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SIGNALLING PATHWAYS IN 
EMBRYONIC DEVELOPMENT

Whole-mount in-situ hybridisation of a 4 day old chicken embryo for MyoD shows the developing 
muscles in the somites (striped pattern), the limbs and branchial arches.

Image by Sigmar Stricker.
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The formation of a complex multicellular organism from a single cell is one of the most amazing 
processes of biology. Embryonic development is characterised by the careful regulation of cellular 
behaviours such that cells proliferate, migrate, differentiate and form tissues at the correct place 
and time. These processes are genetically controlled and depend both on the history of cells, 
their lineage, and on the activities of signalling pathways, which coordinate the cell interactions 
leading to organogenesis.

The aim of the Frontiers research topic “Signalling pathways in embryonic development” has 
been to provide a forum for experts in cell and developmental biology to share recent advances 
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in the field of signalling during embryonic development. Sixteen articles in a variety of formats 
are united in this Topic, offering a valuable collection for researchers looking for an update in 
the knowledge of signalling pathways operating during embryogenesis. The works, focused 
mainly on vertebrates, explore different aspects of this theme from cell communication to organ 
formation and have implications for areas as distant as evolution or pathology.

Understanding developmental signalling pathways is important for several reasons. It gives us 
information about basic mechanisms of cell function and interactions needed for morphogenesis 
and organogenesis. It uncovers the basis of congenital malformations, since errors at any step of 
cell signalling during development are a major cause of defects. This fundamental insight gives 
us clues to understand the mechanisms operating in evolution that explain diversity in form 
and function. And finally, it allows the identification of possible causes of disease in the adult 
organism (such as cancer or degenerative diseases) pinpointing possible targets for therapeutic 
approaches.
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Editorial on the Research Topic

Signaling Pathways in Embryonic Development

The formation of a complex multicellular organism from a single cell is one of the most amazing
processes of biology. Embryonic development is characterized by the careful regulation of cellular
behaviors such that cells proliferate, migrate, differentiate, and form tissues at the correct place
and time. These processes are genetically controlled and depend both on the history of cells, their
lineage, and on the activities of signaling pathways, which coordinate the cell interactions leading
to organogenesis.

A limited number of key signaling pathways—Fgf, Hedgehog, Wnt, TGFß, Notch among the
most important—operate during development, acting repeatedly at different times and in different
regions in the embryo and eliciting diverse cellular responses. This raises the question of how cells
integrate all the information they receive and can respond in cell type-specific ways to the same
signals. Classical concepts in embryology such as organizers (groups of cells producing instructive
signals) and competence (ability of cells to respond) can now be analyzed in molecular terms.
In recent years many advances have been made in identifying the signals acting during embryo
development and understanding their properties and functions, which is equally of relevance
for human pathology and evolution. An important discovery is the conservation of signals and
mechanisms, not only in evolutionary terms (similar genes and signals acting in distant organisms),
but also in the repeated use of the same signaling pathways at different times and places in the
embryos. Moreover, many of those mechanisms are involved in adult tissue homeostasis and
regeneration.

Understanding developmental signaling pathways is important for several reasons. It gives us
information about basic mechanisms of cell function and interactions needed for morphogenesis
and organogenesis. It uncovers the basis of congenital malformations, since errors at any step of cell
signaling during development are a major cause of defects. Fundamental insight also gives us clues
to understand the mechanisms operating in evolution that explain diversity in form and function.
And finally, it allows the identification of possible causes of disease in the adult organism (such as
cancer or degenerative diseases) pinpointing possible targets for therapeutic approaches.

In this context, the aim of the Frontiers research topic “Signaling pathways in embryonic
development” has been to provide a forum for experts in cell and developmental biology to share
recent advances in the field of signaling during embryonic development. Sixteen articles in a
variety of formats are united in this Topic, offering a valuable collection for researchers looking
for an update in the knowledge of signaling pathways operating during embryogenesis. The works,
focused mainly on vertebrates, explore different aspects of this theme from cell communication to
organ formation and have implications for areas as distant as evolution or pathology.

Among the signaling pathways with important and widespread roles in development is the Wnt
pathway, comprising a family of ligands with homology to wingless in Drosophila. Wnts can bind

6
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to multiple receptor complexes and trigger several downstream
signaling cascades [including the so-called canonical WNT/β-
catenin dependent signaling pathway, the non-canonical
WNT/planar cell polarity (PCP), and the WNT/Ca2+ pathways],
illustrating how the same signal can elicit diverse cellular
responses depending on the cell type, context, and developmental
timing. Fujimura reviews the role of canonical Wnt signaling
in eye development, highlighting the important roles it
plays in patterning of ocular tissue, differentiation of retinal
pigment epithelium, and morphogenesis of the optic cup.
Importantly, mis-regulation of the signaling cascade can lead
to eye malformations and disease. Gentzel and Schambony
review a group of core intracellular effectors of the Wnt
pathway, disheveled (DVL) proteins, which comprise three
members in vertebrates. Although all DVLs share a common
basic function in Wnt signaling, the expression patterns, and
functions of the different isoforms are not totally redundant
and have also diverged between different species, suggesting
they play specific roles depending on the tissue distribution
and specific interactions. Again, mutations in DVL genes can
cause human congenital disease, highlighting their important
role in development. Additionally, Berger et al. review the role
of PTK7 (protein tyrosine kinase 7, a transmembrane receptor)
in the fine-tuning of the Wnt signaling network. Its functions
in establishing cell polarity, regulation of cell movements,
and migration are also essential for development and disease,
particularly in cancer and metastasis.

Another important signaling pathway is Notch, a
transmembrane protein that mediates juxtacrine cell-cell
communication. Notch has many functions in organ formation
and adult homeostasis, including cell determination and stem
cell maintenance. Carrieri and Dale review the particularly
well-studied function of Notch in somitogenesis and also present
recent data on the role of FBXW7 protein in regulating the
turnover of Notch intracellular domain (NICD, the effector
of the pathway), in development and cancer. This relates to
an often-overlooked essential point in signaling, which is the
termination of activation and resetting of the components,
allowing the cells to become competent again. Multiple
mechanisms of regulation exist (positive and negative feedback
loops) that allow a fine control of signaling pathways at different
steps of the intracellular cascades.

Crosstalk between the limited numbers of signaling pathways
is a mechanism that allows cells to respond differently to
the same signal, producing the diverse cellular behaviors that
are needed to build tissues and organs. A new example
of this is provided by Bernatik et al. reporting on the
role of the BMP antagonist Noggin in sensitizing cells and
potentiating the activation of non-canonical Wnt signaling in
skeletal development. They also provide evidence for a genetic
interaction between these two pathways, which are involved in
human congenital malformations.

The role of specific signaling pathways in the formation
of particular organs is discussed in other articles. Díez del
Corral and Morales review the multiple roles of Fgf signaling
in the developing spinal cord. This important structure of
the nervous system arises from neural derivatives of an early

neuromesodermal population located at the caudal part of the
embryo. Extension of this region is coupled to spinal cord
formation and several essential processes such as neurogenesis,
ventral patterning or neural crest specification are controlled by
Fgf signaling. These embryonic functions of Fgfs could be related
to its ability to promote regeneration in the injured spinal cord of
adults.

Signalling pathways often converge on controlling the
expression of transcription factors, which regulate cell fate
specification. The integration of Notch signaling and bHLH
transcription factors during inner ear development is analyzed by
Gálvez et al. which also highlight that these samemechanisms are
involved in hair cell regeneration, opening avenues for possible
therapeutic approaches in hearing impairment. Ear development
is also the topic reviewed by Magariños et al. They present
evidence for a crucial role of autophagy, the regulated process of
degradation, and recycling of cellular components, in vertebrate
inner ear formation.

The limb is a classic model in embryology and some of the
most important discoveries related to the roles of signaling
pathways in pattern formation, growth, and differentiation
have been made studying limb development. Tickle and
Towers review the role of Shh in this process, a paradigm
of how signals control and integrate tissue pattern and
growth. They also discuss the implications of this important
pathway for congenital malformations in humans and for
the generation of limb morphological diversity during
evolution. Montero et al. also treat this evolutionary aspect
in their perspective article. They present a detailed analysis
of Sox9 expression in developing digits of several species.
This transcription factor, regulated by signaling pathways
such as BMPs, Tgfßs, or Fgfs is involved in formation of
the chondrogenic template of the skeleton. Differences in
Sox9 expression patterns among species that have specific
morphologies may reflect differences in signaling pathways
controlling its expression. Also related to skeletal development,
Amara et al. show that the effects of Calcium/Calmodulin
dependent kinase II (CAMKII), an effector for Ca+2 -dependent
signal transduction, in promoting chondrogenic differentiation
seems to be specific for chicken embryos. This function is
not observed in the mouse, thus highlighting the existence of
differences in signaling functions and regulation among different
species.

Integration of extrinsic and intrinsic regulatory cues is
essential for organ formation. Dueñas et al. review the role
of signals, transcription factors and cellular processes in
the formation of the epicardium. This is the external-most
layer of the heart that serves not only as the outer cover for
this organ, but also seems to play a role in regeneration.
Thus, understanding the basis of its development may
have important therapeutic implications. Two articles deal
with muscle development. Hernandez-Torres et al. review
the role of Pitx2 in embryonic and adult myogenesis. A
hierarchy of transcription factors controls skeletal muscle
differentiation and Pitx2 plays an important role in the
regulation of this process. Importantly, it also seems to
be involved in the establishment and function of satellite
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cells, the stem cells resident in adult muscle, thus opening
new avenues for development of regenerative therapies.
Additionally, Nassari et al. review the role of connective tissues
in muscle development. Apart from the intrinsic molecular
signals mentioned above, the interaction of muscle cells with
surrounding tissues (bone, cartilage, tendon, and ligament)
is critical for the correct assembly of the musculoskeletal
system during development and for maintaining adult
homeostasis.

An emerging theme in developmental biology is the control of
tissue morphogenesis by physical forces (mechanotransduction).
Valdivia et al. review the mechanical control of myotendinous
junction formation and tendon differentiation, highlighting
again the importance of the interplay between chemical
and mechanical signaling during embryogenesis. In the same
line, Stricker et al. provide a timely discussion reminding
us that cells in embryos and adult organisms are not
present in isolation, but embedded in extracellular matrices
into complex tissues. Cells attach to the ECM and sense
its mechanical properties. Typically, experimental in vitro
conditions do not fully reproduce this environment, which
is however critical for the physiological cellular responses to
signaling cascades. The challenge for the future is to try and
integrate as many interactions as possible when designing
experiments.

We hope that the articles in this topic will be of interest to
researchers working in development and cell biology, fuelling

discussion on this area and opening new avenues for thinking and
investigation.
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The Multiple Roles of FGF Signaling
in the Developing Spinal Cord
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During vertebrate embryonic development, the spinal cord is formed by the neural

derivatives of a neuromesodermal population that is specified at early stages of

development and which develops in concert with the caudal regression of the primitive

streak. Several processes related to spinal cord specification and maturation are coupled

to this caudal extension including neurogenesis, ventral patterning and neural crest

specification and all of them seem to be crucially regulated by Fibroblast Growth

Factor (FGF) signaling, which is prominently active in the neuromesodermal region

and transiently in its derivatives. Here we review the role of FGF signaling in those

processes, trying to separate its different functions and highlighting the interactions with

other signaling pathways. Finally, these early functions of FGF signaling in spinal cord

development may underlay partly its ability to promote regeneration in the lesioned spinal

cord as well as its action promoting specific fates in neural stem cell cultures that may

be used for therapeutical purposes.

Keywords: spinal cord, spinal cord injury, neuromesodermal progenitors, neural stem cells, patterning,

neurogenesis, caudal extension, FGF

INTRODUCTION

The spinal cord is the most caudal part of the nervous system which is responsible for body motion,
including locomotion, somatosensation and the control of basic functions of the autonomous
nervous system. During development, in addition to the neurons that reside within the spinal cord,

it provides neural crest cells for the formation of sensory ganglia, ganglia of the autonomous system
and for the enteric nervous system. A fundamental aspect of spinal cord development is its relation
to the organs and muscles it innervates. Thus, spinal cord development appears highly coordinated
in space and time with the caudal extension that accompanies the development of the whole body.

The spinal cord cells of vertebrates derive from a region initially specified as neuromesodermal
progenitors (NMP) with mixed neural and mesodermal characteristics (Wilson et al., 2009;
Henrique et al., 2015; Row et al., 2016), with the exception of those forming the floor plate which
in amniotes derive from the node. In chick and mouse, this corresponds to a region of the epiblast
adjacent to the early node and the rostral primitive streak. From this population, some cells remain
in the ectoderm layer and form most of the spinal cord, while others gastrulate through the
primitive streak to become part of the paraxial mesoderm (Wilson et al., 2009; Henrique et al.,
2015). Later, with the closure of the caudal neuropore, the NMP region remains in the tailbud
from which the caudal spinal cord and mesodermal populations segregate. Overall, this constitutes
an ongoing process that takes several days to generate the complete rostrocaudal axis. Different
aspects of spinal cord development such as initiation of neurogenesis, ventral patterning and neural
crest specification and migration are conditioned by this caudal axis elongation (Figure 1). This
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FIGURE 1 | Roles of FGF signaling in the extending spinal cord. Diagram

representing a 7-somite stage chick embryo and showing the region of active

caudal FGF signaling. The different processes discussed in the review either

promoted (+) or inhibited (−) by FGF signaling are shown.

is a complex process involving several signaling pathways and
gene networks in which the FGF signaling pathway stands as a
crucial regulator, maintaining cells in an immature state until
they are displaced to a region where they are no longer influenced
by it.

FGF signaling acts in numerous stages and tissues during
embryonic development and the use of experimental approaches
designed to manipulate the FGF signaling pathways at specific
stages and tissues has been fundamental to overcome its
early roles in implantation, gastrulation, and neural induction.
These include treatment of tissue explants with FGF factors or
pharmacological antagonists, expression of pathway inhibitors
or truncated FGFR proteins that function interfering with the
normal function in the neural tube cells in ovo and the use of
conditional mouse mutants specifically removing FGFs or FGFR
in the NMP and its derivatives.

Here, we review the contribution of FGF signaling in the
initial process of spinal cord specification and elongation and
then we cover the initiation of neurogenesis, ventral patterning,
and neural crest specification and migration. We make an effort
to identify and separate the different steps in these highly
interconnected networks governing spinal cord extension and
associated events, focusing on the influence of FGF signaling
on the neural tissue. In addition, we have selected some of the
evidence supporting the use of FGF to promote regeneration of
the lesioned adult spinal cord both acting on spinal cord cells in
vivo as well as to promote expansion of neural stem cells in vitro
and their differentiation toward specific neuronal fates for their
use for regenerative purposes.

Note: Gene symbols are italicized in all species, but there
are specie-specific differences. Thus, gene symbols for human
and chick appear all in upper-case; for mouse and rat
with only the first letter in upper-case and for fish, gene
symbols appear with all letters in lower-case. In the case of
protein symbols, they are not italicized and all letters are
in upper-case, except in fishes where only the first letter is
upper-case (http://www.biosciencewriters.com/Guidelines-for-
Formatting-Gene-and-Protein-Names.aspx). When referring to
genes from several species they have been separated by a slash.

FGF SIGNALING PATHWAY: EXPRESSION
OF COMPONENTS IN THE DEVELOPING
SPINAL CORD

Let’s first start with a brief introduction of the components
of the FGF signaling pathway in the context of spinal cord
development. As most signaling pathways, the FGF pathway
includes ligands, receptors, modulators, intracellular transducers,
and final effectors (Ornitz and Itoh, 2015). The only components
exclusive for the pathway are the ligands (up to 23 FGFs have
been described in vertebrates) and their receptors of the tyrosin
kinase (RTK) type (FGFR1–4 in vertebrates). Other more general
players, which are also used by other signaling pathways, such
as the pathway inhibitors SPROUTY2, SEF, DUSP6, and the
transcription factor effectors of the ETV family, are particularly
associated to this pathway as the corresponding mRNAs are
highly expressed in regions with high FGF activity and in
particular in the caudal NMP region (Chotteau-Lelievre et al.,
2001; Karabagli et al., 2002; Corson et al., 2003; Harduf et al.,
2005; Lunn et al., 2007). Interestingly, they are themselves
downstream targets of the pathway and are thus considered
its readouts and have been the basis for the development of
pathway activity reporters (Molina et al., 2007; Ekerot et al.,
2008). However, as these downstream targets of the pathway
are not exclusively activated by the FGF pathway, they do not
constitute definitive readouts of the activity of the FGF pathway.
The identification of cells where the pathway is truly active is still
one of the main difficulties in the analysis of FGF function, as
none of the intracellular cascades is specific for FGF signaling and
the difference with other RTK pathways may be in the fine tuning
of the signaling properties.

The three main intracellular cascades that can mediate the
FGF signal are: the RAS-MAPK, the PI3K-AKT and the PLPCγ

pathways (Figure 2). High levels of MAPK phosphorylation are
detected in the NMPs and surrounding area and these depend
on the activation of FGF pathway (Lunn et al., 2007). Moreover,
most of the effects resulting from FGFR inhibition in this region
can also be observed following the inhibition of MEK (MAPK
Kinase), suggesting this is the main FGFR downstream pathway
in this region (Diez del Corral et al., 2002; Delfino-Machin
et al., 2005; Lunn et al., 2007; Martinez-Morales et al., 2011;
Olivera-Martinez et al., 2012; Morales et al., 2016).

A gradient of AKT phosphorylation has also been described
in the region surrounding the node with higher levels caudally
(Dubrulle et al., 2001) but the exposure to PI3K inhibitors does
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FIGURE 2 | FGF signaling pathway. The FGFRs consist of three extracellular immunoglobulin-type domains (D1–D3; blue balls in the receptor), a single-span

trans-membrane domain and an intracellular split domain. FGFs interact with the D2 and D3 domains, and promote upon binding receptor dimerization and tyrosine

kinase autophosphorylation of the FGFRs that results in the recruitment and assembly of signaling complexes. The main three downstream FGF/FGFR signaling

complexes operating in the context of neural development are represented (the red balloons indicate the main components of the pathway): the

Ras/MEK/MAPK/ERK; the PI3K/AKT and the PLCγ pathways. The blue balloons indicate the repressor regulators of the pathways.

not result in the same effects as blockade of FGFR signaling
(Martinez-Morales et al., 2011) and thus the relevance of the AKT
pathway in this context has not been addressed further.

The most comprehensive analysis of the expression patterns
of FGF signaling related genes in spinal cord development has
been performed in the chick. At the stages of chick spinal
cord specification, several FGFs, including FGF3, FGF4, FGF8,
FGF13, FGF18, are expressed in the caudal NMP region or
surrounding tissues (Karabagli et al., 2002; Delfino-Machin et al.,
2005). During later stages (during spinal cord elongation and
including tailbud formation) FGF3, FGF4, FGF13 and FGF18
become restricted to the primitive streak while FGF8 is more
broadly expressed in the streak, the adjacent NMP region and
the ingressing mesoderm (Karabagli et al., 2002; Delfino-Machin
et al., 2005). Expression of FGF8 is highly dynamic as those cells
that progress from the NMP state to the spinal cord fate or
from the presomitic mesoderm to the somitic mesoderm slowly
downregulate their expression (Figures 3A–C). Expression of
FGF4 and FGF8 in the NMP region (including caudal lateral

epiblast and later, the tailbud) continues for several days but
declines toward the final stages of somitogenesis and the
cessation of axis elongation (Cunningham et al., 2011; Olivera-
Martinez et al., 2012).

FGFR1-3 are initially present in the NMP zone (Karabagli
et al., 2002; Lunn et al., 2007; Nishita et al., 2011), but later, only
FGFR1 remains throughout the neural tissue including the NMP
region while FGFR2 is absent there and becomes restricted to the
neural tube, rostral to Hensen’s node, and FGFR3 restricts to the
neural tube adjacent to somites (Karabagli et al., 2002; Lunn et al.,
2007; Nishita et al., 2011).

Similar expression patterns have been described in mouse for
those genes analyzed. In mouse, expression of Fgf3, Fgf4, Fgf8,
Fgf17, and Fgfr1 has been reported in and around the NMP
region (Gofflot et al., 1997; Wahl et al., 2007; Anderson et al.,
2016a). In zebrafish, in addition to fgf4 and fgf8, fgf17, fgf17b,
and fgf24 (a zebrafish exclusive gene) have also been shown in
or near the tailbud (Reifers et al., 2000; Draper et al., 2003; Cao
et al., 2004; Akiyama et al., 2014).
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FIGURE 3 | Regulation of caudal FGF8/Fgf8 expression during spinal cord extension. (A) Diagram representing the caudal part of a chick embryo where the

different regions related to FGF8 expression are labeled. (B) Chick embryo showing FGF8 mRNA detected by in situ hybridization with a full length FGF8 probe. (C)

Embryo showing the nascent FGF8 pre-mRNA detected by in situ hybridization with an intronic FGF8 probe. (D) Diagram representing the main factors contributing to

the expression of Fgf8 in the caudal NMP. Lines represent possible direct interactions of transcription factors and dashed lines indirect relations.

Very little is known about the regulation of expression of
FGFRs and FGFs. Most work has been done with FGF8, but the
control of FGF8 transcription in the spinal cord NMP region and
its progressive downregulation coordinated with embryonic axial
extension still constitutes an unsolved enigma (Figure 3). Three
regions have been identified with respect to FGF8 expression:
the most caudal region where FGF8 is actively transcribed
(NMP), a more rostral region where transcription is stopped
but transcripts remain (known as the transition zone or the
preneural tube) and a third most rostral region, adjacent to the
mesoderm ready to segment where transcripts are no longer
detected (Figures 3A–C).

Several signaling pathways have been shown to influence
Fgf8 expression either promoting or decreasing Fgf8 levels
(Figure 3D). The WNT/β-Catenin pathway is active in the
caudal region (Aulehla et al., 2003; Olivera-Martinez and
Storey, 2007; Cunningham et al., 2011) and manipulation of
the pathway has been shown to affect Fgf8 expression. Reduced
levels of Fgf8 have been shown in the Wnt3a mouse mutant
vestigial tail (Aulehla et al., 2003) and a further reduction
is observed in double Wnt3a/Wnt8a mutants (Cunningham

et al., 2015b). Furthermore, altering the levels of β-Catenin in
the PSM promotes changes in Fgf8 expression (Aulehla et al.,
2008; Dunty et al., 2008). In fact, studies in mouse craniofacial
development support a direct role for WNT in Fgf8 regulation
throughout a conserved Tcf/Lef site 2.8 kb upstream of Fgf8
(Wang et al., 2011). However, no upregulation of FGF8 by WNT
has been observed in chick spinal cord suggesting a more indirect
regulation of FGF8 by the WNT in the context of caudal neural
tube (Olivera-Martinez and Storey, 2007). Evidence has also been
presented for the requirement of signals from the notochord.
In particular, a reduced level of FGF8 is observed in the absence
of the notochord that can be rescued by SHH supplementation
(Resende et al., 2010).

An autoregulatory mechanism of FGF activating FGF8 has
been suggested based on the ability of FGF8 to activate the
transcriptional repressor NKX1.2 (previously known as SAX1;
Bertrand et al., 2000) which when overexpressed can in turn
result in increased FGF8 levels (Sasai et al., 2014). However,
exposure of the neural explants or embryos to FGF does not
result in activation of FGF8 expression and inhibition of FGF
signaling does not result in decreased FGF8 or Fgf8 levels in
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chick and mouse, respectively (Harrison et al., 2011; Patel et al.,
2013), raising the possibility that NKX1.2 may be involved in the
stabilization of FGF8/Fgf8 transcripts.

In addition, although a localized source of a regulator of
FGF8 caudal to Hensen’s node has been ruled out (Dubrulle
and Pourquie, 2004; Harrison et al., 2011), other caudally active
pathways such the HMG-CoA reductase/mevalonate pathway
(mediating steroid biogenesis) could be also playing a role in
FGF8 expression activation and maintenance (Olivera-Martinez
et al., 2014).

Recent efforts for the characterization of the Fgf8 gene
regulatory region have led to the identification of several regions
driving expression around the NMP region (Beermann et al.,
2006; Marinic et al., 2013) and furthermore to the identification
of CDX2 and TBRA as direct transcriptional activators (Amin
et al., 2016). This could explain the decreased Fgf8 levels that
have been observed in Cdx2 mutants (Savory et al., 2009) but
additional activators may also be acting to regulate Fgf8, such as
WNT/β–Catenin.

In addition to signals maintaining FGF8/Fgf8 expression
in the caudal precursor region, progressive downregulation of
FGF8/Fgf8 involves cessation of transcription in cells that exit
the NMP region. Retinoic acid (RA; which is produced by
somites and rostral presomitic mesoderm) has been shown to
downregulate FGF8/Fgf8 and reduction in RA signaling (in a
vitamin A deprived quail model and in Raldh2−/− mutants)
results in a rostral expansion of the FGF8/Fgf8 expression domain
(Diez del Corral et al., 2003; Molotkova et al., 2005; Vermot
and Pourquie, 2005; Sirbu and Duester, 2006; Olivera-Martinez
and Storey, 2007; Patel et al., 2013; Kumar and Duester, 2014;
Cunningham et al., 2015a). This effect of RA has recently been
attributed to direct binding of RA receptor (RAR) to an RA
response-element (RARE) in the regulatory region in the Fgf8
promoter (Kumar and Duester, 2014; Cunningham and Duester,
2015). This constitutes one of the few examples described
where RAR bound to RA would repress gene transcription.
Furthermore, additional studies show how NCOR repressors are
required for RA repression of Fgf8 (Kumar et al., 2016).

However, as the forced reduction in RA signaling only
promotes a limited expansion of the FGF8/Fgf8 domain,
additional mechanisms of transcriptional repression must be
involved. One possible theoretical mechanism proposed would
involve a caudal diffusing signal transcribed in NMP cells that
would repress both its own transcription as well as FGF8/Fgf8
(Harrison et al., 2011). However, to date no such signal has
been identified. Moreover, failure of FGF8/Fgf8 to be expressed
more anteriorly in spinal cord and somites could be due to a
lack of transcriptional activators such as TBRA, CDX, and WNT
expression.

Interestingly, the change in the transcriptional state of Fgf8
locus from active to inactive is associated to a change in its
nuclear position from a more central location in the NMP to a
more peripheral position in neural tube cells (Patel et al., 2013).
This location seems to be regulated by FGF signaling per se as
inhibiting FGFR signaling results in a more peripheral location
of Fgf8 transcription in the caudal region. However, in spite of
the change of location, transcription of Fgf8 still occurs (Harrison

et al., 2011; Patel et al., 2013) suggesting that location of the Fgf8
locus to the periphery is required but is not sufficient for cessation
of expression.

As mentioned above, analysis of active transcription by
in situ hybridization using intronic FGF8/Fgf8 probes has shown
that the actively transcribing region is rather limited and
that cessation of FGF8/Fgf8 transcription seems to be abrupt
(Dubrulle and Pourquie, 2004). However, the high stability
of the transcript (which can perdure more than 5 h) is such
that a gradient of FGF8/Fgf8 transcripts can be generated. The
mechanism accounting for this high FGF8/Fgf8 stability however
has not been further explored.

Final steps in the regulation of FGF8/Fgf8 expression are
the decrease in FGF8/Fgf8 levels associated to the trunk to tail
transition and the termination of transcription in the tailbud
associated to the termination of axis elongation. Mouse embryos
with mutations associated to a prolonged trunk extension (Gdf11
loss of function mutants or overexpression of OCT4; Aires
et al., 2016) show an abnormal increase in Fgf8 expression
in the tailbud region. In the chick, RA derived from the
tailbud is also important for the correct termination of FGF8
expression (Olivera-Martinez et al., 2012) while in the mouse
other mechanisms seem to be responsible (Cunningham et al.,
2011), as body axis extension continues for a much longer time
to form the tail in mouse.

As FGFs are secreted factors, their distribution also depends
on their diffusion and transport in the extracellular medium.
This has been examined in detail in zebrafish embryos mostly
in the context of gastrulation but this may be extended to
other situations (reviewed in Bokel and Brand, 2013). There,
the binding to heparan sulfates, important constituents of the
extracellular matrix, is not only relevant for the activation of the
receptor by the ligands but also has an influence on the spread
of Fgfs (Yu et al., 2009). The shape of the gradient is also greatly
influenced by degradation of Fgf8 that may be largely due to its
endocytic removal (Scholpp and Brand, 2004).

Overall, a complex gene regulatory network is in place in the
NMP region involving several interconnected signaling pathways
that ensures that FGF signaling components are expressed at the
appropriate levels for the control of a number of processes that
take place as the neural tube extends to form the spinal cord.
Given the temporally controlled exposure of cells to FGFs in and
around the NMP region, the measurement of the activity of the
pathway at the level of the receptor as well as at the different
downstream components in fixed tissue and in vivo, as the axis
extends caudally, would greatly improve our understanding of
the coordination of morphogenetic movements and the control
of tissue differentiation.

FGFs AND THE ESTABLISHMENT OF THE
CAUDAL NEUROMESODERMAL
PROGENITORS AND OF THE SPINAL
CORD IDENTITY

It has recently become clear that the spinal cord derives
progressively from the caudal NMP region which is specified
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through FGF and WNT actions on sensitized epiblast cells
around the primitive streak (Henrique et al., 2015). Specification
of the NMP region is initiated at gastrulation stages (Muhr et al.,
1999; Delfino-Machin et al., 2005; Nordstrom et al., 2006) within
a region around the node and primitive streak characterized
by expression of genes such as NKX1.2, CDX1, CDX2, CDX4,
and HOXB8 where high MAPK signaling levels are present.
This coincidence is maintained during axis extension (Delfino-
Machin et al., 2005; Lunn et al., 2007) and reflects the activity of
FGF in the control of the expression of those genes (Storey et al.,
1998; Muhr et al., 1999; Bel-Vialar et al., 2002; Delfino-Machin
et al., 2005; Nordstrom et al., 2006; Sasai et al., 2014). Thus, in
the chick embryo, blockade of FGF signaling with a dominant
negative form of FGFR (DN-FGFR) and with pharmacological
inhibitors results in downregulation of NKX1.2 and HOXB8 in
vivo and in explant cultures (Delfino-Machin et al., 2005). In
double Fgf4; Fgf8 conditional mutant mice, there is a decrease in
Wnt3a, Wnt5a, Cyp26a1, T-Bra in the NMP region (Naiche et al.,
2011; Boulet and Capecchi, 2012). Similarly, Fgfr1 conditional
mutants also show decreased levels of a number of NMP region
genes, such as Gbx2 and Cyp26a1 (Wahl et al., 2007). All these
results, from the current perspective that stresses the relevance
of the NMP cells, suggest that FGF contributes in an important
way to the specification of the NMP character in chick andmouse
embryos, including genes expressed in NMP and its mesodermal
derivatives (T-BRA) as well as those expressed in NMP and
its neural derivatives (i.e., NKX1.2). In the same direction,
in Xenopus and zebrafish embryos, expression of a dominant
negative form of FGFR/Fgfr (DN-FGFR/DN-Fgfr) results in the
loss of markers of NMP and its derivatives (Isaacs et al., 1994;
Griffin et al., 1995; Holowacz and Sokol, 1999; Ota et al., 2009).

The NMP give rise to both spinal cord and mesodermal
cells during an extended period of time and FGF levels also
contribute to preserve the balance between the three cell types.
For instance, double Fgf4; Fgf8 conditional mutant mice where
defective signaling is restricted to the NMP and its derivatives
display dramatic reduction of the presomitic mesoderm markers
Tbx6 (Naiche et al., 2011; Boulet and Capecchi, 2012) and
display ectopic neural tubes (Boulet and Capecchi, 2012) similar
to the ones observed in Fgfr mutant chimeras (Ciruna et al.,
1997). In chick, pharmacological inhibition of FGFR results in
precocious and caudal expression of the neural tube specific
gene SOX1 (Stavridis et al., 2010). On the other hand, situations
with excessive caudal FGF8 signaling such as the Raldh2 mutant
present an imbalancedNMPdifferentiation favoringmesodermal
fate (Cunningham et al., 2015a).

This suggests a requirement of FGF signaling for the
promotion of mesodermal or neuromesodermal vs. neural fates
(Henrique et al., 2015). Most interestingly, FGF signaling has
been shown recently to promote the expression of enzymes that
drive the glycolytic metabolic state of the NMP region (Oginuma
et al., 2017) that is in turn important for WNT signaling and
for restraining the transition from a NMP state to a neural
state (Oginuma et al., 2017). Later on, that glycolytic metabolic
state in a gradient fashion also operates in presomitic mesoderm
development (Bulusu et al., 2017).

In spite of FGF promotion of neuromesodermal and
mesodermal fates, FGF signaling in combination with WNT

signaling also appears to contribute to the activation and
maintenance of the expression of the neural genes SOX2 and
SOX3 through specific gene regulatory regions (Takemoto et al.,
2006; Nishimura et al., 2012) and this might help to prevent
the excess production of mesoderm precursors from the NMP
(Yoshida et al., 2014).

The precise sequence of exposure of cells to FGF in
combination with the other caudal signal WNT as well as the
temporal dynamics within the cells may here determine whether
cells are maintained in a NMP state, differentiate toward a
mesodermal fate or toward a neural fate. This idea has been
recently explored with experiments developing in vitro methods
to generate a population of cells that co-express the NMP genes
frommouse and human pluripotent stem cells by timed exposure
to FGF2 in combination with WNTs (Gouti et al., 2014; Turner
et al., 2014; reviewed in Henrique et al., 2015). This constitutes
a good example of how the temporal exposure and competence
to interpret FGF signals play an important role in specification of
cell fates.

Once spinal cord cells leave the NMP region, FGF is not
required for the maintenance of the spinal cord identity. Thus,
the spinal cord specific homeobox transcription factor HOXB8,
that initially requires FGF for its expression in the NMP (Delfino-
Machin et al., 2005), remains actively expressed in spinal cord
progenitors after the levels of FGF signaling have dropped during
axis elongation.

The different mechanisms responsible for the role of FGF
in specification of the NMP and then in the balance of
mesodermal and neural derivatives may be related to the
coactivity with other signals and/or to the temporal sequence
of exposure and response of cells to FGF and other signals, as
suggested by the cell culture experiments. All these crucial aspects
certainly deserve now a thorough analysis within the developing
embryo.

FGFs AND THE CONTROL OF SPINAL
CORD CAUDAL EXTENSION

The most striking feature of embryos where FGF signaling has
been diminished (once the early lethality is overcome) is the
truncation of the caudal embryonic axis, observed in mouse,
Xenopus and zebrafish. Mouse Fgfr1−/− embryonic chimeras
cannot gastrulate properly and mutant cells tend to accumulate
in the tail displaying a short axis (Ciruna et al., 1997; Ciruna and
Rossant, 2001). Similarly, Fgfr1 conditional mutant mice where
defective signaling is restricted to the caudal NMP and derivatives
(using a TBra- driven Cre-line), result in truncated axis at the
level of sacral regions (Wahl et al., 2007). An even shorter axis is
observed in the double Fgf4; Fgf8 conditional knock-out (Naiche
et al., 2011; Boulet and Capecchi, 2012; either using a TBra- or a
Hoxb1-driven Cre-lines). A shortened tail is also apparent in the
Fgf3 null mutant embryos (Anderson et al., 2016a,b). Similarly,
in Xenopus and zebrafish the overexpression of DN-FGFR/DN-
Fgfr versions also result in truncated embryos (Griffin et al., 1995;
Holowacz and Sokol, 1999) and in chick decreased elongation
rates have been observed following blockade of FGFR (Benazeraf
et al., 2010).
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However, in all these situations the lack of FGF signaling
affects specification of both mesodermal and neural derivatives
and it is therefore not possible to assess whether the defect on
elongation is a consequence of an alteration in gastrulation, in
the specification of NMP, spinal cord or mesoderm, the result
of abnormal motility in the mesoderm (Benazeraf et al., 2010)
or whether there is a more specific requirement within the
spinal cord population. Support for a more localized role of FGF
signaling in spinal cord caudal extension came from analysis of
cell distribution after electroporating a DN-FGFR1 construct in
chick NMP region (Mathis et al., 2001; therein referred to as
node region). In control experiments, cells could either remain
in the NMP region and continue the backward displacement
or get incorporated into the neural tube. However, cells with
decreased FGF signaling had an increased probability to get
incorporated in the neural tube and thus would not be part of the
caudally displaced NMP region suggesting some changes in cell
adhesion properties of those cells, at least indirectly. In addition,
a role of FGF in the maintenance of proliferating cells could also
contribute to the extension of the axis (Mathis et al., 2001).

In presomitic mesoderm, axis extension has been shown to
involve differential motility of cells along the rostrocaudal axis
in a space constrained by lateral boundaries (possibly the lateral
plate), with cells moving more in caudal presomitic mesoderm
than in the rostral part. Interestingly, in that context, FGF
signaling has been shown to promote cell motility (Benazeraf
et al., 2010; Lawton et al., 2013). As mentioned before, FGF
is required for the transcription of rate limiting enzymes
responsible for the glycolytic metabolic state of the NMP that has
been shown to be important for cell motility and axis elongation
(Oginuma et al., 2017). The mechanism of control of cell motility
is still not known but it has been proposed to be related to the
ability of localized glycolytic activity to ensure rapid production
of ATP for actin polymerization in the forming protrusions of
motile cells (Oginuma et al., 2017). In other contexts, FGF has
been shown to have chemotaxis properties (Yang et al., 2002)
and this has been suggested as an additional mechanism that
could in theory contribute to axis extension (Harrison et al.,
2011). In any case, given that the spinal cord is composed by
epithelial cells and not by mesenchymal cells (as it is the case for
presomitic mesoderm) it is unlikely that the samemorphogenetic
mechanisms are responsible for its extension which may be a
more passive process driven by mesoderm.

Recent work on the generation of a population with NMP
properties by differentiation of mouse embryonic stem cells
(mESCs) in adherent cell culture has shown that these cell
aggregates also have the ability to elongate in vitro and that
this elongation requires FGF signaling, providing an in vitro
system where this function can be further examined (Turner
et al., 2014). In conclusion, there are still many unknowns in
relation to the cellular process of spinal cord extension. Most
likely, the combination of in vitro culture systems together
with imaging techniques (both in vitro and in vivo), the use
of biosensors to investigate metabolism in developing embryos
(such as the PYRATES mouse line, Bulusu et al., 2017) and in
silico simulations will greatly contribute to the understanding of
the important role of FGF signaling in spinal cord extension.

FGFs AND THE CONTROL OF CELL
PROLIFERATION, CELL CYCLE EXIT AND
NEURONAL DIFFERENTIATION

FGFs play important roles in cell survival and proliferation in
many developmental contexts and in particular for neural stem
cells and progenitors (Vaccarino et al., 1999; Storm et al., 2006;
Maric et al., 2007). In the developing spinal cord, analysis of cell
cycle exit (Sechrist and Bronner-Fraser, 1991) and of the early
postmitotic marker NeuroM (Roztocil et al., 1997) revealed two
regions with respect to cell proliferation. NeuroM+ cells start to
appear in the region flanked by somites while no NeuroM+ cells
are found in the more caudal region (the preneural tube) nor in
the NMP region, coinciding with the region of influence of FGF
signaling (Diez del Corral et al., 2002).

Exposure of the neural tube to FGF at a stage when some cells
are already exiting the cell cycle can impair the generation of
new NeuroM expressing cells (Diez del Corral et al., 2002) and
by that way, the onset of neurogenesis. By following the fate of
neural progenitors using time lapse imaging, it has been possible
to analyze the changes in the dynamics of progenitors associated
to FGF exposure (Wilcock et al., 2007). Neural progenitors and
stem cells can normally experience three modes of division to
give rise to neurons (N) and progenitors and stem cells (P):
self-expanding, PP (i.e., giving rise to 2 progenitors or stem
cells); self-replacing, PN (i.e., giving rise to a progenitor and a
neuron); and self-consuming, NN (i.e., giving rise to 2 neurons).
Previous studies in the developing cortex and spinal cord suggest
that different modes are associated with different cell cycle
duration times, with neuron generating divisions (PN or NN)
characterized by a longer cell cycle than PP divisions (Takahashi
et al., 1995; Calegari and Huttner, 2003; Calegari et al., 2005;
Wilcock et al., 2007).

Upon exposure to FGFs, progenitors only go through PP
divisions while no PN nor NN divisions could be observed
(Wilcock et al., 2007). These FGF induced PP divisions exhibited
the typical short PP cell cycle length while no changes in the range
of cleavage plane orientation were observed. Interestingly, a
subpopulation of cells was found dividing without contacting the
apical membrane and with very short cell cycle times (Wilcock
et al., 2007). These data support a role for FGF in themaintenance
of cells characterized by a rapid cell cycle that can only generate
further progenitors. Interestingly, within the embryo, shorter cell
cycle lengths are observed in the region exposed to FGF with
respect to the rostral neural tube (Olivera-Martinez et al., 2014)
and several cell cycle genes are differentially expressed in the
caudal vs. more rostral region and could be regulated by FGF
(Lobjois et al., 2004; Olivera-Martinez et al., 2014). One example
is CYCLIN D2, a cell cycle regulator specifically expressed in the
chicken caudal neural plate that can be activated by and requires
FGF signaling (Lobjois et al., 2004; Molina and Pituello, in press).

Although exposure to FGF can impede neurogenesis,
blockade of FGF signal in explants is not sufficient to drive
premature expression of the postmitotic and neurogenesis
marker NeuroM (Diez del Corral et al., 2002). However, as
discussed above, cells subject to interference with FGF signaling
in the embryo tend to prematurely leave the NMP region (Mathis
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et al., 2001) where only proliferating cells are found and it
remains to be assessed whether they have alterations in their type
of division or cell cycle exit parameters.

A high level of aerobic glycolysis is known to facilitate cancer
cell proliferation. Although no significant change in proliferation
was observed by Oginuma et al. (2017) in embryos grown in
the absence of glucose, more detailed analysis are required in
order to determine a possible implication of the FGF dependent
changes in metabolism in the control of proliferation during axis
extension and more specifically within the spinal cord.

The contribution of FGF to the control of proliferation in
the spinal cord discussed above is restricted to cells before or
at the onset of neurogenesis and could be equivalent to the
ability of FGF2 and FGF8 in the telencephalon to maintain the
proliferative symmetrical PP divisions of neuroepithelial cells
before the onset of neurogenesis (Raballo et al., 2000; Storm
et al., 2006; Maric et al., 2007; Rash et al., 2013). Interestingly,
the analysis of the telencephalon of mutant mouse embryos
has revealed additional requirements for FGF signaling in
proliferation of neurogenic lineages at different steps. At the start
of telencephalon neurogenesis, neuroepithelial cells transform
into radial glial cells, which divide asymmetrically to generate
another radial glia and a postmitotic neuron or a basal progenitor
(Gotz and Huttner, 2005) and this transition is promoted by
FGF10 (Sahara and O’Leary, 2009). Finally, after neurogenesis
has started, it has been demonstrated (using mutants for three
FGF receptors) that FGF signaling is required to slow down the
progression from radial glia to basal progenitors (Kang et al.,
2009; Rash et al., 2011). Similar roles for FGF at later stages of
spinal cord development remain to be explored (see below for
functions during spinal cord adult neurogenesis).

In addition to a more direct action of FGF on the cell cycle,
several FGF dependent pathways could mediate its influence
on cell cycle exit and neuronal differentiation before the onset
of neurogenesis in the spinal cord. FGF signaling is required
for the expression of DELTA-1, an important component of the
NOTCH signaling pathway involved in mutual inhibition in the
NMP region and required to limit precocious cell cycle exit
(Akai et al., 2005). Additionally, FGF signaling promotesWNT8a
expression, which in turn prevents neuronal differentiation
(Olivera-Martinez and Storey, 2007).

Manipulation of FGF signaling in chick embryo explants and
the use of mouse mutants has shown that FGFs can reduce
the levels of RA signaling, a neuronal differentiation promoter
(reviewed in Diez del Corral and Morales, 2014) and this would
also favor the maintenance of the progenitor state. Double Fgf4;
Fgf8 conditional mutant mouse embryos exhibit increased caudal
RARE-lacZ reporter expression (Naiche et al., 2011). But, at what
level could FGF act on the control of RA signaling? FGF4 and
FGF8 can repress the gene encoding the RA-synthesizing enzyme
RALDH2 in the paraxial mesoderm (Diez del Corral et al., 2003).
However, the contribution of this repression to the RA levels
is probably partial since double Fgf4; Fgf8 conditional mutant
mouse embryos do not exhibit increased Raldh2 expression
(Boulet and Capecchi, 2012). FGF signaling is required for the
caudal expression of the RA-degrading enzyme Cyp26a1 (Wahl
et al., 2007) and this could also contribute to the control of RA

levels similarly to what has been described in the context of
the hindbrain (Gonzalez-Quevedo et al., 2010). FGF4 and FGF8
can also downregulate RARβ receptor levels in the spinal cord
(Olivera-Martinez and Storey, 2007) and this would affect the
sensitivity to RA levels. This receptor gene depends on RA for
its activation (Olivera-Martinez and Storey, 2007) and thus its
downregulation by FGF could be due to upregulation of Cyp26a1
but this has not been examined yet.

FGF signaling is also required to prevent precocious activation
of PAX6 and IRX3 in chick and Pax6 in mouse (Bertrand
et al., 2000; Diez del Corral et al., 2003; Patel et al., 2013), two
transcription factors which promote neuronal differentiation (de
la Calle-Mustienes et al., 2002; Bel-Vialar et al., 2007). Thus, FGF
seems to contribute to a rather complex network that controls
proliferation before the onset of neurogenesis maintaining an
undifferentiated state. However, open questions still remain: does
FGF signaling act differentially on the process of proliferation
within NMP and then for promotion of self-renewal of neural
progenitors? Does it act differently in the spinal cord than in
telencephalon progenitors where it has also been involved in the
appearance of intermediate progenitors? What are the cell cycle
components modulated by FGF signaling in all these processes?

FGFs AND PATTERNING OF SPINAL CORD
ALONG THE ROSTRO-CAUDAL AXIS

Once the region of the neural plate giving rise to the spinal
cord has been specified (in an FGF dependent way), FGF
signaling has an additional role in the further regionalization
of the spinal cord along the rostral-caudal axis. The spinal cord
presents heterogeneity along the rostro-caudal axis responsible
for differences in motor neuron subpopulations, interneuron
distribution (Francius et al., 2013; Lai et al., 2016) or neural crest
derivatives (Le Douarin et al., 2004). This regionalization, which
has been mainly examined in motor neurons, is a consequence
of the restricted rostro-caudal expression of Hox genes in
progenitor cells and subsequently in the resulting postmitotic
motor neurons (reviewed in Philippidou and Dasen, 2013).

Experiments in chick embryos have shown that exposure
to FGF or electroporation of FGFs expressing constructs shifts
rostrally the domain of expression of caudal HOX mRNAs
(HOXB6, HOXC6, HOXB7, HOXB8, and HOXA9-B9-C9) in
neural progenitors resulting in an increase in the protein levels
of a subset of HOXB proteins (Bel-Vialar et al., 2002; Dasen
et al., 2003). FGF signaling appears to act here by activating
the transcription factor genes of the Cdx family, known to
activate HOX/Hox gene expression, in particular cdx2 and cdx4
in zebrafish (Shimizu et al., 2006), CDX1 and CDX2 in the chick
(Bel-Vialar et al., 2002), and Cdx1, Cdx2, and Cdx4 in mouse (van
den Akker et al., 2002; Amin et al., 2016). Exposure to FGF not
only has consequences in the expression of genes in progenitors
but also in the resulting motor neurons (Liu et al., 2001; Dasen
et al., 2003). Explants of neural tissue fated to give rise to
cervical spinal cord do not express HOXC6, HOXC8, HOXC9,
or HOXC10 after culture but their exposure to increasing FGF
levels results in progressive activation of the production of these
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proteins suggesting that FGFworks in a concentration dependent
way. Considering that in the embryo, caudal cells are exposed
to FGF for a longer period of time than rostral cells, but not
necessarily to higher levels of FGF signaling, this concentration
dependent effect has also been interpreted as an effect of the
duration of exposure to the FGF morphogen. The mechanism
to explain such concentration/time of exposure dependence is
still not known but may involve the regulation of genes encoding
transcription factors of the CDX family mentioned above.

The role of FGF signaling in this further caudalization,
however, has not yet been ascertained by loss of function
approaches and therefore, the extent of its contribution to
patterning remains an open question. A possible contribution of
FGF to rostro-caudal patterning of interneurons has also been
suggested (Francius et al., 2013) but has not been explored yet.

FGFs AND VENTRAL PATTERN
(INTERMEDIATE, VENTRAL AND FLOOR
PLATE)

Another regionalization process where FGF signaling plays an
essential role is the patterning of the spinal cord along the
dorso-ventral (DV) axis which is fundamental for the assignment
of neuronal subtype identities such as motor neurons and
the different interneuron subtypes (reviewed in Gouti et al.,
2015). Specific combinations of transcription factors of the
homeodomain and bHLH families are expressed in restricted
domains along the DV axis (reviewed in Le Dreau and Marti,
2012). In the ventral/intermediate neural tube this is regulated by
the SHHmorphogen. The graded distribution of SHH, produced
in the ventral midline, results in a graded activation of the
pathway and the expression of target genes (reviewed in Briscoe
and Small, 2015). In addition, cross-repressive interactions
between target genes occur to further delimit and ensure gene
expression in the appropriate domains (Briscoe et al., 2000;
Kutejova et al., 2016).

During spinal cord caudal extension, SHH is expressed
in the node and along the derived notochord while in the
neural tissue it is expressed in floor plate (FP) cells at the
level of the somitic mesoderm. Thus, cells in the preneural
tube (the transient spinal cord population derived from NMP
and adjacent to presomitic mesoderm) are initially exposed
to notochord derived SHH and express some SHH target
genes such as GLI1, PTCH1 and PTCH2 suggesting that at
least low SHH signaling is achieved (Diez del Corral et al.,
2003; Morales et al., 2016). However, neural progenitors in
the preneural tube do not display expression of the complete
repertoire of ventral identity genes, suggesting that the pathway
is being modulated in this region. A role for FGF signaling
in the control of ventral patterning was first inferred from its
ability to repress PAX6, a gene expressed in an intermediate
domain in the neural tube (Bertrand et al., 2000). Since that
observation, a more complex picture has emerged showing
that FGF signaling is crucial for controlling the onset of SHH
signaling and ventral patterning in the spinal cord (Diez del
Corral et al., 2003; Morales et al., 2016) and for the early

specification of the most ventral fate, the FP (Sasai et al., 2014;
Figure 4).

Forced maintenance of FGF signaling in preneural tube tissue,
impairs not only PAX6 but also other ventral and intermediate
patterning genes such as NKX6.1, NKX6.2, IRX3, and FOXA2
(Bertrand et al., 2000; Diez del Corral et al., 2003; Novitch
et al., 2003). Conversely, interference with FGF signaling in chick
embryos results in precocious caudal activation of PAX6 and
IRX3 (Bertrand et al., 2000; Diez del Corral et al., 2003) and
in the dorsal expansion of ventral markers such as OLIG2 and
NKX6.1 (Morales et al., 2016). Reduced FGF signaling in mouse
embryos results in precocious caudal Pax6 (Patel et al., 2013)
and NKX6.1 expression as well as in alterations in the ventral
patterning with an increase in the number of NKX6.1 expressing
neural progenitor cells (Morales et al., 2016).

FGF would thus be repressing more or less indirectly the
two types of SHH responding genes, ventral genes activated by
SHH (FOXA2 and NKX6.1) and intermediate genes repressed
by SHH (PAX6 and IRX3) (Briscoe et al., 2000). Repression of
PAX6 and IRX3 and their mouse homologs seems to involve
several mechanisms (Figures 4B,C). FGF signaling promotes
chromatin compaction and peripheral nuclear position around
the mouse Pax6 and Irx3 loci, a chromatin organization
associated to transcriptionally inactive loci (Patel et al., 2013).
In addition, repression of these genes appears to be mediated by
transcriptional repressor NKX1.2, transcriptionally activated by
FGF signaling in NMP region (Storey et al., 1998; Bertrand et al.,
2000; Sasai et al., 2014; Figure 4C).

A molecular mechanism that accounts for the effect of FGF
on genes relying on SHH for their expression has been identified
recently (Figure 4C; Morales et al., 2016). FGF can activate the
expression of PTCH2, one of the SHH receptors that also acts
as an inhibitor of the SHH pathway, and can thus restrain
expression of SHH targets. Experiments in chick explants have
shown that PTCH2 is expressed in the preneural tube in a
SHH and FGF dependent way indicating the existence of an
enhanced feedback loop where SHH activates PTCH2 more
efficiently in regions of high FGF signaling. This regulation
also appears to be conserved in mouse as Fgfr1 conditional
mutant embryos show extremely reduced Ptch2 levels (Morales
et al., 2016). Surprisingly, however, the Ptch2 gene seems to be
largely dispensable as no obvious phenotype has been identified
yet in the mouse mutant (Holtz et al., 2013). It is possible
that its function is only apparent when the development of
the embryo is challenged, for example when the elongation
process is altered. If elongation is arrested, the high levels of
PTCH2 in the spinal cord precursor may maintain the levels
of SHH signaling low and ventral patterning on standby mode
until the elongation is restored (Figures 4D,E). In fact, Ptch2
is required to keep SHH signaling in check in situations of
partial deficiency of the other member of the family, Ptch1,
both in development and in tumorigenesis (Lee et al., 2006;
Nieuwenhuis et al., 2006; Holtz et al., 2013; Zhulyn et al.,
2015).

In addition, and probably as a result of its role on repressing
ventral and intermediate genes, an important role for FGF on
the specification of FP cells has been recently identified in chick
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FIGURE 4 | Role of FGF signaling in the regionalization of the intermediate and ventral neural tube. (A) Diagram representing the caudal part of an embryo

showing the region with active FGF signaling and the rostro-caudal level of the transverse section represented in (B). (B) Transverse section at the level of the

preneural tube showing the neural tissue and the underlying presomitic mesoderm and notochord. FGF8 (produced by neural and mesoderm tissues) and Shh

(produced by notochord) are represented in purple and green respectively and their influence on intermediate, ventral and floorplate specification is shown. The

dashed arrow indicates that FGF provides competence for floor plate specification. (C) Gene regulatory network relating FGF and Shh signaling in the pre-neural tube

where the two signals coincide. Data from chick, mouse or both are included in this figure. (D,E) Graphs to illustrate the hypothetical role of the regulation of Ptch2 by

FGF during the initial establishment of the Shh signaling levels. The graphs represent the changing levels of SHH in time at a particular position (within the dorsoventral

and rostrocaudal axis). (D) In embryos continuously extending their caudal axis, the levels of FGF (purple) at a particular position would decrease constantly while the

levels of SHH (green, SHHNormal) would increase until they reach their maximum. The levels of Shh signaling thus also increase progressively. (E) In embryos where

elongation is arrested for some time (shaded area), FGF levels would remain constant during the arrested period, while the levels of SHH (SHHPerturbed) would

accumulate more rapidly due to the decreased amount of tissue generated through which SHH could diffuse (or be transported). If Shh signaling was dependent

exclusively on SHH levels, the level of the signaling would also increase to levels higher than normal and this may result in the irreversible activation of its targets.

However, the ability of FGF to activate Ptch2 and thus downregulate the Shh pathway could serve to limit Shh signaling levels to normal values. FGF signaling levels

(decaying in time) are shown in purple.

(Sasai et al., 2014). FP territory, characterized by expression of the
ARX1 protein, is induced by the highest levels of SHH that are
only achieved in the cells closest to its source and also requires
transient FGF exposure (Sasai et al., 2014). Here again, NKX1.2
plays an important role, providing competence to respond to
high SHH levels and drive ARX1 expression. Given the repressive
interactions between FP specific genes and the ventral and
intermediate patterning genes (Cho et al., 2014; Kutejova et al.,
2016), one important function for FGF signaling and NKX1.2
here would be to ensure that a region free of expression of non-
floor plate factors such as PAX6, IRX3 and NKX2.2 is established
in the future FP region (Sasai et al., 2014). Nevertheless, the
details of the gene regulatory network are still not elucidated as
expression of ARX1 (and other definitive floor plate markers) is

only apparent well after the FGF signaling levels have decayed.
Here again, the system may be highly redundant as no obvious
alterations in the FP have been reported in Nkx1.2 mutant mice
(Simon and Lufkin, 2003), raising the possibility that the related
Nkx1.1 gene could be also playing a role.

Antagonism of the FGF signaling pathway with the RA
pathway is also important in the context of ventral patterning as
RA is required for expression of several intermediate and ventral
genes (chick NKX6.1, IRX3, PAX6, OLIG2; Diez del Corral et al.,
2003; Novitch et al., 2003; Diez del Corral and Morales, 2014 and
mouseNkx6.1, Pax6, andOlig2; Molotkova et al., 2005). However,
the temporal and quantitative contributions of both FGF and
RA pathways in the modulation of ventral specification require
a deeper analysis.
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FGFs AND NEURAL CREST
SPECIFICATION

At the most dorsal part of the spinal cord, the development
of a specific cell population also requires the participation of
FGF signaling: the neural crest cells (NCCs). The neural crest
is formed by a transient population of multipotent cells that
arise from the dorsal neural tube. Once specified, NCCs undergo
a process of epithelium to mesenchyme transition (EMT) that
confers NCCs the ability to delaminate and migrate away from
the dorsal neural tube, giving rise to NCC derivatives that include
craniofacial skeleton, the peripheral nervous system (sensory
neurons and glia, sympathetic neurons) and melanocytes,
amongst others (Le Douarin and Kalcheim, 1999).

The process of neural crest formation implies the
orchestration of a complex gene regulatory network. This
involves signaling pathways and transcription factors that are
responsible for the sequence of early induction of the NCC
during gastrulation; the specification of the neural plate border;
the expression of bona fide NCC transcription factors and the
regulation of numerous downstream effectors involved in EMT,
cell adhesion, and cell cycle control, amongst others (Morales
et al., 2005; Sauka-Spengler and Bronner-Fraser, 2008). First,
parallel to the induction and patterning of the neural plate that
generates the central nervous system, at the border between the
neural ectoderm and the non-neural ectoderm, the NCCs are
specified through a series of steps controlled by FGF, WNT, and
BMP signaling pathways (reviewed in Saint-Jeannet and Moody,
2014).

Transient exposure to FGF has been shown to allow neural
tube cells to activate NCC markers in response to BMP (Sasai
et al., 2014). This seems related to the ability of FGF to repress
PAX6 and IRX3, two intermediate neural tube genes which
can repress the NCC marker SNAIL (Sasai et al., 2014). It has
been proposed that the repression of IRX3 and PAX6 by FGF,
acting through activation of NKX1.2, is required for the early
establishment of a territory competent to NCC specification (see
the ventral patterning section for a further discussion on possible
mechanisms for FGF regulation of PAX6 and IRX3). However,
in FGF deficient conditions impaired NCC specification in vivo
has not been reported yet. On the contrary, forced reduction
of FGF signaling allowed neuroepithelial cells to prematurely
initiate the expression of the early NCC specifier SNAIL2 at
caudal levels (Martinez-Morales et al., 2011). This indicates
that dorsal neuroepithelial progenitors in the caudal neural
tube are maintained in an uncommitted non-NCC state in
presence of strong FGF/MAPK signaling pathway (Martinez-
Morales et al., 2011). Thus, in the elongating neural tube, as the
dorsal neuroepithelial progenitors are progressively exposed to
decreasing FGF signaling levels, they initiate the expression of
neural crest specifier genes SNAIL2 and FOXD3.

Interestingly, upon reduction of FGF signaling, when those
prematurely SNAIL2 expressing NCCs initiate the expression of
other NCCs specifiers such as FOXD3, SOX5, and SOX10 they
prematurely start EMT from the neural tube at mid-rostral PSM
levels. Essentially, the regulated decrease in FGF signaling is
primary responsible for the control of the initiation of NCC

specification in the trunk, and as a consequence of that, it controls
the timing of EMT and emigration. Subsequent development of
trunk NCCs is highly dependent on the development of adjacent
somites, which impose a segmented migration and organization
to the trunk NCCs and to the derived peripheral nervous system
(Sela-Donenfeld and Kalcheim, 1999). Considering that FGF
signaling is important both for segmentation of the mesoderm
and for the neural crest specification it would constitute an
important mechanism of coordination of both tissues.

As it has been described above, FGF and RA signaling can
act as opposite gradients, each one negatively regulating the
activity of the other. In the context of NCC development,
RA signaling produced by the somites does not appear to
promote their specification but does trigger the EMT of already
specified NCCs (Martinez-Morales et al., 2011). FGF and RA
signaling control the timing of EMT and emigration in part
through modulation of elements of the BMP andWNT signaling
pathways, important signaling cascades operating in the dorsal
neural tube (Sela-Donenfeld and Kalcheim, 1999; Burstyn-Cohen
et al., 2004). Whereas, RA signaling triggers the initiation of
WNT1 expression in the dorsal neural tube at levels where
the NCCs are already specified, FGF signaling prevents the
premature expression ofWNT1 (Martinez-Morales et al., 2011).

Moreover, recently it has been established that another FGF
ligand, FGF3, coming from the caudal presomitic mesoderm
provides another level of regulation of BMP signaling in the
spinal cord at tailbud stages. Fgf3 mutant embryos exhibit
axis truncation, increase in neuroepithelial proliferation, delay
in neural tube closure and premature neural crest formation
(Anderson et al., 2016a). The removal of one copy of
NOGGIN, a BMP antagonist, in Fgf3 mutants, exacerbated
all the Fgf3 phenotypes including premature neural crest
specification. Conversely, genetically decreasing BMP signaling
in Fgf3 mutants, via loss of BMP receptor activity, ameliorates
morphological defects (Anderson et al., 2016a).

In summary, the data discussed in this section show that there
is a limited time window during which the onset of the NCC
emigration can be modulated, once those cells have acquired the
expression of the essential gene network of the NCC specification
program. That window coincides with the region where FGF
and RA gradients collide. This FGF function constitutes another
example of a general FGF role in controlling the onset of
differentiation of cell types as they are generated at the tail end,
during trunk axial elongation. Again, the molecular mechanism
that allows the cells to interpret and execute that temporal
window imposed by FGF signaling is far from understood and
remains an important open question within the developmental
biology field.

FGFs AND NEURAL STEM MAINTENANCE
IN THE ADULT SPINAL CORD

As we have discussed, during the development of the nervous
system, the generation of hundreds of subtypes of neurons and
glial cells relies upon the relatively fast production, amplification,
specification, and differentiation of a pool of neural progenitors
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and neural stem cells (NSCs). Surprisingly, this strategy is
retained to some extent in niches in the adult nervous system
throughout lifetime under physiological conditions to generate
specific subtypes of neural cells in limited numbers.

Adult NSCs are maintained into adulthood in two main
niches, the ventricular-subventricular zone (V-SVZ) adjacent to
the lateral ventricles and the subgranular zone (SGZ) in the
hippocampus (reviewed in Fuentealba et al., 2012; Christian
et al., 2014). Nevertheless, cells with neural stem cell properties
can be isolated from most regions of the adult central nervous
system, including, for example, the spinal cord (Weiss et al., 1996;
Shihabuddin et al., 1997).

In the adult spinal cord, the cells with neural stem cell
properties are the ependymal cells (Johansson et al., 1999; Meletis
et al., 2008; Barnabe-Heider et al., 2010; Pfenninger et al., 2011).
They rarely proliferate under physiological conditions and they
mostly give rise to ependymal progeny in vivo. It is unclear
which signals are responsible for maintaining this population of
ependymal cells. However, in other neurogenic niches such as
the SGZ of the hippocampus dentate gyrus (DG), the specific
deletion of all the FGF receptors that are expressed in DG (Fgfr1,
Fgfr2, and Fgfr3) in adult precursor cells has shown that, FGF
signaling is required for neural stem-cell maintenance while an
activated FGF receptor expressed in all precursors can increase
the number of neurons produced (Kang and Hebert, 2015).
The requirement for FGF receptors in maintaining stem but
not progenitor cells in the adult hippocampus is reminiscent of
their role in maintaining cortical radial glial stem cells during
development (Kang et al., 2009).

In spite of the limited expansion of spinal cord ependymal
stem cells under normal physiological conditions, their
proliferation is dramatically increased after spinal cord injury,
giving rise to scar-forming astrocytes as well as to a small
population of remyelinating oligodendrocytes (Johansson et al.,
1999; Meletis et al., 2008; Barnabe-Heider et al., 2010). More
importantly, the ependymal derived astrocytes are essential for
repairing the lesions because if their formation is inhibited, the
lesions grow deeper over time and a higher number of axonal
tracts are lost (Sabelstrom et al., 2013).

The application of FGF2 has been shown to promote
functional recovery after spinal cord injury (SCI) in rodents (Lee
et al., 1999; Rabchevsky et al., 1999; Yan et al., 2000; Kim et al.,
2006). In SCI the recovery is thought to be due to FGF promoting
the proliferation of spinal cord neural stem and progenitor cells
expressing PAX6, NESTIN, and SOX2 (Shihabuddin et al., 1997;
Goldshmit et al., 2014), promoting neuronal survival (Teng et al.,
1998, 1999), angiogenesis (Kang et al., 2013), and causing a
reduction in injury volume (Lee et al., 1999; Rabchevsky et al.,
1999). In addition, FGF2 may reduce glial scar formation and
astrogliosis after SCI in themousemodel (Goldshmit et al., 2014).
In this situation, FGF2 influences glial cell activation, generating
a proregenerative radial/progenitor-like state rather than reactive
astrocytes that form scar tissue that are inhibitory to axonal
regeneration. It is unclear if these proliferating astrocytes could
be derived from the neural stem ependymal cells.

FGF2 also reduces the inflammatory response, as it causes
the reduction in macrophage infiltration and cytokine levels

(Goldshmit et al., 2014). The reduction in macrophage
infiltration may be due to the ability of FGF-2 to reduce the
leakiness of the blood-spinal cord barrier after SCI (Kang et al.,
2010). Moreover, in combination with transplanting specific cells
(Meijs et al., 2004; Kuo et al., 2011; Guzen et al., 2012; Lu
et al., 2012) or with special scaffold forming hydrogels FGF1 and
FGF2 can provide a proregenerative effect and may have clinical
applications in the treatment of SCI (Chen et al., 2015). In fact,
FGF1 is currently in clinical trials in human patients with cervical
SCI (Wu et al., 2011) and more recently also in combination with
special devices and rehabilitation in patients with thoracic SCI
(clinical trial, NIH reference NCT02490501).

Since SCI has multiple factors that determine the progress of
the injury, a combinatorial therapeutic approach including FGF
will most likely be required for the most effective treatment of
SCI (reviewed in Siddiqui et al., 2015; Ahuja et al., 2016).

FGFs PROMOTING NEUROGENESIS IN A
DISH

As a complementary approach and as a way to overcome
the limited capacity for self-repair of the mammalian nervous
system, efforts are being made to boost the repair process by
transplanting exogenous cells into sites of injury (Rosser et al.,
2007). FGFs can be used to generate, expand, and differentiate
neurons in vitro and therefore have a major role to play in such
cell replacement therapies.

First, FGF2 together with EGF has been extensively used
to promote proliferation and self-renewal of NSCs in vitro
(Kilpatrick and Bartlett, 1993; Gage et al., 1995; Gritti et al., 1996;
Qian et al., 1997; Nelson and Svendsen, 2006). FGF2 converts
embryonic stem cells into neural stem cells characterized by rapid
self-renewing and the potential to generate neurons, astrocytes,
and oligodendrocytes. This acquired tripotent neural stem cell
state, which does not exist in vivo, provide high proliferative
capacity and glial differentiation potential to the treated cells
(Palmer et al., 1999; Laywell et al., 2000; Zhang et al., 2001; Gabay
et al., 2003; Hack et al., 2004; Pollard et al., 2008). Several studies
then showed that FGF2 ventralizes cultured rodent NSCs/NPCs
of dorsal origin and induces oligodendrocytes fromNSCs derived
from regions where oligodendrocytes are not present (Gabay
et al., 2003).

FGF2 has also been proved to be involved in neuronal subtype
specification, as it has been shown that in-vitro-expanded human
fetal forebrain-derived NSCs can generate cholinergic neurons
with spinal motor neuron properties when treated with FGF2
within a specific time window (Jordan et al., 2009). Moreover,
ESC-derived motor neurons, grown using a differentiation
program that relies on endogenous embryoid body-derived
WNTS, FGFs, and HH signaling, and then grafted isochronically
into chick spinal cord, settle in appropriate columnar domains
and select axonal trajectories with a fidelity that matches that of
their in vivo generated counterparts (Peljto et al., 2010). Under
those differentiation conditions, it is not clear if increasing FGF
levels would increase motor neuron yields without sacrificing the
columnar and motor pool subtype diversity achieved.
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In the last few years induced pluripotent stem cells (iPSCs)
have provided a platform for studying basic human development
and disease mechanisms and hold great potential for future cell
therapies (Murry and Keller, 2008). Nevertheless, biomedical
application of iPSCs depends on the availability of robust cell
expansion and differentiation protocols. A recent example is
the use of FGFR inhibitor (SU5402) that promoted iPSCs to
commit to a NCC cell fate that express specific genes, including
PAX3, SLUG, TFAP-2α, and TWIST1 (Jaroonwitchawan et al.,
2016).

FGF is also required for the specification of cell types outside
the embryonic spinal cord such as the midbrain dopaminergic
neurons (Ye et al., 1998). Human pluripotent stem cells have also
been successfully converted into dopaminergic neurons using a
novel floor plate-based strategy that involves the use of SHH
and WNT agonists together with FGF8 and these are efficiently
engrafted in vivo using rat, mouse and monkey models (Kriks
et al., 2011). This could be promising for the development of
cell-based therapies in Parkinson’s disease.

Finally, it also important to consider the oncogenic risk
associated to the mitogenic potential of cells treated with FGFs in
transplantation experiments. As a recent example, human cord
blood-derived iPSCs have been differentiated into dopaminergic
neurons using either FGF2 or BMP/TGF-β inhibitor for neural
induction. After transplantation in hemiparkinsonian rats in
vivo, proliferation still occurred in FGF2-derived grafts (but
not in BMP inhibitor treated grafts), resulting in tumor-like
growth (Effenberg et al., 2015). Similarly, those effects have
also been described for neurospheres derived from hIPSCs
and transplanted into spinal cord injured mice (Nori et al.,
2015).

FUTURE DIRECTIONS AND CHALLENGES

This review highlights the multiple steps in spinal cord
development that are regulated by FGF signaling, which
may be viewed as a sensor of caudal elongation serving to
coordinate different aspects of spinal cord maturation to each
other, to adjacent mesoderm and to axial elongation. Further
analysis of FGF signaling deficiency in mouse would help
ascertain the extent of its contribution to floor plate formation,
early neurogenesis, rostro-caudal patterning and neural crest
development.

The molecular mechanisms that link FGF signaling
specifically to the different functions are still not fully identified
but for most of its functions, specific transcriptional targets
downstream of the pathway have been proposed. It has been
shown that FGF influences transcription by changing the
phosphorylation state of transcription factors such as those of
the ETV family. The analysis of the regulatory regions of the
proposed targets will confirm which of them are more directly
regulated. FGF also has an influence on chromatin compaction
and nuclear positioning of specific gene loci (Patel et al., 2013)
and this may be due, at least in part to the ability of FGF to
regulate chromatin modifiers such as histone deacetylase 1
(HDAC1) (Olivera-Martinez et al., 2014).

The detailed regulation of the pathway including the
intracellular dynamics of the MAPK pathway with its positive
and negative feedbacks (Lake et al., 2016) as well as the
involvement of the other FGFR dependent cascades (AKT, PKC)
in some of the processes described here also remains largely
unexplored. The understanding of the mechanisms responsible
for the maintenance of FGF8 and FGF4, the principal ligands
in this context, in the NMP and adjacent regions and their
progressive downregulation would provide a better insight into
axis elongation.

So far, the majority of the literature relies on static views of
the expression of ligands and pathway components at different
developmental stages. However, it is clear that those are highly
dynamic and thus the development of reliable biosensors to
measure FGF activity in vivo would help to address fundamental
questions such as the mechanisms underlying the temporal
changes in the response of NMP and its derivatives to FGF.

Throughout the review, we have focused on the similarities
that exist in the different vertebrate species but it would also be
interesting to understand how FGF functions may have diverged
to accommodate the different modes of spinal cord formation
(Steventon and Martinez Arias, in press). Equally interesting
would be to study the emergence, during chordate evolution, of
a function of caudal FGF on development of the caudal neural
tube. FGF signaling has been described in the tailbud of the
amphioxus cephalochordate embryo and, although only a limited
role in somitogenesis has been described (Bertrand et al., 2015),
it would be interesting to assess its requirement in spinal cord
development.

Some of the functions of FGF described in the development
of the spinal cord may also contribute to the maintenance of
the ependymal neurogenic niche present in the adult spinal
cord and to the functional recovery after SCI shown in rodents
and currently under study in humans. Furthermore, the role of
FGFs in the maintenance and expansion of neural progenitors
as well as their promotion of specific fates in vitro supports
their therapeutical potential in regenerative biomedicine. The
advances in understanding the detailed mechanism underlying
FGF function during the development of the central nervous
system, and in particular of the spinal cord, should serve to
selectively potentiate some of its functions.
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In the developing vertebrate embryo, segmentation initiates through the formation of

repeated segments, or somites, on either side of the posterior neural tube along the

anterior to posterior axis. The periodicity of somitogenesis is regulated by a molecular

oscillator, the segmentation clock, driving cyclic gene expression in the unsegmented

paraxial mesoderm, from which somites derive. Three signaling pathways underlie the

molecular mechanism of the oscillator: Wnt, FGF, and Notch. In particular, Notch has

been demonstrated to be an essential piece in the intricate somitogenesis regulation

puzzle. Notch is required to synchronize oscillations between neighboring cells, and is

moreover necessary for somite formation and clock gene oscillations. Following ligand

activation, the Notch receptor is cleaved to liberate the active intracellular domain (NICD)

and during somitogenesis NICD itself is produced and degraded in a cyclical manner,

requiring tightly regulated, and coordinated turnover. It was recently shown that the pace

of the segmentation clock is exquisitely sensitive to levels/stability of NICD. In this review,

we focus on what is known about the mechanisms regulating NICD turnover, crucial

to the activity of the pathway in all developmental contexts. To date, the regulation of

NICD stability has been attributed to phosphorylation of the PEST domain which serves

to recruit the SCF/Sel10/FBXW7 E3 ubiquitin ligase complex involved in NICD turnover.

We will describe the pathophysiological relevance of NICD-FBXW7 interaction, whose

defects have been linked to leukemia and a variety of solid cancers.

Keywords: somitogenesis, embryonic development, signalling pathway, notch, FBXW7

INTRODUCTION

The formation of a segmented body plan is a conserved feature of embryogenesis for all vertebrate
species. This process leads to the formation of transient embryonic segments, called somites.
Somites are precursors of vertebrae and ribs, associated skeletal muscles, and some dermis (Christ
et al., 2007). Their formation is regulated by a molecular oscillator called the segmentation
clock (Gibb et al., 2010; Oates et al., 2012; Benazeraf and Pourquie, 2013). Aberrations in this
mechanism lead to human developmental disorders, such as spondylocostal dysostosis (Pourquie,
2011; Eckalbar et al., 2012). Some of these malformations originate from defects in Notch signaling,
suggesting that this pathway is essential in controlling and regulating vertebrate segmentation.

This review aims to give a general overview of the importance of the Notch signaling pathway
in the segmentation clock in addition to a description of our current understanding of the Notch
pathway, particularly focusing on the turnover and regulation of the Notch intracellular domain.

SOMITOGENESIS

Somitogenesis has been the topic of several outstanding reviews (Pourquie, 2001; Maroto et al.,
2012; Oates et al., 2012; Benazeraf and Pourquie, 2013; Hubaud and Pourquie, 2014; Bailey and
Dale, 2015), thus we will provide a general overview.
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Early in development, segmentation initiates through the
formation of repeated segments, or somites (Christ et al., 2007;
Gibb et al., 2010). Somitogenesis is a cyclical and gradual process
such that somites are sequentially pinched off in pairs from the
anterior end of two rods of paraxial mesoderm, the presomitic
mesoderm (PSM), lying on either side of the caudal neural tube
(Gossler and De Angelis, 1998; Cambray and Wilson, 2007;
Dequeant and Pourquie, 2008; Gibb et al., 2010; Maroto et al.,
2012). The PSM is continuously replenished with progenitor cells
located initially in both the epiblast adjacent to the primitive
streak and the rostral primitive streak and later in the tail bud
(Iimura et al., 2007; Gomez and Pourquie, 2009; Henrique et al.,
2015), and thus the presomitic mesoderm preserves its length
(Dequeant and Pourquie, 2008; Figure 1A).

The periodicity of this segmentation process is different from
species to species: 30 min in zebrafish (Schroter et al., 2008), 90
min in chicken (Palmeirim et al., 1997), 2 h in mice (Tam, 1981),
6–8 h in human (William et al., 2007). Similarly, the total number
of somites is a characteristic feature of each species: 31 pairs in
zebrafish, 50 somite pairs in chicken, 65 in mice, and about 500
in some snakes.

The regulation of the periodicity of somitogenesis is governed
by the segmentation clock, a molecular oscillator (Palmeirim
et al., 1997) whose existence was first proposed in theoretical
models such as the “Clock and Wavefront model” (Cooke
and Zeeman, 1976). According to the model, a wavefront
of maturation sweeps along the body axis concomitant with
extension of the trunk and tail, governing maturation of the
PSM to become somites. This positional information gradient

FIGURE 1 | Schematic representation of somitogenesis and the segmentation clock. (A) Pairs of somites bud off from the rostral end of the presomitic

mesoderm (PSM) progressively during early development. The tail bud, a site of gastrulation that lies at the posterior end of the embryo, continuously “replenishes” the

posterior end of the PSM with progenitor cells. The periodicity of segmentation is regulated by a molecular oscillator that drives cyclic gene expression from the

posterior to the anterior tip of the PSM. The different colors represent domains of clock gene expression in different cycles. As time progresses in each cycle, the

domain of clock gene expression shifts anteriorly while narrowing until it reaches the anterior limit of the PSM. The periodicity of this cyclic gene expression matches

that of somite formation. An orange asterisk lies adjacent to each of the new pairs of somites formed in the time series—the first pair is formed after the blue wave of

clock gene expression traverses the PSM and the second pair is formed after the pink wave of clock genes expression traverses the PSM from the tail bud to the

anterior limit of the tissue. (B) Two mutually opposing gradients of retinoic acid (RA) and FGF/Wnt regulate the maturation wavefront within the paraxial mesoderm.

Due to somite formation anteriorly and gastrulation at the caudal end of the PSM, cells within the PSM become progressively more anteriorly displaced, and, as a

result, they are exposed to progressively lower levels of FGF/Wnt. There is a position within the PSM, termed the determination front, where cells are released from the

effect of FGF and can respond to the segmentation clock and RA, embarking on their segmentation programme.

within the PSM interacts with a smooth cellular oscillator (the
clock), driving cells to oscillate between a permissive and a
non-permissive state. Segmentation of the PSM only occurs when
the maturation wavefront reaches a group of cells in a specific
“permissive” clock phase (Cooke and Zeeman, 1976).

Over the last 20 years the theoretical “Clock and Wavefront
model” has received significant experimental support. The
wavefront of maturation is thought to rely on the intersecting
gradients and cross-regulatory activities of three signal pathways,
namely a caudo-rostral gradient of FGF and Wnt and rostro-
caudal gradient of retinoic acid (RA). The determination front
marks the point of intersection of these gradients, where the next
prospective somite boundary will form (Figure 1B). These cross-
regulatory activities thereby regulate somite size. The activity of
Wnt and FGF also controls cell maturation in the PSM. These
roles have been reviewed elsewhere, thus will not be covered here
(Aulehla et al., 2003; Dubrulle and Pourquie, 2004; Wahl et al.,
2007; Aulehla and Pourquie, 2010; Hubaud and Pourquie, 2014).

It is well established that the rhythmicity of somitogenesis is
regulated by the segmentation clock driving cyclic and dynamic
expression of “clock genes” in the PSM, with a periodicity that
matches somite formation. This feature is conserved among a
variety of vertebrate species (Jiang et al., 2000; Cinquin, 2007;
Dequeant and Pourquie, 2008; Gomez et al., 2008; Ozbudak
and Lewis, 2008; Krol et al., 2011). The clock genes are
components of the Notch, Wnt, and FGF pathways (Aulehla
et al., 2003; Dequeant and Pourquie, 2008; Yabe and Takada,
2016), playing a reciprocal regulatory role in oscillatory gene
expression (reviewed in Gibb et al., 2010; Maroto et al., 2012).
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While the specific genes which oscillate may vary among species,
the most highly represented pathway among the clock genes is
the Notch (Krol et al., 2011).

Stemming from the observation that the proteins encoded by
clock genes are predominantly unstable negative regulators of the
pathway that activates them, it is believed that oscillatory gene
expression relies on negative feedback loops of these unstable
regulators, such as the two Notch target clock genes, Hes7, and
Lunatic Fringe (Lfng) (Bessho et al., 2001a,b, 2003; Cole et al.,
2002; Hirata et al., 2002; Dale et al., 2003; Serth et al., 2003;
Kageyama et al., 2012; Okubo et al., 2012). It is particularly
interesting that blocking Lfng oscillations disturbs somitogenesis
in the thoracic and lumbar areas but not in more posterior areas
of the embryo (Shifley et al., 2008), implying the role of Notch
signaling in segmentation is not uniform along the axis.

In addition to negative feedback, oscillatory gene expression in
the PSM also invokes positive feedback; Notch signaling regulates
dynamic expression of Notch1 itself, whereas Wnt regulates
dynamic expression of Dll1 (Bone et al., 2014).

As the most highly conserved pathway involved in the
segmentation clock, a wealth of studies have focused on
elucidating the fundamental role of Notch in somitogenesis
and in the segmentation clock mechanism (Barrantes et al.,
1999; Jiang et al., 2000; Bessho et al., 2001b, 2003; Dale et al.,
2003; Julich et al., 2005; McGrew et al., 2008; Hubaud and
Pourquie, 2014; Wahi et al., 2014; Liao and Oates, 2016). Notch is
clearly required to synchronize oscillations between neighboring
cells (Jiang et al., 2000; Shimojo et al., 2016). A question that
arises is whether oscillations are actually necessary for the
segmentation process to occur or whether just non-oscillatory
activity of the Notch pathway is sufficient. Mutant mice or
fish lacking Notch components all display severe segmentation
defects (Conlon et al., 1995; Barrantes et al., 1999; Jiang et al.,
2000; Liao and Oates, 2016). For example, the lack of the obligate
transcription factor RBP-Jκ , in mouse, leads to lethality before
day E10.5 and only the first few cervical somites are formed
(Oka et al., 1995). A pivotal study conducted by Ferjentsik et al.
pointed out that Notch activity, per se, is indeed essential for
somite formation. Mutating crucial Notch pathway components,
or using a complementary pharmacological approach, they
demonstrated that in mouse Notch activity is crucial for the
oscillatory activity of all clock genes, and thus essential for the
formation of a segmented body axis (Ferjentsik et al., 2009) (see
also Huppert et al., 2005).

NOTCH SIGNALING PATHWAY

The Notch pathway is highly conserved among metazoans and
mediates short range juxtacrine communication. The Notch
locus was first cloned in Drosophila and it was found to encode a
large single pass type I transmembrane protein (Wharton et al.,
1985), whose epidermal growth factor (EGF) repeats mediate
interaction with their canonical activators—two ligands, Delta,
and Serrate, in the Delta-Serrate-Lag2 (DSL) family. Drosophila
studies have contributed hugely to our current understanding
of Notch (Artavanis-Tsakonas et al., 1999). The role of Notch
in developmental processes of multicellular species has been

extensively elucidated (Dumortier et al., 2005; Radtke et al.,
2005; Aster, 2014). Notch signaling outcome mostly relies on the
cellular context, and thus Notch affects stem cell maintenance,
cell fate choice, cell differentiation, lineage progression, and
apoptosis in a context-dependent fashion (Bray, 2006; Hori et al.,
2013).

Despite its multiple roles and versatility, the Notch pathway
is relatively simple and conserved across species (Artavanis-
Tsakonas et al., 1999; Bray, 2006; Kopan and Ilagan, 2009). In
mammals, there are four Notch receptors (NOTCH1-4) and five
DSL ligands (JAG1-2 and Delta-like 1-3-4). Both receptors and
ligands are single transmembrane proteins and thus to trigger
the signaling cascade, cell-cell contact is required (D’souza et al.,
2010; Andersson et al., 2011; Greenwald and Kovall, 2013).

The Notch receptor is typically comprised of: (i) 29–
36 EFG-like repeats in its extracellular domain, involved in
ligand interaction; (ii) three juxtamembrane repeats (Lin-12-
Notch, LIN), required for extra-intracellular domain interaction
(located within the Negative Regulatory Region (NRR); (iii)
the intracellular region, including seven ankyrin (ANK) repeats
flanked by a PEST [rich in proline (P), glutamic acid (E), serine
(S) and threonine (T) residues] and a transactivation (TAD)
domain (Figure 2C).

During its maturation, Notch undergoes ligand-independent
cleavage by a furin-like convertase in the trans-Golgi
(Artavanis-Tsakonas et al., 1999; Fiuza and Arias, 2007;
Hori et al., 2013). This first cleavage (the S1) results in
the production of a heterodimeric receptor comprised of a
transmembrane/intracellular fragment non-covalently bound
to the Notch extracellular domain (NECD). Notch is thus
presented to the cell surface as a heterodimer. The non-activated
Notch receptor is constitutively internalized, ubiquitinated by
Itch/AIP4 (a member of the Nedd4 family of HECT domain E3
ubiquitin ligases), and thus targeted for lysosomal degradation
(Chastagner et al., 2008; Moretti and Brou, 2013).

To ensure correct folding and activity, during synthesis and
secretion in the Golgi, NECD undergoes O-linked glycosylation
and fucosylation (Rana and Haltiwanger, 2011). These two
modifications on the EGF repeats modulate Notch activity
by modulating interaction with the Delta or Serrate ligands.
The reaction is catalyzed by three Fringe homologs (Lunatic,
Manic, and Radical Fringe), recognizing specific amino acids
in individual EGF repeats (Rampal et al., 2005). In vitro,
in the signal-receiving cell, all Fringes enhance Dll1-Notch1
interactions with comparable effects in both trans- and cis-
(Lebon et al., 2014). Rfng also enhances trans- and cis-
interactions between JAG1 and Notch1, but these interactions
are weakened by Lfng and Mfng. By contrast, JAG1 activation
of Notch2 is potentiated by Lfng, thereby expanding the
ligand-receptor combinations that are differentially modified
by the Fringe enzymes (Hicks et al., 2000). In the context
of somitogenesis, Lfng is the only family member expressed
in the PSM. In most systems, Lfng acts in the receiving-cell
to potentiate receptor activation by Delta-like ligands while
reducing activation by Jagged ligands (Hicks et al., 2000; Yang
et al., 2005; Kato et al., 2010). However, it has been suggested
that LFNG protein may synchronize clock oscillations between
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FIGURE 2 | (A) The Notch signaling pathway. In the Golgi, after being glycosylated by members of the Fringe family, pre-Notch is cleaved by a Furin-like convertase

into the extracellular and intracellular domains (termed the S1 cleavage), resulting in a heterodimeric receptor with non-covalently associated domains that is

transported to the plasma membrane. The Fringe modifications introduced in the Golgi affect sensitivity of the receptor on the signal-receiving cell to the DSL

(Delta-Serrate-Lag2) ligands, in the signal-sending cell. Following ligand-receptor interaction, trans-endocytosis of the Notch extracellular domain, by the

signal-sending cell, exposes the second so called S2 cleavage site, facilitating intramembranous cleavage by an ADAM (a disintegrin and metalloproteinase domain)

protease, in the extracellular domain. S2 cleavage, in turns, exposes the S3 proteolytic cleavage site within the transmembrane domain, which is cleaved by the

γ-secretase complex and liberates the intracellular domain of Notch (NICD), allowing it to translocate to the nucleus and thus activate transcription of target genes. In

order to prevent inappropriate signaling from the pool of Notch that has not been activated by ligand, Notch receptor is continuously internalized into early endosomes

and thus degraded. (B) Zoom-in into the nucleus of the signal-receiving cell (A). Once released into the nucleus, NICD binds the DNA-binding protein CSL as well as

the SKIP protein. The trimeric complex thus recruits Mastermind-like protein (MAM), which recruits additional co-activators (not shown), required for the transcriptional

regulation of Notch target gene expression. Kinases, such as CDK8 and GSK3β, phosphorylate (p) NICD on its PEST domain, rendering it susceptible to recognition

by Fbxw7 E3 ligase, leading to ubiquitination (Ub) and subsequent degradation by the proteasome. In the absence of NICD, CSL associates with transcriptional

co-repressors blocking Notch target gene activation. Target genes are repressed until more NICD is produced to re-initiate a new cycle of target gene expression. (C)

Notch ligands and receptors. In the signal-receiving cell, the four mammalian Notch receptors (Notch1-4) are represented. They are expressed on the cell surface as

heterodimers and characterized by epidermal growth factor (EGF)-like and LIN repeats in their extracellular region. The intracellular domain includes an

RBP-Jκ-associated molecule (RAM) domain, seven ankyrin (ANK) repeats, two nuclear localization signals (NLS), a transactivation (TAD) domain (lacking in Notch3

and Notch4), and a Proline-, Glutamate-, Serine- , and Threonine-rich (PEST) domain. The five Notch ligands (Delta-like 1, 3, and 4 and Jagged 1 and 2) are

represented on the surface of the signal-sending cell. Each ligand contains an EGF-like repeat region and a conserved domain DSL (Delta/Serrate/Lag). A conserved

cysteine-rich (CR) domain is also present on Jagged1 and Jagged2. The DOS (Delta and OSM-11) domain, containing two atypical EGF repeats, is part of Dll1, JAG1

and JAG2 ligands. (D) SCFFbxw7 E3 ubiquitin ligase complex representation. The upper part of the figure shows Fbxw7 domains: a conserved dimerization motif,

which mediates dimerization of the SCF complex and thus facilitates ubiquitin conjugation; the F-box, which binds the SCF complex through Skp1; the WD40,

containing three specific amino acid residues, which binds the phosphorylated substrate. In the bottom part of the figure the SCFFbxw7 complex is schematically

represented. In general, in the ubiquitin system, three enzymes are involved in the signaling cascade: the ubiquitin-activating E1, the ubiquitin-conjugating E2 and an

E3 ubiquitin ligase. The first step is ATP-dependent and involves the binding of ubiquitin to E1. Ubiquitin is then activated and transferred to E2. The ubiquitin-E2

complex then interacts with a specific E3 (SCFFbxw7, refer to main text for a description), which recognizes the substrate (phosphorylated NICD, in this case) and

facilitates transfer of the ubiquitin molecules to the substrate, leading to substrate degradation by the 26S proteasome.

neighboring cells by acting in the signal-sending cell to inhibit
Notch1 activation by Dll1 (Okubo et al., 2012). Ligand binding
in an adjacent cell triggers a second cleavage, mediated by the
metalloprotease ADAM10 (A disintegrin and metalloprotease)
at S2 site in the juxtamembrane extracellular domain, proximal

to the Notch transmembrane domain (Mumm et al., 2000;
Dyczynska et al., 2007; Bozkulak and Weinmaster, 2009; Gordon
et al., 2009; Van Tetering et al., 2009; Weber et al., 2011;
Groot et al., 2014). The cleaved NECD product, bound to the
ligand, undergoes trans-endocytosis into the ligand-expressing

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2017 | Volume 4 | Article 151 | 30

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Carrieri and Dale Turn It Down a Notch

cell (Kramer, 2000; Parks et al., 2000; Meloty-Kapella et al.,
2012). The second cleavage exposes the third cleavage site, S3,
within the membrane-tethered Notch fragment, and is thus a
rate-limiting step for the third and final cleavage (Brou et al.,
2000; Mumm et al., 2000). Upon cleavage at the S3 site by a
γ-secretase complex, the Notch intracellular domain (NICD) is
then released (Schroeter et al., 1998) and translocates into the
nucleus to activate transcription of target genes (Figure 2A).
Notch can be activated in the endosomal pathway, independently
of its ligands, through the activity of Deltex, a Ring-domain
ubiquitin ligase that binds to NICD. However, it is unclear
how the Deltex-activation mechanism relates to that of ligand-
induced signaling.

Notch signaling does not require the use of second
messengers. The activity is exclusively driven by nuclear
concentration of NICD (Struhl and Adachi, 1998; Ehebauer
et al., 2006). In the nucleus, NICD binds a bi-functional
transcription factor CSL [CBF1, Su(H), Lag-1], a DNA binding
complex Mastermind (MAM), and a variety of other co-
activators involved in the transcriptional activation of Notch
target gene expression (Fryer et al., 2004; Kopan and Ilagan, 2009;
Hori et al., 2013). The transcriptional co-regulator SKIP (Ski-
interaction protein) and the histone acetylase p300 are recruited
concomitantly to the promoter region of target genes promoting
the assembly of the initiation and elongation complexes (Zhou
et al., 2000; Wallberg et al., 2002; Fryer et al., 2004; Bray, 2006;
Figure 2B). MAM also engages kinases that phosphorylate NICD
(Wu et al., 2000; Kitagawa et al., 2001; Nam et al., 2003; Fryer
et al., 2004), a crucial step in the regulation of NICD stability
and activity (Ingles-Esteve et al., 2001; Espinosa et al., 2003; Fryer
et al., 2004; Jin et al., 2009). The domain targeted is the C-terminal
PEST domain that is phosphorylated by the cyclin C cyclin-
dependent kinase-8 complex (Cyc:CDK8) and glycogen synthase
kinase 3β (GSK-3β) (Espinosa et al., 2003; Fryer et al., 2004; Jin
et al., 2009).

FBXW7 AND ITS ROLE IN NICD
TURNOVER

NICD phosphorylation leads to its ubiquitination, turnover,
and degradation by the proteasome, defining the half-life of
Notch signaling, allowing the cell once again to become ligand-
competent and resetting the signaling for a new cycle of
activation (Le Bras et al., 2011). In the prevailing model, the
ubiquitin ligase involved is the SCFFbxw7 [S phase kinase-
associated protein 1 (SKP1)-Cullin 1 (CUL1)-F-box] protein
complex (Wu et al., 2001; Tsunematsu et al., 2004; Crusio et al.,
2010). SCFFbxw7 is part of the RING-finger domain E3 family
(Petroski and Deshaies, 2005). Briefly, Cullin 1 acts as a scaffold
on which SKP1 and RBX1 subunits assemble. SKP1 is involved in
the recruitment of F box proteins (FBXW7, in the case of NICD),
and RBX1 recruits a cognate E2 (Hao et al., 2007; Skaar et al.,
2013). Fbxw7 consists of three isoforms (α, β, and γ) generated
by alternative splicing and the isoform α, shown to ubiquitinate
NICD, is localized to the nucleus (Matsumoto et al., 2006;
O’neil et al., 2007; Welcker and Clurman, 2008; Crusio et al.,

2010). Two domains are functionally important in the FBXW7
protein: the F-box domain, binding SKP1 (Bai et al., 1996),
and the seven WD40 repeats mediating recognition/binding to
the target protein in a specific consensus phospho-motif, the
Cdc4 phospho-degron (Thr-Pro-Pro-Xaa-Ser, in which Thr and
Ser residues are phosphorylated; Koepp et al., 2001; Welcker
et al., 2003; Hao et al., 2007; Skaar et al., 2013; Figure 2D).
A number of these phospho-degrons have been identified in
the NICD PEST domain. Intriguingly, an additional hNICD1-
specific degron has recently been identified within theN-terminal
region, distinct from the PEST domain that is not recognized
by FBXW7 (Broadus et al., 2016). Moreover, the E3 ligase, Itch,
promoting PEST domain-independent NICD1 degradation (Qiu
et al., 2000), does not mediate NICD1 degradation through the
N1-Box (Broadus et al., 2016).

NICD-FBXW7 INTERACTION

Given the importance of Notch signaling in cell fate
determination and cell cycle progression, it is not surprising that
aberrations in the pathway lead to cancers and other diseases
(Roy et al., 2007; Simpson et al., 2011; Wang et al., 2011; Kamath
et al., 2012; Bolos et al., 2013; Huang et al., 2013; Lobry et al.,
2013). Moreover, the pleiotropic nature of the pathway means
the various Notch receptors can act as tumor suppressors for
example in epithelial tumors or as oncogenes in leukemia and
a variety of solid cancers (Radtke and Raj, 2003; Miele et al.,
2006; Lobry et al., 2014; Alketbi and Attoub, 2015; Habets et al.,
2015; Bonyadi Rad et al., 2016). From this vast literature we
will focus here on activating mutations in Notch1 which are
predominantly located in the extracellular heterodimerization
(HD) domain resulting in ligand-independent exposure of the
S2 cleavage site (Malecki et al., 2006; Van Tetering et al., 2009),
or in the PEST domain, leading to constitutive activation of
the pathway through increased NICD stability or in FBXW7,
in line with its fundamental role in restricting the signaling
strength/duration of the Notch pathway (Oberg et al., 2001;
Tetzlaff et al., 2004; O’neil et al., 2007; Thompson et al., 2007;
Wang et al., 2012; Bolos et al., 2013). For instance, Notch1
mutations occur in over 50% of both pediatric and adult T-
cell acute lymphoblastic leukemia (T-ALL) cases (Malyukova
et al., 2007; Erbilgin et al., 2010), while Fbxw7 mutations
are found in up to 20% of T-ALL cases (Baldus et al., 2009;
Mullighan, 2009). Furthermore, Notch1 mutations were found
in diffuse large B-cell lymphoma (DLBCL), splenic marginal
zone lymphoma (SMZL), Hadju-Cheney syndrome (Isidor et al.,
2011; Simpson et al., 2011; Kiel et al., 2012), breast cancer (Wang
et al., 2015), and in 12% of non-small-cell lung carcinomas
(NSCLCs), of which half were in the PEST domain (Westhoff
et al., 2009). In these conditions, Notch target genes are highly
upregulated.

Considering the variety of pathological conditions associated
with alterations of NICD and FBXW7, there is a limited
understanding of the regulation of this interaction. Our
current understanding stems from a study on Sel-10, the
nematode homolog of Fbxw7, showing the two proteins
bind directly to each other and FBXW7 negatively regulates
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Notch signaling (Hubbard et al., 1997). Using cell models,
human and murine homologs of Sel-10 were shown to play
a key role in regulating Notch signaling by driving NICD
to ubiquitin-proteasome mediated degradation (Gupta-Rossi
et al., 2001; Oberg et al., 2001; Wu et al., 2001). NICD
ubiquitination relies on the PEST domain. Studies on three
NOTCH4 variants suggested that Sel-10 preferentially binds to
phosphorylated forms of the C-terminal domain of NOTCH4
(Oberg et al., 2001; Wu et al., 2001). However, the NICD-
Sel10 interaction has only been observed under overexpression
conditions in vitro. It remains to be shown if this interaction
occurs in vivo, if NICD interacts with any other E3 ligases,
how this interaction is regulated and whether it is context-
dependent. The FBXW7 null mutant mice exhibit elevated
levels of Notch4 intracellular domain and/or Notch1 intracellular
domain alongside defects that are in alignment with a variety
of roles identified for Notch in different developmental process
such as cardiogenesis and vascular development. However,
intriguingly, with respect to the segmentation clock, the absence
of Fbxw7 seems to play a less major role in this process,
at least according to the mutant phenotypes—although a
detailed analysis has yet to be conducted (Tetzlaff et al.,
2004; Tsunematsu et al., 2004). The results of these reports
suggest that the mechanisms of NICD1 degradation during
the somitogenesis process might actually rely on alternative
(or redundant) mechanisms, highlighting again the need to
further study alternative means of regulation of stability
NICD1/degradation.

CONCLUSIONS

In this review we provided a general overview of the critical role
of Notch signaling in regulating the segmentation clock involved
in somitogenesis. Notch activity is based on stability and turnover
of its intracellular domain, NICD. This stability is regulated
by phosphorylation of the PEST domain, targeting NICD to
proteasome degradation upon recognition by the E3 ligase
FBXW7. Mutations in the PEST domain, leading to aberrations
in NICD stability, are the underlying cause of a number of solid
and non-solid cancers and different genetic disorders. Therefore,
uncovering the finer details of Notch pathway regulation merits
attention, particularly because a wider comprehension of this
process would provide further insights into the mechanisms
involved in the onset of Notch-related diseases.
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Integration between cell signals and bHLH transcription factors plays a prominent

role during the development of hair cells of the inner ear. Hair cells are the sensory

receptors of the inner ear, responsible for the mechano-transduction of sound waves into

electrical signals. They derive frommultipotent progenitors that reside in the otic placode.

Progenitor commitment is the result of cell signaling from the surrounding tissues that

result in the restricted expression of SoxB1 transcription factors, Sox2 and Sox3. In

turn, they induce the expression of Neurog1 and Atoh1, two bHLH factors that specify

neuronal and hair cell fates, respectively. Neuronal and hair cell development, however,

do not occur simultaneously. Hair cell development is prevented during neurogenesis

and prosensory stages, resulting in the delay of hair cell development with respect to

neuron production. Negative interactions between Neurog1 and Atoh1, and of Atoh1

with other bHLH factors driven by Notch signaling, like Hey1 and Hes5, account for this

delay. In summary, the regulation of Atoh1 and hair cell development relies on interactions

between cell signaling and bHLH transcription factors that dictate cell fate and timing

decisions during development. Interestingly, these mechanisms operate as well during

hair cell regeneration after damage and during stem cell directed differentiation, making

developmental studies instrumental for improving therapies for hearing impairment.

Keywords: atoh1, Neurog1, Hes and Hey factors, Notch signaling pathway, cell fate specification, hair cell

regeneration

THE INDUCTION OF NEURAL COMPETENCE IN THE OTIC
PLACODE

The ear is one major sensory organ of the vertebrate head that is responsible for the senses
of hearing, balance and acceleration. The vertebrate inner ear derives from the otic placode, a
thickening of the head ectoderm. The formation of the inner ear requires a series of cell fate
decisions and morphogenetic events with a precise temporal and spatial pattern (Fritzsch et al.,
2006; Groves and Fekete, 2012). Mature sensory organs of the vestibular and auditory regions of
the inner ear are formed by three cells types: hair cells (HC), supporting cells (SC), and neurons,
which in amniotes derive from a common neurosensory pool of cells.

One crucial step during inner ear development is the specification of neurosensory progenitors
and the diversification of the different cell types. This is probably the first developmental decision
in the otic epithelium and it reflects the segregation of two functionally independent domains,
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one with neurosensory competence and another devoid of it
(Abello and Alsina, 2007). The neurosensory domain gives rise
to otic sensory neurons, sensory hair cells and supporting cells in
chick and mouse (Satoh and Fekete, 2005; Raft et al., 2007). The
expression of Sox3 and Sox2, Fgf10, and also that of members
of the Notch pathway like Delta1, Hes5, and Lunatic Fringe
is restricted to the neurosensory domain (Abelló et al., 2007).
SoxB1 genes have a proneural function (See Box 1) and drive the
expression of Neurog1 and Atoh1 (Jeon et al., 2011; Neves et al.,
2012). The complementary non-neural domain shows two major
patterning genes, Lmx1b and Iroquois1, and two members of the
Notch pathway, Serrate1 and Hes1 (Abelló et al., 2007, 2010).

FGF and BMP signaling differentially regulate the expression
of Sox3 and Lmx1, and their respective restriction to the
anterior and posterior domains (Abelló et al., 2007; Schneider-
Maunoury and Pujades, 2007). The regionalization of the otic
placode into neurosensory and non-sensory territories requires
also the functional integrity of the Notch pathway for its
stabilization (Abelló et al., 2007). The non-sensory region of
the otic placode receives signals that confer posterior identity
(Bok et al., 2011). Retinoic acid (RA), which is known to
posteriorize the embryonic body axis, is also required to
specify the posterior character of the otic placode. Expression
of RA synthesizing and degrading enzymes coincides with
the AP boundary of the otic placode, and experiments in
chicken and zebrafish have disclosed a developmental window
during which the otocyst receives and is sensitive to RA
posteriorizing signals (Bok et al., 2011; Radosevic et al.,
2011).

Two main cell fate decisions are made sequentially during
ear development. First, neurosensory progenitors produce either
neuronal (neuroblast) or sensory precursors. Secondly, once
neurons have delaminated, the progenitors that remain in the
epithelia develop into either hair cells or supporting cells.
The differentiation of neurons and hair cells is driven by the
expression of, respectively, Neurog1 and Atoh1, two basic Helix-
Loop-Helix (bHLH) proteins. Notch signaling plays a critical role
in these two sequential decisions because it is instrumental in
forcing precursors to adopt alternative fates by the mechanism
of lateral inhibition (Figure 1).

Evidence in different species suggests that neurosensory
progenitors are multipotent. Lineage analyses by viral tracing

BOX 1 | bHLH in vertebrates: has Atoh1 lost its proneural function?

What is a proneural gene? A proneural gene must fulfill three main characteristics (Hassan and Bellen, 2000): First, its expression precedes and coincides with the

selection of neuronal precursor cells. Secondly, its function is both necessary and sufficient for the specification of a given neuronal lineage in a cell autonomous

fashion. Finally, its loss of function results in the deletion (and its missexpression ectopic development) of a given lineage. Proneural genes were first identified in

Drosophila peripheral nervous system development. The Achaete–Scute complex (AS-C) genes were identified as proneural genes encoding bHLH factors. Later

on, atonal (Atoh1 in mammals) was identified by PCR (Jarman et al., 1993). Atonal in Drosophila is the master gene for the formation of chordotonal organs, which

are mechano-receptors of insect muscles. Atonal gene selects the progenitors that give rise to the mature organs. Atonal loss of function abolishes chordotonal

organs and its missexpression favors their ectopic formation (Jarman et al., 1993). Are Atoh1 and Neurog1, the vertebrate homologs of atonal, also proneural genes?

Atoh1 and Neurog1 overexpression drives, respectively, ectopic hair cell and neuron formation (Izumikawa et al., 2005; Evsen et al., 2013), and their loss of function

results in the lack of hair cells or neurons (Ma et al., 1998; Bermingham, 1999). However, their function is far more restricted and, like in other regions of the Nervous

System, they do not provide a broad neural competence, but a far more restricted lineage selection (for example, HCs and SCs in the case of Atoh1 and the inner

ear). The broad neural competence is rather dependent on SoxB1 (Azuara et al., 2006; Puligilla and Kelley, 2017). This shows a proneural identity crisis in vertebrate

development and the taking over by SoxB1 proteins (Hassan and Bellen, 2000).

in chicken embryos demonstrated that bipotential neurosensory
progenitor cells are present in the otic placode (Satoh and Fekete,
2005) and dye-labeling of otic placode progenitors showed that
neurons and hair cells derive from the neurosensory domain
of the otic vesicle (Bell et al., 2008). Furthermore, genetic fate
mapping in mouse and chick indicates that vestibular sensory
hair cells derive from Sox2 expressing progenitors residing in
the neurosensory domain of the otic placode (Raft et al., 2007;
Neves et al., 2012). In zebrafish, there are three progenitor pools,
one specific to neurons, another specific to hair cells and a
third one that can give either neurons or hair cells until later
stages (Sapède et al., 2012), but all come from a population that
expresses Atoh1b, suggesting that they also may share a common
progenitor (Millimaki et al., 2007).

SOX2 AND NEURAL COMPETENCE

Sox genes are transcription factors that belong to the High

Moblity Group (HMG) box domain proteins (Kamachi and
Kondoh, 2013). One subfamily of Sox genes is the SoxB group,
which is split in turn into two sub-groups: SoxB1 that includes
Sox1, Sox2, and Sox3, being only Sox2 and Sox3 expressed
in the vertebrate inner ear (Neves et al., 2007; Abelló et al.,
2010), and SoxB2 that comprises Sox14 and Sox21, which are
transcriptional repressors (Kamachi and Kondoh, 2013) and
from which only Sox21 is expressed during ear development
(Freeman and Daudet, 2012).

Sox2 is critical for the specification of neurons and hair cells
in the neurosensory domain of the otic placode (Kiernan et al.,
2005; Neves et al., 2012). Sox2 is able to activate both Neurog1
and Atoh1, but it is downregulated in differentiated neurons
and hair cells. Sox2 expression remains high in supporting cells,
suggesting that this cell type retains progenitor properties (Neves
et al., 2007; Evsen et al., 2013; Kamachi and Kondoh, 2013). The
expression of Sox2 in the inner ear is driven by signals from the
surrounding tissues. Like in other regions of the nervous system,
FGF signaling is determinant for setting the onset of SoxB1
factors (Alsina et al., 2004; Sweet et al., 2011; Ono et al., 2014).
In the inner ear, first Sox3 and then Sox2 expression depends
on FGF signaling emanating from the underlying mesoderm,
the hindbrain and probably from the otic placode (Schneider-
Maunoury and Pujades, 2007; Groves and Fekete, 2012). Sox3,
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FIGURE 1 | Specification of neurons and hair cells during inner ear

development. The three cell types that constitute the functional unit of the

sensory patches of the inner ear are: neurons (blue), supporting cells (SC, pink)

and hair cells (HC, red). The three cell types derive from the neurosensory

epithelium that is specified by Sox2 and Sox3 after FGF signaling. Upon

neurosensory induction, HC differentiation is delayed with respect to neurons.

Neurog1 is expressed in neuronal precursors and after neurogenesis Atoh1 is

expressed in the prospective hair cells. Notch signaling contributes to cell

determination in two rounds of lateral inhibition, first to single out neuronal

precursors (neurogenesis) and, secondly, to decide between hair cells and

supporting cells (sensorigenesis).

which is expressed in the neurosensory domain in chick is not
detected in the mouse, where Sox9 is co-expressed along with
Sox2 in the prosensory region (Mak et al., 2009).

THE REGULATION OF NEUROG1 AND
ATOH1

The Regulation of Neurog1
Neurog1 (Neurogenin1) is a basic helix-loop-helix (bHLH)
transcription factor that behaves as master regulator for neuronal
differentiation in different vertebrates (Henrique et al., 1997; Ma
et al., 1998; Alsina et al., 2004; Evsen et al., 2013). Neurog1
is an Atonal-related protein (ARP; Hassan and Bellen, 2000).
On average, it shares with Atoh1 53% amino acid identity
in the bHLH domain, and differs from Atoh1 in four basic
domain residues (Sommer et al., 1996). Three neurogenins have
been described in mammals. Neurog1 and Neurog2 function as
neuroblast selector genes in mouse (Ma et al., 1998), but in the
chicken and mouse inner ear, only Neurog1 is expressed during
ear development (Ma et al., 1996; Evsen et al., 2013).

Sox2 is necessary for Neurog1 up-regulation in the otic
epithelium (Jeon et al., 2011; Neves et al., 2012). Inmice, Neurog1
is also activated by Six1 and Eya1 that synergize with Sox2 (Zheng
et al., 2003; Ahmed et al., 2012b). The neurosensory domain
has high Notch activity, and Jeon and colleagues showed that
the enhancer of Neurog1 is activated by high levels of NICD
(Notch Intracellular Domain), while Atoh1 enhancer is not (Jeon
et al., 2011). This may favor that Neurog1 expression precedes
Atoh1 in the otic vesicle (Neves et al., 2011). However, later in

development Notch signaling represses Neurog1 expression in
the cells that remain in the epithelium.

Neurog1 expression is controlled by different cis-elements
located 5′ and 3′ to the Neurog1 coding sequence. These
enhancers drive the expression of Neurog1 in midbrain,
hindbrain, trigeminal ganglia, and ventral neural tube. For
Neurog1 expression in the dorsal neural tube only a 5′

enhancer has been identified (Nakada et al., 2004). Another
enhancer region drives Neurog1 activity to the VIII cochlea-
vestibular ganglion (Murray et al., 2000). The configuration
of these enhancers is similar to the cis-elements identified for
Neurog2 (Simmons et al., 2001), suggesting that there is a
tight regulation of the two Neurogenins. Nakada et al. (2004)
speculated that possibly the conservation between Neurog1 and
Neurog2 arises from gene duplication. The modular organization
of Neurogenins cis-regulatory regions contrasts with the single
enhancer regulation described for Atoh1 (Helms et al., 2000 and
see below).

The Regulation of Atoh1
Atoh1 expression is regulated by a downstream enhancer,
which depends on its interaction with Atoh1. In other
words, Atoh1 expression relies on its auto-regulation. This
implies that crucial events in the developmental regulation
of Atoh1 are the chromatin arrangements that allow the
interaction of Atoh1 with its own enhancer, and also the
activity of potential repressors that break this loop (See
BOX 2). Work by Jane Johnson’s lab discovered a region
in the Atoh1 genome landscape that recapitulates Atoh1
expression during mouse and chicken development (Helms et al.,
2000). Transgene expression in mouse identified a region that
directed the expression to the neural tube, external granular
layer (EGL) of the cerebellum from rhombic lip, and the
developing hair cells of the cochlea and semicircular canals.
The region contains a 1.7 Kb fragment located 3.4 Kb 3′

of the Atoh1 coding region that recapitulates the expression
of Atoh1. This region is called the 3′Atoh1-enhancer (see
Figure 2A).

Two regions within the 3′Atoh1-enhancer (3′Atoh1-enh)
show a high homology between humans and mouse, and they
were named Enhancer A and Enhancer B (EnhA and EnhB).
The length of A and B is highly conserved in species like
chicken, mouse, and human (Ebert, 2003), although the distance
in between them varies among species. Interestingly, Helms et al.
(2000) observed that transgenic embryos for Atoh1-enh/lacZ
transgenic mice had no detectable β-gal activity in the Math1
null background, and this was shown to be also the case
for the 3′Atoh1-enhancer-GFP reporter in the inner ear (Raft
et al., 2007). This suggested that the activity of the 3′Atoh1-
enh is dependent on Atoh1 expression and that autoregulation is
one major mechanism for setting Atoh1 transcriptional activity
(Figure 2B).

The 3′Atoh1-enh contains several E-boxes, which are six-
nucelotide DNA sequences that bind bHLH proteins, like Atoh1,
Neurog1, and Hes/Hey factors (CANNTG; (Massari and Murre,
2000)). The Enhancer A contains a degenerated E-box and the
Enhancer B three E-boxes. E-boxes in Enhancer B are a class A, a
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BOX 2 | The priming of Atoh1.

Priming of Atoh1 in the developing ear may be also promoted by other mechanisms rather than Atoh1 autoactivation. Changes in histone modifications can change

the transcriptional hierarchy that controls cell differentiation (Azuara et al., 2006). The dynamic changes in the histone modifications H3K4me3/H3K27me3, H3K9ac,

and H3K9me3 indicate that there is a progression from poised to active, and finally to repressive marks in the Atoh1 locus. This sequence correlates with the onset

of Atoh1 expression and its subsequent silencing during the perinatal period (Stojanova et al., 2015). The inhibition of acetylation blocks Atoh1 mRNA expression in

nascent hair cells, as well as the ongoing hair cell differentiation during embryonic organ of Corti development (Stojanova et al., 2015). Contrarily, histone deacetylase

inhibition favors the expression of hair cell markers in mouse utricle progenitor cells (Hu and Wang, 2014). Cochlear explants treated with histone deacetylase inhibitor

increase the levels of Atoh1 mRNA in early post-natal mice (Stojanova et al., 2015). This suggests that Atoh1 is poised during developmental stages and thereby

ready to be activated. However, after birth the Atoh1 locus becomes methylated and cannot be transcribed when hair cells are damaged. The epigenetic status of

Atoh1 locus during organ of Corti development shows a bivalent mark of the Atoh1 locus by H3K27me3 and H3K4me3, prior to the upregulation of Atoh1 (Stojanova

et al., 2015). This is consistent with the idea that Sox2 poises/primes the Atoh1 locus until Atoh1 itself is able to bind to the E-box A and trigger Atoh1 expression.

FIGURE 2 | The regulation of Atoh1 by signal integration in the 3′Atoh1 enhancer. (A) The 3′Atoh1 enhancer is located 3.5 Kb downstream Atoh1 coding

region and it consists of two enhancer named, Enhancer A and Enhancer B. Different transcription factors bind to this region like Sox2 in Enhancer A, and Six1 in

Enhancer B. The three E-boxes in Enhancer B are putative sites for Atoh1 repression. (B) Atoh1 binds to the class A E-box located in the Enhancer B and is able to

activate its own transcription. (C) During neurogenesis Atoh1 expression is silenced by Neurog1 and its expression is further delayed by the counteraction.

class C and a reversed N-box. All three boxes are very close, and
class A and N-box overlap (Figure 2A, the CAN region for C-, A-
and N-boxes). As mentioned above, Helms et al. (2000) already
identified the class A E-box located in Enhancer B as crucial
for Atoh1 autoactivation. Besides the CAN region, the 3′Atoh1-
enh region contains putative binding sites for a menagerie of
transcriptional activators and repressors. Some of them like Sox2,
Six1/Eya1, and β-catenin bind directly to the enhancer as shown
by biochemical assay (Akazawa et al., 1995; Ebert, 2003; Mutoh
et al., 2006; Briggs et al., 2008; D’Angelo et al., 2010; Shi et al.,
2010).

Sox2 is sufficient to activate Atoh1 and to induce ectopic
hair cell formation in the chick otocyst (Neves et al., 2012)
and it is rapidly downregulated as hair cells differentiate. This
downregulation is required for further maturation because
sustained expression of Sox2 in Atoh1 expressing cells blocks the
induction of hair cell markers such as Myosin-VIIa (Dabdoub
et al., 2008). Six1 and its transcriptional co-activator Eya1 are
expressed in the prosensory domain of the cochlea, and they bind
directly to the 3′Atoh1-enh (Ahmed et al., 2012a). These two
factors are sufficient to induce Atoh1 expression in competent
regions and their activation is potentiated by Sox2 (Ahmed et al.,
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2012a). As described before, Neurog1 is also upregulated by
Six/Eya with Sox2 (Ahmed et al., 2012b).

In summary, the crucial elements in setting neuronal and
sensory competence are: (1) FGF signaling that induces the
expression of Sox2 in the neurosensory domain of the otic
placode, (2) Sox2 that drives the activation of neuronal and
sensory master genes Neurog1 and Atoh1 and neurosensory
competence, and (3) the onset of Neurog1 and Atoh1 and the
determination of neurons and hair cells, respectively.

NEURONS VS. HAIR CELLS: HOW DOES
NEUROG1 COUNTERACT ATOH1?

Although Sox2 is able to activate both Neurog1 and Atoh1,
Atoh1 expression remains undetected until HC differentiation
(Figure 2C). Neves et al. (2012) hypothesized that this delay
in Atoh1 expression may be explained by an incoherent feed-
forward loop (I-FFL) triggered by Sox2, where Sox2 activates
both Atoh1 and Atoh1 repressors (Neves et al., 2012). Recent
experiments using a conditional gain of function system in
mouse support the model by showing that Sox2 is required for
prosensory specification, but it must be downregulated to allow
Atoh1 expression (Puligilla and Kelley, 2017). Major candidates
to mediate the repression of Atoh1 include a variety of bHLH
factors that are expressed throughout ear development such
Neurog1 or Notch targets.

There is a mutual antagonism between Neurog1 and Atoh1
functions. Neurog1 null mice show a loss of sensory neurons,
smaller sensory patches, and premature development of hair cells
(Matei et al., 2005). Moreover reduced Neurog1 causes ectopic
Atoh1 expression and that excess of Atoh1 suppresses Neurog1
(Raft et al., 2007). During development, Neurog1 overrides
Atoh1 expression. Therefore, the functional antagonism between
Neurog1 and Atoh1 is resolved in favor of Neurog1, the result
being that neurons develop prior to hair cells. The molecular
mechanism of this dominance of Neurog1 over Atoh1 is still
unknown, but it seems crucial for understanding the timing of
cell fate during ear development. Neurog1 is a transcriptional
activator, suggesting that the counteractive interaction with
Atoh1 is likely complex. In principle, Neurog1 may repress
Atoh1 by the following mechanisms: (1) by preventing Atoh1
transcription, (2) by preventing Atoh1 mRNA translation, or (3)
by post-translational mechanisms that result in modified Atoh1
protein levels or activity.

Transcriptional Repression of Atoh1
Neurog1 and Atoh1 are two bHLH type II proteins (Massari and
Murre, 2000). They are known to dimerize with type I bHLH
like E47 and bind to E-box sequences resulting in activation of
transcription (Jarman et al., 1993; Koyano-Nakagawa et al., 1998;
Bertrand et al., 2002). One simple possibility for Neurog1 acting
as a repressor of Atoh1 is that Neurog1 acts as a partial agonist
for Atoh1. Neurog1 would compete for the class A E-box located
in the 3′Atoh1-enh, resulting in a weak activation but impeding
the stronger autoactivation by Atoh1. Atoh1 and Neurog1 may

also compete for the same E-protein partners, like E47, the result
being that Atoh1 is unable to bind DNA.

Neurog1 may repress Atoh1 transcription in an indirect
manner, by activating transcriptional repressors of Atoh1.
Among the targets of Neurog1, NeuroD is one major effector of
Neurog1 in the ear, being essential for neuroblasts delamination
(Ma et al., 1996; Huang et al., 2000; Kim et al., 2001) and
for shutting down Sox2 expression in the neurons (Evsen
et al., 2013). Conditional NeuroD deficient mice show that
NeuroD suppresses Atoh1 expression in auditory-vestibular
neurons as indicated by the ectopic expression of Atoh1 after
NeuroD deletion (Jahan et al., 2010). However, during early
stages of neurosensory development, Neurog1 is expressed
homogeneously in the neurosensory epithelium, including hair
cell precursors (Raft et al., 2007), and only those cells that
express high levels of Neurog1 trigger lateral inhibition and
delaminate from the epithelium. Therefore, it is likely that
alternative mechanisms may prevent Atoh1 without necessarily
driving neuronal differentiation (Sun et al., 2001; Fritzsch et al.,
2006).

Post-Transcriptional Regulation of Atoh1:
mRNA Processing and Stability
The half-life of many mRNAs can fluctuate during development
and mRNA stability depends on RNA-binding proteins that bind
mRNAs (Day and Tuite, 1998; Knuckles et al., 2012). Also micro-
RNAs (miRNAs) are known regulators of mRNA stability or
translation efficiency and modify protein expression levels. Some
miRNAs like the miR-183 family (miR-96, miR-182, and miR-
183) are expressed at high levels in young hair cells and ganglion
neurons (Weston et al., 2006; Li et al., 2010) and themanipulation
of miR-183 levels modify the number of hair cells (Li et al., 2010,
see Groves et al., 2013 for a review).

Regulation of translation and protein synthesis depends on
initiation factors (eIFs), some of which are phosphoproteins
susceptible of regulation (Day and Tuite, 1998), but little is
known about their behavior during embryonic development.
Those are potential candidates to regulate the reduction of
Atoh1 induced by Neurog1; however, we have no information on
whether they are modified by Neurog1.

Post-Translational Regulation: Atoh1
Activity and Degradation
Degradation of bHLH proteins has been extensively
documented in different model systems and it is accounted
by phosphorylations in their C-terminus domain (Forget et al.,
2014; Hardwick and Philpott, 2015; Quan et al., 2016). Atoh1
post-transcriptional downregulation has been reported during
cerebellar granule neuron differentiation, where BMP2 and
BMP4 inhibit proliferation and induce differentiation through
proteosome mediated degradation of Atoh1 (Zhao et al.,
2008). BMPs induce the expression of Id1 and Id2 that upon
dimerization with Atoh1 target the complex for degradation.
In cerebellar granule neuron progenitors, Shh prevents Atoh1
degradation by preventing the recruitment of Atoh1 by Huwe3,
an E3 ligase (Forget et al., 2014). Atoh1 is degraded by the
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proteosome pathway when dimerizing with Huwe1 in HEK cells,
and the conditional deletion of Huwe1 generates supernumerary
HCs in the mouse cochlea (Cheng et al., 2016).

Atoh1 contains in the C-terminus a potential PEST sequence
(Jarman et al., 1993). This is a peptide sequence rich in proline
(P), glutamic acid (E), serine (S), and threonine (T). This
sequence is associated with proteins that have a short intracellular
half-life and it is hypothesized that the PEST sequence acts as
signal for protein degradation. Atoh1 protein stability is very
short and it is extinguished in 2 h after protein synthesis blockade
(Forget et al., 2014; Cheng et al., 2016). Aminoacid residues
located at the C-terminus region of Atoh1 protein that are
susceptible to phosphorylation are conserved among different
species (Mulvaney and Dabdoub, 2012). Like Atoh1, other bHLH
proteins as Neurog2 and NeuroD4 are also less stable upon
phosphorylation (Hindley et al., 2012; Hardwick and Philpott,
2015).

Cyclin-dependent kinases (Cdks) drive cell cycle progression
and are known to target Serine Proline (SP) and Threonine
Proline (TP) sites (Errico et al., 2010). bHLH proteins like Atoh1
and Neurog1 contain several putative ST and TP in their C
andN-terminal regions. Phosphorylation in these SP/TP residues
may be crucial for regulating activity and is linked to the cell
cycle. For example, in Xenopus embryos and P19 cells, progenitor
cells that divide rapidly show Neurog2 phosphorylation and
degradation, whereas when cell cycle is lengthened, Neurog2
accumulates and activates down-stream targets (Ali et al., 2011).
Cell cycle exit in the cochlea is dependent on the expression of
the cyclin inhibitor p27kip (White et al., 2006), and it is possible
that Atoh1 is degraded in dividing prosensory progenitors until
p27kip expression and cell cycle withdrawal. One plausible

mechanism is that Atoh1 protein is degraded in the presence of
Neurog1. This type of regulation has been recently described for
Atoh1 protein when targeted by the E-3 ubiquitin ligase Huwe1
(Cheng et al., 2016). Finally, Neurog1 may also interfere with
Atoh1 translation (see Figure 3).

NOTCH SIGNALING AND THE SINGLING
OUT OF HAIR CELLS

Notch signaling is an evolutionarily conserved juxtacrine
signaling pathway used by metazoans. It controls a broad
spectrum of developmental processes in organisms ranging
from sea urchins to humans (Artavanis-Tsakonas et al., 1999;
Neves et al., 2013). Lateral inhibition is one major operation
mode of the pathway by which a ligand-producing cell signals
its neighbors to reduce ligand expression (see (Neves et al.,
2013) for review on the different modes of operation of Notch
during ear development). Lateral inhibition mediates binary
cell fate decisions by ensuring that the cells adopt one of
two alternative fates. In the inner ear Notch mediates the
determination of two major cell types, neurons and hair cells.
Driven by Sox2, progenitors residing in the neurosensory
domain express Neurog1, some of them with enough strength
so to unfold the neuronal program and become neuroblasts.
Nascent neuroblasts express the ligand Delta-like1 (Dll1), which
activates Notch1 in the neighboring cells and suppress Neurog1
expression. Neuroblasts delaminate, and the cells that remain
in the neurosensory epithelium are fated to become sensory
precursors (the prosensory patches). Later in development, some
cells from the prosensory patches start expressing Atoh1, which

FIGURE 3 | How does Neurog1 force neurogenesis before sensorigenesis? Possible models for Neurog1 repression of Atoh1. Neurog1 prevents Atoh1

activation by binding to the CAN region of the 3′Atoh1 enhancer or by sequestering type I bHLH factors necessary for Atoh1 binding (1). Neurog1 reduces Atoh1

protein levels by mRNA degradation (2), inhibition of protein synthesis (3), or reducing protein stability by promoting Atoh1 protein to proteosome degradation (4), of

other bHLH in the prosensory epithelia.

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2017 | Volume 5 | Article 21 | 41

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Gálvez et al. Cell Diversification in Ear Development

initiates a second round of lateral inhibition by which some
precursors activate the ligands Delta1 (in mammals also Jag2)
that drive lateral inhibition. The result is that those cells that
express Atoh1 become hair cells and prevent the neighbors to do
so, generating the typical mosaic of alternate cell types (Adam
et al., 1998; Eddison et al., 2000; Neves et al., 2013).

Both during neurogenesis and hair cell generation, the action
of Notch ligands results in the expression of the typical Notch
targets like Hes and Hey factors (Petrovic et al., 2014, 2015). The
most studied Notch canonical effectors are Hairy and Enhancer
of Split (Hes) and Hairy and enhancer of split related (Hey).
Hes and Hey genes belong to the type VI bHLH group. Seven
Hes members have been identified in vertebrates (Hes1–7), while
the Hey subfamily of genes encodes three members in mammals
(Hey1, Hey2, and HeyL; Iso et al., 2001, 2003).

The core structure of Hes and Hey proteins contains a
basic and Helix-loop-Helix domain and an Orange domain at
the C-terminus region. The Orange domain serves as a region
for protein-protein interactions and for partner selection (Iso
et al., 2001). Hey proteins differ from the Hes subgroup by two
striking features: first a glycine present in the basic domain of
Hey proteins instead of a conserved proline in Hes proteins,
which confers DNA-binding specificity (Leimeister et al., 1999).
Secondly, the C-terminal WRPW motif that is characteristic of

Hes proteins and allow Groucho co-repressor recruitment, is
replaced with YRPWor YXXW (HeyL; Fisher et al., 1996). The C-
terminal WRPW of Hes motif acts as polyubiquitination signal,
making Hes proteins short-living (Hirata et al., 2002; Iso et al.,
2003).

Hes factors bind with high affinity to E-box class C or N-box.
Hey1, due to the presence of a glycine residue in the basic domain
has preference to class C or class B E-boxes (Iso et al., 2003).
The repressive function can be either active or passive. Active
repression involves DNA binding, whilst in passive repression
Hey/Hes proteins sequester bHLH type I family and impair their
heterodimerization with class II bHLH (Iso et al., 2003).

During development, several Hes andHey genes are expressed
in the inner ear. Hes5 is the major Notch target expressed during
lateral inhibition. It is detected in the precursors that are not
selected as neurons or hair cells. Its expression correlates well
with that of Dll1 in nascent neurons and hair cells (Petrovic
et al., 2014). Hey1 is also expressed in the prosensory epithelium,
concomitantly with Jagged1, and co-expressed with Hes5 during
hair cell formation (Petrovic et al., 2014). Although Hey1 and
Hes5 are direct Notch downstream targets, they differ in the level
of Notch required for their activation.

Knockout mice of different Hey and Hes factors exhibit
supernumerary hair cells in the cochlea, suggesting a repressor

FIGURE 4 | 3′Atoh1 enhancer regulation by the Notch targets, Hey1 and Hes5. (A) Schematic representation of in ovo chicken electroporation of the 3′Atoh1

enhancer reporter in combination with bHLH factors. (B) Otic vesicles were isolated and developed in ovo for 24 h after in ovo electroporation (E2+1). Reporter β-gal

activity measured in the conditions indicated (n = 3–4). Levels of electroporation were normalized by luciferase activity. Atoh1 activated its own enhancer and Hey1

prevented Atoh1 autoactivation. All three bHLH factors repressed 3′Atoh1 enhancer basal activity. (C) Hey1 (left) and Hes5 (right) also prevented Atoh1 autoactivation

in P19 cells. Values of luciferase correspond to enhancer activity relative to the basal activity of the 3′Atoh1 enhancer in the conditions indicated in abscissa (n = 3).

Values are normalized by renilla activity. Data displayed as Mean + S.E.M.
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function during hair cell development. The combined loss of
function of Hes5, Hey1, and Hes1 results in supernumerary
hair cells (Tateya et al., 2011) and Atoh1 is upregulated after
interference of Hey1/Hes5 expression with siRNAs (Du et al.,
2013) or treatment with the Notch inhibitor DAPT (Ren et al.,
2016). Notch inhibition of damaged sensory epithelia favors HC
regeneration (Lin et al., 2011; Mizutari et al., 2013), suggesting
that these factors may also regulate the ability to regenerate HCs
(see below).

THE REPRESSION OF ATOH1 BY HES AND
HEY: IS IT ALL IN THE 3′ATOH1
ENHANCER?

Hey1 and Hes5 repress Atoh1 and silence the 3′Atoh1-enh
(Figures 4A,B). In addition, both factors are able to block Atoh1
autoactivation (Figure 4C), suggesting that the repression of
Atoh1 by Hes5 and Hey1 prevails upon its own activation.
Accordingly, and parallel to 3′Atoh1-enh repression, Hey1
overexpression is sufficient to prevent HC generation in chick
sensory epithelia (Figure 5). Taken together, these observations
suggest that during development, Notch targets Hey1 and
Hes5 act on the 3′Atoh1-enh and repress Atoh1 expression in
prosensory precursors and supporting cells.

Hey1 is also able to prevent both, the basal activity and
the autoactivation of EnhB of the 3′Atoh1-enh in chicken otic
vesicles and P19 cells (Figures 6A,B). Hes5 can also prevent
Atoh1 autoactivation (Figure 6B). Moreover, the importance of
the CAN region of EnhB is illustrated by multimer reporter
analysis showing that Hey1 requires the E-boxes flanking the
class A E-box to act as a repressor (Figure 6C). The CAN
multimermimics the 3′Atoh1-enh repression promoted byHey1,
indicating that the minimal region of the enhancer to explain the
repression is the CAN region.

Hey1 needs to bind DNA in order to repress Atoh1, since
the mutation of Hey1 DNA binding domain abolishes repression
(Figure 6D). However, the identification of the region bound by
Hey1 and Hes5 has been difficult and still remains elusive. On
the one hand, mutations of either the class C E-box or the N-
box of the CAN region are unable to prevent Atoh1 repression by
Hey1 and Hes5 (Figure 7). This is in agreement with the results
of ChIP-seq analysis performed on HEK 293, which shows that
Hey1 does not bind to the 3′Atoh1-enh (Heisig et al., 2012).
But it is also somehow surprising and suggests that there are
alternative binding sites and/or mechanisms of repression for
Hes and Hey factors. For example, it is possible that Hey1 blocks
the transcription of Atoh1 by interfering with the class A E-box.
This possibility is difficult to explore since the mutation of E-box
A silences the 3′Atoh1-enh.

FIGURE 5 | Hey1 prevents HC formation in ovo. (A) E3.5 chicken embryos were electroporated with Hey1 (left image) or EGFP-C1 (right image) and then

sectioned after 3 days of incubation (E3.5+3). Electroporated cells in the macula sacularis were found mainly in the SC layer, and very few developed as HCs. Control

electroporation with EGFP-C1 (E3.5+3) is shown on the right. (B) Hey1 electroporation biased electroporated cells toward supporting cell fate. The fraction of HCs

that were electroporated (8%) was smaller than that of SCs (28%), similar to the efficiency of the electroporation (24%). Bars represent the number of cells counted in

two consecutive frames of electroporated macula sacularis, from three independent embryos (n = 3). Electroporation with EGFP-C1 did not show any bias for either

HCs or SC.
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FIGURE 6 | The regulation of the 3′Atoh1 enhancer by Hey1 and Hes5 is recapitulated by the CAN region. (A) Quantification of EnhB activity in the presence

of Hey1 or Hes5 in E2+1 otic vesicles. Hey1 and Hes5 factors were able to prevent the basal activity of 4 × EnhB (n = 3). (B) In P19, Atoh1 was able to activate 4 ×

EnhB and the autoactivation was suppressed by either Hey1 or Hes5 (n = 3). (C) The CAN multimer was activated by Atoh1, but Hey1 was not able to repress the

basal reporter activity. However, it prevented Atoh1 autoactivation (n = 3). (D) Hey1 requires its DNA binding domain to repress the CAN region. Quantification of 4 ×

EnhB activity with Atoh1 and Hey1-DN (Hey1 dominant negative) in P19 cells. Data displayed as Mean + S.E.M.

A recent study has shown that Hes5 and Hey2 are able to
prevent Atoh1 expression by binding to the promoter region
of Atoh1, and that the repression of Atoh1 in supporting cells
depends on this interaction, rather than on the 3′Atoh1 enhancer,
which would operate mainly for Atoh1 activation (Abdolazimi
et al., 2016). Gene repression and binding by Hey1 is also
dependent on the chromatin signature of the promoter regions.
Heisig et al. (2012) found that Hey1 bound sequences overlapped
with the presence of polymerase II and the active chromatin
mark H3K4m3, characteristic of active and poised promoters.
H3K4m3 chromatin marks are found in Atoh1 promoter and
enhancer prior to Atoh1 upregulation (Stojanova et al., 2015).
Therefore, the regulation of Atoh1 is likely to be dependent
on multiple sites, and not only mediated by the 3′Atoh1
enhancer. The relationship between the Enhancer and promoter
regions may be crucial to fully solve the complex regulation by
Hey1.

FROM DEVELOPMENT TO
REGENERATION

Hearing loss is a major problem affecting more than 360 million
people in the industrialized world (WHO). It affects speech and
language and leads to severe deficits in communication, and a
strong negative impact in the quality of life. Hearing impairment
is mainly caused by the failure of hair cells and/or otic neurons
(sensorineural hearing loss), hair cell damage being the most
frequent triggering factor. Hair cell damage arises from genetic
defects, aging, noise, traumatic lesions, infections, or therapeutic
substances. The main problem of hair cell damage is that, unlike
other animal species, mammals are not able to regenerate hair
cells of the auditory epithelia and there is no treatment for
hearing deficiencies in humans.

In contrast to mammals, non-mammalian vertebrates like
chicken, zebrafish, or lizards, are able to repair and heal
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FIGURE 7 | Hey1 and Hes5 predicted binding sites were not enough to

prevent the repression of the 3′Atoh1 enhancer. (A) Table showing the

mutations generated in the E-boxes of the CAN region (or located in enhancer

B). The three E-boxes are depicted in black and bold, in red the mutated

nucleotides. (B) Hey1 and Hes5 were able to block Atoh1 autoactivation even

after mutation of the class C E-box (n = 3). (C) Similarly, the simultaneous

mutation of the E-box C and N-box had no effect on the repression of the

3′Atoh1 enhancer (n = 2, Hey1, and n = 3, Hes5). Data displayed as Mean +

S.E.M.

damaged sensory epithelia. In the chick, damaged hair cells
trigger supporting cells to replace lost hair cells by two
different mechanisms: (1) mitotic regeneration, where SC
divides asymmetrically and one daughter cell remains as SC
and another as HC, and (2) transdifferentiation of SC into
HC. In transdifferentiation, HCs are generated at the expense
of SCs, which become exhausted and hence, the epithelium
is disorganized. The consequence is that, although HCs are
recovered, hearing function is not (Stone and Cotanche, 2007). In
birds, hair cell regeneration starts with direct transdifferentiation
of SCs into HCs, followed bymitotic regeneration and the correct
replacement of the sensory epithelium and auditory function
(Roberson et al., 2004).

Although mammals have some capacity to regenerate hair
cells in the vestibular organs and the early post-natal cochlea, the
adult auditory organ is completely devoid of this capacity. The
question arises as to what are the differences between birds and
mammals that explain their different regenerative capacity. Are
there signals that regulate SC quiescence and activation after HC
loss in chicken? Are they similar to mammalian early post-natal
regeneration? Why mammals lose the capacity of regeneration
after birth?

Studies in the chick have shown that hair cell regeneration
reuses mechanisms that operate during embryonic development.
Several molecular pathways known to regulate embryonic hair
cell progenitors are reactivated in mature chicken epithelia
after HC loss. Upon HC damage, Atoh1 becomes reactivated
in transdifferentiating and mitotically active SCs (Cafaro
et al., 2007). Atoh1 reactivation is essential to form new

hair cells, like it is to form hair cells during development
(Bermingham, 1999). Notch signaling is down-regulated upon
damage in the basilar papilla suggesting that in the mature
organ it maintains a repressive state that prevents Atoh1
expression. In agreement, different laboratories have shown
that treatment with Notch inhibitors favors Atoh1 reactivation
and HC regeneration in the chick basilar papilla and also in
the post-natal mammalian cochlea under certain conditions
(Cafaro et al., 2007; Mizutari et al., 2013). The ability
of SC to respond to Notch blockade dramatically declines
after birth, and is lost by post-natal day 6 (Maass et al.,
2015).

Human stem cells constitute a reasonable alternative to
replace damaged hair cells. Major problems of this approach
are the difficulty to deliver treated cells to the damaged areas
and their limited ability to integrate in the epithelium. Several
groups have developed protocols to differentiate hair cells by
mimicking the hair cell development in the embryo. Although
this has proved successful, the efficiency of the procedures in
hair cell regeneration is still very low (Chen et al., 2012; Ronaghi
et al., 2014). In contrast to the low efficiency in replacing
hair cells, stem cell therapy has proven surprisingly effective at
restoring auditory neurons. The first reports of otic guidance with
monolayer cultured human ESCs (hESCs) revealed a propensity
to differentiate along an otic neurogenic lineage rather than HC
lineage (Chen et al., 2012). Different attempts to generate HCs
in culture commonly face the problem that most cells go to
the neuronal cell fate, making it very difficult to enrich them
in HCs (Chen et al., 2012; Ronaghi et al., 2014). This problem
is directly related to the question addressed in the present
work. During early stages of development, Neurog1 prevails over
Atoh1, thereby forcing neurogenesis and delaying sensorigenesis.
This suggests that the default fate is to become a neuron and that
sensory competence is silenced. If this is so, the consequence is
that production relies mainly on relieving the repression of hair
cell competence rather than on the expression of activators. The
cellular context of conditionally derived stem cells may be similar
to that in the embryo and interference with Neurog1 may open a
way to improve the efficiency of HC production.

In summary, understanding the developmental mechanisms
involving interactions among cell-to-cell signals and
transcription factors is crucial for designing strategies for hearing
repair. Developmental studies have shown that the connection
between FGF signaling and neurosensory commitment relies
on the induction of SoxB1 factors, which set the expression of
Neurog1 and Atoh1. The further interaction between Neurog1
and Atoh1 is crucial for neuronal and hair cell specification and
for setting the timing for cell diversification. Notch operates
at several stages during ear development, but one of them
is linked to proneural gene expression and the irreversible
commitment to neuronal and hair cell fate of only a fraction of
the competent progenitors. Its function is crucial for maintaining
dormant the potential of prosensory cells to develop as hair
cells, and to keep the regenerative potential of supporting cells.
Further work is required to better understand the details of the
molecular mechanisms of Atoh1 and Neurog1 regulation, and
the development and regeneration of neurons and hair cells.
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The vertebrate eye is a highly specialized sensory organ, which is derived from the

anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme.

The single central eye field, generated from the anterior neural plate, divides to give rise

to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently,

the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens

vesicle and double-layered optic cup, respectively. This complex process is controlled

by transcription factors and several intracellular and extracellular signaling pathways

including WNT/β-catenin signaling. This signaling pathway plays an essential role in

multiple developmental processes and has a profound effect on cell proliferation and

cell fate determination. During eye development, the activity of WNT/β-catenin signaling

is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular

malformations due to defects in the process of cell fate determination and differentiation.

This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye

development. Whilst this mini-review focuses on loss-of-function and gain-of-function

mutants of WNT/β-catenin signaling components, it also highlights some important

aspects of β-catenin-independent WNT signaling in the eye development at later stages.

Keywords: retina, WNT, β-catenin, development, differentiation

OVERVIEW OF EYE DEVELOPMENT IN MICE

During gastrulation, the eye field, a group of the retinal precursor cells, is specified within the
anterior neural plate. At this stage, these cells are anteriorly and laterally surrounded by the
telencephalic progenitor cells. Subsequently, the eye field is divided into two lateral parts, which
extend toward the surface ectoderm and give rise to the optic vesicle (Figure 1A; Inoue et al., 2000;
Cavodeassi and Houart, 2012; Heavner and Pevny, 2012). The head surface ectoderm thickens
to give rise to the lens placode while the optic vesicle subdivides into three parts, namely the
presumptive retinal pigment epithelium (RPE), the presumptive neural retina, and the presumptive
optic stalk (Figure 1B). The optic vesicle subsequently invaginates together with the lens placode
to form the double-layered optic cup (Figure 1C). The inner part of the optic cup gives rise to
the neural retina, meanwhile the outer layer forms the RPE. The ciliary margin (peripheral part of
the optic cup) develops to generate the iris and the ciliary body. The lens placodes progresses to
form a hollow lens vesicle. Cells in the posterior region differentiate as primary lens fiber cells and
elongate to fill the cavity, while the cells in the anterior region become proliferative lens epithelial
cells (Figure 1D; Fuhrmann, 2008; Cvekl and Ashery-Padan, 2014; Fuhrmann et al., 2014). The
retinal vessels arise from the optic nerve head shortly after birth and extend radically to the retinal
periphery in the superficial retina. The vasculature then sprouts ventrally to form the deep vascular
layer (Gariano and Gardner, 2005).
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FIGURE 1 | Schematic diagram of vertebrate eye development (A). The early optic vesicle stage (E8.5–9.0). The presumptive optic vesicle envaginates toward

the head surface ectoderm through the mesenchyme. (B) The optic vesicle stage (E9.5). As the optic vesicle comes into contact with the head surface ectoderm, it

becomes partitioned into three domains: a dorsal, a distal and a proximal domain, which give rise to the retinal pigment epithelium, the neural retina and the optic

stalk, respectively. The head surface ectoderm thickens to form the lens placode. (C) The optic cup stage (E10.5). The optic vesicle invaginates in coordination with

the lens placode to form the optic cup and the lens pit. (D) The closure of the lens vesicle (E13.5). The cells located at the posterior lens vesicle elongate anteriorly to

fill the cavity and differentiate as primary lens fiber cells. The cells in the anterior part of lens vesicle give rise to lens epithelial cells which migrate posteriorly to the

equator and differentiate as secondary lens fiber cells. Pink color represents the region where the activity of WNT/β-catenin signaling is active, green shows the source

of WNTs, blue indicates the region where WNT/PCP signaling is active. (E, F) Schematic representation of WNT/β-catenin signaling in the early lens development and

in the RPE development, respectively. E. The periocular mesenchyme secretes TGFβ, which signals to the non-lens surface ectoderm.WNT2b is induced by TGFβ

and activates WNT/β-catenin signaling in order to suppress the lens fate by repressing expression of Pax6. In the lens placode, WNT/β-catenin is inhibited by Pax6

which initiates lens development. (F) The surface ectoderm secretes WNTs which activate WNT/β-catenin signaling in the RPE. This signaling induces expression of

Otx2 and Mitf which in cooperation with Pax6 control the RPE developments.

WNT SIGNALING

WNTs can couple to various receptors and trigger different
downstream signaling cascades including the non-canonical
WNT/planar cell polarity (PCP), WNT/Ca2+, and the canonical
WNT/β-catenin signaling pathway, the focus of this review.
WNT/β-catenin signaling is initiated by binding of the WNTs
to the Frizzled/LRP5/6 receptor complex, which leads to
the accumulation of β-catenin and nuclear translocation. In
the nucleus, β-catenin interacts with the TCF/LEF family of

Abbreviations: pOV, presumptive optic vesicle; OV, optic vesicle; SE, head surface

ectoderm; ME, extraocular mesenchyme; pRPE, presumptive retinal pigment

epithelium; pNR, presumptive neural retina; pOS, presumptive optic stalk; LP, lens

placode; RPE, retinal pigment epithelium; LPT, lens pit; OS, optic stalk; CM, ciliary

margin; LE, lens epithelium; ON, optic nerve.

transcription factors and regulates their target genes. In the
absence of WNTs, β-catenin is phosphorylated by a “destruction
complex” composed of multiple proteins, including AXIN2 and
GSK3β, and targeted for degradation (Loh et al., 2016). In
addition to its critical role as a transcriptional co-activator, β-
catenin acts as a central component of the adherens junction
by forming a link between cadherins and the actin cytoskeleton
(Heuberger and Birchmeier, 2010). WNT/PCP signaling does
not use β-catenin, but activates the Rho family GTPases and
JNK pathway, which results in changes in cytoskeleton and cell
polarity (Loh et al., 2016). WNT signaling is modulated by
a number of WNT-sequestering proteins, such as DKKs and
SFRPs, which prevent ligand-receptor interactions (Cruciat and
Niehrs, 2013).
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THE LENS

WNT signaling plays essential roles in eye organogenesis
(Fuhrmann, 2008). During lens development, WNT/β-catenin
signaling is active in the periocular surface ectoderm and lens
epithelium (Stump et al., 2003; Smith et al., 2005; Kreslova et al.,
2007; Machon et al., 2010; Carpenter et al., 2015). Conditional
deletion of β-catenin in the presumptive lens placode and
surrounding head surface ectoderm results in abnormal lens
morphogenesis due to cell-cell adhesion defects. Conversely, the
lens induction in the β-catenin loss-of-function mutant is not
affected as expression of lens-specific markers is maintained
(Smith et al., 2005). Consistently, a null mutation in Lrp6, which
is expressed throughout the eye at the optic vesicle stage, does
not have a profound effect on the lens induction (Stump et al.,
2003; Smith et al., 2005). Interestingly, ectopic lentoid bodies
are formed in the periocular surface ectoderm, where WNT/β-
catenin signaling is inactivated in β-catenin-deficient mutants.
Although the adherens junction is disrupted, ectopic lentoid
bodies are not observed in the E-cadherin/N-cadherin or Scribs
conditional knockout mice generated using the same Cre line
(Pontoriero et al., 2009; Yamben et al., 2013). Thus, formation of
ectopic lentoid bodies is mediated by the inactivation of WNT/β-
catenin signaling rather than by cell-cell adhesion defects. In
addition, ectopic activation of WNT/β-catenin signaling by
expression of constitutively active β-catenin leads to inhibition
of the lens formation (Smith et al., 2005; Machon et al., 2010).
Taken together, WNT/β-catenin signaling is not required for the
lens fate determination, however it inhibits the lens formation
and appears to suppress the lens fate in the periocular ectoderm.
The precise regulation ofWNT/β-catenin signaling is required to
ensure the correct patterning of the ocular tissue.

WNT/β-catenin signaling is regulated by TGFβ signaling
and Pax6 in the surface ectoderm at the optic vesicle stage
(Figure 1E). The migrating neural crest cells inhibit the
lens specification, while their ablation results in ectopic lens
formation (Bailey et al., 2006). In chick embryos, the neural
crest cells secrete multiple TGFβs which activate WNT/β-catenin
signaling by inducingWNT2b in the adjacent non-lens ectoderm.
The lens fate in presumptive lens ectoderm explants can be

suppressed by the neural crest, constitutively active β-catenin,
as well as TGFβ. Interestingly, the expression of lens markers is
restored when these explants are cultured with TGFβ and WNT-
sequestering protein FZD8-CRD, a truncated and soluble form
of the WNT receptor. This indicates that lens suppression by
the neural crest-derived TGFβ is dependent on WNT/β-catenin
signaling (Grocott et al., 2011). WNT2b null mice display no
ocular defects and multiple WNTs are expressed in the surface
ectoderm, therefore additionalWNTs are required for the process
in mice (Tsukiyama and Yamaguchi, 2012; Carpenter et al., 2015).

Pax6 is expressed in the presumptive lens placode and Pax6
null mutation results in failure of the lens formation (Hill
et al., 1991; Grindley et al., 1995). It has been shown that
Pax6 regulates the expression of Sfrp2, and Dkk1. In Pax6-
deficient presumptive lens placode, Sfrp2 is down-regulated and
WNT/β-catenin signaling is ectopically activated (Machon et al.,
2010). However, it is unlikely that Sfrp2 acts as a downstream

effector as lens induction is not affected in the Sfrp1−/−;
Sfrp2−/− mice (Sugiyama et al., 2013). On the other hand, the
role of Dkk1 in the lens induction remains elusive as Dkk1
null embryos lack the anterior head structure including the
eyes (Mukhopadhyay et al., 2001). Interestingly, PAX6 ChIP
sequencing using human neuroectodermal cells has shown that
PAX6 binds to a variety of genes, which regulate WNT signaling
(Bhinge et al., 2014). Further studies are necessary to understand
how Pax6 counteracts WNT/β-catenin signaling.

At later stages of development, WNT/β-catenin signaling
is required for the formation and maintenance of the lens
epithelium (Stump et al., 2003; Cain et al., 2008; Martinez
et al., 2009). Interestingly, WNT/β-catenin signaling is reduced
in the lens epithelium of the Sfrp1−/−; Sfrp2−/− embryos
(Sugiyama et al., 2013). SFRP1/2 are primarily characterized as
WNT-sequestering proteins, however they can activate WNT/β-
catenin signaling by facilitating the diffusion of WNTs or
suppressing WNT/PCP pathway which can antagonize WNT/β-
catenin signaling (Satoh et al., 2008; Mii and Taira, 2009).
Additionally, Sfrp1/2 can also inhibit BMP and Notch signaling,
which are required for lens development, thus mis-regulation of
these signaling pathways might also be responsible for the defects
in the Sfrp1/2-deficient lens (Misra andMatise, 2010; Esteve et al.,
2011a).

Although WNT/β-catenin signaling is not required for the
lens fiber development, there are indications that the alignment
and orientation of lens fiber cells are dependent on the
WNT/PCP signaling pathways (Chen et al., 2008; Sugiyama
et al., 2010, 2011). In the lens overexpressing Sfrp2, the fiber
orientation is severely disrupted and expression of components
of the WNT/PCP pathway is down-regulated (Chen et al., 2008;
Sugiyama et al., 2010). WNT5, which activates the PCP pathway
is secreted from the lens epithelium and WNT5 promotes the
directed behavior of lens fiber cells in the lens explants (Dawes
et al., 2014).

THE RPE

Signals from neighboring tissues are crucial for the accurate

specification of the neural retina and the RPE within the
optic vesicle. The dorsal optic vesicle receives signals from
the extraocular mesenchyme and the head surface ectoderm to
differentiate into the RPE (Fuhrmann et al., 2000; Martínez-
Morales et al., 2004; Bharti et al., 2006; Steinfeld et al., 2013;
Carpenter et al., 2015). During retinal development, WNT/β-
catenin signaling is active in the dorsal optic vesicle which
gives rise to presumptive RPE at the optic vesicle stage and
is subsequently restricted to the peripheral RPE (Liu et al.,
2006; Fujimura et al., 2009; Westenskow et al., 2009; Hägglund
et al., 2013). The RPE transdifferentiates into the neural retina
in the β-catenin-deficient RPE at the optic cup stage, as
evidenced by loss of the RPE markers Mitf and Otx2 and
by the ectopic expression of neural retinal markers, such as
Chx10 and Rax (Fujimura et al., 2009; Westenskow et al., 2009;
Hägglund et al., 2013). The β-catenin-deficient RPE preserves
intact adherens junctions at the optic cup stage, although
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cell-cell adhesion is disrupted at later stages (Fujimura et al.,
2009; Westenskow et al., 2009). Interestingly, γ-catenin, a
paralog of β-catenin, can substitute β-catenin in cell adhesion
complexes in various developmental contexts (Huelsken et al.,
2000; Posthaus et al., 2002; Zhou et al., 2007). The lack of
β-catenin in the adherens junctions might be compensated
by γ-catenin as evidenced by the presence of γ-catenin in
the β-catenin-deficient RPE at the optic cup stage. Thus, the
transdifferentiation is probably caused by loss of WNT/β-catenin
signaling (Fujimura et al., 2009). A similar phenomenon is
observed in the optic cup derived from the mouse embryonic
stem cell aggregates in vitro (Eiraku et al., 2011). Treatment
with a WNT secretion inhibitor reduces the number of the
RPE cells, while WNT3a promotes the RPE differentiation and
suppresses the neural retina generation (Eiraku et al., 2011).
Interestingly, ectopic activation of WNT/β-catenin signaling in
the entire RPE also results in disruption of the RPE patterning.
The peripheral RPE remains normal, while the central part,
in which WNT/β-catenin signaling is ectopically active, loses
expression of the RPE markers. In contrast to β-catenin-deficient
mutants, the RPE is not transdifferentiated to the neural retina
(Fujimura et al., 2009). Thus, the activity of WNT/β-catenin
signaling is spatially and temporally regulated during the RPE
development.

WNT/β-catenin signaling regulates RPE development in
cooperation withMitf,Otx2, and Pax6 (Figure 1F). Expression of
Mitf and Otx2 is directly regulated by WNT/β-catenin signaling
(Fujimura et al., 2009; Westenskow et al., 2009). Furthermore,
ectopic expression of bothOtx2 and β-catenin in the presumptive
chick neural retina promotes the RPE fate while the ectopic
expression of Otx2 or β-catenin alone is not sufficient. Therefore,
β-catenin, together with Otx2, induces a change in cell fate from
retinal progenitor cells to the presumptive RPE (Westenskow
et al., 2010). Furthermore, β-catenin directly interacts with MITF
and promotes Mitf -mediated transcription (Schepsky et al.,
2006). A recent study has shown that PAX6 acts in synergy with β-
catenin andMITF to activate the promoters ofmelanogenic genes
Tyr and Trp-1 (Fujimura et al., 2015).

Although the identity of the specific WNTs involved in
RPE development remains elusive, a recent study has shown
that WNTs from the surface ectoderm are necessary for this
process (Carpenter et al., 2015). During early eye development,
the WNT transporter Wntless is expressed in the presumptive
lens placode, the periocular surface ectoderm, the periocular
mesenchyme at the optic vesicle stage, and it is also detected
in the peripheral retina and the RPE at later stages (Carpenter
et al., 2015). Conditional deletion of Wntless in the presumptive
lens leads to inactivation of WNT/β-catenin signaling in the
peripheral retina and periocular mesenchyme (Carpenter et al.,
2015). Moreover, the number of RPE cells is reduced inWntless-
deficient mice (Carpenter et al., 2015). Despite the presence
of multiple WNTs and Wntless in the periocular mesenchyme,
conditional inactivation ofWntless in the periocularmesenchyme
and RPE does not affect the eye development or the activity of
WNT/β-catenin signaling (Carpenter et al., 2015). It remains
elusive how WNTs disperse from the periocular mesenchyme
to the WNT-responsive tissue in the optic cup. There are,

however, indications that heparan sulfate proteoglycans (HSPG)
are involved in the distribution of WNTs within the eye.
HSPGs are located on the cell surface and in the extracellular
matrix and have been implicated in a number of signaling
pathways including WNT (Sarrazin et al., 2011). In the context
of WNT signaling transduction, HSPGs play an essential
role in organizing the extracellular distribution of WNTs
and they maintain the activity of WNTs by preventing their
aggregation in the extracellular environment (Fuerer et al., 2010;
Matsuo and Kimura-Yoshida, 2014). Interestingly, conditional
deletion of Ext1, a key HSPG synthetic enzyme, in the
periocular mesenchyme leads to severe ocular malformations
including the defects in the peripheral RPE development (Iwao
et al., 2010). It has not been shown whether WNT/β-catenin
signaling is affected in the peripheral optic cup of the Ext1-
deficient mice, however Ext1 is required for the activation
of the WNT11/β-catenin pathway in Xenopus embryos (Tao
et al., 2005). Thus, HSPG in the periocular mesenchyme
might mediate the distribution of WNTs from the surface
ectoderm.

THE CILIARY MARGIN

WNT/β-catenin signaling is active in the developing ciliary
margin or peripheral retina, but it is inactive in the central
retina (Liu et al., 2003, 2007; Cho and Cepko, 2006). Several
WNT signaling members, such as WNT2b, Frizzled-4 (FZD4),
and Lef1 are expressed in the ciliary margin (Trimarchi
et al., 2009). Overexpression of a constitutively active form
of β-catenin leads to the expansion of the ciliary margin
at the expense of the central retina (Cho and Cepko, 2006;
Liu et al., 2007; Trimarchi et al., 2009). In addition, Axin2
null embryos display multiple ocular phenotypes including
expansion of the ciliary margin (Alldredge and Fuhrmann,
2016).

Several studies indicate that WNT/β-catenin signaling activity
in the peripheral retina is controlled by Sfrp1/2, Foxg1, and
Sox2 (Matsushima et al., 2011; Esteve et al., 2011b; Fotaki et al.,
2013). As mentioned above, it has been suggested that WNT-
sequestering proteins SFRP1/2 can activate WNT/β-catenin
signaling (Bovolenta et al., 2008). In the Sfrp1−/−; Sfrp2−/−

embryos, this signaling is inactive in the peripheral retina,
which displays neural retinal characteristics (Esteve et al., 2011b).
Conversely, restriction of WNT/β-catenin signaling to the ciliary
margin has been shown to be mediated by Foxg1 and Sox2
(Matsushima et al., 2011; Fotaki et al., 2013). In Foxg1−or Sox2-
deficient retina,WNT/β-catenin signaling are up-regulated in the
peripheral retina and the ciliary margin expands at the expense
of the neural retina (Matsushima et al., 2011; Fotaki et al.,
2013). foxg1 suppresses WNT/β-catenin signaling by directly
repressing the transcription ofWNTs in the forebrain of zebrafish
(Matsushima et al., 2011). SOX2 interferes with WNT/β-catenin
signaling by binding β-catenin in the osteoblast lineage (Seo
et al., 2011). Taken together, it is likely that multiple mechanisms
control the activity of WNT/β-catenin signaling in the ciliary
margin.
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THE DORSO-VENTRAL PATTERNING IN
THE OPTIC CUP

In addition to the correct patterning of the lens and the
RPE development, WNT/β-catenin signaling is required for the
maintenance of the dorsal retinal identity (Veien et al., 2008;
Zhou et al., 2008; Hägglund et al., 2013). Conditional inactivation
of β-catenin in the early optic cup results in the down-regulation
of dorsal retinal markers, such as Bmp4 and expansion of the
ventral retinal markers, such as Vax2 (Hägglund et al., 2013).
Similarly, loss of Lrp6 causes dorso-ventral patterning defects in
the neural retina (Zhou et al., 2008). Consistently, the expression
of dorsal retinal markers are attenuated in a transgenic fish which
overexpresses dkk1 or dominant-repressor form of tcf3. This
phenotype is rescued by LiCl, which promotes the accumulation
of cytoplasmic β-catenin by inhibiting GSK3β (Veien et al., 2008).
Thus, the role of WNT/β-catenin signaling in the dorso-ventral
patterning within the retina seems to be evolutionarily conserved.

THE RETINAL VASCULAR SYSTEM

WNT/β-catenin signaling plays an essential role in the retinal
vascular development. In genetic disorders, such as Norrie
disease and Familial Exudative Vitreoretinopathy, retinal
hypovascularization is caused by loss-of-function mutations in
the Norrin disease protein (Norrin), FZD4, or LRP5 genes. Norrin
contains separate binding sites for FZD4 and for LRP5 (Ke
et al., 2013). Activation of FZD4/β-catenin signaling by Norrin
requires the presence of either LRP5 or LRP6 (Ye et al., 2009).
Although Lrp5 can compensate for the loss of Lrp6 (and vice
versa) in the postnatal brain vasculature, Lrp5 plays a major role
and Lrp6 plays a minor role in the retinal vascularization (Zhou
et al., 2014; Huang et al., 2016). Norrin secreted fromMüller glial
cells binds to FZD4 in the endothelial cells and regulates retinal
vascular development (Xu et al., 2004; Junge et al., 2009; Ye et al.,
2009; Wang et al., 2012). The retinal vascular defects caused by
ablation of Norrin are rescued by stabilizing β-catenin, while
ectopic expression of dominant negative Tcf4 in the endothelial
cells mimics the phenotype. This indicates that Norrin/FZD4

signaling acts via β-catenin signaling (Zhou et al., 2014). In
addition, WNT/β-catenin signaling in the retinal vascular
system is regulated by the EST transcription factor Erg, which
plays a critical role in vascular development and angiogenesis

(Birdsey et al., 2015). Erg controls WNT/β-catenin signaling by

promoting β-catenin stability and regulating transcription of
FZD4 (Birdsey et al., 2015).

β-catenin-independent WNT signaling pathway is also
required for the retinal vascular system development (Stefater
et al., 2011; Korn et al., 2014; Franco et al., 2016). The endothelial
cells express preferentially non-canonical WNTs, such asWNT5a
and WNT11. Conditional deletion of Wntless or WNT5a in the
endothelial cells leads to significant decrease in vascular density
due to excessive vessel regression (Korn et al., 2014; Franco et al.,
2016).

CONCLUSION

The activity of WNT/β-catenin signaling is tightly regulated
during eye development and mis-regulation of the signaling
results in multiple ocular malformations due to defects in the
process of cell fate determination and differentiation. Studies of
conditional knockout mice of various members of the WNT/β-
catenin signaling pathway indicate thatWNT/β-catenin signaling
is essential for eye development by controlling the correct
patterning of the ocular tissue, promoting the differentiation of
the retinal pigment epithelium, controlling the morphogenesis of
the optic cup, andmaintaining the dorsal retinal identity. Further
research is necessary to clarify the mechanisms through which
WNT/β-catenin signaling integrates into the genetic regulatory
networks controlling the eye development in the vertebrate.
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PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor

regulating various processes in embryonic development and tissue homeostasis. On

a cellular level PTK7 affects the establishment of cell polarity, the regulation of cell

movement and migration as well as cell invasion. The PTK7 receptor has been shown

to interact with ligands, co-receptors, and intracellular transducers of Wnt signaling

pathways, pointing to a function in the fine-tuning of the Wnt signaling network. Here we

will review recent findings implicating PTK7 at the crossroads of Wnt signaling pathways

in development and disease.

Keywords: PTK7, Wnt signaling, planar cell polarity, cancer, neural tube defect, scoliosis

INTRODUCTION

PTK7 (protein tyrosine kinase 7) is an evolutionarily conserved transmembrane receptor with a
broad range of functions in tissue development and homeostasis. Originally identified as a gene
upregulated in colon carcinoma cells and accordingly named colon carcinoma kinase 4 (CCK-4)
(Mossie et al., 1995) it was later shown to affect various aspects of cell-cell communication and
movement. PTK7 controls tissuemorphogenesis and patterning by affecting cell polarity, migration
as well as tissue regeneration and wound healing (Lu et al., 2004; Shnitsar and Borchers, 2008;
Caddy et al., 2010; Lee et al., 2011; Lander and Petersen, 2016). Additionally its function in adult
tissue homeostasis is demonstrated by the fact that misregulation of PTK7 expression correlates
with development of cancer and its progression to metastasis in various cellular contexts (reviewed
in Dunn and Tolwinski, 2016). Furthermore, mutations in PTK7 have been implicated in scoliosis
and human neural tube closure defects, demonstrating its clinical relevance (Hayes et al., 2014;
Wang et al., 2015; Grimes et al., 2016). Since the first publication on PTK7/CCK-4 (Mossie et al.,
1995) more than 20 years ago over 120 publications have followed. Although its signaling function
is still far from being understood, recent findings provide compelling evidence that PTK7 is a
regulator of Wnt signaling pathways. In this review we will summarize recent findings and take
a look at PTK7’s function in distinct Wnt signaling pathways.

Secreted glycoproteins of the Wnt family are key regulators of development and disease.
Wnt ligands regulate a wide range of processes including primary embryonic axis specification,
organogenesis and stem cell proliferation. Further, deregulated Wnt signaling has been implicated
in various diseases like colon and breast cancer, melanoma, and neurodegenerative disorders
(MacDonald et al., 2009; Clevers and Nusse, 2012; Anastas and Moon, 2013; Inestrosa and
Varela-Nallar, 2014). Wnt ligands activate distinct downstream signaling pathways, and historically
the first described, ß-catenin-dependent, signaling cascade is referred to as the “canonical”
Wnt signaling pathway, while later discovered, ß-catenin-independent pathways were termed
“non-canonical.” Canonical Wnt signaling (Logan and Nusse, 2004; MacDonald et al., 2009)
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is activated by binding of the Wnt ligand to a receptor
complex consisting of the seven-pass transmembrane Frizzled
(Fz) receptor and the low-density lipoprotein receptor-related
protein 6 (LRP6) (MacDonald and He, 2012). Wnt binding to
the Fz/LRP6 receptor complex leads to inactivation of glycogen
synthase kinase 3ß (GSK3ß) regulating various intracellular
substrates. One of these is the transcriptional co-activator ß-
catenin, which is phosphorylated and thereby targeted for
proteasomal degradation. Thus, in the presence of Wnt ligands,
ß-catenin is stabilized, enters the nucleus and regulates in
combination with transcription factors of the Lef (lymphoid
enhancer-binding factor) and Tcf (T cell factor) family the
transcription of target genes. In contrast to canonical Wnt
signaling, non-canonical Wnt signaling pathways encompass
a complex network of signal transducers that do not activate
ß-catenin, but use alternative modes of downstream signaling
(reviewed in Niehrs, 2012). Here, we will focus on the planar
cell polarity (PCP) pathway, as PTK7 has been implicated in its
regulation.

The PCP pathway (Goodrich and Strutt, 2011; Yang and
Mlodzik, 2015) determines the orientation of cells in the plane
of an epithelium and is one of the best-characterized non-
canonical Wnt signaling pathways. PCP was first described
in Drosophila, where genetic screens discovered its function
in the polarization of adult cuticular structures. According to
mutant phenotypes showing wing hair polarity defects the genes
Frizzled (Fz) and Disheveled (Dsh) were identified. Other core
PCP proteins include the four-pass transmembrane protein Van
Gogh (Vang, Strabismus), the atypical cadherin Flamingo (Fmi,
Celsr) and intracellular components like Prickle (Pk) and Diego
(Dgo). These proteins confer intra- and intercellular signaling,
thereby aligning PCP in neighboring cells. Complementary
studies in vertebrates revealed that these core PCP proteins
are also required for the polarization of vertebrate tissues, like
the orientation of hair follicles in the epidermis or the sensory
hair cells in the inner ear (Montcouquiol et al., 2006; Simons
and Mlodzik, 2008; Wallingford, 2012). Furthermore, these
proteins are also involved in the polarized localization of cilia,
microtubule-based protrusions that are found on the surface of
most vertebrate cells and required for fluid movement during
development and homeostasis (Wallingford, 2010; Wallingford
and Mitchell, 2011). In addition to the polarization of tissues,
loss of function studies using the mouse, zebrafish and Xenopus
model systems demonstrated that PCP signaling also affects
morphogenetic cell movements shaping the embryonic body.
One of these is convergent extension, a cell movement whereby
cells intercalate in a way that a tissue converges in one direction
and extends in the perpendicular direction (Wallingford et al.,
2002; Wallingford, 2012). Convergent extension is required
to drive gastrulation and neural tube closure. Consequently,
misregulation of PCP signaling leads to severe gastrulation and
neurulation defects in mouse, zebrafish and Xenopus embryos.
Since the discovery of vertebrate PCP phenotypes, these have also
contributed to the identification of novel vertebrate regulators
of PCP without previous knowledge of a Drosophila phenotype.
One of these genes, which was identified by its mouse neural tube
closure and inner ear hair polarity defect, is PTK7.

PTK7 AFFECTS Wnt SIGNALING
PATHWAYS

Vertebrate PTK7 is according to the current criteria a bona
fide PCP regulator. Using a mouse gene trap-screen for
transmembrane proteins with a function in neural development,
PTK7 mutants were identified showing a combination of severe
neural tube closure and inner ear polarity defects (Lu et al., 2004).
Based on this mutant phenotype, which is typical for known
regulators of PCP (Hamblet et al., 2002; Curtin et al., 2003;
Montcouquiol et al., 2003), as well as its genetic interaction with
Vangl2, PTK7 was added to the list of vertebrate PCP regulators.
Further functional studies using mouse, zebrafish and Xenopus
confirmed a function for PTK7 in processes that are regulated
by PCP signaling, including convergent extension movements
during gastrulation, neurulation and Wolffian duct elongation,
as well as neural crest migration and wound healing (Table 1).
Surprisingly, although PTK7 appears to be a core regulator of
vertebrate PCP, classical PCP phenotypes have so far not been
reported for the Drosophila orthologs of PTK7, off-track (otk),
and off-track2 (otk2). These two genes, which are the result of
a tandem gene duplication, function redundantly in the tubular
morphogenesis of the male ejaculatory duct, leading to male
sterility in the otk, otk2 double mutant (Linnemannstons et al.,
2014). Intriguingly, mesoderm-specific knock-out of PTK7 in the
mouse resulted in tubular morphogenesis defects in the Wolffian
duct, again leading tomale sterility (Xu et al., 2016). In both cases,
tubular morphogenesis defects upon loss of Otk/Otk2 or PTK7
may be caused by the failure to properly execute convergent
extension movements. Thus, although the Drosophila mutants
do not display the classical PCP defects, PTK7/Otk may play an
evolutionarily conserved role in the regulation of cell movements.

The molecular mechanism by which PTK7 affects PCP
signaling is currently unclear. However, as PTK7 interacts with
Wnt ligands and known Wnt receptors (Table 2) it likely affects
PCP by functioning as a Wnt receptor. This is also supported
by the structure of PTK7, which is highly reminiscent of
receptor tyrosine kinases. PTK7 consists of seven extracellular
immunoglobulin domains, a transmembrane domain, and an
evolutionarily conserved tyrosine kinase homology domain. The
kinase homology domain of PTK7 lacks catalytic activity (Miller
and Steele, 2000; Kroiher et al., 2001), but serves as an interaction
site for intracellular signaling molecules like ß-catenin, Dsh, and
Src (Shnitsar and Borchers, 2008; Puppo et al., 2011; Andreeva
et al., 2014). PTK7 interacts with distinctWnt receptors including
Fz7, LRP6, and Ror2 (Peradziryi et al., 2011; Bin-Nun et al., 2014;
Linnemannstons et al., 2014; Martinez et al., 2015; Podleschny
et al., 2015), indicating that PTK7 affects canonical and non-
canonical Wnt signaling pathways. This is also reflected by its
evolutionarily conserved interaction with different Wnt ligands
that are supposed to signal via both canonical and non-canonical
pathways (Peradziryi et al., 2011; Linnemannstons et al., 2014;
Martinez et al., 2015). While its requirement for PCP signaling
is firmly established, the function of PTK7 in canonical Wnt
signaling remains controversial. PTK7 has been reported to
activate canonical Wnt signaling in the context of Spemann’s
organizer formation (Puppo et al., 2011) and the specification
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TABLE 1 | PCP phenotypes upon PTK7 loss of function in vertebrates.

PCP phenotype Process Mutant References

Craniorachischisis Neural tube closure Mouse, hypomorphic mutant (Ptk7XST87 ) Lu et al., 2004

Mouse, chuzhoi mutant (insertion of

MT1-MMP splice site)

Paudyal et al., 2010

Convergent extension defect Neural tube closure Mouse, hypomorphic mutant (Ptk7XST87 ) Lu et al., 2004; Williams et al., 2014

Xenopus, Morpholino knockdown Lu et al., 2004; Wehner et al., 2011

Zebrafish, maternal-zygotic mutant

(ptk7hsc9)

Hayes et al., 2013

Gastrulation Mouse, hypomorphic mutant (Ptk7XST87 ) Yen et al., 2009

Zebrafish, maternal-zygotic mutant

(ptk7hsc9)

Hayes et al., 2013

Wolffian duct morphogenesis Mouse, hypomorphic mutant (Ptk7XST87 ) Xu et al., 2016

Impaired stereociliary bundle

orientation

Development of the organ of corti Mouse, hypomorphic mutant (Ptk7XST87 ) Lu et al., 2004; Lee et al., 2012; Andreeva

et al., 2014

Mouse, chuzhoi mutant (insertion of

MT1-MMP splice site)

Paudyal et al., 2010

Impaired neural crest migration Neural crest migration Xenopus Morpholino knockdown Shnitsar and Borchers, 2008; Podleschny

et al., 2015

Defective wound repair Epidermal wound repair Mouse, hypomorphic mutant (Ptk7XST87 ) Caddy et al., 2010

Defect in cilia development Development of ependymal cell cilia Zebrafish, zygotic mutant (ptk7hsc9) Grimes et al., 2016

TABLE 2 | PTK7 interaction partners with a known function in Wnt signaling.

Interaction partner Interaction domain Biological context References

Wnt ligand Wnt3a, Wnt8 Extracellular domain Xenopus double axis assay Peradziryi et al., 2011

Wnt4 Unknown Xenopus double axis assay Peradziryi et al., 2011

Wnt5a Extracellular domain

(Ig4-7)

Xenopus morphogenesis Martinez et al., 2015

Wnt2 Unknown Drosophila male fertility Linnemannstons et al., 2014

Wnt receptor Fz1 Unknown Drosophila male fertility Linnemannstons et al., 2014

Fz2 Unknown Drosophila male fertility Linnemannstons et al., 2014

Fz7 Extracellular domain Xenopus luciferase reporter assay Peradziryi et al., 2011

Ror2 Extracellular domain

Ig1-7

Xenopus morphogenesis and neural crest

migration

Martinez et al., 2015; Podleschny et al., 2015

LRP6 Transmembrane

domain

Xenopus posterior neural development Bin-Nun et al., 2014

Intracellular Wnt components Dsh Kinase homology

domain (via Rack1/

PKCδ1)

Xenopus neural crest migration and neural

tube closure

Shnitsar and Borchers, 2008; Wehner et al., 2011

β-catenin Kinase homology

domain

Xenopus Spemann Organizer formation Puppo et al., 2011

of posterior neural tissue (Bin-Nun et al., 2014) in Xenopus
embryos. However, PTK7 inhibits canonical Wnt signaling in
Xenopus double axis and luciferase reporter assays (Peradziryi
et al., 2011). This was confirmed by ptk7 mutant zebrafish, which
showed an upregulation of ß-catenin target gene expression,
suggesting that PTK7 functions in attenuating canonical Wnt
signaling (Hayes et al., 2013). Conflicting results were also
obtained analyzing the interaction of PTK7 with Wnt ligands
using immunoprecipitation of overexpressed/tagged constructs.
While we found interaction of PTK7 with canonical Wnt3a and

Wnt8 but not non-canonical Wnt5a (Peradziryi et al., 2011)
in Xenopus lysates, Martinez et al. observed an interaction
with non-canonical Wnt5a, but not canonical Wnt1 (Martinez
et al., 2015) in HEK293T cells. Some of these contradictions
may be explained by receptor context. Using secreted proteins
we showed that the extracellular domain of PTK7 requires
the extracellular Fz7 domain for interaction with recombinant
Wnt3a (Peradziryi et al., 2011). Conversely, Wnt5a binding
may require the Ror2 co-receptor. Although Martinez et al.
confirmed interaction of PTK7 and Wnt5a in cells that were
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depleted of Ror2 using a specific siRNA, there may still be
sufficient endogenous Ror2 present to mediate binding. Thus,
studies analyzing direct interaction of PTK7 andWnt ligands are
currently lacking. Furthermore, experiments testingWnt binding
of combinatorial PTK7 co-receptor complexes are required. As
PTK7 is a versatile receptor interacting not only with Wnt co-
receptors but also with plexin and VEGF receptors (reviewed in
Peradziryi et al., 2012), the latter interactions may also contribute
to tissue-specific differences. Thus, future research will have to
elucidate how receptor context affects PTK7 signaling and its
functions in distinct Wnt signaling pathways.

PTK7 AND DISEASE

As PTK7 has a crucial function in the regulation ofWnt signaling
pathways known to be essential for embryonic development and
homeostasis, mutations in the human PTK7 gene are likely of
clinical relevance. PTK7 was identified as a gene upregulated
in colon carcinoma cells and appears to be misregulated in a
variety of cancers (Dunn and Tolwinski, 2016). Furthermore,
PTK7 mutations have recently been implicated in the etiology of
neural tube defects and scoliosis (Hayes et al., 2014; Wang et al.,
2015). Here, we will briefly describe these respective disorders
and look at the human PTK7 gene variants identified in this
context as well as their functional implications.

The connection between PTK7 and cancer has so far mostly
been deduced on the basis of up- or downregulation of PTK7
in a variety of cancer types. PTK7 levels were reported to be
increased in esophageal (Shin et al., 2013), gastric (Lin et al.,
2012), colorectal (Lhoumeau et al., 2015), breast (Gartner et al.,
2014), intrahepatic bile duct (Jin et al., 2014), prostate (Zhang
et al., 2014), and lung carcinoma (Chen et al., 2014), as well
as liposarcoma (Gobble et al., 2011). In other cancer types
PTK7 was shown to be downregulated, including lung squamous
cell carcinoma (Kim et al., 2014), ovarian carcinoma (Wang
et al., 2014) and metastatic melanoma (Easty et al., 1997). While
the mechanistic contribution of PTK7 to the respective tumor
phenotypes is unclear at present, the upregulation of PTK7
in many tumor types makes it an attractive tumor marker
and therapeutic target. Indeed, the first PTK7 specific reagents
with potential clinical applications have now been published,
including a PTK7-specific fluorescently labeled aptamer for in
vivo detection of tumor tissue (Calzada et al., 2017). Very
interestingly, PTK7 has recently been established as a marker
for normal colon stem cells (Jung et al., 2015) and as a marker
for tumor initiating cells in triple-negative breast cancer, ovarian
cancer and non-small cell lung cancer (Damelin et al., 2017).
The authors of the latter study also developed a PTK7-targeted
antibody-drug conjugate and showed that its application reduces
tumor initiating cells and induces sustained tumor regressions,
paving the way for a PTK7-directed anti-tumor therapy (Damelin
et al., 2017).

Neural tube defects are among the most common human
birth defects affecting 1 per 1000 live births and are caused by
environmental as well as genetic factors (Wilde et al., 2014). PCP
genes are likely among the genetic factors contributing to the

etiology of human neural tube closure defects as loss of function
mutants of PTK7, Vangl, Celsr, Fz, Dvl, and Scribble result in the
most severe neural tube closure defects called craniorachischisis
(Gerrelli and Copp, 1997; Kibar et al., 2001; Hamblet et al., 2002;
Curtin et al., 2003; Murdoch et al., 2003; Lu et al., 2004; Wang
et al., 2006), whereby the neural tube fails to close from the
midbrain-hindbrain boundary to the base of the spine. Indeed,
rare mutations with a predicted damaging role were identified for
a number of PCP genes including Vangl1/2, Celsr1, Fzd6, Dvl2,
Prickle, and Scribble (Kibar et al., 2007; De Marco et al., 2014).
Furthermore, the analysis of a cohort of 473 patients with various
forms of neural tube defects identified six rare PTK7 sequence
variants (Wang et al., 2015). Interestingly, five of these mutations
are located in the extracellular domain of PTK7, which serves as
interaction site for Wnt ligands as well as Fz7 and Ror2 receptors
(Table 2; Peradziryi et al., 2011; Martinez et al., 2015; Podleschny
et al., 2015). Whether these interactions are affected in the
potentially pathogenic sequence variants is currently unclear and
functional validation assays testing their efficiency to rescue for
example Xenopus or zebrafish loss of function phenotypes are
still missing. Nevertheless, the extracellular domain was shown
to be important for promoting PCP and inhibiting canonicalWnt
signaling. In fact, deletion of the extracellular domain abolished
PTK7’s ability to inhibit canonical Wnt signaling in Xenopus
reporter assays (Peradziryi et al., 2011). Conversely, a membrane-
tethered PTK7 extracellular fragment was sufficient to rescue
excess Wnt/ß-catenin signaling and PCP morphogenesis defects
in maternal-zygotic ptk7 mutant zebrafish (Hayes et al., 2013).
Thus, these data point to PTK7 as a risk factor for neural
tube closure defects and stress the functional importance of its
extracellular domain.

In addition to neural tube defects, PTK7 has also been
implicated in the pathogenesis of scoliosis, a complex genetic
disorder characterized by a three-dimensional spinal curvature.
Congenital scoliosis (CS) is apparent at birth and involves
abnormal vertebrae development, while idiopathic scoliosis
is diagnosed during adolescence and does not show vertebral
malformations. Ptk7 mutant zebrafish were recently discovered
as a model for congenital and idiopathic scoliosis. Maternal-
zygotic ptk7 (MZptk7) mutant zebrafish exhibit vertebral
abnormalities at larval stages, phenotypically resembling
congenital scoliosis. Further, zygotic ptk7 (Zptk7) mutants show
late onset spinal curvatures consistent with the idiopathic form
of scoliosis (Hayes et al., 2014). Analysis of maternal-zygotic
mutants showed that PTK7 positively regulates PCP-dependent
morphogenesis, while it attenuates ß-catenin-dependent
canonical Wnt signaling (Hayes et al., 2013). Thus, segmentation
and somite patterning are disturbed, likely causing the observed
vertebral abnormalities. In contrast, zygotic ptk7 mutants did
not show defects in segmentation and somite patterning, but
developed late spinal curvatures resembling idiopathic scoliosis
(Hayes et al., 2014; Grimes et al., 2016). They showed defects in
ependymal cell cilia development leading to irregularities in the
cerebrospinal fluid (CSF) flow. Moreover, the brain ventricles
revealed a severe hydrocephalus, a condition associated with
loss of cilia function. Consistently, the number of motile cilia
was reduced and if cilia were present they lacked the correct
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polarization. Transgenic reintroduction of wild-type PTK7 in
motile ciliated cell lineages rescued all phenotypes, proving a
specific function of PTK7 in motile ciliated cells. The authors
hypothesized that impaired cerebrospinal fluid flow due to
abnormal cilia function is most likely the cause of scoliosis in
ptk7-deficient zebrafish (Grimes et al., 2016). The connection
of PTK7 to scoliosis was further evidenced by the isolation
of a novel PTK7 mutation from a single patient suffering
from idiopathic scoliosis. This mutation, hPTK7P545A, exhibits
a proline to alanine substitution in the sixth extracellular
immunoglobulin domain thereby affecting PCP and canonical
Wnt signaling function (Hayes et al., 2014). In fact, in contrast
to wild-type human PTK7, the hPTK7P545A failed to rescue
PCP-dependent axial extension defects as well as nervous system
patterning defects caused by Wnt8 overexpression (Hayes et al.,
2014). Further, the mutant protein accumulated at the plasma
membrane, indicating altered protein stability and/or trafficking
of this mutant compared to the wild-type protein. As PTK7
forms co-receptor complexes with Fz7 and LRP6 (Peradziryi
et al., 2011; Bin-Nun et al., 2014; Linnemannstons et al., 2014),
which were shown to be subject to Wnt-dependent receptor
complex trafficking (Yamamoto et al., 2006; Kim et al., 2008;
Ohkawara et al., 2011), this is likely also the case for PTK7-
containing receptor complexes. Thus, it is tempting to speculate
that the proline residue in position 545—which is conserved in
mammals—is required for interaction with Wnt ligands or co-
receptors, respectively. Interestingly, this conserved P545 residue
is also mutated in one of the six sequence variants identified in
patients with neural tube closure defects. In a patient affected
with myelomeningocele and interestingly also hydrocephalus,

which is indicative of a cilia-defect, the non-polar proline residue
was changed to a positively charged arginine (Wang et al., 2015).
These data indicate that this conserved residue is important for
protein function and mutations are likely pathogenic. Future
studies are required to elucidate the molecular pathomechanism.

CONCLUSIONS

During the last two decades our understanding of the function
of PTK7 has significantly advanced. Diverse biological processes
that are regulated by PTK7 have been identified and its role in
the establishment of polarity and coordinated cell movements has
been acknowledged. Recent publications shed light on a literary
“complex” function of PTK7 in Wnt signaling. While its role
in non-canonical PCP signaling has been confirmed in different
animal model systems and biological contexts, its function
with respect to canonical Wnt signaling remains controversial.
Possibly, these contradictory findings can be explained by the cell
type-specific formation and subcellular localization of distinct
co-receptor complexes. Further characterization of the formation
and dynamics of these ligand-receptor complexes may help us
to understand how PTK7 affects development as well as disease-
related processes.
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Dishevelled (DVL) proteins are highly conserved in the animal kingdom and are important

key players in β-Catenin-dependent and -independent Wnt signaling pathways.

Vertebrate genomes typically comprise three DVL genes, DVL1, DVL2, and DVL3.

Expression patterns and developmental functions of the three vertebrate DVL proteins

however, are only partially redundant in any given species. Moreover, expression and

function of DVL isoforms have diverged between different vertebrate species. All DVL

proteins share basic functionality in Wnt signal transduction. Additional, paralog-specific

interactions and functions combined with context-dependent availability of DVL isoforms

may play a central role in defining Wnt signaling specificity and add selectivity toward

distinct downstream pathways. In this review, we recapitulate briefly cellular functions of

DVL paralogs, their role in vertebrate embryonic development and congenital disease.

Keywords: Dishevelled, Wnt signaling, vertebrate embryonic development, embryonic expression, autosomal

dominant robinow syndrome

INTRODUCTION

The Dishevelled (dsh1) phenotype has been described the first time in Drosophila close to 60 years
ago (Fahmy and Fahmy, 1959) and the diverse molecular functions of Dishevelled (DVL) proteins
still stimulate intensive research. To date DVL is considered the central intracellular effector of
Wnt signaling pathways, which play key roles in establishing and patterning of the body axes
and in the control of proliferation, differentiation, planar cell polarity (PCP), and cell movements
throughout the animal kingdom. Although evidence is accumulating that Wnt pathways should
be considered as a signaling network, individual pathways have been subdivided into the Wnt/β-
Catenin pathway and the β-Catenin–independent pathways including Wnt/PCP, Wnt/Ca2+, and
Wnt/STOP signaling, all of which involve DVL (reviewed in Kühl et al., 2000; Kohn and Moon,
2005; Macdonald et al., 2009; Niehrs and Acebron, 2012; van Amerongen, 2012; Collu andMlodzik,
2015, Figure 1A).

DVL and its core functions in β-Catenin-dependent and -independentWnt pathways are highly
conserved. Notably, the genomes of Drosophila and most other invertebrates harbor only a single
DVL gene. By contrast vertebrate genomes comprise genes for threeDVL paralogs (DVL1-3), which
have most likely arisen from two rounds of genome duplication (reviewed in Kasahara, 2007;
Dillman et al., 2013). The still high degree of conservation among the three vertebrate DVL paralogs
raises the question to which extent they have undergone functional diversification since obviously
a single protein is sufficient to mediate DVL functions in invertebrates.
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FIGURE 1 | Dishevelled in Wnt/Frizzled signaling. (A) DVL relays Wnt/Frizzled signals to multiple signaling pathways to regulate cellular functions including

mitosis, transcription, polarity, and migration. (B) Heatmap representation of the conservation of all three DVL proteins in human, rat, mouse, and frog. Sequence

alignments were calculated using Clustal Omega with the following input sequences: Homo sapiens DVL1: O14640, DVL2: O14641, DVL3: Q92997, Rattus

norvegicus DVL1: Q9WVB9, DVL2: D3ZB71, DVL3: D4ADV8, Mus musculus DVL1: P51141, DVL2: Q60838, DVL3: Q61062, Xenopus laevis DVL2: P51142, DVL3:

Q6DKE2 (Uniprot Accession numbers), Xenopus laevis DVL1: NCBI XP_018081523. Red indicates 100% identity and Green indicates no identity of amino acids at

the respective position. Conservation scores were calculated according to Livingstone and Barton (1993). Functional domains or motifs are indicated by

correspondingly labeled boxes; for details and references see text.

CELLULAR FUNCTIONS OF DISHEVELLED
PARALOGS

All DVL proteins share an N-terminal DIX domain, a PDZ and
a DEP domain (Axelrod et al., 1998; Boutros et al., 1998; Li
et al., 1999). Additional sequence motifs have been identified
that provide interfaces for protein-protein interactions like the
basic and proline-rich regions, or functional motifs as the nuclear
export sequence (NES), a putative nuclear localization sequence
(NLS), the—YHEL—motif that is required for internalization
of the activated receptor complex and motifs that mediate the
association of DVL with the cytoskeleton or with phospholipids
(Capelluto et al., 2002; Penton et al., 2002; Itoh et al., 2005;
Yu et al., 2007, Figure 1B). The lack of striking differences in
the primary structure with no obvious additional or missing
functional motifs and domains poses a challenge to predict
functional differences and to develop assays that would reveal
potential dissimilarities.

DVL interacts with the cytoplasmic interface of Frizzled
receptors (Tauriello et al., 2012), regulates receptor
internalization and maintenance of Frizzled membrane
equilibrium through protein-protein interaction (Yu et al., 2007;
Jiang et al., 2015) and serves as scaffold for numerous proteins
including multiple protein kinases (reviewed in Gao and Chen,
2010; Mlodzik, 2016). Depending on the composition of the
receptor complex and its interaction partners, DVL contributes
to β-Catenin stabilization, inhibition of GSK3β or activation
of β-Catenin-independent signaling cascades (Gao and Chen,
2010). DVL also enters the nucleus and interacts with TCF/c-
Jun/β-Catenin or FOXK1/2 transcription factor complexes (Itoh
et al., 2005; Gan et al., 2008; Wang et al., 2015). In addition, DVL
proteins play a role in microtubule stabilization (Ciani et al.,
2004), centrosome positioning and separation (Sepich et al.,
2011; Cervenka et al., 2016) and mediate cross-talk with other
signaling pathways such as Notch or NF-κB (Deng et al., 2010;
Collu et al., 2012).
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Notably, for most of the abovementioned DVL functions
no preference for a DVL paralog has been detected, although
some studies suggest dose-dependent effects (e.g., Cervenka et al.,
2016). A different picture was observed for the role of DVL
paralogs in PCP in ciliated cells, which is required to position
the basal bodies. DVL1 was required for intact PCP signaling and
localized asymmetrically in multiciliated cells in the epidermis of
Xenopus tadpoles. DVL2 was concentrated in dots in vicinity to
the basal bodies that led to a local concentration of active RhoA
and was required for basal body positioning. Localization of
DVL2 itself was mediated by Inturned and according to current
knowledge neither of both proteins plays a role in ciliogenesis
in the fly (Park et al., 2008). In the mouse node, DVL2 and
DVL3 were apically localized and polarized to the posterior side.
Positioning of the basal body and directional flow was disturbed
or absent in DVL1/DVL2 or DVL1/DVL3 deficient embryos
(Hashimoto et al., 2010). Moreover, polarized localization of
DVL, planar polarity of basal bodies and their docking could
be separated experimentally although the detailed mechanism
remains elusive (Park et al., 2008; Vladar et al., 2009; Hashimoto
et al., 2010).

DVL PARALOGS IN VERTEBRATE
EMBRYONIC DEVELOPMENT

Embryonic Expression Patterns
In early Xenopus embryos, DVL2 and DVL3 are present
maternally, whereas DVL1 expression is upregulated after the
mid-blastula transition (Tadjuidje et al., 2011). At early gastrula
stages, all three DVL paralogs are expressed in the prospective
mesoderm including Spemann’s organizer and, although weaker,
in the ectoderm. Post-gastrula expression of DVL1 and DVL2
largely overlaps and is strongest in the neural tube, premigratory
and migrating neural crest, as well as in the otic placode,
the presomitic and somitic mesoderm. Notably, DVL3 was not
expressed in the neuroectoderm but restricted to the paraxial
mesoderm, the heart, cranial placodes, and at tadpole stages to
the branchial arches (Gray et al., 2009).

In chicken embryos, only two DVL genes, DVL1 and DVL3,
were identified. DVL3 was already expressed in day 2 embryos
and showed broad expression in most embryonic tissues whereas
DVL1 was upregulated only after day 2, i.e., after completion of
neurogenesis, and showed a spatially restricted expression in the
brain, strongest in the optic stalk, the olfactory bulb, and the
ventral forebrain and spinal chord (Gray et al., 2009).

All murine DVL genes are maternally expressed in mouse
oocytes and pre-implantation embryos, but interestingly
individual protein levels differ considerably and dynamically
from oocyte to blastocyst (Na et al., 2007). Post-implantation,
DVL1 expression was detected in the mesoderm, but not in
the node, at stage E7.5. Post-gastrula, DVL1 was expressed
strongest in the neuroectoderm and later in the CNS, cranial and
dorsal root ganglia, somites, the liver, kidney, intestine, and lung
(Sussman et al., 1994). ForDVL2, ubiquitous expression has been
reported during embryogenesis in the mouse (Klingensmith
et al., 1996). At E 7.5, DVL3 has also been detected ubiquitously,
but shortly after showed elevated expression in the CNS and the

somitic mesoderm, the notochord, heart, dorsal root ganglia,
and branchial arches and in the limb buds (Tsang et al., 1996;
Diez-Roux et al., 2011).

Phylogenetic analyses suggest that DVL1 separated first
from the common ancestor of DVL2/3, which split into DVL2
and DVL3 in a second round of duplication (Gray et al.,
2009). Consistent with corresponding functional divergence,
expression of at least one DVL2/3 paralog in the oocyte
and pre-blastula embryo and of DLV1 in the central nervous
system appear to be conserved among vertebrates. Except for
these conserved patterns, developmental expression of the three
DVL genes is highly divergent within a species and among
different species with DVL2 expression showing the highest
variability.

Developmental Function and Human
Congenital Disease
Both, animal models and human congenital disease provide
insights into the developmental function of vertebrate DVL
paralogs. To date, DVL has predominantly been studied in the
mouse and, to a much lesser extent, in Xenopus. Transgenic,
single, and compound knock-out mouse models have been
discussed comprehensively and in detail in a review by
Wynshaw-Boris (2012, see also Supplementary Table 1), therefore
we will focus here on human congenital disease and related
phenotypes in animal models. In humans, mutations in DVL
genes have been associated with neural tube closure defects
(NTD) and autosomal-dominant Robinow Syndrome (ADRS)
(DeMarco et al., 2013; Bunn et al., 2015;White et al., 2015, 2016).

Neural Tube Defects
During embryonic development, the neural tube is formed by
elevation, convergence and fusion of the lateral neural folds to
form a hollow tube. Morphogenesis and closure of the neural
tube is affected by nutritional, environmental and genetic factors
including Wnt/PCP signaling, which is illustrated by genetic
association between NTD in humans and mutations in the PCP
genes VANGL1, VANGL2, CELSR1, FZD6, and DVL2 (Cai and
Shi, 2014; reviewed in De Marco et al., 2014). Notably, also
mutations inDVL1 orDVL3 have been identified in humans with
NTD (Figure 2), although the correlation was not significant (De
Marco et al., 2013; Merello et al., 2013; Chen et al., 2016).

Consistently, neural tube closure also requires the same PCP
factors in mouse, frog, and zebrafish (Darken et al., 2002;
Hamblet et al., 2002; Jessen et al., 2002; Curtin et al., 2003;
Formstone and Mason, 2005; Wang et al., 2006). DVL2−/−

mice show NTD while single and compound DVL1 and DVL3
deficient mice do not, suggesting that among the three DVL
genes, DVL2 is necessary and sufficient to mediate neural tube
closure. However, DVL2−/− DVL3+/− and DVL1−/− DVL2−/−

mice display much more severe NTD than DVL2−/− mice
(Hamblet et al., 2002; Wang et al., 2006; Etheridge et al., 2008),
which strongly suggests that DVL1 and DVL3 contribute directly
or indirectly to neural tube closure. Along this line, maternal
single knock-down of either DVL2 or DVL3 in Xenopus caused
NTD (Tadjuidje et al., 2011), supporting a contribution of DVL2
and DVL3.
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FIGURE 2 | Mutations identified in the three DVL genes in humans. Mutations are indicated at the positions of amino acid changes. Changes detected in

individuals with NTDs (De Marco et al., 2013; Merello et al., 2013; Chen et al., 2016) are color coded orange (predicted pathogenic) and gray (predicted benign, in all

cases A>V). All ADRS mutations are (−1)-frameshift mutations resulting in altered amino acid sequences in the C-terminus and a premature stop (Bunn et al., 2015;

White et al., 2015, 2016), which are indicated by hatched area and red line respectively. Positions of individual mutations associated with ADRS are labelled with red

dots.

Autosomal-Dominant Robinow Syndrome

Robinow syndrome is a rare genetic disorder characterized
by mesomelic limb shortening, short stature, cranio-facial
malformations, microgenitalia, and occasional cardiac outflow
tract defects with either autosomal dominant or recessive
inheritance (reviewed in Robinow et al., 1969; Patton and
Afzal, 2002). Notably and despite the multifaceted clinical
presentation of affected individuals, NTD have neither been
described in ADRS nor the more severe recessive Robinow
syndrome (RRS). Two recent studies have identified mutations
in exon 14 of DVL1 and DVL3 as causative for ADRS (Bunn
et al., 2015; White et al., 2015, 2016, Figure 2). In addition,
ADRS is also associated with WNT5A whereas RRS is caused
by loss-of-function mutations in ROR2 (Afzal et al., 2000; van
Bokhoven et al., 2000; Person et al., 2010). Thus, the features
of Robinow syndrome are generally considered as consequences
of defective WNT5A/ROR2-mediated PCP signaling in multiple
tissues (Wang et al., 2011) and are partially recapitulated in DVL
deficient animal models.

Short stature and defects of the axial skeleton are likely
related to impaired convergent extension movements of the
paraxial mesoderm and defects in somitogenesis, which have
also been reported for DVL2−/−, DVL1−/−;DVL2−/−, and
DVL2+/−;DVL3−/− mice as well as for Xenopus embryos
deficient of any DVL paralog (Hamblet et al., 2002; Etheridge
et al., 2008; Gray et al., 2009; Gentzel et al., 2015), indicating
that all DVL paralogs contribute to the development of the axial
skeleton although DVL2 seems of particular importance.

The characteristic cranio-facial deformations seen in ADRS
or RRS indicate defective development of the neural crest (NC),
which gives rise to the majority of cranial cartilage and bone.
In addition, a subpopulation of the NC contributes to the
cardiac outflow tract (OFT). Cranio-facial malformations are also
visible in DVL1 and DVL2 morphant Xenopus embryos and
the abovementioned mice. The latter and additionally DVL3−/−

animals also show cardiac OFT defects. In Xenopus, DVL1 or
DVL2 morphant embryos showed normal NC induction but
defects in NC migration. The NC is present in DVL3−/− mice
whereas the cardiac NC markers PITX2 and PLEXINA2 were
decreased in mice lacking DVL2 (Hamblet et al., 2002; Etheridge
et al., 2008; Gray et al., 2009), indicating differential roles of DVL2
and DVL3 in NC and cardiac development.

Interestingly, DVL1 mutations in humans affect
predominantly cranio-facial development with little or no
aberrations in body height, whereas in DVL3 and WNT5A
associated ADRS craniofacial malformations are accompanied
by short stature (Person et al., 2010; Bunn et al., 2015; White
et al., 2015, 2016). In mouse, DVL1 is predominantly expressed
in the neuroectoderm (Sussman et al., 1994) and as discussed
above, knock-out models suggest dominant roles of DVL2 and
DVL3 in the development of the axial skeleton and the heart.
Although the spatial expression of the three DVL isoforms
in human embryos is unknown, the differential prevalence of
defects in the axial skeleton in DVL1 and DVL3 associated ADRS
supports a prevailing role of DVL2/3 in the paraxial mesoderm
in mammals.

DVL Signaling in Embryonic Development
The recently characterized mutations in DVL1 and DVL3 are
frameshift mutations, which alter and shorten the C-termini
in the corresponding proteins (White et al., 2015, 2016). This
C-terminal domain has been shown to interact with ROR2, a
major receptor in β-Catenin independent Wnt signaling and
affected in RRS, and is required for ROR2-mediated inhibition
of Wnt/β-Catenin signaling (Witte et al., 2010). An initial study
suggests a gain of Wnt/β-Catenin activity in ADRS (Bunn et al.,
2015), thus it is conceivable that ADRS mutations in DVL1
and DVL3 might result in defective β-Catenin independent
Wnt signaling and concomitantly upregulate Wnt/β-Catenin
activity.
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Malformations of the axial skeleton seen in DVL2−/− and
DVL1−/−;DVL2−/− mice are reminiscent of the phenotypes in
ROR2 or WNT5A deficient embryos that can be attributed to
aberrant PCP signaling in the paraxial mesoderm (reviewed in
Stricker et al., 2017). Genetic interactions between DVL2 and
DVL3 with VANGL2 in the mouse further suggest that DVL2
acts in Wnt/PCP signaling in neural tube closure and in cochlea
development (Wang et al., 2006; Etheridge et al., 2008). In
addition, NTDs and OFT defects in DVL1−/−;DVL2−/− mice
were similar to defects in VANGL2 mutants and rescued by a
DVL21DIX transgene, which is defective in β-Catenin signaling
but retains activity in PCP signaling (Wang et al., 2006; Sinha
et al., 2012). Notably, also DVL3 KO mice develop OFT defects,
but no genetic interaction with VANGL2 in OFT morphogenesis
could be demonstrated, indicating a non-redundant function of
DVL3 (Etheridge et al., 2008).

Wnt/β-Catenin signaling also contributes to the development
of the paraxial mesoderm, heart and neural crest, and patterns
the neural tube. However, defective Wnt/β-Catenin signaling
results in patterning defects of the dorsal mesoderm and affects
proliferation, expansion, or specification of dorsal neural tube
progenitors and neural crest (NC) cells (Greco et al., 1996; Ikeya
et al., 1997; Pinson et al., 2000; Lou et al., 2008; Seldin et al., 2008;
Valenta et al., 2011). By contrast, in either single or compound
DVL knock-out mice, Wnt/β-Catenin signaling, and early dorsal
mesoderm markers were unaffected. Only in triple knock-out
mice a marked downregulation of Wnt/β-catenin signaling has
been observed (Etheridge et al., 2008; Hashimoto et al., 2010).
Still, defective β-Catenin signaling in smaller cell populations
cannot be excluded. One such example might be the cardiac
neural crest in DVL2−/− embryos, in which the β-Catenin target
PITX2 is downregulated (Hamblet et al., 2002; Kioussi et al.,
2002). PITX2 is required for proliferation of cardiac NC, but also
for the interaction between cardiac NC and second heart field
cells (Kioussi et al., 2002; Ma et al., 2013) and, indirectly, for OFT
morphogenesis via its target gene WNT11 (Zhou et al., 2007).
OFT defects in DLV1−/−, DVL2−/− embryos were rescued by
a DVL21DIX transgene (Sinha et al., 2012), however this does
not exclude a role of DVL2 in β-Catenin signaling upstream of
PITX2 since the transgene could also restore OFTmorphogenesis
downstream of WNT11.

Overall it appears that DVL function in β-Catenin-
independent Wnt signaling is more sensitive to the loss or
dysfunction of one or two paralogs and accounts for most of the
developmental phenotypes in knock-out animal models and also
for the features of ADRS.

Induced Heart Defects
A number of studies indicate a specific role of DVL1 in
cardiac remodeling and regeneration. DVL1 and CamKII are
upregulated after induced myocardial infarction and heart failure
indicating a role of Wnt/Ca2+ signaling in regeneration (Chen
et al., 2004; Ai et al., 2005; Bossuyt et al., 2008). Persistent
pressure overload induced cardiac hypertrophy was attenuated
in DVL1 knock-out mice, which has been attributed to lower
Wnt/β-Catenin activity as well as decreased AKT activation
(van de Schans et al., 2007). Consistently, DVL1 gain-of-
function induced progressive cardiomyopathy (Malekar et al.,

2010). Interestingly, evidence is accumulating that DVL1 is
functionally associated with Wnt/Ca2+ and CamKII signaling
in cardiomyopathy (Malekar et al., 2010; Zhang et al., 2015),
in excitory synapses in the rat spinal chord (Ciani et al., 2011)
and in convergent extension movements in Xenopus gastrulation
(Gentzel et al., 2015), indicating a functional specification
of DVL1.

PERSPECTIVES

Striking differences between different DVLs and species have
been observed in temporal and spatial expression patterns. Loss-
of-function phenotypes of each single paralog in mouse as well
as ADRS features associated with DVL1 or DVL3 mutations also
differ, indicating some degree of divergence but also overlapping
functions. In addition, expression of transgenes in a single
knock-out background further supported partial redundancy and
indicated a dose dependency. If the DVL paralogs would be fully
redundant in function it might be speculated that the summed
abundance of all paralogs is important for cell survival. But even
in cell culture models, any single knock-down is effective and
the cells apparently do not sense overall “DVL concentration”

and do not compensate the down-regulation of one protein by
upregulation of the others (Cervenka et al., 2016).

Functional redundancies however, do not connote
biochemical identity. The observed differences could reflect
differential expression levels, epistatic relations, or differential
biochemical properties such as protein-protein interaction
affinity and consequently also molecular function, which would
also be consistent with dose-dependencies. The developmental
phenotypes further indicate that β-Catenin independent
Wnt pathways are more sensitive to the dose of individual
DVL paralogs than β-Catenin signaling. This hypothesis is
further supported by comparison of triple knock-out and
triple-RNAi knock-down embryos. Whereas, in triple KO
embryos early β-Catenin signaling is strongly reduced resulting
in axis and mesodermal mispatterning, in the knock-down,
in which ∼25–30% of each paralog were retained, early β-
Catenin signaling was not affected, but the embryos showed
strong morphogenetic defects in the dorsal mesoderm and
neuroectoderm. Consistently, specific and different molecular
functionality of the three DVL paralogs has been observed in
ciliogenesis and the Wnt/Ca2+ pathway, which were revealed in
intact tissue or tissue models (Park et al., 2008; Gentzel et al.,
2015).

Overall, the currently available data indicate that DVL
expression and function have diverged to some degree
apparently and consistent with phylogenetic models mostly
between DVL1 and DVL2/3. Thus, depending on the cellular
context, DVL paralogs exhibit both redundant and distinct
functionality.
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Autophagy is a conserved catabolic process that results in the lysosomal degradation

of cell components. During development, autophagy is associated with tissue and

organ remodeling, and under physiological conditions it is tightly regulated as it plays

a housekeeping role in removing misfolded proteins and damaged organelles. The

vertebrate inner ear is a complex sensory organ responsible for the perception of sound

and for balance. Cell survival, death and proliferation, as well as cell fate specification

and differentiation, are processes that are strictly coordinated during the development

of the inner ear in order to generate the more than a dozen specialized cell types that

constitute this structure. Here, we review the existing evidence that implicates autophagy

in the generation of the vertebrate inner ear. At early stages of chicken otic development,

inhibiting autophagy impairs neurogenesis and causes aberrant otocyst morphogenesis.

Autophagy provides energy for the clearing of dying cells and it favors neuronal

differentiation. Moreover, autophagy is required for proper vestibular development in

the mouse inner ear. The autophagy-related genes Becn1, Atg4g, Atg5, and Atg9, are

expressed in the inner ear from late developmental stages to adulthood, and Atg4b

mutants show impaired vestibular behavior associated to defects in otoconial biogenesis

that are also common to Atg5 mutants. Autophagic flux appears to be age-regulated,

augmenting from perinatal stages to young adulthood in mice. This up-regulation is

concomitant with the functional maturation of the hearing receptor. Hence, autophagy

can be considered an intracellular pathway fundamental for in vertebrate inner ear

development and maturation.

Keywords: Atg4, Atg5, Beclin-1, cochlea, LC3, otic development, vestibular system

AN INTRODUCTION TO AUTOPHAGY

Autophagy is a catabolic process that degrades the cytoplasmic content of a cell in lysosomes,
returning energy, and molecular building bricks to the cell. Indeed, autophagy has a housekeeping
role in cells as it is a way to eliminate damaged macromolecules, organelles, and pathogens. Since
the initial description of autophagy by Christian de Duve in 1963, it has become more and more
relevant as it has become implicated in a variety of physiological and pathological situations
(Jiang and Mizushima, 2014). Indeed, three different types of autophagy are now recognized:
(1) Macroautophagy (herein autophagy), where a double-membrane autophagosome forms and
engulfs cytoplasmic content, subsequently fusing with the lysosome to form an autolysosome and
releasing the autophagosome cargo into the lysosome lumen to be degraded by hydrolases; (2)
Microautophagy, in which the cargo reaches the lumen by invagination of the lysosomalmembrane;
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and (3) Chaperone-mediated autophagy, exclusive to mammals,
where proteins associated to chaperones bind to the LAMP2A
lysosomal receptor and are delivered directly to the lumen (Tasset
and Cuervo, 2016).

The formation of the autophagosome requires the activity of
a set of proteins, most of them encoded by the autophagy related
genes (ATG; Figure 1A). The formation of the autophagosome
involves induction, nucleation, elongation, and completion. A
specific subset of ATG proteins has been associated to each of
these stages (Ariosa and Klionsky, 2016). As such, the ULK1/2
complex (ATG13, ATG101, FIP200) participates in induction
and ULK1 activates the phosphatidylinositol 3-kinase complex
(PI3KC: Beclin-1, Vsp34, Vps15, ATG14) to promote nucleation.
Two ubiquitin-like conjugation systems contribute to elongate
the phagophore: ATG12 (ATG12, ATG7, ATG10, ATG5, and
ATG16L) and ATG8 (LC3, the mammalian homolog of ATG8).
Both these complexes regulate the formation of LC3-II, the
relative levels of which serve as a readout of the autophagic
flux, along with SQSTM1/p62 that facilitates the entry of the
cargo into the autophagosome. Accordingly, the SQSTM1/p62
levels are inversely correlated with those of LC3-II (Katsuragi
et al., 2015; Klionsky et al., 2016). Finally, the ATG9 cycling
system incorporates membranes from cell donor locations
(Pavel and Rubinsztein, 2016). Following the completion of the
autophagosome, its fusion with lysosomes requires the activity
of proteins involved in other vesicular fusion events, such as the
SNARE (soluble NSF attachment protein receptor) and HOPS
(homotypic fusion and vacuole sorting proteins) complexes
(Zhen and Li, 2015).

Autophagy can be induced by starvation, growth factor
deprivation, hypoxia, or infections. These stimuli elicit
an immediate response and long-term gene expression
responses mediated by specific transcription factors like
TFEB (transcription factor EB). TFEB acts as a master regulator
of autophagy by up-regulating the expression of autophagy
genes. Under nutrient-rich conditions, TFEB is phosphorylated
by mTORC1 (mammalian target of rapamycin complex (1) and
kept inactivate in the cytosol, mTORC1 also inhibiting autophagy
by phosphorylation of ATG13, Füllgrabe et al., 2016; Napolitano
and Ballabio, 2016).

Autophagy is a housekeeping mechanism that removes
damaged molecules and organelles from the cell’s cytoplasm,
yet it also participates in the immune response, and it
provides energy and molecules as building blocks when needed.
Autophagy is essential during development, as it contributes to
organ and tissue sculpting in Drosophila by facilitating cell death
(Denton et al., 2012). Indeed, autophagy may promote largescale
cytosolic self-digestion and the removal of certain pro-survival
proteins (Yu et al., 2006). Thus, the final output of autophagy
could be either positive or negative for the cell, and this depends
on the intensity and duration of its induction.

DEVELOPMENTAL AUTOPHAGY

Autophagy contributes to developmental tissue remodeling,
responding to specific extrinsic, and intrinsic stimuli. For

example, following fertilization of the mouse egg, autophagy
removes maternal mRNA and proteins, allowing the egg to
initiate its zygotic program (Tsukamoto et al., 2008; Yamamoto
et al., 2014). Later on in development, autophagy drives the
development of the nervous system, adipose tissue, osseous
tissue, hematopoietic system, and the heart (Aburto et al., 2012a).
The study of genetically modified mice has shed light on the roles
played by the genes involved in autophagy.Ambra1 is an essential
gene for the development of the mouse central nervous system,
the deficiency of which impairs autophagy and induces aberrant
neuronal proliferation (Fimia et al., 2007; Antonioli et al., 2015).
Different mutations in genes that participate in the autophagy
machinery have shown that autophagy is needed for terminal
neuronal differentiation, and specifically for axonal outgrowth
and guidance. For example, axon formation is disturbed in
the cerebellar granule neurons of Ulk1−/− mice (Zhou et al.,
2007) and more recently, ALFY, an adaptor protein between the
cargo and the ATG proteins, was seen to be required for axon
outgrowth in the brain and to establish neuronal connectivity
(Dragich et al., 2016).

Atg mutants have provided evidence that autophagy is needed
for the correct development of adipose, osseous and cardiac
tissues, as well as for the differentiation of hematopoietic cells.
Atg5 and Atg7 deficiency is associated with a reduction in
thymocytes and B-lymphocytes (Pua et al., 2007), as well as
reduced levels of adipocyte differentiation factors and decreased
lipid adipose mass (Singh et al., 2009). In addition, Atg5 and Atg7
deficiency in the embryonic P19CL6 cells inhibited cardiac cell
differentiation (Jia et al., 2014). However, in the analysis of the
phenotypes associated to these mutations it should be considered
that ATG proteins also fulfill functions that are not related to
autophagy (Mauthe and Reggiori, 2016).

During development, autophagy facilitates rapid changes in
intracellular composition, promoting the turnover of specific
proteins, receptors, cytoskeletal components, or transcription
factors necessary to define the different cell fates. It is also
essential for the temporal dynamics of cell organelles, controlling
their number, and quality (e.g., mitochondria). Finally, after birth
and before the initiation of suckling behavior, the up-regulation
of autophagy protects newborns from death by starvation (Kuma
et al., 2004). Autophagy may not only supply energy at this stage
but it may also help control oxidative stress (Schiaffino et al.,
2008).

AN INTRODUCTION TO INNER EAR

ANATOMY

The mammalian inner ear is a complex sensory structure
within the temporal bone that is composed of the cochlea and
the vestibule, structures that are responsible for the senses of
hearing and balance, respectively (Figure 1B). The auditory and
vestibular organs contain the mechanosensory receptors that
transduce mechanical stimuli into electrochemical signals that
are transmitted to the brain by the fibers of the VIIIth cranial
nerve. The auditory receptor is the organ of Corti in the scala
media of the cochlea (Magariños et al., 2012, 2014), which is
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FIGURE 1 | (A) Schematic view of the molecular steps of macroautophagy. Growth factors and nutrient-rich conditions activate mTORC1, a negative regulator of the

ULK1/2 complex and TEFB. In turn, growth factor deprivation, inflammation, or nutrient starvation, activate the ULK1/2 complex, which phosphorylates and activates

the PI3K complex III (PI3KC). The ATG9 cycling system provides membranes to form the autophagosome from different donor sources. Autophagosome formation

also requires the action of two ubiquitin-like (Ubl) systems, ATG8-Ubl and ATG12-Ubl, required for the elongation and completion of the autophagosome. LC3 is

converted into the cytosolic form, LC3-I, by cleavage of ATG4B, and into the membrane associated form, LC3-II, by conjugation with phosphoethanolamine via ATG5

(and the remaining components of the ATG12-Ubl system). SQSTM1/p62 (p62) binds to ubiquitinated proteins and carries them to the autophagosome (adapted from

de Iriarte Rodríguez et al., 2015). (B) Anatomy of the adult mouse inner ear. (a) Lateral view showing a mammalian inner ear. (b,c) Detail of the vestibular macula (b)

and cristae ampullaris (c), where sensory hair cells are labeled for myosin VIIa (green) and neurofilament (red). (d) Detail of the organ of Corti showing myosin VIIa

positive hair cells (green) and SOX2 positive supporting cells (red). (e) The stria vascularis is visualized by labeling for Kir4.1 (green). Development of the mouse inner

ear. The inner ear develops from the otic placode (f, E7.5). The otic placode invaginates to form the otic cup (g, E8-9), which later pinches off to form the otic vesicle

or otocyst (h,i). Neural precursors delaminate from the ventral otocyst epithelium to form the acoustic-vestibular ganglion (AVG: g–i). The cochlear duct evaginates

from the ventromedial region of the otic vesicle, and it will be innervated by the acoustic portion of the AVG, also known as the spiral ganglion (SG: yellow, j–m). The

cochlear duct elongates and grows to form a coiled tube, the membranous labyrinth, which includes the primordium of the scalas media, vestibularis, and tympanic

(j–m). At the cochlear duct the prosensory patch will become the primitive organ of Corti. Scale bars: (a) 0.5mm; (b–e) 50µm. Co, cochlea; V, vestibule; Asc, Lsc

and Psc, anterior, lateral and posterior semicircular canals; Do, dorsal; Cd, caudal; IHC, inner hair cells; OHC, outer hair cells; StV, stria vasculari; SpL, spiral ligament;

SV, scala vestibule; SM, scala media; ST, scala tympani; LW, lateral wall; OC, Organ of Corti (adapted from Magariños et al., 2014).
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formed by sensory hair cells and by non-sensory support cells
(Deiters’, Hensen’s and Claudius’) that maintain the ionic and
metabolic cochlear homeostasis (Forge andWright, 2002). There
are two functional types of hair cells arranged in a stereotypic
manner: one row of inner hair cells (IHC) and three rows of
outer hair cells (OHC; Forge and Wright, 2002; Magariños et al.,
2012). The IHC cells connect to bipolar auditory type I neurons
of the spiral ganglion, whilst the OHC are innervated by type II
neurons (Nayagam et al., 2011; Fritzsch et al., 2015). The axons
of these neurons leave the spiral ganglion to form the cochlear
division of the acoustic-vestibular nerve, which is responsible for
transmitting the auditory information through a multisynaptic,
ascendant pathway from the cochlea to the auditory cortex
(Demanez and Demanez, 2003). HC stereocilia are bathed by
endolymph, which maintains the unique ionic concentration
required for mechanotransduction. The stria vascularis is located
in the lateral wall of the scala media. This three-layered structure
regulates cochlear ion transport and maintains the endocochlear
potential (Patuzzi, 2011).

The vestibular system is formed by five sensory structures,
three cristae located at the base of the semicircular canals and
two maculae. Each of these structures has a similar organization,
with sensory HC and non-sensory support cells innervated by
the vestibular ganglion axons. The vestibule is responsible for
sensing equilibrium, and for the perception of linear and angular
acceleration, and of gravity (Highstein and Fay, 2004; Ekdale,
2016).

THE REGULATION OF INNER EAR

DEVELOPMENT BY EXTRACELLULAR

FACTORS AND INTRACELLULAR

SIGNALING NETWORKS

The development of the inner ear is initiated by the induction
of the otic placode from the ectoderm lying between the
rhombomeres 5 and 6 (Magariños et al., 2014; Whitfield, 2015).
Otic placode induction is orchestrated from mesoderm signals
that coordinate with intrinsic factors in the ectoderm. FGFs,
Notch and WNT signaling play a key role during these initial
events (Ohyama et al., 2006, 2007; Jayasena et al., 2008). The
otic placode then invaginates to form the otic cup that will later
detach and close to form the otocyst or otic vesicle. The otocyst
is transient embryonic round structure whose multipotent cells
will differentiate to produce most adult inner ear cell types
(Bissonnette and Fekete, 1996; Sanchez-Calderon et al., 2007).
The ventral region of the otocyst is specified by the Sonic
hedgehog (Shh) secreted from the floor plate and notochord
(Riccomagno et al., 2002, 2005), as well as through repression
by the WNT signaling pathway (Groves and Fekete, 2012).
Significantly, it is this region that will form the auditory portion
of the inner ear. The vestibule develops from the dorsal otocyst,
instructed by signals from the bone morphogenetic protein
BMP4 (Chang et al., 2008) that antagonize Shh. SensoryHC, non-
sensory support cells, plus the acoustic and vestibular neurons
that contribute to the acoustic-vestibular ganglion (AVG) also
arise from the otocyst. Finally, Notch signaling helps specify the

prosensory domain (Daudet and Lewis, 2005; Hartman et al.,
2010) and in combination with Atoh1 expression, it is involved
in determining the HC and supporting cells (Mizutari et al.,
2013).

Otic vesicle development requires the coordinated response
to apoptosis, survival and proliferation signals. IGF-1 signaling,
mainly through the RAF-MEK-ERK and PI3K/AKT pathways,
fulfills a critical role in regulating these processes. In the
chicken embryo, PI3K/AKT signaling regulates the number of
otic neurons and it determines the timing of their generation
(Aburto et al., 2012b). Moreover, both the RAF-MEK-ERK and
PI3K/AKT pathways modulate AVG neuritogenesis (Magariños
et al., 2010; Aburto et al., 2012b). Phosphatase and tensin
homolog deleted on chromosome 10 (PTEN) is required to
define the size of the neuroblast population (Kim et al.,
2013) and it negatively regulates the AKT signaling pathway,
as well as interacting with the WNT, Notch, and BMP
pathways.

Cell cycle regulation is also essential for correct inner
ear organogenesis. IGF-1, Notch, and WNT are among the
signaling pathways involved in regulating the proliferation of otic
progenitors (Magariños et al., 2014). Through the RAF-MEK-
ERK pathway, IGF-1 promotes the cell cycle progression of otic
progenitors (Sanz et al., 1999b; Magariños et al., 2010). Finally,
the otocyst must undergo the morphogenetic changes that
transform the simple pseudostratified otic vesicle epithelia into
an extremely complex three-dimensional membranous labyrinth
(Kelly and Chen, 2009). The neighboring mesenchymal cells will
be responsible for generating the bony labyrinth (Chang et al.,
2002).

DEVELOPMENTAL AUTOPHAGY IN THE

EMBRYONIC CHICKEN INNER EAR

Beclin-1 and Atg5 transcripts are expressed throughout the
developmental stages in the chick when otic vesicles can be
explanted and studied in organotypic cultures. Indeed, the
Beclin-1 and LC3B proteins are present in the otic epithelium
and the AVG (Aburto et al., 2012c; summarized in Figure 2A).
Chemical and genetic inhibitors of autophagy demonstrate the
importance of the autophagic flux for the development and
cellular dynamics of the otocyst (Aburto et al., 2012c; Figure 2A).
Inhibiting autophagy shows that it is required for the clearance
of apoptotic cells and for cell cycle progression. Developmental
apoptosis is an essential process during inner ear development
(Fekete et al., 1997; Sanz et al., 1999a; Frago et al., 2003;
León et al., 2004; Magariños et al., 2012), and both this cell
death and the elimination of apoptotic cells require energy
(Qu et al., 2007; Mellén et al., 2008). During development,
autophagy provides ATP by degrading intracellular components
and it thereby facilitates apoptosis. Impaired autophagy causes
an accumulation of apoptotic cells that cannot be eliminated
from the otic vesicle, a failing that can be reverted by adding
ATP. The region where otic neural progenitors originate is the
neurogenic zone, where the extracellular matrix is degraded
to detach cells and the migrating detached cells accumulate
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FIGURE 2 | (A) Developmental autophagy in the chicken otocyst. (a) Scheme showing the ex vivo culture of otic vesicles from HH18 embryos. The

acoustic-vestibular ganglion (AVG) develops from the cultured otic vesicle after 20 h in serum-free culture medium (0S). (b) Autophagic flux is typically measured in

Western blots to determine the LC3 ratio in the presence or absence of chemical inhibitors of autophagy (3-MA and CQ). (c) Otic vesicles incubated with an inhibitor

of autophagy accumulate apoptotic cells, as evident by reduced staining for An-V in red and by increased TUNEL green spots (d–g). Aberrant AVG development is

also seen (h,i), with fewer neuroblasts (TuJ-1, red), and (j,k) altered neurite outgrowth and pathfinding (G4, green). (f,g) Higher magnification of the boxed regions in

(d) and (e), respectively. annexin-V, An-V; 3-methyladenin, 3-MA; chloroquine, CQ. Scale bars: (d–i), 150µm; (f), (g), 50µm; (j), (k) 300µm (adapted from Aburto

et al., 2012c). (B) Autophagy in the postnatal and adult mouse inner ear. (a,c) Histograms showing the changes in Beclin-1, Atg4b, and Atg5 expression with age in

the mouse vestibule (a) and cochlea (c), as determined by RT-qPCR. (b,d) Autophagic flux increases with age in the mouse inner ear. The LC3-II/LC3-I and

SQSTM1/p62 (p62/β-actin) ratios were determined in Western blots of the vestibule (b) and cochlea (d) at E18.5 and P270. Significance: *P < 0.05, **P < 0.01, and

***P < 0.001 vs. E18.5; #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. P0; and & P < 0.05 and && P < 0.01 vs. P30–60. E, embryonic day and P, postnatal

day (adapted from de Iriarte Rodríguez et al., 2015).
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autophagic vacuoles. Conversely, the inhibition of autophagy
results in aberrant AVG phenotypes (Aburto et al., 2012c;
Figure 2A). Therefore, autophagy is required for the migration
of the epithelial neuroblasts from the neurogenic zone to form
the AVG. In summary, the early development of the inner ear
is one example of many where developmental autophagy plays
a supporting role to apoptosis and migration (Di Bartolomeo
et al., 2010; Wada et al., 2014; Lorda-Diez et al., 2015; Boya et al.,
2016).

AUTOPHAGY IN THE MOUSE INNER EAR

Autophagy is required for the development of the vestibular
system in the mouse. Atg4 deficient mice have impaired
balance, with different phenotypic penetrance from severe to
mild vestibular alterations. The biogenesis of the otoconia is
defective in both Atg4b−/− and Atg5−/− mice (Mariño et al.,
2010), and otoconial impairment occurs in mice exposed to
streptomycin ototoxicity (Takumida et al., 1997), which can
inhibit autophagy (Levano and Bodmer, 2015) and increase cell
damage in the inner ear due to oxidative stress (Guthrie, 2008).
In fact, autophagy reduces the reactive oxygen species (ROS)
in mice subjected to noise-induced hearing loss (Yuan et al.,
2015). This crucial role of autophagy in eliminating ROS could
explain the similarities between autophagy gene mutants and
streptomycin-treated animals. However, increased ROS are not
the only consequence of inhibiting autophagy during vestibular
development, as otoconial biogenesis requires the secretion and
assembly of specific proteins that are also affected by inhibiting
autophagy (Mariño et al., 2010).

Autophagy plays a key role in newborn mice, and Atg5, Atg7,
Atg9, and Atg16 null mice die soon after birth (Mizushima
and Levine, 2010). The transcriptome of the E18.5 mouse
cochlea shows that a wide variety of Atg genes are expressed,
underlining the relevance of autophagy at perinatal stages (de
Iriarte Rodríguez et al., 2015). Furthermore, several key genes
of the autophagic molecular machinery (Becn1, Atg4b, Atg5,
and Atg9) are expressed in the mouse vestibule and cochlea
throughout development and adulthood (de Iriarte Rodríguez
et al., 2015; summarized in Figure 2B). The expression of
these genes is significantly enhanced from the perinatal stages
(E18.5 and P0) to adulthood (P30) as the inner ear acquires its
complete functionality (Rueda et al., 1996). A temporal analysis
of autophagic proteolysis in the cochlea and vestibule confirms
the induction of autophagy in adults rather than E18.5 embryos.
Moreover, there is significantly less SQSTM1/p62 at P270 than
at E.18.5, whilst the relative LC3-II levels increase in the cochlea
and vestibule (de Iriarte Rodríguez et al., 2015; Figure 2B).
Indeed, autophagosomes are clearly visible in adult neurons
of the spiral ganglion but not at earlier stages. LC3B forms
granular structures in the neuronal soma at P30 and onwards,
yet not at E18.5 (de Iriarte Rodríguez et al., 2015). Autophagy
is essential in neurons because they do not dilute their damaged
molecules or organelles by proliferation. Thus, autophagy is
required for detoxification and to manage damage (Son et al.,
2012; Damme et al., 2015; He et al., 2016). Accordingly, the

postnatal onset of hearing and the concomitant increase in
neuronal activity is correlated with the induction of autophagy
in the cochlea.

THE INFLUENCE OF AUTOPHAGY ON

INNER EAR HOMEOSTASIS AND AGING

Autophagy plays an additional role in inner ear homeostasis
once development is concluded. Otic injury caused by a
combination of aminoglycoside and loop diuretics augments
aspects of autophagy (Taylor et al., 2008). Moreover, autophagy
is activated by rapamycin alleviated ototoxicity in cisplatin-
treated rats (Fang and Xiao, 2014) and in mice exposed
to an auditory insult (Yuan et al., 2015). Thus, autophagy
helps maintain adult hearing in response to stress. Proteostasis
is impaired during aging (López-Otín et al., 2013) and the
stabilization of proteic events that is mostly provided by
molecular chaperones also declines with age (Rodriguez et al.,
2016). In addition, protein degradation systems control the
levels of misfolded or aggregated proteins, the accumulation
of which drives age-related neurodegenerative diseases like
Parkinson’s or Alzheimer’s disease (Balchin et al., 2016). Thus,
it is not surprising that the senescence-accelerated mouse prone
8 (SAMP8) mutant mice exhibit age-related hearing loss and
autophagy stress (Menardo et al., 2012).

Our studies of 9 month-old Igf1−/− mice show they suffer
defects in the proteostasis associated with aging. These Igf1−/−

mice suffer a loss of hearing and a reduced lifespan, among
other traits (Varela-Nieto et al., 2013). Hearing loss in Igf1−/−

deficient mice is accompanied by a general failure of the hearing
receptor (Riquelme et al., 2010), although the weaker autophagy
gene expression in one-year-old cochlea may also contribute
to this auditory phenotype (de Iriarte Rodríguez et al., 2015).
However, the vestibular defects in the Igf1−/− mouse are milder
than those found in the cochlea (Rodríguez-de la Rosa et al.,
2015). Becn1, Atg4b, and Atg5 are more strongly expressed in
9-month-old Igf1−/− vestibules compared to those of wild-
type mice. Thus, the induction of autophagy might provide
Igf1−/− vestibules with some protection, as it does in Igf1−/−

retinas (Arroba et al., 2016). After differentiation, hair cells
do not regenerate in the mammalian cochlea, whilst vestibular
hair cells do to a limited extent (Burns and Stone, 2016).
The up-regulation of autophagy might be partially responsible
for the different potentiality of vestibular and cochlear hair
cells.

CONCLUSIONS

During the development of the vertebrate inner ear, autophagy
participates in cell remodeling and dynamics, and it contributes
to the biogenesis of the vestibular otoconia. In the postnatal
cochlea, the autophagy machinery is upregulated concomitant
with the increase in neuronal activity at the onset of hearing.
Autophagy becomes a housekeeping process in the adult inner
ear, and it is a means to protect hearing during aging and in
response to injury. Further work is needed to fully understand
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the role of autophagy in the inner ear and to explore the potential
of modulating autophagy as a novel strategy to combat inner ear
diseases.
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The adult pumping heart is formed by distinct tissue layers. From inside to outside, the

heart is composed by an internal endothelial layer, dubbed the endocardium, a thick

myocardial component which supports the pumping capacity of the heart and exteriorly

covered by a thin mesothelial layer named the epicardium. Cardiac insults such as

coronary artery obstruction lead to ischemia and thus to an irreversible damage of the

myocardial layer, provoking in many cases heart failure and death. Thus, searching for

new pathways to regenerate the myocardium is an urgent biomedical need. Interestingly,

the capacity of heart regeneration is present in other species, ranging from fishes to

neonatal mammals. In this context, several lines of evidences demonstrated a key

regulatory role for the epicardial layer. In this manuscript, we provide a state-of-the-art

review on the developmental process leading to the formation of the epicardium, the

distinct pathways controlling epicardial precursor cell specification and determination

and current evidences on the regenerative potential of the epicardium to heal the injured

heart.

Keywords: epicardium, proepicardium, non-coding RNAs, heart development, regeneration

The development of the heart is a complex process. The primitive heart tube is formed from
cardiogenic mesoderm of the cardiac crescents, i.e., first heart field (FHF), while anterior and
venous poles are derived from a subsequent subset of cardiogenic cells located medial to the cardiac
crescents, dubbed second heart field (SHF; Kelly et al., 2001; Kelly and Buckingham, 2002). In
addition, external cellular contributions to the developing heart will take place from this stage
onwards. On the one hand, cardiac neural crest will colonize the most anterior parts of the heart
playing a pivotal role on aortico-pulmonary septation (Kirby andWaldo, 1990, 1995). On the other
hand, cell originating from the proepicardium (PE) will cover and infiltrate into the developing
heart leading to distinct cellular subpopulations, such as endothelial and smooth muscle cells
forming the coronary vasculature, endocardial cushion mesenchyme, cardiac fibroblasts, and of

Abbreviations: Bmp, Bone morphogenetic protein; CXCR4, Chemokine (C-X-C motif) receptor 4; Cre, Cre recombinase;

CXCL12, Chemokine (C-X-C motif) ligand 12; Dkk1, Dickkopf-related protein 1; Dkk2, Dickkopf-related protein 2; EMT,

Epitelial-to-mesenchymal transition; EPDCs, Epicardial derived cells; Fabp4, Fatty acid binding protein 4; Fgf, Fibroblast

growth factor; Fgf10, Fibroblast growth factor 10; Fgfr2b, Fibroblast growth factor receptor 2b; FHF, First heart field; lcnRNA,

Long non-coding RNA; MAPK, Mitogen-Activated Protein Kinase; Nfatc1, Nuclear factor of activated T-cells, cytoplasmic 1;

NF-κB, Nuclear Factor κB; Nrg1, Neuregulin 1; Pcd4, Programmed Cell Death 4; PCP, Planar cell polarity; PE, Proepicardium;

Pod1/Tcf21, Podocyte-expressed 1/Transcription factor 21; Raldh2, Aldehyde dehydrogenase family 1, subfamily A2; SHF,

Second heart field; Tbx18, T-box homeobox 18; Tcf21/Pod1, Transcription factor 21/Podocyte-expressed 1; VEGF, Vascular

endothelial growth factor; Wt1, Wilms tumor protein; Yap/Taz, Yes associated protein 1/Transcriptional coactivator with

PDZ-binding motif.
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course the adult epicardial lining (Winter and Gittenberger-
de Groot, 2007; Gittenberger-de Groot et al., 2012). In
this manuscript we will provide a state-of-the-art review
on the developmental process leading to the formation of
the PE/epicardium, the signaling pathways providing cell
specification and fate determination to those epicardial precursor
cells including the upcoming role of non-coding RNAs, and
current evidences on the regenerative role of the epicardium as
to heal the injured heart.

INITIAL PHASES OF THE PROEPICARDIAL
(PE) AND EPICARDIAL FORMATION; A
JOURNEY TO THE DEVELOPING
EMBRYONIC HEART

The proepicardium (PE) is a small protuberance that
progressively develops within limiting boundaries between
the hepatic and cardiac primordia. It is composed of an external
epithelial lining configured as a cauliflower structure and an
internal mesenchymal component (Virágh et al., 1993; Kálmán
et al., 1995; Ratajska et al., 2008). A single PE anlage is observed
at early developmental stages in zebrafish (Serluca, 2008) while
in the sturgeon and in mice bilateral PE buds are formed
subsequently merging into a single midline structure (Schulte
et al., 2007; Icardo et al., 2009). Curiously, in chicken two PE
primordia are formed, but interestingly the right PE anlage
develops before the left one is visible (Schulte et al., 2007). These
data suggest divergent evolutionary trends on the formation
of the PE primordia and furthermore advocate that embryonic
left-right signaling might play a role controlling PE formation
(Schlueter and Brand, 2012).

Transcriptional heterogeneity is widely documented for the
PE anlage, and in addition, cell specific markers for several of
the PE/epicardial cell derivatives, such as endothelial (Poelmann
et al., 1993;Mikawa andGourdie, 1996; Cossette andMisra, 2011;
Niderla-Bielińska et al., 2015) and smooth muscle (Valder and
Olson, 1994) cells have also been documented, suggesting an
early heterogeneous compartmentalization. Subsequently after
the formation of the PE a process of delamination and migration
of the proepicardial cells occurs. This process will lead to
external covering of the atrioventricular canal and the entire
atrial and ventricular myocardial chambers as demonstrated by
seminal studies using quail-chicken embryos (Pérez-Pomares
et al., 1998, 2002; Vrancken Peeters et al., 1999; Figure 1). In
zebrafish, this process is dependent on the pericardial fluid
currents (Peralta et al., 2013, 2014; Plavicki et al., 2013, 2014). In
mice, proepicardial cells are detached from the PE forming cysts
that migrate to the developing cardiac chambers through the
pericardial cavity (Männer et al., 2001; Hirose et al., 2006). These
cysts randomly attach to the ventricular and atrial chambers and
progressively expand until the final full coverage of the cardiac
chambers is completed.

Once the PE cells migrate and cover the surface of the
developing embryonic myocardium an epicardial-myocardial
signaling crosstalk is initiated. This process is crucial for
the correct development of both cardiac tissue layers. The

epicardium is instructed to initiate an epithelial-to-mesenchymal
transformation (EMT), detaching from the epithelial epicardial
layer and migrating first into the subepicardial space. These
cells subsequently invade the myocardial walls, giving rise to
the epicardial derived cells (EPDCs) (Dettman et al., 1998).
An additional source of subepicardial cells of hematopoietic
origin is provided during embryonic development which further
contributes to the heterogeneity of the embryonic and postnatal
epicardium (Balmer et al., 2014). In the following chapters we
provide a state-of-the-art review on the differential contribution
of the embryonic epicardium in cardiovascular development and
disease.

CELL FATE AND CONTRIBUTION OF THE
EMBRYONIC EPICARDIUM TO THE
MATURE HEART

Epicardial derived cells once they go through the subepicardial
space continue their journey into the developing heart. Seminal
approaches using quail-chick chimeras demonstrated that quail
EPDCs contribute to distinct cardiac cell lineages, such as
endothelial and smooth muscle cells in the coronary vasculature,
endocardial mesenchymal cells in the atrioventricular cushions
and also cardiac fibroblasts (Poelmann et al., 1993; Dettman
et al., 1998; Figure 1). Since the experimental model used was a
heterologous chimera, multiple criticisms were arising as which
was indeed the real contribution of these cells. Supporting
evidences were generated using retroviral-defective cell lineage
tracing experiments in chicken hearts providing similar results
(Mikawa and Gourdie, 1996); i.e., vascular endothelial, smooth
muscle, and cardiac fibroblasts. Contribution to endocardial
cushions is scarce, although it has been proposed that these cells
are important for the correct development of the atrioventricular
junction and the annulus fibrosus (Lie-Venema et al., 2008; Zhou
et al., 2010; Lockhart et al., 2014 ). More recently, a contribution
to cardiac resident stem cells (mesenchymal-like) has also been
reported (Chong et al., 2011). In all cases, contribution to the
developing myocardium was never observed (Poelmann et al.,
1993; Mikawa and Gourdie, 1996; Pérez-Pomares et al., 2002).
Surprisingly, in vitro PE culture experiments demonstrated that
cardiomyocytes could be derived from these precursor cell pools
(Kruithof et al., 2006).

With the advent of the molecular era, genetic lineage tracing
in mice assaulted the quest to understand the contribution of the
PE/embryonic epicardium to the mature murine heart. Several
lineage tracing approaches were documented, in most cases,
using Cre/loxP conditional activation of the reporter genes. In
this setting, Tbx18-lineage tracing demonstrated a contribution
to all the previously reported EPDC-derived lineages but
surprisingly, also to the cardiomyocyte lineage. Whereas, these
studies claimed that epicardial Tbx18+ cells contributed in vivo
to ventricular cardiomyocytes (Cai et al., 2008), it was previously
reported that fetal cardiomyocytes also expressed Tbx18 (Franco
et al., 2006; Christoffels et al., 2009; Zeng et al., 2011) and
thus those Tbx18+ epicardial lineage tracing experiments were
dubious.
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FIGURE 1 | Schematic representation of the distinct developmental stages of the proepicardium (PE)/septum transversum (ST) formation as well as

on the distinct lineage contribution of the embryonic and adult epicardium.

Epicardial Wt1+ derived cells have also been reported to
contribute to endothelial cells and to the myocardium (Zhou
et al., 2008; Zhou and Pu, 2011). Evidence for Wt1+ cells
in the embryonic heart has also been reported but excluding
cardiomyocytes (Zeng et al., 2011) yet more recent evidence
demonstrated that Wt1-derived cardiomyoctes can be traced
in the developing heart before PE/epicardial formation (Rudat
and Kispert, 2012; Cano et al., 2016), thus questioning the
epicardial contribution to the developing cardiac muscle. On
the other hand, prove that epicardial cells do not contribute
to myocardium in zebrafish comes from Tcf21-tracing (Kikuchi
et al., 2011) and transplant experiments (González-Rosa et al.,
2012), in which a contribution to the perivascular beds is
reported. While these data might support the notion that
epicardial cells can contribute to the formation of cardiomyocytes
in vivo, yet these evidences remain controversial, mainly because
the limitation on the use of Cre-based techniques as a bone fide
fate mapping approach (Christoffels et al., 2009).

Additional controversies have also arisen regarding the
contribution of EPDCs to other vascular components. To date, it
seems clear that EPDCs mostly contribute to cardiac fibroblasts
and vascular smooth muscle cells, but their contribution to
vascular endothelial cells have also been challenged by additional
Cre-based fate mapping experiments. In fact, epicardial-derived
Cre based lineage tracing in mice failed to provide substantial
contribution to the developing vascular endothelium in mice
(Merki et al., 2005; Cai et al., 2008; Zhou et al., 2008). Red-
Horse et al. (2010) described that coronary endothelial lining

was mostly entirely derived from the sinus venosus endothelium
as revealed by an Apelin-Cre mice (Red-Horse et al., 2010; Tian
et al., 2013), a process that is VEGF-dependent (Chen et al.,
2014). However, additional evidences reported that ventricular
endocardial cells also can contribute to the coronary vasculature
(Wu et al., 2012) as revealed by Nfatc1-Cre lineage tracing.
Furthermore, by the usage of novel proepicardial lineage tracing
markers such as Scleraxis-Cre, Semaphorin-3D-Cre, and Fabp4-
CreER drivers (Katz et al., 2012; He et al., 2014) a contribution
to the coronary vasculature was also reported. In fact, reconciling
evidences reported by Chen et al. (2014) determined that sinus-
venous (SV) derived coronary vasculature mostly contributed
to the dorsal and lateral coronary vasculature (∼70%) whereas
the ventral aspects were mostly endocardial derived (∼70–80%),
with just a small (∼20%) but uniform contribution from the
epicardium. These data are in line with a recent report that
similarly estimated a 20% contribution from the proepicardium
(Cano et al., 2016). Interestingly, a significant proportion of
SV-derived and endocardial-derived cells displayed overlapping
patterns with PE-derived cells, suggesting a common lineage
origin. These data support the notion that multiple precursor
cell populations contribute to the formation of the cardiac
vasculature in mice, in contrast to avian hearts, in which the
epicardial-derived contribution is large and undisputed. Lineage
relationships between these three distinct coronary vasculature
components remain nonetheless to be fully elucidated in mice.

Over the last decade our understanding of the molecular
regulation of epicardial derived cells has largely increased with
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TABLE 1 | List of transcription factors, growth factors are other distinct molecules involved in distinct phases of proepicardium/epicardium development.

PE formation EMT Cell differentiation References

TRANSCRIPTION FACTORS

wt1 Specification Cell migration Endothelial and myocardial cells Zhou et al., 2008; Zhou and Pu, 2011; Rudat and Kispert, 2012;

Cano et al., 2016

tbx5 Specification Liu and Stainier, 2010; Diman et al., 2014

tbx18 Cell migration Takeichi et al., 2013; Wu et al., 2013

tcf21/pod1 Inhibits SM cells; promotes fibroblasts Braitsch et al., 2012

nkx2.5 Specification Zhou et al., 2008

islet-1 Specification Fibroblasts formation Zhou et al., 2008; Brønnum et al., 2013a

gata-4 Specification Watt et al., 2004; Kolander et al., 2014

Coup-tfII Cell migration Lin et al., 2012

Mrtf1/Mrtf2 Cell migration Trembley et al., 2015

Nf1 Cell migration Baek and Tallquist, 2012

GROWTH FACTORS

Tgfb1 Tgf b signaling Cell migration Craig et al., 2010a

Tgfb2 Tgf b signaling Cell migration Craig et al., 2010a

Tgfbr3 Tgf b signaling Cell migration Sánchez and Barnett, 2012

fgf10 Fgf signaling Fibroblasts Guadix et al., 2006; Vega-Hernández et al., 2011

fgfr2b Fgf signaling Fibroblasts Guadix et al., 2006; Vega-Hernández et al., 2011

dkk1 Wnt signaling Phillips et al., 2011

dkk2 Wnt signaling Phillips et al., 2011

cxcl12 Coronary vasculature contribution Cavallero et al., 2015

ccr4 Coronary vasculature contribution Cavallero et al., 2015

yap Hippo signaling Coronary vasculature contribution Singh et al., 2016

taz Hippo signaling Coronary vasculature contribution Singh et al., 2016

pdgfrbeta PDGF signaling Cell migration SM cells Mellgren et al., 2008; Bax et al., 2009; Smith et al., 2011

vegf Cell migration Endothelial cells Guadix et al., 2006; Tomanek et al., 2006; Azambuja et al., 2010

OTHERS

ra Endothelial cells Guadix et al., 2006; Tomanek et al., 2006; Azambuja et al., 2010

MEKK1 MAPK signaling Cell migration Craig et al., 2010b

tenascin c SM cell recruitment Ando et al., 2011

nephrin SM cell recruitment Wagner et al., 2011

Par6/Smurf/RhoA Wnt signaling Cell migration Sánchez and Barnett, 2012

Vcam/RhoA Cell migration Dokic and Dettman, 2006

the usage of conditional spatio-temporal deletion of discrete
signaling pathways. Epicardial cells display distinct divergent
and overlapping expression patterns of Wt1, Nfatc1, Tbx18, and
Pod1 in the chicken and murine hearts (Braitsch et al., 2012),
providing a heterogeneous panel of potentially distinct cardiac
stem cells. Whereas, to date it remains elusive when and how
epicardial cells becomes specific to their prospective lineage, it
is increasing clear that multiple factors play pivotal roles in this
process as summarized in Table 1. In particular, PDGFRβ is
important for epicardial migration and for the development of
coronary vascular smooth muscle cells (Mellgren et al., 2008;
Bax et al., 2009; Smith et al., 2011), retinoic acid and VEGF
primes endothelial vs. smooth muscle differentiation (Guadix
et al., 2006; Tomanek et al., 2006; Azambuja et al., 2010) and Fgf
signaling (Guadix et al., 2006), mainly through Fgf10 and Fgfr2b
are essential for cardiac fibroblast formation (Vega-Hernández
et al., 2011). In addition, Pod1/Tcf21 is regulated by retinoic acid
and inhibits differentiation of EPDCs into smooth muscle cells

in chicken and mice (Braitsch et al., 2012) while Wnt signaling
is also important for epicardial specification, as Dkk1 and
Dkk2 mouse mutants display impaired epicardial development
(Phillips et al., 2011). Similarly PCP disruption is also critical in
this context (Phillips et al., 2008) as well as MAPK kinase genetic
inactivation (Liberatore and Yutzey, 2004; Craig et al., 2010a,b).
Other signaling pathways, such as CXCL12/CXCR4 are also
crucial for cardiac vascular development (Cavallero et al., 2015).
Furthermore, Hippo signaling, mediated by Yap/Taz modulates
Tbx18 and Wt1 expression in the epicardium controlling their
contribution to the coronary vasculature (Singh et al., 2016).
Several other molecules have also been reported to be critical
for coronary artery formation, such as tenascin C (Ando
et al., 2011) and nephrin (Wagner et al., 2011) particularly for
smooth muscle recruitment to those cardiac vessels. Overall
these findings highlight the complexity of distinct signaling
pathways and molecules governing the coronary vasculature
development.
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THE ROLE OF THE POSTNATAL
EPICARDIUM IN THE INJURED HEART

Within the adult heart, the epicardium represents the outermost
layer, which is a simple epithelial layer. For many years,
the functional role of this layer has been neglected as
it was considered as an external cover devoid of any
functional meaning. The discovery that the epicardial precursors
can differentiate to beating cardiomyocytes has branded the
epicardium as a source of cardiac stem cells with great therapeutic
potential (Wessels and Pérez-Pomares, 2004; Pérez-Pomares
et al., 2006; Winter et al., 2009). In addition, it has been
reported that the adult epicardium plays a pivotal role in cardiac
regeneration (Bollini et al., 2011, 2015; Schlueter and Brand,
2012; Masters and Riley, 2014; Kennedy-Lydon and Rosenthal,
2015; Figure 1) as detailed below.

Seminal work by Kruithof et al. (2006) described that the
embryonic chicken PE if placed in appropriate cell culture
conditions, was capable of giving rise to beating cardiomyocytes.
Such in vitro conditions could be further promoted by Bmp
administration and blocked by Fgf signaling. Thus, these
data opened out the possibility that the epicardium could
serve as an in vivo source of potential cardiomyocytes if the
appropriate signals would be instructed in vivo. Importantly,
Smart et al. (2011) demonstrated that adult epicardial derived
cells, if previously primed with thymosinβ4, eventually generated
functionally beating cardiomyocytes in an ischemic heart, yet the
proportion of de novo integrated cells was rather spurious and
its instructive mechanism remains rather obscure (Gajzer et al.,
2013). Nonetheless, as a proof of principle approach it was highly
valuable. This work introduced a novel concept of an activated
epicardium, a condition by which embryonic epicardial markers
such as Wt1 and Tbx18 are re-expressed in the adult epicardium
(Huang et al., 2012; van Wijk et al., 2012; Braitsch et al., 2013;
Bollini et al., 2014; Aguiar and Brunt, 2015) in response to distinct
biological stimuli such as thymosinβ4 (Smart et al., 2012; Smart
and Riley, 2012), stem cell factor (SCF; Xiang et al., 2014), and
prokineticins (Urayama et al., 2008) among others. In addition,
this activated epicardium secretes paracrine factors thatmodulate
myocardial injury response (Zhou et al., 2011; Foglio et al., 2015).

While it is documented that the human heart has a limited
capacity to regenerate (Bergmann et al., 2009), it is also
highly acknowledged that the newt heart can also widely
regenerate by other means (Becker et al., 1974; Oberpriller
and Oberpriller, 1974). Furthermore, the adult zebrafish heart
can also regenerate (Poss et al., 2002) and the epicardium
provides a pivotal role during this regeneration process
(Gemberling et al., 2015; Wang et al., 2015). Molecular analyses
have demonstrated that the epicardium becomes activated as
soon as the heart is injured and such activation provides
instructive signals that promote cardiomyocyte proliferation,
revascularization, and tissue repair (Lien et al., 2006, 2012;
Marín-Juez et al., 2016). During this process a transitory
scar stage occurs and is subsequently replaced by fully
functional and integrated cardiomyocytes (González-Rosa et al.,
2011; Mercer et al., 2013; Itou et al., 2014; Marro et al.,
2016).

Further analyses in this front identified that Wnt1/β-
catenin is crucial promoting formation of cardiac fibroblasts
and hence cardiac repair (Duan et al., 2012). Several studies
have identified key molecules modulating this regeneration
capacity. For example, Nrg1 acts as a mitogenic agent
in cardiomyocytes following injury during cardiac zebrafish
regeneration (Gemberling et al., 2015). Notch (Zhao et al., 2014),
Raldh2 (Itou et al., 2014), and myocardial NF-κB (Karra et al.,
2015) are also essential for heart regeneration in zebrafish.
Hydrogen peroxide (Han et al., 2014) has been reported to
prime heart regeneration and telomerase has been identified as
instrumental for zebrafish regeneration (Bednarek et al., 2015),
but still it remains to be established if these factors are modulated
by the epicardium. More recently, it has been demonstrated
that epicardial regeneration is guided by the cardiac outflow
tract and hedgehog signaling (Wang et al., 2015) and single
cell transcriptome of the epicardium has identified caveolin1
as an essential factor in regenerating zebrafish heart (Cao and
Poss, 2016). Moreover, re-expression of epicardial developmental
genes and enhanced EMT in response to injury has been widely
demonstrated (Lepilina et al., 2006; Kim et al., 2010; González-
Rosa et al., 2011; Schnabel et al., 2011). These data suggest
that complex regulatory networks control zebrafish regeneration
(Rodius et al., 2016) positioning the epicardium as a key
tissue layer for regeneration. Thus, these data will be highly
instrumental to search for novel ways to heal the injured heart.

In adult mice, the regenerative capacity is lost and the injured
heart responds by generating a fibrous scar which is derived
from pre-existing epicardial cells (Zhou et al., 2008; Duan et al.,
2012) as well as de novo recruited bone marrow-borne circulating
cells (Ruiz-Villalba et al., 2015). Interestingly, full regeneration
is achieved at early developmental stages, i.e., on the first week
of life, in which the epicardium (Porrello et al., 2011) is also
a highly instructive player and thymosinβ4 priming increases
the time window for mammalian heart regeneration (Rui et al.,
2014). In addition a role for Wnt signaling has also been
identified in the regenerating heart in mice (Mizutani et al.,
2016). Recent evidence demonstrated that exosomal signaling
from the epicardium is essential for myocardial maturation
highlighting a pivotal role for clustering in this process (Foglio
et al., 2015). All these efforts have provided the bases of heart
regeneration. A giant step was recently reported by Wei et al.
(2015) whom used reconstitution of epicardial follistatin-like1
expression in biomaterial patches to heal the adult injured heart,
opening a novel way to regenerate the adult mammalian heart.

AN UNEXPECTED EPICARDIAL
DERIVATIVE WITH PARACRINE SIGNALING
LEADING TO CAD AND AF

While it is highly acknowledged that the epicardial precursor
cells, within the PE, and subsequently the EPDCs will give
rise to distinct cardiovascular embryonic cell lineages, it has
remained unexplored if the adult epicardium can generate
additional cellular subpopulations. Recent evidences have
demonstrated that intramyocardial adipose tissue is derived from
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the endocardium (Zhang et al., 2016), whereas adipose tissue
around the heart, mainly at the venous, arterial connections, and
atrial appendages is an adult epicardium derivative (Yamaguchi
et al., 2015). Furthermore, cardiac adipose tissue deposition has
recently been associated to distinct cardiovascular pathologies
(Figure 1), such as coronary arteries diseases (Iwayama et al.,
2014), atherosclerosis plaque disruption (Talman et al., 2014;
Yamashita et al., 2014), and atrial fibrillation (Batal et al., 2010;
Nakanishi et al., 2012; Gaborit et al., 2013). Although, these
are early days to fully understand the molecular mechanisms
linking epicardium, adipose tissue deposition, and cardiovascular
pathologies, supporting evidences suggest that these cells can act
as paracrine signaling center that, if impaired, can be the source
of cardiovascular diseases (Langlois et al., 2010; Greulich et al.,
2012).

NON-CODING RNAs IN THE
PE/EPICARDIUM

Over the last decade we have witnessed a revolution in the
concept of the control of gene expression with the discovery
of non-coding RNAs. Non-coding RNAs can be broadly
classified according to the transcript size into long non-coding
RNAs (lncRNAs) and small non-coding RNAs. Our current
understanding of lncRNAs is still in its infancy with just a
limited number of reports in the developing heart (Grote et al.,
2013; Klattenhoff et al., 2013; Sauvageau et al., 2013; Zhu et al.,
2014; Kurian et al., 2015). On the other hand, our knowledge
on the functional role of small non-coding RNAs, in particular
microRNAs, has been largely increased (Callis and Wang, 2008;
Chen and Wang, 2012; Bonet et al., 2013; Philippen et al., 2015;
Yan and Jiao, 2016). microRNAs are small non-coding RNA
of 18–24 nt in length that by homologous base-priming are
capable of blocking translation or degrading mRNA transcripts.
microRNAs are transcribed by RNA polymerase II, 5′ capped
and 3′ polyadenylated leading to mature microRNA by RNA
endonucleases such as Drosha and Dicer (Aranega and Franco,
2015; Towler et al., 2015). Mature microRNAs are loaded into
the RISC complex which can thereafter search for mRNA
transcript base complementarity (Hammond, 2015; Shen and
Hung, 2015). To date more than a 1,000 distinct microRNAs have
been identified in humans, which are quite conserved among
evolution. A seminal study by Singh et al. (2011) demonstrated
that conditional ablation of Dicer, an RNAse processing enzyme,
in the epicardium provoked impaired epicardial formation,
thin-walled myocardium, and aberrant coronary vasculature
formation. Thus, this study demonstrated a pivotal role for
microRNAs in PE/epicardium development. A large array of
studies have been reported in key developmental processes
by which the PE/epicardium is formed, such as epithelial-
to-mesenchymal transition in cancer (see for recent reviews;
Behbahani et al., 2016; Peng et al., 2016; Sulaiman et al., 2016;
Zou et al., 2016) and also within the heart (Stankunas et al.,
2010; Bonet et al., 2015) and cardiac regeneration (Porrello et al.,
2013) but surprisingly only a short list of studies have been
reported in PE/epicardium formation. miR-21 has been reported

in numerous studies promoting fibrogenesis both during cardiac
development and disease (Thum et al., 2008; Adam et al.,
2012; Derda et al., 2015; Gupta et al., 2016). Brønnum et al.
(2013a) has recently reported that miR-21 promotes fibrogenic
EMT in epicardial cells by modulating Pcd4 and Sprouty-1 and
these authors (Brønnum et al., 2013b) have also reported that
islet-1 can influence miR-21 expression and therefore modulate
cardiac fibrogenic EMT. Seeger et al. (2016) demonstrated that
let-7 inhibition enhances the recruitment of epicardial cells
after myocardial infarction promoting an improved cardiac
function. Overall these studies demonstrate a nascent role for
microRNAs in PE/epicardium formation, which might provide
novel approaches to activate and prime epicardial cells for cardiac
regeneration.

CONCLUSIONS AND PERSPECTIVES

Over the last decade our understanding of the cellular
contribution of the PE/epicardium has largely increased.
Seminal works using quail-chick chimeras demonstrated a
large plasticity for the EPCDs, contributing to the cardiac
fibrous skeleton, the coronary vasculature and the developing
atrioventricular valves (Poelmann et al., 1993; Wessels and
Pérez-Pomares, 2004; Figure 1). However, with the advent
of molecular tracing tools, multiple evidences demonstrated
a rather more complex contribution and architecture to the
coronary vasculature in mice. Cre-driven fate mapping can
be pervasive and promiscuous tools, deriving in complex
and in many cases controversial findings. We hope that
either retrospective clonal analysis as previously reported for
myocardial components (Meilhac et al., 2003, 2004a,b) or
genuine prospective lineage tracing would serve to reconcile
these findings in the PE/epicardial context. With no doubt
one of the seminal work that prompted the interest of the
epicardial lining in the context of cardiac stem cell and
cardiac regeneration was reported by Kruithof et al. (2006)
demonstrating that PE/epicardial cells could be generating
cardiomyocyte in vitro opening the possibilities to unlock
the myocardial lineage commitment in vivo. Thymosin beta4
was the first of these unlocking tools, providing an entry
site to regenerate the heart using the epicardium as a
cell source (Smart et al., 2011; Smart and Riley, 2012). In
addition, bridging epicardial activation by follistatin-like1 into
biomaterials provided additional convincing evidences on the
feasibility of these approaches (Wei et al., 2015). New tools will
be discovered in the near future.

In recent years a novel link between the epicardium and
epicardial derived structures is emerging (Figure 1). Intriguingly,
adipose fat deposition within the pericardiac regions has
been linked to cardiac pathophysiologies such as coronary
artery atherosclerosis and atrial fibrillation. To date the casual
relationship remains enigmatic, yet a plausible embryonic link
might be present since epicardial cells can differentiate into
adipose tissue (Zhang et al., 2016) and epicardial cells contribute
to both endothelial and smooth muscle components of the
coronary vessels (Pérez-Pomares et al., 2002; Cano et al., 2016).
However, our current understanding is still in its infancy and for
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sure we will witness additional cellular and molecular evidences
deciphering the interplay between these rather apparent distinct
cardiovascular entities.

While our cellular and molecular understanding of
PE/epicardium/EPDC has greatly advanced in recently years,
the discovery of novel levels of gene regulations, in particular
those exerted by the non-coding RNAs, is called to change
our molecular and signaling pathways schemes. The discovery
that microRNAs are crucial to epicardial development is
simply demonstrating the equally pivotal roles of these tiny
molecules in other cardiovascular developmental contexts
(Cordes and Srivastava, 2009; Chinchilla et al., 2011; Bonet
et al., 2015). In addition to microRNAs, long-non-coding RNAs
are also called to play pivotal role in cardiogenesis (Grote
et al., 2013; Klattenhoff et al., 2013) and thus similarly in
epicardial development. In coming years, additional routes
would be discovered demonstrating the essential role of these

new players in epicardial biology both during development and
disease.
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Skeletal muscles belong to the musculoskeletal system, which is composed of bone,

tendon, ligament and irregular connective tissue, and closely associated with motor

nerves and blood vessels. The intrinsic molecular signals regulating myogenesis

have been extensively investigated. However, muscle development, homeostasis and

regeneration require interactions with surrounding tissues and the cellular and molecular

aspects of this dialogue have not been completely elucidated. During development

and adult life, myogenic cells are closely associated with the different types of

connective tissue. Connective tissues are defined as specialized (bone and cartilage),

dense regular (tendon and ligament) and dense irregular connective tissue. The role

of connective tissue in muscle morphogenesis has been investigated, thanks to the

identification of transcription factors that characterize the different types of connective

tissues. Here, we review the development of the various connective tissues in the

context of the musculoskeletal system and highlight their important role in delivering

information necessary for correct muscle morphogenesis, from the early step of myoblast

differentiation to the late stage of muscle maturation. Interactions between muscle

and connective tissue are also critical in the adult during muscle regeneration, as

impairment of the regenerative potential after injury or in neuromuscular diseases results

in the progressive replacement of the muscle mass by fibrotic tissue. We conclude

that bi-directional communication between muscle and connective tissue is critical for

a correct assembly of the musculoskeletal system during development as well as to

maintain its homeostasis in the adult.

Keywords: connective tissue, muscles, bones, tendons, development, regeneration

INTRODUCTION

Skeletal muscle forms a highly complex and heterogeneous structure, which is part of the
musculoskeletal system of the body. The process of generating muscles is defined as “myogenesis.”
This mechanism occurring during development is an important step in the establishment of the
musculoskeletal system allowing its essential functions, for instance body motion or the ability
to breath. Myogenesis occurs through successive and overlapping phases that ultimately give
rise to correctly patterned muscles. In the first phase of myogenesis, which is called embryonic
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myogenesis, embryonic progenitors cells form primary muscle
fibers, which constitute the scaffold of the muscles. During
the second phase of myogenesis named fetal myogenesis, fetal
progenitors fuse between themselves and with primary fibers to
form secondary fibers and allow muscle growth. Both waves of
myogenesis occur during embryonic development, and involve
specific types of muscle progenitors cells. After birth, a third
wave of myogenesis can be activated during muscle regeneration,
which occurs after muscle damage. This step involves muscle
stem cells, so-called muscle satellite cells, which contribute to
muscle reconstruction by fusing with the existingmuscle fibers or
generating new muscle fibers (Stockdale, 1992; Tajbakhsh, 2009;
Tedesco et al., 2010). Studies suggest that embryonic myogenesis
is largely exhausted at the end of embryonic development, while
fetal and perinatal phases of myogenesis persist to contribute to
the majority of adult muscle stem cells (reviewed in Tajbakhsh,
2009).

The intrinsic molecular signals regulating the different waves
of myogenesis have been well described in the literature.
However, the interactions between muscles and adjacent tissues
during development are not completely elucidated. During
development and adult life, as part of the musculoskeletal system,
muscles are closely associated with the other components of
this system: bone, cartilage, tendon, ligament and irregular
connective tissue, all of them emerging from the family
of connective tissues. Although the interactions between the
different components of the musculoskeletal system during
development has been highlighted from the 1980’s, more
recent work has begun to decipher the molecular mechanisms
underlying the importance of connective tissue in the regulation
of developmental and regenerative myogenesis.

The scope of this review is to synthesize the data supporting
the process of connective tissue-mediated muscle development
and regeneration and to point out the active role of this
so-called “supporting tissue” in muscle formation and repair.
Indeed, defect in connective tissue-muscle interactions can lead
to human pathology, as congenital diaphragmatic hernias, a
birth defect of the diaphragm muscle (Merrell et al., 2015), or
the Holt-Oram syndrome characterized by skeletal defects of
the upper limbs and heart anomalies (Hasson et al., 2010). In
addition, in skeletal muscle regenerative disorders (muscular
dystrophies) as well as in aging (sarcopenia), the impairment of
the muscle regenerative potential correlates with a progressive
replacement of contractile mass by fibrotic and adipose tissues
(reviewed in Farup et al., 2015). It is therefore necessary to better
understand the interactions occurring between the different
components of the musculoskeletal system. This would allow
us to decipher the molecular mechanisms underlying muscle
disorders not related to the impairment of intrinsic regulation of
myogenesis.

CONNECTIVE TISSUE DEVELOPMENT

Different Types of Connective Tissues
In the body, the main role of connective tissues (CTs) is
to support and connect organs together. CTs are primarily
composed of fibroblasts and extracellular matrix consisting of

amorphous gel-like and matrix fibers. The amorphous gel-like,
named ground substance, mostly contains glycoproteins and
proteoglycans, while the fibrous network is made of collagen
and elastic fibers (Omelyanenko and Slutsky, 2013). Among
the supportive CTs, two main types can be distinguished: the
specialized CT and the dense CT. The specialized CT refers to
bones and cartilage elements. The dense CT is further divided
into two subtypes: the dense regular CT and the dense irregular
CT, which refer respectively to tendon/ligament structures and
to CT embedding organs (Table 1). The nature and function
of these different CTs are predominately determined by the
composition and organization of the extracellular matrix. In
dense regular CT, fibroblasts produce a significant amount of
collagen fibers that display a spatial organization, while in the
dense irregular CT, fibroblasts produce collagen fibers that do
not present any specific organization (Omelyanenko and Slutsky,
2013).

Connective Tissue Formation
During embryonic development, undifferentiated mesenchymal
cells, derived from mesodermal and mesectodermal (neural
crest cells) origins, give rise to the different forms of CT:
bones, cartilage, tendons, ligaments, and irregular CT (Wachtler
et al., 1981). Head CTs originate from neural crest cells,
while CTs of the body originate from paraxial or lateral
plate mesoderm (Figure 1). The specification and differentiation
processes of the different types of CTs is controlled by specific key
transcription factors or signaling molecules. Irrespective to their
embryological origins, transcription factors have been identified
for the specification of each type of CT from undifferentiated
mesenchymal cells (Figure 2).

Specialized Connective Tissue (Bone and Cartilage)
The embryonic origins of cartilage and bone are multiple.
Indeed, elements of the trunk, head and limb skeleton arise
from three distinct embryonic structures, somites, neural crest
cells and lateral plate mesoderm (Figure 1, Wachtler et al.,
1981; Christ and Wilting, 1992; Noden and Trainor, 2005).
The process of skeleton formation, which corresponds to the
development of cartilage and bone elements, is initiated by the
condensation of undifferentiated mesenchymal cells at the future
sites of bones. Following condensation, mesenchymal precursors
undergo either chondrocyte or osteoblast differentiation,
giving rise respectively to cartilage or bone. Osteogenesis
characterizes the process of ossification, which occurs through
two different mechanisms. The process of intramembranous
ossification corresponds to a direct transition from condensed
undifferentiated-mesenchymal cells into osteoblasts (as described
above). The second mechanism of bone formation is called
endochondral ossification. It defines the replacement of cartilage
by bone. In this case, chondrogenesis is the first step in a
process that ultimately gives rise to bones. Intramembranous
ossification occurs in bones of the skull, while other bones form
by endochondral ossification (reviewed in Karsenty andWagner,
2002).

Molecular mechanisms involved in cartilage and bone
specifications are well understood (Figure 2). Members of the
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TABLE 1 | Classification of the different types of connective tissues.

Connective tissue types

Proper Specialized

Soft Dense

Adipose tissue: brown, beige and white

adipose tissue

Areolar tissue: sub-cutaneous, around

blood vessels, and nerves

Reticular tissue: into the liver, pancreas,

lymph nodes, spleen, bone marrow

Regular Irregular Bones cartilage

Tendons: direct tendons, wrap-around tendons

Ligaments: intra articular and extraarticular,

synovial joints

Dermis Capsules of organs (periosteum, epimysium)

Walls of tubular organs

Muscle connective tissue (endomysium,

perimysium)

15s

Head

Forelimb
level

Hindlimb
level

Trunk

20s

25s

30s

Dense regular
Connective Tissue

(Tendon)

Specialized 
Connective Tissue

(Bone and Cartilage)

Dense irregular 
Connective Tissue

FIGURE 1 | Embryonic origins of the different types of connective tissues. The different types of connective tissues, specialized (bone and cartilage), dense

(tendon) and irregular connective tissues are depicted in three mouse E14.5 embryos. The color code corresponds to the embryological origins of the different types

of connective tissues, which differ depending on their location in the body. Connective tissues of the head derive from neural crest cells (green), while trunk connective

tissues arise from the somites (blue) and limb connective tissues arise from the lateral plate mesoderm (pink).

SOX (SRY-related HMG-box) transcription factor family are key
players in the regulation of cartilage specification (Lefebvre et al.,
1998). During mouse embryonic development, Sox9 presents
a similar expression pattern to Col2a1, the main collagen in
the cartilage extracellular matrix (Zhao et al., 1997). In mouse
mutant embryos for Sox9, cartilage development fails. The
complete absence of cartilage elements in Sox9 mutant mice
highlights a role for Sox9 in the regulation of mesenchymal
cell condensation and differentiation toward a cartilage fate
(Bi et al., 1999; Akiyama et al., 2002). Moreover, it has
been shown that Sox9 is required for the expression of two
additional Sox genes, Sox5, and Sox6 that are co-expressed
with Sox9 in committed cartilage cells (chondrocytes), (Lefebvre
et al., 1998, 2001). Both Sox5 and Sox6 mutant mice show
skeletal abnormalities, with no modification of Sox9 expression,

demonstrating that Sox9 acts upstream of Sox5 and Sox6 (Smits
et al., 2001).

Runx2 (Runt-related transcription factor 2) is a master
gene for osteogenesis (Komori et al., 1997; Ducy et al., 1999).
This transcription factor is specific to bone progenitor cell
lineage (Ducy et al., 1999). Knockout mice for Runx2 show no
osteogenesis. While cartilage elements are still present in Runx2
−/− mouse, all bones are missing, demonstrating the importance
of Runx2 in bone specification (Komori et al., 1997). In contrast
to Sox9, which is required for cartilage differentiation in addition
to specification (Akiyama et al., 2002), Runx2 is not required
for bone differentiation (Takarada et al., 2013). After osteogenic
cell commitment, Runx2 activity has to be shut down to allow
immature committed bone cells to become fully mature and to
differentiate (Yoshida et al., 2004; Takarada et al., 2013; Adhami
et al., 2014). Osterix (Osx) is also a key transcription factor
in bone formation (Nakashima et al., 2002). Osx is specifically

expressed in all bones (Nakashima et al., 2002) and is required
for differentiation of bone progenitor cells. In mutant mouse
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FIGURE 2 | From mesenchymal stem cells to specific connective tissue cell types. Undifferentiated mesoderm-derived cells or mesenchymal stem cells are

able to differentiate into different types of connective tissues including, bone, cartilage, tendon, and irregular connective tissue. Specific transcription factors have

been identified as able to induce mesenchymal stem cell differentiation toward the different types of connective tissue cells. The Sox5/6/9, Runx2/Osx, Scx/Mkx/Egr1,

and Tcf4/Tbx5/Osr1 genes drive undifferentiated cells to differentiate into cartilage, bone, tendon and irregular connective tissue, respectively.

for Osx, no bone is observed, however Runx2 expression is
maintained (Nakashima et al., 2002). Conversely, Osx expression
is absent in Runx2 mutant mice (Nakashima et al., 2002). This
indicates that Runx2 and Osx are involved in bone specification
and differentiation, respectively.

Beside the specific transcription factors, major signaling
pathways have also been demonstrated to be involved in skeletal
development. Wnt pathway regulates skeleton differentiation
through a cell-autonomous mechanism, which enhances
osteoblast differentiation at the expense of chondrocytes (Day
et al., 2005; Hill et al., 2005). Conditional inactivation of ß-
catenin in mesenchyme blocks osteoblast differentiation and
induces ectopic chondrocytes (Day et al., 2005). In addition,
ß-catenin has been shown to control the expression of Sox9 and
Runx2 in vitro (Day et al., 2005). The role of FGF signaling in

skeletal development comes from the observations that FgfR3
and FgfR1 inactivation in mouse leads to achondroplasia and
hypochondroplasia (Deng et al., 1996; Jacob et al., 2006). In both
mutant mice, an expansion of the hypertrophic chondrocyte
zone is observed, suggesting that FGF signaling is a negative
regulator of chondrocyte proliferation (Deng et al., 1996; Jacob
et al., 2006). Inactivation of one member of the Hedgehog family,
Ihh (Indian Hedgehog), leads to a decrease in chondrocyte
proliferation and a defect in osteoblast formation (Vortkamp
et al., 1996). This effect is mediated by the interaction between
Ihh and Parathyroid hormone, which maintains the rate between
cell proliferation and differentiation (Kronenberg, 2006).
Interestingly, RUNX2 induces Ihh expression which inhibits
Runx2 expression by a feedback loop mechanism (Yoshida
et al., 2004). Finally, BMPS (Bone Morphogenetic Proteins) are
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important regulators of chondrocyte differentiation (Kobayashi
et al., 2005, reviewed in Li and Cao, 2006) and have been shown
to regulate IHH expression in chick embryos (Zhang et al.,
2003).

Dense Regular Connective Tissue (Tendon)
Similarly to specialized CTs (bone and cartilage), tendons arise
from distinct embryological origins depending on their position
in the body (Figure 1). Tendons of the trunk originate from
somites, more precisely from a subregion of the sclerotome
named the syndetome (Brent et al., 2003), tendons of the
craniofacial region derive from neural crest cells (Crane and
Trainor, 2006; Grenier et al., 2009) and limb tendons derive
from the lateral plate mesoderm (Kieny and Chevallier, 1979).
Tendons attach muscles to bones by connecting muscle at the
myotendinous junction and connecting bone at the enthesis,
while ligaments connect bone to bone. The role of tendons is
to transmit forces generated by muscle contractions to bones,
in order to allow joint movements and maintain articular
stability. The tendon extracellular matrix is rich in type I collagen
fibers, which display a specific spatial organization parallel to
the tendon axis. This specific organization lends mechanical
properties to tendons (Benjamin and Ralphs, 2000). Ligaments
are essential components of the skeletal joints. Their elasticity
defines the range of motion of the joints, supports joint stability
and protects joints and bones by their stretching capacities.
Tendons and ligaments display similar structural collagen
organization and molecular markers (Benjamin and Ralphs,
2000). However, genome-wide analysis identifies different levels
of gene expression between adult tendons and ligaments
(Pearse et al., 2009). However, tendon development has been
more studied than ligament development (Tozer and Duprez,
2005).

In contrast to cartilage and bone, the master gene(s)
involved in tendon specification during development is (are)
still unknown. To date, Scx (Scleraxis) is the unique early
tendon marker that has been described in vertebrates. Scx is
specifically expressed in tendon progenitors and differentiated
cells (Schweitzer et al., 2001). Scx mutant mice display severe
tendon defects, leading to a severe impairment of limb and tail
force-transmitting tendons, while anchoring tendons are less
affected (Murchison et al., 2007). However, tendon progenitors
are still present in Scx−/−, indicating that Scx is not the master
gene driving tenogenesis during development. Two additional
transcription factors have been identified to be involved in
tendon formation, the homeobox transcription factor Mkx
(Mohawk), (Ito et al., 2010; Liu et al., 2010) and the zinc finger
transcription factor Egr1 (Early Growth Response 1), (Lejard
et al., 2011, Figure 2). Both Mkx and Egr1 mutant mice display
tendon defects associated with a decrease in Col1a1 expression
levels and in type I collagen fiber number in tendons (Ito et al.,
2010; Liu et al., 2010; Lejard et al., 2011; Guerquin et al., 2013).
However, both Mkx and Egr1 are expressed after Scx during
development and are not specific to tendons, since they are
expressed in many other lineages (Rackley et al., 1995; Anderson
et al., 2006).

TGFß (Transforming growth factor) and FGF (Fibroblast
growth factor) signaling pathways have been shown to regulate
tendon specification and differentiation at different places of
the body (recently reviewed in Gaut and Duprez, 2016).
As mentioned above, axial tendon progenitors arise from a
somitic subcompartment named the syndetome. The syndetome
compartment, localized at the interface between the sclerotome
and myotome, is formed by Scx-expressing cells. In chick
embryos, axial tendons do not develop in the absence of axial
muscles, as demonstrated by the absence of tendons after
dermomyotome removal (Brent et al., 2003). Chick axial SCX
expression is induced in response to FGF signaling arising
from the myotome, which concomitantly downregulates PAX1
expression in the sclerotome (Brent et al., 2003). In contrast
to axial tendons, the initiation of head and limb tendons is
independent of muscle. In the absence of limb or craniofacial
muscles, Scxa/SCX/Scx expression is normally induced in limb
and head of zebrafish, chick and mouse embryos (Schweitzer
et al., 2001; Edom-Vovard et al., 2002; Grenier et al., 2009;
Chen and Galloway, 2014). In chick limbs, SCX induction is
known to be mediated via ectodermal signals, as shown by the
absence of SCX expression after ectoderm removal (Schweitzer
et al., 2001). BMP signaling from the limb mesenchyme represses
SCX expression and overexpression of the BMP antagonist
NOGGIN leads to ectopic SCX expression, indicating that tendon
specification in chick limbs results from a balance between
an unidentified factor coming from the ectoderm and BMP
signaling from the mesenchyme (Schweitzer et al., 2001). TGFß
is a key signaling molecule for tendon development. TGFß
signaling is required and sufficient for Scx/SCX expression during
development in chick and mouse embryos (Pryce et al., 2009;
Havis et al., 2014, 2016), while FGF signaling is required and
sufficient for SCX expression in undifferentiated chick limb cells
but not in mouse limb cells (Pryce et al., 2009; Havis et al., 2014,
2016).

Although muscles are not necessary for head and limb
tendon initiation, they are required for the maintenance
of Scxa/SCX/Scx expression in tendons and for full tendon
differentiation. In the absence of muscles, tendons degenerate
in chick, mouse and zebrafish embryos (Kardon, 1998; Edom-
Vovard et al., 2002; Grenier et al., 2009; Chen and Galloway,
2014). Moreover, overexpression of FGF4, which is normally
expressed at the tips of muscles fibers, leads to ectopic
expression of tendon-associated genes in chick limbs (Edom-
Vovard et al., 2002; Eloy-trinquet et al., 2009). In addition,
chick embryo immobilization decreases SCX expression in
limb tendons and application of FGF4 or TGFβ ligands
prevents SCX down-regulation consecutive to immobilization,
demonstrating that FGF and TGFβ act downstream of
mechanical forces to regulate tendon differentiation (Havis
et al., 2016).

Dense Irregular Connective Tissue
The irregular CT constitutes a protective envelop for the different
organs of the body, by embedding and scaffolding organs, with
scattered cells embedded in high extracellular matrix content.
Irregular CT is present all around organs, but also inside organs.
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First studies on the differentiation of irregular CT have focused
on the extracellular matrix composition. During development,
Type I and type III collagen are both expressed in dense regular
and irregular CTs, however type I collagen tends to replace
type III collagen in adult tendons, while mature irregular CT
is characterized by the expression of both type III and type VI
collagen (Kieny and Mauger, 1984; Zhang et al., 2005; Gara
et al., 2011; Stricker et al., 2012). Due to the lack of specific
early molecular markers, the mechanisms driving irregular CT
specification have been poorly investigated. However, the recent
identification of transcription factors expressed in irregular CT
has provided new insights into irregular CT formation and
function (Figure 2).

The first marker identified in irregular CT fibroblasts is the
transcription factor TCF4, belonging to the TCF/LEF family. In
limbs of both mouse and chick embryos, Tcf4-expressing cells
discriminate the lateral plate-derived mesodermal population
from myogenic cells (Kardon et al., 2003; Mathew et al., 2011).
When chick limb muscles differentiate, TCF4 expression is
restricted to muscle CT (Kardon et al., 2003) and colocalizes
with type I collagen. Expression of TCF4 in muscle CT persists
at adult stages (Mathew et al., 2011). TCF4 misexpression in
chick limbs leads to muscle patterning defects, highlighting a
non-cell autonomous effect of muscle CT on muscles, in which
TCF4-expressing fibroblasts define a pre-pattern that ultimately
drive muscle patterning (Kardon et al., 2003). However, low
levels of Tcf4 have been also observed genetically in myogenic
cells (Murphy et al., 2011). BMP signaling has been shown to
negatively regulate TCF4 expression (Bonafede et al., 2006), while
Wnt signaling positively regulates TCF4 expression (Kardon
et al., 2003) in developing chick limbs. TCF4 is also expressed
dynamically in avian jaw muscle CT and has been shown to be
regulated by neural crest mesenchyme (Tokita and Schneider,
2009).

The T-box transcription factor Tbx5 is another gene that
has been characterized as expressed in fibroblasts constituting
irregular CT. At early stage of mouse limb bud development
(E11.5), Tbx5 is broadly expressed in lateral plate mesodermal
cells in domains overlapping with bone, tendon and muscle
progenitors (Hasson et al., 2007). Disruption of Tbx5 function
in mice leads to disorganization of muscle CT during embryonic
development (Hasson et al., 2010), which could be related to
subtle alterations of muscle CT markers, as Tcf4 and the Osr
genes (see below), (Hasson et al., 2010). Tbx5 positively regulates
the expression of N-cadherin and ß-Catenin in muscle CT and
as the expression levels of Wnt signaling targets are not affected
in Tbx5mutant, it seems noteworthy that Tbx5mostly affects cell
adhesion mechanisms independently of Tcf4.

Two orthologs of the Odd-Skipped genes, Osr1 and Osr2,
has been described as expressed in the irregular CT in chick
and mouse embryos (Stricker et al., 2006, 2012). Both genes are
expressed in a variety of organs such as kidney, eye, branchial
arches, and dermis (So and Danielian, 1999; Lan et al., 2001;
Stricker et al., 2006). In the developing limb of mouse and chick
embryos, Osr1 is expressed in all irregular CTs, displaying a
partial overlap with Tcf4 (Stricker et al., 2006). Osr2, although
widely expressed in irregular CT, shows prevalence formuscle CT

(Stricker et al., 2006, 2012). Both genes are also expressed in the
mesenchyme of branchial arches in chick (Stricker et al., 2006)
and mouse (Liu et al., 2013) embryos. Forced expression of OSR1
or OSR2 in chick mesenchymal progenitor limb cells induces the
expression of irregular CTmarkers such asCOL3A1 andCOL6A1
and down-regulates the expression of markers of cartilage
(specialized CT) and tendon (dense regular CT), (Stricker et al.,
2012). Conversely, OSR1 or OSR2 inactivation down-regulates
COL3A1 and COL6A1 expression, while increasing cartilage
formation in chick limb cells (Stricker et al., 2012). Similarly,
specific inactivation of Osr1 in cranial neural crest cells result in
the formation of an ectopic cartilage in the developing mouse
tongue (Liu et al., 2013). OSR1 has been shown to bind Sox9
promoter and repress Sox9 expression, indicating that OSR1
prevents chondrogenesis in the mammalian tongue through
repression of Sox9 expression (Liu et al., 2013).

MUSCLE DEVELOPMENT

Embryonic Origins of Skeletal Muscles
In vertebrates, all skeletal muscles derive from paraxial
mesodermal cells (Figure 3; reviewed in Stockdale et al., 2000;
Noden and Francis-west, 2006), with the exception of a small
population of neck muscles that have been shown to derive
from the lateral plate mesoderm (Theis et al., 2010). Most of
the knowledge about the paraxial mesodermal origin of skeletal
muscles was established thanks to Di-I labeling (Selleck and
Stern, 1991) and chick-quail graft experiments (Couly et al., 1992;
Ordahl and Le Douarin, 1992). These lineage studies showed
that although skeletal muscles share a common mesodermal
origin, muscle organization significantly differs depending on
their rostro-caudal position in the embryo.

Head muscles originate from cranial paraxial mesoderm.
Cranial paraxial mesoderm lacks any initial signs of segmentation
and mesodermal cells will only be segregated once they reach
the branchial arches concomitantly with cranial neural crest cells
(Figure 3; reviewed in Noden and Francis-west, 2006). Three
distinct groups of cranial muscles can be distinguished: the
extraocular muscles, originating from the prechordal mesoderm,
the branchiomeric muscles including the muscles of the jaw,
anterior neck and face, arising from the paraxial mesoderm and
the tongue and posterior neck muscles, deriving from anterior
somites (Noden, 1983; Couly et al., 1992; Trainor et al., 1994).

Truncal paraxial mesoderm caudal to the head emerges from
already segmented embryonic structures, the somites, that will
give rise to two main compartments all along the truncal axis of
the embryo, the sclerotome and the dermomyotome (Figure 3,
reviewed by Christ and Ordahl, 1995). Limb and axial skeletal
muscles originate from the dermomyotome. The dorsomedial
part of the dermomyotome gives rise to the epaxial musculature
corresponding to the back and intercostal muscles, while the
ventrolateral part of the dermomyotome gives rise to the hypaxial
musculature corresponding to the diaphragm, abdominal and
limb muscles (Ordahl and Le Douarin, 1992). Few muscles from
themost posterior part of the head, including tonguemuscles and
muscles of the posterior pharyngeal arches also develop from the
somites (Noden and Francis-west, 2006).
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Molecular Cascades That Regulate Muscle
Development
Lineage progression to establish skeletal muscle from a founder
mesodermal cell in the embryo is common to all skeletal muscles.
An undifferentiated mesodermal cell (fate is not acquired) will
switch to a muscle progenitor state (fate being acquired) to finally
end up as a differentiated muscle cell (functional entity). Such
switches from an undifferentiated state to a fully differentiated
state are regulated by the activation of different groups of
transcription factors (Figure 4). Head, trunk and limb muscle
progenitors are specified by different genetic programs, but
once specified, myogenic cells use a common differentiation
program.

In the body, myogenic specification requires Pax3 and
Pax7 genes, belonging to the paired-box Pax family. PAX3
controls the delamination of epaxial myogenic progenitor cells

(reviewed in Tajbakhsh and Buckingham, 2000). Moreover,
the central domain of the dermomyotome gives rise to a

PAX3/PAX7 progenitor population forming subsequent axial

muscles. In Pax3/Pax7 double-mutant mice, somitic cells do

not enter the myogenic program, resulting in defective skeletal

muscles (Kassar-Duchossoy et al., 2005; Relaix et al., 2005).

The acquisition of a myogenic fate depends on a second group

of transcription factors, named the basic Helix-Loop-Helix
(bHLH) Myogenic Regulatory Factors (MRFs). MRFs have the
ability to trigger skeletal muscle differentiation in non-muscle
cells in vitro (Weintraub et al., 1991) and in vivo (Delfini
and Duprez, 2004). Myod1 (MyoD), Myf5, and Myf6 (Mrf4)
are considered as the muscle determination factors (Kassar-
Duchossoy et al., 2004), while MyoG (Myogenin) is associated
with muscle differentiation (Hasty et al., 1993). However, both
Myod1 and Myf6 (Mrf4) are also required for terminal muscle

FIGURE 3 | Embryonic origins of skeletal muscles. Myogenic cells of skeletal muscles have two distinct embryonic origins. Myogenic cells of head muscles

originate from the paraxial mesoderm (green), except the tongue and posterior neck muscles, which originate from the hypaxial lip of dermomyotome of cranial

somites (pink). In the trunk, myogenic cells of back muscles derive from the epaxial lip of dermomyotome (blue), while myogenic cells of diaphragm and limb muscles

derive from the hypaxial lip of dermomyotome (pink).

Muscle
Fibres

Pax3/7
Myf5
MyoD
Myf6

MyoG
MyoD

Myoblasts
Muscle

Progenitors

FIGURE 4 | From muscle progenitors to muscle fibers. The myogenic program is characterized by the successive and overlapping expression of specific

transcription factors. PAX3 and PAX7 label the progenitor state. The MYF5, MYF6, MYOD myogenic factors label the entry into the myogenic program, MYOG is

characteristic of differentiated multinucleated muscle cells.
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differentiation (reviewed in Buckingham, 2006). Myf5 and
Myf6 (Mrf4) regulate the entry of progenitor cells into the
myogenic program when they delaminate from the lips of the
dermomyotome to form the myotome, but subsequent hypaxial
activation of Myf5 is Pax3-dependent (Bajard et al., 2006). Early
expression ofMyod1 depends onMyf5,Myf6, and Pax3 as in the
Myf5/Myf6/Pax3 triple mutants,Myod1 expression is altered and
skeletal muscles do not form in the trunk and limbs (Tajbakhsh
et al., 1997).

In vertebrates, the myogenic program of the head differs from
the body musculature. While the expression of the myogenic
regulatory factors Myf5, Myod1, and Myog in the craniofacial
muscles is similar to what is observed in trunk/limb muscles
(Hacker and Guthrie, 1998), the genetic hierarchies operating
upstream of the myogenic genes are different for head muscles
(branchiomeric and extraocular muscles). Pax3 is not expressed
in head muscles, and Pax7 does not appear critical as head
muscles form in the Pax7mutant mice (Relaix et al., 2004).While
Myf6 is not necessary for cranial myogenesis, other transcription
factors among which Tcf21 (Capsulin), MyoR, Tbx1, and Pitx2
regulate the myogenic factors to form the different craniofacial
muscles (Tzahor, 2009). Tbx1 and Pitx2 have been shown to
activate Myod1 and Myf5 in the head and inactivation of Tbx1
and Pitx2 in mice causes severe reduction of specific groups of
head muscles (Kelly et al., 2004; Zacharias et al., 2011). In mutant
mice for Tcf21 and MyoR, myogenic genes are not activated in
branchiomeric muscles, and cells undergo cell death (Lu et al.,
2002).

Myogenic factors are crucial intrinsic actors for correct
development of muscle, however numerous studies have shown
that their initiation and regulation also depends on secreted
factors coming from the adjacent tissues. The influence of
neural tube, neural crest cells, notochord and ectoderm on the
formation of muscles has been previously extensively studied and
showed that Shh, BMP, Wnt, FGF, and Notch signaling pathways
participate to both axial and limbmyogenesis (reviewed in Deries
and Thorsteinsdóttir, 2016).

Connective Tissue-Mediated Muscle
Morphogenesis
CTs and muscles are closely related during embryonic
development and adult stages, suggesting that interactions
between these tissues might be essential for their development.
Classical experiments in avian embryos have demonstrated
that signals involved in muscle differentiation and patterning
partly derived from surrounding tissues (Lance-Jones, 1988;
Ordahl and Le Douarin, 1992; Kardon, 1998). Over the last years,
thanks to the identification of specific molecular markers for the
different types of CT, progress has been made in the dissection
of mechanisms underlying the interactions between CT and
muscle development. These data have shown that depending
on their embryological origin and their position throughout the
body, mechanisms and signaling pathways coming from the
diverse types of CT influence spatially and temporally muscle
morphogenesis.

Specialized Connective Tissue-mediated
Myogenesis (Bone and Cartilage)
Limb muscles and specialized CTs (bone and cartilage) do not
exhibit direct physical interactions, as they are linked together
via tendons. During limb development, processes regulating
skeleton and muscle formation can be dissociated (Hasson et al.,
2010; Li et al., 2010). Indeed, disruption of skeletogenesis,
through the mutation in the LIM-homeodomain transcription
factor Lmx1b in skeletal progenitors using the Sox9-Cre, has
no effect on muscle development (Li et al., 2010). Similarly,
inactivation of the BMP antagonist, Noggin, which is expressed
in condensing cartilage and immature chondrocytes, leads to
profound skeletal defects without affecting the early stages of
myogenic differentiation (Tylzanowski et al., 2006). However,
despite the fact that skeleton and muscle formation can be
dissociated, it has been evidenced that skeleton-derived signals
are required for proper myogenesis. Indeed, although no defect
at the onset of myogenesis is observed in Noggin null-mutant
mice, terminal muscle differentiation is impaired (Tylzanowski
et al., 2006; Costamagna et al., 2016). The Indian hedgehog (Ihh)
secreted factor which belongs to the Hedgehog family is secreted
by developing chondrocytes (Vortkamp et al., 1996). In the
absence of Ihh, muscles are affected (Bren-Mattison et al., 2011).
As for Noggin null-mutant, muscle impairment is restricted to
secondary myogenesis, resulting in a decrease in the muscle
masses. Finally, in vitro experiments show that C2C12 myoblasts
can be converted toward osteogenic lineage when exposed to
BMPs (Lee et al., 2000).

Axial muscles develop from the myotomal compartment of
the somite, which is formed by the delamination of cells deriving
first from the dorsomedial lip of the dermomyotome and then
from its caudal and rostral lips. This process is partly controlled
by another somatic compartment, the sclerotome. During chick
embryonic development, pioneer myoblasts, constituting the
medial part of epithelial somites, express the receptor ROBO2,
while its ligand SLIT1 is expressed in the caudal domain of
the nascent sclerotome (Halperin-Barlev and Kalcheim, 2011).
Loss-of-function assays targeting either ROBO2 or SLIT1 lead
to similar results: disruption of the caudo/rostral migration of
pioneer myoblasts and of myofibre formation, demonstrating
that skeletal precursor-derived signals (sclerotome) regulate
the myotome morphogenesis (Halperin-Barlev and Kalcheim,
2011). However, since the sclerotome give rise to both skeleton
and tendon progenitors (syndetome), these experiments cannot
discriminate between the effects of bone or tendon progenitors
on muscle morphogenesis.

Skeletal elements in the head derive from the cranial neural
crest cells (Couly et al., 1992). Using a HoxA1/HoxB1 double-
knockout mouse, it was shown that cranial neural crest cells fail
to form and migrate into the second branchial arch. Despite the
absence of neural crest cells (at the origin of skeletal progenitors),
cranial myogenesis was initiated (Rinon et al., 2007). However,
muscle patterning defects were observed, as evidenced by the
expansion in Tcf21 (Capsulin) and Tbx1 expression (Rinon et al.,

2007). Similarly, ablation of cranial neural crest cells in the
chick embryo shows that early steps of head myogenesis are
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not impaired by the removal of skeletal progenitors but that
expression of myogenic genes is expanded to fill the entire
arch mesenchyme, suggesting that the nature of the interactions
between cranial skeleton and muscles are conserved in chick and
mouse embryos (Tzahor et al., 2003; Rinon et al., 2007). Analysis
of the molecular mechanisms demonstrate that BMP and Wnt
signaling are important actors involved in these interactions
(Tzahor et al., 2003; Rinon et al., 2007). However, cranial neural
crest cells give rise to skeleton, tendon and CT progenitors.
It is then difficult to determine in these experiments whether
cranial myogenesis is controlled by interactions coming from
prospective bone, tendon or muscle CT.

Dense Regular Connective Tissue (Tendon)
As an Important Source of Signals during
Muscle Development
Muscle and dense regular CT (tendon) displays interactions
during their development. It is well established that tendon
requires muscle to fully develop in chick, mouse and zebrafish
embryos (reviewed in Gaut and Duprez, 2016). However, the
influence of tendon on muscle development is less clear in
vertebrates. During limb muscle development, muscle masses
differentiate between tendon primordia. In experimentally
tendon-depleted region in chick embryo, ectopic muscles form
at the place where tendons normally develop, indicating the
role of tendon in delimitating regions of muscle growth and
differentiation (Kardon, 1998). The role of tendon cells on
muscle development has been studied more in Drosophila.
Drosophila tendon precursor cells are defined as a group
of ectodermal cells, named the apodeme and characterized
by the expression of the Early growth response (EGR)-like
transcription factor Stripe (Frommer et al., 1996). Altering
apodeme formation during the early steps of leg development
affects the localization of myoblasts (Soler et al., 2016).
Establishment of the myotendinous junctions also requires
correct migration of myogenic cells toward tendon cells. This
migration step is mediated through guidance cues delivered
by tendon cells. In tendons, Stripe positively regulates the
expression of the Slit gene (Volohonsky et al., 2007), coding for
a secreted protein implicated in guidance cues during axonal
migration (Wong et al., 2002). Slit is expressed by tendon
cells, while its receptor Robo (Roundabout) is expressed in
muscle (Kramer et al., 2001). Interestingly, Slit mutants present
defects in muscle patterning (Ordan et al., 2015), revealing
tendon-signaling requirement for proper muscle development.
Tendon and muscle interactions via Slit/Robo is necessary for the
migration arrest of muscle progenitors in Drosophila (Wayburn
and Volk, 2009). The formation of the myotendinous junction
in Drosophila also requires the transmembrane protein KON-
TIKI, enriched at the tips of myotubes, and necessary to direct
their migration and the subsequent recognition between muscle
and tendon cells (Schnorrer et al., 2007). These data indicate
that tendon cells are required for muscle morphogenesis through
specific signals emanating from tendon cells and acting on
myogenic cells. However, these signals remain to be elucidated
during development of the vertebrate musculoskeletal system.

In zebrafish, Tsp4b (thrombospondin-4) appears critical to
orchestrate tendon extracellular matrix assembly necessary for
muscle attachment at the myotendinous junction (Subramanian
and Schilling, 2014). Although it has been shown that the
vertebrate orthologs of Stripe, Egr1/2 are involved in vertebrate
tendon differentiation (Lejard et al., 2011; Guerquin et al., 2013),
there is no obvious defect in muscle formation in the absence of
Egr1. Inactivation of Tsp4 in mice shows that thrombospondin-
4 controls the deposition of extracellular matrix in both tendon
and muscle and is necessary for the correct organization of
collagen fibrils in tendon (Frolova et al., 2014). However, the
absence of Tps4 also directly affects skeletal muscle structure, by
controlling the expression of heparan-sulfate proteoglycans in
muscle (Frolova et al., 2014). Finally, tendons have been shown
to be required in late events of vertebrate muscle morphogenesis.
Indeed, the translocation of myofibers to form the final position
of the flexor digitorum superficialis muscle in themouse forelimb
is largely impaired in Scx mutant, showing that tendon is
implicated in the final patterning and position of muscles (Huang
et al., 2013).

Dense Irregular Connective Tissue
Establish a Pre-pattern for Muscle
Differentiation
Most of our knowledge concerning myogenesis regulation by
signals produced by the irregular CT has been established in
the limb. Each step of limb muscle development is tightly
regulated by signals among which some are derived from the
irregular CT. The different steps are the following. Somitic-
PAX3-positive cells migrate toward the limb bud, invading the
limb mesenchyme. Once they reached their target sites, PAX-3
positive cells proliferate and organize into dorsal and ventral
muscle masses. Muscle differentiation is then initiated, followed
by muscle mass growth and splitting (reviewed in Duprez, 2002;
Deries and Thorsteinsdóttir, 2016).

Delamination and Migration of Muscle Progenitors
Delamination and migration of muscle progenitor cells from
the ventrolateral lip of the dermomyotome are mediated via
the tyrosine kinase receptor c-Met and its ligand, the Scatter
Factor/Hepatocyte Growth Factor (SF/HGF), (Brand-Saberi
et al., 1996; Heymann et al., 1996; Dietrich et al., 1999). Cells from
the ventrolateral lip of the somite express c-Met, while SF/HGF is
released by irregular CT progenitors in the limb mesenchyme.
In Hgf or c-Met mutant mice, limb muscles are missing (Bladt
et al., 1995). Dermomyotome development proceeds normally
and migratory somatic precursors are correctly specified but they
remain aggregated and fail to migrate toward limb buds (Dietrich
et al., 1999). SF/HGF also regulates the migration of myogenic
progenitors from occipital and cervical somites, giving rise to
the tongue, diaphragm and shoulder muscles (Dietrich et al.,
1999). These studies highlight the link between irregular CT and
hypaxial muscle progenitors during the migration step of muscle
morphogenesis. Other signaling pathways expressed in irregular
CT are involved in the guidance of muscle progenitors to reach
their target sites into the limb bud. The CXCL12 chemokine is
expressed in restricted regions of limb bud irregular CT and
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has been shown to attract muscle progenitors, which expressed
the chemokine receptor CXCR4 (Vasyutina et al., 2005). Ectopic
expression of CXCL12 in limb mesenchyme of chick embryos, or
inactivation of Cxcr4 in mouse embryos both give rise to aberrant
localization of muscle progenitors in the limb (Vasyutina et al.,
2005), demonstrating a chemoattractive role of CXCL12 positive-
CT cells for Cxcr4 expressing muscle precursors. During their
migration toward the limb, muscle progenitors also express
the receptor EPHA4, while its ligand EPHRINA5 is expressed
in specific areas of limb irregular CT (Swartz et al., 2001).
Conversely to the chemoattractive role of CXCL12/CXCR4
signaling, EPHRINA5 acts as a repulsive signal for muscle
cells expressing EPHA4 (Swartz et al., 2001), demonstrating
that both chemoattractive and repulsive signals from irregular
CT act simultaneously on muscle progenitors to restrict and
define their pathway of migration. Finally, it is important for
muscle progenitor cells to stay in an undifferentiated state during
migration. It is likely that this step is regulated through secreted
signals produced by the limbmesenchyme, however it is not clear
yet which signaling exactly is involved in this process. Previous
studies suggest that BMPs and FGFs secreted by limb irregular
CT might be important to prevent differentiation in migrating
cells by respectively inhibiting and promoting the expression of
SF/HGF (Heymann et al., 1996; Pourquié et al., 1996; Scaal et al.,
1999). In the chick embryo, FGF18 and retinoic acid, secreted
by limb mesenchyme, control the timing of Myod1 and Myf5
expression in myogenic cells (Mok et al., 2014).

Muscle Differentiation and Patterning
During the whole processes of limb muscle morphogenesis,
irregular CT and muscles (progenitors or differentiated cells) are
in close association. Kardon et al. (2003) identified TCF4 as a
putative actor in the process of irregular CT-mediated muscle
morphogenesis. TCF4 is expressed in the lateral plate-derived
mesoderm in close association with limb muscles during their
differentiation and patterning. In the absence of limb muscles,
TCF4 expression pattern is unchanged, suggesting that TCF4
expression may serve as a pre-pattern for limb musculature. To
verify this hypothesis, TCF4 gain- and loss-of-functions were
performed in lateral plate-derived limb mesodermal cells. In
all cases, muscle mispatterning was observed, demonstrating
that TCF4 in irregular CT is important to establish the correct
location of limb muscles (Kardon et al., 2003). Tcf4 deletion
in mice also lead to aponeurosis defects (Mathew et al., 2011).
However, TCF4 is also expressed at low level in myogenic cells
and is involved in the intrinsic regulation of muscle fiber type
differentiation in mice (Mathew et al., 2011).

Recently, the role of irregular CT has also been involved in
the context of a common and often lethal muscle diaphragm
defect, called congenital diaphragmatic hernia (CDH). Merrell
et al. (2015) have shown that the pleuroperitoneal folds,
which are transient embryonic structures, give rise to the
diaphragm irregular CT. Muscle progenitor cells arising from the
ventrolateral dermomyotome of the cervical somites migrate into
the Tcf4-positive pleuroperitoneal cells which guide muscle cells
to organize the diaphragmmorphogenesis. Tcf4-positive CT cells
also express Gata4, known to be mutated in CDH, and Gata4

inactivation in diaphragm CT leads to hernias similar to those
observed in CDH, demonstrating that this congenital muscular
disease is related to a defect in muscle irregular CT (Merrell et al.,
2015).

As previously mentioned, the human Holt-Oram syndrome
is characterized by limb and heart musculoskeletal defects and
irregular CT disorganization. This syndrome is due to a mutation
in the TBX5 gene, which is expressed in irregular CT during
limb development (Hasson et al., 2010). Tbx5 deletion leads
to a defect in irregular CT organization during embryonic
development (Hasson et al., 2010). In these conditions, while
the early steps of limb myogenesis are not affected, ectopic
splitting of nascent muscle bundles is observed. Tbx5 inactivation
leads to a disruption of muscle irregular CT, to an alteration of
Tcf4 expression, but also a marked decrease of ß-catenin and
N-cadherin at the membranes of muscular irregular CT cells
(Hasson et al., 2010). In addition, deletion of ß-catenin in the
limb mesenchyme leads to ectopic muscle splitting consistent
with a model in which the N-cadherin/ß-catenin complex in the
muscle CT is critical for muscle patterning (Hasson et al., 2010).
Finally, Tbx5 deletion also alters the expression of mesenchymal
secreted factors important in limb myogenesis, as CXCL12
and SF/HGF (Hasson et al., 2010). It is noteworthy that in
synovial fibroblasts, Cxcl12 is a target of Tbx5 in human synovial
fibroblasts (Karouzakis et al., 2014). Recently, it has been shown
that the conditional deletion of another T-box gene, Tbx3, in
the lateral plate mesoderm (using a Prx1-Cre transgene) leads
to defects in myofiber formation in a subset of limb muscles
in mice (Colasanto et al., 2016). These localized muscle defects
are correlated with Tbx3 expression in a subset of limb bones,
tendons and muscle CT. Similar muscle defects are observed
in patients with TBX3 mutations that are responsible of the
Ulnar-mammary syndrome (Colasanto et al., 2016). In addition
to being expressed in limb skeletal elements, Hoxa11 gene is
also expressed in mouse muscle CT and Hoxa11 inactivation
disrupts limb muscle and tendon patterning in addition to the
already known skeleton defect (Swinehart et al., 2013). Tendon
and muscle phenotypes in heterozygous Hoxa11 mutants are
independent of skeletal patterning as abnormal tendon and
muscle patterning are observed in Hoxa11 mutants with normal
skeleton (Swinehart et al., 2013). However, it cannot be excluded
that, in this case, muscle mispatterning could be related to tendon
abnormalities rather than to the muscle CT defect. Recently,
Gu et al. (2016) have shown that in neonatal muscles, muscle
interstitial cells activate NF-kB, which regulates EPHRINA5 to
stimulate myoblast migration toward the end of growing fibers,
where they subsequently fuse to contribute to muscle growth.
These data show that muscle CT also contributes to the process
of muscle maturation during neonatal development. However,
these interstitial cells are characterized by the expression of NG2,
a neural/glial antigen 2 expressed in pericytes and it cannot
be excluded that these cells are of vascular origin (Gu et al.,
2016).

Finally, differentiated muscle fibers also act on muscle
CT formation. In mice deleted for Lox (Lysyl-oxidase), an
enzyme regulating collagen organization and secreted from the
myofibers, TGFβ signaling is decreased and promotes muscle CT
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differentiation at the expense of muscle tissue (Kutchuk et al.,
2015).

Connective Tissue Cell Involvement in
Adult Muscle Homeostasis
In adult, skeletal muscle loss is observed in neuromuscular
diseases, but also during aging, inactivity and chronic systemic
disorders (i.e., diabetes, cancer, rheumatoid arthritis). The
regenerative potential of skeletal muscle provides a compensatory
response against such pathological muscle loss. The regenerative
capacity of skeletal muscle relies on muscle stem cells
(named satellite cells), which proliferate in response to exercise
to facilitate muscle growth and remodeling, or following
myotrauma to repair the injured muscle. Satellite cells are
PAX3/7-positive progenitor cells located under the basal lamina
that forms around muscle fibers of postnatal skeletal muscle.
Satellite cells remain quiescent until the muscle is injured, when
the lamina breaks down and activated satellite cells begin to
proliferate before forming new muscle fibers (Relaix et al.,
2005). Myf5 is detected in the majority of quiescent satellite
cells (Cornelison and Wold, 1997; Beauchamp et al., 2000)
and activation of satellite cells is accompanied by expression
of Myod1 as well as higher levels of Myf5, leading to the
downregulation of Pax7, activation ofMyogenin, and newmuscle
fiber formation (Relaix et al., 2006, reviewed in Motohashi and
Asakura, 2014). In the absence of Pax7-positive cells, the process
of muscle regeneration failed and instead, fibrotic and fatty
infiltration are observed, demonstrating the major contribution
of muscle satellite cells in the formation of new muscle fibers
(von Maltzahn et al., 2013). However, in response to muscle
damage, non-myogenic cells can also participate to skeletal
muscle regeneration, either by giving rise to myogenic stem cells
or by stimulating the activation of resident muscle satellite cells.

A non-satellite cell population with myogenic capacity was
first identifiedwhen it has been shown that bone-marrow-derived
cells can participate directly to muscle regeneration (Ferrari et al.,
1998). These cells, which normally reconstitute the hematopoietic
lineage, can give rise to new satellite cells and myofibers
during the muscle regeneration process (Asakura, 2012) and
their transplantation into mdx mice (a model for Duchenne
muscular dystrophy) improves muscle function (Sampaolesi
et al., 2006). Similarly, a vascular progenitor population, which
can be isolated from postnatal muscle, participate in muscle
repair following arterial delivery in mice (Sampaolesi et al.,
2003). Interestingly, pre-treatment of both mesenchymal bone-
marrow stromal cells (Galvez et al., 2006) or vascular progenitors
(Brzoska et al., 2012) with the CXCL12 chemokine improved
the regeneration of injured muscle. CXCL12 is expressed in the
adult muscle by the endomysium, i.e., the CT surrounding each
muscle fiber (Hunger et al., 2012). Following muscle injury,
CXCL12 secreted by muscle CT rapidly increases (Griffin et al.,
2010) and chemoattracts both satellite cells and bone-marrow-
derived cells to actively participate to the regeneration process
(Ratajczak et al., 2003). In this context, CXCL12 would not only
chemoattract stem cells toward the injury site, but would also
increase their fusion with native muscle fibers (Griffin et al.,
2010). These results demonstrate that signals provided by muscle

irregular CT are not only crucial for muscle morphogenesis
during development but also mediate the processes of muscle
regeneration in the adult.

More recently, a population of interstitial muscle cells with
myogenic potential has been identified (Mitchell et al., 2010).
These cells, characterized by the expression of the PW1/Peg3
gene and named PICs (PW1-positive interstitial cells) contribute
to the satellite cell pool during muscle regeneration (Mitchell
et al., 2010), although they do not express Pax3 or Pax7
(Pannérec et al., 2013). PICs can be subdivided into two distinct
populations: PW1+ PDGFrα− and PW1+ PDGFrα+ cells. It has
been establish that only PW1+ PDGFrα− PICs are associated
with a myogenic potential while PW1+ PDGFrα+ cells give
rise to adipocytes (Pannérec et al., 2013). Interestingly, PW1+
PDGFrα+ PICs express the pericyte marker NG2, indicating
a possible overlap between these cells, and pericytes (Pannérec
et al., 2013). Pericytes represent perivascular cells that are present
in the muscle interstitium and associated with capillaries. They
can be separated into two different populations: type-1 pericytes
(NG2+ NESTIN− PDGFrα−) and type-2 pericytes (NG2+
NESTIN+ PDGFrα+), (Birbrair et al., 2013). Similarly to what
has been described for PICs, the two different populations of
pericytes have distinct cell fate potential: type-1 contribute to
adipose tissue and type-2 to myogenesis (reviewed in Birbrair
et al., 2014). Type-2 pericytes do not express Pax7, Myf5 and
Myod1, but upregulate these markers before forming myotubes
in regenerative conditions (Cappellari and Cossu, 2013).

Different studies also reported the participation of
mesenchymal progenitors without myogenic capacity during
muscle regeneration. These progenitors all arise from resident
cells in the adult muscle interstitium (Joe et al., 2010; Uezumi
et al., 2010). Based on the expression of PDGFRα, a cell
population resident in the muscle interstitium has been isolated,
which, under specific culture conditions, differentiate into
fibroblasts, adipocytes or osteoblasts, but never give rise to
muscle cells and has been named mesenchymal progenitors
(Uezumi et al., 2010). Simultaneously, Rossi’s group also
identified a cell population with fibroblastic and adipogenic
potential, but no myogenic potential (Joe et al., 2010). These
progenitors were isolated on the basis of SCA1 and CD34
expression, and termed Fibro/Adipogenic progenitors (FAPs),
(Joe et al., 2010). Interestingly, mesenchymal PDGFRα+

progenitors express SCA1 (Joe et al., 2010, Uezumi et al.,
2010) and FAPs express PDGFRα, highlighting the possibility
that mesenchymal progenitors and FAPs actually represent a
unique progenitor population. FAPs/mesenchymal progenitors
are activated upon muscle injury and promote myoblast
differentiation in co-cultures (Joe et al., 2010), but also
exhibit a strong adipogenic and fibrogenic potential in
vitro, indicating a potential contribution of FAPs to fibrotic
and adipose accumulation in diseased muscles (Uezumi
et al., 2010). It is then proposed that a balance between
satellite cell-dependent myogenesis and FAPs-dependent
adipogenesis/fibrogenesis regulates muscle homeostasis
and regeneration. After muscle injury, FAPs/mesenchymal
progenitors start to proliferate before satellite cells and invade
the space between regenerating muscle fibers, where they
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generate factors promoting myogenesis. When regeneration
proceeds efficiently, FAPs/mesenchymal progenitors are
discarded from the tissue through apoptotic signals emanating
from satellite cells. If regeneration fails, FAPs/mesenchymal
progenitors persist and differentiate into adipocytes and
fibroblasts, leading to fatty and fibrotic degeneration (reviewed
in Natarajan et al., 2010; Judson et al., 2013). Depending on the
surrounding environment, FAPs/mesenchymal progenitors will
preferentially give rise to fibroblasts or adipocytes. Addition
of TGFß to FAPs/mesenchymal progenitors in vitro induces
the expression of fibrosis markers leading to fibroblastic
differentiation at the expense of adipocyte differentiation
(Uezumi et al., 2011). Interestingly, PDGFRα+ expressing
FAPs/mesenchymal progenitors accumulate preferentially into
fibrotic regions, suggesting a specific role for PDGFRα in muscle
fibrosis (Uezumi et al., 2014). This hypothesis is supported
by the observation that, in adult and embryonic mouse, an
elevated level of PDGFRα leads to an abnormal increase in CT
differentiation (Olson and Soriano, 2009).

The participation of irregular CT to muscle regeneration
has been also highlighted by a recent set of experiments.
CT fibroblasts identified by Tcf4 expression have been shown
to proliferate close to muscle satellite cells following injury
and conditional ablation of Tcf4-positive cells prior to muscle
lesion leads to premature satellite cell differentiation, depletion
of the early pool of satellite cells, and small regenerated
fibers, indicating that Tcf4-positive fibroblasts participate in
muscle regeneration (Murphy et al., 2011). It remains unclear
whether a direct relationship exists between FAPs/mesenchymal
progenitors and TCF4-positive cells. However, Tcf4-positive
cells express PDGFRα (Murphy et al., 2011) and accumulating
evidence suggests that FAPs/mesenchymal and irregular CT
progenitors share common features (Sudo et al., 2007; Haniffa
et al., 2009). Extracellular matrix components also contribute
directly to the regenerative potential of muscle. Indeed, it has
been shown that a fibronectin-rich fibrosis is essential during
the initial step of regeneration to activate the proliferation
of muscle satellite cells (Bentzinger et al., 2013). Irregular
CT progenitors, FAPs and PICs could be potential sources of
fibronectin and might contribute to the transient fibronectin-
rich promyogenic fibrosis during muscle regeneration. However,
activated satellite myogenic cells themselves release fibronectin
into their microenvironment and inactivation of fibronectin
using a Myf5-Cre reporter impairs the regenerative potential of
muscle, suggesting that this effect could be also related to a cell-
autonomous role of satellite cell derived-fibronectin (Bentzinger
et al., 2013).

The importance of muscle CT has been also evidenced
in muscle disorders. Indeed, mutations in COL6A1, COL6A2,
and COL6A3 genes, which give rise to the main collagens
expressed in muscle CT, have been observed in congenital Ullrich
muscular dystrophy and in Behlem myopathy. Mutant mice for
Col6a1 display alterations of muscle sarcoplasmic reticulum and
mitochondria (Pan et al., 2014) and Col6a3 mutant mice display
myopathic and connective tissue phenotypes similar to the
Col6a1 null mice (Pan et al., 2013), demonstrating that collagen
VI mutations result in disorders with combined muscle and
connective tissue involvement. In addition, Col6a1 mutant mice

showed delayed muscle regeneration and reduced satellite cell
self-renewal. Transplantation of wild-type fibroblasts in muscles
of Col6a1 mutant mice rescues muscle satellite cells, indicating
that COL6A1 in the muscle environment can modulate satellite
cell behavior (Urciuolo et al., 2013).

Finally, during muscle hypertrophic activity, satellite cells
can regulate fibrogenic cell collagen expression via exosome
secretion, showing that muscle cell progenitors can also act with
their surrounding environment to facilitate tissue plasticity (Fry
et al., 2016). Similarly, Abou-Khalil et al. (2015) have shown
that Pax7-positive muscle satellite cells are involved in bone
repair, providing a direct evidence of a muscle contribution to
specialized CT (bone and cartilage) formation.

Taken together, these data evidence interactions between
different cell populations promoting muscle progenitor
activation during regeneration, with a central role of muscle
irregular CT in this process. Changes in CT local environment
may contribute to muscle pathologies and age-related loss of
muscle stem cell competence by implicating pivotal signaling
pathways and genes similar to those described to mediate the
CT-dependent muscle morphogenesis during development.

CONCLUSIONS

The development of skeletal muscle has been extensively studied
for decades and most of the studies have first concentrated
on the elucidation of the intrinsic mechanisms underlying
the conversion of muscle progenitors toward a functional
skeletal muscle organ. The identification of specific myogenic
transcription factors has allowed us to decipher the importance
of these intrinsic gene networks in the specification and
differentiation of muscles during embryonic development. In
parallel, the role of neighboring tissues onmuscle morphogenesis
has been investigated and highlighted the influence of the neural
tube, notochord and ectoderm on the early steps of axial muscle
morphogenesis, mostly via the effect of the secreted factorsWnts,
BMPs, and SHH. More recently, the role of CTs in muscle
morphogenesis has been investigated, thanks to the identification
of transcription factors specifically expressed in the different
types of CT surrounding (tendon) or composing (muscle CT)
the developing muscle (previously reviewed in Hasson, 2011).
These studies demonstrate that mesenchymal cells at the origin
of the different CT types deliver information necessary for a
correct muscle morphogenesis, from the early steps of myoblast
migration and fusion to the late stages of muscle maturation.
Secreted factors as BMPs, FGFs, and chemokines as CXCL12 are
important in this dialogue between CTs and muscles, which also
implicate a reverse interaction between both tissues, as muscle
cells are necessary for the tendons to develop correctly and for
the organization of irregular CT and bone in adult. A right
balance between myogenic and CT cells is particular necessary
during the muscle regeneration process. Indeed, impairment
of the regenerative potential after injury or in neuromuscular
diseases results in the progressive replacement of the muscle
mass by fibrotic tissue (Farup et al., 2015). Thus, bi-directional
communication between muscle and CT is critical for a correct
assembly of the musculoskeletal system during development as
well as to maintain its homeostasis in the adult.
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Skeletal muscle is a heterogeneous tissue that represents between 30 and 38% of the

human body mass and has important functions in the organism, such as maintaining

posture, locomotor impulse, or pulmonary ventilation. The genesis of skeletal muscle

during embryonic development is a process controlled by an elaborate regulatory

network combining the interplay of extrinsic and intrinsic regulatory mechanisms that

transform myogenic precursor cells into functional muscle fibers through a finely

tuned differentiation program. However, the capacity of generating muscle still remains

once these fibers have matured. Adult myogenesis resembles many of the embryonic

morphogenetic episodes and depends on the activation of satellite cells that have the

potential to differentiate into new muscle fibers. Pitx2 is a member of the bicoid family

of homeodomain transcription factors that play an important role in morphogenesis.

In the last decade, Pitx2 has emerged as a key element involved in the fine-tuning

mechanism that regulates skeletal-muscle development as well as the differentiation

and cell fate of satellite cells in adult muscle. Here we present an integrative view of all

aspects of embryonic and adult myogenesis in which Pitx2 is involved, from embryonic

development to satellite-cell proliferation, fate specification, and differentiation. Those

new Pitx2 functions on satellite-cell biology might open new perspectives to develop

therapeutic strategies for muscular disorders.

Keywords: Pitx2, myogenic precursor cells, embryonic myogenesis, adult myogenesis, satellite cell and

regeneration

INTRODUCTION

Skeletal muscle is a heterogeneous tissue that represents between 30 and 38% of the human body
mass (Janssen et al., 2000). It is composed of individual muscle fibers, diversified in size, shape,
and contractile protein content, to fulfill the different functional needs of the vertebrate body
such as maintaining body posture, locomotor impulse, or pulmonary ventilation. The genesis of
skeletal muscle during embryonic development and postnatal life is a process controlled by an
extremely elaborate regulatory network that combines the interplay of extrinsic (e.g., morphogens,
neurohormonal input, muscle damage, etc.) and intrinsic elements (gene regulatory elements).
The intrinsic elements form hierarchical interactions between transcriptional regulators, regulatory
RNAs, and chromatin-remodeling factors. In this sense, during embryogenesis, muscle progenitors
are specified by the sequential expression of a network of transcription factors composed of PAX3
and PAX7, and the basic helix-loop-helix (bHLH) myogenic regulatory factors (MRFs) MYOD,
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MYF5, MYF6 (also called MFR4), and MYOG (Bentzinger
et al., 2012; Moncaut et al., 2013). In addition, during adult
life the skeletal muscle has the ability to resume developmental
mechanisms that compensate for the physiological turnover and
damage in order to maintain tissue homeostasis (Schmalbruch
and Lewis, 2000; Pellettieri and Alvarado, 2007). This adult
myogenesis depends on the activation of satellite cells (SCs), that
have the potential to proliferate, differentiate, and generate new
fibers, or repair existing ones (Chargé and Rudnicki, 2004). It has
been well-established that SCs are closely related to progenitors of
embryonic origin (Gros et al., 2005; Relaix et al., 2005; Schienda
et al., 2006; Hutcheson et al., 2009; Lepper and Fan, 2010).
Thus, many similarities have been discovered between prenatal
myogenesis and regeneration in the mature skeletal musculature,
such as common transcription factors and signaling molecules
(Tajbakhsh, 2009).

During the last two decades the homeobox transcription
factor Pitx2 has emerged as a key element in the fine-
tuning mechanism that regulates skeletal-muscle development.
Concurrently, several recent experimental pieces of evidence
point to the role of Pitx2 in SC biology. Here, we present
an integrative view of the role of Pitx2 in prenatal and adult
myogenesis (from embryonic development to SC proliferation),
fate specification, and differentiation. Finally we discuss the
potential therapeutic use of Pitx2 in the future.

PRENATAL AND ADULT MYOGENESIS

In vertebrates, skeletal-muscle development is a biphasic process.
A primary (embryonic) myogenesis takes place to generate
primary muscle fibers, between embryonic day (E) 9.5 and

E14.5 in the mouse. This is followed during fetal stages by a
secondary myogenesis which gives rise to the bulk of skeletal-
muscle fibers present at birth (Kelly and Zacks, 1969; Biressi
et al., 2007; Tajbakhsh, 2009; Deries and Thorsteinsdóttir, 2016).
All skeletal-muscle cells have the same underlying functions,
although their progenitors within the paraxial mesoderm are
spread throughout the embryo at the onset of myogenesis.
This bears emphasizing since the genetic networks that control
myogenesis present differences depending on the location of
those myogenic precursors in the embryo.

Embryonic Myogenesis: The Trunk and
Limb Muscles
The muscles of the trunk and limbs derive from somites
(Figure 1A), which are transient paraxial mesodermal structures
that form pairwise on either side of the neural tube, following an
anterior-posterior developmental gradient. The somite is initially
a spherical unit of polarized epitheloid cells that soon after
subdivides into two compartments, the ventral mesenchymal
sclerotome and the dorsal epithelial dermomyotome. Shortly
afterwards, myogenic precursor cells from the epaxial and
hypaxial lips of the dermomyotome undergo an epithelial-
mesenchymal transition (EMT) and accumulate underneath,
where they differentiate and elongate to form the myocytes of
the myotome, the first myogenic structure to develop in the body

(Buckingham and Relaix, 2015; Deries and Thorsteinsdóttir,
2016). The epaxial region of the myotome gives rise to the deep
back muscles, whereas the hypaxial myotome is the source of
body wall muscles and most other trunk muscles (Buckingham
and Relaix, 2015; Deries and Thorsteinsdóttir, 2016). In segments
adjacent to the limb-region cells of the hypaxial dermomyotome
undergo an EMT, leave the epithelial structure, and migrate
toward the fore and hind limbs to form dorsal and ventral
muscle masses in the limb-bud mesenchyme, where they begin
to differentiate and express muscle-specific genes (Biressi et al.,
2007; Deries and Thorsteinsdóttir, 2016).

Cell commitment in the somite is highly dependent on a
number of transcription factors which act in a hierarchical
molecular cascade to orchestrate the specification, determination,
and differentiation of myogenic precursors. In the genetic
hierarchy that regulates the onset of trunk myogenesis, Pax3
and Myf5 play a dominant role (Buckingham and Relaix, 2015).
Pax3 is already transcribed in pre-somitic mesoderm adjacent
to the first somite (Schubert et al., 2001) and then throughout
the newly formed somites. As somites mature Pax3 expression
becomes confined to the dermomyotome (Goulding et al., 1991)
and persists in myogenic progenitor cells that delaminate and
migrate from the somite to more distant sites of myogenesis
such as the limb (Buckingham and Relaix, 2015). Myogenic cells
that have activated themyogenic determination genesMyf5/Myf6
andMyoD downregulate Pax3 and delaminate from the edges of
the dermomyotome (Buckingham and Relaix, 2015). The epaxial
myotome then start to form. This depends on the early epaxial
activation of Myf5, which is driven by Wnt and Shh signaling,
without any Pax3 and/or Pax7 requirement (Borello et al., 2006;
Buckingham and Relaix, 2015). These cells do not activateMyoD
but rather Myog and differentiate (Kablar et al., 2003). On the
other hand, the activation of Myf5 in the hypaxial somite as well
as in the limb depends on PAX3 (Bajard et al., 2006; Buckingham
and Relaix, 2015). At this stage MYF6 also acts as a myogenic
determination factor (Kassar-Duchossoy et al., 2004). The Myod
gene is activated after the onset of Myf5 expression in the rest
of the dermomyotome and limbs (Hu et al., 2008). Finally, the
transcription factor MYOG is required for the onset of the
expression of terminal differentiation genes needed for the fusion
of myocytes and the formation of myotubes (Bentzinger et al.,
2012).

Embryonic Myogenesis: The Head Muscles
Although, all skeletal muscle throughout the body originates
within paraxial mesoderm, in the head, identifiable
compartments such as the somites in the trunk are not evident
histologically or by most molecular criteria. This unsegmented
head mesoderm is remodeled at the early stages of embryonic
development (Figures 1B,C). The unsegmented head mesoderm
gives rise to all craniofacial skeletal muscles, which can be
cataloged as four distinct populations: extra-ocular (EOMs),
branchial, laryngoglossal, and axial neck muscles (Noden and
Francis-West, 2006; Tzahor, 2015). EOMs are formed by cells
from the cranial paraxial mesoderm that migrate through
the first branchial arch (FBA) as well as from the prechordal
mesoderm (Jacob et al., 1984; Evans and Noden, 2006; Tzahor,

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2017 | Volume 5 | Article 46 | 109

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Hernandez-Torres et al. Pitx2 and Myogenesis

FIGURE 1 | Embryonic myogenesis (A) Schematic representation of somite maturation. Somites mature following an anterior to posterior developmental gradient

(Modified from Gray’s Anatomy. The Anatomical Basis of Clinical Practice, 40th Edition Standring, 2008): myogenic precursor cells arise from the epaxial and hypaxial

lips of the dermomyotome after archive epithelial-mesenchymal transition (EMT) and migrate toward the limbs to form dorsal and ventral muscle masses where they

begin to differentiate. (B,C) Head frontal and transverse planes of a mouse embryo between stages of development E7.5–8.75 and E8–9.25 in mouse. At an open

neural plate stage, head mesoderm in a frontal plane includes the prechordal mesoderm and the paraxial mesoderm. When the neural tube closes dorsally and the

endoderm ventrally, the prechordal mesoderm is integrated within the remaining paraxial mesoderm, which is located anterior to the somites. Dashed line illustrates

the cutting plane. (D) Origins of skeletal muscles: Myogenic precursors arise from different paraxial mesoderm compartments. (E) Pitx2 expression domains at the

E10.5 stage of development in mouse. NT, neural tube; NC, notochord; SM, somites; DMT, dermomyotome; ST, sclerotome; MT, myotome; LMP, limb muscle

precursors; FL, forelimb; PAM, head paraxial mesoderm; PCM, prechordal mesoderm; PROS, prosencephalon; MES, mesencephalon; MET, metencephalon; SPM,

splanchnic mesoderm; OFT, outflow tract of heart; HT, heart tube; EOM, extra-ocular muscles; BRM, branchial muscles; LGM, laryngoglossal muscles; HGC,

hypoglossal cord; ANM, axial neck muscles; BM, back muscles; BWM, body wall muscles; FLM, forelimbs muscles; HLM, hind limbs muscles.
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2015; Figure 1D). Branchial arch muscles are formed mainly
by migrating cells from the cranial paraxial mesoderm and the
lateral splanchnic mesoderm (Harel et al., 2009; Sambasivan
et al., 2009; Tzahor, 2015). Laryngoglossal muscles develop from
migratory myoblasts arising from occipital somites that form
a condensed mesenchymal band, the hypoglossal cord, which
elongates and similarly brings myoblasts ventral to pharynx
(Hammond, 1965; Hazelton, 1970; Tzahor, 2015). Finally, in the
transition zone between the head and the trunk are the axial
neck muscles. They arise from medio-dorsal and latero-ventral
domains of occipital and cervical somites (Noden, 1983; Couly
et al., 1992; Matsuoka et al., 2005).

The genetic hierarchy governing primary myogenesis in the
trunk does not appear to operate for head-muscle formation.
Activation of the myogenic program in the head therefore
depends on different upstream factors, responds differently to
signaling pathways and also displays site-dependent regulation.
Branchial-arch-derived muscles depend on Myf5/Myf6/Myod,
whereas extra-ocular muscle formation is initiated byMyf5/Myf6
and in their absence cannot be restored byMyod (Tajbakhsh and
Buckingham, 1999).

Fetal Myogenesis
During fetal myogenesis, secondary fibers in trunk, limbs, and
head are generated by the fusion of fetal myoblasts. Secondary

fibers form initially at the site of innervation of the primary fiber
and are surrounded by the same basal lamina as the primary
fiber on which they lie (Duxson et al., 1989). The secondary
myotubes remain attached for a short period to primary fibers
and subsequently elongate and become independent fibers, which
can be distinguished from primary fibers by their relative small
size (Kelly and Zacks, 1969). Although, the genetic networks that
rule this second stage of prenatal myogenesis is less understood,
it is known that the MRFs MYF5, MYOD, and MYOG are also
crucial, since in Myog−/− as well as Myf5−/−:MyoD−/− double-
mutant secondary myogenesis is completely inhibited (Venuti
et al., 1995; Kassar-Duchossoy et al., 2004).

Adult Myogenesis
The regulatory inputs that orchestrate myogenesis during
prenatal myogenesis are partially reactivated in adult muscle
repair. In adulthood, the maintenance as well as the repair
of muscle tissue are both directed mainly by SCs. These
cells, originally identified via electron microscopy in 1961 by
Alexander Mauro, are located underneath the basal lamina and
adjacent to the plasmamembrane of the skeletal-muscle myofiber
(Mauro, 1961; Figure 2). In their quiescent state, SC express
the transcription factor Pax7 and represent a genuine stem-cell
population indispensable for skeletal-muscle repair (Lepper et al.,
2011; Murphy et al., 2011; Sambasivan et al., 2011; Miersch et al.,

FIGURE 2 | Adult myogenesis. The overall myogenic differentiation pathway includes the activation of quiescent SCs, commitment to differentiation, proliferation,

fusion to form myotubes and ultimately maturation into myofibers. SC, satellite cell; MN, myonucleus.
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2017; Stuelsatz et al., 2017). It has been established that SCs in
adult muscle represent a lineage continuum of the embryonic
myogenic progenitor cells. Thus, while SCs of the body and limbs
arise from somites, in common with the muscle that they are
associated with (Armand et al., 1983; Gros et al., 2005; Relaix
et al., 2005; Schienda et al., 2006), the SCs located in head
muscles also originate from the cranial mesoderm (Harel et al.,
2009).Within a context of physiological stimuli (physical exercise
or pathological conditions) SCs become activated, proliferate,
differentiate and fuse to form multinucleated myofibers in order
to undergo proper myogenesis (Lepper et al., 2011; Murphy et al.,
2011; Sambasivan et al., 2011; Miersch et al., 2017; Stuelsatz et al.,
2017; Figure 2). In this regard, numerous studies have revealed
a striking similarity between adult and embryonic myogenesis,
where the core regulatory network composed of theMRFsMYF5,
MYOD, MYOG, and MYF6 is mainly required (Bentzinger et al.,
2012; Segalés et al., 2016; Figure 2).

THE PITX2 GENE

The Pitx gene family includes three vertebrate paralogues,
Pitx1, Pitx2, and Pitx3, which have been cloned in multiple
organisms (Gage et al., 1999b; Knopp et al., 2013). These
three genes encode transcription factors that belong to
the bicoid-related subclass of homeodomain proteins (Gage
et al., 1999b) The members of this family share an almost
identical protein sequence within their homeodomains, varying
mainly in the N-terminal region (Gage et al., 1999b; Knopp
et al., 2013). Mutations or misregulation of Pitx1, Pitx2, and
Pitx3 result in developmental disorders in humans, such as
Facioscapulohumeral Muscular Dystrophy (FSHD; Dixit et al.,
2007), Axenfeld-Rieger syndrome (Semina et al., 1996), and
Anterior Segment Mesenchymal Dysgenesis (ASMD; Semina
et al., 1998), respectively. Muscle expression of these genes
during development has been systematically studied. Thus, Pitx1
is highly expressed in developing hind-limb-bud mesenchyme
and is shown to determine hind-limb identity in mice (Lanctôt
et al., 1999; Szeto et al., 1999), chicks (Logan and Tabin, 1999),
and fish (Shapiro et al., 2004). On the other hand, Pitx3 is
widely expressed in all skeletal muscles of the head, trunk and
limbs (Semina et al., 1998; L’honoré et al., 2007). Curiously,
despite its apparent importance in muscle development, the
investigation of Pitx3−/− mice indicates that Pitx3 on its own
is not required for myogenesis (L’honoré et al., 2007). In
this scenario Pitx2, the third Pitx family member is strongly
upregulated and appears to fully compensate for the loss
of Pitx3 during muscle formation (L’honoré et al., 2007).
Pitx2 is also able to control the growth ability of hind-limb
mesenchyme together with Pitx1 (Marcil et al., 2003), indicating
the importance of Pitx2 in the control of skeletal myogenesis
during development.

In mice, the Pitx2 (Pituitary homeobox 2 or Paired-like
homeodomain transcription factor 2) gene is mapped on
chromosome 3 (3G3; 3 57.84 cM) (Gage and Camper, 1997) and
is transcribed into three distinct isoforms: Pitx2a, Pitx2b, and
Pitx2c. Pitx2a and Pitx2b share the same promoter while Pitx2c

uses an alternative one upstream of exon 4 (Schweickert et al.,
2000). In human, PITX2 is mapped on chromosome 4 (4q25)
and maintains a similar genetic structure, but presents a fourth
isoform (Arakawa et al., 1998; Cox et al., 2002). This fourth
isoform is generated by the PITX2C alternative promoter and
differential splicing, being able to suppress the transcriptional
activity of the other PITX2 isoforms (Cox et al., 2002). All
Pitx2 isoforms share a K50 DNA-binding homeodomain which
binds to the consensus sequence TAATCC (Amendt et al., 1998;
Chaney et al., 2005), thus being able to induce a transcriptional
activation of Prl (Amendt et al., 1998) or Anf (Ganga et al.,
2003) promoters. The Pitx2 gene was isolated independently by
several research groups and designated as Otlx2 (Muccielli et al.,
1996), Rieg (Semina et al., 1996), Ptx2 (Gage and Camper, 1997),
Brx1 (Kitamura et al., 1997), and Arp1 (Arakawa et al., 1998).
Although, most of these works focused on the role of this gene
in the development of brain structures, the authors reported the
expression of Pitx2 in the mesenchyme of the eye, the first and
second branchial arches, the fore and hind limbs as well as the
dermomyotome at somite stages E8.5 and 10.5 in mouse, and
its equivalent stages in chicken (Figure 1E). Soon afterwards, a
role for Pitx2 was also described in left-right asymmetry, being
proposed as the molecular transducer of embryonic left-right
signaling during early developmental stages at the level of organs
such as heart, gut, and/or stomach (Logan et al., 1998; Ryan et al.,
1998; Yoshioka et al., 1998; Campione et al., 1999).

PITX2 WITHIN THE GENETIC
HIERARCHIES THAT CONTROL MUSCLE
DEVELOPMENT

Pitx2 Function during Embryonic
Myogenesis
Pitx2 in Trunk and Limb Muscle Development

The first evidence involving Pitx2 in the molecular process
controlling myogenesis was provided by Kitamura et al.
(1999). These authors reported Pitx2 expression co-localizing
in dermomyotomes with Pax3, a muscle specification marker
playing a key role in delamination and migration of the somitic
muscle progenitor cells to the limb buds (Goulding et al., 1994;
Tajbakhsh et al., 1997). Later, Marcil et al. demonstrated the
presence of PITX2 protein in the myoblasts of the limb bud,
displaying an expression pattern similar to that of PAX3 and
MYOD (Marcil et al., 2003). All these data suggested that PITX2
was involved in muscle patterning. A more detailed temporal
and spatial analysis during initial muscle-cell-cluster formation,
by using lacZ expression from a Pitx2 gene insertion, revealed
the presence of a Pitx2-expressing cell cluster lateral to the
dermomyotome (Shih et al., 2007b). This cluster first appeared
at the forelimb level at E10.25. After E10.5, Pitx2(+/LacZ)-
expressing cells were then also detected on sections of the
limbs. Curiously, Pax3 and the muscle-regulatory factors (MRFs)
stained only subsets of Pitx2+ cells within these areas, and
virtually all Pitx2+ cells in these areas express at least one of these
knownmyogenicmarkers (Shih et al., 2007b). These observations
led the authors to conclude that Pitx2 marks the muscle
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lineage more completely than any of the known markers does.
In agreement with the interpretation that muscle progenitors
express Pitx2, L’Honoré et al. (2007) found extensive co-labeling
ofmyotome- and dermomyotome-proliferating cells with PITX2,
PAX3, andwith PAX7. Notably, they also observed PAX3-positive
cells that have completed migration at the proximal limb bud
also express PITX2 while not all PITX2-positive cells expressed
PAX3. All these data suggest that Pitx2 might be a player within
the molecular pathways controlling muscle-progenitor fate.

Sometime afterwards, additional information regarding the
hierarchical position occupied by Pitx2 within the genetic
cascade that control somite-derived myogenesis was inferred
by using Pitx2−/−, Myf5nlacZ/nlacZ and Pitx2−/−;Myf5nlacZ/nlacZ

double-mutant mice (L’honoré et al., 2010). In this work, the
authors showed that PITX2 protein directly regulates Myod
expression through binding to its core enhancer in wild-
type limbs. In agreement, the authors described a delayed
myogenic differentiation and a Myod down regulation in
Pitx2−/− limb buds and proposed that this phenotype appears
to be due to the failure to activate the Myod core enhancer.
However, although the inactivation of Myf5 and Myf6 in
Myf5nlacZ/nlacZ mutant embryos (Myf6 is inactivated in cis in this
mutant; Tajbakhsh et al., 1997) did not affect Myod expression
in limb buds, this inactivation in a Pitx2−/− background
(Pitx2−/−;Myf5nlacZ/nlacZ) induced a synergic effect that resulted
not in a downregulation but in almost a complete loss of Myod
expression compared with Pitx2−/−;Myf5nlacZ/+ embryos, where
the presence of one active Myf5 allele prevented Myod loss in
about 60% of myogenic precursors cells. These results imply
that Myf5 and/or Myf6 cooperate with Pitx2 to control Myod
expression during early limb-bud myogenesis (Figure 3A2). In
contrast to limb-muscle cells, myotome expression of Myod was
not delayed in Pitx2−/− embryos. Nevertheless, inMyf5nlacZ/nlacZ

mutant embryos, Myod expression was delayed by ∼2 days.
Therefore, the onset of Myod expression in the myotome does
not appear to depend on PITX2 but mostly on MYF5/MYF6.
Nonetheless the inactivation of Myf5 and/or Myf6 in a Pitx2−/−

background (Pitx2−/−;Myf5nlacZ/nlacZ) led to an almost complete
loss of Myod expression in myotome, as happened in limbs
(L’honoré et al., 2010). These results indicate that MYF5 and/or
MYF6 also cooperate with PITX2 to control Myod expression
during myotome development (Figure 3A1).

In addition, it should be stressed that the analysis of Pax3
mutant Splotch mice revealed a deficit of Pitx2 expression
restricted to the myotome (L’honoré et al., 2010). This deficit
is not observed in neighboring mesenchyme, indicating that
Pitx2 is downstream of Pax3 during myotome myogenesis. This
is also supported by transcriptome analyses of Pax3GFP/+ and
Pax3GFP/PAX3−FKHR transgenic mice carried out by Lagha et al.
(2010) since, in gain-of-function screens for PAX3 targets, they
found an up-regulation of Pitx2 in somites but not in limb
buds. Although, all these seminal works suggest that Pitx2 could
be acting downstream of Pax3 and in parallel with Myf5, at
least in the myotome, as noted above, not all PITX2-expressing
cells were positive for PAX3, and limb expression of Pitx2
precedes Myf5 (L’honoré et al., 2010). Therefore, additional
studies using conditional Pitx2 inactivation in specific myogenic

cell populations would help to elucidate the function of Pitx2 in
embryonic myogenesis.

Scientific evidence also relates Pitx2 to cell proliferation in
myogenic cells and somite derivates. Notably, Pitx2 has been
reported to be a target gene in the Wnt/Dvl2/beta-catenin
pathway and operates in specific cell types to control proliferation
by regulating expression of the growth-control genes Ccnd1,
Ccnd2, and c-Myc (Kioussi et al., 2002; Baek et al., 2003).
These authors established that the PITX2 N-terminal domain is
required for its effects on proliferation in a myoblast cell line.
We have previously demonstrated that Pitx2c is the main Pitx2-
isoform expressed in Sol8 myoblasts and that overexpression of
Pitx2c in Sol8 cells led to an increase in proliferative capacity and
completely blocked terminal differentiation, mainly because high
levels of Pax3 expression were maintained (Martínez-Fernández
et al., 2006). Additional data in vivo have supported the role
of Pitx2 in cell proliferation during myogenesis. In this sense,
Abu-Elmagd et al. (2010) showed that Pitx2 loss of function
in chicken embryos decreased the number of differentiated
myocytes/myofibers in the somites, whereas Pitx2 overexpression
increased myocyte/myofiber numbers, particularly in the epaxial
region of the myotome. In agreement with Abu-Elmagd et al.
and by using Pitx2c−/− mutant embryos, we have reported that
Pitx2c plays a pivotal role in the control of the subtle equilibrium
between proliferation and differentiation during trunk and limb
myogenesis. This control is exercised by balancing Pax3+/Pax7+
myogenic population in vivo as well as regulating key myogenic
transcription factors such as Pax3 through the repression of
miR-27 (Lozano-Velasco et al., 2011; Figures 3A1,A2). This new
function of Pitx2c mediated by miRNAs introduces a new level
of complexity in the intricate regulatory network that governs
myogenesis in the embryo.

Pitx2 during Head-Muscle Development

As mentioned above, Pax3 controls the myogenic specification
of muscle embryonic progenitors in trunk and limbs (Tajbakhsh
et al., 1997). However, it has been proposed that, instead of
Pax3, Pitx2 plays a major role as an upstream regulator of
craniofacial myogenesis (Zacharias et al., 2011; Buckingham
and Rigby, 2014). This is supported by the fact that EOM
development is impaired in Pitx2 null mice (Gage et al., 1999a;
Kitamura et al., 1999). However, in the early studies it was not
evident whether this muscle dysgenesis in Pitx2 mutant mice
resulted from an intrinsic defect in the developing myoblasts or
was secondary to the loss of Pitx2 expression in the periocular
mesenchyme. Other authors have subsequently suggested that
this phenotype could be due to the Pitx2 effect on proliferation
rate of myogenic precursors (Noden and Francis-West, 2006),
in agreement with previously reported data (Kioussi et al., 2002;
Martínez-Fernández et al., 2006). The hypothesis that Pitx2 plays
a part in controlling cell proliferation in myogenic cells in this
context is also supported by the fact that conditional inactivation
of Pitx2 in neural-crest-derived cells does not affect the early
differentiation of eye muscles (Evans and Gage, 2005), while
conditional Pitx2 deletion in the mesoderm induces a down-
regulation of Myf5, Myf6, Myod1, and Myog expression and,
therefore, blocks the onset of myogenesis of EOM (Zacharias
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FIGURE 3 | Models for Pitx2 functions in myogenesis. (A) During embryonic stages, Pitx2 contribution is different depending on the initial muscle-cell clusters

[myotome myogenesis (A1), limb myogenesis (A2), EOM myogenesis (A3), or branchial myogenesis (A4)]. First myocytes of the myotome differentiate through Myf5

and/or Myf6 directly to Myog without turning on MyoD. This is represented by dashed arrows. Dotted arrows represent direct molecular relationships that still remain

elusive (B) Proposed model for Pitx2 in adult myogenesis promoting activation and commitment of SCs.

et al., 2011). In this regard, in 2009, Sambasivan et al. by
analyzing double defective mutant mouse embryos Myf5(Myf6)
(Myf5nlacZ/+, Myf5nlacZ/nlacZ) and Myf4−/− mutants, showed
that Pitx2 cannot ensure survival and activation of Myod
expression in EOM in the absence of both Myf5 and Myf6
(Sambasivan et al., 2009). Shortly afterwards, Zacharias et al.
were able to inactivate the expression of Pitx2 in mesodermal
EOM precursors by using a tamoxifen inducible UBC- CreERT2

promoter (Zacharias et al., 2011). This inactivation clearly
showed that Pitx2 is required for EOM precursor specification
and survival, acting as an anti-apoptotic factor in the pre-
myogenic mesoderm and subsequently activating the myogenic
program in these cells through direct binding to Myf5 and
Myod promoters (Zacharias et al., 2011). Taken together, all
these data clearly suggest that Pitx2 is an upstream regulator

of Myf5, Myf6, and Myod in EOM embryonic myogenesis
(Figure 3A3).

Pitx2 is also expressed in the myogenic precursors of the FBA.
Tbx1 expression on FBA premyoblast is required for specification
leading to Myf5 and Myod1 activation in those cells (Kelly et al.,
2004). Notably, systemic Pitx2mutants, whether Pitx2−/− (Dong
et al., 2006) or Pitx2LacZ/LacZ (Shih et al., 2007a), display a down
regulation of Tbx1 expression in this structure, although Pitx2
expression is unaffected in Tbx1 null mutants (Dong et al., 2006).
These data, together with the fact that Pitx2 directly interacts
with Tbx1 regulatory elements (Shih et al., 2007a) suggest that
Pitx2 is an upstream activator of Tbx1 in FBA. A fuller analysis of
both systemic Pitx2mutants reveals that the inactivation of Pitx2
in FBA results in increased cell death in the mesodermal core
and loss of early premyoblast specification markers such as Six2,
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Tcf21, andMyoR (Dong et al., 2006; Shih et al., 2007a). Although,
the role that Six2 could play in themyogenesis of the FBA remains
elusive, Tcf21 and MyoR are known to be upstream effectors of
Myf5, Myod, and Myog in these initial muscle-cell clusters (Lu
et al., 2002). Jointly, these results indicate that Pitx2 controls the
expression ofMyod1 and the onset of myogenesis in FBA through
Tbx1, Tcf21, andMyoR (Figure 3A4).

Pitx2 during Fetal Myogenesis
Most of what is known about Pitx2 concerns early (embryonic)
myogenesis. However, a new role for Pitx2 has recently been
unraveled during fetal myogenesis. L’Honoré et al. by using
Pitx2:Pitx3 double conditional mutants, have shown that Pitx2/3
control the expression of the antioxidant system through the
regulation of Nrf1 and antioxidant enzymes during muscle
differentiation (L’honoré et al., 2014a). Thus, Pitx2/3 depletion
at the onset of differentiation induces an abnormal increase of
reactive oxygen species (ROS) levels in differentiating myoblasts
and leads to impaired myogenesis due to apoptosis of these
cells. These results emphasize the role of Pitx2 controlling redox
conditions during fetal myogenesis.

Pitx2 Is Emerging as a Key Transcription
Factor That Modulates Adult Myogenesis
During adult life the maintenance and repair of skeletal-muscle
tissue is directed by SCs. The regulation of SC function in adults
requires the redeployment of many of the regulatory networks
fundamental for developmental myogenesis. Although, several
efforts have beenmade during the last few years to disentangle the
role of Pitx2 in embryonic and fetal stages of myogenesis, studies
linking Pitx2 to adult myogenesis have only recently emerged and
are still controversial.

The first evidence regarding Pitx2 expression in SCs was
reported by Ono et al. (2010). These authors showed that all Pitx2
isoforms are expressed in proliferating SC-derived myoblasts.
They analyzed SCs with a different ontology, comparing those
of the extensor digitorum longus (EDL) of the limb with
SCs from the masseter of the head (MAS). They found that
Pitx2b and Pitx2c levels were higher in cells from the EDL
than from the MAS, with Pitx2c being the main Pitx2 isoform
expressed in proliferating limb SCs (Ono et al., 2010). Based
on these distinct gene-expression profiles, the authors suggest
that, even after activation and entry into the cell cycle, SCs
retain an identity consistent with their ontogeny underlying
their distinct properties. Subsequent studies have pointed out
that Pitx2a, Pitx2b, and Pitx2c were expressed at very low levels
in proliferating SCs, but increased during the early stages of
myogenic differentiation. Meanwhile the constitutive expression
of any Pitx2 isoform suppressed SC proliferation, with the
cells undergoing greater myogenic differentiation (Knopp et al.,
2013). However, additional evidence underlying the functional
relevance of Pitx2 on SC proliferation has been reported. For
example, Herbet et al. demonstrated that Pitx2 is crucial in
maintaining the phenotype of myogenic precursor cells in the
extraocular muscles (EOM; Hebert et al., 2013). In this analysis,
the authors found that the higher levels of Pitx2 expression
in EOM in comparison with limb muscles were concomitant

with longer proliferative state in EOM-derived SCs as compared
with limb cells. In addition, the knockdown of Pitx2 in SCs
isolated from EOM slowed their proliferation rate, and a similar
trend was seen for SCs isolated from tibialis anterioris muscle.
These data led to the conclusion that Pitx2 helps maintain
a proliferating pool of myogenic precursor cells. Finally, the
authors highlight that this greater proliferative capacity may
facilitate the repair of damaged EOM tissue, thereby contributing
to the sparing of EOM in muscular dystrophies (Hebert et al.,
2013).

More recently, a study conducted in our laboratory
has provided additional information about the molecular
mechanisms by which the Pitx2 transcription factor regulates
cell proliferation in SCs (Lozano-Velasco et al., 2015). We have
reported that Pitx2c expression is higher in early-activated SCs
than in long-term activated ones, and our in vitro Pitx2c gain-of-
function experiments have revealed that Pitx2c stimulates Ccnd1
and Ccnd2 expression, accelerating cell proliferation during early
satellite-cell activation. Moreover, we have demonstrated that
such Pitx2c effect on SCs proliferation is due to Pitx2c-mediated
downregulation of the miRNAs miR-15b, miR-106b, miR-23b,
and miR-503 (Figure 3B). The existence of the Pitx2-miRNA
pathway controlling the expression of key regulatory cell-cycle
genes in early-activated SCs revealed a role of Pitx2 in satellite-
cell activation. Although, muscle SCs are promising targets for
cell therapies, the paucity of SCs that can be isolated or expanded
from adult muscle tissue is limiting; thus these findings provide
new molecular tools to overcome such a bottleneck. It bears
noting that our analyses also showed that Pitx2c can increase
Myf5 expression by down-regulating miR-106b (Figure 3B),
thus expanding theMyf5+ satellite-cell population and revealing
a role for Pitx2c in promoting satellite-cell populations more
primed for myogenic commitment (Lozano-Velasco et al., 2015).
In this context it should be highlighted that in several muscular
disorders such as muscular dystrophies, the progressive muscle
wasting and weakness is often associated with exhaustion of
muscle-regeneration potential. Therefore, the progressive loss of
muscle mass has been attributed, at least partly, to the inability
of muscle stem cells to efficiently regenerate tissue loss as the
result of the disease (Berardi et al., 2014). Thus, critical for the
development of effective strategies to treat muscle disorders
is the optimization of approaches targeting muscle stem cells
and capable of regenerating tissue loss as the result of the
disease or as the result of normal muscle turnover (Bertoni,
2014). Notably, very recent reports have been pointed out that
muscle stem cells should be considered as a therapeutic target
for restoring muscle function in individuals with DMD (Chal
et al., 2015; Dumont et al., 2015). Therefore, identification
of new Pitx2 functions in the context of SC biology may
significantly contribute to the clarification of the molecular
and cellular mechanisms of skeletal-muscle regeneration
and may help to develop therapeutic strategies for muscular
disorders.

Notably, the analysis of adult single and double Pitx2:Pitx3
conditional mutant mouse lines targeted to the muscle
stem-cell compartment revealed that double mutant SCs undergo
senescence with impaired regeneration after injury, suggesting
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that Pitx2-mediated changes in ROS levels are required for
differentiation of SCs (L’honoré et al., 2014b).

All these data provide new insight into the function of Pitx2
in the molecular mechanisms that control SC behavior and
might thus have future application to enhance the regenerative
capacity of these myogenic precursor cells. Further analysis
using in vivo models could aid in understanding how the Pitx2-
mediated effects on SCs can influence the kinetics of muscle
regeneration.

CONCLUSIONS AND FUTURE
CHALLENGES

The data reviewed above show that Pitx2 is a comprehensive
marker for cells undergoing myogenic progression, more so than
any of the MRFs. This supports models that include a Pitx2-
dependent pathway in virtually all skeletal muscles. Many pieces
of experimental evidence have pointed out that Pitx2 is the first
molecular signal specifying all myogenic precursors in the head
muscles. However, although several works have characterized
Pitx2 as a key transcription factor in the molecular cascade
regulating trunk- and limb-muscle progenitors, additional work
is needed to elucidate the function of Pitx2 in specification vs.
determination during trunk and limb myogenesis. In addition,
since seminal works have revealed that Pitx2 functions on
myogenic cells may be due to Pitx2-mediated regulation of
miRNAs, the role of Pitx2 in the post-transcriptional control of
myogenesis should be further explored.

In parallel, the role of Pitx2 during adult myogenesis is
beginning to be explored. Skeletal muscle has the ability to

repair and regenerate due to the presence of resident SCs.
SC function in adults requires redeployment of many of the
regulatory networks fundamental to developmental myogenesis.
Currently, SCs are considered potential therapeutic targets for
restoring muscle function in muscle degenerative disorders such
as muscular dystrophies. Recent works indicate that Pitx2 is
expressed in proliferating SCs and can promote differentiation
of satellite-cell-derived myoblasts. Moreover, the identification
of Pitx2-miRNA pathways that regulate satellite-cell behavior as
well as the impact of Pitx2 on redox condition during satellite-
cell differentiation may open insights toward future applications
to modulate satellite-cell fate during muscle regeneration.
Therefore, these findings propose Pitx2 as a new player on
skeletal-muscle satellite-cell biology and may help to develop
therapeutic strategies for muscular disorder.
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Sonic Hedgehog Signaling in Limb
Development
Cheryll Tickle 1* and Matthew Towers 2*

1Department of Biology and Biochemistry, University of Bath, Bath, UK, 2Department of Biomedical Science, The Bateson

Centre, University of Sheffield, Western Bank, Sheffield, UK

The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the

polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the

posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh

has the properties of the long sought after polarizing region morphogen that specifies

positional values across the antero-posterior axis (e.g., thumb to little finger axis) of

the limb. Shh has also been shown to control the width of the limb bud by stimulating

mesenchyme cell proliferation and by regulating the antero-posterior length of the apical

ectodermal ridge, the signaling region required for limb bud outgrowth and the laying

down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb.

It has been shown that Shh signaling can specify antero-posterior positional values in

limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion.

Currently there are several models for how Shh specifies positional values over time in the

limb buds of chick and mouse embryos and how this is integrated with growth. Extensive

work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it

remains unclear how antero-posterior positional values are encoded and then interpreted

to give the particular structure appropriate to that position, for example, the type of digit.

A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the

discovery of increasing numbers of interacting transcription factors indicate complex

spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with

congenital limb defects and in the evolution of the morphological diversity of vertebrate

limbs.

Keywords: Sonic hedgehog, limb, digits, mouse, chick, positional information

INTRODUCTION

Over 20 years ago the first evidence was presented that Sonic hedgehog (Shh), an orthologue of the
Drosophila Hedgehog (Hh) gene, encodes the long sought after morphogen that specifies antero-
posterior pattern in developing vertebrate limbs (Riddle et al., 1993). Grafting experiments in chick
wing buds in the 1960s revealed that a group of morphologically indistinguishable mesenchyme
cells at the posterior margin of the wing bud (the margin nearest the tail), later known as the
polarizing region (or zone of polarizing activity), is an important cell-cell signaling center that
controls development across the antero-posterior axis (Saunders and Gasseling, 1968). Tissue
transplanted from the posteriormargin of one chick wing bud to the anteriormargin of another was
shown to have the striking ability to duplicate the pattern of three digits, so that another set develop
in mirror-image symmetry to the normal set. Based on these observations it was proposed that the
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polarizing region produces a diffusible morphogen that specifies
antero-posterior positional values (Wolpert, 1969). These
positional values are interpreted so that a structure, such as a digit
with an appropriate identity, develops in the correct position.

The key pieces of evidence that Shh is the polarizing
morphogen are that Shh transcripts were found to be localized
to the polarizing region of the chick wing bud (Figures 1a–f) and
that Shh-expressing cells grafted to the anterior margin of chick
wing buds can produce the same effects as grafts of the polarizing
region (Riddle et al., 1993). Earlier experiments revealed that
tissue from the posteriormargin ofmammalian limb buds grafted
to the anterior margin of chick wing buds could duplicate the
pattern of chick wing digits (Tickle et al., 1976; Fallon andCrosby,
1977). This is explained by the finding that Shh is expressed at the
posterior margin of mammalian limb buds (Echelard et al., 1993;
Odent et al., 1999). Shh has now been shown to be expressed at
the posterior margin of the limb buds of all vertebrates studied to
date, including the fin buds of themost primitive chondrichthyan
fishes such as the shark (Dahn et al., 2007).

Experiments in which the polarizing region was grafted to
the anterior margin of another chick wing bud showed that
polarizing region signaling also plays a role in controlling the
width of the limb bud and that widening of the bud is required
to specify a complete set of new antero-posterior positional
values (Tickle et al., 1975; Smith andWolpert, 1981). The earliest
detected effect of a polarizing region graft was an increase in
cell proliferation in adjacent mesenchyme in the host wing bud
(Cooke and Summerbell, 1980). In addition, it was proposed that
the polarizing region controls the production of a factor by the
mesenchyme that maintains the apical ectodermal ridge over the
region of the wing bud that will give rise to distal structures
including the digits (Zwilling and Hansborough, 1956). The
apical ectodermal ridge is a signaling region that rims the bud
and is required for proximal-distal patterning and outgrowth and
the laying down of structures along this axis; the extent of the
apical ectodermal ridge across the antero-posterior axis controls
the width of the wing bud and determines the number of digits
that can form. The effects of the polarizing region on the apical
ectodermal ridge also link antero-posterior and proximo-distal
pattern formation. This explains the observation that polarizing
region grafts made at later stages of development affect the
antero-posterior pattern of more-distal structures (Summerbell,
1974).

Early experiments highlighted the complex relationship
between the polarizing region and apical ectodermal ridge.
In order for a polarizing region to signal, it has to contact
the apical ectodermal ridge (Tickle et al., 1975) and this
interaction is required in order for the polarizing region to
maintain production of the apical ridge maintenance factor by
the mesenchyme that will form distal structures. In addition,
in the chick wing bud, the polarizing region itself demarcates
the posterior limit of the apical ectodermal ridge and grafts of
the polarizing region placed under the apical ectodermal ridge
flatten it (Saunders and Gasseling, 1968). Interestingly, it has also
been shown that the dorsal ectoderm of the wing bud, which
produces a signal controlling the development of the dorsal
pattern of structures (e.g., extensor muscles), is also required

for the polarizing region to signal (Yang and Niswander, 1995).
Thus, signaling along all three axes of the developing limb bud is
integrated.

It has now been shown that Shh affects cell proliferation in
the chick wing bud by controlling expression of genes encoding
cell cycle regulators including D cyclins independently of the
apical ectodermal ridge (Towers et al., 2008). Work on mouse
limb development has shown that Shh controls expression of
the Gremlin1 gene, which encodes the BMP antagonist that acts
as the apical ridge maintenance factor (Zuniga et al., 1999). In
addition, it has also been demonstrated that short-range Shh
signaling can flatten the apical ridge above the polarizing region
(Bouldin et al., 2010).

Experiments on chick wing buds have identified FGFs as the
apical ectodermal ridge signals that promote outgrowth and also
maintain Shh expression in the polarizing region (Laufer et al.,
1994; Niswander et al., 1994). Genetic experiments inmouse have
identified Wnt7a as the dorsalizing signal that also contributes
to regulating Shh expression (Parr and McMahon, 1995). Loss of
Wnt7a function in the mouse limb results in the transformation
of dorsal to ventral fates and loss of posterior digits (Parr and
McMahon, 1995). This second phenotype is consistent with a
function for Wnt7a in controlling Shh expression since no digits
form in the fore-limbs of Shh−/− mouse embryos and only a
single digit—considered to be an anterior digit 1—is present in
hind-limbs (Chiang et al., 1996).

In this review, we will emphasize the parallel contributions
that experimental chick embryology and mouse genetics have
played in providing the current picture of Shh function in the
limb. We will provide an in-depth picture of how Shh specifies
antero-posterior positional values in the limb buds of these two
main vertebrate models and how this is integrated with its role
in growth. We will consider how Shh expression in the limb
is initiated, maintained and eventually extinguished and how
cells respond to the Shh signal. We will finally review clinical
conditions affecting the limb and examples of evolutionary
diversification of limb morphology that are associated with
changes in Shh signaling.

SPECIFICATION OF ANTERO-POSTERIOR
PATTERN

Chick Wing
Detailed embryological experiments on the chick wing bud have
been crucial in establishing the signaling parameters of the
polarizing region morphogen. The polarizing region was first
discovered in the chick wing bud, where it overlaps with a region
of programmed cell death, known as the posterior necrotic zone
(Saunders and Gasseling, 1962). Indeed, the original grafting
experiments were designed to investigate how this region of cell
death is controlled (Saunders and Gasseling, 1968). Tissue from
the posterior margin of a chick wing bud was grafted to the
anterior margin of a second wing bud and this resulted in a
mirror-image pattern of digits across the antero-posterior axis.
The normal chick wing has three digits (designated at this time
as 2, 3, and 4) but following a polarizing region graft to the
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FIGURE 1 | Shh as a morphogen in the chick wing bud. (a) Sonic hedgehog (Shh) expression in the polarizing region at the posterior margin of the early chick

wing bud (Riddle et al., 1993). (b) A gradient of Shh in the chick wing bud (blue shaded numbers) specifies antero-posterior positional values for three digits (1,2, and

3) in cells adjacent to polarizing region over 12 h. (c) Chick wing digit skeleton with polarizing region descendants fate-mapped by GFP-expression (green) (Towers

et al., 2011). Digits form in tissue adjacent to descendants of the polarizing region that form narrow strip of cells along posterior wing margin. (d) Chick wing bud with

anterior polarizing region graft expresses Shh at both anterior and posterior margins (Towers et al., 2011). (e) Mirror-image symmetrical positional values specified as

in (b) as a result of Shh being produced by both graft and host. (f) Chick wing digit skeleton pattern with grafted polarizing region (d) and progeny fate mapped by

GFP expression (Towers et al., 2011). Six digits form in an anterior to posterior pattern 3-2-1-1-2-3 and grafted polarizing region descendants form narrow strip of

cells along anterior wing margin. In all cases, data shown is representative of data in the original cited papers.

anterior margin, six digits can develop in the pattern 4-3-2-2-
3-4. Note that recent evidence supports numbering of the digits
as 1, 2, and 3 (Towers et al., 2011), and this numbering system
is now generally accepted and will be used in this review. This
grafting experiment provided an assay for polarizing activity
and antero-posterior pattern that could readily be scored by
the distinct skeletal morphology of each of the three digits of
the chick wing. It should be noted that grafts of the polarizing
region also affect the antero-posterior pattern of the wing fore-
arm skeleton and soft tissues (Shellswell and Wolpert, 1977;
Robson et al., 1994). Thus, following a polarizing region graft,
two ulnae develop and the pattern of muscles is also duplicated.
The myogenic cells of the muscle originate in the somites and
migrate into the limb bud but the pattern of the wing muscles
is dictated by the connective tissue, which is derived from the
lateral plate mesoderm (Chevalier and Mauger, 1977). Therefore,
the duplicated pattern of muscles following a polarizing region
graft will be based on the response of the cells that give rise to the
muscle connective tissue.

The experimental parameters determined for polarizing
region signaling in the chick wing (reviewed in Towers and
Tickle, 2009) are consistent with the suggestion that the
polarizing region produces a long-range morphogen that sets
up a concentration gradient across the antero-posterior axis of
the wing bud and specifies positional values (Wolpert, 1969).
According to this model, the positional values at particular

threshold concentrations govern digit identity, with the highest
threshold concentration in tissue closest to the polarizing region
specifying the most-posterior digit, digit 3, and the lowest
threshold concentration in tissue further away specifying the
most-anterior digit, digit 1. Thus, any candidate molecule for
the polarizing region morphogen must act in a concentration-
dependentmanner (Tickle, 1981) and provide a long-range signal
(Honig, 1981).

The first defined molecule found to mimic the duplicating
activity of polarizing region grafts was the vitamin A derivative,
retinoic acid (Tickle et al., 1982, 1985) but it was subsequently
shown that retinoic acid acts indirectly (Noji et al., 1991; Wanek
et al., 1991) by inducing Shh expression (Riddle et al., 1993).
There is now good evidence that Shh acts in a concentration-
dependent fashion to induce digit duplications. When Shh–
expressing cells, or beads soaked in bacterially produced
ShhN protein (the active N-terminal fragment produced by
autocatalytic cleavage of the large precursor Shh protein),
are placed at the anterior margin of a chick wing bud, the
extent of digit duplication depends on the number of Shh–
expressing cells grafted or the concentration of ShhN protein
in which the beads are soaked (Yang et al., 1997). Fewer Shh-
expressing cells or lower concentrations of Shh elicit duplication
of only the anterior digit 1 (Yang et al., 1997). Grafts of
Shh-expressing cells that induce full digit duplications were
also shown to result in two ulnae developing in the forearm
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together with a duplicated pattern of muscles (Duprez et al.,
1999).

The original model for how antero-posterior values are
specified in the chick wing bud did not consider the dynamic
nature of the process, although experiments showed that the
extent of duplication following a polarizing graft depended on
the length of time that the graft was left in place (Smith, 1980). A
similar time dependency was subsequently seen with Shh–soaked
beads (Yang et al., 1997). Furthermore, fate mapping experiments
showed that cells near a Shh-soaked-bead give rise to an anterior
digit 1 when the bead is removed after a short time, but give
rise to a more posterior digit (2) if the bead is left in place
for longer (Yang et al., 1997). This process by which positional
values of cells change over time in response to an increasing
concentration of morphogen is known as promotion (see also
(Gurdon et al., 1995). An alternative process in which wing bud
cells acquire a stable positional value depending on the duration
of Shh signaling and then are displaced by growth can be ruled
out because an anterior digit 1 has been shown to arise in tissue
which was not originally adjacent to a polarizing region graft (see
Tickle, 1995).

The parameters of polarizing region discussed above were
determined in experiments in which additional digits were
induced following polarizing region grafts to the anterior margin.
But what is the evidence that Shh acts long range and how does
Shh signaling specify antero-posterior positional values during
normal development of the chick wing? Measurements of Shh
activity in slices taken from different positions across the bud
using an in vitro cell-differentiation assay are consistent with
there being a concentration gradient of Shh across the bud, with
Shh activity of a posterior slice being 5–6 times higher than that
of a middle slice (Zeng et al., 2001). Another indication that Shh
spreads across the wing bud and provides a long range signal is
that high levels of the transcripts of known direct gene targets
of Shh signaling, including Ptch1 (encoding the main receptor
for Shh), and Gli1 (encoding a transcriptional effector of Shh
signaling) encompass the posterior two-thirds of the wing bud,
including adjacent tissue in addition to the polarizing region
(Marigo et al., 1996). It should also be noted that following a
polarizing region graft or implantation of an Shh bead to the
anterior margin of the chick wing, there is a burst of high level
Ptch1 expression in the anterior part of the wing bud, which
then subsides and is later followed by the establishment of a
stable domain of high level Ptch1 expression (Drossopoulou et al.,
2000). This suggests that cells could respond to and interpret two
waves of Shh signaling; the first defining the size of the domain
that can give rise to digits, and the second, promoting the growth
of this domain and specifying positional values.

The temporal specification of positional values specified by
Shh in normal wing development has been directly addressed by
applying cyclopamine, a small molecule inhibitor of Hh signaling
at the level of Smoothened to chick embryos, at a series of
short time intervals after the onset of Shh expression in wing
buds (Towers et al., 2011). Smoothened, a member of the G-
protein coupled receptor superfamily, is normally activated upon
Shh binding to Ptch1, and this triggers of activation of the Gli
family of transcription factors (see section onMechanisms of Shh

signaling). Application of cyclopamine about 4 h after the onset
of Shh expression results in the development of just the anterior
digit 1, the anterior and middle digits (1 and 2) develop when
cyclopamine is added at 8 h while a complete set of digits (1,
2, and 3) develop when cyclopamine is added at 12 h (Towers
et al., 2011). Furthermore, fate mapping experiments show that
promotion is occurring with cells next to the polarizing region
first being specified to form the anterior digit 1, then being
promoted to form themiddle digit 2 and finally the posterior digit
3 (Figure 2A).

The effects of Shh signaling on antero-posterior growth
must be included in any comprehensive model for specification
of antero-posterior pattern in the chick wing. Application of
cyclopamine in the experiments described above demonstrated
that Shh signaling has effects on both specification of antero-
posterior positional values and growth because this treatment not
only prevented promotion but also expansion of the region of
the wing bud that will give rise to distal structures leading to the
development of fewer digits (Towers et al., 2008, 2011). When
growth alone is targeted by adding trichostatin A or colchicine,
and following over-expression of the cyclin-dependent kinase
inhibitor—p21Cip1—at a similar series of time points, fewer digits
also develop, but because specification of positional values and
promotion by Shh signaling are unaffected, the digits that develop
are posterior digits (Towers et al., 2008). These experiments show
that specification of antero-posterior positional values in the
early chick wing bud is coupled with growth that determines the
width of the wing bud.

The cyclopamine experiments also show that antero-posterior
values are specified over a relatively short time period during
early wing bud development. However, these values will not
be interpreted in terms of digit identity until much later in
development when the digit condensations develop (Figure 2A).
When the Shh-expressing region is completely removed from the
early wing bud at the time when the positional values that specify
two digits are specified, truncated wings develop with posterior
structures being preferentially lost (Pagan et al., 1996), showing
the crucial importance of Shh signaling in stimulating antero-
posterior expansion andmaintaining the apical ectodermal ridge.
Resulting skeletons bear resemblance to those of the wings of
the chicken mutant Oligozeugodactyly (Ozd) that develop devoid
of Shh (Ros et al., 2003). It is unclear why Shh continues to be
expressed at the posterior margin of the chick wing bud long
after the antero-posterior values have been specified (Figure 2A
see section Termination of Shh expression).

Chick Leg
The chick leg has four morphologically distinct digits (numbered
1, 2, 3, and 4 in antero-posterior sequence). Early grafting
experiments demonstrated that chick leg buds also have a
polarizing region but it was noted that when the leg polarizing
region was grafted to a chick wing bud, a toe frequently developed
in the duplicated wings (Summerbell and Tickle, 1977). It has
since been demonstrated using grafts from the Green Fluorescent
Protein-expressing transgenic chicken to make fate maps of the
polarizing region that the chick leg polarizing region gives rise to
the most posterior digit 4, whereas in the chick wing all the digits
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FIGURE 2 | Comparison of models of Shh function in chick and mouse limbs. (A) Chick wing promotion model. Positional values of digits 1, 2, and 3 specified

adjacent to polarizing region (blue shading) and promoted over 12 h through a series of increasingly posterior positional values by a concentration gradient of

paracrine Shh signaling (graded blue shading—note coloring of polarizing region also shows strength of Shh expression. Shh terminated at around 60 h as digit

condensations form by self-organization (black numbers). Colors of developing digits indicate a different positional value that cells were specified with. (B) Chick leg

promotion model. Positional values of digits 1, 2, and 3 specified as (A) but polarizing region cells promoted through progressively anterior positional values over 16 h

in response to time of autocrine Shh signaling (red numbers) and form digit 4. Shh terminated at around 60 h. (C) Mouse limb temporal expansion. Positional values of

digits 1, 2, and 3 specified adjacent to the polarizing region by a gradient of paracrine Shh signaling over approximately 24 h– it is unclear whether promotion is

involved (see A). Positional values of digits 4 and 5 specified in polarizing region sometime before Shh terminates at 60 h according to duration of autocrine Shh

signaling. Shh terminates at around 60 h. (D) Mouse limb biphasic model. Positional values of digits 1, 2, 3, 4, and 5 specified by Shh, possibly by a gradient of

paracrine signaling from the polarizing region in approximately 6 h. It is unclear whether promotion is involved and is possible in this time (see A), or if Shh levels can

reach concentrations predicted required to specify posterior positional values. Shh signaling over the next 16 h required for specified digit progenitor cells to proliferate

and form condensations in the order digit 1, 4, 2, 5, and 3 (purple numbers). (E) Mouse limb promotion model. Positional values of digits 1, 2, 3, and 4 specified as (B)

and polarizing region enlarges sufficiently to give rise to digits 4 and 5 by self-organization. Note promotion model does not easily explain digit 5 patterning that

requires a shorter exposure to form than digit 3 (see D). (F) Mouse limb truncated promotion model. Anterior positional values specified (1 and 2) specified by

autocrine and paracrine signaling and then cells become refractory to further posterior promotion. Digits form by self-organization: 1, 2, and 3 from cells adjacent to

polarizing region, digits 4 and 5 from the polarizing region.
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come from tissue anterior to the polarizing region (Towers et al.,
2011; see Figure 1c).

Shh is expressed at the posterior margin of chick leg buds
for a similar duration to its expression in chick wing buds.
Furthermore, it has been demonstrated by treating leg buds with
cyclopamine that the positional values that specify the three
anterior digits of the chick leg are promoted in response to
paracrine Shh signaling in an identical fashion to those that
specify the three digits of the chick wing (Towers et al., 2011).
However, the positional value for the most posterior digit 4 is
promoted in response to autocrine Shh signaling (Figure 2B).
Thus, when Shh signaling was attenuated in the chick leg bud by
cyclopamine 4 h after onset of Shh expression, two toes with digit
1 identities arose—one from the polarizing region, the other from
adjacent anterior tissue, while when Shh signaling was attenuated
after 8 h, three digits develop, toes with digit 2 identities from
the polarizing region and adjacent cells and a toe with a digit
1 identity from cells further away, and so on, until by 16 h,
all the antero-posterior positional values in the leg bud have
been specified (Towers et al., 2011). These observations show
that although it takes slightly longer to specify antero-posterior
positional values in the leg compared to the wing, this process
is nevertheless accomplished in the early leg bud, and, as in the
wing bud, some considerable time elapses before these positional
values are interpreted (Figure 2B). It should be noted that, in the
Ozd chicken mutant, a single digit 1 forms in the leg (Ros et al.,
2003).

Mouse Limb
Themouse limb has five digits (1, 2, 3, 4 and 5 in antero-posterior
sequence) and digits 2–5 all have three phalanges making them
morphologically very similar. Fate maps of the mouse limb
polarizing region made by tracing genetically labeled cells that
have expressed Shh show that the two posterior digits of the
mouse limb are entirely derived from the polarizing region, and
while there is some contribution to digit 3, the two anterior digits
come from cells outside of the polarizing region (Harfe et al.,
2004).

Shh is expressed at the posterior margin of limb buds of mouse
embryos between E9.5–E12.0 (60 h; Zhu et al., 2008, Figure 2C,
note expression is between E10-E12.5 in hind-limbs). At E10.5, a
graded distribution of Shh across the posterior third of the mouse
hind limb bud has been detected by immunohistochemical
analysis (Gritli-Linde et al., 2001) in keeping with paracrine Shh
signaling specifying antero-posterior positional values as in the
chick wing. Shh is expressed not only at the posterior margin but
also at the anterior of the limbs of several polydactylous mouse
mutants (Masuya et al., 1995) consistent with Shh functioning
as a polarizing signal in mouse limbs. In contrast, in mouse
embryos lacking Shh function, the limbs taper toward the tip, and
only one digit-like structure (interpreted as digit 1) develops in
the hind-limb, while no digits develop in the fore-limb (Chiang
et al., 1996). This indicates that Shh is required for the outgrowth
of the limb and for the development of structures distal to the
elbow/knee in the mouse limb. It should also be noted that
in mouse embryos lacking Shh function the development of
muscles in this distal region of the limb is severely compromised

(Kruger et al., 2001) Experiments in which Smoothened activity
is deleted specifically in the prospective myogenic cells show
that Shh signaling has direct effects on these cells; timing
myogenic differentiation, promoting slow muscle differentiation
and controlling their migration into the distal part of the limb
(Anderson et al., 2012; Hu et al., 2012).

In chick limbs, antero-posterior positional values clearly relate
to the identity of a digit that develops in an appropriate position.
However, this is not readily observable in the mouse limb due
to the difficulties in determining which digits are present in
mouse limbs conditionally lacking Shh function. Therefore, there
is currently no general consensus about the model which best
reflects how positional values are specified in the mouse limb
bud. The various models are now discussed below (also see
Figures 2C–F).

The first formal model to be proposed for the mouse limb was
the temporal expansion model (Harfe et al., 2004). In this model,
anterior positional values for digit 2 (and in part for digit 3)
are specified in a concentration-dependent fashion by paracrine
Shh signaling and then, posterior positional values (for digits
4 and 5) by the duration of autocrine Shh signaling, which is
governed by the proliferative expansion and then displacement
of cells from the polarizing region (Figure 2C; specification of
digit 1 is considered to be Shh-independent in the hind-limb).
Consistent with the model, the restriction of paracrine signaling
in a Dispatched mutant (see later section on Mechanisms of Shh
signaling) resulted in loss of one digit, suggested to be digit 2.
This model also gained support from the finding that when
Shh expression was curtailed in the developing mouse limb, this
resulted in only three digits developing. The authors identified
these digits as being 1, 2, and 3 consistent with the prediction
that digits should be lost in a posterior to anterior sequence
(Scherz et al., 2007). A particular feature of this model is that
it takes considerable time for all the antero-posterior positional
values to be specified (Figure 2C), rather than over a short time
in the early limb bud. Moreover, it does not take into account
promotion through a transitory series of anterior to posterior
positional values, which has been demonstrated to occur in the
limb buds of the chick.

A later model was proposed by Zhu et al. (2008) based on
the results of a more extensive set of experiments, in which Shh
function was deleted at a series of different stages in mouse limb
development. Again, digits were lost with progressively fewer
digits developing when Shh function was deleted at earlier and
earlier stages. However in this case, the authors suggested that
the sequence of digit loss reflects the order in which digits form,
with digits that form last being lost first. Thus, for example, they
identified the digits in limbs with three digits as being 1, 2, and 4.
If their identification of the digits is correct, a posterior digit has
formed adjacent to an anterior digit, an outcome not predicted
by any previous model. Based on their findings, they proposed
a biphasic model for digit patterning—in which Shh has two
functions (Figure 2D). In the first phase, Shh specifies positional
values across the antero-posterior axis of the very early limb bud,
possibly via a concentration gradient, while in the second phase
Shh is required to support proliferation and survival of cells that
will form the digits (Zhu et al., 2008). It is not clear whether this
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latter function is a separate direct function of Shh signaling or
reflects an essential role of Shh signaling in maintaining sufficient
apical ectodermal ridge signaling. According to this model, the
resultant digit patterns when Shh function is deleted are due to
loss of Shh compromising survival and proliferation of specified
digit progenitor cells rather than failure to specify antero-
posterior positional values (Zhu et al., 2008). Furthermore,
positional values would have to be specified in the early mouse
limb bud over a period of approximately 6 h (based on Ptch1
expression), which suggests that this process is not integrated
with growth as in the chick wing.

The ability to observe promotion in chick limbs gives insights
into the time required to specify positional values, but in the
mouse limb, in which promotion is not readily observed, it is
difficult to distinguish between the effects of Shh signaling on
specification of positional values and survival and proliferation
of the cells that will form the digit condensations. Indeed the
time required for digit specification proposed by Zhu et al. does
not appear consistent with a model in which antero-posterior
positional values are promoted in response to the concentration
and/or duration of Shh signaling. However, if one were to take
promotion into account, a unifying model can be proposed
(Towers et al., 2011). According to this proposal, positional
values would be specified early in the mouse limb as suggested
in the biphasic model. However, these would only be anterior
positional values, which would then be promoted to posterior
values by both paracrine and autocrine Shh signaling operating
in parallel. Thus, the pattern of digits specified would depend
on how far positional values have been promoted at the time at
which Shh function is deleted in keeping with more conventional
models for digit patterning. The digits that develop in the three-
digit mouse limb when Shh signaling is curtailed would therefore
be predicted to be 1, 2, and 2—a pattern that is readily observed
in cyclopamine-treated chick legs (Towers et al., 2011), and
occasionally in wings (Pickering and Towers, 2016). However,
there are difficulties in applying a promotion model to the
specification of digit 5 of the mouse limb as this would imply that
it is the last digit of the pattern to be specified (Figure 2F), when
in fact it forms before more-anterior digits (Figure 2D, see also
discussion in Towers et al., 2011).

INTERACTION BETWEEN POSITIONAL
INFORMATION AND A TURING-TYPE
MECHANISM

Although, it has been shown that Shh is the critical signal in
controlling development across the antero-posterior axis of the
limb, there is evidence that the periodic condensation of cells that
will form the digits depends on an underlying Turing type self-
organization mechanism independent of graded Shh signaling.
In the basic Turing model, diffusible signals—one operating
as an inhibitor, the other as an activator—interact to produce
the pattern of digits and interdigits. Positional information and
self-organization have been presented as competing models of
digit development, when in fact the power of both processes
operating together has been long recognized (see (Wolpert,

1989) and for original paper on reaction-diffusion (Turing,
1952).

The first indications that such a self-organization mechanism
might be involved in limb development came from experiments
in which it was shown that recombinant limb buds formed from
disaggregated single cells, re-aggregated and placed back in an
ectodermal jacket could still form digits (Zwilling, 1964; Pautou,
1973). Indeed, based on this latter study, one of the first computer
simulations of limb development was developed (Wilby and
Ede, 1975). Further experiments showed that when recombinant
limbs were made from chick mesenchyme cells from the anterior
halves of early chick leg buds, which would not include a
polarizing region, and which would not normally give rise to
digits, two or three morphologically similar digit-like structures
developed (Hardy et al., 1995; Elisa Piedra et al., 2000). When
a polarizing region was grafted into such recombinant limbs,
however, the digits that developed had recognizable identities
(MacCabe et al., 1973). These experiments elegantly revealed
that positional information and self-organization are integrated
in limb development. There is evidence that a self-organization
mechanism also operates in mouse limb buds, as the limbs of
mutant mouse embryos in which the Shh signaling pathway
is non-functional have many morphologically similar digits
(Litingtung et al., 2002; te Welscher et al., 2002; see Section–
Measurement of Shh concentration and duration of signaling).
Indeed, recent studies in the mouse limb have suggested that
this mechanism is based on WNT signals acting as inhibitors
and BMP signals as activators, that together, converge on the
transcription factor Sox9 to generate a repeated series of digit
condensations (Raspopovic et al., 2014).

Since digits 2–5 have similar morphologies in the mouse
limb, particularly in regard to phalangeal count, one proposal
is that self-organization plays a dominant process (Delgado and
Torres, 2016). This scenario could for account for difficulties
in applying a positional information model to the five digits
of the mouse limb. Moreover, a recent study on developing
chick wings has revealed how positional information and
self-organization can interact and this could be relevant to
understanding how the mouse digit pattern is specified. If chick
wing buds are treated with cyclopamine under conditions in
which the promotion of antero-posterior values is truncated,
a series of morphologically similar digit 2s in a pattern 1-2-
2-2 can develop by self-organization (Pickering and Towers,
2016). It should be noted that the digit 2s were not of identical
morphologies and sizes suggesting other factors control these
finer aspects of development. In wings with multiple digit
2s, the most-posterior of these digits arises from cells of the
polarizing region. An interpretation of these findings is that
antero-posterior expansion mediated by a posteriorly extended
apical ectodermal ridge has enabled a small pool of cells specified
with the same positional value to produce a series of digit 2s by
self-organization (Pickering and Towers, 2016). In extrapolating
these data to the mouse limb, it has been suggested that a similar
mechanism could account for the patterning of digits 1 through
to 4 (Pickering and Towers, 2016; Figure 2F). In addition, the
apical ectodermal ridge of the mouse limb completely overlies
the polarizing region (Pickering and Towers, 2016), and an
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intriguing suggestion is that this could enable the cells of the
polarizing region to expand sufficiently to give rise to two
digits (4 and 5) by self-organization (Figure 2F; Pickering and
Towers, 2016). The specification of the same positional value
during mouse limb development could occur if cells become
refractory to the levels/duration of Shh signaling at a certain
point (Figure 2F). In support of such a mechanism operating
in the mouse, there is not a simple linear relationship between
position and level of positive Shh signaling in the limb bud
as expected in a classical positional information model (Ahn
and Joyner, 2004). However, even though mouse digits 2–5 are
morphologically similar, it is clear that they still have different
identities, with the cells of digit 4 being characterized by having
many more receptors for both testosterone and estrogen than
digit 2 thus determining the sexual dimorphism in digit length
(Zheng and Cohn, 2011). Indeed, digit 5 in particular, has quite
a different morphology to the other digits. Taken together, even
if the cells that give rise to mouse digits 2–5 are specified with
the same positional value that is interpreted so that they have
the same phalanx number, other factors operate to give the digits
their individual morphologies and hence identities. Additional
support for a model in which loss of Shh signaling can increase
digit number and also result in posterior digits developing with
anterior traits has been provided by work on the fore-limbs and
hind-limbs of the amphibian Xenopus tropicalis. Inhibition of
Shh signaling at a series of developmental stages resulted in fore-
limbs occasionally developing with five digits rather than four
(Stopper et al., 2016). In addition, hind-limbs often developed
terminal claws on all five digits whereas in normal development
claws are only present on digits 1, 2, and 3. Additional work is
required to determine if other characteristics of these posterior
digits are anteriorised such as phalange number.

The work of Pickering and Towers further highlights the
complex relationship between the polarizing region and the
apical ridge already mentioned (Niswander et al., 1994), and
the importance of short-range reciprocal signaling between these
structures in the formation of posterior digits in particular
as observed in the mouse limb (Zuniga et al., 1999; Bouldin
et al., 2010). Thus, in the chick wing, Shh signaling inhibits
the overlying apical ridge and the polarizing region fails to
produce digits, yet in the mouse limb, the overlying apical ridge
is less sensitive to Shh signaling than in the chick wing (see also
(Bouldin et al., 2010), and in persisting posteriorly, allows two
digits to form—the chick leg appears to have an intermediate
relationship allowing one digit to form. Such dynamic interplay
between the polarizing region and apical ridge could have
contributed to patterns of posterior digit loss during limb
evolution (see Section on Evolutionary aspects of Shh signaling
in the limb).

MECHANISMS OF Shh SIGNALING

As indicated in the models outlined above, positional values
in developing limbs are specified by paracrine Shh signaling,
in which Shh acts as a long-range graded signal and in a
concentration/time dependent fashion, or by the duration of

autocrine Shh signaling. Therefore, the crucial questions are how
a graded distribution of Shh arises, how the range of Shh signaling
is controlled and how cells measure the concentration of Shh and
the duration of Shh signaling.

Long-Range Shh Signaling and Gradient
Formation
Studies in developing mouse limbs have revealed general
mechanisms that modulate the distribution of Shh protein
in tissues. One factor is the addition of lipids. Following its
autocatalytic conversion, Shh is secreted by cells as a modified
form of ShhN with cholesterol added at the C-terminus and
a palmitoyl group (as part of a thiol ester) at the N-terminus
(known as ShhNp; p indicating that ShhN is processed; reviewed
(Lee et al., 2016). In limb buds of mouse embryos in which the
C-terminal processing domain of Shh is conditionally deleted
so that the polarizing region produces ShhN instead of ShhNp,
ShhN spreads further across the limb bud and additional digits
develop anteriorly (Li et al., 2006). It should be noted that
previous analyses also suggested that cholesterol modification
extends the range of paracrine Shh signaling. Thus, mice limbs
expressing ShhN that lacks cholesterol failed to form digits 2
and 3 (Lewis et al., 2001) consistent with a role for paracrine Shh
signaling in specifying these digits (Harfe et al., 2004). Other data
however are consistent with cholesterol modification restricting
the spread of Shh. Thus, mice deficient in SREBP-2 that
encodes a sterol regulatory element binding protein that regulates
cholesterol production failed to up-regulate Ptch1, consistent
with impaired Shh transport (Vergnes et al., 2016). Similar
studies on mutant mice that are unable to palmitoylate Shh
show that this modification is essential for long range signaling
(Chen et al., 2004). Intriguingly, cholesterol has also recently been
shown to be the endogenous activator of Smoothened (Huang P.
X. et al., 2016). Because cholesterol plays such important roles
in Shh signaling, changes in the availability of cholesterol can
impact on the development of the limb and might explain the
subtle alterations in the spacing of the digits that have been
observed in the limbs of mice with a mutation in a gene encoding
a protein required for cholesterol metabolism (Schmidt et al.,
2009) and in the limbs of rat embryos treated with triparanol,
an inhibitor of cholesterol biosynthesis (Gofflot et al., 2003).
The membrane protein Dispatched1 is required for paracrine
signaling by cholesterol–modified Shh (Tian et al., 2005). The
restriction of the spread of the ligand in a Dispatched1 mouse
mutant resulted in the loss of a digit, which was interpreted
as being digit 2, and as already mentioned, provided crucial
evidence for the temporal expansion model (Harfe et al., 2004).

Another mechanism that influences the range of Shh signaling
is the binding of Shh to cell surface and extracellular proteins.
A generic response to Shh in all tissues is transcriptional up-
regulation of genes encoding cell surface proteins such as Ptch1
andHhip that bind Shh. The resultant increase in their expression
in response to Shh creates negative feedback loops, that not only
limit the spread of Shh by sequestering it at the cell surface, but
also, in the case of Ptch1, because it inhibits Smoothened activity,
dampens activation of the Shh pathway. In mice in which Ptch1

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2017 | Volume 5 | Article 14 | 126

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Tickle and Towers Shh in Developing Limbs

is conditionally inactivated in the limbs (Butterfield et al., 2009),
and therefore the signaling pathway is activated independently
of Shh, the hind-limbs have extra digits, but the fore-limbs have
fewer digits. This difference between hind-limbs and fore-limbs
appears to be due to the timing of activation of the signaling
pathway, which is earlier in the mutant fore- limbs (Zhulyn et al.,
2014).

In contrast to Ptch1 and Hhip1, the genes Cdo (CAM-
related/downregulated by oncogene), Boc (brother of Cdo) and
Gas1 (growth arrest specific 1) encoding membrane associated
proteins that bind Shh, are expressed in the anterior region
of early limb buds and their expression is negatively regulated
by Shh. Analysis of limb development in single or double
mouse mutants suggest that Gas1 and Boc sustain paracrine Shh
signaling at a distance from the polarizing region (Allen et al.,
2007). ShhNp can also bind to heparan sulfate proteoglycans
and the distribution of these and other extracellular proteins
in the developing limb will affect the distribution of Shh. In
Drosophila, the hydrolase notum that cleaves glypicans, a sub-
family of heparan sulfate proteoglycans, promotes high-level Hh
signaling in the wing. Interestingly, in the chick wing bud,Notum
was identified in microarray experiments as being downstream of
Shh signaling (Bangs et al., 2010), suggesting possible functional
conservation.

One way in which Shh could spread across the limb bud
is by diffusion (see Muller et al., 2013, for discussion on
mechanisms of morphogen transport), although it has been
questioned whether simple diffusion would be a sufficiently
robust mechanism to generate a stable concentration gradient
(Kerszberg andWolpert, 2007). Mathematical modeling however
showed that specification of positional values for the three digits
of the chick wing can be simulated by simple diffusion of Shh
from the polarizing region (Woolley et al., 2014). In the model,
based on the results of (Drossopoulou et al., 2000), Shh specifies
the initial size of the domain that will give rise to the digits and
then provides positional information. The model incorporates
promotion of positional values in a dose-dependent fashion over
the observed time frame in a growing domain of the correct
dimensions as determined experimentally (Towers et al., 2008).
Themodel can be extended successfully to the specification of the
positional values in the chick leg, even though digit 4 arises from
the polarizing region. However, it is unclear whether Shh levels
in the polarizing region could reach the predicted concentration
required to specify digit 4 (assumed to be double that required
to specify digit 3) and whether indeed there is a simple graded
response to Shh signaling in the leg. It is therefore more plausible
that digit 4 is specified by length of time that cells express Shh.
The model cannot however be extended further to simulate easily
specification of the fifth digit of the mouse limb.

Live imaging of chick wing buds showed that Shh can be
transported along the external surface of specialized filopodia
(similar structures in insects are called cytonemes). These
filopodia extend up to 150 microns away from the polarizing
region and a similar distance away from the receiving cell
(Sanders et al., 2013) equating to about 300 microns, the initial
size of the chick wing digit-forming field (Vargesson et al., 1997;
Towers et al., 2008). Thus, direct cell-cell contacts can span

the required range of Shh signaling. Furthermore, Boc and Cdo
have been visualized in discrete microdomains on a subset of
filopodia extending from Shh-responding cells. However, it is not
clear whether this transport mechanism could produce robust
graded signaling and indeed whether filopodia are required. The
involvement of filopodia could however explain the apparently
anomalous finding that grafts of cells expressing a membrane-
tethered form of Shh (generated by fusing the integral membrane
protein CD4 to the C-terminus of ShhN) can duplicate digits in
the chick wing (Yang et al., 1997).

Measurement of Shh Concentration and
Duration of Signaling
It has been proposed that limb bud cells respond to paracrine
Shh signaling in a concentration dependent fashion although
length of exposure to the Shh signal also plays a role. So how
do cells measure the concentration of Shh? The mechanism
depends on the Shh-dependent processing of full-length Gli
proteins, which act as transcriptional activators; in the absence
of Shh signaling, Gli proteins are processed to short forms,
which act as transcriptional repressors (reviewed in Lee et al.,
2016). In normal chick and mouse limb buds, anterior cells not
exposed to Shh contain high levels of Gli repressor, while in
the posterior region of the limb, there is a gradient in the ratio
of Gli activator/Gli repressor, higher posteriorly than anteriorly,
reflecting the response to the Shh gradient across this part of the
limb (Wang et al., 2000). There are three Gli genes, Gli1, Gli2,
and Gli3 with the protein encoded by Gli1 acting exclusively as
an transcriptional activator as it does not undergo processing
into a repressor form. While functional inactivation of Gli1
and Gli2 in mice has little effect on limb development (Mo
et al., 1997; Park et al., 2000), when Gli3, the major contributor
to transcriptional repression, is functionally inactivated, Shh
is expressed anteriorly and several additional morphologically
similar digits form anteriorly while posterior digits are less
affected (Wang et al., 2000). Unexpectedly, the limbs of Gli3 and
Shh double knockout embryos are identical to the Gli3−/− limb
buds showing that the function of Shh in the limb is to relieve
repression by Gli3 and allow a patterned set of digits to develop
from the posterior part of the limb (Litingtung et al., 2002; te
Welscher et al., 2002). In the mouse limb, the gradient of Gli3
activity could only specify at most digits 1, 2, and 3 because
Gli3 is not expressed in the polarizing region itself (Buscher
and Ruther, 1998). Instead the initial response to autocrine Shh
signaling would have to be mediated by Gli2, and consistent with
this hypothesis, removing the function of Gli2 in a Gli3 mutant
background, thus effectively inactivating all Gli function, results
in the digits appearing morphologically similar (Bowers et al.,
2012). This suggests that Gli3 mediates the response of cells in
the limb bud to paracrine Shh signaling and Gli2 to autocrine Shh
signaling. It should also be noted that the digits that form in single
Gli3−/− mouse limbs (and also in compound Shh−/−/Gli3−/−

mouse limbs) are thinner and more closely spaced together than
in normal limbs, suggesting that Gli3 plays a role in regulating the
digit period (Sheth et al., 2012, see section Interaction Between
Positional Information and a Turing-typeMechanism). 5′Hoxa/d
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function also seems to be involved since the progressive titration
of 5′Hox genes in theGli3−/− background increases digit number
and decreases the digit period still further (Sheth et al., 2012).

Surprisingly, chemical mutagenic screens to identify
mutations causing polydactyly in mouse identified genes
required for formation and functioning of primary cilia
(Huangfu et al., 2003; Weatherbee et al., 2009; Ashe et al., 2012).
In such mutants, many morphologically similar digits develop
and this is because Gli processing takes place on primary cilia in
vertebrate cells. Thus, absence of cilia is equivalent to functional
inactivation of all three Gli genes. The classical chicken mutant,
talpid3, with a range of defects including polydactylous limbs
(Ede and Kelly, 1964) was found to have a mutation in a gene
encoding a centrosomal protein required for formation of a
primary cilium (Davey et al., 2006), and functionally inactivating
the talpid3 gene in a mouse limb, leads to the development
of many morphologically similar digits (Bangs et al., 2011).
Another chicken mutant, talpid2, with the same range of defects
including polydactylous limbs, was found to have a mutation in
a gene encoding another ciliary protein—C2CD3 (Chang et al.,
2014).

For autocrine Shh signaling, the duration of signaling is the
most important parameter. Timing appears to be a general way
of specifying positional values, but how cells in embryos measure
time is little understood. Interestingly, a timing mechanism
involving a cell cycle clock has been proposed to specify proximo-
distal positional values in the chick wing bud (Saiz-Lopez et al.,
2015), although the most proximal positional values may be
specified by retinoic acid signaling (Cooper et al., 2011; Rosello-
Diez et al., 2011). The molecular nature of intrinsic timers
is currently unknown and presents a widespread problem in
developmental biology.

INITIATION OF Shh EXPRESSION

A key discovery in understanding how Shh expression is localized
to the posterior margin of the limb bud was identification of a cis-
regulatory element that controls limb-specific expression (Lettice
et al., 2002). Analysis of Sasquatch, an insertional mouse mutant
with limb polydactyly, in which Shh was expressed anteriorly as
well as posteriorly in the limb, showed that the exogenous DNA
construct had serendipitously disrupted an enhancer (Sharpe
et al., 1999). This 1.7 Kb enhancer, which has become known
as the ZRS (zone of polarizing activity regulatory sequence), is
unexpectedly located in intron 5 of the LMBR1 (limb region 1)
gene, which is almost 1 MB upstream of the promoter of the Shh
gene. It is still not clear why insertion of the transgene into this
particular region of the ZRS in Sasquatch leads to anterior Shh
expression in the limb bud. In contrast, deletion of the entire
ZRS region in mouse embryos results in loss of Shh expression
in the limb buds resulting in limb truncations similar to those
found in mouse embryos lacking Shh function (Sagai et al.,
2005). It should be noted however, that the many other defects
seen in mouse embryos lacking Shh function, which reflect
the widespread functions of Shh signaling in organogenesis,

are not present in the mouse embryos in which the ZRS is
deleted.

The ZRS is of general interest as an example of a long-range
enhancer—a cluster of three similar long-range enhancers also
regulates Shh expression in the epithelial linings of the pharynx,
the lung and the gut respectively (Sagai et al., 2009). 3D FISH
and chromatin configuration assays showed close associations
between the ZRS and the Shh locus in mouse limb bud cells
compared to cells from other tissues (Amano et al., 2009).
Curiously, transcriptional activity was not seen in all polarizing
region cells suggesting that the cells may express Shh in pulses.
One possibility is that Shh is expressed periodically during the cell
cycle. In support of this, Shh expression is lost in chick wing buds
treated with aphidicolin—an inhibitor of progression through S-
phase (Ohsugi et al., 1997). More recently FISH and chromatin
configuration assays together with super-resolution microscopy
have revealed that the Shh locus loops out of its chromosome
territory to make contacts with the ZRS in polarizing region cells
in the mouse limb bud at the time Shh expression is activated
(Williamson et al., 2016).

The ZRS provides an excellent reference point for deciphering
the gene network that controls Shh expression in the limb and
contains binding sites for the transcription factors, Hand2 (heart
and neural crest derivatives 2; (Galli et al., 2010) and 5′ Hoxd
proteins. The genes encoding these transcription factors are
expressed in the posterior region of the early limb bud and
when they are deleted in the mouse limb, Shh is not expressed.
Conversely, when Hoxd13 is expressed throughout the mouse
limb bud, there is an ectopic Shh domain and polydactylous limbs
result (Zakany et al., 2004).

Expression of Hand2 and Hoxd genes is restricted to the
posterior part of mouse limb buds by Gli3. In the mouse
fore-limb-forming region, Hand2 expression is also repressed
anteriorly by the Hox5 paralogous group genes (Xua et al.,
2013), while Hand2 expression in the posterior region of the
fore-limb-forming region is dependent on the Hox9 paralogous
group genes, thus providing antero-posterior polarity prior to
the transcriptional activation of the Shh gene (Xu and Wellik,
2011). Recently, it has emerged that GATA family transcription
factors also contribute to supressing anterior expression of Shh
(Kozhemyakina et al., 2014) as conditional removal of Gata4/6
in limbs of mouse embryos results in pre-axial polydactyly.
Two distinct mechanisms have been proposed. One is that
GATA transcription factors in complex with FOG co-factors bind
directly to the ZRS enhancer while the other is that GATA6
may interact directly with GLI3 to promote repression of the
vertebrate Hedgehog pathway and thismay explain the formation
of an additional anterior digit in the hindlimb (Hayashi et al.,
2016).

Shh expression in the polarizing region is also controlled by
FGF signaling from the apical ridge and FGF signaling has been
shown to regulate the expression of the genes encoding the ETS
translocation variant transcription factors ETV4 and ETV5. The
genes encoding these transcription factors are expressed beneath
the entire extent of the apical ectodermal ridge and suppress
Shh expression outside of the polarizing region. These ETV
transcription factors bind directly to sites in the ZRS. In the
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polarizing region, posteriorly expressed ETS1/GABPα binds to
other sites in the ZRS and over-rides this inhibition and allows
expression of Shh (Lettice et al., 2012). Wnt7a signaling from the
dorsal ectoderm also contributes to controlling Shh expression
but themechanism is not yet known (Yang andNiswander, 1995).

The activity of the ZRS not only determines the location of
cells expressing Shh in the developing limb bud but also the size
of the Shh expression domain. In addition, an autoregulatory
mechanism has been discovered in which Shh controls the
number of polarizing region cells by regulating the size of
the posterior necrotic zone (Sanz-Ezquerro and Tickle, 2000)
via BMP2 signaling (Bastida et al., 2009) Taken together these
mechanisms have the crucial function of controlling the levels of
Shh signaling.

Lastly, retinoic acid derived from the flank also appears to
be required for initiating Shh expression in limb buds. Shh
expression is greatly reduced in the limb buds of vitamin A
deficient quails (Stratford et al., 1999) and in chick wing buds
following treatment with inhibitors of retinoic acid synthesis
(Stratford et al., 1996). Mouse embryos in which a gene
encoding an enzyme that generates retinoic acid was functionally
inactivated died early and lacked fore-limbs. When these
embryos were provided with retinoic acid so that development
can proceed further, Shh was not restricted posteriorly in the
rescued fore-limb buds suggesting that retinoic acid plays a role
in determining antero-posterior polarity prior to activation of
Shh expression (Niederreither et al., 2002; Zhao et al., 2009).

TERMINATION OF Shh EXPRESSION

The failure of the positive feedback loop between the polarizing
region and the apical ectodermal ridge has been proposed to
terminate the duration of Shh expression in the chick wing.
In this model, Shh up-regulates Grem1 by paracrine signaling,
but cells displaced from the polarizing region by proliferative
expansion are then unable to up-regulate Grem1 (the apical ridge
maintenance factor; Scherz et al., 2004). This is proposed to
create a tissue barrier that results in Shh being no longer able
to up-regulate Grem1 at a distance, leading to de-repressed BMP
signaling suppressing Fgf4 expression in the apical ectodermal
ridge, that in turn, leads to loss of Shh expression in the polarizing
region (Scherz et al., 2004). Tbx2 is proposed to be the factor that
suppresses the posterior up-regulation of Grem1 in and around
the polarizing region (Farin et al., 2013). In the absence of Tbx2,
Grem1 expression expands posteriorly resulting in prolonged Shh
expression and extra tissue growth indicated by the bifurcation
of digit 4. It is unclear why this only occurs in the hind-limbs of
these Tbx2 knockout mice. An alternative model for the mouse
limb is that increased FGF signaling inhibits Grem1 expression
leading to termination of the feedback loop (Verheyden and Sun,
2008).

A clock linked with the cell cycle has also been shown to
be involved in timing the duration of Shh expression in the
polarizing region of the chick wing bud with the clock being set
once retinoic acid concentrations fall below a certain level. Thus,
tissue transplantation experiments have shown that the chick

wing polarizing region intrinsically times the duration of Shh
expression irrespective of the extrinsic signaling environment
(Chinnaiya et al., 2014). Indeed, Shh expression has been shown
to terminate on time if the separation of Grem1 and Shh
expressing cells is prevented (Towers et al., 2008). Furthermore,
the inhibition of Shh signaling with cyclopamine in the chick
wing leads to the premature loss of Shh expression in the
presence of an Fgf4-expressing apical ectodermal ridge and
Grem1 expression extending into the posterior part of the wing
bud, thus suggesting that Shh autoregulates its own transcription
in the polarizing region (Pickering and Towers, 2016). The
mechanism by which this is achieved has not yet been elucidated.

RESPONSE TO Shh SIGNALING IN THE
LIMB

Many studies have provided information about the expression of
individual genes that are affected by Shh signaling in the limb.
For example, changes in gene expression have been observed
in chick limb buds treated with Shh or cyclopamine, and in
mouse limb buds in which Shh or Gli3 is functionally inactivated,
or in which Gli3 processing does not occur, e.g., mutants with
defective cilia. Microarray analyses have been carried out in both
chick and mouse limbs (Vokes et al., 2008; Bangs et al., 2010).
It has been estimated from one microarray study that 10% of
the genes expressed in the early limb bud (about 1,000 genes)
are downstream of Shh signaling (Bangs et al., 2010). Putative
direct targets of Gli3 repression have been identified by ChIP
seq analysis of limb bud nuclear extracts using transgenic mice
expressing a tagged form of the Gli3 protein (Vokes et al., 2008).
Further analysis has involved RNAseq (Lewandowski et al., 2015).

Analysis of this information has begun to uncover the gene
regulatory network underlying the response to the Shh signaling
pathway in the limb in addition to the generic suite of genes that
encode proteins that enable or modulate Shh signaling. The genes
in the network include those that are expressed posteriorly either
due to positive regulation by Shh or because Shh relieves Gli3
repression; also those that are expressed anteriorly either due to
negative regulation by Shh or because they are downstream of
Gli3 repression (Bangs et al., 2010). A study involving analysis of
gene expression patterns in the limb buds of Shh−/−, Gli3−/−

double mouse mutants indicated that the expression of nearly
all the putative Gli target genes identified by ChIP seq in the
posterior mesenchyme of E10.5 mouse limb buds depends on Gli
repressor activity rather than Gli activator activity (Lewandowski
et al., 2015).

One generic class of potential target genes already mentioned
comprises genes encoding cell cycle regulators such as N-myc
and Cyclin D1 that are predominantly expressed posteriorly and
Cyclin D2 that is expressed in the polarizing region, and that
are likely mediate the effects of Shh on proliferation (Towers
et al., 2008; Welten et al., 2011). Shh has also been shown to
promote vascularisation of the chick wing bud via regulating
expression genes encoding pro-angiogenic factors such as VEGF
(Davey et al., 2007). There is evidence in the mouse limb,
that transcription factor genes including 5′ genes in the Hoxa
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and Hoxd clusters, Sall1, and Tbx2/Tbx3 are putative direct
targets of Shh and would be predicted to encode the positional
information conferred by the autocrine/paracrine Shh signaling
(Vokes et al., 2008). Experiments with cultured mouse limb buds
suggest that Shh signaling is required for robust and continued
expression of 5′members of the Hoxd cluster (Panman et al.,
2006; Lewandowski et al., 2015) whilemis-expression ofTbx2 and
Tbx3 genes in the chick leg bud in the embryo has been reported
to change digit identity (Suzuki et al., 2004).

Other putative direct Gli3 targets are genes involved in BMP
signaling; Gremlin encoding the apical ridge maintenance factor
and Bmp 2 expressed together with Bmp7, in the posterior
region of the early limb bud (Vokes et al., 2008). There is a
close relationship between Shh and Bmp2 expression elsewhere
in vertebrate embryos, which is also conserved in Drosophila.
For instance in the Drosophila wing imaginal disc, Hh secreted
from the posterior compartment induces expression of the Bmp2
orthologue, Dpp, that encodes a long range signaling molecule
regulating position-dependent expression of transcription factors
such as Spalt and Omb, orthologues of Sall1 and Tbx2/3
respectively. Experiments in chick wing buds show that Bmp-
soaked beads placed at the anterior margin of a chick limb do not
induce digit duplications (Drossopoulou et al., 2000). However,
when a bead soaked in a BMP antagonist was implanted at
the anterior margin of the wing bud following implantation of
an Shh-soaked bead, a series of morphologically similar digits
developed anteriorly suggesting that BMP signaling is involved
in digit promotion (Drossopoulou et al., 2000). In chick leg buds,
BMP signaling is graded across the tip of the bud at the stage
at which the digit condensations form in the so-called phalanx-
forming region (PFR—Suzuki et al., 2008). Grafting interdigital
tissue to different positions between digit condensations and
manipulating BMP signaling alters the morphology of the digits
in terms of phalange number suggesting that it is BMPs produced
by interdigital regions that are directly responsible for realizing
digit-specific morphology (Dahn and Fallon, 2000). Recently,
evidence has been presented that interdigital signaling may
also be involved in regulating the morphogenesis of the digit
condensations in mouse limbs (Huang B. L. et al., 2016).

CLINICAL ASPECTS OF Shh SIGNALING IN
THE LIMB

The increasing understanding of the molecular basis of antero-
posterior pattern formation has led to insights into congenital
malformations that affect the limb. Unsurprisingly, defects in Shh
function have been found to underlie several inherited disorders.
In particular, these include polydactyly: pre-axial polydactyly
in which additional digits arise from the thumb-side of the
hand, and post-axial polydactyly in which the additional digits
arise from the little finger-side (Biesecker, 2011). Often these
conditions are associated with syndactyly (fusion of the soft
tissues between the digits).

Alterations in the coding sequence of the SHH locus are not
known to form the basis of any congenital malformation of the
limb—presumably because such lesions are not compatible with

the development of other tissues. However, point mutations in
the ZRS enhancer that would be predicted to lead to ectopic
SHH expression specifically in the limb bud are found in human
patients with pre-axial polydactyly type 1 (PPD1—OMIM
174400) and triphalangeal thumb polysyndactyly syndrome
(TPTPS OMIM 174500) (see review Hill and Lettice, 2013).
In TPTPS, additional digits can arise post-axially as well as
pre-axially, suggesting that the normal regulation of SHH
expression at the posterior margin of the limb is also perturbed.
It remains to be determined how these point mutations affect
the regulation of endogenous SHH expression. One possibility is
that the levels and/or duration of SHH expression are increased
and these lead not only to an additional digit pre-axially but
also to overgrowth of the polarizing region and its subsequent
development into additional post-axial digits—perhaps by
self-organization (see section on Interaction between positional
information and a Turing-type mechanism). A point mutation
at a particular position in the ZRS is associated with Werner
mesomelic syndrome in which there are distal arm and leg bone
defects in addition to extra digits (VanderMeer et al., 2014).
Unexpectedly, duplications of the ZRS have also been reported
in individuals with TPTPS as well as the related condition Haas-
type polysyndactyly (OMIM 186200). Microduplications of the
ZRS have also been detected in patients with Laurin-Sandrow
syndrome OMIM 13750); the limb phenotype of these patients
overlaps with the Haas-type polysyndactyly phenotype but can
be distinguished by mirror-image polysyndactyly of the feet
and duplication of the fibula (Lohan et al., 2014). In contrast,
patients with a deletion involving exon 4 and portions of introns
3 and 4 of the LMBR1 gene, a region distinct from the ZRS,
have a condition known as acheiropodia (OMIM 200500) in
which elements distal to the elbow/knee fail to form in all four
limbs. This condition not only resembles the phenotype of the
limb buds of mouse embryos lacking Shh function but also that
of the limbs of Ozd mutant chickens in which it has now been
shown that a large part of the ZRS sequence is deleted (Maas
and Fallon, 2004). Inborn errors in cholesterol metabolism
can lead to limb anomalies, as might be expected given the
importance of cholesterol in Shh signaling as already discussed.
For example, post-axial polydactyly is found in patients with
Smith-Lemli-Opitz syndrome (OMIM 270400) in which a
mutation deactivates the function of 7-dehydrocholesterol
reductase, which is the final enzyme in the metabolic pathway
that generates cholesterol. Post-axial polydactyly is also seen
at low frequencies in patients with other syndromes in which
cholesterol biosynthesis is altered (Gofflot et al., 2003). Why
post-axial polydactlyly occurs however is not clear.

Defects in the response to Shh signaling are found in
syndromes that include polydactyly. For instance, the
Pallister-Hall (OMIM 146510, Hill et al., 2007) and Grieg
Cephalopolysyndactyly (OMIM 175700- Kalff-Suske et al., 1999)
syndromes present with pre-axial and post-axial polydactyly
and are caused by mutations in the GLI3 gene. The effects of
these mutations are likely due to the de-repression of the Shh
signaling pathway in the anterior part of the limb. Since the
processing of full-length Gli3, occurs in primary cilia, syndromes
known as ciliopathies, in which cilia function/structure is
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compromised, include polydactyly as part of their spectrum
of defects—examples being, Bardet-Biedl syndrome (BBS–
OMIM 209900, Forsythe and Beales, 2013) and Meckel-Gruber
syndrome (OMIM 249000, Shaheen et al., 2013). Recently
mutations in the TALPID3 gene, required for formation of cilia
have been discovered in patients with Joubert syndrome (OMIM
21330) although these patients rarely show limb defects (Roosing
et al., 2015; Stephen et al., 2015). Homozygous mutations in the
TALPID3 gene have however been found in families affected by
lethal ciliopathies associated with polydactyly (Alby et al., 2015),
phenotypes more akin to those of the homozygous chicken
mutants already mentioned in which the talpid3 gene was first
identified.

Several clinical conditions are associated with mutations in
putative gene targets of Shh signaling in the limb (see previous
section on Response to Shh signaling, also reviewed Pickering
and Towers, 2014). Sall1 encoding a transcription factor is
expressed in the posterior region of the early chick and mouse
limb buds but more widely at the base of the digital plate at
later stages (Buck et al., 2001; Fisher et al., 2011). Mutations in
SALL1 that produce a truncated protein with dominant negative
activity have been detected in patients with Townes-Brockes
syndrome characterized in the limb by pre-axial polydactyly and
triphalangeal thumb (Kohlhase et al., 1998). A transgenic mouse
model in which a truncated SALL1 protein is produced mimics
the human limb phenotype (Kiefer et al., 2003). Inactivating
mutations in the gene encoding the transcription factor Tbx3,
which is expressed at high levels in stripes at both anterior and
posterior margins of early chick and mouse limb buds (Tumpel
et al., 2002; Emechebe et al., 2016) are seen in patients with
Ulnar-mammary syndrome (OMIM 181450); the defects affect
the development of posterior structures in the upper limb and
include missing ulna, missing posterior digits and post-axial
polydactyly. The same limb phenotype is seen in mouse Tbx3
mutant embryos (Davenport et al., 2003; Emechebe et al., 2016).
Finally mutations in HOXD13 are associated with many clinical
conditions in which there are digital abnormalities including
polydactyly, syndactyly (fused digits) and brachydactly (short
digits). Hoxd13 is another putative gene target of Shh signaling
identified in the mouse limb and is expressed in the posterior
region of early chick and mouse limb buds and then throughout
the digital plate at later stages (Nelson et al., 1996). A complex
spectrum of mutations inHOXD13-polyanaline tract expansions,
truncating mutations and point mutations leading to amino acid
substitutions have been identified (reviewed Goodman, 2002).
Hoxd13 is likely to have several roles in digit development and
the challenge is to understand how a particular genetic change
leads to a particular phenotype.

Shh SIGNALING AND LIMB
REGENERATION

Adult urodele amphibians (newts and salamanders) can
regenerate their limbs after amputation. Shh signaling occurs
in adult urodele limbs during regeneration and understanding
how Shh expression is activated in these adult tissues may be

relevant in the context of stimulating growth and repair of
tissues in damaged limbs. Following amputation of a newt limb,
a mound of undifferentiated cells called the blastema forms at
the stump surface and proliferation of blastemal cells replenishes
the missing limb structures. Shh is expressed in posterior part
of the newt limb blastema recapitulating embryonic expression
in the limb bud (Imokawa and Yoshizato, 1997), and when
regenerating salamander limbs were treated with cyclopamine,
only one digit-like structure formed—similar to hind-limbs of
Shh mutant mice (Chiang et al., 1996). Recently, it has been
demonstrated that Shh, which is expressed in the posterior part
of the salamander blastema is part of a reciprocal feedback loop
via Grem1 and Fgf8 that are expressed in the anterior part of
the blastema (Nacu et al., 2016). This feedback loop is required
for outgrowth of the blastema and closely recapitulates the
epithelial-mesenchyme signaling network that drives embryonic
limb development. The demonstration that two signals, which
can act at a distance—Shh and Fgf8—drive limb regeneration
is at odds with a long standing model in which direct cell-cell
interactions stimulate intercalary growth to even out disparate
positional identities between anterior and posterior parts of the
blastema (French et al., 1976). The size of the limb blastema
is about 10 times that of embryonic limb buds, therefore it is
not clear whether these signals could indeed act over the large
distances involved.

Fate maps of the blastema showing which cells give rise to
the digits and experiments addressing timing of specification of
antero-posterior positional values could give important insights
into whether digit regeneration is comparable to embryonic
development. One possibility is that cells within a blastema
maintain memory of their position along the antero-posterior
axis and restore missing structures by a timing mechanism linked
to proliferation. Evidence for such a cellular memory based on
epigenetic modifications has been obtained in regenerating limb
buds of Xenopus embryos (Hayashi et al., 2015). A timing model
would dispense with difficulties in scaling long range gradients
over considerable distances to restore missing positional values
during regeneration and the role of Shh and Fgfs would be to
maintain the outgrowth and the width of the blastema. It would
also be useful to know the fate of polarizing region cells from
embryonic urodele limb buds in adult limbs and regenerating
limbs.

Unlike urodeles, anuran amphibians can only regenerate
their limbs during embryonic stages. Interestingly, increased
methylation of the ZRS enhancer during Xenopus development
correlates with reduced capacity to regenerate the limb in the
adult suggesting that epigenetic mechanisms limit this process by
preventing re-expression of Shh (Yakushiji et al., 2007).

EVOLUTIONARY ASPECTS OF Shh
SIGNALING IN THE LIMB

The ZRS element located in the fifth intron of Lmbr1 gene
that drives limb-specific Shh expression is well conserved at the
sequence level in many vertebrates. The ZRS is an excellent
candidate for evolutionary modifications that have resulted in
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changes in limb morphology because the rich diversity of limb
morphologies could have evolved without affecting other features
of the body plan. In support of this, mutations in the ZRS at
a conserved ETS1 binding site in pythons have been described
that appear to be responsible for the early loss of Shh expression
and subsequent failure of limb bud outgrowth (Kvon, 2016;
Leal, 2016). CRISPR/CAS9 gene editing approaches, in which the
mouse ZRS was replaced by the python ZRS sequence, resulted
in limb truncations similar to those obtained upon the complete
removal of Shh function in the mouse limb (Kvon, 2016). As
in pythons, Shh fails to be up-regulated in the hind-limbs of
the spotted dolphin and is associated with reduced outgrowth,
although the molecular basis of this has not been examined
(Thewissen et al., 2006). Many described ZRS mutations to date,
however, result in ectopic expression of Shh in the anterior part
of the limb, and therefore the development of additional digits
as in domesticated animals; for instance, Dorking’s (Bouldin and
Harfe, 2009) and Silkie chickens (Dunn et al., 2011) have an
additional anterior digit in the leg and dogs and cats (notably
Hemingway cats) have extra anterior digits in their fore-paws
(Lettice et al., 2008).

Limbs with more than five digits have not been selected for
during evolution suggesting there is little benefit in increasing
digit number. Interestingly, the limbs of the earliest Devonian
tetrapods such as Acanthostega and Icthyostega had up to eight
digits (Clack, 2002). The mechanism by which such digit patterns
would have been specified is of considerable interest. In having
several digits, the limbs of such tetrapods superficially resemble
the limbs of mouse Gli mutants, which have many digits that
form by self-organization. However, the digits in these Devonian
tetrapods display differences in phalangeal number suggestive of
antero-posterior positional values specified by Shh in the early
limb bud. Once pentadactyly was established in tetrapods, this
has remained the basic plan, although occasionally limbs with
so-called “sixth digits” have evolved. These sixth digits are in
fact, adaptations of other limb bones, such as the overgrown
wrist bone in the case of the mole’s “paddle-like” limb (Mitgutsch
et al., 2012). The chick leg has retained the basic pentadactyl
phalangeal pattern in digits 1–4 and therefore is of special
interest to the evolution of digit patterns. As we discussed earlier,
a model in which Shh signaling specifies different positional
values is sufficient to explain chick leg patterning. Thus, any
deviations away from this model in the mouse limb would
therefore suggest a derived mode of patterning digits 1–4 in the
mammalian lineage.

Digit loss has commonly occurred over the course of evolution
and alterations in Shh expression and response to Shh have been
implicated. A striking example is seen in the wings of birds
and the fore-limbs of their basal theropod dinosaur ancestors in
which two digits have been lost during evolution (Sereno, 1999).
Understanding this mode of digit loss has puzzled investigators
for over 150 years because theropods appeared to have had digit
identities 1, 2, and 3, but in the embryo at least, bird digits appear
to arise from positions 2, 3, and 4 (Burke and Feduccia, 1997).
Therefore, it was suggested in the so-called “frameshift” model
that digits with the identities 1, 2, and 3 arise from positions 2,
3, and 4 of the bird wing (Wagner and Gauthier, 1999; Tamura
et al., 2011), perhaps due to reduced Shh signaling levels/duration

in limbs of the theropod ancestors of birds (Vargas and Wagner,
2009). However, the Green Fluorescent Protein fate-mapping
experiments in chick wings (see Figure 1c) showed that in fact
digits with the identities 1, 2, and 3 arise from embryonic
positions 1, 2, and 3 that are found in tissue adjacent to the
polarizing region (Towers et al., 2011). Therefore, it is not
necessary to invoke a frameshift and suggests that the digits 4 and
5 of the dinosaur hand were simply lost and that bird wing digits
should be numbered 1, 2, and 3 in line with the fossil record,
as is now generally accepted. As already mentioned, in the chick
wing bud, the posterior necrotic zone overlaps with the polarizing
region. In the chick wing bud, the posterior necrotic zone is much
larger than the corresponding zone in chick leg and mouse limb
buds (Fernandez-Teran et al., 2006). Therefore, the loss of the two
posterior digits in birds might be based on evolutionary changes
in Shh signaling, in particular the autoregulatory mechanisms by
which Shh signaling regulates apoptosis in the posterior necrotic
zone of the wing bud (Sanz-Ezquerro and Tickle, 2000) and
also proliferation (Chinnaiya et al., 2014). Interestingly, a recent
study showed that an extension of the posterior part of the
apical ectodermal ridge in the absence of Shh signaling was
sufficient to enable the polarizing region to give rise to a digit
in the chick wing. In such buds, the posterior necrotic zone
was lost and this was accompanied by a dramatic increase in
proliferation of polarizing region cells (Pickering and Towers,
2016).

Shh has also been implicated in digit loss in cow limbs in
which only two digits form (3 and 4). It was revealed that Ptch1
is expressed in the very posterior of the bud and at low levels in
response to Shh signaling, because of the degeneration of a cis-
regulatory enhancer. As a consequence, it is suggested that Shh
fails to be sequestered and restricted to the posterior part of the
cow limb bud resulting in more-or-less uniform Shh signaling
which results in symmetrical and distally restricted antero-
posterior gene expression patterns (Lopez-Rios et al., 2014). As
a result, the two digits of the cow limb are also symmetrical
and lateral digits are lost because the apical ectodermal ridge
fails to extend sufficiently to support their outgrowth. Similarly,
Ptch1 is also restricted to the posterior of the limb buds of pigs
that develop four digits, two of which are prominent (digits 3
and 4; Cooper et al., 2014). However, camels do not display
a posterior restriction and down-regulation of Ptch1 in their
developing limb buds although they also produce two digits
(3 and 4), suggesting another mechanism of digit loss (Cooper
et al., 2014). An additional case of digit loss involves the limbs
of different species of the Australian skink, Hemiergis (Shapiro,
2002). The shortened duration of Shh expression in these lizards
correlates well with the extent of digit reduction—species with
five digits express higher levels of Shh for a longer time than
those with only two digits (Shapiro et al., 2003). Interestingly,
digit reduction correlates with a reduction in cell proliferation.
One possibility is that factors other than reduced Shh signaling
could be involved. As yet no mutations have been reported in
ZRS sequences of various Hemiergis clades. However, as further
studies are required to understand how positional values are
specified by Shh signaling in mammals and lizards, this means
that it is difficult to interpret some of the patterns of evolutionary
digit loss discussed in this section.
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FUTURE DIRECTIONS

It is now established that Shh has a pivotal function in vertebrate
limb development and many details have been uncovered.
Surprisingly however, there is still no consensus about how
Shh specifies antero-posterior positional values in the limb. It
remains possible that different combinations of transcription
factors govern antero-posterior positional values, but it has
been difficult to identify them because all the digits are made
up of the same differentiated cell types. Therefore, a gene-
regulatory network such as one operating downstream of Shh
in the neural tube to specify distinct neural fates is unlikely to
operate during limb development (Balaskas et al., 2012). It is
also likely that the temporal regulation of the same sets of genes
could contribute to specifying positional values. For instance,
there is a clear relationship between Hoxd expression and thumb
(digit 1) development, with cells that give rise to thumb the
only cells that express Hoxd13 and not Hoxd12 (Vargas and
Fallon, 2005). Therefore, since the cells that give rise to all the
other digits express Hoxd12 and Hoxd13, a simple Hox code is
unlikely to specify the digits, and perhaps timing of expression is
the important determinant. Another challenge is to understand
how the positional information conferred by Shh signaling is
remembered and then interpreted so that digits with different
identities arise in the proper places in the limb. In chick limbs,
it is clear that the concentration/duration of Shh is sufficient
to specify digit identity, however, this is not readily apparent
in mammalian limbs because the digits are morphologically
similar—at least in terms of phalangeal number. It will be

important to fill this gap in knowledge in order to apply the
principles to developing human limbs and gain deeper insights
into the basis of congenital limb defects and to evolutionary
alteration in digit pattern. The analysis of the function of Shh
in new animal models of limb development could help resolve
issues regarding the relationship between positional values and
digit identity. Further development of the CRISPR/Cas9 system
should facilitate this.

An issue of general relevance is the mode of Shh transport in
the limb and how a graded distribution of Shh is established. This
may require further refinement of in vivo imaging techniques
to visualize directly the distribution of Shh in real time. It
also seems clear that the timing of Shh expression is another
critical parameter that still needs to be addressed. Disentangling
the relationship between autoregulatory mechanisms of
intrinsic timing of Shh expression and extrinsic mechanisms
could shed light on processes that ensure robustness of
limb development and pattern scaling between different
species.
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In tetrapods the digit pattern has evolved to adapt to distinct locomotive strategies. The

number of digits varies between species or even between hindlimb and forelimb within

the same species. These facts illustrate the plasticity of embryonic limb autopods. Sox9

is a precocious marker of skeletal differentiation of limb mesenchymal cells. Its pattern

of expression in the developing limb has been widely studied and reflects the activity

of signaling cascades responsible for skeletogenesis. In this assay we stress previously

overlooked differences in the pattern of expression of Sox9 in limbs of avian, mouse

and turtle embryos which may reflect signaling differences associated with distinct limb

skeletal morphologies observed in these species. Furthermore, we show that Sox9 gene

expression is higher and maintained in the interdigital region in species with webbed

digits in comparison with free digit animals.

Keywords: limb development, interdigit regression, chondrogenesis, skeletal progenitors, SOX9 transcription

factor

The limb is an excellent model system to study the molecular basis of morphogenesis
(Hinchliffe, 2002; Fabrezi et al., 2007). The skeletal pattern of the limb is conserved in tetrapods,
yet differences in bone morphology are remarkable among different species (Kavanagh et al.,
2013). Interpretations of skeletal limb diversification has been largely based on comparative
developmental studies using histochemical or radiolabeling markers of initial stages of cartilage
differentiation. From these approaches it has been proposed that the limb skeleton in tetrapods is
generated by sequential branching and segmentation of a basic pattern representative of the distal
segment of the fish fins, termed the “metapterygial axis.” The advent and progress of molecular
biology has provided new insights about the diversification of the limb skeletal morphology.
For example, it has been shown that activation of signals responsible for skeletogenesis may be
differentially regulated by transcriptional enhancer DNA sequences that are species-specific (Kvon
et al., 2016). These studies explain major skeletal differences in evolutionary distant species such
as the absence of limbs in snakes. However, differences between the fore- and the hind-limb in the
same species or skeletal differences observed among closely related tetrapods might be regulated in
a different fashion, such as timing differences in the expression of signaling molecules (Richardson
et al., 2009; Moore et al., 2015; Zuniga, 2015).

Sox9 is a well known marker of the skeleton that precedes the appearance
of cartilage blastemas (Wright et al., 1995; Healy et al., 1999; Chimal-Monroy
et al., 2003; Kawakami et al., 2005; Lorda-Diez et al., 2011; Sensiate et al., 2014).
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Hence, Sox9 is expressed even in domains that represent skeletal
pieces lost in the course of evolution of specialized species (de
Bakker et al., 2013). Silencing Sox9 in mouse embryos causes
loss of appendicular skeleton and increases programmed cell
death (Akiyama et al., 2002). Sox9 overexpression promotes
polydactyly (Akiyama et al., 2007). Furthermore, Sox9 along
with BMP and WNT signaling are considered key regulators of
digits formation through a self-organizing Turing mechanism
(Raspopovic et al., 2014). Overall, such findings make Sox9
an excellent marker to detect signaling differences, later
transduced into specific patterns of chondrification (Richardson
et al., 2009), responsible for variations in the morphology
of the appendicular skeleton. Based on the observation
of in situ hybridizations, we have revised the pattern of
Sox9 gene expression during digit development in reptilian
(Mauremys turtle), avian (chick and duck), and mammal
(mouse) species with different autopodial morphology to
uncover signaling differences of potential interest to explain digit
morphogenesis.

In chick embryos the expression of Sox9 shows differences
between the wing (Figures 1A–G) and the leg bud
(Figures 1H–M). In wing buds at stage HH22 (3.5 id) the
expression of Sox9 marks the primary axis of the appendicular
skeleton. In next stages, the initial domain extends proximally
and distally (Figures 1A–C). Proximally, the domain forms
the humerus primordium, and distally it shows a branching
that establishes the primordium of the radius (Figures 1C,D).
By stage HH24 (4 id) the primary axis is continued distally
by the digital arch oriented toward the anterior margin of the
bud. Between stages HH26-HH28 the digital arch undergoes

FIGURE 1 | Sox9 expression during limb development of chicken and mouse embryos. (A–G) Embryonic chicken wing buds at stages HH20 (A), HH22 (B),

HH24 (C), HH 25 (D), HH26 (E), HH27 (F), and HH28 (G). (H–M) Chicken leg buds at stages HH20 (H), HH22 (I), HH23 (J), HH25 (K), HH27 (L), HH28 (M). Arrows

indicate the position of the digital arch domain. (N–S) Mouse forelimbs illustrating the sequence of Sox9 expression at stages E9,5 (N), E10 (O), E10,5 (P), E11 (Q),

E12 (R), and E13 (S). Anterior is to the top and distal to the right in all images.

a branching process to form each digit (Figures 1E–G). First
branching forms digit 3 and a common branch that bifurcates to
form digit 4, and a reduced domain reminiscent of a digit 5. The
latest, is progressively reduced in size and expression intensity.
The most anterior digit, is formed distally and aligned with the
radial domain (Figures 1F,G).

In the leg bud the initial expression of Sox9 at stage HH22
appears divided into a posterior (primary axis) and an anterior
domain for the tibia (Figures 1H,I). The femur is identifiable
at stage HH25 coupled between the proximal end of the fibular
and tibial domains (Figure 1K). The appearance of these skeletal
domains at stage HH23 is accompanied by the formation of a
nascent digital arch that occupies a posterior and distal position
(Figures 1K,L). Initially, the expression is uniform and limited
to the posterior half of the autopod but, in the following
stages (HH25 and HH26), the expression progresses anteriorly
and digits became identifiable as patches of higher expression
(Figures 1J–M). Digits 3 and 4 are the most prominent at these
stages while digits 2 and 5 are poorly defined areas where the
expression of Sox9 is not very intense. Interestingly, the most
anterior part of the autopod lacks Sox9 transcripts until stage
HH26-HH27.

Both in the wing and in the leg bud, concomitantly with the
intensification of Sox9 expression at stage HH26 in the digit
blastemas, a carpal/tarsal arch of lower Sox9 expression level is
formed. Carpal and tarsal pre-cartilages are individualized when
digit blastemas are defined.

Expression of Sox9 in the mouse is similar in fore- and
hind-limbs (Figures 1N–S). Initial expression of Sox9 occupies
the whole central region of the early bud (Figures 1N,O).
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Regionalization of this domain in stylopod, zeugopod and digital
arch is due to the loss of transcripts from the central region at
10.5 pc (Figures 1P,Q). Due to this process, expression of Sox9
appears as a loop where the distal curved region constitutes the
digital arch. The proximal part of the loop lengthens marking the
position of the stylopod. The zeugopodial elements are identified
as the lateral regions of the loop. In next stages the digit primordia
appear as elongated domains of intensified Sox9 gene expression
(Figures 1R,S). Digits 3 and 4 are the first to appear.

The skeletal domains of Sox9 in the Mauremys turtle are
similar in fore and hind-limbs (Figure 2). At the beginning,
a central ill-defined domain is transformed into a triangular
domain with a posterior elongated vertex, which marks the

stylopod (Figure 2C). The sides of the triangle form the
zeugopodial domains, and the base corresponds with the
digital arch. The expression of Sox9 in the digital arch
becomes progressively intensified at discrete regions to form
digit primordia (Figures 2D,E). Digits 3 and 4 are the most
precociously identifiable while digit 1 is the last to appear,
preceded by digit 5 (Figures 2E–I). In the course of digit
development, the expression of Sox9 is progressively restricted
to the digit tip and to the developing joints (Figures 2E–I).

Remarkably, the Mauremys turtle interdigital regions retain
considerable levels of Sox9 expression not observed in chick
and mouse embryos (Figures 2F–I). To ascertain if interdigital
expression of Sox9 associates with the absence of interdigit

FIGURE 2 | Sox9 expression during limb development in the turtle (Mauremys Leprosa). Stages were established according to the developmental series of

Yntema (1968). (A,B) adult limb in a live picture (A) and a radiographic image (B) to illustrate the presence of interdigital membranes in this species. (C–I) Sox9

expression at stages Y14 (C), Y15 (D), Y16 (E), Y17 (F), Y18 (G), Y19 (H), and Y20 (I). (J–L) Comparative analysis of Sox9 expression in chick and duck interdigits.

(J,K) Sox9 expression in the chicken and duck autopod at day 6.5 and 8 of incubation respectively. (L) QPCR comparison of Sox9 expression level in the developing

third interdigit of the leg bud of chicken (white bars) and duck (gray bars) embryos at equivalent developmental stages. Each value represents the mean of three

samples of 12 interdigits and statistical significance was set at P < 0.05. Incubation days (id) from left to right: chicken id 6.5 vs. duck id 7.5; chicken id 7.5 vs. duck

8.5; and chicken id 8 vs. duck id 10. Q-PCR specific primers were designed searching for identical homologous sequences in the duck and chicken for Sox9 and

GAPDH genes. **p ≤ 0.01; ***p ≤ 0.001.
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remodeling in the Mauremys turtle (Figure 2A), we compared
the level of expression of Sox9 in the third interdigit of the
leg bud of chick and duck embryos, as characteristic models of
species with free and webbed digits respectively. As shown in
Figures 2J–L, expression of Sox9 in the non-regressing interdigit
of the duck was much higher than that of the chick embryo.

Detailed analysis of phylogenetically related but
phenotypically different species have provided important
cues about the mechanisms accounting for limb morphogenesis
(Moore et al., 2015). Gene expression computational modeling
have also provided insights on the molecular bases responsible
for differences in limb skeletogenesis among vertebrates
(Uzkudun et al., 2015). The consideration of the subtle Sox9
expression differences highlighted in this “perspective” assay,
are consistent with heterochrony detected in the stages of
chondrification (Richardson et al., 2009), and may help to
improve our understanding of how digits differ in morphology.
In all species, the expression of Sox9 marks the successive
appearance of the stylopod, zeugopod, and autopod along
the proximo-distal axis of the limb. The autopod includes
the mesopodium (carpi/tarsi) and the acropod (digits); the
specification of zeugopod and the acropod has been proposed
to determine the mesopodial intermediate domain in between
(Woltering and Duboule, 2010). Consistent with this hypothesis,
the appearance of intensified expression of Sox9 marking the
nascent digits precedes that of the carpal/tarsal domains that lie
in the concavity of the digit arch.

The formation and expansion of the digit arch in the chick
embryo is clearly distinct from that observed in mouse and turtle
embryos. Consistent with the evolutionary model proposed by
Shubin and Alberch (1986), in the avian limb the progressive
appearance of the digit expression domains follows a polarized
sequence from posterior to anterior, which is more accentuated
in the wing bud. In contrast, the digital arch domain in mouse
and turtle limbs appears occupying a central position in the
autopod, and in the course of development expands uniformly
to the margins of the bud. These differences raise doubts about
the validity of current thought, which considers independent
identities for each of the digits in the hand/foot of vertebrates.
The consideration of such identities have implications for
evolutionary hypothesis that consider digit 1, as the most distal
element of a conserved skeletal axis modified in the course of
evolution through branching and segmentation processes (see
Cohn et al., 2002, for discussion). Sox9 expression domains
precede the appearance of prechondrogenic blastemas that were
formerly employed in traditional comparative embryonic studies.
Hence, the differences among species observed here, support
mechanisms of skeletal diversification based on the combination
of a distinct distribution of signals with differences in the
intrinsic properties of the skeletal progenitors of the autopod,
likely associated with differential epigenetic signatures (Sheth
et al., 2016). Both in the wing and in the leg of avian embryos,
digits are different along the antero-posterior axis justifying
the consideration of different digit identities according to their
position and number of phalanxes. In contrast, digits of mouse
and turtle embryos, expands from the centrally located digital
arch toward the margins of the limb bud. In this model of

digit arch expansion, there are not morphological landmarks that
allow to assign specific identities to the central digits (2,3,4). It
must be taken into account that the carpal/tarsal domains of Sox9
appear when the digit arch shows independent digit domains.
Therefore, at these embryonic stages mesopodial domains cannot
be taken as a primary reference to establish the identity of the
digits. The only morphological differences observed among the
pre-cartilaginous blastemas are located in the marginal digits
(digits 1 and 5) where Sox9 domains exhibit a reduced size and
appear at more advanced stages than the central digits.

The growth of the limb bud is regulated by a complex signaling
network (Uzkudun et al., 2015), where Shh and Gremlin1 genes
play an important role in digit specification (Sanz-Ezquerro
and Tickle, 2003a; Zhu et al., 2008). Evolutionary or genetic
deregulations of the Shh/Gremlin loop causes polydactylous
(Norrie et al., 2014) or oligodactylous (Lopez-Rios et al., 2014)
autopods. Consistent with our interpretation, central digits
in these mutants, regardless of its number, are identical and
indistinguishable from each other (Norrie et al., 2014). These
findings make plausible that digit formation result of the self-
organization of the limb mesenchyme (Cooper, 2015), within
an autopod of dimensions and shape finely tuned by regulatory
genes responsible for growth (Zhu et al., 2008).

Sox9 is target of signals controlling proliferation and
differentiation of the skeletal progenitors, including FGFs, BMPs,
TGFbetas, and Retinoic acid (RA). These signals are themselves
closely regulated by the AER and the ZPA, to establish the pattern
of limb skeletogenesis as well as the number of digits in the
autopod. BMPs up-regulate the expression of Sox9 and promote
differentiation of progenitors (Lorda-Diez et al., 2014; Norrie
et al., 2014) and in conjunction with TGFβs and Activins induce
the formation of extra-digits in the avian limb (Chimal-Monroy
et al., 2003; Montero et al., 2008). FGFs are major determinants
of digit size (Sanz-Ezquerro and Tickle, 2003b; Seki et al., 2015).
FGFs inhibit chondrogenesis but expand the amount of Sox 9
positive skeletal progenitors and its overexpression in the limb
results in the formation of extra cartilages, including extra-digits
(Montero et al., 2001; Norrie et al., 2014), or extra-phalanxes
(Sanz-Ezquerro and Tickle, 2003b). RA is a potent inhibitor of
Sox9 gene expression (Weston et al., 2002) and RA inhibition
in the autopod causes the formation of extra digits (Rodriguez-
Leon et al., 1999). Hence, the pattern of Sox9 gene expression
may reflect differences in the spatial distribution of signals within
the limb bud mesoderm. According with this interpretation,
avian digits may represent an evolutionary specialization of
digit development consequence of a posterior polarization
of signals responsible for limb outgrowth. In contrast, the
pentadactyl autopod of mouse and turtle embryos may result
from the uniform expansion (like opening a fan) of the signals
that coordinate proliferation and differentiation of the skeletal
progenitors.
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The long bones of vertebrate limbs form by endochondral ossification, whereby

mesenchymal cells differentiate into chondrogenic progenitors, which then differentiate

into chondrocytes. Chondrocytes undergo further differentiation from proliferating to

prehypertrophic, and finally to hypertrophic chondrocytes. Several signaling pathways

and transcription factors regulate this process. Previously, we and others have shown

in chicken that overexpression of an activated form of Calcium/calmodulin-dependent

kinase II (CaMKII) results in ectopic chondrocyte maturation. Here, we show that this is

not the case in the mouse. Although, in vitro Mef2c activity was upregulated by about

55-fold in response to expression of an activated form of CaMKII (DACaMKII), transgenic

mice that expressed a dominant-active form of CaMKII under the control of the Col2a1

regulatory elements display only a very transient and mild phenotype. Here, only the

onset of chondrocyte hypertrophy at E12.5 is accelerated. It is also this early step in

chondrocyte differentiation that is temporarily delayed around E13.5 in transgenic mice

expressing the peptide inhibitor CaM-KIIN from rat (rKIIN) under the control of the Col2a1

regulatory elements. Yet, ultimately DACaMKII, as well as rKIIN transgenic mice are born

with completely normal skeletal elements with regard to their length and growth plate

organization. Hence, our in vivo analysis suggests that CaMKII signaling plays a minor

role in chondrocyte maturation in mice.

Keywords: CaMKII, peptide inhibitor, chondrocyte maturation, hypertrophy, Mef2c, mouse model

INTRODUCTION

Endochondral ossification is the process underlying the formation of the long bones in the
vertebrate limbs (Erlebacher et al., 1995; Kronenberg, 2003). It starts with the condensation
of mesenchymal cells that undergo chondrogenic differentiation, forming a cartilage template
consisting of immature chondrocytes. These produce an extracellular matrix composed of
proteoglycans, glycosaminoglycans, and glycoproteins. This template, which prefigures the
future skeletal element, enlarges through chondrocyte proliferation (Akiyama and Lefebvre,
2011). In the next phase, chondrocytes in the center of the cartilage anlage stop proliferating
and differentiate into prehypertrophic, Indian hedgehog (Ihh) expressing chondrocytes.
Prehypertrophic chondrocytes enlarge further, becoming hypertrophic chondrocytes, which
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initiate synthesis of extracellular matrix containing type
X collagen, encoded by the Col10a1 and Col10a2 genes
(Kronenberg, 2003). The transition of chondrocytes from
proliferating to prehypertrophic and then to hypertrophic cells is
a critical step in determining the growth rate and size of skeletal
elements (Kronenberg, 2003).

Previous studies in chicken and mouse identified a complex
network of signaling pathways and transcription factors
that regulate the different steps during endochondral bone
formation (reviewed in Karsenty, 2008; Hartmann, 2009;
Lefebvre and Bhattaram, 2010). A central regulatory node
in the chondrocyte differentiation program is the Ihh-
PTHrP (parathyroid hormone-related peptide) feedback
loop (Vortkamp et al., 1996). Ihh, which is part of this feedback
loop, is considered a master regulator of chondrocyte maturation
and has multiple functions (Kronenberg, 2003; Mak et al.,
2008). Numerous transcription factors such as Runx2 and
Runx3, Mef2c, and Mef2d, as well as transcriptional co-
factors such as β-catenin, promote chondrocyte hypertrophy
(Inada et al., 1999; Kim et al., 1999; Hartmann and Tabin,
2000; Yoshida et al., 2004; Arnold et al., 2007; Guo et al.,
2009).

It is not yet well established how the activity of these
transcription factors is regulated by signaling events.
Ca2+/calmodulin-dependent kinase II (CaMKII), is a calmodulin
(CaM) binding serine/threonine kinase and important for
Ca2+-mediated signal transduction (Colbran et al., 1989).
Most vertebrates possess four different CaMKII genes (α, β,
γ, and δ) giving rise to at least 38 different splice variants
(Tombes et al., 2003). Two hallmarks distinguish CaMKII
from other kinases: firstly, it acts as a multimeric holoenzyme
composed of 4–14 heteromeric or homomeric subunits of
the different isoforms of the four genes and secondly, its
ability to autophosphorylate on the threonine 286 residue
upon Ca2+/CaM binding (Soderling, 1996; Hudmon and
Schulman, 2002; Colbran, 2004; Lantsman and Tombes, 2005;
Rosenberg et al., 2006). Autophosphorylation relieves the
enzyme from its Ca2+/CaM dependence. Alternatively, CaMKII
can be activated by methionine oxidation (Erickson et al.,
2008).

Various studies suggest that CaMKII signaling may play a
role in skeletogenesis. All four genes are expressed in chicken
and mouse chondrocytes (Taschner et al., 2008; Li and Dudley,
2009). Studies on human articular chondrocytes have suggested
that CaMKII is involved in N-methyl-D-Aspartic acid (NMDA)
receptor signaling, which is important for maintaining matrix
integrity of joints (Salter et al., 2004; Shimazaki et al., 2006).
CaMKII signaling has also been implicated in osteoblast and
osteoclast differentiation (Quinn et al., 2000; Zayzafoon et al.,
2005). In the chicken, we demonstrated previously using a
retroviral system that the expression of a dominant active form
of CaMKII (DaCaMKII), which mimics the autophosphorylated
form, caused premature ectopic chondrocyte maturation, while
the inhibition of CaMKII activity by a peptide inhibitor (rKIIN)

Abbreviations: CaMKII, Calcium/calmodulin-dependent kinase II; Gfp, Green

fluorescent protein; ISH, in situ hybridizations; tg, transgenic; E, embryonic day.

delayed the hypertrophic program (Taschner et al., 2008). Li
and colleagues suggested that the increasing CaMKII activity in
the chondrocytes during their transition from the proliferative
to the prehypertrophic state regulates Runx2 and β-catenin
activity and thereby promotes chondrocyte hypertrophy (Li et al.,
2011).

Retroviral driven expression in the chick system has the
disadvantage that all mitotically active cells get infected. So
besides the chondrocytes also the soft-tissue is infected. This
makes it difficult to distinguish between cell-autonomous and
non-cell-autonomous effects. Using a transgene approach in the
mouse allowed us to overcome this problem. Hence, in order to
gain more specific insights into the potential role of CaMKII in
endochondral bone formation, we expressed an activated form
of CaMKII (DaCaMKII) or the peptide inhibitor rKIIN under
the control of the Col2a1 promoter primarily in chondrocytes.
Based on our observations in the transgenic mouse models we
conclude that modulation of CaMKII activity in the mouse has
only an effect early in development at the onset of chondrocyte
hypertrophy.

MATERIALS AND METHODS

Generation of Col2a1-Transgenic Mice
For the dominant active CaMKII transgene a cassette containing
CaMKII-T286D C-terminal fused to eGFP (Taschner et al.,
2008) followed at the 3′ end by two SV40polyA sequences was
inserted via blunt-end cloning into the BamHI site of a plasmid
carrying the Col2a1 promoter–rabbit β globin intron–Col2a1
enhancer element (a gift from Yoshi Yamada; (Nakata et al.,
1993)). For the rKIIN transgene, a peptide inhibitor for CaMKII
from rat (Chang et al., 1998, 2001) fused with eGFP at its N-
terminus (Taschner et al., 2008) was cloned accordingly. The
final transgenic constructs (Figures 1A,B) were excised with
the restriction enzymes AfllII and SwaI, purified on agarose
gel and eluted with DNA microinjection buffer. The linear
transgene cassettes were microinjected into the pronucleus of
B6CBAF1 zygotes in the transgene facility of the IMP, Vienna,
Austria (Hogan et al., 1994). The zygotes were implanted into
pseudo-pregnant mice to obtain transgenic founder lines. To
maintain the transgenic lines in a pure genetic background,
the founder lines were crossed with C57Bl/6J females and the
subsequent generations were backcrossed with C57Bl/6J animals
over at least eight generations. Genotyping of transgenic mice
and embryos was performed by PCR using ear biopsies and
material from the embryonic tail respectively, in combination
with transgene-specific primer pairs (listed in Supplementary
Table 1). Transgene-copy numbers were determined using
genomic DNA from ear biopsies of the different transgenic lines
(two independent samples per line) by qPCR and normalized
to actin and control genomic DNA from mice carrying one
copy of the transgene in the Rosa26 locus (Amara and
Hartmann, unpublished; Ballester et al., 2004). Primers are
listed in Supplementary Table 2. Mouse experiments were
performed in accordance with local, institutional and national
regulations under the following licenses (84-02.05.2012.260, 84-
02.04.2015.A278, 84-02.05.50.15.022).
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FIGURE 1 | CaMKII activity translocates β-catenin into the nucleus and regulates Runx2 and Mef2c activity in a dose dependent manner. (A) qPCR

showing the expression levels of the four Camk2 isoforms, α, β, γ, δ, in chondrocytes isolated from E12.5 skeletal elements. Expression levels were normalized to

Gapdh and Actb and ploted relative to the expression of CaMKIIγ. n = 3. Error bars indicate ±SEM. (B) Epiphyseal chondrocytes from P6 wild-type limbs were

transfected with an expression vector encoding DaCaMKII::eGFP or eGFP (control). Nuclear localization of β-catenin (white arrows) was observed in DaCaMKII

transfected cells. (C) Primary chondrocytes from E13.5 appendicular skeletal elements were co-transfected with 6X Ose2 luciferase (OSE2-luc) reporter and TK-renilla

reporter plus increasing amounts of the expression vector encoding DaCaMKII or rKIIN. Ratios of luciferase activity with respect to control (Ctrl, black bar) are plotted

as bar charts: DaCaMKII (green bars) and rKIIN (red bars). (D) Relative Runx2 expression levels, determined by qPCR, in primary chondrocytes from E13.5

appendicular skeletal elements co-transfected with increasing amounts of an expression vector encoding DaCaMKII or rKIIN used for the OSE2-Luc assay.

(E) Primary chondrocytes from E13.5 wild-type appendicular skeletal elements were co-transfected with 3X Mef2 luciferase reporter (MEF2-Luc), TK-renilla reporter,

and increasing amounts of the expression vector encoding DaCaMKII or rKIIN. Bar graph showing the ratio of luciferase activity with respect to control (Ctrl, black bar),

DaCaMKII (green bars), and rKIIN (red bars) from four independent transfection experiments. The immunoblot below shows the corresponding increase in CaMKII

levels. (F) Relative Mef2c expression levels, determined by qPCR, in primary chondrocytes from MEF2-luc assays co-transfected with increasing amounts of

expression vector encoding DaCaMKII or rKIIN. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant. Error bars indicate ± SEM.

Mouse Husbandry and Embryo Processing
For timed pregnancies, heterozygous transgenic mice were
interbred overnight and the plug day was designated as
embryonic day 0.5 (E0.5). Embryos were harvested at
the required stages, dissected and fixed overnight in 4%
paraformaldehyde (PFA). For stages E18.5 and older, the skin
above the limbs was removed prior to fixation. Fixed limbs
were removed, washed in PBS, and tissue was dehydrated using
increasing ethanol concentrations (25, 50, 75, 100%).

In situ Hybridization, Histology and
Skeletal Preparations
For in situ hybridization (ISH) and histological staining on
sections, limbs were processed into paraffin using the Excelsior
ES Vacuum Infiltration Processor (Thermo Scientific), embedded
in paraffin and sectioned at 5 µm. Non-radioactive ISH were
performed using digoxigenin (DIG)-labeled anti-sense RNA
probes as previously described (Murtaugh et al., 2001). Probes
for type 2 collagen (Col2a1), indian hedgehog (Ihh), osteocalcin
(Ocn), osteopontin (Opn), type 1 collagen (Col1a1), and type 10

collagen (Col10a1) have been published previously (Hill et al.,
2005). The Gfp probe was generated using a plasmid containing
the eGFP coding region. All probes are available upon request.
Histological stainings such as alcian blue, alcian blue/von Kossa,
and hematoxylin/eosin were performed as previously described
(Houben et al., 2016). Skeletal preparations were performed on
6 day old pups which were sacrificed by decapitation, skinned,
eviscerated, fixed in 95% EtOH, and double-stained for alcian
blue and alizarin red (McLeod, 1980). The length of isolated
humeri and femora was calculated by using Zeiss image analysis
software.

RNA Isolation and qPCR
The stylo- and zeugopod regions of forelimbs were isolated from
embryos at the required stage. Skin and soft tissue was removed
and skeletal elements were dispersed using the Polytron PT
1200 E manual disperser with the aggregate PT-DA 03/2 EC-E50
(Kinematica). The RNA was isolated using the QIAGEN RNeasy
micro kit according to the manufacturer’s instructions. A total
of 500 ng RNA was reverse transcribed using PrimeScript RT
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reagent kit (Takara, #RR037A) with oligo dT primer. For qPCR
cDNA was diluted 1:10 in water. 3µl of diluted cDNA were
mixed with 1µl of primer mix and 10µl SYBR Premix Ex TaqII
(Tli RNaseH plus) (Takara, #RR820Q) in a final volume of 20µl.
Gene expression was monitored using the BioRad CFX96 cycler
and the following protocol: 95◦C 10 min, 45 × (95◦C 30 s, 60◦C
30 s, 72◦C 45 s + plate read), 72◦C 5 min, melting curve: 55◦C–
99◦C in 0.5◦C increments for 5 s+ plate read. qPCR analysis was
performed in duplicates and results were produced from at least
three independent samples. Expression values were calculated
using the comparative 1C(t) method and normalized to Gapdh
and Actb expression. For primer sequences and product sizes see
Supplementary Table 3.

Isolation and Cultivation of Primary
Chondrocytes
E13.5 appendicular skeletal elements from the stylo- and
zeugopod were dissected in PBS supplemented with 1% P/S
followed by a digestion with 0.1% type II collagenase (Gibco,
#17101-015) and 0.3% dispase (Gibco, #17105-041) in medium
(DMEM/F-12; 1% P/S) for a period of 60 min shaking at 100 rpm
in a CO2 incubator. Cells were filtered through a cell strainer,
centrifuged and washed with culture medium (DMEM/F-12, 1%
P/S, and 10% FCS). Cell pellets were then resuspended in culture
medium, plated at 2.5–3 × 104 cells/cm2 in tissue culture flasks
and grown for 5 days.

Luciferase Assays
Primary chondrocytes were seeded at a density of 3 × 104

cells/well in 48 well plates 1 day prior to transfection. Cells
were transfected with the pGL4.23-Mef2-luc (a gift from
Eric Olson) or the pGL4.10-Ose2-luc reporter plasmid (a gift
from G. Karsenty) in combination with pRL-TK (Promega)
as a control and pCDNA3.1-DaCaMKII or pCDNA3.1-rKIIN
expression vectors. Total amounts of transfected plasmids
(equivalent to 52 fM) in each group were adjusted by adding
empty vector (pCDNA3.1+). Transfection was performed using
jetPRIMETM (Polyplus transfection) according to manufacturer’s
instructions. Luciferase activities were measured 48 h after
transfection following the protocol by (Hampf and Gossen,
2006). Luciferase measurements were normalized to the
corresponding renilla activities for transfection efficiency.
Experiments were performed in triplicates and repeated at least
three times.

Immunofluorescence
For immunofluorescent staining on cells, primary chondrocytes
isolated from P6 C57Bl/6J knee epiphyseal regions were
seeded on 0.1% gelatin coated glass coverslips. Cells were
transfected with DaCaMKII::eGFP and eGFP expression
vectors (equivalent to 0.12 pmol) using jetPRIMETM (Polyplus
transfection). Forty-Eight hours after transfection, cells
were fixed with 4% PFA/PBS for 20 min, treated with 0.5%
TritonX-100 for 5 min and blocked with 10% normal goat
serum (NGS) in PBS for 1 h at room temperature (RT).
Incubation with β-catenin antibody (1:200 in 2% NGS/PBS,
BD Biosciences, #610154, RRID:AB_397555) was performed

overnight at 4◦C. Coverslips were subsequently incubated
with Alexa Fluor 647 goat anti-mouse IgG (Molecular Probes)
at 1:200 in 2% NGS/PBS. Nuclei were counterstained with
DAPI.

Immunoprecipitation by Magnetic Beads
HEK293 cells were co-transfected with Mef2c-Myc and
DaCaMKII::eGFP at 4:3 ratio or FLAG-HDAC4 and
DaCaMKII::eGFP at 1:3 ratio using CaPO4 transfection
method. Cells were lysed in ice-cold lysis buffer (50 mM Tris-
HCl pH 7.5, 150 mM NaCl, 1% NP-40 with proteinase and
phosphatase inhibitors). After centrifugation, a total amount
of 150 µg of protein from the supernatant was subjected to
immunoprecipitation using 25µl magnetic beads coupled
with GFP monoclonal antibody (MBL, #D153-11) under the
following conditions: 15 min at 4◦C on a rotating wheel (10
rpm), washed 4 times with wash buffer (50 mM Tris-HCl pH 7.5,
150 mM NaCl, 1% NP-40) for 5min at RT. For the pull-down
of FLAG-HDAC4 using GFP-magnetic beads the conditions
were as following: 500µg of protein from the supernatant was
subjected to immunoprecipitation using 50 µl magnetic beads
and bound for 45 min at 4◦C on a rotating wheel (10 rpm),
followed by 3 washes (50 mM Tris-HCl pH 7.5, 150 mM NaCl,
0.05% NP-40) for 30 s at RT. Magnetic beads were then boiled
for 2 min in 25 µl Laemmli’s sample buffer and supernatant
of the beads was loaded on a 10% SDS-PAGE to separate the
immunoprecipitated proteins.

Immunoblots
Transfected primary chondrocytes were lysed with ice-cold lysis
buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% NP-40 with
proteinase and phosphatase inhibitors). 50µg of protein lysates
were run on a 10% SDS-PAGE and transferred to a 0.45 µm
PVDF-membrane by semi-dry transfer (PerfectBlueTM, PeqLab).
The membrane was blocked with 5% milk and incubated
with the appropriate primary antibodies anti-GFP (1:15000,
Abcam, #ab13970, RRID:AB_300798), anti-Myc (1:1000, Cell
Signaling Technology, mAb #2276, RRID:AB_331783), pan-
CaMKII (1:1000, Cell Signaling Technology, mAb #4436S,
RRID:AB_10545451), anti-Flag (1:1000, Sigma-Aldrich, #F1804,
RRID:AB_262044), and proteasome 20 (P20) (1:15000, Abcam,
#ab3325, RRID:AB_303706), followed by incubation with
the respective, species-specific HRP-coupled secondary
antibodies (1:1000 and 1:5000). ECL substrate was used for
signal development (Amersham, #RPN2106) on X-ray film
(Amersham).

Image Acquisition
Histological images were acquired using Zeiss AxioImager
M2 equipped with an AxioCam MRc 6.45µm color camera
(Zeiss, Jena). Images of embryos were acquired using a Zeiss
Stereo discovery V8 equipped with Zeiss plan Apo S, 0.63X
lens. Immunofluorescent images were acquired using Zeiss
AxioImager M2 equipped with an Apotome2 and an AxioCam
MRm 6.45µm monochromatic camera (Zeiss, Jena) using the
Zen software (Zeiss, Jena).
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Statistical Analysis
All statistical analyses were performed using GraphPad Prism
software 6.0 (RRID: SCR_002798). Data are displayed as
mean values ± standard error of the mean (SEM). Statistical
significance of differences (P-value) was determined by the two-
tailed, unpaired Student’s t-test.

RESULTS

In Vitro: CaMKII Signaling Affects
β-Catenin Localization and Alters Runx2
and Mef2c Activity
Based on previous studies in chicken, potential molecular
mechanisms of how CaMKII signaling regulates chondrocyte
hypertrophy have been suggested (Li et al., 2011). These
included increased nuclear localization of β-catenin and Runx2
in chondrocytes with activated CaMKII signaling (Li et al., 2011).
Thus, we investigated whether the molecular mechanism in
mouse chondrocytes may be similar. Mouse chondrocytes, like
chicken chondrocytes, express all four CaMKII isoforms, and also
here the CaMKIIβ isoform was expressed at lower levels than the
other three isoforms (Figure 1A, see also Taschner et al., 2008; Li
et al., 2011). Similar to what was observed in chicken, β-catenin
was localized in the nucleus in mouse chondrocytes transfected
with a DaCaMKII::GFP expression plasmid (Figure 1B, white
arrows). This was not observed in the GFP-transfected control
cultures (Figure 1B, left panel). We also analyzed whether Runx2
transcriptional activity was altered by the presence of DaCaMKII
or rKIIN in mouse chondrocytes. For this, the Runx2-dependent
OSE2-luc reporter (Ducy and Karsenty, 1995) was co-transfected
into primary chondrocytes with increasing amounts of either
DaCaMKII or rKIIN expression plasmid. OSE2-luc reporter
activity was upregulated in response to increasing amounts of
DaCaMKII, while expression of rKIIN led to a downregulation
of the reporter activity in a concentration independent manner
(Figure 1C). To rule out the possiblity that modulation of
CaMKII activity affects the expression levels of Runx2 itself, we
examined the Runx2 expression levels in the OSE2-luc assay
by qPCR. Here, Runx2 expression was not affected in cells
transfected with the DaCaMKII or rKIIN expression plasmids
(Figure 1D).

Another transcription factor promoting hypertrophy is
Mef2c (Arnold et al., 2007). The MEF2-luc reporter (Naya
et al., 1999) was activated over 50-fold by DaCaMKII at
the highest concentration used (Figure 1E). An increase in
CaMKII protein levels corresponding to the increased amount
of transfected expression plasmid was demonstrated by western
blot (Figure 1E, lower panel). The DaCaMKII expression levels
were also determined by qPCR using a primer that detects the
mouse as well as the transgenic rat Camk2a transcript. Here, the
Camk2a expression levels were normalized to the endogenous
Camk2a expression levels in control-transfected chondrocytes.
This quantitative approach revealed an over 100-fold increase
in Camk2a levels the cells transfected with 30 fM DaCaMKII
(Supplementary Figure 1). Overexpression of rKIIN on the other
hand, led, with the exception of the highest concentration, to a

downregulation of the MEF2-luc reporter activity independent
of the concentration (Figure 1E). To our surprise, at the
highest concentration even a two-fold activation was observed
(Figure 1E). Again, the endogenous Mef2c expression levels
were not significantly affected by either DaCaMKII or rKIIN
expression in the transfected primary chondrocytes (Figure 1F).
Given the strong effect on Mef2c activity we tested whether
CaMKII may directly interact with Mef2c. Co-immunopre-
cipitation assays in HEK293 cells using tagged proteins revealed
that the activated form of CaMKII physically interacts withMef2c
(Figure 2A). Here we used GFP-magnetic beads and pulled
on the DaCaMKII::GFP fusion protein and detected bound
Mef2c::Myc (Figure 2A). Conversely, using Myc-magnetic beads
and pulling on Mef2c::Myc the DaCaMKII::GFP fusion protein
was detected by immunoblot in the bound fraction (data not
shown).

Given previous findings that (a) the CaMKIIδ isoform can
interact with and influence histone deacetylase 4 (Hdac4) activity
in cardiomyocyte hypertrophy (Backs et al., 2006, 2009), (b)
Hdac4 controls chondrocyte hypertrophy by interacting with and
inhibiting the activity of Runx2 and Mef2c (Vega et al., 2004;
Arnold et al., 2007), and (c) our observation that DaCaMKII
modulates Mef2c as well as Runx2 activity, we addressed whether
DaCaMKII also physically interacts with Hdac4 or whether
it alters its repressive activity. For this, HEK293 cells were
co-transfected with FLAG::Hdac4 and DaCaMKII::GFP. Co-IP
studies with GFP-coupled magnetic beads revealed no physical
interaction for Hdac4 in the pull-down lysate (Figure 2B).
Luciferase assays on primary chondrocytes transfected with
MEF2-luc, Mef2c and Hdac4 resulted in the inhibition of Mef2
activity. Yet, this inhibitory effect was not altered by the addition
of increasing amounts of DaCaMKII (Figure 2C). This suggests
that the DaCaMKII does not modulate Hdac4 activity. In essence,
our results show that the activated form of CaMKII positively
influences the activity of the transcription factors Mef2c and to
a lesser extent Runx2 activity and that this effect is probably
not mediated via an inhibitory effect on Hdac4. Furthermore,
CaMKII physically interacts with Mef2c suggesting that it may
possibly modulate its transcriptional activity by phosphorylation.

In Vivo: Generation of Chondrocyte
Specific Transgenic Mice
In order to determine the in vivo role of CaMKII modulation
in mouse endochondral ossification, we employed a transgenic
approach using the Col2a1 promoter/enhancer element to drive
transgene expression in chondrocytes (Figures 3A,B). From
previous studies in the chicken we knew that eGFP tagged
transgenes are functional (Taschner et al., 2008). Hence, in order
to visualize transgene expression and to facilitate the distinction
between heterozygous and homozygous embryos, eGFP tagged
transgenes were used. For the DaCaMKII::eGFP construct
two independent transgenic founder lines (Tg1 and Tg2-
DaCaMKII) were established and for the eGFP::rKIIN construct
three independent founder lines were obtained (Tg1, Tg2,
and Tg3-rKIIN; Figures 3A,B). All founder lines transmitted
the transgene to the F1 generation. The transgenic lines
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FIGURE 2 | CaMKII physically interacts with Mef2c but not with HDAC4 and does not modulate Hdac4 activity. (A) Representative immunoblot of a

co-immunoprecipitation assay using GFP-magnetic beads and lysates from HEK293 cells co-transfected with Mef2c::Myc and CaMKII::GFP expression plasmids or

Mef2c::Myc and GFP expression plasmids analyzed with anti-myc tag antibody (n = 3). An interaction was observed in the Co-IP of Mef2c::Myc with CaMKII::GFP

(lane 2; indicated by the arrow at the hight of the Mef2c::Myc signal). The two unspecific signals due to the IgG heavy and light chains, are indicated by the stars.

Below the input for the Gfp- and Myc-tagged proteins used in the co-IP and the loading control with anti-P20 are shown. (B) Representative immunoblot of a

co-immunoprecipitation assay using GFP-magnetic beads on lysates from HEK293 cells co-transfected with FLAG::Hdac4 and CaMKII::GFP expression plasmids

analyzed with anti-myc tag antibody. No interaction was observed between DaCaMKII::eGFP and Hdac4 (lane 2), n = 2. (C) Primary chondrocytes from E13.5

wild-type appendicular skeletal elements were co-transfected with MEF2-luc, TK-renilla reporter and expression vectors encoding FLAG-Hdac4, and DaCaMKII

(increasing amounts). The ratio of luciferase activity with respect to control (Ctrl) is plotted in the bar graph: control (black bar), FLAG::Hdac4 (gray bar) and

FLAG::Hdac4 together with DaCaMKII (green bars), n = 3. n refers to the number of independent biological samples. ***p < 0.001. Error bars indicate ± SEM.

differed in the number of transgenes integrated in the genome
(Figure 3A). For a first characterization of the transgenic lines,
heterozygous transgenic mice of the independent founder lines
were intercrossed to isolate embryos at embryonic day (E) 15.5.
Contrary to our expectations, no obvious gross morphological
differences were detected within the offspring of the various
intercrosses (Figures 3C,D). Genotyping of the offspring was
performed examining the GFP intensity using a fluorescent
stereomicroscope and confirmed by conventional PCR-based
genotyping (Figures 3C,D; data not shown). Heterozygous and
homozygous transgenic embryos were classified based on the
fluorescence intensity (Figures 3C,D). As expected, GFP activity
was detected in the cartilaginous regions of the skeletal elements,
particularly visible in the skull and limbs at sites corresponding
toCol2a1 expression domains (Figures 3C,D; Cheah et al., 1991).
This was confirmed by ISHwith RNA antisense probes forCol2a1
and Gfp on adjacent sections of transgenic limbs (Figures 3E,F).
As expected, no Gfp signal was detected in humeri of non-
transgenic (wild-type) littermates (Figures 3E,F). These results

demonstrated that the transgene is indeed expressed in a Col2a1-
promoter/enhancer-dependent manner. Furthermore, the GFP
signal intensity in embryos as well as the Gfp ISH signal on
sections allowed us to distinguish heterozygous and homozygous
transgenic littermates.

In the chicken a subset of the chondrocytes that expressed
DaCaMKII prematurely differentiated into prehypertrophic and
subsequently into hypertrophic chondrocytes outside their
normal expression domains (Taschner et al., 2008; Li et al., 2011).
Hence, we performed ISH on E15.5 sections through the limbs
using Col2a1 as a marker for more immature chondrocytes, Ihh
as amarker for prehypertrophic cells, andCol10a1 as amarker for
hypertrophic cells. Yet, no expression of the maturation markers
Ihh or Col10a1 was observed outside their normal expression
domains and no obvious differences were observed with respect
to the individual domain sizes, distance between the domains,
or the expression levels of these three markers comparing
non-transgenic with heterozygous and homozygous DaCaMKII-
tg littermates (Figures 4A,B). Similar, negative results were
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FIGURE 3 | Overview of transgenic constructs and their chondrocyte-specific expression in transgenic embryos. (A,B) Schematic view of constructs

containing either the DaCaMKII::eGFP (A) or eGFP::rKIIN (B) downstream of the β-globin intron under the control of the Col2a1 promoter/enhancer region. The

number of independent transgenic lines achieved for each construct and the corresponding copy numbers in the genome are indicated below. (C,D) E15.5 littermates

from intercrosses of DaCaMKII::eGFP transgenic mice (C) and from intercrosses of eGFP::rKIIN transgenic mice (D) imaged under white light and fluorescence. The

GFP signal is detected in the cartilaginous skeletal elements of limbs, skull, and vertebrae. Note that the GFP signal is more intense in the homozygous (Tg/Tg)

embryos compared to heterozygous (Tg/+) littermates, while only weak auto-fluorescence is detected in the control (non-transgenic, +/+) littermates. Images were

taken at the same magnification under fluorescent stereomicroscope (Zeiss). (E,F) Non-radioactive Col2a1 and Gfp ISH on E15.5 humeri isolated from DaCaMKII-tg

mice (E) and isolated from rKIIN-tg mice (F) and corresponding control (non-transgenic, +/+) littermates showing that the Gfp riboprobe signal overlaps almost

completely with that of Col2a1. Signal intensity for the Gfp anti-sense riboprobe differs between heterozygous and homozygous transgenic embryos. SA, splice

acceptor site; pA, poly A.

obtained performing the analogous analysis on sections of E15.5
humeri from non-transgenic, heterozygous, and homozygous
rKIIN-tg littermates (Figures 4C,D). Here, we did not observe
an obvious delay in chondrocyte maturation, as one could have
expected based on the effect of rKIIN overexpression in chicken.

The final step in endochondral ossification is the remodeling
of the cartilage template into bone. Thus, in order to see whether
this remodeling process was altered, we analyzed the longitudinal
extension of the ossified zone by performing ISH analysis for the
osteoblastic markers collagen 1 (Col1a1), osteopontin (Opn), and
osteocalcin (Ocn) on sections of E18.5 DaCaMKII- and rKIIN-
tg humeri and corresponding non-transgenic littermates. No
significant alteration to the longitudinal extension of the ossified
zone for either of the three analyzed markers was observed when
comparing the humeri of the transgenic embryos expressing
either DaCaMKII (Figures 5A,B) or rKIIN with humeri of their
respective, non-transgenic controls (Figures 5C,D). Similar to
what we had observed at E15.5, no morphological alterations
with regard to the shape, organization or appearance of the
prehypertrophic and hypertrophic chondrocytes were detected
in the growth plates of the E18.5 DaCaMKII- and rKIIN-
tg humeri compared to their corresponding non-transgenic
littermate controls (Supplementary Figures 2A,B). In addition,
the total length, as well as the length of the mineralized region

was measured in alician blue/alizarin red stained humeri of
6-day-old pups. Here again, no differences regarding the two
parameters were observed in comparison to non-transgenic
littermate controls (Supplementary Figure 3).

Modulation of CaMKII Signaling Affects the
Onset of Chondrocyte Maturation
As there were no obvious effects visible in the older mouse
limbs, we addressed whether early steps of skeletogenesis would
potentially be affected. In the forelimb the anlagen of humerus,
radius and ulna are visible at E11.5. At this stage the cells
in the center of the humerus begin to express Ihh (data not
shown), while they start to express Col10a1 around E12.5.
In humeri of E12.5 DaCaMKII transgenic limbs the marker
for prehypertrophic chondrocytes, Ihh, was expressed in a
slightly broader domain compared to non-transgenic, control
littermates (Figures 6A–C). The effect was more prominent in
humeri of homozygous (6/8) than heterozygous (8/11). When we
analyzed the expression of Col10a1, as a marker for hypertrophic
chondrocyte differentiation, weak Col10a1 expression was first
detected in the humerus at E12.5-E13.0 in wild-type limbs. In
the transgenic specimens, in which we had observed a broadend
Ihh domain we noticed on adjacent sections a more intense
staining for Col10a1 in a broader domain (Figure 6D). Again

Frontiers in Cell and Developmental Biology | www.frontiersin.org March 2017 | Volume 5 | Article 20 | 150

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Amara et al. CaMKII Signaling in Mouse Skeletogenesis

FIGURE 4 | Modulation of CaMKII activity has no effect on the progression of chondrocyte maturation. (A,C) Analysis of E15.5 DaCaMKII (A) and rKIIN (C)

transgenic and respective control (non-transgenic) littermate humeri. (A) ISH for Col2a1, Ihh, and Col10a1 on sections of E15.5 humeri from control, DaCaMKII hetero-

(Tg/+) and homozygous (Tg/Tg) littermates, showing no major alterations in the expression levels or the sizes of the expression domains of these three markers.

(B) Quantification of the relative distance between the Col2a1, Ihh, and Col10a1 domains revealed no significant differences for these markers. (C) ISH for Col2a1, Ihh,

and Col10a1 on sections of E15.5 humeri from control, rKIIN hetero- (Tg/+) and homozygous (Tg/Tg) littermates revealed no obvious alterations. (D) Quantification of

the relative distance between the Col2a1, the Ihh, and the Col10a1 domains confirmed the absence of a significant difference. The distance between the domains in

control was set to 100%. (B,D) The number of independent biological samples is referred to by n. The results are not significant. Error bars indicate ± SEM.

the effect was more obvious in the homozygous specimens.
Next we asked whether the increased Col10a1 expression was
accompanied by the histological appearance of hypertrophic
chondrocytes. For this, we examined E12.5 and E13.5 limbs
by alcian blue staining. On alcian blue stained sections, the
hypertrophic chondrocytes within the cartilage elements appear
lighter in color due to their increase in size and vacuolization.
Histological examination of E12.5 humeri (n = 2) revealed
no apparent signs of hypertrophic chondrocyte differentiation
in the transgenic limbs (Supplementary Figure S4A). In E13.5
DaCaMKII-tg humeri, a moderate size increase of the zone of
hypertrophic chondrocytes was detected compared to the non-
transgenic control (Figure 6E, n= 3). Consistent with the in vivo
ISH results, qPCR analysis of material from E12.5 DaCaMKII
transgenic and non-transgenic control limbs revealed an increase
in Ihh and Col10a1 expression levels in the transgenic limbs in
comparison to the control (Figure 6F). These results suggest that
the onset of chondrocyte maturation is slightly accelerated in the
transgenic limbs.

We then analyzed rKIIN transgenic limbs at equivalent stages.
At E12.5, no obvious differences were detected with respect

to the size or intensity of the Ihh expression domains between
transgenic and non-transgenic embryos (Supplementary Figure
S4B). However, at E13.5 the two expression domains of Ihh
were not yet separated in the humeri of homozygous transgenic
animals and still closer together in the heterozygous transgenic
animals compared to non-transgenic littermate controls
(Figure 6I). Furthermore, the Col10a1 expression domain
was reduced in size in the humeri of the transgenic animals
compared to non-transgenic littermate controls (Figure 6J).
Together, his suggests that the onset of chondrocyte maturation
is slightly delayed when CaMKII signaling is antagonized. Again,
the effect was more pronounced in homozygous (9/9) than in
heterozygous transgenic specimens (11/13) compared to non-
transgenic specimens (Figures 6I,J). Histological examination
of alcian blue stained E13.5 humeri confirmed that the decrease
in the size of the Col10a1 expression domain in homo- and
heterozygous humeri was associated with reduced hypertrophic
chondrocyte differentiation (Figure 6K). Quantification of Ihh
and Col10a1 expression levels by qPCR using material from
E13.5 forelimbs corroborated the dose-dependent effects of
CaMKII-signaling inhibition, which was statistically significant
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FIGURE 5 | Modulation of CaMKII activity does not affect the endochondral ossification process. (A,C) Representative images of ISH for the osteoblastic

markers Col1a1, Opn, and Ocn on sections through E18.5 humeri of DaCaMKII- (A) and rKIIN-tg (C), and their respective littermate, non-transgenic controls. (B,D)

Bar diagram representing relative size (longitudinal expansion) of the Col1a1, Opn, and Ocn expressing domains (zone of ossification) in the humeri of control

(non-transgenic), DaCaMKII- (B) and rKIIN-tg (D) E18.5 embryos. (B,D) The length between the domains in the control humeri was set to 100% to account for

developmental differences between litters. n refers to the number of independent biological samples. *p < 0.05, n.s., not significant. Error bars indicate ± SEM.

with respect to Col10a1 expression (Figure 6L). Together, our
results suggest that modulation of CaMKII signaling in the
mouse affects the onset of chondrocyte maturation during the
early stages of endochondral ossification.

ISH with a Gfp riboprobe confirmed transgene expression at
all stages examined and at least according to the ISH transgene
expression was not silenced after E13.5 (Supplementary Figure
5). In order to determine why the expression of the DaCaMKII
and rKIIN-transgenes may not lead to a major phenotype at
later stages we examined the transgene expression level in the
two DaCaMKII-transgenic lines, DaCaMKII-Tg1 (1 copy) and
DaCaMKII -Tg2 (19 copies), using qPCR and RNA isolated from
the chondrogenic elements of E12.5 limbs. Transgene expression
levels were estimated by comparing the DaCaMKII::GFP
transgene expression level to the endogenous expression levels
of the four CaMKII isoforms and the levels were normalized
to the Camk2g expression level. Here, we noticed that the
transgene expression levels in the Tg1 line were similar to the
Camk2a endogenous levels in the wild-type control. Yet, they
were lower than the endogenous expression levels of the γ and
δ isoforms. Interestingly, the Camk2a expression levels were
increased significantly in the transgenic skeletal elements of the

DaCaMKII-Tg1 line. In contrast, transgene expression level in
the Tg2 line with 19 copies did not even reach the Camk2a
endogenous levels. As such, the transgene copy number did
not correlate with the transgene expression levels in the two
independent lines (Supplementary Figures 6A,B).

DISCUSSION

Based on previous work in chicken it has been proposed that
activation of the endogenous CaMKII activity controls the
onset of the prehypertrophic and hypertrophic chondrogenic
program. In proliferating chondrocytes, the phosphorylated
form of CaMKII is not detectable and possibly constantly
dephosphorylated under the influence of PTHrP signaling (Li
et al., 2011). As a consequence, the phosphorylated form of
CaMKII is limited to the prehypertrophic and hypertrophic
chondrocytes in chicken and mouse (Li et al., 2011). In the
chicken, ectopic expression of an activated form of CaMKII,
was able to override the endogenous CaMKII activity or lack
thereof in proliferating chondrocytes and led to premature and
ectopic activation of the prehypertrophic/hypertrophic program
in cells outside of the normal maturation zones (Taschner et al.,
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FIGURE 6 | Modulation of CaMKII signaling affects the onset of chondrocyte maturation in early skeletal development. (A–D) Representative, alternating

sections through humeri of E12.5 control (non-transgenic, +/+), hetero- (Tg/+), and homozygous (Tg/Tg) DaCaMKII-tg littermates. (A) Gfp ISH revealing transgene

expression in heterozygous and homozygous animals but not in non-transgenic littermate controls. (B) Col2a1 ISH confirming that the transgene expression is

restricted to the Col2a1 positive domain. (C) Ihh ISH defining the prehypertrophic zone, which is enlarged in the homozygous and heterozygous transgenic embryos.

(D) Col10a1 ISH marking the onset of hypertrophic chondrocyte differentiation. Col10a1 expression was more intense in the transgenic embryos compared to control

(non-transgenic) littermates. (E) Alcian blue/eosin stained representative images of sections through E13.5 humeri of control (non-transgenic; +/+), hetero- (Tg/+),

and homozygous (Tg/Tg) DaCaMKII-tg embryos. Images below show magnifications of the boxed areas in the panel above. Due to their increase in volume and

vacuolization of the cells, the hypertrophic chondrocytes appear whiter. The region of hypertrophy is enlarged in the transgenic humeri compared to wild-type

littermate control. (F) qPCR analysis for Ihh and Col10a1 normalized to Gapdh and Actb using material from E12.5 control, hetero- and homozygous DaCaMKII-tg

forelimbs reveals a dose-dependent increase in the expression of these two genes. Gene expression levels are plotted relative to control. (G–J) Representative,

alternating sections through humeri of E12.5 (G,H) and E13.5 (I,J) control (non-transgenic; +/+) and hetero- (Tg/+), and homozygous (Tg/Tg) rKIIN-tg littermates. (G)

Gfp ISH revealing transgene expression in heterozygous and homozygous animals but not in non-transgenic littermate controls. (H) Col2a1 ISH confirming that the

transgene expression is restricted to the Col2a1 positive domain. (I) Ihh ISH defining the prehypertrophic zone, which is reduced in a transgene dose-dependent

manner in the hetero- and homozygous transgenic embryos. (J) Col10a1 ISH defining the hypertrophic zone, showing that hypertrophic differentiation is even more

delayed. (K) Histological alcian blue/eosin stained representative images of sections from control, hetero- and homozygous rKIIN embryos: here, fewer and smaller

hypertrophic, whiter cells are visible in hetero- and homozygous transgenic humeri compared to wild-type littermate controls. (L) qPCR analysis for Ihh and Col10a1

normalized to Gapdh and Actb using material from E13.5 control, hetero- and homozygous rKIIN-tg forelimbs revealing a dose-dependent reduction in the expression

of Ihh and Col10a1. Gene expression levels are plotted relative to control. (F,L) n refers to the number of independent biological samples. **p < 0.01, ***p < 0.001,

n.s., not significant. Error bars indicate ± SEM.
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2008; Li and Dudley, 2009; Li et al., 2011). In mouse long
bone development, the phenotypic effects of CaMKII activation
in proliferating, type II collagen-expressing chondrocytes were
very mild and in vivo, effects could only be detected
developmentally around the onset of chondrocyte hypertrophy
at E12.5–E13.5. Here, our data suggest that in agreement with
previous findings in chicken, DaCaMKII in mouse activated
the prehypertrophic/hypertrophic program prematurely at early
stages of endochondral ossification, while down-regulation of
endogenous CaMKII activity interfered with the onset of the
prehypertrophic and hypertrophic program. Interestingly, the
phenotypic changes caused by CaMKII activity modulation at the
onset of chondrocyte maturation did not accumulate over time
despite the fact that the transgene was continuously expressed
in type II collagen-producing chondrocytes (Supplementary
Figure 5). Yet, in contrast to the overexpression experiments
in chicken, no premature maturation of chondrocytes outside
their normal maturation zones or shortening of the limbs
was observed. Hence, the phenotypic consequences of ectopic
activation of CaMKII are quite distinct between chicken and
mouse (Taschner et al., 2008; Li and Dudley, 2009; Li et al.,
2011). Possible explanations for the phenotypic discrepancies
between chicken and mouse could be that on the one hand
in the chicken not only chondrocytes also the soft tissue is
infected and that this could contribute to the phenotype. On
the other hand, it is likely that the retroviral driven expression
levels of the transgenes were much higher in chicken. For
retroviral driven transgenes over 100-fold expression levels have
been reported (Geetha-Loganathan et al., 2014; Nimmagadda
et al., 2015). In the mouse, we did not detect phenotypic
differences between the independent transgenic lines despite
the fact that they varied in copy numbers (Figure 3A), which
can be explained by the fact that transgene expression levels
were similarly low in both cases (about one-fold of the Camk2a
endogenous levels; Supplementary Figure 6). Hence, the lack of
a major phenotype in the transgenic mice may be associated
with the relatively low transgene expression levels compared
to the expression levels that have been reached by retroviral
expression in the chicken. Although, of course, the actual levels
of retroviral-driven DaCaMKII transgene expression were not
determined in the chicken experiments performed previously
(Taschner et al., 2008; Li and Dudley, 2009; Li et al., 2011). A
possible explanation for the observed transient phenotype at the
early stages of skeletal development maybe that the onset of
chondrocyte maturation may present a window of opportunity
for the transgenes to excert a mild effect accelerating, respectively
delaying chondrocyte maturation. And that this effect is later
on compensated as the chondrocyte maturation program comes
under the transcriptional control of many regulatory factors and
feed back mechanisms as development progresses (Hartmann,
2009; Kozhemyakina et al., 2015).

At the molecular level, we observed in vitro that CaMKII
robustly affects the transcriptional activity of the transcription
factor Mef2c and to a lesser extent also Runx2 transcriptional
activity. Mef2c and Runx2 start to be expressed as the
chondrocytes undergo hypertrophy (Arnold et al., 2007). Mef2c
and Runx2 activity are both negatively regulated by the class II
histone deacetylase HDAC4 (Vega et al., 2004; Kozhemyakina

et al., 2009; Correa et al., 2010). In vascular smooth muscle cells,
CaMKIIdelta2 regulates Mef2 transcriptional activity through
HDAC4/5 (Ginnan et al., 2012). Yet, our results indicate that
activated CaMKII increases Mef2c activity by an HDAC4-
independent mechanism. As the activated form of CaMKII
physically interacts with Mef2c, the underlying mechanism
may involve phosphorylation of Mef2c protein by CaMKII. In
different cell types other kinases, such as p38 MAPK and ERK5,
have also been shown to phosphorylate Mef2c enhancing its
transcriptional activity (Han et al., 1997; Kato et al., 1997).
Yet, there is the obvious discrepancy between the in vitro
results where a robust stimulatory effect onMef2c transcriptional
activity was observed and the subtle in vivo effects. For the in vitro
luciferase experiments an expression vector was used that drives
DaCaMKII expression under the control of the CMV promoter,
which drives high levels of expression in mammalian cells. The
high transgene expression levels in vitro (Supplementary Figure
1) may be an explaination for the strong in vitro effect on
Mef2c activity and in contrast to the only mild effect in vivo
where transgene expression levels were at least a 100-fold lower.
Furthermore, Li and colleagues proposed that the endogenous
CaMKII activity is opposed by an inhibitory gradient, which is
under the control of PTHrP signaling (Li et al., 2011). PTHrP
signaling via cAMP and protein kinase A negatively regulates
chondrocyte hypertrophy through HDAC4 mediated inhibition
of Mef2c activity (Kozhemyakina et al., 2009). Yet, even in vitro,
DaCaMKII signaling was not able to overcome or to partially
revert the effect of HDAC4 on Mef2c activity (Figure 2C). The
PTHrP expression itself is under the regulatory control of Ihh-
signaling (Vortkamp et al., 1996; St-Jacques et al., 1999). As
such the slightly increased Ihh expression observed in the E12.5
DaCaMKII transgenic limbs may upregulate PTHrP signaling
and counteract a possibly direct, positive effect of DaCaMKII
on the Mef2c activity via HDAC4. Hence, one possible scenario
may be that increased levels of PTHrP signaling override the
activation of Mef2c by DaCaMKII at later stages of development.
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Annika Mahl 2, Nicole H. Cernohorsky 3, Pavel Krejci 1, 3, Sigmar Stricker 2* and

Vitezslav Bryja 1, 4*
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Mammalian limb development is driven by the integrative input from several signaling

pathways; a failure to receive or a misinterpretation of these signals results in skeletal

defects. The brachydactylies, a group of overlapping inherited human hand malformation

syndromes, are mainly caused by mutations in BMP signaling pathway components.

Two closely related forms, Brachydactyly type B2 (BDB2) and BDB1 are caused by

mutations in the BMP antagonist Noggin (NOG) and the atypical receptor tyrosine kinase

ROR2 that acts as a receptor in the non-canonical Wnt pathway. Genetic analysis

of Nog and Ror2 functional interaction via crossing Noggin and Ror2 mutant mice

revealed a widening of skeletal elements in compound but not in any of the single

mutants, thus indicating genetic interaction. Since ROR2 is a non-canonical Wnt co-

receptor specific for Wnt-5a we speculated that this phenotype might be a result of

deregulated Wnt-5a signaling activation, which is known to be essential for limb skeletal

elements growth and patterning. We show that Noggin potentiates activation of the

Wnt-5a-Ror2-Disheveled (Dvl) pathway in mouse embryonic fibroblast (MEF) cells in a

Ror2-dependent fashion. Rat chondrosarcoma chondrocytes (RCS), however, are not

able to respond to Noggin in this fashion unless growth arrest is induced by FGF2. In

summary, our data demonstrate genetic interaction between Noggin and Ror2 and show

that Noggin can sensitize cells to Wnt-5a/Ror2-mediated non-canonical Wnt signaling,

a feature that in cartilage may depend on the presence of active FGF signaling. These

findings indicate an unappreciated function of Noggin that will help to understand BMP

and Wnt/PCP signaling pathway interactions.

Keywords: noggin, Wnt5a, non-canonical Wnt pathways, BMP signaling, brachydactyly, Ror2
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INTRODUCTION

Limb bud development and the concomitant formation of
limb skeletal structures are regulated by the intricate interplay
and integration of various signaling pathways, with major
roles played by the Shh, BMP, FGF, and Wnt/β-catenin
pathways (reviewed for example in, Robert, 2007; Zuniga,
2015). The BMP signaling pathway is of pivotal importance
especially for skeletal development. The analysis of inheritable
human hand malformation syndromes has been instrumental
in understanding the contribution of BMP signaling and
other pathways for skeletal development. One example are
the brachydactylies, a group of inheritable syndromes that
are characterized by shortening or absence of phalanges.
Most brachydactyly subtypes are caused by mutations in
BMP signaling components or factors that, at different levels,
intersect with BMP signaling. Therefore brachydactylies have
been interpreted in terms of a molecular disease family (Stricker
and Mundlos, 2011). This hypothesis predicts that overlapping
phenotypes are likely caused by mutations affecting components
that show a close functional interaction within a common
signaling network.

Intriguingly, two closely related brachydactyly subtypes,
BDB1 and BDB2, are caused by mutations in ROR2 or NOGGIN,
respectively (Oldridge et al., 2000; Lehmann et al., 2007). While
NOG is well known as a secreted BMP antagonist, ROR2 is
an atypical receptor tyrosine kinase that is involved in the
inhibition of Wnt/β-catenin signaling (Mikels and Nusse, 2006).
In developing digits, Ror2-mediated Wnt/β-catenin inhibition
allows BMP-mediated digit outgrowth (Witte et al., 2010).
In addition, Ror2 is a Wnt (co)receptor, mainly for Wnt-
5a, acting in non-canonical Wnt signaling (Oishi et al., 2003;
Schambony and Wedlich, 2007). Recently, activation of the
non-canonical Wnt/planar cell polarity (PCP) pathway by Wnt-
5a and ROR2 was shown to be critically involved in the
regulation of limb skeleton development (Gao et al., 2011;
Wang et al., 2011; Ho et al., 2012; Kuss et al., 2014).
Moreover, a separate set of mutations in ROR2 causes autosomal
recessive Robinow syndrome (RS), which is characterized by
diverse malformations including the axial and limb skeleton
(Afzal et al., 2000; van Bokhoven et al., 2000). A dominant
form of RS is caused by mutations in Wnt/PCP components
DVL1, DVL3, and WNT-5A, it is therefore believed that the
developmental defects seen in Robinow syndrome are caused
by a deregulation of Wnt-5a/Ror2/PCP signaling (Stricker et al.,
2017).

The skeletal elements of the limbs are formed by
endochondral ossification. In this process a cartilage template
is formed that mediates growth of the skeletal element and
becomes later replaced by bone. This process is dependent on
the formation of stacked columns of proliferating chondrocytes
oriented perpendicular to the longitudinal axis of the growing
skeletal element (Romereim and Dudley, 2011). Deregulation of
PCP signaling in proliferating chondrocytes leads to perturbation
of column formation, and to arbitrary chondrocyte orientation
that ultimately leads to skeletal malformations typically resulting
in a shortening and widening of the skeletal elements (Ahrens

et al., 2009; Li and Dudley, 2009; Kuss et al., 2014; Romereim
et al., 2014).

Based on the close phenotypic overlap of human
brachydactyly-causing mutations in ROR2 and NOG, we
hypothesized that NOG may directly interact with the Wnt-
5a/Ror2 pathway. We show here a subtle genetic interaction
of Noggin with Ror2 during mouse limb development.
Mechanistically, we provide evidence that Noggin can sensitize
cells to Wnt/PCP pathway activation mediated by ROR2,
providing first evidence for a yet uncharacterized level of
cross-talk between BMP and Wnt/PCP signaling.

MATERIALS AND METHODS

Mouse Lines and Phenotypical Analysis
Ror2+/− (Takeuchi et al., 2000) and Nog+/− (McMahon et al.,
1998) were maintained as heterozygous lines and intercrossed
to yield compound mutants. Timed matings were set up and
embryos were collected at E18.5. Skeletal preparations were
performed as described previously (Mundlos, 2000). All animal
procedures were carried out in accordance with European Union
and German law. Animals were maintained in the SPF mouse
facility of the Max Planck Institute for Molecular Genetics, Berlin
under license from the Landesamt für Gesundheit und Soziales
(LAGeSo) under license numbers ZH120 and G0346/13.

Cell Culture and Treatments
Ror1−/− Ror2−/− mouse embryonic fibroblasts (MEF) were
derived from Ror1 flox/flox Ror2 flox/flox MEF cells as described
previously (Ho et al., 2012). MEF and RCS cells were propagated
in DMEM, 10% FCS, 2 mM L-glutamine, 50 units/ml penicillin,
and 50 units/ml streptomycin. RCS cells were seeded in 24-
well plates, grown for 24 h and treated as indicated. Following
reagents: Wnt-5a (R&D systems, 645-WN-010), Noggin (R&D
Systems, 1967-NG-025), FGF2 (5 ng/ml, R&D Systems) and
Wnt-C59 5 µM (Tocris Bioscience, 5148) were used for
treatment. Wnt-5a conditioned media was produced from L
Wnt-5a cells (ATCCCRL-2814) according to ATCC instructions.
RCS cells intended for WB analysis were treated by FGF2 for
48 h, then were treated by the porcupine inhibitor Wnt-C59 (to
reduce background autocrine Wnt activity), Noggin and Wnt-
5a in indicated doses for additional 24 h. Total time of FGF2
treatment was 72 h.

Western Blotting
Lysates for western blotting were prepared as follows: Growth
medium was removed and cells were directly lysed in 100mM
Tris/HCl (pH 6.8), 20% glycerol, 1% SDS, 0.01% bromophenol
blue and 1% 2-mercaptoethanol.Western blotting was performed
according to manufacturer’s instructions with minor adjustments
[SDS-PAGE run on 150 V, transfer onto PVDF membrane
1 h on 100 V, both steps on ice (BIO-RAD)]. Antibodies
were from Santa Cruz Biotechnologies: anti-Dvl2 (dephospho-
Dvl2)–sc8026, anti-beta-Actin–sc1615-R, anti-Dvl3 sc8027 and
from Cell Signaling Technologies: anti-Dvl2–CS3224. Anti-Ror2
antibody was a gift from Henry Ho (UC Davis) (Ho et al.,
2012). Phosphorylation status of Dvl2 and Dvl3 was quantified
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by densitometric analysis of Western Blot in three independent
replicates using Fiji distribution of ImageJ software as described
(Bernatik et al., 2014). For pDvl/Dvl rations the peak area for
the upper band representing P-Dvl was divided by the peak area
of the lower band (Dvl). Data was analyzed by paired t-test
(GraphPad Prism).

Dual Luciferase Assay
RCS cells were transfected using pRLtkLuc and Super8X
TopFlash plasmid. 9µg Super8X TopFlash and 3 µg pRLtkLuc
plasmid were mixed with 38.4 µl of Fugene6 (E2691, Promega)
in 1200 µl of DMEM. Cells were treated by 0.3% collagenase
type II (GIBCO, cat.no.17101015) before transfection, 50 µl of
transfection mixture and 500 µl of collagenase treated RCS cells
in DMEM were used per 1 well of 24 well plate. Transfection
was carried out overnight, cells were treated according to the
experimental scheme for 20 h, and samples were processed
by Dual-Luciferase R© Reporter Assay System according to the
manufacturer instructions (Promega, E1960).

RESULTS

Noggin Genetically Interacts with Ror2
To get a first indication whether Ror2 and Noggin might
functionally interact we generated compound mutants for
Ror2 and Noggin. Ror2+/− mice (Takeuchi et al., 2000)
were crossed to Noggin+/− mice (Brunet et al., 1998;
McMahon et al., 1998). Heterozygous inactivation of either
Ror2 or Noggin does not result in any skeletal alteration
(Figure 1A). In Ror2+/−;Nog+/−compound heterozygotes the
overall appearance of the limb skeleton was normal; however
the skeletal elements of the stylopod (the humerus) and the
zeugopod (radius and ulna) showed a consistent small lateral
expansion (Figure 1A, width of skeletal elements in wild type and
single mutants indicated in yellow, width in compound mutant
indicated in orange). All skeletal elements showed a tendency
toward widening at both metaphyseal sides, however statistical
significance was only reached for the distal humerus and radius,
respectively. This feature was not seen in single heterozygotes,
indicating genetic interaction between Nog and Ror2.

Ror2−/− mice are a model for RRS, recapitulating several
of its features including mesomelic limb shortening as well as
mild brachydactyly (Schwabe et al., 2004). Ror2−/− mice have
shortened digits, however all phalanges (two in the thumb/digit 1,
three in digits 2–5) as well as the interphalangeal joints separating
the phalanges are present (Takeuchi et al., 2000; Schwabe et al.,
2004; Schwarzer et al., 2009) (Figure 1B). Noggin heterozygous
mice have phenotypically normal digits. When one allele of
Noggin was removed on the Ror2−/− background, shortening
of phalanges was further increased. In digit 3 the appearance
of 3 individual phalanges, which were smaller than those in
the Ror2−/−, was preserved. In digits 2 and 5 loss of one
Noggin allele on the Ror2−/− background led to loss of an
individual phalanx 2, concomitant with a longer phalanx 3,
indicating failure of distal joint formation. Distal joint fusion is
also a feature seen sometimes in BDB1 (ROR2 mutation) and
frequently in BDB2 (NOG mutation). In addition, joint fusions

are the hallmark of proximal symphalangism 1A (SYM1A) and
multiple synostosis syndrome (SYSN1), two conditions caused
by a different set of NOG mutations (Stricker and Mundlos,
2011). Altogether the compound mutants support the notion of
a genetic and functional interaction of Ror2 and Nog in skeletal
development.

Noggin Potentiates Wnt/PCP Signaling in a
Ror2-Dependent Manner
In digit formation, Ror2 acts in part via inhibition of β-catenin
signaling leading to derepression of BMP/SMAD signaling in
a structure called phalanx-forming region (Witte et al., 2010).
Evidence however has accumulated that in addition or in parallel
to this function Ror2 and its paralog Ror1 are both required for
Wnt-5a/PCP signaling activation during digit development (Gao
et al., 2011; Ho et al., 2012). Our genetic interaction experiments
cannot distinguish the origin of the interaction seen, i.e., whether
it originated from Nog function in the BMP pathway, or a yet
uncharacterized role in the Wnt-5a/PCP pathway. Noggin thus
might not only influence activity of BMP, but also of Wnt-
5a-Ror2 pathway. To test if Noggin is able to activate Ror2
we treated mouse embryonal fibroblasts (MEF) with increasing
doses of Noggin. The activation of endogenous Ror2 can be
monitored as a phosphorylation-dependent mobility shift on
Western blotting (Oishi et al., 2003). As we show in Figure 2A,
even in the highest concentrations used (1,500 ng/ml) Noggin did
not induce phosphorylation of Ror2 and was unable to promote
phosphorylation of Ror2 induced by its cognate ligand Wnt-5a.
This suggests that at the receptor level Noggin is unable to act
either directly as a ligand for Ror2, or indirectly.

In the next step we tested if Noggin can promote any
of the Ror2-downstream events. A robust readout of non-
canonical Wnt pathways activation is the Wnt-5a-induced
phosphorylation of Disheveled (Dvl) 2, an event dependent
on the Ror1 and Ror2 receptors (Ho et al., 2012). We took
advantage of an anti-Dvl2 antibody that recognizes only the
inactive, dephosphorylated form of Dvl2 in MEF cells (Gonzalez-
Sancho et al., 2013). Disappearance of non-phosphorylated
Dvl2 currently represents one of the most sensitive tools for
visualization of Dvl2 phosphorylation and hence Wnt/PCP
pathway activation. When we treated MEF cells with increasing
doses of Wnt-5a, the non-phospho Dvl2 signal disappeared
(Figure 2Bi), indicative of activated Wnt-5a-Ror-Dvl signaling.
No such phenotype was observed when cells were treated
by Noggin, confirming our previous observation that Noggin
itself is not able to activate signaling via Ror2 (Figure 2Bii).
However, when cells were treated with 100 ng/ml of Noggin,
we could clearly observe stronger effects of Wnt-5a on Dvl2
activation (compare Figure 2Bi vs. Figure 2Biii). This indicates
that Noggin can sensitizeMEF cells toWnt-5a/Ror2 signaling. To
confirm this observation, we treated cells with 25 ng/ml of Wnt-
5a, which is a suboptimal dose unable to trigger Dvl2 activation
(Figure 2Bi). When cells pre-treated by 25 ng/ml ofWnt-5a were
supplemented with increasing doses of Noggin, activation of
Dvl2 was observed in a dose dependent manner (Figure 2Biv),
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FIGURE 1 | Noggin genetically interacts with Ror2. Skeletal preparations of E18.5 embryos of the indicated allelic combinations are shown. Cartilage stains blue,

bone stains red. (A) Top panel: Limbs of compound Ror2 and Noggin heterozygous mutants have a normal appearance. Ror2−/− skeletal elements are visibly

shortened and enlarged. Bottom panel: magnifications of humerus and radius/ulna. The width of the wild type or single heterozygous skeletal elements is indicated by

a yellow line on either side of the ossification center. Width of the double heterozygous or Ror2−/− skeletal elements is indicated by orange line for comparison. A

quantification of skeletal element width is shown right; significant effects were observed for the distal humerus and distal radius (p < 0,05; student’s t-test). (B) Digit

development in compound mutants. Ror2−/− digits are shortened, but individual phalanges (p1, p2, and p3) are present, separated by synovial joints. In

Ror2−/−;Nog+/− animals, the medial phalange (p2) shows additional shortening, which in digits 2 and 5 leads to distal symphalangism of p2 and p3.

indicating that presence of Noggin can reveal biological activity
of previously sub-threshold Wnt-5a concentrations.

All these data suggest that Noggin, despite its inability to
activate Ror2 on its own, can efficiently potentiate the Wnt-
5a-Ror2 signaling axis and sensitize cells to low amounts of
Wnt-5a. Ror2 can have redundant function with closely related
Ror1 (Ho et al., 2012) that can also bind Wnt-5a. To confirm
that the effects of Noggin are indeed dependent on Ror1/Ror2,
Ror1−/− Ror2−/− double knockout MEF cells were isolated
from conditional Ror1/Ror2 knockout mice (as described in Ho
et al., 2012). Individual clones were tested by Western blotting
(Figure 2C) and one of the Ror1/Ror2 double negative clones
(#13) was further used for functional analysis. When Ror1/Ror2-
deficient MEF cells were treated with 30 ng/ml of Wnt-5a and
500 ng/ml of Noggin simultaneously, no shift of Dvl2 mobility
(upper panels) or effects on non-phospho Dvl2 (middle panel)
was observed, in contrast to wt MEF where Dvl2 was activated by

the combination of Wnt-5a (30 ng/ml) and Noggin (500 ng/ml)
(Figure 2D). This data show that Noggin is able to potentiate the
activation of the Wnt-5a-Ror2 signaling circuit and demonstrate
that the observed Noggin/Wnt-5a synergism toward Dvl2 is
dependent on Ror1/Ror2.

FGF2-Induced Chondrocyte Growth Arrest
Enables Noggin-Mediated Wnt/PCP
Potentiation in RCS Cells
The genetic interaction between Ror2 and Noggin observed in
mice as well as the skeletal involvement in human syndromes
characterized by NOG and ROR2 mutations pointed toward
the importance of a functional Noggin-Ror2 interaction for
skeletal development. To test the Noggin-Ror2 synergy in a
model system that is more relevant to skeletal development
we decided to use the rat chondrosarcoma (RCS) cell line.
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FIGURE 2 | Noggin potentiates Wnt/PCP signaling. (A) MEF cells were treated by Wnt-5a conditioned medium (CM) and stimulated by increasing doses of

Noggin protein. Activation of Ror2 was analyzed as a phosphorylation-dependent shift by Western blotting. Noggin alone, in contrast to Wnt-5a CM, is not able to

trigger activation of Ror2. (B) MEF cells were treated with increasing doses of Wnt-5a (0, 25, 50, 100, 150, and 200 ng/ml) and Noggin (0, 25, 50, 100, 150, and 200

ng/ml) for 2 h. The activation of Wnt signaling was assessed by Western blotting as a decrease in the signal of dephospho-Dvl2. Wnt-5a could cause phosphorylation

of Dvl2 visible as a disappearance of dephospho-Dvl2 signal (i), whereas Noggin is inactive in the same assay (ii). Interestingly, pre-treatment of MEF cells by Noggin

(100 ng/ml) enhanced the effect of Wnt-5a (iii). On the other hand, Noggin, in a dose-dependent manner, potentiated the response to suboptimal doses of Wnt-5a

(25 ng/ml), which are otherwise ineffective—see lane 2 in panel “i” (iv). Actin is used as a loading control. (C) Ror1flox/flox; Ror2flox/flox MEF cells were treated by

tamoxifen and Ror1−/−; Ror2 −/− isogenic MEF line was isolated by serial dilutions method. The presence of Ror2 was tested by Western blotting and the clone no.

13 used for further studies is indicated. (D) MEF wt and MEF Ror1−/−; Ror2−/− (Ror1/2 dKO) cells were treated by combinations of Noggin and Wnt-5a as

indicated. Noggin itself cannot stimulate activation of Dvl2—visible as a phosphorylation-dependent shift of Dvl2 (upper blots) or decrease in dephospho-Dvl2 (middle

blots) signal. Noggin, however, increases activity of suboptimal dose of Wnt-5a (30 ng/ml), an effect that is lost in Ror1−/− Ror2−/− MEF cells.

RCS chondrocytes maintain a fully differentiated proliferating
chondrocyte phenotype in culture, manifested by abundant
production of cartilaginous extracellular matrix rich in sulfated
proteoglycans and collagen type 2, but not collagen type 10
characteristic for hypertrophic chondrocytes (Mukhopadhyay
et al., 1995). Moreover, RCS chondrocytes faithfully recapitulate
FGF-receptor 3 (FGFR3) signaling in the growth plate cartilage.
Many essential features of FGFR3 signaling in the growth plate
cartilage, such as the FGF-mediated chondrocyte growth-arrest
have been unraveled using the RCS chondrocyte model system
(Aikawa et al., 2001; Dailey et al., 2003; Krejci et al., 2005).

To define this experimental system, we first investigated
whether the FGF-induced growth arrest in RCS cells is influenced
by addition of Noggin andWnt-5a. Noggin, Wnt-5a and/or their
combination did not induce a growth arrest by themselves, and
also did not modulate the FGF-induced growth arrest of RCS
cells (Figure 3A). We also wanted to exclude that any possible
observations in RCS cells are caused by modulation of canonical
Wnt pathway that was shown to oppose Wnt/PCP pathway in
chondrogenesis. Since it was shown that RCS cells are responsive
to canonical Wnt ligands, e.g., Wnt3a (Krejci et al., 2012), we

tested whether Noggin andWnt-5a treatment alters the canonical
Wnt pathway in RCS cells using TopFlash reporter assay. These
results (Figure 3B) showed that Noggin and Wnt-5a could not
activate or inhibit the canonical Wnt pathway even though RCS
cells responded well to canonical Wnt ligands such as Wnt-3a
(Figure 3B). We conclude that combined treatment of RCS cells
with Noggin/Wnt-5a does not influence FGF2 induced growth
arrest or the canonical Wnt signaling pathway in RCS cells.

Finally, we analyzed whether RCS cells respond to combined
Noggin/Wnt-5a treatment similarly to MEF cells. As we could
not detect any signal by using the dephospho-Dvl2 antibody
used in MEF cells (not shown), we have used an alternative
readout—electrophoretic mobility shift of Dvl induced by Wnt-
5a. Such mobility shift indeed represents a phosphorylation
and can be effectively abrogated by alkaline phosphatase (AP)
treatment (Figure 3C). Using this readout we next tested whether
Noggin could potentiate the response to Wnt-5a in RCS cells
similarly as was observed in MEF cells. When RCS cells were
treated by combination of Wnt-5a and Noggin, no potentiation
of Wnt-5a-Ror2 signaling was observed (Figure 3D, quantified
in Figure 3E), and only the highest dose of Wnt-5a triggered
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FIGURE 3 | Positive effects of Noggin on Wnt/PCP activation in chondrocytes is induced by co-stimulation with FGF2. RCS cells were treated by FGF2 to

induce growth arrest, and then treated by the porcupine inhibitor Wnt-C59 (5 µM) to reduce the autocrine Wnt activity and by Noggin and Wnt-5a as indicated.

Timepoints are specified in Materials and Methods section. (A) Wnt-5a, Noggin and their combination does not alleviate growth arrest of RCS cells induced by FGF2

(72 h), graph shows average and SD from two independent experiments, ***p < 0.001 [One-way ANOVA (ANalysis Of VAriance) with post-hoc Tukey test]. (B)

Treatment of RCS cells by FGF2, Noggin and Wnt-5a does not activate canonical Wnt pathway analyzed by TopFlash reporter system. Treatment with Wnt3a was

used as a positive control. RLU—relative light units, graph shows average and SD from two independent experiments, ***p < 0.001 [One-way ANOVA (ANalysis Of

VAriance) with post-hoc Tukey test]. (C) Alkaline phosphatase (AP) treatment can remove the electrophoretic mobility shift of Dvl3 induced by FGF2/Noggin/Wnt-5a

treatment, which suggests that the mobility changes (used in D–G) are caused by phosphorylation. (D) Wnt-5a can activate downstream signaling—visible as

phosphorylation-dependent shift (p-Dvl) of Dvl2 and Dvl3—at 50 ng/ml and this effect is not positively modulated by the addition of Noggin (125 ng/ml). (E)

Quantification of p-Dvl/Dvl ratios for Dvl2 and Dvl3 from three independent experiments. (F) Similar experiment as in (D) but RCS cells were pre-treated also by FGF2

(5 ng/ml) for total 72 h to induce FGFR3-mediated growth arrest. Under these conditions 24 h treatment by C59, Noggin (125 ng/ml) and Wnt-5a can dramatically

induce the Wnt-5a-induced activation of Dvl2 and Dvl3. (G) Quantification of three independent experiments. *p < 0.01 (paired t-test).

phosphorylation of Dvl2 and Dvl3. However, when RCS cells
were pre-treated with FGF2 for 2 days in order to induce
growth arrest (Krejci et al., 2010), Noggin dramatically improved
the response of RCS cells to low doses of Wnt-5a (Figure 3F,
quantified in Figure 3G). Importantly, acute treatment of RCS
cells with FGF2, Noggin and Wnt-5a was unable to induce

such “sensitization” (data not shown). These data thus argue
that the synergism between Noggin and Wnt-5a-Ror2 is not a
proximal effect of FGF2-induced signaling or an inhibition of
the canonical branch of Wnt signaling but is rather induced by
cell changes caused by prolonged FGF2 treatment and cell cycle
arrest.
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DISCUSSION

Signaling pathways do not operate as standalone units but
functionally cooperate and interact. Inspired by the phenotypic
resemblance of BDB1 and BDB2, inheritable syndromes caused
by mutations in ROR2 or NOGGIN, respectively, we decided
to study how Noggin, an inhibitor of BMP pathway, and non-
canonical Wnt signaling, driven by Ror2 receptor, can interact.
We could show that Noggin increased biological activity of
Wnt-5a and rendered cells sensitive to Wnt-5a concentrations
otherwise not causing cellular responses. This function was
dependent on the presence of Ror2, but Noggin did not elicit a
signal on its own via Ror2.

Our study does not elucidate the molecular mechanism
behind this interaction. One mechanism may involve BMP
receptor type 1 b (Bmpr1b), which ismutated in BDA2 (Lehmann
et al., 2003). In vitro, Ror2 and Bmpr1b were shown to interact
and Ror2 is phosphorylated by Bmpr1b (Sammar et al., 2004,
2009). The functional consequence of this phosphorylation
remains unclear but one can speculate that the effects of
Bmpr1b on Ror2 are controlled by BMP ligands, whose active
concentration is controlled by Noggin. Another possibility,
which we were, however, not able to prove (data not shown)
can be formation of Noggin-Wnt-5a-Ror2 ternary complex with
the increased signaling capacity in comparison to Wnt-5a-Ror2
only. As another alternative, Noggin can, via regulation of BMP
pathway, control signaling competence or cell surface amount
of Ror2—here a possible point of crosstalk can be represented
by Smurf family E3-ligases, which were reported to control
both BMP pathway (negatively) as well as Wnt/PCP pathway
(positively) (Narimatsu et al., 2009).

The importance of the BMP pathway and its tight regulation
by antagonists for digit development is underscored by the
fact that the majority of human brachydactylies are caused
by mutations in different members of this signaling network
(reviewed in Stricker and Mundlos, 2011). A necessity for
integration of BMP and Wnt/β-catenin pathways has been
reported for numerous developmental processes (Itasaki and
Hoppler, 2010). For example, in digit outgrowth, BMP/SMAD
signaling is fine-tuned by inhibition from the Wnt/β-catenin

pathway, which itself is kept in check by Ror2 (Witte et al.,
2010). Non-canonical (or alternative) Wnt pathways regulate
entirely different aspects of tissue development compared to
the Wnt/β-catenin pathway, but are connected with the BMP
pathway as well, albeit the connection has not been studied to
the same depth (Narimatsu et al., 2009; Schille et al., 2016).
In developing limbs, Wnt/PCP signaling was involved in both
digit shaping and outgrowth (Gao et al., 2011; Wang et al.,
2011; Ho et al., 2012). Altogether this substantiates that both
BMP and non-canonical Wnt pathways are required and act
in concert during the establishment of the limb skeleton. Ror2
appears to be a pivotal intersection point between these two
pathways.

Our work on RCS chondrocytes, a cell model for chondrocyte

growth and differentiation that to some extent recapitulate
the behavior of developing limb growth plate cartilage (Krejci
et al., 2012) showed that Noggin could potentiate Wnt-5a-Ror2

pathway activity much more effectively when growth arrest

was induced by FGF2 stimulation. It was previously shown
in RCS chondrocytes that the FGF pathway can stimulate
phosphorylation of LRP6, a co-receptor of the Wnt/β-catenin
pathway (Krejci et al., 2012; Buchtova et al., 2015). We speculated

that FGF signaling might be involved in activation of Wnt-5a-
Ror2 in RCS cells, as it is known that Wnt/β-catenin and non-

canonical Wnt pathways receptors can be activated by common

mechanisms (Bryja et al., 2009; Grumolato et al., 2010). However,
Wnt/β-catenin is likely not involved in the Noggin/Wnt-
5a/Ror2 crosstalk in RCS cells because no differences in
the activity analyzed by the TopFlash reporter system were
observed.

Where can such FGF-dependent Noggin-induced activation
of Wnt-5a-Ror2 signaling pathway in chondrocytes take place in
vivo? In limb cartilage development, Wnt/PCP signaling appears
to be involved at two steps: during condensation of cartilage
elements, especially the digits (Gao et al., 2011; Wang et al.,
2011; Ho et al., 2012), and for establishing cartilage growth
plate morphology (Ahrens et al., 2009; Li and Dudley, 2009;
Kuss et al., 2014; Romereim et al., 2014). In the first scenario,
Wnt-5a is required for digit formation, and mice deficient for
Wnt-5a form rudimentary digits (Yamaguchi et al., 1999). The
Wnt-5a null phenotype is recapitulated by either Ror1/Ror2
double null mutants (Ho et al., 2012) or Ror2/Vangl2 double
null mutants (Gao et al., 2011), clearly establishing that a Wnt-
5a/Ror2/PCP pathway is necessary for digit formation. Noggin is
expressed in forming cartilage condensations (Brunet et al., 1998)
and could hence facilitate this process. During digit outgrowth,
FGFs are expressed in the apical ectodermal ridge (AER). FGF
signaling from the AER is thought to keep distal mesenchymal
cells proliferating and undifferentiated (ten Berge et al., 2008). In
vitro, FGFs inhibit chondrogenesis (Buchtova et al., 2015), but
on the other hand application of FGF beads can induce ectopic
digit formation in vivo (Montero et al., 2001). One possibility
is that FGF signaling that acts at a distance from the AER on
prechondrogenic cells provides competence for Noggin activity
toward the Wnt-5a/Ror2/PCP pathway, and is thus enforcing
PCP signaling in cells undergoing chondrogenic differentiation.
In the growth plate, both Wnt-5a and Ror2 are essential for
cellular polarity (Yang et al., 2003; Schwabe et al., 2004), andWnt-
5a acts via a PCP pathway (Gao et al., 2011; Kuss et al., 2014).
Noggin is expressed throughout the growth plate (Brunet et al.,
1998), and FGF signaling, which is a major regulator of growth
plate chondrocyte proliferation, is active here as well (Horton
et al., 2007).

In summary our data pinpoint a novel, yet unappreciated role
for Noggin in sensitizing cells toWnt-5a. The cellular mechanism
by which Noggin accomplishes this effect on the Wnt-5a-Ror2
pathway remains to be elucidated.
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The development of the musculoskeletal system is a great model to study the

interplay between chemical and mechanical inter-tissue signaling in cell adhesion, tissue

morphogenesis and differentiation. In both vertebrates and invertebrates (e.g.,Drosophila

melanogaster) the formation of muscle-tendon interaction generates mechanical forces

which are required for myotendinous junction maturation and tissue differentiation. In

addition, these forces must be withstood by muscles and tendons in order to prevent

detachment from each other, deformation or even losing their integrity. Extracellular matrix

remodeling at the myotendinous junction is key to resist mechanical load generated by

muscle contraction. Recent evidences in vertebrates indicate that mechanical forces

generated during junction formation regulate chemical signaling leading to extracellular

matrix remodeling, however, the mechanotransduction mechanisms associated to this

response remains elusive. In addition to extracellular matrix remodeling, the ability of

Drosophila tendon-cells to bear mechanical load depends on rearrangement of tendon

cell cytoskeleton, thus studying the molecular mechanisms involved in this process is

critical to understand the contribution of mechanical forces to the development of the

musculoskeletal system. Here, we review recent findings regarding the role of chemical

and mechanical signaling in myotendinous junction formation and tendon differentiation,

and discuss molecular mechanisms of mechanotransduction that may allow tendon cells

to withstand mechanical load during development of the musculoskeletal system.

Keywords: tendon cells, myotendinous junction, mechanical forces, morphogenesis, mechanoresponse

INTRODUCTION

Living cells and tissues are in a constant state of isometric tension allowing them to respond
to mechanical cues (Ingber, 1997; Wang et al., 2001; Mammoto and Ingber, 2010). During
embryogenesis, mechanical stress is generated within the tissue and by its interaction with
external factors and/or other tissues. Shear stress generated by blood flow modulates blood
vessels morphogenesis, regulates the fate acquisition of arteries and veins, and is required for
the development of the hematopoietic system (le Noble et al., 2004; Adamo et al., 2009; North
et al., 2009). In addition, hemodynamic forces are required for heart morphogenesis. Disturbing
blood flow at either the inflow or outflow tracts of the zebrafish heart results in several defects
including abnormal formation of third chamber and heart looping (Hove et al., 2003). Furthermore,
mechanotransduction mechanisms and its role in development are evolutionary conserved across
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species. In zebrafish and Drosophila, mechanical cues generated
during gastrulation (epiboly in zebrafish, and mesoderm
invagination in flies) induce β-Catenin release from E-Cadherin
based junctions, and translocation to the nucleus of mesodermal
cells, where it promotes gene expression changes and cell
specification (Farge, 2003; Desprat et al., 2008; Brunet et al.,
2013).

The development of muscle-tendon attachment is a
great model to study the role of chemical and mechanical
signaling between tissues in morphogenesis and differentiation
(Schweitzer et al., 2010; Subramanian and Schilling, 2015).
During embryogenesis, tendon cells attach to the developing
muscle through the Extracellular Matrix (ECM) forming a
specialized junction called Myotendinous Junction (MTJ)
(Schweitzer et al., 2010; Subramanian and Schilling, 2015). MTJ
development relays mainly on the interaction of Integrins and
ECM molecules secreted by tendons and muscles, although,
other proteins, like Dystroglycan and Kon-tiki (Kon) also
contribute to the formation of the MTJ. While Dystroglycan
participates on muscle binding to the ECM, Kon controls muscle
guidance and attachment to muscle attachment sites (Pérez-
Moreno et al., 2014; Weitkunat et al., 2014; Maartens and Brown,
2015; Subramanian and Schilling, 2015). Strain generated
by the contraction of the developing muscles contributes
to MTJ maturation and muscle and tendon differentiation
(Weitkunat et al., 2014; Havis et al., 2016). Here we will review
recent evidences regarding the role of mechanical signaling
in tendon differentiation and MTJ formation in vertebrates
and Drosophila. Additionally, we will discuss the mechanisms
of mechanoresponse that may allow tendon cells to sense
and respond to mechanical load during development of the
muscle-tendon interaction.

THE ROLE OF MECHANICAL AND

CHEMICAL SIGNALING IN VERTEBRATE

TENDON DIFFERENTIATION

Mechanical control of tendon differentiation and remodeling has
been widely studied in vertebrates (reviewed in Shwartz et al.,
2013). Tendons are formed by ECM, composed principally by
strong collagens fibril arrays, and a type of fibroblast termed
tenocyte (Subramanian and Schilling, 2015). In response to
mechanical forces, tenocytes secrete collagens and proteoglycans,
modifying ECM composition and elastic properties (Chen X.
et al., 2012; Li et al., 2015). These changes confer tendons with
the ability to resist mechanical load generated during muscle
contraction and to form functional attachments to bones (Evans
and Barbenel, 1975; Kjaer and Kjær, 2004; Maeda et al., 2011;
Schwartz et al., 2013; Havis et al., 2016). How force is sensed by
tenocytes and transduced into a cellular response? Recent studies
on the development of the MTJ shed lights into this problem. In
chicks and mice, the morphogenesis of the limb MTJ is divided
in two phases (Subramanian and Schilling, 2015). The first phase
is independent of muscle derived signals (Pryce et al., 2009).
Here, the initial expression of Scleraxis (Scx), a tendon-specific
bHLH transcription factor that promotes tendon differentiation

and tenocyte specification (Alberton et al., 2012; Chen L. et al.,
2012; Li et al., 2015), is stimulated by Fibroblast Growth Factor
(FGF) and Transforming Growth Factor-beta (TGFβ) through
MAPK/ERK and SMAD2/3 signaling pathways, respectively
(Schweitzer et al., 2001; Havis et al., 2014; Figure 1A). Scx
mutant mice display disrupted tenocyte differentiation leading
to disorganized ECM, however, tenocyte precursor cells are
still specified, indicating that other genes are required for early
specification (Murchison et al., 2007). During the second phase
of tendon differentiation, the interaction with the developing
myofiber is mandatory to maintain the expression levels of Scx
and other tendon markers (Havis et al., 2016). Pharmacological
inhibition of muscle contraction disturbs tendon differentiation,
even in presence of FGF and TGFβ, diminishing the levels of Scx.
Moreover, force exerted by muscles on tendons is required for
the activation of FGF and TGFβ at the muscle-tendon interface,
maintaining the expression levels of Scx, leading to tendon
terminal differentiation (Maeda et al., 2011; Havis et al., 2016).

TGFβ-ligands are secreted bound to TGFβ-binding proteins
which form a complex with the large latency complex (LLC)
in the ECM, capturing TGFβ and precluding its binding
to TGFβ-receptors (Wipff et al., 2007; Maeda et al., 2011;
Figure 1A). Shearing forces generated during muscle contraction
may stimulate TGFβ release from the LLC through its
degradation by proteases, allowing its binding to the receptor
(Figure 1A). Moreover, it may promote the activation of
Integrin signaling through the binding of the RGD motifs
present on the latency TGFβ binding proteins associated to
LLC (Munger and Sheppard, 2011; Subramanian and Schilling,
2015; Figure 1A). TGFβ signaling maintains Scx expression
under normal muscular-load regime in mice (Maeda et al.,
2010, 2011) and in response to mechanical stress promotes
expression of Integrins (Popov et al., 2015). Thus, different
mechanotransduction mechanisms appear to function at the
ECM levels, activating either TGFβ or Integrin signaling. In
vertebrates, recent evidence have shown that mechanical forces
appears to be required for muscle development. Mechanical force
driven by muscle contraction is necessary to maintain the pool of
muscle progenitors during chick fetal myogenesis (de Lima et al.,
2016), and in vitro studies suggest that strain drives mesenchymal
stem cells differentiation into myoblasts (Lisio et al., 2014; Lemke
and Schnorrer, in press).

THE ROLE OF MECHANICAL SIGNALING

IN DROSOPHILA MYOTENDINOUS

JUNCTION FORMATION AND TENDON

DIFFERENTIATION

In contrast to vertebrates, Drosophila displays an exoskeleton
instead of an internal skeleton and its connection with muscles
relays on epithelial cells of ectodermal origin called tendon
cells, which are analogs to vertebrate tendons (Fernandes et al.,
1996; Figure 1B). Similar to vertebrates, signals emanated from
tendon cells are required for MTJ formation, both during
embryogenesis and metamorphosis (Costello and Wyman, 1986;
Fernandes et al., 1991; Wayburn and Volk, 2009; Ordan
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FIGURE 1 | Myotendinous junction formation in vertebrates and Drosophila. (A) Scheme of vertebrate myotendinous junction formation. Mechanical stress on

the ECM may cause the release of the secreted TGFβ from the large latent complex (LLC) and activation of the receptor. In addition, TGFβ bound to LLC activates

Integrin receptors. Smad2/3 along with Integrin signaling, activate Scx and Egr1/2, inducing the expression and deposition of ECM proteins. (B) Scheme of the

myotendinous junction in Drosophila. In tendon cells, the link between Integrin and the actin cytoskeleton is mediated by Talin and the three-dimensional organization

of the actin cytoskeleton is modulated by cross-linkers and motor proteins, such as and Filamin and Myosin. (C) Scheme of myotendinous system development in

Drosophila. (I) The developing myotube migrates toward the tendon precursor cells (specified by SrB) directed by the Slit-Robo signaling and Kon-tiki, while myoblasts

fuse with the myofiber. (II) After recognition tendon and myotube extensions interdigitate, in addition Vein is secreted promoting SrB expression. (III) ECM components,

as Thrombospondin (Tsp) and Laminin (Lam), are secreted to the MTJ. In tendon cells, SrA is expressed and SrB expression diminishes. (IV) Myotube compacts

generating mechanical stress on the system triggering myofibrillogenesis. (V) Sarcomeres are formed, and muscle elongate back toward tendon cells.

et al., 2015). In order to resist mechanical load, tendon
cells modify their elastic properties deploying an array of
polarized microtubules and actin filaments that stretch along
their apical-basal axis, from the exoskeleton attachment site
to the MTJ (Subramanian et al., 2003; Alves-Silva et al.,
2008).

The development of the interaction between the Indirect
Flight Muscles (IFMs) and the tendon cells of the dorsal
thorax (notum) is an interesting model to study the role
of mechanical signaling in tissue morphogenesis and cell
differentiation (Olguín et al., 2011; Weitkunat et al., 2014).
The notum develops from a monolayer epithelium, from
which a subset of epithelial cells differentiates as analogs
to vertebrate tendons, serving as bridges between the flight
muscles and the exoskeleton (Fernandes et al., 1991; Weitkunat
et al., 2014). At early stages of tendon differentiation, tendon
precursors are specified by the activity of the isoform B of

the Stripe transcription factor (SrB), which is required and
sufficient to specify tendon cells (Volk and VijayRaghavan, 1994;
Frommer et al., 1996; Becker et al., 1997; Figure 1C). The
stripe homologous in vertebrates, Egr1 and Egr2, are required
for tendon terminal differentiation, specifically to promote the
expression of ECM proteins (Frommer et al., 1996; Lejard
et al., 2011; Guerquin et al., 2013), however, as Scx, they are
not strictly required for tendon specification (Lejard et al.,
2011; Guerquin et al., 2013). Once specified, embryonic tendon
cells provide initial attracting cues to the myotube and secrete
Slit, a ligand that binds Robo receptor, which is expressed
at the tips of myotubes (Figure 1C; Kramer et al., 2001;
Ordan et al., 2015). Whether Slit acts as a chemoattractant
in this context, remains to be elucidated. During this first
stage of myotendinous system development, myotubes extend
bipolar extensions that migrate toward their tendon targets,
conversely, tendon cells extend processes that interact with
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the myotube extension tips (Figure 1C; Vega-Macaya et al.,
2016). Muscle migration requires the accumulation of Kon,
a single pass transmembrane protein, on the muscle leading
ends (Figure 1C; Estrada et al., 2007; Schnorrer et al., 2007).
Loss of function of Kon in the ventral longitudinal muscles
causes abnormal projection of filopodia, altering the myotube
migration pattern (Schnorrer et al., 2007). Following, in a
second stage, myotubes secrete Vein, a short range signaling
molecule that binds to the epidermal growth factor receptor
(EGFR) expressed in tendon cells, promoting SrB expression
(Yarnitzky et al., 1997; Figure 1C). High levels of SrB induce
Slit secretion and Leucine Rich repeat Transmembrane protein
(LRT) expression, which bind to Robo and are both required for
muscle migration arrest (Figure 1C; Wayburn and Volk, 2009;
Ordan and Volk, 2015, 2016). Slit acts as a short range repellent
signal that arrests muscle migration. This mechanism depends
on Slit cleavage by Amontillado, a Pheromone Convertase
2 homolog, sequestering Slit on the tendon cell membrane,
stopping muscle migration (Ordan et al., 2015; Ordan and
Volk, 2016). In a third stage, the MTJ starts forming mainly
through the association of Integrin with ECM proteins secreted
by tendon and myotube (Chanana et al., 2007; Subramanian
et al., 2007; Gilsohn and Volk, 2010; Figures 1B,C). The muscle-
specific αPS2βPS Integrin binds to Thrombospondin (Tsp) and
its regulator Slow, conversely, Laminin (Lam) associates with
the tendon-specific αPS1βPS Integrin (Gotwals et al., 1994;
Martin et al., 1999). The induction of SrA isoform and the
decrease of SrB expression levels is essential to promote the
expression of tendon specific differentiation genes such asDelilah
(Dei), a transcription factor that promotes βPS expression,
and shortstop/kakapo (Shot), a plakin that connects the actin
cytoskeleton to microtubules, regulating the elastic properties
of tendon cells (Subramanian et al., 2003; Schweitzer et al.,
2010). Thus, during this stage EGFR and Integrin signaling
promotes junction formation and terminal differentiation of
tendon cells.

During metamorphosis, developing tendons and muscles

express the same combinations of Integrin subunits and secrete

extracellular matrix components such as Tsp, forming stable
hemiadherent junctions (Subramanian et al., 2007; Gilsohn
and Volk, 2010; Weitkunat et al., 2014). Following, IFMs
compaction, driven by Myosin Heavy Chain (MHC) motor
activity, generates mechanical strain at the MTJ (Weitkunat
et al., 2014; Figure 1C). In addition, the overlying notum
epithelium migrates toward anterior through a still unknown
mechanism, which may contribute to the mechanical strain
generated between these tissues (Bosveld et al., 2012). Recently,
it has been shown that mechanical strain at the MTJ is
required for myofibrillogenesis, indicating that mechanical
signaling is also required for muscle morphogenesis (Weitkunat
et al., 2014). In response to muscle compaction, tendon
extensions attached to the myotube elongate (Weitkunat et al.,
2014; Figure 1C). During this process, MTJ must be able to
withstand mechanical load, and tendon cells might regulate
its elastic properties in order to maintain its integrity and
shape.

MEMBRANE MECHANORECEPTORS AND

MECHANICAL SIGNALING AT THE

MYOTENDINOUS SYSTEM

At focal adhesions, the Integrin signaling pathway might
be triggered in response to deformation or changes in the
rigidity of the ECM (outside-in activation) (Takagi et al., 2003;
Campbell and Humphries, 2011). In absence of external forces,
Integrins remain in a restings state, associated with Filamin
(Figure 2A). Mechanical stimuli may cause the opening of the
extracellular domains of the Integrin heterodimer, which is
transmitted to its cytoplasmic portion where it could recruit
the actin binding protein Talin, although it is not the most
characterized mechanism of Integrin signaling (Nieves et al.,
2010; Figure 2B). The activation of Integrins also results in
the recruitment of several other proteins, like Src kinases,
promoting cell proliferation and migration (Arias-Salgado et al.,
2003). Importantly, Src activates Rho signaling pathway, which
through Rho-kinase (ROCK) induces the phosphorylation of
the myosin regulatory light chain (MRLC) and the contraction
of the acto-myosin network, building up tension at the focal
adhesions (Arthur et al., 2000; Arias-Salgado et al., 2003). The
Integrin signaling cascade may be activated also by an inside-
out mechanism (Otoole et al., 1994; Vinogradova et al., 2002).
There is evidence that certain proteins, like Talin, are able to
respond to mechanical deformation (Lee et al., 2007; del Rio
et al., 2009). In vitro studies have shown that Talin has cryptic
vinculin interacting domains that are exposed by deformation
(Lee et al., 2007; del Rio et al., 2009). Stretching of the actin
cytoskeleton may be directly transmitted to Talin, releasing its
Vinculin binding site, triggering the recruitment of Talin and
Vinculin toward Integrins, promoting adhesion.

Integrin-ECM interaction plays an important role in the
formation of the vertebrate and Drosophila MTJ (Brown, 2000;
Figure 1A). Drosophila mutant embryos for either βPS Integrin
or tsp show detachment of developing muscle fibers from
tendons, due to the loss of the αPS2βPS-Tsp interaction (Chanana
et al., 2007; Subramanian et al., 2007; Figure 1B). Moreover,
Talinmutants display similar defects suggesting that Talin-related
signaling is required for functional MTJ formation (Brown et al.,
2002).

Similar to Focal adhesion, activation of Rho signaling
downstream of Integrins appears to be indispensable for MTJ
formation (reviewed in Geiger and Bershadsky, 2002). We have
recently shown that Drosophila Rho-kinase (DRok) loss of
function in tendon cells results in diminished phosphorylation
of MRLC and abnormal βPS localization and Tsp accumulation
at the MTJ, suggesting that DRok could be part of the inside-
out mechanism of Integrin activation (Vega-Macaya et al., 2016).
Interestingly, ROCK activity appears to be required for stretch-
induced tenocyte differentiation from human Mesenchymal
Stem Cells (hMSCs) (Xu et al., 2012). Stretching of hMSCs
elicited enhanced expression of Scx, Collagen I and II,
among other tendon specific genes. The addition of a ROCK
inhibitor results in an attenuated expression of these genes
(Xu et al., 2012). Whether DRok activity contributes to tendon
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FIGURE 2 | (A,B) Scheme of canonical cell response to mechanical stimuli. Mechanical stress results in Integrin activation and the recruitment of Kindlin and Talin,

rearranging the actin network. The recruitment of Src kinase activates several pathways in response to the stress, like the Rho-ROCK pathway. (C) Scheme of a cell

aspirated by micropipette and the redistribution of Myosin II and Filamin. These proteins accumulate as an immediate response to different types of mechanical stimuli.

Filamins accumulate in response to shear stress and Myosin II in response to dilation stress.

cell differentiation in response to mechanical forces, through
regulation of gene expression in Drosophila remains to be
explored. In addition to its role in MTJ maturation, DRok
regulates the orientation of tendon extensions toward IFMs
during recognition stage, enabling the correct attachment to
the muscle fibers (Vega-Macaya et al., 2016; Figure 1C). DRok
mutant tendon cells display miss-oriented tendon extensions,
resulting in irregular attachments to the muscle fiber. Tendon
extensions appears to be unable to resist the pulling forces
generated by IFMs compaction, resulting in muscle detachment
and death (Vega-Macaya et al., 2016). How DRok regulates
tendon recognition of the myotube ends remains to be
elucidated.

In conclusion, the membrane mechanoreceptor model
explains how forces are sensed and transduced at the MTJ, but
how tension exerted by muscle compaction is withstood by the
whole tendon cell is still unclear.

ACTIN CROSSLINKERS AS

INTRACELLULAR MECHANOSENSORS

AND REGULATORS OF THE ACTIN

NETWORK

In vitro and in vivo experiments show that mechanical
perturbation of cell shape causes a redistribution of actin
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crosslinkers and a rearrangement of the actin network (Gardel
et al., 2004; Chaudhuri et al., 2007; Luo et al., 2013).
Studies in Drosophila epithelial cells, Dyctiostelium discoideum
and mammalian cells have demonstrated that mechanical
deformation of the plasma membrane results in accumulation
of crosslinking and motor proteins such as Filamin and
myosin, respectively, to the perturbation site in distinctive ways
(Fernandez-Gonzalez et al., 2009; Luo et al., 2013; Schiffhauer
et al., 2016; Figure 2C). Myosin is recruited to regions under
dilation stress, counteracting cell deformation by contraction
of the acto-myosin filaments (Figure 2C). On the other hand,
Filamin is recruited to sites subjected to shear stress (Luo et al.,
2013; Schiffhauer et al., 2016; Figure 2C).

In contrast to Myosin, Filamin does not act as a contractile
unit; instead, it enhances elasticity of the actin network to
allow cell shape adaptation and remodeling (Luo et al., 2013;
Schiffhauer et al., 2016). Filamin is a large actin-binding protein
that works as a dimer (Noegel et al., 2004). Each Filamin
monomer binds to one actin filament forming orthogonal and
elastic actin networks by dimerization via their C-terminal
immunoglobulin-like domains (Tseng et al., 2004; Pudas et al.,
2005; Figures 2A–C). Both, Jitterbug, one of the two Filamins
present in Drosophila, and non-muscle Myosin II (MyoII) are
required to maintain the shape and polarity of tendon cells
and partially co-distribute with actin filaments and Shot (Olguín
et al., 2011). Interestingly, Shot loss of function display similar
epithelial deformation phenotypes to Jbug (Olguín et al., 2011),
suggesting that both microtubule and actin arrays that stretched
along the apical-basal axis of tendon cells are required to
withstand mechanical load.

At the signal-transduction level, Filamin acts as a scaffold
for other actin regulatory proteins (Popowicz et al., 2006). In
monocytes, Filamin recruits the small GTPases of the Rho
family, their effectors and regulators (Leung et al., 2010). In
migrating mammalian cells, Filamin recruits ROCK (Ueda et al.,
2003), whichmay promote acto-myosin network contraction and
stabilization by activation of the myosin regulatory light chain, α-
Adducin and LIMK (Maekawa et al., 1999; Zhang et al., 2003).
During cell migration, Filamin also interacts with the Integrin
beta subunit, keeping it in a resting state, preventing focal
adhesion formation (Liu et al., 2015; Figure 2A). A proposed

mechanism is that after Integrin interaction with a stiffer ECM,
Filamin dissociates from Integrin cytoplasmic domain leading to
Talin and Vinculin recruitment in its place, reinforcing adhesion
(Nieves et al., 2010; Figure 2B).

Based on these evidences, Filamin could play a dual role
in tendon cell mechanoresponse during MTJ formation: as
a molecular scaffold for actin regulators at the MTJ, and as
regulator of tendon cell elastic properties at specific cellular
regions. Moreover, Filamin redistribution may regulate its role
as a scaffold at the MTJ.

CONCLUDING REMARKS

The ability of cells and tissues to respond to mechanical
stress during development is crucial to shape organs and
the whole individual. The combination of molecular tools
that allows to measure in developing animals, mechanical
stress across developmental fields, dynamic signaling pathway
activity and cytoskeleton organization will be key to unveil the
interplay between mechanical and chemical signaling during
embryogenesis, including the formation of the musculoskeletal
system.
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CELLS LIVE IN A COMPLEX WORLD

It may sound blatantly obvious, but we have to remind ourselves occasionally that in vivo
cells experience an environment with a level of complexity far beyond experimental reach. The
developing organism is a highly complex system, where each cell receives a multitude of cues of
diverse nature at any given time point. Only the comprehensive integration of all these multivalent
interactions determines the actual signaling state and hence the behavior of a cell.

The analysis of biological questions is mainly inspired by a reductionist approach adopted from
the “exact sciences,” where it has been proven immensely successful. That is, we are used to break
down our experimental setup to a manageable number of variables. This of course is inherently
contradictory to the complexity of biological systems. While simplification may be the only viable
option for the experimenter to dissect biological function down to detail, it has also influenced our

perspective toward the experimental systems applied. For example, studies of intracellular signaling
pathways are typically performed with cultured cells. Culturing cells in an in vitro setting became a
standard model system in biomedical research and with it in cell and developmental biology. These
simplified systems allow for the dissection of molecular interactions and pathways and are aimed
to deepen and mechanistically understand cellular behavior. While cell cultures have generated a
wealth of information into cellular function, the data obtained in vitro frequently are in conflict
with in vivo observations. One reason for this discrepancy is that these analyses focus on the cell as
a closed functional system, thus conceptually unhinging it from its environment.

In a living organism, cells are embedded in extracellular matrix (ECM) with diverse but also
organ-specific properties. Cells attach to the ECM mainly via focal adhesions, which on the inside
are linked to the cytoskeleton (Figure 1A). The ECM has long been seen as a mere scaffold
providing support and shape; however, in the past decades it has become clear that the ECM
has also an instructive character (see Adams and Watt, 1993; Tsang et al., 2010). Like a color
palette ECMs come in many shades with different molecular composition, resulting in manifold
chemical and physical characteristics (Rozario and DeSimone, 2010). We focus here on a rather
simple but often overlooked property that provides tissues with their rigidity or elasticity. It is
these mechanical properties that emerged as a decisive factor mediating information flow (see
Mammoto et al., 2013). There is a multitude of interactions between cells and their ECM and it is
now well accepted that cells perceive the substrate’s mechanical cues and integrate them into their
intracellular signal transduction pathways, gene expression and cell fate decisions. In this sense
cells can be both writers and readers of ECM and its cues, implying crosstalk between cells via the
ECM. Besides determiningmechanical tissue properties, cells build a matrix with spatial decoration
of specific growth factors to thereby modulate their local availability. Emerging data even suggest
that intracellular signaling pathways integrate external biomechanical cues directly by altering
the phosphorylation state of cytosolic signaling proteins (Kopf et al., 2012, 2014; Ashe, 2016).
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FIGURE 1 | Mechanical interactions between cells and ECM. (A) In vivo, cells interact with their tissue-specific ECM mainly via focal adhesions that are linked to

the actin cytoskeleton inside the cell. Via focal adhesions cells exert mechanical force to the ECM and are able to deform it and thereby measure its stiffness. In 2D in

vitro culture, cells contact their substrate via focal adhesions on the basal side. (B) Standard synthetic elastic matrices where fibrillary proteins are covalently cross

linked have a static stiffness profile, i.e., they deform as the cells apply force, but do not dissipate the force. The ECM in living tissues is viscoelastic and undergoes

stress relaxation. Synthetic viscoelastic substrates, in which ionic crosslinking allows a certain degree of flexibility (here symbolized by springs) dissipate energy

through the substrate so that the cell can gradually re-shape its ECM environment, leading to a decrease in the substrates elastic modulus over time.

BIOMECHANICAL PROPERTIES OF THE
ECM AND ITS INFLUENCE ON CELLS

For a long time it has been known that cells can, based
on intrinsic sensing mechanisms, differentially respond to, for
example, growth factor signaling (e.g., Nakagawa et al., 1989).
The importance of the mechanical aspect, however, has only
gained wider attention in recent years. In 2006, a landmark study
from the Discher group showed that in vivo tissues exhibit an
elastic modulus in the range of below 1 kPa (brain) up to over 100
kPa (ossified bone). Moreover, they provided the first evidence
that this property has an instructive character on the behavior of
progenitor cells, specifically mesenchymal stem cells (MSCs). The
cells sensed their microenvironment by attaching and applying
force to the substrate. PlatingMSCs on polyacrylamide substrates
of varying stiffness revealed a differentiation potential correlating
with the stiffness of the in vivo tissue; in other words, MSCs
seeded on extremely soft substrates differentiated along the
neural fate, while cells seeded on hard substrates differentiated
along the osteogenic fate, and intermediate stiffness substrates
supported differentiation along a myogenic fate (Engler et al.,
2006).

Experiments using dynamic modulation of substrate stiffness
further revealed that cells initially cultured on soft (0.5 kPa) or
stiff (40 kPa) polyacrylamide hydrogels and then transferred to
gels of the opposite stiffness had the capacity to revert their gene
expression profile from neurogenic to osteogenic, and vice versa
(Lee et al., 2014). However, while the cells displayed a remarkable
potential switching lineage specification, MSCs transferred from
stiff to soft substrates maintained elevated osteogenesis markers;
thus, they kept a memory of their previous culture conditions
indicating a certain degree of irreversible, likely epigenetically
fixed, lineage commitment.

Just recently it has been discovered that partial matrix stress
relaxation is another fundamental signal in cell-ECM interactions
(Figure 1B). Stress relaxation means that the force cells exert on
the ECM dissipates, and over time ECM resistance decreases.
Chaudhuri et al. engineered alginate polysaccharide hydrogels
that are, independent from their initial elastic modulus, also
tunable in their viscoelasticity. Thus, they mimic the remodeling
of the matrix microenvironment over time. MSCs embedded
in 17 kPa-stiff hydrogels with a rapid rate of stress relaxation
demonstrated enhanced spreading, proliferation and osteogenic
differentiation (Chaudhuri et al., 2016). In addition to force
dissipation it is likely that remodeling of the ECM by Matrix
Metalloproteinase (MMP) activity contributes to this behavior in
vivo.

How do cells perceive these stimuli and translate them into

transcriptional activity? It was shown that mechanotransduction

of ECM stiffness toward MSC differentiation critically depends

on YAP (yes-associated protein) and TAZ (transcriptional

coactivator with PDZ-binding motif) signaling. In this context,

YAP/TAZ were not activated by the “canonical” Hippo/LATS

cascade, but by cytoskeletal tension and Rho-GTPase activity

(Dupont et al., 2011). Interestingly, deregulation of YAP/TAZ
signaling has been linked to disease conditions characterized by
ECM stiffness changes such as fibrosis (Liu et al., 2015), and in
this context apparently a circuit with TGFβ and WNT signaling
pathways exists (Piersma et al., 2015). It is noteworthy that the
interplay of ECM stiffness and mechanosensing itself impinges
on the expression of profibrotic genes, driving a feed forward
vicious cycle (Parker et al., 2014).

Another example are muscle resident stem cells, the so-called
satellite cells (SCs). SCs reside in a specific niche underneath the
myofiber’s rigid basal lamina where they are kept in a quiescent
state that is dependent on different factors including the collagen,
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glycoprotein and proteoglycan-rich ECM (e.g., Brohl et al., 2012;
Bentzinger et al., 2013). In an injury situation SCs are activated
and form newmuscle, but importantly they also self-renew. After
isolation and culture, the expansion of SCs in vitro and their
expression of myogenic transcription factors was shown to be
influenced by the elasticity of the culturing substrate (Gilbert
et al., 2010), a feature recently utilized to create artificial niches
maintaining satellite cell quiescence ex vivo (Quarta et al., 2016).

The importance of the biochemical and biophysical properties
of extracellular matrices on myogenesis has been coherently
demonstrated in a vertebrate in vivo/in vitro regeneration
model. During amphibian limb and cardiac regeneration, the
collagen/laminin-rich matrix typical for differentiated tissues is
temporarily replaced by a transitional matrix of reduced stiffness
composed of hyaluronic acid, tenascin-C and fibronectin that is
surprisingly similar to the type found in developing structures
(Calve et al., 2010; Mercer et al., 2013). Employing these
regeneration-permissive ECMs in in vitro cultures, Calve et al.
demonstrated an instructive role of distinct ECM components
promoting cell fragmentation, proliferation, migration and
differentiation of ex vivo skeletal muscle cells (Calve et al., 2010).
In addition, using a polydimethylsiloxane (PDMS)-ECM culture
system that allowed for the modulation of both, stiffness and
matrix composition they could further demonstrate that ECM
type and substrate stiffness over a range of 2–100 kPa combine to
controlmigration as well as differentiation state of skeletal muscle
cells (Calve and Simon, 2012).

Mechanical and biophysical properties of the ECM are
provided by coordinated synthesis and secretion of matrix
components with protein or sugar backbones and biologically
active epitopes that result in a network of different biomolecules.
Dynamic post-translational modifications including MMP
cleavage further shape a characteristic local signaling
environment. These native 3D structures also serve as versatile
surfaces for the binding of growth factors—either in their active
form or inactive preform—which, often as a consequence of
mechanical stress, will be released in a spatially controlled
manner. Mimicking these complex in vivo conditions using
a 3D bioreactor with a collagen scaffold as a simplified in
vitro culture system, the Knaus and Petersen groups provided
evidence that biomechanical signaling is directly integrated into
the BMP/Smad pathway (Kopf et al., 2012). Coapplication of
mechanical stress and BMP stimulation resulted in increased
and prolonged phosphorylation of Smads, the direct target of
the transmembrane BMP receptor kinases. As a consequence,
distinct target genes, including known mechanotransducers,
were upregulated in a synergistic manner.

CONSEQUENCES FOR IN VITRO STUDIES

Clearly, studying the complex in vivo interactions of cell-
growth factor, cell-cell, and cell-matrix interactions and
their downstream intracellular signal transduction and gene
expression pathways, we will also in the future have to rely
on simplified in vitro culture systems. As by default cells
apparently integrate mechanical and biochemical inputs, the
cellular behavior experimentally determined is in consequence

dependent on the in vitro culture conditions and not necessarily
reflect cellular behavior seen in vivo.

The standard tissue culture method is still the plastic dish,
with an elastic modulus of approximately 106 kPa way out
of the physiological range. When a more natural environment
is desired, plastic dishes are at best coated with a thin layer

of mostly collagenous matrices such as gelatine or Matrigel
TM

.
This, however, rather serves as a functionalization of the surface
toward better cell adherence rather than altering the mechanical
properties of the substrate. In light of the growing body of
evidence from the emerging field of mechanobiology we have to
change course.

Time has come to move on to more comprehensive
in vitro culture systems that better simulate the complex
in vivo conditions. Recent approaches employing engineered
biopolymers as mimetics of the natural environment provide
new opportunities to develop more physiological cell culture
procedures. The material sciences have made available a range
of different tested hydrogels; of particular interest are those
made from biologically inert polymers including polyacrylamide,
PDMS, alginate, and polyethylene glycol (PEG). All of these
synthetic polymers allow, to various degrees, for the tuning of
stiffness over a range of 2–40 kPa (similar to that observed in
natural tissues), presentation of native matrix-derived peptide
epitopes, and/or binding and release of growth factors. Ideally,
these cell culture models would be in a 3D architecture
resembling the in vivo context as closely as possible. However,
building a perfect mimetic of the in vivo environment is virtually
impossible in a standard cell culture experiment when analyzing,
for example, intracellular signaling using current routine reporter
assays. It therefore appears as a minimal requirement for a
more comprehensive experimental design to at least consider
the biomechanical properties of the tissue of origin, i.e., the
mechanical modulus. A realistic rational approach could be
2D culturing techniques with softer synthetic matrix substrates
(as compared to the hard plastic dish) that mimic the in vivo
viscoelastic conditions, which we think would greatly improve
the reliability of ex vivo/in vitro experimentation and improve
comparability to in vivo data. It is important to note that the
fabrication of such biomimetic matrices in the laboratory is still
challenging and coupled to an operating expense that clearly
hinders their standard application. However, custom products
are beginning to enter the market and it is foreseeable that a
panel of matrix solutions will become available in the near future
tailored to many if not most individual experimental needs.

Importantly, embracing more physiological cell culture
conditions might generate a fundamentally new understanding
of how extracellular cues, both insoluble and soluble, are
integrated and stored to guide cellular behavior. These immediate
biological goals would further help to achieve current and future
therapeutic challenges in humans (see Sommerfeld and Elisseeff,
2016).
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