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Stroke, a cerebrovascular accident, is prevalent and the second highest cause

of death globally across patient populations; it is as a significant cause of

morbidity and mortality. Mesenchymal stem cell (MSC) transplantation is

emerging as a promising treatment for alleviating neurological deficits, as

indicated by a great number of animal and clinical studies. The potential of

regulating the immune system is currently being explored as a therapeutic

target after ischemic stroke. This study will discuss recent evidence that MSCs

can harness the immune system by interacting with immune cells to boost

neurologic recovery e�ectively. Moreover, a notion will be given to MSCs

participating in multiple pathological processes, such as increasing cell survival

angiogenesis and suppressing cell apoptosis and autophagy in several phases

of ischemic stroke, consequently promoting neurological function recovery.

We will conclude the review by highlighting the clinical opportunities for MSCs

by reviewing the safety, feasibility, and e�cacy of MSCs therapy.

KEYWORDS

ischemic stroke, mesenchymal stem cells, immunomodulation, preclinical study,

clinical trials

Introduction

Stroke is responsible for almost six million deaths, at least 10% of all mortalities

yearly, and two-thirds of stroke survivors remain disabled (1). Worldwide, over 80

million people have survived a stroke; 70% of incident strokes are ischemic (1). Although

recent evolutions of thrombectomy technology, as well as improvements in imaging

devices, have achieved ground-breaking changes in ischemic stroke therapy (2), given

its narrow therapeutic time window and the concern of hemorrhagic complications (3),

thrombolysis is still not performed routinely (4). In this context, it is urgent to yield

neurorestorative treatments for abrogating stroke-induced neurological deficits for both

basic scientists and clinical researchers. Cell therapy is emerging as a promising novel

modality for facilitating neurologic recovery after a stroke (5). Harnessing the immune
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system to function and effectively boost neurologic recovery

has transitioned from a theoretical possibility to a viable

therapeutic option for ischemic stroke. Mesenchymal stem

cells (MSCs) transplantation is an attractive therapy method

because they have the potential for proliferation, differentiation,

and immunomodulatory properties (6, 7). While the MSCs

can be derived from any type of tissue beyond the bone

marrow, adipose, and placenta, these MSCs share the same

core attributes of ability to cell migration patterns and

behave as immunomodulatory cells (8–10). In addition to

immunomodulation, growing evidence demonstrates that MSCs

are involved in multiple pathological processes by targeting

series downstream. Such downstream activities include the

inhibition of apoptosis and autophagy and the promotion of

angiogenesis, neurogenesis, and synaptic remodeling in several

phases of ischemic stroke (11, 12). MSCs may also be an ideal

candidate for cell transplantation therapy for ischemic stroke.

Despite growing evidence indicating that MSCs may improve

neurological function under pathological conditions, including

stroke (13, 14), data on the interaction between MSCs and

immunomodulation is limited. In this review, we summarize

the therapeutic effects of MSCs both in preclinical studies and

in clinical stroke trials. We also consider the mutual crosstalk

between MSCs and immune cells under stroke conditions.

Mesenchymal stem cells

Rodent bone marrow cells were first ectopically transplanted

into the kidney capsule by Friedenstein et al. in the 1960s and

1970s, showing an osteogenic effect (15). Given the potential to

differentiate into various cell lineages, Caplan et al. suggested

the “mesenchymal stem cells” term in 1991 (16, 17). MSCs

are multipotent fibroblast-like cells that, interestingly, exist

in various adult tissues, including adipose tissue, periosteum,

liver, spleen, muscle connective tissue, placenta, umbilical cord

blood, dental pulp, and aborted fetal tissues (18–20). Further,

The Mesenchymal and Tissue Stem Cell Committee of the

International Society for Cellular Therapy (ISCT) recommended

specific minimum MSC criteria to distinguish them from other

cell types by expression of many cell surface markers, including

CD73, CD90, and CD105, and the absence of expression of

CD45, CD34, CD14, CD19, CD11b, or Human Leukocyte

Antigen–DR isotype (21–23). Recently, a significant number

of novel cell surface markers associated with the stemness

within MSCs, namely SSEA1/4, CD44, CD146, and CD271,

have been revealed as well (23–26). A further two criteria are

that isolated cells show adherence to plastic in culture and

the capacity to differentiate into adipocytes, osteoblasts, and

chondroblasts in vitro (21–23). To date, MSCs have become

the most widely studied stem cell population and are studied

in various preclinical models and clinical settings alike. And

these studies have focused on the vital roles in coordinating

tissue responses to ischemic stroke in acute and post-acute

stroke settings, in which MSCs modulate cell survival, cell

apoptosis, autophagy angiogenesis, and immunosuppression

(23), consequently supporting neurological recovery.

Therapeutic application of MSCs in
preclinical ischemic stroke study

MSCs promote post-stroke cell survival

Upon an ischemic stroke, the cerebral artery occlusion

influences the survival of various brain cells, such as brain

neurons, glial cells, and vascular cells. Among these cells,

the neurons are the most vulnerable, and neuronal viability

plays a crucial role in neurological recovery after ischemic

stroke (27, 28). Studies in experimental models mimicking

ischemic stroke imply thatMSCs can abrogate ischemia-induced

neuronal survival and neurological function recovery. As such,

under such conditions, MSCs derived from bone marrow,

adipose tissue, and umbilical cord can significantly reduce

neuronal death (29–31). In addition, neurological recovery is

also associated with the successful restitution of vascular and

glial functions. During the ischemic lesion remodeling, neurons,

glial cells, and vascular cells can strongly interact with each

other, contributing to neurological recovery (27). Interestingly,

it is demonstrated that MSCs are involved in promoting the

survival of microglia, astrocyte, and endotheliocyte survival

via regulating many pathways (32–35). Notably, white matter

demyelination predates axonal injury in the early stage

of ischemic stroke, indicating a time window for stroke

intervention focusing on preventing or postponing axonal injury

throughmyelin regeneration (36). Meanwhile, Bagdasarian et al.

(37) applied therapeutic MSC to a rodent stroke model and

demonstrated their efficacy in white matter by comparison of

Diffusion tensor imaging and Neurite Orientation Dispersion

and Density Imaging metrics. MSCs exert many unique

biological effects, including self-recovery via promoting post-

stroke cell survival, providing a promising cellular therapeutic

approach for treating white matter injury (38).

MSCs suppress post-stroke cell apoptosis

Among the many cell death pathways (39), apoptosis

accounts for a large proportion of cell death under such a

condition (40), a rational and reactive performance made to

sacrifice specific cells for the benefit of the tissue. Researchers

have indicated that MSCs have vital roles in regulating cell

apoptosis. For example, Kong et al. (41) demonstrated MSCs

potentially protect the cortical neurons from OGD injury in

vitro by rescuing neurons from apoptosis. Xiao et al. (42)

indicated that bone marrow-derived MSC-exosomes repressed
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oligodendrocyte apoptosis via releasing exosomal miR-134, in

turn negatively regulating the caspase-8-dependent apoptosis

pathway. In addition to apoptosis, MSCs can promote cell

survival by alleviating parthanatos and necroptosis. By co-

culturing MSCs with hypoxic neurons, Kong et al. indicated

that MSCs prevented neurons from parthanatos by suppressing

the expression of nuclear translocation of apoptosis-inducing

factors (41). The reduction of neuronal necrosis kinase RIP1 and

RIP3 levels caused by MSCs, meanwhile, was tightly related to

the suppression of neuronal necroptosis (41).

MSCs suppress post-stroke cell
autophagy

Autophagy, another type of cell death, is an evolutionarily

conserved cellular mechanism that balances cellular nerve

homeostasis. It is a process that results from the injury in

cells’ internal conditions, including starvation, hypoxia, and

infection (43). MSCs can inhibit autophagy and, in turn,

promote cell survival. Kuang et al. (31) illustrated that the

application of adipose-derived MSC-exosomes suppressed the

autophagic response under both in vitro hypoxia and in vivo

cerebral ischemia regarding cell survival through transferring of

miR-25, as a consequence, supporting post-stroke neurological

function recovery. Moreover, the knockdown of SNHG12 in

MSCs boosted the effects of MSCs in suppressing hypoxia-

induced autophagy in brain microvascular endothelial cells

and MCAO rats by interacting with the PI3K/AKT/mTOR

signaling pathway (44). By contrast, MSCs can reverse ischemic

injury by enhancing autophagy as well (45, 46). Likewise,

Zeng et al. indicated that PC12 cells were exposed to oxygen-

glucose deprivation (OGD) and cocultured with MSCs secreted

extracellular vesicles (EVs). Under such conditions, MSC-

secreted EVs significantly attenuated pyroptosis mediated

by NLRP3 inflammasome by promoting AMPK-dependent

autophagy flux (47).

MSCs promote post-stroke angiogenesis

During post-stroke conditions, capillaries are dysfunctional,

and blood-brain barrier permeability is increased, consequently

aggravating the inflammatory reaction and neuronal necrosis.

In addition to rescuing and restoring neuronal cells, increasing

evidence has shown that increasing the survival of endothelial

cells, ameliorating brain angiogenesis, and mediating the

recanalization of brain collaterals are great therapeutic targets.

MSCs transplantation has been revealed to migrate to the

peri-infarct region and differentiate into neuronal, glial, and

endothelial cells to enhance neuroplasticity (30). Moreover,

MSCs act in an indirect paracrine way as well. MSCs have

also been shown to induce regenerative processes by increasing

the level of insulin-like growth factor 1 (IGF-1) and inducing

vascular endothelial growth factor (VEGF), angiopoietin-

1 (Ang-1), essential fibroblast growth factor (bFGF), and

neurotrophic factors in the host brain (48–51). These bioactive

factors of VEGF and Ang-1 are the most essential in promoting

neurological recovery by boosting neurogenesis. Besides that,

the hypoxia and 0.04 MHz ultrasound-modified MSCs and

MSCs-derived exosomes have been illustrated to have the

capacity to achieve angiogenic effects (14, 52–54). Significantly,

implantation of MSCs promoted angiogenesis and increased

neurogenesis by releasing these angiogenic and neurotrophic

factors. By conducting a three-dimensional analysis of the

neovascularization in the peri-infarct region, Toyama et al.

(55) and Chen et al. (56) demonstrated that the capillary-

like tube formation was significantly induced in stroke mice

treated with MSCs, suggesting a direct effect of MSCs on

facilitating angiogenesis.

MSCs support the post-stroke
immunomodulatory e�ects

MSCs-microglia interactions

Microglia, which comprise a significant immune cell

population in the central nervous system, appear as a

ramified structure with a small soma in the resting form

under physiological conditions (57, 58). When activated by

ischemic stroke, microglia increase in number and transform

to amoeboid forms characterized by the larger microglial cell

body and shorter bumps. The activation of microglia activation

is the first step in response to inflammation; further, the

other immune cells, such as T cells, neutrophils, and natural

killer cells, are activated (59, 60). While MSCs in microglial

activation have been widely studied, there is not enough

research on transplantation in ischemic stroke. Plenty of studies

investigating various donor cell-derived MSCs identified a novel

insight into crosstalk in ischemic stroke, and the role of MSCs in

microglial activation has begun to be recognized (14, 61–63). For

example, Yang et al. (64) indicated that bone marrow-MSCs can

shift the microglia phenotype from M1 to M2, contributing to

MSCs-induced brain repair. As a paracrine interaction between

MSCs and microglia, the synergistic effect of MANF and PDGF-

AA pathway governed M2 polarization. Furthermore, despite

peripheral LPS treatment before the stroke, increased CD16/32-

M1 microglia boosted the number of microglia surrounding

the peri-infarct region and diminished CD206-M2 microglia

on the post-stroke seventh day; they were rectified by the

administration of human umbilical cord MSCs (65). Moreover,

a series of researchers have accessed the effects of MSCs on

microglial activation (14, 61–75); more details are shown in
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TABLE 1 Preclinical stroke studies assessing the e�ect of MSCs on the activation of microglia.

Author Year Country Species Dosage Route MSCs

source

The main effects on microglia References

Cunningham et al. 2020 UK. Mice 1.4 x 106 Sub BM Have no effect microglial Iba1 expression (61)

Narantuya et al. 2010 Japan Rats NA IV BM Reduce microglial activation and MMP level (66)

Ishizaka et al. 2013 Japan Rats 1× 106 IA NA Suppress microglia activation in the

peri-infarct and core lesion

(67)

Yamaguchi et al. 2018 Japan Rats 1× 106 IA Blood Suppress microglia activation in the

peri-infarct cortex

(62)

Wang et al. 2014 China Rats 2× 106 IV BM Inhibit macrophages/microglia activation in

the ischemic brain

(68)

Wei et al. 2012 America Rats 1× 106 IV BM Inhibit microglia activation in the ischemic

brain

(14)

Nakajima et al. 2017 Japan Rats 1× 106 IV BM Inhibit microglia activation and

proinflammatory levels

(69)

McGuckin et al. 2013 France Rats NA Stereotaxis UC. Decrease markers of microglial activation

(lower ED1 and Iba)

(63)

Li et al. 2018 China Rats 1× 106 IV BM Inhibit microglia activation (70)

Lv et al. 2016 China Cells NA NA BM. Inhibit hypoxia-activated rat microglia (71)

Sheikh et al. 2019 Japan Rats 3× 106 IV BM Inhibit microglia activation (72)

Wang et al. 2013 Japan Rats 3× 106 IV BM Inhibit microglia activation and

proinflammatory gene levels

(73)

Yoo et al. 2013 South Korea Rats 5× 105 Stereotaxis BM. Inhibit microglia activation (74)

Sheikh et al. 2011 Japan Rats 3× 106 IV BM Decrease the accumulation of Iba-1+

microglia

(75)

Feng et al. 2020 China Mice 1× 106/20 g IV UC Inhibit CD16/32-M1 microglia, Promote

CD206-M2 microglia

(65)

Yang et al. 2020 China Rats 1× 106 IV BM Induce M2 microglia polarization through

PDGF-AA/MANF

(64)

NA, not available; IA, intraarterial; IV, intravenous; Sub, subcutaneous; BM, bone marrow; UC, umbilical cord; OGD, oxygen-glucose deprivation; MSCs, mesenchymal stem cell;

IL, interleukin.

Table 1. To sum up, the application of MSCs appears to inhibit

microglial activation and promote M2 polarization.

MSCs-neutrophils interactions

Neutrophils are the essential infiltrating cell type in the

ischemic brain the first few days after stroke (76), tightly

correlating with ischemic stroke-induced BBB disruption.

The preclinical stroke studies have implied that MSCs’

administration can reduce neutrophil accumulation in the

brain. Vehicle or EVs (the equivalent of 2 × 106 MSCs) were

intravenously administered to mice after transient intraluminal

middle cerebral artery occlusion (77). MSC-EVs decreased

specifically polymorphonuclear neutrophil infiltration in

ischemic brains of aged mice. Moreover, MSCs can boost the

beneficial effects of neutrophils on the brain. Bone marrow-

MSCs can potentially induce interleukin-17 (IL-17) production

in memory CD4+ T cells that, in turn, promote the enhanced

phagocytic activity of neutrophils (78). Still, bonemarrow-MSCs

may also protect resting and interleukin-8-activated neutrophils

from apoptosis, preserving their effector functions and

suppressing the reactive oxygen species production (79).

MSCs-natural killer (NK) cells interactions

NK cells, one type of lymphocyte, belong to a part of the

innate immune system that is well-known for the potential to

mediate cytotoxicity and produce cytokines (80).

The immunomodulatory effects of MSCs on NK cells

have been extensively studied in the peripheral regions. MSCs

are involved in inhibiting the differentiation, proliferation,

cytotoxicity, and activation of the NK cells through a variety of

cytokines (81). These cytokines may include prostaglandin E2

(PGE2), soluble human leukocyte antigen-G5 (sHLA-G5), and

transforming growth factor-β (TGF-β), which is partly linked

to glycoprotein A repetitions predominant on the surface of
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MSCs (82). Additionally, hypoxic MSCs can also repress NK

cell cytotoxicity and reduce the accumulation of host-derived

NK cells when transplanted in vivo, as a result, contributing to

ameliorating limb ischemia in allogeneic recipients (83).

MSCs-dendritic cells (DCs) interactions

The immune response to ischemic stroke consists of

inflammatory and regulatory processes. DC is one of the cell

types involved in innate and adaptive immunity. Upon an

ischemic condition, the brain DCs are increased at 24- and

72-h post-stroke and accumulated in the peri-infarct region

near invading T cells (84). Peripheral DC appearing in the

brain was apparent at 72-h post-stroke and was confined

primarily to the lesion core (84). MSCs are revealed to have

capacities to suppress DCs differentiation and maturation and

even reverse mature DCs to immature states (85–88). Gao

et al. (85) indicated that MSCs inhibited the differentiation

of human monocyte-derived DCs through both releasing IL-

10 and direct cell contact. Likewise, Zhao et al. (87) showed

that MSCs can differentiate mature DCs into a distinct

regulatory DC population characterized by a lower expression

of CD1a, CD80, CD86, and CD40 and a higher expression

of CD11b. Importantly, such an effect on inhibiting DCs

differentiation andmaturity is demonstrated to be linked to both

maintaining homeostasis of regulatory T cells and lower levels of

proinflammatory cytokines TNF-α andMHC II surface antigens

(86, 87).

MSCs-T cells interactions

T cells, which are involved in both innate and adaptive

immune responses, can be divided into the αβ subset and the

unconventional γδ subset (89). The αβ subset includes CD4+

T helper cells (Th1, Th2, Th17) that mainly modulate the

functions of phagocytes and granulocytes, CD8+ T cells that

have a cytotoxic role, and regulatory T cells (Treg) that regulate

immune responses (89). After the ischemia-onset, T cells are

revealed at the border of the infarct, where they appear within

days (90, 91). More specifically, CD8+ T cells are recruited

as early as 3 h post-ischemia onset, with CD4+ T cells and

NK T cells following within 24 h, and accumulation of these T

cells peaks 3 to 4 days after ictus (76, 92, 93). There is solid

evidence that MSCs are linked to direct immunosuppressive

properties via suppressing the activation and proliferation

of CD4+ and CD8+ T cells while promoting activation,

differentiation, and proliferation of Tregs through direct cell-

to-cell communication or releasing of various factors. Upon a

hypoxic-ischemic encephalopathy condition, MSCs can induce

persistent peripheral T-cell tolerance and inhibit the invasion

of T-cells into the preterm brain (94). During a critical limb

ischemia condition, MSCs showed effective prevention of Th1

priming, which was strongly related to an altered IL-12/IL-10

production (95). Likewise, in renal ischemia/reperfusion rats,

by releasing TGF-β, MSCs can not only suppress CD8+ T cells

but boost the development of Tregs, as a result, repressing T

cell-related inflammation (96). As such, MSCs might therefore

contribute to suppressing the activation and proliferation of

CD4+ and CD8+ T cells and promoting the proliferation

of Tregs during an ischemic condition. However, information

regarding this aspect of the interaction between MSCs and T

cells upon an ischemic stroke condition appears to be limited.

It is scarce, so additional and reliable data is urgently needed.

MSCs-B cells interactions

B cells, one part of the adaptive immune response, have

the capacity to present antigens, produce antibodies, and

activate the immune system (97). These cells are detectable in

insufficient quantities in the brain under normoxic conditions;

however, they are trafficked in larger quantities to the brain

tissues in response to injury (98, 99). B cell adoptive transfer

to mice does not contribute to acute pathology but can

support post-stroke recovery, independent of changing immune

populations in recipient mice (100). Completed and ongoing

clinical trials and preclinical studies on the therapeutic effects

of MSCs transplantation against immune-mediated diseases

have demonstrated an increased generation of B cells (101).

The effectiveness of related MSCs-B cell interaction-based

treatments dramatically depends on the functions of Bregs, as

MSCs can increase the secretion of IL-10 by Bregs (101). On

the contrary, several studies identified that MSCs are involved

in suppressing the activation and proliferation of B cells. For

instance, human adipose tissue-derived MSCs can inhibit the

proliferation and chemotaxis of B cells by inducing cell cycle

arrest in G0/G1 phase and regulating CXCR4 and CXCR5

expression, respectively (102). As such, in vitro, by secreting

various factors, MSCs decreased the proliferation of B cells

and the production of immunoglobulin (103). Taken together,

the combined effects on the proliferation and activation of

B cells are found in MSCs. However, the precise effect of

inhibition/promotion on B cells modulated under ischemic

stroke conditions is not fully clear yet. An overview of howMSCs

interact with immune cells is shown in Figure 1.

MSCs improve the post-stroke
neurological function recovery

The size of the infarct volume is tightly correlated with

ischemic stroke severity. In vivo experiments on MCAO rats

demonstrated that MSCs derived from bone marrow, adipose

tissue, and the umbilical cord could reduce the post-stroke

infarct volume (104). However, many conditions, such as the

source of MSCs, species injected, and the timing and dose

of MSC injection, can affect specific effects on decreasing
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FIGURE 1

An overview of how mesenchymal stem cells (MSCs) interact with immune cells. MSCs derived from various tissue sources can release a series

of mediators, which in turn interact with various immune cells, namely microglia, neutrophils, natural killer cells, dendritic cells, T cells, and B

cells. IL, interleukin; EVs, extracellular vesicles; MSCs, mesenchymal stem cells; NK cell, Natural Killer cell; IGF-1, insulin-like growth factor 1;

VEGF, vascular endothelial growth factor; bFGF, fibroblast growth factor; MCP-1, Monocyte chemoattractant protein-1; miR, microRNA; TGF-β,

transforming growth factor-β.

infarct volume after stroke. Along with such a reduction of

infarct volume, the behavioral test analyses illustrated better

test scores of mice/rats transplanted with MSCs at either time.

Of note, this better test performance in the corner turn test,

the rotarod test, balance beam test, tightrope test, and paw

slips recording was long-lasting and stable until the end of the

observation period (31, 105–107). It is suggested that MSCs

can potentially mitigate postischemic motor coordination

impairment in preclinical stroke experiments. Significantly,

post-stroke impairment of the blood-brain barrier and

perifocal vasogenic edema are also alleviated by endovascular

MSCs administration. Post-stroke edema, impairment of the

blood-brain barrier, as well as upregulation of aquaporin

4 (AQP4) water transport channels, play an essential role

in the progression of ischemia and deteriorating disease

recovery. Datta et al. (108) presented preliminary evidence that

1×105 endovascular MSCs at 6 h post-stroke down-regulates

AQP4 expression and alleviates vasogenic edema toward

neuroprotection. Likewise, MSCs protected blood-brain barrier

integrity by inhibiting the ischemia-induced astrocyte apoptosis,

owing to the downregulation of AQP4 expression via the p38

signaling pathway (109).

The underlying patterns of how
MSCs exhibit the therapeutic e�ects

MSC-EVs are critical players in treating
ischemic stroke

EVs, the membrane-enclosed nanoscale particles secreted by

all eukaryotes, always serve as a variety of molecular cargoes,

Frontiers inNeurology 06 frontiersin.org

10

https://doi.org/10.3389/fneur.2022.1048113
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Tan et al. 10.3389/fneur.2022.1048113

such as peptides, lipids, proteins, and noncoding RNAs (43,

110). Based on the size of EVs, they can be divided into

three subtypes: exosomes, microvesicles, and apoptotic bodies

(111). Exosomes with a diameter of 30–150 nm form via the

fusion of multivesicular bodies with membrane and are further

released into the extracellular matrix (112, 113). Microvesicles

with a diameter of 200–1,000 nm are produced owing to

the outward budding of the plasma membrane (112, 113).

Conversely, apoptotic bodies with a diameter of 1,000–5,000 nm

are produced by dying cells and are even more abundant than

the two other particles (111). Only exosomes and microvesicles

are relevant to the therapeutic effects imparted by MSC-EVs.

When these nanosized vesicles are released from donor cells into

the extracellular matrix, they can be internalized by numerous

recipient cells. In turn, they transfer the above bioactive cargos

into recipient cells, including near and far from the secreting

cell, further serving as messengers and performing biological

functions. This cargo mix is revealed to mediate the biological

properties of EVs and, indirectly, the treatment of MSCs under

ischemic stroke conditions. The EVs derived from MSCs are

emerging to be an appealing therapeutic tool for ischemic stroke,

with the MSC-derived properties and the characteristics of

effortless storage, lower immunogenicity, higher safety profile,

and nature delivery vehicles. Previous research works indicated

that EVs derived from MSCs promoted post-stroke recovery.

They have the capacity to regulate the expression of recipient

cell genes, alter cell properties involved in ischemic stroke, and

mediate restorative effects, including cell survival, cell apoptosis,

cell autophagy, angiogenesis, neurological function recovery,

and immunomodulation, through a variety of molecular cargoes

transfer (13, 31, 33, 34, 42, 53, 114–142). Moreover, by inhibiting

the release of EVs, the beneficial effect on these aspects is also

suppressed. For example, by establishing a coculture model that

MSCs cocultured with hypoxic neurons and brainmicrovascular

endothelial cells, the results showed that the MSCs treatment

could inhibit the apoptosis of hypoxic neurons and restore the

tube formation of brain microvascular endothelial cells (143).

However, an inhibitor, GW4869, of EVs secretion can reverse

these beneficial effects, indicating that these EVs are the key

players that serve as the central mediator of the neuroprotective

and angiogenic effects of MSCs (143). Currently, studies are

paying attention to the function of the EVs isolated from

bone marrow, adipose tissue, and, sometimes, umbilical cord-

MSCs (144).

The critical role of noncoding RNAs
(NcRNAs) in treating ischemic stroke

Despite being well-established that most human RNA

transcripts cannot encode proteins, the emerging evidence

demonstrates that ncRNAs regulate cell physiology and shape

cellular functions (145, 146). ncRNAs can be divided into long

[namely long noncoding RNA (lncRNA) and circRNA] and

small ncRNAs [including microRNAs (miRNAs), tRNAs, and

piRNAs] by taking 200 nucleotides as the limit (147). miRNAs,

∼18–24 nucleotides in size, are much earlier reported and

the most discussed. lncRNAs are a large and heterogeneous

kind of ncRNAs with more than 200 nucleotides and are

involved in the modulation of transcription, translation, RNA

metabolism, as well as homeostasis (148–150). CircRNAs are

defined as circular covalently bonded structures associated

with a higher tolerance to exonucleases (151), which serve

as a scaffold for chromatin-modifying complexes, regulating

the expression level of parental genes, modulating mRNA

splicing, and acting as miRNA sponges (152, 153). Notably,

the aberrant expression of many noncoding RNAs has been

associated with aggressive pathologies. A variety of ncRNAs

are reduced in the ischemic brain or blood after ischemic

stroke, as previously reported for circSCMH1, miR-124-3p,

miR-126, miR-221-3p, and miR-132 (114–119, 154), whereas

other ncRNAs, namely miR-98 and miR-494, are increased

at defined follow-up (155–157). MSC-based therapies offer

an attractive approach because they promote cell survival,

angiogenesis, and neurological function recovery, suppress cell

apoptosis and autophagy, and regulate immunomodulation,

where ncRNAs play an essential role. Interestingly, these

ncRNAs were mainly derived from EVs, including lncRNA

MALAT1, miR-1-3p, miR-17-92, miR-22-3p, miR-25, miR-

26a, miR-26b-5p, miR-31, miR-124, miR-126, miR-132, miR-

133b, miR-134, miR-138-5p, miR-146a-5p, miR-181b, miR-

206, miR-210, miR-221-3p, miR-223-3p, miR-542-3p, and miR-

1290 (31, 33, 34, 42, 114, 115, 117, 119, 121–125, 129–

133, 135, 136, 138, 158). These EVs are isolated from bone

marrow and adipose tissue, as well as umbilical cord-MSCs.

Additionally, MSCs can regulate the expression of ncRNA

directly, in turn, to support neuroprotection. For instance, Yang

et al. indicated that MSCs-mediated mesencephalic astrocyte-

derived neurotrophic factor paracrine signaling, the PDGF-

AA/miR-30a∗/XBP1/MANF pathway, synergistically mediates

MSC-induced M2 polarization (64). Likewise, Huang et al.

found that, with enhanced cell homing, MSCs can be applied

to deliver miR-133b to boost the expression level of miR-

133b in an ischemic lesion and further improve therapeutic

effects (159). To sum up, MSCs can not only directly regulate

the level of ncRNA but also indirectly regulate the level of

ncRNA in the form of secreting exosomes, thus promoting the

improvement of neurological function recovery. More details

regarding preclinical studies that evaluate the effect of MSC-

ncRNA on treating ischemic stroke are shown in Table 2

(31, 33, 34, 42, 64, 114, 115, 117, 119, 121–125, 129–133, 135,

136, 138, 158, 159).
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TABLE 2 Preclinical studies evaluating the e�ect of MSC-non-coding RNA on treating ischemic stroke.

Authors Country, year ncRNA Expression Source Donor cell Recipient cell Main function

Zhong and Luo (135) China, 2021 miR-1-3p Upregulation EVs ucMSCs Primary neurons Promote cell viability and inhibit

apoptosis

El Bassit et al. (158) USA, 2017 lncR MALAT1 Upregulation EVs MSCs HT22 neuronal cells Promote cell viability

Xin et al. (131) China, 2017 miR-17-92 Upregulation EVs MSCs Neurons, glial cells Promote neuroplasticity

Zhang et al. (123) China, 2021 miR-22-3p Upregulation EVs ADSCs Primary neurons Promote cell viability and inhibit

apoptosis

Kuang et al. (31) Germany, 2020 miR-25 Upregulation EVs ADSCs Primary neurons Inhibit autophagy

Hou et al. (124) China, 2021 miR-26a Upregulation EVs ADSCs Primary neurons Promote cell viability and inhibit

apoptosis

Ling et al. (132) China, 2020 miR-26a Upregulation EVs USCs NSCs Promote neurogenesis

Li et al. (122) China, 2020 miR-26b-5p Upregulation EVs ucMSCs SH-SY5Y, PC12,

microglia

Inhibit apoptosis and inflammation

Lv et al. (125) China, 2020 miR-31 Upregulation EVs ADSCs Primary neurons Promote cell viability and inhibit

apoptosis

Yang et al. (133) China, 2017 miR-124 Upregulation EVs BMSCs NPCs Promote neurogenesis

Geng et al. (119) China, 2019 miR-126 Upregulation EVs ADSCs Neurons, ECs, BV2 Promote neurogenesis and inhibit

inflammation

Feng et al. (114) China, 2018 miR-132 Upregulation EVs BMSCs Primary neurons Promote cell viability and inhibit

apoptosis

Xin et al. (121) China, 2013 miR-133b Upregulation EVs BMSCs Neurons, AS Promote neurite outgrowth

Xiao et al. (42) China, 2018 miR-134 Downregulation EVs BMSCs OLs Inhibit apoptosis

Deng et al. (34) China, 2019 miR-138-5p Upregulation EVs BMSCs Primary AS Inhibit apoptosis

Zhang et al. (33) China, 2021 miR-146a-5p Upregulation E.V.s ucMSCs BV2 microglia Inhibit inflammation

Yang et al. (129) China, 2018 miR-181b Upregulation EVs ADSCs BMECs Promote angiogenesis

Zhong and Luo (135) China, 2021 miR-206 Upregulation EVs ucMSCs Primary neurons Promote cell viability and inhibit

apoptosis

Zhang et al. (130) China, 2019 miR-210 Upregulation EVs BMSCs BMECs Promote angiogenesis

Ai et al. (115) China, 2021 miR-221-3p Upregulation EVs BMSCs Primary neurons Inhibit apoptosis and inflammation

Zhao et al. (136) China, 2020 miR-223-3p Upregulation EVs MSCs BV2 Inhibit inflammation

Cai et al. (117) China, 2021 miR-542-3p Upregulation EVs MSCs HA1800 AS Inhibit apoptosis and inflammation

Yue et al. (138) China, 2019 miR-1290 Upregulation EVs ucMSCs Primary neurons Inhibit apoptosis

Yang et al. (64) China, 2020 miR-30a* Upregulation Cells MSCs Microglia Inhibit inflammation

Huang et al. (159) China, 2017 miR-133b Upregulation Cells MSCs Neurons/Astrocytes Promote cell viability

BMSCs, Bone marrow-derived mesenchymal stem cells; ADSCs, adipose-derived stem cells; ucMSCs, umbilical cord mesenchymal stem cells; USCs, human urine-derived stem cells; EVs,

Extracellular vesicles.

The critical role of trophic factors and
cytokines in treating ischemic stroke

Preclinical studies in rodent models of ischemic stroke

have uncovered the potential effectiveness of the administration

of trophic factors in ischemic brain injury recovery. The

brain-derived neurotrophic factor (BDNF), glial cell line-

derived neurotrophic factor (GDNF), and vascular endothelial

growth factor (VEGF) are the most described (160). MSCs

released or stimulated the release of three aforementioned

neurotrophic factors associated with the contribution of

ischemic stroke recovery. After administration, MSCs migrated

from the vascular system outside the lesion to the area of

the lesion core or peri-lesion to reduce the infarct volume

by secreting BDNF, GDNF, and VEGF (161, 162). BDNF

protein, highly expressed in the hippocampus, is known to

affect the survival and proliferation of several neural cells,

including cerebellar and cortical neurons (163). BDNF rapidly

boosts in response to ischemic brain injury, contributing to

reducing neuronal apoptosis and promoting neuronal survival

(163). GDNF, produced by glial cells after brain injury,

accelerates the survival and recovery of several types of mature

neurons, including motor and dopaminergic neurons (164).

VEGF, produced by neurons and astrocytes, is involved in
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FIGURE 2

Some of the underlying therapeutic mechanisms associated with the mesenchymal stem cells (MSCs) in ischemic stroke. MSCs are isolated and

identified from various tissue sources. These MSCs produce extracellular vesicles (EVs), noncoding RNAs (ncRNAs), trophic factors, chemokines,

and cytokines by paracrine mechanisms to promote neurological recovery. Based on the EVs size, they can be divided into three subtypes,

namely exosomes (30–150nm), microvesicles (200–1,000nm), and apoptotic bodies (1,000–5,000nm). ncRNAs primarily include microRNA,

long noncoding RNA, and circRNA. BDNF, brain-derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; VEGF, vascular

endothelial growth factor; bFGF, basic fibroblast growth factor; IL, interleukin; TGF-β, transforming growth factor-β; HGF, hepatocyte growth

factor; miR, microRNA.

various stages of neurodevelopment (proliferation, migration,

differentiation, synaptogenesis, myelination (160). Additionally,

VEGF stimulates angiogenesis by stimulating endothelial cell

proliferation and migration and increases blood-brain barrier

integrity (160). Notably, further growth and trophic factors,

namely TGF-β, bFGF, IGF-1, HGF, and HGF, released or

regulated by MSCs, are also involved in post-stroke neurological

recovery. The types of cytokines released directly by MSCs or

indirectly modulated in response to neuroinflammation due to

stem cell transplantation are huge. They cannot be discussed

in full detail here. Briefly, anti-inflammatory cytokines of IL-

10 and IL-13, proinflammatory cytokines IL-8, IL-1α, and IL-

12, and pleiotropic cytokines of IL-6, IL-11, IL-16, and IL-

1β, correlated to immune function modulation after ischemic

stroke, are revealed to be directly or indirectly produced by

MSCs (165). In summary, MSCs played diverse therapeutic

roles by secreting a series of trophic factors and cytokines.

Hence, gene modification could be performed to enhance the

therapeutic effects of MSCs by modulating the trophic factors

and cytokines. However, attention should be given to the adverse

effects of trophic factors and cytokines due to the adverse

concentration. Some of the underlying therapeutic mechanisms

associated with MSCs in ischemic stroke are summarized in

Figure 2.

Therapeutic application of stem cells
in clinical ischemic stroke study

Meta-analysis: The clinical application of
MSCs in treating ischemic stroke

A comprehensive literature search of several electronic

databases, namely PubMed, Cochrane Library, EMBASE,
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TABLE 3 Main characteristics of the clinical study assessing stem cells in treating ischemic stroke.

References Country Study

design

Sample

size

Stem cell type Cell dosage Injection

route

Follow-up

Bhatia et al. (166) India RCT 20 Autologous

BMMNCs

6.1× 108 IV 1 year

Bang et al. (181) South Korea RCT 30 Autologous MSCs 5× 107/2 times IV 12 months

Meng et al. (179) China Non-RCT 120 Autologous MSCs 2.97× 109 IV Half a year

Lee et al. (171) South Korea RCT 52 Autologous MSCs 5× 107/2 times IV 5 years

Bhasin et al. (174) India Non-RCT 24 Autologous

BMMNCs

5.46× 107 IV 24 weeks

Bhasin et al. (175) India Non-RCT 40 Autologous

BMMNCs and

MSCs

5.54× 107 IV 24 weeks

Prasad et al. (172) India RCT 120 Autologous MSCs 2.8× 108 IV 1 year

Chen et al. (167) China RCT 30 Autologous PBSCs 3–8× 106 IA. Half a year

Bhasin et al. (176) India Non-RCT 20 Autologous

BMMNCs

6.28× 107 IV 8 weeks

Ghali et al. (178) Egypt Non-RCT 39 Autologous

BMMNCs

1× 106 IA 1 year

Bhasin et al. (177) India Non-RCT 12 Autologous MSCs 5–6× 107 IV 4 years

Hess et al. (169) UK/USA RCT 129 Allogeneic MAPC 1.2× 109 IV 1 year

Jin et al. (170) China RCT 20 Autologous

BMMNCs

1× 107 Subarachnoid 7 years

Fang et al. (168) China RCT 16 Autologous EPSs

and MSCs

2.5× 106/kg/2 times IV 4 years

Savitz et al. (173) USA RCT 48 Autologous BM

ALDHbr Cells

3.08× 106 IA 1 year

Moniche et al. (180) Spain Non-RCT 20 Autologous

BMMNCs

3.38× 106 IA Half a year

ALDHbr, aldehyde dehydrogenase; BMMNC, bone marrow-derived mononuclear cell; EPS, endothelial progenitor cell; IA, intra-arterial infusion; IV, intravenous infusion; MSCs,

mesenchymal stem cells; PBSC, peripheral blood stem cell; MAPC, multipotent adult progenitor cells; RCT, randomized controlled trial.

and Web of Science, was performed by two researchers

independently from the inception of these databases to 30

June 2022. We retrieved studies assessing stem cells in

treating ischemic stroke by adopting the following keywords:

“stem cell” together with “ischemia,” “stroke,” “middle cerebral

artery occlusion,” or “MCAO.” References from the identified

reports were manually searched to identify other potential

qualifying studies. The specific screening process is shown in

Supplementary Figure 1. A total of 16 reports were included

in this section from South Korea, India, the UK, China, the

United States, Egypt, and Spain, which were conducted varied

from 2005 to 2019 (166–181). Table 3, Supplementary Table 1

described the characteristics and quality assessment of included

studies, respectively. The Stata, version 12.0, was used for

endpoint analyses. When I2 > 50%, the data were deemed

to have apparent heterogeneity, and a random-effect model

was adopted. Otherwise, a fixed-effects model was adopted.

Among all outcomes, weighted mean differences (WMD)

or rate differences (RDs) with 95% CIs were applied for

the assessment.

First, this study analyzed the efficacy of MSCs on patients

with ischemic stroke through the modified Rankin Scale (mRS),

National Institutes of Health Stroke Scale (NIHSS), and Barthel

index (BI). Data on mRS were provided by night studies.

There are 219 and 227 participants in the MSCs and control

groups. The patients treated with MSCs were associated with a

statistically significant lowermRS value (WMD,−0.354; 95%CI,

−0.681 to −0.027; P = 0.034, Figure 3A). Similarly, seven and

nine studies reported the data of NIHSS and BI, respectively.

The cross-sectional data from various studies were plotted and

demonstrated that the NIHSS was statistically lower (WMD,

−1.538; 95% CI, −2.506 to −0.571; P = 0.002, Figure 3B) and

BI was statistically higher (WMD, 7.444; 95% CI, −4.488 to

10.401; P < 0.001, Figure 3C) in the MSCs group than that

of the control group. Second, we also evaluated the safety of

MSCs on patients with ischemic stroke; 15 studies (356 and 354
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FIGURE 3

Forest plot for meta-analysis of the modified Rankin Scale (mRS) (A), National Institute of Health Stroke Scale (NIHSC) (B), Barthel index (BI) (C),

and death rate (D).

patients in the MSCs and control group, respectively) reported

the death rate. No significant heterogeneity was observed, and

a fix-effect model was used (I2 = 40%, P = 0.055). The

death rate between the experimental and control groups was

statistically significant (RD, −0.046; 95% CI, −0.086 to −0.005;

P = 0.026, Figure 3D). More details regarding the results are

described in Supplementary Table 2. Altogether, stem cell-based

therapies have the capacity to improve neurological deficits

and activities of daily living in patients with ischemic stroke.

However, several common limitations exist for current studies,

such as small sample size, long-term waiting for MSC culture,

age of participants, heterogeneity of ischemic brain injury site,

and severity (155, 156).

The clinical translation of MSC-based therapy for ischemic

stroke is booming, and MSCs are expected to improve the

sequence of ischemic stroke in patients. Nevertheless, this

treatment has led to some controversy as well. (I) Stem cell

translation has the potential to result in tumor formation (157).

For example, stem cells derived from embryonic stem cells may

have the potential for tumorigenicity. Moreover, a reduction

of genetic modification of stem cells will be associated with a

lower risk of tumor formation. (II) the controlled treatment

of transplanted exogenous stem cells to regulate differentiation

and achieve the desired therapeutic effect has yet to be studied

(157, 182). (III) the insufficient brain delivery and retention and

the invasiveness of current administration routes prevent MSCs

from fully exerting their clinical therapeutic potential (183). (IV)

the issue of immune rejection is also necessary to be addressed.

Although MSCs rarely express the major histocompatibility

complex, they can still cause some immunological issues (182).

Conclusion

The application of MSCs in treating ischemic stroke is

vast. In preclinical settings, the transplantation of MSCs

offers an excellent opportunity for adjuvant ischemic stroke

treatment, participating in multiple pathological processes,

such as increasing cell survival angiogenesis and suppressing

cell apoptosis and autophagy. Importantly, immunomodulation
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is another excellent target of MSCs by interacting with

a variety of immune cells, namely microglia, neutrophils,

NK cells, DCs, T cells, and B cells. However, no large-

scale randomized, double-blind, multicenter clinical study

exists to prove their effectiveness. In clinic, MSCs have

many advantages: they are easy to harvest, expand, and

store for a long time and are convenient to manage

in many ways. Additionally, their clinical use does not

raise many ethical issues. Increasing evidence supports the

potential of MSCs to treat stroke, and autologous stem

cell-based therapies can improve post-stroke neurological

deficits and daily living activities in patients with minimal

clinical adverse events. Nevertheless, the heterogeneity of

MSCs is the primary barrier to their clinical application

and therapeutic effect. Nonetheless, despite these issues, the

application of MSCs appears to achieve neuroprotective effects,

which result from the release of EVs and modification of

various signaling pathways, such as ncRNAs, trophic factors,

and cytokines.
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As a specific lymphatic marker and a key ligand of C-type lectin-like

receptor 2 (CLEC-2), podoplanin (Pdpn) is involved in various physiological and

pathological processes such as growth and development, respiration, blood

coagulation, lymphangiogenesis, angiogenesis, and inflammation. Thrombotic

diseases constitute a major cause of disability and mortality in adults, in

which thrombosis and inflammation play a crucial role. Recently, increasing

evidence demonstrates the distribution and function of this glycoprotein in

thrombotic diseases such as atherosclerosis, ischemic stroke, venous thrombosis,

ischemic-reperfusion injury (IRI) of kidney and liver, and myocardial infarction.

Evidence showed that after ischemia, Pdpn can be acquired over time by a

heterogeneous cell population, whichmay not express Pdpn in normal conditions.

In this review, the research progresses in understanding the roles andmechanisms

of podoplanin in thromobotic diseases are summarized. The challenges of

podoplanin-targeted approaches for disease prognosis and preventions are

also discussed.

KEYWORDS

podoplanin, thrombotic, inflammation, CLEC-2, platelet activation, epithelial-

mesenchymal transition

Introduction

Podoplanin (Pdpn), named according to its expression in renal podocytes, is a type

I transmembrane glycoprotein containing a large number of O-glycoside chains, which

makes it a member of mucin-type proteins. Due to its expression in human and several

mammal species in various cells and tissues, it has many different names. In human it is

also called gp36 and T1α (1), however, in mice which is also known as Aggrus, OTS-8,

gp38, and antigen PA2.26 (2–4). Pdpn is mainly involved in growth and development,

respiration, blood coagulation, lymphangiogenesis, angiogenesis, and inflammation (5–7).

Especially the interaction with its receptor C-type lectin-like receptor 2 (CLEC-2) has

been shown to play an important role in thromboinflammation (8, 9). Pdpn expression is

upregulated in both epithelial and mesenchymal cell compartments during thrombosis and

inflammation, and a growing body of evidence indicates its prominence in these pathologies

of thrombotic diseases.

Structure, protein partners and cell expression

Pdpn consists of a heavily O-glycosylated ectodomain, a hydrophobic membrane

spanning domain, and a short cytoplasmic tail (CT) of only nine amino acids. Besides

C-type lectin-like receptor 2 (CLEC-2), there are variable proteins interacting with Pdpn,
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such as CCL21, galectin-8, and heat-shock protein A9 (HSPA9)

binding its ectodomain; CD9 and CD44 interacting with its

transmenbrane domain; and ezrin, radixin, and moesin (ERM)

binding to its CT. Through these interactions, Pdpn exerts various

functions like platelet aggregation/activation, platelet biogenesis,

immune surveillance, cytoskeleton rearrangement, and epithelial-

mesenchymal transitions (EMTs) by protein–protein interactions

for the lack of obvious enzymatic motifs (10–12) (Figure 1). Mostly,

Pdpn is expressed on various cells, or at plasma membrane

extensions, such as microvilli, filopodia, and ruffles, linking to

the actin cytoskeleton to rearrange cytoskeleton and regulate cell

motility. A fraction of Pdpn is localized in detergent-resistant

membrane domains or raft platforms regulated by its CT and

transmembrane domains, which appears to be necessary for Pdpn-

mediated EMT and cell migration (13, 14). Besides, a soluble

form of Pdpn (sPdpn) has recently been detected and investigated

(15, 16). Cells ectopically or endogenously expressing Pdpn has

been found to release extracellular vesicles (EVs) that contain

Pdpn mRNA and protein. Pdpn incorporates into membrane shed

microvesicles (MVs) and endosomal-derived exosomes (EXOs),

and immunoelectron microscopy revealed its colocalization with

the classical EV marker CD63 (15). Ovarian cancer cells express

Pdpn themselves and also release Pdpn-rich EVs, both causing

platelet aggregation, leading to venous thrombosis (16). Those

Pdpn-EXO may contribute to sPdpn in circulating body fluid

for Pdpn+ microparticles were detected in human body fluids

including plasma and other liquids, which were quantitated using

surface plasmon resonance, immunohistochemistry, and a double-

antibody sandwich ELISA (17–20).

The Pdpn research was originally started from the cloning of

highly metastatic NL-17 subclone from mouse colon 26 cancer

cell lines and the establishment of 8F11 monoclonal antibody

(mAb) that could neutralize NL-17-induced platelet aggregation

and hematogenous metastasis. Pdpn was identified as the antigen

of 8F11 mAb, whose ectopic expression brought cells the platelet-

aggregating abilities and hematogenous metastasis phenotypes.

From the 8F11 mAb recognition epitopes, Pdpn is found to contain

tandemly repeated, highly conserved motifs, designated platelet

aggregation-stimulating (PLAG) domains, which are associated

with the CLEC-2 binding (21). Pdpn was discovered for the

first time in rat and mice lungs, and on the surface of stromal

cells in lymph nodes (LNs) in mice, which has been found to

be expressed in a wide variety of cells later, such as lymphatic

endothelial cells, tumor cells, osteocytes, choroid plexus epithelial

cells, glial cells, and cancer-associated fibroblasts for its pleiotropic

functions (7, 22).

Pdpn signaling pathways

Among the many protein ligands of Pdpn, CLEC-2, and ERM

proteins are studied comprehensively. CLEC-2 is a main receptor

for Pdpn. The PLAG3 and PLAG4 domains of Pdpn are required

for its binding to CLEC-2 (23, 24). The combination of CLEC-

2 with the PLAG domains in the extracellular domain of Pdpn

induces platelet activation and regulates inflammation through the

Src, Syk, and SLP-76 kinase pathway (25, 26). Additionally, the

interaction of Pdpn with CLEC-2 enhanced the interaction between

Pdpn and ERM proteins and CD44, which activated Rho GTPase

signaling pathway (27, 28). Both the interaction of Pdpn with

CLEC-2 and with ERM are the two main pathways of cytoskeleton

reorganization and inflammation regulation, which have been

demonstrated to contribute to the occurrence and development

of thrombotic diseases (29, 30). Studies show that Pdpn plays

an important role in the functional regulation of immune cells.

Following inflammatory or ischemic stimulation, Pdpn expression

was upregulated in macrophages, microglia, and other immune

cells, which influenced their motility and functionally phenotype

transformation (31–33).

Pdpn in atherosclerosis

Atherosclerosis is usually considered as a chronic inflammatory

disease, which is the main root cause of thrombotic diseases

characterized by lipid deposition in parts of the artery

accompanied by smooth muscle cell (SMC) and fibrous

matrix proliferation. Unstable atherosclerotic plaque rupture

and following thrombus formation, or vascular stenosis lead

to arteriosclerotic cardiovascular disease (ASCVD) resulting in

high rate of mortality in the population (34). Platelet activation

and aggression has a well-established role in the development

and manifestation of atherosclerosis (35–37). Both CLEC-2 and

Pdpn have been shown to bind to atherosclerotic lesions. CLEC-2

co-localized with vascular SMCs, while Pdpn was localized to

SMCs and macrophages (38). Besides, Pdpn expression in SMCs

and macrophages increased with atherosclerotic progression.

However, in a rat model similar to the plaque erosion in

human which contains relatively few inflammatory cells and

more SMCs compared with plaque rupture, Pdpn was found

to be overexpressed in endothelial cells, not in SMCs. Further

exploration showed that vascular endothelial growth factor

(VEGF)-A, which is expressed in SMCs, macrophages, and

endothelial cells in the advanced atherosclerotic lesions, induced

Pdpn expression. Therefore, it is speculated that VEGF-A from

superficial SMCs stimulates endothelial Pdpn expression, which

interacts with CLEC-2 to induce platelet aggregation and thrombus

formation (39). The results remind us that at different stages

of atherosclerosis, Pdpn expression varies in different cells and

plays different roles. This partly might be explained by the fact

that inflammatory stimulation upregulated Pdpn expression in

macrophages, and Pdpn was expressed on inflammatory but

not tissue-resident macrophages (31). Toll-like receptor (TLR)

stimulation and some inflammatory cytokines activates Pdpn

expression. Additionally, in advanced atherosclerotic plaque,

Pdpn was detected in a membranous or cytoplasmic staining

pattern, suggesting Pdpn may contribute to atherosclerosis

development in both CLEC-2-dependent and independent

manners (38). Pdpn is expressed in stromal myofibroblasts, which

contribute to cell migration and invasion, suggesting a role of

Pdpn in vascular remodeling and atherosclerotic progression

in atherosclerotic plaques. On the other hand, inflammatory

cytokines in plaque progression promote Pdpn expression in

stromal cells and endothelial cells. Besides, adventitial lymphatics

in the arterial walls protect against atherosclerosis, which are

important in reverse cholesterol transport from atherosclerotic

lesions (40). Pdpn was specifically associated with lymphatic

endothelium number of adventitial lymphatics of human internal
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FIGURE 1

The structure of podoplanin and its functions with interacting proteins. Schematic representation of the molecular structure of podoplanin with a

heavily glycosylated extracellular domain, a single transmembrane domain, and a short 9-amino acid cytoplasm. The ligands and biological

processes during which the identified molecules interacting with podoplanin are presented. EC, ectodomain; TM, transmembrane region; CT,

cytosolic domain; PLAG, platelet aggregation-stimulating.

carotid artery, which demonstrated Pdpn may participate in

atherosclerosis via regulating functions and regeneration of

adventitial lymphatic vessels in atherosclerotic lesions (41).

In a disturbed blood flow (d-flow) model, monocyte Pdpn

was upregulated by d-flow, and the myeloid-specific Pdpn

deletion mitigated the subendothelial accumulation of platelets

and monocytes/macrophages, which ameliorated vascular

inflammation (42) (Table 1).

Much evidence confirmed the role of Pdpn in the development

and manifestation of atherosclerosis mainly through inflammation

and lymphatic vessel functional regulation pathways. CLEC-2 is the

important partner for the role of Pdpn in atherosclerosis, however,

other receptors and signaling pathways need to be explored.

Ischemic stroke

Ischemic stroke is one of the most common thrombotic

diseases, caused by a blood clot occluding one or multiple cerebral

arteries, which means rapid recanalization of the occluded blood

vessel is necessary for the treatment of acute ischemic stroke

(AIS). However, even recanalization is successful, symptoms can

still aggravate. This is called ischemia/reperfusion (I/R) injury, in

which thrombotic and inflammatory pathways play a crucial role.

Thus, ischemic stroke is recognized as a thromboinflammation

disease (85). The Pdpn/CLEC-2 axis is thought to be a major

regulator of thrombo-inflammatory disorders (86, 87). Therefore,

we previously conducted a prospective observational study,

including 352 AIS patients and 112 healthy controls. The results

showed that plasma CLEC-2 (pCLEC-2) levels were associated

with stroke progression and poor prognosis at 90 days. During

1 year follow-up, pCLEC-2 levels were also predictive for higher

incidence of death and vascular events (43, 44). Further we

examined the mechanism of Pdpn/CLEC-2 axis in cerebral

ischemia injury using a mouse middle cerebral artery occlusion

(MCAO) model. In this study, the expression of CLEC-2 and Pdpn

increased after ischemia/reperfusion (I/R) injury and anti-Pdpn

antibody pretreatment reduced infarct volume and attenuated the

neurological deficits with a significant decrease of IL-18 and IL-

1β, indicating a possible role of the Pdpn/CLEC-2 axis in the

regulation of inflammation in ischemic stroke via modulating

NLRP3 inflammasome (45). An upregulated Pdpn expression in

reactive astrocytes in the ischemic model was observed, which

might be a part of compensatory response to ischemic brain

injury. This implied a remarkable role of Pdpn in astrocytes in

ischemic brain injury, and cellular interactions among astrocytes,

neurons, and microglia await to be elucidated further (20). Qian

et al. reported the molecular mechanism of Pdpn neutralization

inhibiting I/R-induced microglial activation using transcriptome

sequencing analysis and found numerous inflammation-related

signaling pathways were regulated by the anti-Pdpn treatment (46).

Some upper proteins such as TRPM7 kinase might downregulate

CLEC-2 to protect mice from acute ischemic disease without

developing intracranial hemorrhage, which could provide us some

clues on the mechanism of Pdpn/CLEC-2 axis in ischemic stroke

(88). Both vascular and neurovascular interactionmechanismsmay

be involved, awaiting to be elucidated. Moreover, the interaction

of the CT of Pdpn with the ERM protein family activates Rho

GTPases. RhoA/ROCK signaling pathway in astrocytes is suggested

to be crucial in neurogenesis and angiogenesis after cerebral
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TABLE 1 Pdpn in thrombotic diseases.

Diseases Species Trend Outcomes Potential molecules References

Atherosclerosis Human/Mouse ↑ Contributing to atherosclerosis

development in both

CLEC-2-dependent and

independent manners.

CLEC-2,

VEGF-A,

inflammatory cytokines

Torres et al. (34), Kutkut et al. (40),

Drozdz et al. (41)

Ischemic stroke Human/Mouse ↑ High risk of stroke progression,

poor prognosis, and death.

Increased expression of CLEC-2

and Pdpn after I/R injury and

protective effect of anti-Pdpn

against I/R injury.

Regulation of inflammatory

cytokines through NLRP3?

and thrombosis

CLEC-2, NLRP3?, RhoA/ROCK? Zhang et al. (43), Wu et al. (44),

Meng et al. (45), Zhao et al. (20),

Qian et al. (46)

Venous thrombosis Human/Mouse ↑ Anti-Pdpn antibody treatment and

CLEC-2 deletion resulted in a

reduction of thrombus formation.

Pdpn overexpression was strongly

associated with the amount of

intratumoral thrombotic vessels

and increased VTE risk in cancer

patients.

Anti-Pdpn antibody treatment

inhibited platelet activation in vitro

and decreased the incidence of

VTE in mice.

CLEC-2 von Brühl et al. (47), Brill et al.

(48, 49), Payne et al. (50), Kolenda

et al. (51), Mir Seyed Nazari et

(52, 53), Riedl et al. (54),

Suzuki-Inoue (55), Wang et al.

(56), Lee et al. (57), Sasano et al.

(16), Sun et al. (58), Watanabe et al.

(59), Tawil et al. (60), Zwicker (61)

Kidney ischemic injury Human/Rats/Mouse Glomeruli↓ renal interstitium↑ The increasing of urine

Pdpn-to-creatinine ratio correlates

with the onset of renal IRI.

Significant decrease Pdpn

expression in the renal glomerulus

of diabetic kidney disease mice

with an underlying chronic

renal ischemia.

NF-κB?, mTOR? Breiteneder-Geleff et al. (62),

Weichhart et al. (63), Kezic et al.

(64, 65), Zhang et al. (66), Chuang

et al. (67), Kasinath et al. (68, 69),

Yu et al. (70), Gao et al. (71)

Myocardial ischemia Human/Mouse ↑ Upregulation of Pdpn in a

heterogeneous cell population.

Pdpn-neutralizing antibodies

reduces inflammation post-MI

without full suppression leading to

heart function and scar

composition improvement.

? Mahtab et al. (72, 73), Douglas

et al. (74), Cui (75), Loukas et al.

(76), Noseda et al. (77), Popescu

et al. (78), Aspelund et al. (79),

Díaz-Flores et al. (80), Caporali

et al. (81), Cimini et al. (82), Wakai

et al. (83)

Ischemia-reperfusion liver injury Mouse ↑ Activation of platelets. Nakata et al. (84)
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ischemia, which indicates the crosstalk among podoplanin, ERM

protein family, and astrocytes in ischemic stroke needs to be further

studied (Table 1).

Pdpn contributes to the cerebral ischemia injury mainly

through thrombosis and inflammation pathways. Its expression is

upregulated after brain ischemia in various kinds of cells, some of

which may not express Pdpn in normal conditions. However, the

exact cellular interactions, vascular and neurovascular interaction

mechanisms, and molecular signaling pathways remains to

be elucidated.

Venous thrombosis

Deep vein thrombosis (DVT) is a type of blood clot within deep

veins, which is one of the most common venous thromboembolic

disorders with a high mortality. Its underlying mechanisms still

remain unclear, however, recent evidence has demonstrated that

immune cells and inflammatory processes are involved in DVT

initiation besides blood coagulation disorder (89). DVT is rich

in red cells and fibrin, the formation of which involves the

interaction of von Willebrand factor (vWF), platelets, neutrophils,

and mast cells (47–49). In a murine DVT model of inferior

vena cava (IVC) stenosis, it has been demonstrated that general

inducible deletion of CLEC-2 or platelet-specific deficiency in

CLEC-2 are protected against DVT. Also, anti-Pdpn antibody

treatment resulted in a reduction of thrombus formation (50). The

mechanisms have been suspected that the interaction of CLEC-

2 in platelets and overexpressed Pdpn in the IVC wall induced

venous thrombus formation. Highly distorted flow caused by IVC

stenosis and following hypoxia led to upregulated Pdpn expression

(51). However, Pdpn upregulation cannot only be a cause for

thrombosis but might also be triggered by thrombus formation,

which indicates both mechanisms may operate in parallel forming

a positive feedback (Table 1). A recent study has demonstrated

a role of CLEC-2 in cerebral venous thrombosis (CVT), an

unusual manifestation of venous thrombosis. The results showed

antibody (INU1-fab)-induced cooperative signaling of CLEC-2 and

GPIIb/IIIa triggered a CVT-like thrombotic syndrome in mice. The

authors speculated that INU1-fab alters the conformation of CLEC-

2 and facilitates its interaction with an unknown ligand enriched

in cerebral veins (90). Thus, Pdpn, a main ligand of CLEC-2 for

platelet activation, was thought to be a candidate partner, as it is

obviously upregulated in different inflammatory tissues including

the brain, and can be shed from the cell surface to circulate in

plasma (20, 91). However, it needs to be further explored.

A crucial role of the interaction between CLEC-2 and Pdpn

in venous thrombosis has been revealed. Upregulated Pdpn

expression was observed in DVT. The exact cellular expression and

molecular signaling pathway remains to be uncovered, especially

for CVT. Also, whether there are interactions between Pdpn and

other receptors in venous thrombosis needs to be explored.

Cancer-associated thrombosis

Moreover, Pdpn-associated platelet activation has been

demonstrated to contribute to cancer-associated thrombosis,

which are based on the upregulation of Pdpn on the cell

surface of brain tumor cells. CATS trial reported that Pdpn

overexpression was strongly associated with the amount of

intratumoral thrombotic vessels and increased VTE risk in

cancer patients. Platelet counts were lower and plasma D-

dimer levels were higher in those with Pdpn-expressing brain

tumors (52). Increased Pdpn expression in glioma cells coincides

with the development of venous thrombo-embolism, which is

correlated with laboratory evidence of coagulation activation

by elevated D-dimer levels (54). CLEC-2-Pdpn interaction has

been suggested to stimulate cancer-associated thrombosis in

which thromboinflammation plays a crucial role. One hand,

thromboinflammation induces ectopic podoplanin expression

in vascular endothelial cells or macrophages; on the other hand,

CLEC-2 depletion reduces levels of plasma inflammatory cytokines

(55). Anti-Pdpn antibody treatment inhibited platelet activation

in vitro and decreased the incidence of VTE in mice (56). In

oral squamous cell carcinoma and ovarian cancer, the same

results have been reported (16, 57). Hypermethylation of CpG

islands in the Pdpn promoter was regulated by mutant isocitrate

dehydrogenase (IDH) in glioma, which resulted in decreased Pdpn

expression (58). Indeed, combination of IDH1 mutation and Pdpn

expression in brain tumors can help identify patients at high risk

of VTE (53, 59). Further exploration found Pdpn was released

with exosome-like EVs shed from cells (60). Additionally, in a

mouse model of systemic Salmonella Typhimurium infection,

Pdpn was upregulated in monocyets and Kupffer cells (KCs)

and its combination with CLEC-2 promoted the formation

of infection-driven thrombosis in the liver (61, 92) (Table 1).

Different forms of Pdpn participate in the formation of cancer-

associated thrombosis, to which pdpn-mediated thrombosis,

inflammation, and intratumoral vessel generation contributes.

Besides CLEC-2, there may be other partners interacting with

Pdpn in cancer-associated thrombosis.

Kidney ischemic injury

Ischemia-reperfusion injury (IRI) is one of the most common

causes of acute kidney injury (AKI), a serious and often deadly

condition. Kidney IRI accounts for almost 50% of AKI cases, which

is mediated by free radicals and reactive oxygen species (ROS) after

periods of disrupted blood flow (68). Pdpn was named according

to its expression in podocytes, mainly along their urinary surfaces,

indicating a potentially functional role of Pdpn in kidney IRI (62).

In a mouse model of kidney IRI, decreased Pdpn expression in

the glomerulus and increased expression in the tubulointerstitial

compartment of the kidney shortly after IRI was demonstrated.

And the intensity of Pdpn in the tubulointerstitial compartment

increased with the severity of ischemia, and the distribution of

its expression changed over time (68). Moreover, an increase in

the urine Pdpn-to-creatinine ratio was found to correlate with the

onset of renal IRI. The researchers speculated that Pdpn was shed

from the podocytes in an extracellular-vesicle form and expelled

into the urine, which might be internalizated by the proximal

tubule epithelium. Another hypothesis was spindle-shaped cells

expressing Pdpn in the interstitium of the medulla might migrate

to kidney from another organ, playing an important role in
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neovascularization during processes of kidney IRI. However, the

exact mechanisms need to be further explored. Pdpn expression

was significantly decreased in the renal glomerulus of diabetic

kidney diseasemice with an underlying chronic renal ischemia (70).

During the process, the activation of NF-κB signaling pathway

in podocytes downregulated the expression of Pdpn, leading to

increased podocyte apoptosis. Moreover, rapamycin, a kind of

mTOR inhibitor, had a controversial role in the treatment of

acute ischemic kidney injury. Some studies indicated a damage-

promoting role of rapamycin during kidney IR injury (64, 65),

while some reported a protective role of rapamycin against kidney

IR injury (63, 65, 66). However, there was evidence on correlation

between phosphorylated mTOR expression and Pdpn expression in

esophageal squamous cell carcinoma and traumatic brain injury,

which indicated Pdpn might participated in kidney IRI via mTOR

pathway, awaiting to be explored (67, 71). Immune responses are

involved in the pathophysiology of ischemic acute kidney injury

(AKI) (93). In some immune diseases of kidney such as rescentic

glomerulonephritis (GN), membrane Pdpn on fibroblastic reticular

cells (FRCs) may play an important role in the pathogenesis.

The effect of treatment with anti-Pdpn antibody was similar

to that of FRC depletion by decreasing T-cell activation in the

lymph node (LN), resulting in reduction of kidney injury (69).

Fibroblastic reticular cells also maintain the integrity of high

endothelial venules (HEVs) through interactions between Pdpn on

the FRCs and CLEC-2 on platelets (9). Anti-Pdpn treatment led

to disorganization of laminin fibers in the kidney LN, which was

associated with remarkably reduced expansion of the lymphatic

vasculature (69). Therefore, it is hypothesized that Pdpn on FRCs

may contribute to ischemic kidney injury by immune regulation,

which may be the future research contents (Table 1).

The role of Pdpn in kidney IRI remains unclear. Its mechanisms

are complex. Both sPdpn and cellular form participate in the

pathogenesis, in which NF-κB and mTOR signaling pathways have

been implicated. Moreover, the role of Pdpn on FRCs in activation

of T-cells and maintenance of the integrity of HEVs in kidney IRI

needs to be explored.

Myocardial ischemia (MI)

Myocardial ischemia (MI) is the commonest cardiovascular

disease and one of the major causes of morbidity and mortality

worldwide, in the pathogenesis of which inflammation and

following heart tissue evolution play an important role. In the

process, the growth and expansion of cardiac lymphatic vasculature

in response to MI, is crucial for the transportation of extravasated

proteins and lipids, inflammatory, and immune responses, as well

as fluid balance (75, 76, 79). Therefore, Pdpn as a specific lymphatic

marker, is thought to be vital in the cardiac development as well

as the pathogenesis of MI. The function of Pdpn is crucial for

epicardiac development and myocardial differentiation and its

knockout shows a hypoplastic myocardium, atrioventricular valve

abnormalities, and coronary artery abnormalities, which is partly

correlated with reduced epithelial-mesenchymal transformation

(EMT) caused by down-regulation of Pdpn (72, 74). Moreover,

Pdpn deficiency results in hypoplastic sinus venosus myocardium

including the sinoatrial node, which is also related to abnormal

EMT due to up-regulated E-cadherin and down-regulated RhoA

controlled by Pdpn (73). In the adult heart, Pdpn-positive cells

only constitute <5% of the myocardial small cell population,

which is only expressed by cardiac lymphatic endothelial cells in

homeostatic conditions (94). However, after myocardial infarction

(MI), Pdpn is upregulated in a heterogeneous cell population

such as PDGFRα-, PDGFRβ-, and CD34-positive cells, besides

lymphatic endothelial cells. Therefore, researchers thought Pdpn

might be a sign of activation of a cohort of progenitor cells

in different phases of post-ischemic myocardial wound repair.

Inhibition of Pdpn by Pdpn-neutralizing antibodies reduces

inflammation post-MI without full suppression leading to heart

function and scar composition improvement. The increase of

Pdpn-positive cells last from the acute (2 days) to the chronic

phase of MI (2 weeks to 1 month) (82), which indicates a vital

role of Pdpn in inflammation and wound repair after MI. Cimini

et al. identified Pdpn as a potential cellular mediator of the

lymphangiogenic and fibrogenic responses during different stages

of myocardial wound repair after infarction (82). After injury, Pdpn

is co-expressed by four kinds of cells such as PDGFRα-, PDGFRβ-,

CD34-positive cells, and lymphatic endothelial cells which are

responsible for regeneration, fibrosis, and inflammatory processes

of the same pathologies. In the process, inflammation was thought

to contribute to the recruitment of Pdpn-bearing LYVE-1-negative

cells to the site of myocardial repair or the activation of Pdpn

expression in responsive cell cohorts, which started the myocardial

wound repair after infarction. At different stages of MI, Pdpn is

expressed on various kinds of cells, for example, PDGFRα-positive

cells during the whole process and PDGFRβ and CD34-positive

cells at later stages of infarct healing in the mature scar. This

means Pdpn plays multiple roles in the pathogenesis of MI. Cimini

et al. reported the inhibition of the interaction between Pdpn

and CLEC-2 expressing immune cells in the heart improved the

cardiac performance, regeneration, and angiogenesis. In the model,

Pdpn neutralizing antibody treatment induced recruitment of anti-

inflammatorymonocytes/macrophages and increased expression of

anti-inflammatory cytokines (95).

Pericytes with PDGFR-β is very connected with Pdpn

expression and transplantation of allogenic pericytes improves

myocardial vascularization after MI resulting from the regulation

of the endothelium in angiogenesis (81, 96). While mesenchymal

stem cells (MSCs) expressing PDGFRα in the heart showed

cardiomyocyte, endothelial, and smooth muscle lineage potential

(77). In vitro differentiation of cardiac PDGFRα-positive cells

brings out a lot of SMCs and endothelial cells only, indicating a

predominant role of Pdpn in cardiac MSCs PDGFRα-positive cells

in the vascular and mesenchymal compartments. CD34+telocytes

expressed Pdpn after 15 days of MI, which supports cardiac growth,

regeneration, renovation of connective tissue, and repair due to

the unique communication with cardiac stem and progenitor

cells (78, 80). Moreover, Pdpn expression significantly enhanced

the migration of mesenchymal stromal cells (MSCs) and Pdpn-

expressing MSCs extended processes into the endothelial cell layer,

which could interact with circulating platelets (83) (Table 1).

In conclusion, cardiac ischemic injury induces upregulated and

ectopic expression of Pdpn. The interaction of Pdpn and CLEC-2 or

ERM proteins may participate in post-MI inflammatory response

and cardiac repair through inflammation regulation, cytoskeleton
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reorganization, and lymphangiogenic and fibrogenic responses.

The exact mechanisms remain unclear. And the interaction of

Pdpn with other partners in cardiac ischemic injury needs to be

further explored.

Ischemia-reperfusion (I/R) liver injury

Hepatic I/R injury is usually associated with surgical

procedures, trauma, liver transplantation, or resection as a

consequence of interrupted blood supply to the liver, which leads

to liver dysfunction and failure, as well as multiple organ failure

(97, 98). Kupffer cells (KCs) and platelets were reported as two

main roles in the procedure (99–101). Nakata et al. revealed Pdpn

expression in the cytosol of hepatocytes in the post-ischemic liver

and KC depletion weakened the Pdpn expression, which suggested

that activated KCs regulate the expression of Pdpn in hepatocytes

after I/R without clear mechanisms (84). Moreover, the authors

demonstrated in the acute phase of hepatic I/R injury, the binding

of CLEC-2 on the cell surface of platelets to Pdpn in hepatocytes

activated platelets in the hepatic sinusoid (84). Therefore, the

crosstalk among podoplanin, KCs, and platelets in hepatic I/R

injury needs to be further studied (Table 1).

Conclusions and perspectives

Pdpn, as an important glyprotein, has multiple interacting

proteins in various tissues and organs, demonstrating its pleiotropic

functions, especially a role in thrombosis and inflammation.

Thrombosis and inflammation contribute to the pathogenesis

of thrombotic diseases, such as atherosclerosis, ischemic stroke,

venous thrombosis, acute kidney and liver ischemic injury, and

myocardial ischemia. Evidence showed that after ischemia, Pdpn

can be acquired over time by a heterogeneous cell population such

as SMCs, endothelial cells, astrocytes, pericytes, MSCs, telocytes,

and so on, which may not express Pdpn in normal conditions.

However, the exact mechanisms of Pdpn in such ischemic diseases

have not clearly been demonstrated. Pdpn in different cells plays

different roles such as thrombosis, inflammation, vascularization,

lymphagiogenesis, growth, and regeneration. However, many issues

remain to be elucidated further; for instance, cell/stage-specific

effects of Pdpn and according molecular mechanisms, and the

relevance of anti-Pdpn treatment on ischemic diseases, especially

ischemic stroke, venous thrombosis, and myocardial ischemia. The

solutions to these issues can provide a new target of treating

thrombotic diseases from bench to clinical translation.
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Angiotensin-converting enzyme
gene insertion/deletion
polymorphism and risk of
ischemic stroke complication
among patients with hypertension
in the Ethiopian population

Addisu Melake1,2* and Nega Berhane2

1Department of Biomedical Science, College of Health Science, Debre Tabor University, Debre Tabor,

Ethiopia, 2Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar,

Gondar, Ethiopia

Background: Ischemic stroke is a complicated, multifaceted condition brought

on by a confluence of vascular, environmental, and genetic variables. The burden

of ischemic stroke is currently rising in terms of death, morbidity, and disability

worldwide. Genetic variables also play significant roles in the pathophysiology

of hypertension and ischemic stroke in addition to the greatest e�ects of

demographic, clinical, and behavioral risk factors. The key functional variation

of the ACE gene that has drawn the most interest is the ACE I/D variant. Even

though the ACE gene I/D polymorphism has been widely studied, the findings of

investigations on the involvement of this polymorphism in ischemic stroke were

contradictory and provide conflicting data. The goal of this study was to look into

the e�ect of the ACE gene I/D polymorphism on the risk of ischemic stroke in

patients with hypertension.

Methods: A hospital-based case–control study was carried out in 36 cases of

patients with hypertensive IS and 36 age- and sex-matched healthy controls.

Clinical and biochemical parameters were measured to assess the associated

risk factors. The DNA was isolated from blood samples, and the ACE I/D

genotypes were identified using polymerase chain reaction and analyzed by

agarose gel electrophoresis.

Results: The ACE-DD genotype (OR = 3.71, 95% CI = 1.02–13.5; P < 0.05) and D

allele (OR = 2.07, 95% CI = 1.06–4.03; P <0.05) were significantly more common

in patients than in controls, indicating that it is a risk factor for the development of

ischemic stroke in hypertensive individuals.

Conclusion: There is a significant correlation between the ACE gene I/D

polymorphism and the development of ischemic stroke in patients with a history

of hypertension in the Ethiopian population.
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1. Introduction

Ischemic stroke (IS) is the loss of brain tissue caused by a

cessation of blood supply to a region of the brain brought on by

an obstruction of a carotid or vertebral artery, or distal branches

of the anterior, middle, or posterior cerebral arteries (1). It is the

primary cause of adult disability and the second-leading cause of

mortality in the world, accounting for ∼ 10% of all deaths with

5.5 million people dying annually (2). According to data from the

2010 Global Burden of Diseases, Injuries, and Risk Factors Study

(GBD), stroke is the most common cardiovascular disease (CVD)

that results in death and disability in sub-Saharan Africa (SSA)

and other low- and middle-income countries (LMICs) (3). Risk

factors of IS may be divided into two categories: modifiable and

non-modifiable. Age, sex, family history, and race/ethnicity are

risk factors that cannot be modified, but hypertension, smoking,

diet, and physical inactivity are some of the risk factors that can

be modified (4). Due to health changes associated with constantly

evolving social, economic, and demographic trends, the SSA and

LMICs may be more impacted by the high burden of IS and other

vascular illnesses. The population’s shifting exposure to risk factors

and their inability to pay the high cost of IS treatment are two

additional reasons why the poor are becoming more and more

impacted by this illness (5).

The 2017 WHO data reported that 6.23% of all fatalities

in Ethiopia were due to stroke. In addition, the nation’s age-

adjusted stroke death rate is 89.82 per 100,000 of the population.

The stroke burden will increase in the upcoming years as

a result of poor healthcare-seeking behavior and insufficient

neurologic therapies, according to previous data on the stroke

trend (6). According to hospital-based research, stroke accounts

for 24% of all neurologic hospitalizations in Ethiopia, making it

one of the major causes of morbidity and death. Furthermore,

due to changes in lifestyle and demographics that have an

impact on the population’s epigenetic makeup, the incidence

of risk factors for stroke has been rising in the Ethiopian

population (7).

Hypertension is the most significant modifiable risk factor

for IS, increasing the relative risk by 3.1 times for men

and 2.9 times for women, where the incidence of stroke

rises proportionately with both systolic and diastolic blood

pressure (8). Since HTN and IS share fundamental physiological

regulatory systems, the causes of elevated blood pressure that

operate through RAAS may be linked to IS. In addition, the

atherosclerotic process involves RAAS in vascular remodeling,

the production of oxidative stress, and inflammation that have

shown a potential relationship with the condition (9). A number

of RAAS gene polymorphisms, including those in the aldosterone

synthase (CYP11B2), angiotensinogen (AGT), angiotensin II type

1 receptor (AT1R), and angiotensin-converting enzyme (ACE)

Abbreviations: ACE, angiotensin-converting enzyme; BMI, body mass

index; DNA, deoxyribonucleic acid; DBP, diastolic blood pressure; FBG,

fasting blood glucose; HDL, high-density lipoprotein; HTN, hypertension;

LDL, low-density lipoprotein; PCR, polymerase chain reaction; RAAS,

renin–angiotensin–aldosterone system; SBP, systolic blood pressure; TC,

total cholesterol; TG, triglycerol.

genes, have been found to be strongly linked to hypertension

and ischemic stroke. The most well-known and extensively

researched variants of these polymorphisms are the ACE I/D

polymorphisms (10).

The ACE is a membrane-bound dipeptidyl carboxypeptidase

ectoenzyme found in the endothelium lining of blood arteries

throughout the body, where it plays a crucial role in the

proliferation of vascular smooth muscle cells by converting

angiotensin I to angiotensin II (11). The human ACE gene, which

spans 21 kb and has 26 exons and 25 introns, is located on the

long arm (q) of chromosome 17 (17q23.3). The ACE gene’s I/D

polymorphism results from the insertion (I) or deletion (D) of a

287-base pair (bp) Alu sequence in intron 16, resulting in three

genotypes: II homozygote, ID heterozygote, and DD homozygote

(12). The ACE insertion/deletion (I/D) gene polymorphism

(rs4646994) was shown to have a high association with the level of

plasma ACE since it accounted for 47% of the overall phenotypic

variance of ACE activity. According to some studies, those with

the II genotype had lower ACE concentrations than people with

the DD genotype (13). The DD genotype was linked to elevated

ACE levels and activity, which consequently caused a spike in

blood pressure by increasing the production of angiotensin II,

starting the constriction of blood vessels, and also increasing the

reabsorption of water and sodium by the kidneys, along with

elevating blood volume and blood pressure that causes HTN-

induced IS (14).

Numerous case–control studies on ACE I/D polymorphism

and the risk of IS in various ethnic populations had been

conducted. This led to the hypothesis that ACE I/D may

be a candidate gene and that the DD genotype is correlated

with IS (10). However, the findings of investigations on the

involvement of this polymorphism in IS are contradictory

and provide conflicting data as certain studies established

a link while others did not (15). Furthermore, though a

number of studies were conducted to estimate the prevalence,

risk factors, and outcome of IS in the Ethiopian population

(16), there are no reported data about the effect of ACE

gene polymorphism on the occurrence and progression of

the disease. Keeping all the aforementioned factors in mind,

the purpose of this study was to determine the relationship

between ACE gene I/D polymorphism and the risk of ischemic

stroke complications among patients with hypertension in the

Ethiopian population.

2. Methods

2.1. Study participants

A hospital-based matched case–control study was conducted

from May to August 2022 in Debre Tabor Referral Hospital.

It has a follow-up medical referral clinic (MRC) for major

chronic illnesses, including IS and HTN, in which treatment

and follow-up for those patients take place. All patients

who visit MRC were the source population, and patients

who are under follow-up for HTN with IS complications

were study subjects. The study included a total of 72

participants of both sexes, consisting of 36 patients with
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FIGURE 1

Flow diagram of the study participant selection process.

hypertensive IS and 36 normotensive healthy control groups

(Figure 1).

2.2. Inclusion and exclusion criteria

Patients with IS secondary to HTN, who had been confirmed

by computed tomography (CT) scans and magnetic resonance

imaging (MRI), were recruited into this study. The study included

patients who had been receiving follow-up care atMRC for at least 1

year. Controls were age- and sex-matched normotensive volunteers

who were available during the study period. They were healthy

individuals with normal brain imaging from the same geographical

location and social status (Figure 1).

Patients who are diagnosed with hemorrhagic stroke, transient

ischemic attack, hepatic and renal disease, cardiac source of

embolization, secondary HTN, or chronic bacterial or viral

infection were excluded. Patients who are unable to respond or

are not willing to sign informed consent were also excluded from

this study.
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FIGURE 2

Agarose gel (1%) electrophoresis showing the quality of isolated genomic DNA.

FIGURE 3

Agarose gel (2%) electrophoresis showing PCR products of the ACE I/D gene.

2.3. Data collection methods

The socio-demographic characteristics of both patients and

healthy control subjects were obtained through a semi-structured

questionnaire. Portable digital scales and portable stadiometers

were used to determine body weight and height, respectively.

Body mass index (BMI) is computed by dividing weight (in

kilograms) by height (in meters square). Participants were classified

as underweight (BMI < 18.5 kg/m2), healthy (18.5–25 kg/m2),

overweight (25.0–29.9 kg/m2), or obese (≥30 kg/m2) based on their

BMI (17). A digital instrument was used to measure blood pressure

in the sitting stance after 5min of rest, and the mean of three

readings was used to compute SBP and DBP. Participants were

categorized as hypertensive if their SBP was 140–159mmHg and/or

DBP was 90–99 mmHg (grade 1) or SBP was ≥ 160 mmHg and/or

DBP was ≥ 100 mmHg (grade 2) or if they used antihypertensive

medication; as having high normal BP, if SBP was 130–139 mmHg

and/or DBP was 85–89mmHg; and as having normal BP, if SBP was

<130 mmHg and DBP was < 85 mmHg (18).

2.4. Sample collection and laboratory
methods

All participants, including patients and healthy controls, had

a blood sample of 5ml taken from the median cubital vein by

laboratory staff under safety procedures. From the 5ml sample,

3ml was retained in the test tube without anticoagulants to allow

the blood to clot. The tubes were then centrifuged to extract the

serum, which was then collected into new tubes for biochemical

tests. Enzymatic analyses of TC, TG, LDL, HDL, creatinine, and

glucose were performed on each test in the Debre Tabor Referral

Hospital diagnostic laboratory using the Dimension EXL 200 fully

automated analyzer. The results were then scored by an investigator

blinded to the sample withdrawal condition and experimental

groups. If the fasting plasma glucose concentration is >126 mg/dl,

then diabetes mellitus has been identified (19). Dyslipidemia can

be defined if TC, TG, and LDL levels are above 200 mg/dl,

150 mg/dl, and 100 mg/dl, respectively, and the HDL level is

below 60 mg/dl (20). Kidney disease is diagnosed if the blood

creatinine concentration is >1.3 mg/dl for men and >1.1 mg/dl for

women (21).

In themolecular biology laboratory at the University of Gondar,

genomic DNA was extracted from the remaining 2ml of samples

collected in EDTA-containing tubes from each participant. The

non-enzymatic salting-out approach (22) was used to isolate DNA

from EDTA-anticoagulated blood from both patients and controls.

The blood was then put into a clean 1.5ml Eppendorf tube. By

lysing and eliminating them with a buffer solution, red blood cells

were removed. To lyse white blood cells, a nuclear lysis buffer

solution was used. Thereafter, to precipitate and remove proteins,

6M NaCl of a highly concentrated salt was applied. After freezing

with isopropanol and washing with 70% ice-cold ethanol, the DNA

was precipitated. Thereafter, Tris-EDTA (TE) buffer was used to
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TABLE 1 Demographic, clinical, and behavioral characteristics of the study participants in Debre Tabor Referral Hospital, Northwest Ethiopia, 2022.

Variables IS (n = 36) Control (n = 36) P-value

Sex (M/F) 19/17 18/18 0.8136

Age (yr) 59.4±12.1 58.2± 6.9 0.6177

Family history of HTN (%) 27.8 % 19.4 % 0.4051

Family history of IS (%) 16.7 % 8.3 % 0.2850

BMI (Kg/m2) 23.6± 4.7 23.1± 4.2 0.6471

SBP (mmHg) 147.4± 6.0 116.2± 3.9 < 0.001∗

DBP (mmHg) 91.3± 3.8 76.0± 4.0 < 0.001∗

FBS (mg/dl) 91.0± 18.9 89.9± 5.7 0.7503

Total Cholesterol (mg/dl) 190.5± 47.6 153.4± 46.2 < 0.001∗

Triglyceride (mg/dl) 135.4± 37.3 105.5± 37.1 < 0.001∗

LDL-Cholesterol (mg/dl) 94.7± 32.6 68.5± 28.2 < 0.001∗

HDL-Cholesterol (mg/dl) 43.8± 8.2 55.5± 11.5 < 0.001∗

Creatinine (mg/dl) 0.79± 0.13 0.75± 0.12 0.2214

Smoking habit (yes/no) 6/30 2/34 0.1336

Alcohol intake (yes/no) 20/16 17/19 0.4793

Salt intake (yes/no) 35/1 32/4 0.1613

Physical exercise (yes/no) 3/33 7/29 0.1728

Stress (yes/no) 24/12 19/17 0.2296

∗A P-value of < 0.05 is considered statistically significant. BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; LDL, low-density

lipoprotein; HDL, high-density lipoprotein; HTN, hypertension; IS, ischemic stroke.

FIGURE 4

Distribution of the ACE I/D genotype in cases and controls.

dissolve genomic DNA. The quality of isolated genomic DNA was

verified utilizing 1% agarose gel electrophoresis (Figure 2), and the

sample was kept at−20 ◦C until it was needed (23).

Using specific primers (5
′

- CTG GAG ACC ACT CCC ATC

CTT TCT-3
′

and 5
′

- GAT GTG GCC ATC ACA TTC GTC AGA

T-3
′

, respectively), direct PCR was used to identify the I/D alleles

of the ACE gene polymorphism (24). A final volume (25µl) of

the PCR reaction mixture was prepared by combining 12.5µl of

master mix (MgCl2, dNTPs, PCR buffer, and Taq polymerase), 1µl

of forward primer, 1µl of reverse primer, 2µl of each sample,

and 8.5µl of PCR-grade water. The first denaturation step of the

PCR amplification was set at 95◦C for 5min. The DNA was then

amplified for 35 cycles with denaturation at 94◦C for 30 s, annealing

at 58◦C for 30 s, extension at 72◦C for 1min, and a final extension

at 72◦C for 5 min (25).

ACE I/D genotypes of 490 bp band (II), 190 bp band (DD),

and both 490 bp and 190 bp band (ID) PCR products were

electrophoretically separated for 50min at 120V on a 2% agarose
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gel (Figure 3). The PCR-amplified products (12 µl) were mixed

with 3 µl of loading dye before being injected into the agarose

gel wells. DNA ladders, which are molecular weight markers, were

electrophoresed along with the DNA fragments to estimate the

sizes of fragments of interest, and 3 µl of 2% ethidium bromide

was also used for staining. In 1X tris acetate EDTA (TAE) buffer,

electrophoresis was performed, and a UV transilluminator was

used to visualize the gel (26).

2.5. Statistical analysis

The data were analyzed using STATA version 14. The

means and standard deviations (x + s) were used to show

quantitative data. A t-test for independent samples was applied to

compare continuous variables between patients with hypertensive

IS and healthy controls. The chi-square test was used to

compare the distribution of genotype and allele frequencies.

The risk correlations of ACE gene I/D polymorphisms with

hypertensive IS were evaluated using logistic regression with a

95% confidence interval (CI). A one-way ANOVA was used to

compare the relationships between ACE genotypes and clinical

factors. Statistical significance was defined as a p-value of < 0.05.

3. Results

3.1. Socio-demographic and clinical
characteristics

The distribution by sex and age was similar between

hypertensive IS cases and normotensive control groups. Of the

total 36 participants with hypertensive IS, 19 (52.8%) were male

patients and 17 (47.2%) were female patients. Similarly, among

the 36 healthy control groups, 18 (50 %) were male patients

and 18 (50%) were female patients. The mean ages of the study

groups were 59.4 ± 12.1 and 58.2 ± 6.9 for cases and controls,

respectively. The clinical risk factors of IS such as systolic blood

pressure (SBP), diastolic blood pressure (DBP), total cholesterol

(TC), triglycerol (TG), LDL-cholesterol, and HDL-cholesterol

levels were significantly higher in patients when compared to

controls. However, there were no appreciable variations in blood

creatinine levels, fasting blood glucose (FBG), or body mass index

(BMI) between the two groups (Table 1).

3.2. Distribution of ACE genotypes and
allele frequencies

The frequencies of the DD, ID, and II genotypes were 38.9, 41.7,

and 19.4%, respectively, in the patient group, whereas they were

19.4, 44.4, and 36.1%, respectively, in the control group (Figure 4).

Genotype distributions in the case and control groups were

consistent with theHardy–Weinberg equilibrium (P> 0.05). The D

and I allele frequencies in patients were 0.60 and 0.40, respectively,

while they were 0.42 and 0.58 in controls. The distribution of

ACE genotype polymorphism between the two groups shows a

significant difference (P < 0.05). Furthermore, compared to the

control group, patients had a greater frequency of the homozygous

DD genotype (odds ratio [OR] = 3.71; 95% confidence interval

[CI] = 1.02–13.5; P < 0.05). The allelic frequencies showed

high significance between the two groups, in which the D allele

was two times higher than the I allele in patients (OR = 2.07;

95% CI = 1.06–4.03; P < 0.05) compared to controls. However,

compared to healthy controls, ACE genotype II was less common

in patients with hypertension (Table 2).

3.3. Association between ACE genotypes
and clinical parameters

Table 3 shows the association of the ACE I/D genotype with

the clinical parameters of patients with hypertensive IS and

normotensive healthy controls. The ACE genotypes (DD, ID, and

II) in the study groups were assessed with FBG, blood pressure,

and lipid profiles. All the aforementioned clinical variables were

not found to be significant with the genotypes in the study groups

(P > 0.05). However, the SBP and DBP are higher in the ACE-DD

genotype than in the ID and II genotypes.

4. Discussion

Ischemic stroke is a complex and heterogeneous disease with

multiple etiologies and significant clinical manifestations (27).

Even though conventional risk factors like diabetes, smoking,

hypertension, and dyslipidemia were thought to be more important

than inherited risk factors, recent case–control studies and

meta-analyses have shown that genetic risk factors and genetic

background have a significant impact on IS susceptibility (28). In

the present study, the DD genotype and D allele had significantly

higher frequencies in patients than in controls (Table 2, Figure 4).

This finding is consistent with a meta-analysis conducted in a

Caucasian population that included 22 case–control studies and

discovered that patients with the DD genotype were more likely

to have IS than those with the II genotypes (OR = 1.28, 95%

CI = 1.05 to 1.55; P < 0.001) (29). Another meta-analysis with an

encouraging result found that there was a substantial link between

the D allele and IS in 105 relevant studies, encompassing 18,258 IS

cases and 28,768 healthy controls (OR = 1.354; 95% CI = 1.272-

1.440; P < 0.001). This meta-analysis suggests that although the

statistical relevance for Caucasians is questionable, the ACE I/D

polymorphism may be a genetic risk factor for IS, especially in

Asians (30). Other research studies revealed that ACE-DD was

connected to a high occurrence of IS in people from India (31), Iraq

(32), and North India (33).

The exact mechanism by which the insertion/deletionmutation

in the ACE gene increases the risk of HTN and IS was

unknown (30). Extracellular volume and the homeostasis of

the vascular wall are mediated by ACE, a crucial enzyme

in the RAAS, which catalyzes the conversion of decapeptide

angiotensin I into octapeptide angiotensin II. Numerous studies

have shown that angiotensin II influences atherosclerotic changes

and plaque rupture through a variety of mechanisms, including

vasoconstriction and the expansion of vascular smooth muscle

cells, which promote peripheral resistance of blood vessels (34). It
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TABLE 2 Distribution of ACE genotypes and allele frequencies of the study participants in Debre Tabor Referral Hospital, Northwest Ethiopia, 2022.

Genotype IS (n = 36) Control (n = 36) OR (95% CL) p-value

DD 14 (38.9 %) 7 (19.4 %) 3.71 (1.02–13.5) 0.046∗

ID 15 (41.7 %) 16 (44.4 %) 1.74 (0.54–5.54) 0.348

II 7 (19.4 %) 13 (36.1 %) Ref

Allele Frequency

D 43 (59.7 %) 30 (41.7 %) 2.07 (1.52–3.22) 0.031∗

I 29 (40.3 %) 42 (58.3 %) Ref

∗A P-value of < 0.05 is considered to be statistically significant. Ref, reference; CL, confidence level; OR, odds ratio.

TABLE 3 Association of ACE I/D genotype with clinical characteristics in Debre Tabor Referral Hospital, Northwest Ethiopia, 2022.

Genotypes

Variables DD (n = 21) ID (n = 31) II (n = 20) p-value

Sex (M/F) 57/44 36/39 30/30 0.6479

Age (yr) 58.2± 11.8 58.9± 9.7 59.1± 8.1 0.2947

BMI (Kg/m2) 23.7± 4.3 23.4± 4.1 22.8± 5.1 0.8263

SBP (mmHg) 135.6± 16.0 131.5± 17.8 128.2± 14.7 0.2167

DBP (mmHg) 85.4± 8.7 83.4± 9.4 82.2± 7.3 0.2280

FBS (mg/dl) 86.8± 9.8 90.9± 14.2 93.7± 16.6 0.5799

TC (mg/dl) 164.7± 41.1 179.8± 54.1 167.3± 53.5 0.7213

TG (mg/dl) 111.1± 41.1 128.4± 49.5 117.9± 30.2 0.6339

LDL-C (mg/dl) 90.8± 40.2 78.9± 32.7 76.2± 23.6 0.6194

HDL-C (mg/dl) 50.5± 11.3 48.2± 11.7 51.1± 11.7 0.8025

Creatinine (mg/dl) 0.79± 0.16 0.77± 0.12 0.75± 0.12 0.2451

∗A P-value of < 0.05 is considered to be statistically significant.

has been shown that human RAAS activation worsens ischemia-

induced brain injury mainly by stimulating atherosclerosis,

reducing cerebral blood flow, and increasing oxidative stress, which

results in a hypertension-induced IS complication (35). In addition,

ACE-DD carriers have a higher level of angiotensin II than non-

carriers, which affects the function of endothelial cells in a number

of ways, including promoting endothelial cell apoptosis, raising

vascular endothelial growth factor, and impairing the production of

nitric oxide. This results in a higher risk of HTN and its associated

IS complications (36).

Furthermore, the findings of this study disagree with the

case–control study conducted in North Sumatra, Indonesia, which

included a total of 78 patients with IS of both sexes, consisting of

43 patients with hypertension and 35 patients with normotension.

Based on the allele and its genotype, there is no significant

correlation between the ACE gene polymorphism and HTN in

patients with IS. In this study, the I allele (72.1%) of the ACE gene

polymorphism was more dominant than the D allele (27.9%) in

patients with hypertensive IS (37). In addition, research conducted

in South India (38) showed a link between the ACE II genotype

and the I allele, which was exacerbated by factors such as smoking

and diabetes among patients with IS. Other studies conducted

in populations from Turkey (39) discovered no link between the

ACE gene’s I/D polymorphism and IS. The varying distribution

frequencies of the ACE I/D polymorphism, which are impacted

by regional and racial characteristics as well as ethnic variances,

may be the reason for the controversial findings among the various

ethnic communities (40). Different study methodologies, bias in

selection, various matching criteria, or the kind of stroke might all

be contributing variables (41).

In addition to the association between ACE polymorphism

and IS, the contribution of other risk factors, such as the

relation between ACE gene I/D polymorphism and patients

with HTN without known histories of stroke, was studied in

different populations (42). However, there are conflicting results

regarding ACE polymorphisms and HTN risk (43). Studies

conducted in populations from Pakistan (42) and Brazil (44)

showed that ACE-DDwas associated with a high incidence of HTN.

Contradictory results were found from a study conducted in Afro-

Brazilian and Caucasian populations (45) and the Peruvian elderly

population (43), which showed no association between the ACE

gene I/D polymorphism and HTN. Therefore, the controversial

results about the association of ACE with hypertension and other

cerebrovascular diseases in different populations may be due to

interactions between genetic and some environmental factors that

explain the complexity of genetic architecture (46). Inconsistencies

were still visible between researchers about the ACE gene I/D

polymorphism in hypertension and ischemic stroke complications.
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Therefore, further research is still required; for instance, a third

group would be needed to conclusively show the relationship

between patients with HTN without a known history of ischemic

stroke, patients with hypertension with IS complications, and

normotensive healthy controls.

5. Conclusion

The current study found that the ACE I/D gene of

the DD genotype and D allele is associated with a high

risk of IS complications in patients with hypertension. As

a result, the ACE I/D gene polymorphism can be used as

a biomarker for the early diagnosis and detection of IS.

Further studies with a large sample size are required to

comprehend the correlation between the ACE gene and IS.
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Predictive model, miRNA-TF 
network, related subgroup 
identification and drug prediction 
of ischemic stroke complicated 
with mental disorders based on 
genes related to gut microbiome
Jing Shen 1†, Yu Feng 2,3*†, Minyan Lu 1†, Jin He 1† and Huifeng Yang 1†

1 The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Nanjing, China, 2 The University 
of New South Wales, Sydney, NSW, Australia, 3 The University of Melbourne, Parkville, VIC, Australia

Background: Patients with comorbid schizophrenia, depression, drug use, and 
multiple psychiatric diagnoses have a greater risk of carotid revascularization 
following stroke. The gut microbiome (GM) plays a crucial role in the attack 
of mental illness and IS, which may become an index for the diagnosis of IS. A 
genomic study of the genetic commonalities between SC and IS, as well as its 
mediated pathways and immune infiltration, will be conducted to determine how 
schizophrenia contributes to the high prevalence of IS. According to our study, 
this could be an indicator of ischemic stroke development.

Methods: We selected two datasets of IS from the Gene Expression Omnibus 
(GEO), one for training and the other for the verification group. Five genes 
related to mental disorders and GM were extracted from Gene cards and other 
databases. Linear models for microarray data (Limma) analysis was utilized to 
identify differentially expressed genes (DEGs) and perform functional enrichment 
analysis. It was also used to conduct machine learning exercises such as random 
forest and regression to identify the best candidate for immune-related central 
genes. Protein–protein interaction (PPI) network and artificial neural network 
(ANN) were established for verification. The receiver operating characteristic 
(ROC) curve was drawn for the diagnosis of IS, and the diagnostic model was 
verified by qRT-PCR. Further immune cell infiltration analysis was performed to 
study the IS immune cell imbalance. We  also performed consensus clustering 
(CC) to analyze the expression of candidate models under different subtypes. 
Finally, miRNA, transcription factors (TFs), and drugs related to candidate genes 
were collected through the Network analyst online platform.

Results: Through comprehensive analysis, a diagnostic prediction model with 
good effect was obtained. Both the training group (AUC 0.82, CI 0.93–0.71) and 
the verification group (AUC 0.81, CI 0.90–0.72) had a good phenotype in the 
qRT-PCR test. And in verification group 2 we validated between the two groups 
with and without carotid-related ischemic cerebrovascular events (AUC 0.87, 
CI 1–0.64). Furthermore, we  investigated cytokines in both GSEA and immune 
infiltration and verified cytokine-related responses by flow cytometry, particularly 
IL-6, which played an important role in IS occurrence and progression. Therefore, 
we speculate that mental illness may affect the development of IS in B cells and 
IL-6  in T cells. MiRNA (hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p) 
and TFs (CREB1, FOXL1), which may be related to IS, were obtained.
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Conclusion: Through comprehensive analysis, a diagnostic prediction model 
with good effect was obtained. Both the training group (AUC 0.82, CI 0.93–0.71) 
and the verification group (AUC 0.81, CI 0.90–0.72) had a good phenotype in the 
qRT-PCR test. And in verification group 2 we validated between the two groups 
with and without carotid-related ischemic cerebrovascular events (AUC 0.87, CI 
1–0.64). MiRNA (hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p) and 
TFs (CREB1, FOXL1), which may be related to IS, were obtained.

KEYWORDS

ischemic stroke, mental disorders, gut microbiome, machine learning, qRT-PCR, 
diagnostic model, drug prediction, transcription factors ischemic stroke

1. Introduction

Stroke is one of the leading causes of death and disability 
globally, of which about 87 percent is ischemic stroke (IS) (1). Most 
IS patients have one or more comorbidities (2). IS patients with 
comorbidities experience more severe defects, increased disability 
and hospitalization rates, and higher mortality rates (3). Post-stroke 
cognitive impairment and dementia (PSCID) are the main sources 
of post-stroke morbidity and mortality worldwide (4). Current 
studies have shown that 25–30 percent of IS survivors develop 
vascular cognitive impairment (VCI) or vascular dementia (VaD) 
immediately or later (5). Post-stroke depression (PSD) is a general 
mental health problem affecting about 33 % of IS survivors. PSD 
adversely affects recovery and rehabilitation of cognitive and motor 
impairment after stroke, significantly increasing recurrence chances 
of neurovascular problems (6). Anxiety disorders affect about 1/4 
of IS patients (7), which hinders IS rehabilitation and prevents 
patients from resuming daily activities (8), but clinical trials have 
not produced any clear evidence to guide the treatment of post-
stroke anxiety disorders (9). There is a corresponding association 
between obsessive–compulsive disorder and IS. According to a 
national longitudinal study by Chen et al., patients with obsessive–
compulsive disorder have a higher risk of developing IS during 
follow-up compared with non-obsessive–compulsive disorder 
controls (10), but the correlation between the two is not clear. Odds 
of carotid revascularization after stroke are lower in patients with 
psychiatric disorders, especially those with schizophrenia, 
depression, substance use disorders, and multiple psychiatric 
diagnoses (11). In patients with schizophrenia, the presence of 
atopic disease increases the risk of ischemic stroke. The increased 
the number of atopic comorbidities, the heightened the risk of 
ischemic stroke (11). We require more clinical data to clarify the 
causal relationship between SC, gut microbes, and IS. However, our 
findings will help predict IS early through clinical genetic testing, 
as well as to predict the high incidence of IS in specific populations, 
such as schizophrenia. Additionally, our research will contribute to 
a better understanding of the genetic, immunological, and 
metabolic mechanisms underlying IS’s high incidence and 
dangerous prognosis.

Human body’s gut microbiome (GM) is the largest microbiome 
that plays an important role in regulating the immune system (12). In 
the mouse model, GM is also associated with the occurrence and 
sequelae of IS (13, 14). IS usually causes intestinal dysfunction, GM 

imbalance, intestinal bleeding, and intestinal septicemia, thus affecting 
the poor prognosis (15). More and more evidence shows that there is 
a correlation between GM and mental disorders, such as anxiety 
disorder, depression (16), schizophrenia (17), and so on. However, 
there is a lack of research on the relationship between GM and IS 
complicated with mental disorders. Therefore, this study is mainly 
through the analysis of five kinds of mental disorders (schizophrenia, 
depression, anxiety disorder, obsessive–compulsive disorder, and 
dementia) and IS in GM.

2. Materials and methods

2.1. Datasets

The IS datasets GSE22255, and GSE66724 from the GEO database 
were selected as the training group (18).1 Merging multiple datasets 
required the use of the ‘inSilicoMerging’ algorithm from the 
R-software package (19). We utilized the Johnson et al. (20) method 
to eliminate the batch effect, to select GSE58294 and GSE198600 as 
the test group. Five genes related to mental disorders and GM were 
collected from Genecards, the NCBI database, and related literature. 
Finally, 710 genes related to mental disorders and 434 genes related to 
GM were obtained and sorted out according to different types 
(Supplementary Tables S1, S2). The process specific to this method is 
presented in Figure 1.

2.2. Differentially expressed gene screening

We used Limma (21), a generalized linear equation model to 
use as a difference table screening method. R-based Limma was 
utilized to analyze the differences in order to derive the DEGs 
among control and comparison groups. The criteria for identifying 
DEGs in this study were|log2 Fold Change (FC)| > 1 and p < 0.05, 
and the heat map and volcano plot of IS DEGs were visualized by 
sangerBox (22).

1 www.ncbi.nlm.nih.gov/geo/
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2.3. Gene Set function enrichment analysis

The DEGs of IS and related genes of mental disorders and GM 
were cross-screened by Venn plot. For functional enrichment analysis, 
the genes related to mental disorders of IS were obtained. Further, 
KEGG rest API2 and gene set function enrichment analysis (GSEA), 
were utilized to obtain the KEGG pathway’s latest gene annotation. 
Moreover, the GO annotation of the gene “org.Hs.eg.db:” in the 
R-package (vs. 3.1.0) (23) was used as the gene map background. The 
clusterProfiler from the R-package was utilized for enrichment 
analysis (24) to obtain gene enrichment results. For GSEA analysis 
(25), GSEA software (vs. 3.0) was used to divide the sample into two 
groups. Also “c2.cp.kegg.v7.4.symbols.gmt” subset from Molecular 
Signatures Database (26) was used to assess the molecular mechanisms 
and the related pathways. We preset the minimum gene set to 5 on the 
basis of gene expression profile and phenotypes groupings. The value 
of the maximum gene set was 5,000, and a p-value<0.05 and an 
FDR < 0.1was kept as indices of statistical significance.

2.4. Screening candidate genes related to is 
and mental disorders by machine learning 
and constructing a protein–protein 
interaction network

“Glmnet” (27) and “RandomForest” (28) in the R software 
package were used to integrate gene expression data with survival time 
and survival status. Further lasso-cox and Random Forest methods 
were utilized for regression analysis. Moreover, 10%-fold cross-
validation was set up to derive the optimal model. The final diagnosis 
prediction model was obtained by cross-screening the outcomes of the 

2 https://www.kegg.jp/kegg/rest/keggapi.html

two machine-learning techniques through the Venn plot. Protein–
protein interaction (PPI) network was built using the Gene MANIA 
database. The latter is a user-friendly, flexible website for deriving 
assumptions about gene function, gene prioritization for functional 
analysis, and gene list analysis (29).

2.5. Validation of predictive models for 
diagnosis and prognosis

pROC (30) from the R package was used for ROC analysis to 
obtain AUC. Also, pROC’s CI function was utilized to assess the 
confidence interval (CI) and AUC so as to obtain the AUC result. 
Further, for visualization, sangerBox was used. Finally, we observed 
the expression of training set characteristic genes (GSE22255, 
GSE66724) and test group (GSE58294, GSE198600). In addition, a 
neuralnet (31) in the R software package was used to build an ANN 
for the characteristic genes obtained by the above method, thereby 
building a high-precision diagnostic model.

2.6. qRT-PCR and flow cytometry 
verification

Patients with acute IS hospitalized in Jiangsu Shengze Hospital, 
which is affiliated with the NMU (Nanjing Medical University) from 
January 1st, 2023, to January 15th, 2023, were enrolled retrospectively. 
Inclusion criteria: (1) the time of onset was within 7 days; (2) it met 
the diagnostic criteria revised by the Chinese Cerebrovascular Disease 
Classification 2015 of the Chinese Medical Association and was 
confirmed by head CT and/or MRI; (3) the medical records were 
complete. This research was conducted in accordance with the HD 
(Helsinki Declaration) and permitted by the Jiangsu Shengze 
Hospital’s Ethics Committee (Lun No.: 2022–017-01).

FIGURE 1

Flow chart.
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FIGURE 2

(A) volcano plot; (B) heat map of DEGs in IS; (C), KEGG analysis corresponding to mental disorder-related genes; (D), candidate genes were obtained 
by cross screening of mental disorder-related genes and GM in DEGs of IS.

The qPCR gene of mRNA was detected in the PBMC samples 
of five patients with IS and five physical examiners. PBMC was 
extracted by the ficoll separation method (tbdscience, Tianjin, 
China), samples were anticoagulated by EDTA, and mRNA was 
extracted by magnetic beads method (BioPerfectus, Jiangsu, 
China). We used a one-step reverse transcription fluorescence 
quantitative PCR kit (BBI Lifesciences, Shanghai, China) for 
sybr green quantitative PCR amplification of mRNA. The 
primers were shown in Supplementary Table S3, and the 
amplification instrument was Applied Biosystems 7,500. The 
specificity of cDNA amplification was analyzed by melt curve, 
and the difference in gene expression was analyzed by 
Amplification Data.

We performed immunocytokine flow cytometry detection on the 
EDTA anticoagulated whole blood of 5 IS-confirmed patients and 5 
physical examiners. An 8-item cytokine detection kit (multiplex 
microsphere flow immunofluorescence luminescence) (RAISEcare, 
Shandong, China) was used as the detection reagent, and BD 
FACSCanto II (Bccton, Dickinson and Company) was used as the 
cytokine detection instrument. The detection operation process is 
strictly in accordance with the kit instruction manual. We utilized flow 

cytometry to analyze the differences in the performance of the eight 
cytokines in the verification group.

2.7. Animal model and cell verification

Victoria G. Hernandez et  al. induced stroke by distal middle 
cerebral artery occlusion (dMCAO) in an animal model and used 
RiboTag technology to obtain mRNA transcripts derived from 
astrocytes and microglia in the hyperacute phase (4 h) and acute phase 
(3 days) after stroke. The expression and log2 fold data for all 
sequenced genes are available on a user-friendly website (32).3

2.8. Immune infiltration analysis

The immune cell infiltration was analyzed by Cibersort (33) in 
R statistical package, and the correlation was evaluated by the 

3 https://buckwalterlab.shinyapps.io/AstrocyteMicrogliaRiboTag/
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spearman coefficient (34). The heat map of infiltrating immune cell 
correlation was drawn by corrplot (35) in the R software package.

2.9. Construction of miRNA and TF-hub 
gene network and drug prediction

The network of gene miRNA, gene-TFs, and gene-drug interaction 
was established by Network analyst (36).4

2.10. Subgroup analysis by candidate genes

Unsupervised hierarchical clustering analysis of IS samples was 
carried out utilizing the “ConsensusClusterPlus” of R (37) and the 
candidate genes’ expression as input information. For Gene Set Variation 
Analysis (GSVA), the R statistical package was utilized to assess each 
sample’s enrichment score in the gene set (38). The gene rank was 
predefined, and to evaluate the molecular mechanisms and related 
pathways, we downloaded the subsets c2.cp.kegg.v7.4.symbols.gmt, h.all.
v7.4.symbols.gmt, and c2.cp.v7.4.symbols.gmt from Molecular 
Signatures Database. The minimum gene set was 5, and 5,000 was the 
maximum gene set. Each sample’s enrichment score in each gene set was 
evaluated, and finally, the enrichment score matrix was obtained. The 

4 https://www.networkanalyst.ca/

DEGs of subgroups were obtained by Limma analysis, and the functional 
differences between subgroups were analyzed by KEGG and GO.

3. Results

3.1. Is differentially expressed genes’ 
screening

Combining GSE22255 and GSE66724 as training group datasets, 
874 DEGs were identified in IS training group dataset by the Limma 
method, from which 417 were down-regulated and 457 up-regulated 
(Figures 2A,B). The genes’ functional enrichment analysis that relates 
them to mental disorders was conducted. KEGG showed that genes 
related to mental disorders were mainly enriched in the interaction 
known as the Neuroactive ligand-receptor type (Figure 2C). This 
proved that there was a correlation between mental disorders and IS 
(39). Seven candidate genes related to mental disorders and GM were 
cross-screened by Venn plot (Figure 2D).

3.2. Functional enrichment analysis (FEA) of 
related candidate genes

FEA of candidate genes was carried out, and KEGG analysis showed 
that the “Toll-like receptor signaling pathway,” “Rheumatoid arthritis,” 

FIGURE 3

(A): KEGG analysis of candidate genes; (B): GO analysis of the cell component of candidate genes; (C): GO analysis of biological process of candidate 
genes; (D): GO analysis of the molecular function of candidate genes.
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FIGURE 4

(A,B): candidate genes’ screening through LASSO regression; (C): Screening of candidate genes through RF regression; (D): candidate genes cross 
screening through Venn plot and machine learning; (E): PPI network construction of candidate genes.

“IL-17 signaling pathway,” and other pathways had enrichment of 
candidate genes (Figure 3A). GO analysis showed that in terms of cell 
composition (CC), the candidate genes were primarily located in the 
“RNA polymerase II transcription factor complex” and “nuclear 
transcription factor complex” (Figure 3B). The main biological processes 
(BP) of candidate genes included “response to cytokine,” “response to 
oxygen-containing compound,” and “cytokine-mediated signaling 
pathway” (Figure 3C). Molecular function (MF) analysis depicted that 
the most crucial processes among the candidate genes were “signaling 
receptor binding,” “cytokine receptor binding,” and “cytokine activity” 
(Figure  3D). Accordingly, our candidate genes may be  involved in 
immune infiltration as well as pathways related to cytokines in IS.

3.3. Screening of candidate genes related 
to is and construction of PPI network and 
PCD By machine learning

Candidate genes were identified by LASSO regression, and the results 
depicted that five potential candidate genes were identified (Figures 4A,B). 
We also used RF regression to identify candidate genes and showed four 
potential biomarkers (Figure 4C). Then the results selected by the two 
kinds of machine learning were cross-analyzed, and ultimately four 
candidate genes (CXCL8, FOS, LEP, MTHFR) were obtained (Figure 4D). 
And the PPI network was established through these four candidate genes, 

of which Physical Interactions occupied 77.64%, Coexpression occupied 
8.01%, and Predicted occupied 5.37% (Figure 4E).

3.4. Diagnostic model’s verification

The diagnostic value of the four candidate genes was verified by the 
ROC curve when all candidate genes were used as joint indicators 
(AUC 0.82, CI 0.93–0.71) (Figure 5A). We also put the diagnostic 
model into the verification group (GSE58294, GSE198600). It was 
shown that the diagnostic ROC (AUC 0.81, CI 0.90–0.72) of the 
positive and negative control groups in GSE58294 and the prognosis 
prediction ROC (AUC 0.87, CI 1–0.64) of the two groups in 
GSE198600 had a good predictive value (Figures 5B,C). The candidate 
genes were utilized to construct the neural network, and the outcomes 
depicted that the four candidate genes were able to distinguish the IS 
samples from the control samples, and the accuracy could reach 100% 
in the training group (Figures 5D,E). We also evaluated the expression 
profiles of the four candidate genes (Figures 5F–I), and the outcomes 
showed that there were statistically significant differences in candidate 
genes. GSEA analysis revealed that all four candidate genes were 
heavily enriched in immune-related pathways, such as the MAPK 
signaling pathway (Figures 6A–D). A relationship between candidate 
genes and pathways related to immune infiltration and cytokine 
production was further established by this study.
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FIGURE 5

(A): training group’s ROC curve; (B,C): test group’s ROC curve; (D,E): artificial neural network verification of training group; (F–I): analysis of candidate 
gene expression profile in the training group (CXCL8, FOS, LEP, MTHFR, respectively).

FIGURE 6

(A–D): GSEA analysis of CXCL8, FOS, LEP and MTHFR.
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FIGURE 7

(A): measuring the RNA expression of candidate genes in blood samples using qRT-PCR; (B,C): differences of eight cytokines in the two groups.

FIGURE 8

As = Astrocyte, Mg = icroglia, In = Input, IP=Immunoprecipitated, 4 h = 4 h, 3d = 3 days. (A–C): the expressions of Lep, Fos and Mthfr in astrocyte cells and 
microglia cells of stroke group and sham group, respectively.

3.5. Qrt-PCR-based verification of 
candidate genes, cytokines validated by 
flow cytometry

In order to verify the reliability of the dataset, clinical samples 
were taken, and the expression level of candidate genes was further 
identified by qRT-PCR (see Supplementary Table S3 for specific data). 
CXCL8, FOS, and LEP revealed statistically significant differences 
(p < 0.05), but similar differences were not found in MTHFR, which 
may be due to the less number of samples. The overall results were 
similar to those of mRNA chips (Figure 7A).

Flow cytometry was used to detect cytokines in the two groups of 
cases.，we found a significant difference in IL-6 between the two 
groups (p < 0.05). This is consistent with the conclusion we predicted 
based on the GSEA analysis (Figures 7B,C).

3.6. Cell expression in animal models

Regarding the Mthfr gene, we observed that in Astrocyte cells, 
the differences between the Stroke and Sham groups were 0.66 and 
0.66 (Log2Foldchange) at 4 h and 3 days, respectively, with the Stroke 
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group showing higher expression. In Microglia cells, there was no 
significant difference between the Stroke and Sham groups at 4 h, 
with a difference of −0.05, but at 3 days, the Stroke group showed 
higher expression with a difference of 0.61. For the Lep gene, there 
was no significant difference in expression at 4 h and 3 days in 
Astrocyte cells, with differences of −0.00 and − 0.02, respectively. For 
the Fos gene, in Astrocyte cells, there was a significant difference 
between the Stroke and Sham groups at 4 h, with a difference of 3.01, 
and at 3 days, with a difference of 0.88, both showing higher 
expression in the Stroke group. In Microglia cells, there was a 
significant difference between the Stroke and Sham groups at 4 h and 
3 days, with differences of 3.35 and − 0.02, respectively, with the 
Stroke group showing higher expression (See Figure 8 and Table 1 
for details).

3.7. Immune cell infiltration analysis

In this study, using the Cibersort algorithm, the concentration of 
22 immune cells in IS samples and control samples in the training 

group was estimated (Figures 9A,B). The immune cell infiltration of 
IS and the control group was compared in the box plot (Figure 9C). 
The results revealed that there were statistically significant differences 
in memory B cells and resting mast cells in IS patients, and both were 
substantially compared to the control group. In the prognostic group 
of GSE198600, we  found similar immune infiltration B lineage 
between the groups with and without carotid-related ischemic 
cerebrovascular events (p < 0.05) (Figure 8D).

3.8. Gene-miRNA, gene-TF, and gene-drug 
network diagram

The interaction networks of genes and miRNA, genes and TF with 
genes and drugs were generated by Network analyst. Four candidate 
genes-miRNA networks were constructed, and it was found that 
hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p could regulate 
the expression of CXCL8, FOS and MTHFR simultaneously 
(Figure 10A). Four candidate genes-TF networks were constructed, and 
the results revealed that CREB1 could regulate the expression of CXCL8, 

TABLE 1 Lep, Fos and Mthfr in astrocyte cells and microglia cells of stroke group and sham group, respectively.

Gene Log2Foldchange FDR Contrast Sample Timepoint Cell

Mthfr 0.658273148 0.0015194 Stroke vs Sham IP 4 hours Astrocyte

Mthfr 0.666646781 9.739E-05 Stroke vs Sham IP 3 days Astrocyte

Mthfr 0.016733677 0.99996073 Stroke vs Sham Input 4 hours Astrocyte

Mthfr −1.042966608 0.00022618 Stroke vs Sham Input 3 days Astrocyte

Mthfr −0.052261005 0.92826721 Stroke vs Sham IP 4 hours Microglia

Mthfr 0.613049601 0.00128746 Stroke vs Sham IP 3 days Microglia

Mthfr 0.040883082 0.99999794 Stroke vs Sham Input 4 hours Microglia

Mthfr 0.532884857 0.16583881 Stroke vs Sham Input 3 days Microglia

Lep −0.000231797 0.99996073 Stroke vs Sham Input 4 hours Astrocyte

Lep −0.01781688 Stroke vs Sham Input 3 days Astrocyte

Fos 3.007177925 2.48E-34 Stroke vs Sham IP 4 hours Astrocyte

Fos 0.883801901 0.00049238 Stroke vs Sham IP 3 days Astrocyte

Fos 0.914864058 0.27297506 Stroke vs Sham Input 4 hours Astrocyte

Fos −0.260105863 0.39797136 Stroke vs Sham Input 3 days Astrocyte

Fos 3.353981233 6.10E-13 Stroke vs Sham IP 4 hours Microglia

Fos −0.021996332 0.97666485 Stroke vs Sham IP 3 days Microglia

Fos 1.902812386 0.00033217 Stroke vs Sham Input 4 hours Microglia

Fos −0.247118725 0.43279267 Stroke vs Sham Input 3 days Microglia

Lep −0.000231797 0.999960729 Stroke vs Sham Input 4 hours Astrocyte

Lep −0.01781688 Stroke vs Sham Input 3 days Astrocyte

Fos 3.007177925 2.48E-34 Stroke vs Sham IP 4 hours Astrocyte

Fos 0.883801901 0.000492377 Stroke vs Sham IP 3 days Astrocyte

Fos 0.914864058 0.272975062 Stroke vs Sham Input 4 hours Astrocyte

Fos -0.260105863 0.397971358 Stroke vs Sham Input 3 days Astrocyte

Fos 3.353981233 6.10E-13 Stroke vs Sham IP 4 hours Microglia

Fos -0.021996332 0.976664854 Stroke vs Sham IP 3 days Microglia

Fos 1.902812386 0.000332169 Stroke vs Sham Input 4 hours Microglia

Fos -0.247118725 0.432792674 Stroke vs Sham Input 3 days Microglia

As, Astrocyte, Mg = microglia, In = Input, IP=Immunoprecipitated, 4 h = 4 h, 3d = 3 days.
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FIGURE 9

(A): each sample’s relative percentage of 22 immune cells; (B): The correlation among the 22 immune cells; (C): immune infiltration difference 
between IS and control samples; (D): Immune infiltration difference between the groups with and without carotid-related ischemic cerebrovascular 
events.

FOS, and MTHFR simultaneously, and FOXL1 could regulate the 
expression of CXCL8, LEP, and MTHFR simultaneously (Figure 10B).

Based on Drug Bank (40) and Comparative Toxicogenomics 
Database (41), a gene-drug interaction network was established 
(Figure 10C), and four of the most relevant drugs (Nickel, Arsenic, 
Aflatoxin B1, and sodium arsenite) were selected.

3.9. Candidate gene clusters’ consensus 
clustering (CC) analysis

By CC analysis of four related candidate gene models, 
we  observed that there were the most substantial differences 
among different groups (Figures 11A,B), so they were divided into 
C1 and C2 categories. Using the PCA diagram, it was revealed that 
the gene expression patterns of different clusters were different 
(Figure 11C). The expression levels of related genes in the two 
subgroups were visualized by a violin diagram (Figure  11D). 
There was a statistically significant difference among the CXCL8 
and FOS (p < 0.05).

3.10. GSVA of biological pathway among 
subsets of candidate genes

We found that TNFA signaling via NFKB, UV response up, 
and inflammatory response in group C1 was lesser compared to 

group C2, but protein secretion in group C1 was greater as 
compared to group C2 (Figure  12A). The KEGG pathways, 
including amino sugar, galactose metabolism, beta-alanine 
metabolism, and nucleotide sugar metabolism in group C1, were 
greater compared to group C2. However, the pathways of type 
I diabetes mellitus and Circadian rhythm in group C1 were lesser 
than those in group C2 (Figure 12B). In the Reatcome pathway, 
HuR (ELAVL1) binds and stabilizes mRNA, MET receptor 
recycling, and TP53 Regulates Transcription of Caspase Activators 
and Caspases in group C1 were significantly greater compared to 
group C2, but Cytokine Network and p75NTR negatively regulate 
cell cycle via SC1 were lower than those in group C2 (Figure 12C). 
The GSVA analysis of the two groups with different prognoses in 
the verification group GSE198600 revealed that they were very 
similar to the CC group, and they were significantly enriched in 
several pathways of the glycan metabolism (Figure 12D). Target 
genes are predictive of IS risk grouping in unknown situations, 
and the reasons for such grouping criteria may be  related to 
psychiatric disorders, especially schizophrenia, and 
gut microbiota.

3.11. Functional differences among 
subgroups

Through Limma analysis, 375 DEGs were obtained, from which 
237 were down-regulated and 138 were up-regulated (Figure 13A). 
FEA and KEGG analysis revealed that the enrichment of differential 
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genes was primarily in the pathways “TNF signaling pathway,” “il-17 
signaling pathway,” and “Cytokine-cytokine receptor interaction” 
(Figure 13B). GO analysis showed the differential genes were chiefly 
located in the “intrinsic component of plasma membrane” and 
“secretory granule” on the basis of CC (Figure 13C). The primary 
biological processes (BP) of differential genes include the “immune 
system process” and “regulation of molecular function” (Figure 13D). 
MF analysis revealed that the main processes of the differential genes 
were “identical protein binding” and “signaling receptor binding” 
(Figure  13E). Through GO enrichment and the KEGG analysis, 
we observed that these differential genes were primarily enriched in 
immune system-related pathways.

4. Discussion

Existing studies have shown that ischemic stroke (IS) with 
dementia, depression, and other mental illness symptoms are 

common. The gut microbiome (GM) plays a critical role in 
mental illness and IS (42). However, this study aimed to identify 
the differences between genes related to ischemic stroke (IS) 
and mental disorders in the gut microbiome (GM) through 
bioinformatics analysis and qRT-PCR verification, and to 
predict drugs related to IS through candidate genes. Four 
candidate genes (CXCL8, FOS, LEP, MTHFR), three miRNA 
(hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p), and 
two TFs (CREB1, FOXL1) were identified, and the four most 
related drugs (Nickel, Arsenic, AflatoxinB1, and sodium 
arsenite) were obtained.

The results of this study suggest that the gut microbiome may play 
a critical role in mental illness and IS. CXCL8, FOS, LEP, and MTHFR 
were found to be potential candidate genes for IS. These genes have 
been previously linked to other diseases and pathways, including 
chemokine activity, interleukin-8 receptor binding, and metabolism 
of water-soluble vitamins and cofactors. In addition, several studies 
have shown a significant correlation between FOS and IS, and 
MTHFR gene polymorphism and the increased risk of IS. Our study 

FIGURE 10

(A): interaction between candidate genes and miRNA; (B): Interaction between candidate genes and TFs; (C): gene-drug interaction network (red 
represents candidate genes, orange data comes from DrugBank, green data comes from Comparative Toxicogenomics Database).
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FIGURE 11

(A,B): CC analysis of related candidate genes; (C): PCA diagram shows subclusters’ distribution; (D): violin diagram shows the differential expression of 
related candidate genes among subgroups.

supports these findings and provides further evidence of the role of 
these genes in IS.

Moreover, we found that IL-6, glucose metabolism, and B cell 
infiltration may be common pathways between schizophrenia and 
IS. This suggests that there may be a genetic correlation between 
these two diseases, and further studies are needed to clarify 
this relationship.

CXCL8 is a gene that codes for a protein and has been linked to 
diseases such as adult respiratory distress syndrome and melanoma. 
Pathways related to CXCL8 include TGF-pathway and MIF-mediated 
glucocorticoid regulation, as well as gene ontology annotations for 
chemokine activity and interleukin-8 receptor binding. Mouse 
experiments conducted by Hui Lv et al. suggest that CXCL8 may affect 
the development of IS by regulating the PI3K/Akt/NF-κB signaling 
pathway. Silencing CXCL8 led to a significant decrease in the 
deflection index, improved the size of the infarct, neurological 
function, and inhibited apoptosis index and glial cell loss (43). FOS is 
a gene that codes for a protein and is linked to diseases such as 
osteoblastoma and congenital systemic lipodystrophy. Pathways 
related to FOS include MyD88-dependent cascades initiated by 
endosomal and prolactin signal transduction. Gene ontology 
annotations for FOS include DNA binding to transcription factor 
activity and binding. Multiple bioinformatics analysis studies (44) 
have suggested a correlation between FOS and IS, and qRT-PCR 
verification has shown a statistically significant difference in IS-related 
FOS (p < 0.01).MTHFR is a gene that codes proteins. MTHFR is a 
gene that codes for proteins and is linked to diseases such as 
homocystinuria and folate-sensitive neural tube defects caused by a 

lack of N-methylenetetrahydrofolate reductase activity. Pathways 
related to MTHFR include the metabolism of water-soluble vitamins 
and cofactors, the methotrexate pathway (cancer cells), 
pharmacodynamics, and pharmacokinetics. Meta-analyses have 
shown a significant relationship between the C677T mutation of the 
MTHFR gene and the increased risk of IS. The MTHFR gene 
polymorphism is related to an increased IS risk, with a higher 
correlation observed in the Asian population (45). Ali Sazci et al. 
found that the MTHFR 1298C allele, C1298C genotype, and C677C/
C1298C compound genotype are closely associated with ischemic 
stroke (46).

This study not only identified a genetic correlation between 
schizophrenia and IS, but also suggests that IL-6, glucose metabolism, 
and B cell infiltration are likely to be common pathways between these 
diseases. Four candidate genes were predicted, and the four most 
related drugs (Nickel, Arsenic, AflatoxinB1, and sodium arsenite) 
were obtained. Several studies have suggested a correlation between 
heavy metal levels and IS, with higher plasma concentrations of 
arsenic, aluminum, and cadmium and lower concentrations of iron 
and selenium increasing the risk of IS (47). Therefore, drugs 
containing Nickel, Arsenic, and sodium arsenite should be avoided in 
drug selection.

Further clinical data, particularly regarding schizophrenia 
and IS comorbidities and their follow-ups, are needed to clarify 
the causal relationship between SC, gut microbes, and 
IS. Relevant case collections and a large amount of clinical data 
and information will be  needed to verify the conclusions of 
this study.

52

https://doi.org/10.3389/fneur.2023.1189746
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shen et al. 10.3389/fneur.2023.1189746

Frontiers in Neurology 13 frontiersin.org

FIGURE 12

(A): HALLMARK pathway’s GSVA; (B): KEGG pathway’s GSVA; (C): Reatcome pathway’s GSVA; (D): A GSVA analysis of two groups in the validation set 
GSE198600 with different prognoses.

FIGURE 13

(A): subgroup DEGs’ Volcano plot; (B): differential genes’ KEGG analysis; (C): differential genes’ GO analysis of cell composition; (D): differential genes’ 
GO analysis of the biological process (BP); (E): differential genes’ GO analysis of molecular function (MF).
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5. Conclusion

Through comprehensive analysis, a diagnostic prediction model 
with good effect was obtained. Both the training group (AUC 0.82, 
CI 0.93–0.71) and the verification group (AUC 0.81, CI 0.90–0.72) 
had a good phenotype in the qRT-PCR test. And in verification 
group 2 we validated between the two groups with and without 
carotid-related ischemic cerebrovascular events (AUC 0.87, CI 
1–0.64). Furthermore, we investigated cytokines in both GSEA and 
immune infiltration and verified cytokine-related responses by flow 
cytometry, particularly IL-6, which played an important role in IS 
occurrence and progression. Therefore, we speculate that mental 
illness may affect the development of IS in B cells and IL-6 in T 
cells. MiRNA (hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-
16-5p) and TFs (CREB1, FOXL1), which may be  related to IS, 
were obtained.
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Prognostic value of inflammatory 
markers for in-hospital mortality 
in intensive care patients with 
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1 Department of Rehabilitation Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 
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Background: Acute ischemic stroke (AIS) is a primary cause of death and 
disability worldwide. Four markers that can be readily determined from peripheral 
blood, namely, the systemic immune-inflammation index (SII), neutrophil-to-
lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and total bilirubin, 
were measured in this study. We examined the relationship between the SII and 
in-hospital mortality after AIS and evaluated which of the above four indicators 
was most accurate for predicting in-hospital mortality after AIS.

Methods: We selected patients from the Medical Information Mart for Intensive 
Care-IV (MIMIC-IV) database who were aged >18 years and who were diagnosed 
with AIS on admission. We  collected the patients’ baseline characteristics, 
including various clinical and laboratory data. To investigate the relationship 
between the SII and in-hospital mortality in patients with AIS, we employed the 
generalized additive model (GAM). Differences in in-hospital mortality between 
the groups were summarized by the Kaplan–Meier survival analysis and the log-
rank test. The receiver operating characteristic (ROC) curve analysis was used to 
assess the accuracy of the four indicators (SII, NLR, PLR, and total bilirubin) for 
predicting in-hospital mortality in patients with AIS.

Results: The study included 463 patients, and the in-hospital mortality rate 
was 12.31%. The GAM analysis showed a positive correlation between the SII 
and in-hospital mortality in patients with AIS, but the correlation was not linear. 
Unadjusted Cox regression identified a link between a high SII and an increased 
probability of in-hospital mortality. We  also found that patients with an SII of 
>1,232 (Q2 group) had a considerably higher chance of in-hospital mortality than 
those with a low SII (Q1 group). The Kaplan–Meier analysis demonstrated that 
patients with an elevated SII had a significantly lower chance of surviving their 
hospital stay than those with a low SII. According to the results of the ROC curve 
analysis, the in-hospital mortality of patients with AIS predicted by the SII had 
an area under the ROC curve of 0.65, which revealed that the SII had a better 
discriminative ability than the NLR, PLR, and total bilirubin.

Conclusion: The in-hospital mortality of patients with AIS and the SII were 
positively correlated, but not linearly. A high SII was associated with a worse 
prognosis in patients with AIS. The SII had a modest level of discrimination for 
forecasting in-hospital mortality. The SII was slightly better than the NLR and 
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significantly better than the PLR and total bilirubin for predicting in-hospital 
mortality in patients with AIS.

KEYWORDS

acute ischemic stroke, in-hospital mortality, MIMIC-IV, SII, inflammatory marker, 
predictor

Introduction

Stroke, which is the third leading cause of disability and the 
second leading cause of mortality worldwide, is a common and 
damaging disease, and the majority of stroke cases are ischemic stroke 
due to arterial occlusive disease (1). According to data from China’s 
Hospital Quality Monitoring System, 2,466,785 patients with ischemic 
stroke were hospitalized in 2018, accounting for 81.9% of all stroke 
cases, placing a huge burden on society (2). Therefore, it is of great 
significance to identify convenient and efficient biomarkers to predict 
disease prognosis, which could reduce the adverse outcomes of 
patients with stroke.

The mechanisms of acute ischemic stroke (AIS) are complex and 
multifactorial. Scientific evidence links inflammation, which 
exacerbates brain damage, to the occurrence, progression, and 
outcome of AIS (3, 4). During the early stages of ischemic stroke, 
peripheral immune populations, including neutrophils, monocytes, T 
cells, and macrophages, infiltrate the brain parenchyma (5). Therefore, 
the assessment of inflammatory indicators is helpful to evaluate the 
prognosis of AIS. It is well known that AIS is closely associated with 
many inflammatory markers, including interleukin, high-sensitivity 
C-reactive protein, tumor necrosis factor, and homocysteine, amongst 
others (6, 7). In addition to the abovementioned indicators, several 
composite inflammatory markers have been used to predict the 
prognosis of patients with AIS. The neutrophil-to-lymphocyte ratio 
(NLR), which reflects the balance between circulating neutrophils and 
lymphocytes, is strongly associated with short-term functional 
outcomes in patients with AIS (8). Moreover, the platelet-to-
lymphocyte ratio (PLR) is a strong predictor of AIS prognosis and 
could be  used to assess platelet activation due to inflammation-
coagulation interactions and other factors (9, 10). The systemic-
immune inflammation index (SII) is also associated with poor 
outcomes in patients with AIS, reflecting thrombotic and immune 
dysregulation (11). Furthermore, once cerebral ischemia occurs, 
excessive oxidative stress ensues, resulting in structural and functional 
damage to the brain (12). As two early events of cerebral ischemic 
injury, inflammation and oxidative stress are closely related (13). 
Moreover, bilirubin is the most effective endogenous antioxidant and 
plays a neuroprotective role in stroke. Many studies have revealed a 
correlation between bilirubin and poor outcomes in patients with AIS, 
but there is still some controversy (12, 14–16).

The abovementioned four markers (SII, NLR, PLR, and bilirubin) 
can be readily determined from peripheral blood and are strongly 
associated with poor outcomes in patients with AIS. Therefore, this 
study sought to investigate the relationship between the SII and 
in-hospital mortality in intensive care patients with AIS and to 
examine which of these four inflammatory markers is most effective 
at predicting short-term mortality from AIS.

Methods

Medical information mart for intensive 
care-IV (MIMIC-IV) database

This retrospective and observational study was conducted based 
on primary data obtained from the comprehensive MIMIC-IV 
database. MIMIC-IV comprises numbers for each medical record 
relating to patients who were admitted to the intensive care unit 
(ICU) or emergency room at the Beth Israel Deaconess Medical 
Center between 2008 and 2019 (17). The first author (Xuyang Hu, 
certification ID: 51415516) was authorized to use the MIMIC-IV 
database after completing the National Institutes of Health’s online 
education program. The BIDMC Institutional Review Board 
assessed the gathering of patient data and the development of the 
research resource, authorized the data-sharing project, and waived 
the requirement for informed consent. To ensure patient privacy, 
all processes were completed in compliance with the 
applicable regulations.

Patient selection

Using the International Classification of Diseases (ICD) codes 
ICD-9: 433, ICD-9: 434, ICD-9: 436, and ICD-10: I63, we selected 
1,605 patients who were admitted to the ICU and who were diagnosed 
with AIS from the MIMIC-IV database. The inclusion criteria were as 
follows: (I) patients aged >18 years; (II) patients diagnosed with AIS; 
and (III) patients admitted to the ICU. The exclusion criteria were as 
follows: (I) patients with incomplete or difficult-to-find documentation 
or other important medical records; (II) patients with missing survival 
outcome data; and (III) patients with missing data on white blood cell 
count, neutrophil count, lymphocyte count, platelet count, or 
bilirubin concentration.

Patients’ baseline characteristics

Patients’ baseline characteristics were collected, including general 
information, vital signs, comorbidity history, laboratory parameters, 
and scoring system results. We extracted the first record of various 
data for patients diagnosed with AIS on admission. The vital signs 
included heart rate, mean blood pressure, systolic blood pressure, 
diastolic blood pressure, respiratory rate, body temperature, and pulse 
oximetry-derived oxygen saturation (SpO2). The anion gap, blood 
urea nitrogen, bicarbonate, creatinine, chloride, glucose, hematocrit, 
hemoglobin, bilirubin, chloride, neutrophil count, serum sodium, 
lymphocyte count, serum potassium, prothrombin time, white blood 
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cell count, and platelet count were among the laboratory parameters 
that were recorded.

Both the Sequential Organ Failure Assessment (SOFA) score and 
Simplified Acute Physiology Score (SAPS) II for each patient were also 
calculated. In-hospital mortality was the endpoint of the study, as 
assessed by in-hospital survival.

The formula used to determine the SII was 
SII = platelet × neutrophil count ÷ lymphocyte count. The neutrophil 
count divided by the lymphocyte count was used to determine the 
NLR, while the platelet count divided by the lymphocyte count was 
used to determine the PLR.

Statistical analysis

We used the generalized additive model (GAM) to examine the 
association between the SII and in-hospital mortality in patients with 
AIS. According to the GAM analysis results, the patients were divided 
into two groups. Normally distributed continuous variables are 
presented as the mean ± standard deviation, whereas non-normally 
distributed continuous variables are presented as the median. 
Categorical variables are expressed as frequency and percentage. The 
groups were compared using the chi-square test, Kruskal–Wallis test, 
and one-way analysis of variance. Differences in in-hospital mortality 
between the groups were summarized using the Kaplan–Meier 
survival analysis and the log-rank test. Due to the possibility of 
confounding effects of variables based on laboratory tests and 
epidemiology, we  utilized three quartile-based Cox proportional 
hazards regression models, the first of which was used as the 
reference model.

We adjusted the covariates of comorbidities and vital sign data, 
including age, sex, heart rate, mean blood pressure, SpO2, congestive 
heart failure, renal failure, and temperature, in Model I. Model II was 
mostly modified for laboratory data, including creatinine, anion gap, 
hemoglobin, prothrombin time, glucose, and chloride. Based on 
Model II, the variables were further modified for the severity of illness 
scoring (SOFA score, SAPS II). Through the receiver operating 
characteristic (ROC) curve analysis, the discriminative ability of the 
four inflammatory indicators (SII, NLR, PLR, and total bilirubin) for 
predicting in-hospital mortality in patients with AIS was determined 
using the area under the ROC curve (AUC). Discrimination was 
considered good if the AUC exceeded 0.7 and moderate if the AUC 
was between 0.65 and 0.70. Statistical information was displayed as 
hazard ratios (HRs) and 95% confidence intervals (CIs). Each 
statistical test was conducted using a two-tailed design. R version 4.2.2 
was used for the statistical analysis, and a p value of ≤ 0.05 was 
considered statistically significant.

Results

Baseline characteristics

In total, 463 suitable patients with a mean age of 71.68 ± 16.29 years 
(221 men and 242 women) were included in the study. 
Supplementary Tables S1, S2 provide further details on the data 
extraction procedure and missing data. The study yielded an 
in-hospital mortality rate of 12.31%, with 57 patients dying during 

hospitalization. According to the findings of the GAM analysis of the 
SII and in-hospital mortality, the patients were divided equally into 
two groups. In Table 1, the baseline characteristics of the groups are 
broken down according to the SII. The values for temperature, anion 
gap, blood glucose, and SAPS II were higher among patients with a 
high SII.

Relationship between the SII and 
in-hospital mortality in patients with AIS

According to the results of the GAM analysis, the in-hospital 
mortality of patients with AIS was positively correlated with the SII, 
but not linearly (Figure 1). A high SII was associated with a higher risk 
of in-hospital mortality according to the unadjusted Cox regression 
analysis (HR 1.75, 95% CI 1.02–3.02, p = 0.044). We further explored 
the relationship between the SII and in-hospital mortality in patients 
with AIS using three Cox regression models to account for the 
influence of other confounding variables (Table 2). After adjusting for 
vital signs and comorbidities, a high SII was associated with increased 
in-hospital mortality in Model I  (HR 1.97, 95% CI 1.13–3.44, 
p = 0.016). After adjusting for laboratory data on the basis of Model I, 
the HR of high SII was 1.96 in Model II (95% CI 1.11–3.48, p = 0.020). 
Based on Model II, the variables were further modified in Model III 
for the severity of illness scoring (SAPS II and SOFA score). The high 
SII group still had a considerably higher likelihood of in-hospital 
mortality (HR 2.06, 95% CI 1.15–3.72, p = 0.016). The Kaplan–Meier 
survival plot for patients with various SII values is shown in Figure 2. 
The results demonstrate that patients with an elevated SII had a 
significantly lower chance of surviving their hospital stay than those 
with a low SII (log-rank test: p = 0.041).

The discriminative ability of the SII to 
predict in-hospital mortality in patients 
with AIS compared with the other 
indicators

According to the ROC curve analysis results, the AUC of 
in-hospital mortality in patients with AIS predicted by the SII was 0.65 
(95% CI 0.62–0.68), the AUC of the NLR was 0.64 (95% CI 0.61–0.67), 
the AUC of the PLR was 0.60 (95% CI 0.53–0.67), and the AUC of 
total bilirubin was 0.55 (95% CI 0.52–0.58). The SII had a better 
discriminative ability for predicting in-hospital mortality in patients 
with AIS than the NLR, PLR, and total bilirubin. Overall, the SII had 
a modest discriminative ability for predicting in-hospital mortality 
(Figures 3–5).

Discussion

This study revealed a positive correlation between the in-hospital 
mortality of patients with AIS and the SII, but this correlation was not 
linear. The overall in-hospital mortality rate of patients with AIS was 
12.31%, which is similar to the value of 13.9% from the Get With The 
Guidelines-Stroke database of the American Heart Association (18). 
We found that (1) a high SII was independently associated with a high 
risk of in-hospital mortality in patients with AIS; (2) hospitalized 
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TABLE 1 Patients’ characteristics.

Characteristic Total (n = 463) Q1 (n = 231) Q2 (n = 232) p-value

Age (years) 71.68 ± 16.29 71.58 ± 15.80 71.77 ± 16.81 0.901

Male 221 (47.73%) 117 (50.65%) 104 (44.83%) 0.246

SBP (mmHg) 134.63 ± 18.20 135.32 ± 18.43 133.97 ± 17.99 0.424

DBP (mmHg) 73.66 ± 12.22 73.68 ± 12.32 73.64 ± 12.14 0.972

MBP (mmHg) 90.53 ± 12.46 90.89 ± 12.42 90.17 ± 12.52 0.534

Heart rate (beats/min) 79.32 ± 14.98 78.46 ± 14.64 80.17 ± 15.30 0.218

Respiratory rate (breaths/min) 19.31 ± 3.12 19.37 ± 3.34 19.25 ± 2.89 0.671

Temperature (°C) 36.94 ± 0.34 36.90 ± 0.32 36.97 ± 0.35 0.044

SpO2 (%) 96.78 ± 1.91 96.79 ± 2.03 96.78 ± 1.79 0.935

Comorbidities, n (%)

Diabetes mellitus 151 (32.61%) 80 (34.63%) 71 (30.60%) 0.389

Myocardial infarction 57 (12.31%) 32 (13.85%) 25 (10.78%) 0.386

Congestive heart failure 119 (25.70%) 52 (22.51%) 67 (28.88%) 0.144

Chronic pulmonary disease 60 (12.96%) 29 (12.55%) 31 (13.36%) 0.904

Dementia 40 (8.64%) 21 (9.09%) 19 (8.19%) 0.857

Renal disease 89 (19.22%) 51 (22.08%) 38 (16.38%) 0.150

Malignancy 36 (7.78%) 20 (8.66%) 16 (6.90%) 0.593

Laboratory parameters

Anion gap (mEq/L) 14.92 ± 3.10 14.56 ± 3.18 15.27 ± 2.98 0.014

BUN (mg/dL) 21.05 ± 15.15 21.05 ± 13.75 21.05 ± 16.45 0.999

Bicarbonate (mmol/L) 22.86 ± 3.14 23.05 ± 3.17 22.68 ± 3.12 0.210

Creatinine (mg/dL) 1.19 ± 1.34 1.26 ± 1.47 1.12 ± 1.20 0.260

Chloride (mmol/L) 103.51 ± 4.53 103.94 ± 4.40 103.70 ± 4.62 0.038

Glucose (mg/dL) 131.88 ± 47.24 126.82 ± 44.59 136.92 ± 49.32 0.021

Hematocrit (%) 37.20 ± 5.80 37.40 ± 5.88 37.00 ± 5.73 0.466

Hemoglobin (g/dL) 12.12 ± 2.12 12.18 ± 2.13 12.06 ± 2.10 0.533

Total bilirubin (mg/dL) 1.21 (2.26) 1.50 (2.82) 0.91 (1.46) 0.005

Neutrophil count (109/L) 7.66 ± 3.92 5.79 ± 2.56 9.52 ± 4.15 <0.001

Lymphocyte count (109/L) 1.67 ± 2.34 2.21 ± 3.19 1.13 ± 0.53 <0.001

Platelet count (109/L) 211.00 ± 83.00 196 ± 66.00 231.00 ± 90.00 <0.001

Potassium (mmol/L) 4.24 ± 0.53 4.24 ± 0.54 4.24 ± 0.53 0.979

PT (s) 13.34 ± 3.99 13.10 ± 3.42 13.57 ± 4.49 0.205

Sodium (mmol/L) 139.91 ± 3.88 140.20 ± 3.78 139.61 ± 3.97 0.101

WBC count (109/L) 10.28 ± 4.53 9.45 ± 5.00 10.36 ± 4.02 0.702

SOFA score 3.54 ± 0.06 3.75 ± 3.03 3.39 ± 2.53 0.165

SAPS II 32.64 ± 11.89 31.67 ± 11.21 33.61 ± 12.48 0.078

NLR 5.08 ± 6.75 3.62 ± 3.50 10.26 ± 7.54 <0.001

SII 1084.24 ± 1628.66 628.67 ± 259.37 2369.75 ± 1928.50 <0.001

ICU LOS (days) 4.55 ± 5.00 4.66 ± 4.86 4.45 ± 5.14 0.646

HOS LOS (days) 10.55 ± 11.61 10.18 ± 10.50 10.92 ± 12.64 0.494

In-hospital mortality 57 (12.31%) 20 (8.66%) 37 (15.95%) 0.025

SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; SpO2, pulse oximetry-derived oxygen saturation; BUN, blood urea nitrogen; PT, prothrombin time; 
WBC, white blood cell; SOFA, Sequential Organ Failure Assessment; SAPS II, Simplified Acute Physiology Score II; NLR, neutrophil-to-lymphocyte ratio; SII, systemic immune-inflammation 
index; ICU, intensive care unit; HOS, hospital; LOS, length of stay.
The data are presented as the mean ± standard deviation and median or n (%).
The bold values for temperature, anion gap, blood glucose, and SAPS II were higher among patients with a high SII.
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patients with AIS with a high SII were less likely to survive than 
patients with a low SII; (3) SII had a modest discriminative ability for 
forecasting in-hospital mortality in patients with AIS; and (4) the SII 
was marginally superior to the NLR and significantly better than the 
PLR and total bilirubin in forecasting in-hospital mortality in patients 
with AIS.

We also found that the values for temperature, anion gap, blood 
glucose, and SAPS II were higher among patients with a high SII, 
indicating that these indicators are strongly associated with poor 
outcomes in patients with AIS, as demonstrated in several previous 
studies. For example, a previous study showed that elevated body 
temperature was associated with increased mortality and poor 
functional outcome in patients with AIS (19). Another study showed 
that patients with an elevated plasma anion gap had worse clinical 
outcomes and were at a greater risk of in-hospital mortality (20). 
Moreover, hyperglycemia on admission has been linked to worse post-
stroke outcomes (21). SAPS II, which was created to assess disease 
severity in patients in the ICU, is also linked to poor outcomes in 
patients with AIS (22).

The pathophysiological process after AIS is complex, and 
inflammation plays a key role, starting in the vascular compartment 
immediately after arterial blockage (23). Neutrophils, which are the 

earliest cells to react during ischemic stroke and are clinically 
associated with a poor functional outcome, begin to enter the brain 
parenchyma 12 h after stroke onset, causing neuronal death by 
producing elastase, matrix metalloproteinase-1, interleukin-7β, and 
reactive oxygen species. This in turn destroys the blood–brain 
barrier and induces damage to the ischemic area (5, 24). Additionally, 
neutrophils express inducible nitric oxide synthase, which is an 
enzyme that catalyzes the generation of nitric oxide and causes 
bigger infarcts during middle cerebral artery occlusion (25). 
Therefore, the increase in neutrophils is a key mediator of ischemic 
brain damage. Platelets interact with neutrophils and are key players 
in thrombotic inflammation and stroke pathogenesis (26). Similar 
to neutrophils, activated platelets interact with the endothelium and 
release mediators that promote inflammation after stroke, 
aggravating the inflammatory immune response (27). A previous 
study revealed that platelet P-selectin and glycoprotein Ib, which 
bind neutrophil P-selectin glycoprotein-1 and MAC-1 (CD11b/
CD18), facilitate this interaction (28). Lymphocytes also play an 
important role in the inflammatory response in AIS, although the 
pathogenic role of lymphocytes is controversial. T cells play a key 
role in the exacerbation of ischemic brain injury (5); however, 
regulatory T cells are a major protective modulator of post-ischemic 

FIGURE 1

Cubic spline plot of relation of SII to risk of in-hospital patients’ mortality.

TABLE 2 The SII and in-hospital mortality of patients with AIS.

Variable Unadjusted model Model I Model II Model III

SII HR (95% CI) p-value HR (95% CI) p-value HR (95% 
CI)

p-value HR (95% CI) p-value

Q1 1.0 (ref) 1.0 (ref) 1.0 (ref)

Q2 1.75 (1.02–3.02) 0.044 1.97 (1.13–3.44) 0.016 1.96 (1.11–3.48) 0.020 2.06 (1.15–3.72) 0.016

HR, hazard ratio; SII, systemic immune-inflammation index.
Model I was adjusted for age, sex, heart rate, mean blood pressure, SpO2, congestive heart failure, renal failure, and temperature.
Model II was adjusted for the variables adjusted in Model I, as well as creatinine, anion gap, hemoglobin, prothrombin time, glucose, and chloride.
Model III was adjusted for the variables adjusted in Model I and Model II, as well as the SAPS II and SOFA scores.
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brain injury (29). For example, in a mouse experiment, regulatory T 
cell-treated mice had smaller infarcts and improved neurological 
function after stroke (30).

The SII, which is a novel comprehensive inflammatory index, 
is calculated based on three inflammatory immune cell types 
(lymphocytes, neutrophils, and platelets) that reflect the balance 
between the immunological and inflammatory states of the host. 
The SII was initially used to predict tumor prognosis and identify 

patients at a high risk of death (31). The SII has reportedly been 
linked to increased disease severity and a poor prognosis in 
various illnesses and could be used to anticipate fatality in patients 
with various cancers, heart failure, and cardiovascular disease 
(32). Thus far, the value of the SII in cerebrovascular illnesses has 
been demonstrated in several studies. For example, studies by 
Zhou et  al. (33) and Wang et  al. (34) showed that a high SII 
increases the risk of death from AIS. Moreover, Zhang’s study 

FIGURE 2

Kaplan–Meier survival curve of SII.

FIGURE 3

Receiver operating characteristic (ROC) curve of SII and NLR.
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showed that a high SII may adversely affect carotid plaque 
vulnerability. Specifically, patients with fragile plaques with burst 
fibrous caps may experience a considerable impact, which might 
worsen the severity of AIS (35). A previous study based on the 
MIMIC-IV database showed that a high SII increased 30-day 
all-cause mortality (36). Chen investigated the difference between 
four inflammatory immune markers in predicting the outcome of 
patients with ischemic stroke (37). Moreover, in a meta-analysis, 
high SII was strongly associated with poor ischemic stroke 
outcomes and a high mortality rate (38). However, more research 
is needed to ascertain the association between the SII and 
in-hospital mortality in patients with AIS.

According to our literature review, this may be the first study 
to assess the relationship between markers of both inflammation 
and oxidative stress and in-hospital mortality in patients with 
AIS. Focusing on the SII, we assessed the predictive power of four 
markers (SII, NLR, PLR, and total bilirubin) simultaneously. The 
study demonstrated that an elevated SII was significantly associated 
with the risk of in-hospital mortality in patients with AIS. However, 
whether the SII predicts in-hospital mortality in patients with AIS 
better than the NLR is less reported. We found that the SII was a 
greater prognosticator of in-hospital mortality than the NLR (AUC 
0.65 vs. 0.64, respectively). Therefore, compared with the NLR, the 
SII might be a more reasonable and valid reflection of the overall 
change and regression status of the immune system in patients 
with stroke. The NLR mainly suggests inflammatory injury, the 

PLR demonstrates an impact on hemostasis and thrombosis, and 
SII can be  thought of as a combination of the NLR and 
PLR. Therefore, an elevated SII may reflect thrombosis, the 
inflammatory response, and the adaptive immunological 
response (11).

In this study, we adjusted for the mixed effects of several factors 
based on rigorous study principles. We  confirmed that the SII 
measured within 24 h of admission was significantly associated with 
adverse clinical outcomes. These data revealed an independent 
relationship between the SII and the risk of in-hospital mortality in 
patients with AIS. Few studies have explored the importance of the SII 
in predicting in-hospital mortality in patients with AIS. Our findings 
are based on a large sample; therefore, data from a more diverse group 
of patients in the clinical setting were included. The findings imply 
that the SII could be utilized to forecast prognosis in patients with 
AIS. According to this study, patients with an SII of >1,232 (Q2 group) 
had a considerably higher chance of dying in the hospital than patients 
with a low SII (Q1 group). Therefore, for patients with AIS with an 
elevated SII, there is a need to clarify the cause of the high SII and to 
provide more appropriate treatment. The value of the SII for 
identifying high-risk subgroups with AIS needs to be further explored 
in the future to provide more valuable guidance for early targeted 
treatment. In addition, blood analysis is available at the time of 
admission. As such, the SII is readily available, can be performed at no 
additional cost, and has relatively high patient compliance. The SII can 
therefore be used as a supplement to blood gas analysis.

FIGURE 4

Receiver operating characteristic (ROC) curve of PLR.
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Conclusion

In this study, the in-hospital mortality of patients with AIS and 
the SII were positively correlated, but not linearly. A high SII was 
associated with a worse prognosis in patients with AIS. The SII had a 
modest discriminative ability for predicting in-hospital mortality in 
patients with AIS. The SII was slightly better than the NLR and 
significantly better than the PLR and total bilirubin at forecasting 
in-hospital mortality in patients with AIS.

Limitations

This study has several limitations that should be noted. First, 
this study did not categorize the patients who died based on 
whether they had undergone surgery. Therefore, future research 
should analyze different patient subgroups. Second, this was a 
single-center study, so the study could contain selection bias. 
Third, this study lacked some blood indicators, including 
interleukin, high-sensitivity C-reactive protein, and other 
cytokines. Finally, only the in-hospital mortality of patients with 
AIS was studied. As such, additional research is needed to 
determine how useful the SII is for predicting the long-term 
prognosis of patients with AIS.
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Receiver operating characteristic (ROC) curve of bilirubin.

63

https://doi.org/10.3389/fneur.2023.1174711
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hu et al. 10.3389/fneur.2023.1174711

Frontiers in Neurology 09 frontiersin.org

Acknowledgments

The MIMIC-IV database was created and is kept updated by a 
team from the Massachusetts Institute of Technology, for which we are 
extremely appreciative. The authors would like to thank TopEdit 
(www.topeditsci.com) for the English language editing of 
this manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2023.1174711/
full#supplementary-material

References
 1. Campbell BCV, Khatri P. Stroke. Lancet. (2020) 396:129–42. doi: 10.1016/

S0140-6736(20)31179-X

 2. Wang YJ, Li ZX, Gu HQ, Zhai Y, Jiang Y, Zhao XQ, et al. China stroke statistics 2019: 
a report from the National Center for healthcare quality Management in Neurological 
Diseases, China National Clinical Research Center for neurological diseases, the Chinese 
Stroke Association, National Center for chronic and non-communicable disease control 
and prevention, Chinese Center for Disease Control and Prevention and institute for 
global neuroscience and stroke collaborations. Stroke Vasc Neurol. (2020) 5:211–39. doi: 
10.1136/svn-2020-000457

 3. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation 
in stroke. Lancet Neurol. (2019) 18:1058–66. doi: 10.1016/S1474-4422(19)30078-X

 4. Anrather J, Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics. 
(2016) 13:661–70. doi: 10.1007/s13311-016-0483-x

 5. DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory responses after 
ischemic stroke. Semin Immunopathol. (2022) 44:625–48. doi: 10.1007/
s00281-022-00943-7

 6. Coveney S, Murphy S, Belton O, Cassidy T, Crowe M, Dolan E, et al. Inflammatory 
cytokines, high-sensitivity C-reactive protein, and risk of one-year vascular events, 
death, and poor functional outcome after stroke and transient ischemic attack. Int J 
Stroke. (2022) 17:163–71. doi: 10.1177/1747493021995595

 7. Zhang H, Huang J, Zhou Y, Fan Y. Association of homocysteine level with adverse 
outcomes in patients with acute ischemic stroke: a meta-analysis. Curr Med Chem. 
(2021) 28:7583–91. doi: 10.2174/0929867328666210419131016

 8. Kim MS, Heo MY, Joo HJ, Shim GY, Chon J, Chung SJ, et al. Neutrophil-to-
lymphocyte ratio as a predictor of short-term functional outcomes in acute ischemic 
stroke patients. Int J Environ Res Public Health. (2023) 20:898. doi: 10.3390/
ijerph20020898

 9. Chen C, Gu L, Chen L, Hu W, Feng X, Qiu F, et al. Neutrophil-to-lymphocyte ratio 
and platelet-to-lymphocyte ratio as potential predictors of prognosis in acute ischemic 
stroke. Front Neurol. (2020) 11:525621. doi: 10.3389/fneur.2020.525621

 10. Wang RH, Wen WX, Jiang ZP, du ZP, Ma ZH, Lu AL, et al. The clinical value of 
neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), 
platelet-to-lymphocyte ratio (PLR) and systemic inflammation response index (SIRI) 
for predicting the occurrence and severity of pneumonia in patients with 
intracerebral hemorrhage. Front Immunol. (2023) 14:1115031. doi: 10.3389/
fimmu.2023.1115031

 11. Huang L. Increased systemic immune-inflammation index predicts disease 
severity and functional outcome in acute ischemic stroke patients. Neurologist. (2023) 
28:32–8. doi: 10.1097/NRL.0000000000000464

 12. Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W, et al. Oxidative stress and DNA damage 
after cerebral ischemia: potential therapeutic targets to repair the genome and improve 
stroke recovery. Neuropharmacology. (2018) 134:208–17. doi: 10.1016/j.
neuropharm.2017.11.011

 13. He J, Liu J, Huang Y, Tang X, Xiao H, Hu Z. Oxidative stress, inflammation, and 
autophagy: potential targets of mesenchymal stem cells-based therapies in ischemic 
stroke. Front Neurosci. (2021) 15:641157. doi: 10.3389/fnins.2021.641157

 14. Wang X, Wu D, Zhong P. Serum bilirubin and ischaemic stroke: a review of 
literature. Stroke Vasc Neurol. (2020) 5:198–204. doi: 10.1136/svn-2019-000289

 15. Sheng X, Du H, Tang Y. Decreased serum Total bilirubin level predicts early 
neurological deterioration in patients with acute ischemic stroke. Neuropsychiatr Dis 
Treat. (2021) 17:1977–82. doi: 10.2147/NDT.S315330

 16. Zhong P, Wu D, Ye X, Wang X, Zhou Y, Zhu X, et al. Association of circulating total 
bilirubin level with ischemic stroke: a systemic review and meta-analysis of observational 
evidence. Ann Transl Med. (2019) 7:335. doi: 10.21037/atm.2019.06.71

 17. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R. Mimic-iv version 
2.0. PhysioNet. (2022). doi: 10.13026/rrgf-xw32

 18. Cumbler E, Wald H, Bhatt DL, Cox M, Xian Y, Reeves M, et al. Quality of care and 
outcomes for in-hospital ischemic stroke. Stroke. (2014) 45:231–8. doi: 10.1161/
STROKEAHA.113.003617

 19. Tiainen M, Meretoja A, Strbian D, Suvanto J, Curtze S, Lindsberg PJ, et al. Body 
temperature, blood infection parameters, and outcome of thrombolysis-treated ischemic 
stroke patients. Int J Stroke. (2013) 8:632–8. doi: 10.1111/ijs.12039

 20. Jhou HJ, Chen PH, Yang LY, Chang SH, Lee CH. Plasma anion gap and risk of 
in-hospital mortality in patients with acute ischemic stroke: analysis from the MIMIC-
IV database. J Pers Med. (2021) 11:1004. doi: 10.3390/jpm11101004

 21. Gentile NT, Seftchick MW, Huynh T, Kruus LK, Gaughan J. Decreased mortality 
by normalizing blood glucose after acute ischemic stroke. Acad Emerg Med. (2006) 
13:174–80. doi: 10.1197/j.aem.2005.08.009

 22. Papamichalis P, Karagiannis S, Dardiotis E, Chovas A, Papadopoulos D, Zafeiridis 
T, et al. Predictors of need for critical care support, adverse events, and outcome after 
stroke thrombolysis. J Stroke Cerebrovasc Dis. (2018) 27:591–8. doi: 10.1016/j.
jstrokecerebrovasdis.2017.09.042

 23. Vidale S, Consoli A, Arnaboldi M, Consoli D. Postischemic inflammation in acute 
stroke. J Clin Neurol. (2017) 13:1–9. doi: 10.3988/jcn.2017.13.1.1

 24. Choi YH, Laaker C, Hsu M, Cismaru P, Sandor M, Fabry Z. Molecular mechanisms 
of Neuroimmune crosstalk in the pathogenesis of stroke. Int J Mol Sci. (2021) 22:9486. 
doi: 10.3390/ijms22179486

 25. Garcia-Bonilla L, Moore JM, Racchumi G, Zhou P, Butler JM, Iadecola C, et al. 
Inducible nitric oxide synthase in neutrophils and endothelium contributes to ischemic 
brain injury in mice. J Immunol. (2014) 193:2531–7. doi: 10.4049/jimmunol.1400918

 26. Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and 
thrombotic disease. Cell Tissue Res. (2018) 371:567–76. doi: 10.1007/s00441-017-2727-4

 27. Denorme F, Rustad JL, Campbell RA. Brothers in arms: platelets and neutrophils 
in ischemic stroke. Curr Opin Hematol. (2021) 28:301–7. doi: 10.1097/
MOH.0000000000000665

 28. Denorme F, Manne BK, Portier I, Eustes AS, Kosaka Y, Kile BT, et al. Platelet 
necrosis mediates ischemic stroke outcome in mice. Blood. (2020) 135:429–40. doi: 
10.1182/blood.2019002124

 29. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory 
T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat 
Med. (2009) 15:192–9. doi: 10.1038/nm.1927

 30. Li P, Gan Y, Sun BL, Zhang F, Lu B, Gao Y, et al. Adoptive regulatory T-cell therapy 
protects against cerebral ischemia. Ann Neurol. (2013) 74:458–71. doi: 10.1002/
ana.23815

 31. Hu B, Yang XR, Xu Y, Sun YF, Sun C, Guo W, et al. Systemic immune-inflammation 
index predicts prognosis of patients after curative resection for hepatocellular carcinoma. 
Clin Cancer Res. (2014) 20:6212–22. doi: 10.1158/1078-0432.CCR-14-0442

 32. Acar BA, Acar T, Vatan MB, Aras YG, Ulaş SB, Eryılmaz HA, et al. Predictive value 
of systemic immune-inflammation index for cerebral reperfusion and clinical outcomes 
in patients with acute ischemic stroke undergoing endovascular treatment. Eur Rev Med 
Pharmacol Sci. (2022) 26:5718–28. doi: 10.26355/eurrev_202208_29507

64

https://doi.org/10.3389/fneur.2023.1174711
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://www.topeditsci.com
https://www.frontiersin.org/articles/10.3389/fneur.2023.1174711/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fneur.2023.1174711/full#supplementary-material
https://doi.org/10.1016/S0140-6736(20)31179-X
https://doi.org/10.1016/S0140-6736(20)31179-X
https://doi.org/10.1136/svn-2020-000457
https://doi.org/10.1016/S1474-4422(19)30078-X
https://doi.org/10.1007/s13311-016-0483-x
https://doi.org/10.1007/s00281-022-00943-7
https://doi.org/10.1007/s00281-022-00943-7
https://doi.org/10.1177/1747493021995595
https://doi.org/10.2174/0929867328666210419131016
https://doi.org/10.3390/ijerph20020898
https://doi.org/10.3390/ijerph20020898
https://doi.org/10.3389/fneur.2020.525621
https://doi.org/10.3389/fimmu.2023.1115031
https://doi.org/10.3389/fimmu.2023.1115031
https://doi.org/10.1097/NRL.0000000000000464
https://doi.org/10.1016/j.neuropharm.2017.11.011
https://doi.org/10.1016/j.neuropharm.2017.11.011
https://doi.org/10.3389/fnins.2021.641157
https://doi.org/10.1136/svn-2019-000289
https://doi.org/10.2147/NDT.S315330
https://doi.org/10.21037/atm.2019.06.71
https://doi.org/10.13026/rrgf-xw32
https://doi.org/10.1161/STROKEAHA.113.003617
https://doi.org/10.1161/STROKEAHA.113.003617
https://doi.org/10.1111/ijs.12039
https://doi.org/10.3390/jpm11101004
https://doi.org/10.1197/j.aem.2005.08.009
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.042
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.042
https://doi.org/10.3988/jcn.2017.13.1.1
https://doi.org/10.3390/ijms22179486
https://doi.org/10.4049/jimmunol.1400918
https://doi.org/10.1007/s00441-017-2727-4
https://doi.org/10.1097/MOH.0000000000000665
https://doi.org/10.1097/MOH.0000000000000665
https://doi.org/10.1182/blood.2019002124
https://doi.org/10.1038/nm.1927
https://doi.org/10.1002/ana.23815
https://doi.org/10.1002/ana.23815
https://doi.org/10.1158/1078-0432.CCR-14-0442
https://doi.org/10.26355/eurrev_202208_29507


Hu et al. 10.3389/fneur.2023.1174711

Frontiers in Neurology 10 frontiersin.org

 33. Zhou YX, Li WC, Xia SH, Xiang T, Tang C, Luo JL, et al. Predictive value of 
the systemic immune inflammation index for adverse outcomes in patients with 
acute ischemic stroke. Front Neurol. (2022) 13:836595. doi: 10.3389/
fneur.2022.836595

 34. Wang N, Yang Y, Qiu B, Gao Y, Wang A, Xu Q, et al. Correlation of the systemic 
immune-inflammation index with short- and long-term prognosis after acute ischemic 
stroke. Aging (Albany NY). (2022) 14:6567–78. doi: 10.18632/aging.204228

 35. Zhang L, Lyu Q, Zhou W, Li X, Ni Q, Jiang S, et al. High systemic immune-
inflammation index is associated with carotid plaque vulnerability: new findings based 
on carotid ultrasound imaging in patients with acute ischemic stroke. Front Neurol. 
(2022) 13:959531. doi: 10.3389/fneur.2022.959531

 36. Wu S, Shi X, Zhou Q, Duan X, Zhang X, Guo H. The association between systemic 
immune-inflammation index and all-cause mortality in acute ischemic stroke patients: 
analysis from the MIMIC-IV database. Emerg Med Int. (2022) 2022:4156489–10. doi: 
10.1155/2022/4156489

 37. Chen PY, Chen GC, Hsiao CL, Hsu PJ, Yang FY, Liu CY, et al. Comparison of 
clinical features, immune-inflammatory markers, and outcomes between patients with 
acute in-hospital and out-of-hospital ischemic stroke. J Inflamm Res. (2022) 15:881–95. 
doi: 10.2147/JIR.S342830

 38. Huang YW, Yin XS, Li ZP. Association of the systemic immune-inflammation 
index (SII) and clinical outcomes in patients with stroke: a systematic review and meta-
analysis. Front Immunol. (2022) 13:1090305. doi: 10.3389/fimmu.2022.1090305

65

https://doi.org/10.3389/fneur.2023.1174711
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://doi.org/10.3389/fneur.2022.836595
https://doi.org/10.3389/fneur.2022.836595
https://doi.org/10.18632/aging.204228
https://doi.org/10.3389/fneur.2022.959531
https://doi.org/10.1155/2022/4156489
https://doi.org/10.2147/JIR.S342830
https://doi.org/10.3389/fimmu.2022.1090305


TYPE Original Research

PUBLISHED 09 June 2023

DOI 10.3389/fneur.2023.1167549

OPEN ACCESS

EDITED BY

Yanlin Zhang,

Second A�liated Hospital of Soochow

University, China

REVIEWED BY

Felix Schlachetzki,

University of Regensburg, Germany

Kazuo Yamashiro,

Juntendo University Urayasu Hospital, Japan

*CORRESPONDENCE

Tom Finck

tom.finck@tum.de

†These authors have contributed equally to this

work and share first authorship

RECEIVED 16 February 2023

ACCEPTED 08 May 2023

PUBLISHED 09 June 2023

CITATION

Finck T, Sperl P, Hernandez-Petzsche M,

Boeckh-Behrens T, Maegerlein C,

Wunderlich S, Zimmer C, Kirschke J and

Berndt M (2023) Inflammation in stroke: initial

CRP levels can predict poor outcomes in

endovascularly treated stroke patients.

Front. Neurol. 14:1167549.

doi: 10.3389/fneur.2023.1167549

COPYRIGHT

© 2023 Finck, Sperl, Hernandez-Petzsche,

Boeckh-Behrens, Maegerlein, Wunderlich,

Zimmer, Kirschke and Berndt. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Inflammation in stroke: initial CRP
levels can predict poor outcomes
in endovascularly treated stroke
patients
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Silke Wunderlich2, Claus Zimmer1, Jan Kirschke1 and
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Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany

Background and purpose: Inflammation has been linked to poor prognoses in

cardio- and cerebrovascular conditions. As it is known to increase after ischemia,

C-reactive protein (CRP) may serve as a surrogate for systemic inflammation and

thus be a hallmark of increased tissue vulnerability. The question arises whether

CRP in the acute phase of ischemic stroke, prior to mechanical thrombectomy

(MT), might help predict outcomes.

Materials and methods: A single-center collective of patients with large-vessel

occlusion, who were treated via MT, was analyzed in this observational case–

control study. Univariate and multivariate models were designed to test the

prognostic value of inflammatory markers (CRP and leukocytosis) in predicting

clinical outcomes (modified Rankin score >2) and all-cause mortality 90 days

after MT.

Results: A total of 676 ischemic stroke patients treated with MT were included.

Of these, 313 (46.3%) showed elevated CRP levels (≥5 mg/l) on admission. Poor

clinical outcome and mortality at 90 days occurred in 113 (16.7%) and 335 (49.6%)

patients and significantly more frequently when initial CRP levels were elevated

[213 (64.5%) vs. 122 (42.1%), p < 0.0001, and 79 (25.2%) vs. 34 (9.4%), p <

0.0001, respectively]. CRP levels were highly predictive for impaired outcomes,

especially in patients with atrial fibrillation, in both univariate and multivariate

models. Interestingly, patients with initially elevated CRP levels also showed more

pronounced increases in CRP post-MT.

Conclusion: Poor outcome and death occur significantly more often in stroke

patients with elevated CRP levels before MT. Our findings suggest that stroke

patients with atrial fibrillation and elevated inflammatory markers are of particular

risk for poor outcomes.

KEYWORDS

inflammation, stroke, thrombectomy, C-reactive protein, stroke outcome,

neuroinflammation
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Introduction

Outcomes in ischemic stroke have improved greatly over the

last decades in large part due to the wider availability of specialized

stroke units as well as the establishment of endovascular therapy

as the standard of care for patients who present with acute large-

vessel occlusions (LVOs) (1–5). In recent years, the indication

for mechanical thrombectomy (MT) has been extended, e.g., to

later time windows and smaller vessels, with procedural techniques

being continuously improved (6, 7).

Nonetheless, ischemic stroke continues to pose a significant

burden as it remains a main cause of morbidity and mortality

worldwide and accounts for a large proportion of quality-adjusted

life years lost (8). Many multiparametric models for predicting

good clinical outcomes after endovascularly treated stroke include

obvious confounders, such as time to treatment or the success

of revascularization. However, despite successful reperfusion in

good time windows, the long-term clinical trajectory is not always

as favorable as expected. Some mechanisms conveying adverse

outcomes remain ill-explained, especially as complex markers such

as neuronal damage serum proteins may also play an important and

yet poorly understood role in influencing outcomes (9, 10).

Pro-inflammatory systemic environments have recently been

identified to independently predict poor outcomes in a panoply of

conditions, from ischemic heart disease to carotid atherosclerosis

progression, as well as ischemic stroke treated via intravenous

thrombolysis (11–15). Moreover, the more delayed cellular

inflammation conveyed by leukocytosis has been shown to correlate

with poor outcome afterMT (16). All these observations are hinting

at the role that neuro-inflammation could have in post-ischemic

brain remodeling.

High-sensitivity C-reactive protein (CRP) is an accessible

serum protein known to be a reliable marker for systemic

inflammation but also mediate pro-inflammatory downstream

cascades, making it a suitable candidate to assess the level of

intra-individual inflammation (17, 18). Moreover, the observation

that most stroke patients showcase high-CRP levels is noteworthy

given that activation of the secondary complement system and

subsequent secondary brain damage through CRP has been shown

experimentally (19).

It remains unclear whether CRP is elevated in response to

ischemia-induced neuronal damage or whether pro-inflammatory

mechanisms themselves are causing a time-delayed injury of

ischemic brain tissue, analogous to phenomena seen after thermic

tissue shock (20). As inflammatory markers have been associated

with atrial fibrillation and thromboembolic complications, it may

also be conceivable that inflammation influences the pathogenesis

of ischemic stroke (21).

Our assumption is that CRP levels in the very-early stage of

ischemic stroke could be a hallmark of systemic inflammation and

increase the ad hoc vulnerability of the brain tissue to ischemic

Abbreviations: LVO, large-vessel occlusion; MT, mechanical thrombectomy;

CRP, C-reactive protein; NIHSS, National Institutes of Health Stroke Scale; SNI,

substantial neurological improvement; mRS, modified Rankin scale; TOAST,

Trial of ORG 10172 in Acute Stroke Treatment; tPA, tissue-type plasminogen

activator; CTP, CT perfusion; SD, standard deviation; ROC, receiver operator

characteristic; OR, odds ratio; CI, confidence interval.

stress as well as promote subsequent neuronal damage through

mediation of a post-ischemic ischemia-inflammation cascade.

Identification of this association would add to current knowledge

in stroke care, identify patients at risk benefitting from the

most intensified and early anti-inflammatory therapy regimes, and

advocate for future interventional studies (22).

To address those questions, the present study aims to

investigate an association of inflammatory bloodmarkers (CRP and

leukocytosis) with neurological outcome and mortality in a large

cohort of ischemic stroke patients with LVO treated with MT.

Methods

Study design

Prospectively collected clinical, interventional, and outcome

parameters of a large collective of endovascular treated stroke

patients in a comprehensive stroke center were analyzed for this

retrospective single-center case–control study. The association

of inflammatory markers with outcome parameters was tested

as outcomes.

The study was approved by the local ethics committee, and

the need for patient consent was waived. The observational,

retrospective study design did not interfere with the routine

clinical workflow and did not influence therapeutic decision-

making. The results were reported in adherence to the STROBE

statement guidelines.

Study population

This retrospective, single-center study included all consecutive

patients with ischemic stroke due to LVO who were admitted at

a single comprehensive stroke center and treated by MT between

January 2017 and March 2021 (n= 1,012).

Patients with an unclear onset of symptoms (wake-up stroke)

or a concurring cause of infection at both admission or during

the first 7 days of hospital stay were excluded. Furthermore, we

only included patients for whom inflammatory serum markers on

admission and outcome data at 90-day follow-up were available.

The prospectively collected clinical and imaging data were

retrospectively analyzed. Basic demographic, clinical, and

interventional data of patients were gathered. NIHSS-certified

neurologists assessed the National Institutes of Health Stroke Scale

(NIHSS) score at the time of admission and discharge. Substantial

neurological improvement (SNI) was defined as the difference

between admission and discharge, with an NIHSS score of ≥8 or a

discharge NIHSS score of ≤1.

The mRS score was used to measure disability premorbid at

discharge and at follow-up, while a poor clinical outcome in the

90-day follow-up was defined as mRS > 2.

Outcome values such as mRS and mortality in the follow-up

were assessed either through routine follow-up in-house visits or,

if the patient was not present for various reasons, by phone call

through an experienced study nurse.

Stroke pathogeneses were determined according to the

international TOAST (Trial of ORG 10172 in Acute Stroke

Treatment) classification based on diagnostic and clinical
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information available for each patient (23). Further variables

that are relevant for the present study included the presence of

atrial fibrillation as well as documentation of cardiovascular risk

factors such as active smoking, hypertension, hyperlipidemia,

and diabetes mellitus. Pre-existing treatment with platelet-

inhibiting drugs or lipid-lowering therapies was documented.

Administration of pre-interventional intravenous tissue-type

plasminogen activator (tPA) thrombolysis was assessed. At the

end of the endovascular procedure, successful recanalization was

defined as mTICI 2b-3 (24). Time of symptom onset, time of

admission, time of reperfusion, and corresponding procedure

times were taken from the existing database. Time to admission

was defined between symptom onset and admission. Reperfusion

time was defined between symptom onset and mTICI ≥ 2b.

In cases, when recanalization was not successful (TICI < 2b),

the control series after the last maneuver was used as the

time endpoint.

Assessment of inflammation markers

In patients with elevated CRP levels (defined as >5 mg/l),

hospital records were retrospectively screened to determine

whether any cause of infection was apparent prior to stroke onset

or became uncovered during the acute-care hospital stay.

Levels of CRP and leukocyte counts were determined from

the emergency blood panel taken upon referral, prior to MT,

as well as blood panels drawn within the first 7 days after

MT. This allowed for the analysis of three models: (i) outcome

prediction based on the level of inflammatory markers at the time

of admission, (ii) subgroup analysis in patients for whom serum

inflammatory markers were available in the hyper-acute phase

(<4 h after symptom onset), with an aim to exclude the effects

of CRP release secondary to brain ischemia, and (iii) subgroup

analysis of prognostic effects linked to the CRP dynamics in the first

7 days after MT.

Imaging analysis

The volume of brain tissue necrosis at the time of admissionwas

quantitatively estimated from CT perfusion (CTP) data [RAPID

software (iSchemaView, Menlo Park, CA, USA)] (25). Acquisition

of CTP is part of an in-house stroke neuroimaging standard

operating procedure and was thus available for all patients,

irrespective of the timing of symptom onset. The infarct core at

admission was defined as the volumetric sum of voxels showcasing

cerebral blood flow < 30% to the contralateral hemisphere. Alberta

Stroke Program Early CT Score (ASPECTS) was automatically

assessed from admission CT imaging (iSchemaView, Inc., Menlo

Park, CA, USA) for patients with occlusion of the MCA.

Statistical analysis

Continuous and categorical variables are given as mean

and standard deviation (SD) and frequencies if not indicated

otherwise. Variables were compared using the Mann–Whitney U-

test and unpaired student t-test, as appropriate. Receiver operator

characteristic (ROC) curve analysis was used to determine the

association of continuously measured CRP levels and outcomes.

The Youden index was subsequently determined to find optimal

cutoff values for CRP levels. The relationship between outcomes

and elevated CRP levels (defined cutoff of 5 mg/L according to

in-house laboratory standards) was expressed as an odds ratio

(OR), with a corresponding 95% confidence interval (CI) through

logistic regression.

To correct for confounders, adjustments for the impact of age,

sex, atrial fibrillation, hypertension, diabetes mellitus, estimated

CTP infarct volume, premorbid mRS levels, and reperfusion

success were made with multiple logistic regression. A moderation

analysis was performed to check the interaction of the subgroups

with/without atrial fibrillation on the association between CRP

levels and outcomes under consideration of the abovementioned

covariates (26).

Statistical analyses were performed using IBM SPSS Statistics

version 28.0.0. for macOS (IBM, USA).

Results

Patient demographics and clinical data

Over the retrieval period, 1,012 patients were referred for MT

of a LVO. Of these, 62 were lost to follow-up. Furthermore, 274

patients were either “wake-up” strokes or had an infection either

pre-existing or developing within the first 7 days of in-clinic stay

(mean diagnosis at 4.3 days post-MT) and were thus excluded,

leading to a study collective of 676 patients at a mean age of 74

± 13 years (48.5% men). Mean CRP levels at admission were 1.7±

3.2 mg/l and elevated in 313 patients (46.3%). Patients with elevated

CRP levels experienced higher frequencies of atrial fibrillation (57.5

vs. 41.3%, p < 0.001), hypertension (64.9 vs. 60.6%, p = 0.01), and

diabetes mellitus (26.2 vs. 16.8%, p = 0.003), as well as leukocyte

counts (10.46 ± 6.79 G/l vs. 9.79 vs. 3.39 G/l, p < 0.001). Apart

from this, both groups had similar clinical profiles (Table 1).

Stroke- and MT-related parameters

In descending frequency, the most commonly occluded vessels

were middle cerebral artery (n = 384, 56.8%), distal segment of

the internal carotid artery (n = 73, 10.8%), combination of >1

occluded intracranial vessel (n = 59, 8.7%), tandem occlusions (n

= 53, 7.8%), basilar artery (n = 44, 6.5%), proximal segment of

the internal carotid artery (n = 37, 5.5%), posterior cerebral artery

(n = 11, 1.6%), anterior cerebral artery (n = 8, 1.2%), and the

vertebral artery (n = 7, 1.0%). Symptom severity was moderate on

average with mean NIHSS scores of 13 ± 6.8. Counting from the

onset of clinical symptoms, the time to admission (52 ± 41min

vs. 58 ± 72min, p = 0.19) and the time to reperfusion (191 ±

144min vs. 189± 146min, p= 0.79) were similar for both groups.

I.v. thrombolysis was performed significantly less frequently in

the cohort with elevated CRP levels (37.1 vs. 47.7%, p = 0.006).

Moreover, patients with elevated CRP levels demonstrated larger
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TABLE 1 Patient demographics for the study cohort and dichotomized according to CRP levels.

Subgroups

All CRP ≥ 5 mg/l CRP < 5 mg/l P

(n = 676) (n = 313) (n = 363)

Age 73.87± 13.37 75.4± 13.2 72.5± 13.3 0.005

%Male 328 (48.5%) 152 (48.6%) 176 (48.5%) 0.98

NIHSS at admission 13± 6.76 13± 6.64 13± 6.87 0.92

Hypertension 439 (64.9%) 219 (70.0%) 220 (60.6%) 0.01

Diabetes 143 (21.2%) 82 (26.2%) 61 (16.8%) 0.003

Smoking∗ 157 (23.2%) 78 (24.9%) 79 (21.8%) 0.34

Hyperlipidemia 143(21.2%) 72 (23.0%) 71 (19.6%) 0.28

LLT 173 (25.6%) 90 (28.8%) 83 (22.9%) 0.08

Anticoagulation 195 (28.8%) 90(28.8%) 105 (28.9%) 0.98

Atrial fibrillation 330 (48.8%) 180 (57.5%) 150 (41.3%) <0.001

TOAST 1 94 (13.9%) 41 (13.1%) 53 (14.6%) 0.57

TOAST 2 324 (47.6%) 168 (53.4%) 155 (42.7%) 0.006

TOAST 3 0 (0%) 0 (0%) 1 (0%) 0.99

TOAST 4 42 (6.2%) 20 (6.4%) 22 (6.1%) 0.87

TOAST 5 216 (32.0%) 84 (26.9%) 132 (36.4%) 0.008

CRP levels (mg/l) (admission) 1.71± 3.15 31.0± 37.7 2.0± 1.5 <0.001

Leukocytes (G/l) (admission) 10.46± 6.79 11.24± 9.27 9.79± 3.39 0.009

Time to admission (min) 55± 62 52± 41 58± 72 0.19

Time to reperfusion 191± 144 192± 138 189± 146 0.79

i.v. thrombolysis 289 (42.8%) 116 (37.1%) 173 (47.7%) 0.006

ASPECTS 4.97± 4.10 4.95± 4.00 5.0± 4.2 0.87

Infarct core at admission (ml) 20.2± 37.1 24.2± 41.2 17.3± 29.4 0.014

% mTICI 2b or better 590 (87.3%) 283 (90.4%) 307 (84.6%) 0.02

LLT, lipid-lowering therapy. ASPECTS are provided for patients with occlusion of the middle cerebral artery, only (n = 384). ∗Current smoker. TOAST 1, large artery atherosclerosis; TOAST

2, cardioembolism; TOAST 3, small-vessel occlusion; TOAST 4, stroke of other determined etiology; TOAST 5, stroke of undetermined etiology.

estimated infarct cores on CTP (24.2± 41.2ml vs. 17.3± 29.4ml, p

= 0.014) albeit comparable infarct areas as estimated by ASPECTS

(4.95 ± 4.0 vs. 5.0 ± 4.2, p = 0.0.87) in the subgroup with

MCAocclusion.Moreover, the thrombectomy results were better in

patients whose initial CRP levels were elevated with 90.4 % (against

84.6%, p = 0.02) of final thrombectomy scores being mTICI 2b

or better.

Outcomes

After 90 days of thrombectomy, a total of 113 patients (16.7%)

were deceased with death occurring significantly more often in

patients showcasing high-CRP levels ad initio (25.2 vs. 9.4%, p <

0.0001) (Figure 1). Median mRS after 90 days was 3 (IQR: 2; 5)

and at a disadvantage in the high-CRP group with 4 (2; 6) vs. 2

(1; 4) (p< 0.0001). Brain hemorrhage up until the day of discharge,

as verified by CT or MR imaging, was noted in a total of 15/460

patients (3.3%) for whompostprocedural imaging was available and

at comparable rates in both groups (3.7 vs. 3.0%, p = 0.69). NIHSS

values at discharge were available for 460/676 patients. A SNI at

discharge could be noted in 206 of these patients. The frequency of

SNI showed a trend to be higher in patients with normal initial CRP

values (141/297, 47.5%) than in patients with elevated initial CRP

values (65/163, 39.9%) (p = 0.11). Refer to Table 2 for a detailed

outcome analysis.

Association of inflammatory markers with
outcomes

Odds ratios for death or poor outcome (mRS > 2) 90 days

after thrombectomy have been calculated for all investigated

parameters in univariate models, as shown in Figures 2A, B. In the

decreasing order, CTP-estimated infarct volumes, elevated initial

CRP levels, poor thrombectomy results (TICI < 2b), and pre-

existing neurological impairments (mRS > 0) showed the highest

association with poor outcomes after 90 days. On the other hand,
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FIGURE 1

Relative occurrence of death or poor clinical outcome 90 days after

mechanical thrombectomy, dichotomized according to initial CRP

levels.

TABLE 2 Occurrence of primary outcomes 90 days after mechanical

thrombectomy, as well as secondary endpoint occurrence ICH and

re-occlusion, as verified by CT or MRI, up until discharge.

Primary
outcomes

Subgroups

All CRP ≥ 5
mg/l

CRP < 5
mg/l

P

(n = 676) (n = 313) (n = 363)

Mortality 113 (16.7%) 79 (25.2%) 34 (9.4%) <0.001

mRS 3 (2; 5) 4 (2; 6) 2 (1; 4) <0.001

Poor outcome (mRS

> 2)

335 (49.6%) 213 (68.1%) 122 (33.6%) <0.001

Secondary
outcomes

Subgroups

All CRP ≥ 5
mg/l

CRP < 5
mg/l

P

(n = 460) (n = 163) (n = 297)

SNI 206 (44.8%) 65 (39.9%) 141 (47.5) 0.11

ICH 15 (3.3%) 6 (3.7%) 9 (3.0%) 0.69

Re-occlusion 31 (6.7%) 14 (8.6%) 17 (5.7%) 0.24

mRS, modified Rankin scale; SNI, substantial neurological improvement; ICH,

intracranial hemorrhage.

poor thrombectomy outcomes (TICI < 2b), elevated CRP levels,

CTP-estimated infarct volumes, and elevated leukocyte counts were

most predictive for death at 90 days.

Due to the partial unavailability of confounding covariates,

multivariate analysis and moderation analysis were calculated for

a patient subset of n= 212.

Multivariate logistic regression, after correction for the

effects of age, sex, atrial fibrillation, hypertension, diabetes

mellitus, infarct volumes, pre-existing neurological impairments,

and thrombectomy outcomes, highlights that initial CRP levels

remained predictive for both mortality and poor mid-term

outcome with respective odds ratios of 2.72 (95% CI: 1.43; 5.21)

and 3.85 (95% CI: 2.49; 5.94), as shown in Figure 2C.

In a second step, the impact of the etiological subgroups

with and without atrial fibrillation on the association between

initial CRP levels and poor mid-term outcomes was tested in a

moderation analysis under consideration of the abovementioned

covariates. The conditional effect of initial CRP levels on poor

outcomes remained significant for the atrial fibrillation group (p

< 0.001). For the patient subgroup without atrial fibrillation, the

conditional effect was lowered and lost its significance on the

5% level (p = 0.06), which implies that the importance of CRP

levels for clinical outcomes is predominantly seen in patients with

atrial fibrillation.

Multivariate logistic regression analyses for leukocyte counts

lost their predictive power with respective odds ratios to predict

mortality and poor mid-term outcomes of 0.92 (95% CI: 0.41, 2.05)

and 0.73 (95% CI: 0.44, 1.23), respectively.

CRP values were further validated as a binary classifier for poor

outcomes as a predictive model containing the above-referenced

risk factors benefitted significantly from the inclusion of CRP

measurements. As such, the AUC under the ROC increased from

0.74 (95%CI: 0.67, 0.81) to 0.81 (95%CI: 0.76, 0.87), as illustrated in

Supplementary Figure 1. Calculation of the Youden Index yielded

an optimal cutoff CRP level of 3.5 mg/l (sensitivity of 81.4% and

specificity of 61%) and 8.5 mg/l (sensitivity of 69.0% and specificity

of 69.0%) to predict poor outcomes and mortality, respectively.

Endpoint-dependent CRP analysis

Post-hoc determination of CRP levels as a function of outcome

showed that patients who reached the endpoint of mortality or

mRS > 2 did not only have higher CRP levels ad initio but also

experienced prolonged increases in CRP levels over the first 7

days post-MT. Endpoint-dependent CRP trajectories and values are

given in Figure 3.

Subgroup analysis for very-early
inflammatory markers

In patients where initial blood sampling took place earlier than

4 h after symptom onset (n = 430), CRP levels were predictive for

both poor outcomes [OR: 3.13 (95% CI, 2.06, 5.95)] and mortality

[OR: 3.41 (95% CI, 2.11, 5.65)]. This effect remained intact in a

multivariate model after correction for age, sex, atrial fibrillation,

hypertension, diabetes mellitus, CTP-estimated infarct volume,

premorbid mRS levels, NIHSS, and thrombectomy outcome for

both poor clinical outcomes [OR: 2.59 (95% CI, 1.08, 6.41)] and

mortality [OR: 2.94 (95% CI, 1.06, 9.07)]. Leukocyte counts, on the

other hand, lost their predictive power for poor clinical outcomes

after multivariate correction (Table 3).

Discussion

The present study validates systemic inflammation markers,

especially CRP levels, for predicting clinical outcomes in a large

collective of endovascularly treated stroke patients. Our results

show that (i) poor outcome and death occur significantly more
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FIGURE 2

Forest plot illustrating the univariate risk for poor clinical outcome (mRS > 2) and death at 90 days after mechanical thrombectomy in (A, B). (C)

depicts the respective odds ratios in a multivariate model in patients with elevated CRP values. OR, odds ratio.
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FIGURE 3

Post-hoc determination of CRP dynamics as a function of outcomes. Beyond the initial increase of inflammatory markers in patients with poor

outcomes, the trajectory of CRP values continued to steepen over the consecutive 7 days after MT as compared to the cohort with favorable

outcomes. The upper panel depicts the respective trajectories of CRP values for patients with good outcomes (mRS ≤ 2), poor outcomes (mRS > 2),

and mortality. The corresponding median values and respective 95% CI are given in the lower panel. *Significantly above mRS ≤ 2 at the respective

timepoint.

often in stroke patients with elevated CRP levels before MT,

particularly in patients with atrial fibrillation, (ii) these effects seem

to be mediated by a systemic inflammatory environment and not

as a response to brain tissue ischemia, and (iii) the ischemia-

inflammation cascade in MT patients is more pronounced if CRP

levels are elevated ad initio.

Evidence is growing that systemic inflammation has a pivotal

role in many pathophysiological processes from cardiovascular

disease to cancer progression and cognitive decline (27–29).

CRP has already been identified as a sensible serum marker

to predict adverse outcomes in cardiovascular events, and its

levels are known to be influenced by genetic polymorphisms, an

observation that could further deepen our understanding of the

development and progression of vascular disease (30). CRP as an

inflammatory marker has been associated with atrial fibrillation,

including development, recurrence, and total burden, as well as

associated with thromboembolic complications (21). It thus seems

plausible that inflammation also influences the pathogenesis of

ischemic stroke.

In this study, we are interested in finding out whether CRP

levels in the acute phase of ischemic stroke can help explain the

outcome disparities in patients with endovascularly treated LVO.

Our data show that CRP levels at admission are strongly and

independently associated with an increased risk of mortality and

poor clinical outcomes. In a broad, prospectively acquired collective

of 676 patients, we thus noted that 70% of deaths at 90-day

follow-up occurred in patients with initially elevated CRP levels.

Moreover, after multivariate correction for confounding factors

TABLE 3 Subgroup analysis for very-early (<4h after symptom onset)

CRP levels and leukocyte counts to predict mortality or poor clinical

outcomes.

Endpoint Inflammatory
marker

OR

Univariate Multivariate

MRS > 2 CRP 3.13 (2.06; 5.95) 2.59 (1.08; 6.41)

Leukocytes 1.44 (0.94; 2.22) 1.51 (0.51; 4.60)

Mortality CRP 3.41 (2.11; 5.65) 2.94 (1.06; 9.07)

Leukocytes 2.26 (1.42; 3.59) 1.86 (1.07; 2.63)

known to carry a negative prognostic value such as reperfusion

failure or large volumes of estimated infarct cores, the relative

risk of death or poor clinical outcomes remains significant if

CRP levels were elevated ad initio. This observation held true

even as patients with elevated CRP levels had smaller infarct

volumes as well as more favorable thrombectomy results than

those with no signs of systemic inflammation. The influence of

etiology was also deliberated while atrial fibrillation was chosen

as a covariate. Despite the known association between atrial

fibrillation and elevated CRP levels, the inflammation marker has

independently impacted outcomes. In a moderation analysis, it was

shown that the importance of CRP levels for clinical outcomes is

predominantly seen in patients with atrial fibrillation. This fits the

known association of CRP levels in atrial fibrillation with burden

and severity of thromboembolic events. It may have an impact
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on clinical practice as special focus should be placed on patients

with cardioembolic stroke and elevated CRP levels regarding

rehabilitation and secondary prevention.

Furthermore, our observation that CRP trajectories post-MT

diverge in a way that initially high levels tend to further increase

over the course of 7 days is of particular interest. One could

speculate that CRP promotes a cascade where first-hit tissue

damage promotes inflammatory mechanisms, again worsening

tissue damage through known effects such as complement

activation or T-cell platelet interaction (15, 31). Secondary burn

progression in thermic injuries, where cell necrosis advances

beyond the initial stress area in a time-delayed manner, could

thus be a blueprint for some of the pathophysiological processes

in brain ischemia. Moreover, the fact that injury in myocardial

infarction has been mitigated by blocking CRP synthesis hints at

the plausibility of such a cascade and causative role that CRP could

have in the time-delayed cellular damage (32).

Validation of our findings in a multicentric setting could pave

the way for interventional studies exploring CRP apheresis as a

possible tool to break this ischemia-inflammation cascade in stroke

patients (32, 33). Elegantly, this could potentially be achieved

through intensified statin use, as one of the lipid-lowering agent

properties is to dose-dependently reduce levels of not only LDL—

known to also negatively impact the prognosis of ischemic stroke

patients—but also CRP and other inflammatory markers (34).

The hypothesis that in adjunct to reducing established cardio-

and cerebrovascular risk factors, mitigating low-level systemic

inflammation as a means of primary and secondary prevention

gains momentum as a promising future avenue in stroke care (35).

Although CRP has been validated as an independent predictor

of poor outcomes in patients with ICH (36), we found no

correlation between early CRP levels and brain hemorrhage

or repeated LVO after MT. At first sight, this may seem

counterintuitive given the vast evidence that links low-level

inflammation to endothelial dysfunction and might be due to

the overall low rates of these secondary endpoints in our study

cohort (37). Moreover, leukocyte counts on admission carried less

prognostic weight as this marker reacts more slowly to a pro-

inflammatory stimulus andmight thus be less well suited as an early

predictive marker.

Testing for CRP-related genetic polymorphisms would have

provided a significant value to our analysis as this could have

clarified if CRP is really the hallmark agent linked to poor

outcomes after MT or just a surrogate marker for low-level

systemic inflammation.

The study design in its very nature was retrospective with

all inherent limitations. A further limitation is the monocentric

study setting, calling for prospective multicentric studies to validate

our findings, as well as the multivariate analysis with less power

due to the partial unavailability of confounding variables. All-

cause mortality after 90 days was chosen as an endpoint due to

the common impossibility to determine a specific cause of death,

especially in a cohort of elderly patients. It can, however, be

assumed that the large cohort size flattens out potential inequalities

in the rates of confounding co-morbidities among both groups.

Body temperatures were not available although this metric might

have provided further information on the potential onset of a

latent infection during the clinical stay. Moreover, definite volumes

of the infarcted tissue were not quantitatively assessed. Finally,

patients with elevated CRP levels were on average 3 years older,

with intuitive prognostic implications, a confounder mitigated by

the multivariate correction we performed in our analysis.

To conclude, our study provides evidence for the negative

prognostic value of acute-stage CRP levels in stroke patients treated

via MT. In a set of more than 600 patients, we show that mid-term

clinical outcomes andmortality are significantly and independently

associated with initial CRP levels, particularly in patients suffering

from atrial fibrillation. Our findings encourage the theory that

mitigating low-level systemic inflammation could be a promising

step to improve the prognosis of stroke patients. Based on this, data

questions on acute vs. chronic and systemic inflammation should

be further investigated in larger studies.
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Evaluating cardiac function with 
chest computed tomography in 
acute ischemic stroke: feasibility 
and correlation with short-term 
outcome
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Xiangying Du 1,2* and Jie Lu 1,2

1 Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China, 2 Beijing Key 
Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China

Background: The outcomes of patients with acute ischemic stroke (AIS) are 
related to cardiac function. Cardiac insufficiency can manifest as hydrostatic 
changes in the lungs. Computed tomography (CT) of the chest is commonly used 
for screening pulmonary abnormalities and provides an opportunity to assess 
cardiac function.

Purpose: To evaluate the correlation between hydrostatic lung manifestations 
on chest CT and cardiac function with its potential to predict the short-term 
outcome of AIS patients.

Methods: We retrospectively analyzed AIS patients who had undergone chest 
CT at admission and echocardiogram within 48 h. Morphological and quantitative 
hydrostatic changes and left ventricular dimensions were assessed using chest CT. 
Improvement in the National Institutes of Health Stroke Scale (NIHSS) score on 
the seventh day determined short-term outcomes. Multivariate analysis examined 
the correspondence between hydrostatic lung manifestations, left ventricular 
dimension, and left ventricle ejection fraction (LVEF) on echocardiography, and 
the correlation between hydrostatic changes and short-term outcomes.

Results: We included 204 patients from January to December 2021. With the 
progression of hydrostatic changes on chest CT, the LVEF on echocardiography 
gradually decreased (p < 0.05). Of the 204, 53 patients (26%) with varying degrees of 
hypostatic lung manifestations had less improvement in the NIHSS score (p < 0.05). 
The density ratio of the anterior/posterior lung on CT showed a significant 
negative correlation with improvement in the NIHSS score (r = −5.518, p < 0.05). 
Additionally, patients with a baseline NIHSS ≥4 with left ventricular enlargement 
had significantly lower LVEF than that of patients with normal NIHSS scores.

Conclusion: Hydrostatic lung changes on chest CT can be used as an indicator 
of cardiac function and as a preliminary reference for short-term outcome in AIS 
patients.

KEYWORDS

acute ischemic stroke, hydrostatic lung, cardiac function, chest CT, computed 
tomography, NIHSS, outcome
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1. Introduction

Although acute ischemic stroke (AIS) mostly results from direct 
occlusion of the carotid-cerebral arteries, cardiac abnormalities play 
an important role in the pathogenesis and evolution of strokes. As the 
second most common risk factor for cardiogenic stroke after atrial 
fibrillation (AF), decreased left ventricular function is a major risk 
factor for functional outcomes of strokes (1). Heart failure is an 
important independent variable influencing stroke mortality when 
controlling for other factors such as AF, age, and stroke syndromes (2). 
The identification of impaired ejection fraction may aid in timely 
recognition of stroke patients who are at a higher risk of early and 
long-term adverse outcomes (3, 4). On the other hand, sympathetic 
overstimulation and the release of catecholamines following an 
ischemic stroke can lead to toxic injury of the myocardium and 
weaken the myocardial contractility. High levels of catecholamines 
stimulate adrenergic receptors to cause systemic vasoconstriction and 
increase the systemic vascular resistance, subsequently elevating the 
ventricular filling pressure (5, 6). Cardiac function progressively 
deteriorates, ultimately leading to heart failure. The interaction 
between AIS and impaired cardiac function may accelerate 
deterioration in AIS patients.

In addition to decreased left ventricular ejection fraction (LVEF) 
and hypertensive cardiac remodeling, decreased left ventricular 
function can lead to elevated pulmonary artery pressure and 
microvascular filtration pressure in the lungs, which cause lung injury 
and promote fluid formation through hydrostatic mechanisms and 
changes in permeability (7–9). These processes culminate in 
hydrostatic changes in the lungs, which may be more apparent than 
the cardiac changes.

Computed tomography (CT) of the chest plays a valuable role in 
clinical screening, especially in emergency patients with unclear 
clinical histories (10, 11). CT was more widely used in many 
institutions during the pandemic for screening of COVID-19 infection 
(12). Although precise assessment of cardiac function with chest CT 
is difficult, preliminary evaluation of cardiac function based on 
pulmonary involvement and gross measurements of left ventricle size 
can be achieved, which can potentially aid in the global evaluation of 
and strategic decision-making for AIS patients.

This study aimed to evaluate the correlation between hydrostatic 
lung manifestations and cardiac changes on chest CT and the short-
term outcomes for AIS patients to assess the efficacy of chest CT as a 
prognostic indicator.

2. Materials and methods

2.1. Patient selection

We retrospectively analyzed the medical records of AIS patients 
who had been admitted to our institution between January to 
December 2021. All patients underwent a standard set of brain CT 
scans (non-contrast CT alone or multimodal CT, including perfusion 
and computed tomography angiography) and chest CT immediately 
upon admission. Inclusion criteria for this study were as follows: (1) 
the diagnosis of ischemic stroke met the national and international 
criteria for acute stroke and the time of stroke onset was less than 
6 hours (from the hyperacute period), and for patients who underwent 

echocardiography this occurred within 48 h after admission to rule out 
structural abnormality; (2) patients with first-ever ischemic stroke or 
no legacy effects of their previous ischemic stroke; and (3) patients 
who had received recanalization therapy (thrombolysis or 
thrombectomy) and no complications or adverse effects were noted. 
The exclusion criteria were as follows: (1) patients with chronic 
obstructive pulmonary disease, bilateral diffuse emphysema, 
pulmonary fibrosis, severe intrapulmonary infection, or lung cancer; 
and (2) patients with coronary stents, prosthetic heart valves, prior 
coronary artery bypass graft surgery, or metal artifacts in the region 
of the cardiac silhouette that affected image quality.

On hospital admission, demographic data [age, sex, body mass 
index (BMI), and laboratory examinations] were collected, and 
cardiovascular risk factors (smoking, arterial hypertension, diabetes 
mellitus, hypercholesterolemia, atrial fibrillation, and recanalization 
therapy) were recorded. The National Institutes of Health Stroke Scale 
(NIHSS) was assessed at admission (baseline) and 7 days later. The 
water swallow test (WST) score was performed at admission to assess 
the degree of dysphagia (1) for ability to swallow the water 
continuously, (2) for ability to swallow the water more than twice 
without coughing or choking, (3) for voice quality or breathing pattern 
change, (4) for ability to swallow the water more than twice with 
coughing or choking, and (5) for inability to swallow (13, 14).

2.2. Measurements and outcome

All chest CT examinations were performed using a 256-detector 
row CT scanner (Revolution CT; GE Healthcare, Milwaukee, WI, 
United  States). Chest CT was performed using a tube voltage of 
100 kV and tube current modulation. Routine reconstruction of the 
chest CT images included axial images of 5 mm thickness with a high 
resolution and soft tissue algorithm, and axial images of 0.625 mm 
thickness with a high-resolution algorithm. The coronal images of the 
lung window were also reformatted. All the images were transferred 
to the picture archiving and communication system (PACS) server for 
image reading and further analysis.

Image evaluation was performed by two experienced radiologists 
(with at least 3 years of experience in chest radiology). The radiologists 
were blinded to the clinical information and study outcomes. 
Dedicated monitors and workstations for image reading with 
multiplanar reformation capacity were used for image analysis.

The imaging features of the lungs related to hydrostatic changes 
and other signs were evaluated and recorded, including small 
ill-defined opacities, interlobular septal thickening, ground-glass 
attenuation, airspace consolidation, and pleural effusion (Figure 1) 
(15). For quantitative analysis, we used the sector method to measure 
the density of a peripheral area of lung parenchyma (16, 17). 
We manually drew regions of interest (ROIs) on the axial images in 12 
regions, including the right and left upper lobes, left lingula and right 
middle lobe, and left and right lower lobes (size, 2 cm × 1 cm), and 
recorded CT Hounsfield unit (HU) of every ROI. The central 
vasculature, including the main and lobar pulmonary arteries, 
pulmonary veins, and airways, were excluded from the ROIs 
(Figure 2). The mean anterior/posterior lung density ratio (ΔA/P) for 
the patients was determined as follows: the density values in the ROIs 
at the peripheral one-third of the right and left anterior and posterior 
lung fields were arithmetically averaged.
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To assess the left ventricular (LV) dimensions, short-axis images 
of the left ventricle were reformatted using thin-slice images on the 
workstation. The maximum transverse diameter of the left ventricle, 
including the interventricular septum and lateral wall, was measured 
(Figure 3). LV enlargement was defined as >66 mm deviation in men 
and >64  mm deviation in women from normal cardiac magnetic 
resonance imaging (MRI) data (18). Stroke severity was assessed using 
the NIHSS score at admission and 7 days later. The short-term 
recovery was rated as follows: not improved (NIHSS score 
improvement ≤30%) or improved (NIHSS score improvement >30%). 
Based on initial NIHSS score, stroke patients were divided into two 
groups, namely the mild stroke group (baseline NIHSS score ≤4) and 
the severe stroke group (NIHSS score >4) (19).

Measurement of cardiac dimension and function was performed 
with trans-thoracic echocardiography using a clinical scanner (Philips 

IE33 or GE Vivid E95) by certified cardiologists or sonologists. LVEF 
and LV dimensions were recorded for comparison with chest CT 
features. Left ventricular internal diameter in diastole (LVIDd) 
>56 mm is defined as LV enlargement in males and LVIDd >51 mm in 
females (20).

2.3. Statistical analyses

Interobserver agreement and various parameters measured using 
echocardiography or chest CT were assessed using the kappa 
coefficient statistical test. Differences in characteristics between 
patients with or without imaging signs were assessed by χ2 analysis or 
Mann–Whitney test in both mild and severe stroke groups. Frequency 
of hydrostatic signs in the lungs on the chest CT in AIS patients were 

FIGURE 1

Imaging features of lungs related to hydrostatic changes, including small ill-defined opacities, interlobular septal thickening, ground-glass attenuation, 
airspace consolidation, and pleural effusion.

FIGURE 2

CT HU in 12 fields of the lung. Representative ROIs in different lobes in the carina (A), main stem bronchi (B), and bottom (C) levels.
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calculated. Polyserial correlation coefficients were used to evaluate the 
association between continuous CT HU measurements, LV widest 
short-axis dimensions, and poor outcomes at 7 days. Multiple linear 
regression analysis was used to assess the related factors on the 
improvement of the NIHSS score. Receiver operating characteristic 
(ROC) curve analysis was performed to determine the cut-off value 
of CT HU measurements for differentiation between improvement of 
≤30% of the NIHSS score from admission to the seventh day.

3. Results

3.1. Study population

A total of 204 patients were included in this study, with 81 and 
123  in the mild and severe stroke groups, respectively. The 
demographic and clinical data of the two groups are presented in 
Table  1. Notably, the number of patients who did not show 
improvement was significantly lower in the mild stroke group than in 
the severe stroke group. Moreover, the LVEF measured by 
echocardiography was significantly higher in the mild stroke group. 
The time from stroke onset to CT, history of diabetes mellitus, acute 
treatment, and laboratory examinations were also different between 
the two groups.

3.2. Morphological analysis of the lung CT

Among the included patients, 146 (72%) had abnormal lung CT 
findings and tended to have a lower proportion of NIHSS 
improvement in both the mild and severe stroke groups, both of 
which were statistically significant (Table 2). The frequency of each 
morphological finding is presented in Table  3. The ground-glass 
attenuation areas in the inferior and middle lobes were the most 
frequent presentation of hydrostatic changes in the lungs. The number 
of patients with ground-glass attenuation in the lungs was significantly 
higher in the severe stroke group (52.8%) than in the mild stroke 

group (25.9%). Additionally, the patients with ground-glass 
attenuation areas in the lungs showed a lower LVEF measured by 
echocardiography (p < 0.001) and a lower improvement in NIHSS on 
the seventh day (p < 0.001) compared to patients without lung changes 
or with only interlobular septal thickening (Figures 4A–D).

3.3. Quantitative analysis of the lung CT

There were strong correlations between ΔA/P and LVEF measured 
using echocardiography, especially in the severe stroke group 
(Figure  5). In the multivariate linear regression adjusted for 
recanalization therapy (thrombolysis or thrombectomy), NIHSS score 
on admission, and WST score, which had a greater impact on the 
improvement of outcome, ΔA/P showed a strong negative correlation 
with the improvement of outcome within 7 days between the two 
groups (Table 4).

The ROC analysis results of ΔA/P for determining an 
improvement of ≤30% of the NIHSS score from admission to the 
seventh day are shown in Figure 6. The largest area under the curve in 
the mild stroke group was 0.928, with a cutoff value of 1.135 
(sensitivity = 100% and specificity = 78.8%), and the largest area under 
the curve in the severe stroke group was 0.775, with a cutoff value of 
1.235 (sensitivity = 80.6% and specificity = 67.5%).

3.4. Quantification of left ventricular size

Excellent agreement between the two radiologists was achieved 
for the LV measurements (kappa = 0.807). The kappa statistic showed 
excellent agreement between CT and echocardiography for the 
definition of LV enlargement in both the mild and severe stroke 
groups (kappa = 0.633/kappa = 0.604). As shown in Figures  4E–F, 
patients in the severe stroke group with LV enlargement had a 
significantly lower LVEF than those of patients with a normal LV 
(p < 0.001). However, this difference was not significant in the mild 
stroke group (p = 0.962). Furthermore, ΔA/P measured on CT and the 

FIGURE 3

Left ventricular size was measured by chest CT. (A) Multiplanar reformation (MPR) after chest axial CT scans. (B) MPR after chest sagittal CT scans (a: 
maximum transverse diameter of left ventricular short axis, including interventricular septum and lateral wall).
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improvement of NIHSS score in seven days had no correlation with 
LV maximum short-axis dimension in both the mild and severe stroke 
groups (p = 0.233, p = 0.137), but patients with LV enlargement showed 
a higher ΔA/P (p < 0.001) and a lower NIHSS improvement (p < 0.001) 
in the severe stroke group (Figures 4I,J). Similarly, a non-significant 
trend was observed in the mild stroke group (p = 0.793, p = 0.872), as 
shown in Figures 4G,H.

4. Discussion

Cardiac function is associated with stroke occurrence and 
mortality (3, 21). Preexisting cardiac failure has an adverse influence 
on stroke mortality independent of other known factors (2). These 
findings suggest the possible benefits of evaluating cardiac function in 
AIS patients. Echocardiography is commonly used to assess cardiac 
function and structure, even in emergency settings. However, it was 
not recommended in AIS patients according to the guidelines, unless 

severe heart failure presented or pre-existing severe cardiac 
abnormality was acknowledged (22). Other cardiac imaging 
modalities, including CT and MRI, are seldom performed at 
presentation. Chest CT has been widely used to screen hospitalized 
patients to prevent possible in-hospital catastrophic transmission over 
the last few years, although its cost-effectiveness has been debated (12, 
23, 24). In addition to native pulmonary abnormalities, 
intrapulmonary changes related to cardiac function and dimensions 
can be assessed using chest CT. The development of high pulmonary 
capillary pressure based on decreased cardiac function results in 
hydrostatic gradients for fluid flux out of capillaries into the interstitial 
and alveolar spaces, presenting visible hydrostatic changes in the lung 
on CT (25). In addition, the overall LV dimension can be measured 
using multiplanar reformation of the heart. These findings provide an 
initial assessment to detect impaired cardiac function in AIS patients.

The primary findings of this study are as follows: (1) we observed 
a difference between improvement in early outcome among patients 
with and without presentation of morphological changes due to 

TABLE 1 Demographic and clinical characteristics of the patients.

Mild stroke (NIHSS ≤4) Severe stroke (NIHSS >4) p-value

Characteristic

Sex (male) 60 92 0.908

Age, years 63 (56, 70) 66 (62, 71) 0.091

BMI 25 (23, 26) 25 (22, 27) 0.905

Smoking, (n) 48 61 0.431

Water swallow test 1 (1, 3) 1 (1, 4) 0.08

Time stroke to CT, min 198 (145, 245) 219 (166, 285) 0.035

Medical history

Atrial fibrillation 5 (6.2%) 18 (14.6%) 0.072

Diabetes mellitus 18 (22.8%) 50 (40.7%) 0.01

Hypercholesteremia 60 (74.1%) 79 (64.2%) 0.168

Hypertension 58 (71.6%) 78 (63.4%) 0.288

Laboratory examination

WBC 7.0 (5.7, 8.3) 8.1 (6.5, 10.1) 0.000

Neutrophils 4.3 (3.5, 5.6) 6.2 (4.6, 7.7) 0.000

NEUT% 63.8% (57.6, 72.6%) 76.6% (68.2, 83.0%) 0.000

Acute treatment

IVT 57 (70%) 68 (55.3%) 0.04

MT 5 (6.2%) 30 (24.4%) 0.01

Location of stroke

Left 33 (40.7%) 58 (47.2%)

0.669Right 39 (48.1%) 53 (43.1%)

Posterior 9 (11.1%) 12 (9.8%)

Echocardiographic

LVEF (%) 67 (64, 69) 63 (55, 67) 0.000

The outcome of stroke

>30% 65 (80.2%) 82 (66.7%)
0.034

≤30% 16 (19.8%) 41 (33.3%)

WBC, white blood cell; NEUT, neutrophil; IVT, intravenous thrombolysis; MT, mechanical thrombectomy; LVEF, left ventricular ejection fraction.
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hydrostatic pressure, especially ground-glass attenuation in the lungs; 
(2) the ΔA/P showed a strong association with LVEF along with the 
improvement of outcome in 7 days. Moreover, ΔA/P had high 
sensitivity and specificity for differentiating patients with the potential 
to demonstrate >30% of baseline NIHSS score; and (3) patients from 
the severe stroke group demonstrating LV dilation had a higher ΔA/P 
and a poorer improvement in NIHSS score compared to patients 
without LV dilation (baseline NIHSS score >4).

Typical morphological changes due to hydrostatic pressure of 
the lung mainly include small ill-defined opacities, interlobular 
septal thickening, ground-glass attenuation, airspace consolidation, 
and pleural effusion. Previous studies have reported ground-glass 
attenuation in 25%–100% patients with hydrostatic edema. The 
lesions are mostly peribronchovascular owing to gravity (26, 27). 
In our study, patients in the severe stroke group had bilateral 
ground-glass attenuation areas in the inferior and middle lobes 

more frequently than the mild stroke group. Our study 
demonstrated a moderately strong correlation between hydrostatic 
changes in the lungs and LVEF measured by echocardiography 
after 48 h. Patients with ground-glass attenuation had a lower LVEF 
and less improvement compared to patients without morphological 
changes in the lung or with only interlobular septal thickening 
(p < 0.001). AIS patients showing ground-glass attenuation or more 
severe hydrostatic changes suggestive of decreased cardiac function 
at presentation showed poor short-term improvement in the 
NIHSS score on the seventh day.

Previous studies support our findings of quantitative analysis of 
CT HU measurements in AIS patients, which suggest an altered 
cardiac function (28–31). Rosenblum et al. (16) first used the sector 
method to measure the density of a peripheral area of lung 
parenchyma, which could detect the subtle changes in lung density 
including either high- or low-density lung disease and increase the 

TABLE 2 Baseline characteristics.

Mild stroke (NIHSS ≤4) Severe stroke (NIHSS >4)

Normal CT 
scan

Abnormal CT 
scan

p-value Normal CT 
scan

Abnormal CT 
scan

p-value

Characteristic

Sex (male) 26 (72.2%) 34 (75.6%) 0.734 18 (81.8%) 74 (73.3%) 0.403

Age, years 64 (55, 74) 63 (57, 68) 0.558 62 (57, 66) 66 (62, 72) 0.009

BMI 24 (23, 26) 25 (24, 27) 0.451 24 (22, 27) 25 (22, 27) 0.341

Smoking, (n) 21 (58.3%) 27 (60%) 0.879 11 (50%) 56 (55.4%) 0.642

Water swallow test 1 (1, 1) 1 (1, 1) 0.811 1 (1, 3) 2 (1, 4) 0.072

Atrial fibrillation 2 (5.6%) 3 (6.7%) 0.606 3 (13.6%) 15 (14.9%) 0.593

Time stroke to CT, min 170.5 (131, 214) 216 (159, 264) 0.011 188 (145, 283) 220 (174, 288) 0.275

Medical history

Diabetes mellitus 10 (27.8%) 23 (51.1%) 0.034 5 (22.7%) 23 (22.8%) 0.996

Hypercholesteremia 26 (72.2%) 34 (75.6%) 0.734 18 (81.8%) 61 (60.4%) 0.057

Hypertension 26 (72.2%) 32 (71.1%) 0.912 16 (72.7%) 68 (67.3%) 0.622

Laboratory examination

WBC 6.4 (5.2, 8.3) 7.1 (6.0, 8.2) 0.204 7.3 (6.1, 9.3) 8.2 (6.5, 10.3) 0.173

Neutrophils 3.9 (3.0, 5.5) 4.4 (3.8, 5.7) 0.1 4.9 (4.6, 6.9) 6.3 (4.7, 8.3) 0.123

NEUT% 61.3% (56.7, 72.1%) 64.8% (60.4, 73.6%) 0.139 69.7% (65.3, 78.9%) 76.2% (69.0, 83.3%) 0.061

The outcome of stroke

>30% 32 (88.9%) 31 (73.3%) 0.031 20 (90.9%) 62 (61.4%) 0.008

≤30% 4 (11.1%) 14 (26.7%) 2 (9.1%) 39 (38.6%)

TABLE 3 Frequency of each morphological finding in the mild/severe stroke group.

Morphological findings Mild stroke (NIHSS ≤4) Severe stroke (NIHSS >4) p-value

Small ill-defined opacities 1 (1.2%) 0 (0%) 0.4

Interlobular septal thickening 23 (28.4%) 31 (25.2%) 0.613

Ground-glass attenuation 21 (25.9%) 65 (52.8%) 0.000

Airspace consolidation 0 (0%) 2 (1.6%) 0.519

Pleural effusion 0 (0%) 3 (2.4%) 0.411

None 36 (44.4%) 22 (17.9%) 0.000
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likelihood that such diagnoses can be made earlier than they can 
from plain radiographs. Then, Slutsky et al. used the same method to 
relate density changes to the alteration in left ventricular filling 
pressure. The results showed the ratio of pulmonary density in the 
anterior and posterior segments (A/P) is related with heart failure 
(17). The dependent lung is always denser; this is attributed to the 
effect of gravity on the lower lobes (32). The ΔA/P may more reliably 
reflect changes in total lung water given the absence of additional 
factors that may confound density measurements. We found that 
ΔA/P was strongly correlated with LVEF, especially in the severe 

stroke group. In addition, we observed a robust association between 
ΔA/P and improved outcome. Evaluation of pulmonary hydrostatic 
changes using ΔA/P demonstrated excellent accuracy in 
differentiating short-term improvements of >30%, with areas under 
the curve as high as 0.928 in the mild stroke group and 0.775 in the 
severe stroke group. Moreover, ΔA/P cutoff of 1.135  in the mild 
stroke group and 1.235  in the severe stroke group showed high 
sensitivity (100% and 80.6%, respectively) and specificity (78.8% and 
67.5%, respectively) for ≤30% NIHSS score improvement at 7 days. 
Increased ΔA/P might lead to an increased suspicion of hydrostatic 
pneumonia and subsequent treatments, which further affects the 
patients’ short-term results. Patients in the mild stroke group 
presented higher sensitivity and specificity, which could be attributed 
to the severe stroke group having a higher severity of lung disease and 
more influencing factors in the short term. In sum, quantitative 
analysis of CT HU measurements can provide first handed 
information of cardiac function during the acute stage of stroke. It is 
also useful for providing a preliminary indication of short-
term outcome.

In addition to pulmonary manifestations, CT can provide 
information on cardiac structures that can reflect cardiac function. 
Previous studies have shown that LV dilation is an independent 
adverse predictor of cardiac function from other risk factors and is 
associated with an increased risk of clinical heart failure (33, 34). In 
our study, the results of LV evaluation using chest CT were consistent 
with those of echocardiography. Meanwhile, in the severe stroke 
group, we observed that patients with LV dilation had a higher ΔA/P 
and a poorer improvement in the NIHSS score than those of patients 
without LV dilation.

4.1. Advantages and limitations

The major advantage of this study was that chest CT is an easily 
achievable tool for excluding coexisting pulmonary conditions 
without a significant delay in patient management. However, due to 
the preliminary nature of this study, it also entailed several 
limitations. First, our study only included patients with hyperacute 
AIS; therefore, pulmonary manifestations were less affected by other 
factors such as subsequent infection. Evaluation of patients at other 
stages should be conducted in future studies. Second, chest CT can 
only be used for the gross evaluation of cardiac function, and the 
parameters are mostly indirect indicators. However, previous studies 
have established a linear correlation between CT HU measurements 
and pulmonary capillary wedge pressure measurements, as well as the 
New York Heart Association functional classification of heart failure 
(22). Third, our study was retrospective and only short-term 
outcomes were included in the analysis. It remains unknown whether 
subsequent treatment decisions based on this information can 
improve clinical outcomes. Therefore, further follow-up studies are 
required to confirm these findings.

5. Conclusion

A preliminary assessment of cardiac function can be achieved 
with qualitative and quantitative analyses of chest CT features, which 
can be used to predict short-term outcome in AIS patients.

FIGURE 4

Boxplots demonstrating (A,B) the relationship between LVEF versus 
CT findings with hydrostatic pressure on lungs in the mild stroke 
group and the severe stroke group, respectively. (C,D) The 
relationship between the improvement of outcome in 7 days versus 
CT findings with hydrostatic pressure on lungs in the mild stroke 
group and the severe stroke group, respectively. (E,F) The raw data 
for LVEF at LV dilation and LV normal groups defined with CT image 
in the mild stroke group and the severe stroke group, respectively. 
(G–J) The ΔA/P and the improvement of NIHSS score in 7 days at LV 
dilation and LV normal groups defined with CT image in the mild 
stroke and the severe stroke groups, respectively.
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FIGURE 6

(A,B) Receiver operator characteristic (ROC) analysis results of ΔA/P by CT HU measurements for determining improvement <30% of NIHSS score from 
admission to the seventh day in the mild stroke and the severe stroke groups, respectively.

FIGURE 5

(A,B) Line plots demonstrating the relationship between ΔA/P measured by CT HU measurements and LVEF measured by echocardiograph in the mild 
stroke and the severe stroke groups, respectively.

TABLE 4 Prediction of the improvement in outcome from admission until the seventh day from quantitative analysis of lung CT and clinical factors.

Variables β 95% CI p-value

NIHSS score on admission −0.047 (0.911, 0.995) 0.033

Water swallow test −0.013 (0.976, 0.999) 0.030

Recanalization therapy 0.333 (0.003, 0.662) 0.048

ΔA/P −5.518 (−6.930, −4.107) 0.000

Factors that were statistically significant (p < 0.05) in the multiple linear regression analysis were presented.
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Background: Acute ischemic stroke (AIS) and acute myocardial infarction (AMI)

share several features on multiple levels. These two events may occur in

conjunction or in rapid succession, and the occurrence of one event may

increase the risk of the other. Owing to their similar pathophysiologies, we aimed

to identify immune-related biomarkers common to AIS and AMI as potential

therapeutic targets.

Methods: We identified di�erentially expressed genes (DEGs) between the AIS

and control groups, as well as AMI and control groups using microarray data

(GSE16561 and GSE123342). A weighted gene co-expression network analysis

(WGCNA) approach was used to identify hub genes associated with AIS and/or

AMI progression. The intersection of the four gene sets identified key genes, which

were subjected to functional enrichment and protein–protein interaction (PPI)

network analyses. We confirmed the expression levels of hub genes using two

sets of gene expression profiles (GSE58294 and GSE66360), and the ability of

the genes to distinguish patients with AIS and/or AMI from control patients was

assessed by calculating the receiver operating characteristic values. Finally, the

investigation of transcription factor (TF)-, miRNA-, and drug–gene interactions led

to the discovery of therapeutic candidates.

Results: We identified 477 and 440 DEGs between the AIS and control groups

and between the AMI and control groups, respectively. Using WGCNA, 2,776 and

2,811 genes in the key modules were identified for AIS and AMI, respectively. Sixty

key genes were obtained from the intersection of the four gene sets, which were

used to identify the 10 hub genes with the highest connection scores through

PPI network analysis. Functional enrichment analysis revealed that the key genes

were primarily involved in immunity-related processes. Finally, the upregulation of

five hub genes was confirmed using two other datasets, and immune infiltration

analysis revealed their correlation with certain immune cells. Regulatory network

analyses indicated that GATA2 and hsa-mir-27a-3p might be important regulators

of these genes.

Conclusion: Using comprehensive bioinformatics analyses, we identified

five immune-related biomarkers that significantly contributed to the

pathophysiological mechanisms of both AIS and AMI. These biomarkers can

be used to monitor and prevent AIS after AMI, or vice versa.
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acute ischemic stroke, acute myocardial infarction, immune response, neutrophils,

CIBERSORT, weighted gene co-expression network analysis, bioinformatics
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Introduction

Cardiovascular diseases (CVDs)—including stroke and

ischemic heart diseases—pose a significant global health burden,

affecting millions of people and causing substantial morbidity and

mortality (1). Two of the most severe CVDs, acute ischemic stroke

(AIS) and acute myocardial infarction (AMI), frequently become

a heavy burden on families and society (2). Although the causes

of AIS and AMI are unclear, their pathophysiologies are similar in

principle: deficient blood and oxygen supply to the brain or heart.

They are typically caused by sudden arterial blockage, which can

be caused by the formation of a blood clot (thrombus) or plaque

buildup (atherosclerosis). This blockage results in the deprivation

of oxygen and nutrients to the surrounding tissues, leading to

ischemia and necrosis of the affected tissues (3). The concurrence

of AIS and AMI has also been reported in one patient (4, 5). They

can occur simultaneously or in close temporal succession and

are risk factors for one another (6). For example, the incidence

of ischemic stroke (IS) after AMI is 4–5% (7, 8), while patients

with AMI who concomitantly experience AIS are at a substantially

higher risk of both in-hospital (>8-fold increase) and 1-year

mortality (>3-fold increase) than patients with AMI alone (9).

Similar treatments, such as reperfusion therapy or catheter-based

thrombectomy, are used to treat AIS and AMI; however, these

diseases occur suddenly and have a narrow therapeutic window.

To improve patient outcomes, attempts, e.g., faster and more

convenient diagnoses, are needed to shorten the treatment delay.

Inflammation is a key contributor to the development and

progression of both cardiac and brain ischemia, and immune

cells play a crucial role in the pathophysiology of CVDs as they

are involved in inflammation and tissue injury (10–13). The

systematic inflammatory response is activated after AIS or AMI

and is involved in the entire process of these two diseases (14, 15).

The neuroinflammatory response disrupts the blood–brain barrier

in AIS, leading to the migration of macrophages, monocytes,

lymphocytes, and other inflammatory cells to the ischemic site

(16, 17). Studies have also shown that peripheral immune cells can

contribute to secondary neurodegeneration after AIS by infiltrating

the brain and interacting with resident brain cells (18). For AMI,

various immune cells and genes participate in immunomodulation

after an acute event, working together to rebuild injured areas

and remove necrotic tissue (15). Chronic inflammation can also

contribute to the development of atherosclerosis, which is a major

risk factor for both conditions. Therefore, exploring the immune

microenvironment and inflammatory mechanisms of AIS and AMI

may identify potential immunoregulatory therapies as alternative

treatment methods.

Genetic factors can influence the expression and activity of

various immune and inflammatory molecules, which in turn can

affect the severity and outcome of AIS and AMI. Certain genetic

variants have been associated with an increased risk of AIS (19).

Several studies have shown that dysregulated genes, long non-

coding RNAs, and miRNAs are potential biomarkers of either

AIS or AMI (20–22). For example, elevated expression of MMP9

has been detected in patients with AMI when compared with

controls, and plasma levels of MMP9 and NT-proBNP have a

time-dependent relationship (23). Understanding the genetic basis

of immunoinflammatory mechanisms involved in AIS and AMI

may help identify new therapeutic targets and improve patient

outcomes. However, only a limited number of studies have focused

on identifying biomarkers for the diagnosis of these diseases (14,

24). According to a family study, AIS and AMI share several genetic

characteristics (25); therefore, there is an urgent need to screen for

immune-related biomarkers of both diseases.

In our study, we acquired two datasets (GSE16561 and

GSE123342) for identifying differentially expressed genes (DEGs)

between individuals diagnosed with AIS or AMI and their

respective control groups. Using weighted gene co-expression

network analysis (WGCNA), we aimed to identify hub genes

associated with AIS/AMI progression. Important genes were

further analyzed using gene ontology (GO) and protein–protein

interaction (PPI) network analyses, and CIBERSORT was used

to analyze immune cell infiltration in AIS and AMI. Finally, the

investigation of transcription factor (TF)-, miRNA-, and drug–gene

interactions discovered the possible therapeutic candidates.

Materials and methods

Acquisition of expression data

Figure 1 shows the basic workflow of our study for identifying

potential biomarkers of AIS and/or AMI. By searching for

expression data related to AIS and AMI in the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/), we

decided to focus on two datasets that contain sufficient samples to

perform a comparative study: GSE16561 was acquired using the

GPL6883 platform and contained a total of 39 AIS samples and

24 control samples; GSE123342 was obtained using the GPL17586

platform and consisted of 67 AMI samples and 22 control samples

with stable coronary heart disease. These two datasets were used to

identify key biomarkers of AIS and AMI.

We downloaded another two datasets from GEO to validate

gene expression. GSE58294, which included 69 IS and 23 control

samples, was created using the GPL570 platform. Onset among the

69 IS samples included three time points (3 h, 5 h, and 24 h). In this

study, the 23 IS samples in the 3 h group were treated as AIS, while

the 5 h and 24 h groups were treated as post-AIS. GSE66360, which

included 49 patients with AMI and 50 healthy controls, was also

created using the GPL570 platform.

GSE123342 contained additional myocardial infarction (MI)

samples 30 days (n = 64) and 365 days (n = 37) after AMI.

We used this dataset in conjunction with GSE66360 to investigate

the temporal expression patterns of key genes identified in AIS

and/or AMI.

Data pre-processing and screening of DEGs

The microarray data were pre-processed before analysis. We

found that the series matrix file of GSE16561 contained numerous

NA values; therefore, we downloaded the raw profiling file.

Expression values were then log2 transformed. For genes targeted

by more than one probe, the median expression levels were

calculated. We only retained protein-coding genes with a stable
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FIGURE 1

Workflow of the study.

gene symbol and the Ensembl gene id; other genes, such as long

non-coding RNAs and pseudogenes, were excluded.

The identification of DEGs in GSE16561 and GSE123342 was

based on the limma package in R. DEGs in AIS and AMI were

filtered using the following cutoff criteria: an adjusted p-value of

<0.05 and |log2FC| > 0.5.

Construction of WGCNA

The gene expression matrix was standardized by scaling after

pre-processing. Subsequently, the WGCNA package in R was

used to identify hub genes. The initial dataset consisted of the

highest variance genes, which comprised the top 25% of genes

in the normalized gene expression matrix file. The samples were

clustered using the average linkage method in WGCNA. The

scale independence and average connectivity were calculated and

used to obtain a scale-free network. The similarity matrix was

converted into an adjacency matrix, which was then used to

calculate the topological overlap matrix (TOM) values. Genes

were hierarchically clustered based on the dissimilarity measure

(1-TOM) derived from the TOM values, and the dynamic tree-

cut (DTC) method was used to identify modules. The minimum

module size for the resulting dendrogram was set to 30 genes. Close

modules with a threshold of 0.25 were merged.

Functional enrichment analysis

After retrieving four gene sets, the DEGs of AIS and AMI

and hub genes of AIS and AMI in the key modules of WGCNA,

the clusterProfiler R package was used to perform functional

enrichment analysis, i.e., GO. Significantly enriched terms were

identified based on an adjusted p-value of <0.01. GO enrichment

analysis included biological processes (BPs), cellular components

(CCs), and molecular functions (MFs). Common GO terms
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FIGURE 2

Expression profile of DEGs in AIS and AMI. (A) Volcano map of DEGs in AIS. (B) Volcano map of DEGs in AMI. (C) Clustered heatmap of DEGs in AIS.

(D) Clustered heatmap of DEGs in AMI.

among the four gene sets were identified by overlapping the

aforementioned results.

PPI network

From the four gene sets, 60 key genes were identified

and subjected to the construction of the PPI network in the

STRING database (26), where a threshold of 0.4 was set as the

minimum confidence interaction score. The PPI network was

visualized and analyzed using Cytoscape 3.9.1 (27). Functional

enrichment analyses of the PPI network, including BP analysis,

Reactome pathway analysis, and annotated keywords in UniProt

were conducted using STRING. The MCC method in Cytoscape

was employed to identify the 10 hub genes with the highest

connection scores.

Immune cell infiltration analysis

The CIBERSORT algorithm is a widely used computational

tool that enables the estimation of the infiltration levels of 22
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FIGURE 3

Co-expression networks in AIS and AMI. (A) Gene dendrogram obtained by average linkage hierarchical clustering in AIS. The row underneath the

dendrogram shows the module assignment determined by the dynamic tree cut. (B) Gene dendrogram obtained by average linkage hierarchical

clustering in AMI. (C) Relationship among all modules in AIS. (D) Relationship among all modules in AMI. (E) Correlation coe�cients of the WGCNA

modules between the control and AIS groups. (F) Correlation coe�cients of the WGCNA modules between the control, AMI, and post-AMI groups.
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FIGURE 4

Functional analyses of the important genes. (A) GO enrichment analysis of DEGs in AIS. (B) GO enrichment analysis of DEGs in AMI. (C) GO

enrichment analysis of hub genes in AIS. (D) GO enrichment analysis of hub genes in AMI.
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different immune cell types in various diseases.We downloaded the

default LM22 signature matrix file and R package according to the

instructions on the CIBERSORT website. The relative proportion

of immune cells was calculated for AIS and AMI samples, and

Spearman’s correlation coefficient was used to determine the

strength and direction of the relationship between genes and

immune cells.

TF-, miRNA-, and drug–gene interaction
analyses

After validation, five upregulated genes in AIS and AMI

were selected as target genes. Three networks—including the

TF-gene, miRNA-gene, and drug–protein interaction networks—

were analyzed for the target genes in NetworkAnalyst using

the JASPAR, TarBase (version 8.0), and DrugBank (version 5.0)

software packages.

Results

DEGs in AIS and AMI

We used the limma package in R to conduct DEG analysis on

the microarray transcriptome data of the AIS and control samples

or AMI and control samples. In total, 477 and 440 DEGs were

identified in the AIS and AMI samples, respectively (Figures 2A,

B). The expression profiles of these DEGs are shown in Figures 2C,

D; among them, 225 were downregulated and 252 were upregulated

in the AIS samples, whereas 165 were downregulated and 275 were

upregulated in the AMI samples (Figures 2A, B). These DEGs were

further considered to be candidate transcriptional signatures.

Key modules and hub genes

To identify groups of genes with highly correlated expression

patterns across the AIS and AMI samples, we performed a co-

expression analysis of all genes using the WGCNA R package. As

no obvious outlier samples were detected in the sample clustering,

we did not exclude any samples from the subsequent WGCNA.

The top 25% of genes with the highest degree of variation

in both datasets were subsequently chosen as the input. We

selected soft thresholds of 7 for AIS and 10 for AMI when R2 >

0.85 (Supplementary Figure 1) and identified 16 and 10 modules,

respectively (Figures 3A–D). Based on the correlation coefficients

between the sample groups and modules, we selected the key

modules as those significantly related to AIS and AMI (Figures 3E,

F). A total of 2,776 and 2,811 genes were incorporated into these

key modules, respectively.

Functional enrichment analysis

Four gene sets were included for gene enrichment analysis:

the DEGs and hub genes identified through WGCNA in AIS

and AMI. Generally, the most important genes are enriched

in immune-related processes (Figures 4A–D). We then selected

the most common GO terms among the four gene lists,

with a p-value of <0.01 as the cutoff. Among the 77 BP

terms shared by all four datasets, 54 (70.1%) were related

to immunity (Supplementary Table 1), for example, positive

regulation of cytokine production, lymphocyte differentiation,

positive regulation of leukocyte activation, regulation of T-

cell activation, and leukocyte-mediated immunity. CC outcomes

showed that most proteins were located on the membrane

(Supplementary Table 1), suggesting that they may participate in

immune responses.

PPI of the key genes

Overlaps between the four datasets identified 60 key genes

(Figure 5A), with 60 nodes and 63 edges in the PPI network

(Figure 5B and Supplementary Figure 1). Functional enrichment

in the network also demonstrated that the key genes were

immune-related. The top five BP terms were T-cell differentiation

involved in immune response, positive T-cell selection, triglyceride

biosynthetic process, response to oleic acid, and positive regulation

of myeloid dendritic cell activation (Figure 5C). The significantly

enriched Reactome pathways included the immune system, innate

immune system, neutrophil degranulation, immunoregulatory

interactions between a lymphoid and a non-lymphoid cell, and

toll-like receptor 4 (TLR4) cascade (Figure 5D). Significantly

enriched annotated keywords in UniProt were transmembrane

helix, glycoprotein, disulfide bond, innate immunity, immunity,

and adaptive immunity (Figure 5E). Finally, a topological analysis

helped identify the top 10 hub genes: ITGAM, CD2, CD3E, CD163,

GZMK, ARG1, CD3G, HIF1A, ACSL1, and CD96 (Figure 5F).

Validation of the hub genes

We found that five hub genes were upregulated (expressed

at a significantly higher level in patients with AIS/AMI than

in control samples), whereas five other genes were significantly

downregulated in patients with AIS/AMI (Figures 6A, B). The

expression patterns of these genes were validated using two other

microarray transcriptome datasets from patients with AIS and

AMI. The upregulated expression patterns of ITGAM, CD163,

ARG1, HIF1A, and ACSL1 were confirmed in both datasets

(Figures 6C, D). Moreover, samples from GSE58294 were classified

into three time groups: 3 h, 5 h, and 24 h after AIS. The results

showed that these genes were consistently upregulated in all three

IS groups compared with the control group; the highest expression

level was usually reached at 5 h post-AIS (Figure 6E). Similarly,

samples from GSE123342 were classified into three time groups:

acute phase, 30 days after AMI, and 365 days after AMI. Five genes

were upregulated in the acute phase, and their expression levels

decreased to normal after 30 days when compared with the control

group (Figure 6F). Combining these results, we concluded that the

high expression of these genes can last up to 24 h, after which their

expression levels begin to decrease to normal levels.
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FIGURE 5

Identification of the key genes. (A) Venn diagram of the four gene sets. (B) PPI network of the 60 key genes. Colors from yellow to red represent the

low-to-high MCC score. (C) GO enrichment analysis in the PPI network. (D) Reactome pathway analysis in the PPI network. (E) Annotated keywords

in UniProt enrichment analysis in the PPI network. (F) Top 10 genes in the PPI network ranked by the MCC method.

The potential of hub genes as diagnostic
markers

To evaluate the diagnostic power of the five immune-related

biomarkers for AIS and AMI, receiver operating characteristic

(ROC) analysis was performed on multiple datasets. The AUC

values were then obtained for ITGAM, CD163, ARG1, HIF1A,

and ACSL1, which were 0.89, 0.97, 0.94, 0.79, and 0.79 in

GSE16561 (Figure 7A); 0.78, 0.78, 0.80, 0.77, and 0.73 in GSE58294

(Figure 7B); 0.75, 0.90, 0.89, 0.72, and 0.85 in GSE123342

(Figure 7C); and 0.72, 0.85, 0.66, 0.77, and 0.88 in GSE66360

(Figure 7D), respectively.

Immune infiltration analysis

To further investigate the significance of the identified genes,

we examined the levels of infiltrating immune cells in AIS and

AMI as suggested by GO analysis, highlighting their immune-

related functionality. In the AIS samples, the most prominent
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FIGURE 6

Expression pattern of the hub genes. (A) Expression profiles of the 10 hub genes in the control and AIS groups (GSE16561). (B) Expression profiles of

the 10 hub genes in the control and AMI groups (GSE123342). (C) Expression profiles of the 10 hub genes in the control and AIS groups (GSE58294).

(D) Expression profiles of the nine hub genes in the control and AIS groups (GSE66360). CD96 does not have a probe in GSE66360. (E) Expression

profiles of the five hub genes among di�erent time points for AIS (GSE58294). (F) Expression profiles of the five hub genes among di�erent time

points for AMI (GSE123342). *P < 0.05, **P < 0.01, ***P < 0.001, and ****
P < 0.0001.

infiltrating immune cells were monocytes, neutrophils, and CD8+

T cells (Figure 8A); the AMI samples were characterized by an

abundance of neutrophils (Figure 8B). Compared with the control

group, patients with AIS and AMI exhibited significantly elevated

levels of neutrophils and lower levels of memory B cells and

CD8+ T cells (Figures 8C, D). Investigation of the relationship

between the five genes and immune cells revealed that all genes

exhibited a significantly positive correlation with neutrophils and

a significantly negative correlation with CD8+ T cells in both the

AIS and AMI samples (Figures 8E, F).

Construction of TF-, miRNA-, and
drug–gene interactions

We identified 34 TFs that targeted the five hub genes using

the JASPAR software package in NetworkAnalyst. Nine key TFs—

GATA2, NR2F1, FOXC1, YY1, MEF2A, NFIC, SRF, NFKB1, and

IRF2—have a node degree value of ≥2 (Figure 9A).

One hundred and thirty-eight miRNAs targeting the five

hub genes were obtained from NetworkAnalyst using TarBase.

Hsa-mir-27a-3p and hsa-mir-1-3p targeted three genes, whereas
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FIGURE 7

ROC curve analysis. (A) ROC curve of the five hub genes in AIS (GSE16561). (B) ROC curve of the five hub genes in AMI (GSE123342). (C) ROC curve

of the five hub genes in AIS (GSE58294). (D) ROC curve of the five hub genes in AIS (GSE66360).

hsa-mir-30a-5p, hsa-mir-107, hsa-mir-7-5p, hsa-mir-34a-5p, hsa-

mir-191-5p, hsa-mir-429, hsa-mir-10b-5p, hsa-mir-373-3p, hsa-

mir-124-3p, hsa-mir-16-5p, hsa-mir-27a-5p, and hsa-mir-26a-5p

targeted two genes (Figure 9B).

Drug-targeting proteins encoded by ARG1 and HIF1A were

identified in NetworkAnalyst using DrugBank (version 5.0). Eleven

therapeutic drugs interacted with ARG1 (Figure 9C), and three

drugs interacted with HIF1A (Figure 9D); no drugs targeted

ITGAM, CD163, or ACSL1.

Discussion

As two of the most prominent causes of mortality and disability

worldwide, AIS and AMI share several genetic characteristics (25).

A growing consensus has been reached regarding the importance of

early prevention of AIS and AMI. Microarray analysis is a valuable

tool for identifying susceptibility genes for AIS and AMI and may

ultimately lead to improved diagnosis, prevention, and treatment

of the disease. In the present study, we identified five hub genes

(ITGAM, CD163, ARG1, HIF1A, and ACSL1) using integrated

analyses of AIS and AMI datasets, including DEG, WGCNA, GO

enrichment, PPI network, and regulatory network analyses. We

also verified the upregulation of these five genes in AIS and AMI

samples. On the one hand, these identified genes have the potential

to serve as biomarkers for the diagnosis of patients with AIS or

AMI. On the other hand, studies have shown that these diseases

could be risk factors for one another. Therefore, these biomarkers

can be used to monitor and prevent AIS after AMI or vice versa.

Atherosclerosis, characterized by inflammatory cell

accumulation in the arterial walls, is a well-known instance

of chronic arterial inflammation and is commonly regarded as the

pathological foundation for both AIS and AMI (28). The arterial

narrowing can result in decreased blood flow and oxygen supply

to the heart muscle, ultimately leading to the development of

AIS and/or AMI. Immune cells play a fundamental role in the

pathophysiology of atherosclerosis (10), and there is a genetic

basis for the inflammatory pathogenesis of AIS and/or AMI. For

example, the plasma levels of specific immune-inflammatory

markers were reduced with atorvastatin treatment in AIS (29).

Certain KIR genes and HLA alleles may modulate cytokine and

cell-mediated inflammatory activation, which could contribute
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FIGURE 8

Immune cell infiltration analysis. (A) Percentage distribution of 22 immune cell subtypes in GSE16561. (B) Percentage distribution of 22 immune cell

subtypes in GSE123342. (C) The di�erence in immune cell infiltration between the control and AIS groups. (D) The di�erence in immune cell

infiltration between the control and AMI groups. (E) Correlation between the five hub genes and immune cells in AIS. (F) Correlation between the five

hub genes and immune cells in AMI.
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FIGURE 9

Regulation of the hub genes. (A) TF-gene interaction for the five hub genes. (B) MiRNA-gene interaction for the five hub genes. (C) Drug-ARG1

interaction. (D) Drug-HIF1A interaction.

to stroke occurrence and severity after AIS (19, 30). Similarly,

we found that important genes (DEG and WGCNA) were always

enriched in immune responses, representing an important medium

between inflammation and atherosclerosis. They are involved in

the regulation of multiple immune cell types, such as B cells,

T cells, lymphocytes, and leukocytes (Figure 4), suggesting that

the migration of these cells to AIS and AMI sites may release

pro-inflammatory factors and help disrupt the blood barrier.

When concentrating on the Reactome enrichment of the

PPI network, several signaling pathways were detected, such

as the TLR4 cascade and neutrophil degranulation (Figure 5D).

Activation of TLR4 triggers the biosynthesis of diverse mediators

of inflammation (31), and neutrophil degranulation is a common

feature of many inflammatory disorders, including AIS and AMI

(32). Coincidentally, we found a significantly greater proportion

of neutrophils in the AIS/AMI group than in the control group

(Figures 8C, D). Neutrophils are the first to be recruited to AIS and

AMI sites (33, 34) and have pathophysiological relevance in AIS

and AMI; for example, the presence of neutrophils in the brain

can exacerbate impairment of the blood–brain barrier. We found

that gene expression levels were significantly positively correlated

with the proportion of neutrophils among the 22 immune cells

(Figures 8E, F). For the first time, we demonstrated that immune

modulation by neutrophils in AIS and AMI could potentially target

ITGAM, CD163, ARG1, HIF1A, and ACSL1, thereby establishing

a theoretical rationale for immune-targeted interventions in AIS

and AMI.

The immune functions of these five genes in AIS and AMI

were partially elucidated in previous studies. ITGAM encodes the

integrin alpha M chain, which binds neutrophils and monocytes
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to the stimulated endothelium; additionally, it was demonstrated

to function as a receptor for complement component 3, thereby

contributing to the inflammatory response (35). In particular,

the upregulation of ITGAM expression, which indicates increased

inflammatory activation of immune cells, has been observed in

patients with thrombus (36) and is thus associated with AIS and

AMI (37, 38).

CD163, which is primarily expressed by monocytes and

macrophages, serves as a scavenger of haptoglobin–hemoglobin

complexes. Specifically, CD163 is considered a marker of

alternatively activated or anti-inflammatory macrophages. Studies

have shown that the soluble form of CD163 could be a potential

biomarker in AIS and AMI (39, 40).

ARG1 is an enzyme that can modulate the synthesis of nitric

oxide (NO) in the immune system. By suppressing the release

of NO from macrophages, ARG1 can inhibit the production

of pro-inflammatory cytokines (41). Similar bioinformatics-based

approaches identified ARG1 as a potential biomarker in AIS and

AMI (24, 42).

HIF1A is a TF that governs oxygen availability during

inflammatory responses in the pathogenesis of AIS. Moreover,

it is responsible for NLRP3 inflammasome-initiated pyroptosis

following IS (43). An experiment in transgenic mice demonstrated

that overexpression of HIF1A led to reduced infarct size and

enhanced cardiac function 4 weeks after AMI (44).

Elevated triglyceride levels were observed in the peripheral

white blood cells of patients with AMI. This finding can be

attributed to the upregulation of ACSL1, which suppresses fatty

acid β-oxidation via the PPARγ pathway, resulting in increased

triglyceride levels (45). However, the functional role of ACSL1 in

AIS remains still unclear.

Our investigation revealed that gene expression levels

increased within the first 3–24 h of AIS onset (Figure 6E).

Consistently, another study based on microarray data showed

that a comprehensive alteration in the gene expression profile,

including that of ARG1, was discernible in the peripheral

blood cells of patients with AIS within 3–24 h after onset (46).

Subsequently, the gene expression decreased to normal levels after

30 days (Figure 6F), indicating an instantaneous role of these genes

after AMI. In the future, sequencing data of both AIS and AMI at

more time points should be obtained to reveal clearer molecular

dynamics and physiological details during IS and MI development.

In our study, we found that GATA2 interacts with three

biomarkers: ARG1, CD163, and HIF1A. Similarly, hsa-mir-27a-

3p regulates these three biomarkers. As a vital TF in multilineage

hematopoiesis, mutations in GATA2 induce several hematological

diseases (47). GATA2 is upregulated in ischemia-reperfusion injury

(48); additionally, there is a link between GATA2 deficiency and

AIS (49). Interestingly, hsa-mir-27a-3p alleviates cerebral ischemia-

reperfusion injury by targeting FOXO1 (50), therefore playing a

significant therapeutic role in the management of AIS. According

to our results, both GATA2 and hsa-mir-27a-3p can target ARG1,

CD163, and HIF1A; thus, it is possible that they may function

in the same pathway in AIS and AMI. Further investigations are

required to elucidate themechanism bywhichGATA2 and hsa-mir-

27a-3p co-modulate ARG1, CD163, and HIF1A expression in AIS

and AMI.

We identified 12 drugs targeting HIF1A, and three drugs

targeting ARG1, which have therapeutic potential to treat patients

with AIS and AMI. Conducting a range of laboratory-based trials

can thus facilitate the determination of the efficacy of a compound

and offer alternative solutions to immunotherapy for AIS and AMI.

In conclusion, we have addressed the scarcity of studies

investigating common biomarkers derived from the shared

pathological characteristics of both AIS and AMI using

comprehensive bioinformatics analyses. Second, we have

delved into potential targets for five biomarkers in the immune

microenvironment of AIS and AMI, such as neutrophils, which

expanded our understanding of these diseases. Third, while

previous studies have provided partial elucidation of these five

biomarkers primarily through experiments, we not only confirmed

their importance in the pathophysiology of AIS and AMI but

also established the value of microarray analysis for identifying

susceptibility genes associated with both conditions. Finally, the

identification of GATA2 and hsa-mir-27a-3p as agents capable

of targeting ARG1, CD163, and HIF1A suggest that these two

elements may function within the same pathway in both AIS

and AMI.

There are limitations in our study as well. The analysis was

conducted using data from public databases that originated from

various platforms, which had different inclusion criteria and lacked

corresponding clinical data in general. Additionally, it is important

to note that our study is confined to the transcriptome level, and

further validation of the findings is necessary through prospective

clinical and basic experiments.
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Objective: This study aimed to understand the temporal trends in the disease

burden of stroke and its attributable risk factors in China, along with the future

trends in the next 25 years, that is important for e�ective prevention strategies

and improvement, and to provide new insights into the age- and sex-specific

incidence, prevalence, mortality, disability-adjusted life-years (DALYs) and their

trends from 1990 to 2019, and the prediction in the next 25 years.

Methods: The Global Burden of Disease Study (2019) was used to extract the data

on age- and sex-specific incidence, mortality, and disability-adjusted life-years

(DALYs) of stroke in China, 1990–2019. We estimated the estimated annual

percentage change (EAPC) to access the temporal trends of the disease burden of

stroke. The R package called Nordpredwas used to perform an age-period-cohort

analysis to predict the prevalence of stroke.

Results: The number of incidence cases, deaths, and DALYs of stroke increased

from 1990 to 2019. Overall downward trends were observed in the

age-standardized incidence rate (ASIR) from 1990 to 2019. Significant temporal

trends in mortality and DALYs of stroke were observed. High systolic blood

pressure, smoking, and high-sodium diet were the main driving forces for stroke.

The DALYs lost attributable to smoking were di�erent for male and female

patients. In the next 25 years, the number of new cases and deaths from stroke

should continue to increase. The ASIR and age-standardized mortality rate (ASMR)

should show a downward trend among male and female patients.

Conclusion: Despite the overall rates of stroke declined over the period from

1990 to 2019, the absolute number of people a�ected by stroke has substantially

increased. There has been a substantial increase in the burden of stroke due to risk

factors and will continue to increase in the next 25 years.

KEYWORDS

stroke, disease burden, temporal trend, risk factor, prediction

Introduction

Stroke is a global health issue, which can either be hemorrhagic (a rupture of a blood

vessel) or ischemic (an occlusion of a blood vessel). Annually, 15 million people suffer

a stroke worldwide, of which 5 million die, making it the second leading cause of death

globally (1) and another 5 million are left permanently disabled. Stroke becomes the leading
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cause of longtime disability, especially in low-income and middle-

income countries (2). The Global Burden of Disease Study (GBD)

2019 estimated that deaths caused by stroke in China reached ∼4

million in 2019, and the incidence of stroke, including hemorrhagic

stroke (IS) and ischemic stroke (HS), showed a general increasing

trend in the past years (3). The number of stroke patients in China is

likely to rise as a result of lifestyle and demographic changes, as well

as inadequate control of major risk factors for stroke (4). Despite its

implications and comorbidities, stroke still receives relatively less

research or public attention. Stroke prevention and treatment are

urgently needed in China due to its high incidence.

Both environmental and genetic factors contribute to ischemic

and hemorrhage stroke disease. Some of these factors are not

modifiable, such as age, gender, and family history, while others

are potentially modifiable, such as hypertension, smoking, and

higher sodium intake. It is possible to control and prevent

strokes by modifying these potentially modifiable factors. There

is a continuous, consistent, and independent relationship between

blood pressure and the risk of developing stroke. Observational

studies indicate that the risk of death from both ischemic heart

disease and stroke increases beginning at systolic blood pressure

as low as 115 mmHg. The mortality from stroke doubles with

each increment of 20 mmHg systolic blood pressure (5). In a

plethora of studies over the years, smoking has been identified as

an independent risk factor for stroke. The relative risk for stroke

ascribed to cigarette smoking is 1.5 (6). Dietary salt increases the

risk of death from stroke, especially in overweight individuals, and

higher sodium intake is associated with ∼89% increased risk for

stroke mortality (7).

The latest Global Burden of Diseases (GBD) study (2019) has

provided new epidemiological data on the incidence, mortality, and

disability-adjusted life-years (DALYs) of stroke from 1990 to 2019,

enabling us to provide updated estimates of the prevalence and risk

factors for stroke in China. However, to the best of our knowledge,

no published article has yet described the disease burden and

attributable risk factors of stroke by age, sex, and year, and the

future trends in the next 25 years of the disease burden of stroke in

China. Therefore, we conducted a comprehensive and rigorously

designed assessment of stroke incidence, mortality, and DALYs,

stratified by age and gender. We also analyzed primary risk factors

for stroke and forecasted its incidence and mortality rates in China

over the next 25 years. The analysis of epidemiological trends and

major risk factors of stroke as well as the prediction of future

epidemiological trends in our study will be of great significance in

reducing the incidence and mortality of stroke.

Materials and methods

The data of age- and sex-specific incidence, mortality, and

disability-adjusted life-years (DALYs) of ischemic and hemorrhage

stroke in China, 1990–2019, were derived from the Global Burden

of Disease Study (2019). The estimated annual percentage change

(EAPC) was estimated to access the temporal trends of disease

burden of ischemic and hemorrhage stroke, and the R package

called Nordpred was used to perform an age-period-cohort analysis

to predict the numbers and rates of incidence and mortality for

ischemic and hemorrhage stroke in the next 25 years.

Data sources

The data on incidence, mortality, and DALYs of ischemic

and hemorrhage stroke were downloaded from the website of

Institute for Health Metrics and Evaluation (IHME) (http://ghdx.

healthdata.org/gbd-results-tool), and the rules of this selecting

data were as follows: location name was “China,” the cause was

“stroke,” and measures were “incidence,” “mortality,” and “DALYs.”

These indicators were calculated with 95% uncertainty intervals

(95% UIs).

The WHO World Standard Population Distribution (2000–

2025) was used as the standard population. The United Nations

World Population Prospects 2019 Revision (https://population.

un.Org/WPP/Download/Standard/Population/) was used as the

prediction population. Ethics approval was not required as this

study was based on publicly available data (GBD, 2019), and no

personal data were collected.

Evaluation of ischemic and hemorrhage
stroke burden

Estimates of the incidence and prevalence of ischemic and

hemorrhage stroke were calculated with the DisMod-MR2.1

(disease-model-Bayesian meta-regression) modeling tool.

DisMOd-MR is a Bayesian geospatial disease modeling software

that uses various disease parameters, the epidemiological

relationships between these parameters, and geospatial

relationships to estimate incidence and prevalence. All available

high-quality data on incidence, prevalence, and mortality were

used to estimate the non-fatal ischemic and hemorrhage stroke

burden. All-cause and cause-specific mortality for ischemic and

hemorrhage stroke were estimated using the Cause of Death

Ensemble modeling. DALYs were the sum of years lived with

disabilities (YLDs) and years of life lost (YLLs). YLDs were

calculated by multiplying the prevalence with the corresponding

disability weights. YLLs were calculated by multiplying observed

deaths for a specific age by global age-specific reference life

expectancy. In the study, 95% UIs capturing both random and

systematic error in statistical modeling were calculated for all

estimates. For the risk factors, the comparative risk assessment

(CRA) framework was used to estimate the proportion of DALYs

attributable to three well-established risk factors for ischemic

and hemorrhage stroke by age and sex: high fasting glucose, high

systolic blood pressure, and smoking. The detailed study methods

of GBD 2019 have been reported in previous studies (8–10).

Statistical analysis

The incidence, mortality, and DALYs of ischemic and

hemorrhage stroke were performed by age group, sex, and year.

The temporal trends for these indicators from 1990 to 2019 were

plotted. The age was divided into 18 age groups at 5 years, and

0–39 years were combined into one age group. The time trends

of age-standardized incidence (ASIR), age-standardized mortality

(ASMR), and age-standardized DALY rates were described by the
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estimated annual percentage change (EAPC) which was calculated

from a regression model with the natural logarithm of the rate, that

is, ln(rate) = α + β × (calendar year) + ε. EAPC was defined as

100 × (exp (β) −1). Its 95% confidence interval (95% CI) was also

generated from the fitted model.

The power5 APC model of the R package called Nordpred

which has been shown to perform well in predicting the

trend of disease incidence and mortality (11, 12) was used to

predict the number and rate of ischemic and hemorrhage stroke

incidence and mortality in the next 25 years. Moreover, we

estimated the number and rates of ischemic and hemorrhage

stroke events by assuming that the events for ischemic and

hemorrhage stroke remained stable, decreased, and increased

by 1% per year based on the observed data of ischemic and

hemorrhage stroke in 2019 in order to facilitate comparison with

predicted results. We used the ggplot2 packages from the R

program (Version 4.1.2; R core team, R Foundation for Statistical

Computing, Vienna, Austria) to perform the visualization of

the results.

Results

Incidence, mortality, and DALYs of ischemic
and hemorrhage stroke in 2019

In 2019, the number of incidence cases and ASIR of

ischemic and hemorrhage stroke among the total Chinese

population were 3935.18 thousand (95% UI: 3431.72,

4579.87) and 200.84 per 100,000 (95% UI: 176.95, 230.84),

respectively (Table 1). Ischemic and hemorrhage stroke

contributed to 2189.18 thousand (95% UI: 1885.90, 2513.77)

deaths in 2019, and ASMR was 127.25 per 100,000 (95%

UI: 110.21, 144.89) among the total Chinese population

(Table 2). Ischemic and hemorrhage stroke caused 45949.13

thousand (95% UI: 39813.51, 52335.53) DALYs in 2019,

and the age-standardized rate of DALYs was 2412.52 per

100,000 (95% UI: 2102.92, 2742.48) (Table 3). The number

and age-standardized rates of incidence, mortality, and

DALYs are about the same for male and female patients

(Tables 1–3).

Among the total population in 2019, the numbers of incidence

cases, deaths, and DALYs of ischemic and hemorrhage stroke

reached a peak aged 65–69 years, 80–84 years, and 70–74 years,

respectively (Tables 1–3), and these trends were similar for males

and female patients (Figure 1). In contrast, the number of incidence

cases, deaths, and DALYs was lower among men than women over

90 years old (Figure 1).

A peak in incidence, mortality, and DALYs was observed

among the total population aged 80–84 years, 95+ years, and 85–

89 years, respectively (Tables 1–3). The trends of age-specific rates

of incidence among female patients were similar to the trends

for the total population, whereas the trends of age-specific rates

of incidence among male patients increased with increasing age.

In male patients, the age-specific rates of mortality and DALYs

peaked at 90–94 years old. In female patients, the age-specific

rates of mortality and DALYs increased with increasing age. In

addition, the numbers and rates of incidence, deaths, and DALYs

were concentrated in the elderly population (≥60 years old)

(Figure 1).

Temporal trends of incidence, mortality,
and DALYs of ischemic and hemorrhage
stroke from 1990 to 2019

There has been a significant increase in the number of incidence

of cases, deaths, and DALYs of ischemic and hemorrhage stroke

among the total population from 1990 to 2019 (Tables 1–3). The

number of incidence cases increased by more than two times

among men ≥60 years old and women ≥50 years old during

the study period (Figure 2A). The ASIR was 221.51 per 100,000

(95% UI: 196.81, 249.61) in 1990, which decreased in 2019, with

an EAPC of −1.31 (95% CI: −3.41, 0.85) in the total population

(Table 1). The ASIR of female patients decreased more significantly

than that of male patients during this period [EAPC = −1.43,

95% CI: (−3.51, 0.69) vs. EAPC = −1.20, 95% CI: (−3.35, 1.01),

respectively] (Table 1). Additionally, overall downward trends in

the incidence rates were observed among both sexes in most age-

specific groups, while short-term upward trends were observed

between 1990 and 2000 among male patients (Figure 2B).

The ASMR decreased from 1990 [211.44 per 100,000 (95%

UI: 187.68, 243.80)] to 2019, with an EAPC of −2.85 (95% CI:

−4.68, −0.98) (Table 2). A decreasing trend of age-standardized

DALYs was also observed during this period, and the EAPC was

−2.83 (95%CI: −4.60, −1.02) (Table 3). Overall downward trends

in mortality and DALY rate were observed in most age-specific

groups and both sexes from 1990 to 2019 (Figures 2C, D).

Mortality and DALY rates of ischemic and
hemorrhage stroke attributable to risk
factors and their temporal trends from
1990 to 2019

Themortality that was attributed to high systolic blood pressure

was the highest among men and women in all age-specific groups

(Figure 3A). Trends of ischemic and hemorrhagic stroke mortality

attributable to smoking were seen to grow at first and then

decline, while decreasing trends of ischemic and hemorrhage stroke

mortality attributable to smoking were observed in men in most

age-specific groups. The overall downward trends attributable to

high systolic blood pressure and a high-sodium diet were observed

in most age-specific groups and both sexes (Figure 3A). Moreover,

the temporal trends of the rates of DALYs attributable to smoking,

high systolic blood pressure, and a high-sodium diet exposure were

similar to those mortality (Figure 3B).

There was a difference between male and female patients in the

proportion of DALYs attributable to risk factors (high systolic blood

pressure, smoking, and high-sodium diet). High systolic blood

pressure was the most significant contribution among both sexes,

accounting for more than 43.9% of DALYs in male patients and

more than 45.4% of DALYs in female patients, and the proportions

of DALYs attributed to high systolic blood pressure increased over
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TABLE 1 Number of incidence cases and incidence rate of ischemic and hemorrhage stroke in China in 1990 and 2019 and EAPC from 1990 to 2019.

Characteristics 1990 2019 1990–2019

Incidence
cases [×103

(95% UI)]

Incidence rate
[per 1, 00, 000

(95% UI)]

Incidence cases
[×103 (95% UI)]

Incidence rate
[per 1, 00, 000

(95% UI)]

EAPC in
incidence rate [%

(95% CI)]

Overalla 1760.44 (1560.97,

2005.21)

221.51 (196.81, 249.61) 3935.18 (3431.72,

4579.87)

200.84 (176.95, 230.84) −1.31 (−3.41, 0.85)

Sexa

Male 868.03 (769.11, 993.05) 227.92 (202.83, 257.34) 1950.98 (1713.53,

2260.51)

209.75 (185.84, 239.39) −1.20 (−3.35, 1.01)

Female 892.41 (791.42, 1019.26) 216.45 (192.14, 245.19) 1984.2 (1719.09,

2322.54)

194.53 (169.65, 225.19) −1.43 (−3.51, 0.69)

Age at diagnosisb (year)

0–14 52.23 (33.77, 76.41) 16.17 (10.46, 23.66) 31.02 (19.76, 46.63) 13.80 (8.79, 20.74) −0.35 (−2.42, 1.76)

15–19 17.88 (10.91, 27.05) 14.09 (8.60, 21.32) 9.29 (5.41, 14.68) 12.36 (7.20, 19.54) −0.81 (−2.21, 0.61)

20–24 23.21 (16.22, 32.60) 17.53 (12.25, 24.62) 12.32 (8.22, 18.28) 15.05 (10.04, 22.33) −1.15 (−2.47, 0.20)

25–29 27.28 (18.89, 38.75) 24.75 (17.14, 35.17) 22.82 (14.78, 34.81) 20.61 (13.35, 31.44) −1.37 (−2.73, 0.00)

30–34 33.15 (25.16, 43.19) 37.45 (28.42, 48.79) 38.97 (28.41, 53.07) 30.19 (22.01, 41.11) −1.51 (−2.90,−0.10)

35–39 50.16 (36.26, 68.44) 54.81 (39.62, 74.79) 43.79 (32.31, 58.53) 43.41 (32.02, 58.01) −1.54 (−2.98,−0.08)

40–44 67.15 (53.49, 83.15) 99.86 (79.55, 123.65) 79.26 (63.82, 98.76) 77.97 (62.79, 97.16) −1.55 (−3.14, 0.05)

45–49 89.45 (66.09, 115.75) 172.94 (127.78, 223.80) 162.49 (121.27, 213.82) 133.88 (99.92, 176.18) −1.55 (−3.25, 0.19)

50–54 135.62 (108.49, 164.95) 283.72 (226.96, 345.07) 304.26 (247.94, 369.49) 243.20 (198.19, 295.34) −1.25 (−3.14, 0.68)

55–59 186.22 (140.48, 244.07) 428.47 (323.23, 561.57) 386.79 (286.65, 508.44) 407.83 (302.25, 536.1) −0.96 (−3.04, 1.16)

60–64 223.72 (178.07, 278.53) 631.62 (502.72, 786.36) 505.13 (398.15, 635.25) 643.03 (506.84, 808.66) −0.91 (−3.15, 1.38)

65–69 244.78 (177.31, 325.91) 894.41 (647.9, 1190.87) 663.85 (468.8, 903.16) 943.19 (666.07, 1283.19) −0.98 (−3.35, 1.44)

70–74 231.55 (183.45, 293.70) 1227.95 (972.86,

1557.56)

612.33 (477.76, 794.97) 1279.53 (998.33,

1661.17)

−1.05 (−3.41, 1.37)

75–79 186.56 (144.17, 235.81) 1635.02 (1263.5,

2066.59)

498.40 (389.29, 627.74) 1669.87 (1304.31,

2103.22)

−1.11 (−3.45, 1.28)

80–84 122.25 (97.6, 150.43) 2168.07 (1730.89,

2667.74)

357.78 (282.01, 449.01) 1876.40 (1479.02,

2354.85)

−1.59 (−3.88, 0.76)

85–89 53.92 (43.03, 68.19) 2812.1 (2243.81,

3556.03)

159.43 (130.38, 192.61) 1874.60 (1533.11,

2264.80)

−2.30 (−4.53,−0.02)

90–94 12.78 (9.49, 17.23) 3428.42 (2545.6,

4623.93)

39.80 (30.54, 49.49) 1773.69 (1360.92,

2205.35)

−3.06 (−5.24,−0.82)

95+ 2.53 (1.70, 3.59) 4068.08 (2735.78,

5762.46)

7.46 (4.97, 10.14) 1671.05 (1111.93,

2270.55)

−3.61 (−5.77,−1.40)

EAPC, estimated annual percentage change; 95% UI, 95% uncertainty interval; 95% CI, 95% confidence interval; aage-standardized incidence rate; bcrude incidence rate in each age group.

time from 1990 to 2019. Formale patients, the proportion of DALYs

attributable to ischemic and hemorrhage strokes was ∼5 times

higher than for female patients (Figure 3C).

Furthermore, the proportion of DALYs attributable to high

systolic blood pressure, smoking, and a high-sodium diet shows

a notable difference between sexes in most age-specific groups

during this period, and there was a higher proportion of DALYs

attributable to three risk factors among male than female patients.

The proportion of DALYs attributable to high systolic blood

pressure, smoking, and a high-sodium diet was observed having a

relatively flat increase but then a drastic decrease in >65 years old

among male and female patients (Figure 3D).

Predictions of incidence and mortality of
ischemic and hemorrhage stroke from
2020 to 2044

Based on GBD data of ischemic and hemorrhage stroke from

1990 to 2019 in China, we further predicted the number and

rate of incidence and mortality in the next 25 years (Figure 4).

In the next 25 years, the rates of incidence among both sexes

should show a stable trend (Figure 4A), and the mortality among

both sexes should decline (Figure 4A), while the numbers of

new cases and deaths of ischemic and hemorrhage stroke should

rise steadily from 2020 to 2044 (Figures 4B, C). There should
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TABLE 2 Number of deaths and mortality rate of ischemic and hemorrhage stroke in China in 1990 and 2019 and EAPC from 1990 to 2019.

Characteristics 1990 2019 1990–2019

Deaths
cases [×103 (95%

UI)]

Mortality rate
[per 100, 000
(95% UI)]

Deaths cases
[×103 (95% UI)]

Mortality rate
[per 1, 00, 000

(95% UI)]

EAPC in
mortality rate [%

(95% CI)]

Overalla 1377.09 (1220.67,

1564.24)

211.44 (187.68, 243.80) 2189.18 (1885.90,

2513.77)

127.25 (110.21, 144.89) −2.85 (−4.68,−0.98)

Sexa

Male 712.83 (599.05, 837.93) 246.30 (212.62, 286.86) 1261.12 (1035.32,

1509.29)

170.32 (141.87, 200.18) −2.26 (−4.14,−0.34)

Female 664.26 (567.00, 792.33) 188.28 (161.70, 224.20) 928.06 (747.28, 1117.12) 97.44 (78.87, 117.01) −3.40 (−5.18,−1.59)

Age at diagnosis b (year)

0–14 10.93 (7.46, 13.40) 3.39 (2.31, 4.15) 0.69 (0.55, 0.96) 0.31 (0.24, 0.43) −7.43 (−9.24,−5.59)

15–19 3.32 (2.74, 3.96) 2.61 (2.16, 3.12) 0.90 (0.73, 1.09) 1.20 (0.98, 1.45) −3.27 (−5.20,−1.31)

20–24 4.54 (3.69, 5.47) 3.43 (2.79, 4.13) 1.78 (1.44, 2.12) 2.18 (1.76, 2.59) −2.72 (−4.57,−0.83)

25–29 5.47 (4.65, 6.53) 4.96 (4.22, 5.93) 3.20 (2.62, 3.75) 2.89 (2.37, 3.39) −2.76 (−4.61,−0.88)

30–34 7.82 (6.66, 9.34) 8.84 (7.53, 10.55) 7.31 (5.82, 8.59) 5.66 (4.51, 6.65) −2.59 (−4.45,−0.70)

35–39 16.75 (14.26, 19.89) 18.31 (15.59, 21.74) 11.19 (9.03, 13.16) 11.09 (8.95, 13.04) −2.70 (−4.59,−0.77)

40–44 26.77 (22.71, 31.77) 39.81 (33.77, 47.24) 21.70 (17.63, 25.84) 21.35 (17.35, 25.42) −2.97 (−4.85,−1.06)

45–49 36.65 (31.1, 43.01) 70.86 (60.13, 83.15) 39.73 (32.41, 47.66) 32.73 (26.71, 39.27) −3.28 (−5.16,−1.37)

50–54 70.02 (59.63, 81.20) 146.48 (124.75, 169.88) 76.23 (62.36, 91.74) 60.94 (49.84, 73.33) −3.85 (−5.70,−1.96)

55–59 107.97 (92.14, 125.02) 248.42 (212, 287.66) 97.94 (80.24, 117.13) 103.27 (84.61, 123.5) −3.77 (−5.60,−1.90)

60–64 141.16 (121.88, 163.80) 398.53 (344.10, 462.45) 146.60 (122.63, 172.89) 186.62 (156.11, 220.09) −3.56 (−5.40,−1.70)

65–69 183.60 (161.28, 211.35) 670.86 (589.30, 772.27) 238.92 (201.75, 280.32) 339.46 (286.65, 398.28) −3.42 (−5.27,−1.53)

70–74 228.07 (201.52, 269.60) 1209.52 (1068.72,

1429.76)

327.72 (278.88, 379.93) 684.81 (582.74, 793.90) −3.36 (−5.23,−1.47)

75–79 227.78 (203.91, 266.13) 1996.22 (1787.07,

2332.29)

362.57 (312.72, 416.05) 1214.77 (1047.76,

1393.98)

−2.99 (−4.91,−1.03)

80–84 183.02 (162.01, 216.05) 3245.67 (2873.12,

3831.38)

417.37 (360.79, 470.96) 2188.93 (1892.2,

2469.96)

−2.62 (−4.56,−0.63)

85–89 94.90 (82.73, 113.52) 4948.81 (4314.41,

5919.86)

311.31 (269.92, 350.65) 3660.48 (3173.88,

4123.02)

−2.32 (−4.27,−0.33)

90–94 23.61 (19.99, 28.37) 6336.52 (5363.56,

7612.73)

99.59 (81.82, 114.88) 4438.08 (3646.14,

5119.37)

−2.61 (−4.56,−0.61)

95+ 4.71 (3.88, 5.53) 7573.85 (6228.16,

8884.52)

24.43 (19.27, 28.39) 5469.91 (4316.36,

6358.26)

−2.36 (−4.33,−0.35)

EAPC, estimated annual percentage change; 95% UI, 95% uncertainty interval; 95% CI, 95% confidence interval; aage-standardized mortality rate; bcrude mortality rate in each age group.

be 7570.95 thousand new ischemic and hemorrhage stroke cases

(Figure 4B) and 3954.71 thousand deaths of NVHD (Figure 4C)

in 2044. In 2044, among male patients, the number of incidence

cases and deaths should increase to 3645.09 thousand and 2409.47

thousand, respectively (Figures 4B, C). Among female patients,

the number of incidence cases and deaths should increase to

3946.26 thousand and 1582.75 thousand in 2044, respectively

(Figures 4B, C).

Discussion

The analysis of epidemiological trends and major

risk factors of stroke as well as the prediction of future

epidemiological trends in our study will be of great

significance in reducing the incidence and mortality

of stroke.

Prevalence and prediction of disease
burden of stroke in China

New epidemiological data of the Global Burden of Disease

(GBD) 2019 study on stroke at macro- and meso-level geographic

scales enable us to offer the most consistent, up-to-date, and

comprehensive overview of the prevalence and risk factors for

stroke nationally. First, our study has shown that this synthetical
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TABLE 3 Number of DALYs and DALY rate of ischemic and hemorrhage stroke in China in 1990 and 2019 and EAPC from 1990 to 2019.

Characteristics 1990 2019 1990–2019

DALYs [×103

(95% UI)]
DALY rate [per
100, 000 (95%

UI)]

DALYs [×103

(95% UI)]
DALY rate [per
100, 000 (95%

UI)]

EAPC in DALY
rate [% (95% CI)]

Overalla 33621.26 (29916.11,

38026.59)

4134.28 (3697.14,

4674.62)

45949.13 (39813.51,

52335.53)

2412.52 (2102.92,

2742.48)

−2.83 (−4.60,−1.02)

Sexa

Male 18106.11 (15236.54,

21193.12)

4656.60 (3971.22,

5403.45)

27103.24 (22271.00,

32864.28)

3052.05 (2535.20,

3643.00)

−2.34 (−4.17,−0.48)

Female 15515.14 (13247.44,

18060.26)

3707.97 (3178.76,

4330.48)

18845.89 (15670.19,

22244.53)

1876.80 (1566.50,

2204.53)

−3.38 (−5.09,−1.64)

Age at diagnosisb (year)

0–14 1000.60 (690.22,

1222.39)

309.87 (213.75, 378.56) 93.76 (74.16, 120.52) 41.71 (32.99, 53.62) −2.81 (−4.63,−0.95)

15–19 289.79 (245.68, 338.60) 228.39 (193.63, 266.86) 93.73 (77.37, 110.31) 124.75 (102.98, 146.82) −2.35 (−4.12,−0.55)

20–24 374.54 (313.19, 440.18) 282.89 (236.55, 332.46) 160.53 (130.96, 187.44) 196.08 (159.97, 228.95) −2.35 (−4.10,−0.56)

25–29 416.25 (357.58, 484.11) 377.73 (324.49, 439.32) 271.18 (225.86, 313.11) 244.92 (203.99, 282.80) −2.30 (−4.06,−0.50)

30–34 525.67 (456.13, 607.14) 593.90 (515.33, 685.94) 524.96 (430.75, 606.95) 406.64 (333.66, 470.15) −2.46 (−4.27,−0.62)

35–39 979.04 (850.75, 1146.58) 1069.89 (929.70,

1252.97)

691.39 (568.48, 801.40) 685.26 (563.44, 794.29) −2.74 (−4.57,−0.89)

40–44 1365.92 (1176.16,

1600.83)

2031.34 (1749.13,

2380.68)

1170.00 (968.13,

1360.51)

1151.05 (952.46,

1338.48)

−3.00 (−4.83,−1.13)

45–49 1662.60 (1422.57,

1934.50)

3214.62 (2750.53,

3740.35)

1929.92 (1601.52,

2278.78)

1590.16 (1319.57,

1877.61)

−3.52 (−5.34,−1.67)

50–54 2777.62 (2380.68,

3195.08)

5810.68 (4980.29,

6683.98)

3251.20 (2711.66,

3834.61)

2598.81 (2167.53,

3065.15)

−3.44 (−5.27,−1.59)

55–59 3755.79 (3257.84,

4306.20)

8641.45 (7495.75,

9907.84)

3706.89 (3103.92,

4384.77)

3908.59 (3272.81,

4623.36)

−3.26 (−5.09,−1.39)

60–64 4231.52 (3697.27,

4871.95)

11946.49 (10438.21,

13754.57)

4784.67 (4064.31,

5578.26)

6090.79 (5173.78,

7101.01)

−3.12 (−4.98,−1.24)

65–69 4606.71 (4074.41, 5244) 16832.80 (14887.77,

19161.43)

6532.17 (5620.85,

7479.65)

9280.79 (7986.01,

10626.96)

−3.12 (−4.99,−1.22)

70–74 4646.28 (4126.91,

5428.97)

24640.29 (21885.99,

28791.10)

7184.06 (6205.01,

8192.53)

15011.86 (12966.02,

17119.15)

−2.80 (−4.73,−0.83)

75–79 3660.84 (3305.67,

4225.99)

32083.10 (28970.44,

37035.99)

6241.81 (5440.97,

7098.04)

20913.03 (18229.85,

23781.80)

−2.49 (−4.44,−0.49)

80–84 2247.42 (1997.41,

2608.97)

39855.85 (35422.06,

46267.55)

5414.79 (4721.75,

6047.91)

28398.18 (24763.50,

31718.61)

−2.23 (−4.18,−0.23)

85–89 883.80 (774.71, 1045.89) 46089.93 (40400.56,

54542.74)

3014.92 (2630.56,

3360.95)

35450.59 (30931.16,

39519.39)

−2.50 (−4.45,−0.51)

90–94 170.58 (145.01, 203.47) 45771.85 (38910.70,

54598.58)

746.28 (623.15, 852.31) 33257.45 (27770.13,

37982.52)

−6.41 (−7.76,−5.04)

95+ 26.27 (21.78, 30.70) 42215.02 (34991.08,

49324.92)

136.90 (108.76, 157.39) 30657.65 (24356.42,

35247.24)

−2.36 (−4.32,−0.35)

DALYs, disability-adjusted life-years; EAPC, estimated annual percentage change; 95% UI, 95% uncertainty interval; 95% CI, 95% confidence interval; aage-standardized DALY rate; bcrude

DALY rate in each age group.

assessment of the numbers of incidence cases and DALYs lost

from PAD demonstrates that there has been a remarkable increase

among the total Chinese population over the past 30 years.

The number of incidence cases will increase with aging and

economic development, and China becomes one of the countries

with the highest burden of stroke in the world. Advanced age,

hypertension, smoking, and diet high in sodium were proved

to be associated with a higher risk of stroke. With the global

aging process continuing in the next several decades, the burden

of stroke will probably increase substantially in the next several

decades. This is consistent with the results predicted by our

prediction model. For the next 25 years, it indicates that the
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FIGURE 1

Number and rate of incidence (A), death (B) and DALY (C) of ischemic and hemorrhage stroke by age and sex in 2019 in China. Shading represents

the upper and lower limits of the 95% uncertainty intervals (95% UIs). DALYs, disability-adjusted life-years.

number of new cases, deaths, and DALYs of stroke should keep

on increasing among male and female patients. Meanwhile, all

the incidence rates, mortality rates, and DALY rates showed an

overall increasing trend. Despite the improvement of clinical

professional level and current policies to reduce the burden of

stroke morbidity, it is clear that the continued heavy burden
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FIGURE 2

Number of incidence cases (A), incidence rate (B), death rate (C), and DALY rate (D) of ischemic and hemorrhage stroke by age and sex from 1990 to

2019 in China. DALYs, disability-adjusted life-years.
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FIGURE 3

Rates of death and also rates and proportions of DALYs attributable to risk factors by age and sex from 1990 to 2019 in China. Rates of death (A) and

DALYs (B) of ischemic and hemorrhage stroke attributable to risk factors by age and sex from 1990 to 2019 in China; proportions of DALYs

attributable to risk factors by sex from 1990 to 2019 in China (C); and proportions of DALYs attributable to risk factors by age and sex in 1990 and

2019 in China (D). DALYs, disability-adjusted life-years.
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FIGURE 4

Temporal trends and forecasted rates of incidence and death (A) and number of incidence cases (B) and deaths (C) of ischemic and hemorrhage

stroke by sex from 2020 to 2044 in China. Solid lines and dash lines represent the observed and the predicted number of incidence cases and deaths

of ischemic and hemorrhage stroke; shading represents a 1% decrease and increase interval based on the 2019 rate. DALYs, disability-adjusted

life-years.
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of stroke in China may be shifting from chronic morbidity

to mortality.

Cause of increased prevalence of stroke
disease

Our study indicates that the age-standardized prevalence and

DALY rates of stroke are prevalent among the Chinese population

based on the data from GBD 2019, which is similar to the

level worldwide. Although the age-standardized prevalence and

DALY rates decreased in China basically, the significant increase

in stroke cases and DALYs in China draws more attention. The

increased prevalence of stroke results from manifold reasons.

First, recent studies have shown that the elderly population

aged ≥60 years is estimated to increase to 300 million by the

end of 2025. Such an increase in absolute numbers of stroke-

related new cases, deaths, and DALYs from the data in our

study can be explained by the ever-growing population of elderly

people and longer life expectancies. Second, some projects were

implemented by Chinese authorities for the populations with

a high risk of stroke. In 2011, the National Stroke Screening

and Prevention Project promoted stroke emergency interventions,

including stroke screening, acute stroke units, emergency green

channels, and early rehabilitation services. The number of basic

hospitals offering emergency stroke interventions increased from

58 to 224 from 2010 to 2016 (13). These improvements have

undoubtedly contributed to the declining case fatality rates and

increasing newly detected cases that have been witnessed. Third,

other primary drivers includemedical techniques, while concurrent

declining CVD mortality and improved cardiovascular care are

also the major contributors. The popularization of image diagnosis

technology such as CT and MRI and new technologies such as

computed tomography perfusion imaging (CTPI) and diffusion-

weighted imaging (DWI) may increase the incidence of stroke

(14). Increased stroke prevalence can also be explained by notably

different lifestyles compared with previous generations. The past

3 decades have seen an economic boom in China, with unhealthy

lifestyles, such as smoking, high-fat diets, and sedentary lifestyles,

being increasingly adopted. Consequently, metabolic risk factors

among younger populations have also increased (15, 16). With

the improvement of the changing public health awareness and

lifestyles in China, there has been a decline in the rates of incidence,

mortality, and DALYs.

Risk factors of stroke disease

Many pathological and behavioral conditions have been shown

to lead to a higher risk of experiencing a stroke. Targeting risk

factors include, but are not limited to, hypertension, smoking, diet

high in sodium, obesity, and lack of physical activity. Traditional

risk factors remain highly prevalent in stroke survivors, among

which high systolic blood pressure was the most common. High

systolic blood pressure is the most important modifiable risk

factor for stroke, with a direct, strong, continuous, and linear

relationship between blood pressure and stroke risk. Overall, 23.2%

(estimated 244.5 million) of the Chinese residents aged ≥18 years

had hypertension and another 41.3% (estimated 435.3 million)

had pre-hypertension according to the Chinese guidelines (17).

A meta-analysis of 147 trials stated that blood pressure increase

of 5mm Hg diastolic or 10mm Hg systolic was associated with

a 40% increase in stroke risk (18). Even among those who are

not defined as hypertensive, the higher the blood pressure, the

higher the risk of stroke (19). These could explain the result

of our study, and we found that the proportion of DALYs

attributable to high systolic blood pressure was more than 52.9%

in China in 2019 among both sexes. Since 2009, the Chinese

government has incorporated hypertension management into

community public service projects, and∼100 million hypertensive

patients are under management; training covers 31 provinces,

3,90,000 primary medical institutions, and 1.84 million medical

staff; quality control covers 15,000 institutions and 1.71 million

patients; 26.66 million people completed the mission (17). The

benefits of hypertension management in reducing the risk of stroke

have also been supported in our results. Among both male and

female patients, the proportions of DALYs attributable to high

systolic blood pressure decreased in nearly all age groups from 2000

to 2019.

In addition to high systolic blood pressure, smoking and diet

high in sodium were two significant contributions to stroke from

1990 to 2019. The precision of our estimation for risk factors of

stroke prevalence in our study is consistent with former data, which

is consistent with former data (20), implying the importance of

proper control of these two risk factors. However, among Chinese

adults, the current rate of smoking is as high as 28.3% (21), and

giving up smoking is associated with a considerable reduction in

risk of stroke, and the benefit seems to be apparent within 5 years

(22–24). On the other hand, China belongs to a country with a

high-salt diet (25). The “Report on Nutrition and Chronic Disease

Status of Chinese Residents (2020)” shows that the average daily

cooking salt of Chinese households in 2019 can reach 9.3 g, and

the daily individual intake in the North of China is about twice

of that in the South. Compared with lower salt intake, higher

salt intake was associated with a 24% higher rate of stroke (26).

In our study, the proportions of DALYs attributable to smoking

and diet high in sodium were higher in male patients than in

female patients, and smoking contributed to more than six times

higher in the proportion of DALYs in male patients than female

patients. The China Adult Tobacco Investigation Report (2015)

shows that 52.1% of men and 2.7% of women smoke, contributing

to the gender differences. For diet, the biological plausibility of

the association between sodium chloride intake and stroke risk

shows that an elevated sodium chloride intake induced a negative

effect on endothelial function (27), oxidative stress (28), platelet

aggregation (29), arterial stiffness (30, 31), left ventricular mass

and function (32), and the development of vascular damage (33).

The Chinese government announced the Implementation Rules for

the Regulations on Hygiene Management in Public Places, which

clearly stipulates that smoking is prohibited in indoor public places.

Meanwhile, the authorities have also responded positively and put

forward salt reduction targets in China’s Medium- and Long-Term

Plan for the Prevention and Treatment of Chronic Diseases (2017–

2025) and the National Nutrition Plan (2017–2030). The benefits of

smoking cessation and salt restriction have also been shown in our

Frontiers inNeurology 11 frontiersin.org110

https://doi.org/10.3389/fneur.2023.1255524
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liang et al. 10.3389/fneur.2023.1255524

results. Among both male and female patients, all the ASIR, AMIR,

and DALY rates decreased in the past 3 decades, and this trend will

remain the same in the next 25 years.

Actions for stroke disease prevention in
China

Although the overall decreasing trends in the rates of incidence,

deaths, and DALYs were observed in all age-specific groups and

both sexes, the numbers of new cases, deaths, and DALYs lost

showed an upward trend from 1990 to 2019. The total expenses

of healthcare and treatment for CVD have increased rapidly

since 2004, which is much faster than the increase in gross

domestic product. Furthermore, a large number of individuals

with stroke hospitalization have caused huge economic burden.

A multifarious approach is recommended to alter this condition.

The 2019 edition of China’s guidelines for the prevention and

treatment of hypertension proposes antihypertensive treatment to

reduce the total risk of morbidity and mortality of stroke. In

2016, the State Council issued the protocol of “healthy China

2030” plan (34), which forcefully put forward “comprehensively

promote the implementation of tobacco control.” In 2019, the

authorities promulgated the implementation of healthy China

action, requiring that the proportion of people protected by

comprehensive smoke-free regulations should be no <30 and 80%,

respectively, by 2022 and 2030, and smoking rate of people over

15 years old should be <24.5 and 20%. Additionally, healthy China

2030 put forward that it is urgent to guide a reasonable diet (34).

Even so, greater efforts and special attention should be paid to

targeted public health strategy making for stroke control.

Limitations

Our investigation has several limitations to be announced. First,

we only evaluated the disease burden of stroke at the national level

but did not conduct some more details provincially. Additionally,

one of these limitations was that the accurate assessment of

stroke-related mortality could be challenged by the complexity of

differentiating between deaths directly attributed to stroke and

those resulting from its coexisting health conditions. Second,

the inclusion of more data on risk factors for stroke would

contribute to a deep insight into the epidemiology of stroke and

a more scientific preventive policy. We could not evaluate the

stroke burden caused by other important risk factors such as

high fasting plasma glucose and obesity because of incomplete or

missing corresponding data in the GBD database. Third, it has

been described previously how the inevitable limitations of the

GBD methodology affect related studies (35, 36). The GBD study

cannot capture the most recent changes in health status, because

of the time lags in the reporting of health information by the

authorities. In this study, although the data used to estimate the

prevalence were corrected, fitted, and filled through multifarious

models, non-determinacy still needs to be under consideration

when interpreting our results.

Conclusion

This study has demonstrated that stroke is continuing to be

a major healthcare challenge in China in the past 3 decades,

especially in the elderly. An even larger number of stroke cases

are to be expected, while the ASIR, ASMR, and DALY rate

should show a downward trend among both sexes. It may lead

to high care and treatment costs in the next 25 years. Traditional

risk factors remain highly prevalent in stroke survivors, among

which high systolic blood pressure was the most common. Our

study results are valuable in drawing attention to the control

and treatment of stroke, and more preventative, therapeutic, and

rehabilitative strategies for stroke are needed to reduce negative

health outcomes.
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Background and purpose: The angiotensin-converting enzyme (ACE) insertion 
(I)/deletion (D) polymorphism has been studied as a genetic candidate for 
cerebral small vessel disease (CSVD). However, no previous study has evaluated 
the relationship between the ACE I/D polymorphism and cerebral microbleed 
(CMB), an important CSVD marker. We evaluated the association between ACE 
I/D polymorphisms and 2-year changes in CMBs.

Methods: The CHALLENGE (Comparison Study of Cilostazol and Aspirin on 
Changes in Volume of Cerebral Small Vessel Disease White Matter Changes) 
database was analyzed. Of 256 subjects, 186 participants who underwent a 
2-year follow-up brain scan and ACE genotyping were included. Our analysis was 
conducted by dividing the ACE genotype into two groups (DD vs. ID/II) under the 
assumption of the recessive effects of the D allele. A linear mixed-effect model 
was used to compare the 2-year changes in the number of CMBs between the 
DD and combined ID/II genotypes.

Results: Among 186 patients included in this study, 24 (12.9%) had the DD 
genotype, 91 (48.9%) had the ID genotype, and 71 (38.2%) had the II genotype. 
Baseline clinical characteristics and cerebral small vessel disease markers were 
not different between the two groups (DD vs. ID/II) except for the prevalence 
of hypertension (DD 66.7% vs. ID/II 84.6%; p  =  0.04). A multivariate linear mixed-
effects model showed that the DD carriers had a greater increase in total CMB 
counts than the ID/II carriers after adjusting for the baseline number of CMBs, age, 
sex, and hypertension (estimated mean of difference [standard error (SE)]  =  1.33 
[0.61]; p  = 0.03). When we performed an analysis of cases divided into deep and 
lobar CMBs, only lobar CMBs were significantly different between the two groups 
(estimated mean of difference [SE]  =  0.94 [0.42]; p  = 0.02).

Conclusion: The progression of CMBs over 2  years was greater in the ACE DD 
carriers compared with the combined II/ID carriers. The results of our study 
indicate a possible association between the ACE I/D polymorphism and CMB. A 
study with a larger sample size is needed to confirm this association.
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Introduction

Cerebral small vessel disease (CSVD) is a disorder of the small 
perforating arterioles, capillaries, and venules of the brain (1). 
Clinically, CSVD is a major contributor to stroke (both ischemic and 
hemorrhagic) and dementia. CSVD causes about a quarter of ischemic 
strokes and most hemorrhagic strokes, is the most common cause of 
vascular dementia, and often co-occurs with Alzheimer’s disease (1). 
CSVD is associated with aging and vascular risk factors, especially 
hypertension (HTN) (2). Neuroimaging markers of CSVD include 
lacunes, white matter hyperintensities (WMH), cerebral microbleeds 
(CMBs), and enlarged perivascular spaces (3).

Angiotensin-converting enzyme (ACE) is a key regulator of the 
renin-angiotensin system that converts inactive angiotensin-I (Ang-I) 
to active angiotensin-II (Ang-II), which causes vasoconstriction and 
increases sodium and water retention, leading to increased blood 
pressure. The gene encoding ACE is located on the long arm of 
chromosome 17 (17q23) (4). The ACE insertion (I)/deletion (D) 
polymorphism is known to influence ACE levels, and the D allele is 
associated with higher ACE level and activity (4). The ACE I/D 
polymorphism has been studied as a genetic candidate for CSVD 
because Ang-II has a critical role in HTN, a major risk factor for 
CSVD, and can affect cerebral circulation by promoting oxidative 
stress, leading to vascular damage and dysfunction (5).

Although results have not been consistent across studies, an 
association between the ACE I/D polymorphism and CSVD markers 
including WMH or lacunar infarct has been suggested (6–9). CMB is 
a clinically important CSVD marker of a bleeding-prone 
microangiopathy that is related to the risk of hemorrhagic stroke (10). 
A recent meta-analysis indicated that the ACE I/D polymorphism is 
associated with a risk of hemorrhagic stroke (11). However, no 
previous study has evaluated the relationship between the ACE I/D 
polymorphism and CMB. This study investigated the impact of the 
ACE I/D polymorphism on the progression of CMBs.

Methods

Study participants

This study was a sub-analysis of the CHALLENGE (Clinicaltrials.
gov; Unique identifier: NCT01932203) trial, a multicenter, double-
blind, randomized controlled trial that enrolled participants aged 
50–85 years with CSVD (12). A diagnosis of CSVD was established 
based on the presence of at least one lacune and moderate to severe 
WMH, according to the modified Fazekas criteria for periventricular 
WMH with a cap or rim of ≥5 mm and deep WMH with a maximum 
diameter of ≥10 mm (13). The main objective of the trial was to 
compare the effects of cilostazol and aspirin on changes in the WMH 
volume over 2 years. Between July 2013 and August 2016, 282 
participants were screened for eligibility, of whom 256 were randomly 

assigned to the cilostazol or aspirin group using a permuted block 
randomization method (12). Out of 256 CHALLENGE subjects, 186 
participants who underwent a 2-year follow-up magnetic resonance 
imaging (MRI) and ACE I/D genotyping were included. A comparison 
between the included and excluded subjects is shown in 
Supplementary Table S1. There were no significant differences 
between the two groups.

The Institutional Review Boards of the participating centers 
approved this study. The approval number of the affiliated center of 
the corresponding author (SC) was 2013–03-006. Written informed 
consent was obtained from all potential participants prior 
to enrollment.

Genotyping of the ACE I/D polymorphism

DNA was extracted from a 2 mL blood sample from each 
participant. To isolate the buffy coat from the 2 mL blood sample, 
blood collected in an EDTA-containing tube was centrifuged at 
1500 × g for 10 min. The buffy coat was carefully extracted using a 
fine-tipped pipette and stored at −80°C for further analysis. A 
QuickGene DNA Whole Blood Kit S (Kurabo, Osaka, Japan) was used 
to extract DNA from the buffy coat according to the manufacturer’s 
instructions. The genotyping analysis was performed after the 
CHALLENGE study was completed.

Genotyping of the ACE I/D polymorphism was performed by 
DNA direct sequencing. PCR was used to amplify the ACE fragments 
using UCSC In-Silico PCR.1 The final volume of the PCR test sample 
was 10 μL, consisting of 10 ng of DNA, 0.5 nM of each primer pair, 
0.25 mM dNTPs, 3 mM MgCl2, 1 μL 1× reaction buffer, and 0.25 U Taq 
DNA polymerase (Intron Biotechnology, Seongnam-Si, Gyeonggi-do, 
Korea). The region of intron 16 was amplified using PCR primers 
(forward; 5′-GAGAGGAGAGAGACTCAAGC-3′, reverse; 
5′-AGCCTGGTTGATGAGTTC-3′) designed by DNA LINK Inc. The 
PCR conditions used were as follows: initial denaturation at 95°C for 
10 min, followed by 35 cycles of denaturation at 95°C for 30 s, 
annealing at 60°C for 1 min, initial extension at 72°C for 1 min, and 
final extension at 72°C for 10 min. The PCR products were purified 
using a MultiScreen384-PCR Filter Plate (Millipore, Billerica, MA, 
United States). The purified products were then sequenced using a 
BigDye Terminator Cycle Sequencing Kit and an ABI 3730xl 
automated sequencer (Applied Biosystems, Foster City, CA, 
United States). The sequencing primers were the same as those used 
for the PCR amplification. Mutation analyzes were performed using 
Phred, Phrap, Consed, and Polyphred 5.04 software.2

1 http://genome.ucsc.edu/cgi-bin/hgPcr?command=start

2 http://droog.mbt.washington.edu/PolyPhred.html
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Imaging markers

Brain MRI data including an axial T2∗-weighted gradient-echo 
sequence (4-mm slice thickness with no interslice gap) were 
acquired using a 3.0 Tesla MR scanner. The same scanner and 
sequence were used for the baseline and follow-up MRI. CMBs were 
defined as lesions with a diameter ≤ 10 mm and rated using the 
Microbleed Anatomical Rating Scale (14). Two experienced 
neurologists blinded to the clinical information counted the 
number of CMBs on gradient-echo MRI images. Pearson’s 
correlation coefficient of agreement on the number of CMBs 
between the two neurologists was 0.958 (95% confidence interval 
0.809–0.989; p < 0.001). The two neurologists reached a consensus 
after discussing cases where there was an initial disagreement. 
CMBs were categorized as deep (basal ganglia, thalamus, internal/
external capsule, corpus callosum, deep/periventricular white 
matter, and brainstem) or lobar (frontal, parietal, temporal, 
occipital, and insular cortices). The decision on CMB progression 
was made in a blind manner without access to any other 
clinical information.

Statistical analysis

Referring to previous research results (7, 15), our analysis was 
conducted by dividing the ACE I/D genotype into two groups (DD vs. 
ID/II) under the assumption of the recessive effects of the D allele. The 
baseline characteristics were compared between the DD and combined 
ID/II genotypes using the chi-square test for categorical variables and 
the Student’s t-test or the Mann–Whitney U-test for continuous 
variables. The change in the number of CMBs and the proportion of 
patients with CMB progression (defined as an increase in the number 
of CMBs ≥1) during the 2-year follow-up period were compared 
using the Mann–Whitney U-test and the chi-square test. We used a 
linear mixed-effects model with a random subject effect to estimate 
and compare changes in the number of CMBs over 2 years. To assess 
the trend in each group, linear mixed-model analyzes were performed 
separately using time (baseline and 2-year follow-up visit) as a 
predictor. To determine the impact of the ACE I/D genotype on the 
longitudinal changes in CMB counts, we explored the interaction 
between the ACE I/D genotype and time (ACE I/D genotype × time) 
adjusted for the baseline number of CMBs, age, sex, and HTN.

Results

Among 186 included patients, 24 (12.9%) had the DD genotype, 
91 (48.9%) had the ID genotype, and 71 (38.2%) had the II genotype. 
We compared the DD genotype with the combined ID/II genotypes 
assuming the recessive effect of the D allele. The baseline clinical 
characteristics were not different between the two groups except for 
the prevalence of HTN (DD 66.7% vs. ID/II 84.6%; p = 0.04) (Table 1). 
There was no difference in baseline CSVD markers, including baseline 
number of CMBs, between the two groups. After 2 years of follow-up, 
the proportion of patients with CMB progression (defined as an 
increase in the number of CMBs by ≥1) was 54.2% (13/24) for the DD 
genotype and 48.8% (79/162) for the ID/II genotype (p = 0.67). The 
median (interquartile range) increase in the number of CMBs over 
2 years was 1 (0–3) for the DD genotype and 0 (0–1) for the ID/II 
genotype (p = 0.38).

In the linear mixed-effect model, which tested the effect of the 
ACE I/D genotype × time interaction on changes in CMB counts, the 
DD carriers had a much greater increase in total CMB counts than the 
ID/II carriers after adjusting for the baseline number of CMBs, age, 
sex, and HTN (estimated mean of difference [standard error 
(SE)] = 1.33 [0.61]; p = 0.03) (Table 2). Figure 1 shows the estimated 
effect of the ACE I/D genotype on the longitudinal changes in the 
number of total CMBs over a 2-year follow-up period. In the analysis 
using CMBs divided into deep and lobar CMBs, only lobar CMBs 
showed a significant difference between the two groups (estimated 
mean of difference [SE] = 0.94 [0.42]; p = 0.02) (Table 2).

Discussion

CMB is an important CSVD marker associated with the risk of 
stroke, cognitive decline, and depression (10, 16–19). In this 
longitudinal study, we compared the progression of CMBs according 
to the ACE I/D polymorphism. This is the first study to investigate the 
relationship between the ACE I/D polymorphism and CMBs. Our 

TABLE 1 Comparison of the baseline characteristics according to the 
angiotensin-converting enzyme (ACE) gene insertion (I)/deletion (D) 
polymorphism.

DD 
(n =  24)

ID/II 
(n =  162)

p-value

Age, years 75.1 (7.5) 73.1 (6.6) 0.16

Female 15 (62.5) 106 (65.4) 0.82

Hypertension 16 (66.7) 137 (84.6) 0.04

Diabetes 9 (37.5) 63 (38.9) 1.00

Hyperlipidemia 10 (41.7) 81 (50.6) 0.51

Current Smoking 1 (4.2) 11 (6.8) 1.00

Body mass index, kg/

m2
24.7 (2.6) 24.7 (3.1) 0.99

Antiplatelet 

medication
0.27

  Aspirin 10 (41.7) 90 (55.6)

  Cilostazol 14 (58.3) 72 (44.4)

Follow-up, years 1.96 (0.22) 1.97 (0.17) 0.58

Baseline CSVD markers

  WMH volume, 

mL
45.6 (31.6–52.1) 33.7 (23.6–47.6) 0.07

  Number of 

lacunes
6 (2–12) 5 (2–10) 0.53

  Number of CMBs

   Total 1 (1–12) 2 (0–7) 0.49

   Deep 1 (0–8) 1 (0–4) 0.55

   Lobar 1 (0–4) 0 (0–2) 0.36

The values are presented as percentages (%), mean (standard deviation), or median 
(interquartile range).
CSVD, cerebral small vessel disease; WMH, white matter hyperintensities; CMB, cerebral 
microbleed.
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major finding was that the progression of CMBs over 2 years was 
greater in the DD homozygote carriers compared with the combined 
II/ID carriers.

The ACE I/D polymorphism affects the level and activity of ACE, 
which converts Ang-I to Ang-II (4). The formation of CMB is caused 
by the structural weakening and endothelial dysfunction of the 
microvasculature (20). Ang-II promotes oxidative stress in the 
cerebral vasculature, which leads to endothelial dysfunction, increased 
blood–brain barrier permeability, inflammation, and vascular 
structural damage (5). These effects of Ang-II on the cerebral 
microvasculature can cause vascular leakage from vulnerable small 
vessels, which leads to the formation of CMB. Because the ACE level 

and activity are known to be higher in the DD genotype than in the 
other two genotypes (4), this could be a possible mechanism for the 
more pronounced CMB progression in the DD carriers.

HTN is a major risk factor for CMB formation (10) and Ang-II 
plays a role in increasing the blood pressure. However, in our study, 
the prevalence of HTN was higher in the II/ID carriers, but the 
progression of CMBs was more pronounced in the DD carriers. This 
suggested that the more pronounced CMB progression in DD carriers 
was not due to the influence of the D allele on HTN incidence. 
However, even in patients with HTN, the progression of CMBs may 
differ depending on the actual blood pressure control status and blood 
pressure variability (21, 22). One of the limitations of our study was 
that we  did not have detailed information on the level of blood 
pressure control and blood pressure variability.

The DD homozygote carriers had a significantly greater increase 
in the number of total and lobar CMBs than the ID/II carriers, but no 
significant difference in the number of deep CMBs. The deep 
perforating arteries are affected in deep CMBs, whereas the cortical 
and leptomeningeal arteries are affected in lobar CMBs. Regarding the 
inconsistent results between the deep and lobar CMBs, the effect of 
Ang-II on the vasculature might differ depending on the vascular 
location. However, it should be noted that the prevalence of HTN was 
significantly higher in the ID/II carriers compared with the DD 
carriers (84.6% vs. 66.7%) in our study. Although HTN was adjusted 
for in the analysis, the higher prevalence of HTN in the ID/II carriers 
might offset the impact of the DD genotype on the progression of 
CMBs because HTN has a strong influence, especially on the 
formation of deep MBs.

Our data should be  interpreted with caution due to the small 
sample size. A study with a larger sample size is needed to test and 

FIGURE 1

Scatterplot of the predicted number of cerebral microbleeds (CMBs) according to the angiotensin-converting enzyme (ACE) gene insertion (I)/deletion 
(D) polymorphism. The solid and dotted lines indicate the linear regression model of patients with the DD and ID/DD genotypes, respectively. The 
analysis controlled for the baseline number of CMBs, age, sex, and hypertension.

TABLE 2 Comparison of the longitudinal changes in the number of 
cerebral microbleeds according to the angiotensin-converting enzyme 
(ACE) gene insertion (I)/deletion (D) polymorphism.

Changes in the number of CMBs over the 2-year 
follow-up perioda

DD ID/II

Differences between 
DD and ID/II

(ID/II as a reference)

Estimated 
mean (SE)

Estimated 
mean (SE)

Estimated 
mean (SE) P-value

Total 2.67 (0.93) 1.34 (0.18) 1.33 (0.61) 0.03

Deep 1.04 (0.36) 0.60 (0.10) 0.44 (0.29) 0.14

Lobar 1.63 (0.77) 0.69 (0.11) 0.94 (0.42) 0.02

CMBs, cerebral microbleeds; SE, standard error.
aResults of a linear mixed model adjusted for the baseline number of CMBs, age, sex, and 
hypertension.
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confirm the genetic association. Furthermore, only Koreans were 
included, which could limit the generalizability of our results. Also, 
because our patient group consisted of older individuals with relatively 
severe pre-existing CSVD, this limits the generalization of our results. 
Finally, although an adjustment for confounding factors was made in 
the multivariate analyzes, differences in the prevalence of HTN 
between the genotypes were also an important limitation of our study. 
Finally, as mentioned earlier, we did not have detailed information on 
the level of blood pressure control or blood pressure variability.

Conclusion

In this study, the progression of CMBs over 2 years was greater in 
the ACE DD carriers compared with the combined II/ID carriers. Our 
results suggest that the ACE I/D polymorphism is associated with 
CMBs. Further studies with larger multiethnic samples are needed to 
confirm this association.
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Objective: The lactate/albumin ratio (LAR) has been used as a novel prognostic

indicator for aneurysmal subarachnoid hemorrhage, traumatic brain injury, sepsis,

heart failure, and acute respiratory failure. However, its potential in predicting

all-cause mortality in patients with ischemic stroke (IS) has not been evaluated.

Therefore, this study aimed to elucidate the correlation between LAR and 28-day

all-cause mortality in IS patients without reperfusion therapy.

Methods: This retrospective cohort study used data from the Medical Information

Mart for Intensive Care (MIMIC-IV) (v2.0) database. It included 568 IS adult patients

admitted to the intensive care unit (ICU). The correlation between LAR and

ICU 28-day all-cause mortality rate was analyzed using multiple COX regression

analysis and Kaplan–Meier survival analysis. Restricted cubic spline (RCS) curves

were used to assess the relationship between LAR and 28-day mortality. In

addition, a subgroup analysis was performed to investigate the impact of other

influencing factors on outcomes. The primary outcome was the ability of LAR to

predict 28-day mortality in IS patients.

Results: Among the 568 patients with IS, 370 survived (survival group) and 198

died (non-survival group) within 28 days of admission (mortality rate: 34.9%).

A multivariate COX regression analysis indicated that LAR was an independent

predictor of all-cause mortality within 28 days after admission for patients with IS

(hazard ratio: 1.32; 95% confidence interval: 1.03–1.68; P= 0.025).We constructed

amodel that included LAR, age, race, sex, white blood cell count, Sequential Organ

Failure Assessment (SOFA) score, and anion gap (AG) and established a prediction

model with an area under the curve (AUC) value of 71.5% (95% confidence interval:

67.1%−75.8%). The optimal cuto� value of LAR that separated the survival group

and the non-survival group based on the Youden indexwas 0.55. The Kaplan-Meier

survival curves plotted using this critical value showed that patientswith LAR≥ 0.55

had a significantly higher 28-day all-cause mortality rate than patients with LAR <

0.55 (P = 0.0083).

Conclusion: LAR can serve as an independent predictor of all-cause mortality

within 28 days after admission for patients with IS.
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1. Introduction

Ischemic stroke (IS) is a grave condition that affects the

blood vessels in the brain and endangers the life of patients. It

is the second most common cause of disability and death across

the globe (1). Approximately 15% of IS patients die within 30

days (1). In recent years, the emergence of venous thrombolysis

and endovascular thrombectomy has ushered us into a new era

of IS treatment, wherein efficient reperfusion therapy is widely

employed (2). However, numerous patients cannot be treated with

reperfusion therapy in time, especially in developing countries.

Therefore, there is an urgent need for simple and practical risk

indicators that can inform the clinical management of IS patients

without reperfusion therapy.

Lactate, a by-product of anaerobic metabolism, indicates the

degree of tissue underperfusion and cellular oxygen deprivation

(3). It can also forecast organ dysfunction and death in critically ill

patients (4). Besides, it plays a crucial role in IS prognosis because

it accumulates rapidly due to impaired diffusion of ischemic

brain tissue, and its excess causes acidosis, which activates specific

ion channels, leading to neurotoxic calcium accumulation and

cytotoxic swelling (5). However, protein hydrolysis metabolism

and metformin intake in patients with liver dysfunction or

abnormalities can lead to abnormal lactate levels (6, 7). Therefore,

relying solely on lactate levels for prediction may not guarantee

reliable results.

Albumin is a vital protein that regulates blood osmotic pressure

and influences the physiological function of the circulatory system.

It also exhibits anti-inflammatory, antioxidant, and antithrombotic

effects. However, serum albumin levels are influenced by kidney

disease or nutritional status and therefore have limited value on

their own in predicting IS outcomes (8, 9).

Some studies have explored the lactate/albumin ratio (LAR)

as a potential predictor of acute pancreatitis, severe pneumonia,

traumatic brain injury, and aneurysm subarachnoid hemorrhage

(10–13). However, the link between LAR and mortality in IS

patients remains unknown. Therefore, we obtained and analyzed

data on IS patients admitted between 2008 and 2019 from the

MIMIC-IV (v2.0) database. The current study aims to analyze the

relationship between LAR and all-cause mortality within 28 days of

admission in IS patients.

2. Methods

2.1. Data collection

We obtained our data from the MIMIC-IV (v2.0), a large-

scale, open-source database created and maintained by the

MIT Computational Physiology Laboratory (https://physionet.org/

content/mimiciv/2.0/). This database contains the records of all the

Abbreviations: AUC, area under the curve; AG, anion gap; CI, confidence

interval; DBP, Diastolic Blood Pressure; HR, hazard ratio; IS, ischemic stroke;

ICU, intensive care unit; LAR, lactate/albumin ratio; MIMIC-IV, Medical

Information Mart for Intensive Care; RCS, Restricted cubic spline; SBP,

Systolic Blood Pressure; SOFA, Sequential Organ Failure Assessment; WBC

count, white blood cell count.

patients hospitalized at the Beth Israel Deaconess Medical Center

(BIDMC) between 2008 and 2019. It provides comprehensive

data, such as length of stay, laboratory results, medication

administration, vital signs, etc., for each patient. The data was

anonymized by replacing personal information with random codes

to protect patient privacy, so we did not require patient consent

or ethical approval. The MIMIC-IV (v2.0) database is available for

download from the PhysioNet online platform (https://physionet.

org/). To access the database, the second author of this study, Chen

HongZhuang, completed the Collaborative Institutional Training

Initiative (CITI) course and passed the exams on “Conflict of

Interest” and “Data or Sample Only Research” (ID: 52748910).

The research team was then authorized to use the database and

extract data.

2.2. Population selection criteria

We selected patients from the MIMIC-IV database using the

following criteria: (1) age above 18 years, and (2) IS diagnosis

based on ICD-9 codes 433, 434, 436, 437.0, and 437.1 or ICD-

10 codes I63 and I65 (Figure 1). We excluded patients who

underwent reperfusion therapy and those without lactate or

albumin measurements. If patients had multiple ICU admissions,

we only used clinical data from the first ICU admission. Ultimately,

568 patients were included in this study.

2.3. Data extraction

We selected LAR as the primary variable of interest. We

used the first blood lactate and serum albumin levels measured

after admission to reduce the influence of subsequent treatments

on these values. Potential confounders, such as demographics

(age, sex, and race), vital signs (heart rate, systolic blood

pressure, and diastolic blood pressure), comorbidities (myocardial

infarction, congestive heart failure, peripheral vascular disease,

dementia, chronic pulmonary disease, rheumatic disease, peptic

ulcer disease, liver disease, diabetes, paraplegia, renal disease, AIDS,

and hemorrhage), laboratory tests (red blood cell, white blood

cell, and red blood cell distribution width, platelet, hemoglobin,

and lymphocyte percentage, hematocrit, serum glucose level,

anion gap, prothrombin time, and international normalized ratio),

and sequential organ failure assessment (SOFA) scores were

also extracted. Data extraction was performed using PostgreSQL

(v13.7.1) and Navicate Premium (version 15) with structured

query language. All the code for computing demographic

features, laboratory tests, comorbidities, and severity scores were

obtained from the GitHub website (GitHub - MIT-LCP/mimic-iv:

Deprecated. For the latest MIMIC-IV code see: https://github.com/

MIT-LCP/mimic-code).

2.4. Grouping and endpoint events

This study classified the patients into two groups: those who

survived in the hospital for 28 days (survival group, n = 370) and
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FIGURE 1

Flowchart of patient inclusion.

those who died in the hospital within 28 days (non-survival group,

n = 198). The primary outcome of interest was all-cause mortality

within 28 days of admission.

2.5. Management of missing data and
outliers

Variables with more than 15% missing values, such as blood

cholesterol, triglycerides, high-density lipoprotein, low-density

lipoprotein, and C-reactive protein, were omitted to reduce bias.

For variables with <15% missing values (lymphocyte, monocyte,

and neutrophil counts), multiple imputation was applied to choose

the best possible data set to impute the missing values (14).

2.6. Statistical analysis

The Kolmogorov-Smirnov test evaluated the normality of

continuous variables. Continuous variables were reported as

mean ± SD for normal distributions, median (IQR) for skewed

distributions, and frequencies (%) for categorical variables. In

the baseline characteristics analysis, continuous variables were

compared using T-test or one-way ANOVA, while categorical

variables were compared using Pearson’s χ2 test and Fisher’s test.

A univariate COX regression analysis identified potential risk

factors and a multivariate COX regression analysis determined the

independent risk factors for in-hospital mortality with p-values

below 0.05. A receiver operating characteristic (ROC) analysis

assessed the model’s predictive performance for 28-day in-hospital

mortality by calculating the area under the curve (AUC), sensitivity,

and specificity of the models. The Youden index was utilized to

determine the optimal cutoff value.

Restricted cubic spline (RCS) analysis was employed to depict

the non-linear relationship between LAR and 28-day all-cause

mortality in IS subjects.

Kaplan–Meier curves were used to observe the relationship

between LAR and mortality rate in IS patients. Subgroup analysis

examined the effect of LAR on different characteristics, such as

age, sex, race, SOFA scores, white blood cell (WBC) count, anion

gap, ventilation status, and cerebral hemorrhage, and their p-values

for interactions were also tested. All analyses were performed with

free statistical software version 1.6 and R 4.1.3 (R Foundation for

Statistical Computing, Vienna, Austria). P < 0.05 from two-tailed

tests indicated statistical significance.
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TABLE 1 Baseline characteristics between survivors(0) and

non-survivors(1).

Variables Total
(n = 568)

0
(n = 370)

1
(n = 198)

Sex: male, n (%) 309 (54.4) 199 (53.8) 110 (55.6)

Age, mean± SD 67.8± 15.7 66.1± 16.0 71.0± 14.5

Ethnicity, n (%)

1 White 365 (64.3) 251 (67.8) 114 (57.6)

2 Black 71 (12.5) 47 (12.7) 24 (12.1)

3 Other 64 (11.3) 47 (12.7) 17 (8.6)

4 Unknown 68 (12.0) 25 (6.8) 43 (21.7)

SBP, mean± SD 129.4± 27.8 129.4± 27.6 129.3± 28.3

DBP, mean± SD 70.9± 20.0 70.5± 20.0 71.7± 20.2

SOFA, mean± SD 7.4± 3.6 7.1± 3.4 7.9± 4.0

GCS, mean± SD 9.1± 4.2 9.6± 4.1 8.1± 4.3

WBC, mean± SD 13.1± 7.1 12.4± 6.6 14.4± 7.8

Neutrophils, mean

± SD

937.5± 735.7 904.9± 718.5 994.3± 763.5

Lymphocytes, mean

± SD

121.0± 208.1 109.8± 93.7 140.5± 321.5

Monocytes, mean±

SD

50.2± 61.2 47.1± 47.1 55.5± 79.9

Platelets, mean±

SD

229.3± 124.3 231.1± 131.0 225.8± 110.9

Hemoglobin, mean

± SD

11.5± 2.6 11.4± 2.6 11.6± 2.7

Glucose, mean±

SD

172.3± 99.9 171.0± 104.5 174.7± 90.9

Creatinine, mean±

SD

1.6± 1.5 1.6± 1.6 1.6± 1.4

Anion gap, mean±

SD

16.4± 5.1 15.8± 4.7 17.6± 5.6

PT, mean± SD 17.4± 14.2 17.3± 13.8 17.5± 15.0

PTT, mean± SD 36.4± 21.5 35.9± 20.3 37.2± 23.7

Phosphate, mean±

SD

3.8± 1.5 3.8± 1.4 3.9± 1.6

Lactate, mean± SD 2.3± 2.0 2.1± 1.6 2.6± 2.5

Albumin, mean±

SD

3.2± 0.7 3.2± 0.7 3.1± 0.6

LAR, mean± SD 0.8± 0.7 0.7± 0.6 0.9± 0.9

Myocardial infarct,

n (%)

95 (16.7) 64 (17.3) 31 (15.7)

Congestive heart

failure, n (%)

140 (24.6) 85 (23) 55 (27.8)

Peripheral vascular

disease, n (%)

102 (18.0) 66 (17.8) 36 (18.2)

Cerebrovascular

disease, n (%)

568 (100.0) 370 (100) 198 (100)

Dementia, n (%) 12 (2.1) 6 (1.6) 6 (3)

Chronic pulmonary

disease, n (%)

129 (22.7) 91 (24.6) 38 (19.2)

(Continued)

TABLE 1 (Continued)

Variables Total
(n = 568)

0
(n = 370)

1
(n = 198)

Rheumatic disease,

n (%)

15 (2.6) 10 (2.7) 5 (2.5)

Peptic ulcer disease,

n (%)

12 (2.1) 7 (1.9) 5 (2.5)

Mild liver disease, n

(%)

67 (11.8) 45 (12.2) 22 (11.1)

Severe liver disease,

n (%)

16 (2.8) 11 (3) 5 (2.5)

Diabetes, n (%) 214 (37.7) 141 (38.1) 73 (36.9)

Paraplegia, n (%) 158 (27.8) 101 (27.3) 57 (28.8)

Renal disease, n (%) 129 (22.7) 84 (22.7) 45 (22.7)

Aids, n (%) 4 (0.7) 1 (0.3) 3 (1.5)

Charlson

comorbidity index,

6.9± 2.7 6.7± 2.6 7.3± 2.8

Hemorrhage, n (%) 84 57 27

Atrial fibrillation, n

(%)

254 162 92

DBP, Diastolic Blood Pressure; GCS, Glasgow coma scale; LAR, lactate-to-albumin ratio;

SBP, Systolic Blood Pressure; SOFA, sequential organ failure assessment; WBC, white blood

cell count.

3. Results

3.1. Baseline demographic and clinical
characteristics

Table 1 shows the baseline characteristics of the survival and

non-survival groups. Of the 568 patients who met the inclusion

criteria, 309 (55.4%) were men and the median age was 67.8 (52.1,

83.5) years. The 28-day mortality rate was 34.9%. Non-survivors

were older (P < 0.01) and had lower Glasgow Coma Scale scores,

lower albumin levels (P < 0.05), higher SOFA scores, higher LAR

[0.9 (0, 1.8) vs. 0.7 (0.1, 1.3), P= 0.002], and higher lactate levels (P

< 0.05) than survivors. The other covariates were not significantly

different between the groups (P > 0.05).

3.2. LAR is an independent risk factor for
all-cause mortality within 28 days of
hospital admission

Unadjusted LAR showed a significant association with all-cause

mortality within 28 days of admission [hazard ratio (HR), 1.45;

95% confidence interval (CI), 1.15–1.83; P = 0.002] according to

the results of the univariate COX regression analysis (Table 2). In

the multivariate COX regression analysis (Table 3), LAR remained

significantly associated with higher in-hospital 28-day all-cause

mortality after adjusting for potential confounding factors such as

age, sex, and race (HR, 1.55; 95%CI, 1.23–1.96; P< 0.002) inModel

1. Moreover, in Model 2, which included additional adjustments

for WBC count, anion gap, and SOFA score, LAR remained an
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TABLE 2 Univariate Cox regression models evaluating the association

between LAR and 28-day all-cause mortality with IS.

Item HR (95%CI) P (Wald’s
test)

Sex 1.05 (0.79,1.39) 0.758

Age 1.02 (1.01,1.03) 0.001

Ethnicity: ref. = 1

2 1.08 (0.7,1.68) 0.731

3 0.84 (0.5,1.39) 0.49

4 2.6 (1.83,3.69) <0.001

SBP 1.0001 (0.9951,

1.0052)

0.957

DBP 1.0024 (0.9956,

1.0092)

0.485

SOFA 1.05 (1.01,1.09) 0.022

GCS 0.93 (0.9,0.97) <0.001

WBC 1.03 (1.01,1.05) <0.001

Neutrophils 1.0002 (1, 1.0004) 0.104

Lymphocytes 1.0005 (1, 1.0011) 0.042

Monocytes 1.0024 (1.0003,

1.0045)

0.026

Platelets 0.9998 (0.9987,

1.0009)

0.719

Hemoglobin 1.03 (0.98,1.09) 0.215

Glucose 1.0004 (0.9991,

1.0017)

0.564

Creatinine 1.01 (0.93,1.11) 0.752

Anion gap 1.05 (1.02,1.07) <0.001

Sodium 1.03 (1.01,1.05) 0.011

Potassium 1.11 (0.96,1.28) 0.168

PT 0.9999 (0.9902,

1.0096)

0.982

PTT 1.0021 (0.9959,

1.0083)

0.514

Phosphate 1.08 (0.99,1.19) 0.099

Lactate 1.11 (1.05,1.18) <0.001

Albumin 0.86 (0.7,1.05) 0.138

LAR 1.45 (1.15,1.83) 0.002

Myocardial infarction: 1 vs. 0 0.89 (0.61,1.31) 0.568

Congestive heart failure: 1 vs.

0

1.21 (0.88,1.65) 0.236

Peripheral vascular disease: 1

vs. 0

1.04 (0.73,1.5) 0.822

Dementia: 1 vs. 0 1.53 (0.68,3.46) 0.303

Chronic pulmonary disease: 1

vs. 0

0.76 (0.54,1.09) 0.132

Rheumatic disease: 1 vs. 0 0.9 (0.37,2.18) 0.813

Peptic ulcer disease: 1 vs. 0 1.21 (0.5,2.94) 0.676

Mild liver disease: 1 vs. 0 0.87 (0.56,1.36) 0.549

(Continued)

TABLE 2 (Continued)

Item HR (95%CI) P (Wald’s
test)

Severe liver disease: 1 vs. 0 0.8 (0.33,1.93) 0.613

Diabetes: 1 vs. 0 0.94 (0.71,1.26) 0.692

Paraplegia: 1 vs 0 1.07 (0.78,1.45) 0.681

Renal disease: 1 vs. 0 0.9963 (0.7146,

1.3891)

0.983

Aids: 1 vs. 0 3.39 (1.08,10.61) 0.036

Charlson comorbidity index 1.06 (1.01,1.11) 0.026

Hemorrhage: 1 vs. 0 0.89 (0.59,1.33) 0.556

Atrial fibrillation: 1 vs. 0 1.08 (0.82,1.43) 0.573

DBP, Diastolic Blood Pressure; GCS, Glasgow coma scale; LAR, lactate-to-albumin ratio;

SBP, Systolic Blood Pressure; SOFA, sequential organ failure assessment; WBC, white blood

cell count.

independent predictor of increased mortality risk (HR, 1.32; 95%

CI, 1.03–1.68; P= 0.025).

3.3. ROC curve analysis, RCS curves, and
Kaplan–Meier curve

Figure 2 displays the ROC curves of Model 2 plotted for

predicting all-cause mortality within 28 days after admission of

IS patients, and the AUC of the model was 71.5% (95% CI:

67.1%−75.8%). Additionally, Model 2 had a sensitivity of 75.13%

and a specificity of 58.81%. Based on the Youden index, we selected

the optimal threshold value to divide the IS patients into a high

LAR group (LAR ≥ 0.55, n = 283) and a low LAR group (LAR

< 0.55, n= 285). An RCS analysis was employed to assess the non-

linear relationship between LAR and 28-daymortality in IS subjects

(Figure 3). The Kaplan–Meier survival curves (Figure 4) show that

the mortality rate of the high LAR group was significantly higher

than that of the low LAR group (P= 0.0083).

3.4. Subgroup analysis and forest plots

Figure 5 shows that the correlation between LAR and all-cause

mortality within 28 days of admission of IS patients was stable

across subgroups. The forest plot from the stratified analysis was

performed for age, sex, race, SOFA score, WBC count, anion

gap, ventilation status, and hemorrhagic transformation of cerebral

infarction and showed that LAR had no significant interaction with

each subgroup (interaction P: 0.073–0.735). These results prove

that LAR was an independent prognostic factor.

4. Discussion

This is the first study examining the role of LAR in IS

patients. The results of this retrospective study demonstrated that

the LAR was an independent factor for all-cause mortality in IS

patients without reperfusion therapy within 28 days of hospital
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TABLE 3 Multivariable Cox regression models evaluating the association between LAR and 28-day all-cause mortality with IS.

Variable Crude. HR_95CI Crude_p-value Adj. HR_95CI Adj. _p-value

Model 1

LAR 1.45 (1.15∼1.83) 0.002 1.55 (1.23∼1.96) 0.001

Sex: male 1.05 (0.79∼1.39) 0.758 1.18 (0.88∼1.58) 0.267

Age 1.02 (1.01∼1.03) 0.001 1.02 (1.01∼1.03) 0.001

Ethnicity 1 Ref

Ethnicity 2 1.09 (0.7∼1.7) 0.687 1.13 (0.72∼1.76) 0.601

Ethnicity 3 0.85 (0.51∼1.41) 0.524 0.93 (0.55∼1.55) 0.773

Ethnicity 4 2.55 (1.78∼3.65) 0.001 3.01 (2.09∼4.33) 0.001

Model 2

LAR 1.45 (1.15∼1.83) 0.002 1.32 (1.03∼1.68) 0.025

Sex: male 1.05 (0.79∼1.39) 0.758 1.18 (0.88∼1.58) 0.257

Age 1.02 (1.01∼1.03) 0.001 1.02 (1.01∼1.03) <0.001

Ethnicity 1 Ref

Ethnicity 2 1.09 (0.7∼1.7) 0.687 1.19 (0.76∼1.88) 0.452

Ethnicity 3 0.85 (0.51∼1.41) 0.524 0.94 (0.56∼1.59) 0.821

Ethnicity 4 2.55 (1.78∼3.65) <0.001 3.01 (2.08∼4.35) <0.001

WBC 1.03 (1.01∼1.05) <0.001 1.03 (1.01∼1.05) 0.002

Anion gap 1.05 (1.02∼1.07) 0.001 1.04 (1.01∼1.07) 0.007

SOFA 1.05 (1.01∼1.09) 0.022 1.03 (0.99∼1.07) 0.2

Ethnicity 1, Wihte; Ethnicity 2, Black; Ethnicity 3, Others; Ethnicity 4, Unknown; LAR, lactate-to-albumin ratio; SOFA, sequential organ failure assessment; WBC, white blood cell count.

admission. Our study included 568 patients from the MIMIC-

IV (2.0) database. We conducted COX regression analysis to

determine the independent predictive factors for 28-day mortality

before and after adjusting for confounding factors. We found that

LAR was consistently identified as an independent predictor of

28-day mortality. Additionally, we identified an optimal cutoff

point (0.55), allowing us to construct a Kaplan–Meier curve and

demonstrate that LAR effectively differentiated patients who died

within 28 days. Furthermore, we adjusted for all confounding

factors and created a forest plot, which showed that LAR remained

a stable indicator unaffected by other variables. Therefore, LAR is

reliable for predicting the 28-day mortality of IS patients and can

be used as a novel clinical biomarker.

Lactate is an important indicator of tissue oxygenation, blood

perfusion, and metabolism in the body. Hypoxia-induced acidosis

in brain tissue is a sensitive indicator of brain injury (5). Lactate is a

biomarker of ischemia produced by anaerobic glycolysis (15). Sakal

et al. found that hyperlactatemia was correlated with increased

mortality at 1, 3, and 12 months in IS patients (16, 17). However,

interpreting serum lactate levels is indeed complex. For example,

patients with liver disease may have abnormal lactate metabolism.

Under hypoxic conditions, lactate production may also increase.

Some drugs, such as salbutamol and metformin, can also elevate

lactate levels. In addition, some critically ill patients may have lower

lactate levels in venous blood, which reduces the reliability of lactate

levels alone in predicting patient outcomes (18).

Serum albumin is associated with the outcome of IS (19).

Serum albumin extravasation into the ischemic brain may provide

neuroprotection by limiting metal-catalyzed oxidative stress (20).

Gao et al. found that a decline in serum albumin levels after 90 days

of acute large vessel occlusive stroke was independently associated

with poor prognosis (21). Dziedzic et al. and Babu et al. suggested

that higher serum albumin levels in acute stroke patients could

reduce the risk of adverse outcomes (22, 23).

A meta-analysis (24) including 13,618 patients with acute IS or

transient ischemic attack concluded that low serum albumin levels

could predict adverse functional outcomes andmortality in patients

with these diseases. However, different albumin detection methods

in different studies may have biased the results. In addition, serum

albumin levels are influenced by underlying diseases, nutritional

status, and inflammation, which may limit its prognostic value as

a single measurement. In the present study, we took the ratio of

blood lactate to serum albumin, reducing the influence of a single

factor on the regulatory mechanism by causing inverse changes

through two different mechanisms, thusmore accurately predicting

the outcome for IS patients.

Recently, researchers explored the predictive value of LAR in

the prognosis of neurosurgical diseases. For example, Wang et al.’s

cohort study (12) on the mortality of patients with moderate to

severe traumatic brain injury showed that non-survivors had higher

LAR than survivors (1.09 vs. 0.53, P < 0.001), which was close to

our results. Zhang et al. (13) established a prediction model for
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FIGURE 2

ROC curves of Model 2 for predicting 28-day mortality. Model 2

includes WBC count, anion gap, SOFA score, and LAR.

FIGURE 3

RCS curve for the LAR. Shaded ribbons denote 95% confidence

intervals.

in-hospital mortality of patients with spontaneous subarachnoid

hemorrhage. Independent predictors included age, LAR, anion

gap, and Acute Physiology Score III, which was similar to our

predictionmodel. Their results showed that LARwas closely related

to increased in-hospital mortality of patients with spontaneous

FIGURE 4

Kaplan–Meier survival analysis curves for 28-day all-cause mortality.

subarachnoid hemorrhage. However, studies using LAR to predict

the outcome of ischemic stroke patients have yet to be reported.

Our results also confirmed previous research findings on the

association between WBC count at admission and the prognosis

of patients with ischemic stroke. Zheng et al. demonstrated that

elevated WBC counts are correlated with stroke severity and

adverse major and minor outcomes within a 3-month period (25).

Furlan et al. reported that with each increase of 1×10(-9)/l in WBC

count, there is a proportional rise in stroke severity, degree of

disability at discharge, and 30-day mortality (26).

In addition to WBC count, our study also investigated the

association between the anion gap and the prognosis of patients

with ischemic stroke. Consistent with prior studies, Wang et al.

observed a significant association between elevated AG values and

increased all-cause mortality rates at 1 year, 4 years, and overall

in patients with ischemic stroke who received rtPA treatment

(27). Furthermore, Liu et al. demonstrated that high AG is an

independent risk factor for all-cause mortality at 30 days, 60

days, and 180 days in patients with ischemic stroke (28). These

collective study findings suggest that AG has the potential to

serve as a biomarker for predicting the prognosis of patients with

ischemic stroke.

Patients with IS admitted to the ICU have a higher mortality

rate than other patients with IS. This may explain why the mortality

rate of the patients included in our study was higher than the overall

mortality rate of IS patients. In a study involving 370,386 ICU

patients [including 7,046 (1.9%) stroke patients, with 4,072 having

IS and 2,974 having intracerebral hemorrhage] (29), the short-term

mortality rate of stroke patients admitted to the ICU was higher,

with a 30-day mortality rate of 31% for IS patients, which is similar

to our study.

In our study, LAR could be used as an independent predictor

of 28-day all-cause mortality in IS patients without reperfusion
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FIGURE 5

Forest plot for the subgroup analysis of the relationship between hospital mortality and LAR. Age.cut1, age < 67.8; Age.cut2, age > 67.8; Ethnicity1,

White; Ethnicity2, Black; Ethnicity3, Other; Ethnicity4, Unknown; Sofa.cut1, sofa < 7; Sofa.cut2, sofa > 7; Wbc.cut1, WBC count < 13.1; Wbc.cut2,

WBC count ≥ 13.1; aniogap.cut1, aniogap < 16.4; aniogap.cut2, aniogap > 16.4; for ventilation.status and hemorrhage, 0 means that the value does

not exist and 1 means that it exists.

therapy; it yielded a more accurate prognosis than blood lactate

or serum albumin alone. This will provide medical workers with

a better tool for clinic planning for poor patient outcomes. Further

validation of LAR as a readily available and objective biomarker is

still needed in large-scale multicenter prospective studies.

Our study has some limitations. First, it is a single-center

retrospective cohort study, which cannot elucidate the relationship

between LAR and IS as prospective studies do, to the extent

that our findings need more persuasive power. Second, the

drugs and hospital medical care, which may affect the LAR

of patients with IS, were not recorded, which might bias

our results. Lastly, although potential confounding factors

such as myocardial infarction, congestive heart failure,

peripheral vascular disease, dementia, liver disease, and

hemorrhage were not significantly present in our results,

they should be considered and potentially excluded in future

prospective studies.

5. Conclusion

LAR can serve as an independent predictor of all-cause

mortality within 28 days after admission for IS patients without

reperfusion therapy.
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Do neutrophil extracellular traps 
implicate in atheromatous plaques 
from carotid endarterectomy? 
Re-analyzes of cDNA microarray 
data by surgeons
Ryotaro Takahira †, Kenta Ujifuku †, Tsuyoshi Izumo *, Ang Xie , 
Kazuaki Okamura , Yoichi Morofuji  and Takayuki Matsuo 

Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 
Japan

Background: Carotid artery stenosis is the cause of 15% of strokes. Neutrophil 
extracellular traps (NETs) and peptidyl arginine deiminase 4 (PAD4) are believed 
to be involved in thrombosis. This pilot study described the differential expression 
profile of NETs between atheromatous plaques and surrounding tissues.

Methods: Microarray datasets of carotid plaques were obtained from Gene 
Expression Omnibus. The normalized data were processed into comma-separated 
value matrix files using spreadsheet software. Analyzes of microarray data were 
conducted using integrated differential expression and pathway analysis.

Result: The clustering results illustrated that the classifications of plaque and 
control had reasonable biological validity. Pathway analysis revealed the relevance 
of immune response, cell signaling, and other pathways. Differentially expressed 
genes were detected between carotid plaques and control specimens. However, 
enrichment analyzes did not reveal a difference in PAD4 expression between the 
groups and that NET implication was only found in one cDNA microarray dataset.

Discussion: This pilot study does not necessarily dismiss the possibility of a 
relationship between NETs and atherothrombotic stroke. Gene expression could 
differ between endothelial cells and atheromas, and further studies are needed.

KEYWORDS

atheromatous plaque, carotid endarterectomy, cDNA microarray, neutrophil 
extracellular traps, peptidyl arginine deiminase 4

1 Introduction

Carotid artery stenosis is the cause of 15% of strokes (1, 2). Based on early histopathologic 
studies, ischemic events are associated with intraplaque hemorrhage, ulceration, calcification, 
lipid-rich necrosis, plaque thrombus, macrophage infiltration, and high microvessel 
density (3–6).

Neutrophil extracellular traps (NETs) are specialized structures released by neutrophils. 
NETs were initially believed to form in response to stimuli such as infection and inflammation 
and contribute to the elimination of pathogens such as bacteria and viruses (7). Recently, they 
have been suggested to participate in the regulation of inflammatory responses, blood 
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coagulation, and pathological conditions such as autoimmune diseases 
and thrombosis (8–10). Elevated peptidyl arginine deiminase 4 
(PAD4) levels have been detected in blood samples collected during 
carotid artery stenting, suggesting the involvement of NETs in the 
pathogenesis of atherothrombotic stroke (11).

Microarray and ribonucleic acid sequencing (RNAseq) allow 
comprehensive analyzes of transcriptomes. Genome-wide 
transcriptome analysis is often required in addition to individual gene 
expression analyzes. There are already re-analysis reports of existing 
microarray data (12, 13). However, big data analysis requires 
knowledge of statistics, informatics, and data science, which can pose 
difficulties for general biologists, physicians, and surgeons (14, 15).

In the absence of a bioinformatics expert, this study analyzed 
whether correlations related to NETs could be detected using historical 
carotid plaque-derived complementary deoxyribonucleic acid (cDNA) 
microarray data.

2 Materials and methods

Based on national ethical guidelines, this study did not originally 
fall under the category of research requiring written consent from 
study participants (16). This study was approved by the Institutional 
Review Board (number 23071016). The Gene Expression Omnibus1 
database was examined using the search terms human, carotid artery, 
and endarterectomy. Twelve data were found as of October 2023. 
GSE28829 and GSE43292 datasets, which appeared to compare plaque 
and normal to early atheromatous vessels, were selected for the present 
analysis (Table 1) (17, 18). The downloaded normalized data were 
converted to comma-separated value (CSV) matrix files using 
spreadsheet software. An outline of the strategy used for the GEO 
original data is provided in the Supplementary Files S1–S4. Analyzes 
of microarray data were conducted using integrated Differential 

1 GEO, https://www.ncbi.nlm.nih.gov/geo/.

Expression and Pathway analysis (iDEP) 1.1 (19).2 The detailed 
methods and R session information are provided in the 
Supplementary File S5.

3 Results

3.1 Heatmap, principal component analysis, 
and differential expression analysis

The elimination q-value (false discovery rate [FDR]) was 0.10 in 
the iDEP computation. The clustering results indicated that the 
pre-specified classification of plaque and control specimens had more 
than moderate biological validity (Figures 1A,B). In PCA, principal 
component 1 (PC1) was mainly relevant to immune response, and 
PC2 was related to cell signaling, tissue development, neurogenesis, 
and other pathways (Figure  1C; Supplementary Figure S1). 
Differentially expressed genes (DEGs) of advanced carotid plaque 
were detected. Compared to microscopically normal artery, 87 
upregulated and 60 downregulated DEGs were detected in advanced 
carotid plaque in the GSE43292 dataset (q < 0.1; Figure  2). In 
comparison with early plaques, 396 upregulated and 71 downregulated 
genes were detected in advanced carotid plaque in the GSE28829 
dataset (q < 0.1; Supplementary Figure S1). See the Supplementary Files 
for detailed specific genes (Supplementary Files S6, S8).

3.2 Enrichment and pathway analyzes

Pathway analysis was performed using Generally Applicable 
Gene-set Enrichment for Pathway Analysis (20) and Gene Ontology 
(21), and the selected gene sets were obtained from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (22). The pathway 
significance cutoff (FDR) was 0.2. The main results are summarized 
in Table 2. The NET formation was enriched as a significant pathway 
only in the GSE43292 dataset, and DEGs were presented on the KEGG 
graph. PAD4 was not identified as a DEG in the expression analyzes. 
The two datasets shared the same reduced expression of histone 
deacetylase (HDAC), but differences were observed for histone 
expression (Figure  3; Supplementary Figure S1). See the 
Supplementary Files for detailed specific pathways 
(Supplementary Files S7, S9).

2 http://ge-lab.org/idep/

TABLE 1 Reanalyzed microarray data of carotid endarterectomy specimens.

Authors and Year GEO accession 
number

Examined specimens, 
number

Comparison specimens, 
number

Array

Manca et al. (2011) (18) GSE28829 Advanced lesion (thin or thick 

fibrous cap atheroma), 16

Early lesion (intimal thickening 

and intimal xanthoma), 13

Affymetrix Human Genome 

U133 Plus 2.0 Array

Bricca et al. (2013) (17) GSE43292 Atheroma plaque (stage IV and 

over of the Stary classification) 

containing the core and shoulders 

of the plaque, 32

Distant macroscopically intact 

tissue (stages I and II), 32

Affymetrix Human Gene 

1.0 ST Array [transcript 

(gene) version]

GEO, Gene expression omnibus. The normalized data files are downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/).

Abbreviations: cDNA, complementary deoxyribonucleic acid; CSV, comma-

separated value; DEGs, differentially expressed genes; FDR, false discovery rate; 

GEO, Gene Expression Omnibus; HDAC, histone deacetylase; iDEP, integrated 

Differential Expression and Pathway analysis; KEGG, Kyoto Encyclopedia of Genes 

and Genomes; NETs, neutrophil extracellular traps; PAD4, peptidyl arginine 

deiminase 4; PC, principal component; PCA, principal component analysis; RNAseq, 

ribonucleic acid sequencing.
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4 Discussion

Existing cDNA microarray data on carotid plaques of human 
origin represent a valuable source of information as they can 
be repeatedly analyzed to reflect the latest research, depending on the 
researcher’s interest. Nai et al. reported a re-analysis of the GSE43292 
dataset and explored novel genes and pathways of carotid atheroma 
(12). Gao et al. examined immune cell infiltration between early and 
advanced carotid atheromatous plaque using the GSE28829 dataset 
(13). The cooperation of bioinformatics experts is considered 
essential for the former consideration. On the other hand, the latter 
report uses a web tool and does not necessarily require an expert, 
which could be another option from the present study. Our study 
presented a method for uploading normalized CSV matrix files to the 
iDEP web platform and analyzing the data (see legends in 
Supplementary Files S1–S4). All analyzes were performed on a 

FIGURE 1

Hierarchical clustering heatmap (A) and principal component analysis (B) of advanced (unstable) and early (stable) atherosclerotic arteries from the 
GSE43292 dataset. The clusters are separated according to the pre-specified classification (plaque or normal), and the comparisons are likely to 
be meaningful. (C) GSE43292 pathway analysis of the PCA rotation matrix displays gene groups extracted using the results of principal component 
analysis. Inflammation, immune response, and other pathways were extracted.

FIGURE 2

Differentially expressed genes (DEGs) in the GSE43292 dataset. (A) Compared to the findings for control specimens (microscopically normal artery), 87 
upregulated and 60 downregulated DEGs were detected in advanced carotid plaque (q < 0.1). (B) Heatmap of DEGs in the GSE43292 dataset. See the 
Supplementary Files for detailed data (Supplementary Files S6, S7).

TABLE 2 Enriched pathways in both GSE28829 and GSE 43292 datasets.

Direction Enriched pathway

Downregulated Regulation of muscle contraction

Downregulated Muscle contraction

Downregulated Regulation of muscle system process

Upregulated Immune response

Upregulated Immune system process

Upregulated Defense response

Upregulated Response to other organism

Upregulated Biological process involved in interspecies 

interaction between organisms

Upregulated Inflammatory response

Upregulated Cell activation
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graphical user interface such that the character user interface was 
avoided. As the analysis is performed online, a computer with 
standard performance was sufficient. Some typical cDNA microarray 
and RNAseq analysis methods are available and free of charge for 
scientific use (15, 19). We adopted this method in the present study 
because it allows visualization and display of the NETs’ DEG 
information on the KEGG graph.

The organization of the controls was not consistent in the present 
study (Table 1). Data from GSE28829 compared advanced plaque with 
intimal thickening and intimal xanthoma, and advanced plaque and 
distant macroscopically intact tissues were compared in GSE43292. 
One possible reason for the discrepancies between the results of the 
two datasets in this study could be that the former detected mainly 
DEGs associated with plaque progression, while the latter detected 
mainly DEGs associated with plaque development. The lack of control 
samples compared to the number of validation samples in the 
GSE28829 data may have also affected the results. Conversely, it 
remains nearly impossible to obtain human-derived normal arterial 
tissue as control samples from an ethical viewpoint.

High PAD4 expression was not extracted as a DEG in our 
re-analysis of existing microarray data. This finding is inconsistent 
with that reported by Simonaga et  al. (11). They collected blood 

samples from the luminal side, which could represent a different target 
from our study results, in which atheromas were analyzed. In other 
words, it is possible that different genes could be expressed in vascular 
endothelial cells and atheromas even though both contribute to a 
series of atherosclerotic processes. Therefore, we cannot exclude the 
possibility that NETs are involved in the development of carotid artery 
plaques and their rupture. Clinicopathological studies and single-cell 
comprehensive gene expression analyzes could be helpful for clarifying 
their pathogenesis.

Several limitations to this study warrant mention. Because of the 
inconsistency of the controls, whether they represented normal tissue 
may be debatable (Table 1). Next, microarrays are not chip-compatible, 
making integrated analysis extremely difficult. Then, although the 
results of analyzes of cDNA microarray and RNAseq data can suggest 
certain correlations, causal relationships cannot always be proven. 
Furthermore, scientists should consider the final biological 
interpretation as the results of big data and machine learning do not 
necessarily have biological relevance (15, 23). Finally, this research is 
an analysis that is only possible within the platform created by 
bioinformatics researchers. The need to rely on experts will continue 
to be necessary when detailed fine-tuning or new analysis methods 
are required.

FIGURE 3

Pathway analysis of the GSE43292 dataset described in Kyoto Encyclopedia of Genes and Genomes graph. Neutrophil extracellular trap formation is 
enriched (false discovery rate  <  0.2). Peptidyl arginine deiminase 4 (PAD4) expression was not significantly elevated. Histone deacetylase expression was 
reduced. Bright red indicates most upregulated; bright green, most downregulated. The KEGG pathway map (hsa04613 Neutrophil extracellular trap 
formation) is reprinted with permission from Kanehisa Laboratories (20).

132

https://doi.org/10.3389/fneur.2023.1267136
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Takahira et al. 10.3389/fneur.2023.1267136

Frontiers in Neurology 05 frontiersin.org

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving humans were approved by the Nagasaki 
University Hospital Institutional Review Board. The studies were 
conducted in accordance with the local legislation and 
institutional requirements. The human samples used in this study 
were acquired from another research group. Written  
informed consent for participation was not required from the 
participants or the participants’ legal guardians/next of kin in 
accordance with the national legislation and 
institutional requirements.

Author contributions

RT: Conceptualization, Data curation, Formal analysis, 
Methodology, Writing – original draft, Writing – review & 
editing. KU: Conceptualization, Data curation, Formal analysis, 
Funding acquisition, Methodology, Project administration, 
Resources, Software, Writing – original draft, Writing – review & 
editing. TI: Conceptualization, Formal analysis, Funding 
acquisition, Investigation, Project administration, Supervision, 
Validation, Visualization, Writing – original draft, Writing – 
review & editing. AX: Data curation, Writing – review & editing. 
KO: Writing – review & editing. YM: Funding acquisition, 
Writing – review & editing. TM: Funding acquisition, 
Supervision, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This study was 
supported by Grants-in-Aid for Scientific Research from JSPS 
KAKENHI (C) 20 K09351 (to YM), (C) 21 K09154 (to KU), (C) 
21 K09180 (to TI), and (C) 21 K09129 (to TM) and from Fostering 
Joint International Research 20KK0254 (to YM).

Acknowledgments

The authors would like to pay tribute to the original plaque 
research teams (17, 18), the developers of bioinformatics tools 
(19–22, 24), and the sample donors to GEO. In this study, the 

authors referred to the Online Mendelian Inheritance in Man and 
Ensembl database (25, 26). The R logo is (C) 2016 The R 
Foundation, released under the terms of the Creative Commons 
Attribution-ShareAlike 4.0 International License (CC-BY-SA 4.0; 
https://www.r-project.org) (24). The copyright holder of the 
KEGG pathway map (hsa04613 Neutrophil extracellular trap 
formation) is Kanehisa Laboratories (22). We would also like to 
thank Enago for the English language review.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The reviewer TF declared a shared affiliation with the authors to 
the handling editor at the time of review.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fneur.2023.1267136/
full#supplementary-material

SUPPLEMENTARY DATASHEET 1-4

Data for integrated Differential Expression and Pathway analysis. Matrix data 
were processed using spreadsheet software and saved as CSV files 
(Suppl1GSE28829_series_matrix, and Suppl3GSE43292_series_matrix). 
Attribute data were additionally attached (Suppl2GSE28829_series_attribute, 
and Suppl4GSE43292_series_attribute). When you process original Gene 
Expression Omnibus data, (1) the 1 × 1 cell must be blank data. (2) Paste the 
gene name or ID column from the 2 × 1 cell. Select the column, and specify 
the display format as a character string. (3) Provide the names of the 
specimens from the 1 × 2 cell. (4) Paste the expression data and complete 
the matrix data. (5) Remove the unnecessary description of statistics and 
other data. Unnecessary cells, columns, and rows should be removed. (6) 
Save the matrix as a CSV file. (15) See the Suppl1GSE28829_series_matrix 
and Suppl3GSE43292_series_matrix files for examples.

SUPPLEMENTARY DATASHEET 5

GSE43292 differentially expressed genes.

SUPPLEMENTARY DATASHEET 6

GSE43292 enriched phenomena.

SUPPLEMENTARY FILE 7

GSE28829 differentially expressed genes.

SUPPLEMENTARY FILE 8

GSE28829 enriched phenomena.
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Peripheral blood CD19 positive B 
lymphocytes increase after 
ischemic stroke and correlate with 
carotid atherosclerosis
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Hospital of Soochow University, Suzhou, China, 2 Department of Neurology, Afflliated Changshu 
Hospital of Nantong University, Changshu, China, 3 Department of Clinical Laboratory, The Second 
Affiliated Hospital of Soochow University, Suzhou, China

Introduction: Atherosclerosis is the primary pathological basis of ischemic stroke, 
and dyslipidemia is one of its major etiological factors. Acute ischemic stroke patients 
exhibit imbalances in lymphocyte subpopulations, yet the correlation between these 
dynamic changes in lymphocyte subpopulations and lipid metabolism disorders, as 
well as carotid atherosclerosis in stroke patients remains poorly understood.

Methods: We  retrospectively analyzed the demographic data, risk factors of 
cerebrovascular disease, laboratory examination (lymphocyte subsets, lipid 
indexes, etc.), clinical features and c;/]-sity from December 2017 to September 
2019 and non-stroke patients with dizziness/vertigo during the same period.

Results: The results showed that peripheral B lymphocyte proportions are 
elevated in acute ischemic stroke patients compared with those of the control 
group (13.6  ±  5.3 vs. 11.7  ±  4.4%, p  =  0.006). Higher B lymphocyte proportions 
are associated with concurrent dyslipidemia, increased levels of vascular risk 
factors including triglycerides (TG), total cholesterol (TC), low-density lipoprotein 
cholesterol (LDL-C), and very-low-density lipoprotein cholesterol (VLDL-C), 
as well as decreased levels of the protective factor high-density lipoprotein 
cholesterol (HDL-C). Elevated B lymphocyte proportions are independently 
correlated with carotid atherosclerosis in stroke patients.

Discussion: We found CD19 positive B Lymphocytes increase after ischemic 
stroke and correlate with Carotid Atherosclerosis. Lymphocyte subpopulations 
should be highlighted in stroke patients.

KEYWORDS

B lymphocytes, CD19, lipid metabolism, carotid atherosclerosis, ischemic stroke

1 Introduction

Globally, stroke remained the second-leading cause of death and the third-leading cause of 
death and disability combined in 2019. Ischemic stroke constituted 62·4% of all incident strokes. 
Its high incidence, mortality, and disability rates impose a significant burden on families and 
society (1, 2). Ischemic stroke has many risk factors, with atherosclerosis being its primary 
pathological basis.

Timely and effective treatment within the time window is the key to preventing the 
progression of ischemic stroke and improving its prognosis. Currently, acute-phase treatments 
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for ischemic stroke primarily include ultra-early mechanical 
thrombectomy and intravenous thrombolysis (3), which benefit only 
a minority (<10%) of patients and may lead to hemorrhagic 
transformation (HT), potentially causing early deterioration in 
neurological function, early mortality, and poor prognosis (4). 
Furthermore, even in patients achieving vascular recanalization, 35% 
of them cannot restore effective perfusion and neurological function 
(5). The development of ischemic penumbra imaging techniques has 
made it an attractive and important strategy in the acute phase to 
salvage the ischemic penumbra and improve stroke outcomes (6). 
Research suggests that ischemic stress can activate immune cells, 
trigger inflammation, and programmatic cell death, playing a crucial 
role in the expansion of the ischemic core into the penumbral zone. 
Targeted immunomodulation is expected to improve outcomes in 
patients with ischemic stroke by salvaging ischemic penumbral tissue. 
S1P (Sphingosine 1-phosphate) signaling coordinates vascular 
functions in other organs, and S1P1 modulators including fingolimod 
show promise for the treatment of ischemic and hemorrhagic stroke. 
S1P coordinates lymphocyte trafficking, and lymphocytes are 
currently viewed as the principal therapeutic target for S1P1 
modulation in stroke (7, 8). Professor Shi Fudong’s team in China 
discovered in animal models that the lymphocyte modulator 
fingolimod can reduce infarct size, improve collateral circulation, and 
enhance blood–brain barrier integrity (9–11). Dr. Francisco Campos’ 
team at Massachusetts General Hospital found in a mouse middle 
cerebral artery ischemia model that fingolimod treatment can alleviate 
ischemia-induced neurofunctional deficits, reduce infarct size, 
improve the neurofunctional outcome of thrombolysis therapy, and 
decrease the risk of hemorrhagic transformation when used in 
combination with t-PA. In patients with acute and anterior cerebral 
circulation occlusion stroke, oral fingolimod within 72 h of disease 
onset was safe, limited secondary tissue injury from baseline to 7 d, 
decreased microvascular permeability, attenuated neurological 
deficits, and promoted recovery. Extending the t-PA treatment 
window to 72 h (12, 13) suggests that targeted modulation of 
lymphocyte subpopulations in combination with thrombectomy/
thrombolysis therapy holds promise as a prospective treatment 
strategy in the acute phase of ischemic stroke.

B Lymphocyte subpopulations play crucial regulatory roles by 
generating germinal centers, producing antibodies, and cytokines 
during both the acute and recovery phases of ischemic stroke (14). 
Atherosclerosis is the main pathological basis of ischemic stroke, and 
lipid metabolism disorders are the core link in the occurrence and 
progression of atherosclerosis. Monoclonal antibodies against B cell 
surface molecules (e.g., CD20) and survival factors (e.g., BAFF) have 
been shown to have a protective effect in atherosclerotic animal 
models (15–17), and targeting depletion of the B-cell surface 
co-stimulatory molecules CD80 and CD86 can slow the development 
of atherosclerosis (18).

Different B lymphocytes play different roles in the different stage 
of stroke. In the acute stage of stroke, using an anti-CD20 antibody 
Pharmacologic depletion of B cells, lack of circulating B cells in 
JHD−/− mice or reconstitution of Rag1−/− mice with B cells did not 
influence infarct volumes and functional outcome at day 1 and 3 after 
stroke (19), but cell adoptive transfer to mice reduced infarct volumes 
3 and 7 d after transient middle cerebral artery occlusion. B cell 
depletion by rituximab reduced stroke-induced hippocampal 
neurogenesis and cell survival (20), IL-10-producing B-cells limit CNS 

inflammation and infarct volume in experimental stroke (21, 22). 
Whole-brain volumetric serial two-photon tomography (STPT) and 
a custom-developed image analysis pipeline visualized and quantified 
poststroke B cell diapedesis throughout the brain showed that B cells 
migrate into remote brain areas regulating motor and cognitive 
functions and support neurogenesis and functional recovery after 
focal stroke in mice (20). However, B lymphocytes are involved in the 
development of post-ischemic stroke cognitive impairment by 
producing antibodies, μ MT (B-cell deletion) mice do not have 
delayed cognitive deficits, and the B-cell-targeted drug rituximab can 
reduce post-stroke cognitive impairment (23, 24).

These foundation show that targeted B-cell therapy has the 
potential to improve the prognosis of patients by regulating 
atherosclerosis, reducing thrombolytic hemorrhagic transformation, 
prolonging the window period of thrombolytic therapy, alleviating 
cognitive impairment after stroke, and participating in the whole 
process of ischemic stroke. However, the dynamics of lymphocyte 
subsets after ischemia and the key lymphocyte subsets that regulate 
ischemic brain tissue are unclear. This study aims to analyze the 
changes of peripheral blood lymphocyte subsets in patients with acute 
ischemic stroke, focusing on the correlation between B-cell subsets 
and lipid metabolism disorders as well as carotid atherosclerosis, the 
key risk factors of stroke. In order to provide a reference for the 
promotion of immunointerventional therapy for ischemic stroke.

2 Materials and methods

2.1 General materials

Retrospective data collection was conducted on acute ischemic 
stroke patients admitted to the Department of Neurology, Second 
Affiliated Hospital of Soochow University, from December 2017 to 
September 2019. This study was approved by the Ethics Committee of 
the Second Affiliated Hospital of Soochow University (EC-AF(SQ)-
12/20210601). Inclusion Criteria: Meet the diagnostic requirements of 
the “Chinese Guidelines for the Diagnosis and Treatment of Acute 
Ischemic Stroke 2018” (25), and confirm that there is a new cerebral 
infarction by MRI, and the onset is within 2 weeks. Exclusion criteria 
included: ① Concomitant autoimmune diseases, tumors, blood 
disorders, tuberculosis, or related conditions; ② History of infectious 
diseases or trauma within three months; ③ Use of antibiotics, 
hormones, or immunosuppressive agents within three months; and ④ 
Incomplete information.

2.2 Grouping

Based on the inclusion and exclusion criteria, 416 cases of acute 
ischemic stroke were included as the observation group. Additionally, 
60 patients admitted during the same period with dizziness/vertigo 
but without vascular diseases were included as the control group. 
There were no significant differences in baseline characteristics, 
including age and gender, between the observation and control groups.

To investigate the dynamic changes of peripheral blood 
lymphocytes at different phases after ischemic stroke, sixty cases of 
acute ischemic stroke patients were randomly selected. The levels of 
their lymphocytes were compared with those of 55 cases of transient 
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ischemic attack patients (characterized by brief attacks that could 
recur and lack of imaging evidence of cerebral infarction), 21 cases of 
patients in the recovery phase of ischemic stroke (onset more than six 
months prior), and 47 cases of patients in the sequelae phase (onset 
more than one year prior).

2.3 Determination of clinical characteristics

Carotid atherosclerosis was defined as an intima-media thickness 
greater than or equal to 1 or the presence of plaques by carotid 
ultrasound. Additionally, several factors defined the risk of 
cerebrovascular diseases: ① Comorbidities: hypertension, diabetes, 
coronary heart disease, atrial fibrillation; ② Personal history: current 
smoking, current alcohol consumption; and ③ Medication history: 
antihypertensive drugs, antidiabetic drugs, statins, antiplatelet drugs. 
Medical history was defined as having a history, having no history but 
a history of medication, or being diagnosed during the current 
hospitalization. Current smoking was defined as smoking at least one 
cigarette per day for at least one year and currently reporting smoking. 
Current alcohol consumption was defined as consuming any type of 
alcoholic beverage at least once a week in the past three years.

2.4 Data collection

Demographic data, cerebrovascular disease risk factors, laboratory 
tests (lymphocyte subpopulations, lipid profiles), clinical 
characteristics, and carotid ultrasound results were collected. 
Laboratory tests were uniformly performed on the second day after 
admission. Venous blood was collected in the morning to measure the 
proportions of various lymphocyte subpopulations and lipid profiles. 
Lymphocyte subpopulations included T lymphocytes (CD3+), T 
helper/inducer lymphocytes (CD4+), T cytotoxic/suppressor 
lymphocytes (CD8+), natural killer (NK) lymphocytes 
(CD16 + CD56 + CD3-), and B lymphocytes (CD19+). Clinical 
characteristics included admission time, baseline systolic and diastolic 
blood pressure, National Institute of Health Stroke Scale (NIHSS) 
score at admission and on the third day, post-stroke infections, 
progressive stroke, and other data. Carotid ultrasound primarily 
assessed intima-media thickness and the presence of plaques in the 
left and right carotid arteries. Vascular recanalization treatment 
included intravenous thrombolysis or arterial thrombectomy. 
Functional assessments were performed using the modified Rankin 
Scale (mRS) at discharge and one year later to evaluate prognosis.

2.5 Statistical methods

Statistical analysis was conducted using SPSS 26 and GraphPad 
8.0 software. Two-tailed tests were performed, and p-values less than 
0.05 were considered statistically significant. Continuous data were 
presented as mean ± standard deviation or median (25th–75th 
percentile). The Shapiro–Wilk test was used to assess normality, and 
independent sample t-tests were applied for normally distributed data; 
otherwise, non-parametric tests were used. Count data were expressed 
as numbers (constituent ratios), and group comparisons were made 
using the chi-square test.

Single-factor logistic regression and binary logistic regression 
were used to analyze the correlation of atherosclerosis. B lymphocytes 
were grouped according to quartiles, and data were presented as odds 
ratios (OR) and 95% confidence intervals (CI). The Receiver Operating 
Characteristic (ROC) curve was used to calculate the optimal 
diagnostic threshold for adverse outcomes and carotid atherosclerosis.

3 Results

3.1 Clinical characteristics of acute 
ischemic stroke patients and dizziness/
vertigo control group patients

Compared to the control group (patients with dizziness/vertigo), 
the observation group (acute ischemic stroke patients) showed no 
significant differences in age or gender. However, a significantly higher 
prevalence of hypertension, diabetes, smoking history, alcohol 
consumption history, and antiplatelet drug usage was observed in the 
observation group. Additionally, the proportion of B lymphocyte 
subpopulations (13.6 ± 5.3 vs. 11.7 ± 4.4%, p = 0.006) was significantly 
higher in the observation group than in the control group. There were 
no statistically significant differences in the proportions of other 
lymphocyte subpopulations, including T lymphocytes, T helper/
inducer lymphocytes, T cytotoxic/suppressor lymphocytes, and NK 
lymphocytes (See Figure  1; Table  1). Furthermore, there were no 
significant differences in various lipid parameters (TG, TC, HDL-C, 
VLDL-C, and LDL-C).

3.2 Dynamic changes in peripheral blood 
lymphocyte subpopulations at different 
phases of cerebral ischemia

Based on the timing of cerebral ischemic events, patients were 
divided into the acute phase, recovery phase, and sequelae phase. 
A total of 60 patients with acute ischemic strokes were randomly 
selected. In addition, 55 patients with transient ischemic attacks, 
21 patients in the recovery phase, and 47 patients in the sequelae 
phase were enrolled. The proportions of various lymphocyte 
subpopulations in these groups were compared to a control group 
of 60 patients with dizziness/vertigo. No significant differences 
were observed in the proportions of T lymphocytes, T helper/
inducer lymphocytes, T cytotoxic/suppressor lymphocytes, or NK 
lymphocytes compared to the control group. However, the 
proportion of B lymphocytes was significantly higher in both 
transient ischemic attack (13.9 ± 5.1% vs. 11.7 ± 4.4%, p = 0.019) 
and acute ischemic stroke (14.1 ± 5.3% vs. 11.7 ± 4.4%, p = 0.006) 
groups compared to the control group, indicating statistical 
significance (see Figures 2A,B).

Subsequently, acute ischemic stroke patients were grouped based 
on hospital admission time: one day, three days, one week, and two 
weeks, consisting of 232 cases, 105 cases, 44 cases, and 35 cases, 
respectively. These groups were compared to the control group. The 
proportion of B lymphocytes was significantly higher in the first day 
(14.7 ± 4.9% vs. 11.7 ± 4.4%, p = 0.006), third day (14.4 ± 4.9% vs. 
11.7 ± 4.4%, p = 0.028), and first week (13.7 ± 4.4% vs. 11.7 ± 4.4%, 
p = 0.025) compared to the control group. However, by the second 
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week (13.4 ± 6.2% vs. 11.7 ± 4.4%, p = 0.132), the proportion had 
decreased to baseline levels (see Figure 2C).

3.3 Relationship between peripheral blood 
B lymphocyte proportions and clinical 
characteristics

Based on whether the proportion of peripheral blood B 
lymphocytes exceeded the control group’s average of 11.7%, B 
lymphocytes were divided into two groups: “Blow” and “Bhigh.” 
Clinical characteristics between these two groups were compared 
(see Table 2). Patients in the B lymphocyte low proportion group 
differed significantly from those in the high proportion group in 
terms of age (67 ± 13.2 vs. 63 ± 13.9, p = 0.001) and gender (126 
(75%) vs. 153 (61%), p = 0.003), indicating that younger and female 
ischemic stroke patients had a higher proportion of B cells. 
Significant differences were observed in various blood lipid 
indicators, with the high B lymphocyte proportion group showing 
higher lipid levels. Specifically, the lipid indicators in the Blow and 
Bhigh groups were as follows: TG (1.63 ± 2.04 vs. 1.7 ± 1.08 mmol/L, 
p = 0.001), TC (4.59 ± 1.34 vs. 4.79 ± 1.10 mmol/L, p = 0.028), 
HDL-C (1.18 ± 0.32 vs. 1.09 ± 0.32 mmol/L, p = 0.002), VLDL-C 
(0.81 ± 0.87 vs. 0.82 ± 0.41 mmol/L, p = 0.003), and LDL-C 
(2.61 ± 0.89 vs. 2.88 ± 0.96 mmol/L, p = 0.005). The proportion of 
carotid artery atherosclerosis in the Bhigh group was significantly 
higher at 41% compared to the 16% in the Blow group.

3.4 Correlation analysis between B 
lymphocytes and carotid atherosclerosis

Among the included acute ischemic stroke patients, 208 cases 
underwent carotid ultrasound. They were divided into a carotid 
atherosclerosis group with 149 cases and a non-carotid 
atherosclerosis group with 59 cases. The correlation between 

lymphocyte subgroups and carotid atherosclerosis was analyzed. 
Single-factor analysis revealed that a decrease in the proportion of 
T lymphocytes (66.3 ± 8.5 vs. 69.4 ± 9.0%, p = 0.032), a decrease in 
the proportion of T cytotoxic/suppressor lymphocytes (22.4 ± 7.6 
vs. 25.4 ± 8.6%, p = 0.017), and an increase in the proportion of B 
lymphocytes (14.9 ± 4.6 vs. 11.0 ± 4.7%, p < 0.001) were associated 
with carotid atherosclerosis, with p-values of 0.032, 0.017, and less 
than 0.001, respectively (see Table  3). The B lymphocyte 
proportions were divided into four groups based on quartiles, with 
the first quartile as the reference. Single-factor analysis showed that 
the second, third, and fourth quartile groups all had significant 
associations, indicating that an increased proportion of B 
lymphocytes increased the risk of carotid atherosclerosis. Even 
after adjusting for confounding factors, the results remained 
significant. The risk of carotid atherosclerosis in the third quartile 
group was 7.68 times that of the first quartile group (95% 
confidence interval 2.98–19.79, p = 0.002), and the risk in the 
fourth quartile group was 7.71 times that of the first quartile group 
(95% confidence interval 2.98–19.93, p = 0.002) (see Table 4). The 
OR decreases from group III to group IV, which indicated that as 
the proportion of B lymphocytes increases, the risk of 
atherosclerosis increases. ROC curve analysis showed that the 
optimal cutoff value for diagnosing carotid atherosclerosis based 
on the B lymphocyte proportion was 11.8, with a sensitivity of 
79.8%, specificity of 70.9%, and an area under the curve of 0.745 
(see Figure 3).

4 Discussion

Circulating lymphocytes changes following ischemic stroke are 
associated with increased susceptibility to infection and poor patient 
outcome due to their role in exacerbating the ischemic injury and 
long-term disability. Global understanding of early changes to 
systemic immunity is critical to identify immune targets to improve 
clinical outcome. However, changes in the number of immune cells at 

FIGURE 1

Changes in the proportion of lymphocyte subsets to controls in patients with acute ischemic stroke. ns indicates no difference, * indicates P less than 
0.05 vs. control group.
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different stage after stroke remain controversial. Some evidence 
revealed a rapid decline in lymphocytes and NK cells in blood early 
after stroke (26), while other studies showed differential responses in 
different immune cell populations (27–29). A possible explanation is 
that signs of strong immunosuppression after stroke do not have the 
same effect on all lymphocyte subsets, which is related to lymphocyte 
subset specificity (30). In this study, we observed prominent increase 
in B cells after stroke. One interesting finding is that the proportion of 
B lymphocytes is related to age and gender, with higher proportions 
observed in young individuals and female patients. This correlation 
may be  linked to the more active immune system in these two 
demographic groups, although the underlying mechanisms require 
further investigation.

Different B cell subsets have been proposed on the basis of 
expression levels of transcription factors as well as specific surface 
proteins. Peripheral blood B cells can be  divided into 8 

continuously differentiated subsets by the expression of 
immunoglobulin M (IgM), Ig D, CD10, CD19, CD24, CD27 and 
CD38, followed by Immature B, T1 Transitional B, T2 Transitional 
B, T3 Transitional B, Naive B, Unswitched Memory B, and Switched 
Memory B, Plasmablast. Different B cells play different roles in 
atherosclerosis and ischemic stroke (31–33). More and more 
findings allude to the potential candidacy of these subpopulations 
as therapeutic targets in the realm of ischemic stroke prevention 
and management.

Atherosclerosis constitutes a major pathological mechanism 
underlying ischemic stroke, wherein the accumulation of oxidized 
lipids associated with lipid metabolism abnormalities within the 
vascular wall is a central process in atherosclerotic development and 
progression (34). Analysis of genome-wide association and 
transcriptomic data suggests the involvement of B cells in the 
formation of atherosclerosis, and the activation and proliferation of B 

TABLE 1 The demographic characteristics, risk factors, and clinical parameters of the study population.

Acute ischemic stroke n =  416 Control n =  60 p value

Demographic information

Age 64 ± 13.8 61 ± 14.3 0.120

Male (%) 279 (67) 38 (63) 0.566

Comorbidities n (%)

Hypertension 307 (74) 35 (58) 0.013

Diabetes 115 (28) 7 (11) 0.008

Coronary heart disease 28 (7) 3 (5) 0.612

Personal history n (%)

Smoking now 143 (34) 10 (17) 0.006

Drinking now 96 (23) 3 (5) 0.001

Medication history n (%)

Antihypertensive drugs 245 (59) 31 (52) 0.289

Hypoglycemic drugs 94 (23) 7 (12) 0.053

Statins 53 (13) 3 (5) 0.082

Antiplatelet drugs 66 (16) 2 (3) 0.010

Laboratory examination (lymphatic n %, blood lipid mmol/L)

T lymphocytes 67.7 ± 9.2 69.1 ± 11.3 0.255

T-helper/inducible lymphocytes 41.3 ± 8.4 42.1 ± 9.3 0.458

T-killing/suppressor lymphocytes 23.5 ± 7.9 24.4 ± 8.4 0.388

B lymphocytes 13.6 ± 5.3 11.7 ± 4.4 0.006

NK lymphocytes 17.1 ± 8.9 17.2 ± 8.4 0.994

TG 1.68 ± 1.54 1.76 ± 1.30 0.607

TC 4.71 ± 1.20 4.83 ± 0.95 0.425

HDL-C 1.13 ± 0.32 1.22 ± 0.43 0.054

VLDL-C 0.82 ± 0.64 0.87 ± 0.55 0.527

LDL-C 2.77 ± 0.94 2.77 ± 0.80 0.995

Clinical features

Time of onset (h) 53 ± 61.9

Baseline systolic blood pressure (mmHg) 150 ± 23.3

Baseline diastolic blood pressure (mmHg) 83 ± 14.7

Admission NIHSS score 4 (2–5)

Bold: p < 0.05.
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cells are significant risk factors in the development of ischemic 
cerebrovascular diseases (35). This study revealed that among various 
lymphocyte subpopulations, elevated levels of B cell subsets in 
ischemic stroke patients are significantly correlated with 
atherosclerosis and lipid metabolism abnormalities. Patients with 
higher levels of B lymphocyte subsets exhibited an increased incidence 
of carotid artery sclerosis (41% vs. 16%), along with elevated levels of 
detrimental lipid parameters including triglycerides (TG), total 
cholesterol (TC), very low-density lipoprotein cholesterol (VLDL-C), 
and low-density lipoprotein cholesterol (LDL-C), accompanied by 
reduced levels of protective high-density lipoprotein cholesterol 
(HDL-C). As B lymphocyte levels rose, the occurrence and severity of 
atherosclerosis also increased. A higher proportion of B lymphocytes 
(optimal threshold at 11.8%) demonstrated elevated sensitivity 
(79.8%) and specificity (70.9%) in diagnosing atherosclerosis. 
Although the mechanism by which B cells regulate lipid metabolism 
and atherosclerosis remains to be investigated. These suggest that B 
cell subpopulations might participate in the regulation of 
atherosclerosis and contribute to the modulation of ischemic stroke. 
Thus, targeted therapies involving B cells could potentially play a 
significant regulatory role in both the prevention and treatment of 
ischemic stroke, benefiting patients.

However, animal experimentation results indicate that after 
receiving whole spleen B cell transplantation, mice with splenectomy 
and apolipoprotein E knockout (ApoE−/−) exhibited significantly 

reduced aortic root atherosclerotic plaques, showing a protective role 
of B cells in atherosclerosis. Employing univariate and multivariate 
Cox proportional hazard models to scrutinize the relationship 
between B cell subtypes, circulating antibodies, and secondary 
cardiovascular incidents over a 3-year follow-up period, it has been 
discerned that specific B cell subgroups possess inherent potential in 
prognosticating and preventing secondary cardiovascular events in 
patients afflicted by atherosclerosis (36, 37). These datas suggest that 
the main focus of work to find the immune intervention targets for 
prevention and treatment of atherosclerotic diseases should be to find 
the main pathogenic B-cell subsets.

Following an ischemic stroke event, B cells exhibit a sustained 
presence within cerebral tissues. In murine models, B cells have been 
identified in the brain up to 10 weeks post-stroke, while human 
ischemic stroke patients continue to exhibit elevated peripheral B cell 
levels beyond the 12-week mark post-ischemia. Furthermore, the 
synthesis of immunoglobulins in the cerebrospinal fluid of stroke 
patients persists for several months post-ischemia (38). Our study also 
found an increase in peripheral B cells after stroke, which increased 
continuously for at least 7 days, decreased to baseline levels by two 
weeks. Unfortunately, because this study was retrospective, the 
dynamic changes of lymphocytes in each patient could not 
be observed. Future prospective studies are expected to fill this gap.

Different B cell subpopulations exhibit distinct regulatory 
functions at various stages of the post-stroke period. On one hand, B 

FIGURE 2

Dynamic changes of peripheral blood lymphocyte sub-groups in control group and patients with transient ischemic attack (TIA), acute ischemic 
stroke, stroke recovery period, stroke sequelae phase. (A) TIA vs. control group, p  = 0.019; acute ischemic stroke vs. control group, p  = 0.006; (B,C). 
*indicates p  <  0.05, **indicates p  <  0.01 vs. control group.
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cells are a major source of brain-derived neurotrophic factor (BDNF), 
and their neurotrophic capabilities penetrate the post-stroke brain, 
inducing early antigen-independent protection against ischemic 

injury, participate in the restoration of neural plasticity in cerebral 
motor and cognitive regions, serving as a defense mechanism against 
potential recurrent immune injuries (20). On the other hand, they can 
adversely affect the hippocampus by generating antibodies, activating 
the complement system, leading to delayed cognitive impairments, 
and potentially infiltrating neighboring unaffected healthy tissues, 
thereby exacerbating the pathological condition (23, 24).

Over the years, many scholars have done a lot of work in trying to 
discover disease-causing B cell subsets. CD19 + CD86 + B cells are 
associated with pro-inflammatory factor release, carotid artery stenosis, 
and high risk of stroke. CD19 + CD40+ B cells are associated with a low 
risk of stroke (39). Depletion of B2 cells with monoclonal antibody against 
CD20 or BAFF receptor or BAFF receptor-deficient mice improves 
atherosclerosis. B2 cells can promote atherosclerosis by producing IgG, 
secreting pro-inflammatory cytokines, and activating CD4 T cells (15, 
16). CD11 bhigh B cells regulate microglia phenotype and increase 
microglia phagocytosis in both ex vivo and in vivo settings, likely by 
production of regulatory cytokines (e.g., TNF-α). As both APCs and 
adaptive immune cells with long-term memory function, B cells are 
uniquely positioned to regulate acute and chronic phases of the post-
stroke immune response, and their influence is subset specific (40). B cells 
producing IL-10 and Treg cells exert their influence by modulating 
neutrophils, thereby mitigating inflammatory responses and reducing 
infarct size (41). Notably, memory B cells have demonstrated a positive 
correlation with improved postoperative outcomes in patients undergoing 
carotid endarterectomy (42).

In conclusion, B cell-targeted therapy emerges as a promising and 
complementary approach for the treatment of ischemic stroke. Its 
potential benefits lie in its ability to extend the therapeutic window, 
minimize hemorrhagic complications, and its relevance across the 
pre-onset, acute, and chronic phases of the disease. However, it’s 
essential to recognize that different subpopulations of B cells exert 
distinct regulatory functions during various stages of ischemic stroke, 
driven by the dynamic changes in the immune milieu. This study, 
being retrospective and single-center with a relatively modest sample 
size, presents certain limitations. Furthermore, it lacks the dynamic 
tracking of lymphocyte subpopulation alterations in individual 
patients. Future research should focus on expanding the sample size 
and conducting comprehensive, systematic investigations into the 
dynamics of B cell subpopulations following ischemic stroke. This will 
entail gaining deeper insights into the dynamic changes in B 
lymphocyte subpopulations in acute ischemic stroke patients, 
conducting in-depth exploration of the roles played by diverse B cell 
subpopulations at different stages of ischemic stroke, and delving into 
the identification of key subgroups and core mechanisms through 
which B cells regulate ischemic stroke. In terms of intervention 
assessment, it is imperative to consider both short-term and long-term 

TABLE 2 Comparison of baseline information of lymphocytes in Blow and 
Bhigh groups.

Blow 
n =  167

Bhigh 
n =  249

p value

Demographic information

Age 67 ± 13.2 63 ± 13.9 0.001

Male (%) 126(75) 153(61) 0.003

Past history n (%)

Stroke 40(24) 49(19) 0.297

Hypertension 131(78) 176(71) 0.078

Diabetes 45(27) 70(28) 0.794

Coronary heart disease 15(9) 13(5) 0.133

Atrial fibrillation 17(10) 23(9) 0.749

Personal History n (%)

Smoking now 49(29) 94(37) 0.077

Drinking now 38(23) 58(23) 0.898

Medication history n (%)

Antihypertensive drugs 104(62) 141(57) 0.251

Glucose-lowering drugs 36(22) 58(23) 0.678

Statin 26(16) 27(11) 0.156

Antiplatelet agents 28(17) 38(15) 0.680

Laboratory tests (mmol/L)

TG 1.63 ± 2.04 1.7 ± 1.08 0.001

TC 4.59 ± 1.34 4.79 ± 1.10 0.028

HDL-C 1.18 ± 0.32 1.09 ± 0.32 0.002

VLDL-C 0.81 ± 0.87 0.82 ± 0.41 0.003

LDL-C 2.61 ± 0.89 2.88 ± 0.96 0.005

Clinical characteristics

Time to onset of disease (h) 58 ± 69.6 50 ± 56.1 0.556

Baseline systolic blood 

pressure(mmHg) 150 ± 23.9 150 ± 23.0 0.807

Baseline diastolic blood 

pressure(mmHg) 82 ± 15.7 83 ± 14.1 0.480

Admission NIHSS score 4(2–6) 4(2–5) 0.428

Carotid ultrasound

Carotid athe% 26(16) 103(41) <0.001

Bold: p < 0.05.

TABLE 3 Univariate analysis of carotid atherosclerosis patients and lymphocyte subsets.

Total Non-atherosclerosis 
n =  59

Carotid atherosclerosis 
n =  149

p value

T lymphocyte 67.5 ± 8.9 69.4 ± 9.0 66.3 ± 8.5 0.032

T-helper/induced lymphocytes 41.1 ± 8.2 40.2 ± 9.6 41.6 ± 7.3 0.402

T kills/inhibits lymphocytes 23.6 ± 8.1 25.4 ± 8.6 22.4 ± 7.6 0.017

B lymphocytes 13.4 ± 5.0 11.0 ± 4.7 14.9 ± 4.6 <0.001

NK lymphocytes 17.7 ± 9.2 18.0 ± 9.2 17.4 ± 9.1 0.515

Bold: p < 0.05.
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FIGURE 3

B lymphocytes predict ROC curves for carotid atherosclerosis.

outcomes, including cognitive function evaluations. Ultimately, if 
specific B cell subpopulations that play pivotal pathogenic roles in 
post-ischemic brain tissue damage can be  pinpointed in clinical 
practice, and if targeted interventions are demonstrated to benefit 
stroke patients, this research may provide pivotal guidance for the 
clinical translation of immunomodulatory interventions as therapeutic 
targets in ischemic stroke.
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TABLE 4 Relationship between different levels of B lymphocytes and carotid atherosclerosis.

Before adjustment * After adjustment

B lymphocyte% OR value 95% confidence 
interval

p-value OR value 95% confidence 
interval

p-value

Group I (≤9.9) 1 1

Group II (9.9–13.1) 3.44 1.54–7.69 0.003 3.2 1.40–7.34 0.006

Group III (13.1–17.0) 9.84 3.93–24.61 0.001 7.68 2.98–19.79 0.002

Group IV (>17) 9.6 3.83–24.04 0.001 7.71 2.98–19.93 0.002

*Smoking, alcohol consumption, T lymphocytes, and T killer/suppressed lymphocytes were included in the regression model.
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Objective: Prolonged sleep onset latency (PSOL) and age have been linked 
to ischemic stroke (IS) severity and the production of chemokines and 
inflammation, both of which contribute to IS development. This study aimed to 
explore the relationship between chemokines, inflammation, and the interplay 
between sleep onset latency (SOL) and age in influencing stroke severity.

Methods: A cohort of 281 participants with mild to moderate IS was enrolled. 
Stroke severity was assessed using the National Institutes of Health Stroke Scale 
(NIHSS), and SOL was recorded. Serum levels of macrophage inflammatory 
protein-1alpha (MIP-1α), macrophage inflammatory protein-1beta (MIP-1β), 
monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and tumor 
necrosis factor-alpha (TNF-α) were measured.

Results: NIHSS scores of middle-aged participants with PSOL were significantly 
higher than those with normal sleep onset latency (NSOL) (p  =  0.046). This 
difference was also observed when compared to both the elderly with NSOL 
(p  =  0.022), and PSOL (p  <  0.001). Among middle-aged adults with PSOL, MIP-
1β exhibited a protective effect on NIHSS scores (β  =  −0.01, t  =  −2.11, p  =  0.039, 
R2  =  0.13). MIP-1α demonstrated a protective effect on NIHSS scores in the 
elderly with NSOL (β  =  −0.03, t  =  −2.27, p  =  0.027, R2  =  0.12).

Conclusion: This study reveals a hitherto undocumented association between 
PSOL and IS severity, along with the potential protective effects of MIP-1β in 
mitigating stroke severity, especially among middle-aged patients.
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1 Introduction

Stroke is considered the second leading cause of death worldwide and remains a significant 
cause of disability in both developed and developing countries (1). Ischemic stroke accounts 
for almost 70% of all stroke cases (1). There is a rich literature available substantiating that 
prolonged sleep onset latency (PSOL) and age can determine stroke severity (2–4). However, 
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the precise mechanisms by which PSOL and age impact the 
development of ischemic stroke (IS) remain incompletely understood.

Sleep onset latency (SOL) is the amount of time it takes a person 
to fall asleep in bed, and represents an important marker for assessing 
sleep quality (5). PSOL is one of the main manifestations of sleep 
structural changes in ischemic stroke (6). Studies have demonstrated 
a positive correlation between PSOL and the prevalence of stroke; 
short SOL was associated with a 36% reduction in the risk of stroke, 
while PSOL was also related to the severity of IS symptoms (7), 
suggesting that shorter SOL may protect against stroke (2). In 
addition, it has been shown that sleep onset latency is prolonged with 
aging (8), and aging is a significant factor affecting stroke (3). Besides, 
stroke tends to occur predominantly in the elderly, and its incidence 
and severity are closely related to age (3, 9, 10). Consistently, a study 
revealed that the severity of strokes tended to increase with increasing 
age (10). In contrast, a growing body of evidence suggests the “younger 
stroke” phenomenon is gaining prominence as a pressing public health 
issue, marked by a rising occurrence of strokes among individuals 
considered “younger” (those under 50 years of age) (11, 12). 
Consequently, SOL and age have been established as risk factors for 
ischemic stroke. Nonetheless, the underlying pathophysiological 
mechanisms governing their interplay in influencing the severity of IS 
remain uncertain.

Prolonged sleep onset latency can lead to a series of sleep-related 
issues that exacerbate stroke severity by triggering a systemic 
inflammatory response (13–16). In addition, prior investigations have 
shown that PSOL is exacerbated with age (17). However, recent 
research has indicated prolonged sleep onset latency even among 
middle-aged individuals, indicating a close relationship between SOL 
and age (18). Interestingly, age also impacts stroke severity through its 
influence on inflammation (19). Chemokines, as small molecular 
proteins, play a crucial role in the immune and inflammatory 
responses after stroke, which are involved in the processing of 
neovascularization, neurogenesis, and neural network reconstruction 
(20). Chemokines are cytokines attracting selective leukocyte subsets 
and subgrouping into the four major subfamilies, CC, CXC, C, and 
CX3C. macrophage inflammatory protein-1 alpha (MIP-1α), 
macrophage inflammatory protein 1beta (MIP-1β), and monocyte 
chemoattractant protein-1 (MCP-1) are the three best-known and 
most extensively studied CC chemokines in primary and secondary 
inflammatory responses in humans (21, 22). An increasing body of 
literature suggests that chemokines and cytokines, such as high levels 
of MIP-1α, MIP-1β, MCP-1, interleukin-6 (IL-6) and tumor necrosis 
factor-alpha (TNF-α) are associated with poor subjective sleep quality 
characterized by PSOL (23–27). In this respect, animal experiments 
have demonstrated that older mice exhibit notably higher MIP-1α and 
MIP-1β levels than their younger counterparts (28), which indicate 
that the cytokines and chemokines are also closely related to age. The 
overexpression of chemokines MIP-1α and MCP-1 can promote the 
recruitment of inflammatory cytokines IL-6 and TNF-α (29), and the 
recruitment of pro-inflammatory factors accelerates the development 
of atherosclerotic plaques, which further aggravates blood–brain 
barrier injury (30) and leads to brain injury. The chemokine-induced 
inflammatory response is pivotal in exacerbating stroke outcomes (30, 
31). These cumulative factors collectively contribute to the heightened 
severity of ischemic stroke (32, 33). In essence, the combined influence 
of sleep onset latency and age on these cytokines may provide insights 
into explaining the underlying pathophysiology of ischemic stroke.

As described above, most studies have shown that SOL and age 
are independently correlated with stroke severity (2, 3, 7), and these 
cytokines played roles in the severity of IS. However, the association 
between chemokines, inflammation, and the interaction of SOL and 
age with stroke severity remains elusive, yet it holds crucial significance 
for preventing ischemic stroke. Therefore, this study aimed to examine 
how the interplay between sleep onset latency and age impacts 
chemokine levels and inflammation, with a subsequent exploration of 
their combined role in determining the severity of strokes.

2 Materials and methods

2.1 Participants

A total of 281 participants with mild and moderate ischemic 
stroke admitted to Sinopharm North Hospital from June 2020 to 
December 2021 were recruited.

Sociodemographic data, such as age, years of education, 
occupation, and current body mass index (BMI), were collected. 
Clinical data, such as a history of substance abuse and dependence, 
were obtained according to medical records and self-reports and 
confirmed by the next of kin and family members. Data on SOL in the 
1–3 months before stroke were collected by self-assessment and report.

The following criteria were used for participant inclusion: 
individuals aged 45–80 diagnosed with mild and moderate ischemic 
stroke based on clinical symptoms, physical examination, and imaging 
findings. Participants with a history of working night shifts, diagnosed 
with severe stenosis of the internal carotid artery, external carotid 
artery, subclavian artery, and vertebral artery as evident by cranial 
MRA and vascular color ultrasound, individuals diagnosed with 
tumors, those experiencing significant and persistent sleep problems 
along with diagnosed sleep disorders, or those taking medications and 
healthcare products known to affect sleep patterns were excluded. In 
addition, participants with severe and very severe ischemic stroke 
were excluded due to the high prevalence of altered consciousness, 
such as coma, which would hinder the accurate assessment of sleep 
patterns. The exclusion criteria also included a history of any substance 
abuse or dependence, as well as any neurological and psychiatric 
disorders diagnosed by the Statistical Manual of Mental Disorders-V 
(DSM-V).

The present study was approved by the Institutional Review Board 
of the Sinopharm North Hospital (Approval number: 
GYBFYY-LL-2020006) and was performed in accordance with the 
Declaration of Helsinki, and written informed consent was obtained. 
No financial compensation was provided to the subjects in this study.

2.2 Assessments and laboratory tests

The National Institutes of Health Stroke Scale (NIHSS) contains 
15 items, a reliable, valid, and responsive tool for measuring stroke 
severity (34). The NIHSS includes the following domains: level of 
consciousness, eye movements, integrity of visual fields, facial 
movements, arm and leg muscle strength, sensation, coordination, 
language, speech, and neglect. Each impairment is scored on an 
ordinal scale ranging from 0 to 2, 0 to 3, or 0 to 4. The cumulative 
scores yield a total ranging from 0 to 42, with higher scores indicating 
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more severe strokes (35). Stroke severity was categorized as follows: 
mild (NIHSS score 0–5), moderate (NIHSS score 6–14), severe 
(NIHSS score 15–24), and very severe (NIHSS score 25) (36, 37).

Recognizing that sleep onset latencies exceeding 30 min are 
associated with sleep difficulties in middle-aged and older adults (38), 
the present study categorized participants based on this established 
criterion (38). Participants with a sleep onset latency of more than 
30 min were grouped as the PSOL group (n = 153), and those who had 
an SOL of 30 min or less constituted the normal sleep onset latency 
(NOSL) group (n = 127).

High-density lipoprotein (HDL), low-density lipoprotein (LDL), 
total cholesterol (TC), and triglyceride (TG) levels were obtained from 
routine tests to assess the participants’ physical condition in relation 
to ischemic stroke. SOL data and NIHSS scores were collected after 
peripheral metabolic markers were measured on the first day of 
admission. Participants were admitted to the hospital either on the day 
of the onset of physical symptoms or the next day.

Peripheral blood samples were obtained upon admission. The 
serum was separated and immediately frozen at −80°C. Analyses were 
performed to measure the serum levels of MIP1α, MIP1β, MCP1, 
IL-6, and TNFα using ELISA kits (Shanghai Xinle Biotechnology Co., 
LTD, Shanghai, China). Laboratory technicians conducting the 
analyses were blinded to clinical data.

2.3 Statistical analysis

Data were presented as mean ± standard deviation (SD) for 
continuous variables and as frequencies and percentages for 
categorical variables. The comparison of categorical variables was 
performed by the chi-squared test. The normality of all variables was 
assessed using the Shapiro–Wilk test. Levene’s test verified the 
homoscedasticity of residual variances, confirming the equal 
distribution of residuals (all p > 0.05). As a result, an analysis of 
covariance (ANCOVA) was employed to compare differences in 
inflammatory markers between groups (see Table  1). Partial 
correlation analysis was used to examine the correlation between 
inflammatory markers and NIHSS scores.

In addition, general linear models (GLMs) were applied to test the 
significance of the interaction between SOL and age and their effect 
on NIHSS scores. Current BMI was included as a covariate in all 
models. Model comparisons and testing were carried out using an 
F-statistic.

All statistical analyses were performed using IBM SPSS Statistics 
for Windows, Version 22.0 (IBM Corp., Armonk, NY, United States). 
Figures were generated using GraphPad Prism version 8 (GraphPad 
Software Inc.). All tests were two-sided, and the significance threshold 
was set at p < 0.05.

3 Results

3.1 Demographic and clinical 
characteristics

An ANCOVA was conducted with BMI as the covariate to identify 
disparities in sociodemographic, clinical variables, and inflammatory 
markers across various groups (Table 1). In contrast to participants 

with NSOL, those with PSOL exhibited a higher proportion of females 
(50.7% vs. 27.1%, p < 0.001). Participants in the PSOL group reported 
lower rates of smoking than those in the NSOL group (39.5% vs. 
60.5%, p  < 0.001), while no difference was observed in other 
sociodemographic and clinical characteristics between both groups.

3.2 Analysis of differences between groups

The participants were divided into age groups [Middle-aged (aged 
45–65) and Elderly (aged 65+)] and presence of PSOL/NSOL which 
resulted in four distinct groups:Middle-aged with PSOL (n = 62), 
Middle-aged with NSOL (n = 59), Elderly with PSOL (n = 91), and 
Elderly with NSOL (n = 68).

The homogeneity of variance for the NIHSS scores variable, 
determined through Levene’s test, yielded a p-value greater than 0.05. 
Thus, ANCOVA was employed to compare differences in NIHSS 
scores between the groups. Taking current BMI as the covariate, the 
impacts of SOL and age on NIHSS scores were found to be significant 
(F = 6.51, p = 0.011). In this regard, the NIHSS scores in the Middle-
aged with PSOL group were notably higher than those in both the 
Elderly with NSOL group and the Elderly with PSOL group (p = 0.015 
and p < 0.001, respectively).

3.3 General linear models analysis

To explore potential interactions between SOL and age in relation 
to stroke severity, GLM analyses of NIHSS scores were performed 
while controlling for current BMI. GLM analysis revealed strong 
interactions for NIHSS scores between SOL and age within the 
dataset. Notably, the NIHSS scores of participants in the Middle-aged 
with PSOL group were significantly higher compared to the Middle-
aged with NSOL group (p = 0.046). Furthermore, the NIHSS scores of 
participants in the Middle-aged with PSOL group were significantly 
elevated compared to those in both the Elderly with NSOL group 
(p = 0.022) and the Elderly with PSOL group (p < 0.001; Table  2, 
Figure 1).

3.4 Correlations analysis

After adjusting for current BMI, a partial correlation analysis was 
conducted to assess the relationship between NIHSS scores and 
inflammatory markers within each group. Notably, a negative 
correlation was observed between MIP-1β levels and NIHSS scores in 
the Middle-aged with PSOL group (r = −0.30, p = 0.020). Similarly, a 
negative correlation was found between MIP-1α levels and NIHSS 
scores in the Elderly with NSOL group (r = −0.27, p = 0.029; Table 3, 
Figure 2).

3.5 Hierarchical stepwise linear regression 
analysis

A hierarchical stepwise linear regression analysis revealed 
noteworthy findings, with BMI as the initial covariate and NIHSS 
score as the dependent variable. MIP-1β levels emerged as a protective 
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factor for NIHSS scores in Middle-aged adults with PSOL (β = −0.01, 
95%CI [−0.01 ~ 0.00], t = −2.11, p = 0.039, R2 = 0.13). Additionally, 
MIP-1α levels were identified as a protective factor for NIHSS scores 
in the Elderly with NSOL group (β = −0.03, 95%CI [−0.05 ~ 0.00], 
t = −2.27, p = 0.027, R2 = 0.12).

4 Discussion

This pioneering study aims to shed light on the hitherto 
underexplored relationship between sleep onset latency, age, and 

stroke severity by investigating the pathophysiological mechanisms 
potentially driving this association. Importantly, we substantiated the 
association between PSOL and the severity in middle-aged IS 
participants, with higher NIHSS scores associated with PSOL and 
lower levels of MIP-1β.

Our findings suggest that middle-aged stroke participants with 
PSOL are at greater risk of experiencing a severe stroke, and MIP-1β 
plays a protective role against IS. Over the years, studies have 
emphasized that high-risk factors for stroke occurrence (39) and 
increased stroke severity (5, 10, 40) include sleep difficulties and 
advanced age. Notably, while stroke has conventionally been linked to 

TABLE 1 The differences in clinical characteristics between groups.

Variables PSOL (>30  min) NSOL (≤30  min) F/χ2 p

Middle-aged 
(n  =  62)

Elderly (n  =  91) Middle-aged 
(n  =  59)

Elderly (n  =  68)

Age (years) 57.29 ± 5.03 72.29 ± 4.65 57.24 ± 4.69 71.93 ± 4.06 283.60 <0.001***

Gender 24.64 <0.001***

Male 37 (59.7%) 39 (42.9%) 49 (83.1%) 44 (63.8%)

Female 25 (40.3%) 52 (57.1%) 10 (16.9%) 25 (36.2%)

BMI (Kg/m2) 25.38 ± 2.76 24.88 ± 3.39 24.90 ± 3.05 25.00 ± 2.75 0.37 0.766

Education (years) 8.97 ± 2.90 6.35 ± 3.26 9.02 ± 3.16 7.06 ± 3.13 13.41 <0.001***

Active drinker 23.54 <0.001***

Yes 22 (35.5%) 15 (16.5%) 30 (50.8%) 15 (21.7%)

No 40 (64.5%) 76 (83.5%) 29 (49.2%) 54 (78.3%)

Active smoker 28.02 <0.001***

Yes 33 (53.2%) 28 (30.8%) 44 (74.6%) 33 (47.8%)

No 29 (46.8%) 63 (69.2%) 15 (25.4%) 36 (52.2%)

Hypertension 6.28 0.100

Yes 43 (69.4%) 65 (71.4%) 40 (67.8%) 36 (52.9%)

No 19 (30.6%) 26 (28.6%) 19 (32.2%) 32 (47.1%)

Diabetes 6.48 0.090

Yes 15 (24.2%) 33 (36.3%) 11 (18.6%) 17 (24.6%)

No 47 (75.8%) 58 (63.7%) 48 (81.4%) 52 (75.4%)

Hyperlipidemia 2.46 0.482

Yes 21 (33.9%) 22 (24.2%) 14 (23.7%) 21 (30.9%)

No 41 (66.1%) 69 (75.8%) 45 (76.3%) 47 (69.1%)

HDL (mmol/L) 1.14 ± 0.23 1.17 ± 0.27 1.16 ± 0.28 1.14 ± 0.26 0.18 0.913

LDL (mmol/L) 3.14 ± 0.74 3.27 ± 2.35 2.96 ± 0.94 2.96 ± 1.00 0.73 0.537

TC (mmol/L) 4.82 ± 1.04 4.61 ± 1.20 4.49 ± 1.22 4.44 ± 1.19 1.26 0.290

TG (mmol/L) 2.37 ± 1.59 1.60 ± 0.75 1.83 ± 0.86 1.88 ± 1.33 5.20 0.002**

MIP-1α (ng/L) 53.86 ± 28.11 49.90 ± 22.26 47.29 ± 19.83 48.80 ± 21.34 0.78 0.511

MIP-1β (ng/L) 158.43 ± 72.09 145.53 ± 66.19 142.80 ± 61.16 133.03 ± 53.19 1.61 0.188

MCP-1 (ng/L) 157.44 ± 69.21 141.55 ± 65.80 138.84 ± 59.92 141.21 ± 75.02 0.89 0.445

IL-6 (ng/L) 111.43 ± 47.92 107.55 ± 50.02 92.60 ± 32.78 99.37 ± 38.38 2.19 0.089

TNFα (ng/L) 97.71 ± 46.36 91.97 ± 41.65 87.96 ± 47.31 96.10 ± 42.04 0.55 0.645

PSOL, prolonged sleep onset latency; NSOL, normal sleep onset latency; BMI, body mass index; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; TC, total cholesterol; TG, 
triacylglycerol; MIP-1α, macrophage inflammatory protein-1alpha; MIP-1β, macrophage inflammatory protein-1beta; MCP-1, monocyte chemoattractant protein-1; IL-6, interleukin-6; TNFα, 
tumor necrosis factor-alpha.
Data were presented as mean ± standard deviation (SD) for continuous variables and as frequencies and percentages for categorical variables. p value for analysis of covariance (ANCOVA) or 
chi-square test, *p < 0.05, **p < 0.01, ***p < 0.001.
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older age, recent years have witnessed a substantial decline in the 
average age of stroke onset, coupled with a rise in stroke incidence and 
hospitalization rates among middle-aged individuals. This 
phenomenon of “younger-age stroke” has emerged as a significant 
public health challenge (12, 41–43), consistent with the results of this 
study. Indeed, middle-aged people with PSOL face an elevated risk of 
more severe strokes, possibly attributable to several factors. Firstly, 
compared to older individuals, middle-aged individuals necessitate 
efficient and higher sleep quality to sustain bodily functions and 
metabolism (44–46). Hence, when middle-aged stroke patients with 
PSOL experience a range of sleep-related issues such as diminished 
sleep quality, insomnia, and inadequate sleep (15), their sleep 
requirements are unmet, significantly impeding the recovery from 
cerebral ischemia-induced reversible or irreversible synaptic and 
membrane failures, which, influences neuroplasticity and post-stroke 
recovery (47). Secondly, older individuals usually have more flexible 
morning routines due to retirement, alleviating the impact of PSOL-
related sleep shortage (18). Conversely, middle-aged individuals 
contend with heightened work pressures, constrained wake-up times 
and are more prone to insufficient sleep and subpar sleep quality (18). 
Moreover, middle-aged individuals tend to engage in more social 
activities, potentially adopting unhealthy lifestyles like high-calorie 
diets, smoking, and alcohol consumption (48). Besides, the 
compounded effects of sleep deprivation, stress, and unhealthy habits 
are widely acknowledged to exacerbate stroke severity (49–51).

In addition, this study found that MIP-1β was negatively 
associated with NIHSS scores in the middle-aged group with PSOL, 
indicating that elevated levels of MIP-1β could protect against severe 
strokes in this cohort. Previous research has indicated the potential 
involvement of MIP-1β in monocyte recruitment within 
atherosclerotic plaques, where heightened serum MIP-1β levels have 
been associated with the progression of IS (52). Despite the established 
association between PSOL and stroke severity, our study suggests that 
elevated serum MIP-1β levels could potentially mitigate the severity 
of stroke events in middle-aged patients with PSOL. Several 
underlying mechanisms could account for this phenomenon. First, the 
mRNA and protein expression of the chemokine MIP-1β has been 
reported to be inhibited by prostaglandin E2 (PGE2) (53). PGE2, a 
pivotal endogenous anti-inflammatory mediator linked to sleep 
regulation, demonstrates wakefulness-promoting properties (53). 
Notably, its concentration is markedly higher during wakefulness 
compared to slow-wave sleep (54). In this context, participants 
grappling with PSOL are prone to extended periods of wakefulness 
(15), leading to heightened PGE2 levels and diminished MIP-1β levels. 
Intriguingly, PGE2’s impact extends further, potentially playing a dual 
role. PGE2 has been identified as a disruptor of Na(+)-Ca(2+) 
exchange and Ca(2+) homeostasis through the EP1 receptor, thereby 
contributing to excessive Ca(2+) accumulation. This effect also 
extends to the induction of neuronal cell death and the augmentation 
of ischemic-induced neurodegeneration (55), ultimately amplifying 

TABLE 2 The interaction of SOL and age on NIHSS scores.

Variables PSOL (>30  min) NSOL (≤30  min) MD p

Middle-aged (n = 62) Elderly (n = 91) Middle-aged (n = 59) Elderly (n = 68)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

NIHSS scores 1.95 ± 0.21 – 1.31 ± 0.23 – 0.64 0.046*

1.95 ± 0.21 – – 1.26 ± 0.20 0.69 0.022*

1.95 ± 0.21 0.90 ± 0.17 – – 1.05 <0.001***

PSOL, prolonged sleep onset latency; NSOL, normal sleep onset latency; NIHSS, National Institutes of Health Stroke Scale; GLM, general linear models; MD, Mean differences; SD, standard 
deviation.
GLM was used to calculate the differences in levels between four groups with BMI as the covariate. The simple effect was calculated using GLM. Data were reported as mean ± SD, *p < 0.05, 
**p < 0.01, ***p < 0.001.

FIGURE 1

The difference in National Institutes of Health Stroke Scale (NIHSS) scores between groups. (A) The differences among the NIHSS scores of the 
participants in Middle-aged with prolonged sleep onset latency (PSOL) and Middle-aged with normal sleep onset latency (NSOL); (B) The differences 
among the NIHSS scores of the participants in Middle-aged with PSOL and Elderly with NSOL; (C) The differences among the NIHSS scores of the 
participants in Middle-aged with PSOL and Elderly with PSOL. *p  <  0.05.
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stroke severity. Indeed, it is highly conceivable that the deleterious 
influence of MIP-1β on stroke severity in middle-aged individuals 
with PSOL might be attenuated by PGE2, potentially even manifesting 
as a protective function. However, this study did not observe a 
correlation between serum MIP-1β levels and NIHSS scores in older 
adults with PSOL, attributed to the confounding impact of age. In this 
regard, one animal study unveiled heightened expression of MIP-1β 
levels in older mice (28), while another investigation highlighted an 
accelerated decline in serum MIP-1β levels with aging (56). 
Consequently, aging appears to disrupt the relationship between 
MIP-1β and NIHSS scores in older individuals with PSOL. In essence, 
the protective role of MIP-1β against stroke severity seems to 
be confined to middle-aged patients with PSOL.

Besides, the NSOL group displayed a potential protective effect 
against stroke in the elderly, as evidenced by the negative association 
between MIP-1α and NIHSS scores. Previous studies have shown that, 
compared to middle-aged mice, chemokine MIP-1α levels are highly 
expressed in older mice (28). Interestingly, it has been found that 
MIP-1α levels were significantly reduced in the brain tissue of older 
patients with IS (57), and MIP-1α tended to decline with age in this 
patient population (56). At the same time, the NIHSS score at 
admission increased significantly with age (58). Therefore, the 
negative correlation between serum MIP-1α level and NIHSS score in 
senile stroke patients with NSOL may be due to aging. However, our 

study did not observe the correlation between serum MIP-1α and 
NIHSS score in elderly patients with PSOL, attributed to the fact that 
individuals suffering from PSOL exhibited suboptimal sleep quality, 
consequently experiencing extended periods of wakefulness, which 
led to an increase in PGE2. The increased PGE2 led to a decline in the 
chemokine MIP-1α level (59), thus disrupting the age-related negative 
correlation typically observed between serum MIP-1α levels and 
NIHSS scores.

Besides, we  found no association between MCP-1, IL-6, and 
TNF-α and NIHSS scores across the four groups. However, prior 
research on individuals with severe IS demonstrated a correlation 
between elevated levels of these factors and the severity of IS (60–62). 
Discrepancies in outcomes might stem from the inclusion of subjects 
with mild to moderate IS in this current study. Moreover, a prior 
investigation examining stroke severity 7 days after admission 
demonstrated a positive association between elevated MCP-1 levels 
and heightened stroke severity at the same time point (61), 
Conversely, the present study did not reveal a connection between 
MCP-1 and stroke severity. This discrepancy may be attributable to 
the timing of MCP-1 measurement; in this study, samples were 
collected on day one after admission, whereas the previous study 
assessed MCP-1 levels 7 days post-stroke. The temporal dynamics of 
ischemic brain cell damage likely influence the correlation between 
MCP-1 and stroke severity. In cases where initial ischemic attack 

TABLE 3 Correlation between NIHSS scores and inflammatory cytokines in different groups.

Groups correlation MIP-1α (ng/L) MIP-1β (ng/L) MCP-1 (ng/L) IL-6 (ng/L) TNFα (ng/L)

Middle-aged with NSOL r −0.15 −0.20 −0.05 0.13 0.06

p 0.290 0.143 0.735 0.343 0.691

Middle-aged with PSOL r −0.22 −0.30 −0.09 −0.06 0.02

p 0.096 0.020* 0.494 0.678 0.860

Elderly with NSOL r −0.27 −0.18 −0.22 0.08 0.07

p 0.029* 0.152 0.087 0.525 0.609

Elderly with PSOL r −0.01 −0.14 0.05 0.07 0.18

p 0.895 0.203 0.667 0.547 0.099

PSOL, prolonged sleep onset latency; NSOL, normal sleep onset latency; MIP-1α, macrophage inflammatory protein-1alpha; MIP-1β, macrophage inflammatory protein-1beta; MCP-1, 
monocyte chemoattractant protein-1; IL-6, interleukin-6; TNFα, tumor necrosis factor-alpha.
Correlations between MIP-1α, MIP-1β, MCP-1, IL-6, TNFα levels and NIHSS scores were calculated using Partial correlation. *p < 0.05, **p < 0.01.

FIGURE 2

The correlation of MIP-1β levels and MIP-1α levels with NIHSS scores. (A) The negative correlation of macrophage inflammatory protein 1beta (MIP-1β) 
levels with the NIHSS scores (r  =  −0.30, p  =  0.020) in group of middle-aged with PSOL; (B) The negative correlation of macrophage inflammatory 
protein-1 alpha (MIP-1α) levels with the NIHSS Scores (r  =  −0.27, p  =  0.029) in the group of Elderly with NSOL.
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results in more severe injury, cytokine and chemokine production 
may be suppressed. This offers a potential explanation for the absence 
of a correlation between MCP-1 and NIHSS scores in the current 
study (61).

Several limitations need consideration within this study. Firstly, 
the participant pool only comprised Chinese individuals residing in 
the northern inland region, regardless of whether they were 
experiencing their first episode or recurrence. Future research should 
prioritize geographically diverse recruitment and larger sample sizes 
to improve generalizability of results. Additionally, it is essential to 
differentiate between first-episode patients and those with recurrent 
episodes and to conduct stratification analyses based on the number 
of episodes to bolster result accuracy. Secondly, since sleep patterns 
influence IS over an extended duration, this study only retrospectively 
gathered SOL data from 1 to 3 months preceding the IS onset. While 
data from this brief interval might not comprehensively capture the 
impact, collecting recent-stage sleep data retrospectively was more 
feasible, and patient cooperation was facilitated. Lastly, most IS 
participants in this study exhibited mild to moderate stroke. 
Consequently, it is important to acknowledge that the generalizability 
of our study findings may be limited to cases of milder stroke severity. 
Nevertheless, the presented results provide valuable guidance for the 
development of targeted preventive interventions for individuals at 
risk of such strokes.

5 Conclusion

The present study provides strong evidence of the association 
between PSOL and the severity of IS and the potential protective 
effects of MIP-1β in reducing stroke severity, especially in middle-
aged patients, suggesting that falling asleep quickly might contribute 
to low ischemic stroke severity. In the future, the role of other 
subfamilies of chemokines in the interaction of sleep onset latency and 
age on IS severity should be  further explored to improve and 
supplement this study.
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Glossary

BMI Body mass index

GLM General linear models

HDL High-density lipoprotein

IL-6 Interleukin-6

IS Ischemic stroke

LDL Low-density lipoprotein

MIP-1α Macrophage inflammatory protein-1alpha

MIP-1β Macrophage inflammatory protein-1beta

MCP-1 Monocyte chemoattractant protein-1

MD Mean differences

NIHSS National Institutes of Health Stroke Scale

NSOL Normal sleep onset latency

PSOL Prolonged sleep onset latency

SOL Sleep onset latency

SD Standard deviation

TNFα Tumor necrosis factor-alpha

TC Total cholesterol

TG Triacylglycerol
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Introduction: The administration of intravenous thrombolysis (IVT) before

mechanical thrombectomy (MT) in the treatment of acute ischemic stroke

(AIS) has been a subject of debate, and its potential benefits remain uncertain.

This retrospective study aimed to investigate the e�ect of preoperative IVT on

glycocalyx damage in patients with cerebral ischemia-reperfusion injury (IRI).

Methods: A cohort of 106 patients with acute large vessel occlusion in the

anterior circulation treated with mechanical thrombectomy was enrolled. The

levels of the glycocalyx damage marker, syndecan-1, were measured in the

peripheral blood of these patients to assess glycocalyx damage during IRI, and

clinical outcomes were compared between patients receiving MT alone vs.

combined IVT and MT.

Results: The study results indicate that thrombolytic drugs have a significant

impact on syndecan-1 levels in the blood. Compared to patients who underwent

direct MT, those who received preoperative IVT had significantly lower levels

of syndecan-1 in their blood. Although preoperative IVT did not alter the final

clinical outcomes, the levels of syndecan-1 shedding reflect the extent of

damage to the endothelial glycocalyx.

Discussion: This suggests that using thrombolytic drugs before mechanical

thrombectomy may reduce endothelial glycocalyx damage in patients with

ischemia-reperfusion injury. These findings provide indirect clinical evidence

supporting the preoperative use of intravenous thrombolysis in such patients.

KEYWORDS

thrombolysis, thrombectomy, glycocalyx, stroke, syndecan-1

Introduction

Stroke is a significant global health challenge, ranking as the second leading cause

of disability and mortality worldwide (1). AIS is the most common form of stroke,

accounting for ∼87% of all stroke cases. It represents a critical medical emergency

characterized by insufficient blood supply to the brain’s blood vessels, resulting in damage

to brain cells and potentially devastating consequences (2). Timely and effective treatment

is crucial in managing AIS to minimize brain injury and improve patient outcomes.
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In the management of AIS, IVT and MT are the primary first-

line treatment approaches. IVT involves the use of fibrinolytic

agents, such as recombinant tissue plasminogen activator (rt-PA),

to promote fibrinolysis and dissolve blood clots, causing vessel

occlusion. The rt-PA activates plasminogen to plasmin by cleaving

the Arg561-Val562 peptide bond (3). Plasminogen activation to

plasmin plays a vital role in degrading fibrin and inhibiting clotting

factors, which facilitates thrombus dissolution and restores blood

flow (4, 5). Patients with AIS who do not ameliorate after IVT may

benefit from transfer to a hospital where MT can be performed,

which is known as bridging therapy (6).

MT is a minimally invasive procedure that employs

endovascular instruments to directly remove the obstructive

thrombus, thereby restoring blood flow in the brain tissue.

However, the reestablishment of blood flow after a period of

ischemia and hypoxia can lead to IRI, characterized by rapid tissue

damage (7). This phenomenon triggers the production of excessive

reactive oxygen species and nitrogen in the ischemic brain tissue,

promoting the aggregation of pro-inflammatory immune cells

at the injury site and causing endothelial glycocalyx dysfunction

(8). The endothelial glycocalyx is a protective layer that lines the

interior of blood vessels. It is composed of various components,

including glycoproteins, proteoglycans such as heparan sulfate

proteoglycans (including members of the syndecans family), and

glycosaminoglycan side chains. This glycocalyx layer plays a critical

role in preserving the integrity and functionality of blood vessels.

In the field of stroke, it has also gained increasing attention as a

novel marker of cerebral IRI.

Syndecan-1 is a transmembrane proteoglycan that is primarily

expressed on the surface of endothelial cells. Under inflammatory

and pathological conditions, proteases such as heparanase can

cleave the extracellular domain of syndecan-1, causing it to

shed into the extracellular matrix and enter the bloodstream.

Elevated syndecan-1 levels in peripheral blood during IRI serve

as a crucial marker of glycocalyx damage, indicating injury

to this protective layer of endothelial cells (9). Our previous

study highlighted a significant increase in syndecan-1 shedding

during the hyperacute phase of AIS, and its dynamic changes

are potentially linked to blood-brain barrier permeability (10).

Currently, there is an ongoing controversy within the academic

community regarding the effectiveness of bridging therapy with

thrombolytic drugs before MT in AIS patients (11–15). However,

it is worth noting that this approach is strongly recommended

in the guidelines issued by European Stroke Organization

(ESO)/European Society for Minimally Invasive Neurological

Therapy (ESMINT) (16). The potential benefits of this treatment

in preserving glycocalyx integrity and improving clinical outcomes

require further investigation and clarification. In this study, our

research objective is to observe syndecan-1 levels and evaluate

whether preoperative treatment with conventional thrombolytic

drugs preserves the integrity of the endothelial glycocalyx after IRI.

Understanding the impact of preoperative thrombolytic therapy

Abbreviations: IVT, Intravenous thrombolysis; MT, Mechanical

thrombectomy; IRI, Ischemia-reperfusion injury; AIS, Acute ischemic

stroke; rt-PA, Tissue plasminogen activator; NIHSS, National Institutes of

Health Stroke Scale; mRS, Modified Rankin Scale; HPSE, Heparanase.

on glycocalyx preservation and patient prognosis could provide

valuable insights for optimizing treatment strategies for IRI.

Materials and methods

Sample

Plasma samples were collected from eight healthy individuals

aged 50–80 years and 106 AIS patients at Liaocheng People’s

Hospital between August 2020 and May 2022. Informed consent

was obtained from all participants. The inclusion criteria

were as follows: (1) age ≥18 years; (2) confirmation of

anterior circulation cerebral vessel occlusion through computed

tomography (CT) angiography or digital subtraction angiography

(DSA); (3) all patients who underwent mechanical thrombectomy

(MT) with retrieved stents and received standard medical

therapy; (4) patients who received preoperative thrombolytic

treatment after being treated with rt-PA; and (5) all patients

who achieved successful reperfusion (modified treatment in

cerebral infarction score ≥2b). The exclusion criteria included

severe inflammatory disease, cancer, autoimmune disease, and

cytostatic/immunosuppressive therapy within the past 3 months.

Various data, including demographic characteristics, risk factors,

occlusion position/cause, time from stroke onset to groin

puncture/reperfusion success, stroke severity [National Institutes of

Health Stroke Scale (NIHSS)], clinical outcome [modified Rankin

Scale (mRS)], intracranial hemorrhage, malignant cerebral edema,

and neurological deterioration, were prospectively collected. The

NIHSS scores were obtained from patients at admission, 1 day post-

operation, 7 days post-operation, and at discharge. Neurological

deterioration was defined as an increase in the NIHSS score of ≥4

points during the patient’s hospitalization (17).

Ethics approval was obtained from the local ethics committee.

In this retrospective study, due to the unclear association

between thrombolytic drugs and syndecan-1 at a specific time

point, we initially examined multiple time-point blood samples

from 37 patients for a small-sample experiment. The levels of

peripheral blood syndecan-1 weremeasured at different time points

during IRI in 37 patients before MT, intraoperatively, and at 1 h,

1, 3, and 7 days after MT. The aim was to investigate the impact

of thrombolytic drugs on syndecan-1 levels at various stages of

IRI. Based on screening for the most sensitive time point (i.e.,

1 h post-operation), the remaining 69 patients were further tested

for syndecan-1 levels in peripheral blood at that time point to

provide additional clarity to the research results. The total number

of samples at this time is 106 (37+ 69).

Intraoperative blood was defined as the extraction of

intracranial blood from the distal lesion vessels at the occlusion

site using a microcatheter during surgery (18). During our

intraoperative collection of distal blood, we relied on the research

conducted by Kollikowski AM, which thoroughly delineates

the technique for harvesting arterial blood from the core of

occluded vessel lumens. For a comprehensive understanding of

the procedural steps and accompanying videos, please refer to

Kollikowski AM’s study on local leukocyte invasion in hyperacute

ischemic stroke (18). Before undertaking stent-embolus retrieval

in conjunction with the distal aspiration technique, we initiated
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the procedure with the insertion of micro guidewires and

microcatheters, intricately maneuvering the microcatheter through

the thrombotic occlusion site to obtain blood samples amid

occlusive ischemic conditions. Upon successfully positioning the

microcatheter, 1mm of ischemic blood sample was extracted using

a syringe for subsequent laboratory analysis.

All blood samples were centrifuged at 3,000 rpm for 10min and

promptly frozen at−80◦C for subsequent analysis.

Syndecan-1 levels were measured using the Human Syndecan-

1 ELISA kit (CD138) from Abcam (Cambridge, MA, USA, Cat

No. ab46506).

Statistical analysis

The normality of each variable was tested using the Shapiro-

Wilk test. Normally distributed continuous variables were

presented as the ±mean standard deviation (SD), while non-

normally distributed continuous variables were presented as the

median with the interquartile range (IQR). Categorical variables

were presented as numbers and percentages. The Student t-test

or Mann-Whitney U-test was used for continuous variables,

while the chi-squared test was used for categorical variables. The

Wilcoxon rank-sum test was employed to analyze the dynamic

changes in syndecan-1 levels at different time points. The primary

objective was to compare syndecan-1 levels in the blood between

patients who received thrombolytic drugs preoperatively and

those who did not, as shown in Table 3. The comparison of

syndecan-1 levels between the two groups was conducted using

the Mann-Whitney U-test. For syndecan-1 levels detected 1 h

post-operation, we included confounding factors in the generalized

linear model analysis. Furthermore, clinical outcomes between the

two groups were compared using odds ratios (OR) or β-coefficients

with their 95% confidence intervals, which were analyzed using

binary logistic regression models or generalized linear models.

Multivariable models were adjusted for potential confounders such

as age, sex, and admission NIHSS score.

Statistical analyses were performed using SPSS software

(version 26.0), and significant differences were set at a p-value

of ≤0.05.

Results

The study included 106 patients, with 66 patients in the

IVT+MT group and 40 patients in the direct MT group. A study

flowchart is shown in Figure 1. The mean age of the patients

was 67 years (SD, ±11), and 74% of the participants were male.

The median baseline NIHSS score was 19 points (IQR, 12–

21). The median time from stroke onset to groin puncture was

294min (IQR, 216–401), and the median time from stroke onset

to recanalization was 400min (IQR, 294–538). Among the 16

patients who received thrombolytic therapy at external hospitals,

the median time from intravenous administration of thrombolytic

drugs to femoral artery puncture was 393min (IQR, 344–703).

Excluding the patients treated at external hospitals, the median

time from the intravenous administration of thrombolytic drugs

to femoral artery puncture for the remaining patients was 61min

FIGURE 1

Study flowchart. AIS, Acute ischemic stroke; MT, Mechanical

thrombectomy; IVT, Intravenous thrombolysis. Pre, preoperation;

IC, intracranial; 1 h and 1d =1h and 1day after MT.

(IQR, 40–109). Although the time from thrombolysis to femoral

artery puncture was longer for patients who received thrombolysis

at external hospitals than for those who were treated at our hospital,

there was no significant difference in syndecan-1 levels between the

two groups. The baseline characteristics of the study population are

shown in Table 1. The median mRS follow-up score at 90 days was

3 (IQR, 0–5), and the mortality rate within 90 days was 21%. The

baseline characteristics between the two groups are compared in

Table 2. Baseline characteristics were counterbalanced between the

two groups, except for the admission NIHSS score.

The longitudinal assessment of syndecan-1 levels in the

peripheral blood of 37 patients at six time points showed a biphasic

change after stroke occurrence, with the most significant increase

observed at 1 h post-operation. Statistically significant changes

were observed at each time point (Figure 2). There were also

statistically significant differences in syndecan-1 levels between the

two groups only during the intraoperative period and at 1 h post-

operation (p < 0.01, Figure 3). Specifically, syndecan-1 levels in

the blood of AIS patients who received preoperative thrombolysis

were lower than those in the direct MT group (Table 3). At

1 h post-operation, the preoperative thrombolysis group showed
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TABLE 1 Baseline characteristics of the study population (n = 106).

Sociodemographic
characteristics

Age, y 67 (11)

Male 78 (74)

Risk factors

Smoking 33 (31)

Drinking 30 (28)

Previous stroke 20 (19)

Hypertension 62 (58)

Coronary artery disease 22 (21)

Atrial fibrillation 36 (34)

Diabetes 10 (19)

Hypercholesterolaemia 17 (16)

Cause of large-vessel occlusion

Cardioembolism 51 (48)

Others/Unknown 55 (52)

Occlusion position

Internal carotid artery occlusion 56 (43)

Middle cerebral artery occlusion 60 (57)

Clinical metrics

Mean systolic blood pressure, mm Hg 153 (±23)

Mean diastolic blood pressure, mm Hg 88 (±12)

Admission NIHSS score 19 (13–29)

Time from stroke onset to groin

puncture, min

294 (216–401)

Time from stroke onset to

recanalization, min

400 (294–538)

Data are mean (±SD), n (%), median (IQR).

SD, Mean standard deviation; IQR, Interquartile range; NIHSS, National Institutes of Health

Stroke Scale.

significantly lower levels of syndecan-1 compared to the direct MT

group [median, 149 vs. 180 ng/ml; β = −50.38 [95% CI, −75.54 to

−25.22]; P < 0.001; Figure 4]. The comparison of clinical outcomes

between the two groups of patients is shown in Table 4.

Among the 106 patients who completed a 90-day follow-up, an

adjusted binary logistic regression analysis showed no significant

difference in the favorable clinical outcome (mRS score of 0–2)

between the two groups [48 vs. 47%; adjusted OR, 0.655 [95% CI,

0.265–1.623]; P = 0.361]. There were no significant differences

between the two groups regarding secondary and safety outcomes.

Discussion

In this study, we investigated the effect of preoperative IVT

on glycocalyx damage in patients with IRI undergoing MT

for AIS. For the first time, we discovered that preoperative

thrombolytic drug administration before MT significantly reduced

TABLE 2 Baseline and procedural characteristics of patients treated with

MT vs. those treated with IVT + MT.

Baseline and
procedural
characteristics

MT
(N = 40)

IVT + MT
(N = 66)

P-
value

Sociodemographic characteristics

Age, y 67 (10) 67 (11) 0.953

Sex, n (%) 0.515

Male 28 (70) 50 (76)

Female 12 (30) 16 (24)

Risk factors, n (%)

Smoking 13 (33) 20 (30) 0.813

Drinking 14 (35) 16 (24) 0.233

Previous stroke 10 (25) 10 (15) 0.209

Hypertension 20 (50) 42 (64) 0.167

Coronary artery disease 5 (13) 17 (26) 0.103

Atrial fibrillation 15 (38) 21 (32) 0.549

Diabetes 4 (10) 11 (17) 0.505

Hypercholesterolaemia 8 (20) 9 (14) 0.387

The application of thrombolytic drug

External hospital

thrombolysis

- 16 (24)

Median time from

thrombolysis to groin

puncture, min∗

- 61 (40–109)

Cause of large-vessel occlusion 0.762

Cardioembolism 20 (50) 31 (47)

Others/unknown 20 (50) 35 (53)

Occlusion position 0.885

Internal carotid artery

occlusion

17 (42) 29 (44)

Middle cerebral artery

occlusion

23 (58) 37 (56)

Clinical metrics

Mean systolic blood

pressure, mmHg

157 (±24) 150 (±22) 0.152

Mean diastolic blood

pressure, mmHg

89 (±11) 87 (±12) 0.315

NIHSS score at

admission

23 (15–33) 15 (12–22) 0.001

Median time from

symptom onset to groin

puncture, min

303 (222–523) 282 (208–362) 0.205

Median time from

symptom onset to

recanalization, min

432 (306–605) 383 (276–504) 0.164

Data are mean (±SD), n (%), and median (IQR).

SD, standard deviation; IQR, Interquartile range; MT, Mechanical thrombectomy; IVT+MT,

Intravenous thrombolysis before mechanical thrombectomy; NIHSS, National Institutes of

Health Stroke Scale.
∗Median time from thrombolysis to groin puncture (N = 50): 16 patients who received

thrombolytic treatment at external hospitals were excluded due to the inability to determine

the exact timing of medication.
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FIGURE 2

Syndecan-1 in the plasma of healthy individuals and longitudinally

dynamics after AIS. Healthy individuals (n = 8); AIS patients (n = 37);

*p < 0.05; **p < 0.01; ***p < 0.001. AIS, Acute ischemic stroke. Data

presentation: median (line; 50th percentile) and whiskers (25–75th

percentile).

FIGURE 3

Longitudinally comparison of the MT and IVT+MT. MT, Mechanical

thrombectomy (n = 19); IVT+MT, Intravenous thrombolysis before

mechanical thrombectomy (n = 18); IQR, Interquartile range. **P <

0.01. Data presentation: median, IQR (whiskers).

the levels of syndecan-1, a marker of glycocalyx damage, in

the blood.

Thrombolytic drugs were found to reduce syndecan-1 levels

in the blood, with the most significant effect observed from

the intraoperative period to 1 h post-operation. Alteplase exhibits

specificity for fibrin, primarily targeting plasminogen and fibrin

in the coagulation process, with relatively minimal impact

on other biological molecules (pharmacokinetics of alteplase

in treating ischemic stroke). The current literature does not

explicitly suggest that alteplase directly degrades syndecan-1 after

administration. Therefore, the likelihood of alteplase directly

degrading syndecan-1 appears low. It may influence syndecan-

1 shedding through indirect pathways, particularly impacting the

shedding of glycocalyx on endothelial cell surfaces. This finding

indicates that thrombolytic drugs may have a certain inhibitory

effect on syndecan-1 shedding, thereby preserving the integrity

of the endothelial glycocalyx. Thrombolytic drugs achieve their

fibrinolytic effect by activating plasminogen to plasmin, which

degrades fibrinogen and various coagulation factors such as Factor

V (5, 19). Coagulation factor V serves as a cofactor and forms

a prothrombinase complex with coagulation factor X, leading

to the cleavage of prothrombin during endothelial or cerebral

injury, ultimately activating thrombin (20, 21). The activated

thrombin then releases heparanase (HPSE) from platelets and

granulocytes into the blood by interacting with protease-activated

receptor 1 (22).

HPSE is an endoglycosidase that specifically cleaves heparan

sulfate chains in the endothelial glycocalyx, leading to the enhanced

shedding of syndecan-1 (23, 24). Based on an extensive review

of relevant literature, we suggest that thrombolytic drugs may

inhibit the shedding of syndecan-1 through the thrombin-HPSE

pathway. Existing research has confirmed that syndecan-1 is an

important biomarker in response to glycocalyx damage caused by

IRI (9). Consequently, thrombolytic drugs may alleviate glycocalyx

damage caused by ischemia-reperfusion through the thrombin-

HPSE pathway.

Moreover, we found that thrombolytic drugs have a significant

effect on syndecan-1 levels from the intraoperative period

to 1 h post-operation. However, after more than 24 h post-

operation, there were no significant differences in syndecan-1

levels between the two groups. This observation is consistent

with the pharmacokinetics of alteplase, which is a thrombolytic

drug used in the study (25). In patients who underwent

preoperative thrombolytic therapy in our hospital, the preoperative

peripheral blood samples were collected∼61min (40–109) after the

administration of thrombolytic drugs. At this time point, syndecan-

1 levels in the blood were not affected by the thrombolytic drugs,

indicating that the effect of thrombolytic drugs on syndecan-1 was

not immediate and could only be observed after a delay of at least

1 h. We compared preoperative syndecan-1 levels with data from

healthy individuals and found no significant difference between

them. The delayed effect of thrombolytic drugs on syndecan-

1 may be because, at the time of preoperative blood collection,

syndecan-1 on the surface of the endothelial glycocalyx has not

yet undergone significant shedding (26), resulting in the limited

observed drug efficacy. It could also simply be due to the fact that

thrombolytic agents reduce thrombosis, thereby simplifying the

thrombectomy process, alleviating endothelial stress, and resulting

in lower syndecan-1 levels in the blood both during and after

the procedure.

Furthermore, our study did not reveal any significant clinical

benefits in bridging therapy patients when comparing the clinical

outcomes between the two groups. While the DIRECT-SAFE (27)

and SWIFT DIRECT (15) studies suggest that the combined

strategy of IVT before MT is not associated with clinical benefits,
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TABLE 3 The syndecan-1 levels of patients treated with MT vs. those treated with IVT + MT.

Syndecan-1 (ng/ml) MT (N = 40) IVT and MT
(N = 66)

P-value∗ Adjusted e�ect size
(95% CI)∗∗

P-value

1 h post-operation 180 (147–252) 149 (116–167) 0.001 −50.38 (−75.54 to−25.22) 0.000

Longitudinally syndecan-1

(ng/ml)

N = 19 N = 18

Pre-operation 43 (23–55) 33 (19–50) 0.395 - -

Intraoperative 124 (108–166) 68 (61–108) 0.001 - -

1 h post-operation 254 (206–290) 154 (109–216) 0.001 - -

1 day post-operation 47 (20–54) 29 (21–43) 0.095 - -

3 days post-operation 57 (25–84) 36 (26–73) 0.584 - -

7 days post-operation 63 (32–112) 38 (28–105) 0.584 - -

Data are median (IQR).

IQR, Interquartile range.
∗Mann-Whitney U-test.
∗∗Adjusted for age, sex, and NIHSS score at admission. The β-coefficients were calculated using a generalized linear model.

the SWIFT DIRECT trial revealed a favorable prognosis rate of

65% in the IVT + MT group compared to the rate of 57% in

the group undergoing direct MT. This finding suggests a trend

favoring the adoption of a bridging treatment strategy in the SWIFT

DIRECT trial, despite previous research indicating that elevated

peripheral blood syndecan-1 levels could predict poor outcomes

in AIS patients undergoing thrombolytic therapy (28). Our study

found no predictive value of syndecan-1 levels in 106 patients for

clinical outcomes. The lack of predictive value might be attributed

to the inconsistency in the timing of the studies. It is worth noting

that syndecan-1 plays a specific role in the pathophysiological

processes at various stages of brain tissue injury after stroke. This

finding suggests that the dynamics of syndecan-1 levels and their

effects on clinical outcomes could be complex and multifactorial.

We are conducting a prospective study with a substantial sample

size, multiple time points, and an array of markers pertaining to

glycocalyx injury. Our primary objective from a clinical perspective

is to further validate the impact of thrombolytic drugs on glycocalyx

and clinical outcomes in AIS patients. We also seek to confirm

the involvement of the thrombin-HPSE pathway, which could shed

light on the underlying mechanisms of thrombolytic drug effects

on glycocalyx.

However, we must acknowledge certain limitations of this

study. First, the sample size and the low proportion of female

participants might not be sufficient to ensure the utmost

statistical stability and generalizability of the results. There is a

significant difference in NIHSS scores upon admission between

the mechanical thrombectomy group and the bridging therapy

group, which may affect the results. We could not obtain

microcirculation vascular imaging data, which hinders our analysis

of whether the IVT + MT bridging strategy also facilitates

reperfusion of small brain vessels. Therefore, we remain committed

to recruiting more patients and incorporating the evaluation of

microcirculation vascular imaging data into subsequent clinical

data, ensuring the availability of a robust dataset for analysis.

Second, practical constraints hindered our ability to perform

simultaneous measurements of syndecan-1, HPSE, and coagulation

FIGURE 4

Comparison of syndecan-1 levels between MT and IVT+MT at 1-h

post-operation. MT, Mechanical thrombectomy (n = 66); IVT+MT,

Intravenous thrombolysis before mechanical thrombectomy (n =

40), **P < 0.01. The “box” depicts the median and the 25 and 75th

quartiles, and the “whisker” shows the 5 and 95th percentile.

factors in the blood at the same time point for each patient.

Addressing this limitation could provide valuable insights into

their correlation and validate the thrombin-HPSE pathway.

Finally, we recognize that relying solely on syndecan-1 as a

single marker of glycan shedding might not offer comprehensive

evidence of glycocalyx damage. To address this limitation, we

plan to investigate multiple glycocalyx markers and conduct

foundational research on relevant pathophysiological mechanisms

in the future to further validate the safety and reliability of

this conclusion.
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TABLE 4 Clinical outcomes of patients treated with MT vs. those treated with IVT + MT.

Clinical outcomes MT
(N = 40)

IVT + MT
(N = 66)

E�ect size
(95% CI)

P-value Adjusted e�ect size
(95% CI)∗

P-value

Primary outcome

90-day mRS (0–2) 19 (48) 31 (47) 0.979 (0.446–2.150) 0.958 0.655 (0.265–1.623)† 0.361

Secondary outcomes

90-day mRS (0–1) 14 (35) 27 (41) 1.286 (0.570–2.902) 0.545 0.807 (0.317–2.053)† 0.652

90-day mRS (0–3) 24 (60) 37 (56) 0.851 (0.383–1.889) 0.691 0.539 (0.214–1.359)† 0.190

NIHSS score at 1 day 19 (12–25) 15 (10–23) −2.646

(-6.471–1.178)

0.175 1.075 (-2.170–4.319)‡ 0.516

NIHSS score at 7 days 17 (6–25) 12 (6–19) −3.370

(-7.920–1.179)

0.146 0.405 (-3.581–4.390)‡ 0.842

Discharge NIHSS score 15 (5–28) 11 (5–19) −3.344

(-8.252–1.564)

0.182 −0.132 (-4.582–4.318)‡ 0.954

Discharge mRS (0–2) 13 (33) 21 (32) 0.969 (0.418–2.246) 0.942 0.505 (0.183–1.394)† 0.187

Safety outcomes

Death within 90 days 8 (20) 14 (21) 1.077 (0.407–2.852) 0.881 1.539 (0.479–4.947)† 0.470

Any ICH within 24 h 11 (28) 18 (27) 0.989 (0.410–2.384) 0.980 1.247 (0.472–3.297)† 0.656

Malignant brain edema 10 (25) 11 (17) 0.600 (0.229–1.575) 0.300 0.910 (0.306–2.704)† 0.865

Neurological deterioration 10 (25) 22 (33) 1.500 (0.622–3.616) 0.368 1.779 (0.693–4.568)† 0.231

Data are median (IQR), n (%).

IQR, Interquartile range; MT, Mechanical thrombectomy; IVT+MT, Intravenous thrombolysis before mechanical thrombectomy; mRS, modified Rankin Scale; NIHSS, National Institutes of

Health Stroke Scale; ICH, Intracranial hemorrhage; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio.
∗Adjusted for age, sex, and admission NIHSS score.
†The OR values were calculated using a binary logistic regression model.
‡The β-coefficients were calculated using a generalized linear model.

Conclusion

Our study indicates that administering pre-thrombectomy

intravenous thrombolytics in AIS patients can effectively reduce

the shedding of syndecan-1. This reduction may be attributed to

the potential impact of thrombolytic drugs on the thrombin-HPSE

pathway, thereby mitigating endothelial glycocalyx damage caused

by IRI. This finding may indirectly support bridging therapy and

provide a new research perspective on how thrombolytic drugs

benefit AIS patients. However, further validation studies will be

necessary to gain a deeper understanding of this mechanism and

explore its potential therapeutic applications.
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