most commonly used K18-hACE2 model, where hACE2 is

expressed under control of the human keratin 18 promotor, in

addition to the murine ACE2, appears to be the most susceptible

COVID-19 model reported to date using human SARS-CoV-2

isolates (99). This model has contributed to the clarification of

disease pathophysiology. For instance, it provided evidence for

SARS-CoV-2 invasion of sustentacular cells as the cause of

subsequent anosmia (100). As inflammation drives severity of

COVID-19 in humans, details on dynamics of inflammatory

responses obtained in this mouse model could be valuable for the
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design of therapies. The K18-hACE2 mouse resembles severe

COVID-19 disease (101), developing cytokine storm (102),

prompt accumulation of immune cells within infected lung (103),

loss of plasmacytoid dendritic cells (104) and alveolar macrophages

paralleled by accumulation of monocyte-derived macrophages

(105). The contribution of host genetics to inflammation control

has been further evaluated using collaborative cross (CC) x K18-

hACE2 F1 progeny mice (106). In this model survival was

associated with early IFN-I expression and production of

proinflammatory factors. Similarly, disease severity was driven by

CXCR6 and CCR9 in a comparable mouse model approach (107).

The K18-hACE2 model has been also useful to demonstrate the

relevance of lymphoid cell depletion, which together with the

impaired antigen presenting cells/T-cell axis, is a specific feature

of severe SARS-CoV-2 infection (108). Furthermore, evidence for

the protective roles of T-cells was demonstrated by the fact that

vaccination with immunodominant T-cell epitopes provided partial

or even full protection in K18-hACE2 mice in the absence of

neutralizing antibodies (109, 110). Comparative RNAseq analysis

(human vs. mouse) has revealed that at the broad level of immune

responses and inflammation pathways, highly overlapping patterns

between the two species exist suggesting that the K18-hACE2

mouse model emerges as a representative and relevant animal

model of COVID-19 (111). It remains yet unclear whether innate

immunity alone could under particular circumstances, for instance

low inoculum, eliminate the virus in these transgenic mice. A

disadvantage of this model is that it does not mirror mild disease,

and interference of signaling from both murine and human ACE2

adds an additional layer of complexity when investigating SARS-

COV-2 variants which bind the murine receptor (104). Further, the

K18-hACE2 mouse model also has the disadvantage of hACE2

expression in the brain of the transgenic animals. The severity of the

disease and the reason for humane endpoints are therefore usually

the artificial occurrence of a severe infection of the brain with

encephalitis (101, 112). Brain invasion has been demonstrated in

humans (113), it is though not a commonmanifestation of COVID-

19 (114). Of note, aerosol delivery in contrast to intranasal challenge

bypasses brain involvement (115), suggesting that the route of

infection may be relevant for the phenotype of the K18-hACE2

murine model. The K18-hACE mouse model has been essential for

vaccine research and its preclinical value is impressive. The critical

role of the murine models is highlighted by the fact that mRNA

vaccine preparations were extensively tested in the mouse model

before licensing in the U.S. under Emergency Use Authorization.

Additionally, next generation SARS-CoV-2 vaccines covering

multivalency or mucosal application have been similarly evaluated

in mouse models [i.a (116–119)].

Adenovirus-, lentivirus- or adeno-associated virus-driven

transient hACE2 expression in the murine lung has also been

established multiple times in different laboratories [e.g (97, 120,

121)]. However, the virus-induced expression comes with the

disadvantage of potential induction of unspecific inflammatory

responses, non-uniform expression of hACE2 in the lung

epithelium and interference with vector-based vaccines (121).

Nevertheless, it has been utilized to study COVID-19 pathology

and for preclinical vaccine investigations, including mechanism of
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action studies. The pathology in this model is restricted to the

respiratory tract, with milder disease and in most cases self-

resolving inflammation (121, 122). Using this model, it has been

shown that IFN-I responses are associated with inflammation and

myeloid cell infiltration, but not with SARS-CoV-2 control (122,

123). The mild and localized pathology, along with the possibility to

induce hACE2 expression in KO strains, have enabled to study

mechanisms of SARS-CoV-2 clearance in naïve and vaccinated

animals with different genetic backgrounds. These studies have

confirmed the essential role of the adaptive immunity for resolution

of inflammation and viral clearance (124). Furthermore, protection

of neutralizing antibodies has been confirmed in this animal

model (120).

Another approach that allows the use of standard laboratory

mice and, more importantly, genetically modified mice, is to adapt

SARS-CoV-2 to the mouse (96). These viral strains are therefore

particularly suitable for studies in specific KO mouse lines. Thus,

the age and sex dependency of human disease severity could be

shown with an adapted ancestral SARS-CoV-2 strain (125, 126).

However, such adaptations must be carried out separately for

different virus variants which do not naturally infect mice and

thus are disadvantageous due to the extensive time required

for adaptation.

All mouse models come with a substantial drawback related to

viral transmission. Even humanized and genetically modified mice

are unable to transmit the virus to contact animals (127). Of note,

recent investigations in a neonatal K18-hACE2 mouse model have
Frontiers in Immunology 0634
reported virus transmission in a SARS-CoV-2 variant specific

manner (128) and such promising observations require validation.

The murine models used for TB and COVID-19 differ

substantially, primarily due to the distinct natural susceptibility of

mice to Mtb and SARS-CoV-2 (Table 1). For both infections, mouse

models are not amenable for investigating transmission and

generally have limitations due to dissemination of infection at

distal sites as well as at recapitulating human pulmonary

pathology. Nonetheless, they are suitable for the mechanistical

understanding of immune responses and thus have been

extensively employed for vaccine studies. The diversification of

the mouse models in TB during the last decade is remarkable

(Figure 1), and attempts to employ systems approaches for vaccine

discovery (129) further emphasize their value in pre-clinical

research. Whereas transgenic knock-in mice have been essential

for the progress of COVID-19 vaccines, such strains have rather

targeted utility in TB. Irrespective of the peculiarities of the murine

models, in both infections experimentation in mice has permitted

evaluation of biological processes at subtissular and molecular scale

and have advanced interventions.
2.2 Rat models for COVID-19 and TB

The rat is the animal species of choice in the pharmaceutical

industry for pharmacokinetic and toxicological studies. Wistar rats

are also generally employed in immunization studies given their
FIGURE 1

Overview of animal models for TB and COVID-19. The animal models used for the two respiratory infections are diversified and range from mouse
to non-human primates. Whereas murine models show the highest diversity, guinea pigs, rabbits, hamsters and livestock show applicability for one
of the two diseases. Non-human primates, just like mice, have the biggest impact in terms of knowledge gain with the former ones having the
greatest translational value. All animal models have unique benefits and cumulatively contribute to the study of TB and COVID-19, and have
potential to cross-fertilize understanding of other respiratory diseases. The figure was generated using the illustration software BioRender
(BioRender.com).
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broad availability, easy handling, defined physiology and potential

to obtain larger samples compared to mice. They are infectible by

selected SARS-CoV-2 variants, such as B.1.1.7 (130), but have not

been used as a model for COVID-19. Instead, Wistar rats have been

essential for investigating the pharmacokinetics of the lipid-

nanoparticles used to formulate COVID-19 mRNA vaccines

[EPAR – Comirnaty] (129–132). A limitation for vaccine studies

in this model is the insufficient knowledge about SARS-CoV-2-

induced pathology and the lack of appropriate immunological tools

to monitor immune responses (e.g. T-cell responses) after

vaccination and challenge.

Rats are generally susceptible to Mtb (132), and they have been

used to distinguish bacteriostatic or bactericidal properties of

investigational compounds (133). In the rat model, the decrease

of T-cell reactivity to ESAT-6 has been proposed as a correlate of

therapeutic efficacy (134) which principally sheds light on the

maintenance of high-level T effector cell populations. Various rat

models, including American cotton rats, Lewis rats, Wistar rats, and

Sprague-Dawley rats, develop granulomatous lesions which do not

liquefy (132, 135, 136), and thus human TB pathology is not

fully mirrored.

Rats have proven valuable for TB diagnostic purposes,

particularly in poor resource settings: African giant pouch rats

have been trained to detect Mtb in sputum samples (137).

Mycobacterial volatile organic compounds are detected by rats

which recognize Mtb across different genotypes and discriminate

it from related bacteria, including M. avium subsp. hominissuis or

M. intracellulare (137). Although in this case the animal model does

not immediately contribute to the understanding of TB

pathophysiology, the approach has drawn attention to an entirely

unexplored universe of small volatile bacterial compounds, and has

brought forth a diagnostic method to detect TB in high burden

regions with limited access to molecular diagnostics. Thus, the rat

model could be useful to develop electronic nose devices for

TB detection.
2.3 The guinea pig model for TB

Guinea pigs are resistant to SARS-CoV-2 (138), but are highly

susceptible to TB. In his pioneering experiments Robert Koch used

guinea pigs and rabbits to prove that a pure Mtb culture causes the

disease (13). In the 1950s their susceptibility to TB prompted

scientists to use guinea pigs as living air samplers to demonstrate

aerial dissemination of mycobacteria (139). They not only take up

mycobacteria by inhalation, but also expectorate them like humans

and thus are amenable to transmission studies. Recently, guinea

pigs have been used to reveal sulfolipid-1 as the activating factor for

nociceptive neurons to trigger cough (140). The course of infection

in guinea pigs varies with the Mtb strain and the initial dose, but

invariably animals succumb to Mtb infection. After logarithmic

growth in the lungs, Mtb loads remain stable over many weeks.

Ultimately, the bacteria re-enter a logarithmic growth phase and

this regularly coincides with the humane end point (141). Besides

aerosol exposure also parenteral routes of infection are used. For

example, the intramuscular route and the degree of generalized
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systemic dissemination has been used to assess the virulence of

different Mtb isolates (142, 143). For batch potency testing of bovine

tuberculin it is laid down in the corresponding monography of the

European Pharmacopoeia that guinea pigs shall be sensitized by

deep intramuscular injection of live M. bovis before defined

amounts of the control and the test batch of the tuberculin are

intradermally injected (Eur Ph 01/2008:0536). In guinea pigs, initial

Mtb replication is confined to the site of entry, yet bacteria

disseminate via lymphatic flow presumably by dendritic cells

reaching the draining lymph node (144). Secondary to

lymphadenitis, which is often a manifestation of TB in children

and consistently developed in guinea pigs (144), there is systemic

generalization and hematogenous spread to other organs.

Ultimately, hematogenous reseeding of the lungs may occur

which leads to progressive infection and tissue destruction. At

these different tissue levels granulomatous infiltrates occur that

develop to large, caseous, necrotizing granulomas in unsensitized

animals (144). However, it is important to note that granulomas in

guinea pigs barely show liquefaction and cavitation (145, 146). Such

lesions are the hallmark of post-primary TB and, upon infection,

can prominently be observed in pre-sensitized rabbits (see 2.4). In

guinea pigs, granulomas rather reproduce primary lesions in

humans. Accordingly, guinea pigs are not a suitable model to

study mycobacterial latency (145). The vast, necrotizing lesions

develop in the absence of preformed T-cell immunity and are

probably due to early recruitment and decay of granulocytes

(147). In the presence of antigen-specific T-cells, guinea pigs

show fewer granulomas that are better structured and contain

significantly smaller necrotic areas. This correlates with reduced

bacterial burden (141). Hence, guinea pigs have been widely used to

stringently test new vaccine candidates against TB (148–153). The

observed protective effect can be achieved by immunizing guinea

pigs with protein antigens, but also with mycobacterial lipids (154).

In this context, it is of note that guinea pigs express a functional

CD1-type1-system. This is another hallmark that distinguishes

them from murine rodents and resembles humans (155–157).

CD1 molecules are characterized by a deep, hydrophobic antigen

binding groove which enables accommodation and presentation of

long-chained lipids to T-cells. In contrast to CD1d-restricted NKT

cells, the lymphocytes that recognize their antigen in the context of

CD1-type-1-molecules bear a variable ab-T TCR and truly belong

to the adaptive immune system. They can be primed and develop an

immunological memory (158). Because mycobacteria express a rich

repertoire of glycolipids, lipoglycans and lipopeptides, which all

represent or harbor potential CD1-ligands (159), the CD1-T-cell

axis has always been of interest to TB vaccinologists. Due to their

susceptibility to Mtb and the natural expression of CD1, guinea pigs

are particularly well-suited to study the contribution of lipid-

reactive T-cells to defense against Mtb (160). Accordingly, efforts

have been undertaken to study the protective role of lipid-reactive

T-cells (154, 160), but additional animal studies are required to

better understand the complex interaction between mycobacterial

lipids and the host’s adaptive immunity (161). Guinea pigs are also

suitable for evaluation of diagnostic skin tests and thus are an

essential animal model for assessing delayed-type hypersensitivity

to mycobacterial cognates (141, 162). They are in addition an
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indispensable model for testing antimycobacterial compounds

(163–165).

A drawback of the guinea pig model remains the scarcity of

immunological tools and the lack of genetically modified strains.

However, a number of guinea pig-specific, monoclonal antibodies

have become available in recent years (166, 167). In addition,

molecular screening techniques including gene arrays, qRT-PCR

and classical immunological stimulation assays, have been developed

to study guinea pig immune responses in more detail (168–170).
2.4 The rabbit model for TB

Rabbits can be infected with high doses of the ancestrally

derived SARS-CoV-2, but are not suitable as model animals for

COVID-19 because of their low susceptibility (171). On the other

hand, they allow studying clinical features of TB since rabbits are

relatively resistant to Mtb compared to M. bovis (172). Infection

with Mtb strains can lead to a latent course of disease that can be

reactivated by immunosuppressive drugs (173). Using this model, it

has been shown that rapid innate immunity involving in particular

an early activation of NK cells is essential for an early control of

exponential bacterial growth. It has also been shown that T-cell

activation is dampened once bacterial growth is controlled, leading

to spontaneous latency (174). By contrast, infection with M. bovis

results in extended lung tissue destruction ultimately leading to

cavity formation (175). The rabbit model is amenable to closely

reproduce post-primary TB. Animals develop cavities similar to

lesions in humans, in a process that involves congestion of

bronchioles, massive multiplication of mycobacteria and

extensive, allergic necrotizing tissue destruction and depends on

Mtb strains, previous sensitization, and host genotype (176).

Sensitization of rabbits by multiple injections of heat-killed M.

bovis in incomplete Freund’s adjuvant and subsequently instillation

of viable Mtb by bronchoscopy directly into the lung triggers

cavitation (177). This approach has led to a better understanding

of the role of matrix-metallo-proteases in TB cavity formation.

Ability to induce cavitation depends also on Mtb strains, with

hypervirulent W-Beijing Mtb causing cavities, while less virulent

strains including CDC1551 rather trigger LTBI (173, 178). The

outcome of Mtb exposure can be studied in rabbits and has unveiled

that early innate inflammatory responses, inoculum size and

bacillary aggregation facilitate progressive TB and development of

pathology rather than establishment of LTBI (178, 179). Zonation

of pro- and anti-inflammatory regions within granulomas,

primarily due to variable abundancies of distinct eicosanoid

species, are similar in rabbits and humans (180). TB pathology in

rabbits, and specifically occurrence of cavities, reproduce this stage

of the disease that is most critical for successful antibiotic treatment

(181). Currently, the rabbit model has become instrumental to

study the biodistr ibution of new and of well-known

antimycobacterial compounds, such as rifampicin (182) and

pyrazinamide (183). As for guinea pigs, lack of immunological

reagents limits vaccinology studies in rabbits. The model has also

limitations with regard to the clinical manifestation of TB.

Moreover, genetic editing of rabbits is in its infancy and the high
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costs compared to rodent models restrict usage of the rabbit model

to specific scientific questions.
2.5 Hamster models for COVID-19

Hamsters, including the golden Syrian hamster (Mesocricetus

auratus), are susceptible to TB, but have not been extensively used

for the study of this disease (184). They are naturally highly

susceptible to SARS-CoV-2 infection (185–187). Experimental

intranasal inoculation with SARS-CoV-2 results in a transient,

self-limiting, epitheliotropic infection of the lungs with almost

complete elimination of the virus within two weeks. Certain

dwarf hamsters (e.g. the Roborovski dwarf hamster) are even

more susceptible and usually die or have to be euthanized after

SARS-CoV-2 challenge (187). In the Syrian hamster, SARS-CoV-2

infection is restricted to sites containing both ACE2 receptor

protein and TMPRSS2 protease (188). Interestingly, the infectious

dose 50 for Syrian hamsters is defined to be only five infectious

particles, making the hamster a sensitive model for SARS-CoV-2

infectivity assessment (189). In this model, host factors have been

investigated and variable influence of age on disease severity has

been reported (189, 190). Syrian hamsters are also suitable to

explore sex differences in the pathogenesis of SARS-CoV-2 and

vaccine-induced immunity and protection (191, 192). Transmission

to direct contact hamsters as well as airborne-based transmission

occurs in this animal model [i.a (193, 194)]. Furthermore, the

concept of super-spreading has been modelled in the Syrian

hamster model (194, 195). These findings strengthen the superior

value of the hamster model over other SARS-CoV-2 models for

virology and disease pathogenesis studies. Besides utility in

deciphering acute host responses to SARS-CoV-2, the Syrian

hamster offers an alternative for modeling of long COVID-19.

Despite the lack of detectable infectious virus hamsters exhibit

altered long term systemic responses (196).

Although immunological tools are limited, SARS-CoV-2–

specific T- and B-cells have been evaluated in a longitudinal study

in infected and recovered hamsters (197). Adoptive T-cell transfer

reduces virus loads and facilitates rapid induction of SARS-CoV-2–

specific B-cells, demonstrating that both lymphocyte populations

mutually contribute to protection in hamsters. Studies applying

single-cell RNA and protein profiling have substantiated the utility

of the hamster model for deciphering immune events in moderate

COVID-19. Similar to human COVID-19 patients, early

proinflammatory responses from lung-residing monocyte-derived

macrophages have been detected in SARS-CoV-2 infected hamsters

(198). The animals develop inflammatory profiles akin to the

cytokine storm observed in humans (196). In situ accumulation

of cytotoxic T-cells and release of IgM antibodies occur prior to

viral elimination (198). Golden Syrian hamsters reproduce also the

vasculopathy observed in human patients, including involvement of

neutrophil extracellular traps (NETs) (199) which is observed in

severe human cases (200). The hamster has been, and continues to

be, instrumental for both COVID-19 vaccinology and therapy. Its

translation value seems to exceed that of mice (15). More recently

the hamster has provided mechanistic insights into the Th-2 basis of
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vaccine-associated enhanced respiratory disease (201) and

emphasized the value of tissue-resident memory T-cells (202) in

protection against SARS-CoV-2 conferred by distinct live-vaccines.

Overall, the hamster is one of the most significant animal

models for the study of SARS-CoV-2 pathogenesis and for

vaccine development. In addition to usage of modern single-cell

technologies, immunological tools are increasingly being developed

for this species with the prospect of advancing hamster studies in

the future.
3 Large animal models

Livestock species and non-human primates (NHP) are natural

hosts for MTBC, with the latter ones being also prone to SARS-

CoV-2 infection. Similarities to humans with respect to the

anatomy of the respiratory tract and the structure of the lung, for

instance lung lobulation, as well as commonalities in organization

and functionality of the immune system are notable. The

evolutionary relationship with humans confers large animal

models additional assets and unique model values.
3.1 Non-human primate models

NHP have been essential for elucidating SARS-CoV-2 and TB

disease pathogenesis as well as for vaccine studies. Three different

NHP, Rhesus Macaques (RM), Cynomolgus Macaques (CM) and

African Green Monkeys (AGM) have been primarily used for both

pathogens with the rational that they are genetically and

immunologically closely related to humans.

3.1.1 Non-human primates in TB
In the 1960s and 1970s RM were used for the first time in TB

research for vaccine and drug efficacy testing. For two decades RM

and CM have offered substantial novel insights into pathology,

immunology, vaccine and therapies for TB. Nowadays the NHP

model is considered the most relevant for translational human TB

research (203).

Depending on the dose (101-105 CFU), Mtb strain (e.g. Erdman,

H37Rv, CDC1551), and route of infection (intravenous,

intratracheal or aerosol) RM and CM reflect the full TB spectrum

(acute, LTBI and re-activation of LTBI) including all stages of

human-like granuloma (204). NHP and human mature, adaptive

granulomas, are structured into necrotic cores surrounded by layers

of macrophages and lymphocyte zones (205), including

immunocompromised microenvironments (68). Akin human

lesions (206), NHP granulomas contain tertiary lymphoid

structures with key roles in anti-mycobacterial immunity (207).

Progression to active TB can be monitored in NHP by longitudinal

MRI or PET-CT scans which correlate with bacterial burden and

inflammation (208). Such clinical measurements revealed that even

under non-clinical disease (e.g. LTBI) NHP lungs contain active,

necrotic lesions and sterilized healing lesions at the same time (209),
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an observation which has been confirmed with similar methods in

humans (210). RM are more susceptible to Mtb infection than CM,

with RM showing increased pathology and progression to disease

compared to CM (211). Evidence for variable baseline of anti- and

pro-inflammatory status of the myeloid compartment resulting in

increased anti-inflammatory responses in RM after Mtb infection

compared to CM pro-inflammatory responses has been provided

(212) and likely additional factors underlying diverging

susceptibility exist.

Since the whole spectrum of human TB can be observed in NHP

models, correlates of protection or susceptibility have been singled

out by comparing progressor versus non-progressor animals and by

comparing individual progressing versus sterile granulomas from

the same animal (213). Treatment of NHP with an antibody against

TNF-a leads to increased disease progression in line with

observations in humans (214, 215). Similarly, co-infection of

NHP with Mtb and Simian immunodeficiency virus (SIV) leads

to active disease with pathological features comparable to HIV-1 co-

infection in humans (216, 217). Consistent with human TB and

many mammalian models, CD4+ T-cells play an essential role in

protecting NHP against development of active TB (218, 219).

Single-cell transcriptomic signatures of different granulomas from

the same individual lung sample revealed that healing or sterile

granuloma were associated with IFN-g/IL17 producing Th1 CD4+

T-cells (213). However, T-cells alone do not seem to be sufficient to

control Mtb infection in NHP and humans. Tertiary lymphoid

structures (e.g. inducible Bronchus-Associated Lymphoid Tissues

(iBALT) or granuloma-associated lymphoid tissue (GrALT)) are

significantly associated with non-progressors for active TB (220). A

recent study of these GrALT structures has revealed that Mtb-

specific B-cells induce T follicular helper cells (Tfh cells) to promote

such protection, while depletion of B-cells or impairment of Tfh

cells would lead to reduction of GrALT and bacterial growth (207).

These findings now require further investigations in human TB and

highlight the power of the NHP model to advance knowledge about

human TB.

Protection of NHP models against disease progression provided

by BCG depends on the route of vaccination, the NHP model, the

Mtb challenge strain and dose. Overall, intradermal BCG vaccination

of NHP provides variable protection against pulmonary TB which

might reflect BCG efficacy in humans (221–224). BCG appears to be

more efficient when delivered via aerosol in low dose (225, 226) or

when administered intravenously (224, 227). NHP have also been

used extensively to test safety and efficacy of preclinical and clinical

TB vaccine candidates (228). The vaccine candidate M72/AS01E,

which showed 54% efficacy in a human clinical phase 2 trial (229) also

showed efficacy in the CM model (230).

Thus, the NHP model greatly contributes to the understanding

of TB pathology, correlates of protection and vaccine efficacy. NHP

recapitulate active, latent TB, and TB reactivation, and are amenable

to longitudinal studies with serial sampling, including imaging, as

well as study of TB comorbidities. Limitations of this model are the

high housing costs, ethical concerns and shortage of RM and CM

for experimental studies. In addition, the variability in route of
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infection, inoculum, Mtb strain and NHP model lead to

heterogenous outcomes, making it challenging to select the most

appropriate experimental setup for translational studies.

3.1.2 Non-human primates in COVID-19
The ACE2 receptor for SARS-CoV-2 in NHP is identical to

hACE2 (231), which is an advantage over other mammalian

models. Pathogenesis, vaccine and therapeutic studies have been

primarily performed in RM (232), CM (233) and AGM (234)

almost simultaneously and immediately after the start of the

pandemic. In general, experimental infection resembles mild and/

or moderate COVID-19 in humans. It reflects a mild to moderate

disease course (235) including lung pathology, viral replication in

the upper respiratory tract, vascular involvement including

thrombosis (232) and more severe clinical symptoms in aged

NHP (236). A direct comparison of RM and CM after SARS-

CoV-2 challenge has demonstrated that both models are

comparable in the clinical course of infection, viral replication, as

well as humoral and cellular immune response (237).

The moderate clinical course in the NHP model allows

investigations regarding the correlates of protection. The acute

phase and viral replication peak at around 2-4 days post infection

and virus genomic RNA and clinical signs decline rapidly

afterwards (238). The dynamics of the viral burden are mirrored

by influx of neutrophils, dendritic cells and monocyte/macrophage

populations into the lung which peak around day 3 and resolve one

week later (239). The inflammatory response in the lung of NHP

seems dominated by infiltrated monocyte-derived macrophages

and is required for clearance of infected pneumocytes and

inflammation afterwards (240). This indicates that in NHP the

innate immune system likely contributes to the control of virus

replication and resolution of inflammation. In line with this, the

decline of virus replication and inflammation was associated with

IFN-I activated myeloid cells before the induction of adaptive

immunity (241). The established immunity protects RM against

re-infection, which is similar to observations in humans (242).

However, in this case it is most likely mediated by humoral and

cellular responses in the upper respiratory tract (243, 244).

NHP have been extensively used as a preclinical model for all

currently licensed vaccines against COVID-19 (245). In this context

NHP proved to be relevant to investigate correlates of protection and

mechanisms of action of COVID-19 vaccines. Systemic neutralizing

antibody titers have been found to provide protection induced by the

mRNA-1273 vaccine in non-human primates and humans (246,

247). In case of declining antibody titers over time SARS-CoV-2-

specific CD8+ T-cell responses provide additional protective

immunity and T-cell responses correlate with protection (level of

SARS-CoV-2 sgRNA) in RM vaccinated with mRNA-1273 (246). In

summary, NHP serve as an excellent model for moderate human

COVID-19 cases as well as for investigations of correlates of

protection and vaccine efficacy. However, cost restraints and ethical

concerns along with a shortage of RM for experimental studies (248)

require complementation by other models for studying COVID-19

pathology and for vaccine development.
Frontiers in Immunology 1038
3.2 Livestock models for TB

Large livestock species have been tested for their susceptibility for

COVID-19. However, SARS-CoV-2 does not establish productive

infection, nor does it disseminate in farm species such as cattle, goats

and pigs (249). In contrast, livestock species are natural hosts and are

therefore used as models for human TB. While Mtb is a human-

adapted strain, other members of this family such as M. orygis, M.

caprae and M. bovis are zoonotic pathogens. The main reservoir for

these MTBCmembers are livestock species, including cattle, goats and

pigs (250–252). However, these bacteria can infect humans and cause

undistinguishable pathology compared to Mtb-driven disease, yet

more often extra-pulmonary disease (253, 254). Of note, Mtb can

infect livestock, for instance cattle, but usually does not induce a

comparable pathology. Especially under experimental conditions

cattle, goats and pigs can eradicate Mtb (255–257). Therefore,

livestock species may serve as a model for human TB to investigate

pathology (e.g. M. bovis) and correlates of protection (Mtb).

Natural MTBC infections in cattle, goats and pigs cause

granulomas of all stages as described in humans, including necrotic

lesions containing extracellularmycobacteria (256, 258, 259), andwell-

contained fibrotic encapsulated granulomas (260). M. bovis-induced

granulomas in cattle are characterized by a strong expansion of IFN-g-
producing CD4+ T-cells and M. bovis-specific B lymphocytes (261,

262). Like in humans, M. bovis-induced activation of CD8+ T cells

seems low compared to CD4+T cells, but their presencemight support

Th1 response (263). The lesions developed in minipigs encompass

caseous, fibrotic to calcified granulomas within the lungs and lymph

nodes. Granulomas progress to encapsulation in pigs. This fibrous cuff

develops in close proximity to the fibrotic capsule which anatomically

limits the lung lobules and seems to contribute to the containment of

infection (260). Thus, the lobular partitioning of the lung which is seen

in livestock and in NHP, but not in rodents, may significantly restrict

bacillary dissemination. Of note, in pigs, bacilli can be transmitted

from infected to naïve animals, possibly due to development of cavities

(264). Tissue features and pathogen transmissibility underscore the

value of pigs for transmission studies (265).

In all species, macrophages and their precursors (e.g.

monocytes) are the main intracellular niche for M. bovis or Mtb

(266). Bovine monocytes show functional and developmental

similarities to monocyte subsets in humans (267). In line with

monocyte analogies in man and cattle, bovine monocyte-derived

macrophages are a niche for intracellular growth of M. bovis,

respond with a pro-inflammatory response and contribute to

early granuloma formation (268, 269). Likewise, neutrophils have

been found in humans, mice, and cattle to be recruited early during

infection with MTBC bacteria (270). Some anti-mycobacterial

defense mechanisms might be species-specific with bovine

myeloid cells being equipped with a high number of antimicrobial

peptides, variable granules and pattern recognition receptors

(PRRs) (271).

Experimental infection of cattle with M. bovis leads to an early

development of pulmonary lesions and development of necrotic

granulomas rich of bacteria, neutrophils and giant cells already 30
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days post challenge (272). However, progression to clinical disease

might take several years (273). Whether M. bovis becomes latent

during this time and can be reactivated like in humans is not well

understood (274). Strikingly, experimental infection of pigs, goats

and cattle with Mtb results in recovery of low bacterial numbers and

Mtb-associated lesions from infected animals (255–257). These

findings indicate that Mtb is attenuated in other species. In pigs,

using a high dose i.v. challenge model, induction of systemic IFN-y

responses was similar in M. bovis versus Mtb infected pigs

suggesting that the abundance of Th1 responses does not

correlate with disease outcome (257, 275). Strong Th1 responses

also have been observed in miniature pigs aerogenically challenged

with Mtb (260, 265). Systemic delivery of M. bovis results in early

onset of clinical disease in piglets and development of TB

granulomas in the wall of the meningeal vessels (275).

Occurrence of brain pathology makes piglets appealing for

modeling childhood meningeal TB, a disease form which is

difficult to model in other experimental animals. The bovine

immune system may tolerate low abundant Mtb or develop

distinct T-cell responses against Mtb to restrict its replication. For

example, T-cell responses against the Mtb/M. bovis antigen

Rv3879c have been only detected in M. bovis-infected, but not in

Mtb-infected cattle. This supports the hypothesis that the T-cell

repertoire could differ and therefore also recognition and/or

activation of infected macrophages by CD4+ T-cells (255, 276).

Host tropism and lack of adaptation to ruminants likely confer to

Mtb a limited replication advantage, and presumably immune-

competent cattle and other mammalian species are dead-end hosts

eliminating the human-adapted Mtb. Resistance of cattle to Mtb

may also rely on differences in very early responses of lung cells to

Mtb versusM. bovis. Variability in activation of the cytosolic DNA-

sensing pathways (277) and subsequent IFN-I responses (278), as

well as regulation of cytokines or receptors for pathogens (279) have

been reported. In addition, Mtb and M. bovis seem to reside in

different compartments in bovine and human macrophages and

only M. bovis and M. bovis-derived MPB70 trigger multinucleation

of macrophages (269). However, roles of the multinucleated giant

cells in the resistance phenotype and in other species, such as pigs

and goats, remain to be demonstrated. The two MTBC members

could trigger distinct responses in other myeloid cells, too, or may

differently alter immune responses, cell networking or tissue

remodeling. In-depth characterization of protective immune

responses in cattle, goats, pigs as models for human TB could

unmask novel correlates of protection in natural hosts and inform

rational design of therapeutics in humans.

Vaccine efficacy testing in several studies with BCG in cattle was

similarly inconclusive to efficacy studies in humans. Like in humans,

BCG supports the induction of an IFN-y and CD4+ T-cell response,

however it does not seem to prevent granuloma formation and disease

progression in cows compared to calves (280), bearing similarities to

age-imprinted protection in humans. Recent studies in calves have

unveiled that BCG delivery via aerosol trained circulating monocytes,

yet left antimycobacterial responses of alveolar macrophages

unchanged (281). BCG-driven ex vivo training of cattle monocyte is

similar to human counterparts, however aerogenic immunization

seems inefficient at remodeling mucosal immune cells. In pigs, a
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study from 1932 suggested that BCG vaccination induces small

healing lesions, but only limited protection against infection with

Mtb (282). Recent data from this model have highlighted its value

specifically for understanding neonatal and juvenile responses to BCG.

Piglets receiving BCG show development of effector CD4+

lymphocytes and maintain frequencies of CD8+ T-cells constant

over time. However, higher abundancies of activated monocytes

persist after Mtb challenge (264). Whether the monocyte changes

are associated with trained innate immunity, as known in human

neonates, and have a critical role in protection remains to be

investigated. Likewise, there is limited experimental data using BCG

vaccinated goats. However, one report suggested that BCG has only a

limited protective efficacy after challenge with M. caprae (259). More

recent advanced goat models using video endoscopy for infection via

intrabronchial spray inoculation (283) have demonstrated the

relevance and suitability of goats for vaccine studies using BCG and

new clinical candidates (284, 285). Considering that BCG is the only

licensed vaccine against TB it still remains the gold standard when

testing new vaccine concepts. BCG vaccination in cattle, pigs and goats

might reflect outcome in humans, and therefore these are useful

models for novel preclinical vaccine concepts. However, further

studies in large livestock species are required.

Ruminants and pigs bring benefits for TB studies by offering

unique opportunities to investigate disease susceptibility and

resistance in natural hosts. Whereas experimentation in cattle is

difficult due to their size and the high expenses related to the

maintenance of infected animals for longer periods of time in high

containment laboratories, goats offer a viable alternative given their

smaller size, lower costs and easier maintenance. The immunology

toolbox for ruminants is still limited. Immunological reagents

available for pigs exceed those for ruminants. Moreover, pigs are

smaller, largely available and relatively easy to sample and handle.

Availability of outbred and inbred lines, as well as recent advances

in gene editing make them appealing for TB research. Apparent

limitations due to inversion of lymph nodes or immunological

peculiarities related to lymphocyte subsets are compensated by

similarities with regard to the organization of the immune system

in pigs and humans (286) and the extensive experience from other

medical fields, such as transplantation. Furthermore, pigs could be

exploited for neonatal immunology in the context of BCG

immunization and offer an experimental model for meningeal TB.
4 Perspectives

Animal models offer opportunities to investigate host responses in

great detail and under controlled conditions, considering the

interlinked reactivity of various organs over time. Describing

currently used animal models for TB and COVID-19 it becomes

obvious that there is no ideal model (Figure 1). Each model comes

with benefits and limitations and only their purpose-oriented

utilization or usage of multiple models can adequately clarify a

specific scientific question and advance interventions. Since both

infections affect the respiratory tissue, cross-fertilization from

established animal models for TB and COVID-19 appear natural.

Certainly, advances in investigational methodologies, for instance for
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analysis of immunity in Mtb-infected NHP, have been swiftly

translated from TB to COVID-19 (241). For other models, such as

mice, translation of models from TB to COVID-19 was limited due to

abortive viral infection in standard laboratory strains. Nonetheless, we

envisage that these models may contribute to the elucidation of

counter-regulation in TB and COVID-19 as it happens in co-

infection. Mtb may change the host landscape for SARS-CoV-2 and

vice-versa, and such cross-regulations are critical for the co-infected

human host. Regarding interventions, the extensive expertise of BCG

in pre-clinical research has paved the way for understanding whether

its heterologous effects contribute to protection against SARS-CoV-2.

Importantly, knowledge gain from coinfection studies or the value of

BCG-triggered trained immunity for an emerging viral disease,

notably COVID-19, may be valid for other pneumonias and could

serve for rapid action in case of a future pandemic episode.

Animal models have been employed to decipher effects of

SARS-CoV-2/Mtb coinfection, which is critical because both

pathogens persist in the human and wildlife populations. Natural

infections with each pathogen currently have been reported in

certain species, although coinfection has been evaluated solely for

humans (Table 2). Concerns about the severity of COVID-19 in the

LTBI population or the risk of TB reactivation subsequent to

infection with SARS-CoV-2 were raised shortly after COVID-19

emergence, and co-infection has been associated with higher

mortality rates (299–301). Studies analyzing human cohorts

report that subclinical and active TB may increase the risk of

severe COVID-19 due to circulating myeloid subpopulations

found in severe COVID-19 or impaired antiviral activity (12, 302,

303). Regarding effects of the viral pathogen on the control of

bacterial replication, SARS-CoV-2 leads to reduced frequencies of

Mtb-specific CD4+ T-cells which may facilitate TB progression

(304). Of note, dysregulation of IFN-I is observed in both infections

(305–307). The relevance of such cellular subsets and phenotypes as

well as of the immune pathways relevant for TB outcome has been

demonstrated in animal models (74, 308, 309). In line with clinical

presumptions, the murine hepatitis virus, which is a mouse-adapted

coronavirus, reactivates Mtb in a dormant mouse model using a

streptomycin-auxotrophic mutant bacterial strain (310). Co-

infection studies in mice addressing effects of TB on SARS-CoV-2
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infection outcome so far have led to inconclusive results. K18-

hACE2 mice chronically infected with Mtb limit SARS-CoV-2 loads

(311) or become resistant to SARS-CoV-2 infection, presumably

due to the strong Th1 milieu (312). These disparities may be due to

imperfect modeling of the co-infection in the mouse and also to the

spectra of disease for each infection. Thus, experimental co-

infection of natural hosts of both pathogens might be more

suitable for such investigations (Table 2). Since Mtb and SARS-

CoV-2 infect multiple species aside from their host of choice,

attempts to model them in other animal models or multiple

species could be helpful. Following this approach, epidemiological

observations from the human population could be explored to

define molecular determinants controlling inflammation and cell

death pathways which may co-regulate host-responses to both

pathogens (313). A priority should be the elaboration of solutions

for bottlenecks in mirroring diseases at various stages and certainly

this becomes complex in co-infection and co-morbidity scenarios

which are often associated with TB and COVID-19.

Modeling of potential unspecific benefits of BCG in surrogate

animals generally has produced consistent results. Whereas

systemic BCG protects mice from influenza A virus lethality

(314), it does not protect hamsters from SARS-CoV-2 and its

effects were inconsistent in K18-hACE2 transgenic mice (314,

315). The disparities in mice may stem from the usage of various

BCG strains and variable study protocols. Aerosol delivery of BCG

leaves the course of SARS-CoV-2 infection unchanged in RM (316).

These results are overall supportive of observations from a large

clinical trial: BCG (Denmark strain) did not reduce the risk of

COVID-19 (317). Thus, the power of employing multiple animal

models for devising interventions has been further substantiated in

the context of BCG immunization for heterologous protection and

represents a lesson learned from the COVID-19 pandemic.

For both TB and COVID-19 there are still knowledge gaps which

should be addressed using experimentation in animal models. Current

models do not fully allow to define determinants of TB latency, triggers

of disseminated disease, mechanisms underlying tolerance to disease

and molecular regulators of TB reactivation. Similarly, understanding

factors which drive the development of long COVID-19, as well as

multisystemic inflammatory syndrome in children (MIS-C), is a
TABLE 2 Currently known hosts with the potential of coinfection.

Species MTBC strain SARS-CoV-2 strain References

Humans and non-human
primates

M. bovis and Mtb Ancestral and all variants Hlavsa et al., 2008 (287)
Wu et al., 2020 (288)

Lerche et al., 2008 (289)
Qiu et al., 2023 (290)

White-tailed deer M. bovis Alpha, Delta, Omicron Vandergrift et al., 2022 (291) Marques
et al., 2022 (292)

Minks, ferrets M. bovis Ancestral Virtanen et al., 2022 (293)
Shi et al., 2020 (294)

Gupta et al., 2022 (295)
Oude Munnink et al., 2021 (296)

Felidae M. bovis Ancestral Giraldo-Ramirez et al., 2021 (297)
Miller et al., 2019 (298)
The animal species and families from which virulent mycobacteria belonging to theMycobacterium tuberculosis complex (MTBC) as well as SARS-CoV-2 have been isolated are included. Details
on the MTBC and virus strain and references reporting detection of the pathogen in respective animal species are provided.
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priority. In the context of disease resolution, both for TB and COVID-

19 reparatory processes as well as regulators of tissue sequelae remain

largely elusive. Furthermore, the cellular and molecular basis of TB

vaccine efficacy in young individuals, particularly neonates and infants

are still not understood. Addressing these topics requires fit-for-

purpose models and likely cross-species analysis. The multi-host

disease feature and lung localization in both infections, along with

the recent progress in single-cell technologies offer opportunities. The

scientific community has initiated parallel deep profiling in multiple

experimental models, and guidance for respiratory infections has

recently been provided (318). Such agnostic approaches can be

harnessed for the development of therapies and vaccines. Fit-for-

purpose examples of animal models are juvenile pigs for early life

conditions such as MIS-C and meningeal and miliary TB. Studies in

juvenile pigs could also model vaccination in human neonates. Pigs

already have provided robust results for disease pathogenesis, unveiling

subtissular localization of virus-specific CD8+ resident memory T-cells

(319) and interventions, for instance mode of action of monoclonal

antibodies (320) or various vaccine platforms (321), for flu. Pigs could

also be a model for acute coronavirus infection (322). For the study of

chronic COVID-19, engraftment of mice with human hematopoietic

and stem cells (323) offers an alternative as these animals show lung

pathology and fibrosis observed in severely ill patients.

Development of new animal models could clarify questions which

cannot be addressed using available models. Acknowledging

translatability issues from mice to humans, novel “wildlings” mice

which combine the natural microbiome with genetic tractability of

C57BL/6 mice emphasize the validity of this approach for

reproducibility and translatability of immunological findings in

biomedical studies (324). This model has not been applied yet in

infectious disease research, but given the universality of housingmice it

could be readily implemented. Studies of pathogen transmission are

key for TB and COVID-19, however reliable and accessible animal

models are scarce. The ferret is particularly suitable due to the anatomy

of larger intranasal structures (325). SARS-CoV-2 infection foci with

oligofocal pattern have been detected using a 3Dmicroscopy approach

in ferret conchae (326). Moreover, in characterizing SARS-CoV-2

variants of concern, it provides an additional model to investigate in

situ viral competition (327) showing that, for instance Omicron BA.1

was no longer able to replicate in the presence of evolving variants

(328). Recent studies have reported that ferrets successfully transmit

Mtb and develop TB pathology (295), thus extending the model value

offerrets also to a bacterial respiratory infection.Housing andhandling

ferrets in high-containment laboratories requires adequate training

and space, making experimentation feasible only at selected

institutions. Other examples of novel model animals, particularly

amenable to decipher disease tolerance, are bats. Bats harbor

multiple viruses without showing signs of disease, and experimental

challenge with SARS-CoV-2 has resulted in productive infection in the

absence of disease (325). Understanding the basis of the resilience in

bats could advance therapies, and high-end technologies have been

applied recently to unmask the immune landscape in bats at steady

state and during infection (329, 330). Access to bat colonies is restricted

to only few research facilities worldwide and the value of bats does not

rely in phenotyping a disease stage, but rather in recapitulating

resilience in disease-free individuals. Thus, novel animal models with
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peculiar features are available for respiratory infections and the

examples presented herein are not exhaustive. They could all

contribute to uncovering the pathophysiology of maladaptive

immune responses , including hyperinflammation and

immunosuppression, as well as of the extensive lung destruction and

dysfunction detected in TB and COVID-19.

In conclusion, for the understanding of infectious diseases as well

as for testing of vaccines or therapeutics, targeted and well-considered

use of animalmodels is still indispensable. Itmust be pointed out that it

is essential to follow the 3R concepts to reduce, replace and refine usage

of animals in experimental research. These ethical-driven approaches

represent the foundation of animal experimentation around the world,

and it is conceivable that in some cases newer systems, such as three-

dimensional cell culture or organoids, will continue to proof

themselves to be able to replace some of the animal testing. When

considering two unrelated pathogens, as in our example withMtb and

SARS-CoV-2, it is noticeable that similar questions arise, which are

then analyzed with the appropriate model in each case. Therefore, an

important step is the selection of animalmodels to be used according to

the available infrastructure, tools and scientific needs. However,

common issues such as paucity of immunological reagents in non-

murine models require solutions. Here, joint interdisciplinary

(bacteriology and virology) and intersectoral (human and veterinary

medicine) efforts are necessary to increment the value of non-

conventional animal models and address societal needs, and state-of-

the-art single cell technologies offer opportunities.
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similarities and differences
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Tuberculosis (TB), caused byMycobacterium tuberculosis (Mtb) and Coronavirus

disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest

infectious diseases in humans, which together have caused about more than

11 million deaths worldwide in the past 3 years. TB and COVID-19 share several

aspects including the droplet- and aerosol-borne transmissibility, the lungs as

primary target, some symptoms, and diagnostic tools. However, these two

infectious diseases differ in other aspects as their incubation period, immune

cells involved, persistence and the immunopathological response. In this review,

we highlight the similarities and differences between TB and COVID-19 focusing

on the innate and adaptive immune response induced after the exposure to Mtb

and SARS-CoV-2 and the pathological pathways linking the two infections.

Moreover, we provide a brief overview of the immune response in case of TB-

COVID-19 co-infection highlighting the similarities and differences of each

individual infection. A comprehensive understanding of the immune response

involved in TB and COVID-19 is of utmost importance for the design of effective

therapeutic strategies and vaccines for both diseases.

KEYWORDS

SARS-CoV-2,M. tuberculosis, COVID-19, tuberculosis, innate response, T cell response,
antibody response, co-infection
Introduction

Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute

respiratory syndrome coronavirus-2 (SARS-CoV-2) and tuberculosis (TB), that is caused

by the bacterial pathogen Mycobacterium tuberculosis (Mtb), are the two-leading causes of

death from a single infectious agent in humans. In the past 3 years, SARS-CoV-2 has been

responsible for more than 7 million deaths, and Mtb for 4.5 million worldwide (1, 2).

SARS-CoV-2 is an enveloped RNA-based single-stranded virus recently emerged

belonging to the Betacoronavirus genus. The first case of COVID-19 dates back to 2019
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in Wuhan, China, and it is thought to be the result of a zoonotic

spill-over event that likely occurred from bats and humans and

finally caused the global pandemic (3). More than 700 million

SARS-CoV-2 infections have been reported worldwide (to date, as

of June 2023) (1). According to WHO, the largest number of

confirmed cases are in Europe, Western Pacific and Americas

(Table 1) (1). The spread of the virus was probably aided also by

the onset of highly mutated forms of SARS-CoV-2, defined as
Frontiers in Immunology 0251
“variants of concern” (VOCs), with enhanced transmission rate and

with relatively lower morbidity and mortality compared to the

ancestral strain (94, 95).

On the contrary, Mtb is an ancient slow growing bacterium that

has plagued the human population for thousand years. To date, it is

estimated that one third of the world population is infected with

Mtb (2), and about 5-10% of the Mtb-exposed and -infected

individuals will progress to TB disease. In most of them bacilli
TABLE 1 Comparison of the features of SARS-CoV-2 and M. tuberculosis in terms of cell tropism, disease development and diagnosis.

Characteristics COVID-19 Pulmonary TB disease

Etiologic agent SARS-CoV-2 Mycobacterium tuberculosis

Epidemiology Incidence rate in 2021: 206 million (Africa: 5 million; Americas: 66
million; Eastern Mediterranean: 12 million; Europe: 75.5 million; South-
Est Asia: 32.7 million and Western Pacific: 10.7 million)
Mortality in 2021: 3.5 million (1)

Incidence rate in 2021: 10.6 million (Africa: 2.46 million; Americas:
309.000; Eastern Mediterranean: 860.000; Europe: 230.000; South-Est
Asia: 4.82 million and Western Pacific: 1.89 million)
Mortality in 2021: 1.6 million (2)

Incubation period 2-14 days (average 5 days) (1) From 8 weeks to a lifetime (2)

Time to develop a
T cell specific
response

From day 5 after infection (4, 5) From 4-6 weeks on (6, 7)

Correlate of
protective immune
response

Neutralizing antibodies (8, 9) Likely T cell-mediated response (10)

Route of
transmission

Aerosols, droplets and contaminated surfaces (11–14) Aerosols and droplets (15, 16)

Cell tropism Primary targets: respiratory epithelial cells, such as ciliated cells,
secretory goblet cells and alveolar epithelial type II cells within the nasal
cavity and the upper and lower respiratory tract.
Secondary targets: kidneys, small intestines, pancreas, blood vessels,
testes and other tissues expressing ACE2 (3, 17, 18).

Primary target: alveolar macrophages, pneumocytes, epithelial cells (19–
21)
Secondary targets: lymph nodes, central nervous system, bones/joints,
genitourinary tract, abdomen (intra-abdominal organs, peritoneum),
and pericardium (22–25).

Entry mechanisms Plasma membrane fusion, endocytic pathway, cell-to-cell transmission
(26–28)

Phagocytosis (29, 30)

Main receptors ACE2 as primary receptor and TMPRSS2 for the activation of the spike
protein.
Other receptors include integrins, neuropilin 1 (NRP1),
phosphatidylserine receptors, the C-type lectins, asialoglycoprotein
receptor 1 (ASGR1), Kringle Containing Transmembrane Protein 1
(KREMEN1), and CD147 (3, 26–28, 31).

Dectin-1, the complement receptor 3, TLRs, mannose receptor, the
dendritic cell-specific intercellular adhesion molecule (ICAM)-3-
grabbing nonintegrin (DC-SIGN), Fc receptors, scavenger receptors and
CD14 (29, 30).

Innate immune
response

Early production of type I IFN, IL-1b, IL-6, TNF-a and chemokines.
Cytokine storm and late IFN-I production in severe COVID-19 patients
(4, 5, 32–34).
Neutrophilia, NET generation (35–38)

Early production of IL-1b, IL-1a, IL-6, TNF-a, IFN-g and chemokines
(21, 39).
High monocyte/lymphocyte ratio (40)

Adaptive immune
response

Lymphocytopenia, increased T cell activation, T cell dysfunctions,
neutralizing antibodies (IgM, IgA and IgG) (41–51).

Lymphocytopenia, granuloma formation high T cell activation and
finally exhaustion, antibody production (IgG) (52–58).

Detection tools for
T cell response

IGRA, Flow cytometry
Evaluated antigens: spike, N and M proteins/peptides (45, 59–63)

TST, IGRA, Flow cytometry
Evaluated antigens: PPD, ESAT-6, CFP-10, Ag85 B, HBHA, Rv2628,
MTB300 proteins/peptides (2, 6, 56, 64–68).

Main evasion
mechanisms

Autoantibodies against IFN-I, mutations in spike protein (32, 69–75)..
The envelope (E) protein down-regulates the CD1d, an antigen-
presenting molecule of invariant NKT (iNKT) cells, and suppresses
these cells (76).

Inhibition of phagosome maturation, induction of TLR2 antagonist
glycolipids, NET formation for Mtb replication, and suppression of the
production of pro-inflammatory cytokines or release of anti-
inflammatory cytokines (77–84).

(Continued)
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are detectable in the sputum (15). According to WHO, the largest

number of confirmed cases are in Africa and South-Est Asia

(Table 1) (2).

Although Mtb and SARS-CoV-2 are distinct pathogens, they

share several features summarized in Table 1. The main

transmission route for both pathogens is via droplets (> 100 µm

particles) or aerosols (< 100 µm particles) that are expelled by an ill

individual by coughing, sneezing, talking, and breathing (11, 16).

These particles can travel short distances in the air before being

inhaled (12). However, for SARS-CoV-2, the infection can also

occur as a result of contact with contaminated surfaces or objects on

which virions can persist even for 72 hours (13, 14). Regarding Mtb,

infection can also occur during autopsies (96) or during the spill of

caseus material, i.e. from a scrofula when the cervical tuberculous

lymphadenitis drains the material outside (97–99).

While SARS-CoV-2 shows a short incubation period (2-14

days) before symptoms onset, in Mtb infection it can range from

eight weeks to a lifetime (1, 2) (Table 1 and Figure 1).

Considering the route of transmission, it is not surprising that

both SARS-CoV-2 and Mtb firstly infect the respiratory system

causing symptoms such as cough, fatigue and fever. In addition,

SARS-CoV-2-infected subjects also experience sneezing, runny

nose, sore throat, and anosmia in the first few days followed by

shortness of breath, diarrhea, vomiting, etc. (85), whereas in TB

patients weight loss, night sweats, chest pain and coughing up of

blood were reported (86). This similarity in symptoms might make

the diagnosis difficult; however, in most cases the COVID-19

symptoms are short-lived compared to those of TB, which has a

long incubation with long-lasting symptoms duration.

Both agents can be detected in respiratory samples such as

nasopharyngeal swab or saliva for SARS-CoV-2, and sputum or

bronchoalveolar lavage (BAL) for Mtb.

The diagnosis can require different tools. For SARS-CoV-2

infection, molecular swab is the first choice in case of suspected

symptomatic individuals, contacts of confirmed cases with

symptoms and for the screening of health workers. In other

contexts, it is recommended to use rapid antigenic tests that are
Frontiers in Immunology 0352
less labor-intensive and costly and can provide results in less than

half an hour (91) (Table 1).

Regarding Mtb, two main types of tests are used to determine the

traditionally called latent infection, now defined “tuberculosis

infection” (2): the tuberculin skin test (TST) and interferon (IFN)-g
release assays (IGRA). For patients with suspected pulmonary TB, the

Center for Disease Control (CDC) recommends performing an acid-

fast-bacilli smear on three different sputum specimens (92). Moreover,

Gene-Xpert (Cepheid, Sunnyvale, CA, USA) is a widely accepted

diagnostic test for TB detection in direct smear negative cases (93).

Notably, SARS-CoV-2 and Mtb-infected individuals show a

diverse spectrum of clinical manifestations. Patients infected with

SARS-CoV-2 can experience a clinical outcome ranging from

asymptomatic to mild/moderate infection up to severe disease

(particularly with Wuhan strain and in those not vaccinated),

which can also progress to acute respiratory distress syndrome

(ARDS) (1). Indeed, SARS-CoV-2 can interfere with the host

immune system leading to hyperinflammatory state, immune

dysregulation, and extensive lung damage (100, 101).

Differently, Mtb-exposed individuals remain clinically

asymptomatic due to the development of an immune response

that controls Mtb replication (102, 103). It has been shown that

some individuals heavily exposed to Mtb can clear the infection

early before the emergence of the adaptive immune response, can

keep a negative score to the TST and IGRA, and therefore do not

show any evidence of infection (104). The lack of a detectable

adaptive immune response in these resistant individuals suggests

the key role mediated by the local innate immunity. The difficulty of

treating and eradicating Mtb is related to the ability of the

mycobacteria to survive and replicate within human cells.

In both infections, the clinical manifestations may be more

severe in presence of comorbidities. In this regard, they share

similar risk factors in terms of comorbidities as advanced age

(87), and diabetes (90), although they have specific peculiarities as

hypertension and biological therapy with CD20 inhibitors for

COVID-19 and HIV infection, malnourishment and biological

therapy based on TNF-a inhibitors for TB (90) (Table 1).
TABLE 1 Continued

Characteristics COVID-19 Pulmonary TB disease

Clinical
manifestation

Cough, fatigue, fever, sneezing, runny nose, sore throat, and anosmia in
the first few days followed by shortness of breath, diarrhea, vomiting
etc. (1, 85)

Cough, fatigue, fever, weight loss, night sweats, chest pain and
hemoptysis (2, 86).

Comorbidities may
influence clinical
outcome

Old age, hypertension, diabetes, biological therapy based on CD20
inhibitors (1, 85, 87–89).

HIV, diabetes, malnutrition, biological therapy based on TNF-a
inhibitors, extreme age (children below 5 age or elderly) (2, 86, 87, 90).

Diagnostics RT-PCR or rapid antigenic tests (1, 91). Microscopy, culture, molecular tests such as Gene-Xpert, and chest X-
ray (2, 92, 93).

Samples Naso- and -oropharyngeal swabs and saliva (1, 91) Sputum or bronchoalveolar lavage (2, 92, 93)
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease-19; Mtb; Mycobacterium tuberculosis; ACE2, angiotensin-converting enzyme 2; TMPRSS2, type
2 transmembrane serine protease; TLR, toll-like receptor; N, nucleocapsid; M, membrane; IFNs, interferons; IL, interleukin; TNF, tumor necrosis factor; NET, Neutrophil extracellular traps; Ig,
immunoglobulin; IGRA, IFN-g release assay; TST, tuberculin skin test; PPD, purified protein derivative; ESAT-6, early secretory antigenic target; CFP-10, 10-kDa culture filtrate protein; HBHA,
heparin-binding hemagglutinin antigen.
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An effective and timely immune response plays a pivotal role in

affecting the clinical course of both COVID-19 and TB. This review

aims to provide an overview of innate and adaptive immune

responses induced after the exposure to Mtb and SARS-CoV-2

highlighting the similarities and differences of each individual

infection and their crosstalk in TB-COVID-19 co-infection.
Cell tropism and entry mechanisms

Viral entry is the first and pivotal step for the viral life cycle. Not

surprisingly, blocking virus entry is a primary target of several

therapeutic strategies to prevent the subsequent steps and inhibit
Frontiers in Immunology 0453
viral replication and host cell pathology (3). Although both SARS-

CoV-2 and Mtb are airborne pathogen entering via droplets, and

primarily infect the human respiratory system, they differ by

cellular tropism and entry mechanisms.
SARS-CoV-2 and cell tropism
and entry mechanisms

SARS-CoV-2 has a broad spectrum of tropism. The human

angiotensin-converting enzyme 2 (ACE2) represents the major

cellular entry point for the virus, thus the expression of ACE2

defines which tissues can be potentially infected by SARS-CoV-2 (3,
B

A

FIGURE 1

Kinetic of the immune response to SARS-CoV-2 and Mtb. (A) SARS-CoV-2 infection evolves rapidly. The innate immune response occurs after about
3 days and is detectable through immunoenzymatic assays and flow cytometry. The antigen-specific T cell response appears around 5-7 days
concurrently also with the onset of symptoms, whereas the antibody response appears later around 8-12 days. The adaptive immune response is
detectable by immunoenzymatic assays, flow cytometry and IGRA. (B) Mtb causes a slow-progressing infection that might result in the development
of TB disease even after many years. The innate immune response occurs after about 2 weeks and is detectable through immunoenzymatic assays
and flow cytometry as for SARS-CoV-2. The antigen-specific T cell response is detectable around 4-6 weeks by means IGRA, TST,
immunoenzymatic assays and flow cytometry. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; Mtb, Mycobacterium tuberculosis;
IFNs, interferons; DCs, dendritic cells; NK, natural killer; Tfh, T follicular helper lymphocytes; Th, T helper; IGRA, IFN-g release assay; TST, tuberculin
skin test. Created with BioRender.com.
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26). The epithelial cells such as subset of ciliated cells, secretory

goblet cells and alveolar epithelial type II cells within the nasal

cavity and the upper and lower respiratory tract, represent the

primary targets for the initial infection and spread of SARS-CoV-2.

In this regard, the higher amount of viral RNA was found in ciliated

and epithelial progenitors (105). Interestingly, although the human

respiratory tract is the main target for the virus due to its airborne

transmissibility, ACE2 expression in kidneys and gastrointestinal

tract is even higher than the lungs (17). Notably, extrapulmonary

organs such as the kidneys, small intestines, pancreas, blood vessels,

testes and other tissues can be additional targets for SARS-CoV-2,

thus explaining the variety of symptoms associated to the infection

(17, 18).

SARS-CoV-2 gains access to cells mainly through two possible

routes, the plasma membrane fusion and the endocytic pathway.

The entry route used by the virus is dependent on the expression of

cell surface proteases, which are needed for the activation of the

viral protein (27, 28), and it is primarily mediated by the structural

protein spike, a trimeric glycoprotein that binds to the ACE2 (26).

After binding, spike undergoes a conformational change that allows

the proteolytic cleavage before membrane fusion (Figure 2).

Spike activation can occur either at the cell surface or in

endosomes and consists of two different proteolytic events. The

first proteolytic event occurs during spike biosynthesis and it is

mediated by the host pro-protein convertase furin that cleaves the

polybasic S1/S2 junction (106) generating the two subunits S1 and

S2 non-covalently linked and with different roles in the viral entry

(107). The amino-terminal S1 subunit includes a receptor-binding

domain (RBD) that is involved in the initial recognition of ACE2

receptor (108), whereas the carboxy-terminal S2 presents highly

conserved regions that catalyse the fusion between viral and host

cell membranes, crucial to release the viral RNA genome and start

the replication in the target cell. A further cleavage at the S2’ site is

needed to expose the S2’ fragment, a highly hydrophobic fusion

peptide that starts the fusion of membranes (109, 110).

Interestingly, TMPRSS2, which is a type 2 transmembrane

serine protease (TTSPs) expressed in the human upper and lower

respiratory tract, heart, prostate and gastrointestinal tracts (111–

113), has been shown to prime spikes on cell surface thus allowing

the entry via membrane fusion (26). In the absence or insufficient

availability of cell surface proteases, in particular TMPRSS2, SARS-

CoV-2 prefers to enter via clathrin-mediated endocytosis (114). In

this case, the conformational modifications of the spike occur in the

acidic environment of endosomes and its cleavage is mediated by

the members of the cathepsin family (e.g. B and L). While the virus

takes 10 minutes to enter the cells via cell surface membrane fusion,

the pH-dependent endocytosis process needs about 40–60 minutes

after infection (28).

The cleavage of S1/S2 can have an impact on viral fitness and

transmission, thus affecting viral infectivity (115). Notably, during

the COVID-19 pandemic, several mutations have accumulated in

S1 and S2 subunits of the spike causing the emergence of several

SARS-CoV-2 VOCs capable of escaping the immune system, while

preserving the steps of activation of the spike protein. The different

infectivity rate in the epithelial cells of the nose, bronchi, and lung

by SARS-CoV-2 VOC is correlated with the different protease
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expression, subsequent transmissibility, and severity of disease

(18, 87, 116–118).

Emerged Omicron subvariants are less dependent on

TMPRSS2-mediated spike activation at the plasma membrane,

showing a reduced replication of the virus in the lung and

intestinal cultures, while a similar replication rate was observed in

the nasal epithelia compared to the Delta variant (117, 119, 120).

Likely, this modified tropism allowed a major air transmission of

the virus, in accordance with the highest rate of spread observed in

the latest variants compared with the ancestral one (69). Moreover,

the different spike protease tropism resulted in the diminished

pathogenesis in the lung.

Besides TMPRSS2, other TTSPs or metalloproteases can

mediate SARS-CoV-2 entry. For instance, TMPRSS2 and

TMPRSS4 promote viral entry into human enterocytes of the

proximal digestive tract (121), and matrix metalloproteases

(MMPs), such as ADAM10 and ADAM17, seem to be involved

in the cleavage at the S2 site in cells lacking TMPRSS2 (122–124).

Moreover, coagulation factors, such as factor Xa and thrombin, can

directly cleave spike protein at both cleavage sites and thus further

contributing to infection at the stage of viral entry (125, 126).

Furthermore, other molecules have been suggested as

alternative receptors for the SARS-CoV-2 entry process including

integrins, neuropilin 1 (NRP1), phosphatidylserine receptors, the

C-type lectins, asialoglycoprotein receptor 1 (ASGR1), Kringle

Containing Transmembrane Protein 1 (KREMEN1), and CD147,

as reviewed by Jackson and colleagues (27, 31).

Notably, SARS-CoV-2 could also infect cells through other

mechanisms that allow the virus to escape the immune

recognition favoring its spread in the host. In this regard, SARS-

CoV-2-infected cells can directly fuse with adjacent cells expressing

ACE2 through S1/S2 cleaved SARS-CoV-2 spikes resulting in the

formation of multinucleated cells or syncytia (127, 128). The

syncytia formation favors a cell-to-cell transmission of the virus

without even the need to assemble viral particles or to release the

virus in the extracellular environment (129). SARS-CoV-2-induced

multinucleated pneumocytes and syncytia formation is a feature of

severe COVID-19 patients, suggesting their involvement in the

COVID-19 pathogenesis (130–132). Moreover, these structures

might cause direct cytopathic effects to lymphocytes. In this

regard, Zhang and colleagues reported that lymphocytes could be

internalized by syncytia by forming cell-in-cell structures and

leading to cell death (133).

Another possible mechanism for viral entry is mediated by

extracellular vesicles (EVs) containing particles or viral components

well documented in SARS-CoV-2-infected cells (134).

Regardless of the mechanism and molecules involved in SARS-

CoV-2 entry, the virus replicates triggering the host

immune response.
M. tuberculosis and cell tropism
and entry mechanisms

As for SARS-CoV-2, the first interactions between bacteria and

host occur in the lungs after the inhalation of the aerosolized Mtb.
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FIGURE 2

Initial immune response after exposure to SARS-CoV-2 and Mtb. Both SARS-CoV-2 and M. tuberculosis (Mtb) are transmitted by aerosols or
droplets. SARS-CoV-2 infection (1): virions enter into the airways and (2), once arrived in the lung, infect epithelial lung cells via recognition and
binding of the spike protein to the ACE2 cell receptor. (3) Viral RNA, once released inside the cells, is recognized by endosomal (TLR3, TLR7) or
cytosolic (RIG-I) receptors and activate downstream signaling pathways (NF-kB and IRFs) (4) leading to the release of IFNs, pro-inflammatory
cytokines and chemokines favoring immune cell recruitment, including neutrophils and DCs. (5) Infected DCs migrate to the lymph nodes for T and
B cell priming. (6) Primed T cells and plasma cells go back to the infection site via blood where they exert their functions, including apoptosis
induced by cytotoxic T cells and viral neutralization. Mtb infection: (1) Mtb bacilli enter into the airways and (2) are phagocytosed by alveolar
macrophages. (3) Alveolar macrophages migrate to lung interstitium, where they form aggregates and (4) release cytokines promoting the
recruitment of immune cells, such neutrophils, macrophages and DCs. (5) Infected DCs migrate to lymph nodes to prime T cells that are recruited at
the infection sites where they contribute to the formation of the organized granuloma. SARS-CoV-2, severe acute respiratory syndrome coronavirus
2; Mtb, Mycobacterium tuberculosis; ACE2, angiotensin-converting enzyme 2; TMPRSS2, type 2 transmembrane serine protease; TLR, toll-like
receptor; IFNs, interferons; RIG, retinoic acid-inducible gene-I; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; IRFs,
interferon regulatory factors; DCs, dendritic cells; NK, natural killer; Tfh, T follicular helper lymphocytes; Th, T helper. Created with BioRender.com.
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The size of Mtb droplets (2–5 µm particles) is important to ensure

the passage through the upper respiratory tract into the alveolar

space, where bacilli primarily encounter pneumocytes, epithelial

cells (AEC), and alveolar macrophages (AMs) with anti-bacterial

capacities (19–21). On the other hand, larger droplets can be stuck

in the upper airways or oropharynx probably explaining the onset

of the extrapulmonary forms of TB localized in the oropharynx but

lacking evidence of concurrent pulmonary disease (135).

Once entered into the airways, Mtb is phagocytosed by AMs,

which are permissive for infection establishment. In the upper

airway, Mtb invades the specialized epithelial cells called

microfold cell (M cell) through the binding to the scavenger

receptor B1 in both mouse and human tissue (136, 137). Similar

to SARS-CoV-2, Mtb can disseminate to other organs including the

lymphatics and lymph nodes that are the main sites of

extrapulmonary TB (22). Lymphatic endothelial cells, the adipose

tissue and the bone marrow have been identified as extrapulmonary

niches where Mtb may persist for long time (23–25).

The receptors involved in the Mtb entry into cells have not been

fully demonstrated. Phagocytosis of Mtb by macrophages seems not

occur via a single receptor-mediated pathway, but rather it seems to

be mediated by multiple receptors including dectin-1, the

complement receptor 3, mannose receptor, the dendritic cell-

specific intercellular adhesion molecule (ICAM)-3-grabbing

nonintegrin (DC-SIGN), Fc receptors, scavenger receptors and

CD14 (29). Other receptors, such as Toll-like receptors (TLRs)

are involved in the recognition of mycobacteria. To enable their

entrance into AMs, mycobacteria exploit a group of pathogen-

associated molecular patterns (PAMPs) expressed on its surface,

including mycobacterial lipoproteins such as the 19 kDa surface

antigen LpqH, which acts as an adhesin playing a crucial role in

both host-pathogen interactions and pleiotropic immune regulation

through the engagement of the TLR1/TLR2 (30). The downstream

signaling and the phagosomal fate depend on the type of receptor

engaged during the phagocytosis.

Macrophages containing Mtb then migrate from the air space to

the lung interstitium in an IL1-R signaling- and ESX-1 secretion

system-dependent manner (138, 139). This is the first step

preceding the formation of the granuloma, the pathologic

hallmark of TB (Figure 2).
Innate immune response

Whereas Mtb causes a slow-progressing infection that might

result in the development of TB disease even after many years, the

SARS-CoV-2 infection evolves rapidly causing COVID-19

(Figure 1). Within the immunological response to Mtb and

SARS-CoV-2, both the innate and adaptive responses play an

important role. The innate immune response is a nonspecific

response that serves as initial defense against pathogens. It

consists of humoral components (cytokines, chemokines,

interferons, complement and coagulation-fibrinolysis systems, and

naturally occurring antibodies) and cellular components (natural

killer cells, macrophages, dendritic cells and other innate

lymphocytes). Innate immunity aids in controlling the infection,
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in the identification and eradication of infected cells as well as in the

development of the adaptive immunity (59, 140).
Innate immune response to SARS-CoV-2

The heterogeneous course of SARS-CoV-2 infection depends

on the immune response at the early stages of infection (141).

Considering the rapid course of COVID-19, the capability of

patients with asymptomatic or mild disease to control the

infection is likely due to the innate immune response since the

adaptive response occurs days later, with the T cell immunity

preceding the B cell response occurring after 2 weeks (Figure 1).

Early on, an effective control of SARS-CoV-2 spread depends

on the induction of a robust antiviral response and on the ability of

alveolar macrophages to eliminate the virus and the infected cells

through phagocytosis.

Immune cells resident within the lung recognize SARS-CoV-2

through several pathogen-recognition receptors (PRRs), such as

TLRs (TL3 and TLR7), retinoic acid-inducible gene I (RIG-I)-like

receptors (RLRs), nucleotide-binding oligomerization domain

(NOD)-like receptors (NLRs) and inflammasomes. As a result,

downstream signaling pathways involving nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) and interferon

regulatory factors (IRFs) are activated inducing the production of

multiple pro-inflammatory cytokines such as IL-1b, IL-6, and TNF-
a, several chemokines (CCL20, CXCL1, CXCL2, CXCL3, CXCL5,

CXCL6, CXCL8 and CXCL16) (32, 33) and antiviral IFNs resulting

in the initial inflammation. The local innate immune response

attracts and activates into the site of infection further innate

immune cells such as neutrophils, monocytes, dendritic cells

(DCs), natural killer (NK), and innate lymphoid cells aimed to

promote viral clearance (142) (Figure 2). Consequently, the

combined action of innate immune cells, cytokines, and

chemokines may have an impact on the outcome of SARS-CoV-2

infection (143).

Although SARS-CoV-2 induces a pro-inflammatory state, there

are reports of reduced IFN release (70, 144); in fact, SARS-CoV-2 is

more effective at suppressing IFN responses compared to other

respiratory viruses (71). Type I IFN, which includes IFN-a and

IFN-b, represents the primary defensive response against viral

infections by the induction of antiviral effector molecules encoded

by IFN-stimulated genes (ISGs) and immunomodulatory responses

(145). In SARS-CoV-2-infected individuals, the presence of a quick

type I IFN production soon after infection contributes to protection

against critical illness as observed in studies conducted in

individuals exposed to COVID-19 cases (4, 5, 34).

On the contrary, if a strong and rapid antiviral response is

lacking, the ongoing infection can lead to an exuberant release of

cytokines and chemokines that is amplified by the further

infiltration of circulating immune cells, finally provoking the so-

called “cytokine storm”, which can be caused by infectious and non-

infectious agents, and which in COVID-19 is responsible for the

immunopathology associated with its severe presentation (141).

Based on the evidence, individuals with highly compromised IFN-I

response, which means no IFN-b and low IFN-a production and
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activity due to neutralizing auto-antibodies or inherited errors of

type I IFN immunity, do not control the primary SARS-CoV-2

infection and they are more at risk of fatal COVID-19 (70, 146–

148). Moreover, a low number and an impaired functionality of

plasmacytoid dendritic cells (pDCs), which are the main IFN

producers, have been found in bronchoalveolar lavage fluid

(BALF) from severe or critical patients compared to the moderate

ones (149). Also, a lower frequency of circulating pDCs was found

in samples from SARS-CoV-2-infected individuals than in

controls (150).

In vitro studies have shown the presence of a huge amount of

NF-kB-dependent proinflammatory mediators in BALF (CCL2,

CCL3, CCL4, and CXCL10) (151) and in circulation (IP-10, IL-6,

and IL-8, IL-1, IFN-g, IL-17, TNF-a, MCP-1, G-CSF, GM-CSF, IL-

1RA, CCL2, CCL3, CCL5, CCL8, CXCL2, CXCL8, CXCL9, and

CXCL16) (32, 60, 70, 152–155).

Patients with COVID-19 generally show migration of

neutrophils and monocytes into the nasopharyngeal mucosa in

response to chemokines released by infected epithelial cells (e.g.

CXCL1, CXCL3, CXCL6, CXCL15, CXCL16, and CXCL17) (156).

Once reached the lung, neutrophils as phagocytes may exert a

protective role in the clearance of the infection by secreting

leukotrienes, reactive oxygen species (ROS), and forming

neutrophil extracellular traps (NET), which are aggregates of

extracellular DNA, histones, microbicidal proteins and proteases

aimed to entrap and kill pathogens. However, neutrophils are

known to be impl icated in COVID-19 pathology as

hyperinflammation drivers through increased cytokine production

and cell degranulation (35). Indeed, their extensive and prolonged

activation causes an hyperinflammatory environment and cellular

infiltrations that may result in the tissue damage observed in the

ARDS and increased mortality (36, 37). Indeed, a high neutrophil-

to-lymphocyte ratio (NLR), that is a marker of inflammation and

infection, and NET DNA complexes have been found in severe

COVID-19 compared with mild/moderate cases or healthy

controls (38).

In addition to NET generation, another source of

hyperinflammation associated with COVID-19 is the activation of

the NLRP3-inflammasome due to the interaction of the

nucleoprotein (N) with NLRP3 (157). In this regard, a study

conducted in an ACE2 humanized mouse model of COVID-19

showed that, in response to infection, macrophages activate

inflammasomes causing the release of IL-1b and IL-18 and

undergo pyroptosis, thus favoring the pathogenesis of acute lung

injury (158).

During SARS-CoV-2 infection, monocytes/macrophages are

involved either as virus target or as producer of inflammatory

cytokines and undergo phenotypical changes (159). Alterations in

the phenotype of monocytes consisting of reduced antigenic

presentation and dysregulated immune response have been

observed (35). In the peripheral blood of COVID-19 patients

there are cell subsets of mixed M1/M2 macrophages secreting IL-

6, TNF-a and IL-10 and characterized by higher expression of

CD80 and CD86 (35, 160–162).

NK cells are innate lymphocytes that are recruited along with

macrophages and neutrophils in the lungs as confirmed by the
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analysis on BALF samples of COVID-19 patients (163). NK cells

usually exert an antiviral activity through the production of the

effector cytokines IFN-g and TNF-a and limit tissue fibrosis (164).

Regarding the protective role of NK cells against infection,

Witkowski and colleagues reported that SARS-CoV-2-infected

individuals with a higher NK cell number at hospitalization

showed a more rapid clearance of viral load (165). Although

during early stages of infection NK cells may contribute to

control viral replication and dissemination, their migration in

affected tissue may favor the enhancement of inflammation. In

this context, a reduced peripheral cell count and functional

impairment of NK cells with an enhanced expression of the

cytolytic proteins perforin and granzyme B have been found in

patients with severe COVID-19 (166–168).

CD1d-restricted NKT cells are other types of innate

lymphocytes that are involved in antiviral immunity (169). To

counteract their function, the envelope (E) protein of SARS-CoV-

2 reduces the expression of the antigen-presenting molecule CD1d

thus inhibiting the activation of innate NKT cells and enhancing

SARS-CoV-2 virulence (76).

The activation of the innate immune system is essential to

mount an effective adaptive immune response. In this regard, DCs,

as professional antigen presenting cells (APCs), represent a point of

junction between innate and adaptive immune response as they

migrate to lymph nodes to activate naïve T lymphocytes (170).
Innate immune response to M. tuberculosis

The innate immune response to Mtb infection is multifaceted

with several different cell types and functions involved. Upon

pattern recognition, a variety of cellular functions, including

phagocytosis, autophagy, and apoptosis will be launched by the

host to clear or control Mtb (171–173). In particular, macrophages

with antimicrobial mechanisms such as nitric oxide synthesis and

antimicrobial peptides such as cathelicidin represent the first

defense line against Mtb infection (174).

The investigation of the early events and host responses against

Mtb in humans is very challenging and difficult as the progression

of infection is generally slow and individuals often do not know the

exact time of exposure or infection (175). Therefore, a validated

model that recapitulates TB in human lungs is critical to support TB

research. In this regard, a number of in vitro systems (176),

spheroids (177), human airway organoids (178), and experimental

animal models of TB such as zebrafish (179), mouse (180), guinea

pig (181), rabbit (182) and rat (183) have provided new insights into

the local events that occur during few days and weeks post Mtb

infection. In particular, Mtb infection in nonhuman primates

closely recapitulates human TB and these models can be used to

study the full spectrum of infection outcome and pathology of

TB (184).

Early in infection, the infected cells are activated and start to

release some early mediators of inflammation such as TNF-a, IL-
1a, IL-1b, IFN-g and chemo-attractant molecules (e.g. CXCL5,

CXCL8), some of which also characterize the early stages of SARS-

CoV-2 infection (Figure 2). These soluble factors mediate the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1244556
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Aiello et al. 10.3389/fimmu.2023.1244556
recruitment to the site of infection of different blood cell types

including neutrophils, monocytes, macrophages and DCs (21, 39),

which are necessary for starting early granuloma formation (139).

These innate granulomas include cells that are not yet fully

activated, thus favoring the dissemination of mycobacteria from

infected macrophages to uninfected cells.

Notably, the EVs released from infected cells containing

mycobacterial components, including lipoarabinomannan, the

Ag85 complex and lipoproteins, have been shown to contribute to

the migration of immune cells to the lungs (185). Moreover, EVs

can modulate immune response by promoting the release of

proinflammatory cytokines and by increasing autophagy and

superoxide production (185, 186).

During the first 10 days post-infection, Mtb almost exclusively

resides and replicates inside AMs, suggesting that these cells provide

an early niche for Mtb growth (139, 187, 188). In a murine model of

TB, Mtb was reported to be equally distributed between AMs, DCs

and neutrophils 14 days post-aerosol challenge (189).

As already mentioned for SARS-CoV-2 and also known for

other infections including Mtb, DCs play a crucial role by

transporting bacteria from the site of infection to the draining

lymph nodes (64) in order to prime naïve T cells and start an

adaptive immune response (190, 191). An involvement of CCR2+

inflammatory monocytes in the Mtb delivery to pulmonary lymph

nodes has also been reported (192). Notably, a higher monocyte/

lymphocyte ratio is observed in Mtb-infected patients (40).

Neutrophils are other professional phagocytes that have been

shown to be involved in the early innate immune response against

Mtb through a direct antimicrobial activity and chemokines/

cytokines production (193). They readily phagocytose Mtb and

can destroy it via ROS, proteases and antimicrobial peptides

(AMPs). They can also undergo apoptosis and microbe-

containing apoptotic neutrophils can be phagocytosed by

macrophages and DCs and then transported to the lymph nodes

(194, 195).

In addition, mucosal-associated invariant T cells (MAITs) are a

group of T cells restricted to a nonclassical molecule MR-1 and not

to the classical major histocompatibility complex (MHC)

molecules. MAITs are also involved in the early responses to Mtb

by producing IFN-g and TNF-a, and showing cytotoxic activity

upon recognition of microbe-derived riboflavin metabolites (196).

Moreover, there is evidence for a role of NK cells in controlling

Mtb infection, by killing the pathogen through antibody-dependent

cellular cytotoxicity, directly targeting the Mtb by binding to cell

wall components such as mycolic acid, arabinogalactan,

peptidoglycan through receptors including TLR-2, NKp44,

NKp46, and NK group 2D (NKG2D), promoting the maturation

of phagolysosome and phagocytosis by producing cytokines such as

IFN-g and TNF-a and by killing Mtb-infected macrophages

through the release of granules (perforin, granulysin, and

granzyme) (175, 197–199). However, it is not well known

whether the role of NK cells is as important as that of

macrophages or cytokines such as IFN-g or TNF-a.
Nonetheless, Mtb has evolved several strategies to evade the

host’s immune system through its unique cell wall structure,

intracellular survival, dormancy and the ability to modulate
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immune response. Mtb has adapted to survive and replicate in

macrophages by inhibiting phagosome maturation (77–80) and

promoting necrosis over apoptosis (200). Several types of

programmed necrosis in response to Mtb infection, such as

inflammasome-mediated pyroptosis and NET-associated NETosis

have been identified (201–203). However, NETosis may facilitate

the interactions between neutrophils and other immune cells rather

than killing Mtb directly (81). Moreover, the formation of NETs can

be induced via type I IFN signaling to favor MTB replication (82).

Mtb inhibits also innate immune response by induction of TLR2

antagonist glycolipids (83). It also modulates the immune response

through the release of molecules that suppress the production of

proinflammatory cytokines or even by inducing the production of

anti-inflammatory cytokines (84).

As for SARS-CoV-2, the control of Mtb infection requires a

timely innate response as well as an effective adaptive response.
Adaptive immune response

The adaptive immune response comprises antibody and cell-

mediated responses and takes approximately 2 to 3 weeks before we

can measure it (59). It is involved in the specific recognition of

pathogens and in the establishment of the immunological memory.

Notwithstanding the importance of innate responses, a coordinated

cellular immunity is crucial for disease control in both SARS-CoV-2

and Mtb infection.
T cell response to SARS-CoV-2

In the majority of cases, SARS-CoV-2 infection induces

adaptive antigen-specific responses, viral clearance and

immunological memory finally resulting in an asymptomatic or

mild disease. However, a failure of the first line defense

mechanisms, particularly of innate IFN, may act as triggering

factor for viral proliferation and immune dysregulation. Indeed,

the delayed/ineffective adaptive responses and exaggerated

inflammatory response can promote immunopathogenesis of

COVID-19, particularly ARDS (204–207).

Several lines of evidence from both human studies and animal

model systems have shown that an effective T cell response is

required to control and eradicate SARS-CoV-2 infection by

releasing cytokines and other anti-inflammatory factors (208).

During the infection, subepithelial DCs present SARS-CoV-2-

specific peptides through MHC class I and II molecules on the cell

surface, thus promoting the activation of CD8+ and CD4+ T cells,

respectively, which migrate to the lung after antigen exposure.

Indeed, the lung is characterized by the presence of tissue-

resident T cells with a memory phenotype (CD69+, CD103+/-,

CD45RA,CCR7-) originated from the priming of naïve T cells

(209). Interestingly, an involvement of EVs in the regulation of

antigen presentation and T cell activation has also been

reported (210).

While CD8+ T cells recognize and kill the infected cells, CD4+ T

cells contribute to activate B cells for antibody secretion and CD8+
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T cells to exert the cytotoxic activity, and to produce cytokines that

favor immune cell migration at the site of infection (143).

Initial studies conducted by Grifoni and colleagues, and

subsequently confirmed by others showed CD4+ and CD8+ viral

specific T cell responses in most infected individuals mainly against

spike antigen, although present also against other structural

(nucleocapsid and membrane proteins) and non-structural SARS-

CoV-2 antigens (61–63). Since spike protein has been identified as

the most immunogenic antigen, it has been employed for many of

the currently used SARS-CoV-2 vaccines (61, 62).

Unlike Mtb infection, the early development of antigen-specific

T cell responses is generally observed within 7 days after the onset of

COVID-19 symptoms, peaks at 14 days and may be detectable even

if SARS-CoV-2 specific antibodies are lacking (5) (Figure 1). Several

studies have shown that asymptomatic or pauci-symptomatic

individuals are characterized by a strong SARS-CoV-2-specific

CD4+ T cell response (41, 211–213). Surprisingly, CD4+ T cell

responses were also observed in 40% to 60% of unexposed

individuals likely because of the cross-recognition between SARS-

CoV-2 and other “common cold” coronaviruses (63).

T cell activity has been associated with a less disease severity (8,

59). The critical role played by T cells in the protection against the

severe disease has been highlighted also with the occurrence of

different VOCs with an increased ability to escape neutralizing

antibodies (214–216). Indeed, the spike-specific T cell response

induced by both vaccination and natural infection seems to be not

affected by the amino acid mutations that characterize the VOCs,

including Omicron, in healthy subjects and in the vulnerable

populations (217–221). Indeed, the availability of thousands of

SARS-CoV-2 epitopes that may be recognized by T cells makes

unlikely that the virus may successfully escape the T cell response by

mutating the epitopes.

SARS-CoV-2 infection mainly support the differentiation of

CD4+ T lymphocytes toward T helper 1 (Th1), T helper 17 (Th17)

and T follicular helper (Tfh) cells (Figure 2).

An appropriate Th1 immune response is necessary for

protection against COVID-19, as an early and rapid expansion of

IFN-g-secreting SARS-CoV-2-specific T cells was detected over the

course of acute infection and was associated with viral clearance (42,

222) and mild disease (43, 223, 224).

Chauss and colleagues showed that asymptomatic SARS-CoV-

2-infected individuals present in the BALF CD4+ T cells switched

from a predominantly pro-inflammatory Th1 phenotype toward an

IFN-g and IL-10-producing phenotype that enable them the viral

control without causing pathology (225). The mechanism behind

the switching phenotype is triggered by cell-intrinsic complement

that orchestrates an autocrine/paracrine autoregulatory vitamin D

(VitD) loop to initiate Th1 shutdown. During this process, Vitamin

D induces epigenetic changes in the CD4+ T cells and recruits

transcriptional factors, including c-JUN, STAT3 and BACH2 finally

resulting in the switch off of Th1 programs and in the IL-10

induction (225). In patients with severe COVID-19 these

regulatory processes are lacking and thus exacerbated Th1

cytokine profiles are prevail (226).

The lack of a fine-tuned Th1 immune response can cause an

exacerbated reaction that precedes cytokine storm promoting the
Frontiers in Immunology 1059
differentiation of Th2 cells that are related to a poor prognosis

(227). In this regard, Gil-Etayo and colleagues observed in COVID-

19 patients a significant reduction in the percentage of Th1 and

Th17 cells whereas a higher frequency of activated Th2 cells.

Moreover, a higher number of senescent Th2 cells together with

higher levels of IL-15 were observed in patients with a fatal

outcome (227).

In addition, Th17 cells are strongly activated in severe COVID-

19, thus favoring cell-mediated immunopathology through the

production of IL-17 and GM-CSF (44). IL-17 released by Th17

cells induces the activation of monocytes/macrophages, DCs, and

neutrophils which, in turn, increases the release of cytokines (IL-1,

IL-6, IL-8, IL-21, TNF-a, and MCP-1), thus promoting the cytokine

storm (44).

It has been reported that the polarization of CD4+ T cells

toward Th17 instead of Th1 can be promoted by neutrophils as well

as by the up-regulation of pro-inflammatory cytokines IL-1b, IL-6
and IL-23 (228).

Tfh cells are localized within the germinal centers of the

secondary lymphoid organs and they are primarily involved in

the activation and proliferation of B cells, and the production of

high affinity antibodies (59) as well as in the assistance of CD8+ T

cell functions (229).

In rhesus macaques CD8+ T cells are crucial for viral clearance

especially when a reduced humoral response is present (230). In this

regard, a weak CD8+ T cell response has been associated with a poor

prognosis (45, 231). Indeed, a delayed or lacking CD8+ T cell

response was found in patients with severe or fatal outcomes

probably due to the inability of T cells to rapidly limit viral

replication (59).

Besides CD4+ and CD8+ T cells, regulatory T cells (Treg) have

been shown to play a critical role in SARS-CoV-2 infection,

particularly as regulators of the inflammatory response.

Perturbations in Treg phenotype, such as the reduced expression

of Foxp3 and cytokines including IL-10 and TGF-b, have been

associated with disease severity (232).

Quantitative and/or functional deficiency of T cells is associated

with pathological processes responsible for tissue damage. Indeed, a

characteristic hallmark of severe COVID-19 is the peripheral

lymphopenia accompanied by a reduced count of monocytes,

eosinophils, basophils, but not neutrophils (46). Possible

explanations for T cell depletion is the SARS-CoV-2 infection of

T cells through the binding of the spike protein to the CD147 or

CD26 expressed on cell surface (233), their recruitment to infected

site, or their apoptosis via Fas/Fas ligand or TNF (234–237).

Furthermore, increased levels of IL-6, IL-10 and TNF-a may

contribute to lymphopenia (47, 238). The prolonged peripheral

lymphocytopenia increases the risk of secondary bacterial infections

(88). Also, an immunosuppression following hyperinflammation in

COVID-19 disease has been described, in particular NLRs and

TLRs were shown to be associated to immunosuppression (239).

A reduced number of peripheral Treg cells has also been

observed in severe cases of COVID-19, likely leading to the

development of lung pathology (232).

As COVID-19 progresses, a different T cell functionality has

also been observed. Early during the acute phase of SARS-CoV-2
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infection, T lymphocytes are characterized by a highly activated

cytotoxic phenotype, whereas in convalescent individuals they show

a polyfunctional and memory phenotype (41, 44, 47, 240). CD8+ T

cells expressing markers of exhaustion such as PD-1+ TIM3+

increase over the infection and this scenario seems to be related

to IL-10 blood levels. The hyper-activation of T cells along with the

dysfunctionality of DCs and Tregs may increase the overwhelming

alveoli inflammation and cytokine storm in COVID-19 (241).

In light of what is reported in literature, an efficient T cell

response is fundamental for viral clearance.
Antibody response to SARS-CoV-2

The antibody response usually appears by 1-2 weeks later than

SARS-CoV-2 specific T cell response that is detectable 5-6 days

post-infection (4, 5) (Figure 1). Within few days post-infection, B

cells are rapidly activated in extrafollicular foci to differentiate in

short-lived plasma cells that predominantly produce IgM antibodies

but also IgG or IgA-switched to initially stem viral infection, while

waiting for the production of antibodies with higher affinity. The

first IgM, IgA and IgG are measurable in the sera between 8 and 12

days after symptom onset (48). Subsequently, within the germinal

centers in the secondary lymphoid organs, antigen-specific B cells

undergo somatic hypermutation and isotype-switching resulting in

the production of high-affinity IgG antibodies that mainly recognize

nucleocapsid and spike proteins (242, 243). Cross-sectional and

longitudinal studies showed that Enzyme-linked immunosorbent

assay (ELISA) titers and neutralizing antibodies are detectable

around 14 days after symptom onset, peak in 3 to 4 weeks, and

decline subsequently causing a reduction of protection and

increasing the risk of SARS-CoV-2 re-infection (9, 49, 50, 244).

However, it has been observed that anti-RBD antibodies,

neutralizing activity and RBD-specific memory B cells are mostly

stable between 6 and 12 months after infection (245, 246), likely

owing to the presence of a long-lived plasma cell compartment

located in the bone marrow (247–249).

The protective role of the antibodies is limited to those specific

for the viral spike protein because they neutralize the virus by

hindering the binding between spike and ACE2 receptor and thus

blocking its entry, and by promoting effector functions via the

binding to the complement and Fc receptors (250).

In the case of neutralizing antibodies, the engagement of Fc

receptors can potentiate neutralization (251, 252). Non-neutralizing

antibodies may promote antibody-dependent cellular cytotoxicity

(ADCC) and antibody-dependent cellular phagocytosis (ADCP). In

this regard, high ADCC activities are detected mainly in

hospitalized patients and showed a kinetic similar to antibody

titers with a peak at 2-4 weeks post-infection followed by a

gradual decline (253–255).

Most of the antibodies are directed against epitopes localized in

the receptor-binding motif (RBM) within the RBD of spike, whereas

a minority is directed against the N-terminal domain (NTD) (256–

258). Anti-NTD antibodies have less neutralizing activity than anti-

RBD antibodies and they may act by interfering with the

conformational changes necessary for fusion or binding to
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receptors such as transmembrane lectins DC-SIGN, L-SIGN and

SIGLEC1 (259, 260).

The antibody response, either qualitative and quantitative, is

dependent on the amount of the antigen and on the activity of the

germinal centers. In this regard, patients with severe COVID-19

show higher titers of total and neutralizing antibodies than mild or

asymptomatic patients, likely due to the stronger antigen response

(261, 262). On the other hand, individuals undergoing B-cell

depleting therapies, such as anti-CD20, show an impaired

antibody response that is associated with a more severe course of

COVID-19 (263).

While circulating antibodies may help to control viral

dissemination within the host, mucosal antibodies such as the

dimeric form of IgA that is secreted in the upper respiratory

tract, play an important role in preventing the transmission of

SARS-CoV-2, present a stronger neutralizing activity than

circulating antibodies, and contribute to protection against re-

infection (51, 264). Indeed, SARS-CoV-2 specific IgA have been

found in saliva samples collected from infected individuals (249).

During SARS-CoV-2 infection, also autoantibodies targeting

self-antigens, including type I IFN, were identified in some COVID-

19 patients, particularly in those with a severe disease that are

characterized by a reduced IFN production, as mentioned above

(32, 70, 71). COVID-19 patients are also characterized by changes

in B-cell subpopulations. In particular, increased number of

proliferating, metabolically hyperactive plasma blasts and

reduction of memory B cells have been found in patients with

severe disease, whereas they disappeared with convalescence (261,

265, 266).

Nonetheless, SARS-CoV-2 has evolved different strategies to

escape the immune response. Unlike bacteria such as Mtb, RNA

viruses are usually characterized by high mutation rates. SARS-

CoV-2 exploits this ability to accumulate mutations in the spike

protein in order to avoid the immune recognition by neutralizing

antibodies and to increase its transmissibility (69). In particular, the

emerging VOCs has accumulated mutations mainly located in the

RBM, in part due to the pressure exerted by the host immune

system. It has been proposed that the concurrent onset of multiple

mutations in the spike protein might occur during the prolonged

infection in immunocompromised patients resulting in the

emergence of variant strains (72, 73). These mutations increased

affinity of the virus for the ACE2 receptor and improved its ability

to evade the neutralizing antibody response induced by natural

infection or following vaccination with the spike protein derived

from the ancestral strain (74, 75).

Altogether, the humoral response has been shown to play a

crucial role in the host immune protection against SARS-CoV-2

together with the T cell response.
T cell response to M. tuberculosis

The infected monocytes, macrophages and DCs are thought to

be key elements leading to Mtb dissemination and granuloma

formation (39, 267). The infected professional antigen-presenting

DCs travel to the lung draining lymph nodes where priming of
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naïve CD4+ and CD8+ T cells is initiated (52, 64, 190, 191, 268).

Priming is a critical step for the initiation of the adaptive immunity

that is crucial to hinder bacilli dissemination and control the

infection. However, the adaptive (T cell) response takes longer to

appear in infected hosts because Mtb or its antigens are transported

late into the lymph nodes for T cell priming (269). In mice this

occurs within 2-3 weeks post-infection (64, 65, 270), but in humans

and non-human primates Mtb-specific T cell response in the

periphery, measured as a response to TST, or IGRA, is usually

not detectable until 4–6 weeks post-infection (6, 7).

It was found that Mtb-infected DCs in the lymph node are

capable to release soluble and intact Mtb antigens that can be caught

by uninfected DCs and efficiently presented to naïve CD4+ T cells to

optimize CD4+ T cell priming and to initiate the adaptive immune

response (271). Surprisingly, the capacity of Mtb-infected DCs in

activation and proliferation of naïve Mtb-specific CD4+ T cells in

the murine lymph node was found to be impaired likely due to

lower MHC class II-peptide presentation by these infected

APCs (189).

The primed T (and likely B) lymphocytes can then move to the

site of infection and contribute to the formation of the organized

granuloma that consists of modified macrophages as epithelioid

cells and multinucleated giant cells accompanied by neutrophils and

DCs in the center, infiltrated immune cells including granulocytes,

antigen-specific T cells and few B cells in the periphery, with

variable degrees of fibrosis or central caseous necrosis (Figure 2)

(272, 273). Although the mechanisms driving protection and

pathology within the granuloma microenvironments are still

poorly understood, such mechanisms can be very important for

the prognosis, and outcome of the disease (52).

Notably, granuloma structure and function protect the host

from the dissemination of the infection, but it is also a way to

facilitate the persistency of the infection (274). In fact, sterilizing

immunity following Mtb infection is rare and even in the presence

of a robust adaptive immune response to Mtb, the nature of the

granulomas as well as the immune escape mechanisms of Mtb can

restrict the host immune response to reliably eliminate the

infection. This leads to develop a controlled infection,

traditionally called latent infection, in most infected individuals.

Mtb can survive in a dormant (non-replicating) state favored by

hypoxic conditions inside solid granulomas that makes it difficult to

be detected by the immune system (53, 275).

Within the granuloma, Mtb antigens persistently stimulate

immune cel ls leading to immune activat ion, chronic

inflammation, and finally cell exhaustion (54). Different T cell

types and functions can exert a beneficial or even detrimental

role. The peripheral localization of T cells restricts their access to

the central core of the granuloma, where Mtb-infected macrophages

reside, and this can limit the interactions between macrophages and

lymphocytes. Moreover, a Mtb-induced immunosuppressive

environment has been indicated in the granuloma in which IL-10

impairs Th1 activity and lysis of infected macrophages (276).

The important role for T-cell immunity and particularly IFN-g-
producing Th1 in controlling Mtb infection has been demonstrated
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in humans (10) and animal models (277, 278). IFN-g is a key factor
involved in CD4+ T cell-mediated protection by increasing

autophagy and promoting phagosome maturat ion in

macrophages (79) inducing the production of antimicrobial

peptides (279), and limits the accumulation of non-protective

CD4+ T cells in the lung vasculature (280).

In humans, HIV infection appears to be an important risk factor

for TB disease progression likely due to CD4+ T cell depletion (10,

90). Also, depletion of CD4+ T cells in cynomolgus macaques with

acute Mtb infection leads to exacerbated disease in most animals

(278). Moreover, TB disease increases HIV replication, in vivo and

in vitro through a mechanism of immune activation (281, 282).

The activation and proliferation of antigen-specific naïve CD4+

T cell subsets strongly depends on the cytokine milieu released by

APCs. Particularly, macrophages are the main source of IL-1b, IL-6,
IL-18, TNF-a, IL-10, and TGF-b, while DCs are the main producers

of IL-12, IL-23, IL-27 and IFN-b (39). For instance, IL-12 produced

by DCs differentiates naïve CD4+ T cells to Th1 which promote

activation of the cell-mediated immunity needed to counteract

intracellular pathogens (55). These cells secrete pro-inflammatory

cytokines such as IL-2, IFN-g and TNF-a to activate macrophages

and cytotoxic CD8+ T cells (283). TNF-a is known to be necessary

for the formation of a well-organized granuloma and host

protection, as confirmed by the higher risk of developing TB

disease and disseminated infection in subjects who underwent

anti-TNF-a treatment (284, 285).

Activated cytotoxic CD8+ T cells and macrophages kill and

eliminate pathogens and infected host cells by cytotoxic effector

molecules such as perforin, granzymes and granulysin and by death

receptor/ligand ligation (286).

Furthermore, IL-23 produced by DCs drives differentiation and

functionality of Th17 cells that produce IL-17 which is a cytokine

involved in neutrophil recruitment (287). IL-17 signaling appears to

be essential for recruiting neutrophils to the site of infection early

after Mtb infection in murine models (288), but a dysregulated

production of this cytokine was also found to be associated with

immunopathology driven by excess neutrophil recruitment and

inflammation (289, 290).

Although inflammation is required for an effective immune

response against harmful pathogens, the balance between pro- and

anti-inflammatory cytokines is critical to control the disease and lung

damage during Mtb infection (56, 291). Anti-inflammatory cytokines

such as IL-4, IL-5, IL-13 released by Th2 cells and IL-10 and TGF-b
by regulatory T cells are needed to suppress inflammation during

immune response. However, these cells may promote long-term

persistence of Mtb by favoring active immunosuppression rather

than the expected tissue repair response (292).

In patients with TB disease, TST positive, in vitro PPD

stimulation induced the production of IL-10, IFN-g, and cell

proliferation, whereas in those TST-negative PPD induced IL-10

but not IFN-g release, without cell proliferation (293).

Altogether, a better understanding of the dynamically balanced

immune response is fundamental for therapeutic strategies and

subsequently for vaccine development.
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The role of B cells and antibodies in TB

Although Mtb infection induces strong antibody responses, the

role of antibodies and B cells in TB has not been fully elucidated.

Previous studies on B cell depletion have failed to definitively

establish a role for these cells or antibodies in Mtb infection and

control, although recent studies have demonstrated potentially

protective roles of antibodies in humans and non-human

primates (NHPs) after intravenous bacille Calmette-Guérin

(BCG) vaccination (294, 295).

It has been shown that TB disease is associated with decreased B

cell count and function compared with individuals who are infected

with Mtb but without any clinical symptoms, suggesting that TB

patients may be less able to develop successful antibody responses

against Mtb (296–298).

Moreover, distinct glycosylation patterns on the Fc part of the

antibodies (296), and isotype skewing to less potently immune-

activating variants like IgG4 have been considered for this altered

functional response (298, 299).

Surprisingly, heavily Mtb-exposed individuals who “resisted” to

infection showed higher antibody functionality compared to those

with TB infection, indicating an important role of antibodies in

early protective immunity (300, 301).

Studies have shown that the interaction of Mtb with

macrophages can be affected by antibodies in a variety of ways

(57, 58). For instance, bacterial opsonization may alter vesicular

trafficking and macrophage signaling. Moreover, the binding of

antibodies to Fc receptors (activator or inhibitory) on macrophages

can modulate their function (58).

Together, data suggest that B cells and antibodies may play an

important role in protective immunity against mycobacterial

infections; however, the diversity of antibody functions, the

heterogeneity of the humoral immune response to Mtb, as well as

the complexity of the interactions between B cells and other

immune cells have been indicated as the major challenges to

understand the impact of the humoral immune system in the

immune protection at each stage of Mtb infection (58).

M. tuberculosis and SARS-CoV-2 co-
infection

Information on TB-COVID-19 co-infection in humans is still

limited. Co-infection was reported around 1% in the Philippines

(302), 5% in South Africa (303), and between 0.37% and 4.47% in

China (304). Recent works suggest that TB-COVID-19 co-infection

is associated with elevated risk of unfavorable clinical outcome, with

a longer time to recovery, treatment failure, loss to follow-up rates,

and higher rates of mortality compared to patients with COVID-19

alone (89, 305–308).

However, mechanistic studies are needed to understand the

interactions during Mtb and SARS-CoV-2 dual infections, their

effect on the host immune response and clinical outcomes.

Understanding the early events and pathophysiology of TB-
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COVID-19 co-infection is warranted to find better ways to

manage such cases, particularly in the high TB endemic areas.

The dysregulated immune response induced by each pathogen can

lead to an unbalanced inflammatory response, which can promote

the progression and worsening of both diseases.

To date, the immune response for each pathogen has been well

studied, whereas the impact of Mtb and SARS-CoV-2 co-infection

on the innate and adaptive immune response, their crosstalk and

cumulative impact on disease outcome in humans still need to be

delineated (309–313).

In fact, the studies available have mostly focused on the clinical

features of co-infected patients, characterizing a marked

lymphopenia and increased levels of some markers of

inflammation, such as C-reactive protein (CRP), D-dimer,

ferritin, and describing the lung tissue damages (308, 312, 314, 315).

There are few published studies either in vitro, ex-vivo using

human samples from co-infected individuals or animal models

evaluating the immune response and immunopathology in the

context of co-infection (Table 2).

In vitro studies were recently performed by Sheerin and

colleagues using a single-cell RNA-seq (scRNA-seq) approach to

analyze the results from a co-infection performed using a whole

blood platform (24 or 96 hours) from healthy adults. The authors

characterized different and overlapping immunological responses

generated by SARS-CoV-2 (ancestral strain) and Mtb (lineage 4

laboratory strain H37Rv) when a single infection or co-infection

occurs. Based on marker gene expression, they identified 13 distinct

clusters of cells showing diverse proportions of monocytes, T cells

and neutrophils between different conditions and timepoints. The co-

infected condition showed the major immune activation effect early

(24h) post-infection with 238 immunological pathways uniquely

enriched, including IFN-g and TNF production, while 182 shared

pathways were overlapping at 96h post-infection among different

conditions. In contrast to SARS-CoV-2-only infection that caused

extensive cell death by 96h post-infection, Mtb-only and co-infected

conditions maintained monocyte, T cell and NK cell signatures, and

negative regulation of the signaling of extrinsic apoptosis (316).

Interesting animal studies evaluating the impact of aerosol Mtb

and SARS-CoV-2 co-infection in transgenic (K18-hACE2) C57BL/

6 mice showed that pre-infection with Mtb resulted in lower SARS-

CoV-2 viral loads at the lung tissue level, likely mediated by the

heightened immune microenvironment of the lungs. In addition,

after SARS-CoV-2 superinfection, increased bacterial loads in Mtb-

infected tissues and decreased histiocytic inflammation were found.

Moreover, SARS-CoV-2 caused a decreasing trend in type 1 (IFN-g
and TNF-a) and an increasing trend in type 2 (IL-4 and IL-13)

cytokine transcript levels in Mtb-infected mice. These findings,

which are usually associated with disseminated Mtb infection,

suggest that SARS-CoV-2 may have a deleterious effect on TB

outcome (317) through the immune dysregulation, potentially

resulting in granuloma collapse and the subsequent Mtb

dissemination (311).

Using two concomitant murine models of COVID-19 (SARS-

CoV-2 infection of K18-hACE2 mice and mouse-adapted SARS-
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CoV-2 [MACoV2] infection of C57BL/6 mice) it was shown that

chronically Mtb H37Rv-infected mice were resistant to the

pathological consequences of secondary SARS-CoV-2 infection,

and SARS-CoV-2 infection did not affect Mtb burdens. Single-cell

RNA sequencing of the lungs of the co-infected animals showed

that resistance could be due to T and B cells expansion upon viral

challenge. Interestingly, lower lung protein levels of IFN-g, IL-6 and
IL-1b as well as mRNA levels of IFN-g and TNF-a and higher levels

of IL-10 were found in co-infection than in Mtb-monoinfection at

the 30 days post-infection (318), similar to Hildebrand and

colleagues (317)

Regarding the evaluation of the immune responses in co-

infected humans, two studies have demonstrated that Mtb

infection can modulate humoral (antibody) and cytokine

responses to SARS-CoV-2 infection (319) and vice versa (320) in
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investigations conducted in TB endemic countries. Rajamanickam

and colleagues demonstrated that individuals seropositive (IgG+)

for SARS-CoV-2 infection and with TB infection (TBI+/SARS-

CoV-2 IgG+) were characterized by higher levels of specific

antibodies (IgM, IgG and IgA) and neutralizing antibodies against

SARS-CoV-2 compared to individuals with only SARS-CoV-2

infection. Moreover, elevated plasma levels of proinflammatory

cytokine/chemokine responses including IFN-g, IL-2, TNF-a, IL-
1a, IL-1b, IFN-a, IFN-b, IL-6, IL-12, IL-17, GM-CSF, CCL3,

CXCL10 and anti-inflammatory cytokines such as IL-4, IL-10, IL-

25 and IL-33 were found in TBI+/SARS-CoV-2 IgG+ subjects. These

results show that Mtb infection can modulate the immune

responses in asymptomatic SARS-CoV-2-infected individuals

(319). In an additional study, it was shown that TBI+/SARS-CoV-

2 IgG+ individuals have higher baseline and Mtb-induced (but not
TABLE 2 Studies that evaluated the immunopathology and the immune response in the context of M. tuberculosis and SARS-CoV-2 co-infection.

Study (ref) Model Immunological findings

Sheerin et al., 2023
(316)

In vitro model of infection with Mtb and SARS-COV-2 using human
cells from HC

Characterizing distinct and overlapping immunological responses
generated by SARS-CoV-2, Mtb, or during co-infection.

Hildebrand et al.,
2022 (317)

In vivo animal model (mice) infected with Mtb and/or SARS-CoV-2;
Uninfected controls

In lungs and spleen of co-infected mice:
↓ type 1 (IFN-g, TNF-a),
↑ type 2 (IL-4 and IL-13) transcripts

Rosas Mejia et al.,
2022 (318)

In vivo animal model (mice) infected with Mtb and/or SARS-CoV-2;
Uninfected controls

In lungs of co-infected mice:
↓ IFN-g, IL-6, IL-1b, and transcripts of IFN-g, TNF-a,
↑ IL-10.

Rajamanickama
et al., 2021 (319)

In vitro model using human cells from asymptomatic COVID-19 and
TBI- asymptomatic COVID-19

In TBI+/SARS-CoV-2 IgG+:
↑ IgM, IgG, IgA, neutralizing antibodies against SARS-CoV-2
compared to TBI-/IgG+.
↑ proinflammatory cytokine/chemokines (IFN-g, IL-2, TNF-a, IL-1a,
IL-1b, IFN-a, IFN-b, IL-6, IL-12, IL-17, GM-CSF, CCL3, CXCL10)
and anti-inflammatory cytokines (IL-4, IL-10, IL-25, and IL-33)
compared to TBI-/IgG+.

Rajamanickam
et al., 2022 (320)

In vitro model using human cells from asymptomatic COVID-19 with
or without TBI

In TBI+/SARS-CoV-2 IgG+:
↑ baseline and Mtb-induced (but not mitogen) levels of IFN-g, IL-2,
TNF-a, IL-17A, IL-1b, IL-6, IL-12, CCL1, CXCL1, CXCL9, CXCL10,
IL-4, IL-13.
↓ levels of IL-5 and IL-10 compared to TBI-/IgG+.

Musso et al., 2021
(315)

In vitro model using human cells from TB-COVID-19 Cell anergy in response to Mtb antigens and mitogen stimulation.

Petrone et al., 2021
(310)

In vitro model using human cells from COVID-19; TB-COVID-19; TBI-
COVID-19; NO COVID-19

In TB-COVID-19 co-infected patients:
↓ specific IFN-g response to SARS-CoV-2 compared to
TBI-COVID-19 and COVID-19-only.

Najafi-Fard et al.,
2023 (313)

In vitro model using human cells
from TB-COVID-19; COVID-19;
TB; HC

In co-infected patients:
↑ TNF-a, MIP-1b, and IL-9 compared with COVID-19-only.
↑ TNF-a, IL-1b, IL-17A, IL-5, FGF-basic, and GM-CSF
compared with TB-only.
↓ specific response to SARS-CoV-2 and Mtb.

Riou et al., 2021
(311)

In vitro model using human cells from patients with or without
COVID-19 co-infected or not with TB

In co-infected patients:
↓ SARS-CoV-2-specific and Mtb-specific CD4+ T cell responses
with poor polyfunctional cell potentials.

du Bruyn et al.,
2023 (314)

In vitro model using human cells from patients with or without
COVID-19 co-infected or not with TB and/or HIV-1; HC

Comparable frequency of SARS-CoV-2-specific CD8+ T cell response
between TB-COVID-19 co-infected and COVID-19-only patients.
COVID-19, CoronaVirus Disease 19; TB, tuberculosis; HC, healthy control; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; Mtb, Mycobacterium tuberculosis; IFN, interferon,
TNF, tumor necrosis factor; IL, interleukin; MIP, macrophage inflammatory protein; FGF, fibroblast growth factor; GM-CSF, granulocyte-macrophage-colony-stimulating factor; TBI,
tuberculosis infection; Ig, immunoglobulin; CCL, Chemokine (C-C motif) ligand; Chemokine (C-X-C motif) ligand.
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mitogen) levels of several pro- and anti-inflammatory cytokines/

chemokines including IFN-g, IL-2, TNF-a, IL-17A, IL-1b, IL-6, IL-
12, CCL1, CXCL1, CXCL9, CXCL10, IL-4, IL-13 and reduced levels

of IL-5 and IL-10 compared to TBI-/SARS-CoV-2 IgG+ individuals.

These findings suggest modulating effects of SARS-CoV-2 infection

on the immune responses of individuals with Mtb infection (320).

However, these results were obtained in TB-infected individuals

with only asymptomatic SARS-CoV-2 infection and the influence of

each pathogen on the disease severity and the outcome of each

infection were not evaluated.

Differently, clinical outcome was assessed in a case of

multidrug-resistant (MDR)/TB-COVID-19 co-infected patient

affected by bilateral cavitary pulmonary TB, that subsequently

developed COVID-19-associated pneumonia which led to a fatal

outcome. Death was probably due to the immuno-suppressed state

of the patient, as shown by the low lymphocyte count and by the

lack of response to Mtb antigens and mitogen (315).

In addition, a cohort of TB-COVID-19 co-infected patients

with different severity of COVID-19 showed a reduced ability to

mount a specific immune response to SARS-CoV-2 stimulation

compared to patients with TBI and COVID-19 (TBI-COVID-19) or

with COVID-19 only (310). In particular, in TB-COVID-19 co-

infected patients TNF-a, MIP-1b, and IL-9 showed significant

elevated levels compared to COVID-19 only, and TNF-a had the

highest discriminant power. Moreover, TNF-a, IL-1b, IL-17A, IL-5,
FGF-basic, and GM-CSF were increased in co-infected compared to

patients with TB-only. Importantly, co-infection was associated

with an impairment of SARS-CoV-2-specific and a reduced Mtb-

specific immune response (313).

In agreement with these results, Riou and colleagues

demonstrated in TB-COVID-19 co-infection impaired SARS-

CoV-2-specific and Mtb-specific CD4+ T cells with reduced

polyfunctional cell potentials, proliferation cell capacity, and

augmented cell activation markers (311). However, the frequency

of SARS-CoV-2 specific CD8+ T cell response to peptides spanning

the M, N and S sequences in TB-COVID-19 co-infected patients

was found to be comparable with patients with COVID-19

only (314).

Furthermore, several recent case studies have raised concerns

regarding the Mtb reactivation in TB-infected subjects following

SARS-CoV-2 co-infection. These reports suggest that since the

control of both Mtb and SARS-CoV-2 replication depends on

cellular immunity, it is possible that the immune dysregulation

caused by SARS-CoV-2 or the immunomodulatory therapies used

for COVID-19 treatment may increase the risk for TB reactivation

(321–326).

Both SARS-CoV-2 and Mtb have immunomodulating

potentials to change the outcome of the course of each disease in

co-infected patients: SARS-CoV-2 may cause immunosuppression

and cytokine storm, which can contribute to the Mtb reactivation

(327) and lung tissue damage; Mtb may cause T-cell exhaustion and

uncontrolled release of proinflammatory cytokines resulting in lung

damage (328, 329), thus potentially contributing to the

susceptibility to SARS-CoV-2 infection and to a more severe

COVID-19.
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In TB-infected individuals, T cells are responsible for Mtb

control via the granuloma formation. Co-infection with SARS-

CoV-2 in these individuals may negatively affect immune

regulation in the granuloma leading to Mtb reactivation (322,

330). This alteration of the immune system has been reported

using a large-scale meta-analysis of transcriptomic data showing

that some immune genes are enriched in COVID-19 and TB

diseases (309). The findings from case reports indicate the

presence of similarities in the immunopathogenesis of the two

diseases, which may exacerbate disease severity during co-

infection. Subclinical and clinical TB disease may increase the risk

of severe COVID-19 disease and also SARS-CoV-2 co-infection

may induce the progression to TB disease (309), as reported above

(321–326). In this regard, IFN-I which is strongly induced by viral

infection may be detrimental in the context of Mtb by inhibiting B

cell responses, inducing the release of immunosuppressive

molecules or reducing the macrophagic activation induced by

IFN-g (145), Also, the hyperinflammatory milieu caused by Mtb

may raise the risk of severe COVID-19 and vice versa (331). Mtb

spread or reactivation might be favored by inflammatory molecules

released from the SARS-CoV-2-induced necroptosis, whereas the

apoptosis might mitigate it (332). Moreover, while COVID-19

therapies targeting pro-inflammatory cytokines may limit the

acute immunopathology, they may also repress the responses

needed to control Mtb containment (308).

Altogether, these studies suggest that co-infection alters the

capacity of the host to respond to and control Mtb and/or SARS-

CoV-2, indicating the need for further investigation of the

underlying immunological pathways.
Final remarks

SARS-CoV-2 and Mtb are currently the two deadliest infectious

diseases in humans. While the route of infection and the target

organ are similar, the time to disease manifestation and the

pathways driving immunopathology differ significantly (Figure 3).

Evidence reported here show that both innate and adaptive

immune response are critical components for the protection against

SARS-CoV-2 and Mtb. The immune response to both SARS-CoV-2

and Mtb is complex and multifaceted, and there are still many

aspects that are not well understood. However, it is known that an

appropriate activation of the innate immunity in the early stages of

infection followed by adaptive immunity is necessary to curb the

pathogen dissemination in the host.

The comparison of these two pathogens highlights how the

innate immune response induced after exposure to SARS-CoV-2 or

Mtb share the production of some pro-inflammatory cytokines

including IL-1b and TNF-a. Similar results were found in Mtb/

SARS-CoV-2 co-infection. For SARS-CoV-2 infection, the early

and robust IFN-I production as well as neutralizing antibodies have

an outmost importance for guarantee an efficient control of viral

spread and to determine the clinical outcome of COVID-19. On the

other hand, in Mtb infection a central role is played by the alveolar

macrophages and the cytokines they release as TNF-a and IL-1b.
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Although the infections caused by the individual pathogens

have been intensively studied, there are still many unanswered

questions about the influence of these pathogens on each other, the

immune response, and clinical outcome in the context of co-

infection. Recent data has raised concerns regarding the Mtb
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reactivation following SARS-CoV-2 infection likely due to

immune dy s r e gu l a t i on c au s ed by SARS -CoV-2 o r

immunomodulatory COVID-19 therapies. Further clinical and

scientific research is needed to better understand the interaction

and outcome of the co-infection.
FIGURE 3

Comparison of the immune response in SARS-CoV-2, Mtb or Mtb/SARS-CoV-2 infection. The innate immune response induced after exposure to
SARS-CoV-2 or Mtb is characterized by the production of pro-inflammatory cytokines including IL-1b and TNF-a. In Mtb/SARS-CoV-2 co-infection
there is an overproduction of pro-inflammatory cytokines. SARS-CoV-2 infection presents also an early type I IFN production, which is absent or
delayed in severe COVID-19 patients. SARS-CoV-2 infection is also characterized by a higher neutrophil count, whereas a higher monocyte/
lymphocyte ratio is observed in Mtb-infected patients. Both SARS-CoV-2 and Mtb infected subjects show lymphocytopenia and T cell activation,
which are even more prominent in case of co-infection. In co-infected individuals a major impairment of antigen-specific response to Mtb and
SARS-CoV-2, and granuloma disruption is present. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; Mtb, Mycobacterium
tuberculosis; IFNs, interferons; DCs, dendritic cells; NK, natural killer; Th, T helper; Ig, immunoglobulin. Created with BioRender.com.
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Salgado-Cantú MG, et al. Reduced IL-8 secretion by NOD-like and toll-like receptors in
blood cells from COVID-19 patients. Biomedicines (2023) 11:1078. doi: 10.3390/
biomedicines11041078

240. Jiang Y, Wei X, Guan J, Qin S, Wang Z, Lu H, et al. COVID-19 pneumonia:
CD8+ T and NK cells are decreased in number but compensatory increased in cytotoxic
potential. Clin Immunol (2020) 218:108516. doi: 10.1016/j.clim.2020.108516

241. Alahdal M, Elkord E. Exhaustion and over-activation of immune cells in
COVID-19: Challenges and therapeutic opportunities. Clin Immunol (2022)
245:109177. doi: 10.1016/j.clim.2022.109177

242. Suthar MS, Zimmerman MG, Kauffman RC, Mantus G, Linderman SL,
Hudson WH, et al. Rapid generation of neutralizing antibody responses in COVID-
19 patients. Cell Rep Med (2020) 1:100040. doi: 10.1016/j.xcrm.2020.100040

243. Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann
A, et al. The receptor binding domain of the viral spike protein is an immunodominant
and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol (2020) 5:
eabc8413. doi: 10.1126/sciimmunol.abc8413
Frontiers in Immunology 2271
244. Muecksch F, Wise H, Batchelor B, Squires M, Semple E, Richardson C, et al.
Longitudinal serological analysis and neutralizing antibody levels in coronavirus
disease 2019 convalescent patients. J Infect Dis (2021) 223:389–98. doi: 10.1093/
infdis/jiaa659

245. Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al.
Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection.
Nature (2021) 595:426–31. doi: 10.1038/s41586-021-03696-9

246. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological
memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (2021)
371:eabf4063. doi: 10.1126/science.abf4063

247. Wajnberg A, Amanat F, Firpo A, Altman DR, Bailey MJ, Mansour M, et al.
Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science
(2020) 370:1227–30. doi: 10.1126/science.abd7728

248. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling early humoral
response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis (2020)
71:778–85. doi: 10.1093/cid/ciaa310

249. Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, et al. Persistence of
serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19
patients. Sci Immunol (2020) 5:eabe5511. doi: 10.1126/sciimmunol.abe5511

250. Zohar T, Alter G. Dissecting antibody-mediated protection against SARS-
CoV-2. Nat Rev Immunol (2020) 20:392–4. doi: 10.1038/s41577-020-0359-5

251. Winkler ES, Gilchuk P, Yu J, Bailey AL, Chen RE, Chong Z, et al. Human
neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for
optimal therapeutic protection. Cell (2021) 184:1804–1820.e16. doi: 10.1016/
j.cell.2021.02.026

252. Yamin R, Jones AT, Hoffmann H-H, Schäfer A, Kao KS, Francis RL, et al. Fc-
engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature
(2021) 599:465–70. doi: 10.1038/s41586-021-04017-w

253. Lee WS, Selva KJ, Davis SK, Wines BD, Reynaldi A, Esterbauer R, et al. Decay
of Fc-dependent antibody functions after mild to moderate COVID-19. Cell Rep Med
(2021) 2:100296. doi: 10.1016/j.xcrm.2021.100296

254. Anand SP, Prévost J, Nayrac M, Beaudoin-Bussières G, Benlarbi M, Gasser R,
et al. Longitudinal analysis of humoral immunity against SARS-CoV-2 Spike in
convalescent individuals up to 8 months post-symptom onset. Cell Rep Med (2021)
2:100290. doi: 10.1016/j.xcrm.2021.100290

255. Yu Y, Wang M, Zhang X, Li S, Lu Q, Zeng H, et al. Antibody-dependent
cellular cytotoxicity response to SARS-CoV-2 in COVID-19 patients. Signal Transduct
Target Ther (2021) 6:346. doi: 10.1038/s41392-021-00759-1

256. Piccoli L, Park Y-J, Tortorici MA, Czudnochowski N, Walls AC, Beltramello
M, et al. Mapping neutralizing and immunodominant sites on the SARS-coV-2 spike
receptor-binding domain by structure-guided high-resolution serology. Cell (2020)
183:1024–1042.e21. doi: 10.1016/j.cell.2020.09.037

257. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, et al.
Deep mutational scanning of SARS-coV-2 receptor binding domain reveals constraints
on folding and ACE2 binding. Cell (2020) 182:1295–1310.e20. doi: 10.1016/
j.cell.2020.08.012

258. McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J, et al. SARS-
CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science (2021)
373:648–54. doi: 10.1126/science.abi7994

259. McCallumM, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, et al.
N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2.
Cell (2021) 184:2332–2347.e16. doi: 10.1016/j.cell.2021.03.028

260. Lempp FA, Soriaga LB, Montiel-Ruiz M, Benigni F, Noack J, Park Y-J, et al.
Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies. Nature
(2021) 598:342–7. doi: 10.1038/s41586-021-03925-1

261. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG,
Weisman AR, et al. Comprehensive mapping of immune perturbations associated
with severe COVID-19. Sci Immunol (2020) 5:eabd7114. doi: 10.1126/
sciimmunol.abd7114

262. Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and
immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med (2020)
26:1200–4. doi: 10.1038/s41591-020-0965-6

263. Burgener S, Rochat P, Dollenmaier G, Benz G, Kistler AD, Fulchini R.
Progression of COVID-19 in a patient on anti-CD20 antibody treatment: case report
and literature review. Case Rep Infect Dis (2022) 2022:8712424. doi: 10.1155/2022/
8712424

264. Russell MW, Moldoveanu Z, Ogra PL, Mestecky J. Mucosal immunity in
COVID-19: A neglected but critical aspect of SARS-coV-2 infection. Front Immunol
(2020) 11:611337. doi: 10.3389/fimmu.2020.611337

265. De Biasi S, Lo Tartaro D, Meschiari M, Gibellini L, Bellinazzi C, Borella R, et al.
Expansion of plasmablasts and loss of memory B cells in peripheral blood from
COVID-19 patients with pneumonia. Eur J Immunol (2020) 50:1283–94. doi: 10.1002/
eji.202048838

266. Bernardes JP, Mishra N, Tran F, Bahmer T, Best L, Blase JI, et al. Longitudinal
multi-omics analyses identify responses of megakaryocytes, erythroid cells, and
plasmablasts as hallmarks of severe COVID-19. Immunity (2020) 53:1296–1314.e9.
doi: 10.1016/j.immuni.2020.11.017
frontiersin.org

https://doi.org/10.1016/j.ijid.2022.04.027
https://doi.org/10.3389/fneur.2022.881988
https://doi.org/10.3389/fneur.2022.881988
https://doi.org/10.1016/j.celrep.2021.108728
https://doi.org/10.1016/j.immuni.2021.05.010
https://doi.org/10.3390/ijms23137155
https://doi.org/10.1038/s41590-021-01080-3
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.3389/fcimb.2021.624483
https://doi.org/10.1080/1547691X.2016.1193574
https://doi.org/10.1016/j.immuni.2022.01.018
https://doi.org/10.1038/s41586-020-03041-6
https://doi.org/10.1126/sciimmunol.abg5669
https://doi.org/10.3390/vaccines11030699
https://doi.org/10.1038/s41392-020-00426-x
https://doi.org/10.1016/j.jinf.2020.03.037
https://doi.org/10.1016/S0140-6736(20)30920-X
https://doi.org/10.3389/fimmu.2017.00313
https://doi.org/10.1038/s41418-022-00936-x
https://doi.org/10.3389/fimmu.2020.00827
https://doi.org/10.3390/biomedicines11041078
https://doi.org/10.3390/biomedicines11041078
https://doi.org/10.1016/j.clim.2020.108516
https://doi.org/10.1016/j.clim.2022.109177
https://doi.org/10.1016/j.xcrm.2020.100040
https://doi.org/10.1126/sciimmunol.abc8413
https://doi.org/10.1093/infdis/jiaa659
https://doi.org/10.1093/infdis/jiaa659
https://doi.org/10.1038/s41586-021-03696-9
https://doi.org/10.1126/science.abf4063
https://doi.org/10.1126/science.abd7728
https://doi.org/10.1093/cid/ciaa310
https://doi.org/10.1126/sciimmunol.abe5511
https://doi.org/10.1038/s41577-020-0359-5
https://doi.org/10.1016/j.cell.2021.02.026
https://doi.org/10.1016/j.cell.2021.02.026
https://doi.org/10.1038/s41586-021-04017-w
https://doi.org/10.1016/j.xcrm.2021.100296
https://doi.org/10.1016/j.xcrm.2021.100290
https://doi.org/10.1038/s41392-021-00759-1
https://doi.org/10.1016/j.cell.2020.09.037
https://doi.org/10.1016/j.cell.2020.08.012
https://doi.org/10.1016/j.cell.2020.08.012
https://doi.org/10.1126/science.abi7994
https://doi.org/10.1016/j.cell.2021.03.028
https://doi.org/10.1038/s41586-021-03925-1
https://doi.org/10.1126/sciimmunol.abd7114
https://doi.org/10.1126/sciimmunol.abd7114
https://doi.org/10.1038/s41591-020-0965-6
https://doi.org/10.1155/2022/8712424
https://doi.org/10.1155/2022/8712424
https://doi.org/10.3389/fimmu.2020.611337
https://doi.org/10.1002/eji.202048838
https://doi.org/10.1002/eji.202048838
https://doi.org/10.1016/j.immuni.2020.11.017
https://doi.org/10.3389/fimmu.2023.1244556
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Aiello et al. 10.3389/fimmu.2023.1244556
267. Slight SR, Khader SA. Chemokines shape the immune responses to
tuberculosis. Cytokine Growth Factor Rev (2013) 24:105–13. doi: 10.1016/
j.cytogfr.2012.10.002

268. Olmos S, Stukes S, Ernst JD. Ectopic activation of Mycobacterium tuberculosis-
specific CD4+ T cells in lungs of CCR7-/- mice. J Immunol (2010) 184:895–901.
doi: 10.4049/jimmunol.0901230

269. Lin PL, Pawar S, Myers A, Pegu A, Fuhrman C, Reinhart TA, et al. Early events
in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun
(2006) 74:3790–803. doi: 10.1128/IAI.00064-06

270. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. Dissemination of
Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of
T-cell immunity. Infect Immun (2002) 70:4501–9. doi: 10.1128/IAI.70.8.4501-
4509.2002

271. Srivastava S, Ernst JD. Cell-to-cell transfer of M. tuberculosis antigens
optimizes CD4 T cell priming. Cell Host Microbe (2014) 15:741–52. doi: 10.1016/
j.chom.2014.05.007

272. Gideon HP, Hughes TK, Tzouanas CN, Wadsworth MH, Tu AA, Gierahn TM,
et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of
tuberculosis control. Immunity (2022) 55:827–846.e10. doi : 10.1016/
j.immuni.2022.04.004

273. Donovan ML, Bielefeldt-Ohmann H, Rollo RF, McPherson SJ, Schultz TE,
Mori G, et al. Distinct contributions of the innate immune receptors TLR2 and RP105
to formation and architecture of structured lung granulomas in mice infected with
Mycobacterium tuberculosis. Immunology (2023) 169:13–26. doi: 10.1111/imm.13606

274. Guirado E, Mbawuike U, Keiser TL, Arcos J, Azad AK, Wang S-H, et al.
Characterization of host and microbial determinants in individuals with latent
tuberculosis infection using a human granuloma model. mBio (2015) 6:e02537–
02514. doi: 10.1128/mBio.02537-14

275. Wayne LG, Lin KY. Glyoxylate metabolism and adaptation of Mycobacterium
tuberculosis to survival under anaerobic conditions. Infect Immun (1982) 37:1042–9.
doi: 10.1128/iai.37.3.1042-1049.1982

276. de la Barrera S, Aleman M, Musella R, Schierloh P, Pasquinelli V, Garcia V,
et al. IL-10 down-regulates costimulatory molecules on Mycobacterium tuberculosis-
pulsed macrophages and impairs the lytic activity of CD4 and CD8 CTL in tuberculosis
patients. Clin Exp Immunol (2004) 138:128–38. doi: 10.1111/j.1365-2249.2004.02577.x

277. Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. The relative
importance of T cell subsets in immunity and immunopathology of airborne
Mycobacterium tuberculosis infection in mice. J Exp Med (2001) 193:271–80.
doi: 10.1084/jem.193.3.271

278. Lin PL, Rutledge T, Green AM, Bigbee M, Fuhrman C, Klein E, et al. CD4 T cell
depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent
infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS
Res Hum Retroviruses (2012) 28:1693–702. doi: 10.1089/AID.2012.0028

279. Fabri M, Stenger S, Shin D-M, Yuk J-M, Liu PT, Realegeno S, et al. Vitamin D is
required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci
Transl Med (2011) 3:104ra102. doi: 10.1126/scitranslmed.3003045

280. Sallin MA, Sakai S, Kauffman KD, Young HA, Zhu J, Barber DL. Th1
differentiation drives the accumulation of intravascular, non-protective CD4 T cells
during tuberculosis. Cell Rep (2017) 18:3091–104. doi: 10.1016/j.celrep.2017.03.007

281. Goletti D, Weissman D, Jackson RW, Graham NM, Vlahov D, Klein RS, et al.
Effect of Mycobacterium tuberculosis on HIV replication. Role Immune activation. J
Immunol (1996) 157:1271–8. doi: 10.4049/jimmunol.157.3.1271

282. Goletti D, Weissman D, Jackson RW, Collins F, Kinter A, Fauci AS. The in
vitro induction of human immunodeficiency virus (HIV) replication in purified protein
derivative-positive HIV-infected persons by recall antigen response to Mycobacterium
tuberculosis is the result of a balance of the effects of endogenous interleukin-2 and
proinflammatory and antiinflammatory cytokines. J Infect Dis (1998) 177:1332–8.
doi: 10.1086/515276

283. Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive
immunity to Mycobacterium tuberculosis in humans. Immunol Rev (2015) 264:74–87.
doi: 10.1111/imr.12274

284. Boom WH, Schaible UE, Achkar JM. The knowns and unknowns of latent
Mycobacterium tuberculosis infection. J Clin Invest (2021) 131:e136222. doi: 10.1172/JCI136222

285. Cantini F, Niccoli L, Capone A, Petrone L, Goletti D. Risk of tuberculosis
reactivation associated with traditional disease modifying anti-rheumatic drugs and
non-anti-tumor necrosis factor biologics in patients with rheumatic disorders and
suggestion for clinical practice. Expert Opin Drug Saf (2019) 18:415–25. doi: 10.1080/
14740338.2019.1612872

286. Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S, et al. A critical role for
CD8 T cells in a nonhuman primate model of tuberculosis. PloS Pathog (2009) 5:
e1000392. doi: 10.1371/journal.ppat.1000392

287. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from
mechanisms to therapeutic testing. Nat Rev Immunol (2014) 14:585–600. doi: 10.1038/
nri3707

288. Freches D, Korf H, Denis O, Havaux X, Huygen K, ROmano M. Mice
genetically inactivated in interleukin-17A receptor are defective in long-term control
of Mycobacterium tuberculosis infection. Immunology (2013) 140:220–31.
doi: 10.1111/imm.12130
Frontiers in Immunology 2372
289. Cruz A, Khader SA, Torrado E, Fraga A, Pearl JE, Pedrosa J, et al. Cutting edge:
IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells
during mycobacterial infection. J Immunol (2006) 177:1416–20. doi: 10.4049/
jimmunol.177.3.1416

290. Desvignes L, Ernst JD. Interferon-gamma-responsive nonhematopoietic cells
regulate the immune response to Mycobacterium tuberculosis. Immunity (2009)
31:974–85. doi: 10.1016/j.immuni.2009.10.007

291. Najafi-Fard S, Petruccioli E, Farroni C, Petrone L, Vanini V, Cuzzi G, et al.
Evaluation of the immunomodulatory effects of interleukin-10 on peripheral blood
immune cells of COVID-19 patients: Implication for COVID-19 therapy. Front
Immunol (2022) 13:984098. doi: 10.3389/fimmu.2022.984098

292. Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA, et al. Dynamic
balance of pro- and anti-inflammatory signals controls disease and limits pathology.
Immunol Rev (2018) 285:147–67. doi: 10.1111/imr.12671

293. Boussiotis VA, Tsai EY, Yunis EJ, Thim S, Delgado JC, Dascher CC, et al. IL-
10-producing T cells suppress immune responses in anergic tuberculosis patients. J Clin
Invest (2000) 105:1317–25. doi: 10.1172/JCI9918

294. Irvine EB, O’Neil A, Darrah PA, Shin S, Choudhary A, Li W, et al. Robust IgM
responses following intravenous vaccination with Bacille Calmette-Guérin associate
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Tuberculosis (TB) is a major cause of ill health worldwide. Until the coronavirus

(COVID-19) pandemic, TBwas the leading cause of death from a single infectious

agent. COVID-19 has caused enormous health, social and economic upheavals

since 2020, impairing access to essential TB services. In marked contrast to the

steady global increase in TB detection between 2017 and 2019, TB notifications

dropped substantially in 2020 compared with 2019 (-18%), with only a partial

recovery in 2021. TB epidemiology worsened during the pandemic: the

estimated 10.6 million people who fell ill with TB worldwide in 2021 is an

increase of 4.5% from the previous year, reversing many years of slow decline.

The annual number of TB deaths worldwide fell steadily between 2005 and 2019,

reaching 1.4 million in 2019, but this trend was reversed in 2020 (1.5 million), and

by 2021 global TB deaths were back to the level of 2017 (1.6 million). Intensified

efforts backed by increased funding are urgently required to reverse the negative

impacts of COVID-19 on TB worldwide, made more pressing by ongoing

conflicts, a global energy crisis and uncertainties in food security that are likely

to worsen the broader determinants of TB.

KEYWORDS

tuberculosis, tuberculosis/prevention and control, COVID-19, SARS-CoV-2,
epidemiology, pandemics
Introduction

Tuberculosis (TB) is a communicable disease that is a major cause of ill health

worldwide (1). It is caused by the bacillus Mycobacterium tuberculosis, which is spread

when people who have TB disease expel bacteria into the air (e.g. by coughing). About a

quarter of the global population is estimated to have been infected with TB bacilli (2), but

only about 5-10% of people infected develop disease in their lifetime (3). About 90% of the

people who develop TB each year are adults, with more cases among men than women. The

disease typically affects the lungs but can affect other sites as well. Without treatment,

the death rate from TB disease is high (about 50%). There is a strong geographical bias in

the global burden of TB, and much of the TB incidence and mortality is concentrated in

Asian and African countries (Figures 1A, B). The TB epidemic is strongly influenced by
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social and economic development and health-related risk factors

such as undernourishment, diabetes, HIV infection, alcohol use

disorders and smoking (Figure 2).

Until the advent of the coronavirus (COVID-19) pandemic, TB

was the leading cause of death from a single infectious agent for several

years, ranking above HIV/AIDS. COVID-19 has caused enormous

health, social and economic impacts since 2020. This includes impacts

on the provision of and access to essential TB services, the number of

people with TB diagnosed and reported through national disease

surveillance systems (TB notification), and the TB epidemiology (TB

burden in terms of incidence and mortality).

We present the current situation and recent trends in TB

notification and epidemiology worldwide, with a focus on how

COVID-19 has impacted upon the main indicators that are used to

assess the global TB burden and the response of national health

authorities to mitigate it.
Method

The main indicators used in this article - namely TB notification,

TB incidence and TB mortality - were derived primarily from data

collected yearly by the World Health Organization (WHO) from

national ministries of health as part of its mandate to coordinate

international work. Estimates of TB incidence and mortality are

based on a well-documented approach (4). For the years 2020 and

2021, TB incidence and mortality were estimated using dynamic

models for 28 countries that collectively accounted for 95% of the
Frontiers in Immunology 0275
drop in global TB notifications during these two years. The new

methods rely heavily on country and region-specific dynamic models

for low and middle-income countries, in the absence of reliable and

up-to-date mortality data from national vital registration systems that

include standardised coding of causes of death. We compare TB

notification and estimates of TB burden with targets set in WHO’s

End TB Strategy of 2015 and by the United Nations in 2018 (5, 6).

Since 1997, WHO has published annual reports based on the data

that it collects from Member States. By 2022, 202 countries and

territories with more than 99% of the world’s population and TB

cases reported aggregated data to WHO on a series of established

indicators. Since the onset of the COVID-19 pandemic, countries can

also report monthly or quarterly TB notifications to WHO (7). In

addition to TB notification, we also comment on the implementation

of TB preventive activities during the pandemic, namely TB

preventive treatment and vaccination with bacille Calmette-

Guérin (BCG).
Results

TB incidence

An estimated global total of 10.6 million people (95%

uncertainty interval [UI]: 9.9–11 million) fell ill with TB in 2021,

equivalent to a TB notification rate of 134 cases (95% UI: 125–143)

per 100 000 population. Similarly, the TB incidence rate (new TB

cases per 100 000 population per year) is estimated to have
A B

DC

FIGURE 1

(A) Estimated TB incidence rates, 2021. (B) Estimated TB mortality rates in HIV-negative people, 2021. (C) Global trends in the estimated number of
incident TB cases (left) and the incidence rate (right), 2000–2021 (shaded areas represent uncertainty intervals. The horizontal dashed line shows the
2020 milestone of the End TB Strategy). (D) Global trends in the estimated number of deaths caused by TB (left) and the mortality rate (right), 2000–
2021 (shaded areas represent uncertainty intervals. The horizontal dashed line shows the 2020 milestone of the End TB Strategy).
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increased by 3.6% between 2020 and 2021, following declines of

about 2% per year for most of the past two decades (Figure 1C).

Among all TB cases in 2021, 6.7% were among people living with

HIV. In 2021, eight countries accounted for more than two thirds of

global TB cases: India (28%), Indonesia (9.2%), China (7.4%), the

Philippines (7.0%), Pakistan (5.8%), Nigeria (4.4%), Bangladesh

(3.6%) and Democratic Republic of the Congo (2.9%). The

estimated 10.6 million people who fell ill with TB worldwide in

2021 is an increase of 4.5% from the previous year, reversing many

years of slow decline. The cumulative fall in the TB incidence rate

was 13.5% between 2015 and 2020, but the level of 2021 was only

10% below that of 2015. This was only half-way to the first End TB

Strategy milestone of a 20% reduction between 2015 and 2020 and a

long way from the second milestone of a 50% reduction by 2025.
TB mortality

In 2021, there were an estimated 1.4 million TB deaths among

HIV-negative people (95% UI: 1.3–1.5 million) and 187 000 (95% UI,

158 000–218 000) among HIV-positive people, for a combined total

of 1.6 million. The annual number of TB deaths worldwide fell

steadily between 2005 and 2019, reaching 1.4 million in 2019, but this

trend was reversed in 2020 (1.5 million), and by 2021 global TB

deaths were back to the level of 2017 (Figure 1D). Progress previously

made towards the first milestone of the End TB Strategy - reducing

TB deaths by 35% between 2015 and 2020 - has been reversed and the

net reduction from 2015 to 2021 was only 5.9%.
TB notification

Globally in 2021, 6.4 million people with a new episode of TB

(new and relapse cases) were diagnosed and notified. Of these, 83%

had pulmonary TB and almost 90% of total notifications were from

Asia and Africa. In marked contrast to large increases between 2017

and 2019, there was a substantial fall (-18%) in TB notifications in

2020 compared with 2019, with a partial recovery in TB
Frontiers in Immunology 0376
notifications in 2021 (-10% compared with 2019). However, the

gap between the global TB notifications and the estimated incident

TB remains similar in 2021 to 2020. Globally, the cumulative total

number of people diagnosed with TB and officially reported from

2018 to 2021 is 26 million, only 66% of the 5-year target of 40

million between 2018 and 2022 that was set at the UN high-level

meeting on TB in 2018.
TB preventive activities

The global number of people living with HIV and household

contacts of people diagnosed with TB who were provided with TB

preventive treatment increased from 1.0 million in 2015 to 3.6

million in 2019, after which there was a sizeable reduction in 2020

(to 3.2 million) followed by an almost complete return to the levels

of reporting of 2019 by 2021 (to 3.5 million). Global BCG

vaccination coverage decreased from 88% in 2019 to 84% in 2021,

reflecting declines in most WHO regions. These trends are likely to

be due to concurrent disruptions to health services caused by the

COVID-19 pandemic.
Discussion

The COVID-19 pandemic has caused enormous social and

economic impacts, and disrupted healthcare services worldwide.

Data reported by countries point to a disproportionate impact on

access to essential TB services (8). This has been characterised by

pronounced drops in the number of TB cases notified on national

information systems. The monitoring of TB notifications at

monthly or quarterly intervals allowed a more timely assessment

of the impact of the COVID-19 pandemic on TB activities in

reporting countries (7).

Decreases in TB notification are likely to reflect two distinct

challenges: under-reporting and missed or delayed TB diagnosis on

a large scale. Countries have reported disruptions in disease

surveillance activities during the pandemic (9, 10). Enhancing
FIGURE 2

Global estimates of the number of TB cases attributable to selected risk factors, 2021. Sources of data used to produce estimates were: Imtiaz S et al.
Eur Resp Jour (2017); Hayashi S et al. Trop Med Int Health (2018); Lönnroth K et al. Lancet (2010); World Bank Sustainable Development Goals Database
(http://datatopics.worldbank.org/sdgs/); WHO Global Health Observatory (https://www.who.int/data/gho); and WHO Global TB Programme.
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health services monitoring and evaluation capacities was one of the

most frequently cited needs to be addressed.

Missed and delayed TB diagnosis may have resulted from less

opportunities to seek care by people who were unwell during

“lockdowns” and prolonged periods of intense activity in primary

healthcare clinics. This implies that more people in the community

have undiagnosed and untreated TB, and for longer than before,

increasing the pool of infectious individuals. Increased transmission

and reduced access to proper care could explain at least in part the

increments in global and regional TB incidence and mortality

observed shortly after notification declined. This is made more

plausible by the fact that these epidemiological trends were an

abrupt reversal of a steady, albeit slow, decline in the global burden

of TB for many years until 2020.

Decreasing TB notification could, however, also indicate less

transmission of Mycobacterium tuberculosis and less infection.

Restrictions in physical mobility and closure of clinics imposed by

the authorities of countries during the pandemic may have offset

transmission, by as much as 50% according to some modelling

studies (11). This would likely happen for short periods of time such

as during lockdowns. In such a situation the increased TB mortality

could be explained by shortages in timely care of TB patients.

Apart from the effect of pandemic disruptions on TB healthcare

services, another concern has been the risk of disease synergy

between TB and COVID-19 in the same individual. There is

evidence that COVID-19 patients with past and concurrent TB

are more likely to have a fatal outcome in high TB burden settings

(12, 13). However, it is less clear if TB patients who develop

COVID-19 in the course of their illness have a substantially

increased risk of dying after adjusting for other risk factors (14).

There is also no clear evidence that SARS-CoV-2 infection can

increase the progression from TB infection to disease, although no

purpose-built studies of the impact of SARS-CoV-2 infection on TB

treatment outcomes are known to have been mounted to address

this question appropriately.

In addition to the effect on main TB indicators, the COVID-19

pandemic has also impacted negatively on other components of TB

programmes in the last three years, such as the provision of TB

preventive treatment, vaccination with bacille Calmette-Guérin

(BCG) and overall spending on TB (1). Moreover, the negative

impact of the disruptions on gainful employment, and key TB

determinants such as nutrition and access to care for diabetes and

HIV are bound to influence TB incidence and the wellbeing of

people affected by TB (Figure 2). It is estimated that the COVID-19

pandemic will result in an additional 2.6 million chronically

malnourished children by 2022, reversing the decreasing curve for

the first time in 3 decades (15). COVID-19 has been associated with

both severe COVID-19 at admission and in-hospital mortality in

people living with HIV (16). Diabetes control has also been effected

in both high and low-resource settings (17, 18).

By mid 2023, close to 770 million confirmed cases of COVID-19

and 7 million deaths had been reported globally since the start of the

pandemic (19). In May 2023 WHO declared COVID-19 as an

established and ongoing health issue which no longer constitutes a

public health emergency of international concern and advised on
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the transitioning to long-term management of COVID-19 (20). The

latest WHO survey on essential health service performance at

the end of 2022 registered the first major signs of recovery since

the start of the COVID-19 pandemic (10). Recovery from the

economic adversities created by the pandemic is likely to take

longer in emerging economies and economically disadvantaged

groups (21). Intensified efforts backed by increased funding are

urgently required to mitigate and reverse the negative impacts of the

COVID-19 pandemic on TB. The need for action has become even

more pressing in the context of ongoing conflicts, a global energy

crisis and associated risks to food security (22), which are likely to

worsen some of the broader determinants of TB. The dearth of

evidence on disease synergy between COVID-19 and TB is likely to

have forfeited opportunities to improve the clinical management of

people with both conditions and public health decision making for

those at risk. This underlines the need to equip pandemic

preparedness plans with research methods for rapid action on

major diseases like TB as the world switches gears from

emergency phase to contingency strategies for future pandemics.
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Co-infection of mice with
SARS-CoV-2 and Mycobacterium
tuberculosis limits early viral
replication but does not affect
mycobacterial loads

Paul J. Baker1, Eduardo P. Amaral1, Ehydel Castro1,
Andrea C. Bohrer1, Flor Torres-Juárez1, Cassandra M. Jordan1,
Christine E. Nelson2, Daniel L. Barber2, Reed F. Johnson3,
Kerry L. Hilligan4† and Katrin D. Mayer-Barber1*

1Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology,
National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH),
Bethesda, MD, United States, 2T Lymphocyte Biology Section, Laboratory of Parasitic Diseases,
NIAID, NIH, Bethesda, MD, United States, 3SARS-CoV-2 Virology Core, Laboratory of Viral Diseases,
NIAID, NIH, Bethesda, MD, United States, 4Immunobiology Section, Laboratory of Parasitic
Diseases, NIAID, NIH, Bethesda, MD, United States
Viral co-infections have been implicated in worsening tuberculosis (TB) and

during the COVID-19 pandemic, the global rate of TB-related deaths has

increased for the first time in over a decade. We and others have previously

shown that a resolved prior or concurrent influenza A virus infection in

Mycobacterium tuberculosis (Mtb)-infected mice resulted in increased

pulmonary bacterial burden, partly through type I interferon (IFN-I)-dependent

mechanisms. Here we investigated whether SARS-CoV-2 (SCV2) co-infection

could also negatively affect bacterial control of Mtb. Importantly, we found that

K18-hACE2 transgenic mice infected with SCV2 one month before, or months

after aerosolMtb exposure did not display exacerbatedMtb infection-associated

pathology, weight loss, nor did they have increased pulmonary bacterial loads.

However, pre-existing Mtb infection at the time of exposure to the ancestral

SCV2 strain in infected K18-hACE2 transgenic mice or the beta variant (B.1.351) in

WT C57Bl/6 mice significantly limited early SCV2 replication in the lung. Mtb-

driven protection against SCV2 increased with higher bacterial doses and did not

require IFN-I, TLR2 or TLR9 signaling. These data suggest that SCV2 co-infection

does not exacerbateMtb infection in mice, but rather the inflammatory response

generated by Mtb infection in the lungs at the time of SCV2 exposure restricts

viral replication.

KEYWORDS

lung, mycobacterium tuberculosis, SARS-CoV-2, tuberculosis, COVID-19, Type-I
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Introduction

Pulmonary viral infections have been shown to both increase

the likelihood and exacerbate the severity of secondary bacterial

infections in the lung (1–7). The underlying immunological

mechanisms are diverse and range from lung epithelial barrier

breakdown and augmented adhesion of pathogens to the subversion

of both adaptive and innate immunity from protective anti-bacterial

pathways towards detrimental anti-viral inflammatory pathways

like type-I interferon (IFN-I) (5, 8). Viral co-infections also play a

role in the exacerbation of Mycobacterium tuberculosis (Mtb)

infection (9), one of the leading causes of infectious disease-

related mortality worldwide (10). For example, co-infection with

cytomegalovirus (CMV) has been associated with an enhanced risk

of tuberculosis (TB) disease (11–13). Furthermore, there are

marked associations between influenza A virus (IAV) co-infection

at the time of TB diagnosis and elevatedMtb burden (14), as well as

increased risk of mortality in TB patients co-infected with bothMtb

and IAV (15).Mtb-infected mice that were either simultaneously or

subsequently infected with murine pneumonia virus (PVM) or IAV

have been shown to have exacerbated lung tissue pathology (16).

Our previous work demonstrated that simultaneous or prior IAV

co-infection elevates pulmonary Mtb bacterial burden and reduces

host survival after Mtb infection (17, 18). When IAV infection

coincided with initial priming of Mtb-specific T cell responses, loss

of bacterial control was dependent on elevated IFN-I and

interleukin-10 (IL-10) signaling ultimately resulting in a reduced

Mtb-specific CD4+ T cell response (17, 18).

Since the beginning of the COVID-19 pandemic, caused by

SARS-CoV-2 (SCV2), TB diagnosis and case reporting reduced

globally by 18% despite no change in the actual incidence of TB

infection (10, 19). Importantly, a 7.5% increase in global TB deaths

was observed, marking the first year-on-year increase in the global

TB death toll since 2005 (10). A clear understanding of whether co-

infection with SCV2 and Mtb has immunological consequences on

the outcome of TB or COVID-19 is confounded by non-biological

factors of the COVID-19 pandemic, including reduced BCG

vaccination rates, disrupted TB outreach services and amplified

global poverty (20). In addition, there have been reduced rates of

early TB diagnosis during the COVID-19 pandemic attributed to

reduced availability of staff and equipment for clinics and diagnostic

labs (20–23) and reduced patient presentation due to fear of

COVID-19 infection or increased social stigma around

respiratory symptoms (24). TB treatment regimens, which already

faced significant challenges before the pandemic because of the

intensive and prolonged course of antibiotics required, have also

been negatively impacted in TB-endemic countries during the

pandemic (23, 25–27). Alongside negative TB outcomes, clinical

reports have shown that Mtb and SCV2 co-infection results in a

greater likelihood of severe COVID-19 disease (by an odds ratio of

2.21), COVID-19-related death (by an odds ratio of 2.77) (28) and

overall elevated risk of negative clinical outcomes in co-infected

individuals (29). Mechanistic studies into the possibility of

immunological interactions critically influencing the outcome of

Mtb and SCV2 co-infections are needed to develop effective

strategies to reduce the mortality rate of both diseases (30, 31).
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To directly ask whether co-infection with Mtb and SCV2 has a

biological impact on the outcome of either TB or COVID-19, we

sequentially infected mice with SCV2 followed by Mtb or co-infected

Mtb-infected mice with SCV2. We show here that regardless of the

order of infection co-infection with SCV2, unlike co-infection with

IAV, does not alter the outcome of Mtb infection in mice. Moreover,

we show that early pulmonary SCV2 replication is suppressed in

chronicallyMtb-infected mice through a mechanism that is dependent

on mycobacterial dose but does not require signaling through type-I

interferon (IFN-I) or toll-like receptor 2 (TLR2) or TLR9.
Results

Infection of mice with SCV2 one month
before Mtb exposure does not alter
pulmonary Mtb burden or pathology

We have previously shown that in mice, prior IAV infection leads

to elevated pulmonary bacterial burden 16 weeks following

subsequent Mtb infection (17). To determine whether prior

infection with SCV2 similarly impacts the outcome of Mtb

infection we used human Angiotensin Converting Enzyme 2

transgenic (K18-hACE2 Tg) mice, which are susceptible to

infection with the ancestral strain of SCV2. K18-hACE2 Tg mice

were infected with a sub-lethal dose of the hCoV-19/USA-WA1/2020

(USA-WA1/2020) isolate of SCV2 and 28 days later infected with

Mtb (Figure 1A).Mtb disease was allowed to develop, and lungs and

spleens were collected at 4 weeks (Figures 1B–D) or 20 weeks

(Figures 1E–G) post Mtb infection. SCV2 infection resulted in

transient weight loss 5 – 8 days post infection (Figure 1A). Lung

pathology or bacterial distribution was determined by hematoxylin

and eosin (H&E), and acid fast (AF) staining of lung sections 4 weeks

post-Mtb infection, however no difference was detected when

comparing mice previously infected with SCV2 to those animals

that received Mtb alone (Figure 1B). Importantly, pulmonary

(Figure 1C) or splenic (Figure 1D) bacterial loads were unchanged

in mice previously infected with SCV2 compared to Mtb-only mice.

To test whether prior SCV2 infection may affect the control ofMtb at

a later timepoint, we assessed lung pathology and bacterial burden at

20 weeks post-Mtb infection. Again, H&E and AF staining did not

reveal changes in lung pathology or bacterial localization between

mice with prior SCV2 infection compared tomice that were onlyMtb

infected (Figure 1E). Similarly, previous SCV2 infection did not alter

pulmonary (Figure 1F) or splenic (Figure 1G) bacterial loads at this

later 20-week timepoint. Taken together, and in contrast to findings

with prior IAV infection (17), our data here suggest that prior

infection with SCV2 does not lead to increased Mtb-driven disease

or impairment of Mtb bacterial replication in mice.
Co-infection with SCV2 does not affect
Mtb burden or lung pathology

We and others have reported that concurrent or sequential

infection with IAV and Mtb resulted in loss of bacterial control
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(17, 18). To ask whether SCV2 co-infection could equally

compromise Mtb replication, K18-hACE2 Tg mice were first

infected with Mtb. At a later stage of infection (day 170 post-

Mtb) Mtb-infected mice and age-matched controls were then

infected with a sub-lethal dose of USA-WA1/2020 SCV2 and

monitored for 28 days after which bacterial burdens and lung
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pathology were assessed (Figure 2A). Importantly, SCV2 co-

infection did not impact the bacterial burden of Mtb in

bronchoalveolar lavage (BAL), lungs, or spleens (Figure 2B).

Additionally, no differences were seen in lung pathology or

bacterial localization as determined by H&E and AF staining

(Figure 2C) or scoring of affected lung areas (Figure 2D).
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FIGURE 1

SCV2 infection one month before Mtb infection does not exacerbate Mtb disease. (A) Left: Schematic of experimental set-up where K18-hACE2 Tg
mice were infected intranasally with 10 TCID50 SCV2 (USA-WA1/2020) or mock supernatant 28 days before aerosol infection with 100 – 200 CFU
Mtb and mice were euthanized either 4 or 20 weeks after Mtb infection. Middle: Weight loss of K18-hACE2 Tg mice after SCV2 infection and before
Mtb infection Right: Selected range of weight change curve to highlight differences in weight loss between SCV2 and Mock infected groups (n= 4-5
per group from one experiment representative of two independent experiments, mean ± SD as traveling error bars). (B) Representative hematoxylin
and eosin (H&E) and acid-fast AF staining of lung tissue from mice at 4 weeks post Mtb infection, with or without prior SCV2 infection (arrows
indicate examples of Mtb bacteria, scale bars indicate magnification). (C, D) Mtb CFU in (C) lungs and (D) spleens of mice at 4 weeks post Mtb
infection. (E) Representative H&E and AF staining of lung tissue 20 weeks post Mtb infection with and without prior SCV2 infection (arrows indicate
examples of Mtb bacteria, scale bars indicate magnification). (F, G) Mtb CFU in (F) lungs and (G) spleens of mice at 20 weeks post Mtb infection (n=
4-5 per group from one independent experiment per timepoint, geometric mean, two-tailed Mann Whitney test). n.s. = not significant.
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Next, we asked whether co-infection with SCV2 at 16 weeks

post Mtb infection could negatively impact the existing Mtb-

specific CD4+ or CD8+ T cell responses. When we quantified

Mtb (ESAT64-17)-specific CD4+ T cells via MHC-II tetramer

straining one month following co-infection with SCV2, the

frequency of antigen-specific CD4+ T cells was unchanged

between mice infected solely with Mtb or those co-infected with

SCV2 (Figure 3A). There were also no differences in the proportion

of lung parenchyma-residing ESAT64-17-specific CD4+ T cells, as

assessed by lack of intravenous CD45 staining (i.v.neg) (32), nor in

the expression of Ki-67 or levels of the transcription factor T-bet

on those cells (Figure 3B). Likewise, when we examined Mtb-

specific CD8+ T cell responses the overall abundance (Figure 3C)

and proportion of parenchymal or KLRG1-expressing cells within

Mtb TB10.44-11 and Mtb 32c93-102 MHC-I tetramer positive CD8+

T cells were similar between co-infected lungs and lung from mice

infected with only Mtb (Figure 3D). Together these data suggest

that the pre-existing pulmonary Mtb-specific CD4+ and CD8+ T

cell responses are not negatively impacted over the course of 4

weeks following SCV2 co-infection.

We next measured SCV2 antigen-specific T cell responses 4 weeks

after SCV2 infection in mice with and without an underlying Mtb
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infection using SCV2-specific tetramers (33). To measure SCV2

specific CD4+ T cells we utilized an ORF3A266-280 MHC-II I-Ab

tetramer and 4 weeks after sub-lethal infection detected

approximately 1-2% of effector CD4 T cells that stained positive for

the reagent (blue symbols) by flow cytometry, compared to less than

1% in Mtb co-infected mice (purple symbols) and 0.5% non-specific

staining background in SCV2 unexposed animals (red symbols)

(Figure 4A). Thus the overall frequency of ORF3266-280 specific CD4
+

T cells was significantly reduced in the lungs of co-infected mice

compared to their SCV2-only counterparts. Conversely,

proportionately more ORF3266-280 specific cells were residing in the

lung parenchyma (i.v.neg) and expressed a small but significant increase

in T-bet expression (Figure 4B). Importantly, both the SCV2 S539-546-

specific and SCV2 N219-227-specific CD8+ T cell responses were

significantly reduced in mice with an underlying Mtb infection

compared to SCV2 alone (Figure 4C). Furthermore, while the overall

proportion of i.v.neg, KLRG1-expressing S539-546-specific CD8
+ T cells

was the same regardless ofMtb infection status, the frequency of tissue-

resident memory (TRM, CD69
+) T cells, was significantly reduced

within that fraction in co-infected lungs (Figure 4D). Thus, ongoing

Mtb infection resulted in a significant reduction in themagnitude of the

pulmonary SCV2 S539-546 specific TRM response.
A B
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FIGURE 2

SCV2 co-infection does not exacerbate Mtb disease. (A) Schematic of experimental set-up where K18-hACE2 Tg mice were aerosol infected with
100 – 200 CFU Mtb (H37Rv-mCherry) 170 days before being intranasally infected with 1x103 TCID50 SCV2 (USA-WA1/2020) or mock supernatant,
mice were euthanized 1 month after SCV2 infection. (B) Mtb CFU in BALs, lungs and spleens (n= 9-10 per group, data combined from two
independent experiments, geometric mean). (C) Representative H&E and AF staining of lung tissue from mice as described in (A) (arrows indicate
examples of Mtb bacteria, scale bars indicate magnification) (D) Quantification of percentage of parenchymal enlargement from H&E shown in C)
(n= 9-10 per group from two independent experiments, mean ± S.D., two-tailed Mann Whitney test). n.s. = not significant.
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Underlying Mtb infection reduces initial
SCV2 viral burden independent of IFN-I

Considering that antigen burden can directly impact T cell

expansion and memory development (34), we asked whether the

decrease in SCV2-specific CD8+ TRM frequency 4 weeks after SCV2

infection inMtb-infected mice was caused by a change in the initial

SCV2 viral burden. We suspected that viral loads were reduced in

co-infected mice as susceptible K18-hACE2 Tg mice lost 10% of

their pre-SCV2 infection body weight 5 – 8 days after SCV2

infection but did not lose any weight if they were also infected

withMtb (Figure 5A). To determine whether SCV2 viral titers were

reduced in the lungs of co-infected mice, we infected K18-hACE2

Tg mice with USA-WA1/2020 either with or without underlying

Mtb infection and collected lungs at 3 days post SCV2 infection,

which is early enough to determine viral loads. Indeed, ongoingMtb

infection reduced SCV2 lung viral titers by 1-2 logs at 3 days post-

infection as measured by both TCID50 assay on Vero E6 cells

(Figure 5B) and quantitative PCR (qPCR) to measure the number of

copies of the SCV2 E gene in both its actively replicating (sub-

genomic, sgRNA) and typical (genomic, gRNA) conformations (35)

(Figure 5C). Recognizing that the K18-hACE2 model has changes

in viral tropism due to the artificial nature of the hACE2 transgene

expression (36), we utilized a SCV2 variant of concern (VOC, beta

variant, B.1.351), which carries an asparagine to tyrosine

substitution at amino acid 501 of the spike protein, allowing
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binding to murine ACE2 and establishment of transient SCV2

infection in wild type (WT) C57Bl/6 mice (37, 38). Strikingly, we

observed a significant reduction in B.1.351 SCV2 viral titers in the

lungs of Mtb-infected C57Bl/6 mice as early as 1 day post SCV2

infection, and the magnitude of viral restriction correlated with

increasing Mtb-infectious dose, with no replicating virus detectable

in the lungs of mice that previously received a high dose of Mtb

(1000 - 2000 CFU) (Figures 5D, E). Taken together, these results

suggest that an underlying pulmonary Mtb infection restricts early

viral replication, leading to a reduction in overall viral antigens and

a decrease in the magnitude of the T cell and TRM response.

Because our findings showed restriction of viral replication as

early as one day after SCV2 infection in a Mtb dose-dependent

manner, we speculated that Mtb-driven innate inflammation,

alongside induction of antiviral interferons, may mediate the

observed protective effects. Mtb carries several pathogen-

associated molecular patterns (PAMPs) that activate pattern

recognition receptors (PRRs), including TLR2 and TLR9 (39).

TLR activation leads to production of several inflammatory

cytokines, including IFN-I. Due to the potent antiviral nature of

IFN-I (8), we next examined whether Mtb sensing via TLR2 or

TLR9 or a Mtb-driven IFN-I response were required for SCV2

restriction inMtb-infected mouse lungs. We infected mice deficient

in the IFNa receptor 1 (IFNAR1, Ifnar1-/-), TLR2 (Tlr2-/-), or TLR9

(Tlr9-/-) with Mtb and 1-2 months later with B.1.351 SCV2

(Figure 6A). Of note, without underlying Mtb infection (blue
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FIGURE 3

SCV2 co-infection does not negatively affect Mtb-specific CD4+ or CD8+ T cells. Example FACS plots and summary data from the lungs of mice
described in Figure 2A. (A) Example FACS plots of ESAT64-17 MHC-II tetramer staining of CD4+ Foxp3- cells and proportion of ESAT64-17-specific
cells within activated CD44hiCD4+Foxp3- T cells (B) Quantification of ESAT64-17 tetramer-positive cells that are recruited into the lung parenchyma
(CD45 i.v.neg), positive for Ki-67 and relative expression intensity (geometric mean fluorescent intensity, MFI) of T-bet in lung resident ESAT64-17
tetramer-positive CD4+ T cells. (C) Example FACS plots of Mtb TB10.44-11 (top) and Mtb 32c93-102 (bottom) MHC-I tetramer staining of CD8+ T cells
and proportion of Mtb TB10.44-11 or Mtb 32c93-102 -specific CD8+ T cells gated on activated CD44hiCD8+ T cells (D) Quantification of Mtb TB10.44-11

(top) and Mtb 32c93-102 (bottom) tetramer-positive cells recruited into the lung parenchyma (CD45 i.v.neg) and their expression of KLRG1 (N/A= not
applicable, n= 9-10 per group, data combined from 2 independent experiments, mean ± S.D., two-tailed Mann Whitney test). n.s. = not significant.
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symbols), Ifnar1-/- mice displayed a 1.0 – 1.5 log significant increase

in viral titers at three days after B.1.351 SCV2 infection compared to

WT mice as measured by both TCID50 (Figure 6A) and qPCR

(Figure 6B). SCV2-infected Tlr2-/- mice had a significant increase in

viral titers when measured by TCID50 (Figure 6A) but not when

assessed by qPCR (Figure 6B). Tlr9-/- mice showed no differences in

lung viral titers (Figures 6A, B). Importantly and irrespective

of these baseline increases in viral titers, we consistently observed

a 1.5 – 2.0 log reduction in SCV2 viral loads in lungs of mice with an

underlying Mtb infection, regardless of their expression of TLR2,

TLR9, or IFNAR1 (Figures 6A, B). These results indicate that Mtb-

induced restriction of SCV2 is not dependent solely on TLR2, TLR9

or IFN-I signaling and likely is a consequence of multiple innate

inflammatory immune alterations during Mtb infection compared

to the lungs of immunologically naïve mice.
Discussion

To investigate the immunological consequences of Mtb and

SCV2 interactions we have utilized various murine co-infection

models. We have shown that Mtb-infected mice that have

recovered from a prior SCV2 infection showed no significant

changes in Mtb bacterial burden or lung pathology. In addition,

SCV2 co-infection of chronically Mtb-infected mice did not
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negatively impact bacterial control, lung pathology, or existing

Mtb-specific T-cell responses. Importantly, using these models we

have also demonstrated that early SCV2 replication is dampened in

the lungs of Mtb-infected K18-hACE2 Tg and C57Bl/6 mice

compared to mice without an underlying Mtb infection. This

protective effect was Mtb dose-dependent, prevented SCV2-

induced weight loss, and was associated with lower SCV2-

specific memory T cell responses compared to mice infected only

with SCV2. Our observations agree with previous data published

by Rosas-Mejia and colleagues who first showed that concurrent

co-infection with Mtb and SCV2 in both K18-hACE2 Tg and WT

C57Bl/6 mice reduced SCV2 viral titers but did not affect Mtb

bacterial loads (31). The Rosas-Meija study also showed that co-

infection of mice with Mtb and SCV2 altered cytokine production

and the abundance of immune cell subsets as determined by single

cell RNA sequencing (scRNASeq) at 4 – 7 days post SCV2 infection

compared to mice infected with either pathogen individually (31).

Compared to lungs from SCV2 only mice, co-infected lungs had

elevated IFNg protein, increased Tumor Necrosis Factor (Tnf)

transcript, reduced IFN-induced protein with tetratricopeptide

repeats 2 (Ifit2) and Ifit3 transcripts, and scRNASeq indicated an

increased proportion of B cells and a reduced frequency of CD8+ T

cells. Our data adds that these perturbations do not affect theMtb-

specific T cell response, and instead may contribute to the

reduction in SCV2-specific T cell responses that we have
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FIGURE 4

SCV2 co-infection of Mtb infected mice results in decreased SCV2-specific CD4+ and CD8+ T cells in the lungs 4 weeks later. Example FACS plots
and summary data from the lungs of mice described in Figure 2A. (A) Example FACS plots of SCV2 ORF3266-280 MHC-II tetramer staining of CD4+

Foxp3- cells and proportion of ORF3266-28-specific cells within activated CD44hiCD4+Foxp3- T cells 4 weeks after SCV2 infection of naïve (blue) or
7-month Mtb-infected mice (purple). LD = Limit of Detection is indicated based on non-specific tetramer binding in Mtb only infected groups (red)
(B) Quantification of ORF3266-280 tetramer-positive cells residing in lung parenchyma (CD45 i.v.neg) and relative expression intensity (geometric mean
fluorescent intensity, MFI) of T-bet in lung resident ORF3266-280 tetramer-positive CD4+ T cells. (C) Example FACS plots of SCV2 S539-546 (top) and
SCV2 N219-227 (bottom) MHC-I tetramer staining of CD8+ T cells and proportion of S539-546- or N219-227- specific CD8+ T cells gated on activated
CD44hiCD8+ T cells (D) Quantification of SCV2 S539-546 tetramer-positive cells recruited into the lung parenchyma (CD45 i.v.neg) and their expression
of KLRG1 and CD69. (N/A= not applicable, n= 9-10 per group, data combined from 2 independent experiments, mean ± S.D., two-tailed Mann
Whitney test). n.s. = not significant.
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observed at one month post SCV2 co-infection. In addition,

Hildebrand et al. reported a significant decrease in SCV2 viral

titers at four days post SCV2 infection of Mtb-infected mice (30),

but interestingly, they saw a significant increase in splenic Mtb

loads while pulmonaryMtb burdens were not significantly changed

(16). The discrepancy in bacterial replication seen by Hildebrand

et al. may be due to their use of the Erdmann strain of Mtb

compared to the H37Rv laboratory strain used both herein and in
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the Rosas Mejia study, suggesting the outcome of Mtb and SCV2

co-infection may be modulated by differences in the strain of Mtb.

In turn, it is also likely that the strain and variant of SCV2 itself can

influence disease during an underlying Mtb infection. Future

studies directly comparing diverse strains of Mtb and SCV2 in

mouse coinfection models would advance our understanding of

how virulence factors expressed by each pathogen contribute to the

overall outcome of both diseases.
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FIGURE 5

Pre-existing Mtb infection lowers early SCV2 viral burden in an Mtb dose-dependent manner. (A) Left: Schematic of experimental set-up where K18-
hACE2 Tg mice were infected with Mtb 170 days before being intranasally infected with 1x103 TCID50 SCV2 (USA-WA1/2020) or mock supernatant,
mice were euthanized 28 days after SCV2 infection. Middle: Weight loss of SCV2 infected K18-hACE2 Tg mice with (purple) or without (blue)
underlying Mtb infection Right: Selected range of weight change curve to highlight differences in weight loss between SCV2 only and co-infected
groups (n= 9-10 per group pooled from 2 independent experiments, mean ± SD as traveling error bars). (B) Left: Schematic of experimental set-up
where K18-hACE2 Tg mice were infected with Mtb by aerosol exposure 1-2 months before infection with 1x103 TCID50 SCV2 (USA-WA1/2020), mice
were euthanized 3 days after SCV2 infection. Right: SCV2 viral load in lungs as measured by TCID50 and (C) qPCR for the sub-genomic (sg) or
genomic (g) SCV2 E gene (n= 8 per group, data combined from two independent experiments, geometric mean, two-tailed Mann Whitney test, LD=
limit of detection). (D) Left: Schematic of experimental set-up where C57Bl/6 WT mice were infected with various doses of Mtb (H37Rv-mCherry) by
aerosol exposure 4 weeks before being intranasally infected with 3.5x104 TCID50 SCV2 (B.1.351), mice were euthanized 1 day later. Right: Viral loads
in lung as measured by TCID50 on Vero E6 cells and (E) qPCR for the SCV2 E gene sgRNA and gRNA (right) (n= 3 – 5 per group from one
experiment representative of two independent experiments, geometric mean, statistical significance calculated by two-tailed Mann Whitney test,
LD= limit of detection). n.s. = not significant.
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The inability of SCV2 to increase mycobacterial load and lung

pathology in mice subsequently infected with Mtb contrasts with

our previous experiments with sequential IAV and Mtb infections

(17). SCV2 infection likely engages immune pathways differently in

both quantity and/or quality compared to IAV, such as IFN-I

production. Others have shown through in vitro infection of a

human airway epithelial cell line susceptible to both viruses that

IAV was a more potent inducer of IFN activity (as measured by

STAT1 phosphorylation) than USA-WA1/2020 SCV2 (40).

Additionally, COVID-19 patients hospitalized with pneumonia

have comparatively low and delayed production of IFN-I when

contrasted with severe IAV pneumonia patients (41). As IFN-I has a

detrimental impact on Mtb-driven disease outcomes in mice and

humans (17, 42–48), this raises the possibility that SCV2 may not be

able to exacerbate Mtb infection due to the induction of a weaker

IFN response compared to IAV infection. Future studies must

systematically address commonalities and differences between the

long-term impacts of IAV or SCV2 infection on the lung

microenvironment and subsequent respiratory immune responses

to secondary infections. Our data also do not exclude the possibility

that Mtb burden may be altered at timepoints different from those

tested here or whether SCV2 co-infection, similar to IAV co-

infection (17, 18), can alter the mortality of Mtb-infected animals.

Using flow cytometric analyses, we investigated the impact of

SCV2 infection 16 weeks post Mtb infection on existing Mtb-
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specific T cell responses, however no reduction was detected

compared to mice infected with Mtb alone. Other studies where

viruses were administered within the first two weeks after Mtb-

infection (17, 18, 49), a critical time during which initial T cell

priming toMtb antigens occurs (50), have reported dampenedMtb-

specific T cell responses and increased susceptibility to Mtb. We

intentionally did not explore SCV2 co-infection within the first two

weeks after Mtb infection because we wanted to mimic the most

common clinical scenarios (i.e., individuals who had recovered

from a previous SCV2 infection or individuals with a latent,

underlying Mtb infection). While isolated Mtb components such

as those present in Complete Freund’s Adjuvant can serve as

adjuvants to amplify adaptive responses to specific peptide

antigens (51, 52), any potential adjuvant effect caused by infection

with live Mtb bacteria here, was unable to boost antigen-specific T

cell responses to SCV2. In contrast, we showed that ongoing Mtb

infection reduced the frequency of SCV2-specific CD8+ TRM, which

was likely due to strongly enhanced early innate viral control inMtb

infected mice. We cannot, however, completely rule out that the

underlying Mtb infection additionally influenced the priming,

expansion, contraction, and migration of SCV2-specific T cells

into the lungs of co-infected mice; Therefore, further studies are

needed to address how simultaneous infection with SCV2 and Mtb

impacts the priming of adaptive immune responses and disease

outcomes for each pathogen.
A

B

FIGURE 6

Underlying Mtb infection reduces SCV2 viral burden independent of IFNAR1, TLR2, or TLR9. (A) Left: Schematic of experimental set-up where C57Bl/
6 WT, Ifnar1-/-, Tlr2-/- or Tlr9-/- mice were infected with Mtb 30-40 days prior to being intranasally infected with 3.5x104 TCID50 SCV2 (B.1.351), mice
were euthanized 3 days after SCV2 infection. Right: SCV2 viral load in lungs as measured by TCID50 on Vero E6 cells. (B) SCV2 viral loads in lungs as
measured by qPCR for the SCV2 E sgRNA (left) or gRNA (right) (n= 11-19 per group, data combined from four independent experiments, geometric
mean, two-tailed Mann Whitney test (only significant p values shown), LD= limit of detection; significant differences are indicated by blue
comparisons between SCV2 only groups (blue), significant differences are indicated by black comparisons between SCV2 (blue) and coinfected
groups (purple).
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TheMtb infection-mediated suppression of SCV2 replication in

our studies was apparent as early as one day post SCV2 exposure.

As such, we propose that underlying Mtb infection enhances early

anti-viral innate immunity in the lung. In contrast to the

detrimental role IFN-I plays in Mtb infection, IFN-I is a critical

family of cytokines promoting innate anti-viral immunity (8).

However, our data suggest that IFN-I signaling did not mediate

the increased viral control inMtb-infected lungs, as we showed that

Ifnar1-/- mice had a similarly reduced SCV2 burden as WT mice

when previously infected with Mtb. Nevertheless, we also showed

that IFNAR1-deficient mice had a higher viral load at 3 days post-

infection independently of Mtb infection status, in line with

previously published in vivo data that support IFN-I-dependent

control of SCV2 replication in mice (53–57) and hamsters (58, 59).

Genes induced by IFN-I signaling (Interferon Stimulate Genes,

ISGs) overlap significantly, but not completely with genes induced

by IFNg (IFN-II) and IFNl (IFN-III) (60, 61), suggesting that

production of any family of IFNs may have similar effects during

SCV2 infection. Several studies utilizing mice deficient in IFNg
signaling have demonstrated a direct role for IFN-II in restriction of

SCV2 (62–64). Moreover, IFNg plays a central role in SCV2

restriction following intravenous infection of mice with

Mycobacterium bovis bacille Calmette-Guérin (BCG), an

attenuated relative of Mtb (62, 65). Studies of IFNl in SCV2-

infected mice indicate that the IFN-III response can also restrict

viral replication in the mouse lung (66). However, IFNl signaling-

deficient hamsters did not exhibit a similar defect in viral control

(67). Thus, while Mtb-driven control of early viral replication

occurred independently of IFN-I in our studies, it is possible that

IFN-III and/or IFN-II, the latter of which is highly induced after

mycobacterial infections in mice and is responsible for reduced

SCV2 burden following infection with BCG (65), may contribute to

the anti-viral state in Mtb-infected lungs.

Finally, because early viral restriction was Mtb-infection dose-

dependent, we explored whether suppression of viral replication in

Mtb-infected mice was mediated through mycobacterial sensing by

TLR2 or TLR9. In addition to recognition of mycobacterial ligands,

a role for TLR2 in recognizing the envelope (E) protein of SCV2

leading to innate viral control has been previously reported (68),

and we show here that TLR2-deficient mice indeed displayed higher

TCID50 viral titers in their lungs three days after infection with

B.1.351 SCV2 in the absence ofMtb infection. Nevertheless, neither

TLR2 nor TLR9 signals were individually responsible for

suppressing SCV2 replication in the lungs of Mtb co-infected

C57Bl/6 mice. Our data do not exclude the possibility that

multiple TLRs may act in concert to induce a SCV2-suppressive

immune environment during Mtb infection, and further functional

studies are needed to uncover the complex immunological

mechanisms responsible for increased innate anti-viral immunity.

These mechanisms may include but are not limited to down-

regulation of viral entry receptors, enhanced antiviral activation

of lung epithelial cells, trained innate immunity or modulation of

the innate immune cell milieu in the lung (64, 65, 69–71).

Together, our data suggest that, in the K18-hACE2 Tg mouse

model, infection with the ancestral strain of SCV2 does not

exacerbate ongoing or subsequent Mtb infection at the timepoints
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tested. Further studies utilizing different strains of mice,Mtb strains

and SCV2 variants that explore the entire course of infection would

further strengthen these observations. While our data do not rule

out the possibility of immunological influences in the exacerbation

of TB or COVID-19 in co-infected humans they do point to the

impact of sociological and healthcare disruptions as more

significant factors underlying the reported increase in TB

mortality rates during the COVID-19 pandemic.
Methods

Mice

K18-hACE2 Tg hemizygous transgenic mice (B6.Cg-Tg(K18-

ACE2)2Prlmn/J; JAX stock #034860) (36), were purchased from

Jackson Laboratories (Bar Harbor, ME). C57Bl/6 mice or C57Bl/6

mice expressing a Foxp3-GFP reporter (C57BL/6-Foxp3tm1Kuch)

(72) were used as wild type C57Bl/6 controls. Foxp3-GFP mice

and Ifnar1 KO mice (B6-[KO]IFNa/bR1) (73) were obtained

through a supply contract between NIAID and Taconic Farms.

Tlr2 KO mice (74) and Tlr9 KOmice (75) were originally generated

by the laboratory of Dr. Shizuo Akira (Osaka University, Japan) and

were kind gifts of Dr. Alan Sher (NIH/NIAID) and Dr. Giorgio

Trinchieri (NIH/NCI) respectively. All mouse strains were

confirmed to be on a C57Bl/6 background by genetic background

analysis submitted through Transnetyx and performed by Neogen

using the MiniMUGA platform. Both male and female mice were

used and were 8-16 weeks old at the onset of experiments and mice

within experiments were age and sex matched. All animals were

bred and maintained in an AAALAC-accredited ABSL2 or ABSL3

facility at the NIH and experiments were performed in compliance

with an animal study proposal approved by the NIAID Animal Care

and Use Committee.
Mtb infection of mice

Aerosol infections of mice with H37Rv-mCherry (50-200 CFU,

or as indicated in figure legends) were carried out in a Glas-Col

whole-body inhalation exposure system as previously described in

detail (76). Briefly, to quantify Mtb CFU, lung or spleen

homogenates, BALF or inocula were serial-diluted in PBS + 0.1%

Tween-80 and plated on Middlebrook 7H11 agar (Sigma Aldrich)

supplemented with oleic acid-albumin-dextrose-catalase (OADC)

for 3 weeks at 37°C before colonies were counted.
SARS-CoV-2 infection of mice

SARS-CoV-2 hCoV-19/USA-WA1/2020 (Pango lineage A,

GISAID reference: EPI_ISL_404895.2) (USA-WA1/2020) and

SARS-CoV-2/human/ZAF/KRISP-K005325/2020 beta variant of

concern (Pango l ineage B.1 .351 , GISAID reference :

EPI_ISL_678615) (B.1.351) were obtained from BEI resources

(NIAID, NIH). Viral stocks were generated by infection of Vero
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cells (CCL-81, American Type Culture Collection) without (USA-

WA1/2020) or with (B.1.351) stable expression of TMPRSS2 (77) at

a multiplicity of infection of 0.01 for 48hrs. Cell culture media was

harvested and centrifuged at 3500 x g, pooled, aliquoted, and stored

at -80°C until use. Virus stocks were sequenced using the Illumina

platform; USA-WA1/2020 was consistent with the reference

sequence MN985325.1 except for H655Y in S, S6L in E, T7I in

M, and S194T in N; B.1.351 was consistent with reference sequence

MZ376663.1. Mice were anesthetized with isoflurane and infected

intranasally with 35µL inoculum containing 1.0x101 - 1.0x103

TCID50 USA-WA1/2020 or 3.5x104 TCID50 B.1.351. Inoculum

was quantified by TCID50 assay in Vero E6 cells (CRL-1586;

American Type Culture Collection).
Viral quantification by TCID50 assay

2.5x104 Vero E6 cells were seeded in 100mL DMEM + 10% FCS

per well of 96-well tissue culture cluster plates, incubated at 37°C +

5% CO2 for 16-24 hrs and washed twice with 100mL DMEM + 2%

FCS before the assay was conducted. After harvesting lungs from

mice, the inferior lobe, post-caval lobe and left lung were

homogenized in 600mL PBS using 2.7mm glass beads on a

Precellys tissue homogenizer (Bertin Instruments) before dilution

with PBS to a final volume of 1.7mL. Viral titers were determined by

performing 10-fold serial dilutions of homogenates in DMEM + 2%

FCS in quadruplicate, then plating 100mL serial-diluted

homogenate and 100mL DMEM + 2% FCS on washed Vero E6

cells and incubating at 37°C + 5% CO2 for 96 hours. TCID50 was

measured by removing supernatants and staining wells with crystal

violet before scoring for cytopathic effect and calculation using the

Reed–Muench method.
RNA extraction and quantitative PCR of
viral genomes

For RNA extraction, the superior lobe from eachmouse was placed

in RNAlater (Invitrogen) and stored at −80°C. RNAlater-stabilized

lung lobes were thawed at RT for 20 min, then homogenized in RLT

Plus buffer with b-mercaptoethanol (QIAGEN). Total RNA was then

isolated from the RLT-homogenized tissue using the RNeasy Plus Mini

Kit (QIAGEN), including on-column DNase treatment using the

RNase-Free DNase set (QIAGEN) following the manufacturer’s

instructions and eluted in 60µL RNAse-free water. SCV2 genome

copy quantitation was performed in duplicate from 2.5uL of eluted

RNA per reaction using the Taqpath 1-step RT-qPCR Master Mix

(Thermo) as described by the manufacturer. The SCV2 E gene in both

typical (genomic, gRNA) and actively replicating (sub-genomic,

sgRNA) conformations (35) was detected using primers at 500nM as

follows: E (genomic) Forward (5’- ACAGGTACGTTAATAGTT

AATAGCGT-3’), E (sub-genomic) Forward (5’- CGATCTCTTG

TAGATCTGTTCTC-3’), E (genomic and sub-genomic) Reverse (5’-

ATATTGCAGCAGTACGCACACA -3’) and the probe for both E
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genomic and sub-genomic reactions was used at 125nM (5′- (FAM)-

ACACTAGCCATCCTTACTGCGCTTCG-(3IABkFQ) -3′). Cycling
conditions: Initial: 25°C for 2 min, 50°C for 15 min, and 95°C for

2 min, Cycling: 95°C for 3 sec, 60°C for 30 sec, for 40 cycles. Copy

number was calculated based on standard curves generated for each

RT-qPCR run, with SCV2 RNA standard of known quantity and

eleven 5-fold dilutions run in duplicate (78).
Cell isolation for flow cytometry

Lungs from infected mice were dissociated using a GentleMACS

dissociator (Miltenyi Biotec) in digestion buffer comprised of

0.33mg/mL Liberase TL (Roche), 7U/mL benzonase (Sino

Biological), 10µM cytochalasin D (Sigma-Aldrich) and 200µg/mL

hyaluronidase (Sigma-Aldrich) followed by 30 - 45 minutes at 37°C.

Digested lung was fully dispersed by passage through a 100µm pore

size cell strainer and an aliquot was removed for bacterial CFU

measurements when needed. Isolated cells were stained with MHC-

II tetramers for 40min at 37°C in complete RPMI with 1mM

aminoguanidine (Sigma-Aldrich), 100nM dasatinib (Cayman

Chemical), 3µg/mL brefeldin A (ThermoFisher) and 2µM

monensin (ThermoFisher). Cells were then washed and stained

with MHC-I tetramers, surface antibodies and Molecular Probes

LIVE/DEAD Fixable Near-IR Dead Cell Stain Kit (ThermoFisher)

for 20 min at 4°C before permeabilization and fixation using

eBioscience™ Foxp3 Transcription Factor Staining Buffer Set

(ThermoFisher) at 4°C overnight. Intracellular staining was

per formed in eBiosc ience™ Permeabi l iza t ion Buffer

(ThermoFisher) for 40 minutes at 4°C. Samples were acquired on

a FACSymphony (BD Biosciences). FACS data were analyzed using

FlowJo10 (Treestar). Antibodies were purchased from BioLegend,

BD and ThermoFisher as follows: anti-CD45 (30-F11), anti-CD4

(GK1.5), anti-FoxP3 (FJK-16s), anti-CD8a (53-6.7), anti-CD44

(IM7), anti-Ki-67 (B56), anti-T-bet (4B10), anti-KLRG1 (2F1),

anti-CD69 (H1.2F3). Tetramer reagents were obtained from the

NIH Tetramer Core Facility as follows: Mtb ESAT64-17 MHC-II I-

Ab tetramer,Mtb TB10.44-11 MHC-I H-2Kb tetramer,Mtb 32c93-102
MHC-I H2-Db tetramer, SCV2 ORF3A266-280 MHC-II I-Ab

tetramer, SCV2 S532-546 MHC-I H-2Kb tetramer, SCV2 N219-227

MHC-I H-2Db tetramer.
Histopathology

The middle right lung lobe from each mouse was fixed in 4%

paraformaldehyde, transferred to 70% ethanol and paraffin-

embedded before sectioning and mounting on glass slides for

staining with hematoxylin and eosin (H&E) or the Kinyoun

method for visualization of acid-fast (AF) mycobacteria. Stained

slides were imaged by light microscopy on an Aperio Versa

microscope (Leica Microsystems). Images were processed using

QuPath v0.3.2 (Bankhead et al., 2017) and ImageJ v1.53t (NIH)

for quantification and visualization as previously described (79).
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Statistical analyses

Statistical analyses were performed using GraphPad Prism v9.0

for Mac OS X (GraphPad Software). Each figure legend lists all the

statistical details of experiments, including the statistical tests used.

Data are expressed as mean ± SD. Significant differences are

indicated by the p value in each figure.
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The observation of reduced COVID-19 incidence and severity in populations

receiving neonatal intradermal BCG vaccination vaccine raised the question of

whether BCG can induce non-specific protection against the SARS-CoV-2

(SCV2) virus. Subsequent epidemiologic studies and clinical trials have largely

failed to support this hypothesis. Furthermore, in small animal model studies all

investigators have failed to observe resistance to viral challenge in response to

BCG immunization by the conventional and clinically acceptable intradermal or

subcutaneous routes. Nevertheless, BCG administered by the intravenous (IV)

route has been shown to strongly protect both hamsters and mice against SCV2

infection and disease. In this Perspective, we review the current data on the

effects of BCG vaccination on resistance to COVID-19 as well as summarize

recent work in rodent models on the mechanisms by which IV administered BCG

promotes resistance to the virus and discuss the translational implications of

these findings.

KEYWORDS

COVID-19, Bacille Calmette-Guérin (BCG), lung, interferon gamma (IFNg), trained immunity
Introduction

The innate compartment of the immune system differs from the adaptive in its ability

to provide non-specific defense against a wide variety of threats encountered by the body

and its stimulation is an important strategy for enhancing host resistance to pathogens.

Avirulent microbes and their products are themselves important triggers of innate immune

function and recently have been described to do so with long term effects (1). BCG (Bacille

Calmette Guérin) is a well-studied microbial stimulus for its effects on innate immunity.

This attenuated Mycobacterium bovis strain is widely used to vaccinate against

extrapulmonary tuberculosis (TB) in infants and children and was discovered in the

mid-20th century to also promote non-specific resistance against tumors, a finding that led

to its current employment as a treatment for some forms of bladder cancer (2). More

recently BCG vaccination has been associated with lowering all-cause mortality in infants

(3), reducing viremia after a yellow fever vaccine challenge in adults (4), and decreasing risk

of respiratory infections in the elderly (5). Multiple mechanisms have been proposed to
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explain these effects, the most prominent of which involve the

induction of “trained immunity” in which myelopoietic-derived

innate effector cells become epigenetically modified so that they

remain in a long-term primed state (up to 1 year in humans) (6–8).

BCG is typically administered to vaccinees by intradermal (ID)

or subcutaneous (SC) injection although other routes (e.g. oral)

have been employed in the past (9, 10). Although not clinically

approved, the intravenous (IV) route of BCG administration has

recently been employed in two important studies related to TB

vaccination. In the first study, Kaufmann and colleagues showed

that IV BCG preferentially induces trained immunity in mice

because of its ability to access and infect long lived myelopoietic

stem cells in the bone marrow (7). In the second report, Darrah and

colleagues showed that IV in contrast to SC administered BCG

induces sterile immunity against M. tuberculosis (Mtb) challenge in

a rhesus monkey model (11), a dramatic finding that the authors

attributed to the direct targeting of the lung and the induction of a

strong local memory T cell response when the vaccine is given by

this route (12). Recent studies indicate that in macaques such

resistance can persist after the clearance of culturable BCG bacilli

(13). Nevertheless, the contribution of BCG stimulated innate

immune mechanisms to this striking protection is at

present unclear.
Clinical evidence for or against the
association of BCG vaccination with
host resistance to COVID-19

Given its previously demonstrated ability to stimulate non-

specific host resistance to certain other viral infections, BCG

immunization was suggested in the early months of the COVID-

19 pandemic as a possible prophylactic measure for the prevention

of SCV2 infection and disease (14, 15). This concept was initially

supported by a number of ecological/epidemiologic studies

suggesting an association of prior BCG vaccination with a lower

incidence of COVID-19 disease (16, 17) despite the relatively short

period (up to 1 year) that “trained” responses have been reported to

persist in vivo (8). This early work was followed up with a large

number of more extensive investigations (summarized in Table 1)

that in general have failed to confirm the protective effects of BCG

vaccination on the incidence and severity of SCV2 infection (18–21,

26–29), including a recently published international multi-cohort

randomized trial (BRACE) involving ID administration of BCG to

adult health care workers (22). One study conducted with a small

cohort of older adults in Greece did note some protection against

the incidence of COVID-19 symptoms; however, the existence of

SCV2 infection in these individuals was not confirmed by PCR or

antibody testing (24). A significant reduction in the incidence and

symptom severity of COVID-19 was also observed in a different

study involving the follow-up of adult diabetes patients given 3 ID

doses of intramural BCG over a 2-3 year period before the onset of

the pandemic (25). The explanation for the unusual efficacy

observed in the latter study is unclear but may relate to the

multiple dosage, the use of a highly virulent BCG isolate (Tokyo
Frontiers in Immunology 0293
strain) (30, 31), the spacing between BCG vaccination and SCV2

exposure, or possibly the diabetic state of the participants. Overall,

there is currently no compelling evidence that a single-dose

intradermal BCG inoculation provides protection against SCV2

infection and disease; however, there may be certain conditions that

favor the protective outcomes observed with multiple BCG doses

(25). Future studies examining prolonged or repeated mycobacterial

exposures, either due to population level exposure to environmental

mycobacteria and/or BCG re-vaccination strategies, may provide

further insights into any potential protective effects (32).
Evidence in animal models for
BCG induced protection against
SARS-CoV-2

The hypothesis that prior BCG vaccination might offer

protection against COVID-19 prompted a series of studies in

different animal models to examine the effects of prior BCG

administration on resistance to SCV2 challenge (Table 2). This

work has generated a consensus that when inoculated by the

conventional ID (or subcutaneous) route to mice (33, 35–37) or

hamsters (35, 38) or by aerosol to monkeys (39), BCG fails to trigger

significant protection against intranasal or intra-bronchial infection

with the virus. Nevertheless, a number of independent studies have

shown that when administered by the IV route to mice or hamsters,

BCG can confer high levels of resistance to both SCV2 infection and

disease (Table 2) (33, 34, 38, 40, 41). In the initial description of this

effect, K18 transgenic mice which express the human ACE2

receptor (K18-hACE2) for the virus were IV inoculated with BCG

(Pasteur strain) before intranasal SCV2 infection with a lethal dose

of the WA/2020 strain (33). At 42 days following BCG

administration, the virus challenged mice showed a striking

protection from SCV2 induced weight loss and mortality along

with pronounced reductions in pulmonary viral loads at 5 days post

infection. This protection was still evident 112 days following BCG

inoculation but at lower levels (33). To confirm that the COVID-19

resistance induced by IV BCG is not peculiar to hACE2 transgenic

mice, the experiments were repeated using a second model in which

wild type C57BL/6 mice were challenged with the more virulent

B.1.1.7 SCV2 variant. In this situation unvaccinated mice support

viral replication for 3-4 days before clearing the infection with

minimal accompanying disease. Again, IV BCG induced striking

protection against SCV2 with the majority of the BCG exposed mice

showing no detectable virus in their lungs at 3 days following B.1.1.7

challenge (33). Consistent with the other studies cited above, no

significant resistance against SCV2 was observed in mice inoculated

with the same dose of BCG by the SC route in either of the two

murine models. The ability of IV BCG to protect K18-hACE2 mice

from early SCV2 infection was confirmed in a second study using

the Tokyo strain of BCG and intranasal viral challenge with either

an original “wild-type” strain or more virulent kappa or delta

variants (40). In additional work, IV administered BCG (Tice

strain) was shown to reduce viral loads and bronchopneumonia

in Syrian hamsters challenged intranasally with the Wuhan-1 strain
frontiersin.org
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SCV2 (38). In contrast to the above findings, Kaufmann et al.

reported that K18-hACE2 mice or hamsters given IV (or SC) BCG

(Tice strain) showed no significant protection against intranasal (or

in the case of mice either intranasal or intratracheal) challenge with

a SCV2-B lineage variant. Nevertheless, the same BCG exposed

mice displayed resistance to intranasally administered Influenza A

virus (35). Ongoing follow up studies suggest that the negative

results with SCV2 obtained in the latter study may relate to the BCG

strain (42), its preparation and/or the dose employed for

vaccination (Kaufmann and Hilligan, unpublished).

The consistent failure of SC or ID inoculated BCG to provide

protection against SCV2 infection suggests that the resistance

conferred by IV BCG may relate to the long-term presence

mycobacteria in the lungs and accompanying granulomatous

inflammation occurring in animals inoculated by that route (33,
Frontiers in Immunology 0394
40). Consistent with this hypothesis, K18-hACE2 or non-transgenic

mice infected by aerosol with virulent Mycobacterium tuberculosis

and developing pulmonary TB, display high levels of resistance to

SCV2 comparable to that reported in IV BCG exposed animals (37,

43, 44). Nevertheless, as noted above, in rhesus macaques BCG

given by the aerosol route failed to induce protection against SCV2

challenge (39). Since pulmonary bacterial infection and local tissue

responses were not evaluated in that study, it is difficult to ascertain

whether this discrepancy with the rodent studies reflects the

different host species employed or the local levels of BCG and/or

immune responses occurring at that site. Indeed, a comparison

between IV and aerosol inoculation of rhesus macaques by Darrah

et al, showed that only IV BCG resulted in the formation of

“microgranuloma” structures in the lung as well as increased

numbers of CD4+ T cells and CD11c+ antigen-presenting cells (11).
TABLE 1 Summary of human trials investigating BCG efficacy against COVID-19.

Trial
design

Participant
characteristics

BCG
strain

SCV2 outcomes (versus control arm)
Reference

Incidence Severity Other parameters

RCT, ~1000
individuals/

arm

Adult, 60y+ Danish
1331

NC NA Higher SCV2 antibody titers in BCG vaccinated participants (18)

RCT, ~1000
individuals/

arm

Adult, 60y+ VPM1002 NC NA NC in self-reported duration of illness with respiratory tract
infection, but trend towards lower duration in BCG vaccinated
individuals within the cohort who did not received COVID-19-

specific vaccines.

(19)

RCT, ~750
individuals/

arm

Adult, health care
workers

Danish
1331

NC NC (20, 21)

RCT, ~1700
individuals/

arm

Adult, health care
workers

Danish
1331

NC NC Lower cytokine responses in whole blood samples exposed to
irradiated SCV2 in BCG vaccinated individuals (n=25)

(22, 23)

RCT, ~150
individuals/

arm

Adult, 50y+ Moscow Reduced* NA (24)

RCT, 48 in
placebo

arm, 96 in
BCG arm

Adult, type-1
diabetes patients

Tokyo
172, 3
doses

Reduced Reduced (25)

RCT, ~3000
individuals/

arm

Adult, 60y+ with >1
co-morbidities

Danish
1331

NC NC NC in incidence of other respiratory infections (26)

RCT, ~130
individuals/

arm

Adult, health care
workers

Moscow
or

Moreau

NC NA (27)

RCT, ~70
individuals/

arm

Adult, health care
workers

Moscow NC NA (28)

RCT, ~250
individuals/

arm

Adults Not
specified

NC Reduced (29)
NC, no change; NA, not assessed.
*COVID-19 incidence was defined as “possible/probable/definitive” in this study.
These citations are based on a literature search in May 2023.
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Mechanisms underlying BCG
induced resistance to SCV2
infection and disease

It was originally proposed that ID (or SC) administered BCG

might offer protection against COVID-19 because of its previously

documented ability to enhance clinical resistance to other viral

infections, effects that were attributed to the induction of trained

immunity (14, 15). Since in nearly all studies humans vaccinated

with BCG by this route fail to display significant resistance to COVID-

19, it would appear that any response induced by a single-dose BCG

inoculation is not sufficient to restrict SCV2. Nevertheless, it is still

possible that boosting of the response by intradermal re-vaccination

could induce more effective immunity and this could be the basis of the

protection against COVID-19 observed by Faustman and colleagues in

diabetes patients given multiple BCG inoculations (25).

Since with the latter exception BCG induced protection against

SCV2 has not been documented in humans or non-human primates,

nearly all the current information on anti-viral mechanisms derives

from the studies on murine and hamster rodents involving IV

administered bacteria. That route of inoculation has been previously

shown in mice to preferentially stimulate myelopoiesis and the

generation of monocyte/macrophages with a trained phenotype (7).

Consistent with these earlier findings, Zhang and colleagues reported

that IV BCG vaccinated mice challenged with SCV2 display enhanced
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bone marrow myelopoiesis, augmented pulmonary monocyte/

macrophage infiltration and upregulated innate immune and

metabolic gene signatures previously described as associated with

training (40). Although not specifically addressing the issue of

trained immunity, both the NIH murine model study of Hilligan

et al. and hamster study of Singh and colleagues described enhanced

pulmonary macrophage numbers in IV BCG inoculated animals that

likely arise from bonemarrowmonocytes (33, 38). Given the long-term

persistence of both mycobacteria and granulomatous inflammation in

the lungs of IV BCG vaccinated mice (33, 40), it is unlikely that

resistance to SCV2 challenge would require the type of trained myeloid

cells previously described as arising in hosts exposed to a prior single

intradermal bacterial inoculation.

In each of the three studies documenting protection against SCV2

induced by IV BCG, vaccination was shown to simultaneously reduce

pulmonary viral load and virus induced bronchopneumonia, in some

cases as early as 2 days post challenge. Consistent with the latter

observation, in both mouse studies BCG inoculation resulted in

lowered production of SCV2 induced IL-6 and MCP1 (CCL2) (33,

40). Although this decrease could reflect an effect of reduced viral load

in the vaccinated animals, the results of a multivariate analysis

performed in the NIH murine study revealed an inhibitory effect of

prior IV BCG administration on the induction of these pathology

associated cytokines independent of viral titer (33). These data align

with results from the BRACE clinical trial that showed that while BCG

vaccination did not protect against COVID-19 (22), BCG did limit
TABLE 2 Summary of animal studies assessing efficacy of BCG against SCV2 infection and disease.

Animal model Route of BCG administration BCG strain
SCV2 outcomes (versus control group)

Reference
Disease phenotype Viral titers

Mouse, K18-hACE2 SC Pasteur NC (survival and weight loss) NC (33)

Mouse, K18-hACE2 IV Pasteur Improved (survival and weight loss) Reduced (33)

Mouse, wildtype B6 SC Pasteur n/a NC (33)

Mouse, wildtype B6 IV Pasteur n/a Reduced (33, 34)

Mouse, K18-hACE2 SC Tice NC (survival and weight loss) NC (35)

Mouse, K18-hACE2 IV Tice NC (survival and weight loss) NC (35)

Hamster, Syrian Golden SC Tice NC (weight loss) NC (35)

Hamster, Syrian Golden IV Tice NC (weight loss) NC (35)

Hamster, Roborovski SC Tice NC (survival and weight loss) NC (35)

Hamster, Roborovski IV Tice NC (survival and weight loss) NC (35)

Mouse, K18-hACE2 SC Pasteur NC (weight loss) NC (36)

Mouse, K18-hACE2 SC Pasteur NC (survival and weight loss) NC (37)

Hamster, Syrian Golden IV Tice Improved (bronchopneumonia score) Reduced (38)

Rhesus macaque aerosol Danish 1331 NC (pathology score) NC (39)

Mouse, K18-hACE2 SC Tokyo 172 NA NC (40)

Mouse, K18-hACE2 IV Tokyo 172 Modestly improved (weight loss) Reduced (40)

Mouse, wildtype B6 IV Tice Improved (weight loss)* Reduced* (41)
NC, no change; NA, not assessed; n/a, not applicable.
*protective effect only apparent from 21 days after IV BCG inoculation.
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SCV2-induced pro-inflammatory cytokine responses ex vivo,

suggesting that BCG inoculation can modulate virus triggered

immune responses independent of its protective effect (23).

In both mice and hamsters, IV BCG administration led to

pronounced elevations in pulmonary T cells, while only a minor

response was seen in mice given SC BCG. In mice, IV BCG

enhanced lymphocytes were characterized as CD8+, FoxP3− CD4+,

and FoxP3+ CD4+T cells, as well asMAIT cells and their levels did not

significantly increase following viral challenge (33, 38). Indeed, if

anything, prior IV BCG administration appeared to suppress the

CD8+ T cell expansion triggered by SCV2 infection. Somewhat in

contrast, in the hamster model, prior IV BCG inoculation resulted in

an expansion of cells with Th1, Th17, Treg, CTLs or Tmem

transcriptional markers after viral challenge as well as the emergence

of a new plasma cell population not present prior to SCV2 exposure

and expressing genes associated with immunoglobulin production

suggestive of accelerated antibody production. In the same hamster

study, IV BCG vaccination also appeared to dampen the expression of

T cell exhaustion markers triggered by SCV2 infection (38). Together

these observations show that IV BCG triggers the recruitment of

adaptive immune cells into the lung tissue that in addition to

supplying a potential source of protective antibodies may be

important in providing cytokines and other signals that shape the

innate immune landscape. Another interesting possibility is that the

response to the bacteria has hindered the ability of the host to respond

to another inflammatory stimuli.

Type I IFNs are important for control of viral pathogens but in

SCV2 and other virus infections these cytokines can also promote

pathology (45, 46). Interestingly in the NIH mouse model study prior

IV BCG inoculation appeared to suppress rather than augment the

SCV2 triggered Type I IFN response consistent with the suppression

of COVID-19-like pathology observed in these animals. BCG

infection is classically associated with strong IFNg production from

CD4+ T, CD8+ T and NK cells and the cytokine was found to be

heavily induced in the lungs of both mice and hamsters months after

IV BCG inoculation (33, 38, 40). Importantly, this local Type II IFN

response was minimal in mice vaccinated by the SC route consistent

with the dearth of both BCG and its associated granulomatous tissue

inflammation in lungs of these animals in contrast to IV inoculated
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mice. Recent functional studies in the murinemodels suggest that this

IFNg response deriving primarily from CD4+ T cells and acting on

non-hematopoietic cells in the lung is required for the reduction in

both SCV2 virus and its associated pathology and that the

recombinant cytokine itself can trigger these effects (34, 41).

Whether IV BCG induced protection against SCV2 is mediated

entirely through this mechanism or also involves the myeloid, T or

B lymphocytes changes reported to be associated with resistance in

the studies discussed above is at present unclear. A summary of the

different effector mechanisms currently proposed to explain the

protection against SCV2 induced by IV BCG is presented in Figure 1.
Discussion and translational
implications

The findings reviewed above establish a proof of principle in

animal models that single dose BCG can stimulate protection against

SCV2 but only when given IV, a mode of administration that is

currently not clinically acceptable. The data do not rule out the

possibility that through repeated boosting (25) or the use of a

specially engineered bacterial strain (36) protection against COVID-

19 could be generated through conventional ID or SC vaccination

although it is likely that such resistance would involve a different

mechanism. There is currently considerable interest in the possible use

of IV administered BCG for vaccination against M. tuberculosis

because of its ability to confer sterile immunity against this

important pathogen in rhesus monkeys (11, 13). This has stimulated

efforts to develop attenuated BCG mutants (e.g. auxotrophs) that

would be safe for human intravenous use and such strains could be

tested as candidates for protection against COVID-19 (47).

Regardless, the demonstration that bacterial stimulation of the

lung can induce high levels of resistance against SCV2 could lead to

the discovery of novel mechanisms of anti-viral protection with

potential clinical applicability. For example, the recent evidence

that BCG induced IFNg can protect mice from SCV2 challenge (34,

41) raises the question of whether the cytokine could be used

intranasally to protect subjects at high risk of infection possibly

with less risk of toxicity than Type I IFN. It is also becoming clear that
FIGURE 1

Possible mechanisms contributing to IV BCG conferred protection against SCV2 in mice.
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IV BCG is not a unique non-specific stimulus for host protection

against experimental SCV2. In addition to prior M. tuberculosis

infection (37, 43, 44), recent findings indicate that intranasally

administered PRR ligands can also trigger host resistance in the

same murine models (48–50) as can prior infection with a lung-

transiting helminth (51). While seemingly distinct stimuli, it is

possible that they all act by triggering the production of anti-viral

effectors by pulmonary myeloid or epithelial cells.

As noted in the studies reviewed here, IV BCG infection can

trigger long term changes in the cellular composition and adaptive

immune responsiveness of lung tissue. While trained immunity

may contribute [recently reviewed by Netea et al. (52)], other factors

such as bacterial induced tissue remodeling and continuous

immune stimulation by the bacteria surviving within granuloma-

like structures in the lung are in this situation likely to play a more

important role in promoting the long-lived property of the

protection triggered by IV BCG at that tissue site (Figure 1).

Despite its limitations as a vaccine, studies on BCG continue to

provide important insights on the interplay of innate and adaptive

immunity in the host response to pathogens and in this case hopefully

add to our understanding of how the lung can be stimulated to

control both SCV2 and COVID-19 associated pathology.
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SARS-CoV-2 and Mycobacterium tuberculosis (Mtb) are major infectious causes

of death, with meta-analyses and population-based studies finding increased

mortality in co-infected patients simultaneously diagnosed with COVID-19 and

tuberculosis (TB). There is a need to understand the immune interaction between

SARS-CoV-2 and Mtb which impacts poor outcomes for those co-infected. We

performed a PubMed and preprint search using keywords [SARS-CoV-2] AND

[tuberculosis] AND [Immune response], including publications after January

2020, excluding reviews or opinions. Abstracts were evaluated by authors for

inclusion of data specifically investigating the innate and/or acquired immune

responses to SARS-CoV-2 and Mtb in humans and animal models,

immunopathological responses in co-infection and both trials and

investigations of potential protection against SARS-CoV-2 by Bacille Calmette

Gueŕin (BCG). Of the 248 articles identified, 39 were included. Incidence of co-

infection is discussed, considering in areas with a high burden of TB, where

reported co-infection is likely underestimated. We evaluated evidence of the

clinical association between COVID-19 and TB, discuss differences and

similarities in immune responses in humans and in murine studies, and the

implications of co-infection. SARS-CoV-2 and Mtb have both been shown to

modulate immune responses, particularly of monocytes, macrophages,

neutrophils, and T cells. Co-infection may result in impaired immunity to

SARS-CoV-2, with an exacerbated inflammatory response, while T cell

responses to Mtb may be modulated by SARS-CoV-2. Furthermore, there has

been no proven potential COVID-19 clinical benefit of BCG despite numerous

large-scale clinical trials.

KEYWORDS

COVID-19, latent TB, LTBI, Bacille Calmette Guérin, co-infection, immune response,
transcriptomics, T cells
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Introduction

Tuberculosis (TB) and coronavirus disease 2019 (COVID-19)

are leading causes of infectious death worldwide (1). As of 14 June

2023, there have been 6,943,390 COVID-19 deaths reported to

World Health Organisation (WHO) (2). During the same three-

year period, approximately 4.5 million people are estimated to have

died of TB. The causative agent of COVID-19, SARS-CoV-2 has

undergone various mutations since the start of its pandemic, with

several major variants of concern arising and resulting in distinct

waves of new infections globally. Since the emergence of the

Omicron B.1.1.529 variant, with its attributes of increased

transmissibility and reduced risk of mortality, coincident with

increasing global vaccine coverage, SARS-CoV-2’s contribution to

hospital admissions and overall mortality has been in decline

worldwide (3). Notwithstanding COVID-19 remains a highly

significant cause of death, TB has again become the leading single

infectious cause of death in 2023.

Several recent accounts have shown a detrimental effect of

SARS-CoV-2 on TB prevention and care, associating with an

increase in reported deaths from TB, a significant decrease in the

diagnosis and treatment of TB cases, and diversion of resources

allocated for essential TB services and research (4–6). This has now

led to a global call to re-establish essential TB services in the wake of

widespread disruptions caused by the COVID-19 pandemic.

There are clinical similarities between COVID-19 and TB. Both

present predominantly with respiratory signs and symptoms, yet both

can also have significant extrapulmonary manifestations (7). Disease

severity is greatly influenced by host factors and co-morbidities such as

diabetes mellitus, male sex, andHIV-1 co-infection. The purpose of our

review was to evaluate clinical evidence of interaction between SARS-

CoV-2 and Mycobacterium tuberculosis (Mtb) to determine if co-

infection worsens the presentation and outcome of either disease. In

addition, we focussed on evidence of potentially adverse immune

interaction between the infections that may contribute to worse

outcomes for those co-infected.
Method

We performed a PubMed search using keywords [SARS-CoV-2]

AND [tuberculosis] AND [Immune response], including publications

after January 2020, and MedRxiv search to include preprints. This

search delivered 248 publications, which was reduced to 107 abstracts,

based on presentation of original clinical, epidemiological, or

experimental data, excluding most reviews and viewpoints. Authors

evaluated abstracts to include data specifically investigating co-

infection prevalence, the impact, acquired and innate immune

responses with SARS-CoV-2 and Mtb in humans and animals,

immunopathological responses in co-infection and/or trials and

investigations of potential BCG protection against SARS-CoV-2. Of

the 248 articles identified, 107 abstracts were evaluated and 39 were

included (See Supplementary Text 1 for list of articles used in

this review).
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Results and discussion

Impact of TB on COVID-19 outcomes
and vice versa

The COVID-19 pandemic caused global disruptions to health

services, with well documented negative impacts on Mtb infected

patients and TB-related services, not limited to reduced reporting of

active TB cases, difficulty in adequate access to healthcare and

health services being overwhelmed by acute COVID-19 cases (1, 4,

5). Co-infection is reported globally with several studies pointing

towards increased risk of mortality for co-infected individuals,

however studies from high- and low-income countries appear to

reflect a marked difference in outcomes (8–12).

Early observational studies of SARS-CoV-2 andMtb co-infected

patients did not suggest TB was a major contributor to increased

risk of death in COVID-19 patients, but rather suggested that

SARS-CoV-2 infection contributed to a worsening of TB

prognosis and/or TB-related death (13, 14). These studies

originated from high-income countries with small sample sizes.

Motta et al. (14) reviewed eight cases of co-infected patients in

high income countries that died and found SARS-CoV-2 co-

infection worsened the prognosis of TB patients and contributed

to mortality, with most patients who died acquiring nosocomial

SARS-CoV-2 infection. Conversely, an early observational study

from China found that patients with asymptomatic latent TB

infection (LTBI) or symptomatic active TB were not only

potentially more susceptible to SARS-CoV-2 infection, but

COVID-19 disease may also progress more rapidly and be more

severe in these individuals (15). Although this study was small with

only 13 SARS-CoV-2/Mtb co-infected cases, these findings were

later supported by large studies from Africa performed in settings of

high prevalence of HIV/TB co-infection. These studies surmised

that current and previous TB associated with increased COVID-19-

related death and were an independent risk factor for mortality (8,

12, 16).

A recent meta-analysis examined the impact of TB on COVID-

19 severity and found that overall, COVID-19 patients with TB

tended to have an increased risk for more severe disease compared

to those without TB (OR = 1.56, 95% CI: 1.13–2.16) (17). As most of

the included studies were from Asia, especially from China, the

potential generalisability of the findings could be determined

through further meta-analyses.
Occurrence of co-infection

Dual presentation was extensively reported early in the

COVID-19 pandemic, with TB and COVID-19 co-diagnosis rates

ranging between one to four percent (12) although this may be an

under ascertainment. A recent evaluation of confirmed co-infected

cases reported the prevalence of TB in confirmed COVID-19

patients was 1.1% higher than most reported prevalence in Africa

and Asia (18).
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Underreporting of SARS-CoV-2 infection, specifically from

countries in Africa and other low-income countries, is highly

plausible. A study from Zambia identified significant underreporting

of COVID-19-related deaths by post-mortem testing of patients (9).

They found that most cases died whilst living in the community, where

testing facilities were sparse, as opposed to in-hospital deaths. There

was evidence of insufficient testing even in hospitals and, despite

patient symptoms suggestive of typical COVID-19 disease, SARS-

CoV-2 infection was not confirmed (9). Challenges with COVID-19

diagnostic testing and data are not unique to Zambia and have

contributed to underreporting in several other African countries.

Bradshaw et al. analysed the reported excess deaths data in South

Africa during the COVID-19 pandemic and found a near 3-fold

increase in excess death from natural causes within timelines

corresponding to the peaks of SARS-CoV-2 infection rates,

suggesting there was considerable underreporting of SARS-CoV-2

associated deaths (19).

With significant underreporting of SARS-CoV-2 infection in

countries with a high TB burden, and decreased reporting of active

TB cases in 2020 and 2021 (1), co-infection may also have been far

more common than reported. A recent observational study

examined the clinical presentation of COVID-19 in an African

setting, describing the impact TB and/or HIV-1 infection had on

patients admitted with COVID-19 (16). This study included 104

adults, of which 14% had active TB and found clinical features

suggestive of either COVID-19 or TB. Chest X-rays in patients with

confirmed co-infection were more likely to be classified as non-

COVID-19 like, irrespective of HIV status, with a small number
Frontiers in Immunology 03101
having radiological features predominantly suggestive of TB.

Although the risk of death due to SARS-CoV-2 infection could

not be specifically evaluated, 30/104 (29%) enrolled COVID-19

patients died and 6/15 (40%) of those were co-diagnosed with

TB (16).

This study highlighted an important clinical lesson,

emphasising that co-infection should be investigated in patients

with typical TB presentation in settings with high prevalence of TB

(16). This sentiment is echoed by numerous studies reporting

similar presentation of signs and symptoms consistent with co-

infection across various settings (10, 20) [Summarised in Table 1].
Similarities and differences in the immune
response to Mtb and SARS-CoV-2

Both SARS-CoV-2 and Mtb are inhaled as a consequence of

infectious aerosols and droplets produced by an infected person. In

the case of Mtb, a spectrum of host immunological responses, both

innate and acquired, with or without T cell priming either clear the

mycobacteria or result in an established Mtb infection. Risk and

incidence of infection and disease progression vary greatly depending

on population demographics, co-morbidities and environmental

factors (21). To establish infection, Mtb must overcome the robust

physical barriers of the airway, to reach the lung where alveolar

macrophages, neutrophils and dendritic cells are infected, activated

and subsequently recruit innate and adaptive lymphocyte populations

to aid bacterial containment (22).
TABLE 1 Clinical studies of TB and COVID-19 co-diagnosis.

Du Bruyn et al. (16) Tadolini et al.
(20)

Stochino et al.
(10)

Yu Chen et al. (15)

Country income Low High High Middle

Co-infected cohort 15 (Active TB) 49 (Active TB) 20 (Active TB) 13 (IGRA +)

Signs and symptoms Either suggestive of COVID-19 or TB - Fever 32/48
- Dry cough 27/48
- Dyspnoea 17/48

- Fever 12/20
- Cough 9/20
- Dyspnoea 3/20
- None 3/20

More rapid development of
symptoms in co-infection

Chest radiographic
features

- 6/14 Classic COVID-19
- 5/14 non-COVID-19-like
- 3/14 Indeterminate

- Typical COVID-19
in 21/49
- TB-related lesions in
23/49

Majority showed no
radiological signs of
COVID-19 (16/20)

TB calcification in 3/13

Lymphopenia Exacerbated N/A 13/20 N/A

Inflammatory
markers

Highest WCC in co-infected patients compared to
COVID-19 alone.

Lowest lymphocyte counts in patients with TB,
HIV and COVID-19.

N/A 19/20 D-dimer >250
(5/20 >2000)

11/20 raised ferritin

N/A

Time from TB
diagnosis to SARS-
CoV-2 detection

Majority (9/15) were simultaneous.
(Within 5 days)

Variable,
SARS-CoV-2

preceded TB in 14/49
cases

Median time: 30 days TB diagnosed retrospectively in
confirmed COVID-19 patients

Conclusion 1. TB should be suspected in all COVID-19
patients at hospital admission.

2. TB may negatively impact the immune
response to SARS-CoV-2, specifically in relation

to antibody and T-cell responses

COVID-19 impact on
TB pathogenesis not

established.

Modest impact of
COVID-19 on active TB

Mtb infection might increase
susceptibility to SARS-CoV-2, with

increased risk of severity.
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Interferon-g (IFN-g) activation of alveolar macrophages is the

central component of the immune response to Mtb infection.

Activation of autophagy results in phagosome maturation and an

increase in its acidification which leads to Mtb killing and is a

fundamental process Mtb inhibits to maintain its infectious niche

(23). Natural killer (NK) cells play a role by recognising and lysing

Mtb infected macrophages, increasing IFN-g production and

further secreting cytokines to enhance recruitment of CD8+ T

cells and NK T cells. This contributes to the characteristic

granuloma formation, consisting of macrophages, neutrophils,

Langhans epithelioid giant cells and those formed by fusion of

macrophages, surrounded by lymphocytes and a fibrotic cuff (21).

Alveolar macrophages use MHC class II molecules to present

antigens to CD4+ T cells that are on the outer border of the

granuloma, increasing cytokine secretion - notably IFN-g and

tumour necrosis factor (TNF). This will further activate the

innate immune response and assist with T cell differentiation and

other lymphocyte responses (21, 23). Granuloma morphology and

fate are crucial determinants of infection outcome.

SARS-CoV-2 causes an acute infection, with most patients

developing symptoms within five to six days after exposure. It

predominantly affects the respiratory system; however other organ

systems can also be involved. Clinical presentation varies from

asymptomatic to severe disease, with symptoms generally being

non-specific and includes coughing, fever, headache, and myalgia.

SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2)

receptors to enter target cells. ACE2 can be found in multiple

cells, more specifically in lung epithelium, enterocytes, renal and

myocardial cells, and oral mucosal epithelium (24).

Whilst ACE2 was first identified as the cell surface receptor for

SARS-CoV-2 infection, L-SIGN and DC-SIGN C-type lectins

receptors present on various phagocytes and Glucose-regulated

protein 78 (GRP78) which translocate to the membrane can also

recognise SARS-CoV-2. Binding to receptors is facilitated by

proteolytic activation of SARS-CoV-2 S protein by furin-like

proteases, transmembrane protease, serine 2 (TMPRSS2) and

cathepsin L, whilst viral endocytosis is mediated by clatherin (25–

30). Once intracellular, immune cells trigger signalling cascades

either by direct endosomal TLR recognition of viral single-stranded

(ss)RNA in cells such as plasmacytoid dendritic cells or cytosolic

sensing of double-stranded (ds)RNA during viral replication (31).

The signalling cascade that results from this recognition triggers

transcription factor activation and the production of type I and III

IFN and other pro-inflammatory cytokines and chemokines.

However, the virus is adept at subverting host IFN responses,

leading to lower levels of these cytokines, particularly during

severe COVID-19 (32). Type I IFN pathway is important for

antiviral responses, and it also plays a key role in TB. Our search,

however, did not reveal studies that had investigated this in depth

and this important interplay should form the basis for

future research.

Alveolar macrophages play a critical role in responding to

SARS-CoV-2 in the lungs, but single-cell and spatial

transcriptomic studies of BALF and post-mortem lung samples

identified depletion of this cell type in the lungs of severe COVID-

19 patients as a contributing factor to immunopathology (33).
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Single cell RNA sequencing (scRNA-seq) has also revealed that

profound dysregulation of myeloid cells, specifically increased

circulation of various neutrophil subsets, including immature low

density neutrophils, immature monocytes or progenitor cells, and

myeloid-derived suppressor cells as hallmarks of severe COVID-19,

through their contribution to creating an inflammatory cytokines

storm (34–37). NK cells exert antiviral activity by clearing infected

cells in response to signalling events triggered by SARS-CoV-2

recognition (38).

Clinical markers of COVID-19 deterioration and acute

respiratory distress syndrome (ARDS) include elevated lactate

dehydrogenase (LDH), C-reactive protein (CRP), interleukin-6

(IL-6), D-dimer, white cell count (WCC), high-sensitivity

troponin I, platelet count and renal markers (39). Significant

lymphopenia and neutrophilia, creating an elevated neutrophil:

lymphocyte ratio is found in critically ill patients (40, 41); a

marker not normally associated with viral infection but also

associated with severe TB (42). Specific plasma markers: IL-1b,
IL-1RA, IL-7, IL-8, IL-9, IL-10, basic FGF, G-CSF, GM-CSF, IFN-g,
CXCL10, CCL2, CCL3, CCL4, PDGF, TNF, and VEGF, show an

increased presence in both ICU and non-ICU patients when

compared with healthy individuals (43). ICU-admitted patients

can also show increased concentrations of G-CSF, CXCL10,

CCL2, CCL3, and TNF, hallmarks of the “cytokine storm”

associated with COVID-19 disease severity (43).

Having noted an unusual spike in indeterminate Mtb IFN-g
release assay (IGRA) results in their facility, Ward et al.

subsequently investigated confirmed SARS-CoV-2-positive

hospitalised patients and IFN-g production. Indeterminate

QuantiFERON-TB Gold Plus results in COVID-19 patients,

indicative of T cell anergy (positive control PHA-induced IFN-g
production below threshold) seemed to have decreased survival,

with higher serum IL-6 and IL-10 levels, however these differences

were not statistically significant (44). They also established that this

decrease in IFN-g was not related to lymphopenia or

immunosuppressive therapy.
Impact of Mtb and SARS-CoV-2 co-
infection on reciprocal immune memory
and innate immune responses

Using a rapid, simplified whole blood-based multiparameter

assay to quantify and phenotype SARS-CoV-2-specific T cells, Riou

et al. examined SARS-CoV-2 antigen-specific CD4+ T cell

responses in relation to disease severity in 95 hospitalised

COVID-19 patients in South Africa, 38 of whom were HIV and/

orMtb co-infected (45). They found the attributes of SARS-CoV-2-

specific CD4+ T cells, and not necessarily the magnitude, were

associated with disease severity, characterised by reduced

proliferation capacity, and enhanced HLA-DR expression, poor

polyfunctional potential and increased proportions of TNF-single

positive cells. On the contrary, in non-COVID-19 comparator

patients, most SARS-CoV-2-reactive CD4+ T cells were

distributed among triple functional cells (IL2+IFN-g+TNF+) and
cells co-producing IFN-g and TNF.
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In the same study, CD4+ T cell depletion resulting from HIV

infection, related to suboptimal T cell and humoral immune SARS-

CoV-2 responses. In their HIV/TB co-infected COVID-19 cohort

consisting of eight patients, only three patients had an antibody

response to SARS-CoV-2, and only two had a detectable CD4+ T

cell response. Total CD4+ T cell frequency was much higher in

SARS-CoV-2 responders compared to non-responders.

Furthermore, in the HIV+ cohort, the frequency of total CD4+ T

cells was associated with the magnitude of SARS-CoV-2-specific

CD4+ T cells. These data suggest that lymphopenia impairs the

SARS-CoV-2-specific immune response (45).

When considering the impact of COVID-19 on Mtb-specific

responses, it was shown that patients with COVID-19 had a

significant 5-fold reduction in the frequency of Mtb-specific

CD4+ T cells compared with healthy pre-pandemic LTBI

controls, and 2-fold reduction in COVID-19/HIV+ patients

compared to HIV+ pre-pandemic controls. As an intact T cell

response is essential to control Mtb infection, a decline in Mtb-

specific CD4+ T cells could therefore affect the ability of the host

to control either existing latent or new Mtb infection (45). Mtb-

specific CD4+ T cell activation, previously shown to distinguish

active and subclinical TB from those with latent infection, was also

found to have a trend towards higher activation in COVID-19/TB

patients compared to TB patients without COVID-19, whilst there

was no elevation in Mtb-specific CD4+ T cells in COVID-19

patients not co-presenting with TB. Together, this suggests that

whilst acute COVID-19 does not immediately reactivate LTBI to

subclinical/active disease, it contributes to greater Mtb-specific T

cell activation which may exacerbate existing subclinical/

active disease.

Looking further into the interaction with LTBI, Rajamanickam

et al. (46) examined seropositive, asymptomatic SARS-CoV-2-infected

individuals in India and compared immune responses in IGRA-

positive (LTBI) and -negative individuals. They showed IGRA-

positive individuals had higher levels of humoral, cytokine and acute

phase responses compared to IGRA-negative individuals, and thus

concluded that LTBI could significantly affect systemic inflammation,

as well as cytokine responses and enhanced neutralising antibody

capacity in SARS-CoV-2-infected individuals (46). The same

investigators also evaluated the effect of SARS-CoV-2 seropositivity

on antigen-specific cytokine and chemokine responses in LTBI using

QuantiFERON Gold In-tube assay plasma (47). They showed that

SARS-CoV-2 seropositive individuals with LTBI had increased

cytokine concentrations in both unstimulated and Mtb antigen-

stimulated tubes, when compared to those who were SARS-CoV-2

seronegative. These differences were not observed in IGRA-negative

individuals who were SARS-CoV-2 seropositive. The authors conclude

that both baseline and Mtb antigen-induced cytokine responses are

augmented by SARS-CoV-2 sensitisation, suggesting prior SARS-CoV-

2 infection augments the immune response to Mtb in LTBI (47).

A highly cited study by Petrone et al. (48) concluded that active

TB disease can negatively affect a patient’s ability to generate a

SARS-CoV-2-specific immune response, by looking specifically at T
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cell IFN-g production in their cohort of co-infected participants.

Whole-blood from TB/COVID-19 patients showed the lowest

IFN-g secretion in response to SARS-CoV-2 peptide stimulation

compared with COVID-19 patients and to LTBI/COVID-19

patients. They showed that COVID-19 patients with either latent

or active TB, still had the ability to respond toMtb-specific antigens.

However only 20% of active TB patients with COVID-19 had a

positive response, compared to 64% of COVID-19 patients with

LTBI, indicating that active TB depresses the COVID-19-specific

host immune response (48), supporting the finding by Riou et al. in

COVID-19 with TB/HIV.

A study by Najafi-Fard et al. (49) looked at 119 study

participants and compared the plasma immune profile of the 14

TB/COVID-19 co-infected cohort, to the COVID-19 only patients,

TB only patients, or 20 healthy controls using a 27-plex multiplex

assay. They found that levels of circulating TNF had the strongest

association with TB/COVID-19 co-infection compared with

COVID-19. They also found that co-infected patients showed a

reduced SARS-CoV-2-specific response for several pro-

inflammatory cytokines and/or chemokines, anti-inflammatory

cytokines, and growth factors and that co-infection negatively

affected the Mtb-specific response (49).

Overall, these results (summarised in Table 2), indicate that T

cell responses to SARS-CoV-2 and Mtb are both dysregulated by

each co-infecting pathogen, resulting in decreased defensive

capabilities against both Mtb and HIV-1 in COVID-19 patients,

potentially contributing to more unfavourable outcomes and higher

mortality in some cases.

Sheerin et al. (50) assessed transcriptional overlap between host

immune responses to TB and COVID-19 by profiling scRNA-seq

immune cell and severity signatures on bulk RNA-seq data from TB

patients across the spectrum of disease, generating “disease risk scores”

based on the enrichment of each signature. This analysis indicated that

the highest disease risk scores in TB patients were associated with

monocyte and neutrophil signatures from severe COVID-19 patients.

By summarising gene expression changes at the immunological

pathway level for TB, COVID-19 and influenza (as a control for

other forms of respiratory infection), it was also shown that IFN-g and
TNF signalling was similarly enriched in COVID-19 and TB patients,

but not influenza. Finally, they validated the detrimental interaction

between COVID-19 and TB on innate immune cells by comparing the

impact of co-culturing human monocyte-derived macrophages

(MDM) in the inflammatory milieu from Mtb infected MDM on

MDM susceptibility to SARS-CoV-2 infection and inflammatory

response. They found co-cultured MDM were more susceptible to

SARS-CoV-2 infection and more pro-inflammatory, with increased

IFN-a, IFN-g, TNF, IL-1b and TMPRSS2 expression.

This analysis of blood transcriptional responses from patients

and asymptomatic infected persons was followed up by a more

thorough exploration of direct co-infection of blood using scRNA-

seq; Sheerin et al. (51) infected whole blood from healthy COVID-

19 vaccinated donors ex vivo with Mtb, SARS-CoV-2, or both

pathogens simultaneously and quantified single cell transcriptome
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changes, relative to uninfected control samples, across immune

cells, 24 and 96 hours post-infection. Distinct neutrophil and

monocyte clustering was observed between the three infection

conditions. The strongest synergistic co-infection responses were

associated with IFN-g and TNF pathway enrichment 24 hours post-

infection. SARS-CoV-2 infection, in the absence of Mtb infection,

was associated with enrichment of extrinsic apoptotic signalling,

which was negatively regulated by Mtb co-infection, resulting in

enhanced cell survival in co-infected verses SARS-CoV-2-only

infected cells. SARS-CoV-2 also showed unique enrichment of ab
T cell activation and differentiation not seen in Mtb infection.
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TB vaccination with BCG and protection
against SARS-CoV-2

The TB vaccine Mycobacterium bovis BCG is known to induce

both cellular and humoral immunity in vaccinated individuals (52).

The rationale for the potential beneficial effects of BCG in the

context of SARS-CoV-2 infection was proposed to include

protection via the induction and improved production of pro-

inflammatory cytokines through “trained immunity” (53). BCG is

thought to provide enhanced protection and/or vaccine

responsiveness against a range of pathogens, including Candida
TABLE 2 Immunological response interactions to Mtb and SARS-CoV-2 in co-infected persons.

Study
(reference)

Mtb infection effect on SARS-CoV-2 specific immune
responses

SARS-CoV-2 effect on Mtb-
specific immune responses

Other find-
ings

Riou et al. (45) Patients co-infected with
HIV and active TB

showed less capacity to
form SARS-CoV-2

antibodies – however this
was not associated with
increased mortality in

their cohort.

Active TB co-infection
changed the functional
abilities of SARS-CoV-
2–specific CD4+ T cells
and caused a reduction
of their polyfunctional

abilities.

HIV or TB co-
infection had

minimal impact on
the memory and

activation profile of
SARS-CoV-2

specific CD4+ T
cells.

Patients with
confirmed SARS-
CoV-2 had a

reduction in Mtb-
specific CD4+ T cell

responses.

Less severe disease
showed improved
capacity of SARS-
CoV-2–specific
CD4+ T cells to
co-express IFN-g,
TNF, and IL-2.

Patients with pre-
existing

lymphopenia
showed an impaired
immune response to

SARS-CoV-2.

Petrone et al.
(48)

TB-COVID-19 patients
showed the lowest
quantitative IFN-g
response to CD4-S*

compared to COVID-19
patients and LTBI** -
COVID-19 patients.

A positive CD4-S
response was found in
55.6% COVID-19-
patients and 63.6%
LTBI -COVID-19-

patients as opposed to
only 20% of active TB-
COVID-19-patients.

Active TB depresses
the COVID specific
response: 20% TB-
COVID-19-patients

had a positive
response, vs 63.6%
LTBI-COVID-19-

patients.

The IFN-g response
to Mtb-antigens was
higher in active TB
and latent TB co-
infected COVID-19

patients, when
compared to COVID-

19 only patients.

COVID-19-
patients, either
with latent or

active TB, retain
the ability to

respond to Mtb-
specific antigens.

Cortisone treatment
did not seem to

have an impact on
the ability to

respond to SARS-
CoV-2 antigens.

Rajamanickam
et al. (46)

LTBI and SARS-CoV-2
co-infection was

associated with higher
levels of SARS-CoV-2
specific IgM, IgG and

IgA antibodies.

Co-infected patients
had enhanced

neutralisation activity
compared to SARS-

CoV-2 positive patients
with LTBI

Elevated plasma IFN-
g, IL-2, TNF, IL-1a,
IL-1b, IL-6, IL-12, IL-
15, IL-17, IL-3, GM-
CSF, IL-10, IL-25, IL-

33, CCL3 and
CXCL10 in co-
infected patients

Significantly
higher levels of C-
reactive protein,

alpha-2
macroglobulin,

VEGF and TGF-a

Rajamanickam
et al. (47)

LTBI +/IgG + *** had
increased baseline
levels of pro-
inflammatory
cytokines &

chemokines, and
altered levels of anti-

inflammatory
cytokines

LTBI +/IgG + had
elevated

TB- antigen
stimulated levels

of pro-
inflammatory
cytokines and

chemokines, and
altered levels of

anti-
inflammatory
cytokines

No marked
differences in

mitogen stimulated
levels of pro- and
anti- inflammatory

cytokines or
chemokines

Najafi-Fard
et al. (49)

Decreased SARS-CoV-2
specific immune

responses in co-infected
patients compared to
COVID-19 alone,
specifically IFN-y,

CXCL10, CCL2, CCL3,
CCL4, IL-1RA, IL-10

Co-infected patients
had elevated TNF,

CCL4, IL-9 compared
to COVID-19 only

Patients with co-
infection displayed a
negative effect on
their Mtb-specific

responses

Co-infected
patients had
higher IL-1b,

TNF, IL-17A. IL-5
compared to Mtb
infection only.

Higher levels of
TNF and IL-9
suggested co-
infection and

authors speculate it
can help

discriminate TB-
COVID-19 from
COVID-19 alone.
*CD4-S: peptide megapool consisting of 253 15-mers overlapping by 10 amino acids, spanning the entire spike protein of the Wuhan-Hu-1 strain.
**Latent Tuberculosis Infection (LTBI).
*** LTBI individuals with SARS-CoV-2 seropositivity.
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albicans, Staphylococcus aureus, Streptococcus pneumoniae,

Haemophilus influenzae, vaccinia virus, Bordetella pertussis, and

yellow fever virus (54–56); this protection is provided primarily

through enhancing monocyte and NK cell production of IL-6, IL-

1b, TNF and IFN-g, and cytokine-induced antigen-specific memory

T and B cell activation. BCG enhances innate cytokine production

to non-specific pathogens through epigenetic modification and

chromatin relaxation at the promoters of these genes, facilitating

faster and enhanced cytokine production (57).

There were several suggestions early in the COVID-19

pandemic of epidemiological evidence that prior BCG vaccination

correlated with protection against COVID-19 (58), although the

evidence became quite mixed as the pandemic progressed (59).

Several randomised control trials (RCTs) were set up to test the

efficacy of BCG to prevent or decrease the severity of COVID-19 but

overall little evidence to support the use of BCG for this purpose has

emerged. (A list of all BCG strains used in each of the references is

provided in Supplementary Text 2).

A phase III multicentre RCT testing a genetically modified BCG

vaccine VPM1002 suggested a prophylactic effect against the

development of severe disease in the elderly (60). Another RCT

in the elderly reported a reduced rate of new infections after

vaccination with standard BCG (61), whereas a larger RCT in the

elderly reported no effect on the incidence of disease but noted

improved cytokine responses to viral infection (62). An RCT

conducted in high-risk adults in India reported that standard

BCG reduced the incidence and severity of COVID-19 (63), while

a multi-dose BCG phase II/III in diabetic adults claimed an efficacy

of 92% for preventing COVID-19 with this regimen (64). Most RCT

were conducted in healthcare workers who were among those with

the highest risk of exposure to and infection with SARS-CoV-2: an

RCT in Brazil reported that re-vaccination with BCG Moscow did

not lead to statistically significant reduction in COVID-19

incidence (65), while RCTs conducted in Poland (66), the

Netherlands (67) and South Africa (68) also reported no benefit

in healthcare workers. A study using samples collected from an

Australian RCT investigating the BCG Denmark vaccine in

healthcare workers preliminarily reported modulation of
Frontiers in Immunology 07105
cytokines IL‐6, TNF and IL‐10 and CD4+ and CD8+ T cells

upon ex vivo stimulation of PBMC, suggesting that this may

protect against severe COVID-19 (69), but the same trial recently

reported no prevention or reduction in severity of COVID-19 (70).

A meta-analysis conducted using these trials revealed no decrease in

incidence or hospitalisation from COVID-19 (71).
Experimental models of Mtb
and SARS-CoV-2 co-infection
and BCG vaccination

Animal studies evaluating immunological responses can

contribute to our understanding of host-pathogen interactions

and interactions between multiple pathogens within the same

host. As summarised in Table 3, Rosas Meija et al. (72) studied

mice and the effects of Mtb infection on the immune response to

SARS-CoV-2. They used human ACE2 transgenic mice that were

chronically infected with Mtb and found these mice to be resistant

to secondary infection with SARS-CoV-2. The authors speculated

this might be due to the proinflammatory lung environments

created by Mtb that are not conducive to SARS-CoV-2

proliferation. Furthermore, SARS-CoV-2 infection did not affect

Mtb burden in their experiments.

Hilligan et al. (73) also studied human ACE2 transgenic mice to

demonstrate that intravenous, but not subcutaneous, inoculation

with BCG protected them against lethal challenge with SARS-CoV-

2, associated with reduced cytokine production, less tissue

pathology and decreased inflammatory cell recruitment, and that

was only partially due to the significantly reduced viral load. They

speculated that this protection was associated with changes in the

composition and function of the pulmonary cellular compartment,

likely induced by BCG, providing an experimental model for

understanding how a host’s resistance might be promoted by

non-specific stimulation of the pulmonary immune response. The

protective benefits in this model are in contrast to the lack of clinical

efficacy found in RCTs (71). Such discordance may suggest mouse

models ofMtb/SARS-CoV-2 co-infection may not reflect the course
TABLE 3 Murine studies.

Name
of
study

Major findings Specific findings

Rosas
Mejia
et al. (72)

Mice with Mtb infection were not susceptible to the consequences of SARS-CoV-2 disease. Mtb-infected mice did not show an increased burden of TB
in lung tissues, as well as no difference in liver or spleen
after being challenged with SARS-CoV-2, when compared
to mice who were SARS-CoV-2 negative.

Hiligan
et al. (73)

Intravenous BCG injection protects mice against lethal challenges with SARS-CoV-2. - Less tissue pathology
- Decreased inflammatory cell, and cytokine production.
(Not only due to associated reduced viral load)

Mambelli
et al. (74)

Using rBCG expressing domains of SARS-CoV-2 nucleocapsid and spike proteins in mice,
one dose of rBCG-ChD6 boosted with the recombinant nucleocapsid and spike chimera
(rChimera) elicited the highest anti-Chimera total IgG and IgG2c Ab titres with neutralising
activity against SARS-CoV-2, compared with control groups.

This vaccination regimen:
- induced IFN-g and IL-6 production in spleen cells
- decreased viral load in lungs (after SARS-CoV-2
challenge)
- No viable virus detected in mice
- Decreased lung pathology when compared with control
groups.
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of human co-infection or could be due to differences in the route of

BCG vaccination, as seen in the mouse study discussed above where

only the IV route of BCG administration induced protection against

a lethal dose of SARS-CoV-2. However, apart from the route of

administration (intravenous vs subcutaneous), other factors such as

the type of BCG strain or the genetic background of the mouse,

might also contribute.

More recently, Mambelli et al. (74) constructed a recombinant

BCG (rBCG) that expressed domains of the SARS-CoV-2

nucleocapsid and spike proteins (termed rBCG-ChD6). Using

ACE2 transgenic mice, they found that a single dose of rBCG-

ChD6 boosted with the recombinant nucleocapsid and spike

chimera (rChimera) adjuvanted with alum, resulted in the highest

anti-Chimera total IgG and IgG2c Ab titres with neutralising

activity against SARS-CoV-2 (specifically the Wuhan strain),

compared to their control groups. Furthermore, following SARS-

CoV-2 challenge, this vaccination regimen induced IFN-g and IL-6

production in spleen cells and reduced viral load in the lungs.

Moreover, no viable virus was detected in mice immunised with

rBCG-ChD6 boosted with rChimera, which was associated with

decreased lung pathology when compared with control groups. This

study showed the possibility of a prime-boost immunisation system

based on an rBCG expressing a chimeric protein derived from

SARS-CoV-2.

Mouse models offer numerous useful immunological tools and

can be genetically modified. Among mouse strains, the C3HeB/FeJ

mouse is the only strain reproducing the pathophysiology of TB,

with comparable granuloma encapsulation (75). Although not

discussed here, other models, like hamsters and ferrets, and Non-

Human Primates (NHP) are also incredibly useful when

investigating human pathologies.
Conclusion and consequences

Diversion of healthcare services during the COVID-19

pandemic undoubtedly had an adverse effect on the ongoing TB

epidemic. Acute COVID-19 and TB can be coincident and the

occurrence of such co-infections in areas of high TB prevalence may

have been underestimated. Previous or current TB is a risk factor for

death from SARS-CoV-2. Ex vivo studies of blood cells in acutely

infected humans suggest the T cell response to Mtb may be

modulated by SARS-CoV-2: conversely coincident TB may impair

immune responses to SARS-CoV-2 and exacerbate inflammatory

responses through enhanced innate and adaptive immune

activation. Despite animal studies and epidemiological evidence

pointing to potential protection against SARS-CoV-2 by BCG,

efficacy has not been borne out in several large-scale clinical
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evaluations. Further studies of the long-term consequences of

SARS-CoV-2 infection on the immune response in, and outcome

of latent TB are warranted.
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Anna Allué-Guardia1*, Jordi B. Torrelles1,2* and Alex Sigal3,4,5*

1Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States,
2International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical
Research Institute, San Antonio, TX, United States, 3Africa Health Research Institute, Durban, South
Africa, 4Centre for the AIDS Programme of Research in South Africa, Durban, South Africa, 5School of
Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
Mycobacterium tuberculosis (M.tb) and SARS-CoV-2 are both infections that can

lead to severe disease in the lower lung. However, these two infections are

caused by very different pathogens (Mycobacterium vs. virus), they have different

mechanisms of pathogenesis and immune response, and differ in how long the

infection lasts. Despite the differences, SARS-CoV-2 and M.tb share a common

feature, which is also frequently observed in other respiratory infections: the

burden of disease in the elderly is greater. Here, we discuss possible reasons for

the higher burden in older adults, including the effect of co-morbidities,

deterioration of the lung environment, auto-immunity, and a reduced antibody

response. While the answer is likely to be multifactorial, understanding the main

drivers across different infections may allow us to design broader interventions

that increase the health-span of older people.

KEYWORDS

SARS-CoV-2, Mycobacterium tuberculosis, COVID-19, TB, elderly, immunity,
infectious diseases
Introduction

The older adult population (> 60 years old) is projected to double to 2 billion by 2050

(1, 2). Natural lung aging is associated with progressive changes at both the cellular and

organ level, including cellular senescence and chronic inflammation among others (3). This

causes a decline in lung function and impaired immunological responses (4–7), which

would be expected to influence the response to respiratory infections.

Coronavirus disease 2019 (COVID-19) and tuberculosis (TB) are both predominantly

respiratory diseases but do not have a great deal in common beyond that. COVID-19

results from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a

virus that in most people persists for a few weeks or less and is cleared by the adaptive

immune response. Protection against symptomatic SARS-CoV-2 infection correlates

strongly with the levels of neutralizing antibodies against the virus (8). In support of

this, the Omicron variant of SARS-CoV-2 was able to extensively re-infect people with pre-

existing immunity (9) because it had high-level escape from neutralizing antibodies elicited
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by previous infection or vaccination (10). In contrast, TB, caused by

Mycobacterium tuberculosis (M.tb), can persist indefinitely in the

infected individual (11, 12). Further, TB generally follows a bimodal

age pattern, with higher risk of severe disease in children below 5

years of age and adult individuals of > 30 years old (13, 14), while

severe COVID-19 is more common in older adults and pediatric

COVID-19 deaths are relatively rare (15). These differences may be

due to the fact that the immune responses in TB and COVID-19

are different.

Despite the differences, these two infections share common

features: first, both are strongly affected by immunosuppression

(e.g. during HIV infection), indicating that their control strongly

depends on T cell and/or antibody responses, which are

compromised by the CD4 T cell depletion and dysregulation

during HIV infection (16–24). Indeed, TB is one of the cardinal

diseases leading to the death of people living with HIV (PLWH) in

the pre-ART era (25, 26). On the other hand, the most striking effect

of HIV co-infection in COVID-19 happens in advanced HIV

disease (defined as a CD4 T cell counts of less than 200 cells per

microliter), where prolonged SARS-CoV-2 infection can last for

months (27–33), leading to extensive SARS-CoV-2 genome

evolution. A second common feature, which will be the focus of

this review, is the remarkably higher disease burden in the elderly

population (34). This is also true for most respiratory infections

such as respiratory syncytial virus (35, 36), influenza (37, 38), and

even rhinovirus, which is usually a mild upper respiratory tract

infection, but can become a more severe lower respiratory infection

in the elderly, very young children, or immunocompromised

people (39).

Globally, COVID-19 has a mortality rate of about 1% (40),

although this is influenced and fluctuates depending on many

factors, including phenotypic and genotypic host factors,

host immunity, and SARS-CoV-2 variants, among others. The

elderly are at a higher risk of having more severe disease, which

manifests as a lower respiratory tract infection that may require

hospitalization, intensive care, and ventilation. It also results in

higher mortality (41–43). The increase in the probability to die from

COVID-19 as a function of age is dramatic: relative to the under-55

age group, mortality increases 8-fold in the 55-64 age group and 62-

fold in the over 65 age group (43).
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In contrast to the 1% mortality rate from COVID-19, mortality

from TB disease is roughly a quarter of the TB incidence (44). That

is, about a quarter of people diagnosed with TB disease will die.

However, most people who are exposed to M.tb do not progress to

symptomatic disease and instead have subclinical or asymptomatic

infection for years. In this case, the infection is controlled by the

host immune response (45, 46). In the elderly population, such

subclinical or asymptomatic infection has a higher chance to

develop into TB disease (47–49). Indeed, more than 90% of TB

cases in older individuals result from reactivation of latent TB

infection (LTBI) (50). Elderly people that develop TB disease have

high mortality, mainly due to treatment failure. A recent report

evaluating data from four countries shows that the treatment

success rate among people with TB < 65 years old is 82% but

decreases among the older age groups to 76% in 65−74 year-olds,

65% in 75−84 year-olds, and 46% in ≥85 year-olds (51).

There are multiple factors that may interact with each other and

potentially play a role in the higher disease burden in COVID-19 and

TB in the elderly, and their contribution may differ between the two

infections. These include age-associated inflammation (inflammaging),

a less effective immune response due to immunosenescense, and a

highly oxidized lung environment (Figure 1). Although observed less

frequently, other factors such as an age-related increase in

autoantibodies (autoimmunity) may play a role in higher COVID-19

severity in the elderly. In addition, increasing numbers of people living

with comorbidities in the elderly population may be particularly

important. These factors tend to arise at different times along the life

span (Figure 1). In the next sections, we outline examples for each of

these factors, including how theymay exacerbate COVID-19 and TB in

older individuals.
Inflammaging and
immunosenescence

The process of aging is associated with a decline in immune

functions marked by immunosenescence, resulting in increased

susceptibility to autoimmunity, malignancies, and infectious

diseases (4, 5, 52–58). Immunosenescence is relatively well

characterized in the adaptive immune system. Age-related
FIGURE 1

Factors associated with increased TB and COVID-19 disease burden with age across the life span. Darker red in bar denotes higher disease burden
and severity and numbers denote age. Created with BioRender.com.
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adaptive immune dysfunction is related to a lingering level of low-

grade inflammation, immune dysfunction, increased number of

memory T cells, and the loss ability of T cells to respond to antigens,

as well as irreversible T cell loss of proliferation capacity.

Interestingly, viral (e.g. SARS-CoV-2) and bacterial (e.g. M.tb)

infections can also increase the extent of immune senescence,

adding to the increased immune dysfunction and inflammation,

especially in the elderly population (reviewed in detail in (59)).

Senescence in the innate immune system, where innate

immunity is the first response to infection, is less well-

characterized. Evidence for macrophage senescence during aging

is supported by decreased pro-inflammatory responses of human

(60–64) and mouse phagocytes to lipopolysaccharide (LPS)

stimulation (65–70), which could be linked to age-related

alterations in Toll-Like Receptor (TLR) expression and/or

signaling which recognizes pathogen-associated molecular

patterns (65, 66, 71–73).

Still, cellular immunosenescence does not fully explain

increased circulating pro-inflammatory cytokines seen in elderly

people, non-human primates, and old mice (61, 74–76), or the

increased expression of pro-inflammatory genes with aging in

several organs (77–81). This has led to a second paradigm,

termed inflammaging, in which chronic, low-grade inflammation

develops with increasing age in tissues that are frequently exposed

to innate immune stimulation and oxidative stress (82, 83).

Inflammaging occurs in the human lung, with increased numbers

of macrophages and neutrophils in the lung alveolar lining fluid

(ALF) of elderly individuals, as well as increased levels of IL-6 and

IL-8 (84, 85). Specifically, IL-6 is the commonly used biomarker of

inflammaging (86). There is also increased p38 MAPK

phosphorylation and nuclear localization of NF-kB (87–89), a

critical regulator of inflammation. Resident alveolar macrophages

are more activated in the elderly (90–92) and have increased

production of pro-inflammatory cytokines in response to TLR

stimulation (93). Taken together, there is strong evidence that

chronic inflammation occurs in the lungs as we age.

How inflammaging affects M.tb and SARS-CoV-2 infection is

not completely understood. However, in both infections, a balanced

immune response is thought to be critical both for infection control

and to prevent immune system mediated damage. Tumor necrosis

factor (TNF), the upstream activator of the NF-kB system, is

elevated in inflammaging. High levels of TNF lead to reduced

control of M.tb through programmed cell necrosis of activated

macrophages via the mitochondrial-lysosomal-endoplasmic

reticulum signaling circuit (94–96). Since macrophages are the

primary host cells of M.tb as well as the most important line of

defense against this pathogen, macrophage death in turn increases

M.tb replication since the bacilli are able to robustly grow in the

dead infected cells (97).

Immunosenescence and inflammaging are also suspected to

contribute to severe COVID-19 in the elderly as well as to

persistence of symptoms following acute disease (98, 99). Severe

SARS-CoV-2 infection is characterized by a cytokine storm that,

combined with a dysfunctional immune response in the elderly,

leads to the accumulation of immune cells in the lungs and

overproduction of pro-inflammatory molecules such as IL-6 (a
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marker of inflammaging), resulting in more tissue damage (100–

102). High levels of pro-inflammatorymolecules (hyperinflammatory

syndrome) promote the survival of neutrophils via decreased

apoptosis (103); and persistent increased systemic levels of

neutrophils and monocytes in COVID-19 patients are associated

with increased disease severity (104). Age-associated dysregulation

and senescence of T-cells may also influence the immune response to

SARS-CoV-2 (105). As seen in HIV infection, CD4 T cell depletion

and dysregulation may lead to the inability to clear SARS-CoV-2

infection, most likely due to the inability to generate antibodies which

will effectively neutralize the virus (27). This would be expected since

CD4 T cells are critical to facilitate the antibody response to infection

(106). Lastly, SARS-CoV-2 infection might also increase chronic

inflammation in the elderly, resulting in a higher chance of long-

term sequelae even after viral clearance (long-COVID) (107). New

therapies targeting age-associated pathways may be critical to reduce

COVID-19 mortality and/or long-term sequelae in the aging

population (108).
Lung environment in the elderly in the
context of TB and COVID-19

Local inflammation and oxidation occur in the aging lung and

influences the ALF (109, 110). ALF is a surfactant which reduces

surface tension and allows the lung alveoli to expand. It also

functions in multiple ways in the innate immune response to

lung pathogens. Here we will focus on the ALF as an example of

how the lung environment can change with age and its impact on

TB and COVID-19.

ALF is generated, secreted, and recycled by alveolar epithelial type

II cells (ATII), and is essential for maintaining lung homeostasis (111,

112). ALF in elderly individuals degrades quickly and is not

regenerated efficiently because of ATII senescence. In addition, low-

grade chronic inflammation in old age is expected to alter ALF

component production and activity, due in part to biochemical

modifications because of the alveolar oxidation state. We and others

have shown that components of human ALF including collectins

(which bind pathogen surface oligosaccharides or lipids and mark

the pathogen for the innate immune response), surfactant protein (SP)-

A and SP-D, homeostatic hydrolytic activities (hydrolases), surfactant

lipids, and the complement system are critical elements of the innate

immune system during M.tb infection (113–115) and play important

roles in M.tb-phagocyte encounters (116–119). Indeed, SP-A

upregulates the expression of the mannose receptor in macrophages,

which in turn favorsM.tb survival within phagocytes. In contrast, SP-D

can directly bind M.tb clustering bacteria, favoring recognition and

uptake by phagocytes driving better control of the infection (110).

In a study defining the molecular composition of ALF in the

aging lung, our findings demonstrate that pro-inflammatory

cytokines are increased, SP-A and SP-D and complement

components are significantly increased but dysfunctional, ALF

hydrolases are decreased, and surfactant lipids are oxidized in

both mice and humans (109). Further, a recent quantitative

proteomic profiling of the lung environment of human adult vs.
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elderly ALF investigated molecular fingerprints, pathways, and

regulatory networks that characterize the alveolar space in old age

compared to younger individuals (120). ALF from elderly

individuals had significantly increased production of matrix

metalloproteinases, markers of cellular senescence, antimicrobials,

and proteins of neutrophilic granule origin, among others,

suggesting that neutrophils could be potential contributors to the

dysregulated alveolar environment with increasing age.

Consistent with reduced ALF functionality with age, M.tb

exposed to human ALF obtained from older adults showed

increased intracellular growth in macrophages and ATIIs (121–

123), as well as increased bacterial burden and lung tissue damage in

mice (121). In addition, M.tb exposed to ALF from healthy 18- to

45-year-old adults upregulated key cell envelope genes associated

with amino acid, carbohydrate, and lipid metabolism, as well as

genes associated with redox homeostasis and transcriptional

regulators, while M.tb exposed to ALF from 60+ year-old

individuals showed lower transcriptional responses (124). The

changes in ALF in aging support the concept that the pulmonary

environment can modify mucosal immune responses, thereby

increasing the susceptibility to pulmonary infections in the

elderly population.

How ALF influences SARS-CoV-2 infection is mostly

unknown. However, patients with severe COVID-19 sometimes

harbor IgA autoantibodies against pulmonary SP-B and SP-C,

blocking the function of the lung surfactant lipid layer and

potentially contributing to alveolar collapse and poor oxygenation

(125). Other studies indicate that levels of SP-D in blood could be

used as a biomarker for COVID-19 severity as a result of the

impairment of the pulmonary barrier caused by prolonged

inflammation (126). Still, how the levels, status, and function of

ALF components in the alveolar environment determine the

outcome of M.tb and SARS-CoV-2 infection and disease severity

of TB and COVID-19, respectively, still needs to be elucidated

in detail.
Reduced adaptive immune responses

The adaptive immune response is essential to control bothM.tb

and SARS-CoV-2. CD4 T cells are critical in the orchestration of

both the antibody and cellular adaptive immune response to

infections (106, 127, 128). For SARS-CoV-2, the strongest

correlate of protection against symptomatic infection is the level

of pre-existing neutralizing antibody immunity (8, 129). Thus,

SARS-CoV-2 neutralizing antibody levels are studied extensively

as a function of age. A complication of measuring neutralizing

antibody levels after infection is that higher disease severity elicits

higher antibody levels (130). However, it is possible to distinguish

between neutralizing antibody production capacity and disease

severity by measuring neutralizing antibody levels to SARS-CoV-

2 post-vaccination, with much of the data coming from

mRNA vaccines.

One of the first studies examining the neutralizing antibody

response to the Pfizer BNT162b2 mRNA vaccine against SARS-

CoV-2 found that the fraction of people with a detectable
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neutralizing antibody response decreased slowly as a function of

age up to the age of 80, with almost all individuals responding to the

vaccine. After 80, the probability to elicit a neutralizing antibody

response plummeted and was close to zero at 90, although the

number of individuals in this part of the age range was small in the

study (131). A second study used a cutoff of 55 years for who is

elderly and showed substantially lower neutralizing antibody levels

in the older age group after the first dose of an mRNA vaccine (132).

However, this difference decreased with the second dose. A third

study done in Singapore also found that people over 60 had lower

neutralizing responses with an mRNA vaccine. However, they

showed a strong increase in neutralizing antibodies with a third,

booster dose (133). The benefit of a booster dose was recapitulated

in a group of over-80-year-olds who did not have an antibody

response to the first two doses (134).

The role of neutralizing antibodies in the immune response to

M.tb is currently unclear. However, the reduced ability to mount an

effective neutralizing antibody response may indicate an overall less

effective adaptive immune response in the elderly, which would

reduce M.tb control.
Autoimmunity

An essential component of the initial immune response to both

M.tb and SARS-CoV-2 is interferon (IFN), which orchestrates the

innate immune response to infection. In TB, the type II interferon

IFN-g activates macrophages and enables them to initiate

maturation and acidification of the M.tb-containing phagosome,

as well as other antimicrobial responses (135). The failure of this

process to kill the internalized bacilli leads to macrophage death and

M.tb growth in the dead infected cells (97). Mice deficient in IFN-g
quickly succumb to TB (136, 137).

The role of type I interferons during M.tb infection is not

completely understood, with some studies reporting a host

protective role vs. other studies suggesting a detrimental role

under different host-M.tb encounter settings (138, 139). However,

type I interferons including IFN-a are an important component of

the innate immune response to SARS-CoV-2 (100), and they are

rapidly induced in early stages of the infection (140). Multiple

SARS-CoV-2 genes attempt to interfere with IFN (141–144).

Individuals with inborn errors in type I IFN immunity are much

more prone to severe COVID-19 (145) and mice deficient for type I

IFN have reduced activation of CD4 and CD8 T cells and reduced

recruitment of monocytes and monocyte-derived macrophages to

the lung (146).

Anti-IFN antibodies might block IFN binding to IFN receptors,

impairing its antiviral effect (147). There have been sporadic case

reports of anti-IFN antibodies increasing susceptibility to

mycobacterial infections (148–150) or shown to be elevated at the

site of infection in advanced TB patients (151). In contrast, SARS-

CoV-2 infection is reported to be more severe in individuals with

autoantibodies to type I IFN. In one study, 101 of 987 patients with

severe COVID-19 have been found to have these autoantibodies,

while none of the 663 individuals with asymptomatic or mild SARS-

CoV-2 infection had anti-IFN type I antibodies (152). The
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prevalence of anti-IFN type I antibodies was found to be strongly

age dependent (153, 154). Autoantibodies neutralizing high

concentrations of IFN-a were present in 0.18% of individuals

between 18 and 69 years, 1.1% of individuals between 70 and 79

years, and 3.4% of people >80 years of age (154). Autoantibodies are

unlikely to completely explain the higher susceptibility of the elderly

population to severe COVID-19. However, such autoimmunity may

be a contributing factor in a subset of people (155) and an example

of an age dependent affect which is highly variable between people

of the same age. Also, antibodies to other host proteins are known to

increase with age (156). This may potentially add to disease

pathology in a similar way.
Comorbidities

An important aspect of the shift towards a global aging

population is increasing chronic illness. The top 10 comorbidities

associated with the elderly population include hypertension (58%),

high cholesterol (47%), arthritis (31%), ischemic heart disease

(29%), diabetes (27%), chronic kidney disease (18%), heart failure

(14%), depression, Alzheimer disease and dementia (11%) and

chronic obstructive pulmonary disease (COPD, 11%) (157). Some

of these comorbidities overlap with known risk factors for TB

(diabetes) and higher COVID-19 severity (obesity, hypertension,

high cholesterol, and diabetes). Thus, a common risk factor for TB

and COVID-19 which increases in prevalence in the elderly is

diabetes. This is not surprising, as diabetes leads to higher mortality

from a range of infectious diseases (158).

Projections suggest that the global incidence of diabetes will

double in the next 20 years, with 40% of this estimated to result

from the aging population (159, 160). The elderly are at high risk for

developing type 2 diabetes due to underlying insulin resistance,

impaired pancreatic function, and a higher obesity prevalence

linked to changes in body composition and physical inactivity

(161, 162). The resulting high blood sugar can cause serious

complications such as heart disease, kidney problems, and loss of

vision. Furthermore, diabetes in older adults is associated with a

higher risk for chronic microvascular and cardiovascular

complications and common geriatric syndromes and is linked to

higher mortality (163). People with diabetes have altered cytokine

release by macrophages and T cells, impaired neutrophil

recruitment, and decreased levels of type I interferons as well as

reduced numbers of new populations of dendritic cells (DCs) and

natural killer (NK) cells (164). Also, the diabetic lung is

characterized by structural modifications such as abnormalities in

small vessels (alveolar diabetic microangiopathy or microvascular

disease) (165), as well as alterations in the interstitial environment

(166, 167) and autonomic neuropathy with loss of autonomic

innervation in bronchioles (168), which might contribute to

adverse outcomes in respiratory diseases (169).
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While the interactions between TB and diabetes in the elderly

are not completely understood, people with diabetes are 3 times

more likely to develop pulmonary TB, especially those with poorly

controlled diabetes (170, 171). In vitro and in vivo studies have

found reduced association and uptake of M.tb by monocytes from

people with diabetes and alveolar macrophages from mice with

chronic diabetes, as well as reduced innate immune responses and a

persistent systemic hyper-inflammation in TB-diabetic individuals

(172–174). Diabetes also promotes TB reactivation due to impaired

T cell immunity, specifically because of decreased IFN-g production
by CD4 T cells (175). In addition, cavitary disease (where cavities

are abnormal, thick-walled, air-filled spaces in the lung which result

when a granuloma encasing M.tb liquifies and ruptures) is more

frequently observed in elderly TB patients with diabetes than in

non-diabetic elderly patients, suggesting that diabetes promotes

cavitation in the aging lung parenchyma (176).

In addition, TB might pose a risk of developing diabetes (177).

A persistent inflammatory state in response to TB disease might

result in secondary metabolic effects such as “stress hyperglycemia”,

defined as temporary hyperglycemia caused by stress during acute

illness (178). It has been suggested that stress hyperglycemia may

negatively influence TB treatment outcomes, although this

relationship is still poorly understood (178).

Individuals with diabetes are at a higher risk for SARS-CoV-2

severe disease and mortality (34, 179–185). According to an analysis

done in the South African population, the hazard ratios for

mortality range from 3 to 12 for ≥20 years old public-sector

patients, with the mortality risk increasing as blood sugar control

decreases. Risk may be lower in other populations, perhaps due to

better diabetes control: about 3-fold higher for mortality as reported

in a meta-analysis (181). While the worse disease outcome of SARS-

CoV-2 infection in diabetics is well established, diabetics are

not necessarily at higher risk of infection with SARS-CoV-2

(179), indicating that not all aspects of immunity are

equally compromised.
M.tb and SARS-CoV-2 co-infection

Respiratory infections tend to interact in one of two ways. They can

synergize, with the cardinal example being Streptococcus pneumoniae

bacterial infection after influenza virus infection. This happens because

the virus causes damage to the mucosal surface, allowing the bacteria to

attach better and invade more easily (186). In addition, the type I

interferon response to the virus decreases phagocyte function and

therefore control of the bacteria by phagocytosis (186). The other

possible interaction is antagonism, and usually happens between

viruses. This is called super-infection exclusion and occurs because

the type I interferon antiviral response trigged by one virus can inhibit

other viruses (187). Two studies by independent groups examined

experimental SARS-CoV-2/M.tb co-infection in K18-hACE2
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transgenic mice. Both groups found that SARS-CoV-2 infection did

not affect M.tb loads or associated pathology. They also observed that

M.tb infected mice were more resistant to SARS-CoV-2 infection (188,

189). This is consistent with a report that intravenous administration of

BCG, a live attenuated TB vaccine developed from Mycobacterium

bovis, protects mice against lethal SARS-CoV-2 challenge (190). Thus,

there is currently no mechanistic basis for synergy between SARS-

CoV-2 and M.tb. There is still a poor understanding of the pathology

and immunological changes associated with M.tb/SARS-CoV-2 co-

infection (191), as recently reviewed in (192).

In terms of epidemiology, some studies suggest that the

dysregulated immunity during M.tb infection is associated with

increased susceptibility and severity of COVID-19 and vice versa

(193–198). There is also some evidence suggesting that in the

elderly population, TB and COVID-19 may be associated with

increased mortality compared to each disease occurring alone (199–

201). Mechanisms may include increased lung damage in TB

patients with COVID-19, resulting in impaired lung function

(202) or higher risk of TB reactivation after COVID-19 infection

due to depletion of CD4 T cells and excessive lung fibrosis. Worse

outcomes of co-infection may also be because of shared clinical,

immunological, and social determinants (203–206), as well as

compromised linkage to care for HIV and TB in a pandemic

environment (207). In our own South Africa based cohort of

SARS-CoV-2 infected individuals, we did not observe a clear

enrichment of active TB disease (208) relative to the observed

incidence in the South African population (209).
Conclusions and future perspectives

Aging has a negative effect on the outcomes of both SARS-CoV-2

and M.tb infection, and may be considered a subtype of

immunosuppression/dysregulation which varies widely between

individuals of a similar age. This may be because the effect is multi-

factorial and involves age-related inflammation (inflammaging) and

senescence of immune cell subsets, as reviewed previously (210). It is

particularly damaging to the adaptive arm of the immune response

which is critical to control both infections. In addition to that, the lung

environment itself also changes with age, and many of the changes are

associated with the reduced ability of alveolar fluid to perform its innate

immune functions. Aging also increases autoimmunity, and in a subset

of individuals this may manifest as autoantibodies to immune

mediators such as interferons, with the result that innate immunity

becomes less effective at reducing pathogen replication. This is an

example of how the effects of aging can be heterogeneous. Lastly, co-

morbidities such as type II diabetes increase with age, and such co-

morbidities, though they do not necessarily increase the chances of

infection, are risk factors for more severe disease if infection does occur.

Conversely, SARS-CoV-2 and M.tb infections may accelerate

age-related processes. For example, M.tb infection and TB

treatment, as well as long-COVID, might result in cardiovascular

complications and induce cardiovascular disease (211), an

important comorbidity associated with the older population. Also,
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SARS-CoV-2 is associated with increased oxidative stress, which

also plays a role in the pathogenesis of diabetes (212).

Some of the processes described here are already targets for

interventions. For example, the elderly are prioritized for COVID-19

vaccination to compensate for the less effective immune response to

SARS-CoV-2 (213). Other interventions, for example better control of

diabetes, are available but are not uniformly implemented due to health

systems challenges, particularly in low- and middle-income countries

(214). Interventions which may increase lung health at a given stage of

life are yet little explored, but have the potential to work across

pathogens to decrease the effects of infection, which could translate

to substantial gains in the health span of aging populations.
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24. Cooper A, Garcıá M, Petrovas C, Yamamoto T, Koup RA, Nabel GJ. HIV-1
causes CD4 cell death through DNA-dependent protein kinase during viral integration.
Nature (2013) 498(7454):376–9. doi: 10.1038/nature12274
Frontiers in Immunology 07115
25. Sepkowitz KA, Raffalli J, Riley L, Kiehn TE, Armstrong D. Tuberculosis in the
AIDS era. Clin Microbiol Rev (1995) 8(2):180–99. doi: 10.1128/CMR.8.2.180

26. Bell LC, Noursadeghi M. Pathogenesis of HIV-1 andMycobacterium tuberculosis
co-infection. Nat Rev Microbiol (2018) 16(2):80–90. doi: 10.1038/nrmicro.2017.128

27. Cele S, Karim F, Lustig G, San JE, Hermanus T, Tegally H, et al. SARS-CoV-2
prolonged infection during advanced HIV disease evolves extensive immune escape.
Cell Host Microbe (2022) 30(2):154–162.e5. doi: 10.1016/j.chom.2022.01.005

28. Lustig G, Ganga Y, Rodel H, Tegally H, Jackson L, Cele S, et al. SARS-CoV-2
evolves increased infection elicited cell death and fusion in an immunosuppressed
individual. medRxiv (2022), 22282673. doi: 10.1101/2022.11.23.22282673

29. Riddell AC, Kele B, Harris K, Bible J, MurphyM, Dakshina S, et al. Generation of
novel SARS-CoV-2 variants on B.1.1.7 lineage in three patients with advanced HIV
disease. Clin Infect Dis (2022) 75(11):2016–8. doi: 10.1093/cid/ciac409

30. Wilkinson SAJ, Richter A, Casey A, Osman H, Mirza JD, Stockton J, et al.
Recurrent SARS-CoV-2 mutations in immunodeficient patients. Virus Evol (2022) 8(2):
veac050. doi: 10.1093/ve/veac050

31. Maponga TG, Jeffries M, Tegally H, Sutherland A, Wilkinson E, Lessells RJ, et al.
Persistent SARS-CoV-2 infection with accumulation of mutations in a patient with
poorly controlled HIV infection. Clin Infect Dis (2022). doi: 10.2139/ssrn.4014499

32. Hoffman SA, Costales C, Sahoo MK, Palanisamy S, Yamamoto F, Huang C, et al.
SARS-coV-2 neutralization resistance mutations in patient with HIV/AIDS, california,
USA. Emerging Infect Diseases (2021) 27(10):2720–3. doi: 10.3201/eid2710.211461

33. Karim F, Moosa MY, Gosnell B, Sandile C, Giandhari J, Pillay S, et al. Persistent
SARS-CoV-2 infection and intra-host evolution in association with advanced HIV
infection. medRxiv (2021). doi: 10.1101/2021.06.03.21258228

34. Boulle A, Davies M-A, Hussey H, Ismail M, Morden E, Vundle Z. Western cape
department of health in collaboration with the national institute for communicable
diseases SA. Risk factors for coronavirus disease 2019 (COVID-19) death in a
population cohort study from the western cape province, South Africa. Clin Infect
Dis (2020) 73(7):e2005–e15. doi: 10.1093/cid/ciaa1198

35. Savic M, Penders Y, Shi T, Branche A, Pircon JY. Respiratory syncytial virus
disease burden in adults aged 60 years and older in high-income countries: A
systematic literature review and meta-analysis. Influenza Other Respir Viruses (2023)
17(1):e13031. doi: 10.1111/irv.13031

36. Branche AR, Falsey AR. Respiratory syncytial virus infection in older adults: an
under-recognized problem. Drugs Aging (2015) 32(4):261–9. doi: 10.1007/s40266-015-
0258-9

37. Paget J, Spreeuwenberg P, Charu V, Taylor RJ, Iuliano AD, Bresee J, et al. Global
mortality associated with seasonal influenza epidemics: New burden estimates and
predictors from the GLaMOR Project. J Glob Health (2019) 9(2):020421. doi: 10.7189/
jogh.09.020421

38. Langer J, Welch VL, Moran MM, Cane A, Lopez SMC, Srivastava A, et al. High
clinical burden of influenza disease in adults aged >/= 65 years: can we do better? A
systematic literature review. Adv Ther (2023) 40(4):1601–27. doi: 10.1007/s12325-023-
02432-1

39. Hung IF, Zhang AJ, To KK, Chan JF, Zhu SH, Zhang R, et al. Unexpectedly
higher morbidity and mortality of hospitalized elderly patients associated with
rhinovirus compared with influenza virus respiratory tract infection. Int J Mol Sci
(2017) 18(2):259. doi: 10.3390/ijms18020259

40. WHO. WHO Coronavirus (COVID-19) Dashboard 2023. Available at: https://
covid19.who.int/.

41. O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS,
Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature
(2021) 590(7844):140–5. doi: 10.1038/s41586-020-2918-0

42. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort
study. Lancet (2020) 395(10229):1054–62. doi: 10.1016/S0140-6736(20)30566-3

43. Yanez ND, Weiss NS, Romand JA, Treggiari MM. COVID-19 mortality risk for
older men and women. BMC Public Health (2020) 20(1):1742. doi: 10.1186/s12889-
020-09826-8

44. Dolin PJ, Raviglione MC, Kochi A. Global tuberculosis incidence and mortality
during 1990-2000. Bull World Health Organization (1994) 72(2):213.

45. Wong EB. It is time to focus on asymptomatic tuberculosis. Clin Infect Diseases
(2021) 72(12):E1044–E6. doi: 10.1093/cid/ciaa1827

46. Shah M, Dorman SE. Latent tuberculosis infection. New Engl J Med (2021) 385
(24):2271–80. doi: 10.1056/NEJMcp2108501

47. Li SJ, Li YF, Song WM, Zhang QY, Liu SQ, Xu TT, et al. Population aging and
trends of pulmonary tuberculosis incidence in the elderly. BMC Infect Dis (2021) 21
(1):302. doi: 10.1186/s12879-021-05994-z

48. Piergallini TJ, Turner J. Tuberculosis in the elderly: Why inflammation matters.
Exp Gerontol (2018) 105:32–9. doi: 10.1016/j.exger.2017.12.021

49. Caraux-Paz P, Diamantis S, de Wazières B, Gallien S. Tuberculosis in the elderly.
J Clin Med (2021) 10(24):5888. doi: 10.3390/jcm10245888
frontiersin.org

https://doi.org/10.1016/j.cell.2021.03.005
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.34297/AJBSR.2019.01.000503
https://doi.org/10.1146/annurev-physiol-021119-034610
https://doi.org/10.1038/s41467-019-08831-9
https://doi.org/10.1371/journal.pone.0183654
https://doi.org/10.1038/s41591-021-01377-8
https://doi.org/10.1038/s41591-021-01377-8
https://doi.org/10.1126/science.abn4947
https://doi.org/10.1126/science.abn4947
https://doi.org/10.1038/s41586-021-04387-1
https://doi.org/10.1097/EDE.0000000000001271
https://doi.org/10.14745/ccdr.v43i34a01
https://doi.org/10.1371/journal.pone.0235206
https://doi.org/10.1371/journal.pone.0235206
https://doi.org/10.2105/AJPH.2018.304687
https://doi.org/10.26355/eurrev_202101_24685
https://doi.org/10.1126/science.1243640
https://doi.org/10.1016/j.cell.2010.11.001
https://doi.org/10.1038/nature12940
https://doi.org/10.1016/j.celrep.2015.08.011
https://doi.org/10.1016/j.celrep.2015.08.011
https://doi.org/10.1084/jem.176.4.1099
https://doi.org/10.1084/jem.176.4.1099
https://doi.org/10.1038/375497a0
https://doi.org/10.1002/j.1460-2075.1995.tb07030.x
https://doi.org/10.1002/j.1460-2075.1995.tb07030.x
https://doi.org/10.1016/j.it.2012.04.002
https://doi.org/10.1038/nature12274
https://doi.org/10.1128/CMR.8.2.180
https://doi.org/10.1038/nrmicro.2017.128
https://doi.org/10.1016/j.chom.2022.01.005
https://doi.org/10.1101/2022.11.23.22282673
https://doi.org/10.1093/cid/ciac409
https://doi.org/10.1093/ve/veac050
https://doi.org/10.2139/ssrn.4014499
https://doi.org/10.3201/eid2710.211461
https://doi.org/10.1101/2021.06.03.21258228
https://doi.org/10.1093/cid/ciaa1198
https://doi.org/10.1111/irv.13031
https://doi.org/10.1007/s40266-015-0258-9
https://doi.org/10.1007/s40266-015-0258-9
https://doi.org/10.7189/jogh.09.020421
https://doi.org/10.7189/jogh.09.020421
https://doi.org/10.1007/s12325-023-02432-1
https://doi.org/10.1007/s12325-023-02432-1
https://doi.org/10.3390/ijms18020259
https://covid19.who.int/
https://covid19.who.int/
https://doi.org/10.1038/s41586-020-2918-0
https://doi.org/10.1016/S0140-6736(20)30566-3
https://doi.org/10.1186/s12889-020-09826-8
https://doi.org/10.1186/s12889-020-09826-8
https://doi.org/10.1093/cid/ciaa1827
https://doi.org/10.1056/NEJMcp2108501
https://doi.org/10.1186/s12879-021-05994-z
https://doi.org/10.1016/j.exger.2017.12.021
https://doi.org/10.3390/jcm10245888
https://doi.org/10.3389/fimmu.2023.1250198
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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Coronavirus disease (Covid-19) has not only shaped awareness of the impact of

infectious diseases on global health. It has also provided instructive lessons for

better prevention strategies against new and current infectious diseases of major

importance. Tuberculosis (TB) is a major current health threat caused by

Mycobacterium tuberculosis (Mtb) which has claimed more lives than any

other pathogen over the last few centuries. Hence, better intervention

measures, notably novel vaccines, are urgently needed to accomplish the goal

of the World Health Organization to end TB by 2030. This article describes how

the research and development of TB vaccines can benefit from recent

developments in the Covid-19 vaccine pipeline from research to clinical

development and outlines how the field of TB research can pursue its own

approaches. It begins with a brief discussion of major vaccine platforms in

general terms followed by a short description of the most widely applied

Covid-19 vaccines. Next, different vaccination regimes and particular hurdles

for TB vaccine research and development are described. This specifically

considers the complex immune mechanisms underlying protection and

pathology in TB which involve innate as well as acquired immune mechanisms

and strongly depend on fine tuning the response. A brief description of the TB

vaccine candidates that have entered clinical trials follows. Finally, it discusses

how experiences from Covid-19 vaccine research, development, and rollout can

and have been applied to the TB vaccine pipeline, emphasizing similarities

and dissimilarities.

KEYWORDS

tuberculosis, COVID-19, vaccines, correlate of protection, protective antigen,
prevention of disease, prevention of infection, prevention of recurrence
1 Introduction

The Severe Acquired Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has had an

unprecedented impact on our understanding and awareness of the continuous threat of

emerging infectious diseases. Coronavirus disease 2019 (Covid-19), caused the death of

more than seven million individuals (1, 2) The World Health Organization (WHO) has
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estimated mortality rates to be approximately 15 million deaths

over three years (3). In addition, Covid-19 led to a sudden increase

in incidences of numerous other communicable and non-

communicable diseases (4). One disease that was been profoundly

affected is tuberculosis (TB) (5). This was due to multiple factors,

notably the disruption of laboratory services, shortages of drug

supply, and deviation of funding and personnel to diagnosis and

care of Covid-19 patients. During the height of the Covid-19 crisis,

TB morbidity and mortality increased for the first time in the 21st

century to 10-11 million new cases and 1.6 million deaths in 2021

(5). It has been estimated that over the last 200 years, TB has been

the cause of one billion deaths averaging annual mortality in the

order of five million deaths over 200 years, similar to the estimated

five million annual deaths caused by Covid-19 over three years (5–

9). It is now clear that TB patients after successful therapy can

develop post-TB, which not only affects the lungs but can also lead

to other disabilities, notably neurological and cardiac impairments.

The Covid-19 crisis led to reduced case findings and therapy for TB.

This coincidence will likely lead to the increased appearance of

post-TB. Thus, the consequences of the Covid-19 TB syndemic will

have a much greater impact on health and consequently on

economic losses in the years to come (10, 11). Yet, to my

knowledge, there is no direct information regarding the impact of

Covid-19 on post-TB.

As soon as the pandemic potential of SARS-CoV-2 became

apparent, multiple efforts were undertaken to develop and deploy

Covid-19 vaccines at unprecedented speed (6). Research and

development (R&D) of Covid-19 vaccines could build on

knowledge gathered in the aftermath of the emergence of SARS-

CoV-1 and the Middle East Respiratory Syndrome (MERS) virus,

even though these coronaviruses had been brought under control by

conventional public health measures (12). Through these efforts, it

became clear that the Spike protein mediates virus attachment to

and entry into host cells and that blocking the viral attachment by

neutralizing antibodies represents a key protective mechanism (13).

Supported by virtually unlimited funding, the research and

development (R&D) of SARS-CoV-2 vaccines was pursued at

accelerated speed through remarkable collaborations between

scientific communities across continents (14). Furthermore,

adoptive trial design, streamlined regulatory processes, expedited

regulatory review and rapid emergency use approval made vaccine

rollout possible within less than one year (15). Complemented by

scaled-up manufacturing capacities, millions of lives could be saved.

The mRNA encapsulated in lipid nanoparticles (LNP) turned out

the most efficacious vaccine platform (16). Although this platform

was a new aspect of the vaccine portfolio, its manufacturing could

be scaled up rapidly. In total, more than 13 billion doses were

deployed in record time, nearly fulfilling the demands of the

industrialized world. This scenario, however, was overshadowed

by inequitable access to vaccines in low- and middle-income

countries (17).

Vaccine R&D in general has benefited from the example of the

Covid-19 vaccine pipeline in several instances. First, virtually

unlimited investment into novel vaccines in the very beginning

does not only save lives but also generates a return on investment

(14, 18, 19). A study in New York provides an illustrative example
Frontiers in Immunology 02121
by showing that 10 US$ was saved for every 1 US$ invested in

vaccination against Covid-19 (19). Second, adoptive trials

combining safety and efficacy assessments are feasible (20). Third,

accelerated regulatory processes as well as provisional authorization

for emergency use act as accelerators. Fourth, vaccine rollout at a

large scale in high-income countries proved that logistic,

manufacturing, and deployment hurdles can be overcome. Fifth,

the speed of vaccine development can be markedly accelerated by

sharing data and samples. Sixth, vaccines need to be made available

across continents including low- and middle-income countries (17).

As a corollary, R&D centers as well as manufacturing facilities,

complemented by an infrastructure that guarantees adequate

education, trust, and expertise in the global south are needed to

ensure a robust supply chain for equitable access to vaccines

(17, 21).

Applying the lessons learned in recent vaccine R&D will enable

a more rapid response against future emerging diseases with

pandemic potential. This will also promote vaccine R&D against

diseases that already pose an enormous threat and for which

efficacious vaccines are not yet available, such as Human

Immunodeficiency Virus/Acquired Immunodeficiency Syndrome

(HIV/AIDS), malaria, Hepatitis C, Dengue, and TB. There will be

no strategy that fits all; thus, specific modifications are critical for

each vaccination strategy under development. It is also unclear

whether the newmRNA : LNP vaccine type, which was so successful

in the case of Covid-19, can be applied to infectious diseases that are

chronic and controlled by complex cell-mediated rather than

humoral immunity, such as TB.

This article briefly discusses the major vaccine platforms in

general terms (section 2), summarizes the major Covid-19 vaccines

(section 3), and reviews immunity in TB (section 4). It then

discusses different vaccination regimes and hurdles for vaccine

R&D relevant to TB (section 5) before describing the pipeline of

TB vaccines in clinical trials in more detail (section 6). The final

sections examine which lessons from Covid-19 vaccine R&D could

benefit the TB vaccine portfolio and what approach TB research

needs to undertake (sections 7 and 8).
2 Major vaccine platforms

Vaccines can be divided into subunit vaccines or whole-cell

vaccines (22). To ensure induction of adequate immunity, major

subunit vaccine platforms comprise: (i) well-defined antigen(s)

formulated in adjuvant, (ii) mRNA encoding such antigen(s) and

packaged in LNP (mRNA : LNP), or (iii) bacterial or viral vectors

expressing such antigen(s). Whole-cell vaccines are either

inactivated non-viable or attenuated viable vaccines. They more

or less comprise all antigens of the pathogen independent of their

role in protective immunity.
2.1 Subunit vaccines

The most successful subunit vaccines target pathogens that are

primarily controlled by neutralizing antibodies (22). These types of
frontiersin.org
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vaccines depend on one or a few protective antigen(s) that either

cause disease directly or are critical for the establishment of stable

infection, e.g. by mediating entry into host cells. These include

antiviral vaccines (e.g. Hepatitis B), antitoxin vaccines (diphtheria

and tetanus), or conjugate vaccines (pneumococci). Further

improvement can be accomplished by generating virus-like

particles in which the protective antigen forms structured

particles resembling the viral pathogen. First-generation

adjuvants, notably aluminum salts primarily stimulate the

production of neutralizing antibodies.

More recent advances have led to the creation of adjuvant

formulations that also stimulate cell-mediated immune responses

including CD4 and CD8 T cells (23–26). These novel adjuvants

include surface-active components such as saponins (e.g. QS21, an

active compound from the bark of Quillaja Saponaria), ligands for

pattern recognition receptors, notably toll-like receptors (TLRs), and

aqueous and oleaginous formulations that ensure continuous antigen

release over prolonged periods of time. The choice of TLR ligands

depends on the type of pathogen targeted by the specific vaccine, e.g.

TLR-7/TLR-8 ligands for viral and TLR-9 ligands for bacterial

pathogens. Examples of T- cell stimulating adjuvants are AS01E
(adjuvant system 01E) and ISCOM (immune stimulating complex)

based adjuvants (23–25). Alternatively, recombinant viral vectors

expressing vaccine antigen(s) have been generated, which are mostly

replication-deficient (27–31). The recently licensed Ebola vaccination

scheme is based on a prime/boost scheme comprising adenovirus

(Ad) 26 and Modified Vaccinia Ankara (MVA) virus as vectors, both

expressing Ebola antigen (32). Another example is the chimpanzee

adenovirus Oxford (ChAdOx) vector expressing the Spike protein of

SARS-CoV-2 against Covid-19 (Vaxzevria by Oxford/AstraZeneca).

The major breakthrough in mRNA : LNP vaccine development

was the encoding of modified Spike protein (mRNA: LNP) (16, 33,

34). These vaccines exploit Methyl-Pseudouridine modifications of

mRNA leading to superior vaccine efficacy compared to unmodified

mRNA. The higher efficacy of modified mRNA over unmodified

mRNA is likely due to the more rapid inactivation by an innate

immune response (35). Principally, LNP are composed of long-

chain fatty acids, cholesterol, and polyethylene glycol. The latter

may be substituted by polysarcosine with a lower risk of adverse

events. In short, LNP (i) protect RNA from rapid degradation; (ii)

facilitate introduction into host cells; and (iii) provide a certain

degree of adjuvanticity.
2.2 Whole cell vaccines

Whole cell vaccines are preferred when protective antigens do

not exist or have not been identified. They are given in inactivated

form or as attenuated live vaccines. Several inactivated vaccines

have been successfully deployed for viral infections such as the

inactivated vaccines against Hepatitis A, Polio (Salk vaccine), and

Influenza. Yet, only a few inactivated vaccines have been introduced

for control of bacterial infections such as the Cholera vaccine. To

improve the protective immune response, adjuvants may be

required. In contrast, attenuated viable vaccines generally get by

without adjuvant. Attenuated vaccines have been most successfully
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deployed against viral pathogens including measles, mumps,

rubella, or polio (Sabin vaccine). The most widely distributed

attenuated vaccine against a bacterial pathogen, Bacille-Calmette-

Guérin (BCG), targets TB, but with limited success (36).
3 A short primer on Covid-19 vaccines

Roughly one year after the introduction of the first vaccines

against Covid-19, numerous vaccines had been rolled out in different

regions of the globe and more than 11 vaccines have been granted

emergency use listing (EUL) by the WHO (37). These include

inactivated whole cell vaccines, viral-vectored vaccines, protein:

adjuvant vaccines, and mRNA : LNP vaccines. Some of these

vaccines had been approved in a large number of states, notably for

emergency use; others had received approval in only a few countries.

In the following, a brief description of the most widely used vaccines

granted EUL by the WHO is provided (Figure 1).

The inactivated whole cell vaccines Covilo and CoronaVac by

Sinopharm or Sinovac, respectively, had been approved rapidly in

China and received permission for emergency use in other countries

(38, 39). Both vaccines had been inactivated with beta-propiolactone

and formulated in alum salt as adjuvant to stimulate neutralizing

antibodies (40). These vaccines probably possess low T cell

stimulatory activity because of the exclusive use of alum and they

would likely benefit from a T cell stimulating adjuvant. In contrast,

the inactivated vaccine VLA2001 of Valneva is formulated in alum

salt plus CpG as a TLR-9 agonist, thereby stimulating both humoral

and cellular immune responses (41). Similarly, Covaxin from Bharat

Biotech contains inactivated SARS-CoV-2 formulated in alum

adsorbed TLR-7/TLR-8 agonist (42).

Ad has been the preferred vector system for the expression of the

Spike protein. These include human Ad26 and Ad5 as well as the

chimpanzee Ad, ChAdOx (30). These Ad serotypes were chosen to

avoid rapid inactivation of the carrier by pre-existing antibodies

induced by circulating Ad serotypes. The prevalence of Ad26 and

Ad5 in humans is low and ChAdOx does not circulate in humans. To

avoid the generation of novel virus particles in the immunized host,

the Ad vectors have been rendered non-replicative. The ChAdOx

vaccine (Vaxzevria from Oxford AstraZeneca, COVISHIELD from

Serum Institute of India) given as homologous prime/boost, has been

broadly deployed (42, 43). The Ad26-based vaccine JCOVDEN from

Janssen (Johnson & Johnson) and the Ad5-based vaccine Convidecia

from CanSino Biologics are considered single shot vaccines (44, 45).

The protein:adjuvant vaccine (Nuvaxovid from Novavax,

COVOVAX from Serum Institute of India) had received emergency

use in several countries (40, 46). This vaccine is composed of protein

nanoparticles (similar to virus-like particles) incorporated in the

Matrix-M adjuvant containing saponin and based on ISCOM.

Within less than a year, the mRNA : LNP vaccines turned out to

be most efficacious with the frontrunners produced by Pfizer/

BioNTech (Comirnaty) and Moderna (Spikevax) (34, 47, 48). The

mRNA : LNP vaccines comprise a modified mRNA encoding part

of the Spike protein as an antigen. The mRNA : LNP vaccines do

not only stimulate neutralizing antibodies but also T cell responses

that recognize conserved epitopes in the Spike protein, which are
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broadly shared with various coronaviruses including circulating

viruses and novel variants of SARS-CoV-2. Hence, they elicit

protective immunity against severe disease even in cases in which

the highly specific antibodies fail to adequately neutralize new

mutations in the Spike protein.

In summary, the major lessons learned from the R&D of the

Covid-19 vaccines can be summarized as follows:
Fron
• Neutralizing antibodies specific for the receptor binding

domain (RBD) within the Spike protein directed at the

angiotensin converting enzyme 2 (ACE-2) receptor reduce

infection by blocking attachment to and entry into host cells

of SARS-CoV2 (49). Because of the intracellular lifestyle of

Mtb, which primarily resides in macrophages, neutralizing

antibodies against protective antigens do not exist in TB

(see 4). This represents the Achilles’ heel of TB vaccine

development. These neutralizing antibodies are highly

specific and hence cause immune pressure favoring viral

mutations to evade protective immunity. Selection of such

mutated strains can rapidly lead to the emergence and

spreading of novel strains which render available vaccines

partially ineffective.

• Aside from neutralizing antibodies, non-neutralizing

antibodies, and T lymphocytes specific for epitopes
tiers in Immunology 04123
located outside of the RBD of the Spike protein are being

generated (50–52). Non-neutralizing antibodies contribute

to protection via additional effector mechanisms, notably

complement activation, attraction of inflammatory cells,

and arming of NK cells for antibody-dependent cellular

cytotoxicity (ADCC).

• T lymphocytes directed at conserved epitopes in the Spike

protein can contribute to protection at later stages, notably

through lysis of infected cells, which ultimately blocks viral

replication (53, 54). Aside from these direct effector

functions, mostly executed by CD8 T cells with cytolytic

activity (cytolytic T lymphocytes, CTL), CD4 helper T cells

(Th cells) are activated. Neutralizing antibodies depend on

Th2 cells, whereas non-neutralizing antibodies require help

from both Th1 and Th2 cells. Th1 cells are also required for

activation of CTL and mononuclear phagocytes and Th17

cells can attract inflammatory cells to the site of viral

replication.
The development of effective Covid-19 vaccines was an

outstanding success story. Yet, in the long-term, a universal pan-

corona vaccine providing long-term protection would be extremely

valuable. Such next generation vaccines should induce an immune

response comprising:
FIGURE 1

Overview of Covid-19 vaccines granted Emergency Use Listing (EUL) by the World Health Organization (WHO) by platform.
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• neutralizing antibodies to the Spike RBD;

• trained immunity for rapid dampening of infection (55);

• broadly reactive antibodies for conserved epitopes with low

selection advantage (50, 51, 56);

• CD4 and CD8 T cells to conserved Spike epitopes and perhaps

other viral components with low selection advantage;

• additionally, unconventional T cells such as mucosal-

associated invariant T (MAIT) cells should be considered.
Figure 2 schematically summarizes protective immunity elicited by

SARS-CoV-2 infection and by mRNA : LNP vaccines against Covid-19.
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4 Immunity in TB: protection
and pathology

Establishment of infection (Figure 3): TB is primarily a disease

of the lung that also serves as the main port of entry for the

causative agent, Mycobacterium tuberculosis (Mtb) (57, 58). TB is

transmitted via aerosols, coughed up by a patient with active TB

although other modes of transmission are possible. Pathogens

transmitted via the aerogenic route enter the lung alveoli within

small aerosol particles which provide some shield for Mtb. Bacteria

are engulfed by alveolar macrophages, tissue-resident mononuclear
A B

C

FIGURE 2

Immune response elicited by SARS-CoV-2 infection and by mRNA : LNP vaccination. (A) Infection with SARS-CoV-2. (B) Immunization with mRNA:
LNP. (C) Protective immune response against SARS-Cov-2. ACE-2 receptor, Angiotensin converting enzyme 2 receptor; B, B cells; CTL, Cytolytic T
lymphocytes; Ig, Immunoglobulin; PMN, Polymorphonuclear neutrophils; Th1, T helper 1 cells; Th2, T helper 2 cells.
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phagocytes with the capacity for self-renewal. In addition, notably

after the onset of inflammation and attracted by chemokines and

other attractants, neutrophils, and monocytes enter alveoli from the

blood circulation, which are capable of engulfing Mtb (59). The

pathogen is transported to different sites of the lung parenchyma by

mononuclear phagocytes. At the site of Mtb deposition, granulomas

begin to develop independently from each other (60, 61). Some Mtb

may be killed by the phagocytes soon after infection, notably in

individuals who have been immunized with BCG and/or carry

latent TB infection (LTBI). In this situation, macrophages could

develop trained immunity based on epigenetic changes (62).

Evidence for the participation of natural killer (NK) cells in early

defense against Mtb has been presented (63). These NK cells are

rapidly attracted to the Mtb-infected lung. It is a matter of

discussion whether early infection control can lead to sterile

eradication in so-called non-converters (see 5.1).

Initiation of the acquired immune response (Figure 3):

Interstitial dendritic cells (DC) transport Mtb to draining lymph
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nodes and chemokines attract additional DC as well as T

lymphocytes and B lymphocytes into specialized structures in the

lymph node, where the acquired immune response is activated (64–

66). CD4 T cells of Th1 type, which produce multiple cytokines, are

considered of critical importance (67). The role of CD4 T cells in

controlling TB is probably best illustrated by the aggravated

outcome of HIV-Mtb coinfection (68). HIV impairs CD4 T cells

and people living with HIV (PLWH) are highly susceptible to TB

(69). Interferon-g (IFN-g) and tumor necrosis factor a (TNFa) are
of major importance as they activate mononuclear phagocytes

directly (70, 71). The critical role of TNFa in controlling Mtb in

infected individuals became obvious when patients with

rheumatoid arthritis treated with anti-TNF monoclonal

antibodies frequently progressed to active TB (72). IL-2 could

contribute to protection by activating other lymphocyte subsets,

notably CD8 T cells. In addition to Th1 cells, also Th17 producing

cells are considered important, notably at the early stage of infection

(73, 74). CD4 T cells are restricted by the major histocompatibility
FIGURE 3

Immunity to tuberculosis (TB): from infection to active disease. Upper part shows cell interactions induced by infection with Mtb; the middle section
describes interactions during latency; the lower part describes cell interactions underlying active TB. Characteristic granuloma stages are depicted
on the right side. AEC, Alveolar epithelial cells; AM, Alveolar macrophages; B, B cells; CD4, CD4 T helper cells; CD8, CD8 T helper cells; CTL,
Cytotoxic T lymphocytes; CTLA-4, Cytotoxic T-lymphocyte-associated protein-4; Epi, Epithelial cell; g/d, Gamma/delta cells; IFN-g, Interferon-g; ILC,
Innate lymphoid cells; IL, Interleukin; KLRG1, Killer cell lectin-like receptor G1; MAIT, Mucosal-associated invariant T cells; MDSC, Myeloid derived
suppressor cells; MHC, Major histocompatibility complex; Mj, Macrophage; NK, Natural killer cells; PD-1, Programmed cell death protein 1; PD1-L,
Ligand for PD1; PMN. Polymorphonuclear neutrophils; T, T cells; Teff, T effector cells; Treg, T regulatory cells; TGF, Transforming growth factor; Th1,
T helper 1 cells; Th2, T helper 2 cells; Th17, T helper 17 cells; TIM-3, T-cell immunoglobulin and mucin domain-containing protein 3; TIM-3L, Ligand
for T-cell immunoglobulin and mucin domain-containing protein 3; TM, Memory T cells; TNF, Tumor necrosis factor.
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complex class II (MHC II) and hence are primarily focused on

macrophages and DC. CD8 T lymphocytes contribute to protection

via the secretion of IFN-g and TNFa. In addition, they also directly

attack infected host cells by means of perforin and granzyme.

Moreover, human CD8 T cells produce granulysin which has

been shown to directly kill Mtb (75–77). Because of their MHC I

restriction, CD8 T cells possess a much broader target spectrum

than CD4 T cells (78, 79). Hence, they monitor virtually all

nucleated cells, e.g. epithelial cells surrounding alveoli, which can

harbor Mtb.

Unconventional T cells are potential contributors to defense

against Mtb including (80, 81):
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• g/d T cells which recognize so-called phospho-antigens and

have been found to produce IL-17 (74, 80, 82, 83);

• CD1-restricted T cells which recognize glycolipids

prevalent in Mtb and are potent cytokine producers (84);

• MAIT cells which recognize non-peptide antigens and are

prevalent in the respiratory tract (74, 78, 85, 86).
These populations are considered donor-unrestricted since they

recognize non-peptidic epitopes in the context of unconventional

presentation molecules that lack the heterogeneity of canonical

MHC molecules that restrict conventional T cell responses (87).

The innate lymphoid cells (ILC) are characterized by the absence of

T cell receptor (TCR) and hence do not recognize antigens at all (88,

89). They are present in mucosal surfaces and at tissue sites such as

the lung and likely participate in the early defense against Mtb.

Similar to Th lymphocytes, ILC segregates into subtypes according

to their cytokine profile. Hence, by producing IFN-g and TNFa or

IL-17, ILC contributes to protective immunity in TB, notably

during the early stages. NK cells can be viewed as ILC since they

lack the TCR and are of lymphoid origin (63). Yet, they are not

tissue resident and circulate through the blood stream. In

conclusion, the role of conventional T cells in TB is well accepted,

whereas the participation of unconventional T cells and ILC

remains less well understood.

B lymphocytes first play a role in TB by regulating immune

responses, mostly by means of cytokines (90, 91). Second, they are

the cellular source of antibodies (92). Antibodies can support

protective immunity by facilitating phagocytosis, formation of

phagosome/lysosome fusion, and stimulation of reactive oxygen

and nitrogen intermediates (92–96). Indeed, evidence had already

been presented in the 1970s that antibodies mediating the uptake of

Mtb through the FcR promote phagosome/lysosome fusion for

bactericidal activities (97, 98). Another role of antibodies in TB is

the arming of NK cells. Evidence has been presented that NK cells

can kill infected cells via ADCC (63).

Immunity during LTBI (Figure 3): The description of the

different cell populations should not be interpreted to mean that

these cells act independently; rather, they crosstalk with each other

and it is this complex interplay between the different cells of the

innate and acquired arm of immunity and their secretion products

(notably cytokines, chemokines, and antibodies), which results in

protective immunity capable of containing Mtb and thus preventing

progression to active TB (99–102). At the risk of oversimplification,
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fine-tuned immunity controls the infection and at the same time

keeps inflammation at a minimum. This is the case with LTBI

which affects one quarter of the world population. Maladapted

immunity fails to control infection and inflammation, thereby

allowing progression to active TB (Figure 3). This complex

immune response is highly sensitive to perturbations. Notably, in

the absence of correlates of protection (see 5.5.2), the mechanisms

underlying effective host control in 90% of individuals infected with

Mtb and progression to active TB disease in 10% of these remain

elusive. Notably, it is unclear whether this failure is due to

exhaustion or active downregulation of the protective immune

components (Figure 3). Obviously, efficacious vaccines against TB

need to induce a fine-tuned immune balance (58, 103, 104).

Because Mtb interferes with the buildup of protective

immunity, it takes several weeks before granulomatous lesions

develop into solid granulomas that contain Mtb. Within these

granulomas, different populations of Mtb-specific lymphocytes,

mononuclear phagocytes, DC, and other cell types exist in a well-

organized structure. T lymphocytes will develop into memory T

cells, which segregate into effector memory T cells, central memory

T cells, and resident memory T cells (105–107). Resident memory T

cells seem to be of particular importance (108). Active granulomas

can induce the formation of lymphoid follicles in their vicinity,

which participate in the orchestration of the solid granuloma (99,

109, 110).

Progression to necrotic and caseous granulomas (Figure 3): A

maladapted immune response promotes the transition of solid

granulomas to necrotic and then caseous granulomas (59, 103,

104). This progression from LTBI to active TB disease can occur

months to years after infection. The maladaptation may be caused

by exogenous factors such as coinfection with HIV or helminths or

through endogenous factors, which can be summarized as

suppression and exhaustion. The latter mechanisms are still

incompletely understood. It is l ikely that suppressive

mononuclear phagocytes, the myeloid derived suppressor cells

(MDSC), regulatory B cells, and regulatory T cells contribute to

the transition into necrotic/caseous granulomas (90, 111–113).

Moreover, evidence has been presented for the role of checkpoint

control in TB, e.g. through interactions between programmed cell

death protein 1 (PD-1) and ligand for PD-1 (PDL-1) or between T-

cell immunoglobulin and mucin domain-containing protein 3

(TIM-3) and ligand of TIM-3 (TIM-3L) (114, 115). Evidence

suggests that blocking checkpoint control in TB causes excessive

immunity characterized by elevated TNF-a production further

emphasizing the importance of fine-tuned immunity in TB

control and of maladapted immunity as a critical factor of active

TB disease (116). The deteriorating immune response in the

granulomas causes marked cell destruction, leading to loss of

structure and function. In parallel, the lack of granuloma

structure allows access of Mtb to capillaries that facilitate

transmission to other organs in the body and to alveoli, which

promote spread into the environment. At this stage, patients suffer

from active TB and are contagious.

During their residence in the solid granuloma, Mtb organisms

are mostly in a dormant stage, i.e. they show low to absent

metabolic and replicative activity (64, 117, 118). Once the
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immune response worsens and caseous granulomas develop Mtb

‘wakes up’ and transits into a replicative and metabolic active stage.

The cellular detritus in the caseous granuloma favors Mtb growth.

The switch from dormant to active Mtb could have consequences

for the selection of vaccine antigens (117, 119). Vaccines targeting

the prevention of infection (PoI) in naïve individuals could benefit

from active Mtb antigens, whereas vaccines targeting the prevention

of disease (PoD) in LTBI would exploit dormant Mtb antigens.

Consistent with this, a preponderance of dormancy associated

antigens has been identified in individuals with LTBI (120).

Vaccines for both PoI (reinfection) and PoD in individuals with

LTBI will require both types of antigens.

The granuloma landscape in the lung is heterogeneous (61, 99).

During the early stages of LTBI, lesions of different developmental

stages coexist which will then mature into solid granulomas (121).

During progression to active TB, granulomas transit into the

necrotic and then caseous stage. Hence, during incipient/pre-

clinical TB, necrotic lesions emerge. This seems to induce an

increased inflammatory response which can be determined in the

blood by means of transcriptomic and metabolomic biosignatures,

which can be harnessed for prognosis of active TB (122–126).
5 Vaccination strategies

Figure 4 describes the major stages from infection to disease in

TB, which serve as targets for intervention by TB vaccines currently
Frontiers in Immunology 08127
under clinical assessment. In the following, different vaccination

strategies relevant to TB control, and the value of correlates and

surrogates of protection, which are still missing for TB, but

availability for Covid-19 will be discussed (119).
5.1 Prevention of what?

Principally, vaccines induce a protective immune response

against the targeted pathogen with different outcomes that are not

mutually exclusive. These are: (i) PoI, (ii) PoD, (iii) prevention of

transmission (PoT), and (iv) prevention of recurrence (PoR).
• PoI also leads to PoD and PoT. Infection is best diagnosed

by detecting the pathogen or its components. This is feasible

as long as the pathogen or its components are present in

body sites that are easily accessible, e.g. sputum, urine, or

blood. In the case of TB, detection of Mtb or its components

generally fails in individuals with LTBI. These individuals

are healthy but considered infected with Mtb. Even in

patients with active TB, detection of Mtb by sputum

microscopy can be missed due to insufficient sensitivity.

Diagnosis of LTBI is mostly performed indirectly by

measuring the cellular immune response, e.g. by so-called

IFN-g release assays (IGRA) which measure IFN-g release
from white blood cells after antigen-specific stimulation

(127–130). Individuals with LTBI have been termed
FIGURE 4

Major stages from infection to active disease in tuberculosis (TB) and target points for different vaccine types. Colors indicate different vaccine
platforms. For further details on vaccine types, see Figure 5.
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converters. Note that about 10% of close contacts of TB

patients do not respond by IGRA and accordingly have

been termed nonconverters or resistors (119, 121, 131–133).

It is unclear whether nonconverters are true resistors that

have cleared or prevented infection or are false

nonconverters, which harbor Mtb, but fail to generate an

immune response that is measured by IGRA. PoI is mostly

accomplished by preventing the pathogen from establishing

itself in the host. Frequently, PoI is based on rapid

eradication of the pathogen after short-term infection and

hence should be more precisely defined as prevention of

stable infection. In summary, the precise determination of

PoI as a clinical endpoint poses challenges in TB (134).

Hence, delineation of the underlying immune mechanisms

could provide guidelines for the design of vaccines that

target PoI.

• PoD needs to be further subdivided according to the

severity of disease, i.e. mild disease, severe disease

(hospitalization, intensive care unit), and lethal disease. In

the case of Covid-19, vaccines only induce partial PoI but

are highly effective in preventing severe disease and

lethality. In naïve individuals, PoD is a consequence of

PoI. In already infected individuals, PoD can be achieved by

pathogen eradication during LTBI or by preventing the

pathogen from causing disease, e.g. by its containment in an

innocuous stage through maintenance of LTBI. Although

Mtb infection is thought to last lifelong, so-called reverters

have been described, i.e. individuals who reverted from

IGRA+ to IGRA- remaining negative over long periods of

time (133, 135). The underlying mechanisms remain elusive

and false IGRA- due to desensitization cannot be excluded.

Given that this reversion reflects the eradication of Mtb,

information on the underlying mechanisms could provide

helpful guidelines for vaccines aimed at sterilizing PoD.

• PoT is a consequence of PoI and PoD since both directly

impact the transmission of Mtb. Although LTBI has long

been considered non-contagious, more recent evidence

suggests that it can be a major source of transmission.

Transmission during LTBI likely occurs during the sub-

clinical stage (136–139). Future vaccination strategies need

to consider whether vaccines aimed at PoD induce

sufficient immune control to prevent Mtb transmission by

healthy individuals with sub-clinical TB.

• PoT by itself can serve as a target for future vaccination

strategies, notably if vaccine-induced PoD only achieves

prevention of severe disease, allowing infection and mild

disease.

• PoR targets reinfection or relapse (140). Some individuals

who have been cured of TB remain susceptible to

reinfection since protective immunity induced by natural

Mtb infection is insufficient. In addition, a few Mtb

microorganisms may persist even after drug treatment

and then cause relapse. PoR is considered a valid target

for vaccination. However, it is unlikely that post-TB lung

damage is tractable by vaccination.
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5.2 Preventive and therapeutic vaccination

The major scope of vaccines is to prevent healthy individuals

from developing the disease. Yet, therapeutic vaccination in adjunct

to chemotherapy is being considered, notably for TB patients

suffering from multi- or extensively resistant TB (140).

Frequently, vaccines for PoR are grouped as therapeutic vaccines

even though recurrence can be caused by reinfection.
5.3 Pre- and post-exposure vaccination

By definition, vaccines targeting PoI are administered pre-

exposure with the pathogen. Complete PoI also causes PoD and

PoT; incomplete PoI may ameliorate disease and transmission. As

Covid-19 vaccination campaigns have shown, partial PoI reduces

viral load and pathogenicity resulting in efficacious PoD, notably by

reducing disease severity. This is likely due to a direct quantitative

relationship between viral load and virulence. In the case of TB,

such a quantitative relationship is less likely, and partial PoI may

delay, but not prevent progression to active TB disease.

Theoretically, two options exist that are difficult to differentiate

mechanistically. A TB vaccine could either induce PoD or cause

containment of Mtb resulting in long-term LTBI. Generally, post-

exposure vaccination aims at (i) sterile pathogen eradication before

progression to active disease or (ii) long-term maintenance of LTBI.

Secondary infection of an individual with LTBI can further

complicate the situation.
5.4 Prime/boost

Vaccines may need a booster if the prime immunization is

insufficient or wanes over time. Even though only little evidence

exists, it is often assumed that heterologous prime/boost schemes

induce stronger effects, either because the two vaccines cause

different immune responses or comprise different antigens. Both

effects are considered beneficial if they complement each other. In

the case of TB, most vaccine candidates are considered boosters for

BCG primed individuals, and only a few as prime vaccines instead

of BCG (119).
5.5 Surrogates and correlates of protection

5.5.1 Surrogates
A surrogate of protection (SoP) elicited by vaccination is

defined as a biologic parameter that in a clinical phase III efficacy

trial statistically correlates with vaccine-induced protection (141–

143). Typically, SoP is determined by a comparison between the

vaccine and the placebo group. SoP, notably if they can be easily

determined, facilitates early determination of vaccine effectiveness

prior to clinical outcome. Neutralizing antibodies against Spike

protein of SARS-CoV-2 are SoP, whereas for TB SoP have not

been identified.
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5.5.2 Correlates
A correlate of protection (CoP) elicited by vaccination is defined

as a biological mechanism, typically an immune mechanism that is

induced by immunization and serves as an indicator of protective

immunity (142–146). CoP is statistically related to vaccine-induced

protection. Comparison of immunized vs. unimmunized (control)

individuals will be confounded by the fact that the majority of

controls will not develop disease. Given that a vaccine induces

protection in some, but not all vaccinees, a comparison of the two

immunized groups, i.e. protected vs. unprotected vaccinees provides

a strong basis for the definition of a robust CoP. CoP can be used for

the definition of surrogate endpoints, i.e. an endpoint that precedes

or can be more easily measured than the clinically defined endpoint.
Two groups of CoP need to be distinguished, including direct and

indirect CoP. Moreover, CoP induced by infection need not

necessarily be identical to CoP induced by vaccination. This is

particularly relevant in situations where natural infection does not

cause complete protection as in TB. Global gene expression profiling

of blood cells and metabolomic analyses of serum led to the design of

biosignatures that can potentially predict the progression from LTBI

to active TB disease (122–126). Such biosignatures are composed of

biomarkers that may or may not be causally linked to the sustenance

of LTBI or progression to active TB disease. Biosignature studies on

the progression from LTBI to active TB disease as well as on

differences between responders and non-responders (see 5.1) can

provide important guidelines for the characterization of vaccine-

induced CoP. Biosignature studies have provided evidence for a sub-

population with sub-clinical TB amongst the LTBI population.

Increasing epidemiologic evidence suggests that this healthy sub-

population serves as a source of Mtb transmission (136–139).
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More recently, biomarkers associated with specific immune

responses have been employed for the prediction of TB disease.

First, efforts are being made to characterize Mtb-specific antibody

profiles comprising Ig isotypes with unique FcR types to identify

individuals that progress from LTBI to active TB (91, 93, 147–149).

Antibody isotypes related to protection could become promising

targets for future vaccines. Second, the identification of Mtb-specific

TCR repertoires associated with the outcome of LTBI have been

characterized (150). In this study, three groups could be identified

based on similarities in TCR sequences: The first group was

associated with progression to disease, the second group with

maintenance of LTBI, and the third group did not show any

association with disease progression or control. Antigenic

epitopes related to each group could be identified. PE13, a

variable antigen present in both Mtb and BCG as well as CFP10,

a cognate of the region of difference (RD)-1 present in Mtb and

absent in BCG, were characteristic for infection control.

Reciprocally, EspA which is associated with CFP10 was associated

with TB progression. Numerous antigens were present in both

controllers and progressors, suggesting that they had no direct

impact on the course of infection. It should be noted that

these analyses focused on CD4 T cells without characterization of

their cytokine profile. Future studies extending to functional

characterization and other T cell populations, notably CD8 T cells

could provide important guidelines for the identification of antigens

to be included in, or omitted from, future subunit vaccine

candidates. In the long run, an association of functional

activities and antigen specificities of B cells and T cells could

become important tools for the design of next-generation

vaccine candidates.
FIGURE 5

Clinical pipeline of major tuberculosis vaccines from Phase I to Phase III. Colors indicate different vaccine platforms. For further details, see article
discussion.
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5.5.2.1 Indirect CoP

Indirect CoP are induced by vaccination either directly and

independently from direct CoP, or they are indirect sequelae of

direct CoP. They correlate with but are not causally linked to,

protection. An example of such indirect CoP is provided by the list

of the biomarkers included in biosignatures which potentially

predict progression from LTBI to active TB disease (see above).

5.5.2.2 Direct CoP

Direct CoP have also been termed absolute or mechanistic CoP.

A direct CoP is not only related to but also responsible for

protection. An instructive example of such a causal link is

neutralizing antibodies directed against so-called protective

antigens, e.g. the Spike protein of SARS-CoV-2 (see also

Figure 2). An increase in neutralizing antibody titers against the

RBD of the Spike protein is not only directly related to the strength

of vaccine-induced immunity, but can also be harnessed for

measuring vaccine efficacy. Advantageously, neutralizing

antibodies express both relevant functions (blocking of viral entry

into host cells) and relevant specificity (targeting the RBD of the

Spike protein). Accordingly, the omission of the Spike protein from

a vaccine against Covid-19 will fail to produce a protective immune

response mediated by neutralizing antibodies. Neutralizing

antibodies that prevent Mtb from infection do not exist because

Mtb is engulfed by mononuclear phagocytes through a variety of

active uptake mechanisms involving numerous receptors. Antigen-

specific CD4 T cells are directly involved in protective immunity

against TB. Yet, their biological functions depend on mediators

such as cytokines and chemokines that act on other immune cells,

e.g. stimulation of CD8 T cells to express cytolytic activity, B cells to

secrete antibodies or mononuclear phagocytes to express

bacteriostatic or bactericidal activity. Moreover, antigen specificity

of T cells need not be directly linked to T cell function. In TB

immunity that sustains LTBI and therefore prevents active TB

disease may differ from immunity that prevents infection or

causes sterile eradication of Mtb.

5.5.3 Relevance to vaccine development
For discussion here, it is clear that rational vaccine development

will enormously benefit from the identification of direct CoP (151).

The most straightforward CoP are antigen-specific antibodies with

neutralizing activity, which cause PoI by preventing pathogen entry

into host cells. This activity becomes more complex in situations, in

which antibodies contribute to protection via FcR-mediated effector

functions of antibodies, such as complement activation,

opsonization, or ADCC. The most complex situation arises when

infection is primarily controlled by cell-mediated immunity. First,

the measurement of antigen specificity of T cells is more

challenging, and second, the function of T cells is ultimately

mediated by effector molecules or effector cells. CD8 T cells,

which contribute to protection as CTL are relatively

straightforward because they act directly via their ‘own’ effector

molecules (e.g. granzyme, granulysin, perforin). The most complex

situation arises for CD4 T cells, which primarily act through soluble

mediators such as chemokines and cytokines to stimulate other cells
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to perform effector mechanisms including mononuclear

phagocytes, granulocytes, B cells, and CD8 T cells.
6 TB vaccine candidates

6.1 BCG: from early testing to
most recent trials

BCG is one of the most widely used vaccines globally only

exceeded by Covid-19 vaccines. Some four billion doses have been

rolled out since its first human use in the 1920s (36, 152). The term

BCG stems from the two developers, Albert Calmette and Camille

Guérin, who succeeded in attenuating M. bovis, the causative agent

of bovine TB by passaging it > 230 times in vitro using ox bile to

promote attenuation (153). This vaccine has been designed for the

prevention of TB in neonates with a high risk of progression to

severe extrapulmonary disease including miliary TB due to

dissemination of Mtb to diverse organs. BCG accomplishes this

goal, at least in part, but fails to protect against pulmonary TB,

notably in adolescents and adults (154). The vaccine was originally

administered in three doses given orally and this regimen was later

changed to intradermal administration of a single dose. In some

countries, revaccination with BCG has been performed, notably in

neonates and infants lacking signs of vaccine take and sometimes

also in adolescents and adults. Generally, however, BCG boosters

are not recommended because of the potential risk of

adverse events.

A recent study assessed BCG revaccination of adolescents and

adults without signs of Mtb infection (see Figure 5). This study

(NCT02075203) found ca. 45% protection against stable Mtb

infection indicated by IGRA (155). It is noteworthy that stable,

but not transient, infection was prevented by BCG revaccination. It

has been argued, therefore, that in the BCG immunized group, Mtb

was able to establish itself for a short time period, but was

subsequently eliminated by mononuclear phagocytes expressing

trained immunity (see 4) (62). Consistently, BCG revaccination

caused significant protection against upper respiratory viral

infections over controls (note that lower respiratory infections

were not observed in either group). A larger confirmatory trial

with BCG is underway (NCT04152161). Another study with BCG,

which is currently in phase III, assesses the value of BCG for pre-

travel vaccination (see Figure 5). The clinical endpoint is PoI in

healthy adult travelers from low incidence countries who are at risk

of exposure to Mtb in high burden countries (NCT04453293).

Completion of this study is expected in 2025.
6.2 Experimental BCG studies as
the first step towards CoP

A breakthrough study in which non-human primates (NHP)

had been immunized with BCG by intravenous administration

resulted in the sterile eradication of Mtb in the majority of

animals. Whilst this way of administration is hampered by the
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risk of adverse events, it provides proof of concept that sterilizing

immunity can be induced even though the underlying mechanisms

have to be fully revealed (156). This model was harnessed for the

identification of immune mechanisms and biosignatures relevant to

protective immunity. By using a lower dose of BCG given

intravenously, sterile protection could be induced in about half of

the experimental animals. Comparison of protected and

unprotected NHP revealed that an abundance of polyfunctional T

cells that co-express TNF together with IFN-g or with IL-17 as well

as an abundance of NK cells correlated with protection two months

after immunization and before challenge with Mtb (157). In

parallel, blood transcriptional correlates were determined.

Biosignatures determined two days after immunization correlated

with the pulmonary immune responses measured after one to two

months (see above) and could predict protection against Mtb

challenge after six months (158). These modules included type I

IFN as well as Rag-I-like signaling pathways. These studies in NHP

both on the cellular and transcriptional level provide the first

evidence that vaccine-induced CoP can be defined. As a caveat, it

should be noted, however, that the transcriptional module can be

affected by viral infections occurring during vaccine trials which

induce similar biosignatures. Furthermore, in adolescents and

adults, a high proportion of individuals already have LTBI

demanding post-exposure vaccination with Mtb which may differ

from the pre-exposure situation studied in NHP. Finally, it needs to

be clarified whether the gene expression profiles represent direct or

indirect CoP. Direct CoP could be harnessed for further refinement

of novel vaccine candidates.
6.3 Vaccine candidates in clinical trials

Currently, more than a dozen vaccine candidates against TB are

progressing through the clinical trial pipeline and have advanced to

different stages, phase I, phase II, or phase III (Figure 5). These

include five protein adjuvant vaccines and three viral vectored

vaccines as cognates of subunit vaccine candidates as well as three

inactivated and two attenuated vaccines as members of whole cell

vaccine candidates. Most recently mRNA : LNP vaccines have

entered phase I safety assessment as the latest addition to the

group of subunit vaccine candidates.

6.3.1 Subunit vaccines
6.3.1.1 Protein:adjuvants
Fron
• H56:IC31 is a fusion protein of three antigens (ESAT-6, a

prominent Mtb antigen in the RD-1 region + Ag85B, a

member of the Ag85 family of mycolyl-transferases +

Rv2660c, a dormancy antigen) in the IC31 adjuvant

(cationic peptide + TLR9 agonist) (159). It has

successfully completed several phase I trials for safety and

immunogenicity and is currently being tested in a clinical

phase II trial (NCT03512249) for therapeutic purposes

(PoR).
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• ID93:GLA-SE is based on a fusion protein of four antigens

(Rv2608, a PPE family member + Rv3619, a virulence factor

+ Rv3620, another virulence factor + Rv1813, a dormancy

antigen) in the GLA-SE adjuvant (an oil-in-water emulsion

+ TLR4 agonist) (160). It is considered for preventive and

therapeutic purposes (PoR) and has successfully completed

a phase IIa trial (NCT03806686).

• AEC : BC02 comprises three antigens (Ag85B, a member of

the Ag85 family of mycolyl-transferases + ESAT-6 +

CFP10, two important antigens in the RD-1 region) in the

BC02 adjuvant (TLR-9 agonist CpG in alum) (28). It has

reached a phase II clinical trial (NCT05284812).

• GamTBvac is composed of ESAT-6 + CFP10 (two

important antigens in the RD-1 region) + Ag85A (a

member of the Ag85 family of mycolyl-transferases) with

a modified Dextran-binding domain formulated with the

TLR-9 agonist CpG as adjuvant (161). This vaccine

candidate has entered a phase III trial for the prevention

of TB in adolescents and adults (NCT04975737).

Completion is expected in 2025.

• M72:AS01E comprises a fusion protein of two antigens

(Rv1196, a PPE family member + Rv0125, a peptidase) in

the AS01E (liposome + TLR4 agonist). The M72:AS01E
showed ca. 54% protection against progression to active TB

from LTBI in a phase IIb prevention trial (162, 163). In this

trial (NCT01755598), M72:AS01E was given as a post-

exposure boost vaccine in adults and adolescents with

LTBI who had been BCG primed as infants. This vaccine

is planned for a larger phase II/III trial to validate its

protective efficacy in PLWH (NCT04556981).

• Two similar mRNA : LNP vaccines against TB have entered

the clinical trial pipeline. BNT164a1 and BNT164b1

encoding multiple Mtb antigens of undisclosed identity

are in phase I trials in BCG-vaccinated HIV-negative

individuals (NCT 05547464) and in IGRA-negative, BCG

naïve individuals (NCT 05537038). Thus, the two mRNA :

LNP vaccine candidates are considered both as a prime

vaccine in Mtb-uninfected and BCG-unvaccinated

individuals and as a boost vaccine in BCG-immunized,

Mtb-infected (LTBI) and naïve individuals.
6.3.1.2 Viral vectors
• Ad5Ag85A is based on a nonreplicating Ad vector

expressing Ag85A (a member of the Ag85 mycolyl-

transferase family) (164). It has completed a phase I trial

for safety and immunogenicity after aerosol inhalation

(NCT02337270). Work with this vaccine candidate has

been discontinued.

• TB/Flu04L comprises a non-replicating influenza virus as a

vector expressing Ag85A (a member of the Ag85 mycolyl-

transferase family) and ESAT-6 (a prominent Mtb antigen

in the RD-1 region) (31). It has successfully completed a
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phase I clinical trial for safety after intranasal and

sublingual administration (NCT03017378).

• ChAdOx1.85A/MVA is given in a heterologous prime/

boost scheme, where ChAdOx serves as the prime and

MVA as a boost. Both vectors express Ag85 and thus differ

in the vector, not in the antigen (165). This heterologous

vaccination regimen has recently entered a phase IIa trial

(NCT03681860). The ChAdOx1.85A vaccine has also

completed a comparative phase I trial for aerosol versus

intramuscular vaccination (NCT04121494). Previously, a

completed phase IIb trial with MVA85A alone had failed to

provide evidence for protective efficacy (NCT00480558)

(166–168).
6.3.2 Whole cell vaccines
6.3.2.1 Inactivated
• RUTI which is exclusively targeted for the therapy of TB,

notably multidrug-resistant (MDR) or extensively drug-

resistant (XDR)-TB in adjunct to chemotherapy has

reached phase IIb stage (NCT04919239). RUTI is a killed

and detoxified Mtb preparation in liposome suspension

(169).

• DAR-901 has been tested for the prevention of TB in

adolescents and adults. A phase IIb trial has been

completed without evidence for protective efficacy

(NCT02712424). This vaccine comprises a killed M.

obuense preparation (170).

• Immuvac, the most advanced inactivated vaccine is based

on killed M. indicus pranii (171). This vaccine provided

some evidence for therapeutic protection when given in

adjunct to chemotherapy (NCT00265226). It is currently

tested head-to-head with VPM1002 (CTRI/2019/01/

017026) in a phase III trial for PoD with estimated

completion in 2024.
6.3.2.2 Attenuated
• MTBVAC is a viable vaccine candidate which is tested for

TB prevention in infants and adolescents/adults. It has

reached a phase III trial in infants (NCT04975178), and

completion is expected in 2029. It is a live Mtb vaccine

candidate that had been attenuated by genetic deletion of

two independent loci that regulate more than 100 genes in

Mtb (172).

• VPM1002 is an improved BCG vaccine candidate, in which

the urease C gene has been replaced by the listeriolysin gene

(152, 173). It is currently undergoing three phase 3 trials: (i)

PoI and PoD in neonates in comparison to BCG

(NCT04351685) with expected completion by 2025; (ii)

PoD in adolescent and adult household contacts of

recently diagnosed TB patients head-to-head with

Immuvac (CTRI/2019/01/017026) with estimated
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completion in 2024; (iii) PoR in individuals who had

completed TB chemotherapy (NCT03152903) with

estimated completion in 2024.
6.4 Concluding remarks on TB
vaccine candidates

Globally an estimated 1.7 billion individuals live with LTBI, of

whom approximately 10% develop active disease, the majority

within the first year, but others after decades. Therefore, vaccines

need to be considered for pre- and post-Mtb exposure and for

induction of long-lasting protection not only in individuals who

develop active TB within less than 12 months but also in those who

become ill much later.

As outlined in the above review, the genome of Mtb comprises

some 4000 protein-encoding genes, which in principle could all be

target antigens for vaccine-induced immunity (174). Several of

these antigens are regulated, with some proteins being more

abundant during active TB disease and others during LTBI. Post-

exposure vaccination of individuals with LTBI carrying dormant

Mtb, therefore, may depend on antigens different from those in a

vaccine that prevents infection with active Mtb.

In contrast to SARS-CoV-2, where neutralizing antibodies are of

critical importance, evidence is missing as to whether neutralizing

antibodies are generated in TB. Accordingly, protective antigens are

absent. Increasing evidence suggests a role for non-neutralizing

antibodies in protective immunity which activate different effector

functions. Moreover, T cells are essential for protection and

pathology and strong evidence exists that a fine-tuned balance

between innate and acquired immune cells is critical for protective

immunity. Based on these features neither surrogates nor direct

correlates of protection against TB have been identified thus far.
7 Lessons from Covid-19 for TB
vaccine R&D

The devastating health crisis created by Covid-19 provided

pivotal lessons for future epidemic, endemic, and pandemic

control measures at all levels including vaccine R&D for TB.

Lessons of general relevance include the need for stronger

healthcare systems, improved infection control measures, better

preparedness and resilience to emerging and existing health threats,

and better public health education.

More specific guidelines from the Covid-19 crisis that are relevant

for TB vaccine R&D include, financial support for TB vaccine R&D is

of critical importance. At present, support is still insufficient despite a

slight increase over the last decade, costing approximately $1 billion US

dollars per year (175). The immediate support by public, philanthropic,

and private partners for Covid-19 vaccine R&D up to $100 billion US

dollars (14). This unprecedented funding demonstrates the impact that

early financial investment can have on vaccine R&D for health. It has to

be voiced more clearly that in the long run, investment in TB vaccine
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R&D will pay back (176). The current financial burden of TB has been

estimated in the order of $100 billion US dollars annually. Hence,

public-philanthropic-private partnerships should be formed if the

industry hesitates to invest in TB vaccines because of assumed low

profit. A recent example of a philanthropic-private partnership is the

handing over of the TB vaccine, M72:AS01E, for phase II/III clinical

trial testing from GlaxoSmithKline to the Bill and Melinda Gates

Foundation and the Wellcome Trust (177).

The global response to the Covid-19 crisis fostered a stronger

collaborative spirit among researchers from both public and private

entities, which profoundly accelerated vaccine development. This

lesson should be applied to improve joint research and resource

mobilization for TB vaccine R&D. A recent example is the head-to-

head phase III clinical trial performed by the Indian Council of

Medical Research to compare protection against TB by the

attenuated vaccine, VPM1002, and the inactivated vaccine,

Immuvac (178). In a similar vein, late stage vaccine trials should

not only aim to provide information on the vaccine candidate under

trial but also to generate information for the informed design of

next-generation vaccine candidates.

The transition from preclinical to clinical studies has frequently

been termed the ‘valley of death’ due to the many obstacles that can

occur. During the Covid-19 crisis, the regulatory processes for

vaccines were markedly expedited by streamlined regulatory

processes to mitigate such obstacles, at least partially. TB vaccine

R&D could similarly benefit from streamlined regulatory processes

without any curtailment in safety and efficacy standards (20).

Related to this, adaptive clinical trial design can further

contribute to accelerated clinical vaccine testing (15, 134). Both

strategies can speed up the clinical development pipeline without

compromising safety and efficacy standards.

Once a better efficacy and/or safety profile for a novel TB vaccine

over BCG has been established, vaccine manufacturing capacity will

become a critical factor (179). Hence, appropriate manufacturing

capacities need to be established early on: at the latest, in parallel to a

phase III vaccine trial. Since this is best accomplished by facilities with

high manufacturing capacity meeting global demands, appropriate

partnerships need to be established and investment into expanded

manufacturing capabilities needs to be mobilized. The Covid-19

pandemic provides lessons, some of which should be followed and

others modified or avoided. A positive example is the agreement

between the startup company BioNTech and the big pharma

company Pfizer to develop, test, and deploy Comirnaty as fast as

possible. On the other hand, the COVAX enterprise ultimately failed

to achieve equitable vaccine distribution across the globe (180, 181).

Another important aspect of this topic is equitable access to TB

vaccines at low cost, which needs to be guaranteed for low- and

middle-income countries, not the least because they face the highest

TB burden (17, 182). One step towards this could be the

establishment of vaccine manufacturing capacities in regions

where TB vaccines are needed most. This strategy includes not

only manufacturing capacities but also strong educational and

training activities to ensure successful TB vaccine production and

deployment from local manufacturers (21). The largest vaccine

manufacturer by dose is the Serum Institute of India Pvt. Ltd.,

which is based in India, a country with a high prevalence of TB. For
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regions without manufacturing capacities, the founding of WHO

mRNA vaccine hubs on the African continent provides precedent

from the Covid-19 field for this strategy (183).

Covid-19 vaccination campaigns have highlighted the

importance of robust surveillance and monitoring systems that

track the effectiveness and adverse events of the newly deployed

vaccines. These lessons need to be adopted in modified form for TB

from rollout to long-term surveillance of vaccines, notably since

long-term protection is essential for TB control.

The impact of Covid-19 vaccination programs has saved

millions of lives. Yet, in a small proportion of the global

population, in both the North and the South, vaccine hesitancy

and even aggressive vaccine opposition arose (184). Many diverse

reasons account for vaccine hesitancy and denial including distrust

of traditional political authorities (185). Hence, multidimensional

approaches will be required to mitigate these challenges (186, 187).

Successful TB vaccine rollout needs to be accompanied by a build-

up in public trust through engaging and educating communities

that suffer from high TB burden and addressing their concerns.

Amajor game changer emerged during the Covid-19 vaccine crisis,

namely the creation of viral-vectored and mRNA : LNP vaccines as

novel vaccine platforms. Whilst vector-based vaccines have already

been included in the TB vaccine R&D portfolio, mRNA : LNP vaccines

represent a novelty. This versatile platform must be included in the TB

vaccine R&D pipeline. A major vaccine developer, BioNTech, already

started a phase I safety trial for mRNA : LNP vaccines that encode

various TB antigens. Assuming that subunit vaccines covering a small

number of antigens can target Mtb with sufficient efficiency to provide

long-term protection it is likely that mRNA : LNP vaccines can become

major players for TB control.
8 Conclusion

TB has been around for centuries, claiming more than a billion

lives (9). Despite its threat, the TB crisis has remained largely silent.

Indeed, TB morbidity and mortality have been on the decline over

recent decades; yet this decline is far too meager and alone it will not

enable us to reach the goal of ending TB by 2030 as proposed by the

Stop TB Partnership and the WHO (188, 189). This decline even

reversed with the emergence of SARS-CoV-2 with an estimated 10-11

million people acquiring active TB and 1.6 million people dying. In

2018, a High-Level Meeting of the United Nations (UN) General

Assembly made a strong commitment to end TB by 2030 (190–192).

To achieve the goal, the UN is committed to creating “an

environment conducive to research and development for new tools

for TB”. Accordingly, the commitment was made “to mobilize

sufficient and sustainable financing with the aim of increasing

overall global investments to 2 billion US dollars [ … ] in funding

annually for tuberculosis research” (191). This noble goal was

interrupted by Covid-19. Hence, in 2023, a second High-Level

Meeting on TB will be convened by the UN (193).

A strong commitment to ending TB is urgently needed.

Otherwise, the WHO goal of reducing TB incidence by 50% and

the numbers of TB deaths by 75% between 2015 and 2025 will be

missed, notably because by 2021 only 10% reduction in TB
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incidence and 5.9% reduction in TB deaths had been accomplished.

In 2023, 30,000 people develop active TB every day and

approximately 4,200 of them will die of this disease. By 2050, four

million deaths will occur leading to an economic loss of $13 billion

US Dollars (192). Better intervention measures are urgently needed

and TB vaccines play a major role in this endeavor.

As has been discussed in this review, TB vaccine R&D cannot

replicate the success story of Covid-19 vaccine R&D. Yet, by building

on the experience gathered during the Covid-19 pandemic, the

conditions for TB can be changed for the better. In the aftermath of

the Covid-19 crisis, a working group had been established under the

leadership of E.J. Sirleaf, former President of Liberia, and H. Clark,

former Prime Minister of New Zealand, on ‘How an Outbreak Became

a Pandemic’ under the ethos, ‘Covid-19: Make it the Last Pandemic’ (7,

8). Their concluding comment stated that their “message for change is

clear: no more pandemic. If we fail to take this goal seriously, we will

condemn the world to successive catastrophes”. They go on to outline

how the demands of this task are “large and challenging, but the price is

even larger and more rewarding. With so many lives at stake, now is

the time to resolve ”. This call to prevent the next pandemic can be

rephrased as task for future control of the ongoing TB pandemic: the

“message for change is clear: No more TB. If we fail to take this goal

seriously, we will condemn the world to continued catastrophes. The

ask is large and challenging, but the price is even larger and more

rewarding. With so many lives at stake, now is the time to resolve”.
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tuberculose par le "BCG". Masson, Paris: Masson et Cie (1927). p. 250.

154. Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous
meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-
effectiveness. Lancet (2006) 367:1173–80. doi: 10.1016/s0140-6736(06)68507-3

155. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, et al.
Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N
Engl J Med (2018) 379:138–49. doi: 10.1056/NEJMoa1714021

156. Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH, Hughes TK,
et al. Prevention of tuberculosis in macaques after intravenous BCG immunization.
Nature (2020) 577:95–102. doi: 10.1038/s41586-019-1817-8

157. Darrah PA, Zeppa JJ, Wang C, Irvine EB, Bucsan AN, Rodgers MA, et al. Airway T
cells are a correlate of i.v. Bacille Calmette-Guerin-mediated protection against tuberculosis
in rhesus macaques. Cell Host Microbe (2023) 31:962–977.e8. doi: 10.1016/
j.chom.2023.05.006

158. Liu YE, Darrah PA, Zeppa JJ, Kamath M, Laboune F, Douek DC, et al. Blood
transcriptional correlates of BCG-induced protection against tuberculosis in rhesus
macaques. Cell Rep Med (2023) 4:101096. doi: 10.1016/j.xcrm.2023.101096

159. Jenum S, Tonby K, Rueegg CS, RühwaldM, KristiansenMP, Bang P, et al. A Phase I/
II randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor
treatment in tuberculosis patients. Nat Commun (2021) 12:6774. doi: 10.1038/s41467-021-
27029-6

160. Sagawa ZK, Goman C, Frevol A, Blazevic A, Tennant J, Fisher B, et al. Safety
and immunogenicity of a thermostable ID93 + GLA-SE tuberculosis vaccine candidate
in healthy adults. Nat Commun (2023) 14:1138. doi: 10.1038/s41467-023-36789-2

161. Tkachuk AP, Bykonia EN, Popova LI, Kleymenov DA, Semashko MA,
Chulanov VP, et al. Safety and immunogenicity of the gamTBvac, the recombinant
subunit tuberculosis vaccine candidate: A phase II, multi-center, double-blind,
randomized, placebo-controlled study. Vaccines (2020) 8:652. doi: 10.3390/
vaccines8040652

162. Tait DR, Hatherill M, van der Meeren O, Ginsberg AM, Van Brakel E, Salaun B,
et al. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J
Med (2019) 381:2429–39. doi: 10.1056/NEJMoa1909953

163. Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van
Brakel E, et al. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis.
N Engl J Med (2018) 379:1621–34. doi: 10.1056/NEJMoa1803484

164. Jeyanathan M, Fritz DK, Afkhami S, Aguirre E, Howie KJ, Zganiacz A, et al. but
not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces
respiratory-mucosal immunity in humans. JCI Insight (2022) 7:e155655.
doi: 10.1172/jci.insight.155655

165. Wilkie M, Satti I, Minhinnick A, Harris S, Riste M, Ramon RL, et al. A phase I
trial evaluating the safety and immunogenicity of a candidate tuberculosis vaccination
regimen, ChAdOx1 85A prime –MVA85A boost in healthy UK adults. Vaccine (2020)
38:779–89. doi: 10.1016/j.vaccine.2019.10.102

166. McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, et al.
Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-
primed and naturally acquired antimycobacterial immunity in humans. Nat Med
(2004) 10:1240–4. doi: 10.1038/nm1128

167. Ndiaye BP, Thienemann F, Ota M, Landry BS, Camara M, Dieye S, et al. Safety,
immunogenicity, and efficacy of the candidate tuberculosis vaccine MVA85A in
healthy adults infected with HIV-1: a randomised, placebo-controlled, phase 2 trial.
Lancet Respir Med (2015) 3:190–200. doi: 10.1016/S2213-2600(15)00037-5

168. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S,
et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously
vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet (2013)
381:1021–8. doi: 10.1016/S0140-6736(13)60177-4

169. Cardona PJ. RUTI: a new chance to shorten the treatment of latent tuberculosis
infection. Tuberculosis (2006) 86:273–89. doi: 10.1016/j.tube.2006.01.024

170. Munseri P, Said J, Amour M, Magohe A, Matee M, Rees CA, et al. DAR-901
vaccine for the prevention of infection with Mycobacterium tuberculosis among BCG-
frontiersin.org

https://doi.org/10.1038/s41598-023-34307-4
https://doi.org/10.1164/rccm.202011-4239PP
https://doi.org/10.1016/S0140-6736(15)01316-1
https://doi.org/10.1038/nature09247
https://doi.org/10.1038/s41598-020-65043-8
https://doi.org/10.1016/j.chom.2023.05.021
https://doi.org/10.1038/s41467-018-07635-7
https://doi.org/10.1183/09031936.00115110
https://doi.org/10.7326/0003-4819-149-3-200808050-00241
https://doi.org/10.1093/oxfordjournals.aje.a121593
https://doi.org/10.1016/j.vaccine.2009.08.031
https://doi.org/10.12688/f1000research.19805.1
https://doi.org/10.1093/cid/ciy751
https://doi.org/10.1002/iid3.269
https://doi.org/10.1183/16000617.0044-2022
https://doi.org/10.3389/fimmu.2021.712480
https://doi.org/10.1371/journal.ppat.1009262
https://doi.org/10.1093/cid/ciad027
https://doi.org/10.1016/j.tube.2020.102038
https://doi.org/10.1073/pnas.2211045119
https://doi.org/10.3389/fimmu.2022.878471
https://doi.org/10.18609/vac/2022.027
https://doi.org/10.1086/522432
https://apps.who.int/iris/handle/10665/84288
https://doi.org/10.1016/j.coi.2022.102234
https://doi.org/10.1128/cvi.00131-10
https://doi.org/10.1093/cid/cis238
https://doi.org/10.3389/fimmu.2021.798207
https://doi.org/10.3389/fimmu.2019.00996
https://doi.org/10.3389/fimmu.2022.856906
https://doi.org/10.1038/s41591-022-02110-9
https://doi.org/10.1038/s41591-022-02110-9
https://doi.org/10.1126/scitranslmed.aaa4730
https://doi.org/10.3389/fimmu.2020.00316
https://doi.org/10.1016/s0140-6736(06)68507-3
https://doi.org/10.1056/NEJMoa1714021
https://doi.org/10.1038/s41586-019-1817-8
https://doi.org/10.1016/j.chom.2023.05.006
https://doi.org/10.1016/j.chom.2023.05.006
https://doi.org/10.1016/j.xcrm.2023.101096
https://doi.org/10.1038/s41467-021-27029-6
https://doi.org/10.1038/s41467-021-27029-6
https://doi.org/10.1038/s41467-023-36789-2
https://doi.org/10.3390/vaccines8040652
https://doi.org/10.3390/vaccines8040652
https://doi.org/10.1056/NEJMoa1909953
https://doi.org/10.1056/NEJMoa1803484
https://doi.org/10.1172/jci.insight.155655
https://doi.org/10.1016/j.vaccine.2019.10.102
https://doi.org/10.1038/nm1128
https://doi.org/10.1016/S2213-2600(15)00037-5
https://doi.org/10.1016/S0140-6736(13)60177-4
https://doi.org/10.1016/j.tube.2006.01.024
https://doi.org/10.3389/fimmu.2023.1273938
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kaufmann 10.3389/fimmu.2023.1273938
immunized adolescents in Tanzania: A randomized controlled, double-blind phase 2b
trial. Vaccine (2020) 38:7239–45. doi: 10.1016/j.vaccine.2020.09.055

171. Sharma SK, Katoch K, Sarin R, Balambal R, Kumar JainN, Patel N, et al. Efficacy and
Safety of Mycobacterium indicus pranii as an adjunct therapy in Category II pulmonary
tuberculosis in a randomized trial. Sci Rep (2017) 7:3354. doi: 10.1038/s41598-017-03514-1
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