Editors
3
Impact
Loading...
23,622 views
59 citations
15,707 views
89 citations
Shh as a morphogen in the chick wing bud. (a) Sonic hedgehog (Shh) expression in the polarizing region at the posterior margin of the early chick wing bud (Riddle et al., 1993). (b) A gradient of Shh in the chick wing bud (blue shaded numbers) specifies antero-posterior positional values for three digits (1, 2, and 3) in cells adjacent to polarizing region over 12 h. (c) Chick wing digit skeleton with polarizing region descendants fate-mapped by GFP-expression (green) (Towers et al., 2011). Digits form in tissue adjacent to descendants of the polarizing region that form narrow strip of cells along posterior wing margin. (d) Chick wing bud with anterior polarizing region graft expresses Shh at both anterior and posterior margins (Towers et al., 2011). (e) Mirror-image symmetrical positional values specified as in (b) as a result of Shh being produced by both graft and host. (f) Chick wing digit skeleton pattern with grafted polarizing region (d) and progeny fate mapped by GFP expression (Towers et al., 2011). Six digits form in an anterior to posterior pattern 3-2-1-1-2-3 and grafted polarizing region descendants form narrow strip of cells along anterior wing margin. In all cases, data shown is representative of data in the original cited papers.
Review
28 February 2017
Sonic Hedgehog Signaling in Limb Development
Cheryll Tickle
 and 
Matthew Towers

The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.

64,540 views
155 citations
Mini Review
30 November 2016
WNT/β-Catenin Signaling in Vertebrate Eye Development
Naoko Fujimura
Schematic diagram of vertebrate eye development (A). The early optic vesicle stage (E8.5–9.0). The presumptive optic vesicle envaginates toward the head surface ectoderm through the mesenchyme. (B) The optic vesicle stage (E9.5). As the optic vesicle comes into contact with the head surface ectoderm, it becomes partitioned into three domains: a dorsal, a distal and a proximal domain, which give rise to the retinal pigment epithelium, the neural retina and the optic stalk, respectively. The head surface ectoderm thickens to form the lens placode. (C) The optic cup stage (E10.5). The optic vesicle invaginates in coordination with the lens placode to form the optic cup and the lens pit. (D) The closure of the lens vesicle (E13.5). The cells located at the posterior lens vesicle elongate anteriorly to fill the cavity and differentiate as primary lens fiber cells. The cells in the anterior part of lens vesicle give rise to lens epithelial cells which migrate posteriorly to the equator and differentiate as secondary lens fiber cells. Pink color represents the region where the activity of WNT/β-catenin signaling is active, green shows the source of WNTs, blue indicates the region where WNT/PCP signaling is active. (E, F) Schematic representation of WNT/β-catenin signaling in the early lens development and in the RPE development, respectively. E. The periocular mesenchyme secretes TGFβ, which signals to the non-lens surface ectoderm. WNT2b is induced by TGFβ and activates WNT/β-catenin signaling in order to suppress the lens fate by repressing expression of Pax6. In the lens placode, WNT/β-catenin is inhibited by Pax6 which initiates lens development. (F) The surface ectoderm secretes WNTs which activate WNT/β-catenin signaling in the RPE. This signaling induces expression of Otx2 and Mitf which in cooperation with Pax6 control the RPE developments.

The vertebrate eye is a highly specialized sensory organ, which is derived from the anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme. The single central eye field, generated from the anterior neural plate, divides to give rise to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently, the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens vesicle and double-layered optic cup, respectively. This complex process is controlled by transcription factors and several intracellular and extracellular signaling pathways including WNT/β-catenin signaling. This signaling pathway plays an essential role in multiple developmental processes and has a profound effect on cell proliferation and cell fate determination. During eye development, the activity of WNT/β-catenin signaling is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular malformations due to defects in the process of cell fate determination and differentiation. This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye development. Whilst this mini-review focuses on loss-of-function and gain-of-function mutants of WNT/β-catenin signaling components, it also highlights some important aspects of β-catenin-independent WNT signaling in the eye development at later stages.

15,214 views
90 citations
Schematic representation of somitogenesis and the segmentation clock. (A) Pairs of somites bud off from the rostral end of the presomitic mesoderm (PSM) progressively during early development. The tail bud, a site of gastrulation that lies at the posterior end of the embryo, continuously “replenishes” the posterior end of the PSM with progenitor cells. The periodicity of segmentation is regulated by a molecular oscillator that drives cyclic gene expression from the posterior to the anterior tip of the PSM. The different colors represent domains of clock gene expression in different cycles. As time progresses in each cycle, the domain of clock gene expression shifts anteriorly while narrowing until it reaches the anterior limit of the PSM. The periodicity of this cyclic gene expression matches that of somite formation. An orange asterisk lies adjacent to each of the new pairs of somites formed in the time series—the first pair is formed after the blue wave of clock gene expression traverses the PSM and the second pair is formed after the pink wave of clock genes expression traverses the PSM from the tail bud to the anterior limit of the tissue. (B) Two mutually opposing gradients of retinoic acid (RA) and FGF/Wnt regulate the maturation wavefront within the paraxial mesoderm. Due to somite formation anteriorly and gastrulation at the caudal end of the PSM, cells within the PSM become progressively more anteriorly displaced, and, as a result, they are exposed to progressively lower levels of FGF/Wnt. There is a position within the PSM, termed the determination front, where cells are released from the effect of FGF and can respond to the segmentation clock and RA, embarking on their segmentation programme.
Mini Review
18 January 2017
Turn It Down a Notch
Francesca A. Carrieri
 and 
Jacqueline Kim Dale
11,552 views
40 citations
Recommended Research Topics
Frontiers Logo

Frontiers in Cell and Developmental Biology

Generation of Neurons and Their Integration in Pre-Existing Circuits in the Postnatal Brain: Signalling in Physiological and Regenerative Contexts
Edited by Helena Mira, Aixa Victoria Morales, Ruth Diez Del Corral
82.9K
views
52
authors
12
articles
Frontiers Logo

Frontiers in Cell and Developmental Biology

Targeting Developmental Pathways in Inflammation and Disease
Edited by Maria Pia Felli, Lisa M Minter, Eleni Anastasiadou
137.7K
views
127
authors
18
articles
Frontiers Logo

Frontiers in Cell and Developmental Biology

Toll-like Receptors Throughout Life: From Controlling Physiological Processes to Determinants of Disease
Edited by Francesca Arnaboldi, Silvia Selleri, Michele Sommariva
36.1K
views
54
authors
8
articles
Frontiers Logo

Frontiers in Cell and Developmental Biology

Embryonic Developmental Signaling Pathways in Normal and Disease States
Edited by Henry Ho, Taran Gujral
28.9K
views
30
authors
5
articles
Frontiers Logo

Frontiers in Cell and Developmental Biology

Signaling by Primary Cilia in Development and Disease
Edited by Sung-Eun Kim, Inna Nechipurenko, Søren Tvorup Christensen
17.9K
views
24
authors
6
articles