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Computational Anatomy (CA) is an emerging discipline aiming to understand anatomy 
by utilizing a comprehensive set of mathematical tools. CA focuses on providing 
precise statistical encodings of anatomy with direct application to a broad range of 
biological and medical settings.

During the past two decades, there has been an ever-increasing pace in the 
development of neuroimaging techniques, delivering in vivo information on the 
anatomy and physiological signals of different human organs through a variety of 
imaging modalities such as MRI, x-ray, CT, and PET. These multi-modality medical 
images provide valuable data for accurate interpretation and estimation of various 
biological parameters such as anatomical labels, disease types, cognitive states, 
functional connectivity between distinct anatomical regions, as well as activation 
responses to specific stimuli.

In the era of big neuroimaging data, Bayes’ theorem provides a powerful tool to 
deliver statistical conclusions by combining the current information and prior 
experience. When sufficiently good data is available, Bayes’ theorem can utilize it 
fully and provide statistical inferences/estimations with the least error rate. Bayes’ 
theorem arose roughly three hundred years ago and has seen extensive application 
in many fields of science and technology, including recent neuroimaging, ever since. 
The last fifteen years have seen a great deal of success in the application of Bayes’ 
theorem to the field of CA and neuroimaging. That said, given that the power and 
success of Bayes’ rule largely depends on the validity of its probabilistic inputs, it is 
still a challenge to perform Bayesian estimation and inference on the typically noisy 
neuroimaging data of the real world.

We assembled contributions focusing on recent developments in CA and neuroimaging 
through Bayesian estimation and inference, in terms of both methodologies and 
applications. It is anticipated that the articles in this Research Topic will provide a 
greater insight into the field of Bayesian imaging analysis.
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Editorial on the Research Topic

Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods

and Applications

This e-book brings together a total of nine studies focusing on imaging-based Bayesian estimation
and computation. Computational tools were developed for various clinical purposes, including
white matter (WM) lesion segmentation, statistical shape analysis, fiber tracking, anatomy
coding, disease status and pathology detection and prediction, as well as functional connectivity
analysis. Most studies focused on MRI whereas two analyzed respectively, OCT and PET. The
investigations included a variety of populations, including healthy normal and patients with
Multiple Sclerosis (MS), glaucoma, Alzheimer’s disease (AD), Ataxia, primary progressive aphasia
(PPA), Huntington’s disease (HD), temporal lobe epilepsy (TLE), and Parkinson’s disease (PD).

Jain et al. proposed a pipeline for segmenting two time point WM lesions in a joint
expectation-maximization (EM) framework. The pipeline utilized two-modality MR images (a 3D
T1-weighted image and a 3D FLAIR image). It modeled the lesion evolution between the two time
points using a Gaussianmixturemodel and conducted simultaneous tissue and lesion segmentation
in images from both time points. The model was optimized using a joint EM algorithm. The
proposed pipeline was validated on two datasets, respectively involving 12 and 10 patients withMS.

Lee et al. conducted statistical shape analysis of the retinal nerve fiber layer (RNFL) and
choroid in the framework of computational anatomy (CA), with OCT being used. A novel
registration technique, namely functional shapes (fshape), was employed to match two retinas and
to generate the mean of multiple retinas. In fshape, a diffeomorphism was obtained by a joint
optimization of the surface geometry (the retinal surface) and functional signals mapped onto
the surface (the retinal layer thickness). Point-wise analyses and visualizations were conducted
using the fshape-derived diffeomorphisms. Using this technique, the authors successfully examined
age-related and glaucoma-related spatial RNFL thickness patterns in 38 participants.

Dong et al. presented a method for fiber tracking in the Bayesian setting with geometric
shape priors. The fiber tracts between regions of interest (ROIs) were initialized as Euclidean
curves and then iteratively updated via deformations using gradients of a posterior energy.
Estimations were performed using an energy function involving three components: the
likelihood, the prior knowledge on the geometric shapes of fibers, and a roughness penalty
term. The prior on the geometric shapes relied on atlas-based statistical shape models of
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fiber curves between ROIs. The proposed tractography
methodology was evaluated on both simulated 2D data and
30 real 3D data from the Human Connectome Project (HCP).

Tward and Miller invented a strategy for anatomy coding
using a Bayesian prior model. The entropy of an anatomy of
interest was quantified as a function of code rate (number
of bits). In this setting, the authors studied the shape of 12
subcortical structures of the human brain through diffeomorphic
transformations relating each of them to a population-averaging
and structure-specific template. A multivariate Gaussian prior
model was trained using 650 MRI data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). The authors found
that at 1mm all subcortical structures can be described with
<35 bits, and at 1.5mm all structures can be described
with <12 bits.

Faria et al. explored the effectiveness of using MRI-based
whole brain segmentations to extract key anatomical phenotypes
for characterizing four neurodegenerative diseases (Ataxia, n
= 16; HD, n = 52; AD, n = 66; and PPA, n = 50),
all inducing brain atrophy. Homogeneous clinically-relevant
phenotypes were successfully clustered. Using the structural
quantification and simple linear classifiers, the authors were able
to detect the four diseases with satisfactory accuracies. Moreover,
the anatomical features automatically delivered by the classifiers
agreed with the patterns of the disease pathologies.

Chiang et al. developed an integrative Bayesian prediction
model to identify a brain’s pathological status through a selection
of fluoro-deoxyglucose PET imaging biomarkers. The proposed
model was tested on 19 patients with TLE who subsequently
underwent anterior temporal lobe resection. The proposedmodel
successfully identified patient subgroups characterized by latent
pathologies that associate differentially to clinical outcomes. It
also yielded imaging biomarkers that describe the pathological
states of the subjects. The proposedmethod was shown to achieve
good accuracy in predicting post-surgical seizure recurrence.

Seiler and Holmes analyzed functional connectivity using two
novel heteroscedasticity covariance models. The first model was
low-dimensional, scaling linearly in the total number of brain
parcellations. And the second model scaled quadratically. Both
models were applied to the functional-resting fMRI data of 820
subjects from HCP, comparing connectivity between short and
conventional sleepers. Stronger functional connectivity in short
than conventional sleepers were found in brain regions that are
consistent with previous findings.

Xue et al. proposed a Bayesian hierarchical model to
predict disease status by incorporating information from
both functional and structural brain imaging scans. Posterior
probabilities were used to perform prediction, with the parameter
estimations conducted on samples drawn from the joint posterior
distribution using Markov Chain Monte Carlo methods.

Predictions were conducted at both whole-brain and voxel levels,
with the disease-related brain regions identified from the voxel-
level prediction results. The proposed model was applied to a
PD study, with key regions contributing to accurate prediction
having been identified.

Tang et al. presented a fully-automated pipeline for generating
subcortical and ventricular shapes from brain MR images.
The proposed pipeline consisted of three key components:
(1) automated structure segmentation; (2) study-specific shape
template creation; (3) deformation-based shape filtering. The
proposed pipeline was validated on two HD datasets, respectively
involving 16 and 1,445 MRI scans. Another independent dataset,
consisting of 15 atlas images and 20 testing images, was also used
to quantitatively evaluate the proposed pipeline. High accuracy
has been observed.

Together, these studies provide evidence for the power
of Bayesian estimation theorem in imaging analysis. This e-
book contains both methodology developments and scientific
applications, with several imaging techniques having been
involved (MRI, PET, and OCT). Three papers specifically lie in
the CA framework, focusing on statistical shape analysis (Lee
et al., Tward and Miller, and Tang et al.). These nine studies
provide tools and examples for imaging-based computational
analyses addressing various clinical questions and advances
future research in this field.
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Two Time Point MS Lesion
Segmentation in Brain MRI: An
Expectation-Maximization
Framework
Saurabh Jain 1*, Annemie Ribbens 1, Diana M. Sima 1, 2, Melissa Cambron 3,

Jacques De Keyser 3, 4, Chenyu Wang 5, Michael H. Barnett 5, Sabine Van Huffel 2, 7,

Frederik Maes 6 and Dirk Smeets 1, 8

1 icometrix, Leuven, Belgium, 2 STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department

of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium, 3Department of Neurology, Universitair Ziekenhuis Brussel,

Vrije Universiteit Brussel (VUB), Brussel, Belgium, 4Department of Neurology, University Medical Center Groningen (UMCG),

Groningen, Netherlands, 5 Sydney Neuroimaging Analysis Centre, Brain and Mind Centre, University of Sydney, Sydney,

NSW, Australia, 6Medical Image Computing, Processing Speech and Images (PSI), Department of Electrical Engineering

(ESAT), KU Leuven, Leuven, Belgium, 7 Imec, Leuven, Belgium, 8BioImaging Lab, Universiteit Antwerpen, Antwerp, Belgium

Purpose: Lesion volume is a meaningful measure in multiple sclerosis (MS) prognosis.

Manual lesion segmentation for computing volume in a single or multiple time points is

time consuming and suffers from intra and inter-observer variability.

Methods: In this paper, we present MSmetrix-long: a joint expectation-maximization

(EM) framework for two time point white matter (WM) lesion segmentation. MSmetrix-long

takes as input a 3D T1-weighted and a 3D FLAIR MR image and segments lesions in

three steps: (1) cross-sectional lesion segmentation of the two time points; (2) creation

of difference image, which is used to model the lesion evolution; (3) a joint EM lesion

segmentation framework that uses output of step (1) and step (2) to provide the final

lesion segmentation. The accuracy (Dice score) and reproducibility (absolute lesion

volume difference) of MSmetrix-long is evaluated using two datasets.

Results: On the first dataset, the median Dice score between MSmetrix-long and expert

lesion segmentation was 0.63 and the Pearson correlation coefficient (PCC) was equal

to 0.96. On the second dataset, the median absolute volume difference was 0.11 ml.

Conclusions: MSmetrix-long is accurate and consistent in segmenting MS lesions.

Also, MSmetrix-long compares favorably with the publicly available longitudinal MS lesion

segmentation algorithm of Lesion Segmentation Toolbox.

Keywords: MSmetrix, multiple sclerosis, longitudinal lesion segmentation, expectation-maximization, MRI

1. INTRODUCTION

Accurate and reliable lesion segmentation based on brain MRI scans is valuable for the diagnosis
and monitoring of disease activity in patients with Multiple Sclerosis (MS) (Blystad et al., 2016;
Deeks, 2016). The availability of longitudinal MRI data permits an analysis of lesion evolution
over time, a potential biomarker of disease progression and treatment efficacy. Figure 1 shows
bias corrected FLAIR images of a MS subject scanned twice with an interval of approximately
1 year, along with the expert lesion segmentation followed by the lesion evolution, i.e., the new,

6
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FIGURE 1 | Bias corrected FLAIR images (A,E) followed by super-imposed lesion segmentations from: (B,F) the expert, (C) disappearing lesion, (D) shrinking

lesion, (G) new lesion, and (H) enlarging lesion. The first row corresponds to time point 1 and the second row corresponds to time point 2.

disappearing, enlarging, and shrinking lesions. Although expert
manual delineation of lesions is considered as the gold standard,
it is time consuming and often suffers from intra and inter
observer variability (Erbayat Altay et al., 2013). To alleviate
this problem, several automatic methods have been proposed
in the literature to segment MS lesions. Interestingly, the vast
majority of automatic methods are based on a single time point
(cross-sectional) and relatively few methods take into account
multiple time points (longitudinal) (Llado et al., 2012; Garcia-
Lorenzo et al., 2013). Executing a cross-sectional method for each
time point would indeed produce the longitudinal measures of
interest, but such measures are less reliable as each time point
is processed independently. Longitudinal methods incorporate
both spatial and temporal information and are expected to be
more reliable. Based on the underlying approach, longitudinal
methods could be categorized in three different groups: change
detection (Gerig et al., 2000; Welti et al., 2001; Prima et al.,
2002; Rey et al., 2002; Bosc et al., 2003; Elliott et al., 2013), 4D
connectivity (Metcalf et al., 1992; Bernardis et al., 2013) and
outlier detection (Solomon and Sood, 2004; Ait-Ali et al., 2005) in
multiple time points. Pre-processing of input MR images in these
three groups is generally performed and consists of registration to
a reference image or a common space, skull stripping, bias field
correction and intensity normalization.

Change detection methods primarily aim to detect MS activity
by statistical analysis of image features or by measuring local
volume variation. Statistical analysis can be performed in an
unsupervised or supervised manner. Unsupervised approaches
detect significant changes in the intensities between consecutive
scans by either analysing the corresponding patches of two
time points (Bosc et al., 2003), or performing clustering on

the extracted spatial and temporal features from longitudinal
images (Gerig et al., 2000; Welti et al., 2001; Prima et al.,
2002). The main drawback with unsupervised approaches is that
they assume perfect registration and intensity normalization.
Supervised approaches learn the desired change from a training
dataset; for instance, in Elliott et al. (2013), a random forest
discriminative classifier was trained to learn relevant features
(intensity, size, and contextual information) related to new
lesions and then use these features to segment them. The main
drawback with this approach is that it often requires that the
training dataset is large enough in order to capture all the
distinctive features of the lesions to be segmented. To avoid the
need for extracting image features, changes between consecutive
images could be directly detected by measuring local volume
variations. To this end, a Jacobian operator could be applied to
the local deformation field obtained after non-rigid registration
between the two time points. Although this approach has proven
to be invariant to registration errors, it has given poor results for
lesion segmentation (Rey et al., 2002).

Four-dimensional connectivity methods use voxel association
in space and time to simultaneously segment and track lesion
evolution. For example, Metcalf et al. (1992) segments the lesions
in two time points by clustering voxels that are both spatially
and temporally adjacent to each other. The main disadvantage
of this approach is that it often results in substantial false
lesion segmentation. A more advanced method from the same
family is based on spectral graph partitioning Bernardis et al.
(2013). It constructs a 3D graph in which spatial pairwise
affinities characterize lesions and background, and temporal
affinities between adjacent time points represent lesion evolution
direction. This graph is segmented into lesions and non-lesions
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via spectral clustering by maximizing the force within-group
attraction and between-group repulsion. The drawback of this
approach is that it cannot discriminate between consistent
artifacts and lesions.

Outlier detection methods are based on the fact that MS
lesions are hyper-intense on T2-weighted and fluid-attenuated
inversion recovery (FLAIR) brain MRI scans and thus could
be detected as an outlier to normal tissue class intensities
distribution. For example, a joint expectation-maximization
(EM) based approach such as in Ait-Ali et al. (2005) models the
healthy brain tissue classes across the time points as a Gaussian
mixture model (GMM) using a 4D (3D + time) intensity
histogram. The parameters of the model are optimized via a
modified version of the EM algorithm referred to as STREAM.
After convergence, the lesions are extracted as outliers to
healthy tissue classes using Mahalanobis distance and some prior
information. In this approach the lesion segmentation is largely
dependent on the choice of the Mahalanobis distance parameter
and does not target lesion evolution, which is clinically relevant
(Ait-Ali et al., 2005). Another approach using outlier detection
is based on the hidden Markov model (HMM) technique as in
Solomon and Sood (2004). Initially, EM segments the first time
point into different tissue classes including lesions, which are
then manually corrected. Subsequently, using a lesion growth
transition model and outlier detection sensor model, lesions
are segmented in the following time points. The transition
model enforces consistent lesion segmentation; however, it was
validated only on simulations with exponential lesion growth.

In this paper, we present MSmetrix-long: an iterative white
matter (WM) lesion segmentation method based on a joint
EM framework that takes as input clinically acquired 3D T1-
weighted and 3D FLAIR images of two time points. The
proposed framework is fully automated, unsupervised and
models the lesion evolution as GMM between two time points,
thereby simultaneously segmenting new, enlarging, disappearing,
shrinking and static lesions. The method is validated for
accuracy and reproducibility on two different datasets that are
representative for clinically feasible acquisition protocols.

2. METHODS

The MSmetrix-long pipeline analyses the MS lesions evolution
between two time points based on 3D T1-weighted and 3D
FLAIR image acquired at each time point. The pipeline has four
steps: (1) Cross-sectional analysis, that segments the individual
time points into gray matter (GM), WM, cerebro-spinal fluid
(CSF), and lesions, (2) FLAIR based difference image, which is
created by subtracting the FLAIR images of both time points after
bias correction, co-registration and intensity normalization, (3)
Joint lesion segmentation, that aims to improve the individual
time point lesion segmentation using the other time point
information on tissue and lesion segmentation (initialized using
step-1 results) and difference image obtained from step-2, (4) a
pruning step, that refines the lesion segmentation obtained in
the step-3 to eliminate non-lesions candidates. Figure 2 presents
an illustrative explanation of these steps. Steps (3) and (4) are
performed sequentially in both directions, by using one time

point as reference and then the other. These steps are also
iterated, by changing the input lesion segmentation used as
prior. Only for the first iteration, the lesion segmentations priors
come from the cross-sectional pipeline in step-3, while from the
second iteration onwards lesion segmentations from previous
iteration are used to initialize the lesion priors for the current
iteration. The convergence of our method is decided when the
relative lesion segmentation difference between the current and
previous iteration is negligible. It takes generally three iterations
for the algorithm to converge. The following sections explain the
different steps in more detail.

2.1. Cross-Sectional Analysis
Image segmentation is performed independently for each time
point using the cross-sectional pipeline referred to as MSmetrix-
cross (Jain et al., 2015). The cross-sectional method iteratively
segments the T1-weighted image into GM, WM, and CSF,
segments the WM lesions on the FLAIR image as an outlier
to normal brain using Mahalanobis distance, and performs
lesion filling in the T1-weighted image to improve tissue
segmentation at next iteration. After convergence, segmentations
of WM, GM, CSF and lesions are created. In addition, bias
corrected T1-weighted and FLAIR images are also produced. The
segmentation tasks of the MSmetrix-cross are optimized using
an EM algorithm (Van Leemput et al., 1999) as implemented in
NiftySeg (Cardoso, 2012).

2.2. FLAIR Based Difference Image
A FLAIR based difference image is created by image co-
registration and intensity normalization. Image co-registration
is performed using affine registration, which comprises a rigid
registration based on the whole T1-weighted image, followed by
a skull based affine registration to avoid small scaling differences,
and a final whole brain rigid registration (Smeets et al., 2016).
The rigid registration and skull based affine registration use an
inverse consistent registration algorithm (Modat et al., 2010).
Subsequently, the GM, WM, CSF, lesion segmentation and the
bias corrected FLAIR images obtained from the cross-sectional
analysis are propagated using the final affine transformation.
The matched bias corrected FLAIR images are then corrected
for differential bias field as described in Lewis and Fox (2004).
Subsequently, the differential bias field corrected images are
intensity normalized using a cumulative histogram matching
technique Castleman (1995) with the image of time point 1 as
reference. A FLAIR based difference image is now created in time
point 1 space. To avoid bias toward a specific time point, a second
difference image is created, using time point 2 space as reference.

2.3. Joint Lesion Segmentation
The joint lesion segmentation model aims at simultaneous tissue
class label segmentation of the images from both time points (see
the blocks denoted by “Joint lesion segmentation” in Figure 2).
The model is optimized using a joint EM algorithm. In this
section we present the model formulation, for more details please
see Supplementary Material. We now describe the notations,
variables and assumptions used, followed by the model definition
and its optimization using joint EM.
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FIGURE 2 | An illustrative example explaining the different steps of our method. The pink arrows in the longitudinal lesion segmentation at time point 1 show

the recovered lesions using the second time point lesion segmentation and difference image information.

2.3.1. Notations, Variables, and Model Assumptions
We assume that image 1, image 2 and difference image are co-
registered and have the same voxel size. Additionally, image 1
and in image 2 have identical tissue classes. We denote the set
of image intensities for image 1 as I1 and similarly for image 2
as I2 and for the directional difference image as D. k(1) and k(2)

denote tissue class indices for image 1 and image 2, respectively.
The tissue class labels in image 1 and in image 2 are denoted by
L1 and L2 respectively.

We now specify our model assumptions. A Gaussian mixture
model is used on the image intensities of each time point where
a Gaussian model is used for each tissue class. Let θ1 denote the
Gaussian mixture model parameters for the intensities of image
1 and P(I1|L1, θ1) denotes the probabilistic model for image 1.
Analogously, the probabilistic model for image 2 is denoted by
P(I2|L2, θ2).

We make the underlying assumption that the “difference
image” might be independently generated as an image that
captures anatomical changes including new lesions or atrophy.
The image created by subtracting image 1 from image 2 or vice-
versa (after intensity normalization) is one such instance of the
difference image. The intensity model of image 1 and image
2 can therefore be reinforced by including a tissue transition
model defined on the difference image. As our method focuses
on two time point WM lesion segmentation, we only model
the transformations between WM and lesions. We assume that
the difference image has three different transformations: “static,”

“growth,” and “shrinkage.” The static transformation class is
defined as a set of voxels in the difference image that are
either labeled as WM in both images or lesions. The growth
transformation class (describing the new and enlarging lesions)
is defined as a set of voxels in the difference image that are
labeled as WM in image 1 and lesion in image 2. The shrinkage
transformation class (describing the disappearing and shrinking
lesions) is defined as a set of voxels in the difference image that
are labeled as lesion in image 1 and WM in image 2. For all
other possible tissue transformations from image 1 and image 2
a uniform distribution is assumed. Figure 3 shows an illustrative
example of the difference image and the histograms of its classes
with corresponding Gaussian fitting. Under these assumptions,
a Gaussian mixture model for the difference image intensities is
used where each transformation class (static, growth, shrinkage)
ismodeled as Gaussian. The probabilisticmodel for the difference
image is denoted by P(D|L1, L2, ζ ), where ζ stands for the
Gaussian mixture model parameters for the difference image
intensities.

Finally, we assume that we have no prior knowledge on
the relationship of the tissue class labels between both images.
Therefore, we define the prior probabilities independently
for each image. Often these prior probabilities are given
by a probabilistic atlas. However, our cross-sectional
model provided us with more specific knowledge and
hence, we use the probabilistic cross-sectional tissue class
segmentations. The prior probabilities on tissue class labels
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FIGURE 3 | (A) Normalized FLAIR image of time point 1, (B) FLAIR image of time point 2, (C) difference image (A,B), (D) histograms of difference image classes with

corresponding Gaussian fitting, normalized per class. Note the artifactual difference values at the brain contour (due to subtle differences in brain mask extraction) are

excluded by only including WM voxels in the analysis.

for image 1 and image 2 are denoted by P(L1) and P(L2),
respectively.

2.3.2. The Model
Under these assumptions, the joint probabilistic model is
formulated as follows:

P(I1, I2,D, L1, L2, γ ) = P(I1|L1, θ1). P(I2|L2, θ2).

P(D|L1, L2, ζ ). P(L1). P(L2) (1)

where γ = {θ1, θ2, ζ }. Our model is optimized by the maximum
a posteriori (MAP) problem shown in Equation (2). Since the
knowledge of tissue class labels helps in finding the model
parameters and vice-versa, we reformulate our MAP problem as
presented in Equation (3).

γ̂MAP = argmax
γ

ln P(γ |I1, I2,D) = argmax
γ

ln P(I1, I2,D, γ ) (2)

= argmax
γ

ln
∑

L1 ,L2

P(I1, I2,D, L1, L2, γ ) (3)

≥ argmax
γ

∑

L1 ,L2

P(L1, L2|I1, I2,D, γ ).

ln
P(I1, I2,D, L1, L2, γ )

P(L1, L2|I1, I2,D, γ )
(4)

Finally, a lower bound of our model is derived using Jensen’s
inequality and optimized by the EM algorithm. The Q-function,
which is the log likelihood function whose expected value is
computed in the E-step can now be written as:

Q(γ |γ ) = EL1 ,L2|I1,I2 ,D,γ [ ln P(I1, I2,D, L1, L2, γ )] (5)

with the joint posterior distribution P(L1, L2|I1, I2,D, γ ). The
sum over all possible tissue classes k(2) of the joint posterior
distribution gives us the soft segmentation of the tissue class at
time point 1. Similarly, the sum over all possible tissue classes k(1)

of the joint posterior distribution gives us the soft segmentation
of the tissue class at time point 2.

In the M-step, a new set of values for model parameter γ

is computed by maximizing the Q-function (see Supplementary
Material for closed form solutions).

2.4. Pruning
The soft lesion segmentations obtained from the E-step of
the joint EM algorithm are pruned to eliminate non-lesions
(such as partial volume effects, artifacts) that share intensities
and locations with the potential lesions. Thereto, a priori
information on the appearance, location and volume of lesions
is incorporated: (1) the lesion intensities should be hyper-intense
compared to the WM intensities on bias field corrected FLAIR
image, (2) the lesions are in the WM region, and (3) the lesion

Frontiers in Neuroscience | www.frontiersin.org December 2016 | Volume 10 | Article 57610

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Jain et al. Longitudinal MS Lesion Segmentation

needs to have a minimum volume of 0.005 ml (empirically
determined) to avoid spurious lesion detection. The hyper-
intensity is defined as the mean plus two times the standard
deviation of WM intensities. The intensities and location of
WM region are computed using the WM segmentation from
the MSmetrix-cross pipeline. In addition, a priori defined binary
mask (defined in the MNI space and consisting of the cerebral
cortex and WM in-between the ventricles) is warped to the
subject space to remove lesion candidates from these regions
that are likely to result in a false lesion segmentation. After
the pruning, the soft lesion segmentations are binarized using
a threshold of 0.9 (empirically determined) on the posterior
probabilities.

2.5. Performance Tests
2.5.1. Comparison with State-of-the-Art Methods
We compare MSmetrix-long pipeline with the MSmetrix-cross
pipeline to know the gain over the cross-sectional method.
Furthermore, we also compare against the longitudinal pipeline
of the Lesion Segmentation Toolbox (LST) software package
(LST1), version 2.0.12, which is implemented in SPM12 (SPM2).
The longitudinal pipeline of LST, which is referred to as LST-long
in this paper, performs individual time point lesion segmentation
using the lesion growth algorithm described in Schmidt et al.
(2012). The obtained lesion segmentation maps of different time
points are coregistered to the baseline scan and are corrected
by comparing the relative differences of FLAIR intensities in all
lesion maps to produce the final lesion segmentation at each time
point (see LST documentation, LST1).

For comparison, all three methods were executed on the same
datasets and default parameter settings were used. Thus, no
parameter tuning was performed at dataset or subject level.

2.5.2. Data
Dataset 1 contains scans from 12 relapsing remitting MS patients
on a GE 3T scanner (Discovery MR750), each scanned twice
at an interval of approximately 1 year. Therefore, the sample
size of dataset 1 equals 24. Each time point contained two a 3D
sequences: a CUBE FLAIR (TR: 8000 ms, TE: 165 ms, TI: 2179

1www.statistical-modelling.de/lst.html
2http://www.fil.ion.ucl.ac.uk/spm/software/spm12

ms) and a 3D T1-weighted IR-FSPGR sequence (TR 7.2 ms, TE
450 ms, TI 2.8 ms). Both 3D sequences have voxel resolution
close to 1 mm3. Expert WM lesion segmentations were created
on the baseline FLAIR scan by the experienced neuro-imaging
analyst using JIM software tool (JIM3), version 6.0. For follow-
up scans, baseline lesion segmentation was overlaid on rigidly
registered follow-up scan at the beginning, and then the lesion
segmentation was adapted according to lesion activities. This
study was reviewed and conducted within the guidelines set
out in the National Statement on Ethical Conduct in Human
Research (2007) in Australia, and approved by University of
Sydney Human Research Ethics Committee. All subjects gave
written informed consent.

The second dataset, dataset 2 contains scans from 10
MS patients scanned twice, with re-positioning (time interval
between two scans is 5∼10 min), on each of three different
3T scanners from GE (Discovery MR750w), SIEMENS (Skyra)
and PHILIPS (Achieva). Therefore, the sample size of dataset
2 equals 60. The protocol contained two 3D sequences: T1-
weighted and FLAIR, and their details are described in Table 1.
For this dataset, no expert segmentations were available. This
study was carried out in accordance with the recommendations
of the “International Conference on Harmonization of Good
Clinical Practice (ICH-GCP),” and the applicable Belgian and
Dutch legislation. The study was approved by the UZ Brussels
ethical committee. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

2.5.3. Accuracy and Reproducibility Assessment
The agreement between the expert segmentation and automatic
methods on dataset 1 is evaluated at three levels: voxel-by-voxel,
lesion-wise and volumetric. Voxel-by-voxel metric includes the
Dice similarity index which is defined as the ratio of total
number of lesion voxels where both the expert reference and
the automatic segmentation agree (true positives) to the mean
number of voxels labeled as lesion by the two methods. The
lesion-wise metrics include lesion-wise true positive rate (LTPR),
false positive rate, F1 score, absolute lesion change difference and
Pearson correlation coefficient (PCC). LTPR is defined as the

3http://www.xinapse.com

TABLE 1 | Dataset-2 sequences description for all three scanners.

Sequence TR (ms) TE (ms) TI (ms) FOV (mm2) Voxel size (mm3) No. of slices (sagittal)

GE

3D T1-weighted FSPGR 7.32 3.14 NA 220 × 220 0.43 × 0.43 × 0.50 328

Fat saturated 3D FLAIR 9500 135.78 2428 240 × 240 0.47 × 0.47 × 0.70 232

SIEMENS

3D T1-weighted MPRAGE 2300 2.29 NA 240 × 240 0.94 × 0.94 × 0.94 176

Fat saturated 3D FLAIR 5000 387 1800 230 × 230 0.45 × 0.45 × 0.90 192

PHILIPS

3D T1-weighted FSPGR 4.93 2.3 NA 230 × 230 0.53 × 0.53 × 0.50 310

Fat saturated 3D FLAIR 4800 276 1650 240 × 240 1.04 × 1.04 × 0.56 321

NA, Not available.
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ratio of the total number of lesions where the expert reference
and the automatic segmentation intersect to the total number
of lesions in the expert reference segmentation. Lesion-wise false
positive rate (LFPR) is defined as the ratio of the total number of
lesions that are present only in the automatic segmentation to the
total number of lesions in the automatic segmentation. Lesion-
wise F1 score is defined as the harmonicmean of LTPR and LFPR.
Absolute lesion-wise change difference is defined as the absolute
difference between the overall lesion-wise change (number of
new lesions minus number of disappearing lesions) in the expert
lesion segmentation and the automatic segmentation. In this
paper, we consider new, disappearing, enlarging and shirking
lesions that have size more than 20 voxels and at least one slice
which encompasses the lesion presents a minimum of 5 lesion
voxels.

Volumetric metrics measure the total lesion volume
agreement and consist of the PCC and the absolute volume
difference. The absolute volume difference is computed as the
absolute difference between the total volume reported by the
expert reference segmentation and the corresponding value
derived from the automatic method.

The reproducibility of the method is evaluated on dataset 2
by the Dice similarity index of the lesion segmentations at both
times points. Moreover, the estimated number of new lesions
and the absolute total lesion volume difference is also calculated
between time points, which are both expected to be zero in this
test-retest scenario.

To determine if there is a statistical difference between
MSmetrix-long and LST-long and between MSmetrix-cross
and MSmetrix-long methods’ performance, two tailed paired
Wilcoxon signed-rank test is performed.

3. RESULTS

3.1. Accuracy Results on Dataset 1
Figure 4 shows a representative example of lesion segmentation
obtained by MSmetrix-cross, MSmetrix-long and LST-long on a
patient from dataset 1. By comparing against expert delineations,
it can be observed that MSmetrix-long has improved in accuracy
over MSmetrix-cross and that LST-long has missed lesions.

The volumetric correlation of MSmetrix-long and LST-long to
the expert reference segmentation can be visualized in Figure 5.
MSmetrix-long has a better correlation (PCC= 0.96) with expert
reference segmentation compared to LST-long (PCC= 0.88).

Table 2 summarizes the cross-sectional lesion segmentation
performance of MSmetrix-cross, MSmetrix-long and LST-long
on dataset 1 (n= 24) in a quantitative way. MSmetrix-long has
improved over MSmetrix-cross in the median Dice, F1 score
and LFPR. Compared to LST-long, MSmetrix-long has a higher
median Dice, F1 score, LTPR, and PCC, together with lower
LFPR and absolute lesion volume difference.

Table 3 summarizes the lesion-wise change accuracy
performance of MSmetrix-cross, MSmetrix-long and LST-long
on dataset 1 in a quantitative way. In case of new lesions,
MSmetrix-long has improved over MSmetrix-cross in the
median F1 score and LFPR. Compared to LST-long, MSmetrix-
long has a higher median F1 score and LTPR. In case of enlarging

lesions, MSmetrix-long has improved over MSmetrix-cross in
the median LFPR, with marginally better F1 score. Compared to
LST-long, MSmetrix-long has a higher median F1 score, LTPR,
and LFPR. When new and enlarging lesions are combined,
MSmetrix-long has better correlation (PCC = 0.77) with the
expert segmentations compared to MSmetrix-cross (PCC =

0.63) and LST-long (PCC = 0.53). In case of absolute lesion-
wise change difference, MSmetrix-long has marginally better
performance over MSmetrix-cross and LST-long, however, with
better correlation with the lesion-wise change difference of the
expert segmentations (PCC= 0.84) compared toMSmetrix-cross
(0.65) and LST-long (0.72).

3.2. Reproducibility Results on Dataset 2
Figure 6 shows an example of lesion segmentation obtained
by MSmetrix-cross, MSmetrix-long and LST-long on a patient
from dataset 2 (n= 60). Both MSmetrix-long and LST-long are
more consistent in lesion segmentation compared to MSmetrix-
cross. Compared to LST-long, MSmetrix-long also shows better
reproducibility in segmenting small lesions. Quantitatively, LST-
long has the best median Dice with zero error in detecting new
lesions and absolute volume difference between both time points.
MSmetrix-long has improved in the median Dice, with median
error in detecting new lesions and absolute volume difference
over MSmetrix-cross. The reproducibility of LST-long is highest
because it segments the most certain hyper-intense lesions in
both time points at the expense of missing substantial amount
of less hyper-intense lesions as shown in Figure 6.

4. DISCUSSION AND CONCLUSIONS

Accurate and consistent lesion segmentation is very important
in monitoring the MS disease progression. As manual lesion
segmentation is time consuming and suffers from inter- and
intra-rater variability, automated methods have the advantage
of being fast and consistent. The vast majority of automatic
methods are cross-sectional in nature and the average accuracy
(Dice) of these methods is sufficiently high, however, these cross-
sectional methods seldom report results on the lesion evolution
accuracy and this hinders a fair comparison of our method
against them. Moreover, another factor to consider is whether
the segmentation method is supervised or unsupervised. We
compare our unsupervised method with other unsupervised
methods only because supervised methods often require a
representative training dataset, including expert segmentation,
in order to build a model that can be used on new patients
for lesion segmentation. This training dataset is very difficult
to build because MS lesions have all possible shapes, intensities
and are heterogeneously distributed in the WM. Moreover, the
new image to be segmented should be well represented in the
training dataset which is not always possible. Two well-known
publicly available unsupervised MS lesion segmentation tools
are Lesion-TOADS (Shiee et al., 2010) and LST. We choose
LST because of two reasons: (1) in a previous paper (Jain
et al., 2015), we have shown that our cross-sectional method
(MSmetrix-cross) had a better performance compared to Lesion-
TOADS in terms of accuracy and reproducibility. Since in this
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FIGURE 4 | Bias corrected FLAIR image (A) followed by super-imposed lesion segmentation from: (B) expert segmentation, (C) MSmetrix-cross (version 1.4), (D)

MSmetrix-long, and (E) LST-long. The first row corresponds to the lesion segmentation of time point 1 and the second row corresponds to the lesion segmentation of

time point 2. Pink arrows specify places where MSmetrix-long has improved in accuracy over MSmetrix-cross and red arrows indicate regions where LST-long has

missed lesions.

FIGURE 5 | Scatter plot of total lesion volume (ml) for reference expert segmentation vs. (A) MSmetrix-long and (B) LST-long.

paper we also report results from our cross-sectional method, we
decided that the comparison with Lesion-TOADS is not required,
(2) only LST tool has a longitudinal MS lesion segmentation
pipeline. Thus it is logical to compare MSmetrix-long with LST-
long as both methods are unsupervised and longitudinal in
nature.

In this paper, MSmetrix-long pipeline combines both spatial
and temporal relationships of lesions for accurate and consistent

lesion segmentation. The spatial relationship is based on
Markov Random Field and is incorporated in MSmetrix-
cross. The temporal relationship is modeled in a joint lesion
segmentation, which uses difference image and cross-sectional
lesion segmentations of two time points. The difference image
models the growth and shrinkage of lesions and thus helps in
recovering those lesions that are missed by the cross-sectional
lesion segmentation. In addition, if a lesion is present in both
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TABLE 2 | Quantitative metrics (voxel-by-voxel, lesion and volumetric level) for measuring the cross-sectional accuracy of the automatic methods

MSmetrix-long, MSmetrix-cross and LST-long with respect to expert segmentations on dataset 1 (n=24).

Automatic method Dice F1 score LTPR LFPR Absolute volume difference (ml) PCC

MSmetrix-long 0.63 (0.49–0.68) 0.61 (0.54–0.63) 0.50 (0.43–0.59) 0.25 (0.20–0.37) 2.09 (1.77–3.18) 0.96

MSmetrix-cross 0.60 (0.46–0.66)** 0.56 (0.52–0.61)* 0.57 (0.52–0.65)** 0.48 (0.36–0.55)** 1.48 (0.81–2.59) 0.95

LST-long 0.60 (0.47–0.65)* 0.48 (0.37–0.53)** 0.42 (0.30–0.52)* 0.40 (0.30–0.47) 2.66 (1.52–4.84)* 0.88

Except PCC, all metrics are reported in median (first quartile–third quartile). LTPR, lesion-wise true positive rate; LFPR, lesion-wise false positive rate; PCC, Pearson correlation coefficient.

*Values significantly different from MSmetrix-long (paired Wilcoxon signed-rank test with p < 0.05 significance level).

**Values significantly different from MSmetrix-long (paired Wilcoxon signed-rank test with p < 0.01 significance level).

TABLE 3 | Lesion-wise quantitative metrics for measuring the lesion change accuracy of the automatic methods MSmetrix-long, MSmetrix-cross and

LST-long with respect to expert lesion segmentations changes on dataset 1.

New lesions Enlarging lesions New and

enlarging lesions

F1 score LTPR LFPR F1 score LTPR LFPR PCC

MSmetrix-long 0.42 (0-0.55) 0.33 (0–0.60) 0 (0–0.38) 0.69 (0.56–0.81) 0.62 (0.53–0.69) 0.16 (0–0.51) 0.77

MSmetrix-cross 0.20 (0.0–0.62) 0.33 (0–0.52) 0.50 (0.31–0.75) 0.68 (0.58–0.80) 0.59 (0.53–0.69) 0.24 (0.15–0.43) 0.63

LST-long 0 (0-0.43) 0 (0–0.29) 0 (0–0) 0.60 (0.51–0.69) 0.50 (0.35–0.60) 0.33 (0.15–0.51) 0.53

Absolute lesion-wise change difference

PCC

MSmetrix-long 1 (1-3.5) 0.84

MSmetrix-cross 1.5 (1–3.75) 0.65

LST-long 2 (1-3.5) 0.72

Except PCC, all metrics are reported in median (first quartile–third quartile). PCC, Pearson correlation coefficient. Here, the t-test is not performed, as the sample size is small (n = 12).

FIGURE 6 | Bias corrected FLAIR image (A) followed by super-imposed lesion segmentation from: (B) MSmetrix-cross (version 1.4), (C) MSmetrix-long, and (D)

LST-long. The first row corresponds to the lesion segmentation of time point 1 and the second row corresponds to the lesion segmentation of time point 2. Cyan

arrows show some false positives in MSmetrix-cross, which are absent in MSmetrix-long. Yellow arrows specify places where MSmetrix-long has consistently

segmented some small lesions and red arrows indicate regions where LST-long misses some potential lesions.
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time points but has been segmented in only one of the time point,
then the joint lesion segmentation facilitates the recovery of that
lesion at the other time point. Moreover, brain atrophy has also
minimal impact on the performance of MSmetrix-long because
(1) atrophy is generally small and global in nature (2) it occurs
near the CSF boundary and these transitions i.e. (CSF → GM
and CSF → WM) are excluded in the difference image GMM
model, (3) we tested global non-rigid registration in addition to
affine registration, i.e., non-rigid registration only on a coarse
level, to accommodate for the atrophy and we found out that
it has a minimal, but potentially negative impact on the final
lesion segmentation. Therefore, to gain computational efficiency
we excluded this global non-rigid registration from MSmetrix-
long pipeline. Furthermore, if the subject has been scanned more
than twice, MSmetrix-long can easily handle this by processing
consecutive time points in pairs.

Among the methods proposed in the literature for
longitudinal lesion segmentation, our approach has some
similarities to Elliott et al. (2013) and Ait-Ali et al. (2005), which
are also based on EM frameworks. In contrast with Elliott et al.
(2013), our method is unsupervised and can segment new,
enlarging, disappearing and shrinking lesions. As opposed to
Ait-Ali et al. (2005), our joint EM model takes cross-sectional
lesion segmentation as prior information on the lesion class in
both time points and processes each time point in its own space
to avoid bias in the lesion segmentation.

In order to evaluate the effect of the pruning step, we also
calculated the cross-sectional accuracy (Dice, LTPR and LFPR)
of MSmetrix-long after the joint lesion segmentation step. The
Dice, LTPR, and LFPR (reported in median (first quartile–
third quartile)) after the joint lesion segmentation step are 0.60
(0.45–0.65 ), 0.64 (0.54–0.69), and 0.81 (0.72–0.87) respectively.
Comparing these results with the the voxel-by-voxel accuracy
of MSmetrix-long after the pruning step (see Table 2), we
observe that the pruning step increases the overall Dice score by
decreasing the false positive rate at the expense of a decrease in
true positive rate.

In order to investigate the cause of low LTPR for cross-
sectional accuracy of MSmetrix-long compared to MSmetrix-
cross (see Table 2), we calculated the average LTPR for small
(0.003–0.01 ml), medium (0.01–0.05 ml) and large (>0.05 ml)
lesion volumes. The average LTPR for MSmetrix-long and
MSmetrix-cross for small lesions is 0.13 and 0.27 respectively,
followed by medium lesions 0.30 and 0.37 and large lesions 0.75
and 0.81. It can be seen that MSmetrix-long misses more small
and medium size lesions. The primary cause of missing these
lesions is that they are either iso-intense with GM intensities
(thus missed by intensity threshold mask used in the pruning
step) or they are removed by the binary false positive mask (used
in the pruning step). However, it is important to note that both
intensity thresholdmask and binary false positive mask play a key
role in reducing the false positives as described in the previous
paragraph.

One important aspect of MSmetrix-long is that its
performance is dependent on the cross-sectional lesion
segmentation. This suggests that if MSmetrix-cross has either
consistently missed a lesion, or segmented a non-lesion at

both time points, then it will be either missed or retained
by MSmetrix-long, respectively. As presented in the result
section, MSmetrix-long is more accurate and reproducible
than MSmetrix-cross. The increase in cross-sectional accuracy
(Dice, F1 score) and lesion change accuracy for new lesions
(F1 score) is due to the reduction in LFPR using the lesion
segmentation information from the other time point. For
enlarging lesions, a marginal increase in the median F1 score
is observed for MSmetrix-long due to larger differences in
the lesion segmentation boundary between the expert and
MSmetrix-long. MSmetrix-long has also slightly better absolute
lesion-wise change difference compared to MSmetrix-cross
primarily due to a reduction in LFPR. A modest decrease in the
absolute volume difference is due to the under-segmentation of
lesions by MSmetrix-long (Figure 5) and the elimination of a
few lesions that are close to the cerebral cortex. Interestingly,
a substantial LFPR in MSmetrix-cross suggests that the false
lesions compensate toward missed lesions volume resulting in a
lower absolute volume difference compared to MSmetrix-long.
The significant improvement in reproducibility (Dice, number
of new lesions and absolute volume difference) of MSmetrix-
long could also be explained by the benefit of using the lesion
segmentation of the other time point.

In comparison to LST-long, MSmetrix-long is more accurate
(Dice, F1 score) and slightly less reproducible. Cross-sectionally,
LST-long has higher absolute volume difference and LFPR;
lower LTPR and F1 score on dataset 1. The high absolute
volume difference of LST-long could be explained by the over-
segmentation of lesion boundaries. A high lesion-wise false
positive rate of LST-long could be explained by the segmentation
of FLAIR artifacts or cortical foldings as lesions. For the lesion
change accuracy, MSmetrix-long has superior performance for
all measures compared to LST-long. This could be explained by
the fact that LST-long segments the most hyper-intense lesions
and is thus very consistent (see Table 4), but misses many small
less hyper-intense lesions (Figures 4, 6).

In conclusion, we have presented MSmetrix-long: an iterative
two time pointWM lesion segmentation method based on a joint
EM framework using two time points. The proposed method
is unsupervised and can segment new, enlarging, disappearing,
shrinking and static lesions. We first analyse both time points

TABLE 4 | The Dice score, the number (Nr.) of new lesions and the

absolute volume difference (Abs. vol. diff.) between both time points for

measuring the accuracy of the automatic methods MSmetrix-long,

MSmetrix-cross and LST-long on dataset 2.

Dice Nr. of new les Abs. vol. diff. (ml)

MSmetrix-long 0.89 (0.85–0.91) 0 (0–1) 0.11 (0.03–0.32)

MSmetrix-cross 0.69 (0.56–0.73)** 3.5 (1–5)** 0.3 (0.17–0.54)*

LST-long 1 (1–1)** 0 (0–0)** 0 ( 0–0.01)**

All metrics are reported as median (first quartile–third quartile).

*Values significantly different from MSmetrix-long (paired Wilcoxon signed-rank test with

p < 0.05 significance level).

**Values significantly different from MSmetrix-long (paired Wilcoxon signed-rank test with

p < 0.01 significance level).
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separately followed by a joint lesion segmentation, which
models the lesion evolution as a Gaussian mixture model. The
accuracy and reproducibility of MSmetrix-long is compared with
MSmetrix-cross and the publicly available lesion segmentation
tool LST-long on two datasets that are representative for clinically
feasible acquisition protocols. MSmetrix-long has outperformed
MSmetrix-cross. Compared to LST-long, MSmetrix-long has
better accuracy and similar reproducibility.
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Optical coherence tomography provides high-resolution 3D imaging of the posterior

segment of the eye. However, quantitative morphological analysis, particularly relevant

in retinal degenerative diseases such as glaucoma, has been confined to simple

sectorization and averaging with limited spatial sensitivity for detection of clinical markers.

In this paper, we present point-wise analysis and visualization of the retinal nerve fiber

layer and choroid from cross-sectional data using functional shapes (fshape) registration.

The fshape framework matches two retinas, or generates a mean of multiple retinas, by

jointly optimizing the surface geometry and functional signals mapped on the surface.

We generated group-wise mean retinal nerve fiber layer and choroidal surfaces with the

respective layer thickness mapping and showed the difference by age (normal, younger

vs. older) and by disease (age-matched older, normal vs. glaucomatous) in the two layers,

along with a more conventional sector-based analysis for comparison. The fshape results

visualized the detailed spatial patterns of the differences between the age-matched

normal and glaucomatous retinal nerve fiber layers, with the glaucomatous layers most

significantly thinner in the inferior region close to Bruch’s membrane opening. Between

the young and older normal cases, choroid was shown to be significantly thinner in

the older subjects across all regions, but particularly in the nasal and inferior regions.

The results demonstrate a comprehensive and detailed analysis with visualization of

morphometric patterns by multiple factors.

Keywords: optical coherence tomography, computational anatomy, Bayesian estimation, retina, glaucoma, aging
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INTRODUCTION

Volumetric optical coherence tomography (OCT) has emerged as
a preferred diagnostic tool in ophthalmology for noninvasive, in-
vivo, micrometer-resolution imaging of the eye. Recent progress
in OCT imaging has allowed the acquisition of highly detailed
3D images from which morphometric measurements can be
derived. Optic nerve head measurements and the thickness of
the peri-papillary retinal layers have been used clinically to detect
and monitor glaucoma progression (Leung, 2014). While these
measurements are useful individually, a lack of clear spatial
references for biomarkers limits the spatial and anatomical
correspondence across multiple images. For example, in the
common sectoral layer thickness analysis of OCT scans, the peri-
papillary area is split into quadrants (superior, inferior, nasal, and
temporal) which are then further subdivided into circumferential
areas. This analysis relies on averaging over the local sectors
to reduce noise, and to mitigate potential inconsistency in
sectoral placement across individuals. Such a sectoral averaging
approach is limited by a minimum size of sectors to achieve
comparisons in the same vicinity in the different individuals.
Hence, the sectorization approach reduces the spatial sensitivity
of the measurements due to averaging over larger areas and could
potentially impact clinical assessment. This motivates the need
to develop tools that can generate measurements on a point-
to-point basis, eliminating the need to average data in local
regions.

Most previous studies involving registration of OCT images
have averaged multiple serially acquired images for noise
reduction and motion correction (Jørgensen et al., 2007; Young
et al., 2011), or utilized rigid alignment of time-course images
(Niemeijer et al., 2009). Relatively little attention has been given
to registration of cross-sectional OCT data. Chen et al. (2014)
performed intensity-based non-rigid registration of macular
OCT scans by a combination of rigid alignment of foveae,
and A-scan-wise affine and non-rigid registration using radial
basis functions for refined alignment of the retinal layers (Chen
et al., 2014). A more recent work (Anthony et al., 2016) by the
same group applies this registration technique to perform voxel
based morphometry in macular OCT of healthy controls and

multiple sclerosis patients. Our group’s approach has focused
on retinal surface-based registrations and atlas generation. In
(Gibson et al., 2010), 3D optic cup surfaces were registered to
a single template surface, first by rigid and nonrigid intensity-
based volumetric registration, followed by spherical mapping and
spherical demons registration of the surfaces. This work was
further expanded upon in Lee et al. (2015) which represented the
retinal surfaces utilizing the framework ofmathematical currents.
Two surfaces were brought into close proximity by minimizing
a functional of reproducing kernel Hilbert space norm-based
energy and a dissimilarity term, then registered by spherical
demons to establish homology. More recently, we introduced
the functional shape (fshape), framework (Charlier et al., 2015;
Lee et al., 2017). In this framework, the retinal surface (shape or
geometry) and any value mapped on the surface, for example,
retinal layer thickness (function or signal), are considered
together as a single mathematical object called fshape. One fshape

can be matched to another or the mean of multiple fshapes can
be computed by joint optimization of the energies associated to
varifold-based dissimilarity measures of geometry and function.
For group analyses, the algorithm can generate population
atlases and establish homology across the database, facilitating
comparison ofmorphometric measurements in localized regions.
Moreover, fshape mean computation or matching can be
performed with flexible constructions of fshapes that can include
multiple geometric shapes and function parameters; this allows
the building of specific sets of geometry and function features to
compare across multiple groups.

In this paper, we demonstrate the use of this algorithm for
investigating the effect of age and glaucoma on retinal nerve
fiber layer (RNFL) and choroid. Loss of RNFL in the optic
nerve head (ONH) region is a well-known hallmark of glaucoma
that leads to irreversible vision loss (Medeiros et al., 2005).
Currently, the RNFL thickness profile along a circular scan
centered at the ONH and the sectoral average thickness maps
are used in clinics to assess the disease progression. Studies
have shown regional patterns in glaucomatous RNFL thinning,
with most significant changes in the inferior peripapillary region
(Leung et al., 2010; Mwanza et al., 2011). Aging has been also
associated with RNFL loss (Budenz et al., 2007; Parikh et al.,
2007). The effect of glaucoma in the choroid has been more
debated, with some studies reporting glaucoma-related thickness
changes (Song et al., 2016; Li et al., 2017), and others reporting
no changes (Ehrlich et al., 2011; Maul et al., 2011). Recent works
on OCT angiography (Lee E. J. et al., 2016; Mammo et al., 2016)
suggest vascular impairment in glaucoma, and this motivates
simultaneous, localized analysis of the two layers to investigate
possible connection in the structural changes due to glaucoma.

In this work, we aim to (i) examine the spatial RNFL thickness
patterns by age and by presence of glaucoma by comparing the
reference group of older healthy eyes with younger healthy eyes
and with age-matched glaucoma eyes, and (ii) study whether
there is spatial relationship between age-related changes and
glaucoma-related changes.

MATERIALS AND METHODS

Participants and Image Acquisition
Thirty-eight eyes from five young healthy participants, five
older healthy participants, and twelve older glaucoma patients
were included in the study. The participant demographics are
listed in Table 1. Before being included in the study, each
participant was subject to optic nerve head OCT imaging,
dilated stereoscopic examination of the optic nerve, stereo

TABLE 1 | Participant demographics.

Group N (Subjects) N (Eyes) Female/male Mean age

Young healthy 5 10 3/2 29.8 ± 3.6

Older healthy 5 10 2/3 57.0 ± 4.4

Older glaucoma 12 18 6/6 61.7 ± 7.9
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disc photography, intraocular pressure (IOP) measurement, and
reproducible Humphrey perimetry at the Eye Care Center at
Vancouver General Hospital. Eyes with retinal disease other than
primary open-angle glaucoma, uveitis, IOP lower than 10 mmHg
or greater than 20 mmHg, or optic neuropathy from causes other
than glaucoma were excluded. The mean glaucoma duration at
the time of imaging was 3.69 ± 3.80 years. A custom 1,060-nm
swept-source OCT system by the Biomedical Optics Research
Group at SFU was used for imaging. Each image consisted of 400
B-scans, with 400 A-scans per B-scan and 1,024 pixels per A-scan.
The axial voxel resolution was 2.7 µm, the axial coherence length
was ∼6 µm, and the lateral pixel resolution ranged from 11.9 to
14.5 µm depending on the eye’s axial length. The A-scan rate of
100 kHz resulted in∼1.6 s of acquisition time per volume.

Preprocessing, Segmentation, and Layer

Thickness Measurement
Images with artifacts, such as large lateral motion artifact
or the ONH not being at the center of the field of view
were excluded from this analysis. The image underwent axial
motion correction by B-scan cross-correlation and 3D bounded-
variation smoothing for reducing the effect of speckles and
enhancing the visibility of anatomical structures, with no
additional normalization. An example of OCT B-scan before
and after processing is shown in Figures 1a,b. Retinal nerve
fiber layer (RNFL) and choroid were segmented automatically
by delineating inner limiting membrane (ILM), RNFL-ganglion

cell layer boundary, Bruch’s membrane (BM), and the choroid-
sclera boundary using a 3D graph-cut based algorithm (Li et al.,
2006; Lee et al., 2013a,b). All automated segmentation results
were checked by a trained rater, and incorrect segmentation
was manually corrected using Amira (version 5, FEI). Bruch’s
membrane opening (BMO) wasmanually segmented on 80 radial
slices extracted from the image volume. An example of the
segmentation is shown in Figures 1c,d. A best-fit 3D BMO ellipse
was computed using principal component analysis and least
square fitting. The segmented RNFL and choroid were cropped
at 0.25 mm from the BMO ellipse to account for the ambiguity in
the retinal layer boundary close to the optic cup (Lee et al., 2014).
Recent studies reported on inconsistencies resulting from using
the conventional optic cup as a reference due to its ambiguous
definition based on 2D projection fundus images, and showed the
BMO was an viable alternative reference as a robust anatomical

structure defined in 3D space (Chauhan and Burgoyne, 2013;
Gardiner et al., 2014). The layer thickness was measured at each
point as the closest 3D Euclidean distance between the posterior
and anterior surfaces of the layer. Prior to the fshape registration
step, all corresponding surfaces were rigidly aligned by matching
the BMO ellipse centroid.

Fshape Registration
The framework of functional shapes (or fshapes) provides a
quantitative measure of inter-subject variability in the RNFL and
choroid. In this section, we briefly summarize the algorithm
which is detailed in Lee et al. (2017). Let the ith subject’s RNFL
or choroid thickness be represented by (Xi, f i), where X is the
layer surface (geometry) and f is the surface-indexed function
(thickness here) mapped on X. Let a template exemplar for this
database be denoted by

(
X∗, f∗

)
, consisting of a template surface

geometry X∗ and an associated surface-indexed signal (thickness
here) mapping f∗. Given

(
X∗, f∗

)
as the template fshape, and

(Xi, f i) as the ith target fshape to be registered to the template,
the fshape framework will estimate a smooth deformation φi

of the template geometry X∗ and a residual ζ i to be added to
the template function f∗, such that after transformation of the
template fshape with the mapping φi to the ith target fshape,
the geometry of the transformed template matches the geometry
of the ith target Xi ≈ φi (X∗) and the transformed template
function plus residual matches the function of the ith target i.e.,

f i ≈
(
f∗ + ζ i

)
◦φi−1

. Hence, for each of the target fshapes (Xi, f i)
for all i = 1..N a pair

(
φi, ζ i

)
consisting of a smooth deformation

and a function residual are estimated such that:

(
Xi, f i

)
≈

(
φi, ζ i

)
·

(
X∗, f∗

)
=

(
φi (X∗) ,

(
f∗ + ζ i

)
◦ (φi)

−1
)

=
(
X̃i, f̃ i

)
(1)

The function residual added to the template function estimated
by fshape matching effectively becomes the representative of
the target function in the geometry of the template. By fixing
a template geometry and function, a group of target fshapes
can be brought into the coordinates of the template such that
the residuals representing different target function values are
now indexed on the same template geometry. The choice of the
template is an important consideration and the mean of the
observations in the database is a standard choice. A database
fshape mean is hence estimated, to be used as a template, by

FIGURE 1 | Example OCT B-scan (a) without processing, (b) after BV smoothing, and (c) with the segmentation of inner limiting membrane (purple), posterior

boundary of retinal nerve fiber layer (cyan), Bruch’s membrane (yellow), Bruch’s membrane opening (green), and choroid-sclera boundary (red). 3D surface generation

of the retinal layer boundaries is shown in (d).

Frontiers in Neuroscience | www.frontiersin.org July 2017 | Volume 11 | Article 38119

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lee et al. Age and Glaucoma-Related Changes in the Retina with Fshapes

an adaptive gradient descent algorithm that jointly optimizes
a total fshape dissimilarity measure between each target fshape
(
Xi, f i

)
and the transformed template

(
X̃i, f̃ i

)
for all i taken

together. The process is summarized in Figure 2. A similar mean
template generation procedure was repeated for the choroid. This
maps all the target observations’ function values (layer thickness)
into a common coordinate system of the mean template where
statistical analysis can be applied on the residuals

(
ζ i

)
to compute

the point-wise variability of the function values at each point on
the template geometry across the database.

Sectorization
In order to compare the fshape analysis with more conventional
“intrinsic” analysis where an individual-specific coordinate
system is placed on each geometry separately such as using
sectoral analysis, the peri-papillary retinal layers were divided
into regional sectors (Lee et al., 2014) as shown in Figure 3.
Unlike standard sectors defined by fixed distances from the
center of the optic disk on the enface projection image that
do not take into account the individually varying sizes of
Bruch’s membrane opening (BMO), the sectors in this study
were defined in 3D in each eye by the distance from the BMO,
which is a more reliable anatomical landmark than the optic
disk (Lee et al., 2014). This normalizes the sectors for different
retinal tilts and BMO/optic disks sizes. The sectors were first
delineated by elliptical annuli at constant distances (0.25, 0.75,
1.25 mm) from the BMO ellipse. These were further divided by
superior, nasal, inferior, and temporal sectors, and additionally
into superior-nasal (SN), inferior-nasal (IN), inferior-temporal
(IT), and superior-temporal (ST) sectors. The first four sectors are
60◦ wide and the latter are 30◦ wide. For each sector, the thickness
measurements for all points in the sector for that individual eye
are taken and averaged to create one scalar number representing
the average sectoral thickness value.

Statistical Analysis
Group Analysis
Two analyses were conducted (1) the fshape analysis of
computing the mean fshape geometry and function and the
residual function for each subject indexed on the common mean
template, enabling point-wise comparison across the subjects in
the database and (2) sectoral averages within each subject that
enable comparison across subjects by the sectors defined over the
subject’s layer geometry.

FIGURE 3 | Sectorization of the layer surface with reference to the Bruch’s

Membrane Opening (BMO) as reference.

FIGURE 2 | Computation of fshape mean template.
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The database consisted of members from three groups:
young normal (Group A), older normal (Group B), and older
glaucomatous (Group C) individuals. These groups enable
analyses of two main questions (1) the effect of age on RNFL
and choroid layer thicknesses in healthy young and older
individuals (Group A and B comparison) and, (2) the effect of
glaucoma between age-matched individuals (Group B and Group
C comparison). These two questions were analyzed by point-wise
(fshape) and sector-wise group mean thickness difference maps
and two-sample t-test maps.

Regression Analysis
The effect of age and glaucoma on RNFL and choroidal
thicknesses was additionally examined by point-wise and sector-
wise linear regression to quantify trend, on Group A and B for
the effect of age, and Group B and C for the effect of glaucoma.
Each layer thickness (RNFL or choroid) values from Group A
and B were fitted to layer thickness = a∗Age + b to estimate the
rate of change (mm/year) in the cross-sectional healthy subjects.
To assess change as a function of visual field mean deviation
(VFMD), a measure of glaucomatous loss measured in decibels
(dB), the layer thickness (RNFL or choroid) values from Group B
and C were fitted to layer thickness = a∗VFMD + b to estimate
the rate of change per VFMD (mm/dB).

Point-Wise Visualization of RNFL and

Choroid Thickness Pattern
To visualize the measurements across the database highlighting
the variability and trends, the fshape measures for each subject
on the common template were normalized by using a z-score
computed by subtracting the mean of a reference group and
dividing by the standard deviation of the measures in the
reference group. The z-score was calculated point-wise as zk =

(xk − x̄h
k
)/σ h

i , where xk is the thickness at kth point for, x̄h
k

is the mean thickness of the reference group at kth point, and
σ h
k

is the standard deviation of the reference group at kth

point. The reference groups were chosen to be Group A for age
comparison and Group B for glaucoma comparison such that
the average measures of the young normal (Group A) or older
healthy (Group B) subjects are removed to visualize the residual
effects of age and glaucoma, respectively. To present a compact
visualization, measurement of each subject was unraveled into a
column format by subdividing the mean template surface into
sectors, and subdividing each sector into smaller sub-sectors,
and arranging the z-score values by their sectors in a column
format consistent across the database while preserving spatial
adjacencies.

RESULTS

This section will present the results of point-wise (using fshape)
and sectoral analysis of RNFL and choroid thickness across the
three cohorts chosen for this study. All figures are right-eye
oriented, with the left side temporal and the right side nasal.
Group averages of RNFL thickness are visualized in Figure 4. The
top row shows the point-wise average computed using fshapes
and the bottom row shows the results using sectoral averaging.

FIGURE 4 | Retinal nerve fiber layer (RNFL) thickness using fshapes

point-wise registration (top row) and sectorization (bottom row) for Group A

(Young Normal), Group B (Older Normal), and group C (Older Glaucoma). The

RNFL thickness in Group B is similar to Group A, indicating that RNFL is

relatively better preserved with age, whereas in Group C, this layer undergoes

marked thinning. All images are in the right-eye orientation.

The point-wise fshape mean RNFL templates display detailed
salient features from multiple, cross-sectional eyes in each group
showing the characteristic hourglass pattern of healthy RNFL
in both Group A (young normal) and Group B (older normal)
whereas Group C (older glaucoma) show marked glaucomatous
thinning. There is good correspondence between the fshapemean
templates constructed from point-wise registration and sectoral
average maps taken from unregistered RNFL thickness averages
in each sector in each individual.

The group averages of choroidal thickness by fshape (top row)
and sectoral averaging (bottom row) is shown in Figure 5. All
three groups display thicker choroid in the nasal and superior
regions and thinner choroid in the inferior region. The choroid is
visibly thinner with age as seen in Group B compared to Group A.
As with RNFL thickness, there is overall correspondence between
the fshape mean templates and sectoral average maps.

The effect of age and glaucoma in RNFL thickness is shown by
difference of group averages in Figure 6. The top row shows the
effect of age in RNFL thickness in the healthy subjects comparing
the mean RNFL thickness in young normal vis-a-vis the older
normal individuals. The bottom row shows the effect of glaucoma
in RNFL thickness by comparing age-matched older subjects
with and without glaucoma. The left panel shows the point- and
sector-wise difference of RNFL thickness fromGroup B by Group
A (top, young vs. older) and from Group C by Group B (bottom,
healthy vs. glaucoma) at each corresponding points / sectors. The
right panel shows point and sector-wise t-test results indicating
where the group difference is significant. The RNFL thickness
is found to not change significantly over age across individuals
(top row), whereas the difference due to glaucoma is apparent
(bottom row). The loss of RNFL thickness is observed to be
higher in regions where normal RNFL thickness is higher and
suggests some regional correspondence between the degree of
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FIGURE 5 | Choroid thickness using fshapes (top row) and sectorization

(bottom row) for Group A (Young Normal), Group B (Older Normal) and

Group C (Older Glaucoma). The choroid in the older normal subjects is

markedly thinner than the choroid in the younger normal subjects revealing a

thinning process that seems to be based on chronological age. All images are

in the right-eye orientation.

glaucomatous RNFL loss and the original RNFL thickness. The t-
test significance map between the healthy and glaucoma subjects
shows the highest statistical significance in the inferior region.

Similar group difference visualization for choroid is shown
in Figure 7. Compared to RNFL, choroidal thickness is more
different by age (top row, Group B−Group A) than by glaucoma
(Group C − Group B). Choroidal thickness of Group B is
consistently lower than that of Group A across all regions, but
in particular in the nasal and superior regions. The locations
of statistical significance, as shown in the t-test map, of the
age-related group difference is found particularly in the nasal
region. The choroidal thickness difference by glaucoma was not
as strong as that due to age and although the choroidal thickness
in Group B was overall larger than that of group C, the point- and
sector-wise t-test show limited statistical significance.

The relationship of RNFL thickness to aging and severity
of glaucoma was examined by point- and sector-wise linear
regression in Figure 8. The estimated slope or the rate of change
associated with aging (mm/year) in the cross-sectional healthy
subjects was plotted in the top row along with the goodness of
fit by r2. The estimated slope or the rate of change associated
with visual field loss (mm/dB) in the cross-sectional age-matched
subjects was plotted in the bottom row along with the goodness
of fit by r2. Aging did not show consistent, significant trend with
RNFL thickness, whereas increasing glaucoma severity (more
negative VFMD) was correlated to decreasing RNFL thickness.
Similar spatial patterns are observed as seen in the group
difference maps shown in Figure 6. In the most severely affected
regions of superior-temporal and inferior-temporal regions,
RNFL thickness change per MD unit decrease exceeded 5 µm.

The relationship of choroidal thickness to aging and severity
of glaucoma was also examined by point- and sector-wise linear
regression in Figure 9. The estimated slope or the rate of change
associated with aging (mm/year) in the cross-sectional healthy

subjects was plotted in the top row along with the goodness of
fit by r2. The estimated slope or the rate of change associated
with visual field loss (mm/dB) in the cross-sectional age-matched
subjects was plotted in the bottom row along with the goodness
of fit by r2. Again, compared to the RNFL thickness, change
in the choroidal thickness was associated more with aging than
glaucoma. Aging was correlated to globally decreasing choroidal
thickness, most significantly in the nasal and inferior regions.
In the most severely affected regions, the average choroidal
thickness change per year was∼3–4 µm.

The point-wise nature of fshape metrics can be utilized
by simultaneous visualization of all data points from multiple
subjects. Figure 9 displays the RNFL fshape thickness in the order
of VFMD, which measures the glaucomatous functional loss,
for the age-matched normal and glaucomatous eyes of Group B
and C. In the top panel, each column represents an eye’s point-
wise RNFL fshape thickness, which approximates the true RNFL
thickness as the sum of the RNFL fshapemean template thickness
and the residual (ti ≈ f∗ + ζi) at each point. Horizontally, the
eyes are ordered by VFMD, plotted below the thickness plot in
grayscale. Vertically, the points are ordered by sectors fromNasal
(N) and counter-clockwise to Inferior Nasal (IN). Within each
sector, the points are ordered by the distance from BMO center,
from the closest to the farthest. This visualization allows one
to compare all eyes at each spatial location. There is observed
an overall group-wise difference between Healthy older subjects,
Early Glaucoma, and Moderate to Severe Glaucoma subjects.
Comparing vertically from the top to the bottom, the healthy
eyes show the thickness pattern that follows the mean template
for Group B in Figure 4 where the superior and inferior regions
are the thickest, and within each region, RNFL is thicker toward
BMO and thins farther from BMO.

The bottom panel of Figure 10 visualizes the f-shape thickness
in the top panel using z-scores normalized by the group
mean and standard deviation of the RNFL thickness of the
young healthy group (Group A) at each point, with increasing
magnitude indicating greater deviation from the reference group.
The differences between the groups are more apparent in z-
score plot, with clear regional characteristics. Regionally, inferior
RNFL, and to a lesser degree, inferior-temporal RNFL, are
consistently thinner in all glaucoma eyes. In other sectors, the
magnitude of z-score is greater for the moderate to severe
glaucoma group than early glaucoma. The plot also shows
glaucomatous RNFL thickness change is greater nearer BMO
by the vertical gradations within individual regions in the
glaucomatous eyes.

Figure 11 displays the choroidal fshape thickness in the order
of age for the normal eyes to show the thinning of the choroid
observed with age. In the top panel, each column represents an
eye’s point-wise choroidal fshape thickness, which approximates
the true choroidal thickness at each point. Horizontally, the
eyes are ordered by age, plotted below the thickness plot in
grayscale. As in Figure 10, the points are vertically ordered by
sectors from Nasal (N) and counter-clockwise to Inferior Nasal
(IN), and within each sector, the points are ordered by the
distance from BMO center, from the closest to the farthest.
In the bottom panel, the same data is visualized in z-scores
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FIGURE 6 | Effect of age (top row) and glaucoma (bottom row) on RNFL thickness. The point- and sector-wise subtraction of mean RNFL thickness between older

normal (Group B) and young normal (Group A) is shown in the top left panel, and the p-values from point- and sector-wise t-test is shown in the top right panel. The

point- and sector-wise subtraction of RNFL mean between older glaucoma (Group C) and older normal (Group B) is shown in the bottom left panel, and the p-values

from point- and sector-wise t-test is shown in the bottom right panel. The RNFL layer is found not to change significantly with age, whereas it changes significantly

with glaucoma. The fshapes point-wise comparison shows the pattern of change in greater detail than the sectorization, revealing the localized pattern of

glaucomatous RNFL thinning. All images are in the right-eye orientation.

FIGURE 7 | Effect of age (top row) and glaucoma (bottom row) on choroidal thickness. The point- and sector-wise subtraction of mean choroidal thickness across

older normal (Group B) and young normal (Group A) is shown in the top left panel, and the p-values from point- and sector-wise t-test is shown in the top right panel.

The point-and sector-wise subtraction of mean choroidal thickness between older glaucoma (Group C) and older normal (Group B) is shown in the bottom left panel,

and the p-values from point- and sector-wise t-test is shown in the bottom right panel. The choroid is found to thin significantly with age, whereas changes are

relatively less with glaucoma. The fshapes point-wise comparison shows the pattern of change in greater detail, revealing the localized pattern of age-related choroidal

thinning. All images are in the right-eye orientation.

normalized by the group mean and standard deviation of the
choroidal thickness of the young healthy group. As shown in
Figures 5, 7, there is a marked difference between the young
healthy and older healthy eyes, and the choroid appears generally
thicker in the superior half than the inferior half. Within

the young eyes, the z-score is generally lower for the older
eyes. As seen in Figure 7, the nasal region of the older eyes
shows the highest magnitudes of z-score, suggesting the age-
related choroidal thinning may be the most significant in the
region.
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FIGURE 8 | Linear regression plots of RNFL thickness v. age (top row) and v. visual field mean deviation (VFMD). The slope in RNFL thickness = a*Age+ b is plotted

point- and sector-wise in the top left panel, along with the goodness of fit (r2) in the top right panel. The slope of RNFL thickness = a*VFMD+ b is plotted point- and

sector-wise in the bottom left panel, along with the goodness of fit (r2) on the bottom right panel. As with the group difference, RNFL thickness is negatively correlated

with VFMD. The point-wise maps reveal that the rate of change has distinct spatial pattern with greater thinning along the regions where RNFL is generally thicker in

healthy subjects. All images are in the right-eye orientation.

FIGURE 9 | Linear regression plots of choroidal thickness v. age (top row) and v. visual field mean deviation (VMFD). The slope in Choroidal thickness = a*Age+ b is

plotted point- and sector-wise in the top left panel, along with the goodness of fit (r2) in the top right panel. The slope of Choroidal thickness = a*VFMD+ b is plotted

point- and sector-wise in the bottom left panel, along with the goodness of fit (r2) on the bottom right panel. As with the group difference, choroidal thickness is

negatively correlated with age. The point-wise maps show the steepest change in the nasal and inferior regions. All images are in the right-eye orientation.

DISCUSSION

The 3D OCT images reveal the structure of the ocular posterior

segment in great detail so as to enable visualization and

quantification of the retinal layer morphometry. Individual
measurements of layer thicknesses can be pooled into
population-wide assessments of normative layer thicknesses
and any changes that may occur as a function of age and
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FIGURE 10 | Multi-subjects RNFL thickness by visual field mean deviation (VFMD). By mapping to the common template space, all subjects have estimated thickness

values (ti ≈ f* + ζi ) at the same corresponding spatial points, visualized in the top panel. Vertically, the points are ordered by regions, from Nasal (N) to Inferior Nasal

(IN). Within each region, the points are ordered by their distance from BMO center, from the closest to the farthest. Horizontally, the eyes are ordered by VFMD, plotted

in grayscale below the thickness plot. In the bottom panel, the same data is visualized z-scores, which normalizes the values by the mean and standard deviation of

the reference group (Group A, young healthy) and highlights the trend across regions and increasing VFMD magnitude.

disease. These allow insights into whether age and disease
have a stereotypical pattern of influence in the retina, with
common shape features and localizations, as well as variability
across individuals and deviation of a particular subject from a
reference population. In this paper, we presented the effect of age
and glaucoma on retina nerve fiber layer (RNFL) and choroid
using our novel f-shapes approach, which enables a point-wise
assessment of retinal morphometrics across individuals via
a registration approach. The fshape registration estimates a
residual function that is added to the template thickness such
that the template geometry after transformation matches the
subject geometry, and the template thickness plus the residual
function after transformation matches the subject thickness.
This maps an individual’s layer thicknesses onto the common
coordinate system of the template geometry via the specific
residual function estimated for that individual. At each location
on the template surface, subsequent statistical analysis across
the database can reveal trends and features that are common
across individuals as a function of age and disease. A more
conventional approach utilizes sectorization of the layer surface
by calculating the average of all thickness measurements within
each sector for each individual eye. Assuming that the sectors are

defined with consistent anatomical and spatial correspondence
across individuals, within-sector average provides a single scalar
summary measure for a given sector that can be statistically
analyzed for cross-sectional data taken from the same sector
across the individual eyes. However, such approach is limited
in spatial sensitivity due to averaging of values in a region. We
examined the effect of age and glaucoma in RNFL and choroidal
thickness in both of these approaches with four quantitative
visualizations: (i) group rages (Figures 4, 5), (ii) group-wise
difference and t-test maps (Figures 6, 7), (iii) linear regression
with age and visual field mean deviation (VFMD) as predictors
(Figures 8, 9), and (iv) multi-subject fshape thickness and
z-scores plots (Figures 10, 11). The computation time including
automated segmentation and mean template generation was
∼40 min on a high-performance GPU cluster.

With age, RNFL showed relatively little difference between the
young and older healthy subjects, with regression estimating no
strong relationship between age and RNFL thickness. In previous
studies using OCT measurements, RNFL thickness has been
negatively associated with age (Budenz et al., 2007; Parikh et al.,
2007; Bendschneider et al., 2010; Sarunic et al., 2010; More et al.,
2011). In this study, the mean age of the young healthy subjects

Frontiers in Neuroscience | www.frontiersin.org July 2017 | Volume 11 | Article 38125

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lee et al. Age and Glaucoma-Related Changes in the Retina with Fshapes

FIGURE 11 | Multi-subjects choroidal thickness by age. By mapping to the common template space, all subjects have estimated thickness values (ti ≈ f* + ζi ) at the

same corresponding spatial points, visualized in the top panel. Vertically, the points are ordered by regions, from Nasal (N) to Inferior Nasal (IN). Within each region, the

points are ordered by their distance from BMO center, from the closest to the farthest. Horizontally, the eyes are ordered by age, plotted in grayscale below the

thickness plot. In the bottom panel, the same data is visualized in z-scores, which normalizes the values by the mean and standard deviation of the reference group

(Group A, young healthy), and highlights the trend across regions and increasing age.

was thirty, and that of the older healthy subjects was fifty-seven.
The age difference between the two groups may be too small for
anymarked difference, especially with the small sample size in the
study. Older age was, however, associated with markedly thinner
choroid, and the point-wise registration showed the difference
was more significant in the nasal and inferior regions. With
the recent advancement in OCT devices enabling the posterior
boundary of the choroid to be imaged, age-related choroid
thinning has been reported by multiple groups (Manjunath
et al., 2010; Maul et al., 2011; Barteselli et al., 2012). Our result
suggests overall thinning of peripapillary choroid with age, but
with regional differences. That the older healthy subjects had
comparable RNFL but thinner choroid compared to the young
healthy subjects may indicate the age-related choroidal thinning
does not directly and concurrently impact RNFL thickness.

Recent work using speckle-variance OCT (SV-OCT) (Mammo
et al., 2016) has shown degradation of RNFL microcapillaries in
glaucoma, and it has been suggested the glaucomatous tissue loss
may be driven by changes to the microvasculature. Although the
choroid is a vascular layer, it mainly supplies the outer layers of
the retina that are unaffected in glaucoma, and may therefore be
separate from the factors that drive the RNFL tissue and capillary
loss in glaucoma.

Glaucoma, as expected, was observed to be associated with
significant thinning of RNFL. The pattern of loss visualized in
the point-wise maps forms the hourglass crescent-shaped ridge,
particularly in the inferior arm, highest toward the middle of
the ridge, decreasing further away from the ridge center. The
same hourglass-like pattern is observed in young normal subjects.
The results of our study are consistent with known patterns of
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RNFL loss in glaucoma, but more importantly, it shows that the
glaucomatous RNFL loss occur in a specific, uneven pattern that
follows the initial RNFL thickness, suggesting that the time of
onset and significance of the RNFL loss may be proportional to
the initial RNFL thickness in the region. The loss significance
was also higher in the region closer to BMO. The fshape RNFL
loss map elucidates the results of previous studies that found
the highest diagnostic ability of the RNFL loss in the inferior
and temporal-inferior sectors (Sehi et al., 2009; Mwanza et al.,
2011). Although the choroidal thickness in the older glaucoma
subjects seemed to be somewhat less than in the age-matched
healthy subjects, it was still statistically comparable, indicating
that glaucoma pathology may not have significant, direct impact
on the choroid as it does on the RNFL. The role of choroid
in glaucoma has been debated, and it is likely complex and
multifaceted. Disturbed autoregulation of the choroid has been
suggested as part of the disease pathology (Hayreh, 1969; Ulrich
et al., 1996). Multiple studies using OCT images (Ehrlich et al.,
2011; Maul et al., 2011; Li et al., 2013) consistently reported
no changes in the peripapillary choroidal thickness in primary
open angle glaucoma (POAG); however, Li et al. (2017) reported
thicker temporal peripapillary choroidal area in POAG patients
using enhanced depth imaging OCT, and Song et al. (2016)
reported global and all 12 clock-hour peripapillary choroidal
thickness thinner in OAG patients using swept-source OCT.

Figures 10, 11 presented a large-data visualization with
each subject’s point-wise thickness values color mapped in a
single column, and multiple subjects’ data columns displayed
concurrently, arranged in the order of visual field mean deviation
(VFMD, Figure 10) and age (Figure 11). This method allows
for presentation of all data points from multiple subjects in
a way that highlights the trend and discrepancies in the data.
Normalizing the data by the mean and standard deviation of the
young, healthy group as the reference removes the baseline in
the data and further brings out the differences with respect to
controls.

The patterns of change shown in the point-wise and
sector-wise approaches were overall consistent. The point-wise
registration was able to show localized features in higher
resolution compared to the sectorization, revealing detailed
regional patterns and potentially furthering our understanding
of the disease mechanism. This approach may be useful for
characterizing the focal localized patterns that are often seen
in glaucoma, both in RNFL and in other subsurface structures

such as lamina cribrosa and peripapillary tissues. In this work,
we also examined multiple factors (age, glaucoma) in multiple
layers (RNFL, choroid) concurrently for a more complete picture
in understanding our data. The results showed glaucomatous
thinning of RNFL, and age-related thinning of choroid and how
the spatial patterns of the tissue loss in the two layers were
localized and distinct. Limitations of this work include relatively
small sample size, inclusion of fellow eyes, and light beam
angle-related uncertainty in retinal layer thickness measurement,
although given the relatively small size of the field of view in
the images in this study, this effect is likely limited. Our future
work will include expanding the analyses presented here to other
retinal layers and to the macular region to build a comprehensive
presentation of the retinal morphometrics, and incorporating
retinal vessels and capillary density measures from SV-OCT as
metrics along with layer thickness.
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The problem of estimating neuronal fiber tracts connecting different brain regions is

important for various types of brain studies, including understanding brain functionality

and diagnosing cognitive impairments. The popular techniques for tractography are

mostly sequential—tracts are grown sequentially following principal directions of local

water diffusion profiles. Despite several advancements on this basic idea, the solutions

easily get stuck in local solutions, and can’t incorporate global shape information. We

present a global approach where fiber tracts between regions of interest are initialized

and updated via deformations based on gradients of a posterior energy. This energy

has contributions from diffusion data, global shape models, and roughness penalty. The

resulting tracts are relatively immune to issues such as tensor noise and fiber crossings,

and achieve more interpretable tractography results. We demonstrate this framework

using both simulated and real dMRI and HARDI data.

Keywords: tractography, geometric shape analysis, Bayesian estimation, dMRI fiber tracts, active contours

1. INTRODUCTION

This paper considers an important problem of estimating major white matter fiber tracts in
human brain using diffusion magnetic resonance imaging (dMRI) images (Mori et al., 2005). The
construction of fiber tracts connecting different brain regions is an important first step toward
studying brain connectomics and its implications in assessment of brain functionality, including
cognitive abilities and general health. Spurred by experimental development of large databases
involving human subjects, with samples across different demographic groups, there is a emerging
interest in representing and quantifying brain connectivity patterns. Therefore, efficient and
reliable fiber tracking algorithms are urgently needed. However, the problem of estimating fiber
tracts using dMRI data is far from being solved (Maier-Hein et al., 2016). The current solutions
have many limitations, including inefficiency and susceptibility to noisy, corrupt, and low-quality
data. The data mostly comes from pre-processed dMRI images, providing at each voxel a measure
of diffusivity of water molecule at that location. The representation of this diffusivity is generally a
3 × 3 symmetric, positive definite matrix (SPDM), also called a tensor. In situations where higher
resolution data are available, one constructs high angular resolution diffusion imaging (HARDI)
data; at each spatial location the orientation diffusion function (ODF, a function on a unit sphere
§2) is estimated (Descoteaux, 2015). Given these local diffusivity measures, one seeks to form
fiber tracts, or their collections in the form of fiber bundles, between regions of interest (ROIs),
and to further develops structural networks (Cheng et al., 2012; de Reus and van den Heuvel,
2013; Fornito et al., 2013; Durante and Dunson, 2017). This paper focuses on estimation of fiber
tracts, also termed tractography, using dMRI and HARDI data. For any two regions (voxels) in
a brain coordinate system, the goal is to estimate a collection of curves that follow an optimal
pattern of fluid flow connecting these locations, while conforming to anatomical reasonings and
interpretations.

29
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Due to the importance of tract-based connectivity in brain
connectomic analysis, there have been a number of solutions
developed for estimating fiber tracts. They can be loosely grouped
into two categories: local and global methods. Local methods
construct fiber curves sequentially based on the estimated
local diffusion directions. Depending on the mechanism for
specifying a local propagation direction, one can further classify
the local methods into deterministic methods (Mori et al.,
1999; Basser et al., 2000) or probabilistic methods (Hagmann
et al., 2003). While the deterministic methods mainly follow the
local principal directions to grow fiber curves, the probabilistic
methods propose a propagation direction from voxelwise
probability distribution, e.g., orientation distribution function
(ODF), for growing fibers. The first successful deterministic
tractography algorithm was dubbed FACT (fiber assignment by
continuous tracking), which has been widely studied in the
literature (Mori and van Zijl, 2002). But the limitations of FACT
and similar methods are obvious. They include sensitivity to
initialization, the susceptibility of principal direction estimation
to local noise, and lack of connectivity information between
regions of the brain. These limitations drive people to use
the probabilistic algorithms. One advantage of the probabilistic
methods is that they are based on the full, albeit local, distribution
of fiber directions, rather than just the principal direction. They
can output a connectivity index measure, e.g., the number of
fiber curves, between any two regions of interest, indicating
the probability with which the regions are connected to one
another. However, this creates problems when the local diffusion
directions are not well estimated or are overly smooth. On the
other hand, the global methods try to reconstruct fiber curves
simultaneously by optimizing the configuration that best matches
the given data. Finding the fiber curves that best matches the
given data is a hard inverse problem. Current solutions are to
translate this inverse problem into a forward problem using a
Bayesian approach. For example, Reisert et al. (2011) used a
Metropolis Hastings sampler to propose small line segments to fit
the given dMRI data and use them to further generate long fiber
curves. The global methods provide a better stability with respect
to the noise and imaging artifacts. However, there are some issues
with the current global methods also. The Bayesian methods
typically have high computational cost and require huge memory
space, to compute and store a whole ensemble of solutions. Also,
in an optimization setting, it is difficult to avoid local solutions
since no additional structure is imposed on the optimization.

We can summarize the limitations of current methods as
follows: (a) The local methods are essentially sequential—they
start fibers from one end and grow them over time. This one-
boundary solution is not natural for tractography, which is
actually a two-boundary problem. (b) The local tractography
algorithms are highly susceptible to fiber crossing, noise and
imaging artifacts. Incorrect recording or noisy observations of
tensors can send algorithms in wrong directions and it is difficult
to recover from such misdirections. (c) The global tractography
algorithms achieve better stability with respect to noise, but they
are very computationally expensive. (d) Both local and global
methods tend to produce a large proportion of false positive fibers
because of the noise and ambiguity at fiber crossings. Figure 1

shows some examples of limitations of a local streamline method,
where the blue lines denote ground truth, the red and green lines
are tractorgraphy results from the classic FACT method. The left
panel shows the challenge of fiber crossing, where the sequential
approach fails to reach the target region. The right panel shows
the effect of having a patch of noisy data in the middle. The
fibers from either regions run into this noisy patch and fail
to reach the other end. Additional examples of the challenges
faced by streamline methods on the real data, are shown later
in the experimental results section. A global approach used for
estimating fiber tracts, or curves in general image data, is called
active contours, where one evolves a curve in order to minimize
an energy functional (Pichon et al., 2005; Lankton et al., 2008;
Melonakos et al., 2008; Eckstein et al., 2009; Mohan et al., 2009;
Zach et al., 2009; Li and Hu, 2013). Other global techniques
(Faugeras et al., 2004), including a variation of Kalman Filter
(Cheng et al., 2015), have also been applied to this problem.

In this paper, we propose a new approach that is essentially
a global method but using additional geometry information
for ensuring optimal solutions. The proposed method is fast
and easy to implement, and robust to the noise in the data.
Most importantly, it can incorporate the prior knowledge
from anatomical structure and brain connectomics. Rather than
growing fiber tracts sequentially, our idea is to initialize fiber
tracts between regions of interest as Euclidean curves and then
deform them iteratively using gradients of a posterior energy.
This approach, termed Bayesian Active Contours (Joshi and
Srivastava, 2009; Bryner et al., 2013), estimates fiber tracts under
an energy function that has contributions from three sources:
the given data or the likelihood term, the prior knowledge
on the geometric shapes of fibers connecting these ROIs, and
a roughness penalty. The algorithm uses the gradient of this
posterior energy to iteratively update curves into high probability
and highly interpretable fiber tracts. The prior on the geometric
shapes relies on developing statistical shape models of fiber
curves between ROIs, using atlas data, and evaluating expressions
for gradient of resulting shape model energy with respect to
the shape variable. We use advances in elastic shape analysis of
Euclidean curves to develop efficient statistical models for fiber
bundles using training (or atlas) data. The training data can be
generated using existing local or global tractography algorithms,
or can use manual inputs. These models form prior information
for future tractography and, in conjunction with diffusion data
likelihood, they provide tract estimation results.

In contrast to the probabilistic tractography method (Behrens
et al., 2003, 2007), the proposed Bayesian method is a global
one. We start with an initial fiber connecting two pre-specified
regions and update it under an energy function. The final fiber
can best explain the diffusion data under the constraints of prior
shape distribution and desired smoothness. Previously, there are
some Bayesian tractography methods proposed in the literature
(Friman et al., 2006; Cook et al., 2008; Yap et al., 2011). These
methods are different from the proposed one: in our method,
we assign a prior on the fiber shape space, while in (Friman
et al., 2006; Cook et al., 2008; Yap et al., 2011), the prior is
imposed on local fiber orientation distribution. Probably, the
most similar work to ours is (Christiaens et al., 2014), where an

Frontiers in Neuroscience | www.frontiersin.org September 2017 | Volume 11 | Article 48330

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Dong et al. Bayesian Tractography

FIGURE 1 | Two examples of the classic streamline method does not work. The blue lines are ground truth fibers. The red and green lines are the tractorgraphy

results from the FACT method. Starting from area A, FACT failed to reconstruct the fiber tracts that connect A and B.

atlas-guided global tractography is introduced with a prior on
the local tract distribution. However, our work is different in two
aspects: Firstly, we have a different energy function.We introduce
a novel data term and a smoothness term separately to measure
alignment between fibers and diffusion data, and the smoothness
of fiber tracts. Secondly, we have a different prior.We incorporate
the prior information of fiber shape from the atlas space while
(Christiaens et al., 2014) obtains the prior information of local
tract distribution from the atlas space.

The rest of this paper is organized as follows. We describe the
three components of the posterior energy—data likelihood, shape
prior and roughness penalty—and their gradients in Section 2.
The resulting tractography algorithm is laid out in Section 3,
and experimental results using both simulated and real data, the
extension to HARDI data are presented in Section 4.We close the
paper with a short discussion in Section 5.

2. MATHEMATICAL FRAMEWORK FOR
BAYESIAN TRACTOGRAPHY

Although the framework can be easily generalized to 3D data, we
will restrict to 2D data in this paper for simplicity. The theory is
general enough to be applicable to 3D data directly.

First, we develop a mathematical framework for estimation
of fiber tracts using tensor data and prior shape models. Let
P be the set of 2 × 2 symmetric, positive definite matrices (or
tensors). For the domain, D = [0, 1]2, let M : D → P denote
a continuous vector field of tensors defined on this domain. Let
β :[0, 1]→ D be an absolutely continuous curve contained in this
domain, and let B be the set of all such curves. Our goal is to find
a β with certain boundary constraints that optimizes a chosen
objective function that comes from a Bayesian formulation. Thus,
we pose the problem of tractography as aMAP estimation. In this
formulation we seek parameterized curve β̂ that minimizes an
energy functional according to: β̂ = argminβ∈B Etotal(β), where

Etotal(β) = λ1Edata(β)+ λ2Eprior(β)+ λ3Esmooth(β). (1)

This total energy functional has contributions from three
different criteria that are weighted by the coefficients
λ1, λ2, λ3 > 0. The data energy Edata is defined solely
from the diffusion data in the image, Eprior is the prior shape
energy defined from a statistical model on shapes of the fiber
β , and the smoothing energy Esmooth is a penalty that ensures a
certain amount of smoothness in the estimated fiber. In order to
minimize Etotal we use a gradient descent procedure that updates
the curve according to β 7→ β − δ∇βE, where

∇βE = λ1∇Edata(β)+ λ2∇Eprior(β)+ λ3∇Esmooth(β). (2)

That is, we search for a local minimization of Equation (1)
via gradient descent. The weights λi will certainly affect curve
evolution, i.e., a large penalty on the smoothness term favors
shorter fibers and so on. Through trial and error, one can adjust
the λ’s depending on the data and problem context. In the next
three sections, we summarize the formulation of each of the three
energy terms.

2.1. Data-Likelihood Term
The data term is designed to quantify the agreement of the fiber
directions with the diffusion tensor at that location. Let M be a
given tensor field and β be a curve lying in the domain D, as
shown in the left panel of Figure 2. The data energy term is then
given by:

Edata[β] =

∫ 1

0
nβ (t)

TM−1
β(t)

nβ (t) dt, where nβ (t) =
β̇(t)

|β̇(t)|
.

(3)
Here nβ (t) denotes the unit vector tangent to β at β(t) andMβ(t)

is the tensor at location β(t) ∈ D. The integrand is lower at the
locations where the fiber tract is aligned with the tensor field and
vice-versa.

Wemotivate the choice of this expression by focusing on some
Riemannian frameworks used in tractography:

• Maximal Curves Matching the Given Tensor Field: One
generally wants to find curves such that their velocity vectors
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FIGURE 2 | (Left) A schematic showing a curve β passing through a tensor field M. (Middle) An example of gradient-based optimization under Edata, where black is

the initial curve and red is the final curve. (Right) The evolution of Edata during this optimization.

maximally match the given diffusion tensors. Therefore, one
may consider maximizing the term:

LM[β] =

∫ 1

0

√
(β̇(t)TMβ(t)β̇(t)) dt =

∫ 1

0
|β̇(t)|Mβ(t)

dt .

This quantity is nothing but the length of a curve β in D
under a Riemannian metric defined by the tensor fieldM. The
maximizers of LM are the longest paths between given points
in D. However, the problem with this is that there is no upper
bound on the length of the curve, and one can place arbitrarily
long curves in D irrespective ofM.
• Geodesics Under Inverse Tensor Field: A better idea is to

use the inverse of the given tensor field at each point and
then construct geodesic paths under that Riemannian metric
(O’Donnell et al., 2002; Duncan et al., 2004; Melonakos, 2009),
according to:

β∗ = argminβ

(∫ 1

0

√
(β̇(t)TM−1

β(t)
β̇(t)) dt

=

∫ 1

0
|β̇(t)|M−1

β(t)
dt

)
.

One can solve the optimization problem by minimizing an
energy, without the square-root in the integrand, as follows:

β∗ = argminβ

(∫ 1

0
β̇(t)TM−1

β(t)
β̇(t)dt

)
.

This way one gets shortest curves such that their velocities
agree with the dominant directions of the original tensor field.
This formulation also agrees with a probabilistic approach
where one uses the tensor field to define a Gaussian
distribution at each point (Lenglet et al., 2004), and seeks
maximum likelihood estimates. Although this method favors
fiber directions similar to the dominant eigen vectors of the
given tensor field, it additionally penalizes the lengths of the
such fibers. Similar to the previous bullet, it may be possible
to find shorter paths that do not agree with the tensor field.
Some other papers (Fuster et al., 2014). Hao et al. (2014)

have expressed this exact issue in different terms, citing the
inability of this method to handle high curvature regions.
They proposed a solution based on modifying the Riemannian
metric by a curvature-based scalar field and then constructing
geodesic paths (Hao et al., 2014). The real issue in these ideas
is that there is no independent way to control the lengths of
estimated fibers.
• Scale-Invariant Optimal Paths: We take a different approach

where the length of the fibers is separated from the agreement
of fiber directions with the given tensor directions. We weight
these two quantities differently and are able to better control
the length of the fibers. For the domain D, and a given tensor
fieldM : D→ P , we define an energy term given by

Edata[β] =

∫ 1

0
nβ (t)

TM−1
β(t)

nβ (t) dt , (4)

where nβ (t) = β̇(t)/|β̇(t)|. Note that if we scale the speed of
traversal along β by a constant, the energy function remains
unchanged. In other words, the integrand only depends on
the agreement of the direction nβ (t) with the dominant
eigen vectors of Mβ(t), and not on the speed of traversal at
β(t). However, this energy function is not invariant to a re-
parameterization of β . Let γ : [0, 1] → [0, 1] be a positive
diffeomorphism, the β ◦ γ represents a re-parameterization
of β . It can be seen that, in general, Edata[β] 6= Edata[β ◦
γ ]. If that invariance is desired, one can achieve it by
changing the measure of integration from dt to |β̇(t)| dt in
Equation (4).

The next step is to derive the gradient of Edata with respect to β

for use in gradient-based optimization. To specify the gradient
of Edata, we need some additional notation. Note that for any
location x = (x1, x2) ∈ D, the gradient of M : D → P has
two components, ∇x1Mx, ∇x2Mx ∈ TMx (P). Thus, the gradient
vector ∇xMx is a higher-order tensor of the size 2 × 2 × 2. For
any such tensor A ∈ R

2×2×2 and a vector x ∈ R
2, we will use the

notation: 〈〈A, x〉〉 to imply x1A(:, :, 1) + x2A(:, :, 2) ∈ TM(x)(P).
Therefore, 〈(〈〈Ax〉〉)x〉 denotes a 2-vector given by x1A(:, :, 1)x +
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x2A(:, :, 2)x ∈ R
2. With this notation, we can express the gradient

of Edata as follows.

LEMMA 1. The gradient of Edata with respect to β, under the L2

norm, is given by:

− 2{
1

|β̇(t)|

(
M−1

β(t)
ṅβ (t)+

〈〈
∇xM

−1
β(t)

, β̇(t)
〉〉
nβ (t)

)

−
β̇T(t)β̈(t)

|β̇(t)|3
M−1

β(t)
nβ (t)−

1

|β̇(t)|

(
ṅβ (t)n

T
β (t)M

−1
β(t)

nβ (t)

+ nβ (t)n
T
β (t)

〈〈
∇xM

−1
β(t)

, β̇(t)
〉〉
nβ (t)+ 2nβ (t)n

T
β (t)M

−1
β(t)

ṅβ (t)
)

+
β̇T(t)β̈(t)

|β̇(t)|3
nβ (t)n

T
β (t)M

−1
β(t)

nβ (t)} +
〈〈
tran(∇xM

−1
β(t)

), nβ (t)
〉〉
nβ (t) .

(5)

where tran(∇xM
−1
β(t)

) is transpose of ∇xM
−1
β(t)

.

A derivation of this expression is presented in the Appendix.
Having an analytical expression for ∇βEdata makes the
optimization problem more efficient, as compared to purely
numerical solutions.

Figure 2 shows an example of the gradient-based
minimization of Edata in the middle panel. It shows a tensor
fieldM and an initial curve β (in black). We update β iteratively
using −∇βEdata and the result is drawn as a red curve. The
corresponding evolution of Edata is plotted in the right panel.

2.2. Smoothness or Fiber Length Term
For regulating smoothness of the estimated curve, we follow
a common approach from geometric active contours that is
motivated in part by Euclidean heat flow. Define the smoothing

energy function as Esmooth(β) =
∫ 1
0 |β̇(t)|dt, which is equal

to the length of the curve and is naturally invariant to any
re-parameterization. It is shown in Kichenassamy et al. (1995)
that the gradient of Esmooth is given by the Euclidean heat
flow equation ∇Esmooth(β) = κβnβ , where κβ is the curvature
at each point of β and nβ is the unit normal field along
the curve. It is well known that this particular penalty on a
curve’s length leads to simultaneous smoothing and shrinking
of a curve. If we rescale the curve to keep the original length,
the main effect is that of smoothing. An example of this
idea is illustrated in Figure 3 that shows a curve evolving
according to −∇Esmooth. The left panel shows the initial curve
(in black), and its updates using the negative gradient of
Esmooth. The corresponding decrease in Esmooth is plotted on the
right.

2.3. Atlas-Based Shape Prior
The next term to consider is Eprior that forces the shapes of
estimated fiber tracts to be similar to certain desired shapes.
This term encodes the prior shape information about fibers
connecting two ROIs, and is based on a statistical model that is
learnt from the training or atlas data (generated by current local
or global methods). In a brain connectome study framework, the
brain is generally pre-segmented into small anatomical regions
using software such as Freesurfer and ANTs (Avants et al., 2011),
and fibers connecting two ROIs are extracted. However, due to

differences in sizes, orientations, and coordinate systems, these
fibers connecting the same ROIs across subjects can not be
directly used as prior for future fiber tractography. Removing
these nuisance variable requires a formal definition of shape and
shape space, and then one needs to develop a statistical model
on this mathematical representation. Here we use elastic shape
analysis developed in Srivastava and Klassen (2016) to represent
and model fiber shapes. Specifically, we define S , the shape space
of all curves in D and impose a truncated wrapped normal
distribution on this space to reach a statistical shape model. The
parameters of this model are estimated a priori from the training
or atlas data. We present a brief summary of the elastic shape
analysis here and refer the reader to the textbook (Srivastava and
Klassen, 2016) for more details. For a curve β : [0, 1]→ D, define

q(t) = β̇(t)/
√
|β̇(t)| be the square-root velocity function (SRVF)

of β . This SRVF representation has an important property that
a re-parameterization invariant Riemannian metric on the space
of curves becomes the simple L

2 metric under transformation.
As a corollary, for any q1, q2 ∈ L

2, we have ‖(q1, γ) − (q2, γ)‖ =
‖q1 − q2‖, for any γ ∈ Ŵ, where Ŵ is the set of all orientation
preserving diffeomorphisms of [0, 1]. Here (q, γ) stands for (q ◦
γ)
√

γ̇, representing the SRVF of the re-parameterized curve β ◦γ.
If we rotate β by O ∈ SO(2), we get O∗β , and the corresponding
SRVF is given by O∗q.

Let β be a rescaled fiber curve such that it has unit length
and let q be its SRVF. We define an orbit in the SRVF space
as [q] = {O(q ◦ γ)

√
γ̇|O ∈ SO(2), γ ∈ Ŵ}, which denotes an

equivalence class representing a shape. Let S be the set of all such
equivalence classes; S is called the shape space. The term Eprior
in the active contour model is a function of β , but our statistical
models are built on S such that Eprior can effectively encode the
shape information and be invariant to the different sizes and
coordinate systems of different brains. However, S is a nonlinear
manifold space. To build a statistical model on S , we need some
elementary tools such as efficient methods to calculate the mean
and covariance matrix for a given set of data. Here we employ
Karcher mean to calculate the mean shape of given fiber curves
and the covariance matrix is calculated on the tangent space of
S at the estimated Karcher mean denoted by T[µ](S). The reader
can refer to Srivastava et al. (2011) for the explicit procedures to
calculate the Karcher mean and the covariance matrix.

Given a set of prior training shapes {[qi], i = 1, ...n} in S , let
us assume that we have computed their Karcher mean [µ] and
covariance K. We define the prior shape model using a truncated
wrapped-normal density, which is estimated from the data as
follows. First, obtain the singular value decomposition of K as
[U, S,V] = svd(K), and let Um be the m-dimensional principal
subspace of T[µ](S) spanned by the first m columns of U. The
shape prior distribution is defined as a wrapping of the truncated
normal distribution mapped from Um to S using the exponential
map. The truncated normal density on Um is:

v ∼
1

Z
e
− 1

2

(
vT‖ S
−1
m v‖+‖v⊥‖

2/δ2
)

1‖v‖<π , (6)

where v = exp−1[µ]([q]), v‖ = UT
mv is the projection of v into Um,

v⊥ = v − Umv‖, Sm is the diagonal matrix containing the first
m singular values, and Z is the normalizing constant. The scalar
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FIGURE 3 | Evolution of a curve using negative gradient of Esmooth. (Left) The initial curve in black, intermediate curves as dotted lines, and the final curve in red.

(Right) The evolution of Esmooth.

value δ is chosen to be less than the smallest singular value in Sm.
Suppose now that we have a test shape [q] that represents a fiber
tract during optimization process, and v = exp−1[µ]([q]) be the
shooting vector from the mean [µ] to [q]. Now define Eprior(q)
to be the negative of the exponent in the shape prior given by
Equation (6). That is, define Eprior(q) =

1
2v

T(UmS
−1
m UT

m)v +
1
2δ2
‖v − UmU

T
mv‖

2. Minimizing this functional is, therefore,
equivalent to maximizing the likelihood of q under the chosen
shape model. The gradient of Eprior with respect to v is equal to

w = Av, where A is the matrix A = UmS
−1
m UT

m+ (I−UmU
T
m)/δ

2.
Notice that w is defined on the tangent space at µ rather than at
q, so the final step is to parallel translate w from µ to q. Denote
this parallel translation as w̄ = ∇qEprior(q). An evolution of
q along the negative gradient direction will result in an energy
minimization precisely at the mean µ. The translated shooting
vector w̄ now represent the gradient of Eprior with respect to q.
As the last step, this gradient is converted to ∇βEprior(β) using a
numerical approximation.

Figure 4 shows a simple example of evolving a curve
according to Eprior . The left panel shows the initial curve, and its
updates using the negative gradient of Eprior . The corresponding
decrease in Eprior is plotted on the right.

3. BAYESIAN TRACTOGRAPHY
ALGORITHM

When we put together the three components of the energy, the
shape of β is controlled by gradients of Edata, Eprior and Esmooth,
the smoothness is controlled by Eprior and Esmooth, and the
nuisance variables (placement, scale, and rotation) are controlled
only by Edata. Now we summarize the overall algorithm for
Bayesian tractography using the tensor field (Algorithm 1).

The advantage of the proposed framework is that it uses a
global optimization to overcome issues such as fiber crossing and
spatial noise. The final tracking result depends not only on the
diffusion data, but also on prior shape information. The inclusion
of shape prior distinguishes our method from other energy
minimization based fiber-tracking algorithms, and is essential for

Algorithm 1: Bayesian Tractography Using Geometric
Shape Priors

Data: Training fiber tracts connecting a pair of ROIs and
the dMRI data

Result: Fiber tract β connecting the given two ROIs
Initialization: Calculate normalized mean shape µ and
covariance K from training fiber tracts, perform SVD
[U, S,V] = svd(K). Use an existing method (e.g.,
probabilistic method) to obtain an initialization of β ,
denoted as β1.
for i← 1 to iter do

1. Calculate and save the length and the centroid of the
current curve βi;

2. Convert βi to SRVF representation qi and normalize it
qi =

qi
‖qi‖

;

3. Calculate A = UmS
−1
m UT

m + (I − UmU
T
m)/δ

2, where Um

be the firstm columns of U and δ ≤ λm, where λm is
them-th eigenvalue of K;

4. Calculate shooting vector from µ to qi, vi = exp−1µ (qi);

5. Parallel transport Avi from µ to qi, w̄i = (Avi)µ→ qi ;

6. Travel a short distance ǫ from qi along the geodesic
defined by the shooting vector w̄i, q

new
i = expqi (−ǫw̄i);

7. Convert qnewi to its curve representation

β̃new
i =

∫ t
0 q

new
i |q

new
i |du and scale and center β̃new

i to
obtain βnew

i with the same length and centroid
as βi;

8. Set ∇Eprior(βi) =
βi−βnew

i
ǫ

.

9. Evaluate ∇Edata(βi) using Equation (8).

10. Evaluate ∇Esmooth(β) = κβn, where κβ is the curvature
at each point of β ;

11. Update the curves:
βi+1 = βi − λ1∇Edata(βi)− λ2∇Esmooth(βi)− λ3
∇Eprior(βi).

end
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FIGURE 4 | Evolution of a curve using negative gradient of Eprior . (Left) The initial curve in black, intermediate curves as dotted lines, and the final curve in red.

(Right) The evolution of Eprior .

the optimization procedure to come out of local solutions and
reach a global solution. Most importantly, in our framework, the
brain is parcellated into small regions, and the shapes of fibers
connecting any pair of regions are found to be consistent. The
proposed truncated wrapped-normal distribution can effectively
capture the variation of shapes for each connection in the
training data. In addition, since we reconstruct the whole fiber
simultaneously by minimizing an energy function, the issue
of fiber crossing has almost no detrimental effect of our fiber
tracking algorithm.

As stated earlier, this Bayesian approach requires either a
the training data or an atlas of fiber tracts between regions of
interest, to estimate shape model and develop Eprior . We can
construct such data using existing tractography algorithms with
maybe human inspection for quality control. However, since
such a construction is needed only once, it can be performed
offline.

4. EXPERIMENTAL RESULTS

In this section we present some results using both simulated
and real data to illustrate the performance of the proposed
method.

4.1. Simulated 2-D tensor data
We first study our proposed tracking algorithm in the simulated
settings. Let domain D = [0, 1]2 for all our simulation examples.
The tensor field on D, denoted byM :D→ P , is generated using
certain fibers that play the role of ground truth. We discretize the
domain D into a 20 × 20 grid, and the tensor within each grid is
decided by the tangent directions of the line segments within this
grid. In addition, a 2D Gaussian smoothing is applied to smooth
the tensor field before applying our algorithm.

In the experiment presented in Figure 5, we use the blue lines
as ground truth fiber tracts and generate a tensor field as shown
in these panels. Then, using this tensor data, we estimate the
fiber tracts using our and other methods, and the results are

shown in red lines. On the left side we show results from standard
streamline tractography, using starting points on one end. Due
to a crossing of fibers in the middle, these tracts get diverted and
sent to wrong directions. In the middle panel, we show results
from our method but without using the shape prior term. This
time the end points of the tracts are correct (by initialization) but
some of the fibers don’t quite reach the desired shape. Finally, we
optimize fiber tracts using the full energy functional, including
the shape prior, and display these results in the right panel. By
including all the three terms, we overcomed issues caused by fiber
crossing and local noise, and reached correct global structures.
To better evaluate the tractography results, we calculate the
distance between reconstructed fibers and ground truth using the
L2 norm. We first calculate the distance of each fiber from the
ground truth and then use the mean of all distances to quantify
the difference between reconstructed fiber bundle and ground
truth fiber bundle. The distances for each method are given in
Figure 5.

Additional details of this simulation experiment are presented
in Figure 6, which shows evolution of a single fiber under Etotal.
The left panel shows the initial curve (black), the final curve (red),
and the ground truth curve (blue). The right panel shows the
evolution Etotal during this iteration. In this experiment, we used
the weights λ1 = 0.8, λ2 = 0.1, and λ3 = 0.1.

4.2. Experiments Using Real Data
Next, we apply our method to some real datasets—dMRI images
downloaded from the Human Connectome Project (HCP) (Van
Essen et al., 2012). HCP contains about 900 subjects with
diffusion MRI, but here we have used only 30 subjects for
our experiments. The dMRI images in HCP has an isotropic
resolution of 1.25 mm. To estimate a diffusion tensor at each
voxel, we use the open source software Dipy (Garyfallidis et al.,
2014). Figure 7A shows one slice of the 3 × 3 diffusion tensors
estimated from a randomly selected dMRI image in HCP; a
zoom-in of a small part of the image is shown on its right. Since
in this paper we restrict to a 2D domain to illustrate our idea,
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A B C

FIGURE 5 | Tractography results on a simulated tensor field and distances from ground truth: (A) Streamline tractography from either region , d = 1.5e− 2, (B) our

method without a shape prior, d = 2.2e− 3, and (C) our method with a shape prior, d = 3e− 4. The details of the prior are presented in Figure 6.

FIGURE 6 | Detailed tractography results in the simulation example. Here we only focus on reconstruction of one of the curves. The black line is initialization, the red

line is our result and the blue line is the ground truth.The right panel shows the evolution of the energy function.

A B

FIGURE 7 | An example of a sagittal slice of diffusion tensor data. (A) Original data. (B) Projected 2D data.

we convert 3 × 3 diffusion tensors in the original data to 2 × 2
tensors by removing the diffusion directions perpendicular to the
2D slice plane. Figure 7B shows an example of this projection
and shows the 2D tensors in form of their level sets or ellipses at
each pixel location.

In the results presented here, we focus on estimating a set of
fiber curves connecting the left and right superior frontal gyri.

In order to generate a prior shape model, we use tracts extracted
for 30 subjects between these regions as the training dataset.
These tracts were manually identified with the help of Freesurfer
Destrieux Atlas (Destrieux et al., 2010) and the fiber curves built
using the FACT method. These fibers are displayed on the left
side of Figure 8. The Karcher mean µ of these fibers in the shape
space S is shown in the middle panel and the five dominant
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principal components of the Karcher covariance are displayed
in the right panel. These dominant directions are computed by
projecting the given shapes [qi] in the tangent space T[µ](S)
using the inverse exponential map, i.e., vi = exp−1[µ]([qi]), and
the computing principal components of the set {vi} in the vector

space T[µ](S). These principal directions, which as straight lines
in T[µ](S) passing through [µ] in the middle, are then wrapped
back on S using the exponential maps. Each row of the right
panel in Figure 8 shows plots one such direction, going from the
largest variability to smallest from top to bottom.

FIGURE 8 | Thirty training samples of fiber tracts, their Karcher mean and principal directions of shape variation. The rightmost panel from top to bottom represents

the first 5 principal directions of variation in the training data.

FIGURE 9 | Results comparison between streamline method and our method. In the top row, the left panel shows the results using a streamline method, the middle

panel shows some selected curves from that set that reach the two ROIs (different colors represent curves passing different regions), and the right panel shows

tractography result using our Bayesian method. Here the blue line shows the initialization and red line is final result. The middle row shows the evolution of the three

energy components in this estimation. The bottom row shows our tractography results under different weights of the energy components.
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Having developed a prior model for fiber shapes from the
training data, we then apply our Bayesian method to the tensor
data, especially focusing on the areas where the streamline
method fails, and the results are presented in Figure 9. We first
show the results of the streamline method, using seeds from
either ROI, in the first two panels. While the left panel in the top
row gives an appearance that we have some fibers connecting the
two ROIs, a closer look shows that this is actually not the case.
In the middle panel we color the curves differently depending
on which ROI is the seed located in. One can see that the set
of curves—red and green—do not not reach the other ROI.
They start from the ROI containing the seeds and diverge in

the middle. This is in contradiction to the anatomical knowledge
that the two regions are indeed connected through white matter
fiber tracts. Using the proposed Bayesian technique, we obtained
result shown in the rightmost panel of the top row. This picture
shows an arbitrarily initialized curve drawn in blue, and the
final estimated curve drawn in red color. The corresponding
evolutions of the three energy terms—Edata, Eprior , and Esmooth—
are shown in the middle row of this figure. Each one of these
terms show a substantial decrease in their values during the
iteration process.

In order to study the impact of the weights λ1, λ2, and λ3
on the final result, we generated estimates for a few different

FIGURE 10 | Another example similar to Figure 9.
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combinations of these weights. The results are shown in the
last row of this figure. In case where the weight for shape
prior is high, the final result is close to the prior mean.
In contrast, when the weight for the data term is high,
there is a better agreement between the curve and the tensor
field.

Another example of this Bayesian estimation is presented in
Figure 10 with similar settings. In this case the ROIs used are
right hippocampus and right percentral.

4.3. Extension to Tractography Using
HARDI Data
The proposed framework can be extended to HARDI data, where
an ODF is used to better represent the underlying diffusion
profile. The data term is now defined as:

Edata[β] =

∫ 1

0
−fβ(t)(nβ (t)) dt, where nβ (t) =

β̇(t)

|β̇(t)|
. (7)

Here nβ (t) denotes the unit vector tangent to β at β(t) and fp is
the ODF at p ∈ D. The integrand is low at a location where the
fiber tract is aligned with the ODF field and vice-versa. The next
step is to derive the gradient of Edata with respect to β for use in
gradient-based optimization. we can express the gradient of Edata
as follows.

LEMMA 2. The gradient of Edata with respect to β, under the L2

norm, is given by:

−
β̇T (t)β̈(t)

|β̇(t)|3

(
I − nβ (t)n

T
β (t)

)
∇T
nβ
fβ(t)(nβ (t))−

2

|β̇(t)|
ṅβ (t)n

T
β (t)∇

T
nβ
fβ(t)(nβ (t))

+
1

|β̇(t)|

(
I − nβ (t)n

T
β (t)

)
∇2
nβ
fβ(t)(nβ (t))ṅβ (t). (8)

A derivation of this expression is presented in the Appendix. We
also show an experiment result on an ODF data in Figure 11. We
use the blue lines as ground truth fiber tracts and generate ODF
data as shown in Figure 11A. Under this ODF field, we estimate
the fiber tracts using our method. The final reconstructed tracts
are shown in red lines. In the middle panel, we show an evolution
of a single fiber under Etotal. In the right panel, we show the
evolution Etotal of each iteration.

5. CONCLUSION AND DISCUSSION

This paper introduces a Bayesian approach for estimating
fiber tracts, between given pairs of points in a human
brain, using dMRI and HARDI data. The basic idea is
to define a composite energy functional, using a linear
combinations of terms that relate to data, curve smoothness,
and a prior shape model, and then use the gradient of this
energy to iteratively optimize a contour. There are several
novelties in this setup: (1) the data term is locally scale-
invariant and measures only the agreement of the fiber
direction with the given diffusion tensor field, (2) the length
of the fiber is kept as a separate term, in order to have
an additional control over fiber size, and (3) an external

FIGURE 12 | Examples showing that the proposed method can handle

crossing and kissing fibers. Red lines are our tractograhy results, blue lines are

ground truth and black lines are initializations. From upper left panel to bottom

left panel, more and more crossing bundles are added into the simulation. The

bottom right panel shows the shape prior used in our model.

A B C

FIGURE 11 | Tractography results on simulated ODF data. (A) Red lines are reconstructed fibers using our method and blue lines are the ground truth used to

generate the ODF field. (B) Evaluation of one curve under our method. (C) Evolution of energy term Etotal .
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term involving statistical shape models, of fibers tracts
connecting given regions, is used to improve optimization
and interpretability. These shape models can come from training
data developed using manual interventions or population atlases
established from previous studies. The gradients of all the terms
have analytical forms, making the gradient-based optimization
very efficient. This framework is demonstrated successfully using
simulated 2D tensor fields and 2D slices of volume dMRI data.

One advantage of our method is that it can naturally
handle crossing bundles since we construct the streamline as
a whole object. Relying on the prior shape information, we
can reconstruct a fiber curve that have similar geometry to
the prior knowledge. Figure 12 illustrates one example that the
proposed method is not sensitive to local fiber crossing. The blue
lines are ground truth to generate the tensor field. From upper
left to bottom left, more fibers were added to a region, which
complicates the underlying tensor field. For the two selected
regions, we initialize some black lines to connect them and the
red lines are the final tractograhy results using ourmethod. Those
results indicates that our method can successfully reconstruct the
fiber bundles in this challenge situation. The bottom right panel

shows the shape prior that being used in our implementation.
However, the proposed Bayesian method needs to specify the

starting and ending points for each extracted tract. To ensure
that there is a tract between two ROIs, we currently rely on the

atlas data. This procedure may end up with false positives, e.g.,
identifying a tract that does not exist. A future pruning procedure
can be added as a post processing step, relying perhaps on the
minimum energy as the reviewer has suggested. As another
criterion, the diffusion profile along a tract can possibly be used as
a feature to determine whether a tract is a false or a true positive.

As a future work, this framework can be naturally
implemented using 3D dMRI data, and resulted tractography
can be compared with some state of the art techniques.
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APPENDIX

Lemma 1
In this section we derive an expression for the gradient of Edata[β] with respect to β . Let h ∈ B be a perturbation to the curve β such

that it is zero at the boundaries, i.e., h : [0, 1]→ R
2 and h(0) = h(1) = 0. Since, Edata[β + ǫh] =

∫ 1
0 nT

β+ǫh
(t)M−1

β(t)+ǫh(t)
nT

β+ǫh
(t)dt, the

directional derivative of Edata in the direction of h is given by:

d

dǫ
|ǫ=0Edata[β + ǫh] =

∫ 1

0

(
2nTβ (t)M

−1
β(t)

uβ ,h(t)

+ nTβ (t)
〈〈
∇xM

−1
β(t)

, h(t)
〉〉
nβ (t)

)
dt ,

where: uβ ,h(t) =
d
dǫ
|ǫ=0(nβ+ǫh(t)) =

1
|β̇(t)|

(
I − nβ (t)n

T
β (t)

)
ḣ(t) ≡ Aβ (t)ḣ(t). The last equality is used to define Aβ (t). We simplify

the two terms one by one:

• First Term: Using integration by parts and using the boundary conditions h(0) = h(1) = 0, the first term becomes:

∫ 1

0
2nTβ (t)M

−1
β(t)

uβ ,h(t)dt =

∫ 1

0
2nTβ (t)M

−1
β (t)Aβ(t)ḣ(t))dt

= −

∫ 1

0

〈
2
d

dt

(
Aβ(t)M

−1
β(t)

nβ (t)
)
h(t)

〉
dt

Here

d

dt

(
Aβ(t)M

−1
β(t)

nβ (t)
)
=

d

dt

(
1

|β̇(t)|

(
I − nβ (t)n

T
β (t)

)
M−1

β(t)
nβ (t)

)

=
1

|β̇(t)|

(
M−1

β(t)
ṅβ (t)+

〈〈
∇xM

−1
β(t)

, β̇(t)
〉〉
nβ (t)

)
−

β̇T(t)β̈(t)

|β̇(t)|3
M−1

β(t)
nβ (t)

−
1

|β̇(t)|

(
ṅβ (t)n

T
β (t)M

−1
β(t)

nβ (t)+ nβ (t)n
T
β (t)

〈〈
∇xM

−1
β(t)

, β̇(t)
〉〉
nβ (t)+ 2nβ (t)n

T
β (t)M

−1
β(t)

ṅβ (t)
)

+
β̇T(t)β̈(t)

|β̇(t)|3
nβ (t)n

T
β (t)M

−1
β(t)

nβ (t), where ṅβ (t) =
d

dt
nβ (t) =

β̈(t)

|β̇(t)|
−

β̇(t)β̇T(t)β̈(t)

|β̇(t)|3
.

• Second Term: The second term can be rearranged as:

∫ 1

0

〈〈〈
tran(∇xM

−1
β(t)

)nβ (t)nβ (t), h(t)
〉〉
dt

where tran(∇xM
−1
β(t)

) is transpose of ∇xM
−1
β(t)

.

Thus, the full gradient of Edata with respect to β is given by:

− 2{
1

|β̇(t)|
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β(t)
ṅβ (t)+
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∇xM
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β(t)

, β̇(t)
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−
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β(t)
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ṅβ (t)n

T
β (t)M
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nβ (t)+ nβ (t)n
T
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∇xM

−1
β(t)
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nβ (t)+ 2nβ (t)n
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β (t)M
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β(t)

ṅβ (t)
)

+
β̇T(t)β̈(t)

|β̇(t)|3
nβ (t)n

T
β (t)M

−1
β(t)

nβ (t)} +
〈〈
tran(∇xM

−1
β(t)

), nβ (t)
〉〉
nβ (t) .

Lemma 2
Let’s denote fp as the ODF at p ∈ D and for simplicity, f (t) will be used to denote fβ(t)(nβ (t)) in the following derivation. In this section
we derive an expression for the gradient of Edata[β] with respect to β . Let h ∈ B be a perturbation to the curve β such that it is zero at

the boundaries, i.e., h : [0, 1]→ R
2 and h(0) = h(1) = 0. Since, Edata[β + ǫh] =

∫ 1
0 f (nβ+ǫh(t))dt, the directional derivative of Edata in

the direction of h is given by:

d

dǫ
|ǫ=0Edata[β + ǫh] =

∫ 1

0
∇nβ

f (t)uβ ,h(t)dt ,
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where: uβ ,h(t) =
d
dǫ
|ǫ=0(nβ+ǫh(t)) =

1
|β̇(t)|

(
I − nβ (t)n

T
β (t)

)
ḣ(t) ≡ Aβ (t)ḣ(t). Using integration by parts and using the boundary

conditions h(0) = h(1) = 0, the term becomes:

∫ 1

0
∇nβ

f (t)uβ ,h(t)dt =

∫ 1

0
∇nβ

f (t)Aβ(t)ḣ(t))dt = −

∫ 1

0

〈 d
dt

(
Aβ (t)∇

T
nβ
f (t)

)
h(t)

〉
dt

Here

d

dt

(
Aβ(t)∇

T
nβ
f (t)

)
=

d

dt

(
1

|β̇(t)|

(
I − nβ (t)n

T
β (t)

)
∇T
nβ
f (t)

)

= −
β̇T(t)β̈(t)

|β̇(t)|3

(
I − nβ (t)n

T
β (t)

)
∇T
nβ
f (t)−

2

|β̇(t)|
ṅβ (t)n

T
β (t)∇

T
nβ
f (t)

+
1

|β̇(t)|

(
I − nβ (t)n

T
β (t)

)
∇2
nβ
f (t)ṅβ (t),

where ṅβ (t) =
d

dt
nβ (t) =

β̈(t)

|β̇(t)|
−

β̇(t)β̇T(t)β̈(t)

|β̇(t)|3
.

Thus, the full gradient of Edata with respect to β is given by:

−
β̇T(t)β̈(t)

|β̇(t)|3

(
I − nβ (t)n

T
β (t)

)
∇T
nβ
f (t)−

2

|β̇(t)|
ṅβ (t)n

T
β (t)∇

T
nβ
f (t)+

1

|β̇(t)|

(
I − nβ (t)n

T
β (t)

)
∇2
nβ
f (t)ṅβ (t).
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On the Complexity of Human
Neuroanatomy at the Millimeter
Morphome Scale: Developing Codes
and Characterizing Entropy Indexed
to Spatial Scale
Daniel J. Tward* and Michael I. Miller for the Alzheimer’s Disease Neuroimaging Initiative †

Center for Imaging Science, Department of Biomedical Engineering, Kavli Neuroscience Discovery Institute, Johns Hopkins

University, Baltimore, MD, United States

In this work we devise a strategy for discrete coding of anatomical form as described

by a Bayesian prior model, quantifying the entropy of this representation as a function of

code rate (number of bits), and its relationship geometric accuracy at clinically relevant

scales. We study the shape of subcortical gray matter structures in the human brain

through diffeomorphic transformations that relate them to a template, using data from the

Alzheimer’s Disease Neuroimaging Initiative to train a multivariate Gaussian prior model.

We find that the at 1 mm accuracy all subcortical structures can be described with less

than 35 bits, and at 1.5 mm error all structures can be described with less than 12 bits.

This work represents a first step towards quantifying the amount of information ordering

a neuroimaging study can provide about disease status.

Keywords: computational anatomy, diffeomorphometry, neuroimaging, anatomical prior, entropy, complexity, rate

distortion

1. INTRODUCTION

The trend toward a quantitative, task based, understanding of medical images leads to the simple
goal of answering “how many bits of information would one expect a medical image to contain
about disease status?” Knowing the answer to this question could impact a clinician’s decision
of whether or not to order an imaging study, particularly in the case where it involves ionizing
radiation. This quantity can be studied in terms of mutual information between disease status and
anatomical form.

MI(disease, anatomy) = H(anatomy)−H(anatomy|disease) (1)

whereMI is mutual information, and H(·) is entropy and H(·|·) is conditional entropy.
In general, the higher the complexity of a population of normal anatomy, the less informative is

a realization as manifest by an MRI concerning some disease. On the other hand, the simpler the
class of anatomy, the more information gained by making an MRI. This is reflected by sensitivity
and specificity of statistical tests.

Other information theoretic quantities could have a direct impact on clinical decision making
as well. The inverse of the Fisher information puts a lower bound on the variance of any unbiased
estimator (the Cramér-Rau inequality). The Kullback-Leibler divergence D(P1‖P2) between two
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probability distributions P1 and P2 can be used to quantify
bounds on error rates (false positives or false negatives) for
any statistical test (Sanov’s theorem). More specifically, for a
fixed false positive rate, the false negative rate is bounded by
exp(−nD(P1‖P2)) for sample size n. In the typical setting of
“multivariate normal, common covariance 6, different means
µ1,µ2,” this quantity is given by D(P1‖P2) = 1

2 (µ1 −

µ2)
T6−1(µ1 − µ2), a well known signal to noise ratio related

to linear discriminant analysis.
To begin applying the powerful machinery of information

theory to the study of anatomical form, we turn our attention
to the quantity at the heart of information theory: the entropy.
We propose a new method for quantifying the entropy of human
anatomy at clinically relevant spatial resolutions, biological
organization at the millimeter or morphome scale (Hunter and
Borg, 2003; Crampin et al., 2004). In this work we focus our
attention on developing this method and quantifying entropy for
a single population, leaving inferences about specific populations
or disease states to future work.

Since Shannon’s original characterization of the entropy of
natural language in the early 50’s, the characterization of the
combinatoric complexity of natural patterns such as human
shape and form remains open. Human anatomical form, unlike
word strings in English, are essentially continuum objects,
extending all the way to the mesoscales of variation. Therefore,
computing the entropy subject to a resolution, or measurement
quantile becomes the natural approach to quantifying the
complexity of human anatomy. Rate-distortion therefore plays a
natural role. The distortion measure is played by the resolution,
and in this paper we introduce the natural resolution metric
that any anatomist or pathologist would use in examining tissue
which would be the sup-norm distance in defining the boundary
of an anatomical structure.

This paper focuses on these issues, calculating what we believe
is the first bound on the complexity of human anatomy at
the 1 mm scale. 1mm seems appropriate since so much data
is available via high throughput magnetic resonance imaging
(MRI) and therefore that scale of data becomes ubiquitously
available. Also so many studies of neuroanatomy and psychiatric
disorders today are focused on the anatomical phenotype at this
scale.

While the entropy of human anatomy seems difficult to define,
the theory of Kolmogorov complexity gives us a precise tool for
describing arbitrary objects in such a manner. The complexity of
any object, which is related to its entropy by an additive constant,
can be defined as the length of the shortest computer program
that produces it as an output. As discussed in Cover and Thomas
(2012), this quantity generally cannot be computed; doing so
would be equivalent to solving the halting problem. However,
any example of such a program serves as an upper bound on

complexity. In what follows we describe our approach, which will
serve as one such upper bound.

Our approach is to follow on Kolmogoroff’s beautiful theory
for calculating complexity of subcortical neuroanatomy by
demonstrating codebooks that attain given logarithmic sizes
coupled to a computer program which decodes elements of the
codebook and attain the distortion measure. We also calculate

various rate-distortion curves showing the trade off in complexity
as a function of distortion.

The field of computational anatomy (Miller et al., 2014) has
been developing the random orbit model of human anatomy,
where a given realization can be generated from a template
(a typical example of an anatomical form) acted on by an
element of the diffeomorphism group. Such diffeomorphic
transformations can be generated from an initial momentum
vector (i.e., closed under linear combinations) though geodesic
shooting (Miller et al., 2006). Our work has largely focused on
brain imaging and neurodegenerative diseases, and we therefore
carry out an examination of subcortical gray matter structures.
By using a sparse representation of initial momenta supported
on anatomical boundaries, and learning Bayesian prior models
for initial momenta from large populations (Tward et al., 2016),
we can produce an efficient representation of anatomical form.

Our approach is to build sets of “codewords,” specific examples
of anatomical structures, and to encode a newly observed
anatomy as one these words. This continuous to discrete process
necessarily introduces distortion, and the relationship between
the number of codewords required (the rate of our code) and
this distortion measure is studied through rate distortion theory.
By relating distortion to geometric error, we can establish the
code rate required for errors at a certain spatial scale. This idea is
illustrated in Figure 1, using a simple example of describing the
hippocampus with a four bit code. In what follows we describe
how this procedure is used to characterize the complexity of
human anatomy at clinically relevant scales.

Much of the existing work in computational anatomy has
focused on addressing the complexity of human anatomy
through data reduction techniques. Foremost, the object of
study was moved from high dimensional images to smooth
diffeomorphisms via the random orbit model, with a fixed
template (Miller et al., 1997) or several templates (Tang et al.,
2013). Later, the construction of diffeomorphisms, typically
created from a time varying velocity field, was moved to
an initial velocity, with dynamics fixed via a conservation of
momentum law (Miller et al., 2006). Sparsity was introduced,
both optimized for specific data types (Miller et al., 2006), and
for ease of interpretation and computational burden (Durrleman
et al., 2014). Further, low dimensional models were developed
based on empirical distributions such as PCA (Vaillant et al.,
2004), or linear discriminant analysis (see Tang et al., 2014
for one example), or other techniques such as locally linear
embedding (Yang et al., 2011). Instead of continuing the trend of
dimensionality reduction, the novelty of this work is to address
discretization. Our specific contribution is to develop a coding
procedure informed by Bayesian priors, opening the study of
anatomy through medical imaging to information theoretic
techniques, and for the first time estimate the entropy of a
population of neuroanatomy.

2. METHODS

2.1. Empirical Priors
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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FIGURE 1 | The idea of the discrete coding is illustrated. Codewords, random realizations of anatomy, are shown at left in green. Two examples of real hippocampi

are shown in blue, with their closest codewords overlayed in green.

database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org.

Using 650 brains from the ADNI and the Open Access Series
of Imaging Studies (OASIS), we extract 12 subcortical graymatter
structures (left and right amygdala, caudate, hippocampus,
globus pallidus, putamen, and thalamus) using FreeSurfer (Fischl
et al., 2002) and create triangulated surfaces. For each structure,
population surface templates were estimated following (Ma et al.,
2010), and diffeomorphic mappings from template to each target
were computed using current matching (Vaillant and Glaunès,
2005). The subcortical structure surface templates are shown in
Figure 2.

These datasets were combined to provide a larger and
more diverse sample. This is useful for achieving our goal of
characterizing a population, as opposed to using more well
controlled samples for hypothesis testing between populations.

As described in Miller et al. (2006), these diffeomorphic
transformations are parameterized by an initial momentum
vector, with three components per triangulated surface vertex
at point xi ∈ R

3 denoted by pi0. This momentum defines a
smooth velocity field v which is integrated over time to construct
diffeomorphisms ϕ, as described by the following system of
equations.

v(x) =
∑

i

K(x− xi)pi (2)

FIGURE 2 | An example of the subcortical gray matter structures studied in

this work are shown. They include left and right amygdala, caudate,

hippocampus, globus pallidus, putamen, and thalamus.

ẋi = v(xi), x0 = template (3)

ṗi = −DvT(xi)pi (4)

ϕ̇ = v(ϕ), ϕ0 = identity, (5)

where K is a Gaussian kernel of standard deviation 6.5 mm.
The space of possible parameterizations is a vector space, in the
sense that it is closed under scalar multiplication and addition.
This substantial difference from the diffeomorphisms themselves,
which are only closed under composition, allows us to study
shape using multivariate Gaussian models.

The initial momentum vectors are analyzed using tangent
space PCA as proposed in Vaillant et al. (2004), and described
for this population in Tward et al. (2013). A low, B dimensional
representation is chosen by selecting the largest principal
components that account for 95% of the trace of the covariance
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matrix. The low dimensional approximation of our initial
momentum vector p0 is written

p0 = b0 +

B∑

i=1

β ibi

where p0, b
0, bi are vectors of dimension three times the number

of vertices, and β i are scalar parameters. As described in the
references, the basis vectors bi are chosen to be orthonormal
with respect to an inner product in the dual space of smooth

functions, 〈bi, bj〉 =
∑

k b
ikTK(xi0, x

j
0)b

jk = δij, where T denotes
the transpose of a vector inR

3, and δij is the Kronecker delta (1 if
i = j and 0 otherwise).

Our empirical prior model corresponds to choosing the
β i as independent Gaussian random variables with mean 0
and variance σ 2i, measured from the population. We create
one empirical prior for each of the 12 subcortical structures
examined.

2.2. Rate Distortion Theory for Multivariate
Gaussians
For readers unfamiliar with rate distortion theory we review
some standard terminology and results which will be necessary
for our purposes. More details can be found in Cover and
Thomas (2012).

Our empirical prior is a continuous distribution and must be
discretized to be understood in terms entropy and complexity.
This can be achieved through encoding our continuous random
vectors β i. That is, through constructing a mapping e(β) from
β ∈ R

B to a finite set S. Here S is chosen to be the
set of binary strings of fixed length, as shown in the left
side of each subfigure in Figure 1. Associated to this encoder
is a decoder, a mapping e(s) from s ∈ S back to R

B.
Because S is finite, d(e(β)) can take only a finite number of
values in R

b, which we enumerate as β̂ i for positive integers
i and refer to as codewords. The distribution of d(e(β)) is
therefore a weighted sum of Dirac measures at these specific
codewords β̂ i. Examples of anatomies represented by a set of 16
codewords are shown toward the left side of each subfigure in
Figure 1.

One can reason that an encoder/decoder pair is good if β

is similar to d(e(β)) on average. The difference between the
two is known as distortion. Because it admits well characterized
solutions, we measure distortion using sum of square error in
this work. Distortion can be minimized if we discretize β by
mapping it to its closest codeword. In other words, we choose
the encoder by

e(β) = si, the i
th string in S,

where i = argmin
j

|β − β̂ j|2,

FIGURE 3 | Cummulative variance as a function of dimensions for anatomical priors. In lexicographic order: amygdala, caudate, hippocampus, globus pallidus,

putamen, thalamus.
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for | · |2 the norm squared in R
B, and the decoder by

d(si) = β̂ i.

Furthermore, one notices that lower distortion can be achieved
with larger sets S. We refer to the size of S as |S| = 2R for a
code rate R. We note that R is the length of the binary strings
in S, so that the examples in Figure 1 have a rate of R = 4
bits.

We aim to identify the minimum number of codewords
that are required to achieve a given amount of expected
distortion D. The best achievable code is characterized by the
rate distortion curve (D as a function of R). This can be
shown to be equal to the minimum of the mutual information
between β and d(e(β)) while enforcing distortion less than or
equal to D (i.e., the shortest code respecting the distortion
constraints is the worst one: that with the smallest mutual
information with β). This definition, while arcane, can be
used to compute rate distortion curves in closed form in
several situations. In general this curve can be approached
asymptotically, by coding blocks of N structures simultaneously
using 2NR codewords, considering the average distortion, and
letting N → ∞.

The details of Gaussian rate distortion curves can be found in
Cover and Thomas (2012) chapter 13. For single variate Gaussian

random variables with square error distortion the rate distortion
curve can be computed in closed form:

R(D) =

{
1
2 log2

σ 2

D , 0 ≤ D ≤ σ 2

0, D > σ 2

Note that if the desired distortion is greater than the variance, we
need only 1 codeword, or R = 0. If this 1 codeword is the mean,
the expected distortion is equal to the variance. Otherwise, we
require more codewords in a manner increasing logarithmically
with the variance.

We finally specify how our codewords are chosen. This
minimal distortion can be achieved for codewords chosen as
independent realizations of a Gaussian random variable. We can
motivate this as follows. Let the joint distribution of data β and
codewords β̂ be described by drawing β from the distribution
β̂ ∼ N (0, σ 2 − D), and β = β̂ + err with error err ∼

N (0,D). This coding scheme has square error distortion at most
D. The mutual information between β and β̂ can be calculated

as 1
2 log

σ 2

D , the value of the rate distortion curve. On the other
hand, if the allowable distortion D > σ 2, we can simply choose
β̂ = 0 and achieve R(D) = 0.

FIGURE 4 | Examples of the first two modes of variability in our empirical prior for left side structures. The mean shape is shown in the center. Each step to the right

(top) moves one standard deviation in the direction of the first (second) mode of variation. In lexicographic order: amygdala, caudate, hippocampus, globus pallidus,

putamen, thalamus.
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This approach can be extended to B independent Gaussians
using the reverse water filling method.

Di =

{
λ, λ < σ 2

i
σ 2
i , λ ≥ σ 2

i

λ s.t.

B∑

i=1

Di = D

The optimum corresponds to choosing a fixed amount of
distortion per dimension for variables with “large” variance
(σ 2

i > λ), and no additional codewords for those of “small”
variance.

This leads to the rate distortion curve

R(D) =

B∑

i=1

1

2
log

σ 2
i

Di
(6)

which can be asymptotically approached (coding blocks of N
anatomies simultaneously, and allowing N → ∞) with a
random code, with the ith component of a codeword generated
according to

β̂ i ∼

{
N (0, σ 2

i − λ), σ 2
i ≥ λ

N (0, 0), σ 2
i < λ

The reverse waterfilling method is named by imagining each
independent Gaussian to be represented by an object of height σ 2

i
in a room with rising water. As the water rises, those Gaussians
with small variance become submerged. Everything below the
surface represents distortion, a fixed amount for each of the
variables with large variance, and amount equal to its variance
for the others. We allow the water to continue to rise until the the
total distortion is given by D.

For our experiments, from the empirical prior for each
subcortical structure a set of codewords is generated for rates
from 0 to 32 bits, and for coding N = 1 and N = 2 examples
simultaneously.

2.3. Complexity at Clinically Relevant
Spatial Scales
By shooting our template with the initial momentum from a
given codeword, we can compute the expected geometric error
between an anatomical structure defined by our continuous
model and its discretely coded version. Error in units of mm
are considered, using Hausdorff distance between surfaces (max
error between closest pairs of vertices between realization and
codeword). We measure geometric error as a function of rate,
fit this curve to a simple model, and compute the code rate
required at clinically relevant scales. Owing to the computational

FIGURE 5 | Square error distortion as a function of code rate for left side structures. Coding one structure is shown in magenta, and two structures simultaneously is

shown in cyan. The rate distortion curve for a multivariate Gaussian model is shown in black.
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FIGURE 6 | Corresponding data from Figure 5 for right side structures.

FIGURE 7 | Hausdorff distance between example surfaces and closest codeword. Coding one structure is shown in magenta, and two structures simultaneously is

shown in cyan. The black curve is a simple fit through the data (not a model), and is used for estimating code rate at 1 and 1.5mm geometric error.
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complexity of looping through 232 codewords and solving system
Equation (2), this procedure is repeated for 10 observations of
each subcortical structure.

3. RESULTS

3.1. Empirical Priors
Empirical prior models for the 6 structures examined are
quantified in terms of their variance spectra in Figure 3. The
number of dimensions that captured 95% of the trace of the
covariance matrix for each left (right) structure was found to
be: amygdala 21 (22), caudate 26 (26), hippocampus 31 (32),
globus pallidus 24 (24), putamen 27 (25), thalamus 39 (41). These
numbers are quite similar for the left and right hand sides of the
same structure. Examples of the first two modes of variability are
shown for the left side structures in Figure 4.

3.2. Rate Distortion Calculations
For each subcortical structure we calculate square error
distortion as a function of code rate. For coding one structure
at a time, we use codes with rate from 0 to 32 bits. For
coding two structures at a time, we use codes with rate from
0 to 16 bits. The results of these calculations are shown for
left side structures in Figure 5 and for right side structures in
Figure 6. Mean and standard error for coding one structure is
shown in magenta, and that for two structures simultaneously

is shown in cyan. The two results are seen to be similar,
indicating that not much is gained by encoding several structures
simultaneously, since the coefficients β are already high (as
compared to 1) dimensional. For each structure, we calculate
the rate distortion curve described by Equation (6) from the
corresponding multivariate Gaussian. This represents a lower
bound on the expected value of the data shown. That our data
is close to these curves serves as an indication that our procedure
is valid.

3.3. Complexity at Clinical Scale
For each structure examined, we consider the geometric
error between our codeword and the anatomy they represent.
We quantified this through the Hausdorff distance between
triangulated surfaces. Mean and standard error of this data is
shown for left side structures in Figure 7 and for right side
structures in Figure 8.

A simple curve was fit through the data and used to estimate
the code rate required for 1 and 1.5mmofmaximum error, values
that are on the order of 1 voxel in a typical clinical MRI. These
rates are shown in Figure 9.

4. CONCLUSION

The complexity of the subcortical gray matter structures we have
examined range from the order of 5–35 bits for 1.0 mm geometric

FIGURE 8 | Corresponding data from Figure 7 for right side structures.
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FIGURE 9 | Code rate required for 1 mm (Left) and 1.5 mm (Right) geometric error.

error, and 0–12 bits for 1.5 mm geometric error. Note that at
1.5 mm error, a 0 bit code is sufficient for the putamen. Its low
amount of variability means it can be represented by an average
template only at this accuracy.

While using up to 232, or more than 4 billion, codewords
may seem excessive, this still represents a huge amount of data
compression. Binary segmentation images, contain roughly 1003

voxels, or the order of one million bits. The triangulated surfaces
have roughly 1,000 vertices, each component stored to double
precision, which correspond to about 192,000 bits. We have
shown that 32 bits, or an amount of data equivalent to one
single precision floating point number, is enough to encode
the variability of gray matter subcortical structures at clinically
relevant spatial scales.

The potential for this work to impact clinical practice stems
from the fact that entropy can be used to devise lower bounds
on the variance of estimators, and that information can be used
as an important figure of merit. When this work is extended
to considering mutual information between anatomical form
and diagnostic status, it could directly influence clinical decision
making and optimization of imaging procedures.

For example, the Image Gently campaign (Goske et al., 2008),
a program designed to reduce radiation exposure to pediatric
patients, suggests first to “reduce or ‘child-size’ the amount
of radiation used” and second to “scan only when necessary”
through a discussion of a risk-benefit ratio. Because lower
radiation doses can be used at lower resolution, the analysis
presented as a function of resolution could lead to appropriately
choosing a dose level for a given level of certainty required.
Further, a scan could be avoided if it will not reduce entropy
about diagnostic status sufficiently.

Turning to imaging optimization, task based analysis of
image quality (Sharp et al., 1996) has been used for many
years, but figures of merit have been largely designed to reflect

the performance of idealized observers on simple detection or
estimation tasks (Barrett et al., 1995). Anatomical variability is
often described simply as stationary power law noise (see for
example Burgess, 1999). Mutual information between observed

anatomy and diagnostic status could be used as a figure of merit
for system design that appropriately accounts for anatomical
variation and models realistic imaging tasks.

One limitation of this study is that we have encoded
only a small number of structures. Due to the computational
complexity of searching through each codeword and solving a
high dimensional geodesic shooting equation in each case, we
limited the number examined. As this work progresses, we will
include larger samples. In what follows, we will restrict ourselves
to disease specific populations to measure how entropy changes
with disease state. This will enable calculation of the mutual
information between anatomical phenotype and disease state as
shown in Equation (1).
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We explored the performance of structure-based computational analysis in four

neurodegenerative conditions [Ataxia (AT, n = 16), Huntington’s Disease (HD, n = 52),

Alzheimer’s Disease (AD, n = 66), and Primary Progressive Aphasia (PPA, n = 50)], all

characterized by brain atrophy. The independent variables were the volumes of 283

anatomical areas, derived from automated segmentation of T1-high resolution brain

MRIs. The segmentation based volumetric quantification reduces image dimensionality

from the voxel level [on the order of O(106)] to anatomical structures [O(102)] for

subsequent statistical analysis. We evaluated the effectiveness of this approach

on extracting anatomical features, already described by human experience and a

priori biological knowledge, in specific scenarios: (1) when pathologies were relatively

homogeneous, with evident image alterations (e.g., AT); (2) when the time course was

highly correlated with the anatomical changes (e.g., HD), an analogy for prediction; (3)

when the pathology embraced heterogeneous phenotypes (e.g., AD) so the classification

was less efficient but, in compensation, anatomical and clinical information were less

redundant; and (4) when the entity was composed of multiple subgroups that had some

degree of anatomical representation (e.g., PPA), showing the potential of this method

for the clustering of more homogeneous phenotypes that can be of clinical importance.

Using the structure-based quantification and simple linear classifiers (partial least square),

we achieve 87.5 and 73% of accuracy on differentiating AT and pre-symptomatic

HD patents from controls, respectively. More importantly, the anatomical features

automatically revealed by the classifiers agreed with the patterns previously described

on these pathologies. The accuracy was lower (68%) on differentiating AD from controls,

as AD does not display a clear anatomical phenotype. On the other hand, the method

identified PPA clinical phenotypes and their respective anatomical signatures. Although

most of the data are presented here as proof of concept in simulated clinical scenarios,

structure-based analysis was potentially effective in characterizing phenotypes, retrieving

relevant anatomical features, predicting prognosis, and aiding diagnosis, with the

advantage of being easily translatable to clinics and understandable biologically.
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INTRODUCTION

A longtime dream of clinicians is to use computational tools
for aiding decisions. Like using the spelling and grammar
checkers when writing a text or Google for searching, clinical
computational tools would neither define purposes nor change
goals, but add a higher level of quality and speed to the
results. There are three must-haves for computational-aid tools:
speed, automation, and, of course, efficacy. The development
of such tools for medical records and imaging, in particular, is
extremely complex, involving knowledge in multiple domains.
Consequently, more than two decades after the initial attempts
(for review and perspectives see Orphanoudakis et al., 1996;
Akgul et al., 2011; Hwang et al., 2012; Kalpathy-Cramer et al.,
2015; Pinho et al., 2017; Spanier et al., 2017), no system is yet
adequately suited for practical daily use. The key to translating
the computational models to radiological practice is to resolve the
so-called semantic gap: “the differences between image similarity
on the high level of human perception and the low level of
a few numbers” (Depeursinge et al., 2011). Three basic steps
are involved: precise quantification, optimal feature selection
and combination, and, eventually, meaningful applications and
testing.

The first step, image quantification, is straightforward if one
is simply interested in the intensity of a given voxel. What
is not simple, however, is to extract some biological meaning
from the noisy voxel-by-voxel information, which can be of
the order of 106, considering only T1-weighted images, one
of the multiple MRI contrasts. There are numerous papers on

voxel-based analysis (VBA) in which human involvement is
eliminated on the assumption that a human being’s ability to
detect abnormality is neither sensitive nor reliable. A PubMed
search for “VBA,” “brain,” and “MRI” results in more than 2,300
publications in the last 10 years. These studies provide a wealth
of descriptive imaging results that are usually not perceptive at
an individual level and fail to be translated to clinical practice,
which meanwhile, remains supported by human judgment. If we
flip this approach 180◦ by asking: Can a computational approach
describe abnormalities that agree with human perception?,
we find the number of publications to be surprisingly small.
A PubMed search for “structure-based analysis” or “atlas-
based analysis,” “brain,” and “MRI” results in fewer than 200
publications in the last 10 years. An old strategy to replicate
human perception is to group voxels in regions of interest (ROIs)
and label them according to existing anatomical knowledge. For
example, all the voxels associated with certain x, y, z coordinates
are called “thalamus,” or “frontal lobe,” or “internal capsule,” and
so on. This is what radiologists do, increasing the signal-to-noise
ratio and adding a biological domain to their subjective analysis.
However, objectively quantifying, structurizing, and recording
the information for subsequent use is much more complex. In
addition, defining ROIs in multiple subjects multidimensionally
is just not feasible; precise automated tools are vital.

This structure-based analysis is linked to the second step to
solve the semantic gap: the feature selection and combination.
Here, two components are essential: the existing knowledge of
normal and abnormal patterns and the ability to recognize these

patterns in future patients. For example, when a patient has
striatum atrophy and motor disabilities, Huntington’s Disease
(HD) is a possible diagnosis because physicians learned that
these two features are associated with this disease. In addition
to centuries of pathophysiological knowledge, what is hidden
behind this apparently simple conclusion is an enormous amount
of comprehension about normal variation. In order to conclude
that those regions, in an individual of a certain age and gender,
are smaller than expected, an analysis of multiple granularity
levels (looking to the caudate, or the basal ganglia, or the deep
gray matter, or the lobe, or the whole brain), and multiple image
domains (volume, intensity, shapes), and finally the combination
of features in different fields (clinical and imaging) are necessary.
This leads to the amazing capability of pattern recognition
that humans have and that machine-learning methods try to
replicate.

Finally, even if we are able to quantify structures precisely in
different levels and domains, to compare individual cases with
large and variable normal and pathological databases, and to
extract and combine important features efficiently, we still have
to suit the computer-aid tools to the appropriate applications and
test them. If the goal is a diagnostic-aid tool, this may be the
most challenging step because the gold-standard is the clinical
diagnosis, which does not necessarily reflect the actual situation.
In addition, the correlation between pathology and anatomy may
be weak or indirect. This is usually the case in pathologies in
which the anatomical changes are subtle or happen later, or
when the time course is unknown, or in those that embrace
heterogeneous phenotypes. These cases are challenging and may
reduce the efficiency of classification models, but they also offer
an opportunity to design tools for binning a given entity into
subgroups, for example, that may be of clinical relevance.

Previously, our group and others advanced in the first
two steps (quantification and feature extraction). The brain
quantification and segmentation accuracy improved drastically
in this decade due to the advances in multi-atlas technologies
(Warfield et al., 2004; Artaechevarria et al., 2009; Langerak et al.,
2010; Lotjonen et al., 2010; Sabuncu et al., 2010; van Rikxoort
et al., 2010; Jia et al., 2012; Wang et al., 2013), allowing use of
state-of-the-art techniques for quantification and extraction of
clinically meaningful image features. We confirmed the accuracy
of these techniques in different populations and protocols (Liang
et al., 2015). We then tested whether the structured anatomical
data extracted actually captured the anatomical features that can
be perceived by trained clinicians (Faria et al., 2015). In the
present study, we advance to the next step and report progress
on feature selection, combination, and classification, showing
the potential of structure-based analysis for computer-aided
decisions.

This study focused on the brain MRIs of patients with these
neurodegenerative conditions: Ataxia (AT), Huntington’s
Disease (HD), Alzheimer’s Disease (AD), and Primary
Progressive Aphasia (PPA). Briefly, Ataxia, or more specifically,
the Spinocerebellar ataxia type 6 (SCA-6) which is considered
here, is an autosomal dominant disorder that is characterized by
a slowly progressive cerebellar ataxia, dysarthria and nystagmus
(Zhuchenko et al., 1997). The cerebellar atrophy, demonstrated
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by several prior MRI studies, is a constant (Butteriss et al., 2005)
and relates with clinical manifestations (Eichler et al., 2011).

HD is a progressive lethal neurodegenerative disorder
characterized by movement disorders and progressive cognitive
and psychological manifestations (Huntington, 1872). The
anatomical hallmark of HD is striatal atrophy. Although the
atrophy may start as early as 15 years before the onset of
motor symptoms, and continue through the pre-manifest period
(Tabrizi et al., 2009, 2012, 2013; Paulsen et al., 2014a,b), it is
mostly undetectable by clinical evaluation of MRIs, at individual
level, in pre-symptomatic patients. The early quantitative
characterization of the atrophy, both at group and individual
level, is an important piece of information for the development of
disease-modifying treatments (Faria et al., 2016; Wu et al., 2016).

Alzheimer disease (AD) is a chronic neurodegenerative
disease characterized by short-term memory loss in the early
disease stages and progressive cognitive and functional deficits
as the disease advances. It is actually not a single disease but a
clinically, anatomically and biologically heterogeneous disorder
encompassing a wide spectrum of cognitive and anatomical
profiles (Zhang et al., 2016). Although a classical pattern of
atrophy is reported for AD as a group, first noticeable in the
medial temporal lobe (including hippocampus and entorhinal
cortex), eventually spreading through the remainder of the brain
(Apostolova et al., 2007), this pattern is not highly discriminant
at individual level (Frisoni et al., 2017). In addition, the atrophy
is usually clinically evident long after the cognitive deficits
start. The heterogeneity of phenotypes and subtleness of early
anatomical changes are extra challenges for the development of
therapeutics and prognostic models.

Primary progressive aphasia (PPA) is a clinical syndrome
characterized by insidious progressive language impairment that
is initially unaccompanied by other cognitive deficits (Mesulam,
1982). It is caused by various neurodegenerative diseases and has
a highly variable course. There are three main variants that are
distinguished by their key features and supporting brain imaging
characteristics, which are generally associated with distinct
underlying pathologies (Gorno-Tempini et al., 2011): agramatic
(Av) is supported by left posterior frontal and (Zhuchenko et al.,
1997) insular atrophy; semantic (Sv) is associated with left greater
than right anterior and inferior temporal atrophy; logopenic (Lv)
is associated with posterior temporal and inferior parietal atrophy
(Rohrer and Rosen, 2013; Wilson et al., 2016). The identification
of the variant provides some clues regarding the subsequent
course (Leyton et al., 2016), and would be of great value for
prognosis in the initial stages. However, the early classification is
particularly challenging because the clinical deficits are common
to all three variants and the anatomical changes are still clinically
silent. Methods for phenotypically characterization, particularly
at early phases, would be of great assistance.

The choice of these clinical entities was due to the fact that
the common feature (atrophy) varies in extension and location,
providing an appropriate dynamic range of abnormalities. In
addition, the atrophy is mostly visible, which enables validation
by qualitative human evaluation. The overall goal of this study
was to test the performance of structure-based computational
analysis on extracting anatomical features, already described by

human experience and a priori biological knowledge, in specific
patient populations. The variables in question were the volumes
of 283 structures. We showed the potential of the structure-
based analysis on characterization and classification (1) when
pathologies were relatively homogeneous, with evident image
alterations (e.g., Ataxias); (2) when the time course was highly
correlated with the anatomical changes (e.g., HD), an analogy
for prediction; (3) when the pathology embraced heterogeneous
phenotypes (e.g., AD) so the classification was less efficient but,
in compensation, anatomical and clinical information were less
redundant; and (4) when the entity was composed of multiple
subgroups that had some degree of anatomical representation
(e.g., Primary Progressive Aphasia), showing the potential of this
method for the clustering of more homogeneous phenotypes that
can be of clinical importance.

MATERIALS AND METHODS

Database
The overall goal was to test the performance of structure-
based computational analysis in extracting anatomical features,
previously described by human experience and a priori biological
knowledge, in specific patient populations.

The data consisted of high-resolution T1-weighted brain
MRIs (MPRAGE), for five groups of individuals: healthy
individuals (controls, n = 208), AT (n = 16), HD (n = 52),
AD (n = 66), and PPA (n = 50) (Table 1). The data
from healthy individuals (controls) were obtained from three
sources: (1) internal datasets from Johns Hopkins University
(JHU), (2) International Consortium for Brain Mapping (ICBM,
loni.usc.edu/ICBM), and (3) the AD Neuroimaging Initiative
(ADNI, adni.loni.usc.edu). The control dataset included more
than 10 different protocols (including different machine
manufacturers, strength of magnetic field, and resolution), thus
replicating the heterogeneity encountered in clinical scenarios.
Individuals with AT were from JHU and had spinocerebellar
ataxia type 6 (SAC6). Individuals with HD, also from JHU, were
grouped into three different stages, according to their CAG-
Age Product (CAP) scores (Penney et al., 1997) and clinical
symptoms: pre-symptomatic far from onset (n = 23), pre-
symptomatic close to onset (n = 16), and early symptomatic
(n = 13). Individuals with AD, from JHU and ADNI, were
diagnosed according to new clinical guidelines (Albert et al.,
2011; Jack et al., 2011; McKhann et al., 2011; Sperling et al., 2011).
Individuals with PPA, from JHU, were diagnosed and classified
into three variants: logopenic (Lv, n= 18), semantic (Sv, n= 16),
and agrammatic (Av, n= 16), based on current clinical guidelines
(Mesulam, 1982; Gorno-Tempini et al., 2011). All the data had
previously been de-identified, and the participants consented to
enrolling by written consent.

Image Processing
In the present study, quantification of regional brain volume was
performed on a structural level, which involved the mapping of
each brain to 29 templates in which the structures in question had
previously been labeled. The brain mapping was performed with
large deformation diffeomorphic metric mapping (LDDMM)
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TABLE 1 | Demographic and protocol information.

Group Sample Age range (Years) Mean age ± St.dev. (Years) Male/Female Protocols (Manufacturer, Field Strength (T), Voxel

Size (mm), Sample)

Controls 208 20–95 57.9 ± 18.8 98/110 Phillips, 1.5, 1 × 0.875 × 0.875, 28

Phillips, 1.5, 1.2 × 0.94 × 0.94, 9

Phillips, 3, 1 × 1 × 1, 7

Phillips, 3, 1.2 × 1 × 1, 26

Phillips, 3, 0.9 × 0.9 × 0.9, 52

Phillips, 3, 1.1 × 0.83 × 0.83, 16

GE, 1.5, 1.2 × 0.94 × 0.94, 6

GE, 3, 1.2 × 1.02 × 1.02, 6

Siemens, 1.5, 1.2 × 1.25 × 1.25, 7

Siemens, 3, 1 × 1 × 1, 28

Siemens, 3, 1.2 × 1 × 1, 23

Ataxia 16 48–73 60.8 ± 6.8 13/3 Phillips, 3, 1.1 × 0.83 × 0.83, 16

HD

Far from onset 23 21–51 36.8 ± 9.7 10/13

Near to onset 16 20–55 45.1 ± 8.6 13/3 Phillips, 3, 0.9 × 0.9 × 0.9, 52

Early symptoms 13 30–59 50.8 ± 7.9 7/6

AD 66 55–93 74 ± 10.5 40/26 Siemens, 3, 1.2 × 1 × 1, 27

Siemens, 1.5, 1.2 × 1.25 × 1.25, 7

Phillips, 1.5, 1.2 × 0.94 × 0.94, 7

Phillips, 3, 1.2 × 1 × 1, 8

GE, 1.5, 1.2 × 0.94 × 0.94, 9

GE, 3, 1.2 × 1.02 × 1.02, 8

PPA

Lv 18 51–79 68.3 ± 5.4 10/8 Siemens, 3, 1 × 1 × 1, 21

Sv 16 57–77 65.5 ± 6.5 11/5 Phillips, 3, 1.2 × 1 × 1, 29

Av 16 48–84 68.2 ± 10.7 9/7

(Wang et al., 2007; Ceritoglu et al., 2009; Djamanakova et al.,
2013). Inversely, the labels were warped to each subject space
and then fused by a likelihood fusion algorithm, which took into
account both the location and intensity information of each label
(Langerak et al., 2010; Sabuncu et al., 2010; Wang et al., 2013).
The details of this method, the atlas creation, and the validation
in diverse protocols and anatomical phenotypes are described in
our previous publications (Tang et al., 2013; Liang et al., 2015; Ma
et al., 2015; Wu et al., 2016).

By this multi-atlas automated brain segmentation tool, the
raw images, which consisted of more than 1 million voxels were
converted to 286 structural representations, of which the volumes
were measured. Based on the hierarchical relationship defined
in the atlas, these structures can be combined to create five
ontological levels with 8–19–53–125–286 structures respectively
(Figure 1). Details of the hierarchical-ontological grouping are
found in our previous publications (Djamanakova et al., 2014;
Wu et al., 2016). One of the reasons for choosing the structure-
based multi-level design is that the physician’s analysis does not
operate at the voxel level, but at the structural level, migrating

freely along the hierarchy. The choice of level is a trade-off
between regional specificity and noise: in higher levels, more
structures are defined and spatial specificity increases, yet noise
also increases. In hypothesis-driven studies, the choice of the
level depends on the interest in a given structure. In data-driven
studies, the data can be analyzed using all ontological levels
combined, or at each level independently. Our present analyses
were performed according to the latter approach.

Statistical Analysis and Outputs
We used partial least square—discriminant analysis (PLS-DA) to
classify individuals in three different analyses: (1) AT vs. controls,
(2) HD vs. controls, and (3) AD vs. controls. As many different
protocols as possible were included for each analysis, yet keeping
the individuals paired by age, gender, and image protocol in each
group compared. The PLS-DA inputs were the regional volumes
of brain structures in the five ontological levels, normalized by
the intracranial volume. As the classification accuracy increased
with the level of granularity and converged at level 3, the
results are reported at this level. Level 3 is a medium level of
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FIGURE 1 | Schematic representation of the automated image parcellation using a multi-atlas likelihood fusion (MALF) algorithm. Each brain image is mapped to each

atlas, and the pre-defined labels are correlated with each original brain. The labels can be grouped into five ontological hierarchical levels (L1–L5). By this process, the

images are converted to matrices of structures by image features; in the present study, we used the regional volumes.

granularity, where the whole brain is segmented in lobes, deep
gray matter, major deep white matter structures, ventricles, and
sulci (Djamanakova et al., 2014). It matches well the radiologists
reading (Faria et al., 2015), and the segmentation reproducibility
is high (Djamanakova et al., 2013; Faria et al., 2015; Liang et al.,
2015).

We opted for using simple linear classifiers to reduce the
chance of overfitting, increase the potential for generalization of
the results, and facilitate the translation to clinical practice, which
is our aim, rather than the greatness of the classification. We
could have obtained higher classification accuracy using more
elaborate classifiers (such as a support vector machine and black-
box models). Briefly, PLS is the least restrictive extension of
the multiple linear regression models, therefore applicable to
situations where the number of predictor variables exceeds the
number of observations. As in the principal component analysis
(PCA), the scores, or components, are the sets of values of linearly
uncorrelated variables and the regression coefficients (loadings or
weights) reflect the importance of the predictor variables in the
model.

In each analysis, the samples were divided in training set, in
which the classifier was built, and test set, in which the accuracy
was tested. The validation in an independent test set reduces the
impact of overfitting by biased variable selection and results in
more realistic classification accuracy. In addition to the classifier
accuracy, the outputs of interest were (1) the anatomical features

important for the classification (related to the PLS loading
weights) or, in other words, the regional pattern of atrophy that
characterizes each group, and (2) the individual’s chances of
belonging to different groups, which can be of direct importance
for clinical guidance. Secondary outputs of interest are (1) the
distance among individuals in the principal component space,
which can be used for image retrieval of individuals with similar
phenotypes, and (2) the individual z-score maps of atrophy.

In the case of PPA, we qualitatively explored a possible natural
segregation among the phenotypes with PCA. The inputs were,
again, the regional volumes of brain structures, normalized by the
intracranial volume. We then assessed the potential of our tools
on subdividing groups according to anatomical phenotype, using
hierarchical clustering.

RESULTS

Ataxia: Extraction of Homogeneous and
Noticeable Image Features
The analysis performed on 16 individuals with ataxia (8 for
training, 8 for testing; Supplementary Table), and controls paired
by age, gender, and image protocol achieved accuracy of 0.875 in
differentiating individuals with AT from controls. Figure 2 shows
the PLS-DA plot (scores vs. loadings) and the two components
used by the classifier. Component 1 is mostly responsible for
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FIGURE 2 | Biplot of scores and loadings from a PLS-DA analysis between controls (C) and patients with ataxia (at). The loading weights of the regional volumes, or

the importance of regional atrophy in the classifier, are color-coded on the axial MRIs (radiological view). This gives, at a glance, a snapshot of the important features of

the disease. In this case, the volume of the cerebellum (component 1) and brainstem/mesencephalon (component 2) had the highest absolute weights, in agreement

with the physiopathology of ataxia. At the bottom left, the classifier accuracy in an external test set is reported. The actual brain images of the patients used in the

model are shown.

the segregation between the two groups. The cerebellum had
the highest loading, i.e., the cerebellar atrophy played a major
role on the classification, in agreement with the well-known
and apparent cerebellar atrophy in ataxia. The highest absolute
loadings of component 2 are diffusely distributed among the
frontal, temporal and parietal lobes; it directly correlated with the
degree of atrophy on these lobes, as measured by their volumetric
z-score (Pearson rho of 0.72, 0.67, 0.61 for frontal, temporal, and
parietal, respectively), and inversely correlated with age (rho =

−0.77). Therefore, we infer that component 2 reflects age-related
atrophy in individuals with AT.

Huntington’s Disease: Prediction
We tested whether we could correctly classify individuals with
pre-symptomatic HD using the anatomic features of individuals

with early symptomatic HD. The goal was to use HD as a
model to predict conversion to a specific anatomical phenotype
rather than to diagnose HD, which can be done precisely by
genetic tests. The classifier was built with individuals with early
symptoms (n = 13) vs. paired controls, and tested in pre-
symptomatic individuals close (n = 16) and far (n = 23) from
the onset, vs. paired controls (Supplementary Table). Again, two
components were enough to create a model with 73% accuracy
in classifying pre-symptomatic individuals near to disease onset
(Figure 3). The highest loading weights were in the striatum, as
expected, based on the disease physiopathogeny. As described
by previous studies, striatum atrophy can barely be determined
at the individual level on the pre-symptomatic stage, although
it can be detected quantitatively, at the group level, up to 15
years before clinical onset. In addition, the early-symptomatic
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FIGURE 3 | PLS-DA biplot of controls (C) and patients with early symptoms of Huntington’s Disease (HD). The deep gray matter has the highest absolute weight, in

agreement with the anatomical pattern typically described and visually detectable. At the bottom left, we report the accuracy of this model on classifying

pre-symptomatic individuals close to HD onset. The actual brain images of two participants are shown.

HD group is anatomically heterogeneous, with some individuals
presenting very clear striatum atrophy and others being very
close to normal (Figure 3). This indicates that in certain disease
types or at certain stages of a disease, the anatomy may not
encode enough information to provide diagnosis for all patients.
Regardless, we were effective enough in capturing and using
this feature for the individual classification. The model did not
achieve accuracy significantly higher than the by-chance for
classifying pre-symptomatic individuals far from HD onset.

Alzheimer’s Disease: Classification of
Diseases with Subtle or Heterogeneous
Abnormalities
Unlike in ataxia and HD, the atrophy in most of the
neurodegenerative diseases is detectable at the late stage of the
disease and is regionally heterogeneous. This is the case with
AD. We achieved a reasonable accuracy (69%) in diagnosing
AD (model built in 33 AD individuals vs. paired controls, and
tested in independent 33 AD individuals vs. paired controls;

see Supplementary Table), significantly higher than the by-
chance classification. However, there was an enormous overlap
among groups, as notable in the PLS-DA plot and in the
probability plot that represents the chance of each individual’s
belonging to each group (Figure 4). The loading-weights map
showed no distinguishing features; the weights are comparable
and widespread, indicating that the anatomy in AD is mildly
or heterogeneously affected, which can be confirmed by visual
inspection of the brain MRIs.

Primary Progressive Aphasia: Binning by
Anatomical Phenotype
As mentioned in the previous section, increasingly therapies
are targeting the early stages of neurodegenerative diseases.
However, accurate diagnosis is more difficult because of the
lack of clear and/or specific clinical deficits. At this stage, the
initial stratification of the heterogeneous patient population is of
critical importance. The difficulty arises because potential patient
subgroups are degenerate both in the clinical and anatomical
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FIGURE 4 | PLS-DA biplot of controls (C) and individuals with AD (A). The overlap between groups is likely due to the heterogeneity and subtleness of imaging

features (see the map of loading weights at the bottom left). The anatomical images (brain MRIs) show that individuals at the extremes of the groups show marked

anatomical features, while those in the intermediary zone have dubious (both quantitative and qualitative) findings. The colors overlaid in the brain MRIs code the

z-scores of the volume (i.e., the regional degree of atrophy); blue is atrophy, red is enlargement. They also show how the quantitative information can be delivered in

an understandable way. Using the higher level of granularity, it was possible to create a model with accuracy greater than by chance (bottom right), although lower

than in the cases reported before. This was evidenced by the probability plot’s showing less segregation between individuals of different groups (bottom center).

domains. In this case, we are interested less in correlation
between present diagnosis and anatomical features (because
the diagnosis based on clinical information cannot separate
important subgroups) and more in expanding the patient
populations using both clinical and anatomical manifestations,
potentially identifying a way to define subgroups. Binning a
disease into subgroups may facilitate the design of therapies
and the creation of predictive models because the subgroups
may be related to specific pathological substrates, deficits or
prognoses. We used PPA as a model system because of the
existence of three well-known clinical variants. The knowledge of
their anatomical correlates, albeit loose, could serve as our gold
standard. In the PCA of the anatomical features (the regional
volumes) there was a natural segregation into three clinically
labeled groups (Figure 5). By clustering the data using only the
anatomical features, we found groups that accurately agreed
with the variant diagnosis (Rand Index = 0.71). Then, by using
PLS-DA and extracting the loading weights, we confirmed that
the features for automated classification according to clusters
agreed with those for the classification according to clinical
diagnosis. In addition, these anatomical features agreed with
what is clinically defined for the variants, such as predominance
of atrophy in the left temporal lobe for the Semantic variant, in
the inferior parietal for the Logopenic, and in the inferior frontal
lobe and the insula for the Agrammatic (Gorno-Tempini et al.,
2004).

DISCUSSION

We evaluated the performance of structure-based computational
analysis on extracting anatomical features, previously described
by human experience and a priori biological knowledge, in
specific patient populations. Previously, we tested the robustness
of our automated quantification approach against different
image protocols and scanners, using subjects with different
patterns and degrees of brain atrophy, and compared our
conclusions with those of trained clinicians using visual analysis
(Djamanakova et al., 2013; Faria et al., 2015; Liang et al.,
2015). In the present study, we tested whether we could classify
individuals and anatomically characterize different diseases in
simulated clinical scenarios. Our database contains diverse image
protocols and scanners. The demographic information taken into
account by the linear classifiers include only age and gender,
which are always clinically available. Although we could create
better classification models by adding other clinical information,
homogenizing the dataset, or using classifiers more sophisticated
than PLS-DA, this would reduce the potential for generalization
and translation to real clinical situations. In summary, rather
than the greatness of classification, our aim was to create models
robust enough to be translated to clinical practice, and at least in
a first step, perform as well as clinicians in terms of extraction
of important anatomical features and detection of anatomical
patterns, helping to fill the semantic gap.
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FIGURE 5 | Potential of detecting subgroups in heterogeneous pathologies. The top row is a supervised analysis, with knowledge about the PPA variant; the bottom

row is unsupervised, based only on image features. The colors in the plots code three PPA variants (L = logopenic, S = semantic, A = agrammatic). The PCA plot

(top left) shows a natural segregation between the variants. Without any clinical information, the images are clustered with high accuracy (Rand Index = 0.71) (bottom

left). The anatomical features extracted in the PLS-DA model (center) when patients are grouped by clinical information (top right) or clustered by image features

(bottom right) are very similar, and agree with the anatomical features described for the variants, indicating that both methods yield groups based on the same

anatomical pattern.

Detection of Abnormal Imaging Patterns
In a disease with a clear anatomical phenotype (Ataxia), we
obtained 87.5% accuracy, using a small sample size of patients in
different stages of the disease. More important, the anatomical
features extracted agreed with what is previously described

as the hallmark of Ataxia (cerebellar and brainstem atrophy)
(Klockgether et al., 1998; Schulz et al., 1999; Eichler et al.,
2011; Reetz et al., 2013). The maps of the loading weights
and the visual inspection of the images (Figure 2) reveal
that the first component carries mostly information about the
disease’s anatomical phenotype, while the second component
basically reflects brain atrophy directly related to age. Thus,
the components extracted carry biological meaning, i.e., they
contain information that can be interpreted in the light of
actual medical knowledge because they both (our quantification
tool and the medical knowledge) are based at the level of
anatomical structures. In consequence, the classification models
and the feature extraction machinery can be easily interpreted
and translated to clinical practice. Although this result is purely
confirmatory, the quantitative and systematic characterization
of the anatomical feature in the PLS-DA space may give us
an interesting clue about the patient status. For example, if
there are ataxia patients who not only have the typical ataxia

feature (component 1), but also are located at an unexpected
position in component 2 (i.e., accelerated whole-brain atrophy
related to age), this may correlate with poor future outcomes.
Thus, a quantitative approach of this type could provide
new insight into diagnosis and prognosis, further facilitating
research.

To investigate the prognostic value of quantitative anatomical
description, we tested the classification performance in diseases
where the anatomy clearly correlates with the time course,
applying the classifiers in stages where the abnormal features
couldn’t be detected visually, at the individual level. In other
words, we tested the potential for prognostic prediction using the
HD population. We achieved 73% accuracy in classifying pre-
symptomatic HD individuals, with a model based on features
of early symptomatic HD individuals. The feature selection
identified the deep gray matter as the most important region
for the classification, again agreeing with the physiopathology
of HD (Figure 3) (Aylward et al., 2000; Nopoulos et al., 2010;
Paulsen et al., 2010, 2014a,b; Guo et al., 2012; Delmaire et al.,
2013; Georgiou-Karistianis et al., 2013; Faria et al., 2016). HD
is a genetic disease where the product of genetic load and age
correlates very well with the time to onset (Ross et al., 2014).
Therefore, one can reasonably argue that predictive models

Frontiers in Neuroscience | www.frontiersin.org October 2017 | Volume 11 | Article 57862

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Faria et al. Clinical Brain MRI Pattern Recogntion

based on imaging features are useless. The same applies to
Ataxia to some extent. However, our aim was not to diagnosis
HD or Ataxia. These diseases were taken as models for proof
of concept because the gold standard (clinical diagnosis) is
well-established. The aim was to evaluate the structure-based
automated quantification approach, in terms of feature selection
and robustness against heterogeneous datasets, and its potential
to detect features that go beyond the artifactual noise. Particularly
in HD, the potential for classifying pre-symptomatic individuals
surpasses what can be done with clinical imaging analysis
because the subtle abnormalities are not visually detectable at the
individual level (Paulsen et al., 2008).

Potential for Binning in More
Homogeneous Phenotypes
Unlike diseases with a clear anatomical phenotype, those that
embrace heterogeneous anatomical and clinical phenotypes, or
subtle abnormalities, or unknown time courses, offer extra
challenges for both visual and automated analysis. This is, for
instance, the case with AD. To date, there are about 100 models
for predicting conversion frommild cognitive impairment to AD,
based on imaging. A PubMed search for “Prediction of MCI
to AD conversion MRI” reveals 96 publications in the last 10
years; for more recent reviews, please see (Shaffer et al., 2013;
Sanchez-Catasus et al., 2017). Either they achieve unsatisfactory
accuracy, or high accuracy at the cost of overfitting, or they
are late in the disease course. As a result, we can generalize
by saying that there is, as yet, no effective prediction useful
in clinical scenarios. Figure 4 may offer some clues about why
this happens. Our classification model achieved <70% accuracy.
There is substantial overlap between controls and AD in the PLS-
DA plot, and there is no predominant weight in the loadings
of component 1. Visual inspection of the images reveals that
both groups (control and AD) are heterogeneous in terms of
atrophy pattern and degree at this age range. This explains why
the individual classification, by visual radiological analysis, is also
ineffective.

The source of this challenge is two-fold. First, it is possible
that anatomy is not encoding enough information to characterize
the pathology reliably. Second, because we do not have
strongly discriminating factors, both in clinical and imaging
information, the stratification of the patient population is
incomplete. For example, if AD is actually a syndrome caused
by multiple pathologies with multiple anatomical manifestations,
AD’s common anatomical features cannot be extracted. In this
situation, we need to resort to different study designs, using both
clinical and imaging features to stratify the population. Models
such as AD provide opportunities to investigate the existence of
subgroups, with certain anatomical expression, that can behave
as specific entities in some clinical domains. For instance, in
Ataxia (Figure 2) one can see a subtle spread of patients along
the component that differentiates the groups (component 1).
Hypothetically, this spread may reflect the effect of a correlated
feature, such as disease severity. Similarly in AD or other
heterogeneous disease models, there may be a non-orthogonal
axis that represents an unknown variable. With regression in

this axis, it is possible to detect the subgroups that, for instance,
respond differently to therapeutics, or have different prognosis.

To investigate the potential of the automated structure-
based quantification to binning an entity into subgroups
of clinical relevance, we used individuals with PPA. PPA,
a neurodegenerative clinical syndrome characterized by
decline in language ability 2 years before any other cognitive
deficit, is an ideal condition to investigate the clustering
in sub-phenotypes, since three variants loosely correlated
with underlying pathologies and with certain anatomical
representation are described (Gorno-Tempini et al., 2011;
Rohrer and Rosen, 2013). Although there is still no treatment
for PPA, there is hope that certain therapies can be effective
for specific variants (Cadorio et al., 2017). Now, suppose that
the three variants are yet unknown. An unsupervised PCA
plot shows a natural segregation of the data into two or three
subgroups (Figure 5), but because the variants are hypothetically
unknown, one cannot explain the data variance with clinical
labels. An unsupervised hierarchical cluster shows the data
divided into subgroups that correlate very well with the real
variant’s diagnosis. The image features selected for classification
in these clusters (bottom row, Figure 5) agree with those selected
for classification according to the real variant’s diagnosis (top
row, Figure 5) and also to those that are described as hallmarks
for the variants (Turner et al., 1996; Rohrer et al., 2009; Shim
et al., 2012; Zhang et al., 2013; Agosta et al., 2015; Botha et al.,
2015; Bisenius et al., 2016), proving the potential of our approach
to identify subgroups of clinical relevance.

Deliverables
Subgrouping can be extrapolated to individuals, i.e., the detection
of outliers in terms of anatomy may point to individuals who
may be unique in additional domains. For instance, in HD
(Figure 3) anatomical heterogeneity still remains among the
genetically homogenized group, as there is at least one individual
with visually normal anatomy. It is an open question if this
anatomical variability has any predictive value for prognosis, to
be answered by quantitative and systematic characterization of
this population.

Another potential deliverable is the diagnostic probability
map for each individual (Figure 6). Given a database large
enough to contain various pathologies and the high variability
of imaging protocols and age range for controls and patients, it
is possible to calculate the probability of differential diagnosis
for a new individual, as shown in Figure 6. In this example, one
can reasonably argue that it is clinically improbable to have HD,
Ataxia and AD as differential diagnoses. Again, these diseases
were taken as proof of concept, because they all have the same
basic anatomic feature (atrophy) and a clear clinical diagnosis
used as the gold-standard. The concept of diagnostic probability
graphics can be extended to more plausible clinical scenarios.

Finally, the potential for aiding clinical interpretation and
education may be a valuable low-hanging fruit. The simple use
of z-score maps (Figure 4) may confirm or exclude a clinical
impression and speed up the radiological reading. Also, having
a database big and heterogeneous enough, and coupling image
and text information (such as diagnosis, prognosis, response to
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FIGURE 6 | Pattern recognition and probabilistic diagnostic plots. This figure was created by inputting the probability of classification of each individual in different

groups, i.e., the individual’s chances of belonging to different groups, given by the PLS models. In the star plot (left), each star is an individual, and the colors are their

true diagnosis. The x and y axis represent the diagnosis according to our classification models. The point where the stars cross the circles in each axis represents the

probability of an individual’s being labeled as having the diagnosis coded by that axis. The fact that the stars are elongated where the color (true diagnosis) agrees with

the axis diagnosis indicates that the vast majority of patients are correctly classified. At right, a different representation of the same data, easier to visualize the

probability of diagnoses in a single individual. Now, the colors represent the diagnosis given by our classification models. Each line represents an individual; the

crossing point between the colored lines and the axial lines represents the probability of such an individual’s being given that diagnosis. The four small panels at right

show the probability curves of diagnosis for four selected individuals (bold arrows), color-coded by the true diagnosis. Y axis ranges from 0 to 1 and encodes the

chance of the selected individual of being classified, by the algorithm, with the diagnosis in the X axis. For instance, the individual in the upper left quadrant has almost

no chance (close to 0) of being classified as AT, a low chance of being classified as HD, a higher chance of being classified as control, and a high chance of being

classified as AD. In fact, this individual had AD, as revealed by the color (purple) that represents the true diagnosis.

treatments, etc.), it is possible to perform a direct image search,
producing static reports about similar phenotypes. For example,
given a new subject image, it is possible to search in a big dataset
for dozens of images with similar features linked to information
of clinical relevance.

Limitations
This study is based on a single image variable, the volume.
One of the greatest advantages of the structure-based approach
is that it allows the combination of many other features,
such as T2 contrast, diffusion tensor image indices, functional
MRI correlations, metabolite concentration, and others, as
we demonstrated in previous studies (Faria et al., 2012).
Although there are big challenges in combining features of
different domains (e.g., drawbacks on feature concatenation
methods, variation among clinical protocols barring the creation
of common databases for certain domains, the need for a
priori knowledge of noise in order to create models for
easy generalization), multi-domain structure-based analysis is
a promising strategy for conditions with no single dominant
discriminating feature.

An important constraint of the structure-based analysis is
that any quantitative characterization and classification model
will be limited by the pre-defined space. In other words, if the
anatomical pattern does not respect the boundaries of a given
parcellation scheme, the abnormality can be overlooked. One
strategy to ameliorate this issue is to use different levels of
granularity. So one can analyze the data in parcels as big as
a hemisphere, or as small as a cranial nerve, which is actually
smaller than the gaussian filters traditionally used for voxel-based
analysis. However, if the strategy is to replicate the radiological
interpretation, then structure-based analysis is intuitively a better
solution because visual inspection occurs at the structural level,
not at the voxel level.

Perspectives
We explored the performance of structure-based computational
analysis in simulated clinical scenarios. The pillars of this
approach are automated and accurate quantification, reliability
and robustness against artifactual noise, easy interpretation
of selected features, and a knowledge repository that is a
large database as heterogeneous as possible both in terms of
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pathologies and image protocols. The deliverables are diverse,
from the image quantification itself, through to the image
pattern search, to the diagnostic aid. Although the impact of
this method is yet to be tested, it has potential educational
value, it may reduce the time for radiological reading, or it
may work as second reader in locations where sub-specialized
radiologists are not available. In any case, because no such
tool can be directly applicable to clinical practice, any positive
impact is valuable. In addition, electronic structurized databases
and search engines are the basis of high throughput image
analysis and may represent the migration of brain MRI to the
BigData era, contributing to the emergent field of Precision
Medicine.
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John M. Stern 4 and Marina Vannucci 1*
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We develop an integrative Bayesian predictive modeling framework that identifies

individual pathological brain states based on the selection of fluoro-deoxyglucose

positron emission tomography (PET) imaging biomarkers and evaluates the association

of those states with a clinical outcome. We consider data from a study on temporal lobe

epilepsy (TLE) patients who subsequently underwent anterior temporal lobe resection.

Our modeling framework looks at the observed profiles of regional glucose metabolism

in PET as the phenotypic manifestation of a latent individual pathologic state, which

is assumed to vary across the population. The modeling strategy we adopt allows

the identification of patient subgroups characterized by latent pathologies differentially

associated to the clinical outcome of interest. It also identifies imaging biomarkers

characterizing the pathological states of the subjects. In the data application, we identify

a subgroup of TLE patients at high risk for post-surgical seizure recurrence after anterior

temporal lobe resection, together with a set of discriminatory brain regions that can be

used to distinguish the latent subgroups. We show that the proposed method achieves

high cross-validated accuracy in predicting post-surgical seizure recurrence.

Keywords: Bayesian hierarchical model, positron emission tomography (PET), spatially-informed prior, mixture

model, variable selection, Pólya-Gamma distribution

1. INTRODUCTION

In the era of precision medicine, in order to deliver targeted therapies for neurological disorders,
the development of methods to identify reliable and quantifiable biomarkers that are associated
to individual clinical outcomes has become of paramount importance (Insel and Cuthbert, 2015).
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy and the most common
epilepsy refractory to anti-epileptic drugs. Surgery provides an effective treatment for many
patients, yielding a seven-fold greater probability of seizure freedom 1 year after surgery than
patients treated with medications alone (Wiebe et al., 2001). Despite its effectiveness, 30–50% of
patients with TLE continue to experience seizures after surgery (Spencer et al., 2005; de Tisi et al.,
2011).
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As interictal 18F-fluorodeoxyglucose positron emission
tomography (FDG-PET) has traditionally been used for seizure
focus localization (Wieser, 2004), there is substantial interest
in identifying methods that utilize PET for prediction of post-
surgical seizure relief (Willmann et al., 2007). Mesial TLE with
hippocampal sclerosis is defined by the presence of neuronal
cell loss and gliosis in the CA1 region and endfolium of the
hippocampus, a particular part of the temporal lobe (Wieser,
2004). Therefore, prediction of post-surgical outcome using
FDG-PET has traditionally focused on specific regions selected
a priori within the temporal lobe (Dupont et al., 2000; Lin
et al., 2007). Such studies have demonstrated predictive value
of FDG-PET for identifying mesial TLE. Increasing evidence,
however, points at TLE as a network disorder that includes
abnormality distributed beyond the temporal lobe, rather than
a focal disorder (Bonilha et al., 2005; McDonald et al., 2008;
Mueller et al., 2010; Chiang and Haneef, 2014). This suggests
that whole-brain statistical approaches may allow for improved
identification of quantifiable features from neuroimaging data
that can be reliably associated with individual clinical outcomes
and improve clinical decision-making.

Traditional predictive modeling approaches for neuroimaging
data have included the use of pattern recognition techniques,
such as Linear Discriminant Analysis (Haynes and Rees, 2005),
Support Vector Machines (Mitchell et al., 2004; LaConte et al.,
2005) and Bayesian classifiers (Burge et al., 2009; Arribas et al.,
2010). In particular, pattern recognition techniques have been
used with varying success to predict post-surgical outcome in
TLE, ranging from 50 to 75% accuracy using random forests
(Njiwa et al., 2015) to 70% accuracy using elastic net and support
vector machines (Munsell et al., 2015). Recently, Bayesian
spatial hierachical models have also been used to improve
prediction accuracy from PET data by borrowing strength from
spatial correlations between neighboring voxels/regions (Derado
et al., 2013). Several approaches for dynamic PET data have
also been proposed. O’Sullivan (2006) and Jiang and Ogden
(2008), for example, utilize mixture modeling and conditional
autoregressive models to incorporate spatial information into
PET analysis, while other work has used functional principal
components (Jiang et al., 2009) or wavelets (Millet et al.,
2000; Alpert et al., 2006) to analyze dynamic PET signal.
Although each of these approaches represents an important
advance in neuroimaging methods development, these methods
do not quantify the relative importance of selected regions,
which may impact the effectiveness of related clinical decisions.
Recently, Bayesian scalar-on-image regression methods have
been proposed that associate a univariate outcome to massive
multi-dimensional image predictors, particularly for functional
magnetic resonance imaging (fMRI) data (van Gerven et al.,
2010; Goldsmith et al., 2014; Li et al., 2015). All the methods
above, however, do not consider the heterogeneity of the
population of individuals and implicitly assume that, given a set
of discriminatory regions, their association to the outcome is the
same across the population. In reality, however, the strength of
the association can vary across subgroups of subjects.

In this paper, we develop a statistical model to identify
whole-brain biomarkers from PET imaging which are associated

to the prediction of post-surgical seizure recurrence following
anterior temporal lobe resection. Post-surgical seizure recurrence
is thought to be due to incomplete resection of the epileptogenic
zone, which is defined as the area of cortex necessary and
sufficient for initiating seizures, and whose removal is necessary
for seizure abolition (Lüders et al., 1993). While the epileptogenic
zone was historically thought to arise from discrete focal sources,
more recent evidence suggests that seizure activity arises from
the activity of epileptogenic cortical networks that are distributed
beyond the temporal lobe (Franaszczuk et al., 1994; Franaszczuk
and Bergey, 1998; Baccalá et al., 2004; Worrell et al., 2004,
2008; Jirsch et al., 2006; Kramer et al., 2008; Chiang et al.,
2017a). Patients with different epileptogenic zone configurations
are expected to exhibit different likelihoods of post-surgical
seizure recurrence. Different epileptogenic zone configurations
are also expected to produce different interictal metabolic
patterns of FDG uptake, due to the effect of epileptogenic activity
on neuronal loss and postictal metabolic depression (Luders,
2008). The epileptogenic zone, however, cannot be identified
pre-operatively, due to the fact that parts of an epileptogenic
lesion may not be implicated in the preoperatively recorded
seizure, but will continue to generate seizures post-operatively
if not resected (Rosenow and Lüders, 2001). In our model
formulation, we look at the observed PET brain measurements
as the phenotypic manifestation of latent individual pathological
states that are assumed to vary across the population. We then
factor the joint distribution of the data into the product of
two conditionally independent submodels, an outcome model
that relates the post-surgical outcome to the latent states, and a
measurement model that relates those latent states to the observed
brain measurements. For the latter, we employ mixture models
for clustering and variable selection priors that capture spatial
correlation among neighboring brain regions. This allows us to
cluster subjects into subgroups with different latent pathological
states, while simultaneously identifying discriminatory brain
regions that characterize the subgroups. A logistic regression
model relates the latent states to the binary clinical outcome.

We apply the proposed approach to PET data collected at
the University of California, Los Angeles (UCLA) as part of
a clinical study on post-surgical outcomes in temporal lobe
epilepsy. We also incorporate into the analysis connectivity
information from resting-state functional magnetic resonance
imaging (fMRI) data, to inform the selection of discriminatory
brain regions. Integrative models that take into account
neuroscientific information frommulti-modal data sources, such
as fMRI, electroencephalography (EEG), or diffusion tensor
imaging (DTI), are a pressing issue in the field, in particular
given the limited number of patient samples collected in many
neuroimaging experiments (Bowman et al., 2012; Hinne et al.,
2014; Jorge et al., 2014). Bayesian inference provides a powerful
way to incorporate multi-modal imaging into computational
anatomy by inclusion through network priors. In our case
study, we identify a subgroup of patients at high risk for post-
surgical seizure recurrence, together with several discriminatory
brain regions which can be used in clinical decisions to
maximize interventional treatments. Furthermore, we show that
the proposed approach achieves high cross-validated accuracy in
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predicting post-surgical seizure recurrence. Further assessment
of the performance of our method is performed in the
Supplementary Material by conducting a comparison study on
synthetic data against multi-step approaches and/or approaches
that do not condition on latent states.

2. MATERIALS AND METHODS

2.1. Case Study on Temporal Lobe Epilepsy
Positron emission tomography (PET) is a type of in vivo nuclear
medicine imaging which uses radioactive tracers to quantify
tissue function. The subject is injected with a positron-emitting
isotope, such as 18F-FDG, and a PET image is reconstructed
of the isotope concentration based on the incidence of gamma
rays from the positron-electron annihilation. In this work,
we analyze data on 19 adult patients with drug resistant
MTLE and radiological evidence of unilateral hippocampal
sclerosis (MTLE-HS), who underwent pre-operative interictal
18F-FDG PET and anterior temporal lobe resection (ATL) at
the UCLA Seizure Disorder Center between 2007 and 2012.
Patients were identified from the UCLA video-EEG Epilepsy
Monitoring Unit. As the primary outcome of this study
was post-operative seizure freedom after epilepsy surgery, a

healthy control group was not obtained as anterior temporal
lobe resections are not performed in healthy patients without
indication for surgery. Diagnostic evaluation included video-
EEG monitoring, high resolution MRI, interictal 18F-FDG PET,
and neuropsychological testing. PET/CT scans were acquired
on a Siemens Biograph scanner as described in Kerr et al.
(2013). Patients fasted for at least 6 h before each scan except
for water and medications. Patients received 0.14 mCi/kg of 18F-
FDG intravenously and rested in a quiet, dimly lit room with
their eyes open during the ensuing 40min uptake period with
concomitant EEG monitoring to confirm interictal status. The
iterative reconstruction program Ordered Subset Expectation
Maximization (OSEM) available through NeuroQ (Syntermed,
GA, USA) was used for reconstruction of PET images. Iterative
reconstruction was halted after two iterations using eight subsets.
CT images were reconstructed using filtered back projection
at 3.4 mm axial intervals to match the slice separation of the
PET data, and used for attenuation correction. Post-operative
seizure freedom was assessed 1 year after surgery and classified
as either seizure-free (SF; Engel Class 1) or not seizure-free
(NSF; Engel Class 2–4). The binary outcome of complete freedom
from disabling seizures (Engel Class 1) is the standard primary
outcome of interest evaluated in epilepsy surgery treatment trials
(Engel et al., 2012). The use of this primary outcome in epilepsy
surgery trials results from the goal of epilepsy surgery, which is
complete seizure freedom. In addition, we have available resting
state fMRI (rs-fMRI) data collected on a separate set of 32
TLE patients recruited from the UCLA Seizure Disorder Center.
Details on fMRI data are described in section 3.1.

2.2. PET Pre-processing
In PET studies, the quantity that is clinically assessed is a scalar
rate of regional glucose uptake, based on a method described
by Sokoloff et al. (1977). This quantity is then normalized

relative to an internal reference standard, such as the whole-
brain or cerebellar activity, and compared to the expected level
for a reference normal subject (Silverman et al., 2008). The
cerebellum is commonly used as the reference PET region
for diseases of interest in which the cerebellum is thought
not to be affected, such as diseases involving diffuse forebrain
involvement. However, cerebellar atrophy is a very well described
phenomenon in epilepsy, and is moreover associated with longer
duration of epilepsy as well as younger age of epilepsy onset
(Sandok et al., 2000). Given that the cerebellum could be
more involved in epilepsy than traditionally thought (Fountas
et al., 2010), we chose to normalize by the average whole-brain
uptake rather than by the cerebellum. The assessed quantity
therefore provides a measure of the level of metabolic activity
in each region, relative to that expected in healthy controls.
Uptake levels may be quantified on the single-voxel level or
based on the mean uptake within fixed regions of interest.
However, because single-voxel measurements are adversely
affected by noise, the use of regions of interest (ROIs) in
FDG-PET has been suggested as a more robust alternative for
clinical practice (Wahl et al., 2009), which additionally facilitates
standardized comparisons of affected regions across subjects.
NeuroQ (Syntermed, GA, USA) is a software approved by the
FDA in 2004 for quantitative assessment of brain PET imaging
in clinical practice and was used to pre-process PET images.
Following transformation into template Montreal Neurological
Institute (MNI) space by a method previously described by Tai
et al. (1997), images were segmented into 47 predefined regions
of interest using a predefined NeuroQ atlas (Silverman and
Melega, 2004; Ercoli et al., 2012) which has been previously
considered for quantitative assessment of PET data in clinical
practice (Smith et al., 2007; McCallum et al., 2010; Torosyan
and Silverman, 2012; Kerr et al., 2013; Akdemir et al., 2014).
ROI abbreviations are listed in the Supplementary Material. Pre-
processing consisted of scalp removal, rigid registration to a
reference PET image to correct for head tilt, and reformatting of
transaxial slices to fit normal template transaxial slices using 10
iterations. Maximization of the mutual information between the
image volumes was used to identify the registration parameter.
A mean count was calculated in each ROI, normalized by the
whole-brain counts and standardized relative to the mean and
standard deviation of each ROI among healthy controls. Greater
magnitude of PET image intensities indicate more pathological
levels of metabolic activity, with positive values indicating greater
levels of hypermetabolism (i.e., greater metabolism than in
healthy controls) and negative values indicating greater levels
of hypometabolism (i.e., lower metabolism than in healthy
controls). Consequently, different patterns of nonzero signal
characterize different pathological patterns of metabolic activity.
Imaging patterns of hyper- and hypometabolism were of interest
in this study rather than the raw PET signal intensities, due to
the association of hypermetabolic activity with epileptic activity.
Lateralized ROIs were recoded from left and right to ipsilateral
or contralateral with respect to the side of subsequent resection.
A histogram of the normalized and standardized PET image
intensities (Figure not shown) indicated a bell-shaped, unimodal,
and fairly symmetrical distribution, with a skewness of−0.39.

Frontiers in Neuroscience | www.frontiersin.org December 2017 | Volume 11 | Article 66970

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chiang et al. Bayesian Modeling for PET in Epilepsy

2.3. Statistical Model
Let Xi denote the R × 1 vector of normalized PET image
predictors on R brain regions of interest (ROIs) for subject
i and let Yi denote the corresponding post-surgical outcome,
for i = 1, . . . , n. We propose to study the association
between the PET image predictors and the outcome via a
measurement error model formulation. As described above,
non-zero values of X indicate the level of PET metabolic
activity, with different non-zero intensity patterns indicating
different pathological imaging profiles. Accordingly, we assume
that the brain’s observed profile of metabolic activity is the
manifestation of a latent (i.e., unobserved) pathological state. In
epilepsy, the latent pathological state represents the configuration
of metabolic activity in regions implicated in the underlying
epileptogenic zone, which is in turn associated to post-surgical
seizure recurrence. Here, we assume a finite number of
pathological states due to the expected modular organization of
the brain, which is generally decomposed into a finite number
of submodules (Meunier et al., 2010). Let ηi denote the latent
pathological state of subject i. Then, we propose to factor the
joint distribution of Zi = {Yi,Xi}

n
i=1 into the product of two

conditionally independent sub-models: an outcome model that
relates the clinical outcome to the latent pathological state, and a
measurementmodel that relates the latent pathological state to the
observed imaging data. Therefore, we consider a non-differential
measurement error model, i.e., conditionally upon the latent
pathological state ηi, the observed surrogate Xi contains no
additional information on the outcomeYi (Richardson andGilks,
1993), f (Yi|ηi,Xi) = f (Yi|ηi). This model allows us to capture
the current understanding in epilepsy that failure of temporal
lobe resection results most likely from incomplete resection of the
epileptogenic zone (Ryvlin and Kahane, 2005). In other words, if
the true epileptogenic zone were known, data contained in the
PET image Xi would not provide any additional information on
the probability of post-operative seizure recurrence Yi. Thus,

f (Z|η) =

n∏

i=1

f (Yi|ηi)f (Xi|ηi), (1)

where η = (η1, . . . , ηn). We specify the measurement
model in Equation (1) as a mixture model with variable
selection. Subgroups of patients with different epileptogenic
zone configurations may be expected to exhibit different risks
of post-surgical seizure recurrence. We therefore specify the
outcome model in Equation (1) as a logistic regression model
that relates the latent states to the binary clinical outcome. There
is extensive literature on the use of measurement error models
to model data in which risk factors related to the observed
disease or treatment status are unknown, but where surrogate
measures, which provide information on the unobserved risk
factor, are recorded. A review of measurement error models
may be found in Carroll et al. (2006). With respect to existing
literature, our model formulation allows us to cluster subjects
into subgroups with different latent pathological states, i.e.,
different epileptogenic zone configurations, while simultaneously
identifying discriminatory brain regions. In the selection, we also

capture spatial correlation among neighboring brain regions via
a spatial prior, as described in section 2.3.3.

2.3.1. Clustering via Finite Mixture Models
We envision that a subject may be characterized by one of
K possible pathological states. Let ηi denote a latent random
variable that identifies the state of the i-th subject, i = 1, . . . , n.
We assume that the latent individual state ηi takes values in
{1, . . . ,K}, where one of the states can be assumed as reference.
Then, for each subject i we define an allocation vector ρi =

(I(ηi = 1), . . . , I(ηi = K − 1)), where I(ηi = k) indicates that
subject i has latent state k, i.e., I(ηi = k) = 1 if ηi = k, and 0
otherwise. Then, for the measurement model in Equation (1), we
choose a finite mixture model that clusters the n subjects into K
possible subgroups as

f (Xi|ηi,π , θ) =

K∑

k=1

πkf (Xi|θk),

with ηi = k if subject i belongs to cluster k and P[ηi =

k] = πk. The ηi’s are assumed to be independent and identically
distributed, so that η ∼ Multinomial (1;π1, . . . ,πK). We
assume a Dirichlet prior on the mixture weights, p(π) =

Dirichlet (α1, . . . ,αK). We consider the case where f (xi|θk) is
Gaussian with parameters θk = (µk,6k), so that

f (Xi|θk) = N (µk,6k), (2)

with k = 1, ..,K. The component-specific mean µk models the
latent state specific random effect and characterizes the mean
metabolic profile for subjects with latent state k, whereas 6k is
a variance-covariance matrix that captures general relationships
among regions for subjects with latent state k. In summary, the
likelihood function for the measurement model is

L(X|η,µk,6k) =

K∏

k=1

(2π)−nkR/2|6k|
−nk/2

× exp




−
1

2

∑

{i : ηi=k}

(Xi − µk)
T6−1

k
(Xi − µk)




 ,

with nk denoting the number of subjects in cluster k. Here
we assume diagonal variance-covariance matrices 6k =

diag
(
σk,1, . . . , σk,R

)
. Even though we make this simplifying

assumption at this stage of the hierarchy, our proposed model is
still able to capture structural dependencies via the specification
of the prior model for the mean components in Equation (4) that
we describe in section 2.3.3.

2.3.2. Association with the Treatment Outcome
The outcome model in Equation (1) allows the prediction of the
subject-specific outcomes based on the patients’ individual latent
pathological state ηi. We can relate the latent states with the
outcome of interest by employing a generalized linear model. In
general, we may have available a vector of baseline covariates Ui
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for subject i. Since the post-surgical outcome is binary, we can
then use a logistic regression model

p(Yi = yi|ηi,β) =
exp(ξTi β)yi

1+ exp(ξTi β)
, (3)

with β = (β0, . . . ,βK−1,βU) and ξ i = (1, ρi,Ui), where βU is the
vector of corresponding regression coefficients for U = {Ui}

n
i=1.

Here, βk, k = 1, . . . ,K − 1 captures the “risk” associated to
latent state k relative to the baseline latent state. Each βk can be
interpreted as the log-odds of the outcome for subjects in state k
relative to subjects in the reference state, and β0 as an intercept
term yielding the log-odds of the outcome for subjects in the
reference state.

The analytically intractable form of the likelihood function
using a logit link is known to pose challenges for Bayesian
inference in logistic regression models. To address this and to
improve posterior sampling, we employ the data augmentation
approach recently devised by Polson et al. (2013). Let ω be a
Pólya-Gamma random variable, ω ∼ PG(b, c), with parameters
b > 0 and c ∈ R,

ω
D
=

1

2π2

∞∑

k=1

gk

(k− 1/2)2 + c2/4π2
,

where gk are independently distributed as Gamma(b, 1).
Augmentation with a Pólya-Gamma random variable allows for
the likelihood contribution of the ith observation to be written as

Li(β) =
exp(ξTi β)yi

1+ exp(ξTi β)

=
1

2
exp(κiξ

T
i β)

∫ ∞

0
exp

(
−

ωi(ξ
T
i β)2

2

)
p(ωi)∂ωi,

where κi = yi − 1/2, for ωi ∼ PG(1, 0). Combining all n
terms then gives the following convenient representation for the
conditional likelihood in β , given ω and η:

L(β|η,ω) ∝ exp

{
−
1

2
(z − 4β)T�(z − 4β)

}
,

where z = (κ1/ω1, ..., κm/ωm), κi = yi − 1/2, � =

diag(ω1, ...,ωn), 4 is the n × K matrix 4 = (ξT1 , ..., ξ
T
n ), ξ i =

(1, ρi,1, ρi,2, ..., ρi,K−1), and ρi,k = I(ηi = k) ∀k = 1, ...,K − 1.
See Polson et al. (2013) for details. We complete the model by
imposing a conjugate prior on β , p(β) = N(mβ ,Vβ ), where mβ

and Vβ denote the prior mean and covariance, respectively.

2.3.3. Spatially-Informed Selection Prior
Not all brain regions are expected to provide information
about the subgroup structure of the subjects, in which case the
inclusion of non-discriminatory regions in model (Equation 2)
may obscure the discovery of true groups. Oneway to address this
issue is through variable selection for clustering. Let γ ∈ {0, 1}R

denote a binary vector, where γj = 1 if region j is discriminatory,
and γj = 0 otherwise, ∀j = 1, . . . ,R. We follow Hoff (2006) and

identify discriminatory brain regions by imposing spike-and-slab
priors on the random effects µk = (µk,1, . . . ,µk,R). Given the
spatial contiguity in neuronal glucose consumption, we allow for
spatial smoothness among neighboring regions by specifying the
slab portion of the prior as an intrinsic conditional autoregressive
(ICAR) prior distribution (Banerjee et al., 2014). Our prior on
µk,j can be written as

p(µk,j|γj,µk,\j) = γjN

(∑R
j′=1 Sj,j′µk,j′

∑R
j′=1 Sj,j′

,
ck∑R

j′=1 Sj,j′

)

+ (1− γj)δ0(µk,j), (4)

where δ0 denotes a spike at zero, S is an R × R symmetric
neighborhood matrix, with Sj,j′ = 1 if regions j and j′ are
neighbors, and Sj,j′ = 0 otherwise, and where µk,\j denotes all
elements of µk except the jth element. We also impose priors
on the diagonal elements of 6k in Equation (2) and allow for
separate variances for the discriminatory and non-discriminatory
regions. In particular, for the parameters corresponding to γj =

1, we have σk,j = σk ∼ IG(ak, bk) for all k, while for γj = 0 we
impose σk,j = σ0 ∼ IG(a0, b0). Finally, in specifying the prior on
the selection indicators, γ, we allow for external information on
the network structure of the brain, for example on connectivity
between regions, to be incorporated in the model by imposing an
Ising prior of the type

p(γ) ∝ exp
{
e1TRγ + fγTSγ

}
, (5)

with S denoting the neighborhood matrix. If a connection exists
between two regions j and j′, then selection of one region j (i.e.,
γj = 1) leads to an increased probability that region j′ will also
be selected (i.e., γj′ = 1). The hyperparameter e ∈ (−∞,∞)
controls the sparsity of the model and represents the prior
expected number of discriminatory regions. The hyperparameter
f > 0 is a smoothing parameter which represents the prior
probability of a region being discriminatory given that its
neighbors are too. In particular, if a region has no neighbors,
then its prior distribution reduces to an independent Bernoulli
distribution with probability exp(e)/(1 + exp(e)), which is a
common prior assumed in Bayesian variable selection literature
in the case of independent variables.

The prior construction (Equations 4, 5) allows for sparsity
while promoting spatial contiguity in the selection. The ICAR
prior, in particular, ensures that each cluster’s mean metabolic
PET profile varies smoothly in space, as each µk,j is modeled
to vary around the mean of its neighbors, with variance
inversely scaled by the number of neighbors. Spatial prior
constructions have been used extensively in neuroimaging
applications, particularly with fMRI data (Smith and Fahrmeir,
2007; Zhang et al., 2014; Li et al., 2015).

2.3.4. MCMC Algorithm
In order to sample from the joint posterior distribution of
all parameters ({σk}

K
k=1

, σ0, η,π , γ, {µk}
K
k=1

,β ,ω), we employ
Markov Chain Monte Carlo (MCMC) methods that combine
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variable selection stochastic search algorithms that use add-
delete-swap moves (Savitsky et al., 2011) with efficient Pólya-
Gamma sampling for logit models (Polson et al., 2013). We
provide full details of the implementation in the Supplementary
Material.

2.3.5. Prediction
An important characteristic of our model formulation is that
it allows for prediction of the outcome status yf of a future
observation xf , based on the training data {X,Y}. In the context
of pre-surgical evaluation for epilepsy surgery, this allows for
probabilistic, patient-specific predictive estimates of the patient’s
probability of surgery benefit, in order to assist with clinical
decision-making. The predictive distribution is given by

p(yf |xf ,X,Y) =

∫

β

∑

ηf ∈{1,...,K}

p(yf |ηf ,β)p(β|X,Y)p(ηf |xf )∂β ,

(6)
and cannot be computed in closed form. Following standard
Bayesian techniques, these steps can be employed to simulate
from Equation (6):

1. Sample T values of µk, 6k, πk, β from the joint posterior,
using theMCMCalgorithm as described in the Supplementary
Material.

2. For each posterior draw, t = 1, . . . ,T:

• Sample m ≥ 1 values of ηf ∈ {1, . . . ,K} from p(ηf |xf ),
where ∀k = 1, . . . ,K

p(ηf = k|xf ) ∝ p(xf |ηf = k)p(ηf = k) = p(xf |µ
(t)
k
,6

(t)
k
)π

(t)
k
.

• For each sampled value of ηf , sample a value of yf ∈ {0, 1}

from p(yf |ηf ,β
(t)).

The posterior predictive probability p(yf = 1|xf ,X,Y) can then
be estimated as the proportion of posterior predictive samples
for which yf = 1. In the analyses of this paper, given the
limited number of samples available, which does not allow a
meaningful splitting of the data into training and validation,
we implemented cross-validation prediction via the importance-
sampling approach, as proposed by Gelfand (1996), and write the
cross-validation predictive density for the ith observation as

p(Yi=1|X,Y−i)=

∫

η,β
p(Yi = 1|X,Y−i, η,β)p(η,β|X,Y−i)∂β∂η

where we use p(η,β|X,Y) as an importance sampling
density for p(η,β|X,Y−i), and Y−i denotes the non-hold
out outcomes. Specific details on implementation are provided
in the Supplementary Material.

3. RESULTS

We now apply the proposed model to the data we have available
from the University of California, Los Angeles Seizure Disorder
Center, where we illustrate the utility of our proposed model for
predicting a post-surgical outcome among MTLE-HS patients
from pre-surgical FDG-PET imaging.

3.1. Prior Connectivity Network
For this analysis,we allowed the spatial networkpriorEquation (5)
to capture information on functional connectivity between the
ROIs, which we estimated based on resting-state fMRI data
(rs-fMRI), collected on a separate set of 32 unilateral temporal
lobe epilepsy patients from the UCLA Seizure Disorder Center.
Rs-fMRI was performed on the subjects after a comprehensive
epilepsy surgery evaluation and prior to epilepsy surgery. None
of the patients had a seizure in the 24 h preceding the imaging or
had seizures during the study, as confirmed by the simultaneous
EEG obtained during fMRI. There were no post-surgical
outcome data available for these patients. External or historical
information is often used to formulate priors in Bayesian analysis.
There is extensive literature which demonstrates the general
replicability of Pearson correlation estimation of functional
connectivity from rs-fMRI in temporal lobe epilepsy (Centeno
and Carmichael, 2014). Furthermore, despite increasing evidence
that functional connectivity is dynamic (Honey et al., 2009; Ma
et al., 2014; Chiang et al., 2016), recent research indicates a large
proportion of the information present in functional connectivity
is contained in static estimates (Chiang et al., 2017b).

We give full details of the rs-fMRI data and the process
to estimate a connectivity network in the Supplementary
Material. In brief, preprocessing of rs-fMRI imaging was
performed using FSL (fMRIB Software Library) version 5.0.7
(Oxford, United Kingdom, www.fmrib.ox.ac.uk/fsl). Functional
connectivity between the 47 ROIs was estimated by placing
a 6-mm spherical seed in Montreal Neurological Institute
(MNI) space at the location of each of the 47 ROIs. Each
patient’s fMRI BOLD image was registered to the patient’s
high-resolution structural image using FLIRT (FMRIB’s Linear
Image Registration Tool) (Jenkinson et al., 2002; Greve and
Fischl, 2009), and the high-resolution structural was registered
to the standard MNI space using FNIRT (FMRIB’s Non-linear
Image Registration Tool) (Andersson et al., 2007). Functional
connectivity between each pair of nodes was computed as the
partial Pearson correlation between the averaged regional time-
series. This provided us with a 47 × 47 correlation matrix.
An edge was then considered as included in the connectivity
network if the correlation between the regions exceeded a given
threshold. The threshold was chosen so that the average number
of neighbors for each region was approximately 5, yielding a
connectivity structure close to a three-dimensional lattice. The
resulting network was used as the neighborhood matrix S in the
specification of the MRF prior (Equation 5) on γ and also in
the ICAR prior (Equation 4) on the slab portion of the prior on
µk,j. The estimated functional connectivity matrix and resulting
neighborhood matrix S are shown in Figure 1. We observe
several known connectivity relationships, including functional
connectivity between regions in the brainstem (midbrain, pons);
between the primary and associative visual cortices; between the
cerebellar hemispheres and vermis; and between ipsilateral and
contralateral ROIs (Quigley et al., 2003).

3.2. Biomarker Selection and Clustering
In our approach to model fitting we consider a grid of values
of K to find the number of states K yielding the best model fit
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FIGURE 1 | Spatial connectivity network between ROIs constructed from resting-state fMRI imaging: (A) partial Pearson correlation matrix, (B) neighborhood matrix S

of binarized edges.

that also provides improved clinical interpretability. For the study
of this paper, model fit for each value of K for K = 2, . . . , 6
was assessed using the deviance information criterion (DIC)
of Spiegelhalter et al. (2002). We found that K = 2 clusters
allowed for a parsimonious model permitting meaningful clinical
characterization of high- and low-risk patients, with minimal
to no further improvement in the DIC for larger values of K.
This result was confirmed through model comparison using the
posterior Bayes factor (Aitkin, 1991), with a posterior Bayes
factor greater than 1 from comparisons of the K = 2 model to
K = 3, . . . , 6 models. Results we report here are based on the
combined posterior output from two MCMC chains, with each
chain initialized with different numbers of discriminatory ROIs
and number of subjects in each subgroup. Other initial values

were set asµ
(0)
k

= 0, σ
(0)
k

= 1 ∀k, σ
(0)
0 = 1, β(0) = 0. We ran each

MCMC chain for 100,000 iterations, with the first 50,000 sweeps
discarded as burn-in.

As discussed in section 2.3.3, the hyperparameter e of theMRF
prior (Equation 5) regulates the prior sparsity whereas f induces
smoothness, with higher values of f yielding a higher prior
probability that a region is selected given that its neighbors are
selected. The choice of e and f has been discussed by Li and Zhang
(2010) and Stingo et al. (2013). It is known that with distributions
as in Equation (5) a phase transition boundary problem can
be encountered, where the number of selected regions increases
sharply for small changes in f (Li and Zhang, 2010). Here we set
the sparsity parameter to e = −4.5, corresponding to a lower
bound on the prior probability of selection of 1%. As for the
prior smoothness, f , a plot of the prior over a grid of values
f ∈ {0.1, 0.2, 0.3, . . . , 0.9} revealed that the phase transition

starts at a prior smoothness of f = 0.2 and becomes severe
at around f = 0.4. As suggested by Li and Zhang (2010), the
prior smoothness parameter f was therefore set to a value far
from the phase transition boundary. Here we present results
for two values, f = 0.01 and f = 0.1, representing different
levels of small-to-moderate effect of the prior information on
connectivity. As for the other hyperparameter settings, we placed
a vague prior on the mixing parameters π , that is, αk = 1 ∀k, and
fixed the prior shape and scale parameters of the inverse gamma
priors on σk and σ0 to be non-informative with ak = 2 and
bk = 1 ∀k, and a0 = 2 and b0 = 1. We also set the unscaled
variance of the ICAR prior to ck = 5, and the prior mean and
covariance of β tomβ = 0 and Vβ = 5I, respectively. Age of the
patient at surgery, epilepsy duration, and history of generalized
tonic clonic seizures were controlled for as baseline covariates in
the logistic likelihood.

Convergence of each MCMC chain was assessed using two

independent tests: the Raftery-Lewis diagnostic (Raftery and
Lewis, 1992) and the Geweke test (Geweke, 1991). In addition,

convergence of the multiple chains was assessed using the

Gelman-Rubin potential scale reduction factor, based on the
implementation in the R package “coda” (Raftery and Lewis,

1992). Convergence diagnostics indicated convergence to the

stationary distribution (results reported in the Supplementary
Material). Agreement between MCMC chains was assessed

through the Pearson correlation between the marginal posterior
probabilities of ROI selection and cluster allocation of each pair
of chains.

For posterior inference, our primary interest is in the
estimation of the discriminatory regions, the latent states, and
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their association with the binary clinical outcome, as captured
by the parameters γ, η, and β , respectively. Trace plots for
these parameters showed good mixing for all chains (figures not
shown). Figure 2 shows the marginal posterior probabilities of
inclusion (PPIs) for each of the 47 brain regions, with different
graphical symbols for the settings of f = 0.01 (x) and f = 0.1
(o). Based on this plot, a selection of the discriminatory regions
can be done by thresholding the PPIs. For example, the median
model (Barbieri and Berger, 2004) selects the same subset of 8
ROIs under both f = 0.01 and f = 0.1. The selected brain regions
are listed in Table 1, and graphically depicted in Figure 3. To
examine the sensitivity of the selected regions to the formulation
of the network prior, we additionally ran the model under a
neighborhood matrix S defined by simple Euclidean distance.
Selected discriminatory regions were robust to the formulation
of the network, with the exception of the contralateral associative
visual cortex, which had a marginal PPI of 0.303 (f = 0.1) and
0.311 (f = 0.01) under a network defined by spatial neighbors.
This decrease in posterior probability is an effect of the MRF
prior, due to the functional connectivity present between the
ipsilateral and contralateral associative visual cortex in Figure 1B

which is not captured based on spatial distance.
Figure 4 shows the marginal posterior probabilities of sample

allocations for each of the 19 MTLE-HS patients. A classification
of the subjects into two subgroups can be obtained, for example,
by assigning subjects according to the posterior mode of η.
For interpretation of the two subgroups, one can examine the
PET metabolic activities characterizing the subjects. These are

shown in Figure 5 for the selected brain regions. Furthermore,
posterior inference for the β parameters is summarized in
Table 2. These results suggest that the two subgroups identify
patients at different levels of risk for post-operative seizure
recurrence, with one subgroup having a eβ = 5.2 times greater
odds of persistent post-operative seizures 1 year after surgery
(Table 2). This corresponds to a 90% posterior probability of
an odds ratio >1 for post-surgical seizure freedom between
the two identified subgroups (Table 2). Figure 5 reveals, in
particular, that the subgroup with greater odds of post-operative
seizure recurrence (Cluster 2) is characterized by lower levels
of interictal glucose metabolism in the bilateral associative

TABLE 1 | Temporal lobe epilepsy dataset: Selected brain regions and

corresponding marginal posterior probabilities of inclusion (PPI).

ROI PPI

f = 0.01 f = 0.1

Ipsilateral inferior parietal lobule 0.961 0.973

Ipsilateral parietotemporal cortex 0.955 0.948

Ipsilateral associative visual cortex 0.956 0.969

Contralateral inferior parietal lobule 0.742 0.850

Contralateral associative visual cortex 0.632 0.732

Contralateral cerebellar hemisphere 0.988 0.979

Ipsilateral cerebellar hemisphere 0.950 0.961

Cerebellar vermis 0.989 0.984

FIGURE 2 | Temporal lobe epilepsy dataset: Marginal posterior probabilities of inclusion for brain regions, for f = 0.01 (x) and f = 0.1 (o).
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FIGURE 3 | Temporal lobe epilepsy dataset: Mean random effect (µk ) of PET metabolic activity for ROIs with PPI greater than 0.5, shown on axial sections. (a)

Ipsilateral inferior parietal lobule, (b) contralateral inferior parietal lobule, (c) ipsilateral parieto-temporal cortex, (d) ipsilateral associative visual cortex, (e) contralateral

associative visual cortex, (f) cerebellar vermis, (g) ipsilateral cerebellar hemisphere, (h) contralateral cerebellar hemisphere. Non-selected ROIs are shown in grayscale.

FIGURE 4 | Temporal lobe epilepsy dataset: Marginal posterior probabilities of

cluster allocation, for f = 0.01 (x) and f = 0.1 (o).

visual cortices, ipsilateral parieto-temporal cortex, and bilateral
inferior parietal cortices, as well as higher levels of interictal
glucose metabolism in the bilateral cerebellar hemispheres

and cerebellar vermis. Our identification of these metabolic
patterns may suggest extratemporal gliosis, as well as increased
baseline levels of cortical excitability, in patients at higher
risk for post-operative seizure recurrence. We provide further
comment on the neurological significance of these findings in the
Discussion.

3.3. Prediction Results
In addition to the identification of subgroups of subjects,
characterized by latent pathologic conditions differentially
associated to the outcome of interest, and the selection of
imaging biomarkers that characterize the pathologic states of
the subjects, our modeling approach allows a probabilistic
estimate of an individual patient’s risk of post-operative seizure
recurrence. Probabilistic assessment of outcome risk may
aid pre-surgical decision-making, by facilitating identification
of patients with greater probability of seizure recurrence
following anterior temporal lobe resection. Such information
may potentially be weighed against the known risks of
surgery (e.g., infection, bleeding, reactions to general anesthesia)
to stratify patients according to predicted outcome. Here,
we assessed prediction performance via importance-sampling
cross-validation.

Figure 6 shows the receiver operating characteristic (ROC)
curve, a plot of the false positive rates vs. the true positive
rates, obtained for a grid of threshold values (0:0.05:1) on
the estimated posterior predictive probabilities. The area under
the curve (AUC) was 0.91. The optimal threshold, selected to
maximize the Youden’s index (Hiden and Glasziou, 1996), for
imbalanced class sizes, resulted in an 84% predictive accuracy,
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FIGURE 5 | Temporal lobe epilepsy dataset: Distribution of PET metabolic activity in the selected regions for the identified subgroups, for f = 0.1.

with correct prediction of post-surgical outcome in 16/19
patients, including 10/12 seizure-free patients and 6/7 non
seizure free patients.

Our prediction results compared favorably to those we
obtained on the same data with other analogous methods
which predict binary outcomes from an identified underlying
latent state. In particular, we compare to three multi-step
approaches commonly used in prediction for their simplicity
and computational speed. In the first approach, principal
components was used to reduce the data to the top eight
principal components, collectively explaining 85% of the variance
in the data. The reduced principal components of X were
then used as predictors within Bayesian logistic regression.

Predictive accuracy was assessed through the importance-
sampling cross-validation prediction approach of Gelfand (1996).
In the second approach, a multistep logistic regression approach
was used, similarly to what has been done in neuroimaging
studies (Versace et al., 2014). In this approach, a filtering
approach was performed by calculating permutation p-values for
each region and retaining regions with small p-values. Using
this reduced subset of regions, patients were clustered using k-
means. Bayesian logistic regression was fitted to predict post-
surgical outcome from latent class membership, and importance
sampling cross-validation used to assess predictive accuracy. In
the third comparison, a multi-step version of our approach was
used, in which sparse cluster analysis was separated from the
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TABLE 2 | Temporal lobe epilepsy dataset: (a) Posterior mean of β; (b) 95% credible interval (CI) for β; and (c) posterior probability of odds ratio >1, e.g.,

P[eβj > 1|X,Y ] = P[βj > 0|X,Y ] , shown for proposed approach (f = 0.1), multi-step logistic approach, and multi-step sparse clustering approach.

Proposed Method Multistep logistic regression Multistep sparse clustering

(a) (b) (c) (a) (b) (c) (a) (b) (c)

β0 −0.377 (−1.588, 3.587) 0.43 −0.225 (−0.8, 1.665) 0.41 −0.169 (−0.746, 1.718) 0.43

β1 0.368 (0.275, 0.685) 0.99 0.250 (0.183, 0.48) 0.99 0.262 (0.196, 0.486) 0.99

β2 −3.726 (−4.639, −0.76) 0.01 −1.25 (−1.742, 0.347) 0.06 −1.247 (−1.737, 0.358) 0.06

β3 −0.082 (−0.117, 0.032) 0.09 −0.069 (−0.094, 0.011) 0.05 −0.079 (−0.107, 0.014) 0.05

β4 1.649 (0.832, 4.364) 0.90 0.939 (0.453, 2.552) 0.88 0.41 (−0.113, 2.140) 0.68

Here β1 ≡ Epilepsy duration, β2 ≡ History of GTC, β3 ≡ Age at surgery, β4 ≡ Cluster 1 (v. Cluster 2).

Odds are with respect to seizure freedom.

FIGURE 6 | Temporal lobe epilepsy dataset: Receiver operating characteristic

curve (ROC) for proposed method, elastic net, principal components

regression (PCR), multi-step logistic regression, and multi-step sparse

clustering in predicting post-operative outcome 1 year after anterior temporal

lobe resection.

outcome model. In particular, a greedy forward search algorithm
was used for simultaneous variable selection and clustering
(Raftery and Dean, 2006). Patients were clustered based on the
selected variables through a Gaussian mixture model (Fraley
et al., 2012) and Bayesian logistic regression then used to
predict post-surgical outcome from latent class membership,
with predictive accuracy assessed through importance-sampling
cross-validation. Prediction results using our unified approach
attained superior predictive performance compared tomulti-step
approaches (Figure 6). Multi-step logistic regression and multi-
step sparse clustering approaches attained higher predictive
accuracy than PCR. We also compared to methods such as
elastic net (Zou and Hastie, 2005), ridge regression (Hoerl
and Kennard, 1970), and the Least Absolute Shrinkage and
Selection Operator (LASSO) method of Tibshirani (1996) that,
in particular, do not condition on latent states, but rather use

the X data as the covariates. Penalized regression approaches
that did not condition on a latent state performed poorly in
data with underlying latent states (see Supplementary Material).
Additionally, in the Supplementary Material, we conduct a
full comparison study among competing methods on synthetic
data to evaluate results for both prediction and biomarker
selection.

4. DISCUSSION

Our results have identified a subgroup of temporal lobe epilepsy
patients with 5.8 times greater odds of post-operative seizure
recurrence after anterior temporal lobe resection. These patients
were characterized by lower levels of interictal metabolism in
regions near the ipsilateral parieto-temporal-occipital junction.
Lower interictal metabolism in peritemporal regions may suggest
structural abnormalities such as gliosis or neuronal loss in
these regions, alternatively or in combination with functional
abnormality involving a widespread epileptogenic network
which extends beyond the temporal lobe. Evidence for such
a subgroup has been suggested by previous research, which
found limited improvement in seizure outcomes in patients
with electrocorticographical (ECoG) evidence of extratemporal
involvement of inferior parietal cortex (Aghakhani et al.,
2004). The implication of extratemporal brain structures
in patients with poorer postsurgical outcomes supports the
presence of latent pathologies in patients with epilepsy. Other
ECoG studies have also suggested the presence of latent
pathology in epilepsy involving spread of the epileptogenic
focus and the possible creation of secondary foci (Rougier,
1990; D’Ambrosio et al., 2005). Therefore, lower interictal
metabolism in this subset of patients may suggest a subtype
of MTLE-HS with parietal involvement, which may lead
to post-operative seizure generation if not resected. The
involvement of posterior parietal regions in this subset of
patients may result from connectivity to other regions clinically
involved in MTLE. Structural connectivity exists between the
presubiculum and the posterior parietal cortex through the
cingulum, for example, and functional connectivity between
these regions also exists through the default mode network
(Buckner et al., 2008). Pulvinar atrophy has also been found
in TLE patients with persistent post-operative seizures (Keller
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et al., 2015), so connectivity of posterior parietal regions to
the pulnivar nucleus may also play a role in posterior parietal
involvement.

Patients at high risk for post-operative seizure recurrence
were also characterized by higher levels of interictal glucose
metabolism in the cerebellum. The cerebellum’s role in inhibiting
seizures has been investigated since the early 1940’s, following
the discovery that cerebellar stimulation may result in seizure
modification or even termination (Moruzzi, 1950). Recent
technological advances in techniques for cerebellar stimulation
have led to renewed interest in the role of cerebellar stimulation
in seizure inhibition, with a 41% seizure rate reduction achieved
through cerebellar stimulation (Velasco et al., 2005). Direct
optogenetic stimulation of the cerebellar Purkinje cells has
been found to be sufficient to reduce the duration of seizures
in temporal lobe epilepsy (Krook-Magnuson et al., 2014). It
is postulated that the mechanism of cerebellar stimulation
in seizure inhibition may be through increased inhibitory
efferent output from the Purkinje cells to the deep cerebellar
nuclei, resulting in increased inhibitory cerebellar output to
the thalamocortical projections and thus decreased contralateral
cortical excitability (Fountas et al., 2010). Likewise, the
cerebral cortex exhibits feedback to the contralateral cerebellar
hemispheres through corticopontocerebellar tracts. In our study,
we found that the subgroup of MTLE-HS patients at high
risk for post-operative seizure recurrence was characterized by
higher levels of interictal glucose metabolism in the bilateral
cerebellar hemispheres and cerebellar vermis, with slightly
larger marginal posterior probability of discriminating high-
vs. low-risk patients in the contralateral than the ipsilateral
cerebellar hemisphere. Higher interictal glucose metabolism in
the cerebellum may be caused by pre-operatively increased
baseline levels of cortical excitability in high-risk patients,
resulting in increased activity of corticopontocerebellar white
matter tracts and increased crossed cerebellar metabolism. The
localization of this phenomenon may be similar to that of
cerebellar diaschisis, in which supratentorial lesions such as
stroke may cause disruption of corticopontocerebellar tracts and
therefore contralateral cerebellar hypometabolism. In the case
of epilepsy, in which there is over- rather than underactivity
of the cortex, overstimulation of the corticopontocerebellar
tracts may lead to contralateral cerebellar hypermetabolism.
Inhibitory outflow from the Purkinje cells may then result in
hypometabolic activity in areas such as the inferior parietal
lobule, congruent with the functional abnormality observed
in the temporo-parieto-occipital junction as described above.
Our observation of bilaterally increased glucose metabolism in
the cerebellum suggest bilaterally increased cortical excitability
in patients at high risk for post-operative seizure recurrence,
with slightly higher cortical excitability ipsilaterally. The
greater contralateral cerebellar involvement observed here is
also consistent with our observation of ipsilaterally involved
temporo-parieto-occipital regions due to crossed cerebello-
cortical connections.

In addition to enhancing understanding of the
pathophysiology behind post-operative seizure recurrence, our
finding that patients at high risk for epilepsy surgery failure are

characterized by lower PET metabolism in peritemporal regions
and higher cerebellar metabolism, provides a marker for patients
where epilepsy surgery is at high risk for failure. These patients
may be better candidates for neuromodulatory treatments
for medication-refractory epilepsy, such as direct cortical
stimulation, as is being used in responsive neurostimulation
(RNS) at regions of seizure onset (Geller et al., 2017). We
show that TLE patients at high risk for anterior temporal lobe
resection failure have abnormal pre-surgical brain metabolic
activity compared to those patients who attain post-surgical
seizure freedom, suggesting a difference in the underlying
brain networks of the two groups. The approach proposed here
provides a method which may potentially allow for pre-surgical
differentiation between patients with abnormal underlying brain
activity.

In this paper we have developed a general integrative
modeling framework to characterize the association between a
set of image predictors and an individual clinical outcome that
simultaneously (a) identifies subgroups of patients characterized
by latent pathologies differentially associated to the outcome
of interest, (b) identifies discriminatory brain regions across
subjects, and (c) uses prior connectivity information from
external data to inform the selection of biomarkers. Our Bayesian
measurement error model provides a modeling approach for
the prediction of post-surgical treatment response from imaging
data which explicitly accounts for the unobserved disease state.
As described in section 2.3.5, our model provides an approach
in which a new prospective surgery candidate can come in,
be scanned with PET imaging, assigned to a latent risk group,
and evaluated for their probability of achieving seizure freedom
if operated upon. By accounting for heterogeneity in the
unobserved state, while allowing for incorporation of external
prior information, we have obtained accurate prediction in
data where surrogate measures, such as neuroimaging data,
are observed. We have shown that our approach achieves
superior predictive performance compared to commonly used
approaches, such as principal components regression, ROI-based
clustering, and ROI-based sparse regression, and additionally
leads to accurate inference with respect to identification of latent
states and variable selection.

We have used the proposed method to analyze data
we have available from the University of California, Los
Angeles Seizure Disorder Center, where the interest was in
predicting the post-surgical outcome among MTLE-HS patients
from pre-operative FDG-PET imaging. In the analysis, we
have used resting-state fMRI imaging to inform the prior
model. Our analysis has identified several discriminatory
ROIs, together with a subgroup of patients at higher risk of
post-operative seizures recurrence. Pre-surgical identification
of regions pathophysiologically involved in post-operative
seizure recurrence may assist in targeting these regions for
interruption. Here, patients at higher risk were characterized
by lower levels of interictal glucose metabolism in the bilateral
associative visual cortices, ipsilateral parietotemporal cortex, and
bilateral inferior parietal lobules, and higher levels of interictal
glucose metabolism in the bilateral cerebellar hemispheres and
cerebellar vermis. Cross-validated prediction of post-operative
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seizure freedom has achieved an AUC of 0.91 and 84%
predictive accuracy, showing superior predictive performance
compared to methods which do not condition on latent
states. One caution in interpreting the results of this study
is the moderate statistical power due to limited sample size.
Future corroboration on larger samples is needed prior to
use in clinical practice. Pre-surgical identification of patients
at high risk of not benefiting from surgery may improve
treatment planning for these patients, including the potential
avoidance of surgery risks in cases with low probability of
benefit.

In our study, we have utilized standard PET ROIs obtained
from quantitative assessment software used in clinical practice,
where PET activity in each region of interest is computed
by averaging within the ROI. Similar ROI-based approaches
are utilized within the standard preprocessing protocol of
NeuroQ to aid clinical interpretability, and have demonstrated
clinical utility in neurological disorders such as Parkinson’s
disease (Akdemir et al., 2014), tinnitus (Smith et al., 2007),
and epilepsy (Kerr et al., 2013). However, it is important to
note that voxel-based data allow for a finer-grained approach
to biomarker selection and may be of interest in future
applications of our methodology. Use of other well-known
atlases to segment PET data, such as the Automated Anatomic
Labeling (AAL) atlas, may also be useful for comparing to
other studies. Rigid registration and the use of PET-to-PET
registration is also susceptible to PET signal variations, with
hippocampal atrophy in TLE potentially contributing further
to decreased registration accuracy as well as partial voluming
effects. Further improvements in predictive accuracy may
be seen with alternative pre-processing methods, including
registration to high-resolution structural imaging and partial
volume correction.

Future applications of our method to pre-operative mapping
may wish to investigate finer parcellations of the brain, to better
delineate the epileptogenic zone and more directly aid pre-
operative mapping. Given the routine use of fMRI and EEG
in the management of patients with epilepsy, it might also
be possible to extend our general model formulation to the
identification of spatial fMRI markers of disease outcome while
taking advantage of the temporal resolution of EEG data to
construct prior connectivity networks. Finally, even though the
motivating example for our proposed model has come from the
prediction of post-surgical outcomes in epilepsy surgery, data
from other neurological disorders may also be analyzed. In such
cases, it may be of interest to extend the treatment outcome to a
multinomial likelihood, with larger sample sizes needed if such
analysis is desired.
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Functional brain connectivity is the co-occurrence of brain activity in different areas

during resting and while doing tasks. The data of interest are multivariate timeseries

measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We

analyze functional connectivity using two heteroscedasticity models. Our first model is

low-dimensional and scales linearly in the number of brain parcels. Our second model

scales quadratically. We apply both models to data from the Human Connectome Project

(HCP) comparing connectivity between short and conventional sleepers.We find stronger

functional connectivity in short than conventional sleepers in brain areas consistent

with previous findings. This might be due to subjects falling asleep in the scanner.

Consequently, we recommend the inclusion of average sleep duration as a covariate to

remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows

that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%.

We provide implementations using R and the probabilistic programming language Stan.

Keywords: Bayesian analysis, functional connectivity, heteroscedasticity, covariance regression, sleep duration

1. INTRODUCTION

Functional connectivity focuses on the exploration of neurophysiological measures of brain activity
between brain regions (Friston, 2011; Smith, 2012; Varoquaux and Craddock, 2013). Functional
connectivity studies have increased our understanding of the basic structure of the brain (Eguíluz
et al., 2005; Sporns et al., 2004; Bassett and Bullmore, 2006; Fox and Raichle, 2007; Bullmore and
Sporns, 2009; Van Den Heuvel and Pol, 2010) and provided insights into pathologies (Greicius
et al., 2003; Greicius, 2008; Biswal et al., 2010; Fox and Greicius, 2010).

From a statistical viewpoint, functional connectivity is the problem of estimating covariance
matrices, precision matrices, or correlation matrices from timeseries data. These matrices encode
the level of connectivity between any two brain regions. The timeseries are derived from resting-
state fMRI (rfMRI) by averaging individual voxels over parcels in the graymatter.We define parcels
manually or with data-driven brain parcellation algorithms. The final goal can be an exploratory or
a differential analysis comparing connectivity across regions between experimental conditions and
time (Preti et al., 2016). Many statistical methods are available to estimate covariance matrices,
precision matrices, or correlation matrices from multivariate data. The sample covariance and
its inverse, or the sample correlation matrix are usually poor estimators because of the high-
dimensionality of the data (large number of parcels p and small number of subjects). The number
of parameters grows quadratically in the number of regions with p(p − 1)/2 possible pairwise
connections between parcels. Therefore more elaborate estimators need to be employed, such as
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the Graphical Lasso (Friedman et al., 2008) estimator for inverse-
covariance matrices or the Ledoit-Wolf shrinkage estimator
(Ledoit and Wolf, 2004) for correlation matrices. Application of
these methods to rfMRI are available (Varoquaux et al., 2010a,b;
Smith et al., 2011; Ryali et al., 2012; Varoquaux et al., 2012; Liang
et al., 2016).

The estimation of connectivity is usually only the first step and
leads to downstream differential analyses comparing connectivity
between experimental conditions or between subgroups. For
instance, we will compare the connectivity of short sleepers
with conventional sleepers available as preprocessed timeseries
from the Human Connectome Project (Van Essen et al., 2013).
One approach is massive univariate testing of each of the
p(p − 1)/2 connections by linear modeling. Such an approach
allows us to test different contrasts and include batch factors or
random effect terms (Lewis et al., 2009; Grillon et al., 2013). It
lacks statistical power because it ignores possible dependencies
between elements in the connectivity matrix. An alternative
is to assess selected functionals or summary statistics rather
than individual elements in the connectivity matrix (Stam, 2004;
Salvador et al., 2005; Achard et al., 2006; Marrelec et al., 2008;
Bullmore and Sporns, 2009; Ginestet et al., to appear). Another
approach is to flip response variable and explanatory variable and
predict experimental condition (or subgroup) from connectivity
matrices (or functionals of matrices) through machine learning
(Dosenbach et al., 2010; Craddock et al., 2012). These approaches
lack interpretability in terms of brain function.

The problem boils down to modeling heteroscedasticity.
Heteroscedasticity is said to occur when the variance of the
unobservable error, conditional on explanatory variables, is
not constant. For example, consider the regression problem
predicting expenditure on meals from income. People with
higher income will have greater variability in their choices of
food consumption. A poorer person will have less choice, and
be constrained to inexpensive foods. In functional connectivity,
heteroscedasticity is multivariate and variances become
covariance matrices. In other words, heteroscedasticity co-
occurs among brain parcels and can be explained as a function of
explanatory variables.

In this article, we propose a low-dimensional multivariate
heteroscedasticity model for functional connectivity. Our model
is of intermediary complexity, between modeling all p(p− 1)/2
connections and only using global summary statistics. Ourmodel
builds on the covariance regression model introduced by Hoff
and Niu (2012). It includes a random effects term that describes
heteroscedasticity in the multivariate response variable. We
adapt it for functional connectivity and implement it using the
statistical programming language Stan. Additionally, we perform
preliminary thinning of the observed multivariate timeseries
from N to the effective sample size n. Using n reduces false
positives and speeds up computations by a factor of N/n. To
find the appropriate n, we compute the autocorrelation as it
is common in the Markov chain Monte Carlo literature. We
compare our low-dimensional model to a full covariance model
contained in the class of linear covariance models introduced by
Anderson (1973). Both models are used to analyze real data from

HCP comparing connectivity between short and conventional
sleepers.

From a neuroscience viewpoint, our low-dimensional model
is applicable if we belief that multiple brain parcels work
together to accomplish cognitive tasks. Even if this assumption
is not entirely true, our low-dimensional model can serve a
way to simplify functional connectivity analyses and improve
interpretability. One can think of a low-dimensional model as
a way to reduce the dimensions of the original data to an
interpretable number of variables.

2. MATERIALS AND METHODS

2.1. Data
We analyzed data from the WU-Minn HCP 1200 Subjects
Data Release. We focus on the functional-resting fMRI (rfMRI)
data of 820 subjects. The images were acquired in four runs
of approximately 15 min each. Acquisition ranged over 13
periods (Q01, Q02, . . . , Q13). We separated the subjects
into two groups: short sleepers (≤ 6 h) or conventional
sleepers (7–9 h) as defined by the National Sleep Foundation
(Hirshkowitz et al., 2015). This results in 489 conventional and
241 short sleepers. The HCP 1200 data repository contains
images processed at different levels: spatially registered images,
functional timeseries, and connectivity matrices. We work
with the preprocessed timeseries data. In particular, the rfMRI
preprocessing pipeline includes both spatial (Glasser et al., 2013)
and temporal preprocessing (Smith et al., 2013). The spatial
preprocessing uses tools from FSL (Jenkinson et al., 2012) and
FreeSurfer (Fischl et al., 1999) to minimize distortions and
align subject-specific brain anatomy to reference atlases using
volume-based and surface-based registration methods. After
spatial preprocessing, artifacts are removed from each subject

individually (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014),
then the data are temporally demeaned and variance stabilized
(Beckmann and Smith, 2004), and further denoised using a
group-PCA (Smith et al., 2014). Components of a spatial group-
ICA (Hyvärinen, 1999; Beckmann and Smith, 2004) are mapped
to each subject defining parcels (Glasser et al., 2013). The
ICA-weighted voxelwise rfMRI signal are averaged over each
component. Each weighted average represents one row in the
multivariate timeseries. Note that parcels obtained in this way are
not necessary spatially contiguous, in particular, they can overlap
and include multiple spatially separated regions. HCP provides
a range of ICA components 15, 25, 50, 100, 200, and 300. We
choose 15 (Figure 1) for our analysis to allow for comparison
with prior sleep related findings on a partially overlapping dataset
(Curtis et al., 2016).

2.2. Low-Dimensional Covariance
Regression
In this section, we introduce a low-dimensional linear model
to compare connectivity between experimental conditions or
subgroups.
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FIGURE 1 | Parcels derived from spatial group-ICA. Created at the most relevant axial slices in MNI152 space. According to Smith et al. (2009), these parcels map to

visual areas (R1, R3, R4, and R8), sensorimotor (R7 and R11), cognition-language (R2, R5, R10, and R14), perception-somesthesis-pain (R2, R6, R10, and R14),

cerebellum (R9), executive control (R12), auditory (R12 and R13), and default network (R15).

2.2.1. Model
The data we observe are p-dimensional multivariate vectors
y1, . . . , yN . We assume that the observations are mean-centered

so that 1
N

∑N
i=1 yi = 0. After centering, we subsample each

timeseries at n<N time points to remove temporal dependencies
between observations (section 2.2.2). We are given a set of
explanatory variables xi that encode experimental conditions or
subgroups, e.g., element one is the intercept 1 and element two
is 0 for conventional and 1 for short sleepers. We bind the xi’s
row-wise into the usual design matrix X. Our model:

yi = γi × Bxi + ǫi for i = 1, . . . , n

has a random effects term γi × Bxi and an independent and
identically distributed error term ǫi. We suppose the two random
variables to have:

E (ǫi) = 0, Cov (ǫi) = σ 2Ip

E (γi) = 0, Var (γi) = 1, E (γi × ǫi) = 0.

Then, the expected covariance is of the form:

E
(
yiy

T
i

)
= Bxix

T
i B

T + σ 2Ip = 6xi .

resulting from the inclusion of the random variable γi. The
covariance matrix 6 is indexed by xi to indicate that it changes
as a function of the explanatory variables. As with usual
univariate linear modeling, we can interpret the coefficients
B as explaining differences between experimental conditions.
The matrix B is p × J dimensional, where J is the number
of columns in the n × J dimensional design matrix X. Here
J = 2 and the second column encodes the contrast between
short sleepers and conventional sleepers. The interpretation
of B is that small values indicate little heteroscedasticity,
identical signs indicates positive correlation, and opposite signs
indicate negative correlation. For instance, assume that the
second column of B is b2 = (−1, 3, 0, 2)T . The interpretation

for these four regions is as follows: region one and two
are negatively correlated, so are region one and four, region
two and four are positively correlated, and region three is
uncorrelated.

The general form of this model was introduced by Hoff and
Niu (2012) with the idea of decomposing covariance matrices
into covariates explained and unexplained terms. In this original
form the unexplained part is parametrized as a full covariance
matrix scaling quadratically in the number of regions, i.e.,
p(p− 1)/p parameters. Instead, we parametrize it as a diagonal
matrix with independent variance terms for each region. This
simplified model scales linearly in the number of regions p and
can therefore be applied to large brain parcellations.

We use flat priors on both parameters σ and B. The elements
of the B matrix have a uniform prior on (−∞,∞), and the
elements of σ vector have a uniform prior on (0,∞). These priors
are improper and do not integrate to one over their support. In
case of prior knowledge, it is preferable to use more informative
priors. For large p, we can add an additional hierarchical level to
adjusting for multiple testing by including a common inclusion
probability per column in B (Scott and Berger, 2006, 2010).

As is common in univariate linear modeling, it is possible
to encode additional explanatory variables such as subject ID
and possible batch factors. It would also be possible to extend
the model to include temporal dependencies in the form of
spline coefficients. We have not done so here because we
wanted to focus explicitly on functional connectivity between
regions.

2.2.2. Effective Sample Size
We subsample n time points to obtain the Effective Sample Size
(ESS). This n is smaller than the total number N of time points
because it accounts for temporal dependency. We propose a
procedure to automatically choose n using an autocorrelation
estimate of the timeseries. This is current practice in the field
of Markov chain Monte Carlo and implemented in R package
coda (Plummer et al., 2006). The ESS describes how much
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a dependent sample is worth with respect to an independent
sample of the same size. Kass et al. (1998) define ESS via the lag t

autocorrelation Corr
(
y
(j)
1 , y

(j)
1+t

)
as:

n = min
j= 1,...,p



 N

1+ 2
∑∞

t= 1 Corr
(
y
(j)
1 , y

(j)
1+ t

)



 .

This is a component-wise definition and we follow a conservative
approach by taking the minimum over all p components as the
overall estimator. Intuitively, the larger the autocorrelation the
lower is our ESS because we can predict future form current time
points. A convenient side-produce of subsampling is reduced
computational costs.

2.2.3. Inference
We implement our model in the probabilistic programming
language Stan (Carpenter et al., 2017) using R. Stan uses
Hamiltonian Monte Carlo to sample efficiently from posterior
distributions using automatic differentiation. It removes the need
for manually deriving gradients of the posterior distributions,
thus making it easy to extend models. Our Stan code is available
in our new R package CovRegFC from our GibHub repository.
Alternatively, using conjugate priors it is possible to derive a
Gibbs sampler to sample from the posterior distribution of a
related model as in Hoff and Niu (2012). However, this makes
it harder to extend the model.

Due to the non-identifiability of matrix B up to random
sign changes, B and −B corresponding to the same covariance
function, we need to align the posterior samples coming from
multiple chains. A general option is to use Procrustes alignment.
Procrustes alignment (Korth and Tucker, 1976) is a method for
landmark registration (Kendall, 1984; Bookstein, 1986) in the
shape statistics literature and an implementation is available in
the R package shape (Dryden and Mardia, 1998).

2.3. Full Covariance Regression
In this section, we introduce a full covariance linear model.

2.3.1. Model
Here we do not subsample and deal with temporal dependencies
in a different way. In this model, the number of observations
are the number of subjects k = 1, . . . ,K. After column-wise
centering of each N × p (recall that N is the total number of time
points) timeseries Y1, . . . ,YK , we compute sample covariance
matrices for each subject S1 = YT

1Y1, . . . , SK = YT
KYK . We

take this as our “observed” response. Additionally, we have
one explanatory vector x1, . . . , xn for each response covariance
matrix. In our HCP data subset, we have 730 subjects, soK = 730
and we have K data point pairs (S1, x1), . . . , (SK , xK). We assume
that the explanatory vector has two elements: the first element

x
(1)
k

representing the intercept and is equal to one, and the second

element x
(2)
k

is one for short and zero for conventional sleepers.
Our regression model:

Sk ∼ Wishart
(
x
(1)
k

6(1) + x
(2)
k

6(2), ν
)

decomposes the “observed” covariance matrix into an intercept
term and a term encoding the functional connectivity between
sleepers. The second parameter in the Wishart distribution
describes the degrees of freedom and has support (p− 1,∞).

We will now describe how to draw samples from the
Wishart distribution, this will give us a better intuition for
the proposed model. Matrices following a Wishart distribution
can be generated by drawing vectors y1, . . . , yN independently
from a Normal(0,6), storing vectors in a N × p matrices Y i,
and computing the sample covariance matrix Si = YT

i Y i.
Then, the constructed Si’s are distributed according to a Wishart
distribution with parameters 6 and degrees of freedom N. If
the ESS is smaller than N it will be reflected in the degrees of
freedom parameter ν. In our model, we will estimate ν from the
data. In this way, we account for the temporal dependencies in
the timeseries. The marginal posterior distribution of ν will be
highly concentrated around a small degree of freedom (close to p)
for strongly dependent samples and concentrated around a large
degree of freedom (close to N) for weakly dependent samples.

To complete our model description, we need to put priors on
covariance matrices and the degrees of freedom. We decompose
the covariance prior into a standard deviation σ vector and a
correlation matrix � for each term:

6(1) = σ (1)Ip �(1) σ (1)Ip and 6(2) = σ (2)Ip �(2) σ (2)Ip

and put a Lewandowski, Kurowicka, and Joe (LKJ) prior on the
correlation matrix (Lewandowski et al., 2009) independently for
each term:

�(1) ∼ LKJcorr(η) and �(2) ∼ LKJcorr(η).

This correlation matrix prior has one parameter η that defines
the amount of expected correlations. To gain intuition about η,
we draw samples from the prior for a range of dimensions and
parameter settings (Figure 2). The behavior in two dimension
is similar to a beta distribution putting mass on either the
boundary of the support of the prior or in the center. As we move
toward higher dimensions, we can see that the distribution is less
sensitive to the parameter η. For our model, we set η = 1 to
enforce a flat prior. We complete our prior description by putting
independent flat priors on both the vector of standard deviations
σ and the degrees of freedom ν, i.e., uniform prior on (0,∞) and
uniform prior on (p− 1,N − 1), respectively.

2.3.2. Inference
The number of parameters in the model scales quadratically
in the number of regions making this model applicable in the
classical statistical setting where we have larger sample sizes than
number of predictors. In section 3.1, we will show an application
to the HCP data with K = 730 subjects and p = 15 regions. Note,
Hoff (2009) devised a Gibbs sampler for a similar model using an
eigenmodel for the subject-level covariance matrices.

2.3.3. Posterior Analysis and Multiplicity Control
After drawing samples from the posterior, we can evaluate
the marginal posterior distributions of standard deviations σ ,
correlations �, and degrees of freedom ν. As mentioned, we
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FIGURE 2 | Density plots of 1,000 draws from the LKJ prior in 2, 15, and 50 dimensions. We plot one off-diagonal element in the correlation matrix for each matrix R

drawn form the LKJ prior. We pick element (1, 2) denoted by R12. This is representative of the other elements in the matrix because the LKJ prior is symmetric. We

evaluate different shape parameters η. In the low-dimensional setting, a small η assigns larger probability mass to correlations close to −1 and 1, whereas a large η

assigns larger mass around 0. In the high-dimensional setting, probability mass is concentrated around 0 irrespectively of η. The special case of η = 1 represents the

uniform distribution on correlation matrices.

assume that the second element in the explanatory vector encodes
whether a subject is a short or a conventional sleepers. In this
setting, �(2) represents the difference in correlation between
short and conventional sleepers. As we have the marginal

posterior distribution for every �
(2)
ij , we can evaluate the

probability:

Pij =
∣∣∣ 2 Prob

(
�

(2)
ij > 0

)
− 1

∣∣∣.

Our interpretation in terms of connectivity is as follows: If Pij
is zero then the correlation is equally probable to be negative or
positive. In this case, we are unable to clearly classify the sign of
the correlation difference as negative or positive. If Pij is close to
one then the correlation is more probable to be either negative or
positive. In this case, we can say that parcel i can be seen to be
differentially connected to parcel j.

There are p(p − 1)/2 pairwise correlations and we wish to
find correlations that are different between the two groups. If
the probability Pij is large, we will report the connection as
significantly different. To control for multiple testing, we declare
correlations only as significant if they pass a threshold λ. We
choose λ to control the posterior expected FDR (Mitra et al.,
2016):

FDRλ =

∑
ij(1− Pij)I(Pij > λ)
∑

ij I(Pij > λ)
.

We find λ through grid search for a fixed FDR. This allow us to
report only correlations that survive the threshold at a given FDR.

3. RESULTS

The HCP released a dataset with 820 timeseries of normal
healthy subjects measured during resting-state fMRI (rfMRI).
The imaging data is accompanied by demographic and behavioral
data including a sleep questionnaire. Approximately 30%
Americans are reported short sleepers with 4–6 h of sleep
per night. The National Sleep Foundation recommends that
adults sleep between 7 and 9 h. We use both models to

analyze the HCP data on 730 participants (after subsetting
to short and conventional sleepers) to elucidate difference in
functional connectivity between short and conventional sleepers.
As mentioned before, the design matrix X has an intercept 1 and
a column encoding short sleepers 1 and conventional sleepers
0, i.e., conventional sleepers are the reference condition. We
use a burn-in of 500 steps during which Stan optimizes tuning
parameters for the HMC sampler, e.g., the mass matrix and
the integration step length. After burn-in, we run HMC for
additional 500 steps. To check convergence, we assess traceplots
of random parameter subsets. We obtain an effective sample
size of 167 for the 15 regions ICA-based parcellation. We
now analyze the marginal posterior distribution of each of the
parameters.

3.1. Differential Analysis
3.1.1. Fifteen Parcels
In Figure 3, we summarize and visualize the marginal posterior
distribution of the second column in B. In the center part of
the plot, we show the posterior distribution as posterior medians
(dot) and credible intervals containing 95% of the posterior
density (segments). The credible intervals are Bonferroni
corrected by fixing the segment endpoints at the 0.05/15 and
(1− 0.05/15) quantiles. Care has to be taken when interpreting
the location of segments with respect to the zero coefficient
line (red line). Due to the sign non-identifiability of B, we have
to ignore on which side the segments are located. Recall that
regions on the same side are positively correlated, regions on
opposite sides are negatively correlation, and regions overlapping
the red line are undecided. To relate the region name back to
the anatomy, we plotted the most relevant axial slice in the
MNI152 space on the left and the right of the coefficient plot,
depending on their sign, respectively. We can make the following
observations: Parcels in set 1 (R4, R5, R7, and R9) are positively
correlated. Keep in mind that the sign of the coefficient carries
no information about the sign of the correlation. So, even though
the coefficients are negative the correlations are positive, because
they are on the same side of the red line. Parcels in set 2 (R1-R3,
R8, R10-R13, and R15) are also positively correlated, for the same
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FIGURE 3 | Low-dimensional covariance model. This is the second column in the design matrix encoding the contrast between short and conventional sleepers. The

sign is not identifiable; it only matters whether parcels are on the same or opposite side. If they are on the same side, then they are positively correlated. If they are on

the opposite side, then they are negatively correlated. The posterior credible intervals are widened according to the number of regions or channels in the plot using the

Bonferroni procedure.

FIGURE 4 | Regions are numbered from R1 to R15. SD stands for standard

deviations. Posterior mean correlations magnitude and standard deviations of

the difference between short and conventional sleepers.

reason as before. In contrast, the two parcel sets are negatively
correlated, because they are on opposite sides. The connectivity of
R6 and R14 are not different from conventional sleepers because
their credible intervals overlap the red line. According to themeta
analysis in Smith et al. (2009), parcel set 1 is associate with visual,
cognition-language, sensorimotor areas, and the cerebellum; and
parcel set 2 with visual, cognition-language, auditory areas, and
the default network.

We now compare the result from the low-dimensional
model with results from the full model. First, we compute
the posterior marginal mean of the standard deviations vector
σ (2) and the correlation matrix magnitude |�(2)| encoding the
difference between short and conventional sleepers (Figure 4).
The standard deviation plot on the right shows that parcel

R3 varies the most, and that region R2 varies the least. The
magnitude correlation plot on the left shows that parcel pair R9
and R13 exhibit the strongest correlation. This is consistent with
the low-dimensional model results, where R9 and R13 are in
opposite parcel sets. Similarly, parcels R1 and R8 have a strong
correlation magnitude in the full model and large effect sizes in
the low-dimensional results.

In Figure 5, we assess the significance of differential
correlations. The color code indicates different FDR levels.
Overall strong differences in the correlation structure are visible
with a large portion of connections at an FDR of 0.001. In
contrast to the low-dimensional model, these are differences in
correlations and not whether they are more positively or more
negatively correlated.

3.1.2. Fifty Parcels
Modeling the data in a more compact representation makes
it easier for us to interpret the results and easier to estimate
parameters. For instance, consider analyzing p = 50 parcels of
160 randomly sampled subjects form the HCP (Figure 6). All
the information fits on one plot similar as in the p = 15 parcel
case. For p = 50 it starts to get harder to interpret the full
model because we have now 50(50 − 1)/2 = 1225 possible
pairwise correlations. It will be hard to interpret a plot of the full
correlation matrix. One way to make sense of it is to cluster rows
and columns of the correlation matrix. Even though such post-
processing approaches are useful, it is unclear how to propagate
uncertainty from the correlation estimation to the clustering
step. A low-dimensional model is therefore our preferred analysis
approach.

3.1.3. Note on Computation Time
For the low-dimensional model and the available 730 subjects,
the computation time for the HMC sampler is around 20 h on
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a single core on a modern CPU. For a subsample of 40 subjects,
the computation time is around 20–25 min, and for 80 subjects
around 50–55 min. It is possible to run more chains in parallel to
increase the sample size. To combine each run, we need to align
the posterior samples using Procrustes alignment as indicated in
the section 2.

The full model takes about 1 h on a single core, and we run
four chains in parallel to increase sample size.

FIGURE 5 | Thresholded connectivity matrix showing the level of differential

correlation between all pairs of parcels in short vs. conventional sleepers.

Thresholding is chosen to control for posterior expected FDR at three different

levels > 0.01, 0.01, and 0.001.

3.2. Power Analysis
We design a power analysis (Figure 7) for low-dimensional
covariance regression with 15 parcels. As the population we
take the available 730 subjects in the HCP data repository that
are either short or conventional sleepers and have preprocessed
timeseries. We sample 100 times from this population keeping
the same ratio between the number of observations for each
group, i.e., two thirds conventional and one third short sleepers.
We report the average True Positive Rate (TPR) and the False
Discovery Rate (FDR) over the 100 samples. We assign a parcel
to a parcel set if its credible interval is located on one side of the
zero red line and does not overlap the line. The credible intervals
contain 100 × (1 − α)% of the marginal posterior distribution
with end points evaluated using quantiles. We need to take into
consideration that parcel sets are non-identifiable. We denote

the ith predicted parcel set as Z
pred
i and the true parcel set as

Ztrue
i . The index i can be either 1 or 2. Parcel sets are subsets of

{R1, R2, . . . , R15}.
With these definitions, we are now ready to calculate TPR and

FDR. The TPR measures the power of our procedure to detect
true parcels. We define true positives as:

TPijkl = #(Z
pred
i ∩ Ztrue

j )+ #(Z
pred
k

∩ Ztrue
l ).

To obtain the rate, we take the maximum of both possible
comparisons:

Correctly Predicted Parcels = max(TP1122, TP1221)

and divide by the total number of true parcels:

TPR =
Correctly Predicted Parcels

Total True Parcels
.

FIGURE 6 | Low-dimensional covariance model applied to 50 parcels of 160 randomly sampled subjects from the HCP after subsetting to short and conventional

sleepers.
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FIGURE 7 | Power analysis for low-dimensional covariance regression with 15

parcels. The two statistics are the True Positive Rate (TPR) and the False

Discovery Rate (FDR). The significance level is denoted by α. Points are

averages computed over 100 samples from the population.

The FDR measures the amount of falsely predicted parcels as:

FPijkl = #(Z
pred
i \ Ztrue

j )+ #(Z
pred
k

\ Ztrue
l )

by taking the minimum

Falsely Predicted Parcels = min(FP1122, FP1221)

divided by the total number of positives

FDR =
Falsely Predicted Parcels

Correctly Predicted Parcels+ Falsely Predicted Parcels
.

The tradeoff between the two can be controlled through the
significance level α. Power increases linearly with sample size.
FDR decrease linearly but at a lower rate with sample size. At
samples size 40, we have a power of 50% with an FDR of 20%.
This improves to a power of 80% with an FDR of 10% at sample
size 160.

4. DISCUSSION

We introduced two new models for functional connectivity.
In particular, the low-dimensional covariance model is able to
discover 50% of the correlation differences at a FDR of 20% in
a sample size as little as 40. Our Stan implementations make it
easy for others to extend our models. We applied both models to
the HCP data subset to compare functional connectivity between
short and conventional sleepers. Our findings are consistent with
Curtis et al. (2016) and Killgore et al. (2012) reporting increases
in functional connectivity in short sleepers for primary auditory,
primary motor, primary somatosensory, and primary visual

cortices. A similar neural signature was observed in experiments
examining the transition from resting wakefulness to sleep onset
using EEG and rfMRI (Larson-Prior et al., 2009; Tagliazucchi and
Laufs, 2014; Davis et al., 2016). Therefore, we recommend the
inclusion of the average sleep duration of a subject as a “batch”
covariate in the experimental design of rfMRI studies.

In addition to group comparisons encoded as a design matrix
with two columns, it is possible to extend our low-dimensional
model to more complicated experimental designs by appending
more columns to the design matrix. We can encode batch
factors and subject-specific variability by binding one column
per factor level. Besides categorical variables, we can model
continuous variables such as head-motion measurement made
using an accelerometer. Adding covariates to explain unwanted
variation in the data can move some of the preprocessing steps
to the functional connectivity analysis step. Such joint modeling
can enable the propagation of uncertainty to the downstream
analyses. Additional columns in the design matrix are called
blocking factors and can improve the statistical power. Without
modeling the blocking factor, the variability in the data is
absorbed by the noise term. The higher level of noise leads to
higher uncertainty in our parameter estimates. In contrast, a
model with additional blocking factors has more parameters that
need to be estimated. As in most practical problems, the right
modeling choice depends on the data.

A main challenge in covariance regression is the positive
definiteness constraint. A solution is to transform the covariance
estimation problem into an unconstrained problem thus making
estimation and inference easier (Pourahmadi, 2011). One
possible transformation starts with a spectral decomposition
where the covariance matrix is decomposed into a diagonal
matrix of eigenvalues and an orthogonal matrix with normalized
eigenvectors as columns. The procedure continues with a global
log-transformation to the covariance matrix, which results in
a log-transformation of individual eigenvalues and removes
the constraint. However, mathematically and computationally
tempting this approach seems, it remains hard to interpret
the log-transformations statistically (Brown et al., 1994; Liechty
et al., 2004). An alternative transformation uses a Cholesky
decomposition of the covariance matrix. For the Cholesky
decomposition, we need a natural ordering of the variables
not known a priori for functional connectivity data—a natural
ordering could be given if the chronology is known.

Modeling of covariance matrices builds on important
geometrical concepts and the medical image analysis community
has made significant progress in terms of mathematical
descriptions and practical applications motivated by data in
diffusion tensor imaging (Pennec, 1999, 2006; Moakher, 2005;
Arsigny et al., 2006/2007; Lenglet et al., 2006; Fletcher and Joshi,
2007; Fillard et al., 2007; Schwartzman et al., 2008; Dryden et al.,
2009). The underlying geometry is called Lie group theory and
it appears when we consider the covariance matrices as elements
in a non-linear space. The matrix log-transformation from the
previous paragraph maps covariance matrices to the tangent
space where unconstrained operations can be performed; for
instance we create a mean by simple elementwise averaging. After
computing the mean in tangent space, this mean is mapped
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back to the constrained space of covariance matrices. Despite
the mathematical beauty and algorithmic convenience, statistical
interpretations are still unwieldy. However, this does provide a
fundamental geometric formulation and enables the use of handy
geometrical tools (Absil et al., 2008 for a book-length treatment).

We approach the problem from a statistical viewpoint
and frame functional connectivity in terms of modeling
heteroscedasticity. This allows us to take advantage of the rich
history in statistics and led us to the covariance regression model
introduced by Hoff and Niu (2012). We simplify the model
to meet the large p requirement in neuroscience. The running
time for 500 posterior samples on 80 subjects is less than an
hour on a single core. This makes our approach applicable to
many neuroimaging studies. For larger studies, such as the HCP
with 730 subjects, further speed improvements using GPU’s are
desirable to reduce computation time.

One possible future application is functional Near-Infrared
Spectroscopy (fNIRS), which has gained in popularity due its
portability and high temporal resolution. A common approach
is to set up a linear model between brain responses at channels
locations (Huppert et al., 2009; Ye et al., 2009; Tak and Ye, 2014)
and experimental conditions. Thus, our models apply to fNIRS
experiments. An additional challenge in fNIRS experiments is
channel registration acrossmultiple participants (Liu et al., 2016).
Connectivity differences could be due artifacts created by channel
misalignments not biology. In the absence of structural MRI, we
could add an additional hierarchical level in our low-dimensional
model to handle measurement errors accounting for possible
misalignments between channels.

We use a conservative component-wise estimate of the ESS.
Less conservative multivariate estimators (Vats et al., 2015) might
be able to increase statistical power at the cost of an increase in
the false discovery rate.

REPRODUCIBILITY AND
SUPPLEMENTARY MATERIAL

The entire data analysis workflow is available on our GitHub
repository:

• https://github.com/ChristofSeiler/CovRegFC_HCP

We also provide a new R package CovRegFC with Stan code:

• https://github.com/ChristofSeiler/CovRegFC

Data preparation and statistical analyses are contained in Rmd

files:

• Low_Dimensional.Rmd

• Full.Rmd

• Power.Rmd

By running these files all results and plots can be completely
reproduced as html files:

• Low_Dimensional.html

• Full.html

• Power.html

The HCP data is available here:

• https://www.humanconnectome.org/data/
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Relating disease status to imaging data stands to increase the clinical significance of

neuroimaging studies. Many neurological and psychiatric disorders involve complex,

systems-level alterations that manifest in functional and structural properties of the brain

and possibly other clinical and biologic measures. We propose a Bayesian hierarchical

model to predict disease status, which is able to incorporate information from both

functional and structural brain imaging scans. We consider a two-stage whole brain

parcellation, partitioning the brain into 282 subregions, and our model accounts for

correlations between voxels from different brain regions defined by the parcellations.

Our approach models the imaging data and uses posterior predictive probabilities to

perform prediction. The estimates of our model parameters are based on samples

drawn from the joint posterior distribution using Markov Chain Monte Carlo (MCMC)

methods. We evaluate our method by examining the prediction accuracy rates based

on leave-one-out cross validation, and we employ an importance sampling strategy to

reduce the computation time. We conduct both whole-brain and voxel-level prediction

and identify the brain regions that are highly associated with the disease based on the

voxel-level prediction results. We apply our model to multimodal brain imaging data from

a study of Parkinson’s disease. We achieve extremely high accuracy, in general, and

our model identifies key regions contributing to accurate prediction including caudate,

putamen, and fusiform gyrus as well as several sensory system regions.

Keywords: Bayesian spatial model, prediction, MCMC, posterior predictive probability, importance sampling,

Parkinson’s disease

1. INTRODUCTION

Functional and structural neuroimaging play important roles in understanding the neurological
basis for major psychiatric and neurological disorders such as Parkinson’s disease (PD),
schizophrenia, depression, and Alzheimer’s diseases. There is emerging interest in using imaging
and other clinical data to forecast or blindly classify subjects into subgroups, for example, defined
by disease status or more refined diagnostic categories. Classification or prediction of disease status
based on imaging data remains an active area of research and holds promise formaking a significant
clinical impact. Prediction models may have a range of applications and be beneficial for clinical
diagnosis, determining antecedents to a standard diagnosis, forecasting prognosis, and revealing
the underlying neural basis of disease, thus informing the development of future treatments.
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We use data from a study of PD as a motivating example
for our proposed methods (see section 2). Neuroimaging has
revealed various functional and structural alterations associated
with PD. There have been reports of cortical cortical thinning
in PD patients determined from T1-MRI scans (Lee et al.,
2013; Zarei et al., 2013; Zhang et al., 2015), decreased fractional
anisotropy in the substantia nigra revealed by diffusion tensor
imaging (DTI) (Vaillancourt et al., 2009), and functional
connectivity, structural connectivity, and volumetric PD-related
changes revealed by a multimodal imaging analysis (Bowman
et al., 2016). These and other related studies suggest the utility
of imaging data in revealing neuropathophysiology related the
loss of dopamine producing neurons in PD and prompt the need
for new methods to accommodate high-dimensional multimodal
data.

Regularization and variable selectionmethods such as the least
absolute shrinkage and selection operator (LASSO) (Tibshirani,
1996) and elastic-net (Zou and Hastie, 2005) as well as
support vector classifiers are commonly used to predict a single
scalar-valued outcome from high-dimensional data. Support
vector classifiers, which arise from support vector machines
(SVM), classify the data by constructing an optimal separating
hyperplane in a high dimensional space to which the data
are mapped (Cortes and Vapnik, 1995). Gaussian process (GP)
models provide an alternative approach, which finds the posterior
function that is closest to the training data based on Bayesian
theory (Marquand et al., 2010). Ham and Kwak (2012) propose
a boosted-principal component analysis (PCA) algorithm for
binary classification problems that combines feature selection
and classification.

Several methods have been proposed to predict follow-up
imaging scans from baseline scans (Guo et al., 2008; Derado et al.,
2013). Guo et al. (2008) propose a Bayesian hierarchical model
for functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) data; Derado et al. (2013) extends
the model by introducing both spatial correlations between
voxels and temporal correlations between baseline and follow-
up functional imaging scans. For structural data, Stonnington
et al. (2010) propose a relevance vector regression (RVR) model
to predict the clinical scores using MRI T1 weighted scans.

Predicting disease status utilizes a potentially massive number
of independent variables that exhibit unknown patterns of
correlation. The prediction and classification models described
above do not estimate the spatial correlations in imaging scans
or capture the associations between different imaging modalities.
We build on ideas of spatial modeling for correlated imaging
data for our prediction framework. Specifically, we propose a
novel Bayesian hierarchical model to predict disease status using
imaging scans of different modalities in both gray and white
matter to reflect the functional as well as the structural properties
of the brain. We consider a two-level brain parcellation, dividing
the brain into defined regions as well as subregions within
regions, and assume different spatial correlation structures
between voxels within a subregion, within a region, and in
different regions. We perform Markov Chain Monte Carlo
(MCMC) estimations via Gibbs sampling. The predictions for
disease status are conducted based on the predictive posterior

probabilities. Both whole-brain and voxel-level predictions are
performed using leave-one-out cross validation (LOOCV). Also,
we conduct feature selection to identify the regions that are
associated with the disease based on the voxel-level prediction
results. We apply our approach to a PD study and conduct
simulation studies to evaluate its performance.

2. PARKINSON’S DISEASE DATA

This research qualifies as Research of Existing Data, Records,
Specimens [Basic Exempt Criteira 45 CFR 46.101(b)(4)], and has
been deemed Not Human Subjects Research (HS Code 10 in
IPMAC II as reference in the manual chapter 7410) by NIH and
Columbia University Medical Center Institutional Review Board
(Protocol: IRB-AAAO0062).

The data were originally collected at Emory University (P50-
NS071669) and were supplied to Columbia with all subjects’
records de-identied. Written and informed consent was obtained
from all research participants at the time of data collection.

A total of 20 subjects, 11 of which are diagnosed as early
to moderate PD patients and the rest are healthy controls, are
included in the study. The average age is 66 (s.d.= 11) years, and
12 of the subjects are males. The mean duration of disease was 8.4
years (s.d. = 3.3). The average height is 175 cm and the average
weight is 79 kg. Resting-state fMRI scans, and T1-weighted MRI
scans, and diffusion tensor imaging (DTI) scans are obtained.

A Siemens Trio Tim 3T MRI scanner was used to capture all
the imaging scans. MPRAGE was used to acquire the structural
T1 scans (TR= 2,600 ms, TE = 3 ms, 192 sagittal slices at 1 mm;
256 × 232 1 mm isotropic pixels). The resting-state fMRI scans
were acquired using echo planar imaging (EPI) (TR = 3,000 ms,
TE = 30 ms, 48 axial slices at 3 mm, 128 × 128 2mm isotropic
pixels) for each subject. DTI data were captured using a biphase
approach with consecutive left-to-right and right-to-left phase
scans. The subjects followed a DTI protocol (TR = 8,700 ms, TE
= 94ms, 64 axial slices at 2mm, 128× 128 2mm isotropic pixels)
comprised of 64 directions (B= 1,000 s/mm2), with three leading
and three trailing B0 scans.

We extract voxel-level information from these three imaging
modalities, including fractional amplitude of low-frequency
fluctuation (fALFF) from resting-state fMRI scans, voxel based
morphometry (VBM) from T1-weighted MRI scans, and
fractional anisotropy (FA) from DTI scans. fALFF reflects
the amplitude of spontaneous blood-oxygen-level-dependent
(BOLD) signal fluctuations of each voxel. VBM measures the
localized gray matter volume changes in each voxel after spatially
normalizing all the images to a standard space, and extracting
gray matter from the normalized images (Ashburner and Friston,
2000). FA has a single value for each voxel, measuring the
difference in directions along different axes of the random
motion of water molecules in the brain, which reflects the
physical orientation of white-matter fibers at that location. In
summary, fALFF provides functional information, while FA and
VBM describe structural properties of the brain.

The image preprocessing was performed using statistical
parametric mapping (SPM) (Wellcome Department of Cognivite
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Neurology, http://www.fil.ion.ucl.ac.uk/spm) and FMRIB
(Functional Magnetic Resonance Imaging of the Brain) Software
Library (FSL) (Smith et al., 2004). Resting state preprocessing
consisted of a despiking stage, slice time correction, motion
correction, spatial normalization to MNI and smoothing by
6 mm FWHM. The time courses were filtered to the band
0.01–0.1Hz.

3. METHODS

We propose a novel Bayesian hierarchical model to predict
disease status using imaging data from different modalities,
including fALFF, VBM, and FA. For resting-state fMRI scans
and DTI scans, the functional and structural information lies in
gray matter and white matter, respectively. Most VBM analyses
focus on gray matter, which will be the focus of our upcoming
data example; however, applications of VBM in white matter has
also been found to be associated with psychiatric diseases such as
Alzheimer’s diseases and schizophrenia (Di et al., 2009; Li et al.,
2011). Potentially, our prediction model involves the voxels in
gray and/or white matter for different imaging modalities.

3.1. Model and Estimation
We consider a two-level brain parcellation, initially consisting
of G = 90 brain regions defined by the automated anatomic
labeling (AAL) system (Tzourio-Mazoyer et al., 2002). In each
region g, we define Lg subregions, ranging from 1 to 9, for g =

1, . . . ,G. The subregions are built based on the brain parcellation
algorithms described in Appendix 1 (Supplementary Material).
Each subregion l is composed of Vl voxels. Let Xilg(v), Yilg(v)
and Zilg(v) respectively denote the observed fALFF, FA and VBM
measures for subject i at voxel v in subregion l and region g, for
i = 1, . . . , n, v = 1, . . . ,Vl, l = 1, . . . , Lg . Let Ng(l) ⊆ {1, . . . , Lg}
denote the neighboring subregions of subregion l, constrained to
fall within region g, and nlg is the number of members in Ng(l).
In our model, all the subregions in region g are considered as
neighbors of subregion l; therefore, we have Ng(l) = {1, . . . , Lg},
and nlg = Lg . LetDi ∈ {0, 1} denote the disease status (here, PD),
where 1 indicates PD; and Wi = (Wi1, · · · ,WiQ) denotes the
vector ofQ covariates. LetB,W and G respectively represent the
whole brain region, the white matter region and the gray matter
region.

We propose a model that accounts for the spatial correlations
between voxels within the same subregion, between subregions
within the same region, and between regions. Building spatial
correlations into our model captures associations between
different brain regions and generally improves the precision
of estimates by borrowing strength from other (sub)regions.
First, our model assumes consistent correlations between voxels
in a same subregion. Then the spatial correlations between
subregions within the same AAL region are described by
a conditional autoregressive (CAR) model, which allows the
estimates at subregion levels to borrow strength from their
neighbors within the same AAL region. In addition, we introduce
unstructured spatial correlations between AAL regions.

Our model reflects the assumption that for each voxel v in the
gray matter, the fALFF value Xilg(v) follows a normal distribution

conditioning on the VBM value Zilg(v); for each voxel v in the
white matter, the FA value Yilg(v) follows a normal distribution
conditioning on the VBM value Zilg(v); and for each voxel v
included in the analysis, the VBM value Zilg(v) follows a normal
distribution. The proposed model has the following hierarchical
structure:

For any v ∈ G, [Xilg(v) | Zilg(v),Di,Wi, • ] ∼ N
{
µxz
lg (v), δ

xz
lg

}
,

for any v ∈ W , [Yilg(v) | Zilg(v),Di,Wi, • ] ∼ N
{
µ
yz

lg
(v), δ

yz

lg

}
,

for any v ∈ B, [Zilg(v) | Di,Wi, • ] ∼ N
{
µz
lg(v), δ

z
lg

}
,

where

µxz
lg (v) =

∑

k=0,1

[cxzklg(v)(Zilg(v)− Z̄lg(v))+Wiγ
x
klg(v)+ βx

klg(v)

+ αx
ilg + ηxkg]I(Di = k),

µ
yz

lg
(v) =

∑

k=0,1

[c
yz

klg
(v)(Zilg(v)− Z̄lg(v))+Wiγ

y

klg
(v)+ β

y

klg
(v)

+α
y

ilg
+ η

y

kg
]I(Di = k),

µz
lg(v) =

∑

k=0,1

(Wiγ
z
klg(v)+ βz

klg(v)+ αz
ilg + ηzkg)I(Di = k).

We assume that the probability of disease status P(Di = ki)
is a constant, and independent of all the parameters. Also, we
assume conditional independence among voxel measures of the
same modality within the same subregion. The mean structure
of the model is composed of several parameters, conditional on
disease status. cklg(v) is the slope term for centered VBM values;
γ klg(v) = (γklg1(v), · · · , γklgQ(v))

′ is the parameter vector for
covariates; βklg(v), αilg , and ηkg are the voxel-level intercept term,
subregion level random effect, and region level intercept term,
respectively. Each imaging modality is assumed to have the same
subregion-level variance δlg for both subject groups.

The prior beliefs about the parameters included in the
likelihood function are expressed in the second or lower levels
of the model.

We also assume that

cxzklg(v) ∼ N(ζ xz
klg ,ω

xz
klg), ζ xz

klg ∼ N(aζ , bζ ), ωxz
klg ∼ InvG(aω , bω),

c
yz

klg
(v) ∼ N(ζ

yz

klg
,ω

yz

klg
), ζ

yz

klg
∼ N(aζ , bζ ), ω

yz

klg
∼ InvG(aω , bω),

γm
klgq(v) ∼ N(0, smklg), smklg ∼ InvG(as, bs),

βm
klg(v) ∼ N{βm

klg , λ
m
klg}, λmklg ∼ InvG(aλ, bλ),

The slope cklg(v) follows a normal distribution, whose mean
and variance are drawn from noninformative hyperpriors.
Each covariate parameter γklgq(v) is assumed to arise from a
normal mean-zero distribution with variance sklg , which has a
noninformative hyperprior distribution. Parameters βklg(v) that
fall within the same subregion are assumed to follow normal
distributions with common mean βklg , and variance λklg . We
assume a noninformative distribution for λklg , and as described
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in detail below, we use a spatial prior for βklg to incorporate
spatial correlations between subregions. ηk follows a multivariate
normal distribution with mean 0 and covariance matrix 6k

whose off-diagonal elements capture spatial dependence between
AAL regions. Spatial associations between voxels within each
subregion are introduced by the individualized random effect
term αilg , which follows a mean-zero normal distribution with
variance τlg , thus assuming the same spatial correlations between
voxels in the same subregion.

We assume a CAR model for βm
klg

as follows:

[βm
klg | {β

m
kl′g}l′ 6=l, • ] ∼ N





ρm
g

nlg

∑

l′∈Ng (l)

βm
kl′g ,

φm
g

nlg




 ,

ρm
g ∼ U({0, 0.05, 0.1 · · · , 0.8, 0.81, · · · , 0.9, 0.91, · · · , 0.99}),

φm
g ∼ InvG(aφ , bφ),

αm
ilg ∼ N(0, τmlg ), τmlg ∼ InvG(aτ , bτ ),

ηmk = (ηmk1, . . . , η
m
kG)

′

∼ N(0,6m
k ), 6m

k ∼ InvW(3, ν),

δxzlg ∼ InvG(aδ , bδ), δ
yz

lg
∼ InvG(aδ , bδ),

δzlg ∼ InvG(aδ , bδ), wherem ∈ {x, y, z}.

By assuming a subregion level CARmodel, we capture the spatial
dependence between subregions within each AAL region. In the
model, ρg represents the overall degree of spatial dependence

in region g and
φg

Lg
is the conditional variance of βklg . The

neighborhood of subregion l ∈ g, is defined as all the other
subregions in AAL region g. The spatial neighborhood effect ρg
is assumed to follow a discrete uniform distribution (Gelfand and
Vounatsou, 2003). As we would like to identify the similarity of
the neighboring subregions, we impose 0 ≤ ρg < 1. Specifically,
equal mass is put on the following 36 values: 0, 0.05, 0.1, ..., 0.8,
0.81, 0.82, ..., 0.90, 0.91, 0.92, ..., 0.99, which includes a more
refined set of values in the upper range of ρg since estimation of
ρg for imaging data often tends toward large values.

For any disease status k, the covariance between the voxels
within a same subregion l in region g is contributed by
the variance from three components: βklg , αilg , and ηkg ; the
covariance between the voxels in two subregions l and l′, but
the same AAL region g, comes from the covariance between βklg

and βkl′g , and the variance of ηkg ; and the covariance between
the voxels in two AAL regions g and g′ is determined by the
covariance of ηkg and ηkg′ .

We perform estimation using Markov chain Monte Carlo
(MCMC) implemented via Gibbs sampling. The full conditional
posterior distributions are shown in Appendix 2 (Supplementary
Material).

3.2. Prediction
3.2.1. Whole Brain Prediction

The objective of our model is to predict PD status, given
imaging data and other covariates. To achieve this goal, we use

the posterior samples drawn from estimation to calculate the
posterior predictive probability of disease status.

Let θ denote the parameter space, Bi = (Xilg ,Yilg ,Zilg) denote
the observed imaging data for subject i, and Ai = (Bi,Di) denote
the combination of the imaging data and disease status. Suppose
we have n training subjects, and we want to predict the disease
status Dn+1 for a new subject indexed by n + 1. The posterior
predictive distribution for Dn+1 is given by

P(Dn+1 = k | Bn+1, {Ai}
n
i=1)

=
P(Dn+1 = k,Bn+1 | {Ai}

n
i=1)∑

k′=0,1 P(Dn+1 = k′,Bn+1 | {Ai}
n
i=1)

=
P(Dn+1 = k)

∫
θ P(Bn+1 | Dn+1 = k, θ)P(θ | {Ai}

n
i=1)dθ∑

k′=0,1 P(Dn+1 = k′)
∫
θ P(Bn+1 | Dn+1 = k′, θ)P(θ | {Ai}

n
i=1)dθ

,

(1)

where

P(Bn+1 | Dn+1 = k, θ) =
∏

v∈G

P(Xn+1(v) | Zn+1(v),Dn+1 = k, θ)

P(Zn+1(v) | Dn+1 = k, θ)
∏

v∈W

P(Yn+1(v) | Zn+1(v),Dn+1 = k, θ)

P(Zn+1(v) | Dn+1 = k, θ), (2)

Suppose we draw T posterior samples, denoted θ (t), from P(θ |

{Ai}
n
i=1), for t = 1, · · · ,T. Letting π

(t)
k

= P(Bn+1 | Dn+1 =

k, θ (t)), the posterior predictive probability can be expressed by

P̂(Dn+1 = k | Bn+1, {Ai}
n
i=1) =

P(Dn+1 = k)
∑T

t=1 π
(t)
k∑

k′=0,1 P(Dn+1 = k′)
∑T

t=1 π
(t)
k

.

(3)

Then ultimately the prediction of Dn+1 is given by

D̂n+1 = argmax
k

(
P(Dn+1 = k)

T∑

t=1

π
(t)
k

)
. (4)

To evaluate the performance of our method, we calculate the
prediction accuracy using LOOCV.

Applied directly, LOOCV is very computational expensive
because it involves multiple posterior simulations with tens of
thousands voxels included in the analysis. Therefore, we employ
an importance sampling approach to reduce the computation
for LOOCV of our model (Gelfand et al., 1992; Gelfand, 1996;
Alqallaf and Gustafson, 2001; Vehtari and Lampinen, 2002).
Specifically, the LOOCV predictive probabilities can be expressed
by

P(Di = k | Bi,A−i) =
P(Di = k)Qkdi∑

k′=0,1 P(Di = k′)Qk′di

, (5)

where

Qkdi =

∫
P(Bi | Di = k, θ)

P(Bi | Di = di, θ)
P(θ | {A}ni=1)dθ , (6)
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and di is the observed disease status for subject i. Next, we provide
the details of how Qkdi is derived. The posterior predictive
probability can be written as follows:

P(Di = k | Bi,A−i)

=

∫
P(Di = k | Bi, θ)

P(θ | Bi,A−i)

P(θ | Bi,Di = di,A−i)

P(θ | Bi,Di = di,A−i)dθ . (7)

Therefore,

P(Di = k | Bi,A−i)

P(Di = di | Bi,A−i)
: =

P(Di = k)

P(Di = di)
Qkdi . (8)

By using the fact that
∑

k=0,1 P(Di = k | Bi,A−i) = 1, we have

P(Di = di | Bi,A−i) =
P(Di = di)∑

k=0,1 P(Di = k)Qkdi

, (9)

thus leading to the above LOOCV predictive probability
Equation (5). For i = 1, · · · , n and k = 0, 1, compute

Q̂kdi =
1

T

T∑

t=1

P(Bi | Di = k, θ (t))

P(Bi | Di = di, θ
(t))

. (10)

The estimate of Di is

D̂i = argmax
k

(
P(Di = k)Qkdi

)
. (11)

Since there are only two possible values for Di, we only need to
calculate P(Bi | Di = k, θ (t)) and P(Bi | Di = di, θ

(t)), where
k 6= di, for each subject i.

3.2.2. Voxel-Level Prediction

We also consider the use of imaging data Bi(v) =

(Xilg(v),Yilg(v),Zilg(v)) for subject i at voxel v to predict
the disease status Di. Similar to Equation (5), the voxel-level
LOOCV predictive probabilities can be expressed by

P(Di = k | Bi(v),A−i) =
P(Di = k)Qkdi∑

k′=0,1 P(Di = k′)Qk′di

, (12)

where

Qkdi =

∫
P(Bi(v) | Di = k, θ)/

∑
k′=0,1 P(Bi(v) | Di = k′, θ)P(Di = k′)

P(Bi | Di = di, θ)/
∑

k′=0,1 P(Bi | Di = k′, θ)P(Di = k′)
P(θ | {Ai}

n
i=1)dθ , (13)

which is estimated by

Q̂kdi =
1

T

T∑

t=1

P(Bi(v) | Di = k, θ (t))/
∑

k′=0,1 P(Bi(v) | Di = k′, θ (t))P(Di = k′)

P(Bi | Di = di, θ
(t))/

∑
k′=0,1 P(Bi | Di = k′, θ (t))P(Di = k′)

. (14)

Then the estimate of Di is

D̂i = argmax
k

(
P(Di = k)Qkdi

)
, (15)

which is equivalent to

D̂i = argmax
k

(
P(Di = k)

1

T

T∑

t=1

P(Bi(v) | Di = k, θ (t))

)
. (16)

Qkdi is derived in the similar way as in the whole brain analysis.
The derivation of Equation (14) is described in Appendix 3
(Supplementary Material).

The voxel-level prediction result can be used as a way to select
the regions that are highly associated with PD if the prediction
accuracy is high in these regions. An alternative approach
to perform feature selection using our model is discussed in
section 5.

4. RESULTS

4.1. Parkinson’s Disease Data
We applied our proposed Bayesian spatial model to PD data,
which has T1 and resting-state fMRI images available; therefore,
ourmodel reduces to one which includes two imagingmodalities,
VBM and fALFF, and only considers data in the gray matter.
We generate predictions of PD based on multimodal imaging
data aggregated across the whole brain, and we provide voxel-
level predictions as well. By evaluating the prediction accuracy
at each voxel, we are able to identify brain regions that are
highly associated with Parkinson’s disease as an alternative to
performing feature selection.

In the estimation procedure, the hyperparameters for the
prior distribution are set to provide vague information to
ensure that the results are dominated by the information in the
data. Specifically, all the hyperparameters in the inverse-gamma
distribution are set to 10−3 (Spiegelhalter et al., 1994/2003), the
normal prior for ζklg is assumed to have mean aζ = 0 and

variance bζ = 105. In the inverse-Wishart distribution, the
degrees of freedom ν should be greater than G − 1 to build a
proper distribution, so we set ν = G, which provides the least
information based on our data. The scale matrix 3 is set as
10−3 × IG, where IG is a G× G identity matrix.

We perform a total of 10,000 MCMC iterations including
5,000 burn-in iterations, and store the results thinning by 10. Due

to the massive number of parameters in our model, we randomly
check trace plots for parameters at the voxel-level, subregion-
level, and region-level, respectively. We provide some examples
in Appendix 4 (Supplementary Material).
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FIGURE 1 | The distribution of average accuracy rates for prediction across

subjects for all the voxels included in the analyses.

TABLE 1 | Summary of average accuracy rates for prediction across subjects.

Accuracy rate [80%, 85%) [85%, 90%) [90%, 95%) [95%, 100%) 100%

Number of voxels 5,993 9,663 12,878 14,236 12,764

(Percentage) (9.97) (16.07) (21.42) (23.68) (21.23)

After estimating the model parameters, we perform a whole-
brain and voxel-level prediction using posterior samples based
on procedures described in section 3.2. Here, we have a total
of 500 posterior samples after thinning. By assuming an equal
probability for classification as a PD patient and a control
subject, our model achieves 100% accuracy from the whole-brain
prediction based on LOOCV.

The results from voxel-level prediction provide interesting
information as well. The highest voxel-level accuracy rate is
100%, and the lowest is near 50%. Figure 1 shows the distribution
of the average accuracy rate across subjects for all the voxels
included in the analysis. Table 1 gives the number of voxels
(percentage) achieving accuracy rates higher than 80%. Also, an
average whole-brain prediction map based on the results from
voxel-level prediction across subjects are presented in Figure 2.

To identify the regions which are predictive for disease status,
we compute the average accuracy rates across voxels within a
region, and Table 2 shows the regions that have accuracy rate
above 95%. Table 2 also shows the percentage of voxels exceeding
90% accuracy rates for those regions. The right rectus gyrus,
which is associated with cognitive impairment in PD patients,
and is shown to have different gray matter density between PD
and controls (Nagano-Saito et al., 2005), is identified in our
analysis. The precentral gyrus, which is part of the primary motor
cortex, is identified among the most accurate brain regions,
and its performance is consistent with the involvement of this
region in planning and initiating motor movements, which
is critically impaired in patients with PD. We also find the

TABLE 2 | List of regions with above 95% average accuracy rate across voxels.

Region Accuracy rate Percentage of voxels

with accuracy rate > 90%

Left postcentral 99.9% 42.6%

Right rectus 99.3% 52.2%

Left inferior parietal 99.3% 90.2%

Right superior medial frontal 99.0% 61.1%

bilateral caudate and the left putamen as regions with accurate
predictions. The caudate and putamen, two regions comprising
the dorsal striatum, exhibit marked pathologic changes from PD,
linked to the loss of dopaminergic neurons in the substantia
nigra which projects to striatal neurons in the caudate nucleus
and putamen (Spencer et al., 1992). The right fusiform gyrus,
which is believed to related to impaired ability to correctly
identify negative facial expressions (Geday et al., 2006), and the
left inferior parietal lobule which is involved in the perception
of emotions in facial stimuli, may play a role of differentiating
healthy controls and PD patients as well. Other regions which are
involved in face perception such as the right mid-temporal pole
are also identified. The left postcentral gyrus, the left superior
parietal lobule, and the right superior medial frontal gyrus also
stand out since all of them are part of the sensory system. A
region-level prediction map based on the average accuracy rates
across voxels within a region is shown in Figure 3.

4.2. Simulation Studies
We conduct a simulation study to evaluate the performance of
our proposed model. The purpose of this simulation study is
to show that the MCMC generated samples from our model
accurately target the true values and that the whole-brain
prediction is accurate. In addition, we demonstrate that our
model can distinguish regions that are predictive of disease status.

We assume that the imaging data are generated from the
likelihood function of our model. We simulate data for 25
subjects from three AAL regions, the number of subregions
within an AAL region has a mean and variance of 3, and the
number of voxels within a subregion has a mean and variance of
50.We specify the true values for the parameters in the likelihood
function, i.e., cklg(v), γklg(v), βklg(v), αilg , ηkg , and δlg , which are
the most relevant parameters for voxel-level inference and future
prediction. In this way, we can compare our posterior estimations
with specified true values. All the other parameters are updated
from the posterior distributions. And the hyperparameters are
set to be the same as in data from PD study. We select some
subregions to be the ones that are associated with PD, and a
region is classified into this category if it contains those selected
subregions. We set different true values of parameters for disease
and non-disease group if they are within the pre-specified regions
and otherwise assume that the true values are the same the for
two groups. A total of 100 data sets are drawn in the simulation
study. The programming is implemented in Matlab, and the
computation is performed on a Linux cluster with 16 GB of RAM.
Execution time is approximately 3–4 h for one data set.

Frontiers in Neuroscience | www.frontiersin.org March 2018 | Volume 12 | Article 184100

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xue et al. Bayesian Model for Disease Predication

FIGURE 2 | The average prediction map based on the voxel-level prediction results across subjects.

FIGURE 3 | The region-level prediction map based on the average accuracy rates across voxels within a region.

First, we evaluate the posterior estimates by comparing the
posterior means to the true values. Instead of examining a
total of five thousand parameters which have known true values
separately, we calculate the mean structure and variance of

the likelihood function from posterior samples and compare
them to the truth since they are the most essential for
inferences and predictions. The average bias (percentage change)

in mean structure is 3.52 × 10−2 (0.54%), and in variance

is 1.04 × 10−5 (1.04%). Secondly, we calculate the accuracy
of whole-brain prediction. The LOOCV achieves 100% for

the whole-brain prediction for all 100 simulated data sets.
Thirdly, we identify the regions that are highly associated
with disease status by evaluating the voxel-level accuracy rates
for prediction. We compare the average accuracy for voxel-
level prediction between the pre-specified regions and the
others. Within the pre-specified regions, the average accuracy
rate is 99.8%; for voxels which are in the other regions,
the average accuracy rate is 71.7%. Here, we can see an
improvement in prediction when voxels are from the pre-
specified regions.

In comparison, we apply the elastic-netmodel to the simulated
data as described above, and the LOOCV achieves an average of
86% accuracy rate for the whole-brain prediction.

In summary, our model accurately performs posterior
estimation with small bias, provides accurate prediction of PD
status using whole-brain imaging data, and correctly identifies
the regions that are highly associated with disease.

5. DISCUSSION

We propose a Bayesian spatial model to predict PD using
different modalities of imaging data, including fALFF, VBM, and
FA in gray and white matter. Our framework performs voxel-
level estimation for imaging data and conducts whole-brain
and voxel-level prediction of disease status based on posterior
predictive probabilities. Our model estimates both the mean and
covariance structures of imaging data, predicting disease status
using whole-brain imaging data, and identifying the regions
which are highly associated with the disease based on voxel-level
prediction results.
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In our framework, we consider spatial correlations at
voxel level, subregion level, and region level, and specify
different correlation structures such as exchangeable, CAR, and
unstructured correlation matrices for them. The rich hierarchical
spatial correlation structures captured by our model extends
previous spatial modeling frameworks by Bowman et al. (2008)
and Derado et al. (2013). The intra-subregion correlation in our
model is described by a single value within each subregion; the
inter-subregion correlation is modeled by a CAR model which
borrows information from the subregions within the same parent
AAL region; the inter-region correlation is assumed to have a
unstructured correlation matrix.

We derive the posterior predictive probability using whole
brain data and data from a single voxel. Due to the complexity
of computation, we adopt an importance sampling strategy to
conduct LOOCV. The importance sampling techniques estimate
the LOOCV error rate based only on one-model fitting using
all samples and produces very accurate estimate on the LOOCV
error rate. We evaluate the accuracy rate of the whole-brain
prediction and identify the regions that are predictive for disease
based on the results from voxel-level accuracy rates. Our model
accounts for spatial correlations embedded in the data; however,
additional multiple testing strategies could be explored to
account for potential dependence inherent in the data. Ourmodel
increases localization compared to some approaches by offering
voxel-level predictions. While we incorporate information from
multiple modalities, we are unable to dissociate the relative
predictive accuracy generated by each modality.

One weakness of our method is computational time since
we use a joint model that performs estimation at the voxel-
level. However, by applying the importance sampling strategy,
we only need to perform the posterior estimation once, and
then the posterior predictive probabilities can be computed fairly
efficiently.

Compared to the existing feature selection methods, e.g.,
LASSO or elastic-net, our model uses a different modeling
strategy and different criteria for selection. LASSO and elastic-
net model the probability of PD, while our method starts from
modeling the imaging data. This distinction leads to an important
advantage that we are able to estimate and borrow strength from
the spatial correlations in the data, whereas highly correlated
predictors often lead to poor performance of the LASSO and
related methods. Also, we use posterior predictive probability
as the criteria to select the features, which is the exact target
of prediction problems; on the other hand, LASSO and elastic-
net, from a Bayesian perspective, use posterior modes to perform
feature selection. Ourmodel also has interpretive advantages over
SVM and GPmodels by identifying particular voxels, subregions,
or regions that contribute significantly to accurate prediction.
Compared to the methodology of scalar-on-image regression

(Goldsmith et al., 2014; Reiss et al., 2015; Kang et al., 2016; Wang
et al., 2017), our method models the images as the response,
which is a natural generative process, and then we predict the
disease distribution given the imaging scans.

In summary, the advantages of our proposed Bayesianmethod
are three fold. First, it is more straightforward to incorporate
prior knowledge regarding brain function and structure, which

is extremely useful to improve the prediction accuracy and to
provide a better understanding of the etiology. Second, it yields
estimates and inference from the full posterior distribution, e.g.,
rather than point estimates. In particular, it can provide measures
of uncertainty of the predictions based on the posterior predictive
distribution. In addition, the posterior computation based on the
MCMC algorithm is more robust to complex imaging data, while
the optimization algorithms for other frequentist prediction
methods are more likely to be trapped at the local modes, which
may reduce the prediction accuracy.

In our method, we select features based on the posterior
predictive probability of each voxel; ideally, we would like to
identify the voxels v ∈ V s.t.

P(Di = k | {Bi(v)}v∈V ,A−i) = P(Di = k | Bi,A−i), (17)

which could be a possible extension of our proposed approach.
For Parkinson’s disease, our model may not immediately

supplant current clinical standards to diagnose patients at or
near the manifestation of motor symptoms. However, our model
stands to provide insights into the useful information for the
diagnosis of PD, underlying neurophysiological basis of the
disease, potentially early pre-motor alterations, and effective
strategies to design studies examining potential neuroprotective
treatments with consideration of the cost and complexity as well
as extensive validation and comparison to current standards.
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In this paper, we present a fully-automated subcortical and ventricular shape generation

pipeline that acts on structural magnetic resonance images (MRIs) of the human

brain. Principally, the proposed pipeline consists of three steps: (1) automated

structure segmentation using the diffeomorphic multi-atlas likelihood-fusion algorithm;

(2) study-specific shape template creation based on the Delaunay triangulation;

(3) deformation-based shape filtering using the large deformation diffeomorphic metric

mapping for surfaces. The proposed pipeline is shown to provide high accuracy,

sufficient smoothness, and accurate anatomical topology. Two datasets focused upon

Huntington’s disease (HD) were used for evaluating the performance of the proposed

pipeline. The first of these contains a total of 16 MRI scans, each with a gold standard

available, on which the proposed pipeline’s outputs were observed to be highly accurate

and smooth when compared with the gold standard. Visual examinations and outlier

analyses on the second dataset, which contains a total of 1,445 MRI scans, revealed

100% success rates for the putamen, the thalamus, the globus pallidus, the amygdala,

and the lateral ventricle in both hemispheres and rates no smaller than 97% for the

bilateral hippocampus and caudate. Another independent dataset, consisting of 15 atlas

images and 20 testing images, was also used to quantitatively evaluate the proposed

pipeline, with high accuracy having been obtained. In short, the proposed pipeline is

herein demonstrated to be effective, both quantitatively and qualitatively, using a large

collection of MRI scans.

Keywords: subcortical structures, lateral ventricle, shape, surface filtering, large deformation diffeomorphic

metric mapping, surface triangularization
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INTRODUCTION

Analyzing the shape of subcortical and ventricular structures
subjected to brain disorders is an area of ever growing
importance, especially in the fields of neurodegenerative diseases
such as Alzheimer’s disease (Qiu et al., 2009b; Wang et al., 2011;
Shi et al., 2013, 2015; Tang et al., 2014, 2015b; Miller et al.,
2015), Huntington’s disease (HD) (van den Bogaard et al., 2011;
Younes et al., 2014; Faria et al., 2016), and Parkinson’s disease
(Sterling et al., 2013; Nemmi et al., 2015) as well as various
neurodevelopmental disorders (Knickmeyer et al., 2008; Rimol
et al., 2010; Seymour et al., 2017). The anatomical shapes of
the structures of interest in those cases are usually represented
using a mesh that can be created from the corresponding
structural volumetric segmentation. In more detail, generating a
segmentation-based shape representation of a specific structure
of interest (such as the left hippocampus) consists of two
steps: (1) segmenting that structure of interest from a structural
magnetic resonance image (MRI), resulting in a 3D volumetric
segmentation; (2) converting that volumetric segmentation into
a smooth surface representing the structural segmentation’s
boundary (Levine et al., 2012).

The fully automated segmentation of subcortical and
ventricular structures, based on structural MRIs, is a well-
established field of research, with a variety of highly accurate
algorithms having already been developed (Barra and Boire,
2001; Khan et al., 2008; Powell et al., 2008; Patenaude
et al., 2011; Chakravarty et al., 2013; Tang et al., 2015c).
As for the generation of surfaces, image-based meshing is
typically employed, especially when creating computer models
for computational fluid dynamics and finite element analysis
(Young et al., 2008; Chen et al., 2013; Chernikov et al., 2013;
Foteinos and Chrisochoides, 2013; Zhang, 2013). More recently,
segmentation based meshing has also been applied to the medical
imaging field, see Zhang (2013) for a general introduction. One
of the most representative meshing techniques is the marching
cubes algorithm, which has been incorporated into a number
of commercial and non-commercial software packages. The
marching cubes algorithm takes a 3D segmentation image as its
input and outputs surface data in the form of a triangulatedmesh,
represented using vertices and faces.

Combining what we have just outlined leads to an
“automated volume segmentation + marching cubes based
surface generation” pipeline for subcortical and ventricular
structures. Such a procedure may well be vulnerable to noise
induced by inaccurate segmentations, resulting in disconnected
regions or holes within the surface (Qiu and Miller, 2008). In
addition, it is plausible that the marching cubes algorithm is
liable to miss thin subregions of a structure of interest such as
the thin “bridge” connecting the inferior horn and the main
body of the lateral ventricle (Qiu and Miller, 2008). In other
words, the resulting surface may not have the correct anatomical
topology. Furthermore, even for a structure of interest with a
highly accurate segmentation and an “easy” topology (a relatively
simple shape), it is likely that the marching cubes algorithm will
not deliver surfaces of a sufficient smoothness. Indeed, it is a
most challenging task to extract the structure of interest’s surface

with high accuracy, correct anatomical topology, and sufficient
smoothness in the same instance. To ensure a high degree of
accuracy in the surface, a precise volumetric segmentation and
a high fidelity in the surface with respect to the corresponding
volumetric segmentation is required. Naturally, to ensure a
correct anatomical topology, a surface generation approach
that is devised around the notion of preserving the anatomical
topology of the structure of interest is needed. Meanwhile, the
classic filtering and smoothing approaches may not be sufficient
to ensure the required smoothness without sacrificing the fidelity
to the corresponding volumetric segmentation.

Alternatives to the aforementioned combination are certainly
possible and there are numerous existing pipelines that can
generate smooth subcortical structural shapes directly from
MRIs. In contrast to a binary segmentation procedure for shape
generation, those pipelines generally employ shape modeling
for their segmentation purposes (Heimann and Meinzer, 2009;
Patenaude et al., 2011). In other words, the structural shapes
were not created from the binary segmentation, but directly
from the dense MR images. The main limitation of these shape-
modeling based approaches is the lack of flexibility in relation
to individual components; one may desire the ability to utilize
a more accurate segmentation algorithm or a more sophisticated
meshing algorithm.

It is in the context of all of the above that we propose a fully-
automated subcortical and ventricular shape generation pipeline
which satisfies the demand for accuracy (both topological and
otherwise) and smoothness in four steps: (1) automatically
segment the subcortical and ventricular structures of interest
using the raw structural MRI data acquired from a scanner;
(2) create a study-specific template shape with the correct
anatomical topology and sufficient surface smoothness; (3) create
a triangulated mesh from each binary segmentation obtained in
step (1) using themarching cubes algorithm; (4) filter and smooth
the surfaces generated in step (3) in a deformation based manner.

To perform the initial segmentation, we employ a fully-
automated segmentation pipeline, the diffeomorphic multi-atlas
likelihood fusion (MALF) algorithm (Tang et al., 2013), the
accuracy of which in segmenting subcortical and ventricular
structures has been validated on a variety of MRI datasets (Tang
et al., 2015c). Instead of applying the marching cubes algorithm
directly, to generate a corresponding triangulated mesh from
the segmentation of MALF with the desired properties, we
rely on deformation based shape generation in the setting of
large deformation diffeomorphic metric mapping (LDDMM)
for surfaces (Vaillant and Glaunès, 2005). Given a pre-defined
triangulated surface of a specific structure of interest, LDDMM
is capable of preserving the topology and smoothness of that
surface when registering it to a target surface. In other words,
if we register a template surface with the correct anatomical
topology and a high degree of smoothness to a target surface
using LDDMM, the deformed surface is guaranteed to inherit
that topology and smoothness from the template while being
as similar as possible to the target surface. This is essentially
due to the properties of diffeomorphic transformations and the
capability of LDDMM to deliver the accurate diffeomorphisms
needed for surface registration (Vaillant and Glaunès, 2005).
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In this paper, we will first detail each of the above steps
in the proposed pipeline. We then proceed to evaluate the
proposed pipeline quantitatively and qualitatively using three
MRI datasets. There are 16 structural MRIs in the first dataset,
for each of which we manually segmented the subcortical and
ventricular structures, with a view to quantitatively evaluating
the performance of the proposed pipeline by comparison with
the gold standard. Within the second dataset, there are a total
of 1,445 structural MRIs, on which we qualitatively examine the
surfaces delivered by the proposed pipeline. For the third dataset,
there are 15 atlas structural MRIs and 20 testing structural MRIs,
with the structures of interest being the subcortical structures
that have been manually delineated. We also compared our
results with those from a well-established pipeline that outputs
smooth subcortical surfaces directly from dense MRIs, namely
the FSL-FIRST pipeline (Patenaude et al., 2011). Three aspects
were examined; the accuracy based on quantitative evaluation,
the anatomy topology based on visual examination, and the
smoothness based on quantitative assessment.

MATERIALS AND METHODS

PREDICT-HD
The first two datasets that feature in this work are both part
of the PREDICT-HD study (https://www.predict-hd.net/) where
all enrolled subjects were at risk of HD and had previously
undergone elective predictive genetic testing. Subjects labeled
as premanifest HD (pre-HD) are those who were found to be
“gene expanded,” possessing a cytosine–adenine–guanine (CAG)
≥ 36 but not exhibiting the motor criteria consistent with
a diagnosis of HD (The Huntington’s Disease Collaborative
Research Group, 1993). A control group was defined as subjects
who were deemed “non-gene expanded,” possessing a CAG ≤

30. Participants of PREIDCT-HD were recruited from 32 sites
across the United States, Canada, Europe, and Australia and
underwent longitudinal study visits consisting of a neurological
motor examination, cognitive assessment, brain MRI, psychiatric
and functional assessment, and blood testing for genetic and
biochemical analyses. Informed written consent was obtained
from all subjects before participating in this study.

Subjects with pre-HD were further divided into three
subgroups (“low-HD,” “mid-HD,” and “high-HD”) based on their
CAP scores, a function of their CAG repeat length and current
age given by CAP = (age at study entry) × (CAG – 33.66)
(Zhang et al., 2011). The three subgroups are defined according to
CAP < 290 (the low-HD group), 290≤ CAP≤ 368 (the mid-HD
group), and CAP > 368 (the high-HD group).

Subjects
In the first dataset, there are a total of 16 subjects (3 males and
13 females, mean age = 42.1 ± 10.1 years), including 6 control
subjects, 4 low-HD subjects, 3 mid-HD subjects, and 3 high-HD
subjects. Only one scan of each subject was selected, resulting in
a total of 16 MRI scans in the first dataset.

For the second dataset, there are a total of 169 control subjects,
including 106 females (mean age at baseline= 48.3± 11.2 years)
and 63 males (mean age at baseline = 48.6 ± 14.8 years). Within

the control group, 59 subjects had only 1 scan, 43 subjects had 2
scans, 27 subjects had 3 scans, 16 subjects had 4 scans, 15 subjects
had 5 scans, 7 subjects had 6 scans, and 1 subject had 7 scans,
resulting in a total of 414 MRI scans, with the average interval
between two consecutive scans being 1.1 years. Within the low-
HD group, there are a total of 113 subjects, including 85 females
(mean age at baseline= 33.1± 9.1 years) and 28males (mean age
at baseline= 35.7± 10.8 years). In the low-HD group, 52 subjects
had only 1 scan, 35 subjects had 2 scans, 12 subjects had 3 scans,
8 subjects had 4 scans, 3 subjects had 5 scans, 2 subjects had 6
scans, and 1 subject had 8 scans, resulting in a total of 225 MRI
scans, with the average interval between two consecutive scans
being 0.8 years. Within the mid-HD group, there are a total of
141 subjects, including 98 females (mean age at baseline = 42.1
± 10.2 years) and 43 males (mean age at baseline = 42.4 ± 11.2
years). In the mid-HD group, 62 subjects had only 1 scan, 36
subjects had 2 scans, 14 subjects had 3 scans, 17 subjects had
4 scans, 5 subjects had 5 scans, 6 subjects had 6 scans, and 1
subject had 7 scans, resulting in a total of 312MRI scans, with the
average interval between two consecutive scans being 0.8 years.
Within the high-HD group, there are a total of 227 subjects,
including 136 females (mean age at baseline= 49.3± 10.9 years)
and 91 males (mean age at baseline = 50.0 ± 11.1 years). In the
high-HD group, 99 subjects had only 1 scan, 68 subjects had 2
scans, 26 subjects had 3 scans, 17 subjects had 4 scans, 8 subjects
had 5 scans, 8 subjects had 6 scans, and 1 subject had 8 scans,
resulting in a total of 477 MRI scans, with the average interval
between two consecutive scans being 0.9 years. There are another
4 females (mean age at baseline= 44.6± 9.9 years) that were not
identified as belonging to any group. Among those 4 subjects, 3
had been scanned once while the remainder had been scanned
twice, resulting in a total of 5 MRI scans. There are another 12
MRI scans for which we could not identify their demographic and
clinical information. However, given that the goal of this paper is
to evaluate a surface generation pipeline rather than to compare
groups of different clinical states, we retained all of the 1,445
scans from the second dataset for pipeline validation. A summary
of this dataset is tabulated in Table 1.

High resolution anatomical MR images of the first two
datasets were used in this study. Given that the PREDICT-
HD study was both multi-centered and longitudinal in nature,
the image acquisition procedures were heterogeneous, including
multiple vendors (GE, Phillips, and Siemens), different field
strengths (1.5 Tesla and 3 Tesla), and more than 20 different
MR acquisition protocols (due to issues with transmission and
receiver hardware). Detailed scanning information for each of the
1,445 MR scans can be found in the Supplementary Material 1.

The third dataset used in this study includes 35 brain MRI
scans from the OASIS project. The manual segmentations of
these images were produced by Neuromorphometrics, Inc.
(http://Neuromorphometrics.com/) using the brainCOLOR
labeling protocol. The data were applied in the 2012 MICCAI
Multi-Atlas Labeling Challenge and are publicly accessible
(https://masi.vuse.vanderbilt.edu/workshop2012/index.php/
Main_Page). In the challenge, 15 subjects were used as atlases
and the remaining 20 images were used for testing. For this
dataset, our structures of interest are the 12 subcortical regions.
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TABLE 1 | A summary of the second dataset, consisting of 1,445 MRI scans.

Control Low-HD

Male (no = 63) Female (no = 106) Male (no = 28) Female (no = 85)

Baseline age 48.6 ± 14.8 years 48.3 ± 11.2 years 35.7 ± 10.8 years 33.1 ± 9.1 years

No. of scans = 1 59 52

No. of scans = 2 43 35

no. of scans = 3 27 12

No. of scans = 4 16 8

No. of scans = 5 15 3

No. of scans = 6 7 2

No. of scans = 7 1 0

No. of scans = 8 0 1

Average inter-scan interval 1.1 years 0.8 years

Mid-HD High-HD

Male (no = 43) Female (no = 98) Male (no = 91) Female (no = 136)

Baseline age 42.4 ± 11.2 years 42.1 ± 10.2 years 50.0 ± 11.1 years 49.3 ± 10.9 years

No. of scans = 1 62 99

No. of scans = 2 36 68

No. of scans = 3 14 26

No. of scans = 4 17 17

No. of scans = 5 5 8

No. of scans = 6 6 8

No. of scans = 7 1 0

No. of scans = 8 0 1

Average inter-scan interval 0.8 years 0.9 years

Automated Structure Segmentation
As shown in Figure 1 (the work flow of the proposed pipeline),
one can view this pipeline as having two major components;
automated structure segmentation and surface filtering. The
subcortical and ventricular structures, in both hemispheres,
were extracted from each T1-weighted image using a fully-
automated structure segmentation pipeline (Tang et al., 2015c)
itself consisting of two steps, skull-stripping and brain structure
segmentation. The underlying theoretical basis of this approach
is multi-atlas likelihood-fusion (MALF) in the framework of a
random deformable template model (Tang et al., 2013). This
segmentation pipeline has been tested and validated on a number
of datasets with relevance to various brain structures, particularly
the subcortical and ventricular structures (Liang et al., 2015; Tang
et al., 2015a).

In this study, the 16 T1-weighted images of the first dataset
served as the atlases used in MALF to perform the automated
structure segmentation for the first and the second datasets. Each
structure of interest, such as the left hippocampus, was manually
delineated in all 16 atlases by a team of neuroanatomists at
Johns Hopkins University with more than 15 years’ experience
in manually tracing subcortical structures. Various sets of
subcortical and ventricular atlases, used in our other studies, were
all created by the same team and have proven their reliability
(Tang et al., 2013, 2015c, 2016; Seymour et al., 2017). Intra- and
inter-rater reliability of manual delineations by this team have

been quantified in earlier studies; intra-class correlation (ICC)
statistics revealed high rates of intra- and interrater reliability
(intra-rater ICC ranges between 0.96 and 0.98; inter-rater ICC
ranges between 0.9 and 0.93) (Qiu et al., 2009a).

To evaluate the proposed pipeline’s handling of the first
dataset, we adopted a leave-one-out strategy; one atlas image
was treated as the to-be-segmented image while the remainder
served as the atlas set used in segmenting that excluded image.
When evaluating the second dataset, we continued to use these
16 atlases for segmentation via MALF. For the third dataset, the
15 atlas images were used to segment the subcortical structures in
each of the 20 testing images.

Surface Generation
With the binary segmentation of the structures of interest
completed using the structure segmentation procedure discussed
above, we proceeded to create a triangulated mesh contouring
the boundary of the segmentation using the marching cubes
algorithm. The marching cubes algorithm yields triangulated
surfaces with a high fidelity to the segmentation. Thus, when the
segmentation is lacking accuracy, the marching cubes algorithm
will be incapable of correcting the mistakes incurred during
the segmentation step. In addition, the resulting surface may
well be insufficiently smooth for our purposes. To overcome
these limitations, one potential approach is to register a template
surface to a target surface (the raw structure surface created from
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FIGURE 1 | Demonstration of the workflow of the proposed pipeline. MALF, multi-atlas likelihood fusion.

the marching cubes algorithm). The template surface is supposed
to have correct anatomical topology and sufficient smoothness.
The deformed template surfaces are therefore expected to have
geometric characteristics identical to those of the target surfaces
while possessing the topology and connectivity of the template
surface.

In our pipeline, the template surface came from one of the
16 subjects in the first dataset. The 14 structures of interest
for the selected subject were manually delineated with care
taken to ensure both segmentation accuracy and boundary
smoothness during the manual delineation. That specific subject
was chosen based on three considerations: (1) the area of the
subject’s surface should be close to the mean area across all
16 surfaces from the manual segmentations; (2) the geometry
and topology of the subject’s surface should be correct based on
visual examination; (3) the selected surface should be sufficiently
smooth quantitatively and qualitatively.

In creating the template surface, instead of using the
marching cubes algorithm, we adopted the Delaunay algorithm
for triangulation (Lee and Schachter, 1980; Shewchuk, 2002) to
guarantee further smoothness. We have noticed, however, that
the Delaunay algorithm is much less stable than that of the
marching cubes, even though it yields smoother results. This is
our rationale for using marching cubes for the triangulation of
the raw structure surfaces rather than the Delaunay algorithm.

With the template surface and target surfaces for each
structure of interest created, we performed a rigid alignment
of the surfaces and then proceeded to the LDDMM surface
registration (Vaillant and Glaunès, 2005). Specifically, the
template surface was rigidly aligned (rotation and translation) to
the target surface, with the optimal rigid transformation between
the vertex sets of the two surfaces obtained by minimizing a score

that combines registration and soft assignment. After that, the
LDDMM surface registration was performed from the rigidly
aligned template surface to the target surface. Details on the “rigid
+ LDDMM” surface registration pipeline can be found in our
previous work (Tang et al., 2014). After obtaining all of the rigid
and diffeomorphic transformations between the template surface
and the target surfaces, we applied these transformations in turn
to the template surface, generating a deformed template surface
for each structure of interest in each subject MRI. This deformed
template surface is the result of our proposed pipeline, a smooth
surface of a subcortical and ventricular structure of interest in an
individual MRI scan.

Evaluation Criteria
As we have the gold standard—manual segmentations—at our
disposal for the first and the third datasets, we quantitatively
computed the accuracy and reliability of the proposed pipeline
through the use of the following evaluation metrics:

• Dice similarity coefficient (DSC)

DSC(A,B) = 2
V(A ∩ B)

V(A)+ V(B)
(1)

where V(A) and V(B) are the volumetric measurements of
segmented images A and B. For example, A may represent
the binary segmentation of the left hippocampus from manual
delineation while B represents the corresponding automated
segmentation fromMALF.

• Absolute volume difference (AVD)

AVD(A,B) =

∣∣V(A)− V(B)
∣∣

(
V(A)+ V(B)

)
/2

(2)
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where V(A) and V(B) are again the volumetric measurements of
segmented images A and B.

• Correlation coefficient

For the third quantitative comparison metric, we employed
the Pearson product-moment correlation coefficient (PCC)
between the volumetric measurements of the two segmentations
in comparison, for example those of the manual segmentation
and the MALF-derived automated segmentation.

In addition to evaluating the segmentation accuracy using the
first and the third datasets, we also assessed the smoothness of
the resulting surfaces quantitatively and qualitatively (through
visual examination by several raters) using all three datasets.
The smoothness of a surface was quantified using the following
metric:

• Geometric Laplacian (GL)

GL(v) = v−

∑
i∈n(v) l

−1
i vi

∑
i∈n(v) l

−1
i

(3)

where n(v) is the index set of the vertices vi which are themselves
the direct neighbors of v, and li is the Euclidean distance from v
to vi.GL(v) represents a kind of measure of roughness: the higher
it is, the rougher is the surface around v. The GL of a surface is
computed as the sum of the norm of all vertex-wise GL vectors,
namely GL =

∑
v

∥∥GL(v)
∥∥
2
.

Group Comparisons
In our first experiment, we compared results from the proposed
pipeline, in terms of both volumetric segmentations and
triangulated surfaces, with those before filtering (obtained from
MALF) using all three datasets. Their results were also compared
to the gold standard of the first and the third datasets. In
the first experiment, our structures of interest included all the
14 subcortical and lateral ventricle structures for the first two
datasets and the 12 subcortical structures for the third dataset.
In the second experiment, we performed a comparison with
a state-of-the-art pipeline, FSL-FIRST, that outputs volumetric
segmentations as well as smooth triangulated surfaces of
subcortical structures as well. This experiment was conducted on
the first dataset and analyzed the 12 subcortical structures only,
as FSL-FIRST does not output lateral ventricle results. Student’s
t-tests were employed to evaluate the significance of a group
difference in all settings.

RESULTS

The First Experiment
In Tables 2–4, we respectively detail the mean and standard
deviations of the DSCs, the AVDs, and the PCCs for each of
the 14 structures of interest of the first dataset when calculated
under the three possible comparisons; the raw automated
segmentations from MALF vs. the manual segmentations, the
raw automated segmentations from MALF vs. the filtered
automated segmentations, as well as the filtered automated
segmentations vs. the manual ones. The corresponding results on

TABLE 2 | The average Dice overlap coefficients between every pairing of the

three sets of segmentation results (manual segmentation, raw automated

segmentation, and filtered automated segmentation) over the 16 MRI scans of the

first group for each of the 14 subcortical and ventricle structures.

Manual vs. Raw

Auto

Raw Auto vs.

Filtered Auto

Manual vs.

Filtered Auto

Left caudate 0.914 ± 0.039 0.958 ± 0.008 0.913 ± 0.039

Right caudate 0.901 ± 0.028 0.957 ± 0.006 0.899 ± 0.027

Left pallidum 0.902 ± 0.023 0.957 ± 0.006 0.899 ± 0.024

Right pallidum 0.907 ± 0.018 0.957 ± 0.005 0.906 ± 0.022

Left putamen 0.928 ± 0.010 0.965 ± 0.005 0.928 ± 0.009

Right putamen 0.934 ± 0.012 0.966 ± 0.005 0.934 ± 0.009

Right thalamus 0.922 ± 0.011 0.969 ± 0.004 0.924 ± 0.011

Left thalamus 0.927 ± 0.009 0.970 ± 0.004 0.929 ± 0.008

Left amygdala 0.874 ± 0.017 0.943 ± 0.010 0.874 ± 0.020

Right amygdala 0.866 ± 0.025 0.946 ± 0.008 0.870 ± 0.025

Left hippocampus 0.917 ± 0.009 0.939 ± 0.006 0.909 ± 0.011

Right hippocampus 0.910 ± 0.013 0.943 ± 0.007 0.907 ± 0.014

Left ventricle 0.925 ± 0.023 0.891 ± 0.047 0.858 ± 0.058

Right ventricle 0.922 ± 0.027 0.902 ± 0.048 0.866 ± 0.059

TABLE 3 | The average absolute volume differences between every pairing of the

three sets of segmentation results (manual segmentation, raw automated

segmentation, and filtered automated segmentation) over the 16 MRI scans of the

first group for each of the 14 subcortical and ventricle structures.

Manual vs. Raw

Auto

Raw Auto vs.

Filtered Auto

Manual vs.

Filtered Auto

Left caudate 0.076 ± 0.092 0.011 ± 0.005 0.078 ± 0.088

Right caudate 0.098 ± 0.080 0.010 ± 0.005 0.100 ± 0.079

Left pallidum 0.103 ± 0.075 0.016 ± 0.007 0.108 ± 0.079

Right pallidum 0.082 ± 0.061 0.018 ± 0.006 0.086 ± 0.071

Left putamen 0.037 ± 0.027 0.007 ± 0.005 0.035 ± 0.027

Right putamen 0.055 ± 0.026 0.008 ± 0.004 0.055 ± 0.023

Right thalamus 0.090 ± 0.038 0.002 ± 0.002 0.092 ± 0.039

Left thalamus 0.075 ± 0.035 0.003 ± 0.003 0.075 ± 0.036

Left amygdala 0.082 ± 0.041 0.018 ± 0.005 0.077 ± 0.045

Right amygdala 0.069 ± 0.072 0.015 ± 0.005 0.065 ± 0.072

Left hippocampus 0.064 ± 0.029 0.014 ± 0.006 0.076 ± 0.029

Right hippocampus 0.065 ± 0.031 0.014 ± 0.005 0.074 ± 0.033

Left ventricle 0.078 ± 0.053 0.006 ± 0.005 0.080 ± 0.055

Right ventricle 0.082 ± 0.057 0.010 ± 0.006 0.088 ± 0.061

the 12 subcortical structures of the third dataset are demonstrated
in the Supplementary Material 2 (Table S1). Please note, the
filtered automated segmentations were generated from the
smoothly deformed surfaces via nearest neighbor assignment.
As shown in the first column of each of the three tables, the
raw automated segmentations obtained from MALF are highly
accurate when compared to the gold standard. This illustrates
the accuracy of the first step of our surface generation pipeline.
For the second step, generating a smoothed version of the raw
surface, we achieved a high fidelity, as is demonstrated in the
second column in each of the three tables. Comparing the final
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results, the filtered surface based segmentations, with the gold
standard, the accuracy is again high (the third column of each
of the three tables) and indeed similar to that of the raw accuracy.

Results on comparing the smoothness of the surfaces of
those three approaches for the first and the third datasets are
respectively demonstrated in Table 5 and the Supplementary
Material 2 (Table S2). Clearly, for each of the structures of
interest, surfaces from the proposed pipeline are significantly
smoother (p << 1E−10) than not only the raw automated
results from MALF but also the manual results. In Figure 2, we
present comparison results for the three methods (manual, raw
automated, and filtered automated), in terms of segmentations
that are superimposed on the structural MR image (for
better visualization) and the corresponding surfaces, for one

TABLE 4 | The Pearson product-moment correlation coefficients between every

pairing of the three sets of segmentation results (manual segmentation, raw

automated segmentation, and filtered automated segmentation) over the 16 MRI

scans of the first group for each of the 14 subcortical and ventricle structures.

Manual vs. Raw

Auto

Raw Auto vs.

Filtered Auto

Manual vs. Filtered

Auto

Left caudate 0.821 1.000 0.827

Right caudate 0.821 1.000 0.829

Left pallidum 0.737 0.999 0.741

Right pallidum 0.835 0.999 0.835

Left putamen 0.980 1.000 0.980

Right putamen 0.965 1.000 0.966

Right thalamus 0.899 1.000 0.898

Left thalamus 0.906 0.999 0.908

Left amygdala 0.633 0.999 0.641

Right amygdala 0.716 0.999 0.711

Left hippocampus 0.795 0.998 0.809

Right hippocampus 0.804 0.999 0.819

Left ventricle 0.996 1.000 0.996

Right ventricle 0.990 1.000 0.990

representative subject. Evidently, the proposed method is capable
of capturing thin regions of a structure of interest, such as in the
lateral ventricle, and thus preserving the structure’s anatomical
topology. Furthermore, even when compared with the gold
standard surfaces created from themarching cubes algorithm, the
surfaces delivered by the proposed pipeline are much smoother.

In Figure 3, we illustrate the smoothness comparison results
of both datasets before and after deformation based filtering,
from which a significant increase in smoothness was observed
for each structure in both datasets. In addition to smoothness,
the segmentation accuracy of the second dataset were also
visually examined independently by three experienced raters. We
found that on the bilateral putamen, globus pallidus, amygdala,
thalamus, and lateral ventricle, the proposed pipeline delivered
sufficiently well-generated surfaces for all 1,445 scans. In other
words, the failure rate for any of those 5 structures in both
hemispheres is 0%. For the other subcortical structures the
number of surfaces found to be flawed were as follows: 19 out
of 1,445 surfaces of the left caudate (failure rate being 1.31%),
15 out of 1,445 surfaces of the right caudate (failure rate being
1.04%), 7 out of 1,445 surfaces of the left hippocampus (failure
rate being 0.48%), and 33 out of 1,445 surfaces of the right
hippocampus (failure rate being 2.28%). We also note that the
19 left caudate surfaces with flaws were generated from the
scans of 16 subjects while the 15 right caudate surfaces came
from 9 subjects, the 7 left hippocampus surfaces came from 4
subjects, and the 33 right hippocampus surfaces came from 14
subjects. Such observations suggest that a failure for the proposed
pipeline is more likely to recur in longitudinal scans of the
same subject than on the dataset as a whole. In Figures 4, 5, we
present the outputs in representative failure cases for the caudate
(both left and right) and the hippocampus (both left and right)
respectively.

In addition to qualitative assessment, we also conducted
outlier analysis based on each surface’s GL value. To be specific,
outliers were defined as those whose GL values were outside the
range

[
Q1 − 1.5(Q3 − Q1),Q1 + 1.5(Q3 − Q1)

]
, where Q1 and

Q3 respectively denote the 25 percentile and the 75 percentile

TABLE 5 | Smoothness quantification, as measured by the Geometric Laplacian, of the four sets of surface results [manual, raw automated (MALF), filtered automated

(proposed), and FSL-FIRST] over the 16 MRI scans of the first group for the 12 subcortical structures.

Manual MALF Proposed FSL-FIRST

Left caudate 562.371 ± 70.610 619.822 ± 61.332 192.202 ± 8.967 187.216 ± 9.973

Right caudate 553.225 ± 81.988 599.452 ± 58.889 208.535 ± 7.896 193.338 ± 12.298

Left pallidum 249.926 ± 27.753 250.861 ± 30.475 87.136 ± 3.919 73.241 ± 4.416

Right pallidum 246.651 ± 20.956 254.202 ± 28.085 78.655 ± 3.506 67.427 ± 4.129

Left putamen 509.561 ± 61.449 560.402 ± 54.812 176.756 ± 6.163 123.851 ± 8.138

Right putamen 515.220 ± 57.479 568.109 ± 48.324 181.189 ± 6.611 126.411 ± 8.534

Right thalamus 634.443 ± 45.398 724.972 ± 65.240 197.801 ± 5.349 133.038 ± 5.835

Left thalamus 626.319 ± 46.549 708.264 ± 56.974 194.041 ± 7.095 132.420 ± 5.196

Left amygdala 232.511 ± 22.514 244.034 ± 18.729 84.181 ± 1.899 195.033 ± 13.753

Right amygdala 218.056 ± 22.433 229.562 ± 21.813 77.585 ± 2.445 167.832 ± 10.335

Left hippocampus 581.167 ± 27.421 607.406 ± 37.712 183.013 ± 4.637 77.366 ± 6.519

Right hippocampus 595.273 ± 32.929 619.702 ± 45.359 181.883 ± 4.959 80.187 ± 5.993
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FIGURE 2 | A comparison of the manual results, the raw automated segmentation results, and the filtered automated results, for the 7 subcortical and ventricular

structures (both left and right) of one representative subject. Both segmentations (left column) and the corresponding triangulated surfaces (right column) are

presented.

of all structure-specific GL values. From this outlier analysis,
we detected 15 outliers for the left caudate, 9 outliers for the
right caudate, 6 outliers for the left hippocampus, and 26 outliers
for the right hippocampus. These numbers agree well with our
qualitative assessment results.

The Second Experiment
The mean values and standard deviations of GL for the
12 subcortical surfaces, delivered by FSL-FIRST, are also
listed in Table 5, from which we observed a similar level of
smoothness as results from the proposed pipeline, both being
significantly smoother than those from the gold standard and
MALF. Comparing between the proposed pipeline and FSL-
FIRST, the bilateral amygdalar surfaces from the proposed
pipeline are much smoother than those from FSL-FIRST
whereas an opposite pattern was observed for the bilateral
hippocampal surfaces. Overall, those two methods have similar
performance in terms of surface smoothness. With regards to
the segmentation accuracy, as quantified by the DSCs (Table 6),
the AVDs (Table 7), and PCCs (Table 8), the proposed pipeline
significantly outperformed FSL-FIRST.

DISCUSSION

In this paper, we have developed a fully-automated shape
generation pipeline for subcortical and ventricular structures of

the human brain which preserves smoothness and anatomical
topology in the surfaces. The performance of the pipeline
has been validated on three datasets, both quantitatively and
qualitatively. We found that, without sacrificing the accuracy, the
resultant surfaces have high smoothness and correct anatomical
topology. Based on visual examinations and outlier analyses on
a large number of surfaces (1,445 in total for each structure), the
pipeline has a very low rate of failure; to be specific, the failure
rate is 0% for the putamen, the globus pallidus, the amygdala,
the thalamus, and the lateral ventricle in both hemispheres,
1.31% for the left caudate, 1.04% for the right caudate, 0.48%
for the left hippocampus, and 2.28% for the right hippocampus.
As is exemplified in Figures 4, 5, the main cause of failure for
the caudate and the hippocampus is segmentation inaccuracy
incurred in theMALF based automated segmentation. Those two
structures are both adjacent to the cerebrospinal fluid and it has
been found that this makes them more susceptible to inaccuracy
(Tang et al., 2013). Even for those two structures, the failure rates
on the first and the third datasets are 0% while those on the
second dataset are < 3% and we consider such results to be a
strong indicator of the pipeline’s capacity for high performance.

There are three main components in the pipeline: automated
structure segmentation; creation of study-specific template
shapes; and LDDMM-based shape filtering. For automated
structure segmentation, we utilized a well-developed algorithm
of our own group’s creation, the diffeomorphic multi-atlas
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FIGURE 3 | A comparison of the smoothness, as assessed by the Geometric Laplacian, of surfaces from MALF (the raw automated segmentation results) and the

proposed method (the filtered automated results), for the 7 subcortical and ventricular structures (both left and right) for both datasets. Lcaud, left caudate; Rcaud,

right caudate; Lpall, left pallidum; Rpall, right pallidum; Lputa, left putamen; Rputa, right putamen; Lthal, Left Thalamus; Rthal, right thalamus; Lamyg, left amygdala;

Ramyg, right amygdala; Lhipp, left hippocampus; Rhipp, right hippocampus; Lvent, left ventricle; Rvent, right ventricle. (A,B) Respectively denote the results for the

first and the second dataset.

FIGURE 4 | Representative failure cases for the left caudate (top) and the right caudate (bottom) from the second dataset.

likelihood fusion. Using the first and the third datasets, which
have the manual segmentations available, we again validated the
performance of the MALF algorithm in terms of the automated
segmentation of subcortical and ventricular structures. For
this component, we can also use other automated structure

segmentation algorithms, as long as the accuracy is sufficient,
such as FreeSurfer (Fischl et al., 2002) and FSL-FIRST (Patenaude
et al., 2011). FreeSurfer based segmentations have also been
used for surface generation in existing works (Qiu and Miller,
2008; Qiu et al., 2009b; Tang et al., 2014). In FSL-FIRST, the
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FIGURE 5 | Representative failure cases for the left hippocampus (top) and the right hippocampus (bottom) from the second dataset.

TABLE 6 | The average Dice overlap coefficients between the gold standard and

segmentations from the proposed method as well as those between the gold

standard and FSL-FIRST over the 16 MRI scans of the first group for the 12

subcortical structures alongside the corresponding p-values obtained from

Student’s t-tests.

Proposed method FSL-FIRST p-value

Left caudate 0.913 ± 0.039 0.832 ± 0.025 3.548E-06

Right caudate 0.899 ± 0.027 0.834 ± 0.016 2.727E-08

Left pallidum 0.899 ± 0.024 0.818 ± 0.041 1.658E-05

Right pallidum 0.906 ± 0.022 0.797 ± 0.042 7.068E-08

Left putamen 0.928 ± 0.009 0.881 ± 0.023 1.314E-06

Right putamen 0.934 ± 0.009 0.882 ± 0.021 1.286E-09

Right thalamus 0.924 ± 0.011 0.898 ± 0.023 2.849E-04

Left thalamus 0.929 ± 0.008 0.902 ± 0.019 2.397E-03

Left amygdala 0.874 ± 0.020 0.779 ± 0.041 3.057E-07

Right amygdala 0.870 ± 0.025 0.776 ± 0.032 2.818E-07

Left hippocampus 0.909 ± 0.011 0.826 ± 0.024 6.721E-09

Right hippocampus 0.907 ± 0.014 0.833 ± 0.019 9.484E-10

segmentation of a subcortical structure of interest is actually
obtained from its corresponding smooth surface. In other words,
FSL-FIRST outputs both smooth surfaces and segmentations
for subcortical structures. In that sense, it may be redundant
to perform another round of surface generation based on
segmentations from FSL-FIRST.

In this work, we did not compare the surface results from
the proposed pipeline with those obtained from replacing our
segmentation module with another one since that is essentially
a comparison of various segmentation algorithms, which is not

TABLE 7 | The average absolute volume differences between the gold standard

and segmentations from the proposed method as well as those between the gold

standard and FSL-FIRST over the 16 MRI scans of the first group for the 12

subcortical structures alongside the corresponding p-values obtained from

Student’s t-tests.

Proposed method FSL-FIRST p-value

Left caudate 0.078 ± 0.088 0.135 ± 0.042 5.273E-02

Right caudate 0.100 ± 0.079 0.099 ± 0.049 9.674E-01

Left pallidum 0.108 ± 0.079 0.179 ± 0.081 4.673E-02

Right pallidum 0.086 ± 0.071 0.244 ± 0.055 1.359E-05

Left putamen 0.035 ± 0.027 0.183 ± 0.059 5.703E-09

Right putamen 0.055 ± 0.023 0.147 ± 0.055 1.153E-06

Right thalamus 0.092 ± 0.039 0.083 ± 0.066 7.772E-01

Left thalamus 0.075 ± 0.036 0.061 ± 0.062 1.786E-01

Left amygdala 0.077 ± 0.045 0.132 ± 0.079 4.229E-02

Right amygdala 0.065 ± 0.072 0.205 ± 0.140 1.486E-03

Left hippocampus 0.076 ± 0.029 0.259 ± 0.087 7.400E-07

Right hippocampus 0.074 ± 0.033 0.188 ± 0.083 2.403E-04

the goal of this paper. With that being said, we did validate the
segmentation accuracy of our pipeline using the gold standard of
the first dataset, with the DSCs ranging between 0.87 and 0.93
(Table 2), the AVDs ranging between 0.04 and 0.1 (Table 3), and
the PCCs ranging between 0.72 and 1 (Table 4), as well as the
third dataset (see Table S1 in the Supplementary Material 2).

For the second step, the creation of study-specific template
shapes, we applied the Delaunay algorithm (Lee and Schachter,
1980; Shewchuk, 2002) for triangulating a carefully-selected
manual segmentation for each structure of interest. The reason
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TABLE 8 | The Pearson product-moment correlation coefficients between the

gold standard and segmentations from the proposed method as well as those

between the gold standard and FSL-FIRST over the 16 MRI scans of the first

group for the 12 subcortical structures alongside the corresponding p-values

indicating the significance level of each correlation.

Proposed method FSL-FIRST

PCC p-value PCC p-value

Left caudate 0.827 7.730E-05 0.953 1.129E-08

Right caudate 0.829 7.075E-05 0.948 2.528E-08

Left pallidum 0.741 1.031E-03 0.831 6.723E-05

Right pallidum 0.835 5.635E-05 0.921 4.022E-07

Left putamen 0.980 3.128E-11 0.946 3.024E-08

Right putamen 0.966 1.349E-09 0.965 1.475E-09

Right thalamus 0.908 1.160E-06 0.730 1.329E-03

Left thalamus 0.898 2.347E-06 0.706 2.237E-03

Left amygdala 0.641 7.484E-03 0.440 8.847E-02

Right amygdala 0.711 2.009E-03 0.097 7.217E-01

Left hippocampus 0.809 1.454E-04 0.568 2.179E-02

Right hippocampus 0.819 1.032E-04 0.576 1.962E-02

for using a manually created segmentation is 2-fold: firstly,
a manual segmentation can guarantee correct anatomy and
smoothness to some degree; secondly, we had previously
generated the manual segmentations to serve as atlases in our
automated structure segmentation phase, meaning no additional
effort was required here. With that being said, we can also create
a template shape based on an automated segmentation with
sufficient accuracy, correct anatomy, and sufficient smoothness.
The Delaunay algorithm is superior to the marching cubes
algorithm in terms of smoothness of the resultant surfaces though
it can fail in some cases, especially when the segmentation is
flawed. Therefore, in this case, we were well-placed to generate
the template shapes using the Delaunay algorithm since we
could pay special attention to those surfaces. Meanwhile the
marching cubes algorithm was better suited for the target
segmentations.

In practice, there are two guiding rules in selecting the
template surface: (1) the same definitions should be used in
the automated segmentations of the target MRIs as in the
segmentation of the template surface. For example, in this
work, all automated segmentations of the first two datasets
were obtained by using the atlases of the 16 subjects while
the template surface was also obtained from this 16-subject
pool. It may be inappropriate to use a template surface from a
MALF-based segmentation definition to smooth an automated
segmentation from FSL-FIRST; (2) It is better to select a
template surface from the same study sample. In other words,
it may be inappropriate to use a template surface from our
HD study to smooth an automated segmentation from another
study.

For the third step, LDDMM-based shape filtering, the key
idea is to use a diffeomorphic transformation that can accurately
deform the template shape to be very close to the target
one while preserving the smoothness and topology of the

template shape. LDDMM-surface is a validated algorithm that
has been shown to yield sophisticated diffeomorphisms that
can accurately register a pair of surfaces (Vaillant and Glaunès,
2005). According to our experiments on all three datasets, the
deformed results, based on LDDMM-surface matching, are very
close to the raw data (the target segmentations for which we
aim to create their corresponding surfaces) while preserving
the topology and smoothness of the template shapes. The high
fidelity of the resulting surfaces to the target segmentations
is somewhat of a double-edge sword; on the one hand, it
guarantees high accuracy while on the other, it causes sensitivity
to the inaccuracy induced in the segmentation process. In
other words, when the segmentations are noisy (like those from
the second dataset that the pipeline failed on), the resulting
surfaces will inherit the noise (inaccuracy) of the segmentations
from MALF. A potential solution is to utilize a much more
robust variant of the LDDMM-surface matching, such as the
one proposed by Tward and colleagues (Tward et al., 2016).
Investigation of more advanced surface matching algorithms that
are capable of maintaining a high fidelity to the segmentation
while being robust to noisy subregions of the segmentations
will be one of our future efforts. Furthermore, there are wholly
separate registration approaches that can be applied to deforming
surfaces, such as the 14 methods compared in (Klein et al.,
2009). We did not compare here the surfaces generated by
using different surface deformation approaches as that goes
beyond the scope of this paper; to formulate the proposed
pipeline.

This work was strongly motivated by the ongoing search
for simpler, more effective, and more flexible pipelines capable
of generating subcortical and ventricular surfaces with high
smoothness and correct anatomy. According to our comparison
results with another popular pipeline that directly outputs
binary segmentations and smooth triangulated surfaces, namely
FSL-FIRST, the surface results from the proposed pipeline
have a similar degree of smoothness as those from FSL-
FIRST, whereas the proposed pipeline’s segmentation accuracy
is significantly higher than FSL-FIRST for almost each of
the 12 subcortical structures, which agrees with our previous
findings (Tang et al., 2015c). This again may suggest a
superiority of the proposed pipeline, although we must be
aware of the potential unfairness given that a specific structure’s
definition may differ significantly for atlases used in MALF
and those in FSL-FIRST. Compared with existing pipelines,
the main contribution of this work, aside from the pipeline
performance, is to have provided a general framework that can
be easily adopted or modified according to one’s own purpose;
for example, to replace MALF with another segmentation
algorithm that one favors more or to choose a template
surface that one considers to be more suitable for a specific
study.

One potential limitation of the proposed pipeline is
that it is difficult to be sure that no subtle disease-related
features were lost during this surface generation process.
A way to partially address this question is to compare
the disease-related features (via group comparison to a
control group) obtained by using a set of surfaces created
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manually (to ensure accuracy) and those obtained by
using a set of surfaces created from the proposed pipeline.
However, given the lack of such a set of manually created
surfaces involving both control and disease subjects,
it is not possible to conduct such an experiment at
this moment. We anticipate that as one of our future
endeavors.

The statistical shape analysis of subcortical and ventricular
structures of the human brain has become a topic of
most considerable interest in contemporary research (Styner
et al., 2003; Qiu and Miller, 2008; Qiu et al., 2010). We
are confident that the proposed pipeline will further the
development of this research field, especially in the investigations
of HD.
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