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A long non-coding RNA that
harbors a SNP associated with
type 2 diabetes regulates the
expression of TGM2 gene in
pancreatic beta cells
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Jessica Ares Blanco7,9,10, Lorella Marselli 11, Piero Marchetti 11,
Miriam Cnop6,12, Elı́as Delgado7,9,10,13, José Manuel Fernández-Real4,5,14,
Francisco José Ortega4,5, Ainara Castellanos-Rubio2,3,15,16*

and Izortze Santin1,2,15*

1Department of Biochemistry and Molecular Biology, University of the Basque Country UPV/EHU,
Leioa, Spain, 2Biocruces Bizkaia Health Research Institute, Barakaldo, Spain, 3Department of Genetics,
Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain, 4Institut
d’Investigació Biomèdica de Girona, Girona, Spain, 5CIBER Fisiopatología de la Obesidad y Nutrición
(CIBERobn), Instituto de Salud Carlos III, Madrid, Spain, 6ULB Center for Diabetes Research, Université
Libre de Bruxelles, Brussels, Belgium, 7Health Research Institute of the Principality of Asturias (ISPA),
Oviedo, Spain, 8University of Barcelona, Barcelona, Spain, 9Endocrinology and Nutrition Department,
Central University Hospital of Asturias (HUCA), Oviedo, Spain, 10Department of Medicine, University of
Oviedo, Oviedo, Spain, 11Department of Clinical and Experimental Medicine, Cisanello University
Hospital, Pisa, Italy, 12Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles,
Brussels, Belgium, 13Spanish Biomedical Research Network in Rare Diseases (CIBERER), Madrid, Spain,
14Department of Medical Sciences, School of Medicine, University of Girona, Oviedo, Spain, 15Diabetes
and Associated Metabolic Diseases Networking Biomedical Research Centre, Madrid, Spain,
16Ikerbasque - Basque Foundation for Science, Bilbao, Spain
Introduction: Most of the disease-associated single nucleotide polymorphisms

(SNPs) lie in non- coding regions of the human genome. Many of these variants

have been predicted to impact the expression and function of long non-coding

RNAs (lncRNA), but the contribution of these molecules to the development of

complex diseases remains to be clarified.

Methods: Here, we performed a genetic association study between a SNP located

in a lncRNA known as LncTGM2 and the risk of developing type 2 diabetes (T2D),

and analyzed its implication in disease pathogenesis at pancreatic beta cell level.

Genetic association study was performed on human samples linking the

rs2076380 polymorphism with T2D and glycemic traits. The pancreatic beta cell

line EndoC-bH1 was employed for functional studies based on LncTGM2 silencing

and overexpression experiments. Human pancreatic islets were used for eQTL

analysis.
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Results: We have identified a genetic association between LncTGM2 and T2D risk.

Functional characterization of the LncTGM2 revealed its implication in the

transcriptional regulation of TGM2, coding for a transglutaminase. The

T2Dassociated risk allele in LncTGM2 disrupts the secondary structure of this

lncRNA, affecting its stability and the expression of TGM2 in pancreatic beta cells.

Diminished LncTGM2 in human beta cells impairs glucose-stimulated insulin

release.

Conclusions: These findings provide novel information on the molecular

mechanisms by which T2D-associated SNPs in lncRNAs may contribute to

disease, paving the way for the development of new therapies based on the

modulation of lncRNAs.
KEYWORDS

long non-coding RNA, type 2 diabetes, single nucleotide pholymorphism (SNP),
pancreatic beta cell, transglutaminase 2
1 Introduction

Type 2 diabetes (T2D) is a complex metabolic disease that

develops in genetically susceptible individuals (1). Indeed, the

trigger of T2D development is presumed to be a combination of

lifestyle and environmental factors working together with the genetic

background (2). Genome-wide association studies (GWAS) have

identified several genomic regions associated with the risk of T2D

(3). Although these studies have provided a better understanding of

T2D genetics, most of the genetic variants identified so far fall into

non-coding regions of the genome. The molecular mechanism by

which these variants increase risk of T2D remains to be clarified.

Transglutaminase 2 (TGM2) is a calcium-dependent

multifunctional enzyme that can act as GTPase or transamidase,

and that participates in several cellular processes, including apoptosis,

cell adhesion or insulin release, among others (4). Disruption of

TGM2 in mice has been associated with increased glucose levels, and

reduced insulin release in response to glucose (5). In addition,

missense mutations in TGM2 have been associated with early onset

T2D and maturity onset diabetes of the young (MODY) (6).

A recent study identified a lncRNA (LOC107987281 or

LncTMG2) located within the first intron of the TGM2 gene. The

same study revealed that the expression of the lncRNA was tightly

correlated with the expression of the TGM2 coding gene in several cell

lines and tumor tissues, suggesting its role as a cis acting

transcriptional regulatory lncRNA (7).

LncRNAs are non-coding RNA molecules of more than 200

nucleotides in lenght that participate in several cellular and

biological processes, including transcriptional regulation (8). Most

of the complex disease-associated variants are located in non-coding

regions of the human genome, and more specifically, in lncRNAs. The

presence of disease-associated single nucleotide polymorphism

(SNPs) in exonic regions of lncRNAs usually disrupt their

secondary structure, affecting their capacity to interact with other

macromolecules, and eventually altering their function (9). Although

the function of most lncRNAs has not been annotated yet, there is
026
already accumulating evidence of their implication in the

development of several diseases, including metabolic disorders

(10–12).

In the present work, we have described a genetic association

between a SNP located in the coding sequence of LncTGM2 and T2D

and related traits. In addition, we have characterized the relation

between LncTGM2 and TGM2 in pancreatic beta cells and unveiled

the mechanisms by which LncTGM2 might induce beta cell

dysfunction in T2D.
2 Materials and methods

2.1 Association study

Cohort 1 consisted of 725 individuals (47 ± 11 years, 54% men)

recruited in the northwest of Spain, including general population, and

obesity and diabetes outpatient clinics in which the percentage of

obese individuals was 72% and the percentage of type 2 diabetic

individuals was 11% (13). Cohort 2 included 616 Caucasian subjects

selected for a study of non-classic cardiovascular risk factors

performed in the northwest of Spain (Asturias) (14). Participants

(52 ± 12 years, 45% men, 26% obesity, 11% T2D) were randomly

identified from a census and invited to participate.

Clinical characterization of human cohorts included a standardized

questionnaire, physical examination and the performance of routine

laboratory tests. Height and weight weremeasured by trained personnel

using calibrated scales and a wall-mounted stadiometer, respectively,

and with the participant in light clothing and without shoes. Body mass

index (BMI) was calculated by dividing weight in kilograms by the

square of the height in meters (kg/m2). Obesity was set at BMI≥30 kg/

m2. The waist of the subjects was measured with a soft tape midway

between the lowest rib and the iliac crest, hip circumference was

measured at the widest part of the gluteal region, and waist-to-hip

ratio was then calculated. Together with clinically relevant information

and subsidiary data, the number of cigarettes/day (if any) and the use of
frontiersin.org
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hormonal contraceptives were recorded. In those participants that

agree (>75%), oral glucose tolerance test (OGTT) was performed to

measure glucose tolerance. Blood samples from all the participants were

collected, and after 15 minutes, tubes were centrifuged at 4,000 r.p.m. at

room temperature. The serum and peripheral blood leukocytes were

separated and immediately frozen at –80°C. Genomic DNA was

extracted from blood samples following standard purification

methods (QIAamp DNA Blood Mini Kit, Qiagen, Hilden, Germany)

and DNA quantity and purity was determined using a

spectrophotometer (GeneQuant, GE Health Care, Piscataway, USA).

The targeted single nucleotide polymorphism (SNP) rs2076380 was

genotyped by means of a predesigned rhAmp™ allelic discrimination

assay (Hs.GT.rs2076380.A.1; Thermo Fisher Scientific, Massachusetts,

USA) and the rhAmp Genotyping Master Mix (IDT, Coralville, USA),

using a LightCycler 480 RT-qPCR System sequence detector (Roche

Diagnostics, Barcelona, Spain). Replicates and positive and negative

controls were included in all reactions.
2.2 Cell cultures and human cDNA samples

The EndoC-bH1 human pancreatic cell line (Univercell

Biosolutions, Paris, France) was cultured in plates coated with

Matrigel-fibronectin (100 mg/ml and 2 mg/ml, respectively; Sigma-

Aldrich, Burlington, USA) in Opti-b1 medium (Univercell

Biosolutions). DMEM containing 5.6 mmol/l glucose, 2% vol/vol

Fetal Bovine Serum, 50 mmol/l 2-mercaptoethanol (Bio-Rad,

Hercules, USA), 10 mmol/l nicotinamide (Calbiochem, Darmstadt,

Germany), 5.5 mg/ml transferrin and 6.7 ng/ml selenite (Sigma-

Aldrich) was used for transfection.

EndoC-bH1 cell line was Mycoplasma free as determined by the

MycoAlert Mycoplasma Detection kit (Lonza). For the prevention of

Mycoplasma contamination, Plasmocin Prophylactic (Invivogen,

Toulouse, France) was added to the culture medium on a

regular basis.

cDNA samples from human pancreatic islets were obtained from

Cisanello University Hospital, Pisa, Italy. All the islets were isolated

and cultured using the same experimental conditions and following

established isolation procedures (15). Characteristics of islet

preparations are described in Table S1. The Ethical Committee of

Cisanello University Hospital approved experiments using

human islets.
2.3 Silencing experiments

LncTGM2 silencing in the EndoC-bH1 cell line was performed by

transfecting 30 nmol/l of a siRNA targeting LncTGM2

(CD.Ri.214258.13.13, IDT) using Lipofectamine RNAimax reagent

(Thermo Fisher Scientific) following the manufacturer’s instructions.
2.4 Plasmid construction and transfection

For overexpressing plasmids, LncTGM2 was purchased as a

gBlock (IDT) and cloned into a modified pCMV6 vector using

KpnI and FseI restriction enzymes (New England Biolabs, Ipswich,
Frontiers in Endocrinology 037
USA). Plasmids were transfected using Lipofectamine 2000

Transfection Reagent (Invitrogen, Carlsbad, USA) following the

manufacturer’s instructions.
2.5 Cell treatments

EndoC-bH1 cells were exposed to Actinomycin D (Sigma-

Aldrich) at a final concentration of 5 mg/ml for 2, 4 or 6h.

Palmitate treatment was performed by adding BSA-palmitic acid

(0.5 mmol/l; 1:1) to DMEM/F-12, complemented with 0.25% vol/

vol FBS, 50 mmol/l 2-mercaptoethanol (Bio-Rad), 10 mmol/l

nicotinamide (Calbiochem), 5.5 mg/ml transferrin, 6.7 ng/ml

selenite (Sigma-Aldrich), 100 units/ml penicillin and 100 mg/ml

streptomycin (Lonza) for 4 or 8h.
2.6 Cellular fractionation

For LncTGM2 RNA quantification in subcellular fractions of

EndoC-bH1 cells, nuclei were isolated using C1 lysis buffer (1.28

mol/l sucrose, 40 mmol/l Tris -HCl pH 7.5, 20 mmol/l MgCl2, 4% vol/

vol Triton X-100). LncTGM2, MEG3 (nuclear control) and RPLP0

(cytoplasmic control) expression levels were measured by RT-qPCR

and compared to the total amount of those RNAs in the whole

cell lysate.
2.7 RNA isolation and RT-qPCR

RNA extraction was performed using the NucleoSpin RNA Kit

(Macherey Nagel, Düren Germany) and expression values were

determined by RT-qPCR using iTaq Universal SYBR Green

Supermix (Bio-Rad) using specific primers for each target RNA

(Table S2). All RT-qPCR measurements were performed in

duplicates and expression levels were analyzed using the 2–DDCt

method. A commercially available RNA panel set (Human total

RNA master panel II, Clontech, Saint-Germain-en-Laye, France)

was used to assess LncTGM2 and TGM2 expression levels in

different human tissues.
2.8 Western blot analysis

EndoC-bH1 cells were washed with cold PBS and lysed in

Laemmli buffer (62 mmol/l Tris-HCl, 100 mmol/l dithiothreitol

(DTT), 10% vol/vol glycerol, 2% wt/vol SDS, 0.2 mg/ml

bromophenol blue, 5% vol/vol 2-mercaptoethanol). Proteins in the

lysate were separated by SDS-PAGE. After electrophoresis, proteins

were transferred to nitrocellulose membranes using a Transblot-

Turbo Transfer System (Bio-Rad) and blocked in 5% wt/vol non-

fatty milk diluted in TBST (20 mmol/l Tris, 150 mmol/l NaCl and

0.1% vol/vol Tween 20) at room temperature for 1h. The membranes

were incubated overnight at 4°C with a primary antibody specific for

TGM2 (15100-1-AP, Proteintech Group, Rosemont, USA) diluted

1:1000 in 5% wt/vol BSA or anti-a-tubulin (Cat #T9026, Sigma-

Aldrich) diluted 1:5000 in 5% wt/vol BSA. Immunoreactive bands
frontiersin.org
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were revealed using the Clarity Max Western ECL Substrate (Bio-

Rad) after incubation with a horseradish peroxidase-conjugated anti-

rabbit (1:1000 dilution in 5% wt/vol non-fatty milk) or anti-mouse

(1:5000 dilution in 5% wt/vol non-fatty milk) secondary antibody for

1h at room temperature. The immunoreactive bands were detected

using a Bio-Rad Molecular Imager ChemiDoc XRS and quantified

using ImageLab software (Bio-Rad).
2.9 TGM2 promoter reporter assay

TGM2 promoter sequence was cloned into an empty pBV-Luc

plasmid (Addgene, Watertown, USA) using KpnI and EcoRI

restriction enzymes. EndoC-bH1 cells were transfected with a

control vector (ovCTRL) or a vector overexpressing LncTGM2

(ovLncTGM2), and co-transfected with the TGM2 promoter

reporter vector plus a pRL-CMV plasmid (used as an internal

control) using Lipofectamine 2000 Transfection Reagent

(Invitrogen). Dual-Luciferase Reporter Assay System (Promega,

Madison, USA), was used to measure bioluminescence following

the manufacturer’s protocol.
2.10 In silico secondary structure prediction

Secondary structure of LncTGM2 harboring the different alleles of

rs2076380, rs7275079 and rs2067027 SNPs was predicted using the

RNAsnp Web Server tool (16).
2.11 RNA mobility shift assay

LncTGM2 harboring rs2076380-A or rs2076380-G alleles were in

vitro transcribed using T7 RNA Polymerase kit (TaKaRa, Kusatsu,

Japan). RNAs were run in a native TBE 2% wt/vol agarose gel and

migration profile was analyzed in a ChemiDoc XRS apparatus

(Bio-Rad).
2.12 Insulin release

For insulin release experiments, LncTGM2-silenced EndoC-bH1

were left in Opti-b2 (Univercell Biosolutions) starving medium for

24h. After glucose starvation, cells were incubated in KREBS medium

(Univercell Biosolutions) for 1h, and consecutively exposed to 0 or 20

mmol/l glucose for 40 minutes. Supernatant and lysate were harvested

and insulin release and content measured by a commercial human

insulin ELISA kit (Mercodia, Uppsala, USA) according to the

manufacturer’s instructions.
2.13 Statistics

The association between the rs2076380 single variation in the

TGM2 gene, clinical parameters and the risk of T2D was assessed

using SPSS Statistics (IBM). Departures from Hardy-Weinberg

equilibrium were tested in all groups using a chi-square goodness
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of fit test with one degree of freedom. The risk of developing T2D

under exposure to rs2076380 TGM2 genotypes was evaluated using

logistic regression to estimate Odd Ratios (OR), considering a

dominant model in which G-allele carriers (i.e., AG-heterozygotes

plus GG-homozygotes) were the reference group. To compare groups

with respect to continuous variables, one-way ANOVA for multiple

comparisons was used. Other statistical tests and plots were

performed using GraphPad Prism 8 software (Dotmatics).

Significance-level was set at p-value <0.05. Results for in vitro

functional studies are represented as means ± standard error of

mean (S.E.M.).
3 Results

3.1 An exonic SNP in LncTGM2 is associated
with T2D risk

In order to determine the potential association of LncTGM2 with

T2D clinical parameters, we performed an association study by

genotyping a SNP located in the exonic region of LncTGM2

(rs2076380; chr20:38,165,027-38,165,227, hg38). This SNP can be

considered as a tagSNP since it is in high linkage disequilibrium

(LD>0.8) with other SNPs in the region (Figure S1). The LncTGM2

SNP rs2076380 was tested in association with measures of T2D and

other metabolic and clinical parameters in two independent cohorts

(Table S3). In cohort 1, the frequency of AA-individuals for the

LncTGM2 SNP was 8.6%, similarly to the observed frequency in

Cohort 2 (8.3%). These frequencies are in line with the observed

frequency of the minor allele (A) in Caucasian populations (1000

Genomes Europe; A allele frequency = 0.32) (17) and Spanish control

individuals (Medical Genome Project healthy controls from Spanish

population; A allele frequency = 0.225) (18).

As observed in Figure 1, the percentage of known type 2 diabetic

individuals was increased in individuals harboring the rs2076380-AA

genotype in both cohorts (Cohort 1: OR=1.13 [0.999-1.27], Pearson’s

Chi-square p=0.006, two-sided Fisher’s exact test p=0.013); and

Cohort 2: OR=1.08 [0.996-1.18], Pearson’s Chi-square p=0.018,

two-sided Fisher’s exact test p=0.026). For both cohorts, regression

analyses depicted the impact of the polymorphism in LncTGM2 on

T2D incidence (ANOVA p-value of 0.026 in Cohort 1, and p=0.013 in

Cohort 2) after correcting for sex and age. A codominant genetic

model that included age, weight and sex effects was fitted to estimate

the ORs between the exposure to the AA, AG and GG genotypes, the

later as the reference group. The similar ORs for AG and GG

genotypes obtained for the codominant model suggested the

possibility of fitting a recessive model for AA-genotype carriers.

This model allowed us to determine the OR between carriers of the

AA genotype in relation to the G-allele porters. In this case, the

residual deviance of the genotype, once age, weight and sex were

added to the model, reached a p-value <0.05, indicating that the

genotype effect was significant.

In addition, we observed that in Cohort 1, fasting glucose

(p=0.005) and insulin levels (p=0.006) were increased compared to

G-allele carriers (Table S3). However, in Cohort 2, association with

fasting glucose only reached statistical significance in female

participants (Table S3).
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3.2 LncTGM2 expression is correlated with
TGM2 expression in several human tissues
and regulated by lipotoxicity in pancreatic
beta cells

Previous studies have correlated LncTGM2 and TGM2 expression

in tumor tissues and some human cell lines, including lymphoblast

(K562), promyeoloblast (HL60) and monocyte (THP-1) cell lines (7).

In order to clarify whether LncTGM2 and TGM2 expression was also

correlated in healthy human tissues and in pancreatic beta cells, we

first evaluated the expression of both genes in EndoC-bH1 cells and a

set of human tissues. The highest expression of both, LncTGM2 and

TGM2, was found in lung, placenta and heart, and the expression in

the EndoC-bH1 cell line was similar to that of intestine and liver

(Figure S2). Spearman’s correlation analysis showed a significant

correlation between LncTGM2 and TGM2 expression across the

tissues analyzed (R=0.87 (0.59-0.9); p<0.0001). Interestingly, a

correlation was also seen in EndoC-bH1 cells using siRNA-driven

inhibition of LncTGM2. As shown in Figure 2A, a 70% decrease of

LncTGM2 expression reduced TGM2 mRNA expression by 20%,

suggesting a potential implication of LncTGM2 in the

transcriptional regulation of TGM2.

In order to simulate the pathophysiological conditions of T2D in

pancreatic beta cells, we next exposed EndoC-bH1 cells to palmitate

(PA) as an in vitro model of lipotoxicity (19). As shown in Figure 2B,

4 and 8h PA exposure decreased both LncTGM2 and TGM2

expression in EndoC-bH1 cells, suggesting that in the presence of a

lipotoxic insult the expression of both genes is reduced.
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3.3 LncTMG2 regulates the transcriptional
activity of TGM2

Knowledge of the subcellular localization of lncRNAs is crucial to

understand and characterize their function. In contrast to protein-

coding mRNAs, lncRNA themselves should be located in their site of

action, and thus, their location within the cell is crucial for their

function. While nuclear lncRNAs are usually implicated in the

regulation of transcriptional activity, cytoplasmic lncRNAs can

participate for example, in the regulation of mRNA stability or in

protein translation (20). Having this in mind, we next decided to analyze

the subcellular localization of LncTGM2 in EndoC-bH1 cells. As shown
in Figure 2C, LncTGM2 was detected in both nuclear and cytoplasmic

fractions, but its expression level was significantly higher in the nuclear

compartment, suggesting its potential implication in transcriptional

regulation. Since expression of LncTGM2 and TGM2 was significantly

correlated in pancreatic beta cells, we performed a promoter reporter

assay to clarify whether LncTGM2 was directly regulating the promoter

activation of TGM2 gene. To this aim, we constructed an expression

vector coding for a luciferase under the control of the promoter of

TGM2. The luciferase vector was then co-transfected in EndoC-bH1
cells with an empty overexpression plasmid (ovCTRL) or with the

overexpression plasmid of LncTGM2 (ovLncTGM2) and the activation

of TGM2 promoter was determined by measuring bioluminiscence. As

shown in Figure 2D, the activation of the TGM2 promoter was 1.5-fold

higher in LncTGM2-overexpressing cells than in control cells, pointing

out a role of LncTGM2 in the activation of TGM2 promoter, and

consequently in the transcriptional activation of TGM2.
FIGURE 1

An exonic SNP in LncTGM2 is associated with T2D risk. The graph shows the percent of T2D in two independent cohorts segregated according to their
rs2076380 genotype.
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3.4 The T2D-associated risk allele in
LncTGM2 disrupts its secondary structure
impacting on its stability, and correlates
with decreased expression of TGM2
in beta cells

Disease-associated SNPs located within lncRNAs can affect their

function through the disruption of their secondary structure (21, 22).

As previously shown (Figure S1), the T2D-associated rs2076380 SNP

is in high LD with other two SNPs located in the exonic region of

LncTGM2 (rs7275079 and rs2067027). To assess whether these SNPs

alter the secondary structure of LncTGM2, we performed an in silico

prediction analysis using the RNAsnp webserver from the Center for

non-coding RNA in Technology and Health (23). Interestingly,

rs2076380 was predicted to significantly alter the secondary

structure of LncTGM2 (p=0.0803), while the software did not

predict any significant change in the structure of the lncRNA when

the different alleles of rs7275079 or rs2067027 SNPs were present

(p>0.2) (data not shown). As shown in Figure 3A, the predicted

secondary structures of LncTGM2 carrying the T2D protective

(rs2076380-G) or risk allele (rs2076380-A) were significantly

different. Consistent with the prediction, in vitro–transcribed forms

of T2D protective and risk allele–harboring LncTGM2 revealed

different motilities on a native agarose gel (Figure 3B), suggesting a
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different conformation of the lncRNA in the presence of one or other

allele in rs2076380.

Taking into account that the secondary structure of a lncRNA is

crucial for its interaction with other macromolecules, and thus, for its

function (9), we next decided to determine whether the genotype of

the T2D-associated SNP in LncTGM2 affected TGM2 expression in

human pancreatic islets. To this aim we genotyped rs2076380 SNP

and measured TGM2 expression in 16 cDNA samples from human

islets, and performed an eQTL analysis. As shown in Figure S3, there

was a trend for higher expression of TGM2 in islets harboring the

protective rs2076380-GG genotype compared to islets harboring the

risk allele in heterozygosis (rs2076380-AG) or homozygosis

(rs2076380-AA), although the differences did not reach statistical

significance, probably due to the limited number of islets.

Next, to characterize the potential effect of each allele in

rs2076380 SNP on the expression of both, LncTGM2 and TGM2,

we constructed two LncTGM2 overexpression plasmids, one

harboring the T2D risk allele (ovLncTGM2-A), and the other

harboring the T2D protective allele (ovLncTGM2-G). Interestingly,

allele-specific upregulation of LncTGM2 in beta cells revealed that the

expression level reached by transfecting ovLncTGM2-G plasmid was

higher than the expression level obtained with ovLncTGM2-A

plasmid (Figure 3C), suggesting that the T2D risk allele might be

affecting the stability of LncTGM2 RNA molecule.
A B

DC

FIGURE 2

LncTGM2 co-expresses with TGM2 and regulates its transcriptional activity in pancreatic beta cells. (A) LncTGM2 was silenced in the EndoC-bH1 cell line
using a siRNA, and (B) EndoC-bH1 cells were exposed to palmitate (0.5 mM) for 4 or 8h. LncTGM2 and TGM2 expression was assessed by RT-qPCR and
normalized by the reference gene RPLP0. The results are means ± S.E.M. of 3-4 independent experiments; *p < 0.05, **p < 0.01, and ***p < 0.001 by
Student’s t-test. (C) RT-qPCR analysis of LncTGM2, MEG3 (as nuclear marker) and RPLP0 (as cytoplasmic marker) in nuclear and cytoplasmic fractions in
EndoC-bH1 cells. (D) HEK-293 cells were transfected with a control vector (ovCTRL) or a vector overexpressing LncTGM2 (ovLncTGM2), and co-
transfected with a TGM2 promoter luciferase reporter construct plus a pRL-CMV plasmid (used as internal control). After 48h of recovery,
bioluminescence was measured.
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In order to directly test whether the T2D-associated

polymorphism affected LncTGM2 stability, we next performed an

allele-specific overexpression of LncTGM2 and exposed the EndoCb-
H1 cells to Actinomycin D, a drug that inhibits transcription. As

shown in Figure 3D, LncTGM2 harboring the protective allele

(rs2076380-G) was more stable than the lncRNA harboring the risk

allele (rs2076380-A) at all time-points, although the differences only

reached statistical significance at 4h of Actinomycin D treatment

(p<0.05). These results confirmed that the LncTGM2 risk allele in the

T2D-associated rs2076380 SNP reduced the stability of the lncRNA.

To clarify whether the decreased stability of LncTGM2-A affected

its capacity to regulate TGM2 expression, we next analyzed the

expression of TGM2 in EndoC-bH1 cells overexpressing LncTGM2-

A or LncTGM2-G. As observed in Figure 3C, only the upregulation of

the lncRNA harboring the protective allele (ovLncTGM2-G)
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increased the expression of TGM2 mRNA. These results were also

confirmed at the protein level (Figure S4).

In summary, these results suggested that the LncTGM2 harboring

the T2D risk allele induced less TGM2 expression due to its

reduced stability.
3.5 LncTGM2 downregulation affects
glucose-stimulated insulin secretion

Previous studies have shown that TGM2 might be implicated in

insulin release through different mechanisms, including cytoplasmic

actin remodeling and regulation of the action of other proteins during

granule movement (24). Taking into account that our present results

suggest that the T2D risk allele in LncTGM2 might induce a decrease
A B

DC

FIGURE 3

The T2D-associated risk allele in LncTGM2 disrupts its secondary structure impacting on its stability, and correlates with decreased expression of TGM2 in
beta cells. (A) In silico prediction of the secondary structure of LncTGM2 harboring each allele for rs2076380; T2D protective allele (G) or T2D risk allele
(A). (B) Electrophoretic mobility profiles of in vitro-transcribed LncTGM2 molecule harboring the T2D protective allele (rs2076380-G) or the risk allele
(rs2076380-A). (C) EndoC-bH1 cells were transfected with overexpression plasmids of LncTGM2 harboring the protective (ovLncTGM2-G) or risk allele
(ovLncTGM2-A) for T2D, and mRNA levels of LncTGM2 and TGM2 were determined by RT-qPCR and normalized to RPLP0. The results are means ± S.E.M.
of 3 independent experiments; *p < 0.05 by Student’s t-test. (D) EndoC-bH1 cells were transfected with LncTGM2 overexpression plasmids harboring the
protective (ovLncTGM2-G) or risk allele (ovLncTGM2-A) for T2D. EndoC-bH1 cells were exposed to Actinomycin D (ActD) (5 mg/ml) for 2, 4 or 6h and
LncTGM2 mRNA level was determined by RT-qPCR. The results are means ± S.E.M. of 3 independent experiments. *p < 0.05 ovLncTGM2-G vs. ovLncTGM2-
A at the same time-point.
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in TGM2 expression in pancreatic beta cells, we next decided to

determine the potential contribution of LncTGM2 in insulin release.

To this aim, we silenced LncTGM2 with a specific siRNA in

EndoC-bH1 cells and determined glucose-stimulated insulin release.

As shown in Figure 4, high glucose stimulation in siCTRL-transfected

EndoC-bH1 cells increased insulin secretion. In siLncTGM2-

transfected beta cells, however, high glucose-induced insulin

secretion (GSIS) was no longer statistically significant, suggesting

that disruption of LncTGM2 in pancreatic beta cell might affect GSIS

through diminished expression of TGM2.
4 Discussion

In the current study, we identified a genetic association between

LncTGM2 and T2D and glycemic traits in two independent cohorts.

Previous GWAS in larger Caucasian populations have not detected a

genetic association between rs2076380 and T2D, however based on

phenotype-wide association data (T2D knowledge portal), this

polymorphism has been associated with T2D-related complications

(e.g. microalbuminuria). Moreover, based on the T2D knowledge

portal, the genomic region in which LncTGM2 is located (also

containing TGM2, RPRD1B and KIAA1755 genes) has been

associated with several metabolic and glycemic traits, including

cardiovascular disease related parameters, cholesterol and type 2

diabetes. The main reason for the discordance between our findings

and GWAS data may lie on the fact that our two cohorts are enriched

for obese individuals (especially Cohort 1), and in our both cohorts,

T2D incidence seem to be associated with obesity (data not shown).
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In this sense, several studies have described a link between TGM2 and

obesity and associated glycemic traits. For example, a study found that

loss of TGM2 sensitizes for diet-induced obesity-related

inflammation and insulin resistance (25). Moreover, a network-

based approach to assess the cellular processes associated with

protein–protein interaction subnetworks of glycemic traits showed

that TGM2 was associated with both, HOMA-b and HOMA-IR,

suggesting a potential role of this protein in pancreatic beta cell

function and insulin resistance (26). The same study concluded that

HOMA-b-associated GWAS genes (which include TGM2) enriched

pathways of fat metabolism, especially in adipose tissues, supporting

the “lipotoxicity theory” of beta cell failure in T2D.

In line with this hypothesis, in the present study, we have

observed a co-expression between LncTGM2 and the coding gene

TGM2 in pancreatic beta cells under basal and lipotoxic conditions.

Our data suggest that lipotoxicity, a typical feature of obesity-

associated T2D, reduces LncTGM2, which in turn provokes a

reduction of TGM2 in pancreatic beta cells. Indeed, lipotoxicity

(e.g. high fat diet) has been previously associated with TGM2

expression reduction in other tissues, including liver (27).

Moreover, we propose a mechanism by which LncTGM2 may

affect glucose-stimulated insulin release through TGM2 expression

reduction in an allele-specific manner. The lncRNA LncTGM2 lies

within the first intron of the TGM2 gene (9), which encodes a

multifunctional enzyme that has been implicated in the

pathogenesis of early onset T2D and MODY (6). Interestingly, early

onset T2D and MODY-associated TGM2 mutants have altered

enzymatic activities, such as reduced transamidation and kinase

activity that impact in glucose-stimulated insulin release (28).
FIGURE 4

LncTGM2 downregulation affects glucose-stimulated insulin secretion. LncTGM2 was silenced using a siRNA and EndoC-bH1 cells were exposed to 0 or
20 mmol/l glucose. Insulin release was determined by ELISA. The results are means ± S.E.M. of 4 independent experiments; *p<0.05 by Student’s t-test.
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Transcriptional regulation of TGM2 is controlled by several

transcription factors, including nuclear factor-kappa B, RA

receptor/retinoid X receptor, liver X receptor and Sp1 (4). Here, we

show for the first time that LncTGM2 participates in the

transcriptional regulation of TGM2 in pancreatic beta cells. We

observed that the T2D-associated risk allele in LncTGM2 correlates

with a reduction of TGM2 expression in pancreatic beta cells.

Moreover, our results suggest that a reduction in TGM2 expression

in human beta cells impair glucose-stimulated insulin release. These

observations are in line with studies in rodents, in which reduced

TGM2 activity has been linked to impaired glucose-stimulated insulin

secretion (GSIS) (28), and also with data showing that naturally

occurring mutations altering TGM2 enzymatic activities correlate

with reduced insulin secretion (29). Interestingly, TGM2 has also

been shown to interact with nuclear proteins (e.g. BAF and H3)

immediately upon a glucose stimulus, suggesting that it may be

involved not only in insulin secretion, but also in the regulation of

glucose-induced gene transcription (30).

Although the molecular mechanisms by which LncTGM2

participates in the regulation of TGM2 transcription remain to be

fully clarified, our results demonstrate that a T2D-associated

polymorphism affects the secondary structure of the lncRNA, and,

eventually, disrupts its function. Several other disease-associated

SNPs that alter the secondary structure of lncRNAs affect the

regulation of genes that participate in important pathways for

disease pathogenesis, including type 1 diabetes and cardiovascular

disease (31, 32). Here we demonstrate that the T2D risk allele in

LncTGM2 reduces its stability, affecting TGM2 expression in

pancreatic beta cells. Some studies have suggested that disease-

associated SNPs in lncRNAs may affect RNA-turnover through

disruption of the binding of proteins that regulate stability, and

thus, affecting their biological function (33–35).

In conclusion, our results show that LncTGM2 is associated with

T2D and suggest that it might be implicated in disease pathogenesis

through an allele-specific downregulation of TGM2 in pancreatic beta

cells. Our findings provide new information on the molecular

mechanisms by which T2D-associated SNPs in lncRNAs cause

disease and open the door to the development of novel diagnostic

tools and therapeutic approaches based on lncRNA modulation.
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López J, Antiñolo G, et al. The role of the interactorme in the maintenance of deleterious
variability in human populations. Mol Syst Biol (2014) 10:752. doi: 10.15252/msb.20145222
Frontiers in Endocrinology 1014
19. Ciregia F, Bugliani M, Ronci M, Giusti L, Boldrini C, Mazzoni MR, et al. Palmitate-
induced lipotoxicity alters acetylation of multiple proteins in clonal b cells and human
pancreatic islets. Sci Rep (2017) 7:13445. doi: 10.1038/s41598-017-13908-w

20. Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev
A, et al. Localization and abundance analysis of human lncRNAs at single-cell and single-
molecule resolution. Genome Biol (2015) 16:20. doi: 10.1186/s13059-015-0586-4

21. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long
intergenic non-coding RNA. Nat Rev Mol Cell Biol (2018) 19:143–57. doi: 10.1038/
nrm.2017.104

22. Castellanos-Rubio A, Fernandez-Jimenez N, Kratchmarov R, Luo X, Bhagat G,
Green PHR, et al. A long noncoding RNA associated with susceptibility to celiac disease.
Science (1979) 2016) 352:91–5. doi: 10.1126/science.aad0467

23. Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J.
RNAsnp: Efficient detection of local RNA secondary structure changes induced by SNPs.
Hum Mutat (2013) 34:546–56. doi: 10.1002/humu.22273

24. Russo L, Marsella C, Nardo G, Massignan T, Alessio M, Piermarini E, et al.
Transglutaminase 2 transamidation activity during first-phase insulin secretion: natural
substrates in INS-1E. Acta Diabetol (2013) 50(1):61–72. doi: 10.1007/s00592-012-0381-6
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Four missense genetic variants in
CUBN are associated with higher
levels of eGFR in non-diabetes
but not in diabetes mellitus or its
subtypes: A genetic association
study in Europeans

Nicoline Uglebjerg 1, Fariba Ahmadizar2,3, Dina M. Aly 4,
Marisa Cañadas-Garre 5,6,7, Claire Hill 5, Annemieke Naber 8,
Asmundur Oddsson 9, Sunny S. Singh8, Laura Smyth 5,
David-Alexandre Trégouët 10, Layal Chaker2,8,
Mohsen Ghanbari2, Valgerdur Steinthorsdottir 9,
Emma Ahlqvist 4, Samy Hadjadj11, Mandy Van Hoek 8,
Maryam Kavousi2, Amy Jayne McKnight 5, Eric J. Sijbrands 8,
Kari Stefansson 9,12, Matias Simons13, Peter Rossing 1,14

and Tarunveer S. Ahluwalia 1,15*

1Complications Research, Steno Diabetes Center Copenhagen, Herlev, Denmark, 2Department of
Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, Netherlands,
3Department of Data Science & Biostatistics, Julius Global Health, University Medical Center Utrecht,
Utrecht, Netherlands, 4Department of Clinical Sciences, Lund University, Malmö, Sweden, 5Centre for
Public Health, Queen’s University Belfast, Belfast, United Kingdom, 6GENYO Centre for Genomics and
Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain,
7Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain, 8Department of
Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam,
Netherlands, 9deCODE Genetics, Amgen, Inc., Reykjavik, Iceland, 10University of Bordeaux, Institut
National de la Santé et de la Recherche Médicale (INSERM), Bordeaux Population Health Research
Center, Bordeaux, France, 11Nantes Université, Centre Hospitalier Universitaire Nantes, Centre National
de la Recherche Scientifique, INSERM, l’institut du thorax, Nantes, France, 12Faculty of Medicine, School
of Health Sciences, University of Iceland, Reykjavik, Iceland, 13Institute of Human Genetics, University
Hospital Heidelberg, Heidelberg, Germany, 14Department of Clinical Medicine, University of
Copenhagen, Copenhagen, Denmark, 15The Bioinformatics Center, Department of Biology, University of
Copenhagen, Copenhagen, Denmark
Aim: Rare genetic variants in the CUBN gene encoding the main albumin-

transporter in the proximal tubule of the kidneys have previously been

associated with microalbuminuria and higher urine albumin levels, also in

diabetes. Sequencing studies in isolated proteinuria suggest that these variants

might not affect kidney function, despite proteinuria. However, the relation of

these CUBN missense variants to the estimated glomerular filtration rate (eGFR)

is largely unexplored. We hereby broadly examine the associations between four

CUBN missense variants and eGFRcreatinine in Europeans with Type 1 (T1D) and

Type 2 Diabetes (T2D). Furthermore, we sought to deepen our understanding of

these variants in a range of single- and aggregate- variant analyses of other

kidney-related traits in individuals with and without diabetes mellitus.

Methods: We carried out a genetic association-based linear regression analysis

between four CUBN missense variants (rs141640975, rs144360241, rs45551835,

rs1801239) and eGFRcreatinine (ml/min/1.73 m2, CKD-EPIcreatinine(2012), natural log-
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transformed) in populations with T1D (n ~ 3,588) or T2D (n ~ 31,155) from

multiple European studies and in individuals without diabetes from UK Biobank

(UKBB, n ~ 370,061) with replication in deCODE (n = 127,090). Summary results

of the diabetes-group were meta-analyzed using the fixed-effect inverse-

variance method.

Results: Albeit we did not observe associations between eGFRcreatinine and CUBN

in the diabetes-group, we found significant positive associations between the

minor alleles of all four variants and eGFRcreatinine in the UKBB individuals without

diabetes with rs141640975 being the strongest (Effect=0.02, PeGFR_creatinine=2.2

× 10-9). We replicated the findings for rs141640975 in the Icelandic non-diabetes

population (Effect=0.026, PeGFR_creatinine=7.7 × 10-4). For rs141640975, the

eGFRcreatinine-association showed significant interaction with albuminuria levels

(normo-, micro-, and macroalbuminuria; p = 0.03). An aggregated genetic risk

score (GRS) was associated with higher urine albumin levels and eGFRcreatinine.

The rs141640975 variant was also associated with higher levels of eGFRcreatinine-

cystatin C (ml/min/1.73 m2, CKD-EPI2021, natural log-transformed) and lower

circulating cystatin C levels.

Conclusions: The positive associations between the four CUBN missense

variants and eGFR in a large population without diabetes suggests a pleiotropic

role of CUBN as a novel eGFR-locus in addition to it being a known albuminuria-

locus. Additional associations with diverse renal function measures (lower

cystatin C and higher eGFRcreatinine-cystatin C levels) and a CUBN-focused GRS

further suggests an important role of CUBN in the future personalization of

chronic kidney disease management in people without diabetes.
KEYWORDS

genetics, CUBN, cubilin, kidney function, eGFR, diabetes, non-diabetes, chronic kidney
disease (CKD)
1 Introduction

Urine albumin or albuminuria is one of the most important

biomarkers of kidney damage in individuals with or without

diabetes. In healthy individuals, the glomerular filter in the

kidneys retains most of the albumin, although a small amount

can usually pass through to the tubular system (1). Reabsorption of

albumin is facilitated by the kidney’s proximal tubular cells (PTCs),

ensuring that almost no albumin is excreted in urine under normal

conditions (2, 3). Elevated excretion of albumin in the urine -

initially coined as “microalbuminuria” - is one of the earliest signs

of chronic kidney disease (CKD) and may be the kidney-related
hibitors; AER, Albumin

level (mg/L); ARBs,

isease; CKD-EPI, CKD

cubilin; DM, Diabetes

l/min/1.73 m2); GRS,

diabetes; T2D, Type 2

(mg/mmol); UKBB,

0216
manifestation of general endothelial damage, where scarring of the

glomerulus causes chronic leakiness through the filter of albumin

and other proteins (4).

Over the past decades, the number of people with diabetes

mellitus has more than doubled to a global prevalence of 537

million in 2021 (5), with serious consequences for the healthcare

system and society. According to a recent European study (6), one

in four hospitalized patients has diabetes. Up to 40% of individuals

with diabetes develop diabetic kidney disease (DKD), which is

associated with elevated cardiovascular morbidity and mortality

and progresses to dependency on kidney replacement therapies

such as dialysis and transplantation and is a leading cause of

CKD (7).

In the recent years, studies have begun to unravel genetic

aspects of albuminuria. Recently, we and others identified that

genetic variants (single nucleotide variants (SNVs)) in the gene

encoding for cubilin (CUBN) – the main albumin-transporter in

PTCs (1, 8) – are associated with microalbuminuria and higher

urine albumin levels in populations with and without diabetes (8–

14). Four variants in the C-terminal end of cubilin have been of

particular interest (rs141640975 (c.5069C>T; p.Ala1690Val),
frontiersin.org
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rs144360241 (c.6469A>G; p.Asn2157Asp), rs45551835 (c.8741C>T;

p.Ala2914Val), and rs1801239 (c.8950A>G, p.Ile2984Val)); these are

functional (missense) variants that have been proposed to alter the

function of cubilin, leading to a form of albuminuria that may

reflect a lack of tubular reabsorption of albumin (i.e., tubular

albuminuria) (8). In silico structural and damage prediction

analyses of the variants indicate their potential to change

secondary or even tertiary structure(s) in the cubilin protein and

to have different degrees of damaging effects on protein function,

disease, or both (8). Our recent study further suggests that the effect

of some of these variants on urine albumin levels is 2-3 times higher

in diabetes compared to non-diabetes (11).

However, the role of these CUBN variants in relation to

estimated glomerular filtration rate (eGFR), a clinically used

marker of kidney function, is largely unexplored, and most

genetic studies have focused on the general population (8, 9, 11).

Recent efforts to uncover the role of these variants specifically in

diabetes – and to clearly separate the effect seen here from the effect

in the non-diabetes-proportion of the general population – have

been performed as relatively small secondary analyses without

including rs144360241 or diabetes subtypes (8). Thus far, only

rs45551835 has been connected to higher levels of eGFR in type 2

diabetes and rs141640975 in non-diabetes (8). Therefore, we

investigated the relationship between the four CUBN variants and

eGFR in different contexts: First, we meta-analyzed studies of SNV-

eGFRcreatinine regressions in Europeans with type 1 (T1D) or type 2

diabetes mellitus (T2D). We then examined single- and aggregate-

variant associations separately in diabetes and non-diabetes

populations of a large, nationally representative cohort facilitating
Frontiers in Endocrinology 0317
application of identical phenotype definitions, including the

dependency of albuminuria-stage in SNV-eGFRcreatinine

associations, generation of a CUBN-specific genetic risk score

(GRS), and identification of associations between individual SNVs

and cystatin C-based measures of kidney function. Together, these

analyses both seek to replicate previous associations in DM and

NDM populations and to provide novel insights into the link

between CUBN and eGFR.
2 Methods

2.1 Study design and cohorts

For the genetic association meta-analysis in diabetes mellitus

(DM), we included data collected via three approaches (Figure 1):

First, we acquired summary statistics from up to 15,200 individuals

of European origin with either type 1 diabetes (T1D) or type 2

diabetes (T2D) subsetted from six cohorts: AfterEU (T1D) (15–18),

Rotterdam (T2D) (19), DiaGene (T2D) (20), UK-ROI (T1D) (21),

Genesis (T1D) (22) and ANDIS (T2D) (23). These studies

(hereafter referred to as “DM cohorts”) were invited to the study

and given a harmonized analysis plan provided that any subset of

the requested genetic variants was available. A description of each

cohort can be found in the Supplemental text.

Second, we applied the same analysis plan to a subset of

individuals with T2D (n ~ 14,860) from the UK Biobank (24)

(henceforth referred to as “UKBB-T2D”). The approach we used to

extract the T2D subset has been described previously (25, 26).
FIGURE 1

Flow chart of SNV-eGFRcreatinine meta-analyses in Diabetes. UKBB, UK Biobank; T2D, Type 2 diabetes; DM, diabetes mellitus; T1D, Type 1 diabetes;
NDM, without diabetes mellitus; SNV, single nucleotide variant; eGFRcreatinine, Estimated glomerular filtration rate, natural log-transformed; PCs,
Principal components of population structure; HbA1C, hemoglobin A1C; SBP, Systolic blood pressure; m1: model 1 (eGFRcreatinine ~ genotype +
sex + age + 0-10 PCs); m2: model 2 (m1 + HbA1c + SBP + diabetes duration); * Sample sizes (n) reflect the maximal number of individuals (out of
the total number of individuals in Table 1) available for rs45551835, model 1. ** See Supplementary Figure 1 for a flow chart of additional analyses.
Figure made with LucidChart (lucid.app).
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Third, we did a lookup in a subset of an exome-wide association

study (henceforth referred to as “ExWas”) that included 3,990

individuals with T2D from three Danish studies (Inter99, Vejle

biobank and Addition-DK) described previously (11).

We also searched the Type 2 Diabetes Knowledge Portal [at

time of search: www.type2diabetesgenetics.org, now: https://

t2d.hugeamp.org/ (27)] for large-scale studies with publicly

available summary statistics fulfilling the following criteria:

Summary statistics should a) be readily available through the

knowledge portal or a direct link to a study website; b) be

available for diabetes-stratified and European-only populations; c)

include at least one target genotype; d) be based on natural log-

transformed eGFR values rather than non-transformed eGFR

values; and e) be based on regression models with covariate

adjustments comparable to those in the other cohorts in this

study. However, as of 10 July 2020, no studies in the portal

fulfilled our criteria, and no additional studies were included.

For additional analyses, we used 1) a group of individuals without

diabetes from UKBB (n ~ up to 370,000 individuals), henceforth

referred to as “UKBB-NDM”) and 2) the UKBB-T2D group, which

was also part of the meta-analysis (Supplementary Figure 1). 127,090

non-diabetes individuals from the Icelandic study deCODE

participated as the replication cohort (Supplemental text).

This research work was conducted in accordance with the

Helsinki Declaration. Ethical approval was previously obtained

locally for individual studies. All participants gave written

informed consent before participating.
2.2 Phenotype details

For the DM cohorts and UKBB (both NDM and T2D groups),

we calculated the creatinine-based estimated glomerular filtration

rate (eGFRcreatinine) with the Chronic Kidney Disease Epidemiology

Collaboration creatinine equation (CKD-EPIcreatinine(2012), ml/min/

1.73 m2 (28), natural log-transformed). We included it here as a

continuous variable. Other measures of kidney function were also

calculated for UKBB; see section 2.4.2.4.
2.3 Genotyping, imputation, quality control
and variant selection

We obtained information on genotyping, imputation, and

quality control of each cohort and summarized it in

Supplementary Tables 1, 2.

Four variants were selected for further analysis: rs141640975

(Chromosome (chr) 10, position (pos) 16992011 (genome-build

GRCh37.p13)) with minor allele frequency (MAF) 0.002-0.009;

rs144360241 (chr 10, pos 16967417) with MAF 0.006-0.010;

rs45551835 (chr 10, pos 16932384) with MAF 0.016-0.021; and

rs1801239 (chr 10, pos 16919052) with MAF 0.097-0.114. For the

deCODE study, the MAFs were in the same range except

rs144360241 (MAF: 0.002). The minor alleles of these variants (A,

C, A, and C, respectively) were used as effect alleles.
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We used LDlink version 5.1 (29) with the European (CEU +

GBR) reference panel to confirm the independent relationship

(Linkage Disequilibrium (LD) r2< 0.1) between these SNVs.

The SNVs were first used in single-variant analyses and were

then combined into a genet ic r i sk score (GRS; see

description below).
2.4 Statistical methods

A flow chart of the meta-analyses is shown in Figure 1, and one

of the additional analyses is shown in Supplementary Figure 1.

2.4.1 Study-level SNV-eGFRcreatinine

association analysis in diabetes and subsequent
meta-analysis

In each DM cohort and UKBB-T2D, associations between

eGFRcreatinine and genetic variants were assessed assuming an

additive genetic model. We used natural log-transformed

eGFRcreatinine in a linear regression model (model 1) adjusted for

traditional clinical and genetic factors, i.e. age, gender, and study-

specific covariates (i.e., 0-10 principal components of population

structure to account for population stratification). To control for

potential bias on kidney function in the diabetes population, another

model was further adjusted for HbA1C, systolic blood pressure (a

proxy for medication with Angiotensin receptor blockers (ARBs) or

Angiotensin-converting enzyme inhibitor (ACEi) frequently used in

diabetes treatment) and diabetes duration (model 2). Some of the

cohorts used summary statistics calculated prior to our query, so we

allowed minor deviations in the included covariates (Supplementary

Table 3). A list of software used for association analysis can be found

in Supplementary Table 1. Each study dealt with missing data

separately. Once all summary results were collected, we performed

study-level quality control. Summary results were meta-analyzed

using a fixed-effect inverse-variance method in the “Metagen”

package in R (version 3.6.3). We report results in any diabetes

mellitus subtype (denoted “combined”) and in T1D and T2D

subsets. Significant heterogeneity (Phet< 0.05) indicated variation

across studies. Effect sizes (betas) are presented with 95%

confidence intervals. We evaluate statistical significance at an FDR-

corrected level of 0.05/4 = 0.0125 considering the number of

tested SNVs.

2.4.2 Additional analyses in UKBB populations
with diabetes and non-diabetes

To explore the interplay between CUBN-variants and kidney-

related traits in more detail, we did a range of additional linear

regressions in the UKBB NDM and T2D groups. Further, we also

applied a combined genetic risk score (GRS). We based the analyses

on model 1 and model 3. The latter was very similar to model 2, in

that it included adjustment for model 1 and SBP but not HbA1c and

diabetes duration. The last two adjustments were absent from this

model because they are less relevant in non-diabetes. We applied

the same models in DM and NDM to provide consistency.

Individuals were excluded if they had missing data for any variable.
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2.4.2.1 SNV-eGFRcreatinine association analysis in the UKBB
population without diabetes and replication in the
deCODE study

We examined SNV-eGFRcreatinine associations in the UKBB

NDM and T2D populations. It was advantageous to use the

UKBB dataset here as it is a well-powered, phenotypically

homogenous dataset (n ~ up to 370,000 individuals without

diabetes). Since effects are based on natural log-transformed

eGFR (trait) values, we also calculated the percental difference in

mean, non-transformed eGFR per added effect allele for significant

effects as follows:% difference =(ebeta−1)*100%. . Again, we evaluated

statistical significance at an FDR-corrected level of 0.0125.

SNV-eGFRcreatinine associations identified in the UKBB NDM

group were also examined in the Icelandic deCODE study

(nNDM=127,090) applying model 3.

2.4.2.2 Interaction with albuminuria

In order to examine whether the SNVs associated with

eGFRcreatinine in an albuminuria-dependent fashion, we assessed

albuminuria-SNV interactions in SNV-eGFRcreatinine regression

models in individuals with T2D (nT2D = 7,777) and without DM

(nNDM = 107,276) for whom continuous urine albumin levels were

available (derived from the UKBB “microalbumin” field). The

interaction term in the regression models included albuminuria

groups as a factor defined from these albumin levels as follows: i)

normoalbuminuria: =< 30 mg/L (nDM = 5,566, nNDM = 93,728), ii)

microalbuminuria: 30-300 mg/L (incl. lower but not upper

threshold, nNDM = 1,954, nNDM = 12,690) , and i i i )

macroalbuminuria: >300 mg/L (incl. lower threshold, nDM = 257,

nNDM = 858). We used regression models based on model 1 and 3

(i.e., model 1: ln(eGFRcreatinine) ~ SNV + albuminuria group + age +

sex + SNV*albuminuria group and model 3: model 1 + SBP). A

significant p-value (< 0.05) for the SNV*albuminuria interaction

term was considered evidence for interaction. Interaction analysis

was done whenever primary SNV-eGFRcreatinine analyses were

well-powered.

2.4.2.3 Genetic risk score association with
microalbuminuria and eGFRcreatinine

We estimated an albuminuria genetic risk score (GRS) using the

four albuminuria-associated CUBN missense SNVs. The GRS was

generated for each study participant using the sum of individual

SNV effect alleles in the UKBB dataset. We then examined the

associations between GRSCUBN and continuous urine microalbumin

levels (mg/L) and eGFRcreatinine.

2.4.2.4 SNV vs. other kidney function-related traits in
UKBB

We examined the associations between the study SNVs and 1)

circulating serum Cystatin C levels (mg/L) and 2) the more recent

eGFRcreatinine-cystatin C equation (30) that uses both serum creatinine

and cystatin C levels and applies to all ethnicities.
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2.4.3 Power calculations
We used Quanto (version 1.2.4) (31) to calculate post-hoc power

for main SNV-eGFRcreatinine associations in DM and NDM groups.

For all power calculations in Quanto, we: a) chose a continuous

design for independent individuals; b) assumed a gene-only

hypothesis; c) assumed an additive inheritance mode; and d) set

the two-sided type I error-rate to 0.05.

For the remaining options in Quanto, we typed in information

specific to each variant and population (Supplementary Tables 13-

14): For each variant, we used allele frequencies of the effect allele;

for meta-analyses, this was done as a range of calculations spanning

the frequencies reported by individual cohorts. We used effect sizes

obtained through DM and NDM SNV-eGFRcreatinine association

analyses (main effect). Means and standard deviations of ln

(eGFRcreatinine) were derived from UKBB subsets. Unless

otherwise specified, total DM sample sizes were used.
3 Results

3.1 Clinical characteristics

Up to 34,743 individuals with diabetes mellitus (type 1 diabetes

(T1D), n ~ 3,588, or type 2 diabetes (T2D), n ~ 31,155) and up to

370,061 without diabetes participated in the current study (Figure 1

and Supplementary Figure 1). Clinical characteristics of

participating studies can be found in Table 1 and Supplementary

Tables 4–7.
3.2 CUBN variants are not associated with
eGFRcreatinine in a diabetes meta-analysis

The effect of rs144360241 on eGFRcreatinine was studied in 32,904

individuals with diabetes. The variant was not available in UK-ROI

(Supplementary Figures 2, 6). All eight studies contributed to the

34,050 individuals analyzed for rs45551835 (Supplementary Figures 3

and 7). The rs141640975 variant was available for 32,993 individuals

and was unavailable in UK-ROI (Supplementary Figures 4, 8). The

common variant, rs1801239, was available in all eight studies in

34,070 individuals (Supplementary Figures 2, 9).

After meta-analysis, none of the four CUBN variants were

significantly positively associated with eGFRcreatinine in the DM

group, neither in the T1D or T2D subgroup [Table 2 (Model 1) and

Table 3 (Model 2)]. However, the positive directionality of the effect

for the T2D group was consistent with the directionality of effect for

the combined group for all variants with non-zero effects. The T2D

group carried the largest weight in the combined meta-analyses and

UKBB carried the largest weight within the T2D group

(Supplementary Figures 2–5). There was no evidence of

heterogeneity across studies, except in model 2 for rs45551835

and rs1801239 (Table 3).
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TABLE 2 meta-analysis of SNV-eGFRcreatinine summary data in diabetes mellitus and its subtypes (model 1).

Genetic variant
(EA) Diabetes type N

Effect
(Beta [95% CI]) PHET P-value

rs144360241 (C)

T1D 2,177 -0.14 [-0.32; 0.05] 0.38 0.15

T2D 30,727 0.01 [-0.01; 0.04] 0.62 0.40

Combined DM 32,904 0.01 [-0.02; 0.04] 0.42 0.53

rs45551835 (A)

T1D 3,236 -0.02 [-0.13; 0.08] 0.34 0.69

T2D 30,814 0.01 [0.00; 0.03] 0.08 0.09

Combined DM 34,050 0.01 [0.00; 0.02] 0.15 0.10

rs141640975 (A)

T1D 2,177 0.16 [-0.11; 0.44] 0.75 0.25

T2D 30,816 0.00 [-0.03; 0.03] 0.53 0.83

Combined DM 32,993 0.01 [-0.02; 0.03] 0.60 0.73

rs1801239 (C)

T1D 3,236 -0.01 [-0.06; 0.03] 0.20 0.57

T2D 30,834 0.00 [0.00; 0.01] 0.21 0.64

Combined DM 34,070 0.00 [0.00; 0.01] 0.23 0.59
F
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SNV, single nucleotide variant; eGFRcreatinine, log-transformed estimated glomerular filtration rate based on the CKD-EPI2012 equation; EA, effect allele (i.e., minor allele); N, sample size; Beta, Beta
coefficient; CI, confidence interval; PHet, P-value for heterogeneity across studies. PHet< 0.05 indicates variation; T1D: Type 1 diabetes; T2D: Type 2 diabetes; Combined DM: T1D and T2D combined.
TABLE 1 Clinical characteristics of participating studies.

Study
name

DM
type

Indi-
viduals
(N)

Males
(N, %)

Age##

[years]

BMI
[kg/
m2]

eGFRcreatinine
[ml/min/
1.73 m2]

SBP
[mmHg]

Diabetes
duration
[years]

Urinary albumin

AER
[mg/
24h]

UACR
[mg/
mmol]

ALB
[mg/
L]

AfterEU T1D 854
492

(57.60)
43.67
(11.15)

24.23
(3.21)

89.48
(26.61)

139.22
(20.90)

28.02
(9.50)

29.00
(7.00 -
618.00) NR NR

UK-ROI T1D 1,410
716

(50.80)
45.09
(11.35)

26.30
(4.40)

54.30
(30.00)

135.02
(20.80)

30.45
(9.70) NA NA NA

GENESIS T1D 1,324
700

(52.90)
41.37
(12.21)

22.21
(8.15)

80.87
(28.49)

129.41
(23.75) 24.91 (10.45)

9.00
(4.16-
37.25) NR NR

DiaGene T2D 1,886
1,011
(53.60)

65.24
(10.57)

30.47
(5.43)

78.33
(20.55)

141.83
(18.72)

10.09
(8.45) NR

5.85
(30.45) NR

Rotterdam T2D 1,022
487

(47.70)
68.10
(9.70)

29.40
(4.80)

78.30
(16.40)

147.10
(21.70) NA NA NA NA

ANDIS T2D 9,367
5,548
(59.22)

66.29
(13.29)

30.77
(5.70)

84.69
(30.92) NA

8.07
(4.40) NA NA NA

ExWas** T2D 3,990
2,370
(59.30)

61.00
(8.50) NA

79.00
(1.28) NA NA NA NA NA

UKBB-
T2D# T2D 14,890

9,703
(65.10)

60.97
(6.28)

31.90
(5.70)

87.86
(15.73)

144.50
(18.20) NA NR NR

16.00
(10.00-
34.40)

UKBB-
NDM# NR* 370,061

166,976
(45.10)

56.73
(8.02)

27.10
(4.50)

90.81
(12.80)

139.90
(19.60) NR NR NR

11.10
(8.30-
18.10)
ti
*Non-DM population. **The ExWas study comprises summary data from T2D individuals (discovery set). N, sample size; SD, standard deviation; BMI, Body-Mass Index; eGFRcreatinine,
estimated glomerular filtration rate based on the CKD-EPI2012 equation (non-transformed); SBP, Systolic blood pressure; AER, albumin excretion rate; IQR, Interquartile range; UACR, urinary
albumin-creatinine ratio; UKBB, UK Biobank; ALB, continuous baseline urinary albumin level; T2D, Type 2 diabetes; DM, diabetes mellitus; NDM; non-DM; T1D, type 1 diabetes. NR, not
relevant; NA, not available. #The UK Biobank urinary albumin measures are based on n=7,777 in T2D and n=370,061 in the NDM group. ##The time point for age assessment is NA for Genesis.
Age at recruitment was used in all other studies. Age, BMI, eGFR, and SBP have been deonted as mean (SD), while Urinary albumin measures have been denoted as median (IQR).
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3.3 CUBN variants are associated with
higher eGFRcreatinine in non-diabetes

In UKBB-NDM, we observed larger eGFRcreatinine-levels for

minor alleles compared to major alleles for all four CUBN

variants in both models, except for rs1801239 in NDM, model 3

(Table 4 and Supplementary Table 8): The effect and standard

deviation of rs144360241 was, for model 1 (model 3), 0.008 ±

0.002 (0.007 ± 0.002), corresponding to a difference of +0.8%

(+0.7%) in mean eGFRcreatinine (ml/min/1.73 m2) for each

additional copy of the affect allele, C. For rs45551835, the effect

was 0.005 ± 0.001 (0.004 ± 0.001), corresponding to a difference

of +0.5% (+0.4%) in mean eGFRcreatinine per copy of the A-allele.

rs141640975 had the largest effect size, 0.02 ± 0.003 (0.02 ± 0.003),

corresponding to a +2.02% (+2.02%) difference in mean
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eGFRcreatinine for each additional A-allele. The common variant,

rs1801239, had the smallest effect size of 0.001 ± 0.0005,

corresponding to a +0.1% difference in eGFRcreatinine for each

C-allele. We replicated the finding that rs141640975 was

significantly associated with higher eGFRcreatinine in non-

diabetes in an Icelandic study (deCODE, n = 127,090, effect =

0.026, SE = 0.007, PeGFR_creatinine = 7.7 × 10-4, model 3,

Supplementary Table 8). None of the other SNVs were

replicated (data not shown). Meta-analysis for the rs141640975-

eGFR-association in the NDM studies (UKBB and deCODE) is

depicted in Supplementary Figure 10.

In UKBB-T2D, none of the variants had statistically significant

associations with eGFRcreatinine, although the effects of three of the

variants (except rs141640975) were in the same direction as in

NDM (Table 4 and Supplementary Table 8).
TABLE 3 meta-analysis of SNV-eGFRcreatinine summary data in diabetes mellitus and its subtypes (model 2).

Genetic variant (EA) Population N
Effect

(Beta [95% CI]) PHET P-value

rs144360241 (C)

T1D 1,916 -0.12 [-0.32; 0.08] 0.26 0.25

T2D 15,745 0.01 [-0.02; 0.04] 0.37 0.66

Combined DM 17,661 0.00 [-0.02; 0.03] 0.32 0.78

rs45551835 (A)

T1D 2,712 -0.05 [-0.16; 0.07] 0.25 0.43

T2D 15,724 0.01 [0.00; 0.03] 0.03* 0.14

Combined DM 18,436 0.01 [0.00; 0.03] 0.05 0.18

rs141640975 (A)

T1D 1,916 0.10 [-0.17; 0.38] 0.4 0.46

T2D 15,746 0.00 [-0.04; 0.05] 0.58 0.88

Combined DM 17,662 0.01 [-0.04; 0.05] 0.67 0.8

rs1801239 (C)

T1D 2,712 0.00 [-0.04; 0.05] 0.53 0.94

T2D 15,741 0.00 [-0.01; 0.01] 0.03* 0.77

Combined DM 18,453 0.00 [-0.01; 0.01] 0.15 0.76
fron
SNV, single nucleotide variant; eGFRcreatinine, log-transformed estimated glomerular filtration rate based on the CKD-EPI2012 equation; EA, effect allele (i.e., minor allele); N, sample size; Beta, Beta
coefficient; CI, confidence interval; PHet, P-value for heterogeneity across studies. PHet< 0.05 indicates variation; T1D: Type 1 diabetes; T2D: Type 2 diabetes; Combined DM: T1D and T2D combined.
TABLE 4 Summary results for SNV-eGFRcreatinine analyses in UKBB (model 1).

Genetic variant (EA) EAF Population ** N Effect (Beta [SE]) P-value

rs144360241 (C)

0.004 NDM *** 369,832 0.008 (0.002) 0.0008*

0.004 T2D **** 14,882 0.02 (0.02) 0.23

rs45551835 (A)

0.014 NDM *** 369,028 0.005 (0.001) 0.0004*

0.014 T2D **** 14,860 0.01 (0.01) 0.13

rs141640975 (A)

0.003 NDM *** 369,987 0.02 (0.003) 2.2 × 10-9*

0.003 T2D **** 14,885 -0.01 (0.02) 0.71

rs1801239 (C)

0.10 NDM *** 369,849 0.001 (0.0005) 0.006*

0.10 T2D **** 14,880 0.00 (0.00) 0.42
SNV, single-nucleotide variant; eGFRcreatinine, estimated glomerular filtration rate (natural log-transformed); EA, effect allele (i.e., minor allele); N, sample size; EAF, Effect allele frequency; Beta,
Beta coefficient; SE, standard error; NDM, without Diabetes Mellitus; T2D, Type 2 diabetes. *Statistically significant (P< 0.05). ** For completeness, we also show the results for T2D, which were
part of DM meta-analyses for model 1. *** out of total 370,061 individuals. **** out of total 14,892 individuals.
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3.4 Associations of rs141640975 with
eGFRcreatinine depend on albuminuria-
status in non-diabetes

To examine whether the SNVs are associated with eGFRcreatinine

in an a lbuminur i a -dependent f ash ion , we inc luded

albuminuria*SNV interactions in two regression models. For the

first model, we observed significant interaction for rs141640975 in

UKBB-NDM (Pinteraction = 0.03, Table 5). This was also observed in

the other model (Pinteraction = 0.04, Supplementary Table 9). An

interaction plot showed that for the eGFR-SNV-association, the

effect on eGFR was even higher for more elevated albuminuria-

levels (Supplementary Figure 11).
3.5 A CUBN-based GRS for albuminuria
is associated with eGFRcreatinine in
non-diabetes

We combined the four CUBN variants into a genetic risk score

for albuminuria, verified its associations with continuous urine

albumin levels and tested it against eGFRcreatinine in UKBB-T2D

and UKBB-NDM. The GRS was associated with higher levels of

both traits, except for eGFR in T2D (Tables 6, 7).
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3.6 rs141640975 is associated with
additional markers of kidney function
in non-diabetes

We examined the associations between the study SNVs and two

additional markers of kidney function. The SNV rs141640975 was

associated with higher levels of eGFRcreatine-cystatin C [a more recent

ethnicity-independent GFR-estimator (28)] and lower levels of

cystatin C, both observed in NDM (Supplementary Tables 10–

12). The eGFRcreatinine-cystatin C association of rs144360241 was

borderline significant in NDM.
3.7 Estimated power

3.7.1 Meta-analysis (diabetes mellitus)
Given the ranges of EAFs obtained from individual studies

participating in meta-analyses, we reached a power level of 35-43%

for rs45551835, 16-23% for rs1444360241, and 9-21% for

rs141640975 in the DM group (Supplementary Table 14). Effect

sizes were assumed from the individual meta-analysis

eGFRcreatinine-associations of each SNV. We did not calculate

power for rs1801239 as the effect in the DM meta-analysis was 0.0.

3.7.2 Association of SNVs with eGFR (UKBB
population without diabetes)

In NDM, the power for main eGFRcreatinine analyses was

between 70-99% for the four variants (Supplementary Table 15).
4 Discussion

Recently, we demonstrated that individuals carrying the minor

allele of the CUBN missense variant rs141640975 had higher

albuminuria-levels than non-carriers. The effect of this variant was

stronger in individuals with diabetes (DM) compared to those

without diabetes (NDM) (11). In continuation of these findings,

Bedin et al. (8) performed secondary lookups for CUBN-variants in
TABLE 5 Interaction with albuminuria in SNV-eGFRcreatinine analyses in
UKBB (model 1).

Genetic variant
(EA) Population N

P-value of interac-
tion term#

rs144360241 (C) NDM ** 107,202 0.67

rs45551835 (A) NDM ** 106,964 0.88

rs141640975 (A) NDM ** 107,255 0.03*

rs1801239 (C) NDM ** 107,216 0.49
SNV, single-nucleotide variant; eGFRcreatinine, estimated glomerular filtration rate (natural
log-transformed); EA, effect allele (i.e., minor allele); N, sample size; NDM, without Diabetes
Mellitus; *Statistically significant (P< 0.05). ** out of total 107,276 individuals with continuous
urinary albumin levels. Albuminuria-SNV interaction was only tested when primary SNV-
eGFRcreatinine associations were significant. # Interaction term is SNV*albuminuria groups
(normo-, micro-, and macro albuminuria).
TABLE 6 Summary results for GRSCUBN-eGFRcreatinine and -ALB analyses
in UKBB (model 1).

Trait Population N Effect (Beta [SE])
P-

value

ALB

NDM ** 106,814 0.05 (0.004)
2 × 10-

16*

T2D *** 7,741 0.08 (0.02) 0.004*

eGFRcreatinine

NDM 368,521 0.002 (0.0004) 2 × 10-6*

T2D 14,837 0.004 (0.003) 0.2
GRSCUBN, A genetic risk score based on a combination of the four CUBN genetic variants
(minor alleles); N, sample size; Beta, Beta estimate; SE, standard error; ALB, continuous
urinary albumin (mg/L, natural log-transformed); eGFRcreatinine, estimated glomerular
filtration rate (natural log-transformed); NDM, without Diabetes Mellitus; T2D, Type 2
diabetes. *Statistically significant (P< 0.05). ** out of total 107,276 individuals with continuous
urinary albumin levels. *** out of total 7,777 individuals with continuous urinary
albumin levels.
TABLE 7 Summary results for GRSCUBN-eGFRcreatinine and -ALB analyses
in UKBB (model 3).

Trait Population N Effect (Beta [SE])
P-

value

ALB

NDM ** 99,180 0.05 (0.004)
2 × 10-

16*

T2D *** 7,182 0.08 (0.02)
3 × 10-4

*

eGFRcreatinine

NDM 343,988 0.002 (0.0004) 2 × 10-5*

T2D 13,828 0.005 (0.003) 0.1
fron
GRSCUBN, A genetic risk score based on a combination of the four CUBN genetic variants
(minor alleles); N, sample size; Beta, Beta estimate; SE, standard error; ALB, continuous
urinary albumin (mg/L, natural log-transformed); eGFRcreatinine, estimated glomerular
filtration rate (natural log-transformed); NDM, without Diabetes Mellitus; T2D, Type 2
diabetes. *Statistically significant (P< 0.05). ** out of total 107,276 individuals with continuous
urinary albumin levels. *** out of total 7,777 individuals with continuous urinary albumin
levels.
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the CKDGen eGFR GWAS study population, reporting that missense

variants in CUBN may also be associated with higher levels of eGFR

in the general population. Our current large-scale study aimed to

examine the effect of minor alleles of three rare CUBN missense

variants (rs144360241 (c.6469A>G; p.Asn2157Asp), rs45551835

(c.8741C>T; p.Ala2914Val) and rs141640975 (c.5069C>T;

p.Ala1690Val)) and one common variant (rs1801239 (c.8950A>G;

p.Ile2984Val)) on eGFRcreatinine levels separately in people with and

without diabetes (nDM ~ 34,000 individuals, nNDM ~ 370,000

individuals), including stratification for diabetes-type and

supplemented by tests on circulating cystatin C levels, the recently

updated eGFR-equation based on creatinine and cystatin C (30), and

aggregate-variant tests. We were able to replicate the association

between creatinine-based eGFR and rs141640975 in NDM and report

new insightful connections with the alternative measures of kidney

function for all four SNVs.

Previously, a borderline association between rs45551835 and

higher eGFR-levels has been reported in a smaller type 2 diabetes

(T2D) population from Denmark (8, 11), a finding which we could

not replicate in our meta-analysis of up to 34,432 individuals with

diabetes and its subtypes. Like the initial study (8), we could not

establish a link between eGFR and the three other variants within the

diabetes group. As for rs45551835, it was surprising to be unable to

replicate the earlier findings as the current study has a larger sample

size compared to earlier efforts. Our post-hoc power assessment

indicated that insufficient power might be at play, even with a

larger sample size for the diabetes group (8). We also speculated

whether the apparent lack of association between CUBN and eGFR in

our diabetes meta-analysis could be due to use of Angiotensin

receptor blockers (ARBs) or Angiotensin-converting enzyme

inhibitor (ACEi) medication which is frequently used in diabetes

treatment. As part of our sensitivity analyses, we included models

adjusted for systolic blood pressure (a proxy for suchmedication) and

did not find evidence that this could explain why no association was

found in the diabetes group. Another reason could be the allele

frequency of the variants may differ between Danish and UK

populations. We need further validation in well-powered

populations to confirm the relationship between the rs45551835

and eGFR in diabetes, especially in T2D. In case of a true lack of

association, CUBN may be associated with higher levels of urine

albumin (11) with no pleiotropic effect to eGFR in this population.

We proceeded to single- and aggregate-variant analyses in the

UK Biobank (UKBB), shifting focus to non-diabetes populations.

For all four CUBN variants, we report significantly higher

eGFRcreatinine-levels in individuals without diabetes harboring

more copies of the minor alleles compared to individuals with

fewer or no copies of the minor alleles in the same group. For

rs141640975, we observed the strongest association with

eGFRcreatinine (P = 2.2 × 10-9) with replication in the Icelandic

study (deCODE, P = 7.7 × 10-4), confirming what has previously

been observed for this SNV in NDM (8) – but also a significant

interaction between the SNV and albuminuria stages (PINT< 0.05).

Taken together with the already known associations of the minor

alleles with higher albuminuria (11), this not only demonstrates

genetic pleiotropy of CUBN for albuminuria and eGFR in non-

diabetes but also implies that these two associations are intertwined
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for this SNV, where the effect on eGFR is even higher for more

elevated albuminuria-levels. Here, CUBN demonstrates a classic

genetic pleiotropy phenomenon where a DNA variant influences

multiple traits, usually in the same domain with concordant or

sometimes discordant effects as observed earlier in complex

disorders (32). Further validation of independent biological or

related causal effects might be required in additional follow

up studies.

This finding is unusual as there is no obvious clinical or

pathophysiological explanation for such an albuminuria-eGFR

pattern in the context of non-diabetes. It has been suggested that

the tubular albuminuria observed in presence of C-terminal

variants in CUBN has a benign or even slightly protective effect

on kidney function in chronic kidney disease if glomerular

albuminuria is also present (8, 33, 34). Another recent study on

chronic isolated proteinuria suggests that different C-terminal

CUBN variants uncouple proteinuria from glomerular filtration

barrier through declined cubilin expression accompanied by

aberrant amnionless (AMN) localization in renal tubules. AMN is

part of the receptor complex (along with cubilin and megalin)

necessary for tubular reabsorption of albumin. This is suggested to

create a benign condition, not requiring any further proteinuria

lowering treatment (35). In non-diabetes, where the population can

be assumed to consist mostly of healthy individuals, a concept of

such protectiveness is less relevant. However, it is possible that an

undetected subpopulation with relevant comorbidities exists in the

non-diabetes group.

Our CUBN aggregate-variant method – which was defined as a

genetic risk score (GRS) combining the four variants – showed that

a higher number of C-terminal CUBN risk alleles is associated with

higher urine albumin and eGFRcreatinine levels and confirms both

the single-variant association with higher urine albumin levels

reported previously in diabetes and non-diabetes (11, 14), and the

consistency of the overall effects on urine albumin levels being

greater in diabetes compared to non-diabetes (10, 11). Through

GRSCUBN, we also saw that a higher number of minor alleles across

the four variants was associated with higher eGFRcreatinine-levels in

the UKBB population without diabetes, which is in line with our

single-variant findings and the previous findings for rs45551835 (8).

Using aggregate-variant methods is an optimal way to examine

combined genetic effects and has been used extensively for

polygenic traits (13, 36). Using GRS is highly relevant here as

three of the four variants are rare and mostly present as

heterozygous variants in our populations. This might substantiate

with some additional power to detect effects and adds further

certainty to the presence of a CUBN-eGFR relationship in non-

diabetes. Nevertheless, we still do not find an association with eGFR

in T2D, even when the variants are combined in a GRS.

Finally, we examined the association between the study SNVs

and two alternative markers of kidney function. In non-diabetes,

the minor alleles of rs141640975 and rs144360241 were associated

with higher levels of eGFRcreatinine-cystatin C. This measure was

estimated using a recent update to the equation, CKD-EPI2021,

which does not include ethnicity and is a more precise indicator of

kidney function in comparison to the CKD-EPIcreatinine(2012)
equation which is based only on creatinine. Our results using the
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conventional eGFRcreatinine equation are concordant with our results

from the updated equation in terms of directionality of effect and

with our finding that rs141640975 is associated with lower cystatin

C levels, which is another indicator of kidney function. It should be

noted, though, that considering Table 1 and Supplementary

Tables 4–6, the 0.1% – 2.02% higher mean eGFR we report for

each minor allele is modest and may reflect that individual

harboring these genetic variants have normal kidney function

rather than a better kidney function.

A strength of our study is the restriction to specifically diabetes-

and non-diabetes-only subgroups so that effects frommixed diabetes-

status are minimized. Heterogeneity is likely to be present in meta-

analyses of a diverse set of cohorts originally used for different

research purposes. Indeed, some of the cohorts included in our

meta-analyses differ regarding available covariates and/or kidney

disease status. However, we did not observe heterogeneity in our

meta-analyses. In addition to this, we could minimize heterogeneity

in the remainder of our analyses by using data from the UKBB, which

is a nationally representative cohort facilitating application of

identical phenotype definitions across subgroups. Another strength

is the broad spectrum of additional analyses that we explored in the

UKBB population to nuance our findings on the relationship between

eGFR and CUBN. The judicious use of UKBB leveraging individual-

level genotype information to investigate interaction-analyses based

on albuminuria groupings is a great strength of the current study,

especially for rare variants.

A major limitation is that we did not have sufficient statistical

power for our meta-analyses in the diabetes group due to the limited

availability of suitable datasets. Consequently, interpretations of

T2D findings should not be overstated and we thus could not

demonstrate, nor disprove, the presence of a CUBN-eGFR

relationship in this population. Although we demonstrate that C-

terminal missense variants in CUBN are associated with different

measures of normal (or even higher) kidney function in non-

diabetes, we emphasize that the current study is insufficient to

establish causality. Finally, using multiple-testing-corrected

significance thresholds might be too conservative when testing a

very small number of variants from the same locus as it may remove

true associations. In genome-wide studies, a conservative threshold

of 5 × 10−8 is generally agreed upon for novel associations. There is

less consensus on when and how to appropriately apply multiple

testing correction in smaller-scale genetic studies dealing with a

mixture of new and known associations. Nevertheless, we deemed

that it would be fair to apply FDR-correction of the significance

threshold to our primary analyses in DM and NDM.

In conclusion, the current study identifies the existence of

pleiotropic genetic effects of CUBN on two facets of kidney function

– albuminuria and eGFR – by reporting SNV-eGFR associations in a

large study population without diabetes. The interaction between

rs141640975 and albuminuria-status on eGFRcreatinine in this

population and its associations with lower cystatin C and higher

levels of eGFRcreatinine-cystatin C expands our knowledge of these

variants in relation to measures of kidney function. The

demonstration of a CUBN-focused GRS in relation to albuminuria

and eGFRcreatinine further suggests an important role of CUBN-variants

in the future personalization of chronic kidney disease management.
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Integrative network-based
analysis on multiple Gene
Expression Omnibus datasets
identifies novel immune
molecular markers implicated in
non-alcoholic steatohepatitis

Jun-jie Zhang1*†, Yan Shen2†, Xiao-yuan Chen2, Man-lei Jiang3,
Feng-hua Yuan1, Shui-lian Xie1, Jie Zhang3 and Fei Xu3*

1Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University,
Ganzhou, China, 2Department of Publication Health and Health Management, Gannan Medical
University, Ganzhou, China, 3Department of Hepatology, The Affiliated Fifth People’s Hospital of
Ganzhou, Gannan Medical University, Ganzhou, China
Introduction: Non-alcoholic steatohepatitis (NASH), an advanced subtype of

non-alcoholic fatty liver disease (NAFLD), has becoming the most important

aetiology for end-stage liver disease, such as cirrhosis and hepatocellular

carcinoma. This study were designed to explore novel genes associated

with NASH.

Methods: Here, five independent Gene Expression Omnibus (GEO) datasets were

combined into a single cohort and analyzed using network biology approaches.

Results: 11 modules identified by weighted gene co-expression network analysis

(WGCNA) showed significant association with the status of NASH. Further

characterization of four gene modules of interest demonstrated that molecular

pathology of NASH involves the upregulation of hub genes related to immune

response, cholesterol and lipid metabolic process, extracellular matrix

organization, and the downregulation of hub genes related to cellular amino

acid catabolic, respectively. After DEGs enrichment analysis and module

preservation analysis, the Turquoise module associated with immune response

displayed a remarkably correlation with NASH status. Hub genes with high

degree of connectivity in the module, including CD53, LCP1, LAPTM5,

NCKAP1L, C3AR1, PLEK, FCER1G, HLA-DRA and SRGN were further verified in

clinical samples and mouse model of NASH. Moreover, single-cell RNA-seq

analysis showed that those key genes were expressed by distinct immune cells

such as microphages, natural killer, dendritic, T and B cells. Finally, the potential

transcription factors of Turquoise module were characterized, including NFKB1,

STAT3, RFX5, ILF3, ELF1, SPI1, ETS1 and CEBPA, the expression of which

increased with NASH progression.
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Discussion: In conclusion, our integrative analysis will contribute to the

understanding of NASH and may enable the development of potential

biomarkers for NASH therapy.
KEYWORDS

non-alcoholic steatohepatitis, weighted gene co-expression network analysis, hub
genes, immune response, transcription factors
Introduction
Non-alcoholic fatty liver disease (NAFLD) is likely to become

the most common chronic liver disease, affecting about 25% in the

adult population (1). It is characterized by excessive accumulation

of hepatic triacylglycerol (TG) and encompasses a spectrum of liver

pathologies ranging from isolated steatosis (non-alcoholic fatty

liver, NAFL) to non-alcoholic steatohepatitis (NASH), a more

severe form of fatty liver disease featured by lobular inflammatory

infiltrates, hepatocyte ballooning and fibrosis (2). Up to 30% of the

patients with NAFLD will process to NASH (3), which may

eventually progress to cirrhosis, hepatocellular carcinoma (HCC)

and liver failure (4). Moreover, NASH is considered the hepatic

manifestation of metabolic syndrome, commonly alongside serious

extrahepatic diseases, such as dyslipidemia, hypertension, obesity

and type 2 diabetes mellitus (T2DM) (5, 6), and multiple pathogenic

pathways are involved in NASH progression.

Previous studies have contributed greatly to our understanding

of genetic and environmental risk factors in the pathogenesis of

NAFLD. Genome-wide association studies (GWAS) have revealed

genetic variants in several loci (PNPLA3, TM6SF2, GCKR,MTARC1

and HSD17B13) that promote NAFLD risks in humans (7–11),

which highlights the dysregulation of gene expression and/or

function as an important players in the development and

progression of NASH. Integrating multi-omics approaches

including genomics , transcriptomics , proteomics and

metabolomics have provided additional insights (12–15), which

may not be elucidated by genomics analysis alone. In addition,

previous bioinformatics analyses in cross-sectional studies have

facilitated the exploration of potential biomarkers related to

NAFLD/NASH (16–19). However, for complex disease trait, the

comprehensive molecular characterization of NASH are still not

entirely deciphered. As a consequence, no effective pharmacological

therapies targeting NASH are presently available. Hence, further

exploration into the molecular pathogenesis of NASH and

diagnostic biomarkers are essential to build novel approaches for

management of NASH.

Network biology approaches have proven effective for

uncovering new perturbed pathways underlying molecular

pathology (18, 20, 21). Contrary to traditional differential

expression analysis methods based on gene expression profiling,

network-based approaches investigate the correlation among

changing genes from a systematic perspective. Weighted gene co-

expression network analysis (WGCNA) has become a frequently
0227
used method for multigene analysis, which establishes gene sets

(modules) from observed gene expression data using unsupervised

hierarchical clustering. WGCNA is widely used for exploring the

relationship between diverse gene sets and clinical features (22, 23),

providing insights into functions of co-expression gene modules

and detecting hub genes related to the clinical characteristics of

various diseases (24, 25).

In the present work, we aimed to identify deregulated modules,

hub genes and transcription factors (TFs) associated with NASH by

integrating transcriptomic data with biological network analysis

between normal liver tissues and NASH tissues. We obtained five

liver transcriptome datasets from the Gene Expression Omnibus

(GEO) database (26). We first generated MergeCohort by merging

five pre-processed datasets. Based on the combining expression

matrix, differentially expressed gene (DEG) analysis was performed

to identify genes associated with NASH. After that, through

integrative analyses of co-expression gene network, functional

annotation, TF-target regulatory network and validation analysis,

we detected several promising candidate biomarkers for NASH.

Our integrative study provides a comprehensive view on the

molecular processes of NASH and may discover potential

therapeutic target for NASH treatment.
Methods

Data collection

We obtained the expressing profiles of mRNA of NASH and

normal control from the Gene Expression Omnibus (GEO)

database (http://www.ncbi.nlm.nih.gov/) (26). We searched the

microarray and next-generation sequencing (NGS) studies with

the keywords: “Fatty liver”, “Non-alcoholic”, “Gene expression”,

“Homo sapiens”, “Microarray” and “RNA sequencing”. Datasets

were selected based on the following criterial (1): Containing at least

10 total samples (2); Samples must Contain at least five patients in

both NASH group and healthy control group (3); Raw data or gene

expression profiles were available in GEO (4). Pathways related to

lipid metabolism, inflammation and fibrosis were significantly

(normalized enrichment score (NES) more than 1.0 and a false

discovery rate (FDR) below 0.25) enriched between the two groups

in the gene set enrichment analysis (GSEA) (Supplementary Tables

S2, S3), which was carried out with the Java GSEA (version 3.0) (27)

platform with the ‘Signal2Noise’metric to create a ranked list and a

‘gene set’ permutation type. The flowchart was shown in Figure 1.
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Data processing

For each dataset, we download raw expression data and pre-

processed using standard approaches. Specially, gene chip datasets

were normalized by the robust multi-average (RMA) method with

oligo/Bioconductor (28). For RNA-seq datasets, reads count

information were generated by StringTie using a Python script

(prepDE.py) and raw counts were normalized across samples

following TMM method in edgeR package. After filtering low

abundance expression genes and outlier samples, we applied the

ComBat (version 3.20.0) method in the sva R package to remove the

batch effects (29) from five datasets (GSE48452, GSE37031,

GSE61260, GSE63067 and GSE130970) and combined these five

datasets into a single cohort (MergeCohort), which contains 67

normal and 97 NASH tissue samples. Subsequently, the expression

matrix of MergeCohort was used for differentially expressed genes

(DEGs) identification between NASH and healthy control samples.

It is worth noticing that we applied Wilcoxon’s rank-sum test to

assess the differential expression, the corrected threshold was p less

than 0.05, and the absolute difference of means more than 0.3. Gene

ontology (GO) and Reactome enrichment analyses were performed

for DEGs using hypergeometric test, which is conducted by the

python package gseapy (version 0.9.16; https://github.com/zqfang/

gseapy), all gene sets of GO term and Reactome pathway were

obtained from database source of Enrichr (30). Only GO terms or

Reactome pathways were considered as significantly enriched by

using the criterion with a corresponding p value less than 0.05.
Weight gene co-expression network
construction, module detection and
preservation analysis of the
co-expression modules

5,000 transcripts with maximal variability across all patients (n

= 164) based on the median absolute deviation in the MergeCohort

were kept for WGCNA and tested by the WGCNA R package (22).

In our work, the power threshold of 5 was selected to calculate

biweight midcorrelations and weighted adjacency matrix, the soft

thresholding parameter was defined using the scale-free topology fit
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model. We identified the gene modules based on the ‘hybrid’

method and parameters deepSplit = 4, mergeCutHeight = 0.15

and minModuleSize = 50. Modules are identified as branches in the

dendrogram with Dynamic Tree Cut algorithm (22). Subsequently,

we assessed the relevance of a module eigengene (ME) to the disease

status using the Pearson correlation. An intramodular connectivity

(Kin) was defined to measure for each gene on the base of its

correlation with the remaining genes in a given module. Genes with

highest Kin are identified as hub genes. Cytoscape version 3.8.2 was

used for visualization. In order to understand the extent of module

preservation in MergeCohort, a publicly available expression

profiling of high throughput RNA sequencing dataset GSE135251

including 10 controls, 51 NAFL and 155 NASH was used, processed

as described above. Module preservation analysis was carried out by

using Module preservation function in WGCNA package

introduced by Langfelder et al. (31) and described in detail in

Oldham et al. (32). Moreover, to investigate the module similarity

among different cohorts, we applied hypergeometric test to evaluate

whether the genes from each MergeCohort module significantly

overlapped with the genes from each of GSE135251 module. The

overlap was regarded as significant when p value below 0.05.
Functional annotation of the modules

In order to determine the functional significance of the

identified modules, we firstly performed GO and KEGG pathway

enrichment analysis for the gene lists of each module of co-

expression network on the basis of Enrichr (30) as described

above. Moreover, we carried out disease enrichment analysis for

the gene lists of each module by using DisGeNet (33). The statistical

significance threshold level for all disease terms was p value less

than 0.05 (Benjamini-Hochberg corrected for multiple

comparisons) and we presented top 20 for each disease-associated

module. Additionally, to obtain regulatory information of

transcription factors (TFs) and target genes, Transcriptional

Regulatory Relationships Unraveled by Sentence based Text

mining (TRRUST) v2 database (https://www.grnpedia.org/trrust/)

(34) were supplied for Enrichr (30), conducted by the python

package gseapy (version 0.9.16; https://github.com/zqfang/gseapy).

In addition, ChIP-X Enrichment Analysis 3 (ChEA3) database

(https://maayanlab.cloud/chea3/) (35) was adopted to further

validate the significantly enriched transcription factors over

module genes. After obtaining TF–target regulatory relationships,

a TF-target network, which contained TFs regulating Turquoise

modules’ genes, was reconstructed.
Single cell RNA-sequencing analyses

We investigated the expression patterns of top 25 hub genes in

Turquoise module using scRNA-seq analyses of human liver tissues

from public scRNA-seq data (GSE136103) (36). In our study, only

four samples including two healthy liver tissue samples

(GSM4041156 and GSM4041159) and two NAFLD liver tissue

samples (GSM4041162 and GSM4041163) were analyzed with
FIGURE 1

Flowchart.
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Seurat package (version 3.1.5) (37). First, 2000 highly variable genes

(n = 2,000) were identified using the R package SCTransfom

(version 0.2.1). Subsequently, principal component analysis was

performed, and the appropriate principal components (PCs) for

dimensionality reduction were decided using the JackStraw

function. Clusters were identified with the Seurat function

FindClusters with the resolution set at 0.4. This method resulted

in 18 clusters, which were visualized by Uniform Manifold

Approximation and Projection (UMAP) analysis. Clusters were

then annotated by using the expression of known genes. We

annotated cell types based on cell markers and the R package

SingleR (36, 38).
Results

Information of included GEO datasets

According to the previously established inclusion criteria,

GSE48452, GSE37031, GSE61260, GSE63067 and GSE130970

were included in this study. There are 104 NASH patients and 70

controls in these five datasets. After outlier removal, 97 NASH

patients and 67 controls were retained in the following analysis. The

detail information of the five datasets was shown in Supplementary

Table S1. In order to eliminate the bath effect from different

platforms and batches, we used the combat function to eliminate

the batch effect from five datasets. A total of 12579 genes were

detected by merging different platforms. Before removing the batch

effect, samples were clusters in batch according to the top two

principal components (PCs) of the expression values before

normalization (Figure S1A). In contrast, when the samples from
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five platforms were merged, the overall expression in the samples

was uniformly distributed based on principal component analysis,

suggesting that the batch effect caused by different platforms that

had effect on the estimation of molecular biological differences was

successfully corrected (Figure S1B). In addition, we used dataset

GSE135251 as the validation dataset in this study.
Identification of DEGs in the NASH patients

Principle component analysis plot of the gene expression matrix

of five combined dataset (MergeCohort) distinguished between

NASH and control group is shown in Figure 2A. Total of 831

DEGs (Benjamin-Hochberg adjusted p value < 0.05, absolute

difference of mean > 0.3) among control and NASH in

MergeCohort were identified, consisting of 600 upregulated and

231 downregulated DEGs (Figure 2B; Supplementary Table S4).
Function and pathway enrichment analysis
of DEGs

In the present study, we performed GO and Reactome pathway

enrichment analysis to determine the potential functions of 831

DEGs in the pathogenesis of NASH. The biological process analysis

(Figure 2C; Supplementary Table S5) revealed that in the NASH,

these genes were associated with multiple immunity-related

pathways, such as the cytokine-mediated signaling pathway, cellular

response to cytokine stimulus and neutrophil activation involved in

immune response. Several ECM-related pathways were also enriched

such as extracellular matrix organization and extracellular structure
B

C

D

A

FIGURE 2

Overview of combining gene expression profiles in healthy controls and nonalcoholic steatohepatitis (NASH) patients. (A) Principle component plot
of samples based on top 500 most variable gene expression from combining gene expression profiles (MergeCohort). NASH patients are marked in
red; healthy controls are marked in green. (B) Volcano plot of differentially expressed genes (DEGs) between NASH patients and healthy controls.
DEGs are listed in Supplemental Table S4. 600 genes upregulated and 200 genes downregulated are shown in red and blue, respectively. (C) Top 10
enriched biological functions of DEGs determined by Gene Ontology (GO) enrichment analysis. (D) Top 10 enriched Reactome pathways of DEGs
determined by Reactome pathway enrichment analysis.
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organization. Moreover, metabolic process, such as cholesterol

metabolic process, fatty acid metabolic process, cholesterol

biosynthetic process and other biological process (Supplementary

Table S5) were also identified. Reactome pathway analysis was

performed to investigate the pathway based on the DEGs

(Supplementary Table S6). The top 10 pathways are shown in

Figure 2D. Among them, metabolism, metabolism of lipids and

lipoproteins, extracellular matrix organization, immune system,

chemokine receptors bind chemokines were significantly enriched.

Therefore, the outcomes above suggested that metabolism, ECM-

related pathways and immunity-related pathways play an important

role in development and procession of NASH.
WGCNA and identification of module
associated with NASH disease status

To capture discrete groups of co-expression genes correlated

with NASH status and to integrate the identified expression

divergences into a higher system level context, a co-expression

network analysis (WGCNA) was conducted based on the top 5000

median absolute deviation (MAD) genes from the MergeCohort.

Keep to the scale-free topology criterion, b=5 was considered in this

study (Figure 3A). According to dynamic tree cut, the hierarchical

clustering dendrogram resulted in 17 different gene modules, as
Frontiers in Endocrinology 0530
displayed in Figure 3B. 909 genes failed to fit within a distinct group

and were assigned to the Grey module which was neglected in the

present study. The size of modules ranged from 86 (Grey60

module) to 734 (Turquoise module) (Figure 3C). DEGs

enrichment in each module was shown in Figure 3D, in which

upregulated genes was mostly significantly enriched in Turquoise

(n = 233, p = 1.93 × 10-44), and followed by Cyan (n = 54, p = 1.24 ×

10-15), Grey60 (n = 40, p = 2.05 × 10-13), Tan (n = 48, p = 1.59× 10-9)

and Magenta (n = 47, p =2.77 × 10-4), downregulated genes was

significantly enriched in Black (n = 107, p = 9.25 × 10-86) and Brown

module (n = 68, p = 1.07 × 10-24). To investigate which co-

expression modules are associated with NASH status, we then

correlated the expression of eigengenes (genes representing the

expression profile of each module) with NASH status. The

relationship between all the modules and the NASH status are

displayed in a correlation heatmap, in which Y-axis corresponds to

groups of genes (modules) and the X-axis represents the NASH

status (Figure 3E). Of the 17 co-expression modules, 11 WGCNA

modules to be correlated with NASH status at a Pearson correlation

(p < 1.47 × 10-3), which is determined based on Bonferroni

correction. Among them, nine modules (Cyan, Grey60,

Turquoise, Magenta, Purple, Lightcyan, Tan, Midnightblue and

Blue) were positively correlated with NASH disease status, two

modules (Black and Brown) were negatively associated with NASH

disease status (Figure 3E).
B

C D E

A

FIGURE 3

WGCNA network and module identification. (A) Soft-thresholding calculation of MergeCohort. The left panel displays the scale-free fit index versus
soft-thresholding power. The right panel shows the mean connectivity versus soft-thresholding power. Power 5 was selected, for which the fit index
curve flattens out upon reaching a high value (> 0.9). (B) The Cluster dendrogram of co-expression network modules from WGCNA depending on a
dissimilarity measure (1-TOM). The leaves in the tree represent genes and the colors in the horizontal bar indicate co-expression module determined
by the dynamic tree cut algorithm. (C) Number of genes in each module. (D) Enrichment of upregulated and downregulated DEGs in each module.
(E) Heatmap showing the association between module eigengenes (rows) and NASH disease status (column). Associated p values were computed
using the cor.test R function. The color scale in the heat map represents the magnitude of the Pearson correlation coefficients. Number in each cell
contained corresponding correlation coefficient and p value (in brackets). WGCNA, weighted gene correlation network analysis; TOM, topological
overlap matrix.
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Functional characterization of co-
expression modules of interest

Because we were more concerned about the modules whose

expression was different between NASH and control group, we

compared the eigengenes from NASH samples to the expression of

control in every module, and these results were used to further

assess whether the modules were associated with NASH status.

Modules Cyan, Grey60 and Turquoise exhibited an upregulation of

the eigengenes in NASH, whereas module black showed lower

expression in NASH (Figure 4A). In order to investigate whether

the co-expression modules cover the information associated with

validated networks, the existing data on protein-protein

interactions from the STRING database was used to test the

biological characteristics of the detected modules in this study. All

the modules showed significant enrichment in interactions (p <

0.01), therefore indicating that the modules detected in the present

work are biologically relevant (Supplementary Table S7). In

addition, the NASH status positively correlated modules showed

much higher average node degree (AND), particularly module

Turquoise (AND = 22.4).
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We then conducted GO and KEGG pathway enrichment of the

NASH-associated modules to further investigate the gene functions by

Enrichr. Top biological process and KEGG pathway in each module

are shown in Table 1. Turquoise module was upregulated in NASH

patients, contained hub genes related to immune response (CD53,

LAPTM5, LCP1, NCKAP1L, C3AR1 and FGL2) (Figure 4B), and

enriched for GO categories to cytokine-mediated signaling pathway,

neutrophil activation involved in immune response and neutrophil

degranulation (Figure 4B). Grey60 module with hub genes such as

FDFT1, NSDHL, IDI1, SQLE, ACSS2, SREBF2, HMGCR, FASN, LSS,

ACAT2, FADS1, FADS2 and ELOVL6 was upregulated in NASH

(Figure 4C), which were mainly participating in cholesterol and lipid

metabolic process (Figure 4C). The majority of the GO terms enriched

in module Cyan were primarily related to extracellular matrix

organization and extracellular structure organization (Figure 4D),

including hub genes related to fibrosis (PDGFA, LOXL4, MSN,

LAMA3 and AKR1B10) (Figure 4D). However, the majority of the

GO terms enrich in Black module were related to cellular amino acid

catabolic and primary alcohol metabolic process (ACADSB, AASS and

ALDH6A1) (Figure 4E). The complete annotation for each module

can be found in Supplementary Tables S8, S9.
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FIGURE 4

Functional characterization of co-expression modules of interest identified by WGCNA. (A) Box and Whisker plots representing the expression of
module eigengenes Turquoise, Grey60, Cyan, Black between NASH (n = 97) and healthy control (n = 67) samples. Data are presented as median
with first and third quartiles as the box edges. Differences between group were estimated by Student’s t test. (B–E) The network of hub genes
(module genes within the top 25 genes with the highest intromodular connectivity values (kWithin)) (left panel) and top GO terms (right panel) of the
modules Turquoise (B), Grey60 (C), Cyan (D) and Black (E) are shown. In the network diagrams, node sizes correspond to kWithin in the module. For
the bars plot, the bars in the GO enrichment results represent the -log10(pvalue). (F) Scatterplots of module eigengenes show positive correlation
between Turquoise and Cyan, and negative correlation between Grey60, Cyan, Turquoise and Black, respectively.
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We next explored the relationship of eigengenes among the

annotated modules. Upregulated immune Turquoise module was

positively correlated with Cyan module related to fibrosis (r = 0.32,

p = 3.0 × 10-5) (Figure 4F), suggesting that Turquoise module related

to immune response that drives fibrosis in NASH, which confirmed

the results of previous studies (20). Interestingly, Cyan, Grey60 and

Turquoise modules was negatively correlated with Black module that

is enriched in amino acid metabolic processes (Figure 4F). The high

negatively correlation (r = -0.77, p = 2.0 × 10-33) between the

upregulated fibrosis module Cyan and downregulated Black

module that is enriched in metabolic processes (Figure 4F), which

indicated that perturbations in amino acid metabolism are likely

involved in NASH pathogenesis (39, 40).
Module preservation analysis indicates
the presence of NASH-associated
co-expression module function in
immune response

To find out whether the identified modules were common in

another dataset, we examined the module preservation statistics
Frontiers in Endocrinology 0732
between the MergeCohort and one recently published large NASH

datatset GSE135251 (13). In particular, we assumed co-expression

modules of MergeCohort as reference dataset and the co-expression

modules of GSE135251 as test dataset. We utilized the principle

described in (22). The score of Zsummary more than 10 represents

strongly preserved module, less than 2 denotes non-preserved

module while the value between 2 and 10 implies moderately

preserved module. We plotted the scatterplot of Zsummary scores

against the sizes of MergeCohort modules (Figure 5A). All modules

have a Zsummary statics greater than 2, suggesting that all modules

were preserved in GSE135251. The lowest preservation is the Red

module (Zsummary = 6.37). Particularly, MergeCohort module

Turquoise (MergeCohort_Turquoise) exhibited Zsummary

preservation score (Zsummary = 42.68) higher than 40. To

provide a more intuitive picture of the preservation of each co-

expression module identified, we evaluated module overlaps of

MergeCohort and GSE135251 (Figure 5B), we found that

MergeCohort_Turquoise show the most significantly overlapping

with GSE135251 module Turquoise (GSE135251_Turquoise).

Moreover, we discovered a highly positively correlation between

the intromodular connectivity of 289 genes overlapped in

MergeCohort_Turquoise and GSE135251_Turquoise (Spearman’s
TABLE 1 Top GO and pathway enrichment in each module.

Module Category Term P-value FDR

Black GOTERM_BP Cellular amino acid catabolic process 2.37 × 10-12 3.95 × 10-09

Blue GOTERM_BP Extracellular matrix organization 6.18 × 10-37 1.57 × 10-33

Brown GOTERM_BP Cellular amino acid catabolic process 5.27 × 10-09 1.06 × 10-05

Cyan GOTERM_BP Extracellular matrix organization 4.82 × 10-07 5.88 × 10-04

Grey60 GOTERM_BP Secondary alcohol biosynthetic process 2.39 × 10-32 1.54 × 10-29

Lightcyan GOTERM_BP T cell activation 4.17 × 10-13 3.44 × 10-10

Magenta GOTERM_BP DNA metabolic process 2.69 × 10-45 3.48 × 10-42

Midnightblue GOTERM_BP IRE1-mediated unfolded protein response 7.75 × 10-16 6.39 × 10-13

Purple GOTERM_BP Regulation of glycogen metabolic process 2.31 × 10-06 3.06 × 10-03

Tan GOTERM_BP Neutrophil degranulation 8.86 × 10-16 7.05 × 10-13

Turquoise GOTERM_BP Cytokine-mediated signaling pathway 3.47 × 10-39 8.55 × 10-36

Black KEGG_PATHWAY Metabolism of xenobiotics by cytochrome P450 2.94 × 10-05 3.85 × 10-03

Blue KEGG_PATHWAY ECM-receptor interaction 3.54 × 10-19 8.42 × 10-17

Brown KEGG_PATHWAY Glycine, serine and threonine metabolism 2.24 × 10-08 5.78 × 10-06

Cyan KEGG_PATHWAY Mitophagy 9.22 × 10-04 0.11

Grey60 KEGG_PATHWAY Steroid biosynthesis 1.01 × 10-14 8.99 × 10-13

Lightcyan KEGG_PATHWAY Primary immunodeficiency 1.14 × 10-17 1.39 × 10-15

Magenta KEGG_PATHWAY DNA replication 5.62 × 10-27 7.20 × 10-25

Midnightblue KEGG_PATHWAY Protein processing in endoplasmic reticulum 3.05 × 10-21 2.75 × 10-19

Purple KEGG_PATHWAY Axon guidance 1.62 × 10-04 3.11 × 10-02

Tan KEGG_PATHWAY Cytokine-cytokine receptor interaction 4.47 × 10-12 8.81 × 10-10

Turquoise KEGG_PATHWAY Osteoclast differentiation 2.48 × 10-18 6.45 × 10-16
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correlation = 0.62, p = 1.3 × 10-9) (Figures 6A, B), which indicated

those two modules have similar co-expression pattern.

To comprehensively evaluate the biological functions related to

MergeCohort_Turquoise and GSE135251_Turquoise, we next

calculated the statistical significance of enrichment of genes with

the association in disease-related gene sets from the DisGeNET

database (33) and KEGG pathway gene sets. We observed that genes

in MergeCohort_Turquoise and GSE135251_Turquoise were

significantly enriched by liver disease-related gene sets (liver

cirrhosis) and multiple immune disease-related gene sets

(autoimmune disease, immunosuppression and inflammatory
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bowel disease) (Figure 6C; Supplementary Tables S10, S11).

Interestingly, these two modules were also significantly enriched

in atherosclerosis and arteriosclerosis. Notably, we observed that

genes in MergeCohort_Turquoise, which shows the highest module

similarity with GSE135251_Turquoise (289 out of 734;

hypergeometric test p value = 5.33 × 10-168) (Figure 6A) are both

significant enriched in phagosome, osteoclast differentiation, cell

adhesion molecules, antigen processing and presentation, B cell

receptor signaling pathway (Figure 6D). In addition, the

MergeCohort_Turquoise was upregulated in NASH and is also

the third most significant module, and showed the greater number
BA

FIGURE 5

Module preservation of MergeCohort in GSE135251 dataset. (A) Preservation Zsummary statistics of MergeCohort in GSE135251 dataset. Each point
represents a module. Point color reflects the module color as used in Figures 3B–E of MergeCohort. Points are also labeled by the name of the
module. The dashed blue and red lines indicate the rough thresholds for week (Z = 2) and strong (Z = 10) evidence of module preservation. (B)
Overlaps of MergeCohort and GSE135251 modules. Each axis is labelled by the corresponding module name. The size of each dot represents the
number of overlapping genes in the intersection of corresponding MergeCohort and GSE135251 modules while the color implies -log10 of the
hypergeometric enrichment p value.
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FIGURE 6

Functional enrichment of MergeCohort_Turquoise and GSE135251_Turquoise module. (A) Venn diagram displays number of genes overlapped
between MergeCohort_Turquoise and GSE135251_Turquoise module. (B) Spearman’s correlation between the kWithin of common genes (n = 289)
overlapped between each module. Top 25 hub genes with the highest kWithin from MergeCohort_Turquoise module are shown. (C) Dot-plot
heatmap shows top 20 significantly enriched disease by genes in each module. The size of each dot represent the gene counts enriched in each
disease term. (D) Dot-plot heatmap shows top 20 significantly enriched KEGG pathways by genes in each module. The size of each dot represents
the -log10 of p value for each KEGG pathway term.
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of statistically differential expressed genes, with 233 of the 734 genes

being upregulated (fold change > 1.2; p < 0.05) and none

significantly downregulated (Figure 3D). Considering all these

results, we will choose the co-expression Turquoise module from

MergeCohort for further analysis.
Validation of hub genes in
Turquoise module

Hub genes were upregulated in the liver from NASH patients.

Focusing on the MergeCohort_Turquoise module, we firstly

explored the top 25 hub genes including CD53, LCP1, LAPTM5,

NCKAP1L, C3AR1, PLEK, FCER1G, HLA-DRA and SRGN that had

a high intramodular connectivity (K.in). The expression level of

those core genes were all upregulated in four cohorts (GSE130970,

GSE48452, GSE61260 and GSE63067) involved in this study

Figure 7A, suggesting that these hub genes may play fundamental

role in NASH development. The PPI network of these 25 hub genes

was showed in Figure 7B.

Hub genes were positively correlated with clinical characteristics.

We further investigated the relationship between the changes in
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expression of these 25 hub genes and the histological phenotype in

GSE130970 (Figure 7C). Our results demonstrated that each of the 25

key genes were positively correlated with the NAFLD activity score,

and FPR3 has the highest correlation (r = 0.53, p = 1.49 × 10-4). LCP1

gene was the most associated gene with steatosis grade (r = 0.46, p =

1.16 × 10-3) and the lobular inflammation grade (r = 0.32, p = 3.06 ×

10-2). Moreover, FPR3 associated most with the cytological

ballooning grade (r = 0.53, p = 1.82 × 10-4). SRGN was the most

relevant gene with the fibrosis stage (r = 0.35, p = 1.84 × 10-2).

Additionally, C3AR1 showed significant correlation with all the

clinical parameters, especially higher correlation with the

cytological ballooning grade (r = 0.51, p = 2.94 × 10-4).

Hub genes were upregulated in the liver from the choline

deficient L-amino acid defined high fat diet (CDAHFD) model of

NASH in mouse. Furthermore, to explore the significance of the

hub genes in mouse, we mined public available microarray data

(GSE120977) (41) to validate the mRNA levels of the

abovementioned genes, except Hla-dra, Clic2 and Fpr3 gene

which was lacking in the dataset. Intriguingly, several of the hub

genes displayed either a significant or a trending higher expression

in mouse individuals fed with CDAHFD diets at 12 weeks

compared with the controls. For instance, 14 genes, namely Cd53,
B
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FIGURE 7

Validation of hub genes in MergeCohort_Turquoise module. (A) Heatmap shows the expression patterns of top 25 hub genes in human liver tissues
according to four datasets (GSE130970, GSE48452, GSE61260 and GSE63067). The numbers in heatmap represent log2 value of fold change
between NASH patients and healthy controls. (B) The protein-protein interactions among top 25 hub genes were retrieved by the STRING database.
(C) Heatmap shows the Person correlation coefficients of top 25 hub genes and clinical parameters of NAFLD according to GSE130970 dataset. p
values are overlaid on the heatmap (**p < 0.01 and ***p < 0.001). (D) Heatmap shows the expression patterns of top 25 hub genes in mouse liver
tissue according to GSE120977 dataset. The numbers in heatmap represent log2 value of fold change between the CDAHFD and chow diet control
group. CDAHFD, choline deficient L-amino acid defined high fat diet.
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Laptm5, Nckap1l, C3ar1, Hck, Mpeg1, Cybb, Iqgap1, Dock2, Plek,

Fcer1g, Igsf6, Ptprc and Havcr2, which were strongly upregulated in

mouse fed with CDAHFD chow (Figure 7D), supporting the notion

that these hub genes were also activated during progression of

mouse NASH model.
Identification of cell clusters contributions
to the NASH-associated Turquoise module
integrating single-cell RNA-seq analysis

To investigate how potential hub genes identified in

MergeCohort_Turquoise module change within specific cell

populations during NASH progression, we carried out an

integrated scRNA-seq analysis using publicly available scRNA-seq

data from healthy and cirrhotic liver samples. Clustering revealed 17

populations of cells comprising 10 distinct cell types (Figures 8A, B;

Supplementary Figure S2). We identified Endothelial cells,

macrophages, cholangiocytes, NK cells, T cells, mesenchyme,

dendritic cells, B cells, fibroblasts, and hepatocytes within the

scRNA-seq data based on the expression of lineage specific markers

as annotated with integration of discoveries from human liver cell

atlas and the annotation analysis with SingleR. The expression

patterns of the top 25 genes in the MergeCohort_Turquoise

module were analyzed by scRNA-seq analyses of liver tissues.

Those key genes in MergeCohort_Turquoise module including
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CD53, LCP1, LAPTM5, PTPRC and SRGN expressed by distinct

immune cells such as microphages, NK cells, T cells, dendritic cells

and B cells, and most of them, namely FGL2, HCK, MPEG1, CYBB,

CSF1R, IGSF6, CPVL and HLA-DRA were mainly expressed by

macrophages, dendritic cells (Figure 8C; Supplementary Figure S3),

which indicated that the macrophages and dendritic cells play an

important role in the pathogenesis of NASH.
Identification of TFs that regulate the
Turquoise modules

The results of the analysis above showed that hub genes in

MergeCohort_Turquoise module were enriched in immunity.

Because co-expressed genes tend to be co-regulated by the

common transcription factors (TFs), we further conducted TFs

enrichment analysis (hypergeometric test) using the genes from the

MergeCohort_Turquoise and GSE135251_Turquoise modules to

obtain key regulatory genes, based on TRRUST database

(34). Our results indicated that NFKB1, SPI1, RELA, CIITA,

HIVEP2, SP1, RFXANK, RFXAP, RFX5, IRF1 are the top 10

most significantly enriched TFs in MergeCohort_Turquoise module

(Figure 9A). Moreover, we adopted ChEA3 database (35)

to validate the significantly enriched transcription factors

over MergeCohort_Turquoise module genes. As a result,

ChEA3 analysis identified 27 of the 33 significant TFs for
B
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FIGURE 8

Assessment of the expression patterns of hub genes in MergeCohort_Turquoise module in different types of cells using publicly available healthy and
cirrhotic scRNA-seq from dataset GSE136103. (A) UMAP visualization of different cell clusters from healthy (n = 2) and cirrhotic (n = 2) human livers.
(B) UMAP visualization of cell types from healthy (n = 2) and cirrhotic (n = 2) human livers. Cells were annotated as endothelial cells, macrophages,
cholangiocytes, NK cells, T cells, mesenchyme, dendritic cells, B cells, fibroblasts, and hepatocytes based on the expression of lineage markers. (C)
Dot plot shows the expression patterns of top 25 hub genes in different types of liver cells. Size of the dot indicates proportion of the cell population
that expresses each gene. Color represents level of expression. UMAP, uniform manifold approximation and projection.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1115890
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1115890
MergeCohort_Turquoise module genes with TRRUST database, the

other six TFs were part of their targets (Table S12). We also found

that NFKB1, SPI1, RELA, CIITA, SP1, RFXANK, RFXAP, RFX5,

TRERF1, ELF1, STAT3, ERG, ETS1, ILF3, CEBPA, HDAC1 and IRF8

are significantly enriched TFs in both MergeCohort_Turquoise and

GSE135251_Turquoise module (Figure 9A). Furthermore, we

observed significantly increased of hepatic expression of RFX5,

ILF3, NFKB1, STAT3, ELF1, SPI1, ETS1 and CEBPA in NAFL and

NASH compared to the control group (p < 0.05) (Figure 9B).

Next, the regulatory networks were constructed for the enriched

TFs and associated target genes in each of the modules (Figures 9C,

D). We observed that RFX5 and ILF3, an important transcriptional

factor mainly expressed in the liver, upregulated from mild to

advanced NASH, regulates the expression of genes involved in

antigen processing and presentation of exogenous peptide antigen

via MHC class II, including HLA-DQB2, HLA-DOA, HLA-DMA,

HLA-DQA1, HLA-DMB, HLA-DPB1, HLA-DPA1 and HLA-DRA.

Notably, the gene expression of RFX5 and ILF3 positively correlated

with MHCII gene expression (Figure 9E). We found 41 genes are

regulated by the NFKB1 transcription factor. As known, NFKB1

regulates the expression of genes associated with cytokine-mediated
36
signaling pathway (e.g., TNF, CXCL10, MMP9 and TGFB1) and

immune response (e.g., CD74, CD58, CD80 and CD86) (Figure 9C).

Moreover, STAT3 regulates the expression of gene in Wound

healing involved in inflammatory response, including HMOX1,

TIMP1, TGFB1 and F2R. Interestingly, SPI1 regulated gene

involved in immune effector process (e.g., CTSG, CD68, IFIT3

and IL18) including hub genes (CYBB and HCK) in

MergeCohort_Turquoise module. SP1 regulated gene involved in

cell activation (e.g., TIMP1, LTF, FGL2 and LYZ).

For further analysis the expression of the hub genes and key TFs

in vitro models of NASH, we retrieved public available RNA-seq

data (the RNA-seq data of L02 hepatocytes (PRJNA726826) and

murine primary hepatocytes (PRJNA726846) treated with palmitic

acid and oleic acid (PAOA) for 0h, 12h and 24h, respectively (42)),

we found hub genes (CD53 and SRGN) and key TFs (NFKB1, ELF1

and EST1) displayed higher expression in L02 hepatocytes treated

with PAOA (Figure S4A). Moreover, we observed that hub genes

(Lcp1 and Fcer1g) and key TFs (Ilf3, stat3 and Est1) showed

increased expression in murine primary hepatocytes with PAOA

treatment (Figure S4B). Together, these TFs and target genes

identified in our study provide a promising list for investigators
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FIGURE 9

Regulatory relationship between enriched transcription factors and their target genes in NASH-associated module. (A) Dot-plot heatmap shows
enriched transcription factors in MergeCohort_Turquoise and GSE135251_Turquoise module. The size of each dot represents the -log10 of adjusted
p value for each transcription factor. (B) Boxplots shows mRNA hepatic expression of the enriched transcription factors including RFX5, ILF3, NFKB1,
STAT3, ELF1, SPI1, ETS1 and CEBPA according to GSE135251 dataset. The p value was calculated by Student’s t test. (C, D) The regulatory networks
between enriched transcription factors and associated target genes in MergeCohort_Turquoise (C) and GSE135251_Turquoise module (D),
respectively. Red color represents transcription factors, blue color represents target hub genes, grey color represents other target genes. (E) Pearson
correlations for mRNA hepatic expression of transcription factors (RFX5 and ILF3) and associated target genes (HLA-DQB2, HLA-DOA, HLA-DMA,
HLA-DQA1, HLA-DMB, HLA-DPB1, HLA-DPA1 and HLA-DRA) in GSE135251 dataset. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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or companies interested in conducting preclinical study into the

mechanisms of and treatments for NASH both in vitro and in vivo.
Discussion

The global epidemic of NASH is a serious public health

problem, the pathogenesis of NASH still remains unclear.

Moreover, although liver biopsy currently remains the reference

standard for diagnosis of NASH, it is an intrusive operation with

risks and many shortcomings. Thus, identifying novel non-invasive

biomarkers in NASH is of paramount importance in the prevention

and therapy of this disease.

Thanks to the rapid development of high-throughput

sequencing technology and gene chip technology, more and more

researchers are actively pursuing molecular markers using data

mining and analysis of sequencing data or gene chips to the

diagnosis and treatment of disease (19, 43, 44). In our study, we

analyzed gene expression profiles of NASH patients and normal

controls from five independent GEO data sets. The batch of various

platforms or batches is removed. DEGs were identified between

normal liver tissues and NASH tissues, based on 831 DEGs between

Normal-NASH group, we performed GO and Reactome pathway

analysis to explore underlying mechanism of NASH. The results

showed that enriched pathways were involved in metabolism

pathways, inflammatory response and immune response,

extracellular matrix organization (Figures 2C, D), conforming

their association with NASH development and progression.

Subsequently, we constructed a co-expression network and

identified 17 different modules by WGCNA, among which 11

modules were significantly associated with the status of NASH.

DEG numbers showed a significant enrichment in seven important

modules (Figure 3D). The results of this study indicated that the

identified modules are biologically rational, majority of which are

enriched for specific GO terms and KEGG pathways, sharing some

commonality with the existing literature. For example, module

Black and Brown, are markedly negative correlated with NASH

status. Both the Black and Brown were most significantly enriched

in cellular amino acid catabolic process. Recent studies showed that

deregulation in amino acid metabolism seem to be involved in the

appearance of NASH (39, 45). In addition, previous research has

demonstrated that lipid metabolism significantly altered during

NASH progression (46). Our data found Grey60 module that was

significantly upregulated in NASH, enriched in the lipid

metabolism pathways, encompassing hub genes related to

cholesterol metabolism (FDFT1, NSDHL, IDI1, SQLE, MVD,

HMGCS1, HMGCR and LSS) as well as fatty acid metabolism

(FASN, ELOVL6, FADS1, FADS2, ACACA, ELOVL6, PKLR and

THRSP) (Figure 4C). Similarly, previous biological network analysis

identified cholesterol synthesis genes in human NAFLD (e.g.,

FDFT1, NSDHL, IDI1, SQLE, MVD, HMGCS1 and HMGCR) and

fatty acid metabolism genes (e.g., Fasn, Thrsp and Pklr) in NAFLD

mouse model that were also reported to be deregulated by (47) and

(18), respectively. Thus, despite the differences in study design, the

three studies coverage on a number of key biological findings.
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Inflammation is an important factor driving NASH

progression. Our current systematic transcriptomic analysis also

highlighted the importance of the Turquoise module in modulating

NASH occurrence and development. This study found that the

immune-related pathways were mostly enriched in the Turquoise

module, which contained the highest number of differentially

deregulated genes (Figure 3D). Moreover, we demonstrated the

highest preservation of the Turquoise module between

the MergeCohort and validation dataset GSE135251 (Figure 5A).

The top hub genes overexpression in NASH samples and linking

immune-related pathways belonged to CD53, LCP1, LAPTM5,

NCKAP1L, C3AR1, FGL2, PLEK, HLA-DRA, FPR3 and SRGN,

which also showed positive correlation with histological grade

(Figure 7C). Further validation by mouse NASH model, the

expression of CD53, LCP1, LAPTM5, NCKAP1L, C3AR1, FGL2,

PLEK and SRGN were significantly upregulated (Figure 7D). The

role of CD53, C3AR1, NCKAP1L and FGL2 genes in regulation of

immune responses has recently been proposed in previous studies.

CD53 is a member of the tetraspanin membrane protein family that

may be involved in transmembrane signal transduction (48). CD53

has been reported to associate with liver inflammation and insulin

sensitivity (49). LAPTM5 is a transmembrane protein which is

preferentially expressed in immune cells, and it acts as a positive

regulator of proinflammatory signaling pathways in macrophages

(50). Previous study revealed that LAPTM5 could interact with

CDC42, and promote its degradation, then suppressed the

activation of MAPK signaling pathway, hence ameliorated NASH

in mouse (51). Besides, LAPTM5 has been shown to be significantly

upregulated in HCC tissues compared to normal liver tissues, and

Pan et al. reported that LAPTM5 could remarkably accelerate

autophagic flux by promoting fusion of lysosomes with

autophagosomes to drive lenvatinib resistance in HCC (52).

Moreover, C3AR1 is a G protein-coupled receptor (GPCR)

protein, which participates in the complement system and can

stimulate the production of IL-1b and TGFb (53). Interestingly,

Han et al. found that C3ar1 knockout mice showed drastically less

severe fibrosing steatohepatitis, concomitantly with reduced hepatic

stellate cells (HSCs) activation when compared with the wildtype

littermates (54). In addition, the mRNA level of LCP1 in liver tissue

of NAFLD patients was strongly increased (300%) compare to the

control group in a previous GWAS study (55), and Miller et al. used

proteomic method to describe the proteome of NAFLD and

observed that LCP1 performed well in distinguishing the disease

state from control group, NAFL from NASH and fibrosis grading

(56). Notably, our study also found that the Turquoise module

including hub gene HLA-DRA, displayed higher expression in

NASH, which associated with NAFLD loci found by GWAS, and

genetic variants of HLA−DRA has been recently reported to affect

hepatitis development in a Korean population (57). Additionally, it

has been shown that SRGN, CD53, NCKAP1L, LCP1, EVI2B,

MPEG1 and TYROBP may be potential pathological target gene

for NAFLD and NASH, which is highly similar to our Turquoise

module (58).

It should be noted that NASH is regarded as an inflammatory

subtype of NAFLD with steatosis and evidence of hepatocyte injury

and interactions between multiple immune cells. Increasing
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evidence has demonstrated the high heterogeneity and plasticity of

macrophage populations in human liver (59). For example,

Ramachandran et al. adopted scRNA-seq approach to discover a

disease-associated TREM2+/CD9+ macrophage population that

was remarkably expanded in human cirrhotic livers. Therapeutic

inhibition of CCR2+ bone marrow-derived macrophages has been

reported to alleviate inflammation and fibrosis in mouse NASH and

fibrosis in human disease (36, 60). Similarly, our integrated scRNA-

seq analysis revealed that the hub genes in the Turquoise module

were mainly enriched in macrophage and dendritic cells,

conforming the importance of which during NASH progression.

For instance, our study found that expression of FGL2 was elevated

in macrophages and dendritic cells (Figure 8C). A recent study

demonstrated that Fgl2 expression in the livers of both humans and

mice with NASH was significantly increased along with the

accumulation of hepatic macrophages (61). Moreover, we found

that the expression of CSF1R gene, a marker for pan-macrophages

reported to be involved in hepatic fibrosis, was also considered as a

potential marker for hepatocarcinogenesis (62). By analyzing the

association between LCP1 and immune cells, Zhang et al. found

LCP1 was significantly positively related to memory B cells as well

as M1 macrophages (58). Our study also observed that hub gene

HLA-DRA was higher expressed in both macrophages and dendritic

cells (Figure 8C). Intriguingly, previous reports examining human

NASH livers using single-cell RNA sequencing reported that M-

Mac-1 included three genes, HLA-DRA, HLA-DQA2 and HLA-

DQB2 (63), which was related to NAFLD loci (57, 64, 65). Further,

recent study reported that cDC-related gene expression signatures

in human livers were associated with NASH pathology (66). These

findings emphasized the importance of further studies of the

subpopulations of inflammatory macrophages and dendritic cells

in NASH progression. However, more single-cell transcriptome

data focusing on NASH progression among NASH patients are

needed in future studies.

Several studies involving transcription factors have indicated

therapeutic effects in NASH (67, 68), for example, transcription

factors including PPARs, LXR and FXR are mainly known for their

roles in altering lipid metabolism in NAFLD/NASH development.

Agonists of PPARs and FXR have been investigated extensively in

mouse models (69, 70), clinical trials presently are ongoing to test

the effects of these drugs for potential NASH treatments. In

addition, PPARs, LXR and FXR not only regulate lipid

metabolism but also exert anti-inflammatory functions via direct

and indirect mechanisms as shown by the suppression of several

proinflammatory genes (71–74). Therefore, the detection of an

immune-related transcription factor seems to be essential for the

identification of novel therapeutic targets in NAFLD/NASH. In

present study, we observed that the immune-related module

enriched TFs including NFKB1, STAT3, RFX5, ILF3, ELF1, SPI1,

ETS1 and CEBPA, the expression of which enhanced with NASH

progression (Figure 9B). Among the TFs, NFKB1, STAT3, SPI1,

ETS1, CEBPA and ELF1 have been reported to be linked to NAFLD/

NASH by literature searching.

NF-kB is a protein complex that plays a central role in

regulating the expression of cytokines and chemokines, and

recent studies suggest that NF-kB is highly activated both in mice
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and patients with NASH (75, 76). NFKB1 (p105/p50), a member of

NF-kB family, emerging evidence suggests that NF-kB1-gene-
coded proteins p105 and p50 have critical regulatory activities of

inflammatory responses (77, 78). Previous study have showed that

Nfkb1-deficient mice enhanced NASH progression to fibrosis by

favouring NKT cell recruitment (79). In addition, Jurk et al.

reported that loss of Nfkb1 in mouse promoted ageing-related

chronic liver disease, featured by steatosis, hepatitis, fibrosis and

HCC (80), which point to the possible relevance of polymorphisms

in human NFKB1 gene as a risk factor for the progression of

inflammatory disease (81).

STAT family members with inflammatory biological functions

notably STAT1 and STAT3 have been linked to NAFLD and NASH.

Grohmann and colleagues demonstrated that the oxidative hepatic

environment in obesity restrained the STAT1 and STAT3

phosphatase TCPTP, which led to potentiate STAT1 and STAT3

signaling, and further increase the risk of developing NASH and

HCC in the setting of nutritional excess (82). On the other hand, the

suppression of TCPTP, coupled with heightened STAT1 and STAT3

signaling, were easily detectable events in the livers of patients with

NASH (82). Moreover, a recently study revealed that dampening

IL6/STAT3 activity alleviated the I148M-mediated susceptibility to

NAFLD, while boosting it in wild-type liver cultures enhanced the

development of NAFLD (83). Additionally, downregulation of

STAT3 expression can activate autophagy and inhibit the

inflammatory response of NASH (84, 85). Interestingly, other

transcription factor such as SPI1, ETS1 and CEBPA have been

described to be a promising target for NASH prevention and

treatment. Liu et al. applied proteomics strategy to identify SPI1

as critical TF, SPI1 expression was positively related to resistance

indicator HOMA-IR and the inflammatory marker TNFA in

human liver biopsies, and inhibition of SPI1 ameliorated

metabolic dysfunction and NASH (86). It has been proven that

Ets1 acted as a positive regulator of TGF-b1 signaling, which

accelerated the development of NASH in mice (87). Notably,

Vujkovic et al. recently presented a GWAS study and identified

77 genome-wide loci significantly associated with NAFLD

(diagnosed using elevated ALT as a proxy for NAFLD), of

interest is that for nine SNPs, the cATL risk allele was associated

with lower BMI including CEBPA (65).

There are few studies of RFX5, ELF1 and ILF3 that have been

reported at present in the field of NAFLD and NASH. RFX5, a

classical transcription regulator of MHCII gene expression in the

immune system. It has been previously shown that RFX5 displayed

higher transcriptional activity in both human NASH and mouse

model of NASH (68). Interestingly, RFX5 mRNA has previously

been shown overexpressed in HCC compared with non-tumor

tissue, which promoted HCC progression via transcriptionally

activating KDM4A, TPP1 and YWHAQ (88–90). Moreover, our

results also showed that RFX5 are the prominent regulators of

expression of HLA class II genes in the immune-related module.

Interestingly, RFX5 was recently reported to enhance surface

expression of HLA-DR molecules, which promoted tissue

macrophages-dependent expansion of antigen-specific T cells in

rheumatoid arthritis (91). In addition, ELF1 regulated hub gene

CYBB in MergeCohort_Turquoise module, the mechanism of TAZ-
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induced Cybb leading to liver tumor formation in NASH has been

well defined (92).

ILF3, also known as NF90/NF110, encodes a double-stranded

RNA (dsRNA)-binding protein which can regulate gene expression

and stabilize mRNA (93, 94). Recent studies have reported insights

into the possible physiological roles of ILF3 in dyslipidemia, the

cardiovascular system, neurodegenerative disorder as well as in

tumorigenesis and progression of different cancers. Zhang et al.

demonstrated that ILF3 together with another eight transcription

regulators control late-onset Alzheimer’s disease (LOAD) risk genes

HLA-DRB1 and HLA-DQA1 expression in human microglial cells

(95). Moreover, there is evidence that ILF3 could have an important

role in inflammatory pathophysiology in vivo, Nazitto et al. identified

ILF3 as negative regulator of innate immune response and dendritic

cell (DC) maturation, and found that knockdown of ILF3 led to

significantly elevated expression of genes (CD86, CD80 andHLA-DR)

associated with DC maturation in the primary human monocyte-

derived DCs during stimulation with viral mimetics or classic innate

agonists (96). In addition, previous studies have revealed the essential

roles of deregulated lncRNA ILF3 divergent transcript (ILF3-AS1) in

HCC, Bo et al. found that ILF3-AS1 expression was significantly

increased in HCC tissues and also associated with prognosis of HCC

patients, and knockdown of ILF3-AS1 expression suppressed HCC

cell proliferation, migration and invasion (97). Yan et al. also

observed that ILF3-AS1 silencing inhibited the hepatocellular

carcinoma tumor growth (98). However, the regulation roles of

RFX5 and ILF3 on HLA-DR molecules in the progression of NASH

have also not been well defined. Therefore, our results provide a very

meaningful direction for future research.

In summary, unlike previous studies with limitation of a few

human NASH transcriptome data or focusing on individual genes

influencing NASH progression, our network-driven strategy

generated a comprehensive and unbiased view of the modules,

hub genes and critical transcriptional factors associated with NASH.

In particular, the Turquoise module and regulators involving

immune-related pathways especially transcription factor RFX5

coordinating antigen processing and presenting function in

NASH progression deserve further attention. The main limitation

of present study is that all conclusions are based on transcriptomic

data from human and lack verification from relevant experiments in

vitro/in vivo disease models. Nevertheless, it provides useful and

novel molecular candidates in dysregulated pathways for NASH

prognosis and therapeutic targets.
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two components. (A) PCA plot without batch effect elimination. (B) PCA plot

with batch effect elimination with ComBat algorithm. PC1, first principal
component; PC2, second principal component.

SUPPLEMENTARY FIGURE 2

Integrated scRNA-seq analysis. (A) Significant principal components (PCs)
were determined via the JackStraw function in Seurat R-packages. PCs 1-17

were used for graph-based clustering (resolution = 0.4) to identify distinct

clusters. (B) UMAP visualization of scRNA-seq data from four healthy (n = 2)
and cirrhotic (n = 2) human livers annotated by liver sample. (C) UMAP

visualization of cirrhotic and healthy control groups annotated by liver
disease status. UMAP, uniform manifold approximation and projection.
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levels of those hub genes are expressed by the color transition from red
to grey.

SUPPLEMENTARY FIGURE 4

Assessment of the expression patterns of hub genes and key TFs in

MergeCohort_Turquoise module in vitro models of NASH using publicly
available RNA-seq data of L02 hepatocytes (PRJNA726826) and murine

primary hepatocytes (PRJNA726846) treated with palmitic acid and oleic
acid (PAOA) for 0h, 12h and 24h, respectively. Heatmap shows the expression

patterns of hub genes and key TFs in in L02 hepatocytes (A) and mouse

primary hepatocytes (B) with PAOA treatment for 12 h and 24 h (1 technical
replicate of 3 biological replicates for each group).
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Reactome pathways analysis of DEGs between HC and NASH.
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Introduction: MiR-196a2 and miR-27a play a key role in the regulation of the

insulin signaling pathway. Previous studies have indicated that miR-27a rs895819

and miR-196a2 rs11614913 have a strong association with type 2 diabetes

(T2DM), but very few studies have investigated their role in gestational diabetes

mellitus (GDM).

Methods: A total of 500 GDM patients and 502 control subjects were enrolled in

this study. Using the SNPscan™ genotyping assay, rs11614913 and rs895819 were

genotyped. In the data treatment process, the independent sample t test, logistic

regression and chi-square test were used to evaluate the differences in

genotype, allele, and haplotype distributions and their associations with GDM

risk. One-way ANOVA was conducted to determine the differences in genotype

and blood glucose level.

Results: There were obvious differences in prepregnancy body mass index (pre-

BMI), age, systolic blood pressure (SBP), diastolic blood pressure (DBP) and parity

between GDM and healthy subjects (P < 0.05). After adjusting for the above

factors, the miR-27a rs895819 C allele was still associated with an increased risk

of GDM (C vs. T: OR=1.245; 95% CI: 1.011-1.533; P = 0.039) and the TT-CC
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genotype of rs11614913-rs895819 was related to an increased GDM risk

(OR=3.989; 95% CI: 1.309-12.16; P = 0.015). In addition, the haplotype T-C

had a positive interaction with GDM (OR=1.376; 95% CI: 1.075-1.790; P=0.018),

especially in the 18.5 ≤ pre-BMI < 24 group (OR=1.403; 95% CI: 1.026-1.921;

P=0.034). Moreover, the blood glucose level of the rs895819 CC genotype was

significantly higher than that of the TT and TC genotypes (P < 0.05). The TT-CC

genotype of rs11614913-rs895819 showed that the blood glucose level was

significantly higher than that of the other genotypes.

Discussion: Our findings suggest that miR-27a rs895819 is associated with

increased GDM susceptibility and higher blood glucose levels.
KEYWORDS

gestational diabetes mellitus (GDM), miR-196a2, miR-27a, rs11614913, rs895819, case-
control study
1 Introduction

Gestational diabetes (GDM) is a common disease in pregnancy

that is determined by the first diagnosis of hyperglycemia (1). GDM

is harmful to the health of pregnant women and fetuses to a certain

extent. For pregnant women, it may increase the incidence of

complications, such as pregnancy hypertension, cardiovascular

disease and glucose metabolism inhibition (2). For the fetus, there

is a risk of premature birth and neonatal hypoglycemia (3).

Therefore, to prevent and treat the occurrence of GDM, it is

necessary to explore its pathogenesis and risk factors. The

pathogenesis of GDM may include impaired insulin secretion and

insulin resistance (2). Dietary, environmental and genetic factors

contribute to GDM development (4), among which single

nucleotide polymorphisms (SNPs) are an important genetic

variation factor (5).

MicroRNAs (miRNAs) play a key regulatory role in the

metabolic signaling pathway during pregnancy (6), which may

influence islet b-cell differentiation and islet development (7). A

growing number of studies have shown that SNPs in miRNAs have

an impact on their maturation, expression and function. The

dysregulation of miRNA expression is associated with cancer,

diabetes and cardiovascular disease development (8, 9). It has

been reported that miR-196a2 and miR-27a are involved in the

regulation of the insulin signaling pathway and have a strong

correlation with diabetes mellitus (DM) (10–20). There have been

many previous studies on the association of miR-196a2 rs11614913

and miR-27a rs895819 polymorphisms with type 2 diabetes

(T2DM) (21–29), but very few studies have investigated the

association of these miRNAs with GDM (20).

The Oral Glucose Tolerance Test (OGTT) is currently regarded

as the gold standard for diagnosing GDM (30), yet it is a

cumbersome process, requiring fasting and multiple blood draws,

and is associated with nausea and vomiting, resulting in reduced

patient compliance. Additionally, the OGTT is performed between

24-28 weeks of gestation, providing a limited timeframe to
0244
implement interventions to improve pregnancy outcomes.

Therefore, it is essential to find ways to increase patient

compliance and facilitate early detection. In recent years, SNPs

have been explored as potential molecular biomarkers for GDM

screening (31). While the correlation between miR-27a rs895819,

miR-196a2 rs11614913 and gestational diabetes has been less

studied, the identification of sensitive and specific biomarkers

through the detection of these SNPs may offer potential for GDM

risk prediction and intervention strategies.

Therefore, this study evaluated the association between the

single SNPs rs11614913 and rs895819, SNP-SNP and GDM risk

and further explored the correlation between genotype and blood

glucose level. We conducted a Chinese case-control study to assess

whether miR-196a2 rs11614913 and miR-27a rs895819 are

associated with GDM risk. Further meta-analysis was performed

to estimate the relationships between rs11614913 and rs895819

and DM.
2 Materials and methods

2.1 Study subjects

This study protocol was approved by the Ethics Committee of

Shunde Women and Children’s Hospital of Guangdong Medical

University, and subjects for this study were selected through the

following criteria: (i) voluntary informed consent; (ii) never

diagnosed with diabetes; (iii) Han ethnicity; (iv) age not less than

18 years; (v) no pregnancy complications; and (vi) no glucose-

lowering medication. A total of 1002 pregnant Chinese Han women

were recruited, including 500 in the GDM group and 502 in the

control group. Based on the GDM diagnostic criteria of the

International Association of Diabetes and Pregnancy Study

Groups (IADPSG), during 24-28 weeks of pregnancy, pregnant

women took 75 g glucose for the glucose tolerance test (OGTT), and

subjects with at least one glucose level measurement equal to or
frontiersin.org
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above the threshold value (fasting blood glucose level, FBP ≥ 5.1

mmol/L, 1 hour blood glucose level, 1 h-PG ≥ 10.0 mmol/L or 2

hour blood glucose level, 2 h-PG ≥ 8.5 mmol/L) were diagnosed

with GDM, while subjects with normoglycemic levels were deemed

healthy controls. This study was performed based on the principles

of the Declaration of Helsinki.
2.2 Data collection

General clinical information, such as age, ethnicity, height,

systolic blood pressure (SBP), diastolic blood pressure (DBP),

prepregnancy weight, and parity (primipara or multipara) were

gathered. The prepregnancy body mass index (pre-BMI, Kg/m2)

was calculated as prepregnancy weight (Kg) divided by the square of

the height (m2). According to BMI, the obesity criteria of Chinese

people were divided into the following groups: obesity (≥28 Kg/m2),

overweight (24 Kg/m2 ≤ BMI <28 Kg/m2), normal (18.5 Kg/m2 ≤

BMI <24 Kg/m2), and underweight (<18.5Kg/m2).
2.3 SNP genotyping

The QIAamp DNA blood kit (Qiagen, Germany) was used to

extract genomic DNA. Genotypes of individual SNPs were detected

using the SNPscan method, and the raw data were collected on an

ABI3730XL sequencer and analyzed with GeneMapper 4.1 software

(Applied Biosystems, USA) (Genesky Technologies Inc., Shanghai,

China). The accuracy of genotyping results was ensured by further

quality control.
2.4 Statistical analyses

All statistical analyses were performed using SPSS 20.0 software

(SPSS, Chicago, IL, USA). Independent sample t test was used for

comparison of continuous variables (mean ± standard deviation);

discontinuous variables, including Hardy-Weinberg equilibrium

(HWE) in the control group, were compared using chi-square

tests. After adjusting for potential confounders (including age,

pre-BMI, blood pressure, and parity), the association of SNP,

SNP-SNP and risk of GDM was assessed by dominance ratio

(OR) and 95% confidence interval (CI) using binary logistic

regression analysis. One-way ANOVA was used to analyze the

correlation between SNP, SNP-SNP and blood glucose levels. The

least significant difference (LSD) method was used for multiple

comparisons. Bilateral P < 0.05 was statistically significant.
2.5 Bioinformatics analyses

Utilized the UCSC database (http://genome.ucsc.edu/) to locate

SNPs with a minimum allele frequency of one percent or higher.

The effect of variation on RNA folding and the stability of mRNA

secondary structure was analyzed using RNAfold Web Servers

(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). In
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addition, the miRWalk (http://mirwalk.umm.uni-heidelberg.de/)

online tool was used to predict the GDM-related genes that were

coregulated by miR-196a2 and miR-27a.
2.6 Meta-analysis

Different combinations of the terms rs11614913, rs895819,

gestational diabetes mellitus, GDM, type 2 diabetes mellitus,

T2DM and type 1 diabetes mellitus, T1DM were used to

comprehensively search the literature through the PubMed,

Chinese National Knowledge Infrastructure and Google Scholar

databases with no limitations. The inclusion criteria were case-

control or cohort studies that assessed the association of rs11614913

and rs895819 with GDM/T2DM/T1DM with sufficient raw data.

Studies that did not meet the diagnostic criteria and studies with

data that were not in HWE were excluded. Two authors supervised

each other to extract the basic data in the article. The overall and

subgroup meta-analysis of five genetic models used the fixed or

random effects model according to the level of heterogeneity (32).

Publication bias was determined using Egger’s and Begg’s tests. All

meta-analyses were performed using STATA v.16.0 software (Stata

Corporation, TX, USA).
3 Results

3.1 General clinical characteristics of the
subjects

This case-control study included 500 GDM and 502 healthy

controls for whom the genotypes of miR-27a rs895819 and miR-

196a2 rs11614913 were detected. Clinical baseline information is

listed in Table 1. The mean age, pre-BMI, SBP, DBP, and blood

glucose levels were significantly higher in the GDM group than in

the control group (P < 0.05). Moreover, the parity of the GDM

group was significantly different from that of the control group

(P < 0.05).
3.2 The association of rs11614913 and
rs895819 with GDM risk

3.2.1 Overall analysis results
Table 2 shows the results of Hardy-Weinberg equilibrium

(HWE) analysis and minor allele frequencies (MAF) for the 2

SNPs in the control group. The results were consistent with HWE

(P > 0.05). The (unadjusted and adjusted) OR and 95% CI of the

correlation between genotype and GDM were estimated in five

models (codominant homozygous, codominant heterozygous,

dominant, recessive and allele models) for each polymorphism.

Before adjustment, the results showed the rs895819 dominant

model (CC+TC vs. TT: OR=1.293; 95% CI: 1.008-1.658; P =

0.043) and the rs895819 allele model (C vs. T: OR=1.257; 95% CI:

1.032-1.532; P = 0.023) associated with increased GDM risk. After

adjusting for age, pre-BMI, SBP, DBP, and parity, the results of the
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rs895819 allele model (C vs. T: OR=1.245; 95% CI: 1.011-1.533; P =

0.039) remained significantly associated with increased GDM risk

(Table 3). However, no significant correlation with GDM risk was

found for rs11614913 (Table 3).

3.2.2 Stratified analysis results
Subsequently, the association of the 2 SNPs in 5 models with

GDM susceptibility was tested using stratified analysis by age or

pre-BMI. Notably, for the rs895819 dominant model (CC+TC vs.

TT: OR=1.515; 95% CI: 1.053-2.179; P = 0.025), rs895819

codominant heterozygote model (TC vs. TT: OR=1.514; 95% CI:

1.036-2.214; P = 0.032) and rs895819 allele model (C vs. T:

OR=1.353; 95% CI: 1.015-1.802; P = 0.039) the results showed a

significantly increased GDM risk in subjects younger than 30 years

of age. In the 18.5 ≤ pre-BMI <24 group, the results of the rs895819

dominant model (CC+TC vs. TT: OR=1.434; 95% CI: 1.064-1.933;

P = 0.018), rs895819 codominant heterozygote model (TC vs. TT:

OR=1.402; 95% CI: 1.024-1.918; P = 0.035) and rs895819 allele

model (C vs. T: OR=1.335; 95% CI: 1.052-1.693; P = 0.017) showed

that rs895819 was significantly related to increased GDM risk;
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however, after correction, no significant difference was found. In

addition, no significant correlation with GDM risk was found for

rs11614913 (Supplementary Table 1-4).
3.3 The association between rs11614913-
rs895819 and GDM risk

We further investigated the effect of rs11614913-rs895819

interactions. The model included three genotypes and alleles of

miRNA polymorphisms. The results after adjusting for age, pre-

BMI, SBP, DBP, and parity showed that the TT-CC genotype of

miR-196a2 rs11614913 and miR-27a rs895819 was associated with

increased GDM risk (OR=3.989; 95% CI: 1.309-12.16; P = 0.015). In

addition, the haplotype T-C was significantly associated with

increased GDM risk (OR=1.376; 95% CI: 1.075-1.790; P = 0.018)

(Table 4), especially in the group with 18.5 ≤ pre-BMI < 24

(OR=1.403; 95% CI: 1.026-1.921; P = 0.034) (Supplementary

Tables 5, 6).
TABLE 1 Basic and stratified characteristic of participants of the study.

Variables Cases (%) Controls (%) t/x2 P

Age, year (mean ± SD) 31.01 ± 4.32 28.66 ± 4.37 -8.56 <0.001

49.2 <0.001

<30 192 (38.4) 304 (60.6)

≥30 308 (61.6) 198 (39.4)

pre-BMI, kg/m2 21.51 ± 3.10 20.53 ± 2.58 -5.42 <0.001

27.8 <0.001

<18.5 67 (13.4) 95 (18.9)

18.5 ≤ BMI < 24 336 (67.2) 365 (72.7)

≥24 97 (19.4) 42 (8.3)

SBP, mmHg 116.69 ± 10.96 114.33 ± 10.18 -3.53 <0.001

DBP, mmHg 69.77 ± 7.80 68.23 ± 7.26 -3.23 0.001

FBP, mmol/L 4.82 ± 0.64 4.50 ± 0.31 -9.75 <0.001

1h-PG, mmol/L 10.17 ± 1.60 7.66 ± 1.27 -26.22 <0.001

2h-PG, mmol/L 8.91 ± 1.60 6.69 ± 0.99 -25.85 <0.001

Parity (n) 8.88 0.003

Primipara 210 (42) 258 (51.4)

Multipara 290 (58) 244 (48.6)
frontie
pre-BMI, pre-gestational body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBP, fasting blood glucose level; 1h-PG, 1 hour blood glucose level; 2h-PG, 2 hour blood
glucose level.
TABLE 2 SNPs information and HWE test in the controls.

SNP Min/Maj Chr. position MAF HWE(P)

rs11614913 C/T chr12:53991815 0.462 0.411

rs895819 C/T chr19:13836478 0.247 0.996
HWE, Hardy–Weinberg equilibrium; Min, minor allele; Maj, major allele; MAF, frequency of minor allele.
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3.4 Association between genotype and
blood glucose level

The results of the OGTT experiment showed that the 2-hour

blood glucose level of the CC genotype of rs895819 was significantly

higher than those of the TT and TC genotypes (P < 0.05)(Table 5).

For the interaction genotype of rs11614913-rs895819, the fasting

blood glucose level of the CC-TC genotype was higher than that of

TC-TT (P < 0.05), and the 1-hour and 2-hour blood glucose levels

of the TT-CC genotype were significantly higher than those of the

TT-TC, TC-TC and CC-TT genotypes (P < 0.05) (Table 6).
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3.5 Effects of variants on miRNA secondary
structure

The locations of the SNP mutation sites in the studied

miRNAs are shown in Figure 1. The analysis of the effect of

SNPs on the local miRNA structure showed that the centroid

secondary structure in dot-bracket notation with a minimum free

energy (MFE) of the T and C rs895819 alleles are -34.3 kcal/mol

and -30.4 kcal/mol, respectively, and the size of the miRNA

hairpin loop increases when the T allele is replaced by the C

allele. (Figures 2A, B). Thermodynamically, the lower the MFE,
TABLE 3 The associations between SNPs and GDM risk in overall subjects.

SNP Genetic
Models

Cases (freq)
(n=500)

Controls (freq)
(n=502)

Crude OR
(95 % CI)

Crude P Adjusted OR
(95 % CI)

Adjusted P

rs895819 Codominant model

TT 252 (0.504) 285 (0.567) 1(ref) 1(ref)

TC 204 (0.408) 186 (0.37) 1.240 (0.955-1.611) 0.106 1.233 (0.936-1.622) 0.136

CC 44 (0.088) 31 (0.061) 1.605 (0.984-2.620) 0.058 1.576 (0.939-2.644) 0.085

Aelle model

T 708 (0.708) 756 (0.752) 1(ref) 1(ref)

C 292 (0.292) 248 (0.247) 1.257 (1.032-1.532) 0.023 1.245 (1.011-1.533) 0.039

Dominant Model

TT 252 (0.504) 285 (0.567) 1(ref) 1(ref)

CC+TC 248 (0.496) 217 (0.433) 1.293 (1.008-1.658) 0.043 1.281 (0.985-1.665) 0.064

Recessive Model

TC+TT 456 (0.912) 471 (0.939) 1(ref) 1(ref)

CC 44 (0.088) 31 (0.061) 1.466 (0.910-2.363) 0.116 1.440 (0.870-2.384) 0.156

rs11614913 Codominant model

TT 142 (0.284) 148 (0.294) 1(ref) 1(ref)

TC 254 (0.508) 245 (0.488) 1.081 (0.809-1.443) 0.6 1.003 (0.738-1.362) 0.985

CC 104 (0.208) 109 (0.217) 0.994 (0.698-1.417) 0.975 0.930 (0.639-1.353) 0.704

Aelle model

T 538 (0.538) 541 (0.538) 1(ref) 1(ref)

C 462 (0.462) 463 (0.462) 1.003 (0.842-1.196) 0.97 0.968 (0.804-1.165) 0.728

Dominant Model

TT 142 (0.284) 148 (0.294) 1(ref) 1(ref)

CC+TC 358 (0.716) 354 (0.706) 1.054 (0.802-1.385) 0.706 0.981 (0.734-1.309) 0.894

Recessive Model

TC+TT 396 (0.792) 393 (0.783) 1(ref) 1(ref)

CC 104 (0.208) 109 (0.217) 0.947 (0.700-1.282) 0.724 0.928 (0.673-1.279) 0.648
Adjusted P value calculated by logistic regression with adjustment for age, pre-BMI, SBP,DBP and parity.
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the more stable the miRNA structure. Thus, these variations may

affect the processing of pre-miRNAs.The centroid secondary

structure in dot-bracket notation with an MFE of the C and T

rs11614913 alleles are −49.9 kcal/mol and -44.3 kcal/mol,

respectively (Figures 2C, D). This suggests that the local

miRNA structure of the C allele may be more stable than that

of the T allele. Figure 3 shows the base pair probabilities of wild-

type and mutant-type, suggesting the difference between wild-

type and mutant-type.
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3.6 Meta-analysis results

The final analysis included 12 studies (including our study): 6

studies related to rs11614913 and GDM/T2DM/T1DM (1/4/1) and

7 studies related to rs895819 and GDM/T2DM (2/5). Table 7 shows

the characteristics of the studies. In the overall analysis, no

significant associations were found between rs11614913 and

rs895819 and DM. In the subgroup meta-analysis, the results of

the rs895819 dominant model (CC+TC vs. TT: OR=0.699; 95% CI:
TABLE 4 The associations between combined genotype/aelle and GDM risk.

Genotype combination Cases (freq) Controls (freq)
Crude OR(95 % CI) Crude P Adjusted OR(95 % CI) Adjusted P

rs11614913 rs895819 (n=500) (n=502)

TT TT 65 (0.13) 85(0.169) 1(ref) 1(ref)

TC 63(0.126) 58(0.116) 1.420 (0.878-2.298) 0.153 1.414 (0.852-2.347) 0.18

CC 14(0.028) 5(0.010) 3.661 (1.255-10.69) 0.018 3.989 (1.309-12.16) 0.015

TC TT 136(0.272) 139(0.277) 1.279 (0.857-1.909) 0.227 1.165 (0.762-1.781) 0.482

TC 97(0.194) 85(0.169) 1.492 (0.966-2.305) 0.071 1.455 (0.917-2.307) 0.111

CC 21(0.042) 21(0.041) 1.307 (0.659-2.596) 0.443 1.268 (0.613-2.622) 0.523

CC TT 51(0.102) 61(0.121) 1.093 (0.668-1.789) 0.723 1.140 (0.675-1.925) 0.625

TC 44(0.088) 43(0.085) 1.338 (0.787-2.273) 0.281 1.159 (0.663-2.029) 0.604

CC 9(0.018) 5(0.010) 2.354 (0.753-7.359) 0.141 1.654 (0.488-5.604) 0.419

Aelle combination Cases (freq) Controls (freq)
Crude OR(95 % CI) Crude P

Adjusted OR(95 % CI) Adjusted P

rs11614913 rs895819 (2n=1000) (2n=1004)

T T 329(0.329) 367(0.366) 1(ref) 1(ref)

C 209(0.209) 174(0.173) 1.340 (1.043-1.721) 0.022 1.376 (1.057-1.790) 0.018

C T 379(0.379) 389(0.387) 1.087 (0.885-1.335) 0.427 1.078 (0.868-1.339) 0.495

C 83(0.083) 74(0.074) 1.251 (0.884-1.770) 0.205 1.116 (0.773-1.610) 0.559
Adjusted P value calculated by logistic regression with adjustment for age, pre-BMI, SBP, DBP and parity.
TABLE 5 Relationship between polymorphisms genotype and blood glucose levels.

SNP Genotype FBG (mmol/L) 1 h-PG (mmol/L) 2 h-PG (mmol/L)

rs11614913 TT 4.650 ± 0.402 8.919 ± 1.734 7.822 ± 1.552

TC 4.661 ± 0.426 9.036 ± 1.893 7.927 ± 1.718

CC 4.714 ± 0.840 9.031 ± 2.189 7.833 ± 2.023

F 0.912 0.348 0.385

P >0.05 >0.05 >0.05

rs895819 TT 4.641 ± 0.440 8.947 ± 1.890 7.764 ± 1.687a

TC 4.704 ± 0.666 9.004 ± 1.998 7.917 ± 1.788b

CC 4.690 ± 0.375 9.387 ± 1.630 8.483 ± 1.791

F 1.505 1.581 5.31

P >0.05 >0.05 <0.05
aLSD was used to compare the blood glucose levels of three rs895819 genotypes: the difference of 2-hour blood glucose between CC and TT genotypes was statistically significant, P = 0.001.
bLSD was used to compare the blood glucose levels of three rs895819 genotypes: the difference of 2-hour blood glucose between CC and TC genotypes was statistically significant, P = 0.014.
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TABLE 6 Relationship between polymorphisms combined genotype and blood glucose levels.

Genotype combination FBG
(mmol/L)

1 h-PG
(mmol/L)

2 h-PG
(mmol/L)

rs11614913 rs895819

TT TT 4.632 ± 0.408 8.733 ± 1.773b 7.583 ± 1.538cd

TC 4.678 ± 0.405 8.972 ± 1.654b 7.924 ± 1.480c

CC 4.618 ± 0.338 9.992 ± 1.598 8.985 ± 1.586

TC TT 4.638 ± 0.442a 9.092 ± 1.851 7.896 ± 1.715c

TC 4.687 ± 0.421 8.951 ± 1.998b 7.928 ± 1.732c

CC 4.698 ± 0.335 9.046 ± 1.706 8.135 ± 1.699

CC TT 4.660 ± 0.482 8.871 ± 2.106b 7.675 ± 1.788cd

TC 4.772 ± 1.170 9.157 ± 2.398 7.886 ± 2.245c

CC 4.770 ± 0.522 9.522 ± 1.249 8.781 ± 2.200

F 0.697 1.276 2.159

P >0.05 >0.05 ＜0.05
F
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a LSD was used to compare the blood glucose levels of nine genotype combinations: the difference of FBG between CC-TC and TC-TT genotype combination was statistically significant, P < 0.05.
b LSD was used to compare the blood glucose levels of nine genotype combinations: the difference of 1-hour blood glucose between TT-CC and other genotype combination were statistically
significant, P < 0.05.
c LSD was used to compare the blood glucose levels of nine genotype combinations: the difference of 2-hour blood glucose between TT-CC and other genotype combination were statistically
significant, P < 0.05.
d LSD was used to compare the blood glucose levels of nine genotype combinations: the difference of 2-hour blood glucose between CC-CC and other genotype combination were statistically
significant, P < 0.05.
FIGURE 1

RNA precursor sequence and mutation sites (marked with asterisk). A hsa-miR-27a (reference), B hsa-miR-27a (mutant), C hsa-miR-196a2 (reference), D
hsa-miR-196a2 (mutant).
D

A

B

C

FIGURE 2

Centroid secondary structure of pre-mir-27a and pre-mir-196a2. The size of the miRNA hairpin loop increases when the rs895819 T allele is replaced by
the C allele. (A) hsa-miR-27a (reference), (B) hsa-miR-27a (mutant), (C) hsa-miR-196a2 (reference), (D) hsa-miR-196a2 (mutant).
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0.518-0.943; P = 0.019), rs895819 recessive model (CC vs. TC+TT:

OR=0.365; 95% CI: 0.190-0.701; P = 0.002), rs895819 codominant

homozygous model (CC vs. TT: OR=0.305; 95% CI: 0.156-0.595; P

<0.001) and rs895819 allele model (C vs. T: OR=0.667; 95% CI:

0.524-0.848; P = 0.001) showed that the tested models were

associated with decreased T2DM risk in a Caucasian population

(Figure 4). No significant difference was found in other groups (data

not shown).
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4 Discussion

MiRNAs affect gene expression through posttranscriptional

regulation and are involved in many important physiological

processes (21). Polymorphisms of miRNAs may affect their

maturation, expression and function, which may lead to human

disease susceptibility (22). It has been found that miRNA

polymorphisms are associated with a variety of cancers, T2DM,
A B

FIGURE 3

Base pair probability of local region. (A) miR-27a rs895819 T>C, (B) miR-196a2 rs11614913 C>T.
TABLE 7 Characteristics of each study included in the meta-analysis.

SNP Allele distribution Genotype distribution

Cases (n) Controls (n) Cases (n) Controls (n)

rs11614913 Athor Year Ethnicity Type Cases

(n)

Controls

(n)

C T C T CC CT TT CC CT TT HWE

Zeng et al.(Our

study)

2023 Asian GDM 500 502 462 538 463 541 104 254 142 109 245 148 >0.05

MIR et al. 2022

Caucasian

T2DM 100 100 145 55 165 35 51 43 6 70 25 5 >0.05

Khan et al. 2021 Caucasian T2DM 338 236 346 330 333 139 84 178 76 130 73 33 >0.05

Huang et al. 2021 Asian T2DM 497 782 413 581 691 873 81 251 165 138 415 229 >0.05

Ibrahim et al. 2019 Caucasian T1DM 150 150 175 125 206 94 59 57 34 71 64 15 >0.05

Buraczynska et al. 2014 Caucasian T2DM 920 834 1224 616 1001 667 414 396 110 292 417 125 >0.05

rs895819 Athor Year Ethnicity Type Cases

(n)

Controls

(n)

T C T C TT TC CC TT TC CC HWE

Zeng et al. (Our

study)

2023 Asian GDM 500 502 708 292 756 248 252 204 44 285 186 31 >0.05

Choi et al. 2022 Asian T2DM 238 247 317 159 277 217 106 105 27 84 109 54 >0.05

Ghaedi et al. 2016 Caucasian T2DM 204 209 301 107 280 138 108 85 11 97 86 26 >0.05

Wang et al. 2015 Asian T2DM 995 967 1469 521 1415 519 554 361 80 526 363 78 >0.05

Li et al. 2015 Asian T2DM 738 610 1064 412 900 320 371 322 45 330 240 40 >0.05

Wang et al. 2014 Asian GDM 837 848 1293 381 1257 439 482 329 26 469 319 60 >0.05

Ciccacci et al. 2013 Caucasian T2DM 148 147 247 49 219 75 101 45 2 83 53 11 >0.05
frontier
n number, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus, GDM gestational diabetes mellitus, HWE Hardy–Weinberg equilibrium.
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GDM and cardiovascular diseases (23–25). In this study, we

evaluated the associations between miR-27a rs895819 and miR-

196a2 rs11614913 and GDM susceptibility in a Chinese population.

The results showed that the miR-27a rs895819 C allele was

associated with increased GDM risk, and a previous study

indicated that the miR-27a CC genotype was associated with

increased T2DM risk in an overweight Chinese population (18).

Zhu et al. showed that miR-27a rs895819 variant genotypes were also

associated with an increased risk of T2MD in both the age ≥ 60 years

(GG genotype) and male subgroup (AG genotype and dominant

model) (26). MiRNA SNPs may contribute to the development of

GDM by changing the expression of target genes. The results of this

study showed that the rs895819 mutant C allele increased the

production of mature miR-27a and suppressed the expression of its

target genes compared to the wild T allele (27). Furthermore, human

Drosha selectively cleaves RNA hairpins with larger terminal loops

(28). Thus, as long as the size of the miRNA loop is altered by

mutation or deletion, the maturation process of Drosha is affected.

The miR-27a secondary structure analysis found that the size of the

miRNA hairpin loop increases when the T allele is replaced by the C

allele. This enlargement has been shown to accelerate the maturation

of miR-27a, resulting in the upregulation of miR-27a (28).

Interestingly, the expression of the miR-27a rs895819 AG and GG

genotypes was significantly higher than that of the AA genotype (29).

The peroxisome proliferator-activated receptorg(PPARg) is the target
gene of miR-27a, and miR-27a rs895819 variants may further

negatively regulate the expression of the PPARg gene, it may

directly down-regulates the adiponectin (33). Adiponectin

deficiency is strongly associated with insulin resistance in

pregnancy, Khosrowbeygi et al. showed that the adiponectin level

of the GDM group was significantly lower than that of healthy
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pregnant women (34). Thus miR-27a rs895819 variants is considered

to be associated with insulin resistance and diabetes.

However, the results of studies in Caucasians were in contrast to

these results. Ciccacci et al. showed that the miR-27a rs895819 G

allele played a protective role against T2DM in an Italian study (17),

and Ghaedi et al. also found that the miR-27a rs895819 C allele

played a protective role against T2DM in an Iranian cohort (16).

Our meta-analysis verified the above results. These conflicting

results with those of our study may be related to ethnic

differences in the study populations. In a recent study of a

Korean population, it was found that the G allele in a recessive

model and the GG genotype of miR-27a rs895819 were significantly

associated with decreased T2DM risk, but the sample sizes of T2DM

and healthy controls were only 238 and 247, respectively (15). The

results of only one study on GDM showed that the miR-27a

rs895819 C allele decreased GDM risk in a Chinese population

(20), which is contrary to our results. After summarizing the data of

our study and the above study, we conducted a meta-analysis and

found no correlation between rs895819 and GDM. Therefore, more

research on GDM is especially important.

Moreover, miR-196a2 may regulate the insulin signaling

pathway, and miR-196a2 variants are involved in T2DM

development (10, 35). Rs11614913 is located in the 3p arm of miR-

196a2 (36), which may affect the maturation of pre-miRNAs and

target gene binding (37). Previous studies showed that the miR

−196a2 rs11614913 T allele and CT genotype were associated with

an increased T2DM risk in the Saudi Arabian population. Huang

et al. showed that the rs11614913 C allele was significantly associated

with decreased T2DM susceptibility in the smoking subgroup (13),

but a study of a Pakistani population found an increased association

between the miR−196a2 rs11614913 C allele and T2DM risk. Our
FIGURE 4

Subgroup meta-analysis for the association between miR-27a rs895819 and T2DM susceptibility in a Caucasian population in fixed effects model. (A)
Dominant model, CC+TC vs. TT. (B) Recessive model, CC vs. TC+TT. (C) co-dominant homozygous model, CC vs. TT. (D) Allele model C vs. T. OR
odds ratio, CI, confidence interval; I2: measurement to quantify the degree of heterogeneity in meta-analyses.
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results did not find a significant correlation between miR-196a2

rs11614913 and GDM in the Chinese population. The meta-analysis

results did not find a significant association between miR-196a2

rs11614913 and DM risk. These contradicting findingsmay be related

to the different sample sizes of studies and ethnic differences.

The combined SNP genotype analysis indicated that the TT-CC

genotype of miR-196a2 rs11614913 and miR-27a rs895819 was

associated with an increased risk of GDM susceptibility. This

detection of the interaction of rs11614913 and rs895819 in GDM

was defined as an epistatic influence, which generally explains the

absence or underestimation of heritability when only a single SNP is

included in a disease susceptibility study (38). According to the results

of our research, miR-196a2 rs11614913 probably has no impact on

GDM. However, miR-196a2 rs11614913 and miR-27a rs895819 may

jointly affect the development of GDM. Remarkably, the combined

genotype and haplotype methods have high potential for application

in association research (39). In the haplotype results, the allele

combination T-C haplotype of miR-196a2 rs11614913 and miR-27a

rs895819 was significantly associated with increased GDM risk,

especially in the group with 18.5 ≤ pre-BMI <24. The results of the

miRWalk database analysis showed that both miR-196a2 and miR-

27a can target the Adiponectin gene, which is related to GDM. MiR-

196a2 rs11614913 and miR-27a rs895819 variants may negatively

regulate Adiponectin gene expression and increase susceptibility to

GDM. Therefore, further functional verification is necessary.

The results of correlation analysis between genotype and blood

glucose level showed that the 2-h blood glucose level of the miR-27a

rs895819 CC genotype was significantly higher than that of the TT

and TC genotypes. The 1-h and 2-h blood glucose levels of the TT-

CC genotypes of rs11614913 and rs895819 were significantly higher

than those of other combinations. Previous studies have shown that

miR-27a in cluster C was positively correlated with fasting blood

glucose level, which may play a key role in early hyperglycemia and

contribute to the development of diabetes (40).
5 Conclusions

In general, our research is the first to confirm that miR-27a

rs895819 may contribute to GDM susceptibility in pregnant

Chinese women. However, one of the limitations of this study is

the limited sample size. In addition, multicenter and further

functional studies are needed to gain more insight into the

association between rs895819 and GDM. Importantly, future

research should verify some selected targets through luciferase

analysis and evaluate the regulatory effect of these miRNA

mutations on target gene expression.
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Roncero-Ramos I, Molina-Abril H, et al. Circulating miRNAs as predictive
biomarkers of type 2 diabetes mellitus development in coronary heart disease
patients from the CORDIOPREV study. Mol Ther Nucleic Acids (2018) 12:146–57.
doi: 10.1016/j.omtn.2018.05.002

9. Méndez-Mancilla A, Lima-Rogel V, Toro-Ortı ́z JC, Escalante-Padrón F,
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Rheumatoid arthritis increases
the risk of heart failure-current
evidence from genome-wide
association studies

Min Wang †, Kun Mei †, Ce Chao, Dongmei Di, Yongxiang Qian,
Bin Wang* and Xiaoying Zhang*

Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University,
Changzhou, Jiangsu, China
Background: Numerous studies have demonstrated that rheumatoid arthritis

(RA) is related to increased incidence of heart failure (HF), but the underlying

association remains unclear. In this study, the potential association of RA and HF

was clarified using Mendelian randomization analysis.

Methods: Genetic tools for RA, HF, autoimmune disease (AD), and NT-proBNP

were acquired from genome-wide studies without population overlap. The inverse

variance weighting method was employed for MR analysis. Meanwhile, the results

were verified in terms of reliability by using a series of analyses and assessments.

Results: According to MR analysis, its genetic susceptibility to RA may lead to

increased risk of heart failure (OR=1.02226, 95%CI [1.005495-1.039304],

P=0.009067), but RA was not associated with NT-proBNP. In addition, RA was

a type of AD, and the genetic susceptibility of AD had a close relation to increased

risk of heart failure (OR=1.045157, 95%CI [1.010249-1.081272], P=0.010825),

while AD was not associated with NT-proBNP. In addition, the MR Steiger test

revealed that RA was causal for HF and not the opposite (P = 0.000).

Conclusion: The causal role of RA in HF was explored to recognize the

underlying mechanisms of RA and facilitate comprehensive HF evaluation and

treatment of RA.

KEYWORDS

rheumatoid arthritis, autoimmune disease, heart failure, NT-proBNP, Mendelian
randomization analysis, genome-wide association study
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease with a

worldwide lifetime prevalence of 1% (1), and more common in

women, which accounts for 75% of all RA cases (2). RA is typically

indicated by the presence of autoantibodies, including anti-cyclic

citrullinated peptide and rheumatoid factor, years before the disease

can be detected (3), and the most common clinical manifestations

caused by these autoantibodies are distal joint pain and joint

deformity caused by involvement of synovial joints. Current

therapies for RA include antirheumatic drugs (DMARDs), anti-

tumor necrosis factor-alpha inhibitors (e.g., adalimumab,

etanercept, and infliximab) and non-tumor necrosis factor

inhibitors (e.g., ababtreotide, rituximab, toximab) (4). If untreated

or poorly controlled, it may lead to interrupted physical function

and increased mortality owing to increased cardiovascular risk.

Despite progress in the treatment of RA, which achieves disease

activity control in most patients, the life expectancy of RA patients

remains low due to the complications of cardiovascular diseases (5,

6). It was found that RA patients had a risk of heart failure 1.87%

higher than that of the general population (7), and it was not

associated with cardiovascular risk factors (8). The incidence of

sudden cardiac death of RA patients is twice that of normal

controls, and it is secondary to non-ischemic heart disease,

ischemic heart disease and arrhythmia (9). Meanwhile, it is

shown that the prevalence of non-ischemic heart disease (heart

failure) in RA patients is significantly higher than that of ischemic

heart disease (10). N-Terminal Pro-Brain Natriuretic Peptide (NT-

proBNP) is now established for the diagnosis of heart failure, but

new evidence also points to the role of NT-proBNP in diagnosing

myocardial ischemia in asymptomatic patients for primary

prevention. NT-proBNP has been shown to be elevated in RA,

and this elevation is not significantly related to cardiac function

(11). Whether RA can directly affect the change of NT-proBNP, the

causal relationship remains unknown. It is noteworthy that these

observational studies have different sample size and the results are

indeed dependent on confounding factors, and the specific

mechanism has yet to be clarified.

Confirmation of causality is challenging due to complex

confounders of RA and HF risk. The causal relationship of

exposure and outcomes without bias was assessed, and the
Frontiers in Endocrinology 0255
instrumental variables (IVs) were genetic variation in MR analysis

(12). In virtue of the unique advantages of IVs, MR analysis is

independent from conventional confounding factors, allowing

causal inference (13, 14). Genome-wide association studies

(GWAS) provide reliable IVs. In this study, MR analysis was

performed on two samples to clarify the potential causality of HF

risk and genetic susceptibility to RA and AD without interference

from side effects of drug or common risk factors, which is critical for

prevention and treatment of RA and even AD.
Methods

Study design and data sources

A two-sample MR approach and classical MR analysis were

involved in this study. The data related to RA were acquired from

a meta-analysis of GWAS, which included 14,361 cases and 42,923

controls. GWAS data for AD (42,202 cases and 17,6590 controls)

were acquired online (https://www.finngen.fi/en). For the outcome

dataset, single nucleotide polymorphisms (SNPs) for HF were

acquired from a meta-analysis of GWAS (47,309 cases and 930,014

controls). The data for NT-proBNP were acquired from GWAS

(21,758 samples). Table 1 summarizes demographic profiles involved.

The details of the GWAS are provided in Supplementary Table 1.

We performed a two-sample MR study to assess the causality of

CVD risk and genetic susceptibility to RA. Herein, SNPs served as

IVs (15). An overview of the research design is presented in

Figure 1. The entire process satisfied the three main hypotheses of

classical MR analysis: 1. exposure is directly affected IVs; 2. IVs had

no correlation with confounders; 3. IVs directly impact outcome

risk via exposure, instead of other pathways. Additionally, ethical

approval was available for all original studies, along with informed

consent. Herein, we followed the latest (STROBE-MR)

guidelines (16).
Ethical approval

A MR study by using GWAS summary statistics was employed

in this study, and ethical approval had been obtained for each
TABLE 1 Instrumental variable assessment and data source.

Traits Data sources Sample size
(cases/controls)

Ancestry R2(%) for RA/AD
(Total)

F for RA/AD
(Total)

Exposures

RA PMID:24390342 14,361/42,923 European

AD FinnGen 42,202/17,6590 European

Outcomes

HF PMID:31919418 47,309/930,014 European 0.76/0.008 1442/44

NT-proBNP PMID:33067605 21,758 European 0.76/0.008 1453/38
F=R2(N-K-1)/[K(1-R2)], R2 = 2×(1-EAF)×EAF×(b/SD)2, among which SD=SE×N1/2, where N refers to the sample size of GWAS, b refers to an effect estimated on adipokines, SE refers to the SD
of b, and EAF refers to an effect allele frequency.
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GWAS. The summary statistics were obtained online (https://

www.ebi.ac.uk). All data are accessible and no restriction was set.
Selection of IVs

Genetic variants that are closely related to RA (P < 5 ×10−8)

were regarded as instrumental variables. We made sure to include

only SNPs that were independent (r2<0.001 in 10.000kb)

performing LD-clumping with a European reference panel from

1000G (17). Meanwhile, secondary phenotypes were searched for

each SNP in order to exclude potential pleiotropic effects. We did

not find SNPs associated with confounders (hypertension, diabetes,

obesity, and smoking) in PhenoScanner V2. Specifically, SNPs

corresponding to the outcome-related phenotypes (P < 5 ×10−8)

were excluded, while other SNPs were kept. After that, variance (R2)

and F-statistics were employed to evaluate the strength of

instrumental variables so that weak-tool bias can be avoided (18).

Herein, the formula is as follows: F=R2(NK-1)/[K(1-R2)], where N

denotes the sample number of the chosen GWAS, K denotes the

number of SNPs involved, and R2 denotes the explained variance

(cumulative) of the chosen SNPs during exposure. F>10 indicates a

strong correlation of exposure and instrumental variables, and the

MR analysis results are independent on weak-tool bias.
MR-analysis

All statistical analyses were conducted using R software (version

4.2.0, R Foundation for Statistical Computing), the MR analysis was

performed using the “TwoSampleMR” package (version 0.5.6). For

each set of IVs, we harmonized exposure and outcome data to

ensure the effect sizes for each GWAS were aligned to the same

alleles. Similarly, different exposures (e.g., AD) and outcomes (NT-

proBNP) were adjusted in a similar way. The inverse variance

weighting (IVW) method was dominant in the MR analysis (15).

Meanwhile, MR-PRESSO, MR-RAPS, maximum-likelihood, MR-
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Egger, and median weighting were employed to clarify the causality

(18). Different hypotheses about the effectiveness of IVs were made

by using each method. Estimation of median weighting is executed

if half of IVs are invalid. MR-Egger was used because it corrects for

horizontal pleiotropy, despite lower statistical capability.

Specifically, the MR-RAPS was responsible for horizontal

multiplicity correction by contour scores adjusted, resulting in

reduced deviation due to horizontal multiplicity. And the MR-

PRESO method could automatically identify and remove outliers

(IVW linear regression) to correct the MR estimation (19). The

directionality that exposure causes outcome was verified using the

MR Steiger test, P < 0.05 was regarded as statistically significant.

These methods were used to comprehensively investigate causality.
Multivariable Mendelian
randomization analysis

Multivariable MR (MVMR) analysis was implemented for

significant exposure-outcome pairs identified by univariate MR

analysis. Specifically, four confounders, Diabetes (IEU GWAS ID:

“ukb-b-10753”), Obesity (IEU GWAS ID: “finn-b-E4_OBESITY”),

Hypertension (IEU GWAS ID: “finn-b-I9_HYPTENS”) and

Smoking (IEU GWAS ID: “ieu-b-142”), were included for MVMR

analysis. After combining the GWAS summary level datasets of

exposure and the four confounders, it should be ensured that each

IV is strongly correlated (P < 5e−8) with at least one or more of the

exposure or the three confounders. Then, the SNPs within a

window size of 10,000 kb were pruned under the threshold of

r2 < 0.001 to mitigate LD. Finally, after excluding palindromic SNPs,

outcome-related SNPs (P<0.05), and SNPs not present in outcome

GWAS summary data, we used the IVW method to assess causal

effects after adjusting for confounders.
Pleiotropy and heterogeneity analyses

As primary analysis we applied the Causal Analysis Using

Summary Effect Estimates (CAUSE) approach, which has been

demonstrated to outperform other established methods to detect

causal relationships in the presence of pleiotropy, CAUSE avoids

more false positives induced by correlated horizontal pleiotropy

than other methods (20). In this case, CAUSE analysis was

conducted to determine whether the relationship between RA and

HF was causal (causal model) or induced by correlated horizontal

pleiotropy (shared model). When P<0.05 it means that the causal

model is preferred over the shared one, indicated that the causal

relationship between RA and HF is real and not a false positive due

to the correlated horizontal pleiotropy. A series of methods were

used for sensitivity analysis in this study. First, the heterogeneity of

different SNP estimates was evaluated by the Cochran’s Q test. If P >

0.05, no heterogeneity was indicated. Although the random-effects

model could be used, the fixed-effect IVW method was dominant.

Second, the horizontal pleiotropy of IVs was investigated by using

the MR-Egger intercept method (21). Average of the horizontal

pleiotropic effect was estimated based on the intercept across SNPs
FIGURE 1

Study design flowchart of the Mendelian randomization study. The
Mendelian randomization method is based on three hypotheses: 1.
the instrumental variables is closely related to exposure; 2.
instrumental variables is independent of any confounding factor; 3.
instrumental variables affects the results only through exposure but
not through other ways.
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in the MR-Egger test, and the IVW estimate might be biased if P <

0.05. Third, a single SNP could generate the results was verified by

using the leave-one-out sensitivity test. Leave-one-out method

shown how the IVW causal effect when remove each variant from

the analysis. This allows to detect heterogeneity since if the IVW

changes drastically, that means that a variant is contributing way

more than the others. Importantly, this is not always a sign of

pleiotropy, but always a sign of heterogeneity in the data being

analyzed. Fourth, the presence of pleiotropy was directly detected

by generating funnel and forest plots. “Two-Sample MR”, “MR-

PRESSO”, “CAUSE” and “mr.raps” packages in R software were

used for statistical analysis.
Results

Causality of genetic susceptibility to RA
and AD on the risk for HF

As shown in Table 2, results obtained by the IVW method

indicated that RA was related to increased risk of HF. As observed,

the prevalence of HF in RA cases was 1.014-fold that of the control

group (95% CI [1.0009-1.0281] , OR=1.014, P=0.036)

(Supplementary Figure 1), and increase of the OR of AD by one

unit leads to increased HF risk (95% CI [1.010-1.081], OR=1.045,

P=0.011) (Supplementary Figure 3). MR analysis of RA and HF

indicated that the results of the Weighted median analyses were

highly consistent with those obtained by the IVW method. In the

strict CAUSE, the causal model was shown to be a better fit than the

sharing model (95% CI [2.461-2.823], OR=2.642, p = 1.8e-30),

indicating a causal association between RA and HF. More

supporting statistics were listed in Supplementary Table 2. MR

analysis of AD and HF showed that the results of the MR Egger

analyses were highly consistent with those obtained by the IVW

method. The causal assumption of RA or AD and HF was verified

via the MR Steiger test, and the result showed RA or AD influence

on HF was the correct causal direction (P = 0.000). The details of the

MR Steiger test are provided in Supplementary Table 3.
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Causality of the risk for NT-proBNP and
genetic susceptibility to RA and AD

As shown in Table 3, the prevalence of NT-proBNP (b=-0.0114,
SE =0.0150, P=0.4467) in the RA group was not significantly

different from that of the control group (Supplementary

Figure 2). The results listed were consistent with those obtained

by the IVW method. Meanwhile, no significant association was

observed between AD and NT-proBNP risk (b=0.0722, SE =0.0265,

P=0.7851) (Supplementary Figure 4). It was also confirmed by

analyses listed in the table.
Results of multivariable Mendelian
randomization analysis

As shown in Table 4, We performed an MVMR analysis to

assess the causal effect of RA on HF after adjusting for four

confounding factors (diabetes, obesity, hypertension and

smoking). MVMR analysis identified that all of these four

confounders were taken into account, the causal relationship

between RA and HF was not obvious (OR = 1.022968, 95% CI

[0.9994881-1.047000], P = 0.055266). indicating that no significant

direct causal effect was detected for RA on HF risk, while jointly

modeling diabetes, obesity, hypertension and smoking.
Analysis of horizontal pleiotropy
and heterogeneity

As shown in Table 5, a series of methods were employed for MR

analysis regarding the correlation of RA, AD and HF to determine

the presence of significant horizontal pleiotropy and heterogeneity

in the present study. First, the P-value was > 0.05 in the

heterogeneity test, demonstrating that SNPs had negligible

heterogeneity (Table 5). The fixed-effect IVW method was

dominant in this MR analysis. The “leave-one-out” sensitivity

analysis demonstrated that IVs involved in the present study had
TABLE 2 MR estimates of RA and AD on the risk for HF.

Disease Methods SNPs(n) OR 95%CI P-value

RA

MR Egger 112 1.006100 0.983752-1.028956 0.596722

Weighted median 112 1.006559 0.983870-1.029771 0.574114

IVW 112 1.014421 1.000941-1.028084 0.035929

Simple mode 112 1.060100 1.012280-1.110178 0.014707

Weighted mode 112 1.009812 0.988696-1.031380 0.367098

AD

MR Egger 39 1.074839 1.014617-1.138636 0.01899

Weighted median 39 1.032231 0.992336-1.07373 0.114699

IVW 39 1.045157 1.010249-1.081272 0.010825

Simple mode 39 0.982959 0.904143-1.068645 0.689153

Weighted mode 39 1.037358 1.000383-1.075699 0.054899
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negligible impact on such results (Supplementary Figures 5-8), and

the funnel plot illustrates an asymmetric distribution of single IVs

(Supplementary Figure 9), suggesting that the causality was not

likely to be affected by potential bias. The MR Steiger test indicated

that there was no reverse causality (Supplementary Table 3).
Discussion

In the present study, MR analysis was first performed to

investigate the potential causal relationship of HF risk and the
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susceptibility to RA. RA is the most common autoimmune disease.

The causal relationship of HF risk and AD was thus evaluated by

MR analysis. The results showed that the genetic susceptibility to

RA and AD was correlated with an increase in HF risk. The MR

Steiger test further showed that there was no evidence of reverse

causality in our study. The limited evidence from MR analysis

supported the potential causal relationship between RA and AD and

HF risk.

HF is a cardiovascular syndrome associated with RA and also

contributes to the incidence and death of RA (22). In the

population-based RA cohort, the incidence of HF was about twice
TABLE 4 MVMR analysis for assessing the causal effect of RA on HF.

Exposure SNPs OR 95% CI P-value F-statistic

RA 38 1.022968 0.9994881-1.047000 5.526636e-02 37.79063

Diabetes mellitus 37 1.657085 0.7339741-3.741182 2.241354e-01 3.369213

Obesity 2 1.062153 0.9828610-1.147841 1.276904e-01 10.22393

Hypertension 28 1.190533 1.1231576-1.261950 4.423231e-09 15.66378

Smoking 17 1.133324 1.0477772-1.225855 1.774866e-03 25.55431
TABLE 5 Heterogeneity and pleiotropy test of RA and AD from HF and NT-proBNP GWAS.

Exposure Outcomes

Pleiotropy test Heterogeneity test

MR-Egger MR-Egger Inverse-variance weighted

Intercept SE P Q Q-df Q-pval Q Q-df Q-pval

RA

HF 0.001384 0.001547 0.372925 109.7300 110 0.489326 110.530 111 0.494726

NT-proBNP 0.000523 0.003477 0.880793 117.3168 112 0.346731 117.3404 113 0.370953

AD

HF -0.0039 0.0033 0.2475 60.5797 37 0.0086 62.8402 38 0.0068

NT-proBNP -0.0046 0.0049 0.3532 45.4325 47 0.5376 46.3118 48 0.5422
fron
TABLE 3 MR estimates of RA and AD on the risk for NT-proBNP.

Disease Methods SNPs(n) b SE P-value

RA

IVW 114 -0.011421 0.015009 0.446705

Weighted median 114 0.014745 0.026135 0.572620

MR Egger 114 -0.014908 0.027667 0.591073

Weighted mode 114 0.009568 0.026682 0.720572

Simple mode 114 0.0176783 0.052438 0.736644

AD

IVW 52 0.007217 0.026466 0.785090

Weighted median 52 0.037362 0.037515 0.276857

MR Egger 52 0.041910 0.045491 0.361601

Weighted mode 52 0.0373620 0.036093 0.305781

Simple mode 52 -0.041060 0.589407 0.589407
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the incidence in the general population (22, 23). As a complex

clinical syndrome, HF involves a variety of potential risk factors and

causes, among which hypertension and ischemic heart disease are

most common (24). Clinically, HF is classified based on the left

ventricular ejection fraction (LVEF): 1. Reduced LVEF is defined as

≤40%, i.e. those with a significant reduction in LV systolic function.

This is designated as HFrEF. 2. Patients with a LVEF between 41%

and 49% have mildly reduced LV systolic function, i.e. HFmrEF. 3.

Those with symptoms and signs of HF, with evidence of structural

and/or functional cardiac abnormalities and/or raised natriuretic

peptides (NPs), and with an LVEF ≥50%, have HFpEF (25). Along

with aggravated population aging, the prevalence of HFpEF has

been rising in recent years. A recent retrospective study found that

64% of the RA patients are combined with HFpEF (26). HFpEF is

more common among RA patients compared to the general HF

population without RA (27). A follow-up survey using cardiac

ultrasonography showed that the development of subclinical

changes in the diastolic function among RA patients was more

rapid within 5 years compared to the general population (28).

Mantel et al. compared the incidence of 10,000 Swedish patients

with ischemic and non-ischemic heart failure. They reported a rapid

increase in the HF risk following the onset of FA and a close

connection with high disease activity (10). RA patients were related

to a higher incidence of HF and IHD throughout the course of

observation, and RA was more significantly correlated with the high

HF risk (29). Recent advances in the treatment of RA have

decreased the incidence of cardiovascular diseases in RA patients,

but these patients are still at a higher risk for IHD. Besides, the HF

risk increases as the duration and severity of RA increase (10, 30).

Nicola et al. proved that compared to the non-RA population, the

risk of congestive heart failure was significantly increased in the RA

population, with an odds ratio of 1.87 during the 30-year follow-up

(22). Similarly, according to Wolfe and Michaud, HF was common

among RA patients (22). Michael J Ahlers et al. performed a

retrospective case-control study of 9,889 RA patients and 9,889

controls without autoimmune diseases, who were matched for age,

gender, and race. It was found that the HF risk was increased by

21% in RA patients and such an increase was irrelevant to the

conventional cardiovascular risk factors (26). This estimate agrees

with the increased HF risk associated with RA at the Swedish and

Danish National Patient Registry (10, 29). Nevertheless, the above

reported increase in the HF risk was smaller than that reported by

Nicola in the presence of RA, which was 87% (22). Recently, some

scholars reported that among RA patients diagnosed in Denmark

from 1978 to 2008, RA was associated with an increase in HF-

related admissions (31). The above evidence has indicated that RA

does increase the risk of HF. Four main factors have been identified

as contributors of a higher HF risk in RA patients (32): 1.

Conventional cardiovascular risk factors, including smoking,

dyslipidemia, hypertension, obesity and diabetes, which usually

exist concurrently with the risk factors for RA; 2. The use of

glucocorticoids and non-steroidal anti-inflammatory drugs will

increase the HF risk; 3. The presence of anti-citrulline peptide
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antibodies and rheumatoid factors in RA patients was an

independent risk factor for HF; 4. An increase in the RA disease

activity alongside a continuous cardiovascular impact of systemic

inflammation is another primary risk factor for HF.

However, the increased prevalence of hypertension and IHD in

RA patients may not fully explain the higher HF risk in RA patients

(24). A previous study showed that a significant increase in the

mortality of HF among RA patients might be related to coronary

artery disease (CAD) (22). Other research showed that RA is a typical

chronic inflammatory disease and related to an increase in the HF

risk. The latter, however, is uncorrelated with the conventional

cardiovascular risk factors (including CAD) (10, 29, 33). The HF

phenotype in RA patients is different from that in non-RA patients.

The former usually presents with diastolic dysfunction, hypotension

and high ejection fraction. Thus, RA and non-RA patients may vary

in the mechanism of myocardial injury (27, 34). The newly diagnosed

RA patients were associated with a significant increase in the

incidence of HF events five years before the diagnosis, although few

of them presented with typical features of cardiovascular risks,

including hypertension and hypercholesterolemia. These facts

suggest that CVD is not only a late complication of RA (35). RA-

related inflammation may be a critical factor for the progression to

HF. The HF risk may be even increased in an absence of IHD risk if

the patients have RA-related inflammation. It has been reported that

the risk of non-ischemic heart failure is increased at an early stage and

closely connected with the severity of RA (10). In another study, the

SLE/RA inpatients were analyzed, and the prevalence of HF in the

population was 16.4%. Besides, the likelihood of HF in RA patients

was significantly lower than that in SLE (36). The above results

proved from another perspective that RA-related HF is not caused by

shared risk factors alone, since SLE and HF also share some common

risk factors. PARK E et al. found that an increase in HF risk in RA

patients might not be explained by IHD alone. Non-ischemic HF is

related to the severity of RA, implying that RA-related factors and

autoimmune process are related to the risk of the HF phenotype

above (37).

In the present study, the causal relationship between RA and

NT-proBNP was analyzed, but the result was negative. Recently,

Baniaamam et al. conducted a prospective study of 51 RA patients,

where echocardiography and baseline tests were performed on

those with moderate to high disease activity, along with an

assessment after six months of treatment with anti-tumor

necrosis factor. Although the NT-proBNP level was decreased by

23% after six months of treatment, no adverse effect on the cardiac

function was observed (38). The above results suggest that the RA-

related impact on cardiac function is not manifested as changes in

NT-proBNP. However, controversy continues over the predictive

performance of HF-related biomarkers, such as B-type natriuretic

peptide (BNP) or NT-proBNP, for cardiac injury. Some authors

believe that these factors are sensitive, non-invasive predictors for

subclinical CVD and are all-cause mortality predictors independent

of conventional risk factors for CV (39). Evidence has shown that an

increased NT-proBNP level in RA patients is related to
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inflammatory markers (40). However, some researchers did not

prove the relationship between the NTproBNP level and left

ventricular function in RA patients (41, 42), which also agreed

with ours findings.

The relationship between RA and NT-proBNP is complex. In

this study, there was no causal relationship between RA and serum

NT-proBNP level. In the study of Armstrong et al. although

researchers observed an increase in the median NT-proBNP level

in the RA group, the increase in NT-proBNP level was significantly

correlated with DAS28 and age, and had no direct correlation with

RA itself (43). In addition, NT-proBNP may play an indispensable

role in regulating the immune system and endocrine system (44–

46), including the aging process of individuals, etc (47). These

findings all reveal that NT-proBNP levels increase with age, so we

speculate that the increased NT-proBNP levels in RA patients may

be related to accelerated aging, rather than causally related to the

disease itself. However, studies have shown that accelerated aging

only explains 16% of the increase in BNP in RA patients (48).

Therefore, the increase of BNP in RA patients is largely due to other

unknown causes.

DMARDs and TNF-a inhibitors are usually prescribed as

standard treatments for RA (42). TNF-a inhibitors are effective

for controlling the activity and progression of RA. However, their

risks in increasing incidence and deaths of cardiovascular diseases

remain disputable, particularly RA patients already with a higher

risk for cardiovascular complications (49). One study indicated that

a higher dose of TNF-a inhibitors may cause HF deterioration and

shortened life span (50). According to a randomized placebo-

controlled clinical trial, TNF-a inhibitors did not have a

considerable efficacy when used to treat symptomatic HF patients

(51). Danish scholars performed a follow-up of RA patients that

lasted for over 20 years, and it was found that the biological

treatments for RA did not change the risks of IHD and HF (29).

According to another study, the dose of glucocorticoids and TNF

inhibitors was adjusted in the multivariate regression analysis, and

it was found that the increased risk of HF in RA patients was

independent of these drugs (31).

Inflammation is considered as a critical mechanism for the

development of HF, especially HFpEF (52). Both ESR and CRP were

correlated with increased risk of HF in RA patients (10). Evidence

from the Mayo Clinic suggests that a higher level of inflammatory

markers is related to a higher risk of HF (53). It has been found that

an increase in the inflammatory activity related to the pathogenesis

of RA may have myocardial effects, leading to HF shortly after RA

diagnosis. In sepsis, TNF-a and other cytokines were related to the

reduction in myocardial contractility after in vitro exposure for ≥10

min (54). Cardiomyocytes may also respond to inflammatory

stimuli and express chemokines, cytokines, and cell adhesion

molecules, leading to leukocyte recruitment and reduced

cardiomyocyte contractility (55). Inflammation can also induce

endothelial dysfunction, myocardial hypertrophy and fibrosis,

which further results in HF (56). The incidence of HFpEF is also

higher in other diseases related to chronic inflammation, such as

obesity, diabetes and chronic kidney disease. It is implied that an
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increase in circulating proinflammatory cytokines in RA patients

may be a critical factor in the pathogenesis of HF (57). Interestingly,

those with the highest level of C-reactive protein (CRP) are also

faced with the highest risk for HF, which highlights the role of

inflammation in the pathogenesis. After stratified based on HF

subtypes, the CRP level was higher in HFpEF than in HFrEF,

indicating that inflammation might be a more important risk factor

for HFpEF in RA (26).

RA is a chronic autoimmune inflammatory disease. Our study

proved that RA was related to a higher risk for HF. To verify the

results, MR analysis was performed, and a potential causal

relationship of HF risk and the genetic susceptibility to AD was

indicated. This finding coincided with our expectations. Another

recent study showed that as an autoimmune disease, SLE was

related to a higher risk of venous thromboembolism, ischemic

cerebral infarction, and HF (58). Some researchers also performed

MR analysis for this purpose, and it was found that RA was

correlated with a higher risk of angina, hypertension, arrhythmia,

and coronary heart disease (59). Others reported a correlation

between MS and the risk of CAD, myocardial infarction, HF, and

cerebral stroke (60). All the results above are consistent with

our findings.

The clinical diagnosis and treatment of AD and HF should be

carefully evaluated, considering the causal relationship of HF risk

and the genetic susceptibility for RA and AD. In fact,

rheumatologists have become increasingly aware of the

relationship between CVD and RA. In the European Society of

Cardiology guideline, RA is considered as an independent

cardiovascular risk factor (61). The European League Against

Rheumatism (EULAR) has published official advice for

monitoring CV risk in RA patients (62). It is suggested that the

CVD risk score should be multiplied by 1.5 in RA patients. Such a

correction may improve the estimate of the cardiac risk in these

patients. Therefore, earlier preventive tests and medication

treatment are recommended if necessary.
Advantages and limitation

A recent report involved MR analysis of the genetic

susceptibility for cardiovascular risks. So far, the causal

relationship between CVD risk and SLE and other autoimmune

diseases has been analyzed, but few studies have been devoted to the

potential relationship of HF risk and RA through MR analysis. We

first performed MR analysis on RA and even AD and HF risk to

identify any causal relationship. Secondly, large-scale GWAS was

employed to collect more comprehensive genetic data in RA and

HF, thereby avoiding the influence of conventional confounding

factors and eliminating the potential of reverse causality. Lastly,

consistent results were obtained through several repeat analyses,

and an absence of biases was verified by the heterogeneity and

pleiotropy analyses.

However, our study had some limitations. Firstly, pleiotropy

was analyzed using multiple methods, but potential multiplicity
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might still exist. Secondly, we reported a lower OR value, compared

with other studies, and more studies are needed to further

document the clinical significance of this OR value. Thirdly, the

F- statistics of obesity in MVMR analysis is lower than 10, which

may cause a certain bias in the statistical results of MVMR, and the

interpretation of the results should be very cautious.
Summary

In conclusion, our study found the first evidence supporting the

potential causal relationship of HF risk and RA and AD, which

facilitates further investigation into the pathogenesis of RA and AD

and comprehensive assessment of the RA-related HF and the

associated treatments. Further studies are required to reduce the

incidence and mortality of RA-related HF.
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SUPPLEMENTARY FIGURE 1

Mendelian randomization analysis of RA and the risk of HF.

SUPPLEMENTARY FIGURE 2

Mendelian randomization analysis of RA and the risk of NT-proBNP.

SUPPLEMENTARY FIGURE 3

Mendelian randomization analysis of AD and the risk of HF.

SUPPLEMENTARY FIGURE 4

Mendelian randomization analysis of AD and the risk of NT-proBNP.

SUPPLEMENTARY FIGURE 5

The MR “leave-one-out” sensitivity analysis of RA on HF.

SUPPLEMENTARY FIGURE 6

The MR “leave-one-out” sensitivity analysis of RA on NT-proBNP.

SUPPLEMENTARY FIGURE 7

The MR “leave-one-out” sensitivity analysis of AD on HF.

SUPPLEMENTARY FIGURE 8

The MR “leave-one-out” sensitivity analysis of AD on NT-proBNP.

SUPPLEMENTARY FIGURE 9

Funnel plots of RA/AD with HF/BNP. The X-axis represents odds ratio (OR),

and the Y-axis represents standard error (SE). (A)RA to HF. (B) AD to HF. (C) RA

to NT-proBNP. (D)AD to NT-proBNP.

SUPPLEMENTARY TABLE 1

SNPs used to analyze the causal relationship between RA and HF, RA and NT-

proBNP, AD and HF, AD and NT-proBNP.
References
1. Wasserman A. Rheumatoid arthritis: common questions about diagnosis and
management. Am Fam Physician (2018) 97(7):455–62.
2. Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. Autoimmun
Rev (2003) 2(3):119–25. doi: 10.1016/S1568-9972(03)00006-5
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1154271/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1154271/full#supplementary-material
https://doi.org/10.1016/S1568-9972(03)00006-5
https://doi.org/10.3389/fendo.2023.1154271
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1154271
3. Nielen MM, Van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-
Bruinsma IE, de Koning MH, et al. Specific autoantibodies precede the symptoms of
rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum
(2004) 50(2):380–6. doi: 10.1002/art.20018

4. Singh JA, Furst DE, Bharat A, Curtis JR, Kavanaugh AF, Kremer JM, et al. 2012
update of the 2008 American college of rheumatology recommendations for the use of
disease-modifying antirheumatic drugs and biologic agents in the treatment of
rheumatoid arthritis. Arthritis Care Res (Hoboken) (2012) 64(5):625–39. doi:
10.1002/acr.21641

5. Bandyopadhyay D, Banerjee U, Hajra A, Chakraborty S, Amgai B, Ghosh RK,
et al. Trends of cardiac complications in patients with rheumatoid arthritis: analysis of
the united states national inpatient sample; 2005-2014. Curr Probl Cardiol (2021) 46
(3):100455. doi: 10.1016/j.cpcardiol.2019.100455

6. Semb AG, Ikdahl E, Wibetoe G, Crowson C, Rollefstad S. Atherosclerotic
cardiovascular disease prevention in rheumatoid arthritis. Nat Rev Rheumatol (2020)
16(7):361–79. doi: 10.1038/s41584-020-0428-y

7. Avina-Zubieta JA, Thomas J, Sadatsafavi M, Lehman AJ, Lacaille D. Risk of
incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of
observational studies. Ann Rheum Dis (2012) 71(9):1524–9. doi: 10.1136/annrheumdis-
2011-200726

8. Masoud S, Lim PB, Kitas GD, Panoulas V. Sudden cardiac death in patients with
rheumatoid arthritis. World J Cardiol (2017) 9(7):562–73. doi: 10.4330/wjc.v9.i7.562

9. Blyszczuk P, Szekanecz Z. Pathogenesis of ischaemic and non-ischaemic heart
diseases in rheumatoid arthritis. RMD Open (2020) 6(1):e001032. doi: 10.1136/
rmdopen-2019-001032

10. Mantel A, Holmqvist M, Andersson DC, Lund LH, Askling J. Association
between rheumatoid arthritis and risk of ischemic and nonischemic heart failure. J Am
Coll Cardiol (2017) 69(10):1275–85. doi: 10.1016/j.jacc.2016.12.033

11. George J, Mackle G, Manoharan A, Khan F, Struthers AD. High BNP levels in
rheumatoid arthritis are related to inflammation but not to left ventricular
abnormalities: a prospective case-control study. Int J Cardiol (2014) 172(1):e116–8.
doi: 10.1016/j.ijcard.2013.12.119

12. Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology
contribute to understanding environmental determinants of disease? Int J Epidemiol
(2003) 32(1):1–22. 10.1093/ije/dyg070

13. Nattel S. Canadian Journal of cardiology January 2013: genetics and more. Can J
Cardiol (2013) 29(1):1–2. doi: 10.1016/j.cjca.2012.11.015

14. Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, et al. Recent
developments in mendelian randomization studies. Curr Epidemiol Rep (2017) 4
(4):330–45. doi: 10.1007/s40471-017-0128-6

15. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian
randomization: using genes as instruments for making causal inferences in
epidemiology. Stat Med (2008) 27(8):1133–63. doi: 10.1002/sim.3034

16. Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM,
Swanson SA, et al. Strengthening the reporting of observational studies in epidemiology
using mendelian randomization: the STROBE-MR statement. JAMA (2021) 326
(16):1614–21. doi: 10.1001/jama.2021.18236

17. Pistis G, Porcu E, Vrieze SI, Sidore C, Steri M, Danjou F, et al. Rare variant
genotype imputation with thousands of study-specific whole-genome sequences:
implications for cost-effective study designs. Eur J Hum Genet (2015) 23(7):975–83.
doi: 10.1038/ejhg.2014.216

18. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson
JR. Assessing the suitability of summary data for two-sample mendelian randomization
analyses using MR-egger regression: the role of the I2 statistic. Int J Epidemiol (2016) 45
(6):1961–74. doi: 10.1093/ije/dyw220

19. VerbanckM, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy
in causal relationships inferred from mendelian randomization between complex traits and
diseases. Nat Genet (2018) 50(5):693–8. doi: 10.1038/s41588-018-0099-7

20. Morrison J, Knoblauch N, Marcus JH, Stephens M, He X. Mendelian
randomization accounting for correlated and uncorrelated pleiotropic effects using
genome-wide summary statistics. Nat Genet (2020) 52(7):740–7. doi: 10.1038/s41588-
020-0631-4

21. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
instruments: effect estimation and bias detection through egger regression. Int J
Epidemiol (2015) 44(2):512–25. doi: 10.1093/ije/dyv080

22. Nicola PJ, Maradit-Kremers H, Roger VL, Jacobsen SJ, Crowson CS, Ballman
KV, et al. The risk of congestive heart failure in rheumatoid arthritis: a population-
based study over 46 years. Arthritis Rheum (2005) 52(2):412–20. doi: 10.1002/art.20855

23. Wolfe F, Michaud K. Heart failure in rheumatoid arthritis: rates, predictors, and
the effect of anti-tumor necrosis factor therapy. Am J Med (2004) 116(5):305–11. doi:
10.1016/j.amjmed.2003.09.039

24. Crowson CS, Nicola PJ, Kremers HM, O'FallonWM, Therneau TM, Jacobsen SJ,
et al. How much of the increased incidence of heart failure in rheumatoid arthritis is
attributable to traditional cardiovascular risk factors and ischemic heart disease?
Arthritis Rheum (2005) 52(10):3039–44. doi: 10.1002/art.21349

25. Task Force M, Mcdonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A,
et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart
failure: developed by the task force for the diagnosis and treatment of acute and chronic
Frontiers in Endocrinology 0962
heart failure of the European society of cardiology (ESC). with the special contribution
of the heart failure association (HFA) of the ESC. Eur J Heart Fail (2022) 24(1):4–131.
doi: 10.1002/ejhf.2333

26. Ahlers MJ, Lowery BD, Farber-Eger E, Wang TJ, BradhamW, Ormseth MJ, et al.
Heart failure risk associated with rheumatoid arthritis-related chronic inflammation. J
Am Heart Assoc (2020) 9(10):e014661. doi: 10.1161/JAHA.119.014661

27. Davis JM3rd, Roger VL, Crowson CS, Kremers HM, Therneau TM, Gabriel SE.
The presentation and outcome of heart failure in patients with rheumatoid arthritis
differs from that in the general population. Arthritis Rheum (2008) 58(9):2603–11. doi:
10.1002/art.23798

28. Davis JM3rd, Lin G, Oh JK, Crowson CS, Achenbach SJ, Therneau TM, et al.
Five-year changes in cardiac structure and function in patients with rheumatoid
arthritis compared with the general population. Int J Cardiol (2017) 240:379–85. doi:
10.1016/j.ijcard.2017.03.108

29. Logstrup BB, Ellingsen T, Pedersen AB, Kjaersgaard A, Bøtker HE, Maeng M.
Development of heart failure in patients with rheumatoid arthritis: a Danish
population-based study. Eur J Clin Invest (2018) 48(5):e12915. doi: 10.1111/eci.12915

30. Kao AH, Krishnaswami S, Cunningham A, Edmundowicz D, Morel PA, Kuller
LH, et al. Subclinical coronary artery calcification and relationship to disease duration
in women with rheumatoid arthritis. J Rheumatol (2008) 35(1):61–9.

31. Khalid U, Egeberg A, Ahlehoff O, Lane D, Gislason GH, Lip GYH, et al. Incident
heart failure in patients with rheumatoid arthritis: a nationwide cohort study. J Am
Heart Assoc (2018) 7(2):e007227. doi: 10.1161/JAHA.117.007227

32. Nair S, Singh Kahlon S, Sikandar R, Peddemul A, Tejovath S, Hassan D, et al.
Tumor necrosis factor-alpha inhibitors and cardiovascular risk in rheumatoid arthritis:
a systematic review. Cureus (2022) 14(6):e26430. doi: 10.7759/cureus.26430

33. Schattner A. Patients with new-onset rheumatoid arthritis had increased risk for
ischemic and nonischemic heart failure. Ann Intern Med (2017) 167(2):JC8. doi:
10.7326/ACPJC-2017-167-2-008

34. Giles JT, Fert-Bober J, Park JK, Bingham CO, Andrade F, Fox-Talbot K, et al.
Myocardial citrullination in rheumatoid arthritis: a correlative histopathologic study.
Arthritis Res Ther (2012) 14(1):R39. doi: 10.1186/ar3752

35. Nikiphorou E, De Lusignan S, Mallen CD, Khavandi K, Bedarida G, Buckley CD,
et al. Cardiovascular risk factors and outcomes in early rheumatoid arthritis: a
population-based study. Heart (2020) 106(20):1566–72. doi: 10.1136/heartjnl-2019-
316193

36. Chang CM, Lin JR, Fu TC. Associations between sarcopenia, heart failure and
myocardial infarction in patients with systemic lupus erythematosus and rheumatoid
arthritis. Front Med (Lausanne) (2022) 9:882911. doi: 10.3389/fmed.2022.882911

37. Park E, Griffin J, Bathon JM. Myocardial dysfunction and heart failure in
rheumatoid arthritis. Arthritis Rheumatol (2022) 74(2):184–99. doi: 10.1002/art.41979

38. BaniaamamM, Handoko ML, Agca R, Heslinga SC, Konings TC, van Halm VP,
et al. The effect of anti-TNF therapy on cardiac function in rheumatoid arthritis: an
observational study. J Clin Med (2020) 9(10):3145. doi: 10.3390/jcm9103145

39. Solus J, Chung CP, Oeser A, Avalos I, Gebretsadik T, Shintani A, et al. Amino-
terminal fragment of the prohormone brain-type natriuretic peptide in rheumatoid
arthritis. Arthritis Rheum (2008) 58(9):2662–9. doi: 10.1002/art.23796

40. Provan SA, Semb AG, Hisdal J, Stranden E, Agewall S, Dagfinrud H, et al.
Remission is the goal for cardiovascular risk management in patients with rheumatoid
arthritis: a cross-sectional comparative study. Ann Rheum Dis (2011) 70(5):812–7. doi:
10.1136/ard.2010.141523

41. Lazurova I, Tomas L. Cardiac impairment in rheumatoid arthritis and influence
of anti-TNFalpha treatment. Clin Rev Allergy Immunol (2017) 52(3):323–32. doi:
10.1007/s12016-016-8566-3

42. Tomas L, Lazurova I, Oetterova M, Pundová L, Petrásǒvá D, Studenčan M. Left
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Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to

half of the individuals with diabetes. Elevated blood glucose levels are a key

underlying cause of DKD, but DKD is a complex multifactorial disease, which

takes years to develop. Family studies have shown that inherited factors also

contribute to the risk of the disease. During the last decade, genome-wide

association studies (GWASs) have emerged as a powerful tool to identify genetic

risk factors for DKD. In recent years, the GWASs have acquired larger number of

participants, leading to increased statistical power to detect more genetic risk

factors. In addition, whole-exome and whole-genome sequencing studies are

emerging, aiming to identify rare genetic risk factors for DKD, as well as

epigenome-wide association studies, investigating DNA methylation in relation

to DKD. This article aims to review the identified genetic and epigenetic risk

factors for DKD.

KEYWORDS

diabetic kidney disease, kidney failure, GWAS, genome sequencing, exome sequencing,
epigenetics, epigenome-wide association study, EWAS
1 Introduction

A total of 537million people worldwide have diabetes (1), characterized by elevated blood

glucose. Despite treatment, which aims to normalize the blood glucose concentrations,

diabetes can lead to micro- and macrovascular organ damage through various molecular

pathways, including increased reactive oxygen species, which further affect the downstream

pathways such as the polyol pathway flux, advanced glycation end-product formation and

activation, protein kinase C activation, and the hexosamine pathway flux (2). These

microvascular complications include diabetic kidney disease (DKD), sight-threatening

proliferative diabetic retinopathy, and diabetic neuropathy. The complications reduce the

quality of life, increase mortality, and account for the majority of the health care costs for

diabetes (3, 4). Together, 30%–50% of individuals with diabetes develop DKD (5–7).
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Individuals with type 1 diabetes (T1D) develop diabetes early in life

and, thus, have a particularly high lifetime risk of developing

complications. In up to 20% of individuals with T1D, DKD leads

to kidney failure requiring dialysis or kidney transplantation (8).

Because of the improvements in the management and treatment of

both diabetes and its complications (9), the 25-year cumulative

incidence of DKD has halved in those diagnosed in the 1980s

compared to those diagnosed in the 1970s. However, there was no

further improvement in the later cohorts, and 36% of individuals with

severe DKD still progressed to kidney failure within 15 years (6).

DKD also substantially increases the risk of CVD, and as many as

40% of individuals with T1D and DKD develop CVD by the age of

40 (10).

DKD is characterized by urinary albumin excretion and

gradually decreasing renal function, measured or estimated as

glomerular filtration rate (eGFR). Urinary albumin excretion can

be classified as normal or mildly increased, moderately, or severely

increased albuminuria; the two latter ones are also called micro- and

macroalbuminuria. The classical view has been that albuminuria

represents an earlier sign of DKD, followed by reduced eGFR and

eventually kidney failure, but a substantial proportion of individuals

with DKD may present with reduced kidney function even without

albuminuria (11). On the tissue level, DKD is characterized by

glomerular and tubular basement membrane thickening, mesangial

expansion, glomerulosclerosis, podocyte effacement, and,

ultimately, nephron loss (12). It is of note, however, that kidney

biopsies are rarely taken for diagnostic purposes. Therefore, any

chronic kidney disease (CKD) in an individual with diabetes is a

priori considered as DKD, irrespective of the underlying

pathophysiology (11). Lack of a biopsy proof is less of a problem

in T1D because most of the individuals with T1D and DKD have

histologically true diabetic nephropathy.

DKD is a complex multifactorial disease in which both genetic

and environmental risk factors contribute to the development and

progression of the disease. However, the exact molecular mechanisms

leading to DKD remain poorly understood. Apart from albuminuria

and eGFR, no other biomarkers are yet in clinical use for monitoring

disease progression or identification of individuals at risk, and only a

few treatment options exist for the prevention of DKD, especially in

individuals with T1D. To address these issues, genetic studies aim to

identify the underlyingmolecular mechanisms leading to DKD. Here,

we review the genetic factors that have been identified for DKD,

mainly based on genome-wide association studies (GWASs)

performed within the latest decade and summarize the main

findings from epigenetic studies—being the potential dynamic link

between genes and the environment—investigating the DNA

methylation changes associated with DKD.
2 Heritability of DKD

Three decades ago, family studies reported clustering of DKD in

siblings with T1D, suggesting an inherited component of the disease

(13–17). More recently, a genome-wide estimation of the narrow-sense

DKD heritability—the proportion of phenotypic variance explained by

additive genetic factors—based on unrelated individuals with T1D
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reported 24%–42% heritability of DKD, depending on the phenotype

definition. The heritability estimates were as high as 59% when

adjusted for sex, diabetes duration and age at diabetes diagnosis, and

with a tendency to higher heritability estimates for the more severe

definitions (18). Similar analyses in individuals with T2D suggested

only 8%–25% heritability for DKD, potentially reflecting more

heterogeneous mechanisms leading to DKD in T2D in addition to a

more important contribution of environmental factors (19, 20). Indeed,

a sub-analysis of individuals with T2D from the Action to Control

Cardiovascular Risk in Diabetes trial suggested that the gene–treatment

interaction explains a large part of the phenotypic variance in

microalbuminuria. Nevertheless, the heritability estimates for

albuminuria and eGFR both in T1D and T2D range between 7%

and 75% (19, 21–25).
3 Common genetic variants
associated with DKD

3.1 Early genetic studies for DKD

The early genetic studies on DKD utilized various microsatellite

markers and single-nucleotide polymorphisms (SNPs) for family-

based linkage studies to identify chromosomal regions co-

segregating with DKD. One of the strongest linkage peaks with a

logarithm of odds (LOD) score of 3.1 was obtained in a candidate

gene study of the AGTR1 on chromosome 3q (26), and many

genome-wide linkage scans reported a suggestive linkage peak on

the extended 3q21-q29 region (27–31). Subsequent fine-mapping

efforts of candidate genes on the 3q region, comparing the allele

frequencies of tens or hundreds of SNPs in unrelated DKD cases

and controls, suggested, e.g., ADIPOQ (32) and NCK1 (33) to be

involved in DKD. A linkage analysis in Turkish families with T2D

and DKD identified a strong linkage peak on chr18q22.3–23 (LOD

score = 6.1) (34), subsequently fine-mapped to a polymorphism in

the CNDP1 gene associated with both DKD and serum carnosinase

concentrations (35).

In addition to the positional candidates, biological candidate

gene studies were performed on the basis of information and

hypotheses of the underlying biology. However, the results were

mostly inconclusive, with limited statistical evidence due to the

small sample number, lenient statistical threshold, and lack of

external replication (36). The findings with the strongest

statistical evidence include variants on the promoter region of the

EPO gene encoding for erythropoietin [rs1617640, p-value = 2.7 ×

10−11 (37)], as well as in the SLC19A3 gene encoding for a high-

affinity thiamine (vitamin B) transporter [rs12694743, p = 2.30 ×

10−8 (38)], both associated with a combined phenotype of kidney

failure and diabetic retinopathy.
3.2 Genome-wide association studies
on DKD

To overcome the limitations of the candidate gene studies, the

first GWASs covering hundreds of thousands of SNPs were pursued
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nearly two decades ago, identifying genetic risk factors for both T2D

(39–41) and T1D (42). The GWASs have since identified thousands

of genetic loci affecting common complex diseases, supporting the

multifactorial genetic background and the common disease/

common variant (CDCV) hypothesis that suggests that common

genetic factors significantly contribute to the risk of common

diseases and traits (43). Because of the burden of multiple testing

of hundreds of thousands, or even millions of genetic variants, only

associations reaching the stringent threshold of a p-value < 5 × 10−8

are considered genome-wide significant. The GWASs on DKD have

to date identified 41 loci genome-wide significantly associated with

various case-control definitions of DKD, as detailed in Table 1.

3.2.1 Genome-wide association studies on DKD
in type 1 diabetes

One of the first GWASs on DKD included 1,705 individuals

with T1D from the Genetics of Kidneys in Diabetes (GoKinD)

collection and suggested multiple putative susceptibility loci,

including a variant in the FRMD3 gene suggestively associated

with DKD (p-value = 5.0 × 10−7) (54) and replicated by some of the

subsequent studies (54, 55). Re-analysis of the data, including

imputed variants, suggested additional loci, including SORBS1

(56); variants in the same gene were also supported by a later

GWAS including 1,462 additional individuals with T1D, but the

association was attenuated in the replication (57).

The first GWAS meta-analysis on DKD combining data across

multiple studies was undertaken by the Genetics of Nephropathy,

an International Effort consortium. The GWAS meta-analysis

discovery stage included 6,691 participants of European ancestry

and with T1D from the GoKinD US, the Finnish Diabetic

Nephropathy (FinnDiane) Study, and from the All Ireland-

Warren 3-Genetics of Kidneys in Diabetes UK and Republic of

Ireland (UK-ROI) Collection. The combined meta-analysis with

11,847 participants with T1D resulted in two loci, an intronic

variant rs7583877 in AFF3, and an intergenic rs12437854 between

in the RGMA and MCTP2 genes associated with kidney failure in

T1D with a p-value < 5 × 10−8. Furthermore, the authors reported a

suggestive association for rs7588550 in the ERBB4 gene associated

with DKD (p-value = 2.1 × 10−7). In vitro analyses on a renal

epithelial cell line suggested that AFF3 influences the transforming

growth factor–b1 (TGF-b1)–induced fibrotic responses (44).

Of note, nearly 90% of the GWAS findings are located on non-

coding regions and are enriched for gene regulatory regions, rather

than changing the protein amino acid sequence and structure (58,

59). The associated genetic variant does not necessarily affect the

gene expression of the underlying or the closest gene, and, thus, a

common challenge in GWAS is to identify the target gene of the

non-coding regulatory variants. With large expression quantitative

trait locus (eQTL) databases that are now available, one can link the

genotypes to gene expression levels. On the basis of eQTL data from

whole blood in the eQTLGen.org database, the rs7583877 variant in

the AFF3 gene is indeed associated with AFF3 gene expression (p-

value = 2.9 × 10−19) (60).

In the same consortium, an analysis stratified by gender

identified a variant between the SP3 and CDCA7 genes associated
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with kidney failure in women (rs4972593, p-value = 3.9 × 10−8)

(45). Multiple estrogen-responsive elements were predicted near

rs4972593, and the SP3 gene showed higher expression in kidney

glomeruli in women (45). Furthermore, the Sp3 transcription factor

directly interacts with the estrogen receptor-a (61) and regulates

kidney-related genes such as TGFBI, CD2AP, and VEGFA,

supporting its role in kidney failure in women with T1D.

The largest GWAS on DKD in T1D to date was performed by

the Diabetic Nephropathy Collaborative Research Initiative

(DNCRI) consortium, including up to 19,406 individuals with

T1D and of European ancestry from 17 cohorts. The analysis

comprised 10 different case-control definitions for DKD, based on

either albuminuria, eGFR, or both. Altogether, 16 loci reached a p-

value < 5 × 10−8, with the strongest association for a common

missense mutation rs55703767 (Asp326Tyr) in the collagen type IV

alpha 3 chain (COL4A3) gene, associated with a 21% lower risk of

DKD (p-value = 5.3 × 10−12) (49). The gene encodes a major

structural component of the glomerular basement membrane

(GBM). In kidney biopsies of the Renin Angiotensin System

Study (RASS) study participants with T1D and normal AER, the

carriers of the protective variant had thinner GBM (49). The variant

effect was dependent on glycemia, as the association at rs55703767

was observed only among individuals with HbA1c ≥ 7.5% in the

HbA1c-stratified sub-analysis of 4,321 FinnDiane participants with

longitudinal HbA1c measurements. Similarly, in the Diabetes

Control and Complications Trial (DCCT), followed by the

Epidemiology of Diabetes Interventions and Complications

(DCCT-EDIC) study, the rs55703767 effect on DKD was stronger

among those recruited in the secondary cohort and randomized to

conventional treatment and therefore had higher HbA1c. Thus, the

COL4A3 rs55703767 association with DKD seems specific to

diabetes and amplified by poor glucose control (49). The lead loci

in the DNCRI meta-analysis also included other collagen-related

findings: association with microalbuminuria for the rs116772905

variant in the DDR1 gene encoding the epithelial discoidin domain-

containing receptor 1, which binds collagens including type IV

collagen; and gene aggregate analysis found variants in the

COL20A1 gene associated with severe CKD.

3.2.2 Genome-wide association studies on DKD
in type 2 diabetes

One of the first GWASs on DKD among individuals with T2D

and the first transethnic meta-analysis of DKD included 4,909

individuals with T2D from the Family Investigation of

Nephropathy and Diabetes (FIND) consortium in the discovery

cohort and, altogether, 13,736 individuals in the final meta-analysis

(including 6,229 non-diabetic controls). The analysis identified

rs12523822 near the SCAF8 and CNKSR3 genes associated with a

43% lower risk of DKD in American Indians (p-value = 5.7 × 10−9)

and with directionally consistent results across the ethnic groups

(46). CNKSR3 is a direct mineralocorticoid receptor target gene

highly expressed in the renal cortical collecting ducts. The gene is

involved in the transepithelial sodium transport and is upregulated

in response to physiologic aldosterone concentrations (62).

Clinically, renin-angiotensin-aldosterone system blockade is the
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TABLE 1 Variants genome-wide significantly (p-value < 5 × 10−8) associated with DKD.

SNP
Reported
gene

Diabetes popula-
tion Phenotype

N cases vs.
controls P-value EA NEA OR Refs

rs7583877 AFF3 T1D ESKD 1,786 vs. 8,718 1.2 × 10−8 C T 1.29 (44)

rs12437854 RGMA/
MCTP2

T1D ESKD 1,786 vs. 8,718 2.0 × 10−9 G T 1.8 (44)

rs4972593 SP3/CDCA7 Women with T1D ESKD 688 vs. 2,009 3.9 × 10−8 A T 1.81 (45)

rs12523822 SCAF8/
CNKSR3

T1D + T2D a DKD 5,226 vs. 8,510 1.3 × 10−8 G C 0.73 (46)

rs56094641 FTO T2D DKD 4,022 vs. 6,980 7.7 × 10−10 G A 1.23 (47)

rs9942471 GABRR1 T2D Microalbuminuria 1,989 vs. 2,238 4.5 × 10−8 A C 1.25 (19)

rs72858591 RND3/RBM43 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 4.5 × 10−8 C T 1.42 (48)

rs58627064 SLITRK3 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 6.8 × 10−10 T G 1.62 (48)

rs142563193 ENPP7 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 1.2 × 10−8 A G 0.74 (48)

rs142671759 ENPP7 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 5.5 × 10−9 C T 2.26 (48)

rs4807299 GNG7 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 3.2 × 10−8 A C 1.67 (48)

rs9622363 APOL1 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 1.4 × 10−10 A G 0.77 (48)

rs75029938 GRAMD3 T2D excluding APOL1
carriers b

ESKD 2,768 vs. 6,059 2.0 × 10−9 T C 1.89 (48)

rs17577888 MGAT4C T2D excluding APOL1
carriers b

ESKD 2,768 vs. 6,059 3.9 × 10−8 T G 0.67 (48)

rs55703767 COL4A3 T1D DKD 4,948 vs. 12,076 5.3 × 10−12 T G 0.79 (49)

rs12615970 COLEC11 T1D CKD 4,266 vs. 14,838 9.4 × 10−9 G A 0.76 (49)

rs142823282 TAMM41 T1D Microalbuminuria 2,477 vs. 12,113 1.1 × 10−11 G A 6.75 (49)

rs145681168 HAND2-AS1 T1D Microalbuminuria 2,477 vs. 12,113 5.4 × 10−9 G A 5.53 (49)

rs118124843 DDR1 T1D Microalbuminuria 2,477 vs. 12,113 3.4 × 10−8 T C 3.78 (49)

rs77273076 MBLAC1 T1D Microalbuminuria 2,477 vs. 12,113 1.0 × 10−8 T C 9.12 (49)

rs551191707 PRNCR1 T1D ESKD vs.
macroalbuminuria

2,187 vs. 2,725 4.4 × 10−8 CA C 1.7 (49)

rs144434404 BMP7 T1D Microalbuminuria 2,477 vs. 12,113 4.7 × 10−9 T C 6.75 (49)

rs115061173 LINC01266 T1D ESKD 2,187 vs. 12,101 4.1 × 10−8 A T 9.39 (49)

rs116216059 STAC T1D ESKD 2,187 vs. 17,216 1.4 × 10−8 A C 8.76 (49)

rs191449639 MUC7 T1D DKD 4,948 vs. 12,076 1.3 × 10−8 A T 32.5 (49)

rs149641852 SNCAIP T1D CKD extreme 2,235 vs. 14,993 1.4 × 10−8 T G 9.03 (49)

rs183937294 PLEKHA7 T1D Microalbuminuria 2,477 vs. 12,113 1.7 × 10−8 G T 17.3 (49)

rs61983410 STXBP6 T1D Microalbuminuria 2,477 vs. 12,113 3.1 × 10−8- T C 0.79 (49)

rs113554206 PAPLN T1D Macroalbuminuria 2,751 vs. 12,124 8.5 × 10−9 A G 4.62 (49)

rs185299109 LINC00470/
METTL4

T1D CKD 4,266 vs. 14,838 1.3 × 10−8 T C 20.7 (49)

rs72763500 NID1 T2D DKD 11,327 vs. 7,513 2.6 × 10−8 C T 0.79 (50)

(Continued)
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main therapy for individuals with DKD and many other kidney

diseases (63, 64). It is of note that the Finerenone in Reducing

Kidney Failure and Disease Progression in Diabetic Kidney Disease

(FIDELIO-DKD) trial with the non-steroidal mineralocorticoid-

receptor-antagonist finerenone on top of standard of care showed

cardio- and renoprotection in albuminuric individuals with

T2D (65).

As end-stage kidney disease (ESKD) is disproportionately affecting

African Americans (AAs), a subsequent FIND study GWAS focused

on AAs and was extended to 3,432 T2D-ESKD cases and 6,977 non-

diabetic non-nephropathy controls (N = 10,409), followed by a

discrimination analysis in 2,756 T2D non-nephropathy controls to

exclude T2D-associated variants. Six independent variants located in

or near RND3/RBM43, SLITRK3, ENPP7, GNG7, EFNB2, and APOL1

were associated with T2D-ESKD (p-value < 5 × 10−8), whereby

variants in EFNB2, GNG7, and APOL1 were also associated with all-

cause ESKD (48). EFNB2 encodes Ephrin-B2 and is expressed in the

developing nephron and contributes to the glomerular microvascular

assembly (66). The APOL1 missense mutations rs73885319

(Ser342Gly), rs60910145 (Ile384Met), and rs71785313 (Asn388 and

Tyr389 deletion), also known as theAPOL1G1 and G2 haplotypes, are

only found in individuals with African ancestry and are a major

contributor to non-diabetic ESKD in AAs (48, 67, 68). To enrich for

T2D-associated ESKD, an analysis excluding the APOL1 ESKD-risk

allele carriers identified additional variants in the GRAMD3

(rs75029938, p-value = 2.0 × 10–9) and MGAT4C (rs17577888, p-

value = 3.9 × 10−8) genes (48).
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A GWAS in 7,614 Japanese individuals with T2D found the

rs56094641 in the FTO gene to be associated with DKD (p-value =

7.6 × 10−10) (47). FTO is one of the strongest genetic loci for obesity and

adiposity (69), and rs56094641 is in linkage disequilibrium (LD) with

the obesity signal such that the DKD risk-associated allele is also

associated with obesity. Indeed, other Mendelian randomization

studies utilizing genetic information suggest that obesity is a causal

risk factor for DKD (52, 70). However, the association between

rs56094641 and DKD was not affected by adjustment for body mass

index (BMI), suggesting that the locus affects DKD through another

mechanism than an increase in BMI (47). Indeed, the FTO locus has

been highlighted as a pleiotropic one, associated with multiple

biomarkers and traits such as sweet vs. salty taste preference through

modifying the regulatory properties of enhancers targeting the IRX3

and IRX5 gene expression in various tissues (71, 72).

The SUrrogate markers for Micro- and Macrovascular hard

endpoints for Innovative diabetes Tools (SUMMIT) Consortium

GWAS meta-analysis of DKD in T2D included 5,717 individuals of

European ancestry and with T2D at the discovery stage. After joint

analysis with additional European individuals, rs9942471 upstream

GABRR1, encoding the rho1 subunit of the GABA type a receptor,

was associated with microalbuminuria (p-value = 4.5 × 10−8),

although the association did not replicate in Asian individuals or

in individuals with T1D (19). The variant is in LD with the lead

eQTL association signal for GABRR1 expression in multiple tissues

(19). Extended to individuals with T1D and other ethnicities, the

joint meta-analysis involved up to 40,340 subjects with diabetes.
TABLE 1 Continued

SNP
Reported
gene

Diabetes popula-
tion Phenotype

N cases vs.
controls P-value EA NEA OR Refs

rs12917707 UMOD T2D DKD 11,327 vs. 7,513 4.5 × 10−8 T G 0.86 (20,
50)

rs538044833 c CCSER1 T1D CKD 727 vs. 3,962 2.8 × 10−8 C T 3.0 (51)

rs72831309 TENM2 T1D + T2D CKD + DKD 4,122 vs. 13,972 9.8 × 10−9 A G 2.08 (52)

rs55703767 COL4A3 T1D + T2D DKD 6,705 vs. 15,430 3.6 × 10−11 T G 0.86 (52)

rs141560952 DIS3L2 Any diabetes vs. healthy
controls

CKD 1,194 vs. 9,568 3.6 × 10−9 AGGG A 192.6 (53)

rs425827 KRT6B Any diabetes vs. healthy
controls

CKD 1,194 vs. 9,568 2.7 × 10−9 A T 5.31 (53)

rs73038008 PLD1 T1D or T2D DKD d 1,973 vs. 5,734 1.7 × 10−8 C T 2.55 (20)

rs77924615 PDILT/UMOD T1D or T2D DKD d 1,973 vs. 5,734 7.8 × 10−9 A G 0.75 (20)

rs75733846 WSCD2 T2D ESRD e 121 vs. 4,197 3.7 × 10−8 T C 7.16 (20)

rs559427701 SETDB2 T2D ESRD e 121 vs. 4,197 4.0 × 10−9 A C 11.36 (20)

rs62202699 LOC105372639 T2D Microalbuminuria f 702 vs. 2,210 4.3 × 10−9 T C 2.97 (20)
frontier
SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. OR: odds ratio. Refs: If multiple references are given, then the data in other columns for the same locus are taken from the first
listed reference.
aNot all controls had diabetes.
bControls did not have diabetes.
cIdentified as underlying a linkage peak for DKD.
dCKD/DKD in self-reported, primary care, hospital, or death records.
eDialysis or a rise of serum creatinine to 3.3 mg/dl (292 mmol/L).
fUACR ≥3.4 mg/mmol.
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However, meta-analysis with individuals with T1D (18) revealed no

loci for dichotomous DKD phenotypes. Nevertheless, variants in

the UMOD and PRKAG2 loci, previously associated with eGFR and

CKD in the general population (73, 74), were associated with eGFR

also in individuals with diabetes (Table 2) (19).
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3.2.3 Genome-wide association studies on DKD
in combined diabetes populations

Meta-analysis of the DNCRI [T1D (49)] and SUMMIT

consortia [both T1D (18) and T2D (19)], excluding the overlap

between the consortia, and harmonized for the 10 phenotype
TABLE 2 Variants associated with eGFR in diabetes.

SNP Reported gene Diabetes population Phenotype N total P-value EA NEA Beta Refs

rs12917707 a,b UMOD T1D + T2D log eGFR per allele 11,522 2.5 × 10−8 T G 0.0266 (19, 50, 75)

rs11864909 a UMOD T1D + T2D ml/min/1.73 m2 23,708 2.3 × 10−12 T C 2.11 (19)

rs1974990 SSB T1D + T2D ml/min/1.73 m2 13,158 4.8 × 10−8 G T 4.07 (19)

rs10224002 a PRKAG2 T1D + T2D ml/min/1.73 m2 22,165 2.7 × 10−8 A G 2.01 (19, 50)

rs267738 a CERS2 Any log eGFR per allele 176,573 2.7 × 10−8 T G −0.0065 (76)

rs4665972 a SNX17 Any log eGFR per allele 170,721 3.3 × 10−9 T C 0.0057 (76)

rs10206899 a ALMS1P Any log eGFR per allele 143,419 1.6 × 10−8 T C −0.0068 (76)

rs1047891 a CPS1 Any log eGFR per allele 170,741 5.6 × 10−12 A C −0.007 (76)

rs4663171 SH3BP4 Any log eGFR per allele 170,901 8.8 × 10−9 A T −0.0072 (76)

rs28817415 a SHROOM3 Any log eGFR per allele 176,910 9.9 × 10−26 T C −0.0091 (76)

rs10857147 a FGF5 Any log eGFR per allele 170,848 2.4 × 10−10 A T −0.0061 (76)

rs434215 a,b TPPP Any log eGFR per allele 119,397 3.5 × 10−19 A G −0.0119 (76)

rs3812036 a SLC34A1 Any log eGFR per allele 170,458 2.1 × 10−12 T C −0.0073 (76)

rs34246779 a HMGN4 Any log eGFR per allele 172,626 1.1 × 10−8 A G −0.0091 (76)

rs3101824 a,b SLC22A2 Any log eGFR per allele 176,569 3.6 × 10−23 T C −0.0143 (76)

rs11761603 a UNCX Any log eGFR per allele 168,668 4.8 × 10−15 T C 0.0075 (76)

rs6464165 a PRKAG2 Any log eGFR per allele 136,252 4.0 × 10−21 T C 0.0107 (76)

rs9314272 a STC1 Any log eGFR per allele 177,021 9.4 × 10−10 A G −0.0054 (76)

rs7033278 a PIP5K1B c Any log eGFR per allele 176,480 1.3 × 10−10 T C 0.0062 (76)

rs80282103 a LARP4B Any log eGFR per allele 176,591 6.8 × 10−11 A T 0.0109 (76)

rs55917128 LOXL4 Any log eGFR per allele 176,998 4.6 × 10−8 T C −0.0048 (76)

rs963837 a,b DCDC5 Any log eGFR per allele 170,722 2.4 × 10−34 T C −0.0108 (76)

rs2004649 a MAP3K11 Any log eGFR per allele 176,918 6.1 × 10−10 A G −0.0055 (76)

rs10899482 a GAB2 Any log eGFR per allele 177,039 1.2 × 10−8 A C −0.0058 (76)

rs2461700 a GATM Any log eGFR per allele 177,144 1.5 × 10−15 T C 0.008 (76)

rs17631603 a WDR72 Any log eGFR per allele 177,042 6.6 × 10−15 A G 0.0068 (76)

rs11636251 a NRG4 Any log eGFR per allele 171,081 1.9 × 10−14 T C −0.0069 (76)

rs77924615 a,b UMOD/PDILT Any log eGFR per allele 170,741 1.9 × 10-106 A G 0.0234 (76)

rs9895661 a BCAS3 Any log eGFR per allele 176,461 6.7 × 10−10 T C 0.0066 (76)

rs8096658 a NFATC1 Any log eGFR per allele 167,173 1.6 × 10−12 C G 0.0067 (76)

rs6015028 a PCK1 Any log eGFR per allele 176,558 1.4 × 10−9 A T −0.0071 (76)

rs1882961 a,b NRIP1 Any log eGFR per allele 176,630 3.6 × 10−14 T C −0.0073 (76)

rs9607518 a MAFF Any log eGFR per allele 170,649 2.2 × 10−8 T C −0.0049 (76)
fro
SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. Beta: effect size beta estimate. Refs: If multiple references are given, then the data in other columns for the same locus are taken
from the first listed reference.
aAssociated with eGFR also in the general population.
bSignificant effect size difference between individuals with and without diabetes.
cDNA methylation of CpGs in the gene region associated with DKD (77, 78).
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definitions of DKD for available cohorts, included nearly 27,000

individuals with diabetes (52). The meta-analysis identified a novel

intronic variant, rs72831309 in the TENM2 gene, to be associated

with a lower risk of the combined CKD-DKD phenotype (p-value =

9.8 × 10−9). TENM2 gene expression in kidney tubules correlated

positively with eGFR (p-value = 1.6 × 10−8) and negatively with

tubulointerstitial fibrosis (p-value = 2.0 × 10−9). In addition, the

gene-level analysis identified 10 genes significantly associated with

DKD (COL20A1, DCLK1, EIF4E, PTPRN–RESP18, GPR158, INIP–

SNX30, LSM14A, and MFF; p-value <2.7 × 10−6). Transcriptome-

wide association study integrating GWAS with human glomerular

and tubular gene expression data demonstrated a higher tubular

AKIRIN2 gene expression associated with DKD (p-value = 1.1 ×

10−6). Expression of multiple lead genes correlated with renal

phenotypes, e.g., tubular DCLK1 expression correlated with

fibrosis (p-value = 7.4 × 10−16) and SNX30 expression with eGFR

(p-value = 5.8 × 10−14), and negatively with fibrosis (p-value < 2.0 ×

10−16) (52).

In addition to the disease-specific cohorts, large population-

based biobanks allow analyses of an increasing number of samples

and phenotypes. A GWAS on DKD in the UK Biobank included

13,123 unrelated individuals with diabetes and of European origin.

Of note, the heritability estimate for DKD, defined based on ICD-10

codes (E11.2, T2D with kidney complications, or any CKD code

assigned after diabetes) or a measurement of albuminuria or eGFR,

was only 0.027 with a standard deviation (SD) of 0.03; heritability

estimate for eGFR in T2D was higher, 0.1 with an SD of 0.01.

GWAS on DKD and eGFR identified variants in the UMOD and

PRKAG2 loci (50). Meta-analysis with the SUMMIT T2D study

further identified a novel variant, rs72763500, associated with the

combined DKD definition. The variant is associated with alternative

gene splicing of the NID1 gene (50), encoding for nidogen-1, a

sulfated glycoprotein involved in the development of GBM, where it

binds to laminin and type IV collagen (79). Another study in the

UK Biobank, although focused on heritability estimates for diabetic

micro- and macrovascular complications, additionally found a

variant rs73038008 near PLD1 associated with DKD (self-

reported or medical records); as well as variants in WSCD2 and

SETDB2 associated with ESKD and in LOC105372639 associated

with microalbuminuria (20).
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3.2.4 Genome-wide association studies on
albuminuria and eGFR in diabetes

In addition to the dichotomous case-control definitions of

DKD, GWASs have also explored albuminuria and eGFR as

continuous traits in individuals with diabetes (Figure 1). Only few

studies have identified variants with genome-wide significance for

albuminuria (Table 3) or eGFR (Table 2), and most of these loci

were identified in diabetes-specific sub-analyses of larger general

population studies.

A GWAS including 1,925 Finnish individuals with T1D

identified rs10011025 in the GLRA3 associated with albuminuria

(p-value = 1.5 × 10−9) (25). The association did not replicate in

3,771 other European individuals with T1D (p-value = 0.04,

opposite direction) (25); however, the association was

subsequently replicated in 1,259 additional Finnish individuals

with T1D (81). The association was pronounced in individuals

with HbA1c > 7%. The GLRA3 gene encodes the a3 subunit of

glycine receptors. In pancreatic a-cells, glycine receptors stimulate

glucagon release in response to glycine, thus counterbalancing

the effects of insulin (83). Interestingly, the association

with albuminuria was only evident among individuals with a 24-h

urine collection. Because exercise can acutely increase albuminuria

due to excess hemodynamic pressure (84), the authors hypothesized

that the variant might affect renal sensitivity to hemodynamic

pressure (81). Of note, in the eQTLGen database, the rs10011025

variant is associated with the expression of the HPGD gene,

encoding for the 15-hydroxyprostaglandin dehydrogenase that

catalyzes the prostaglandin catabolic pathway; prostaglandins are

locally acting vasodilators and regulate renal hemodynamics in the

kidneys (85).

Another GWAS on albuminuria included 54,450 individuals

from the general population, confirming the previously identified

CUBN locus (86) for albuminuria. In the sub-analysis of 5,825

individuals with diabetes, variants in the HS6ST1 (rs13427836, p-

value = 6.3 × 10−7) and RAB38/CTSC loci (rs649529, p-value = 5.8 ×

10−7) were suggestively associated with albuminuria in subjects

with, but not without diabetes (87). RAB38 expression was found

higher in the tubules of individuals with DKD compared to healthy

controls, and Rab38 knockout resulted in higher urinary albumin

concentrations in diabetic rat models (87). A larger study including
FIGURE 1

GWAS on DKD, albuminuria, and eGFR in diabetes. Point size indicates the number of samples. Studies with individuals with T1D are colored red,
T2D with blue, and combined T1D + T2D, any type of diabetes or unspecified type of diabetes with gray. Gene names indicate loci reaching
genome-wide significance (p-value < 5 × 10−8).
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564,257 individuals, of which 51,541 individuals with diabetes,

identified eight loci associated with albuminuria in diabetes; all

had larger effect among individuals with diabetes, and four (KAZN,

MIR4432HG-BCL11A, FOXP2, and CDH2) were only found in the

secondary analysis limited to diabetes (82).

Finally, a GWAS including 178,691 individuals with diabetes

from the CKD Genetics (CKDGen) consortium and large biobank

studies identified 29 genome-wide significant loci for eGFR,

including 27 novel loci for eGFR in diabetes; among these,

variants near SH3BP4 and LOXL4 were not associated with eGFR

in the 1,296,113 individuals without diabetes (76).
3.3 Overlap between genetic factors for
DKD and general population kidney traits

In the general population, nearly 900 genetic loci have been

identified for eGFR in meta-analyses, including over 1.5 million

individuals (88). Diabetes is one of the key risk factors for CKD, and

31% of the CKD-associated disability-adjusted life years can be

attributed to diabetes (89). Other main risk factors for CKD include

hypertension, obesity, and high age, all commonly seen among

individuals with T2D in particular. In individuals with T1D, the

majority of DKD is due to diabetic nephropathy. On the contrary,

the renal lesions in kidney biopsies of DKD in T2D are

heterogeneous, and a substantial proportion of the biopsies do

not show the typical characteristics of diabetic nephropathy (90).

However, kidney biopsies are rarely taken, and DKD is defined as

any CKD in an individual with diabetes (91). Therefore, the

question arises, how much of the genetic background of DKD is

shared with the CKD and eGFR in the general population?

The DKD loci identified in individuals with T1D in the DNCRI

consortium did not replicate in the general population GWAS for

eGFR (49); conversely, the loci associated with eGFR in the general

population (92) were not associated with DKD in T1D apart from

theUMOD locus (49). On the contrary, some of the first findings for

DKD in T2D included the UMOD and PRKAG2 loci known from

the general population (19), as well as the APOL1 variant
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responsible for the majority of kidney failures in AAs (48). The

CKDGen GWAS on eGFR including 133,413 individuals, of which

16,477 with diabetes, found that the effect size of the eGFR loci

identified in the full population were highly correlated between

individuals with and without diabetes (correlation coefficient of

0.80) (75). A more recent study on eGFR from the CKDGen

consortium, including nearly 1.5 million participants of which

178,691 with T2D, systematically sought for differences in effect

size between individuals with and without diabetes. They identified

seven eGFR loci with significant difference in individuals with and

without diabetes, as well as four loci with suggestive difference; in all

but one, the effect was more pronounced or exclusively seen among

individuals with diabetes (76). Similarly, in a GWAS for eGFR

decline studied as a longitudinal trait in the general population, the

effect sizes of the nine identified variants were on average two-fold

higher in individuals with diabetes (93). Finally, the effect of the

rs10795433 variant in the CUBN locus—the major locus for

albuminuria—was larger among individuals with diabetes

compared to those without diabetes (87). In addition, a rare

CUBN variant rs141640975 had three times stronger effect in

individuals with T2D compared with those without (94).

Furthermore, rs141640975 was associated with higher eGFR but

only in the non-diabetes population, suggesting pleiotropic effects

on both kidney function measures (95).

In the DNCRI-SUMMIT GWAS meta-analysis for DKD, the

similarity of DKD with kidney traits in the general population (of

note, including individuals with diabetes) was assessed on a

genome-wide scale instead of single-variant level, using the LD

score regression approach. The albuminuria-based DKD definition,

including microalbuminuria, was genetically correlated with

microalbuminuria in the general population, both in the pooled

analysis, and separately for individuals with T1D or T2D; of note,

the correlation was over two-fold stronger in individuals with T2D.

In addition, the eGFR-based CKD definition was also correlated

with eGFR and CKD in individuals with T2D, but not in T1D

despite more than three times more individuals with T1D (52). The

analysis suggests that DKD in T2D has a larger proportion of shared

genetic background with the general population, e.g., due to other
TABLE 3 Variants associated with albuminuria in diabetes.

SNP Reported gene Diabetes population Phenotype N P-value EA NEA Beta Refs

rs10011025 GLRA3 T1D log10 AER 1,925 1.5 × 10−9 G A 0.21 (25, 81)

rs59825600 KAZN Any sd of log(UACR) 40,668 3.6 × 10−8 A G −0.075 (82)

rs6688849 a FOXD2 Any sd of log(UACR) 51,215 4.1 × 10−9 A G −0.049 (82)

rs780093 a GCKR Any sd of log(UACR) 51,515 1.5 × 10−13 T C 0.049 (82)

rs6706313 MIR4432HG-BCL11A Any sd of log(UACR) 51,162 2.8 × 10−8 A G −0.041 (82)

rs17137004 FOXP2 Any sd of log(UACR) 51,294 2.7 × 10−8 A G −0.036 (82)

rs74375025 a CUBN Any sd of log(UACR) 50,641 1.1 × 10−24 A G 0.106 (82)

rs4258701 CDH2 Any sd of log(UACR) 51,328 1.1 × 10−8 T C 0.039 (82)

rs149131600 a HPN Any sd of log(UACR) 46,939 3.5 × 10−8 T C 0.050 (82)
front
SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. Beta: effect size beta estimate. Refs: If multiple references are given, then the data in other columns for the same locus are taken
from the first listed reference. AER, albumin excretion rate. UACR, urinary albumin-to-creatinine ratio.
aSignificant also in the general population, but with larger effect in diabetes.
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co-existing risk factors such as aging, overweight, hypertension, and

other glomerular diseases, while less overlap is observed between

the general population kidney traits and DKD in T1D representing

a purer form of diabetic nephropathy. The LD score regression with

cardiometabolic and other traits further suggested that a proportion

of the genetic background of DKD is shared with genetic risk

factors, e.g., for aging (mother’s age at death), obesity, and smoking

(52). However, the confidence intervals remain large, and further

studies are needed to estimate the proportion of risk attributable to

each risk factor.

Some interesting discrepancies also exist between DKD and the

general population: For example, the missense variant rs55703767 in

COL4A3 is one of the strongest findings for DKD in T1D, but the

effect is modified by glycemia, and the variant does not seem to affect

kidney traits in the general population. On the contrary, variants in

the flanking COL4A4 (collagen type IV alpha 4 chain) gene were

associated with albuminuria in the general population (rs57858280,

p-value = 9 × 10−11) (82); according to the GTEx portal, the variant

may affect the COL4A4 splicing (https://gtexportal.org/ ). Rare

mutations in both COL4A3 and COL4A4 cause Alport syndrome, a

monogenic disease of basement membranes that frequently leads to

ESKD, as well as thin basement membrane nephropathy and focal

segmental glomerulosclerosis (96).
3.4 Overlap between genetic factors for
DKD and diabetes

Some studies have suggested a correlation between the genetic

risk factors predisposing to insulin resistance or T2D and DKD (18,

19, 52). Of note, these studies found no correlation between genetic

risk factors predisposing to T1D and DKD. T2D was modestly

causally associated with DKD in a Mendelian randomization study

of individuals with either T1D or T2D (p-value = 0.02), but only

obesity related traits remained significantly associated with DKD

when using methods accounting for pleiotropic effects (52).

However, among the lead variants for DKD, albuminuria, or

eGFR in diabetes, only the albuminuria-associated FTO locus

[rs56094641 (47)] has been associated with T2D. In addition, the

albuminuria-associated rs780093 (82) in the highly polygenic

GCKR locus, as well as the eGFR-associated rs4665972 (in SNX17,

but in LD with variants mapped to GCKR), rs11864909 (UMOD),

rs10206899 (ALMS1P), rs10899482 (GAB2), and rs9607518

(MAFF), are in LD with variants associated with T2D (https://

ldlink.nci.nih.gov/?tab=ldtrait ; search for any “diabetes” in GWAS

Catalog for variants in LD (R2 ≥ 0.8 in European population), 21

March 2023), providing some evidence of genetic overlap between

T2D and eGFR in diabetes.
4 From common to rare genetic
variants for DKD

While common variants have a large effect on complex traits at

the population level (43), the low frequency and rare variants can

have a high impact on the individual level (97). In particular,
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protein-altering variants (PAVs), i.e., exon variants that change

the protein amino acid sequence, can directly impact protein

function. For example, 71% of severe LDLR mutation carriers had

hypercholesterolemia in the UK Biobank WES data (98). To

identify chromosomal regions harboring rare variants for DKD, a

linkage study based on GWAS data of 6,019 FinnDiane study

participants included 177 small pedigrees such as sib-ships,

parent-offspring pairs, and more distant relations, with,

altogether, 452 individuals, all with T1D. Eight chromosomal

regions reached a significant LOD score > 3.3 (51). Many of these

regions harbor genes in which mutations cause rare syndromes with

kidney complications, such as ARHGAP24 associated with focal

segmental glomerulosclerosis (99) and FRAS1 associated with the

familial Fraser syndrome (100). Overlap with loci causing rare

kidney syndromes supports the role of rare variants in the

development of DKD. Interestingly, one suggestive linkage peak

was observed in the NID1 locus, recently associated with DKD in

T2D (50). While a rare rs538044833 variant in the CCSER1 locus

was externally replicated (p-value = 2.8 × 10−8), the resolution

remains low even in the GWAS-based linkage studies, hindering

further fine-mapping and interpretation of the results.

In addition, on the basis of GWAS data, enriched for rare PAVs

with the ExomeChip array, a gene aggregate meta-analysis

including 4,196 individuals with T1D found PAVs in the

hydroxysteroid 17-b dehydrogenase 14 (HSD17B14) gene exome-

wide significantly (p-value < 5 × 10−7) associated with the disease

progression from DKD to kidney failure. The gene and protein

expression were attenuated in human diabetic proximal tubules and

in mouse kidney injury models (101).

The GWAS genotyping chips cover only a portion of the PAVs,

and genotype imputation quality largely depends on the variant

minor allele count in the reference sample and can be limited for

rare variants (102, 103). A whole-exome sequencing (WES) on

DKD, including 997 individuals with T1D, did not find any variants

or genes reaching robust exome-wide significance (18) but found

suggestive evidence of association, e.g., for PAVs in the THADA

gene, previously associated with T2D (104). A WES of 593 DKD

cases and 2,066 healthy controls of European and African ancestry,

with subsequent discriminatory analyses and replication in up to

11,487 multi-ancestry participants from the Trans-Omics for

Precision Medicine study, identified an in-frame insertion

rs141560952 in the DIS3L2 gene (p-value = 3.6 × 10−9), and a

KRT6B splice-site variant rs425827 associated with DKD (p-

value = 2.7 × 10−9). Both variants were associated with DKD also

when compared with diabetes controls without DKD, but with

lower statistical significance (p-value = 1.4 × 10−4 and 2.8 × 10−4).

Furthermore, gene aggregate analyses identified ERAP2 (p-

value = 4.03 × 10−8) and NPEPPS (p-value = 1.51 × 10−7); both are

expressed in the kidney and implicated in the renin-angiotensin-

aldosterone system–modulated immune response (53). However,

the discriminatory analyses suggest that the ERAP2 and NPEPPS

may be primarily associated with diabetes per se, subsequently

leading to DKD (53).

While WES mainly covers the protein-coding sequence, a

whole-genome sequencing (WGS) study of 76 Finnish sibling

pairs with T1D but discordant for DKD found significant
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enrichment of variants in DKD in gene promoter and enhancer

regions, as well as for specific transcription factor binding sites

(105), but larger studies are required to pinpoint the most relevant

regulatory regions. Gene aggregate analysis of PAVs suggested

protein kinase C isoforms (PRKCE and PRKCI) and protein

tyrosine kinase 2 (PTK2) involved in DKD (105); of note, a

recent GWAS on albuminuria in the general population

highlighted variants in the PRKCI and demonstrated that a

podocyte-specific deletion of aPKClambda/iota in mice results in

severe proteinuria (82). A recent multi-ethnic WGS in 23,732

individuals identified three novel rare intronic variants for eGFR

in the general population (106), and larger WGS for DKD are

needed to identify the rare variants contributing to DKD.
5 Epigenetic factors for DKD

Studies focusing on epigenetic modifications have emerged in

an increasing number during the last years. Epigenetic

modifications can be described as chemical modifications of the

DNA (or RNA) that can induce changes in gene expression without

changing the underlying sequence. In contrast to an individual’s

genetic variation, which is constant across tissues and throughout

lifetime, epigenetic modifications are dynamic and modifiable.

Thus, epigenetic changes may vary between tissues, cell types, and

developmental stages and can even be affected by environmental

factors. Furthermore, in disease states, the methylation patterns can

change either as a cause or a consequence of the disease (107). In

this way, epigenetic factors provide a link between the genome and

the environment and can potentially reflect an individual’s risk of

developing a disease more accurately at a given time. Although

epigenetic changes are dynamic, there is evidence that epigenetic

modifications, such as DNA methylation, persist in blood years

after acute illness or metabolic changes in the body (108, 109).

Consequently, epigenetic factors have been suggested as an

underlying mechanism for metabolic memory (110, 111).

Metabolic memory in diabetes refers to the sustained harmful

effect of hyperglycaemia on diabetic complications, initially

observed in the DCCT-EDIC study, even after improved

glycaemic control (112, 113). In line with this observation,

subsequent work in DCCT-EDIC has identified several epigenetic

changes associated with metabolic memory (110, 111). A

combination of DNA methylation levels at several HbA1c-

associated sites explained as much as 71 to 97% of the association

between HbA1c and diabetic complications in the DCCT (114),

further reinforcing the connection between epigenetic changes and

metabolic memory.

DNA methylation is the most frequently studied epigenetic

modification and occurs at cytosine bases of cytosine–phosphate–

guanine dinucleotide sites (CpGs) in the DNA sequence. In

addition to DNA methylation, additional epigenetic modifications

exist, such as histone modifications (acetylation and methylation),

and their role in DKD has also been explored. For example,

dysregulation of histone H3 lysine 27 trimethylation (H3K27me3)

in TGF-b1–induced gene expression has been associated with DKD

(115). Histone modifications associated with DKD are reviewed,
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e.g., in (116), and are out of the scope of this review, where we focus

on DNA methylation changes.
5.1 Various study settings for
DNA methylation

Although whole-genome bisulfite sequencing for the analysis of

the methylome has been done for DKD, sample sizes have been

small (117). Studies assessing DNA methylation patterns across the

genome, known as epigenome-wide association studies (EWASs) or

methylome-wide association studies (MWASs), have primarily

relied on Illumina’s BeadChip platforms, which have evolved

from the Illumina 27K array with only ~27,000 sites to the

Illumina 450K with ~450,000 and the EPIC array containing

methylation levels at ~850,000 sites. However, this number of

CpGs only accounts for a small amount of all the CpGs in the

genome, totalling up to ~30 million (118). The EWASs have applied

various significance thresholds, but a p-value below 9 × 10−8 has

been suggested as a threshold for robust significance, adequately

controlling for the false positive rate for the EPIC array (94). The

genome-wide significance threshold recommended for Illumina’s

450K BeadChip is p-value < 2.4 × 10−7 or p-value < 3.6 × 10−8 (119),

although the false discovery rate (FDR) has been widely used

(Table 4). Contrary to the GWAS, which initially yielded few

significant loci with increasing number of findings with larger

studies, in EWAS, the use of varying thresholds, combined with

unaddressed inflated test statistics especially in the early EWAS

(131), has led to a quite varying number of identified methylation

loci in the studies performed so far.

Most EWASs performed on DKD have examined DNA

methylation in blood. Still, other tissues have been used, such as

kidney samples micro-dissected into kidney tubules (125) and even

saliva (121). The epigenetic changes observed in the kidney tissue

likely reflect the local changes more accurately. Indeed, EWAS on

fibrosis in kidney tissue samples identified 65 differentially

methylated CpGs that were enriched on kidney regulatory regions

(125). Another promising target tissue for studying kidney disease

would be the urine, which can be collected non-invasively and easily

from larger datasets. Urine, however, contains few nucleated cells

and extracting a sufficient amount of DNA from urine has turned

out to be a challenge (132).
5.2 Over 150 CpGs associated with DKD
and related traits

To date, methylation levels at over 150 CpG sites across

the genome have been associated with DKD, eGFR, or albuminuria

(p-value < 9 × 10−8), in studies including both T1D and T2D

(Figure 2; Table 4; Supplementary Table 1), with the majority

assessing DNA methylation in blood. The first DKD-EWAS

identified DNA methylation levels at 19 CpGs associated with

DKD in T1D (FDR < 0.05) using Illumina’s 27K array (120),

highlighting one CpG located upstream of the UNC13B gene.

An intronic SNP (rs2281999) in the same UNC13B gene was
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identified for DKD in T1D in a prior genetic association study

including genetic variants in 127 candidate genes (133). More

recent methylation arrays, with higher coverage have enabled

identification of additional CpGs. Using the 450K array, Smyth

et al. identified 53 CpGs within 23 genes with differential

methylation in participants with CKD, of which approximately half

had T1D. Of the 23 genes, six were in genes that are biological

candidates for kidney disease: CUX1, ELMO1, FKBP5, INHBA-AS1,

PTPRN2, and PRKAG2 (122). Of these, genetic variants within the

PRKAG2, encoding a protein kinase involved in cellular energy

metabolism, have also been associated with eGFR in GWAS on

kidney disease, both in individuals with and without diabetes (19, 73,

74). Following this study, several EWAS have been performed

(Table 4), focusing mainly on DKD (77, 123, 127) and ESKD (129)
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in T1D but also on DKD in T2D (128) or eGFR in individuals with

diabetes of unspecified/mixed type (124, 126, 130), yielding a plethora

of sites that are differentially methylated, shown in Figure 2 (CpGs

with p-value < 9 × 10−8). The most recent and largest study, including

1,304 individuals with T1D, identified 32 sites with altered

methylation in DKD (77), of which 23 were specific to the EPIC

array. Methylation levels at seven CpGs were epigenome-wide

significantly and differentially methylated after accounting for

differences in multiple clinical risk factors (HbA1c, HDL

cholesterol, triglycerides, BMI, smoking, and duration of diabetes),

in addition to age, sex, and six cell-type proportions. These seven

included two intergenic CpGs on chromosome 19 and four CpGs

located within genes PTBP3, NME7, SLC1A5, and SLC27A3 and one

CpG within a long non-coding RNA (LINC01800).
TABLE 4 EWASs on kidney disease and related traits in individuals with diabetes.

Study Ethnicity Tissue Phenotype Cases Controls N
Total

CpGs
(array)

p-thresh-
old N significant CpGs

Bell, 2010
(120)

White
European

Blood DKD 96 (T1D:
100%)

96
(T1D:
100%)

192 27,578
(27K)

PFDR< 0.05 19 (PFDR< 0.05); none with PFDR
<10−8

Sapienza,
2010 (121)

African
American/
Hispanic

Saliva DKD 24 (T2D:
87%, T1D:

13%)

24
(T2D:
100%)

48 27,578
(27K)

Diffscore** >
20 or < −20

2,870, of which 30 remained
significant after FDR adjustment

(PFDR < 0.05)

Smyth, 2014
(122)

White
European

Blood CKD/DKD 255 (T1D:
44%)

152
(T1D:
74%)

407 485,577
(450K)

PFDR < 10−8 52 CpGs (PFDR < 10−8) in 23
genes

Swan, 2015
(123)

White
European

Blood DKD 196 (T1D:
100%)

246
(T1D:
100%)

442 450*
(27k,
450K)

PFDR < 10−8 54 (PFDR < 10−8)

Qiu, 2018
(124)

American
PIMA
Indians

Blood eGFR; ESKD;
eGFR slope

80 (T2D:
100%)

101
(T2D:
100%)

181 397,063
(450K)

PFDR < 0.05 eGFR and ESKD: none (PFDR <
0.05); 77 (eGFR slope, PFDR <

0.05)

Gluck, 2019
(125)

Mixed Kidney
tubules

degree of
kidney
fibrosis

91 (22 with
DKD)

0 91 321,473
(450 K)

PFDR < 0.05 Degree of fibrosis: 203 (PFDR <
0.05) of which 65 replicated (p <

0.05)

Sheng, 2020
(126)

Mixed Blood eGFR, eGFR
slope,

albuminuria

473 (all
with

diabetes)

0 473 866,836
(EPIC)

P < 5 × 10−5

(discovery), p
< 6.4 × 10−8

(Bonferroni)

Albuminuria: 73 (P < 5 × 10−5),
eGFR: 99 (P < 5 × 10−5); 1 (6.4 ×
10−8), eGFR slope: 111 (P < 5 ×

10−5); 3 (6.4 × 10−8)

Smyth, 2020
(127)

White
European

Blood DKD 150 (T1D:
100%)

100
(T1D:
100%)

677 482,421
(450K)

PFDR < 10−8,
Db > 0.2

22

Kim, 2021
(128)

East Asian Blood DKD 87 (T2D:
100%)

80 (T2D:
100%)

167 749 315
(EPIC)

PFDR < 9.0 ×
10–8

3 (PFDR < 9.0 × 10–8)

Smyth, 2021
(129)

White
European

Blood ESKD (4
analysis
models)

107 (T1D:
100%)

253 (T1D:
100%)

360 862,927
(EPIC)

PFDR < 10−8,
FC ± 2

36 (PFDR < 10−8, FC ± 2 across all
four models)

Lecamwasam,
2021 (130)

Mixed Blood late CKD
(eGFR<45) vs.

early
(eGFR≥45)

38 (T1D:
8%,

T2D: 87%)

83 (T1D:
20%, T2D:

80%)

119 764 333
(EPIC)

PFDR < 0.05 1 (PFDR < 0.05)

Smyth, 2022
(77)

White
European

blood DKD (3
analysis
models)

651
(T1D:100%)

653 (T1D:
100%)

1304 763 064
(EPIC)

PFDR <9 × 10−8 32 (PFDR < 9 × 10−8)
27K, Illumina Infinium HumanMethylation 27K; 450K, Illumina Infinium HumanMethylation 450K; EPIC, Illumina Infinium HumanMethylation EPIC v1.
*Only CpGs within mitochondrial genes were surveyed.
**Diffscore = 10sgn(b-valueESRD − b-valuediabetes no nephropathy) log10p.
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Methylation levels at only a few CpGs have been associated with

DKD in multiple studies (Figure 2). This can partly be explained by

the higher coverage of Illumina’s EPIC array, with many CpGs on

that array not present on previous arrays and, therefore, not

testable. Consequently, one-third of the differentially methylated

CpGs identified for DKD or eGFR in studies using the EPIC array

(77, 126, 129) were novel and not available on previous arrays

(Supplementary Table 1). However, methylation loci that have been

repeatedly associated with DKD, include CpG within genes C5orf66,

FKBP5 (77, 122), and PIP5K1C (77, 129). In addition, higher

methylation at the intergenic CpG cg17944885, located on

chromosome 19 within a zinc finger gene cluster, has been

repeatedly associated not only with DKD and eGFR in diabetes

(77, 126, 130) but also with CKD and eGFR in the general

population (78, 134, 135), as well as eGFR in other more specific

cohorts, such as men with human immunodeficiency virus (HIV)

(136). Moreover, CpGs within the IRF2 (cg05165263) and SLC27A3

(cg21961721) gene, both with higher methylation levels in DKD in

T1D (77), have also been associated with eGFR (p-value = 5 × 10−5

and 8 × 10−5) in the general population (135), although not among

the reported top loci.

Although most of the DNA methylation association studies

performed on DKD have covered the whole genome, targeted

approaches have been undertaken as well. Swan et al. evaluated

DNA methylation levels associated with DKD for CpGs located

within genes influencing mitochondrial function in 442 individuals

with long term T1D (123). Although methylation levels at several

CpG sites reached the threshold for epigenome-wide significance

(p-value < 9 × 10−8), none of the differentially methylated CpG sites

has emerged in subsequent EWASs.
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A few CpGs identified as differentially methylated in DKD to

date (Figure 2) also appear in EWAS on traits that are considered

risk factors for DKD. Lower methylation of cg19693031 located in

the 3′-untranslated region of the TXNIP gene has been recurrently

observed in the context of diabetes and glycemia, such as

persistently higher HbA1c both in T2D and T1D (109, 126, 137).

TXNIP encodes for the thioredoxin-interacting protein, which by

binding to thioredoxin induces oxidative stress and apoptosis.

Although it is mainly considered a glycemia-related methylation

locus, it not only shows repeated associations with albuminuria and

DKD (77, 109), explaining alone up to 45% of the HbA1c association

with DKD (114), but also associates with DKD and triglycerides

independently of HbA1c (109). Intriguingly, methylation levels at

cg19693031 are also under genetic influence by SNPs located within

the SLC2A1 gene encoding for the glucose transporter 1 (GLUT1)

(109). A recent EWAS on DKD performed a systematic trait

enrichment analysis and found significant overlap with EWAS

findings for traits and diseases such as aging, smoking, systolic

and diastolic blood pressure, eGFR, and HbA1c (77). Our lookup of

the significant CpGs identified for DKD, eGFR, fibrosis, and

albuminuria to date (Figure 2; 160 CpGs as listed in

Supplementary Table 1) in the EWAS catalogue (associations

with p-value < 9 × 10−8; http://www.ewascatalog.org , accessed 31

January, 2023) found an overlap with DKD risk factors including

dyslipidemia (CpGs within SLC1A5, TXNIP, and CPT1A), HbA1c

(TXNIP), blood pressure (CpGs within SLC1A5, TXNIP, CPT1A,

and PTBP3) and obesity (CpGs within SLC1A5, TXNIP, CPT1A,

and FKBP5; Supplementary Table 2). For example, in the

CPT1A gene, methylation at cg17058475 was associated with

DKD in T1D (77) and has been robustly associated with the
FIGURE 2

Chromosomal ideogram including CpGs methylation associated with kidney disease (DKD and ESKD), fibrosis, eGFR, or albuminuria in diabetes. For
intergenic CpGs (*), the nearest gene is given. Hypermethylated CpGs (in kidney disease vs. controls) are denoted by a dark blue colour and
hypomethylated by a light blue colour. CpGs appearing among top loci in multiple studies on kidney disease in diabetes denoted by a red color.
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triglycerides (118) in the general population. CPT1A encodes a key

enzyme in the fatty acid metabolism, namely, the hepatic isoform of

carnitine palmitoyl transferase 1 (138), controlling the fatty acid

flux in the liver. In addition, the genetic variants in the gene were

also associated with triglycerides and HDL cholesterol in a recent

GWAS (139).
5.3 DNA methylation for prediction of DKD

Several studies have provided evidence suggesting that changes

in DNA methylation patterns could be used to predict DKD or its

progression. Using 91 kidney tissue samples, Gluck et al. found that

information from 471 differentially methylated CpGs in the kidneys

helped them to predict kidney disease progression (125). However,

the utility of kidney tissue–specific DNA methylation patterns as

potential biomarkers remain limited, as individuals with DKD do

not routinely undergo kidney biopsy. As an alternative, a study with

methylation data from 831 individuals constructed methylation risk

scores for 607 phenotypes based on electronic health records and

suggested that blood methylation was particularly good in

identifying individuals with pre-existing kidney failure and related

traits (140). An EWAS in 181 American Indians with diabetes

identified methylation levels at 77 CpG sites associated with eGFR

decline over a 6-year period (124). Methylation at two CpGs

(cg25799291 and cg22253401 in FSTL5) improved prediction of

eGFR decline even when baseline eGFR and Albumin-to-creatinine

ratio (ACR) were included in the model (124). In addition, in T1D,

methylation levels at baseline can be used to predict progression of

DKD. In total, 20 of the 32 differentially methylated CpGs in DKD

in T1D predicted future progression to kidney failure in 397

individuals with DKD, 13 even after accounting for eight clinical

risk factors (77). Furthermore, methylation at the two intergenic

CpGs located within the zinc finger gene cluster on chromosome 19

predicted kidney failure, independent of baseline eGFR.
5.4 Epigenetic changes—the cause or
the consequence?

Because of the dynamic nature of epigenetic changes, the

methylation changes observed at CpGs in DKD can be either a

cause or a consequence of the disease. To separate the causal

methylation changes from the consequential, EWASs have also

attempted Mendelian randomization, which uses genetic

information to infer causality (77, 126, 128). Although these

analyses have been partly hampered by the lack of genetic

variants influencing CpG methylation, some causal associations

have been observed. For example, Mendelian randomization

suggested that higher methylation levels at cg23527387 located

within the REV1 gene reduces the risk of DKD in T1D (77). On

the other hand, no evidence for causality was found for cg19693031

(TXNIP) or cg17944885 (between ZNF788P and ZNF625-ZNF20),

suggesting that methylation changes observed at these sites are

consequential to kidney disease or its other manifestations, e.g.,

hyperglycemia. Kim et al. used Mendelian randomization in the
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opposite direction, i.e., to assess the causal effect of metabolic

phenotypes on CpG methylation changes identified in their

EWAS on T2D (n = 8) and DKD (n = 3). These analyses revealed

that fasting glucose resulted in 2% hypomethylation of cg00574958

located in the CPT1A gene, whereas HbA1c or BMI did not causally

affect the cg00574958 methylation. Genetically determined eGFR,

however, was associated with 7% hypomethylation of cg19693031

within TXNIP (p-value = 0.045), as well as hypomethylation of all

the CpGs identified for DKD in T2D, including three CpGs within

genes: COMMD1, TMOD1, and FHOD1.
6 Discussion

During the last 5 years, both GWAS and EWAS have identified

an expanding number of genetic loci for DKD. Nearly 80 genetic

loci have reached genome-wide statistical significance for DKD,

albuminuria, or eGFR in diabetes to date. Much of this increase is

not only due to larger meta-analyses of existing diabetes cohorts but

also due to CKD studies in the general population including a

substantial number of individuals with diabetes, as well as general

population biobank studies. Even larger meta-analyses combining

multiple biobank studies are likely to result in more genetic loci

contributing to DKD. One of the major challenges of such studies

will be how to best ascertain cases with DKD, either based on ICD

codes that do not capture DKD well, self-reported DKD, or single

measurements of albuminuria or eGFR, both of which vary over

time. General population biobanks may also be affected by selection

bias including healthier than average individuals (141), leading to a

limited number of individuals with severe DKD or ESKD or with

long-lasting diabetes: As DKD takes decades to develop (6), ideal

study controls would only include individuals with diabetes without

DKD despite a long diabetes duration.

The number of identified genetic loci now also allows

comparison of the findings and the genetic overlap between

general population CKD and DKD in T1D and T2D. The general

population loci for eGFR seem to affect eGFR also in individuals

with diabetes, especially those with T2D (76). For some variants,

the effect size is markedly higher in the individuals with

diabetes than in those without (e.g., UMOD, rs77924615,

betaDM = −0.019, betanoDM = −0.011, Pdiff = 1.3 × 10−27; TPPP,

rs4663171, betaDM = −0.011, betanoDM = −0.004; Pdiff = 2.5 × 10−9),

potentially reflecting the elevated risk and accumulated risk factors

for kidney complications among individuals with diabetes. On the

other hand, genetic risk factors for DKD in T1D seem to differ from

the general population (52). These support the notions from the

clinical and epidemiological studies suggesting that individuals with

T2D can have either DKD, non-DKD, or both, whereby individuals

with T1D mainly develop diabetic nephropathy with a different

pathophysiology from the general CKD (11, 90). Therefore, future

genetic studies on DKD will need to balance between maximizing

the number of samples (any diabetes, or even the general population

with focus on diabetes) but with a more heterogeneous phenotype,

and a cleaner DKD phenotype in T1D with diabetic nephropathy as

a more likely underlying cause, but with a more limited number

of samples.
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GWASs on DKD have been performed in various populations

beyond the European ancestry (46–48), and some of the identified

variants are population-specific, e.g., the APOL1 variants associated

with all-cause and diabetic ESKD in AAs (48, 67, 68). For many

complex diseases, such as T2D, extension to further populations, as

well as larger multi-ancestry GWAS meta-analyses have yielded

novel genetic susceptibility loci by increasing the total sample size

and capturing additional variants with ancestry-correlated

heterogeneity in the allelic effect sizes (104, 142). Multi-ancestry

GWASs also provide improved fine-mapping resolution of the

detected association signals, i.e., can provide a smaller number of

variants in the credible set including the underlying causal variant

among the many associated ones (142). Therefore, such multi-

ancestry studies are likely to reveal novel loci with improved fine-

mapping for DKD as well. On the contrary, homogenous study

populations may be particularly important in sequencing studies

aiming to identify rare genetic risk factors for DKD.

Although there are known differences in the methylation

pattern of a number of CpGs between different ethnicities (143),

there is a lack of ethnic diversity in EWAS, which are based mainly

on individuals of European ancestry (144, 145). A recent multi-

ancestry EWAS on kidney function (135) revealed several

population-specific methylation patterns for eGFR in the general

population with little overlap between African and European

populations. These discrepancies, however, could be due to both

genetic and environmental differences between the different ethnic

groups. The expansion of EWAS datasets in DKD to include multi-

ancestry populations is still lacking.

The GWASs have also enabled creation of polygenic risk scores

(PRSs) that may be used for risk stratification and identification of

affected traits and phenotypes. In general population, PRS on eGFR

was associated with incident CKD and kidney failure in the

Atherosclerosis Risk in Communities study with 8.6% of the

individuals having diabetes (146). In diabetes, smaller studies

have shown that genetic risk scores for DKD improved the

prediction of DKD in Han Chinese with T2D (147). In the

ADjuVANt Chemotherapy in the Elderly (ADVANCE) trial with

individuals with T2D, a multi-phenotype PRS, based on variants

from the general population GWAS, predicted micro- and

macrovascular complications and suggested that the PRS can

identify high-risk individuals, who would benefit from intensified

diabetes treatment (148); similarly, a general population PRS for

coronary artery disease (CAD) was associated with CAD also

among individuals with T1D (149). However, no large-scale PRS

for DKD have yet been published, and larger GWASs on DKD are

needed to create diabetes-specific PRS for DKD and to assess their

utility compared to general population PRS.

To date, several CpG sites with altered methylation levels in

DKD have been identified across the genome. Understanding the

underlying mechanism behind these changes would be critical, i.e.,

are the observed changes driven by kidney disease or some other

manifestation that emerges as the disease progress, and whether the

changes are causal for the development or progression of DKD. In

addition, methylation levels are also influenced by the genetics.

Insights to the complex network behind the findings might

therefore require integrating DNA methylation results with
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results from multiple other sources such as GWAS as well as

transcriptomic and proteomic data. Some efforts in that direction

have already been made. Indeed, a recent study demonstrated that

DNA methylation explains a larger fraction of kidney disease

heritability than gene expression by integrating GWAS data with

methylomic and transcriptomic data obtained from 446 kidney

tissue samples (88).

DNA methylation markers have proven useful for the

prediction of DKD progression. Current studies, however, have

focused on the later stages of kidney disease, when AER is severely

increased or when kidney failure has occurred. EWASs at earlier

stages of DKD, when AER is only moderately increased, could

potentially identify additional CpGs and perhaps even more

importantly, enable the prediction of early changes using DNA

methylation. Although DNA methylation scores have not yet been

as extensively implemented in risk prediction as the PRSs,

methylation scores show a great promise as they incorporate

information from both the genes and the environment. In a

recent study, methylation scores improved the prediction of a

range of clinical diagnoses and traits, including kidney disease,

outperforming the predictive ability of polygenetic risk scores (140).

However, the dynamic nature of methylation as well as its tissue-

specificity introduces limitations regarding causality, time span of

effect, and target tissue. By incorporating genetic information,

causality can be addressed, and future studies may also be

facilitated by emerging single-cell sequencing technologies that

enable more targeted analyses, such as exploring the causal effects

of DNA methylation at the single-cell level in the kidneys.
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Association of solute carrier
family 30 A8 zinc transporter
gene variations with gestational
diabetes mellitus risk in a
Chinese population
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Xiujuan Huang6, Jinzhi Huang7*, Yue Wei8*

and Runmin Guo1,2,3,9*
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Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical
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Guangdong Medical University, Zhanjiang, China, 5Department of Obstetric, Shunde Women and
Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical
University, Foshan, Guangdong, China, 6Department of Children’s Health, Shunde Women and
Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical
University, Foshan, Guangdong, China, 7Department of Gynaecology, Shunde Women and Children’s
Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University,
Foshan, Guangdong, China, 8Department of Ultrasound, Shunde Women and Children’s Hospital
(Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan,
Guangdong, China, 9Department of Endocrinology, Affiliated Hospital of Guangdong Medical
University, Zhanjiang, Guangdong, China
Background: The solute carrier family 30 A8 zinc transporter (SLC30A8) plays a

crucial role in insulin secretion. This study aimed to investigate the impact of

SLC30A8 gene polymorphisms on gestational diabetes mellitus (GDM).

Methods: The research objective was to select 500 patients with GDM and 502

control subjects. Rs13266634 and rs2466293 were genotyped using the

SNPscan™ genotyping assay. Statistical tests, such as the chi-square test, t-

test, logistic regression, ANOVA, and meta-analysis, were conducted to

determine the differences in genotypes, alleles, and their associations with

GDM risk.

Results: Statistically significant differences were observed in age, pregestational

BMI, SBP, DBP, and parity between individuals with GDM and healthy subjects

(P < 0.05). After adjusting for these factors, rs2466293 remained significantly

associated with an increased risk of GDM in overall subjects (GG+AG vs. AA: OR =

1.310; 95% CI: 1.005-1.707; P = 0.046, GG vs. AA: OR = 1.523; 95% CI: 1.010-

2.298; P = 0.045 and G vs. A: OR = 1.249; 95% CI: 1.029-1.516; P = 0.024).

Rs13266634 was still found to be significantly associated with a decreased risk of

GDM in individuals aged ≥ 30 years (TT vs. CT+CC: OR = 0.615; 95% CI: 0.392-

0.966; P = 0.035, TT vs. CC: OR = 0.503; 95% CI: 0.294-0.861; P = 0.012 and

T vs. C: OR =0.723; 95% CI: 0.557-0.937; P = 0.014). Additionally, the haplotype

CGwas found to be associated with a higher risk of GDM (P < 0.05). Furthermore,
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pregnant women with the CC or CT genotype of rs13266634 exhibited

significantly higher mean blood glucose levels than those with the TT

genotype (P < 0.05). Our findings were further validated by the results of a

meta-analysis.

Conclusion: The SLC30A8 rs2466293 polymorphismwas found to be associated

with an increased risk of GDM, while rs13266634 was associated with a

decreased risk of GDM in individuals aged ≥ 30 years. These findings provide a

theoretical basis for GDM testing.
KEYWORDS

gestational diabetes mellitus, solute carrier family 30 A8 zinc transporter, SNP,
rs13266634, rs2466293, case-control study
1 Introduction

Gestational diabetes mellitus (GDM) is a global concern, and its

incidence has increased by over 30% in numerous countries during the

past few years (1, 2). GDM is characterized by b-cell dysfunction, insulin
resistance, and abnormal glucose utilization (3, 4), but its pathogenesis is

not yet clear. Increasing evidence indicates that environmental and genetic

factors are implicated in the development of GDM. Single nucleotide

polymorphisms (SNPs) are a common type of genetic variation, and

polymorphisms in different genes may be associated with GDM (5).

The solute carrier family 30 A8 zinc transporter (SLC30A8) gene

encodes ZnT8, which is primarily expressed in pancreatic b-cells and is in
charge of delivering zinc from the cytoplasm into insulin vesicles (6).

SLC30A8 is involved in the secretion of insulin (7). The zinc stabilizes the

insulin hexamer in secretory insulin vesicles, making it resistant to

degradation (8). Insulin packaged into secretory vesicles can be released

immediately upon glucose stimulation (7). The rs13266634

polymorphism is a missense C to T variant in exon 9 of the SLC30A8

gene, and the amino acid changes from arginine (R) to tryptophan (W) at

position 325 (8). Thus, rs13266634 has been thought to be related to

diabetes risk, as it affects the expression of SLC30A8, and negative

regulation of ZnT8 is considered to disrupt the stability of insulin

molecules (9). The polymorphism rs2466293 is in the 3′-UTR of the

SLC30A8 gene, and rs2466293 may impact SLC30A8 post-transcriptional

regulation by binding tomiRNA (10).MiRNAs are closely related to gene

level regulation; hence, rs2466293 in the seed sites of miRNA targets can

create or disrupt miRNA-binding sites that further influence disease

susceptibility (11). In this context, this study researched the influence of

rs13266634 and rs2466293 polymorphisms on GDM risk.
2 Materials and methods

2.1 Study subjects

From 1 August 1 2021 to 31 January 31 2022, a total of 1,002

unrelated Chinese Han pregnant women (500 GDM cases and 502
0283
controls) were recruited for our study at the obstetric clinic of

Shunde Maternal and Child Health Hospital, Guangdong Medical

University. All individuals underwent a routine 75-gram oral

glucose tolerance test (OGTT) during 24-28 weeks of gestation. A

control group consisting of pregnant women at 24 to 28 weeks of

gestation was selected over the same period. The inclusion criteria

were as follows: voluntarily provided written informed consent, not

previously diagnosed with diabetes, Han nationality, aged ≥ 18

years, no pregnancy complications, and not taking hypoglycemic

medicines. Participants who did not meet the above criteria

were excluded.
2.2 Data collection

Information including age, height, pregestational weight, parity

(primipara or multipara), blood pressure, race, pregnancy

condition, and other clinical information were obtained at 24-28

gestational weeks. Pregestational body mass index (pre-BMI, Kg/

m2) was calculated as pregestational weight (Kg) divided by height

squared (m2). The Chinese standards for obesity were as follows:

underweight (< 18.5 Kg/m2), normal (18.5-24 Kg/m2), overweight

(24-28 Kg/m2), and obese (≥ 28 kg/m2).
2.3 SNP genotyping

A total of 2 mL of EDTA-treated blood was immediately stored

in the freezer. Genomic DNAwas extracted and purified from blood

cells by a QIAamp DNA Blood Kit (Qiagen, Germany). Genotypes

of candidate SNPs were determined using the SNPscan™

genotyping assay (Genesky Technologies Inc., Shanghai, China).

Pre-experiments were conducted before formal experiments. In

order to check the genotyping data accuracy, 6% of the samples

were randomly selected for dupl icate analys is using

Sanger sequencing.
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2.4 Statistical analyses

Continuous variables following normal distribution were

reported as means ± SD, and the independent sample t-test was

used to determine the differences between the relevant parameters

of the two groups. In cases where the assumption of normality was

violated, non-parametric tests were employed. Qualitative data were

analyzed using the chi-square (c2) test. The Hardy-Weinberg

equilibrium (HWE) test, assessed through the goodness-of-fit c2,
was used to ensure that the control group was representative of the

population. The risk of GDM was evaluated using six genetic

models, namely, codominant homozygous, codominant

heterozygous, dominant, recessive, overdominant, and allele

models, through the c2 test and logistic regression analysis.

Crude and adjusted odds ratios (ORs) and their corresponding

95% confidence intervals (CIs) were presented, with adjustments

made for covariates such as age, pre-BMI, etc. Stratified analysis was

performed to further examine the potential influence of age and

pre-BMI on the results. The frequency distribution of haplotypes
Frontiers in Endocrinology 0384
was calculated using Haploview 4.2 software. The association

between SNPs and blood glucose levels was investigated using

one-way ANOVA. For multiple comparisons, the least significant

difference (LSD) method was used. Statistical analyses were

performed using SPSS 20.0 (SPSS Inc., Chicago, IL, USA), and a

P-value < 0.05 was considered statistically significant.
3 Results

3.1 General clinical characteristics
of the subjects

The study included 500 GDM cases and 502 non-diabetic

controls for the evaluation of the SLC30A8 genotype. Table 1

presents the clinical baseline information and stratified features.

The mean age, pre-BMI, systolic blood pressure (SBP), diastolic

blood pressure (DBP), fasting plasma glucose (FPG), 1 h-PG, and 2

h-PG were significantly higher in the GDM group than in the
TABLE 1 Basic and stratified characteristic of participants of the study.

Variables Cases (%) Controls (%) t/c2 P

(n = 500) (n = 502)

Age, year (mean ± SD) 31±4 29±4 -8.56 < 0.001

pre-BMI, kg/m2 21.51±3.10 20.53±2.58 -5.42 < 0.001

SBP, mmHg 117±11 114±10 -3.53 < 0.001

DBP, mmHg 70±8 68±7 -3.23 0.001

FPG, mmol/L 4.82±0.64 4.50±0.31 -9.75 < 0.001

1h-PG, mmol/L 10.17±1.60 7.66±1.27 -26.22 < 0.001

2h-PG, mmol/L 8.91±1.60 6.69±0.99 -25.85 < 0.001

Parity (n) 8.88 0.003

Primipara 210 (42) 258 (51.4)

Multipara 290 (58) 244 (48.6)

Variables Cases (%) Controls (%) c2 P

(n = 500) (n = 502)

Age, year 49.2 < 0.001

< 30 192 (38.4) 304 (60.6)

≥ 30 308 (61.6) 198 (39.4)

pre-BMI, kg/m2 27.8 < 0.001

< 18.5 67 (13.4) 95 (18.9)

18.5 ≤ BMI < 24 336 (67.2) 365 (72.7)

≥ 24 97 (19.4) 42 (8.3)
front
pre-BMI pre-gestational body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, FPG fasting plasma glucose, bold values indicate the P ≤ 0.05.
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control group (P < 0.05). Furthermore, there was a significant

difference in parity between the GDM and control groups

(P < 0.05).
3.2 The association between
polymorphisms and GDM risk

3.2.1 Overall analysis results
Table 2 presents the minor allele frequency (MAF) and the

results of the HWE analysis for two SNPs in the control group. The

results were in conformity with HWE (P > 0.05). Table 3 shows the

ORs with corresponding 95% CIs and associated P values estimated

for the relationship between genotypes and GDM in the six models

(codominant homozygous, codominant heterozygous, dominant,

recessive, overdominant, and allele models) for each polymorphism.

SLC30A8 rs2466293 was found to be significantly associated with an

increased risk of GDM in the dominant model (GG+AG vs. AA:

OR = 1.288; 95% CI: 1.003-1.655; P = 0.047), codominant

homozygous model (GG vs. AA: OR = 1.499; 95% CI: 1.014-

2.217; P = 0.043), and allele model (G vs. A: OR = 1.237; 95% CI:

1.029-1.487; P = 0.023). Further evaluation was performed using a

logistic regression method to adjust for age, pre-BMI, SBP, DBP,

and parity. The results indicated a strong association between

SLC30A8 rs2466293 and an increased risk of GDM in the

dominant model (GG+AG vs. AA: OR = 1.310; 95% CI: 1.005-

1.707; P = 0.046), codominant homozygous model (GG vs. AA:

OR = 1.523; 95% CI: 1.010-2.298; P = 0.045), and allele model (G vs.

A: OR = 1.249; 95% CI: 1.029-1.516; P = 0.024). However, no

significant association was found in rs13266634.

3.2.2 Stratified analysis results
Subsequently, the associations between two SNPs and

susceptibility to GDM in six models were tested using

stratified analysis for age or pre-BMI. Notably, protective roles

were detected in subjects aged ≥ 30 years for rs13266634 under

the dominant model (TT+CT vs. CC: OR = 0.648; 95% CI: 0.431-

0.975; P = 0.037), codominant homozygous (TT vs. CC: OR =

0.517; 95% CI: 0.307-0.872; P = 0.013) and allele model (T vs. C:

OR = 0.728; 95% CI: 0.565-0.938; P = 0.014). After adjustments,

rs13266634 was significantly associated with lower GDM risk

under the recessive model (TT vs. CT+CC: OR = 0.615; 95% CI:

0.392-0.966; P = 0.035), codominant homozygous model (TT vs.

CC: OR = 0.503; 95% CI: 0.294-0.861; P = 0.012) and allele model

(T vs. C: OR =0.723; 95% CI: 0.557-0.937; P = 0.014) (Table 4).

Moreover, these associations were more evident in subjects aged

≥ 30 years for rs2466293 under the dominant model (GG+AG vs.

AA: OR = 1.445; 95% CI: 1.007-2.073; P = 0.045) and allele
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model (G vs. A: OR = 1.337; 95% CI: 1.024-1.747; P = 0.033).

After these abovementioned factors were adjusted, rs2466293

was significantly related to higher GDM odds under the

dominant model (GG+AG vs. AA: OR = 1.579; 95% CI: 1.086-

2.295; P = 0.017), codominant heterozygous (AG vs. AA: OR =

1.519; 95% CI: 1.020-2.263; P = 0.040), and allele model (G vs. A:

OR = 1.399; 95% CI: 1.064-1.839; P = 0.016) (Table 4). However,

no significant associations were found in subjects aged < 30 years

(Supplementary Table 1). Nevertheless, the results indicated no

significant relationship between rs13266634 or rs2466293 and

GDM susceptibility in subjects in the pre-BMI stratified analysis.
3.3 Haplotype and linkage
disequilibrium analyses

The study found that two SNPs, rs13266634 and rs2466293,

were in strong linkage disequilibrium (D′ > 0.99) with each other

(Figure 1). The CG haplotype consisting of these SNPs was

significantly associated with higher GDM risk (OR = 1.231; 95%

CI: 1.024-1.48; P = 0.026). In addition, the age-stratified analysis

revealed that haplotype CG was associated with higher GDM risk in

subjects aged ≥ 30 years (OR = 1.328; 95% CI: 1.016-1.734; P =

0.037), while haplotype TA was associated with lower GDM risk in

subjects aged ≥ 30 years (OR = 0.722; 95% CI: 0.560-0.931; P =

0.011). However, no significant associations were found with age <

30 years (Table 5).
3.4 The association between
polymorphism genotype
and blood glucose levels

The fasting glucose and 1-h PG levels of pregnant women with

different genotypes were analyzed by age stratification (Table 6).

The results showed that the glucose indexes of the rs13266634 CC

genotype were higher than those of the TT genotype in subjects

aged ≥ 30 years (all P < 0.05), and the 1-h PG level of the CC

genotype was significantly higher than the CT genotype.
3.5 Meta−analysis results

Relevant references were searched for based on the PubMed and

Google Scholar databases to evaluate the relationship between

SLC30A8 rs13266634 or rs2466293 and GDM. Eight eligible

studies were included in the rs13266634 and GDM analysis, and

two studies were related to SLC30A8 rs2466293 and GDM. In total,
TABLE 2 SNPs information and HWE test in the controls.

SNP Min/Maj Chr. position MAF HWE (P)

rs13266634 T/C chr8:117172544 0.473 0.894

rs2466293 G/A chr8:117173699 0.325 0.627
fro
Min minor allele, Maj major allele, MAF frequency of minor allele, HWE Hardy–Weinberg equilibrium.
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the fixed-effects model was used for analysis. Rs13266634 was

shown to be significantly associated with a decreased risk of

GDM in the following models: dominant model (TT+CT vs. CC:

OR = 0.751; 95% CI: 0.674-0.838; P < 0.001), recessive model (TT

vs. CT+CC: OR = 0.736; 95% CI: 0.629-0.861; P < 0.001),

overdominant model (CT vs. TT+CC: OR = 0.878; 95% CI:
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0.789-0.977; P < 0.001), codominant homozygous model (TT vs.

CC: OR = 0.643; 95% CI: 0.542-0.763; P < 0.001), codominant

heterozygous model (CT vs. CC: OR = 0.789; 95% CI: 0.703-0.885; P

< 0.001), and allele model (T vs. C: OR = 0.795; 95% CI: 0.734-0.860;

P < 0.001) (Figure 2). In addition, SLC30A8 rs2466293 was

associated with increased GDM risk in the dominant model
TABLE 3 The associations between SNPs in SLA30C8 gene and GDM risk in overall subjects.

Model Cases (%) Controls (%) Crude OR Crude P Adjusted OR Adjusted P

(n = 500) (n = 502) (95 % CI) (95 % CI)

rs13266634

Codominant model

CC 161 (32.2) 142 (28.3) 1(ref) 1(ref)

CT 240 (48.0) 245 (48.8) 0.864 (0.648-1.152) 0.319 0.824 (0.609-1.116) 0.212

TT 99 (19.8) 115 (22.9) 0.759 (0.535-1.078) 0.124 0.754 (0.520-1.092) 0.135

Aelle model

C 562 (56.2) 529 (52.7) 1(ref) 1(ref)

T 438 (43.8) 475 (47.3) 0.868 (0.728-1.035) 0.115 0.862 (0.716-1.037) 0.115

Dominant Model

CC 161 (32.2) 142 (28.3) 1(ref) 1(ref)

TT+CT 339 (67.8) 360 (71.7) 0.831 (0.634-1.008) 0.178 0.802 (0.604-1.006) 0.129

Recessive Model

CT+CC 401 (80.2) 387 (77.1) 1(ref) 1(ref)

TT 99 (19.8) 115 (22.9) 0.831 (0.614-1.125) 0.23 0.848 (0.616-1.169) 0.314

Overdominant model

TT+CC 260 (52.0) 257 (51.2) 1(ref) 1(ref)

CT 240 (48.0) 245 (48.8) 0.968 (0.756-1.241) 0.799 0.926 (0.713-1.203) 0.565

rs2466293

Codominant model

AA 201 (40.2) 233 (46.4) 1(ref) 1(ref)

AG 224 (44.8) 211 (42.0) 1.231 (0.943-1.606) 0.127 1.251 (0.944-1.658) 0.119

GG 75 (15.0) 58 (11.6) 1.499 (1.014-2.217) 0.043 1.523 (1.010-2.298) 0.045

Aelle model

A 626 (62.6) 677 (67.4) 1(ref) 1(ref)

G 374 (37.4) 327 (32.6) 1.237 (1.029-1.487) 0.023 1.249 (1.029-1.516) 0.024

Dominant Model

AA 201 (40.2) 233 (46.4) 1(ref) 1(ref)

GG+AG 299 (59.8) 269 (53.6) 1.288 (1.003-1.655) 0.047 1.310 (1.005-1.707) 0.046

Recessive Model

AG+AA 425 (85.0) 444 (88.4) 1(ref) 1(ref)

GG 75 (15.0) 58 (11.6) 1.351 (0.935-1.951) 0.109 1.360 (0.925-1.999) 0.118

Overdominant model

GG+AA 276 (55.2) 291 (58.0) 1(ref) 1(ref)

AG 224 (44.8) 211 (42.0) 1.119 (0.872-1.437) 0.377 1.131 (0.86-1.472) 0.36
fro
Adjusted P value calculated by logistic regression with adjustment for age, pre-BMI, SBP, DBP and parity, bold values indicate the P ≤ 0.05.
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(GG+AG vs. AA: OR = 1.184; 95% CI: 1.013-1.383; P = 0.034),

recessive model (GG vs. AG + AA : OR = 1.408; 95% CI: 1.135-

1.747; P = 0.002), codominant homozygous model (GG vs. AA : OR

= 1.474; 95% CI: 1.167-1.861; P = 0.001), and allele model (G vs. A:
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OR = 1.195; 95% CI: 1.069-1.336; P = 0.002), and no significant

association was found in other genetic models (Figure 3). There was

no obvious evidence of publication bias in the genetic models, and

these results are consistent with Egger’s tests (all P > 0.05).
TABLE 4 The associations between SNPs in SLA30C8 gene and GDM risk in subjects aged ≥ 30 years.

Model Cases (%) Controls (%) Crude OR Crude P Adjusted OR Adjusted P

(n = 308) (n = 198) (95 % CI) (95 % CI)

rs13266634

Codominant model

CC 98 (31.8) 46 (23.2) 1(ref) 1(ref)

CT 156 (50.7) 103 (52.0) 0.711 (0.463-1.093) 0.119 0.736 (0.475-1.141) 0.171

TT 54 (17.5) 49 (24.8) 0.517 (0.307-0.872) 0.013 0.503 (0.294-0.861) 0.012

Aelle model

C 352 (57.1) 195 (49.2) 1(ref) 1(ref)

T 264 (42.9) 201 (50.8) 0.728 (0.565-0.938) 0.014 0.723 (0.557-0.937) 0.014

Dominant Model

CC 98 (31.8) 46 (23.2) 1(ref) 1(ref)

TT+CT 210 (68.2) 152 (76.8) 0.648 (0.431-0.975) 0.037 0.661 (0.436-1.003) 0.052

Recessive Model

CT+CC 254 (82.5) 149 (75.2) 1(ref) 1(ref)

TT 54 (17.5) 49 (24.8) 0.646 (0.418-1.000) 0.05 0.615 (0.392-0.966) 0.035

Overdominant model

TT+CC 152 (49.4) 95 (48.0) 1(ref) 1(ref)

CT 156 (50.6) 103 (52.0) 0.947 (0.662-1.353) 0.736 0.988 (0.686-1.425) 0.95

rs2466293

Codominant model

AA 120 (39.0) 95 (48.0) 1(ref) 1(ref)

AG 141 (45.8) 81 (40.9) 1.378 (0.939-2.022) 0.101 1.519 (1.020-2.263) 0.04

GG 47 (15.2) 22 (11.1) 1.691 (0.953-3.001) 0.071 1.784 (0.994-3.203) 0.053

Aelle model

A 381 (61.9) 271 (68.4) 1(ref) 1(ref)

G 235 (38.1) 125 (31.6) 1.337 (1.024-1.747) 0.033 1.399 (1.064-1.839) 0.016

Dominant Model

AA 120 (39.0) 95 (48.0) 1(ref) 1(ref)

GG+AG 188 (61.0) 103 (52.0) 1.445 (1.007-2.073) 0.045 1.579 (1.086-2.295) 0.017

Recessive Model

AG+AA 261 (84.7) 176 (88.9) 1(ref) 1(ref)

GG 47 (15.3) 22 (11.1) 1.441 (0.839-2.475) 0.184 1.447 (0.834-2.508) 0.189

Overdominant model

GG+AA 167 (54.2) 117 (59.1) 1(ref) 1(ref)

AG 141 (45.8) 81 (40.9) 1.220 (0.850-1.750) 0.281 1.323 (0.910-1.923) 0.143
Adjusted P value calculated by logistic regression with adjustment for age, pre-BMI and SBP. bold values indicate the P ≤ 0.05.
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4 Discussion

The role of genetic factors in the GDM process has been verified

by previous findings (12). Rs13266634 is a non-synonymous SNP in

SLC30A8, and a protective role for the rs13266634 T allele, which

reduces GDM risk, has been proposed in a Swedish population (8).
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In contrast, six studies from Brazil, the United States, Denmark, the

Republic of Korea, and China failed to replicate the results (13–18).

Therefore, further verification is necessary. Moreover, rs2466293 is

a polymorphism in miRNA-binding sites (miR-binding SNP).

Recent findings indicated that rs2466293 impacted the

development of GDM (19), but more extensive research is needed

for verification. This research paper conducted a case-control study

to estimate the association of SLC30A8 rs13266634 or rs2466293

with GDM among six different genet ic models in a

Chinese population.

In the research process, we explored the relationship between

SLC30A8 gene multiformity and GDM risk. In the overall analysis,

the findings indicated that SLC30A8 rs13266634 showed no

association with GDM risk, but SLC30A8 rs2466293 was shown

to be significantly related to increased GDM risk under the

dominant (GG+AG), codominant homozygous (GG), and allele

(G) genetic models that were unadjusted and adjusted for age, pre-

BMI, SBP, DBP, and parity. In this study, women with GDM were

older than healthy controls. It has been pointed out that the

prevalence of GDM increases with age, and the incidence is

higher among women over 30 years of age (20). Therefore,

further studies used a cutoff point of 30 years of age and analyzed

the association between polymorphic variants and GDM after

stratification by age. Interestingly, after adjusting for age, pre-

pregnancy BMI, and SBP, our findings indicated that the SNP

rs13266634 in SLC30A8 was found to have a protective effect

against GDM risk in subjects aged ≥30 years under the recessive

and homozygous dominant genetic models, while SLC30A8

rs2466293 was significantly associated with increased GDM risk

in patients aged ≥30 years under the dominant and heterozygous

dominant genetic models. These results are in accordance with

some scholarly studies (8, 13, 19). Furthermore, the CG haplotype,

comprised of SNPs rs13266634 and rs2466293, was significantly

associated with an increased risk of GDM in the overall analysis. In

a further analysis stratified by age, the CG haplotype was also
TABLE 5 Haplotype analysis of the rs132666342 and rs2466293 SNPs of the SLA30C8 gene for the GDM and controls.

Haplotype Cases (%) Controls (%) c2 P OR (95 % CI)

CA 189 (18.9) 202 (20.1) 0.474 0.49 0.925 (0.741-1.154)

TA 437 (43.7) 475 (47.3) 2.633 0.104 0.864 (0.724-1.03)

CG 373 (37.3) 327 (32.5) 4.932 0.026 1.231 (1.024-1.48)

Haplotype Cases (%) Controls (%) c2 P OR (95 % CI)

Age (years) <30

CA 71 (18.4) 132 (21.7) 1.5 0.22 0.817 (0.592-1.128)

CG 139 (36.1) 202 (33.2) 0.922 0.336 1.14 (0.872-1.49)

TA 174 (45.3) 274 (45.0) 0.005 0.939 1.01 (0.781-1.305)

Age (years) ≥ 30

CA 118 (19.1) 70 (17.6) 0.348 0.554 1.103 (0.795-1.53)

TA 263 (42.6) 201 (50.7) 6.311 0.011 0.722 (0.56-0.931)

CG 234 (37.9) 125 (31.5) 4.342 0.037 1.328 (1.016-1.734)
FIGURE 1

Linkage disequilibrium (LD) between multiple loci of the SLC30A8
gene (rs13266634 C/T and rs2466293 A/G).
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associated with an increased risk of GDM in individuals aged ≥ 30

years, while the TA haplotype was associated with a reduced risk of

GDM in the same age group. These results suggest that the T allele

of rs13266634 in SLC30A8 can be considered a protective factor for

GDM, while the G allele of rs2466293 may be a risk factor for GDM.

Wang et al. found that the C allele of rs2466293 increased

susceptibility to GDM in the Chinese population (19), which was

consistent with our research findings. In addition, our study found

that the TT homozygous genotype of rs13266634 and the T allele

decreased the risk of developing GDM in subjects aged ≥ 30 years.

Similarly, previous research has demonstrated that the T allele of

rs13266634 protects against the risk of GDM in the Swedish

population (8), which was consistent with our findings. Moreover,

in populations of Filipinos, Swedes, Koreans, and Chinese

individuals, there was evidence of an association between the C
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allele of SLC30A8 rs13266634 and a higher risk of GDM (8, 13, 14,

18). However, other studies have not found any association between

rs13266634 and the risk of GDM in populations of Danes and

Europeans (15–17). Inconsistencies in these results may be related

to differences in ethnicity, environment, or limited study sample

sizes. Therefore, a comprehensive meta-analysis was carried out

with a larger number of different populations (ethnicities) to

identify the relationship of SLC30A8 SNPs with GDM risk.

Rs13266634 was demonstrated to have a protective effect in every

genetic model (P < 0.05) in eight eligible studies (including our

study), and significant findings of rs13266634 could also be

observed in both the Caucasian and Asian subgroups. SLC30A8

rs2466293 was found to be significantly related to higher GDM risk

in the relevant models (codominant homozygous and allele models)

(P < 0.05) based on two Chinese population studies.
TABLE 6 Association between SNPs polymorphisms genotype and blood glucose levels.

Genotype FPG (mmol/L) 1h-PG (mmol/L) 2h-PG (mmol/L)

rs13266634

Age (years) < 30

CC 4.66±0.614 8.49±1.923 7.30±1.925

CT 4.57±0.570 8.38±1.81 7.31±1.594

TT 4.66±1.077 8.55±2.277 7.68±1.925

F 0.903 0.28 2.123

P > 0.05 > 0.05 > 0.05

Age (years) ≥ 30

CC 4.79±0.546 9.87±1.717 8.62±1.818

CT 4.74±0.556 9.50±1.884b 8.25±1.724

TT 4.64±0.482a 9.10±1.679a 8.12±1.733a

F 2.225 5.262 2.766

P < 0.05 < 0.05 < 0.05

rs2466293

Age (years) < 30

AA 4.67±0.887 8.37±2.033 7.48±1.733

AG 4.58±0.606 8.44±1.886 7.27±1.577

GG 4.61±0.493 8.78±1.921 7.49±1.443

F 0.752 1.009 0.945

P > 0.05 > 0.05 > 0.05

Age (years) ≥ 30

AA 4.76±0.532 9.40±2.014 8.31±1.917

AG 4.68±0.577 9.62±1.682 8.33±1.693

GG 4.81±0.435 9.56±1.57 8.40±1.478

F 1.739 0.781 0.07

P > 0.05 > 0.05 > 0.05
aLSD was used to compare the blood glucose levels of three rs13266634 genotypes: the difference of blood glucose between CC and TT genotypes was statistically significant, all P < 0.05. b LSD was
used to compare the blood glucose levels of three rs13266634 genotypes: the difference of 1-h blood glucose between CC and CT genotypes was statistically significant, P < 0.05. P < 0.05, bold
values indicate the P < 0.05.
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GDM and T2DM are considered to have similar pathogenesis.

In a study of diabetic mice, SLC30A8 gene expression levels

were inhibited in the pancreas of animals with this pathology,

indicating that it is related to diabetes (9). Studies have shown

that the SLC30A8 rs13266634 C allele is associated with

glucose regulation in GWASs (21, 22). In addition, studies

based on fluorescence and radiation have proposed a hypothesis

that the rs13266664-T allele reduces SLC30A8 activity, which

changes insulin synthesis and reduces GDM susceptibility based

on this mechanism (23–25). In addition, genetic variation in the

3’UTR, a miRNA target gene, can affect the interaction between

miRNA and target mRNA. We queried the rs2466293

polymorphism located using the “MirSNP” database (http://

bioinfo.life.hust.edu.cn/miRNASNP/). According to the results,

it can be inferred that rs2466293 creates eight and destroys three

putative miRNA target sites, which may impact the expression of

SLC30A8 and lead to a higher risk of GDM. However, functional

research is necessary to further confirm its mechanism.
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According to the abovementioned research, this study obtained

a conclusion that the age and pre-BMI of the GDM group were

significantly higher than those of the control group, and logistic

regression analysis indicated that the increase in age and pre-BMI

were important risk factors for GDM. SBP, DBP, and parity in the

GDM group were significantly higher than those in the other group.

It can be inferred that patients with GDM were prone to pregnancy-

induced hypertension syndrome. Moreover, a previous study found

that the SLC30A8 rs13266634 C allele was correlated with higher

fasting glucose levels among women with gestational high BMI (26).

Our study also showed that the SLC30A8 rs13266634 C allele had an

influence on higher fasting glucose, 1-h, and 2-h glucose levels

among pregnant women over the age of 30 years, which was similar

to the results of previous studies. The SLC30A8 rs13266634 C allele

may affect the normal secretion of insulin. Wang et al. found a

significant relationship between the C allele of rs2466293 with

higher plasma glucose (19), but no differences were found in our

study. Therefore, further relevant research is necessary.
FIGURE 2

Meta-analysis with a fixed effects model for the association between SLC30A8 rs13266634 and GDM susceptibility. (A) dominant model, TT+CT vs.
CC (B) recessive model, TT vs. CT+CC (C) overdominant model, CT vs. TT +CC (D) codominant homozygous model,TT vs.CC (E) codominant
heterozygous model, CT vs.CC (F) allele model, T vs. (C) OR: odds ratio, CI: confidence interval, I-squared: measure to quantify the degree of
heterogeneity in meta-analyses.
frontiersin.org

http://bioinfo.life.hust.edu.cn/miRNASNP/
http://bioinfo.life.hust.edu.cn/miRNASNP/
https://doi.org/10.3389/fendo.2023.1159714
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zeng et al. 10.3389/fendo.2023.1159714
There are still several limitations in this study. First, due to the

modest sample size of the GDM and control groups, future studies

need to validate our observations in a larger cohort. Second, the data

used in this study were insufficient, such as the lack of fasting

insulin data, to accurately measure and evaluate pancreatic islet b-
cell function. Finally, the study subjects were limited to Chinese

individuals, and additional research is necessary to confirm our

findings in diverse populations.
5 Conclusions

In conclusion, in subjects aged ≥ 30 years, SLC30A8 rs13266634

exhibited a protective relationship against GDM susceptibility,

while the results indicated associations of rs2466293 with the risk

of GDM. The haplotype CG was also associated with a higher risk of

GDM, and the haplotype TA was associated with a lower risk of

GDM in subjects aged ≥ 30 years. In general, our findings provide
Frontiers in Endocrinology 1091
more clues for studying the precise mechanism of the development

of GDM.
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Shanghai, China, 6Medical Research Council (MRC) Integrative Epidemiology Unit, University of
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Associations between lower birth weight and higher polycystic ovary syndrome

(PCOS) risk have been reported in previous observational studies, however, the

causal relationship is still unknown. Based on decomposed fetal and maternal

genetic effects on birth weight (n = 406,063), we conducted a two-sample

Mendelian randomization (MR) analysis to assess potential causal relationships

between fetal genome predicted birth weight and PCOS risk using a large-scale

genome-wide association study (GWAS) including 4,138 PCOS cases and 20,129

controls. To further eliminate the maternally transmitted or non-transmitted

effects on fetal growth, we performed a secondary MR analysis by utilizing

genetic instruments after excluding maternally transmitted or non-transmitted

variants, which were identified in another birth weight GWAS (n = 63,365 parent-

offspring trios from Icelandic birth register). Linkage disequilibrium score

regression (LDSR) analysis was conducted to estimate the genetic correlation.

We found little evidence to support a causal effect of fetal genome determined

birth weight on the risk of developing PCOS (primary MR analysis, OR: 0.86, 95%

CI: 0.52 to 1.43; secondary MR analysis, OR: 0.86, 95% CI: 0.54 to 1.39). In

addition, a marginally significant genetic correlation (rg = -0.14, se = 0.07)

between birth weight and PCOS was revealed via LDSR analysis. Our findings

indicated that observed associations between birth weight and future PCOS risk

are more likely to be attributable to genetic pleiotropy driven by the fetal genome

rather than a causal mechanism.

KEYWORDS

Mendelian randomization, birth weight, polycystic ovary syndrome, fetal genome,
genetic pleiotropy
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Introduction

Polycystic ovary syndrome (PCOS), affecting 6% – 9% of

women of reproductive age, is the most common endocrine

condition (1). Based on previous studies, insulin resistance,

obesity, and androgen excess may contribute together and play

crucial roles in PCOS development (2, 3). In addition, an increasing

body of evidence suggests a strong genetic component in its

aetiology (4, 5). However, the aetiology of PCOS remains largely

unknown, and no efficient therapeutic treatments or prevention

measures for PCOS are available. According to the Developmental

Origins of Health and Disease (DOHaD) hypothesis, early life

abnormal growth and development were associated with the risk

of developing various chronic diseases in later life (6, 7). Birth

weight, a common indicator reflecting intrauterine fetal growth, has

been widely studied on its long-term impact on adulthood health

outcomes (8–11). Interestingly, observational associations between

birth weight and PCOS risk in later life have been reported in a

recent meta-analysis and multiple cohort studies (12–17). However,

these associations were not well replicated in other independent

large-scale cohort studies (18–20). Given that observational studies

are commonly prone to residual confounding or reverse causation

(21), the causal relationship between birth weight and the risk of

developing PCOS remains unknown.

Mendelian randomization (MR), which is a causal inference

technique using genetic variants randomly allocated during

conception as instrumental variables, is less prone to residual

confounding or reverse causation bias (22). In a previous study,

little evidence was found to support a causal effect of birth weight on

PCOS risk by using MR (P = 0.22) (23). However, this study used

offspring genetic variants associated with birth weight as

instrumental variables without adjusting for maternal genotypes,

which were correlated with fetal genotypes (r ≈ 0.5) (24, 25)

(Supplemental Figure 1). Thus, their effect estimates of birth

weight on PCOS risk might be biased by the maternal genetic

effects. In addition, recent studies suggested that composite or

complex traits can be explained by multiple components or

distinct biological pathways (26–28). Like other complex traits,

variation in birth weight can also be explained by different

components, such as fetal genetically regulated components and

maternal adverse intrauterine environment components (29–31).

Dissecting these components of birth weight is essential to

understand the underlying biological mechanism. Recently,

several studies investigated possible mechanisms between birth

weight and cardiometabolic risk by using different components of

birth weight. Based on structural equation model (SEM) and

weighted linear model (WLM) methods, Warrington et al. and

Moen et al. recently separated genetic effects on birth weight into

maternal and fetal components to investigate the causal

mechanisms between birth weight and future cardiometabolic risk

(29, 32). Their findings suggested that associations between birth

weight and adulthood cardiometabolic outcomes were attributable

to fetal genetic effects rather than intrauterine programming (29,

32). Moreover, from a genomic perspective, Juliusdottir et al.

discriminated the effects of transmitted and non-transmitted
Frontiers in Endocrinology 0295
alleles on birth weight by using a long-range phasing (LRP)

method based on the Icelandic fetal growth samples to investigate

inheritance patterns affecting birth weight (30). This study indicated

that associations between birth weight and most cardiometabolic

risk factors were driven by the fetal genome (30), whereas it is still

unclear whether birth weight affects PCOS in the same manner.

Recently, two large-scale genome-wide association study

(GWAS) meta-analyses on PCOS released their summary

statistics (4, 33), which provided opportunities for assessing

potential causal relationships between birth weight and PCOS

risk. Thus, in this study, we aimed to investigate whether there is

a causal effect of fetal genome determined birth weight on PCOS

risk using two-sample MR analysis. Considering other potential

mechanisms that might underpin the association between birth

weight and PCOS, such as genetic pleiotropy, we also assessed the

genetic correlation between birth weight and PCOS risk by

conducting linkage disequilibrium score regression (LDSR)

analysis which is mainly used to identify shared genetic variation

between two traits across the whole genome (34, 35).
Materials and methods

Data sources and study populations

A schematic overview of the study design is presented in

Figure 1 and detailed data sources information can be found in

Supplemental Table 1. We used two sets of birth weight summary

statistics obtained from GWASs conducted by the Early Growth

Genetics (EGG) consortium (http://egg-consortium.org) and the

Icelandic birth register to construct two sets of instrumental

variables (IVs) for the primary and secondary MR analysis,

respectively. GWAS of birth weight conducted by the EGG

Consortium included 406,063 individuals of European ancestry

(29), where maternal and fetal genetic effects on birth weight

were separated by using SEM. In the primary MR analysis, we

used the summary statistics of fetal genetic effects on the offspring’s

birth weight after adjusting for correlated maternal genotypes. Of

note, the original birth weight GWAS categorized 305 genome-wide

significant (P < 5×10-8) single nucleotide polymorphisms (SNPs)

identified into 5 groups based on the effects of maternal and/or fetal

genotypes on offspring birth weight: 1) fetal effect only, 2) maternal

effect only, 3) fetal and maternal effects with the same direction, 4)

fetal and maternal effects with the opposite directions, and 5)

unclassified (29). Among these variants, 28 SNPs were identified

as having fetal genetic effects on birth weight (SEM classification:

“fetal only” or “fetal and maternal”).

The outcome data were obtained from a large-scale GWAS

meta-analysis of PCOS, including 4,138 cases and 20,129 controls of

European ancestry from six cohorts (Rotterdam, Oxford, EGCUT,

deCODE, Chicago, and Boston) (4). To further validate the results

of the MR analysis, we used summary statistics of PCOS GWAS

meta-analysis in the FinnGen and Estonian Biobank (EstBB) as

replication data, which included 3,609 cases and 229,788

controls (33).
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Genetic instruments selection

The genetic instruments selection procedure was conducted in

the following steps. First, in the primary MR analysis, statistically

significant (P < 5×10-8) genetic variants were selected from

summary statistics of birth weight GWAS conducted by the EGG

Consortium (29). To ensure that genetic variants are independent, a

stringent linkage disequilibrium (LD) threshold (r2 < 0.001 and

window size = 10,000 kb) was used for LD clumping, with the

European subsample of 1,000 Genome Project data as reference

panel (36). Moreover, we excluded genetic instruments located in

the range of imprinted genes to minimize the heterogeneous effect

of variants on phenotypes in the population. Considering potential

violations of the MR core assumptions, that is, maternal genetic

effects confounded fetal genetic variants which were used as IVs and

the outcome (i.e., PCOS), we identified and excluded SNPs that

exerted maternal genetic effects on birth weight from the set of IVs.

To further eliminate maternal genetic effects on birth weight from

IVs used in the primary analysis, we identified and excluded

maternally transmitted and non-transmitted alleles based on a

GWAS meta-analysis on birth weight by Juliusdottir et al. from

63,365 parent-offspring trios (30), to construct IVs for the

secondary MR analysis. The allele-specific effects of maternally
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transmitted or non-transmitted on birth weight were used to

represent the maternal and fetal genetic effects, respectively (37).

Finally, five maternally transmitted and three maternally non-

transmitted SNPs that reached a genome-wide significant level on

birth weight were identified from the GWAS by Juliusdottir

et al. (30)

Furthermore, we extracted SNP-POCS associations for each

genetic instrument from two independent PCOS GWASs

conducted by Day et al. and Tyrmi et al., respectively (4, 33). If a

certain instrument was not available in the summary data, a proxy

SNP in high LD in the European population was identified using

LDlink (https://ldlink.nci.nih.gov/?tab=ldproxy). After that, data

harmonization was performed to combine SNP-birth weight and

SNP-PCOS associations using the “harmonise_data” function in the

TwoSample MR package (36), in which ambiguous or palindromic

SNPs were excluded.

As a result, we retained a total of 22 SNPs as genetic instruments

in the primary MR analysis from birth weight GWAS conducted by

Warrington et al. (29) and 20 SNPs after excluding two maternally

transmitted or non-transmitted SNPs (i.e., rs560887 and

rs10872678 which were identified in the GWAS by Juliusdottir

et al. (30)) in the secondary MR analysis (Table 1). To minimize the

risk of violating the IV assumptions, we identified SNPs associated
FIGURE 1

Study design of MR analyses. (A) rs560887 and rs10872678 were identified as maternally transmitted and non-transmitted alleles respectively in the
birth weight GWAS by Juliusdottir et al. (30). (B) SNPs were genome-wide significantly associated with potential confounders of PCOS, including
BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose metabolism, and lipid metabolism. BMI, body mass
index; BW, birth weight; EstBB, Estonian Biobank; GWAS, genome-wide association study; PCOS, polycystic ovary syndrome; SNP, single nucleotide
polymorphism; WHR, waist-to-hip ratio.
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with risk factors for PCOS, including body mass index (BMI), type 2

diabetes, waist/hip circumference, waist-to-hip ratio, metabolic

syndrome, glucose metabolism, and lipid metabolism, by

searching the GWAS Catalog database (https://www.ebi.ac.uk/

gwas/) and the PhenoScanner database (version 2; http://

phenoscanner.medschl.cam.ac.uk/). After excluding associated

SNPs, 12 and 11 SNPs were retained as genetic instruments in

each set of IVs, respectively (Figure 1, Supplemental Tables 2, 3).
Primary MR analysis

Main analysis
The multiplicative random-effects inverse-variance weighted

(IVW) method was used as the main analysis (38, 39). Wald ratio

estimate for each SNP was calculated by dividing the per allele effect

on PCOS by the per allele change in the standard deviation (SD) of

birth weight, followed by meta-analyzing the estimates via the
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multiplicative random-effects IVW method, which eventually

yielded the IVW estimates. The IVW estimates can be interpreted

as the odds ratio (OR) of PCOS risk for one SD change in

birth weight.
Sensitivity analyses

Assessment of the IV assumptions
To test the MR relevance assumption (i.e., whether the selected

IVs have strong associations with birth weight), the F statistic was

calculated for each genetic instrument in our study (40).

Furthermore, to ensure that the exclusion restriction assumption

holds, Cochran’s Q statistic in the IVW analysis (38, 39) was used to

assess the heterogeneity of the causal estimates between genetic

variants (41). The intercept term of MR-Egger regression was used

to test for directional pleiotropy. In addition, we conducted the

leave-one-out (LOO) (42) and the Mendelian Randomization
TABLE 1 Characteristics of instrumental variables for birth weight used in the primary MR analysis.

SNP CHR Position Gene EA OA EAF Beta SE P F*

rs80278614 1 119412317 TBX15 A G 0.05 0.05 0.009 4.03×10-8 30.1

rs2551347 2 23912401 KLHL29 T C 0.75 0.03 0.005 2.20×10-9 35.8

rs17034876 2 46484310 EPAS1 T C 0.70 0.04 0.005 5.47×10-17 70.2

rs560887 a,b 2 169763148 G6PC2 C T 0.70 -0.02 0.004 2.78×10-8 30.9

rs11708067 b 3 123065778 ADCY5 G A 0.25 0.06 0.005 6.26×10-32 138.3

rs1482852 b 3 156798294 LOC339894 A G 0.60 0.05 0.004 7.56×10-39 170.0

rs4144829 b 4 17903654 LCORL C T 0.26 0.03 0.005 1.12×10-11 46.1

rs35261542 b 6 20675792 CDKAL1 C A 0.74 0.05 0.005 3.23×10-26 112.2

rs10872678 a 6 152039964 ESR1 T C 0.72 0.03 0.005 8.23×10-10 37.7

rs138715366 7 44246271 YKT6/GCK C T 0.99 0.24 0.022 1.43×10-25 109.3

rs112139215 7 73034559 MLXIPL A C 0.07 0.06 0.008 1.20×10-11 46.0

rs13266210 8 41533514 ANK1 A G 0.78 0.03 0.005 3.05×10-9 35.2

rs28457693 9 98217348 PTCH1 G A 0.11 0.04 0.007 1.70×10-9 36.3

rs1112718 b 10 94479107 HHEX/IDE G A 0.41 0.04 0.004 1.51×10-17 72.7

rs7076938 b 10 115789375 ADRB1 T C 0.73 0.03 0.005 2.91×10-10 39.7

rs4444073 11 10331664 ADM A C 0.51 0.02 0.004 2.20×10-8 31.3

rs7968682 b 12 66371880 HMGA2 G T 0.49 0.04 0.004 4.87×10-20 84.0

rs75844534 15 38667117 SPRED1 A C 0.12 0.04 0.006 1.54×10-8 32.0

rs7402983 b 15 99193276 IGF1R A C 0.41 0.03 0.004 4.61×10-10 38.8

rs222857 17 7164563 CLDN7 T C 0.57 0.03 0.004 5.77×10-10 38.4

rs11698914 20 31327144 COMMD7 C G 0.23 0.03 0.005 2.75×10-9 35.3

rs1012167 b 20 39159119 MAFB C T 0.41 0.02 0.004 1.86×10-8 31.6
frontier
* The selected instruments explain 0.3% of the variation in birth weight in the primary MR analysis. The F statistic of individual SNPs ranged from 30.1 to 170.0 with an average F statistic of 58.2.
a. Maternally transmitted or non-transmitted alleles were excluded from the secondary MR analysis.
b. SNPs were genome-wide significantly associated with potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose
metabolism, and lipid metabolism.
BMI, body mass index; CHR: chromosome; EA: effect allele; EAF: effect allele frequency; OA: other allele; P, N, and F indicate p-value, sample size, and F statistic, respectively; SE: standard error;
SNP: single-nucleotide polymorphism.
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Pleiotropy RESidual Sum and Outlier (MR-PRESSO) (43) analyses

to detect strong influential SNPs or outliers.
Robust MR methods

Given that the IVW method provides a biased estimate in the

presence of unbalanced horizontal pleiotropy (i.e., directional

pleiotropy), we carried out sensitivity analyses by using several

pleiotropic-robust methods, including MR-Egger (44), weighted

median (45), weighted mode (46), and MR-PRESSO (43)

methods, to enhance the robustness of causal inference. When the

assumption of the Instrument Strength Independent on Direct

Effect (InSIDE) holds, the MR-Egger regression will generate

consistent estimates even in the presence of directional pleiotropy

(47). The assumption of InSIDE allows for the pleiotropy effects of

IVs but requires that the SNP-exposure effects are independent of

the pleiotropic effects of SNPs on the outcome, which is a weaker

assumption than the IVW assumption. However, the MR-Egger

estimate is less precise than the IVW estimate, particularly when the

SNP-exposure effect estimates of each genetic variant are relatively

homogeneous. Furthermore, we conducted the weighted median

analysis which provides reliable estimates when up to 50% of the

weight comes from valid IVs. We also carried out the weighted

mode analysis which assumes that the most common effect estimate

is a consistent estimate of the true effect and allows the majority of

variants to be invalid (46). Finally, MR-PRESSO analysis was

conducted to estimate the causal effect after correcting for

horizontal pleiotropy by removing outliers (43).
Secondary and replication MR analysis

A secondary MR analysis was conducted using the fetal genetic

associations extracted from the birth weight GWAS by Warrington

et al. (29), after excluding maternally transmitted or non-

transmitted alleles that were identified in the GWAS by

Juliusdottir et al. (30) In addition, to validate the causal estimates

in the primary MR analysis, a replication MR analysis was

performed using data from an independent PCOS GWAS meta-

analysis in the FinnGen and EstBB (33). To increase the statistical

power and precision of causal estimates, a fixed-effect meta-analysis

was conducted to pool the IVW estimates from the primary/

secondary and replication analyses.
LDSR analysis

LDSR analysis was conducted to assess the genetic correlation

between offspring birth weight and PCOS risk by using the fetal

genetic associations with birth weight after adjusting for maternal

genotypes. First, we conducted LDSR analysis based on summary

statistics from birth weight GWAS conducted by Warrington et al.

(29) and PCOS GWAS conducted by Day et al. (4) For replication,

LDSR analysis was performed based on the summary statistic from
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another independent PCOS GWAS conducted by Tyrmi et al. (33)

The heritability of a single trait or the genetic correlation between

two traits can be estimated using LDSR analysis based on the LD

structure of a reference panel. Unlike MR, LDSR analysis assesses

the genetic correlation between two traits by using genetic variants

from the whole genome rather than the causal effect between

two traits.

All statistical analyses were conducted using the R packages

“TwoSampleMR”, “MRPRESSO” and “meta” in R software, version

4.0.0 (R Foundation for Statistical Computing, Vienna, Austria).

LDSR analysis was performed using the LDSC software, version

4.0.0 (https://github.com/bulik/ldsc) (34, 35).
Results

Main analysis

The main analysis by IVW suggested little evidence to support a

causal relationship between fetal genome determined birth weight

and PCOS risk. Causal effect estimates of fetal genome determined

birth weight on PCOS risk in the primary MR analysis equated to an

OR of PCOS of 0.86 (95% CI: 0.52 to 1.43) for one SD increase in

birth weight (Figure 2). Replication analysis using another

independent data source from PCOS GWAS meta-analysis

generated a consistent causal association of fetal genome

determined birth weight with offspring PCOS risk (OR: 0.87, 95%

CI: 0.60 to 1.24). Further, consistent estimates (regarding both effect

directions and magnitudes) were obtained after meta-analyzing the

IVW estimates (OR: 0.87, 95% CI: 0.65 to 1.16) in the primary and

replication analyses (Figure 2). After excluding the maternally

transmitted and non-transmitted effects, the MR analysis results

suggested a null causal effect of fetal genetically predicted birth

weight on PCOS risk in both secondary and replication MR analyses

(secondary IVW OR: 0.86, 95% CI: 0.54 to 1.39; replication IVW

OR: 0.86, 95% CI: 0.58 to 1.26) (Figure 3). A similar pooled IVW

estimate was observed (OR: 0.86, 95% CI: 0.64 to 1.16).
Sensitivity analyses

Assessment of the IV assumptions
Genetic instruments for fetal genome determined birth weight,

including 22 SNPs, ranged from 30.1 to 170.0 with an average F

statistic of 58.2, indicating the absence of weak instruments

(Table 1). No evidence for heterogeneity between SNP specific

causal effect estimates was found for the primary IVs set (P for

Cochran Q heterogeneity test = 0.10, replication: P = 0.21) and the

secondary IVs set (P = 0.26, replication: P = 0.15), respectively. The

proximity of the intercept to the origin in the scatter plot

(Supplemental Figure 2) and no significant difference of the

intercept from zero in MR-Egger regression suggested little

evidence for directional pleiotropy (primary IVs set: P = 0.85,

replication: P = 0.08; secondary IVs set: P = 0.70, replication: P =

0.07) (Supplemental Table 4). Meanwhile, the LOO analysis did not
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detect influential genetic instruments for birth weight in the MR

analysis (Supplemental Figure 3). The MR-PRESSO global test did

not detect any outliers (primary IVs set: P = 0.13, replication: P =

0.23; secondary IVs set: P = 0.30, replication: P = 0.15)

(Supplemental Table 5). For sensitivity analyses by using IVs after

excluding potential confounder-related SNPs, we found little

evidence for heterogeneity between the causal effect estimates for

each SNP, directional pleiotropy, and any outliers.
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Results from robust MR methods

The results from robust MR methods are presented in Figures 2

and 3 which were broadly consistent with the IVW analysis results.

For the primary IVs set consisting of 22 SNPs, non-significant

causal effects of fetal genome determined birth weight on PCOS risk

were observed by using MR-PRESSO, weighted median, weighted

mode, and MR-Egger methods, respectively (Figure 2). Consistent
FIGURE 3

Causal effects of fetal genome determined birth weight on future PCOS risk estimated in the secondary MR analysis. Squares represent ORs of PCOS
per SD increase in birth weight. Error bars represent 95% confidence intervals. (A) rs560887 and rs10872678were identified as maternally transmitted
and non-transmitted alleles respectively in the birth weight GWAS by Juliusdottir et al. (30). (B) 9 SNPs that were genome-wide significantly
associated with potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome,
glucose metabolism, and lipid metabolism, were excluded from the MR analysis. BMI, body mass index; CI, confidence interval; IVs, instrumental
variables; IVW, inverse variance weighted; MR, Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and
Outlier; OR, odds ratio; P, p-value; PCOS, polycystic ovary syndrome; SD, standard deviation; SNP, single nucleotide polymorphism.
FIGURE 2

Causal effects of fetal genome determined birth weight on future PCOS risk estimated in the primary MR analysis. Squares represent ORs of PCOS
per SD increase in birth weight. Error bars represent 95% confidence intervals. A. 10 SNPs that were genome-wide significantly associated with
potential confounders of PCOS, including BMI, type 2 diabetes, waist/hip circumference, waist-to-hip ratio, metabolic syndrome, glucose
metabolism, and lipid metabolism, were excluded from the MR analysis. BMI, body mass index; CI, confidence interval; IVs, instrumental variables;
IVW, inverse variance weighted; MR, Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; OR,
odds ratio; P, p-value; PCOS, polycystic ovary syndrome; SD, standard deviation; SNP, single nucleotide polymorphism.
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causal effect estimates derived from robust MR analysis were

revealed for the secondary IVs set consisting of 20 SNPs

(Figure 3). The results of sensitivity analysis after excluding

potential risk factor related SNPs were consistent with the results

of the primary and secondary analyses (Figures 2, 3).
LDSR analyses

There was a marginally significant genetic correlation (rg =

-0.14, se = 0.07, P = 0.05) between birth weight and PCOS on a

genome-wide scale. Although the result of replication LDSR

analysis showed a non-significant genetic correlation between

birth weight and PCOS (rg = -0.16, se = 0.12, P = 0.18), the effect

directions and magnitudes were consistent with one another.
Discussion

In this study, we used MR to test the potential causal

relationship between fetal genome predicted birth weight and

PCOS risk. From a genomic perspective, it is important to

discriminate between the maternally transmitted alleles or

intrauterine environment effects and the fetal own genetic effects

on birth weight. To confirm our results, we further tested whether

there was a causal effect of the fetal genome predicted birth weight

on offspring PCOS risk, after excluding maternal transmitted and

non-transmitted (i.e., maternal intrauterine environment effects)

alleles. Our findings provided little evidence for a causal effect of the

fetal genome-determined birth weight on offspring developing

PCOS in later life. These findings were consistent with previous

observational studies that there was no difference in birth weight

between women with PCOS and controls (18–20, 23, 48).

Notably, controversial findings were observed in other studies

(12, 49), and the LDSR analysis results of the present study

suggested a marginally significant genetic correlation between the

two traits. Meanwhile, the potential pleiotropic effects underpinning

the link between birth weight and PCOS were reported. A recent

study found that two genetic variants (i.e., rs2910164 C > G and

rs182052 G > A) in genes MIR146A and ADIPOQ, both of which

were related to PCOS, were associated with birth weight (50).

Although a causal effect of birth weight on PCOS risk was not

observed in the present MR analysis, genetically pleiotropic effects

of variants that contribute to the associations between birth weight

and PCOS cannot be ruled out. Our study suggested that the

association between birth weight and PCOS is likely to be driven

by genetic pleiotropy of variants on the fetal genome.

It is noteworthy that observational studies and animal

experiments demonstrated that prenatal exposure to androgens

possibly in combination with a genetic predisposition may affect

birth weight and subsequent PCOS (51–55). In the present study,

the potential confounding of maternal genetic effects was

minimized by using fetal genetic variants associated with birth

weight as IVs and further excluding maternal transmitted or non-

transmitted genetic variants.
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Strengths and limitations

There are several strengths in our study. We benefited from

large sample sizes and study design yielding more reliable results.

First, to our best knowledge, we used the summary statistics from

the largest published birth weight GWAS with adjusting for

maternal genetic effects (n = 406,063 European ancestral

individuals) to select genetic variants as IVs, and the outcome

data were also extracted from the latest or largest GWAS meta-

analyses on PCOS (4, 29). Second, as mentioned above, Warrington

et al. separated maternal and fetal genetic effects on birth weight by

using SEM. We used the fetal genetic effects on their own birth

weight as the IV-exposure associations, after adjusting for maternal

genetic effects, which could provide insights into the underlying

biological or pathogenic mechanisms between fetal growth and

PCOS development in later life. Third, we also constructed IVs for

birth weight by filtering out maternal transmitted and non-

transmitted variants using summary statistics from a study in

which the study design is different from the study conducted by

Warrington et al. to minimize the confounding bias due to maternal

genetic effects. Fourth, we performed a series of sensitivity analyses

with multiple sets of IVs and robust MR methods to strengthen the

robustness of causal inference. The sensitivity analysis results were

consistent with the results of the main analysis.

Several limitations deserve discussion. First, similar to Chen

et al. in their description of the methodology, the allele-specific

effects on offspring birth weight/fetal growth by maternally non-

transmitted, paternally transmitted, and maternally transmitted

alleles were used to represent maternal genetic effect, fetal genetic

effect, and combination of both, respectively (37). As suggested in

the study conducted by Chen et al. (37), we filtered out maternal

non-transmitted and transmitted alleles that indicated maternal

genetic effects. However, the allele-specific effects on offspring birth

weight/fetal growth by maternally transmitted alleles were

composed of maternal and fetal effects. In the original study,

genetic dissection of maternal and fetal genetic effects was not

performed by modeling maternal and fetal effects using linear

combinations of these three haplotype effects, that is maternal

genetic effect, fetal genetic effect, and a combination of both.

Therefore, more large-scale studies are needed to dissect maternal

and fetal genetic effects on birth weight using linear combinations of

these three haplotype effects in the future. Second, in our study,

there exited moderate sample overlap between data on birth weight

(in GWAS by EGG Consortium (29)) and PCOS (in GWAS

conducted by Day et al. (4)) Up to 2,867 women in the 1958

British Birth Cohort (56) and the Rotterdam Study (57) in the

Netherlands National Trial Register (www.trialregister.nl) were

included in both GWASs (4, 29). Sample overlap in two-sample

MR analysis would bias causal effects estimation (i.e., inflate the

false positive rate) (58), whereas in our study null causal effects of

birth weight on PCOS risk were revealed in both primary and

replication analyses, thus the potential bias due to sample overlap

would not alter the conclusion of our findings. Third, PCOS, as a

common and complex genetic disease with multiple etiologies, is

caused by genes and environmental factors. In the current study, we
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focus on explaining the genetic correlation between birth weight

and PCOS risk. Postnatal environmental effects need to be further

tested for with genotypes of father-offspring pairs in the future since

paternal genotypes might be associated with offspring PCOS risk

after adjusting for offspring genotypes in the presence of postnatal

environmental effects. Fourth, previous studies suggested that low

birth weight was associated with PCOS development (12), however,

other findings supported that women born with extra high birth

weight increased the risk of PCOS (15). These inconsistent findings

might suggest a non-linear causal effect of birth weight on PCOS

risk. The present study was limited by its two-sample MR design

and GWAS summary statistics used to assess the potential non-

linear effect. It is warranted to be investigated through one-sample

MR analysis when individual-level data are available. In addition,

for the replication analysis of LDSR, a genetic correlation between

birth weight with PCOS did not reach statistical significance.

Considering that populations, in which the original GWAS meta-

analysis for the replication analysis was conducted, were mainly

from the FinnGen and Estonian Biobank (33) that were not fully

consistent with populations where the birth weight GWAS was

conducted, population stratification might arise. Finally, LD scores

estimated from European samples of 1000 Genomes reference data

may not represent LD scores well for heterogeneous meta-analyses

of GWAS, these may lead to the reduced accuracy of results from

LDSR analysis (59). However, both results of genetic correlation

based on two different data sets showed an inverse genetic

correlation. Therefore, we believe that an inverse genetic

correlation between birth weight and PCOS is plausible. To avoid

a chance finding, genomic restricted maximum likelihood analysis

with individual-level genotype data is needed to further validate our

results in the future.
Conclusions

In conclusion, our findings provided little evidence for a causal

effect of fetal genome predicted birth weight on developing PCOS in

later life. However, we found evidence for genetic pleiotropy

between birth weight and the future PCOS risk, which has the

potential to explain the relationship observed in previous

observational studies. In this study, although birth weight within

the normal range (i.e., 2,500 to 4,000 grams) may not be causally

associated with the risk of PCOS in later life, the potential non-

linear causal associations between low/high birth weight and PCOS

development need to be further investigated. Further, strong

evidence for the genetic pleiotropy between fetal-genome

predicted birthweight and later life PCOS risk not only suggests a

shared genetic basis but provides novel insight into the common

intervention and treatment targets for these two phenotypes.
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Molecular characterization and
re-interpretation of HNF1A
variants identified in Indian
MODY subjects towards
precision medicine
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Background: HNF1A is an essential component of the transcription factor

network that controls pancreatic b-cell differentiation, maintenance, and

glucose stimulated insulin secretion (GSIS). A continuum of protein

malfunction is caused by variations in the HNF1A gene, from severe loss-of-

function (LOF) variants that cause the highly penetrant Maturity Onset Diabetes

of the Young (MODY) to milder LOF variants that are far less penetrant but impart

a population-wide risk of type 2 diabetes that is up to five times higher. Before

classifying and reporting the discovered variations as relevant in clinical

diagnosis, a critical review is required. Functional investigations offer

substantial support for classifying a variant as pathogenic, or otherwise as

advised by the American College of Medical Genetics and Genomics (ACMG)

and the Association for Molecular Pathology (AMP) ACMG/AMP criteria for

variant interpretation.

Objective: To determine themolecular basis for the variations in theHNF1A gene

found in patients with monogenic diabetes in India.

Methods: We performed functional protein analyses such as transactivation,

protein expression, DNA binding, nuclear localization, and glucose stimulated

insulin secretion (GSIS) assay, along with structural prediction analysis for 14

HNF1A variants found in 20 patients with monogenic diabetes.

Results:Of the 14 variants, 4 (28.6%) were interpreted as pathogenic, 6 (42.8%) as

likely pathogenic, 3 (21.4%) as variants of uncertain significance, and 1 (7.14%) as

benign. Patients harboring the pathogenic/likely pathogenic variants were able to
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successfully switch from insulin to sulfonylureas (SU) making these variants

clinically actionable.

Conclusion: Our findings are the first to show the need of using additive scores

during molecular characterization for accurate pathogenicity evaluations of

HNF1A variants in precision medicine.
KEYWORDS

Maturity Onset Diabetes of Young (MODY) subtype-3, acmg-amp guidelines, re-
interpretation, pathogenic variants, functional characterization, structural analysis,
ACMG-AMP guidelines
1 Introduction

The hepatocyte nuclear factor 1A (HNF1A)gene (MIM # 142410)

encodes a crucial member of an auto-regulatory transcription circuit in

mature and developing pancreas. Heterozygous mutations in HNF1A

result in the most common form of MODY namely subtype HNF1A-

MODY. Autosomal dominant inheritance, early onset, and progressive

b-cell deterioration resulting in severe hyperglycemia define this type of

monogenic diabetes (1–3). This kind of MODY has the highest

prevalence and is more common than other subtypes, and it is more

common in Europe, North America, and Asia (4–7).

Individuals with HNF1A MODY are likely to develop extra

pancreatic symptoms such as glycosuria which will appear even

before the onset of diabetes due to a low renal glucose threshold (8).

This is mainly because HNF1A is expressed in tissues such as the

kidney, liver, and small intestine, in addition to b-cells. The risk of

micro- and macro-vascular problems in HNF1A-MODY is

comparable to that of T1D and T2DM (9) and hence strict

glucose management is required for these individuals. Patients

harboring pathogenic variants in HNF1A gene are sensitive to low

doses of sulfonylureas (10).

The HNF1A protein consists of three functional domains

namely a dimerization domain (1 – 33 aa), a bipartite DNA-

binding domain (homeo domain 100 –184 aa; POU domain 198

–281 aa), and a transactivation domain (282 –631 aa) (11, 12). It

binds to DNA as a homodimer or with the structurally related

transcription factorHNF1B as heterodimers (13, 14). To date, about

564 MODY-causing variants have been identified in the HNF1A

gene (15, 16). These variations include missense, nonsense,

frameshift, in-frame deletions/insertions/duplications, splice site,

promoter region, and whole/partial gene deletions. Analyses of

these variants have demonstrated that some of them render the

protein unstable and poorly expressed (17, 18). Some of the variants

affect either the DNA binding or transactivation ability of HNF1A.

However, patients with the latter type of variants do not exhibit

more severe phenotypes (19–21). Finally, a subgroup of variants

exert a dominant-negative effect over the normal protein.

It is important that these candidate variants are subjected to

rigorous evaluation of pathogenicity to avoid false annotation of

causality, which would be an impediment to the translation of
02105
genomic research findings to clinical practice and precision

medicine. False assignment of pathogenicity can also have severe

consequences for patients, resulting in incorrect prognostic and

therapeutic advice. Therefore, a comprehensive map is needed,

linking mutation status, effect on protein function, and clinical

effect that is genotype-function-phenotype. The recent American

College of Medical Genetics and Genomics (ACMG) and the

Association for Molecular Pathology (AMP) (ACMG-AMP)

guidelines classification is based on five tier score system namely

pathogenic (P), likely pathogenic (LP), variant of uncertain

significance (VUS), likely benign (LB) and benign (B) (22). Our

previous studies have shown that HNF1A -MODY is the most

prevalent subtype in India (3) and we identified several variants

which were of uncertain significance, Assessing the pathogenicity of

these rare protein-coding genetic variants in HNF1A is very

important in our patient cohort before assigning causality to these

variants, as this may lead to change of treatment.

Functional investigation constitutes one of the strongest pieces

of evidence for classifying a variant as pathogenic or benign (23).

Each variant needs to be assessed by genomic, bioinformatic,

structural, and functional lines of evidence for classifying them as

pathogenic or benign. Hence, we hypothesized that functional

evaluation would enhance the interpretation of the pathogenicity

of HNF1A variants identified in individuals from families of Indian

MODY subjects.
2 Materials and methods

2.1 Subjects

We investigated 14 HNF1A variants found in 20 unrelated

individuals (11 females and 9 males) from 20 non-consanguineous

Indian families. Patients were selected for MODY genetic screening

based on the following criteria: a family history of diabetes in

multiple generations; an early age at onset of diabetes (< 35 years);

lack of obesity, ketosis, and beta cell autoimmunity with detectable

endogenous insulin reserve as measured by C peptide which is one

of the best biomarkers; and diabetes controllable without insulin for

at least 2 years. The study was carried out in compliance with the
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Helsinki Declaration (2000); all study participants (or their

guardians) provided written, informed consent, and the study was

approved by the Madras Diabetes Research Foundation’s local

institutional ethics committee.
2.2 Genomic analyses

Genomic DNA was isolated from whole blood using the

standard protocol. Direct sequencing was carried out on an ABI

3500 Genetic Analyzer (Applied Biosystems, Foster City, CA) using

the Big Dye terminator V3.1 chemistry, and the sequences were

compared with the public databases. Published primer sequences

were used to amplify the DNA for HNF1A gene. In addition to the

sequencing of patients, we also sequenced 100 normal glucose-

tolerant subjects (fasting value <100 mg/dL and 2 hours value <140

mg/dL) to check for the presence or absence of variants in them.
2.3 ACMG classification

All HNF1A variations were assessed using the ACMG

guidelines, which classify variants as pathogenic (class 5), likely

pathogenic (class 4), uncertain significance (class 3), likely benign

(class 2), or benign (class 1). Criteria used for the classification of

variants are listed in Supplementary Table 1. Public databases such

as PubMed, the Human Gene Mutation Database, ClinVar, and

LOVD were used and the genome aggregation database (GnomAD)

was referred to for population frequency. Bioinformatic prediction

tools such as SIFT, PolyPhen2, Mutation Taster, PROVEAN,

CADD Score, i mutant 2.0, and Grantham scores were used to

assess the pathogenicity (Supplementary Table 2).
2.4 Functional analysis

Human HNF1A cDNA (NCBI Entrez Gene BC104910.1)

(NM_000545.5) in pcDNA 3.1 His/C vector (Invitrogen Inc,

Carlsbad, CA, USA), was used as a template for constructing

individual HNF1A variants using the QuikChange Lightning Site-

directed Mutagenesis Kit (Agilent Technologies, Santa Clara, CA),

and all constructs were verified by Sanger sequencing. Transiently

transfected HeLa and INS1 cells with WT, empty vector

(pcDNA3.1), or variant HNF1A cDNA were used in functional

studies, investigating HNF1A (i) transcriptional activity using a rat

albumin (in HeLa cells) and HNF4A P2 (in INS1 cells) promoter-

linked luciferase reporter assay system; (ii) DNA binding ability was

analyzed using Episeeker DNA-protein binding assay kit (Abcam,

ab117139) and a biotinylated oligonucleotide (Sigma Aldrich, St.

Luis, MO, US) containing the HNF1A binding site in the rat

albumin promoter; (iii) protein expression in whole cell lysates by

immunoblott ing ;( iv) nuclear local izat ion by indirect

immunocytochemistry; and (v) the glucose-stimulated insulin

secretion (GSIS) capacity of the variant HNF1A in INS1 b-cells
were measured using insulin ELISA kit (Mercodia, Sweden). A

detailed methodology is described in the Supplementary Material.
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2.5 Structural analysis

The human HNF1A protein sequence (P20823) was

downloaded from the UniProt database. The Consurf server was

used to obtain amino acid conservation scores within the

orthologous protein family by comparing 150 homologous

sequences. For the structure-based stability prediction, the

available crystal structure of HNF1A in complex with DNA, PDB

ID-1IC8 was remodeled with missing residues and was refined

using Modeller10v. The refined Wild type (WT) HNF1A was

considered for stability analysis of HNF1A and also the impact of

mutants in the HNF1A-DNA complex. The structure of mutants

was modeled with a WT-HNF1A template using Modeller10v, and

the refined WT and MT HNF1A were subjected to molecular

dynamics simulation studies using Gromacs2020 (10.1080/

07391102.2021.1965030). Subsequently, PCA and FEL analyses

were carried out to determine the near-native conformation,

wherein the HNF1A-DNA interactions were analyzed using

DNAproDB. A detai led methodology is given in the

Supplementary Material.
2.6 Statistical analysis

The results of functional analyses of individual variants are

presented as mean (in %) ± standard deviation (SD) and normalized

to WT HNF1A activity (set as 100%), unless otherwise specified.

Experiments were carried out on at least 3 independent occasions

unless otherwise specified in the figure legends. Statistical

differences between individual variants and WT function were

analyzed using GraphPad Prism software (version 8.1.1,

GraphPad Software, Inc. San Diego, CA, USA) and raw data (i.e.,

firefly/renilla ratios) and an unpaired 2-tailed t-test based on n=3. A

p-value < 0.05 was considered statistically significant.
3 Results

3.1 Clinical and biochemical characteristics
of the subjects with HNF1A variants

A total of 14 missense HNF1A variants identified in 20 clinical

MODY patients were included in this study. All the patients were

heterozygous for the variants. In three families, we were able to

observe the segregation of variants in affected family members, but

for other patients, family samples were not available. Pedigrees of

the available families are shown in Supplementary Figure 1. All were

negative for b-cell autoantibodies such as GAD and ZnT8

antibodies. The mean ± SD of biochemical parameters were as

follows: age at onset of diabetes, 21 ± 6.5 years; Body Mass Index

(BMI) - 23 ± 4 kg/m2; duration of diabetes, 9.9 ± 6.7 years; Fasting

plasma glucose - 181 ± 64 mg/dL; post prandial plasma glucose -

277 ± 97 mg/dL; glycated hemoglobin (HbA1C)- 9.2 ± 2.4%; fasting

C-peptide was 0.9 ± 0.4 pmol/L; stimulated C- peptide was 1.5 ± 0.6

pmol/L; total cholesterol - 169 ± 41 mg/dL; triglycerides - 137 ± 82

mg/dL; High Density Lipoprotein (HDL)- cholesterol - 39 ± 8.5 mg/
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dL and Low Density Lipoprotein (LDL)- cholesterol - 94 ± 36 mg/

dL. Prior to functional genetic investigations, 11 patients were on

insulin treatment; one patient was on insulin + metformin; four

patients were on insulin + SU; one patient was on metformin alone

and three patients were on SU treatment alone before the genetic

investigation. Clinical and biochemical parameters are summarized

in Table 1.

Among the 14 variants, four variants (p.Lys120Asn,

p.Gln125His,p.Ala367Val,p.Asp602Asn) were novel and not

reported in the literature, three variants were previously reported

by us (3, 24), and the remaining seven variants were reported in

other studies (20, 25–29). Of the 14 variants included in this study,

six variants reside in DNA binding domain (91-281 a.a), specifically

four variants were mapped to POUS domain (91-181 a.a), one

variant was mapped to POUH domain (203-279 a.a) and one variant

reside in the interface between the POUs and POUH domains of

HNF1A protein. The other, eight variants were mapped to the

transactivation domain (282- 631 a.a) of HNF1A protein

(Supplementary Figure 2).
3.2 Functional evaluation

3.2.1 Altered transcriptional activity of HNF1A
variants

In HeLa cells compared to the WT HNF1A activity (set as 100%),

the measured levels of transcriptional activity (TA) for five

(p.Asn127*,p.Val134Ile,p.Arg200Trp and p.Gly292Fs*25)of the 14

variants were significantly lower (<40%) (Figure 1A, Table 2). Three

variants (p.Lys120Asn,p.Pro379Ser, and p.Leu611Pro) had TA activity

<50%, while two variants (p.Gln125His and p.Thr354Met) had TA

activity of 53 and 62% respectively and reduction observed in all these

variants were significant. Two variants p.Ala367Val (61%) and

p.Asp602Asn (51%) showed a mildly reduced TA. Two other

variants (p.Ala301Thr and p.Glu619Lys) demonstrated TA levels

comparable to WT HNF1A levels (Figure 1A, Table 2). TA was

consistently higher for all these variants when using HNF4A-P2

promoter in INS-1 cells (activity range 32%–137%) (Figure 1B,

Table 2) versus rat albumin promoter in HeLa cells. This is most

likely due to interference of endogenous HNF1A in INS-1 cells (2- to

4-fold higher basal promoter activity).
3.2.2 Effect of variants on DNA- binding activity
of HNF1A to target DNA sequence

Three variants (p.Asn127*, p.Arg200Trp and p.Arg272His)

localized in the DBD and one variant (p.Gly292Fs*25) in TAD

demonstrated severely reduced (<40%) activity. All other variants

showed normal binding act iv i ty comparable to WT

(Figure 1C, Table 2).

3.2.3 Effect of variants on HNF1A protein
expression

Two variants (p.Gly292Fs*25 and p.Ala301Thr) showed

significantly reduced protein expression level (<60%); while four

variants (p.Gln125His,p.Asn127*,p.Arg200Trp and p.Asp602Asn),
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demonstrated reduced expression level (61-75%) and were also

significant (Figure 1D, Table 2).

3.2.3 Effect of variants on nuclear localization of
HNF1A protein

All the 14 HNF1A variants were assessed for their ability to

translocate to the nucleus of the cell in order to regulate their target

gene expression. Only four variants showed reduced (~57-67%) nuclear

translocation as assessed by indirect immunocytochemistry (Figure 1E,

Table 2). Other variants showed normal nuclear translocation.

3.2.4 Effect of variants on insulin secretion
All 14 variants were also assessed for insulin secretion using GSIS.

Under basal conditions (2.8mM glucose), these variants produced

insulin in the range of 3-15µg/L of insulin and under stimulated

conditions using 16.7mM glucose they produced 1-45µg/L of insulin.

When they were treated with 100µM glibenclamide (GBC), the

stimulated insulin secretion was enhanced ranging from 8-48µg/L

in all the 14 variants tested (Figure 1F, Table 2).
3.3 Structural evaluation

Structural analysis was performed for variants found in DNA

binding domain. These variants were mapped onto the crystal

structure of HNF1A protein (PDB ID: 1IC8). Thereby, all the

missense variants, namely p.Lys120Asn, p.Gln125His, p.Val134Ile,

p.Arg200Trp, and p.Arg272His, were subjected to the following

predictions such as sequence and structural-based stability

prediction followed by molecular dynamics (MD).

Sequence-based stability study revealed that the HNF1A structure

is destabilized by the variants p.Lys120Asn, p.Gln125His, p.Arg200Trp,

and p.Arg272His, but not by the variant p.Val134Ile. The crystal

structure of HNF1A in association with DNA (PDB ID-1IC8), was

further modified with missing residues and refined using Modeller10v

for the structure-based stability prediction (Figure 2A). According to

structure-based prediction, the HNF1A variants p.Lys120Asn,

p.Arg200Trp, and p.Arg272His were shown to have a larger

destabilizing impact and more molecular flexibility than the other

variants. Among these variants, the p.Arg200Trp variant has a higher

destabilizing impact. Variants p.Gln125His and p.Val134Ile had the

least destabilizing impact (Figures 2B–K). Since the three variants

p.Lys120Asn, p.Arg200Trp and p.Arg272His, showed higher

destabilizing effects they were chosen for the MD study.

3.3.1 Molecular dynamics stability analysis of the
wild and mutant complexes

The WT-HNF1A template was used to simulate the structures of

the mutants p.Lys120Asn, p.Arg200Trp, and p.Arg272His. The

revised WT and MT HNF1A were then submitted to MD

simulation investigations using Gromacs2020. When the

complexes’ MD trajectories were compared to the WT, the variant

p.Arg272His showed higher divergence than the variants

p.Lys120Asn and p.Arg200Trp in the initial period of simulation.

However, variant p.Lys120Asn showed more deviations than
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TABLE 1 Clinical and biochemical workup of subjects with HNF1A gene variants.

HbA1C
(%)

Fasting
C-

peptide
(pmol/l)

Stimulated-
C-peptide
(pmol/l)

Total cho-
lesterol
(mg/dl)

Triglycerides
(mg/dl)

HDL
(mg/
dl)

LDL
(mg/
dl)

7.1 0.7 1.1 127 61 33 82

6.9 1 2.2 150 167 32 85

9.5 0.6 0.8 177 134 47 101

9.8 0.5 0.8 136 174 27 94

8.3 0.5 1.2 152 84 47 88

– 0.9 – - - - -

6.4 1.2 2 250 71 45 49

6.9 1 2.3 191 209 28 121

10.8 1.1 2 211 176 44 132

8.7 0.9 1.5 153 114 59 98

7.3 – – 193 136 47 125

6.9 0.7 1.3 125 77 39 71

11 1 1.6 138 65 43 82

11.4 – – 270 150 31 209

11.2 2.16 – 145 95 41 85

15.4 0.2 0.3 187 439 37 40

12.7 0.56 1.31 145 95 41 85

9 2 2.6 195 110 40 70

6 1.1 3 154 95 30 105

9.5 0.7 1.4 117 160 25 60
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Patient
ID Gender Variant

Age at
onset
(Years)

Duration
of Diabe-

tes
(Years)

BMI
(Kg/
m2)

Fasting
plasma
glucose
(mg/dl)

Post prandial
plasma

glucose (mg/
dl)

1 M-026 F p.Lys120Asn 14 3.7 19.1 188 315

2 M-027 M p.Gln125His 26 6.3 24 134 248

3 M-028 F p.Asn127Del 14.9 18.1 19.1 277 414

4 M-124 M p.Val134Ile 26.7 6.3 21.9 194 390

5 M-125 M p.Arg200Trp 22.8 16.1 17.9 161 280

6 M-126 F p.Arg200Trp 11 1 23.2 114 171

7 M-129 F p.Arg272His 26 8 26.9 106 204

8 M-130 F p.Arg272His 23 5 23 125 220

9 M-131 F p.Gly292fs*25 19.1 13 17.3 204 197

10 M-035 F p.Gly292fs*25 11 4 18.6 127 225

11 M-132 M p.Ala301Thr 28 19 - 114 155

12 M-133 M p.Thr354Met 24.8 5 16.2 159 243

13 M-138 F p.Ala367Val 11.6 5 24.1 219 291

14 M-134 M p.Pro379Ser 26 6.8 24 268 310

15 M-135 F p.Pro379Ser 23 3 26.3 250 310

16 M-036 M p.Pro379Ser 24 10 27.6 305 521

17 M-136 F p.Pro379Ser 14 – 21.2 289 431

18 M-139 F p.Asp602Asn 14 5 20 159 280

19 M-137 M p.Leu611Pro 28.8 18.2 31.6 108 147

20 M-040 M p.Glu619Lys 32 27 26.3 134 191
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p.Arg272His during the last 20 ns of the root mean square deviation

(RMSD) plot, a numerical measurement representing the difference

between WT and variant protein structures (Figure 2L). The root

mean square fluctuation (RMSF) plot, is a calculation of individual

residue flexibility, or how much a particular residue moves

(fluctuates) during a simulation (Figure 2M), and this showed that

residues that interact with DNA were found to have larger deviations

in all of the complexes; in particular, residues 179 and 180 of the

p.Arg272His variant showed higher deviations of 0.9 nm and 192-193

of the p.Arg272His variant showed higher fluctuations of about 1 nm

among the complexes. When compared to WT, the variants

p.Lys120Asn and p.Arg272His lost their contact with DNA at the

residue level, and their total interactions with DNA also decreased

(Figures 2N, O). However, the variant p.Arg200Trp had an increased

frequency of interactions with DNA and a greater accessible surface

area of all buried solvents (Figures 2N, O). Particularly, the variant

residue Trp200 interacts with the minor groove of DNA. From these

results, it was revealed that variants p.Lys120Asn and p.Arg272His

had lost their interaction with DNA resulting in structural defects.
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3.4 Reinterpretation of HNF1A variants
based on molecular characterization

Pathogenic HNF1A variants causing HNF1A-MODY are often

characterized by significantly decreased TA, poor DNA binding,

impaired nuclear targeting, and/or lower protein expression levels

in the range of ~20-35% when compared to WT (100%) (19, 21, 30–

33). In this study, the cut-off considerations were set at a slightly

different level compared to the previous study by Althari et al. (31).

Being a more distilled cohort of clinically proven MODY patients,

the cut-off of TA<40% was used for pathogenic variants, and TA

activity between 40-60% was used for likely pathogenic variants. In

addition to this, DNA binding activity, GSIS, and clinical course

were considered for ascribing pathogenic and likely pathogenic

variants. Therefore, over and above the ACMG/AMP guidelines,

the functional and clinical work such as the response to SU have

been considered together to re-interpret the variants.

Variants p.Gly292Fs*25 and p.Asn127* were interpreted as

pathogenic variants since they have low TA activity along with the
D

A B

E

F

C

FIGURE 1

Summary of the data obtained from functional studies. (A) Transcriptional activity of the HNF1A protein variants in HeLa cells; (B) Transcriptional
activity of the HNF1A protein variants in Ins1 cells using HNF4A P2 promoter; (C) Assessment of the DNA binding ability of the HNF1A protein
variants; (D) Protein expression levels of the HNF1A protein variants in HeLa cells; (E) Nuclear localization of the HNF1A protein variants in HeLa cells;
(F) Variant effect on Glucose Stimulated Insulin Secretion. Red bar indicates MODY 3 control variant; Grey bar indicates type 2 diabetes risk variant;
Yellow bar indicates variant with poor nuclear translocation effect in HNF1A gene. Each bar represents the mean of three independent experiments
(n=3) ± SD. P-values were obtained by un-paired student t-test. *** indicates p value <0.001; ** indicates p value <0.01; * indicates p value <0.05.
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TABLE 2 Summary of the functional studies of the HNF1A variants identified in Indian MODY subjects.

Structure Prediction

GSIS (Insulin Levels)
Sequence

Based Predic-
tion

Structure
Based predic-

tion

Molecular
Dynamics

sal Stimulated
On adding
100µM GBC

4 15
Destabilization

effect

Higher
Destabilization

effect
Defect

4 32
Destabilization

effect

Least
Destabilization

effect
–

5 19 – – –

1 21 No defect
Least

Destabilization
effect

–

2 19
Destabilization

effect

Higher
Destabilization

effect
No defect

4 19
Destabilization

effect

Higher
Destabilization

effect
Defect

4 31 – – –

45 48 – – –

2 11 – – –

8 8 – – –

5 5 37 – – –

11 11 – – –

7 25 – – –

16 11 – – –

1 15 – – –

13 26 – – –

_ _ – – –
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Amino acid

change at protein
level

Nucleotide
change at c.DNA

level

Functional Study

Transactivation
Assay (% WT)

DNA Binding
Activity (% WT)

Protein
Expression (%

WT)

Nuclear
Localisation
(% WT)

HeLa Ins 1 Ba

DNA Binding
Domain

1 p.K120N c.360G>C 47 90 92 76 81 5

2 p.Q125H c.375G>C 53 52 103 67 77 9

3 p.N127del c.377_379delACA 23 58 21 66 57 7

4 p.V134I c.400G>A 38 32 38 75 71 8

5 p.R200W c.598C>T 27 84 32 71 67 5

6 p.R272H c.815G>A 26 59 31 91 84 7

Transactivation
Domain

7 p.G292fs*25 c.872-873dupC 18 55 23 58 98 9

8 p.A301T c.901G>A 105 123 105 54 75 8

9 p.T354M c.1061C>T 62 57 118 97 71 5

10 p.A367V c.1100C>T 61 56 130 87 76 3

11 p.P379S c.1135C>T 42 75 125 80 65 1

12 p.D602N c.1804G>A 51 72 115 68 95 3

13 p.L611P c.1832T>C 45 137 112 76 71 5

14 p.E619K c.1855G>A 97 90 97 81 60 6

15 p.Arg263His c.788G>A 27 37 13 67 69 4

16 p.Ala98Val c.293C>T 91 96 141 76 96 2

17 p. Gln466* c.1396 C>T _ _ _ _ 7 _

Shaded in grey are used as control for the functional assay.
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reduced DNA binding activi ty and defect in insul in

secretion.p.Arg272His was reinterpreted as a pathogenic variant

from their initial interpretation. Seven variants (p.Lys120Asn,

p.Gln125His, p.Val134Ile, p.Arg200Trp, p.Thr354Met, p.Pro379Ser,

and p.Leu611Pro) were reclassified as likely pathogenic variants from

VUS. Three variants (p.Ala367Val, p.Asp602Asn, and p.Glu619Lys)

remained VUS after reinterpretation whereas variant p.Ala301Thr was

reinterpreted as benign from VUS (Figure 3, Table 3).
3.5 Clinical follow-up of the patients with
HNF1A variants

Variants designated as pathogenic/likely pathogenic based on

functional assessment were investigated for clinical actionability by

collecting the follow-up details of the patients over a period of time.
Frontiers in Endocrinology 08111
The patient (M-026) with variant p.Lys120Asn has been switched

from insulin to two doses of SU (glimepiride) along with metformin

per day. The patient M-027 with the mutation p.Gln125His (likely

pathogenic variant) developed diabetes at the age of 25.7 years and

had diabetes for 7 years. Before genetic testing, the patient was

treated with insulin and oral hypoglycemic agents (OHA). As a

result of genetic studies, the patient was transferred from insulin to

two doses of gliclazide per day. His HbA1C levels dropped from

9.6% to 6.4% after his therapy was changed.

Patient M-028, who carries the pathogenic variant p.Asn127*, is

diagnosed with diabetes at the age of 14.9 years, with a duration of

15.6 years (Figure 4). The patient was on OHA for around two years

before being started on insulin. She is currently on insulin and SU

therapy since her b cell reserve was low (CPF-0.6 and CPS-0.9) and

she started to develop microvascular and macrovascular

complications. Patient M-124 harboring the variant p.Val134Ile
FIGURE 2

In Sillico structural prediction of wild type and variant HNF1A protein. (A) Remodelled and Refined Wild-type (WT) HNF1A-DNA complex; B-K)
Prediction of Interatomic Interactions of the Wild and mutant forms of HNF1A variants, where the Wild-type and mutant residues are coloured in
light-green and are also represented as sticks alongside the surrounding residues which are involved in any type of interactions; (L-O) Molecular
dynamics simulation analysis of the wild and MT forms of HNF1A complexes (L) RMSD plot (M) RMSF plot (N) Solvent accessible surface area plot;
(O) Number of inter hydrogen bonds maintained throughout the MD production run within HNF1A and DNA.
FIGURE 3

Reinterpretation of HNF1A variants using molecular characterization.
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TABLE 3 Summary of re-interpretation of HNF1A gene variants and their clinical actionability, identified in Indian MODY patients based on molecular characterization.

Structure Prediction

Reinterpation Based on functional
evidence

Clinical
Actionability

sulin Levels)
Sequence

Based Predic-
tion Structure

Based predic-
tion

Molecular
Dynamics

lated

On
adding
100µM
GBC

Evidence Classification

15
Destabilization

effect

Higher

Destabilization

effect

Defect
PS3_Moderate,

PP3_Strong
LP Actionable

32
Destabilization

effect

Least

Destabilization

effect

–
PS3_Moderate,

PP3 and PP6
LP Actionable

19 – – – PS3_Strong P Actionable

21 No defect

Least

Destabilization

effect

– PS3_Strong LP Actionable

19
Destabilization

effect

Higher

Destabilization

effect

No defect PS3_Strong P Actionable

19
Destabilization

effect

Higher

Destabilization

effect

Defect PS3_Strong P Actionable

31 – – – PS3_Strong P Actionable

5 48 – – –
BS3_Strong,

BP4_Strong
B _

11 – – – PS3_Supporting LP Actionable

8 – – –
BS3_Strong,

BP4_Strong
VUS Unresolved

37 – – – PS3_Moderate LP Actionable

1 11 – – – BS3_Strong VUS Unresolved

25 – – – PS3_Moderate LP Actionable

6 11 – – – BS3_Strong VUS Unresolved
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Variant Interpretation_
ACMG guidelines 2015

Functional Study

Transactivation
Assay (% WT)

DNABinding
Activity (%

WT)

Protein
Expression
(% WT)

Nuclear
Localisation
(% WT)

GSIS (In

Evidence Classification HeLa Ins 1 Basal Stim
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(Likely pathogenic variant) was diagnosed with diabetes at the age

of 26.7 years with diabetes duration of 4 years. Based on functional

evidence, patient M-124 with variant p.Val134Ile was transitioned

from insulin to a single dose of glipizide per day.

Patient M-126 with the pathogenic variant p.Arg200Trp was

switched from insulin to SU. It was advised to continue with SU for

patient M-125 who had the same variant. Statins were given for

patient M-125 in order to maintain a normal lipid profile. Previous

studies have shown two other amino acid changes at the same

codon such as p.Arg200Gly and p.Arg200Gln in multiple SU-

sensitive HNF1A-MODY families (34, 35). The functional effects

of these two variants, p.Arg200Gly and p.Arg200Gln, were however

not mentioned. All of the patients, including the one from this

study, who have the variation in this codon respond to SU. This

suggests that the variation is pathogenic and clinically actionable.

Patients with pathogenic variant (p.Arg200Trp, p.Arg272His and

p.Gly292Fs*25) and likely pathogenic variant (p.Thr354Met and

p.Leu611Pro) were also shifted from insulin to SU therapy.
4 Discussion

The comprehension of disease mechanisms is improved by

well-established functional investigations on variants, which also

offer proof for the pathogenicity of the variants. Studies have

demonstrated that functional studies help to clarify the

interpretation of HNF1A-MODY variants, particularly in the

absence of familial segregation or phenotypic data (32).

In this study, we have performed molecular characterization of

14 HNF1A variants identified in 20 unrelated individuals from 20

non-consanguineous families among Indian MODY subjects, where

the majority of variants have not been reported. Normal

transactivation activity of HNF1A protein, which depends on the
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capacity to bind target promoters (DNA) and on an adequate

quantity of cellular (nuclear) protein, is necessary for normal

HNF1A transcription factor function.

Because not all functional tests represent the underlying process

and not all variants have the same effects on function (36), we aimed

at improving the understanding and interpretation of these

findings. Therefore, multiple assays were employed to fully

examine the effects of a variant in order to come to a conclusion.

These variants were examined utilizing in vitro functional pipelines,

such as luciferase assays for transactivation, which measure the

transcriptional activity ofHNF1A variants, as well as assays of DNA

binding activity, protein expression, and subcellular localization to

determine the impact of the variants on the protein function.

Additionally, a GSIS assay to examine the impact of these

variants on insulin secretion was performed. A distinctive feature

of this work is the in silico structural analyses to determine if it

might identify the variants with functional defects. Since the crystal

structure of HNF1A is available only for the DNA binding domain,

structural investigations were carried out for the missense variants

identified only in that region.

A multi-pronged approach using the ACMG guidelines, the

functional and structural analyses have been considered together to

re-classify these variants. In this work, we focused on the scoring

systems and the criteria for re-interpreting the variants. PS3 was

assigned when data from well-established in vitro functional studies

supported a detrimental effect on the gene or gene product; PP3 was

assigned when multiple lines of computational evidence and

structural prediction supported a detrimental effect on the gene

or gene product (conservation, evolutionary, etc.); and BS3 was

assigned when well-established in vitro functional studies showed

no detrimental effect on protein function. In addition, multiple

levels of strength, such as strong, moderate, and supporting levels

based on functional and structural data were applied to the scoring
FIGURE 4

HbA1C Trajectories of few HNF1A MODY patients after change in treatment based on re-interpretation of the variants. Dotted lines indicate change
of treatment.
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approaches employed in this study. Of the 14 variants considered in

this study, 1 variant p.Arg272His was interpreted as likely

pathogenic, and 11 variants were interpreted as VUS initially

based on the ACMG/AMP guidelines. (Figure 3, Table 3).

According to previous studies on the effects of pathogenic

HNF1A-MODY variants, pathogenic and MODY causal variants

impair HNF1A activity, DNA binding, and localization (40%

compared to WT HNF1A) (21, 32), whereas type 2 diabetes risk

variants have an impact on HNF1A function ranging from 40%

-60% compared to WT (30, 31, 33).

Based on the aforementioned cut-offs, many degrees of strength

were assigned to each scoring criterion. PS3_Strong scoring criteria

were assigned to variants that showed <40% activity than WT

activity in at least two functional assays; PS3_Moderate was

assigned to variants that showed activity between 40 and 60%;

and PS3_Supporting was assigned to variants that showed activity

less than 65%. PP3_Strong criterion was assigned when the variant

showed defects in all the in silico structural prediction analysis. The

variant meeting the BS3_Strong criterion had no negative effect on

protein function in any of the functional experiments.

The p.Arg272His previously interpreted as likely pathogenic was

re-interpreted as pathogenic based on the evidence PS3_Strong, PM1,

PM2, PP5, and PP3_Strong. One variant p.Arg200Trp interpreted as

VUS was re-interpreted as pathogenic based on the evidence

PS3_Strong, PM1, PM2, PP3_Supporting, and PP5. Variant

p.Gly292Fs*25 was interpreted as pathogenic based on the evidence

PVS1 and PS3_Strong and variant p.Asn127* was interpreted as likely

pathogenic based on the evidence PS3_Strong, PM1. Variants

p.Lys120Asn and p.Gln125His interpreted as VUS was re-

interpreted into likely pathogenic based on the evidence

PS3_Moderate, PM2, PP3_Strong, and PS3_Moderate, PM2,

PP3_Supporting, PP6 respectively. Variant p.Val134Ile was re-

interpreted into likely pathogenic based on evidence PS3_Strong

and PM2. Variant p.Thr354Met was re-interpreted as likely

pathogenic based on PS3_Supporting, PM1, PM2, and PP3. Variant

p.Pro379Ser was re-interpreted as likely pathogenic based on the

evidence PS3_Moderate, PM1, PM2, and PP3. Variant p.Leu611Pro

was re-interpreted as likely pathogenic based on the evidence

PS3_Moderate, PM2, PP3, and PP6_Supporting . Variant

p.Ala367Val remains VUS based on the evidence PM1, PM2, PP3,

and BS3_Strong. Variants p.Asp602Asn and p.Glu619Lys remain VUS

based on the evidence PM2, BS3_Strong and PM2, PP3, and

BS3_Strong respectively. Variant p.Ala301Thr was re-interpreted as

benign based on the evidence PM1, PM2, BS3_Strong, and

BP4_Strong (Table 3). It is crucial to remember that functional

evidence does not always associate a variant to disease outcome; in

order to determine clinical actionability, the functional data must be

assessed in combination with clinical data (30). It is important to be

aware of the fact that both functional and longitudinal clinical follow

up are important to establish the clinical actionability of the variants.

Clinical actionability is generally defined as clinically prescribed

interventions that are effective for preventing or delaying clinical

disease, lowering clinical burden, or improving clinical outcomes in

an adult who has not previously received a diagnosis and are specific
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to the genetic disorder under consideration (37). Based on our

results, 4 out of 14 (28.6%) variants were interpreted as pathogenic,

6 variants (42.8%) as likely pathogenic, 3 variants (21.4%) as

variants of uncertain significance, and 1 variant (7.14%) as a

benign variant. Patients with the ten P/LP variants were able to

successfully switch from insulin to SU and sustain good glycemic

control, thus making these variants clinically actionable (Table 3).

We performed 3D structural analysis to check whether in-silico

analysis corroborated with functional investigations in identifying

the pathogenic variants and also to have a structural understanding

of the variant HNF1A proteins. Our in-silico analysis showed that

variants p.Gln125His, p.Val134Ile have lesser structural defects

while variants p.Lys120Asn and p.Arg272His have severe

structural defects, and the variant p.Arg200Trp has moderate

structural defects. In the case of the p.Val134Ile variant, we found

differences between the functional and structural data. Although in-

silico structural analysis showed that it has a lesser destabilizing

effect despite being predicted to be a highly conserved structural

residue, our functional data showed that variant p.Val134Ile has a

defect in DNA binding thus down-regulating the target genes

resulting in reduced insulin secretion (Table 2). Moreover, the

patient follow-up also showed that the patient (M-124) responded

well to treatment change to SU, making this variant a clinically

actionable one (Figure 4).

Our study has a few limitations. Since we could not obtain

family samples for many patients, we were unable to conduct family

co-segregation studies. In some patients, we did not have adequate

clinical data.

In summary, this paper exemplifies the importance of

performing molecular characterization after genetic testing, since

the understanding of the functional basis of genotypes helps in

understanding the phenotype which could lead to changes in

clinical treatment for monogenic disorders like MODY. Our

findings are the first to show the need of using additive scores

during molecular characterization for accurate pathogenicity

evaluations of HNF1A variants in precision medicine.

Furthermore, it is also one of the first to introduce structural

understanding to functional implications. The study has led to

the delineation of the VUS into pathogenic and disease-causing

MODY variants, from non-pathogenic variants. Patients with most

pathogenic HNF1A variants benefit from OHA treatment; hence,

this would assist clinicians in determining the best course of action

for patients. While the combination of functional and structural-

based approaches may lead to increased certainty in variant–

phenotype correlation in a research setting, a functional

understanding of the variants helps in precision diagnosis and

treatment in a monogenic disorder such as MODY.
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JM, Garcıá-Ortiz H, et al. Association of a low-frequency variant in HNF1A with type 2
diabetes in a Latino population. JAMA. Diabetes Consortium. (2014) 311(22):2305–14.
doi: 10.1001/jama.2014.6511

34. Brnich SE, Rivera-Muñoz EA, Berg JS. Quantifying the potential of functional
evidence to reclassify variants of uncertain significance in the categorical and Bayesian
interpretation frameworks. Hum Mutat (2018) 39(11):1531–41. doi: 10.1002/
humu.23609

35. Zubkova N, Burumkulova F, Plechanova M, Burtt NP, Mercader JM, Garcıá-
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Background and objective: Uterine leiomyoma is the most common benign

tumor in females of reproductive age. However, its causes have never been

fully understood. The objective of our study was to analyze the causal

association between various factors and uterine leiomyoma using Mendelian

randomization (MR).

Methods: Genetic variables associated with risk factors were obtained from

genome-wide association studies. Summary-level statistical data for uterine

leiomyoma were obtained from FinnGen and the UK Biobank (UKB)

consortium. We used inverse variance weighted, MR-Egger, and weighted

median methods in univariate analysis. Multivariable MR analysis was used to

identify independent risk factors. A fixed-effect model meta-analysis was used to

combine the results of the FinnGen and UKB data.

Results: In the FinnGen data, higher genetically predicted age at natural

menopause, systolic blood pressure (SBP), diastolic blood pressure (DBP), and

fasting insulin were associated with an increased risk of uterine leiomyoma, while

higher age at menarche was associated with a reduced risk of uterine

leiomyoma. Multivariable MR analysis of SBP and DBP showed that higher DBP

might be an independent risk factor of uterine leiomyoma. In the UKB data, the

results for age at natural menopause, SBP, DBP, and age at menarche were

replicated. The result of the meta-analysis suggested that uterine leiomyoma

could also be affected by polycystic ovary syndrome (PCOS), endometriosis, and

2-hour glucose level.

Conclusion: Our MR study confirmed that earlier menstrual age, hypertension,

obesity, and elevated 2-hour glucose post-challenge were risk factors for uterine

leiomyoma, and the causal relationship between smoking and uterine

leiomyoma was ruled out. In addition, later age of menopause and

endometriosis were found to increase the risk of uterine leiomyoma, while

PCOS was found to decrease the risk.
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1 Introduction

Uterine leiomyomas (fibroids) are the most common benign

tumor in females of reproductive age. Due to differences in race,

diagnostic criteria, and study designs, epidemiological reports of

uterine leiomyoma incidence vary widely, ranging from 4.5 to

68.6% (1). Since many uterine leiomyomas are asymptomatic and

the histological incidence is more than twice as high as the clinical

incidence, its true incidence may be underestimated in most studies

(2). Johnson et al. (3) reported that the incidence of uterine

leiomyoma increased with age, with a cumulative incidence of

over 70% by menopause. In the United States, uterine leiomyoma

accounts for 29% of gynecological hospitalizations among women

aged 15-54 and 40-60% of all hysterectomies (4, 5).

Uterine leiomyoma has been shown to seriously impair woman’s

quality of life and may lead to endometrial cancer (6). It can cause

extensive or prolonged menstrual bleeding (leading to anemia, fatigue,

and dysmenorrhea), abdominal swelling, painful intercourse, bladder

or bowel dysfunction (leading to urinary incontinence or retention,

pain, or constipation), and reproductive problems (such as impaired

fertility, pregnancy complications, and miscarriage) (7, 8). If left

untreated, it can even lead to death (9).

At present, the main treatment of uterine leiomyoma is

hysterectomy, which is expensive and affects fertility. Nearly a

quarter of women who have tried non-surgical treatment for

fibroids choose to have surgery within a year (10). Many women

opt for minimally invasive treatments to preserve their uterus, such

as myomectomy, uterine artery embolization, and endometrial

ablation. However, relapse is common after treatment (10).

Therefore, it is necessary to clarify the risk factors of uterine

leiomyoma for early prevention.

Several risk factors such as early age at menarche, early age at

first birth, obesity, and hypertension have been established as

increasing the risk of uterine leiomyoma (5, 11). However, due to

the large number of undetected patients and the large bias of

epidemiological data and risk factor evidence, its etiology is still

far from being fully understood. In addition, some conflicting

conclusions make it difficult to discover the true cause of uterine

leiomyoma. For example, earlier studies have shown that smoking

has a protective effect on fibroids (12, 13), while subsequent studies

have shown that smoking increases the risk of uterine leiomyoma

(14). One study showed that, among black women, those who self-

reported PCOS had a 65% increased risk of fibroids compared with

those who did not self-report PCOS (15). However, another study

has shown that patients with PCOS had a lower risk of fibroids than

women with normal ovaries (16). Additionally, some studies have

found an inverse correlation between diabetes and uterine

leiomyoma (13, 15, 17), and other researchers hypothesize that

insulin stimulates fibroid growth (18, 19).

Therefore, whether there is a causal relationship between

uterine leiomyoma and these factors still needs further analysis.

Mendelian randomization (MR) is an emerging method of

epidemiological causal inference, which uses genetic variation to

determine the causal relationships between risk factors and

outcomes. It relies on the natural random assortment of genetic

variation during meiosis to distribute genetic variation randomly in
Frontiers in Endocrinology 02118
a population, reducing bias caused by confounding or reverse

causation (20). In our study, MR was used to explore the causal

relationship between 20 risk factors and uterine leiomyomas. To

our knowledge, this is the first MR study to examine the risk factors

for uterine leiomyoma.
2 Methods

2.1 Summary statistics for risk factors

The summary statistics of anthropometric traits were from the

GIANT (Genetic Investigation of Anthropometric Traits)

consortium. For body mass index (BMI), the genome-wide

association study (GWAS) included 234,069 Europeans and used

sex, age, age squared, and principal components as covariates (21).

For waist circumference, hip circumference, and waist-to-hip ratio,

the GWAS included 210,088 Europeans and adjusted for age, age

square, and study-specific covariates if necessary (22).

The summary statistics of DBP and SBP were obtained from the

International Consortium for Blood Pressure, with 757,601

participants of European ancestry, and sex, age, and age squared

were adjusted (23).

The summary statistics of serum 25-hydroxyvitamin D

concentrations were from the SUNLIGHT consortium with

79,366 participants of European ancestry (24). The lead genetic

variants of plasma vitamin C were derived from a GWAS meta-

analysis of 52,018 Europeans from the Fenland study, the European

Prospective Investigation into Cancer and Nutrition (EPIC)-

InterAct study, the EPIC-Norfolk study, and the EPIC-CVD

study (25).

In terms of smoking and drinking, the GWAS was conducted by

the Sequencing Consortium of Alcohol and Nicotine use, which

included 249,752 European participants for smoking and 335,394

European participants for drinking (26). Smoking was defined as

the average number of cigarettes smoked per day, while drinking

was the average number of alcoholic drinks consumed per week

(including all types of alcohol). Age, sex, age-by-sex interaction, and

the top 10 genetic principal components were used as covariates.

Three reproductive traits were involved in our study. The

summary statistics of age at menarche (AAM) were from the

largest meta-analysis of the ReproGen consortium, 23andMe, and

the UK Biobank cumulatively including 329,345 women of

European ancestry (27). The summary statistics of age at natural

menopause (ANM) were from the ReproGen consortium with

69,360 European women (28). The summary statistics of age at

first birth (AFB) were from a GWAS with 69,360 European

individuals (29).

The summary statistics of PCOS were from a large-scale

genome-wide meta-analysis with 10,074 PCOS cases and 103,164

controls of European ancestry (30). Cases were diagnosed with

PCOS based on National Institutes of Health (NIH) or Rotterdam

Criteria or by self-report, and age and BMI were used as covariables.

The summary data for endometriosis included 17,045

endometriosis cases and 191,858 controls, 93% of whom were

European (31).
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The summary-level genetic data of T2D (Type 2 diabetes) were

from the Diabetes Genetics Replication and Meta analysis

consortium (32). A total of 74,124 T2D cases and 824,006

controls of European ancestry from 32 GWAS (with and without

adjustment for BMI) were included.

The GWAS summary statistics of glycemic traits, including fasting

glucose, fasting insulin, glycated hemoglobin (HbA1c), and 2-hour

glucose post-challenge in an oral glucose tolerance test, were obtained

from MAGIC (Meta-Analyses of Glucose and Insulin-related traits

Consortium) (33). The GWAS included 281,416 participants, 70% of

whom were of European ancestry. Our study used only European

summary statistics and adjusted for covariates specific to the study.
2.2 GWAS summary statistics of uterine
leiomyoma from the FinnGen and UKB
consortia data sets

The GWAS summary statistics of uterine leiomyoma were

obtained from FinnGen (https://r4.finngen.fi/) and the UKB. In

the FinnGen data, the GWAS included 18,060 cases and 105,519

controls of European ancestry. The GWAS from the UKB included

4,351 cases and 332,848 controls and was conducted by the Neale

Lab (http://www.nealelab.is/uk-biobank). Uterine leiomyoma is

defined as ICD (International Classification of Diseases) 10: D25.

When assessing causality, the FinnGen GWAS was used as the

discovery set and the UKB GWAS as the validation set, considering

that the FinnGen data had a higher proportion of cases. The main

design of this study is shown in Supplementary Figure 1.
2.3 Ethics and consent statement

Specific ethical and consent statements for each GWAS in this

study can be found in the original GWAS publications. The FinnGen

Biobank GWAS was approved by the FinnGen Steering Committee.

The Neale Lab received approval to conduct the GWAS from the

Ethics Advisory Committee of the UKB. All of these data are de-

identified, freely downloadable, and can be used without restriction.
2.4 Statistical analysis

We used a two-sample Mendelian randomization analysis to

explore the potential causal relationship between 20 risk factors and

uterine leiomyoma. Single nucleotide polymorphism (SNPs) with

genome-wide significance (P < 5 × 10-8) and minor allele frequency

>0.01 were included. Then, these SNPs were clumped based on the

linkage disequilibrium r2< 0.01. The power of each SNP was

assessed using F statistics (34) (F = beta2/se2), and the general F

statistics of each exposure were also calculated. SNPs with weak

statistical power were deleted (F statistics< 10).

We used inverse variance weighted (IVW) analysis as the primary

statistical method. Although this method assumes that there is no

heterogeneity between genetic variants (potentially due to pleiotropy),

it has the strongest power to detect associations (35). In addition, we
Frontiers in Endocrinology 03119
used two sensitivity analyses methods, including the MR-Egger (36)

and weighted median (37) methods, as supplements to IVW. MR-

Egger intercept and MR-PRESSO (38) methods were used to detect

horizontal pleiotropy, and Cochran’s Q statistic was used to assess the

heterogeneity. When there were outliers, the MR-PRESSO-corrected

results would be reported in the main results. If heterogeneity still

exists, the median based estimation was used as primary analysis. A

false discovery rate (FDR) was used to adjust for multiple testing. In

multivariableMR (MVMR) analysis, the IVWmodel was also themain

method and the MR-Egger method was the complementary method.

A fixed-effects model meta-analysis was used to combine the

results of the training set and verification set. All statistical analyses

were performed using R software 4.1.2 (https://www.r-project.org/).

The IVW, MR-Egger and weighted median methods were performed

using the R packages “Two Sample MR” and “Mendelian

Randomization”. The MVMR was performed using the R packages

“Mendelian Randomization” and “MVMR”. P<0.05 was used as

significance threshold. The mRnd was used to calculate the statistical

power (39) for MR (https://cnsgenomics.shinyapps.io/mRnd/).
3 Results

3.1 Summary characteristics of risk factors

The number of SNPs ranged from 6 to 821, explaining 0.15% to

7.01% of the variance. The F statistics of each SNP and exposure

were greater than 10, indicating that all instrumental variables had

sufficient validity (Table 1).
3.2 Discovery results of uterine leiomyoma
in the FinnGen consortium data set

In the FinnGen data set, a higher genetically predicted age at

natural menopause (OR=1.0864 per standard deviation of age at

natural menopause increase, 95%CI=1.0429-1.1317,P=6.97×10-5),

SBP (OR=1.0073 per standard deviation of SBP increase, 95%

CI=1.0026-1.0120,P=2.30×10-3), DBP (OR=1.0118 per standard

deviation of DBP increase, 95%CI=1.0040-1.0197,P=3.09×10-3),

and fasting insulin (OR=1.7342 per standard deviation of fasting

insulin increase, 95%CI=1.1455-2.6253, P=9.25×10-3) were

associated with an increased risk of uterine leiomyoma, while a

genetically predicted higher age at menarche (OR=0.8435 per

standard deviation of age of menarche increase, 95%CI=0.7999-

0.8894, P=3.27×10-10) was associated with a reduced risk of uterine

leiomyoma (FDR<0.05). T2D, endometriosis, and BMI showed a

positive association with uterine leiomyoma risk (FDR> 0.05 and

IVW P< 0.05). Both SBP and DBP are indicators of blood pressure,

and some SNPs may be associated with both SBP and DBP.

Therefore, we used multivariable MR to adjust the results of SBP

and DBP. Multivariable MR analysis of SBP and DBP showed that a

higher DBP might be an independent risk factor of uterine

leiomyoma (adjusted OR=1.0309, 95%CI=1.0091-1.0533,

P=5.34×10-3), while SBP was not significant (adjusted OR=0.9913,

95%CI=0.9787-1.0041, P=0.184).
frontiersin.org

https://r4.finngen.fi/
http://www.nealelab.is/uk-biobank
https://www.r-project.org/
https://cnsgenomics.shinyapps.io/mRnd/
https://doi.org/10.3389/fendo.2023.1133260
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Qu et al. 10.3389/fendo.2023.1133260
The results of heterogeneity, pleiotropy, weighted median, and

MR-Egger are shown in Table 2. There was heterogeneity in age at

natural menopause, SBP, DBP, fasting insulin, age of menarche,

T2D, and endometriosis, and they all showed MR-PRESSO-

corrected results if outliers were detected. No horizontal

pleiotropy was found. For some robust MR estimators, such as

endometriosis, age at menarche, age at natural menopause, fasting

insulin, T2D, and SBP, their IVW results were supported by MR-

Egger or weighted median. However, the IVW results of waist-to-

hip ratio and DBP were not supported by MR-Egger or weighted

median, which may be related to the presence of horizontal

pleiotropy and the detected outliers. The statistical power for the

FinnGen outcome ranged from 96% to 100%.
3.3 Validation results of uterine leiomyoma
in the UKB consortium data set

In the validation set, the MR results of SBP, DBP, age at menarche,

and age at natural menopause were consistent with the training set. A

higher age at natural menopause, SBP, and DBP were associated with

an increased risk of uterine leiomyoma, while a higher age of menarche

was associated with a reduced risk of uterine leiomyoma (Figure 1). No
Frontiers in Endocrinology 04120
horizontal pleiotropy was found for these risk factors. After removing

outliers, the odds of uterine leiomyoma increased per 1-SD increase in

SBP (OR=1.0002, 95%CI=1.0001-1.0003, P=1.01×10-4), age at natural

menopause (OR=1.0013, 95%CI=1.0006-1.0020, P=2.08×10-4), and

DBP (OR=1.0002, 95%CI=1.0001-1.0004, P=8.95×10-3). Moreover, 1-

SD increase in age at menarche (OR=0.9980, 95%CI=0.9969-0.9990,

P=1.73×10-4) was associated with a reduced risk of uterine leiomyoma.

In addition, the results of the validation set showed that genetic

liability to PCOS (OR=0.9974, 95%CI=0.9954-0.9994, P=1.09×10-2),

2-hour glucose level (OR=1.0032, 95%CI=1.0001-1.0064,

P=4.57×10-2), and endometriosis (OR=1.0038, 95%CI=1.0001-

1.0075, P=4.34×10-2) were also influential factors for uterine fibroids.

It is worth noting that the statistical power of the UKB results was

not sufficient (<50%). The reason may be that UKB data set has fewer

cases than the FinnGen data set, resulting in lower statistical power.
3.4 Combined result of uterine leiomyoma
from meta-analysis

The results of the meta-analysis further confirmed the previous

findings that a higher age at natural menopause (OR=1.0013, 95%

CI=1.0006-1.0020, P=2.94×10-4), SBP (OR=1.0002, 95%CI=1.0001-
TABLE 1 Summary characteristics of risk factors.

Exposure Data source NSNP Unit Sample R2

(%)
F PMID

BMI GIANT consortium 92 SD 234,069 2.39 62.27 25673413

Serum 25-hydroxyvitamin D
concentrations

SUNLIGHT consortium 6 SD 79,366 0.8 106.67 31100827

Drinking Sequencing Consortium of Alcohol and Nicotine use 39 SD 335,394 0.84 72.84 30643251

PCOS A large-scale genome-wide meta-analysis 14 logOR 113,238 0.50 40.64 30566500

Endometriosis GWAS 14 logOR 208,903 0.26 38.89 28537267

Smoking Sequencing Consortium of Alcohol and Nicotine use 28 SD 249,752 1.04 93.73 30643251

Age at menarche ReproGen consortium 321 SD 329,345 6.29 68.80 28436984

2-hour glucose MAGIC 14 SD 281,416 0.31 62.50 34059833

Fasting glucose MAGIC 69 SD 281,416 2.74 114.87 34059833

Fasting insulin MAGIC 36 SD 281,416 0.70 55.10 34059833

HbA1c MAGIC 78 SD 281,416 2.84 105.43 34059833

Age at natural menopause ReproGen consortium 48 SD 69,360 4.37 65.99 26414677

Age at first birth GWAS 10 SD 251,151 0.15 37.73 27798627

T2D Diabetes Genetics Replication and Meta-analysis
consortium

248 logOR 898,130 1.78 65.61 30297969

SBP International Consortium for Blood Pressure 776 SD 757,601 6.49 67.69 30224653

DBP International Consortium for Blood Pressure 821 SD 757,601 7.01 69.49 30224653

Circulating vitamin C concentration A GWAS meta-analysis 10 SD 52,018 1.72 91.02 33203707

Waist-to-hip ratio GIANT consortium 34 SD 210,088 0.76 47.31 25673412

Waist circumference GIANT consortium 45 SD 210,088 1.26 59.56 25673412

Hip circumference GIANT consortium 55 SD 210,088 1.42 55.01 25673412
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TABLE 2 Two-sample Mendelian randomization estimates of MR-Egger and weighted median methods.

NSNP MR-Egger Weighted median Pheterogenelty Ppleiotropy

OR 95%
LCI

95%
UCI

p OR 95%
LCI

95%
UCI

p

FinnGen

BMI 91 1.2241 0.9059 1.6539 0.191 1.2042 1.0064 1.4409 0.049 1.114 0.589

Waist-to-hip ratio 33 1.5922 0.6209 4.0826 0.340 1.2690 0.9468 1.7007 0.111 0.005 0.503

Waist circumference 45 0.9948 0.5621 1.7607 0.986 1.1309 0.9001 1.4209 0.291 0.307 0.689

Hip circumference 54 1.3795 0.8947 2.1270 0.151 1.1408 0.9363 1.3900 0.191 0.076 0.210

Serum 25-hydroxyvitamin D
concentrations

6
1.6075 0.9683 2.6684 0.140 1.3320 0.9813 1.8081 0.066

0.420 0.301

Circulating vitamin C
concentration

10 1.0356 0.8117 1.3213 0.785 0.9769 0.8169 1.1683 0.798 0.647 0.585

Drinking 39 0.3618 0.1484 0.8818 0.031 0.4423 0.2678 0.7308 0.001 0.003 0.094

Smoking 28 0.9393 0.8054 1.0956 0.433 0.9348 0.8267 1.0570 0.282 0.937 0.757

PCOS 13 0.6201 0.3372 1.1406 0.153 0.8898 0.8089 0.9788 0.016 <0.001 0.261

Endometriosis 14 5.0109 0.8617 29.141 0.098 1.1982 1.0337 1.3889 0.016 <0.001 0.189

Age at menarche 303 0.8870 0.7682 1.0243 0.103 0.8584 0.7904 0.9324 <0.001 <0.001 0.461

Age at natural menopause 43 1.2002 1.0752 1.3397 0.002 1.1337 1.0906 1.1784 <0.001 <0.001 0.064

Age at first birth 10 0.7951 0.3458 1.8282 0.604 1.0355 0.9139 1.1732 0.584 0.886 0.577

2-hour glucose 13 0.6588 0.3459 1.2547 0.230 0.9582 0.8047 1.1409 0.631 <0.001 0.138

Fasting glucose 65 1.1888 0.7707 1.8337 0.437 1.1895 0.9260 1.5281 0.174 <0.001 0.347

Fasting insulin 36 1.6367 0.4093 6.5449 0.491 1.7667 1.0794 2.8915 0.024 <0.001 0.932

HbA1c 74 1.2990 0.7970 2.1172 0.297 1.0847 0.7648 1.5386 0.648 0.079 0.339

T2D 230 0.9826 0.9149 1.0553 0.631 1.0539 1.0009 1.1096 0.046 <0.001 0.054

SBP 741 1.0139 1.0016 1.0263 0.027 1.0051 0.9989 1.0113 0.105 <0.001 0.255

DBP 776 1.0061 0.9866 1.0260 0.544 1.0060 0.9953 1.0167 0.275 <0.001 0.533

UKB

BMI 91 0.9990 0.9931 1.0049 0.736 1.0024 0.9988 1.0059 0.197 0.633 0.501

Waist-to-hip ratio 33 0.9964 0.9754 1.0178 0.741 1.0047 0.9982 1.0113 0.153 0.010 0.505

Waist circumference 44 1.0014 0.9896 1.0133 0.817 1.0008 0.9958 1.0058 0.760 0.605 0.910

Hip circumference 54 1.0029 0.9946 1.0113 0.498 1.0030 0.9988 1.0072 0.152 0.483 0.651

Serum 25-hydroxyvitamin D
concentrations

6 0.9973 0.9875 1.0072 0.621 0.9972 0.9910 1.0035 0.384 0.925 0.966

Circulating vitamin C
concentration

10 0.9975 0.9921 1.0029 0.383 0.9989 0.9953 1.0024 0.531 0.126 0.316

Smoking 28 0.9990 0.9957 1.0024 0.580 1.0000 0.9972 1.0030 0.972 0.497 0.935

Drinking 38 0.9991 0.9879 1.0104 0.877 1.0010 0.9923 1.0099 0.812 0.037 0.858

PCOS 12 0.9901 0.9810 0.9995 0.066 0.9979 0.9957 1.0000 0.052 0.047 0.153

Endometriosis 14 1.0142 0.9938 1.0350 0.200 1.0041 1.0013 1.0071 0.005 <0.001 0.333

Age at menarche 306 0.9974 0.9958 0.9991 0.075 0.9983 0.9966 0.9999 0.049 0.031 0.686

Age at natural menopause 45 1.0016 1.0000 1.0033 0.058 1.0011 1.0004 1.0019 0.003 <0.001 0.677

Age at first birth 10 0.9987 0.9812 1.0166 0.891 1.0023 0.9996 1.0051 0.096 0.583 0.788

(Continued)
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1.0003, P=1.01×10-4), and DBP (OR=1.0002, 95%CI=1.0001-

1.0003,P=8.95×10-3) are risk factors for uterine fibroids, and a

higher age at menarche (OR=0.9979, 95%CI=0.9969-0.9990,

P=1.02×10-4) is a protective factor for uterine leiomyoma (Figure 2).

In addition, the results of meta-analysis suggested that uterine

leiomyoma may also be affected by PCOS (OR=0.9974, 95%

CI=0.9954-0.9994, P=1.09×10-2), endometriosis (OR=1.0038, 95%

CI=1.0002-1.0076, P=4.33×10-2), and 2-hour glucose levels

(OR=1.0032, 95%CI=1.0001-1.0064, P=4.57×10-2). In fact, PCOS

and endometriosis were also significant in the FinnGen results,

although they failed to pass FDR correction. Therefore, the results

of analysis of the FinnGen and UKB data sets and the meta-analysis

of PCOS and endometriosis were consistent. The difference between

the results of the FinnGen and UKB data sets for 2-hour glucose

level may be related to the different number of SNPs in the

instrumental variables.
4 Discussion

Our MR study found that a genetically predicted higher age at

natural menopause, SBP, DBP, endometriosis, and elevated 2-hour

glucose level were risk factors for uterine leiomyoma, and a higher

age at menarche and PCOS were protective factors for

uterine leiomyoma.

An earlier age at menarche is thought to be associated with an

increased risk of uterine leiomyoma (40, 41), and this finding is

further supported by our study. Women with an earlier age at

menarche had higher levels of estradiol and estrone and lower levels

of sex hormone-binding globulin in their hormonal milieu than

women with a later age at menarche (42, 43). Fibroids were found to

have more estrogen receptors, lower estradiol metabolism, and a

stronger transcriptional response to estrogen than myometrium

(44). Therefore, higher estrogen and progesterone levels may

increase the risk of fibroids. Animal models have also confirmed

that hormonal stimulation can increase tumor proliferation and

decrease apoptosis (45). There are few studies on the effect of

menopausal age on uterine leiomyoma risk. Our results suggest that

a later age at menopause is associated with an increased risk of

uterine leiomyoma. A prospective study of female teachers also
Frontiers in Endocrinology 06122
found a reduced risk of fibroids in postmenopausal women

compared to premenopausal women (13). The National Institute

of Environmental Health Sciences (NIEHS) Fibroid Growth Study

found that the growth rate of uterine leiomyoma in white women

was related to age (46). Rapid growth of uterine leiomyoma after the

age of 30, especially in premenopause, is consistent with age-related

changes in estrogen and progesterone (47). Therefore, the effect of

menopausal age on fibroids may also be related to hormone levels.

In addition, mitotic activity in the myometrium is greatest during

the luteal phase of the menstrual cycle, and prolonged exposure to

the menstrual cycle may increase the risk of uterine leiomyoma

(48). This also suggests that earlier menstruation age and later

menopause age can increase the risk of uterine leiomyoma.

Several studies have found a significant positive association

between hypertension and uterine leiomyoma, but most of these

studies are retrospective studies, cross-sectional studies, or

prospective studies with small sample sizes and have not

successfully established a causal association (49–51). Our results

suggest that higher SBP and DBP are causally associated with an

increased risk of uterine leiomyoma. During the onset of

hypertension, angiotensin is hydrolyzed to angiotensin I, which is

then converted to angiotensin II by the angiotensin converting

enzyme (ACE) (52). Angiotensin II has been reported to

significantly increase the number of uterine leiomyoma cells in a

dose-dependent manner (53). Hsieh et al. found that mutations in

angiotensin-converting enzyme activation genes were significantly

associated with leiomyoma susceptibility (54). A recent study

reported a 31.8% reduction in clinically diagnosed uterine

leiomyoma in hypertensive adult women who had previously

used angiotensin-converting enzyme inhibitors (ACEis) compared

with those who had not used ACEis (55). Therefore, hypertension

may cause uterine leiomyoma through production of angiotensin II.

In addition, hypertension can induce fibroid proliferation and

fibrogenesis by inducing smooth muscle cell injury through

mechanical shear stress, which may also lead to uterine

leiomyoma (56).

The relationship between diabetes mellitus and uterine

leiomyoma has been controversial for many years. On the one

hand, some observational studies have found a lower incidence of

fibroids in diabetic patients and hypothesized that diabetes may
TABLE 2 Continued

NSNP MR-Egger Weighted median Pheterogenelty Ppleiotropy

OR 95%
LCI

95%
UCI

p OR 95%
LCI

95%
UCI

p

2-hour glucose 14 0.9994 0.9907 1.0082 0.897 1.0014 0.9981 1.0047 0.416 0.046 0.375

Fasting glucose 67 1.0011 0.9936 1.0086 0.781 1.0029 0.9975 1.0083 0.299 0.065 0.542

Fasting insulin 35 0.9907 0.9671 1.0148 0.450 1.0002 0.9905 1.0100 0.967 0.097 0.458

HbA1c 75 1.0013 0.9923 1.0103 0.782 0.9983 0.9913 1.0054 0.645 0.136 0.830

T2D 236 1.0003 0.9990 1.0017 0.639 1.0003 0.9991 1.0015 0.665 0.005 0.937

SBP 757 1.0001 0.9999 1.0003 0.330 1.0000 0.9999 1.0001 0.448 0.038 0.968

DBP 794 1.0000 0.9996 1.0004 0.931 1.0002 1.0001 1.0004 0.045 <0.001 0.279
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inhibit tumor development by causing vascular dysfunction (57).

On the other hand, diabetes is often accompanied by obesity and

hypertension, which may increase the risk of uterine leiomyoma.

Since it is not possible to assess the relationship between diabetes

and fibroids in untreated diabetic populations, observational
Frontiers in Endocrinology 07123
estimates may capture both the effect of disease and treatment

effects on fibroids. A study that indirectly examined the relationship

between diabetes and treatment found that the protective effects of

diabetes was only present in diabetic patients receiving the drug

(15). Elevated 2-hour glucose post-challenge, an indicator of
A

B

FIGURE 1

Forest plot of Mendelian randomization results. (A) Mendelian randomization results in the FinnGen data set. (B) Mendelian randomization results in
the UKB data set (95%LCI, lower limit of 95% CI; 95%UCI, upper limit of 95% CI; BMI, body mass index; PCOS, polycystic ovary syndrome; 2h
glucose, 2-hour glucose after oral glucose tolerance test; HbA1c, glycated hemoglobin; T2D, Type 2 diabetes; SBP, systolic blood pressure; DBP,
diastolic blood pressure; NSNP, number of single nucleotide polymorphisms).
FIGURE 2

Forest plot of the results from meta-analysis.
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diabetes, was found in our study to be associated with an increased

risk of uterine leiomyoma. However, fasting glucose, another

indicator of diabetes, was not causally associated with uterine

leiomyoma in either the FinnGen or the UKB data sets. In

addition, elevated fasting insulin levels and type 2 diabetes were

found to be associated with an increased risk of uterine leiomyoma

in the FinnGen data, but this association was not found in the UKB

data. Due to the low power of the UKB results, we were unable to

determine the relationship between diabetes and uterine

leiomyoma. To be sure, the risk of uterine leiomyoma should be

considered when 2-hour glucose post-challenge is elevated.

Endometriosis polycystic ovary syndrome (PCOS) and uterine

leiomyoma are common non-cancerous gynecological diseases in

women. Our study found that endometriosis was associated with an

increased risk of uterine leiomyoma, while PCOS was associated with a

reduced risk of uterine leiomyoma. Although there is no direct

evidence that endometriosis is a influence factor of uterine

leiomyomas, Uimari et al. found that 20% of patients with

symptomatic fibroids had endometriosis, and 26% of patients with

symptomatic endometriosis had fibroids (58). Hemmings et al. (59)

also reported that patients with endometriosis were more likely to

develop uterine leiomyoma than patients without endometriosis.

Physiologically, endometriosis tissues have been shown to express

aromatase and produce estrogen independently of the ovary (60),

which is a major cause of uterine leiomyoma. Therefore, aromatase

inhibitors for endometriosis may reduce the risk of uterine leiomyoma.

There are few studies on the relationship between PCOS and uterine

leiomyoma, and existing studies are controversial (15, 16). Our study

found that PCOS was associated with a reduced risk of uterine

leiomyoma. Our results are consistent with a large later study using

data from PPCOS I (National Institute of Child Health and Human

Development Cooperative Reproductive Medicine Network Pregnancy

in Polycystic Ovary Syndrome I), PPCOS II (Pregnancy in Polycystic

Ovary Syndrome II), and AMIGOS (Assessing Multiple Intrauterine

Gestations from Ovarian Stimulation) and found PCOS patients had a

reduced risk of uterine leiomyoma compared to unexplained infertility

patients (61). The results of this large study using ultrasound diagnosis

were more reliable than those of a small sample using self-reported

data. PCOS patients are anovulatory and have limited exposure of

myometrium to progesterone, which has been shown to stimulate

leiomyoma growth through a group of key genes that regulate

apoptosis and proliferation, and may be the cause of this association

(62–64).

Obesity has been consistently recognized as a risk factor for

uterine leiomyoma. Given the insufficient power of the UKB

database and the fact that a recent Mendelian randomization

study (65) using different instrumental variables found that a

higher BMI slightly increased the risk of uterine fibroids in the

UKB data set, we concluded that obesity is unquestionably a risk

factor for uterine leiomyomas.

Several studies have reported a negative association between age

at first birth and uterine leiomyoma risk (40, 41, 66), while our

study found no such association. Pregnancy may lead to decreased

estrogen receptor levels in myometrium (67). Postpartum reduction
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of collagen content and smooth muscle cytoplasm can eliminate or

shrink uterine leiomyoma (68). In addition, the vascular

distribution of uterine leiomyoma is different from that of the

myometrium, and delivery ischemia and uterine remodeling can

give priority to the elimination of uterine leiomyoma (69, 70). But

the relationship between age at first birth and uterine leiomyoma

may be non-linear. Donnaet al. (71) reported that the effect of age at

first birth on uterine leiomyoma was not linear, and mid-

reproductive (25-29 years) delivery appeared to be most

protective against fibroids development. Larger fibroids are more

common in women over the age of 40. If women give birth at a

young age, the disease may not develop. But there may be no benefit

if the first pregnancy is too late, as some tumors may have grown

too large. Our study was unable to determine whether there is a

non-linear relationship between age and uterine leiomyoma risk, so

more research is needed.

There are some advantages to our study: (1) This was a

Mendelian randomized study that could find causal associations.

(2) Our study found that some previously unknown factors, such as

uterine leiomyoma and menopausal age, were associated with

uterine leiomyoma. In addition, the influence of previously

controversial factors such as PCOS, smoking, and diabetes on

uterine leiomyoma were identified. And (3), participants in all

GWAS studies were of predominantly European ancestry, with

less racial bias. Discovery data sets, validation sets, and meta-

analysis were used to increase the reliability of the results. Our

research also has some shortcomings: (1) The influence of

pleiotropy in the MR design, including horizontal pleiotropic and

vertical pleiotropic; we used two sensitivity analysis methods to

detect pluripotency, including MR-Egger intercept and MR-

PRESSO, in the hope of minimizing bias. (2) The power of the

results verified in the UKB data set was lower, resulting in several

factors that were found to be significant in the FinnGen data set but

not in the UKB. (3) The fact that the GWAS studies were mainly

Europeans may have influenced the extrapolation of the results. In

addition, the non-linear relationships could not be detected in this

study. And (4), the genetic instruments were variants identified

through GWAS analyses with p-values < 5x10-8. As a result, the

estimates of these genetic effects tend to be upwardly biased due to a

phenomenon known as the “winner’s curse”.

In conclusion, our MR study confirmed that earlier menstrual age,

hypertension, obesity, and elevated 2-hour glucose post-challenge were

risk factors for uterine leiomyoma, and ruled out the causal relationship

between smoking and uterine leiomyoma. In addition, a later age of

menopause and endometriosis were found to increase the risk of

uterine leiomyoma, while PCOS was found to decrease the risk.
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Genetic glucocorticoid receptor
variants differ between ethnic
groups but do not explain
variation in age of diabetes
onset, metabolic and
inflammation parameters in
patients with type 2 diabetes

Mohamed Ahdi1*†, Maaike C. Gerards1†, Paul H.M. Smits2,
Eelco W. Meesters3, Dees P. M. Brandjes1, Max Nieuwdorp1

and Victor E. A. Gerdes1,3

1Department of Vascular Medicine, Amsterdam University Medical Centers (UMCs), Amsterdam,
Netherlands, 2Department of Molecular Biology, Atalmedial, Amsterdam, Netherlands, 3Department of
Internal Medicine, Spaarne Hospital, Hoofddorp, Netherlands
Aims: The effect of excess glucocorticoid receptor (GR) stimulation through

glucocorticoid medication or cortisol on glucose metabolism is well established.

There are genetic GR variants that result in increased or decreased GR

stimulation. We aimed to determine the prevalence of genetic GR variants in

different ethnic groups in a cohort of patients with type 2 diabetes, and we aimed

to determine their association with age of diabetes onset and metabolic and

inflammation parameters.

Methods: A cross-sectional analysis was performed in a multiethnic cohort (n =

602) of patients with established type 2 diabetes. Polymorphisms in the GR gene

that have previously been associated with altered glucocorticoid sensitivity

(TthIIII, ER22/23EK N363S, BclI and 9b) were determined and combined into 6

haplotypes. Associations with age of diabetes onset, HbA1c, hs-CRP and lipid

values were evaluated in multivariate regression models.

Results: The prevalence of the SNPs of N363S and BclI was higher in Dutch than

in non-Dutch patients. We observed a lower prevalence of the SNP 9b in Dutch,

South(East) Asian and Black African patients versus Turkish and Moroccan

patients. We did not detect an association between SNPs and diabetes age of

onset or metabolic parameters. We only found a trend for lower age of onset and

higher HbA1c in patients with 1 or 2 copies of haplotype 3 (TthIIII + 9b).
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Conclusions: The prevalence of genetic GR variants differs between patients of

different ethnic origins. We did not find a clear association between genetic GR

variants and age of diabetes onset or metabolic and inflammation parameters.

This indicates that the clinical relevance of GR variants in patients with

established type 2 diabetes is limited.
KEYWORDS

glucocorticoid receptor, diabetes, glucocorticoid medication, cortisol, glucose
metabolism, ethnicity, inflammation (markers)
Introduction

The onset and course of type 2 diabetes mellitus is determined

by a combination of environmental and genetic risk factors. The

effect of excess glucocorticoid receptor (GR) stimulation through

glucocorticoid medication or cortisol on the incidence of type 2

diabetes is well established (1, 2). It is unknown whether genetic GR

variants that are associated with increased GR stimulation also

contribute to a diabetogenic phenotype. Ethnic origin is one of the

factors associated with the incidence and course of type 2 diabetes

and metabolic syndrome (3). Ethnicity as a determinant for disease

consists of shared origin and genetics but also shared social and

environmental background (4). If the prevalence of genetic GR

variants differs in populations from different ethnicities and

geographical regions, differences in functioning of this receptor

could partly explain differences in onset and outcome of type 2

diabetes among ethnic groups.

The GR is expressed in almost every cell in the body (5).

Binding of the GR by cortisol or glucocorticoid medication results

in transrepression and transactivation of certain genes.

Transrepression contributes to suppression of inflammation, and

transactivation contributes to regulation of energy metabolism.

Excess transactivation has effects that are comparable to

metabolic derangements in type 2 diabetes (6). In clinical

practice, we frequently encounter the effects of excess

transactivation due to supraphysiological GR stimulation.

Examples are acute disturbance of glucose metabolism due to

high-dose glucocorticoid therapy and increased incidence of type

2 diabetes in Cushing syndrome (1, 2). Glucocorticoid signalling

can also affect lipid metabolism, resulting in higher levels of

triglycerides and total cholesterol (7).

The gene that encodes the glucocorticoid receptor (NR3C1)

consists of 157,582 base pairs and is located on chromosome 5 (8).

Single nucleotide polymorphisms (SNPs) can induce changes in the

configuration and sensitivity of the GR, which may impact the

binding and regulation of gene expression with glucocorticoids, and

may subsequently affect inflammatory suppression and glucose

metabolism (9). There are functional GR variants (SNPs) that can

potentially change the transactivation and/or transrepression
02128
capacity of the GR gene. A schematic overview of the GR gene

including the locations of these SNPs within the gene has been

published before (10, 11).

GR variants BclI (rs41423247) and N363S (rs6195) are

associated with increased transactivation (sensitivity to

glucocorticoids), whereas an SNP at ER22/23EK (rs6189) is

associated with diminished transactivation. On the other hand,

the GR variant 9b (rs6198) is associated with lower transrepression

(10, 12). A fifth SNP, TthIIII (rs10052957) does not affect

glucocorticoid sensitivity on itself but can result in glucocorticoid

resistance in the presence of ER22/23EK (10). Form a clinical

perspective, it has been observed that both BclI and N363S

variations are linked to abdominal obesity, although there have

been conflicting findings regarding N363S. Furthermore, N363S has

been associated with higher levels of LDL-cholesterol and an

increased risk of cardiovascular disease, while the ER22/23EK

polymorphism has been associated with a reduced risk of

dementia but an increased risk of major depression. Additionally,

the 9b variant has been linked to increased inflammatory markers,

rheumatoid arthritis, post-traumatic stress disorder, and

cardiovascular disease (10, 13).The prevalence of the SNPs varies

in previous studies, with a minor allele frequency (MAF) of 1.9-3%

for ER22/23EK and 29.6-38.6% for BclI (11, 14–17).

In this study, we aim to determine the association between

genetic GR variants and the incidence and course of type 2 diabetes

and metabolic syndrome in patients with established type 2 diabetes

from different ethnic groups. We hypothesize that GR SNPs

resulting in increased transactivation are associated with a lower

age of diabetes onset and impaired glycemic control, and SNPs

resulting in diminished transrepression are associated with a higher

level of inflammation in patients with established type 2 diabetes.

The second aim is to evaluate whether the prevalence of genetic GR

variants differs between ethnic groups.
Methods

We performed a cross-sectional analysis in a multi-ethnic

cohort of patients with type 2 diabetes who were treated in
frontiersin.org
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secondary care (18). The participants consisted of consecutive

individuals who visited the outpatient clinic of MC Slotervaart in

Amsterdam for their annual comprehensive diabetes assessment

between May 2009 and December 2010. Only those who provided

written informed consent, and for whom DNA material was

available for analysis were included in this study. For all

participants, data on ethnic origin, diabetes onset, glucose- and

lipid-lowering treatment, established complications, vital,

anthropometric and laboratory parameters were registered. The

study protocol was approved by the institutional review board.

The diagnosis of type 2 diabetes was based on the general

practitioner (GP) referral letter in combination with clinical and

biochemical characteristics determined at our clinic. GAD

antibodies and C-peptide were determined in case of doubt

regarding the type of diabetes. Age of diabetes onset was retrieved

from the GP referral letter and checked with the patient. In case of

discrepancy between referral letter and patient history, the age of

onset as told by the patient was considered true. Ethnicity was

determined according to the country of birth of either the patient or

his or her parent and by last name analysis (4). The following ethnic

groups were considered: native Dutch, Turkish, Moroccan,

Southeast Asians (comprising 57% Hindustani and 25%

Indonesians), and Black Africans (with 78% being Surinamese

Creoles). Additional information can be found in the caption of

Table S1.
Laboratory assays

Blood samples were obtained by standard phlebotomy after a

10-hour overnight fast.

Depending on the patients’ informed consent form, an

additional 10 ml EDTA-anticoagulated whole blood sample was

collected. Following immediate centrifugation (15 minutes,

3000rpm, 1860g at 15°C), the isolated “buffy-coat” was carefully

separated using a Pasteur pipette tube and stored in 0.5 ml vials at

-70°C until assayed.

Total genomic DNA was isolated from the frozen ‘buffy-coat’,

using the total nucleic acid (TNA) protocol on the MagNAPure LC

(Roche Diagnostics). PCR primers (forwards and reverse) as well as

MGB probes were designed using Primer Express Software v3.0.1 of

Life Technologies. Five NR3C1 SNPs were determined by real-time

polymerase chain reaction (RT-PCR): TthIIII (rs10052957: guanine

> adenine), ER22/23EK (rs6189: guanine > adenine and rs6190:

guanine > adenine), N363S (rs6195: adenine > guanine), BclI

(rs41423247: cytosine > guanine) and 9b (rs6198: adenine >

guanine) followed by the allelic discrimination protocol on an

ABI 7500 real-time PCR thermocycler (Thermo Fisher) as

described previously (19). These SNPs combine into 6 haplotypes,

as previously shown (11). For each haplotype, 3 genotype

combinations were distinguished as carrying 0, 1, or 2 copies of

the haplotype allele. To show that the designed assays were able to

detect the indicated SNPs, all assays were validated before using
Frontiers in Endocrinology 03129
well-characterized DNA kindly provided by P. Noordijk (Leiden

University Medical Centre) from each individual SNP.

The routine analysis of these samples for HbA1c was performed

using a Menarini (Adams™ HA-8160, Arkray Inc, Kyoto, Japan)

automated HPLC analyser. Serum total- and HDL-cholesterol and

triglycerides were determined using standard laboratory procedures

within 4 hours after sampling with an automated analyser

(Synchron® LX20, Beckman Coulter Inc, Fullerton CA, USA).

LDL-cholesterol was calculated using the Friedewald formula

(20). High-sensitivity C-reactive protein (hs-CRP) was

determined with a near infrared particle immunoassay rate

methodology (Beckman Brea, CA).
Statistical analysis

We estimated beta-coefficients for the change in age of diabetes

onset, glycemic control, inflammation and lipid parameters for each

SNP in linear regression models. Age, sex, diabetes duration, BMI,

glucose and lipid-lowering medication and ethnicity were assessed

as confounders if applicable. Potential confounders were selected if

we presumed a theoretical relationship with SNP status and

outcome, in combination with a statistical association (21).

Outcome variables that had a non-normal distribution were

transformed to approximate normality. To ease interpretation, we

presented back-transformed values of those variables in the

outcome tables.

We performed an a priori power estimation on the difference in

age of diabetes onset in the absence or presence of different

polymorphisms. The power generally increases as a SNP is more

prevalent (and as the effect on glucocorticoid sensitivity is stronger)

(22). For the least prevalent SNP - ER22/23EK (94% wild type) -

univariate regression analysis with a 5% significance level will have

85% power to detect the difference of 4 years (standard deviation ±

9) in age of onset between patients with a glucocorticoid-resistant

genotype and patients with a glucocorticoid-sensitive genotype

when the total sample size is 624 patients.
Results

Patients and genotyping

From a total of 983 patients with type 2 diabetes, 602 patients

had available DNA samples and were included. There were no

significant differences in demographics, clinical variables, and

complications between patients with and patients without

available DNA data (Table S1). Overall, patients had a reasonably

well-regulated diabetes with an average HbA1c level of 7.3% (54

mmol/mol) and the average diabetes duration was 11.9 ± 8.5 years.

Fourty-four percent of the participants were of non-native Dutch

origin, comprising individuals from Turkish (n = 45), Moroccan (n

= 101), Southeast Asian (n = 79), and black African (n = 40)
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backgrounds. Non-Dutch patients were as compared with Dutch

patients, less frequently males (46 versus 59%, p < 0.001), were

younger (mean 57.4 versus 65.8 years), their average age of diabetes

onset was 8.9 years earlier, and they had a poorer level of glycemic

control (mean 7.6 versus 7.0% [60 vs. 53 mmol/mol]. The

characteristics of the study population are shown in Table S1.
SNPs of the glucocorticoid receptor gene

In 557 patients (93%), at least 1 SNP could be determined. As

shown in Table 1, the minor allele frequency varied from 1.6%

(ER22/23EK) to 31.6% (BclI). The prevalence of SNPs was not

associated with sex or age. We found a higher prevalence of the

N363S SNP and a lower prevalence of the BclI CC genotype in

Dutch than in non-Dutch patients (p < 0.01). Additionally, we

observed a difference in the prevalence of 9b in Dutch, Southeast

Asian and Black African patients versus Turkish and Moroccan

patients, but this difference was not significant (p = 0.094).
Association SNPs of the GR gene with age
of diabetes onset and parameters of
metabolic syndrome

In the overall study population, diabetes was diagnosed at the

age of 50.4 years. We could not detect a clear influence of the SNPs

of the GR gene and age of onset, except for patients who were

heterozygous for the 9b SNP (50.9 versus 49.2, p adj 0.02). Patients

with the 9b SNP showed a trend toward higher HbA1c and CRP

(Table 2). Patients with at least 1 copy of the N363S polymorphism

had a lower LDL cholesterol. We did not observe any effect of the
Frontiers in Endocrinology 04130
TthIIII, ER22/23EK and BclI polymorphisms on glycemic control,

inflammation or lipid parameters.
Association of haplotypes of the GR gene
with age of diabetes onset and parameters
of metabolic syndrome

Haplotype 1 (which does not contain any SNP, wild type) had a

minor allele frequency of 47.9%. The minor allele frequency of other

haplotypes varied from 1.6% (haplotype 6) to 20.1% (haplotype 2).

Patients who had 1 or 2 copies of haplotype 3 showed a trend

toward a lower age of diabetes onset and a higher HbA1c, which is

in accordance with the results of the individual haplotypes

(Table 3). Patients who had at least 1 copy of haplotype 5 showed

a trend toward lower LDL cholesterol. No associations were found

for the other haplotypes.
Discussion

We studied the association between genetic variants of the GR

and metabolic and inflammation parameters in a multiethnic

cohort of patients with established type 2 diabetes in secondary

care. We observed a different prevalence of genetic variants between

patients of different ethnic origins. We did not find a clear

association between genetic variants and age of diabetes onset,

glycemic control, lipid parameters or inflammation, and we found

only a trend for lower age of onset for patients with haplotype 3.

This suggests that the clinical relevance of these genetic variants for

the onset of diabetes and the course of established diabetes seems to

be minor.
TABLE 1 Prevalence of SNPs of the glucocorticoid receptor gene by ethnic origin.

Genotype Dutch
n (%)

Turkish
n (%)

Moroccan
n (%)

SE Asian
n (%)

Black African
n (%)

P*

TTH111I (rs10052957) CC 162 (49.7) 24 (54.5) 41 (42.3) 52 (67.5) 18 (46.2)

CT 139 (42.6) 18 (40.9) 46 (47.4) 24 (31.2) 19 (48.7)

TT 25 (7.7) 2 (4.5) 10 (10.3) 1 (1.3) 2 (5.1) 0.211

ER22/23EK (rs6189/rs6190) GG/GG 319 (95.8) 43 (95.6) 98 (100) 77 (98.7) 38 (95)

GA/GA 14 (4.2) 2 (4.4) 0 (0) 1 (1.3) 2 (5) 0.211

N363S (rs6195) AA 298 (90.3) 44 (97.8) 96 (97.0) 76 (97.4) 39 (100)

AG 30 (9.1) 1 (2.2) 3 (3.0) 2 (2.6) 0 (0)

GG 2 (0.6) 0 (0) 0 (0) 0 (0) 0 (0) <0.001

BCLI (rs41423247) CC 123 (38.9) 23 (57.5) 46 (48.9) 42 (54.5) 25 (67.6)

CG 163 (51.6) 16 (40) 35 (37.2) 31 (40.3) 9 (24.3)

GG 30 (9.5) 1 (2.5) 13 (13.8) 4 (5.2) 3 (8.1) 0.002

9b (rs6198) AA 232 (71.4) 25 (56.8) 56 (58.9) 64 (83.1) 34 (87.2)

AG 93 (28.6) 19 (43.2) 39 (41.1) 13 (16.9) 5 (12.8) 0.094
frontie
*Statistical significance of differences between ethnic groups is tested through a chi square test for trend.
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The development of type 2 diabetes is a combination of genetic

and environmental risk factors. Whereas mutations underlying

monogenic diabetes have direct clinical consequences, genetic

variants in multifactorial forms of diabetes have a much weaker

association (23). In patients with established diabetes, such as in our

study population, HbA1c and lipid parameters are affected by

medication and BMI. Despite adjusting for these confounding

factors, we did not find an association. Additionally, for the time

of diabetes onset – a parameter that is unbiased by glucose-lowering

treatment - we did not find an association with genetic variants of

the glucocorticoid receptor.

The SNPs N363S and ER22/23EK, which were previously

associated with increased and decreased transactivation,

respectively, did not affect the age of diabetes onset. Interestingly,

the N363S SNP, which we hypothesized to result in diabetes onset at

a younger age, showed a trend towards later diabetes onset. Despite

the increased prevalence of N363S in Dutch patients compared to

patients of Turkish and Moroccan origin, Dutch patients were
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diagnosed with diabetes at a later age. In patients with at least

one copy of SNP 9b, we observed a trend for a higher level of hs-

CRP, which is in line with our hypothesis.

Although specific effects on transrepression and transactivation

have been established in vitro for all analysed SNPs, clinical studies

have shown contradictory results. For example, the ER22/23EK SNP

reduced GC-induced transactivation in vitro, and supportive evidence

was found by increased insulin sensitivity and lower fasting insulin

concentration in a Dutch cohort (24). However, ER22/23EK was

associated with higher HbA1c levels in a cohort of patients older

than 85 years old (17). Minor allele frequency was not different between

these cohorts, arguing against an age difference as an explanation for

the contradictory findings. Glucose metabolism is a highly regulated

process in which multiple genetic and environmental factors are

intertwined with an eventual effect of glucocorticoid sensitivity (25).

The absence of an association in our study suggests that there is no

clinically relevant effect of GR variants on glucose metabolism and that

the previous contradictory findings may have arisen by chance.
TABLE 2 Association of SNPs of the glucocorticoid receptor gene with clinical characteristics.

Genotype N MAF
(%)

Age DM onset
(years)

HbA1c
(%)

hs-CRP
(mmol/l)

Total chol
(mmol/l)

Triglyc
(mmol/l)

LDL chol
(mmol/l)

TTH111I (rs10052957) CC 297 50.5 (11.4) 7.2 (1.2) 4.4 (6.6) 4.2 (1.0) 1.7 (1.0) 2.3 (0.8)

T vs. CC 286 28.0 50.3 (11.6) 7.4 (1.3) 4.6 (6.8) 4.3 (1.0) 1.9 (2.3) 2.4 (0.8)

adjusted Beta -0.52 (0.91) 0.15 (0.10) 0.08 (0.55) 0.03 (0.08) 0.16 (0.15) -0.02 (0.06)

P 0.57 0.12 0.88 0.68 0.26 0.75

ER22/23EK (rs6189/rs6190) GG/GG 575 50.5 (11.5) 7.3 (1.3) 4.5 (6.7) 4.2 (1.0) 1.8 (1.8) 2.4 (0.8)

A vs GG/GG 19 1.6 51.4 (10.7) 7.2 (0.6) 3.6 (3.2) 4.0 (0.8) 1.6 (0.9) 2.2 (0.8)

adjusted Beta -0.12 (2.54) -0.25 (0.27) -0.62 (1.53) -0.22 (0.23) -0.24 (0.41) -0.21 (0.18)

P 0.96 0.36 0.69 0.33 0.57 0.24

N363S (rs6195) AA 553 50.3 (11.5) 7.3 (1.3) 4.5 (6.7) 4.2 (1.0) 1.7 (1.0) 2.4 (0.8)

G vs AA 38 3.4 52.7 (11.3) 7.2 (1.0) 3.9 (6.8) 4.2 (0.6) 1.9 (1.0) 2.1 (0.5)

adjusted Beta 0.29 (1.86) -0.01 (0.20) -0.81 (1.11) -0.11 (0.16) 0.17 (0.17) -0.24 (0.13)

P 0.87 0.95 0.46 0.51 0.33 0.06

BCLI (rs41423247) CC 259 50.0 (11.3) 7.3 (1.2) 4.1 (5.7) 4.2 (0.9) 1.7 (0.9) 2.4 (0.8)

G vs. CC 305 31.6 50.8 (11.7) 7.2 (1.3) 4.7 (7.1) 4.2 (1.1) 1.9 (2.3) 2.3 (0.8)

adjusted Beta -0.51 (0.94) 0.03 (0.10) 0.55 (0.54) -0.05 (0.08) 0.18 (0.15) -0.09 (0.06)

P 0.59 0.75 0.31 0.54 0.23 0.18

9b (rs6198) AA 411 50.9 (11.4) 7.2 (1.2) 4.4 (6.5) 4.2 (1.0) 1.8 (2.0) 2.3 (0.8)

G vs AA 169 14.6 49.2 (11.4) 7.4 (1.4) 4.9 (7.2) 4.3 (0.9) 1.8 (1.0) 2.4 (0.8)

adjusted Beta -2.25 (0.99 0.16 (0.11) 0.41(0.61) 0.01 (0.09) 0.02 (0.16) -0.03 (0.07)

P 0.02 0.14 0.50 0.90 0.90 0.64
fr
Data are presented as mean (sd). Adjustments in the multivariate linear regression model: Age of onset was adjusted for sex and ethnicity; HbA1c was adjusted for sex, ethnicity, diabetes
duration, insulin use and metformin use; hsCRP was adjusted for age and sex; lipid spectrum was adjusted for sex, age, use of lipid lowering medication and metformin.
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Our study has both strengths and weaknesses. A strength of our

study is the extensive data with both detailed information on

treatment as well as laboratory parameters and therefore the

ability to correct for possible confounders. By including all

consecutive patients in our clinic, we established a cohort that is

representative for the secondary care diabetes population in an

urban area. However, the heterogeneity of our study population

regarding age, diabetes duration and origin might also have blunted

the effect of genetic variants on metabolic parameters. A weakness

of our study arises from the cross-sectional nature of the cohort.
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The age of diabetes onset is determined retrospectively, and we

cannot exclude the possibility of recall or information bias on this

outcome parameter. Although a diagnostic delay in type 2 diabetes

is frequently observed, in previous studies, the duration of delay was

not affected by ethnicity of the patient (26, 27). Furthermore, we do

not have data on the socioeconomic position of patients, which

could be an uncontrolled confounder between ethnicity and

diabetes outcome parameters.

In conclusion, we observed that the prevalence of SNPs of the

glucocorticoid receptor was different between ethnic groups. We
TABLE 3 Association of haplotypes of the GR receptor gene with clinical characteristics.

Haplotype Copies N Age DM onset
(years)

HbA1c
(%)

Hs-CRP
(mmol/l)

Total chol.
(mmol/l)

Triglycer.
(mmol/l)

LDL chol.
(mmol/l)

1 0 147 49.5 (11.7) 7.3 (1.3) 4.7 (7.0) 4.2 (1.0) 1.8 (1.1) 2.3 (0.7)

wild type 1 288 51.0 (11.6) 7.3 (1.2) 4.5 (6.6) 4.2 (1.0) 1.7 (1.0) 2.4 (0.8)

2 124 50.3 (11.2) 7.3 (1.2) 4.0 (6.0) 4.2 (0.9) 1.6 (1.0) 2.3 (0.8)

adjusted Beta 1.53 (0.68 -0.08 (0.07) -0.13 (0.40) 0.01 (0.06) -0.11 (0.06) 0.05 (0.05)

P 0.03 0.27 0.74 0.88 0.09 0.24

2 0 360 50.6 (11.4) 7.3 (1.2) 4.3 (6.3) 4.2 (1.0) 1.7 (1.0) 2.3 (0.8)

BCLI 1 178 50.2 (11.8) 7.3 (1.3) 4.7 (7.3) 4.2 (1.0) 1.7 (1.0) 2.3 (0.8)

2 24 50.5 (11.3) 7.3 (1.1) 4.0 (3.6) 4.3 (1.0) 1.9 (1.1) 2.4 (0.9)

adjusted Beta -0.80 (0.81) 0.02 (0.08) 0.14 (0.48) 0.00 (0.07) 0.04 (0.08) -0.01 (0.06)

P 0.32 0.78 0.76 0.97 0.58 0.84

3 0 431 50.9 (11.4) 7.3 (1.2) 4.4 (6.5) 4.2 (1.0) 1.8 (2.0) 2.3 (0.8)

TthIIII + 9b 1 134 49.3 (11.3) 7.4 (1.4) 4.7 (7.3) 4.3 (1.0) 1.8 (1.1) 2.4 (0.8)

2 12 44.5 (14.2) 7.8 (1.4) 5.1 (6.2) 3.8 (0.6) 1.7 (0.7) 2.1 (0.4)

adjusted Beta -2.33 (0.93) 0.14 (0.10) 0.14 (0.56) -0.01 (0.08) 0.04 (0.15) -0.03 (0.07)

P 0.01 0.14 0.80 0.92 0.79 0.64

4 0 442 50.1 (11.5) 7.3 (1.2) 4.3 (6.3) 4.2 (1.0) 1.7 (1.0) 2.4 (0.8)

TthIIII + BCLI 1 120 52.2 (11.6) 7.2 (1.3) 5.0 (7.3) 4.2 (1.0) 1.8 (1.2) 2.3 (0.7)

2 120 45.0 (10.8) 7.4 (0.9) 2.0 (1.3) 4.7 (0.8) 1.9 (1.4) 2.7 (0.7)

adjusted Beta 0.45 (1.05) -0.01(0.11) 0.16 (0.61) -0.02 (0.09) 0.04 (0.10) -0.05 (0.07)

P 0.67 0.93 0.79 0.83 0.67 0.49

5 0 554 50.3 (11.5) 7.3 (1.3) 4.5 (6.7) 4.2 (1.0) 1.7 (1.0) 2.4 (0.8)

N363S 1 38 52.9 (11.2) 7.3 (1.0) 3.8 (6.9) 4.1 (0.6) 1.9 (1.0) 2.1 (0.5)

2 38 48.5 (17.7) 6.2 (0.3) 6.7 (6.7) 4.8 (0.9) 1.6 (0.8) 2.8 (1.0)

adjusted Beta 0.00 (1.72) -0.03(0.18) -0.65 (1.03) -0.07 (0.15) 0.14 (0.16) -0.18 (0.12)

P 1.00 0.87 0.53 0.65 0.38 0.13

6 0 577 50.4 (11.5) 7.3 (1.3) 4.5 (6.7) 4.2 (1.0) 1.8 (1.8) 2.4 (0.8)

TthIIII + ER22/ 23EK + 9b 1 19 51.4 (10.7) 7.2 (0.6) 3.6 (3.2) 4.0 (0.8) 1.6 (0.9) 2.2 (0.8)

2 0 – – – – – –

adjusted Beta -0.09 (2.54) -0.25 (0.27) -0.62(1.53) -0.22 (0.23) -0.23 (0.41) -0.21 (0.18)

P 0.97 0.36 0.69 0.33 0.57 0.24
fr
Data are presented as mean (sd). Adjustments in the multivariate linear regression model: Age of onset was adjusted for sex and ethnicity; HbA1c was adjusted for sex, ethnicity, diabetes
duration, insulin use and metformin use; hsCRP was adjusted for age and sex; lipid spectrum was adjusted for sex, age, use of lipid lowering medication and metformin.
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found a modest association between the 9b SNP of the GR and the

level of systemic inflammation in patients with established and well-

regulated type 2 diabetes. However, genetic variants of the GR did

not explain the variation in age of diabetes onset and level of

glycemic control; therefore, its clinical relevance for patients with

established type 2 diabetes is limited.
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Plasma cortisol-linked gene
networks in hepatic and adipose
tissues implicate corticosteroid-
binding globulin in modulating
tissue glucocorticoid action and
cardiovascular risk

Sean Bankier1,2,3*, Lingfei Wang3, Andrew Crawford1,4,
Ruth A. Morgan1,5, Arno Ruusalepp6,7,8, Ruth Andrew1,
Johan L. M. Björkegren8,9,10, Brian R. Walker1,11

and Tom Michoel2,3

1University/BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of
Edinburgh, Edinburgh, United Kingdom, 2Computational Biology Unit, Department of Informatics,
University of Bergen, Bergen, Norway, 3Division of Genetics and Genomics, The Roslin Institute, The
University of Edinburgh, Edinburgh, United Kingdom, 4MRC Integrative Epidemiology Unit, University
of Bristol, Bristol, United Kingdom, 5SRUC, The Roslin Institute, Edinburgh, United Kingdom,
6Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia, 7Department of Cardiology,
Institute of Clinical Medicine, Tartu University, Tartu, Estonia, 8Clinical Gene Networks AB,
Stockholm, Sweden, 9Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset,
Huddinge, Sweden, 10Department of Genetics & Genomic Sciences, Institute of Genomics and
Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 11Clinical
and Translational Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
Genome-wide association meta-analysis (GWAMA) by the Cortisol Network

(CORNET) consortium identified genetic variants spanning the SERPINA6/

SERPINA1 locus on chromosome 14 associated with morning plasma cortisol,

cardiovascular disease (CVD), and SERPINA6 mRNA expression encoding

corticosteroid-binding globulin (CBG) in the liver. These and other findings

indicate that higher plasma cortisol levels are causally associated with CVD;

however, the mechanisms by which variations in CBG lead to CVD are

undetermined. Using genomic and transcriptomic data from The Stockholm

Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET) study, we

identified plasma cortisol-linked single-nucleotide polymorphisms (SNPs) that

are trans-associated with genes from seven different vascular and metabolic

tissues, finding the highest representation of trans-genes in the liver,

subcutaneous fat, and visceral abdominal fat, [false discovery rate (FDR) =

15%]. We identified a subset of cortisol-associated trans-genes that are

putatively regulated by the glucocorticoid receptor (GR), the primary

transcription factor activated by cortisol. Using causal inference, we identified

GR-regulated trans-genes that are responsible for the regulation of tissue-

specific gene networks. Cis-expression Quantitative Trait Loci (eQTLs) were

used as genetic instruments for identification of pairwise causal relationships

from which gene networks could be reconstructed. Gene networks were

identified in the liver, subcutaneous fat, and visceral abdominal fat, including a

high confidence gene network specific to subcutaneous adipose (FDR = 10%)
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under the regulation of the interferon regulatory transcription factor, IRF2. These

data identify a plausible pathway through which variation in the liver CBG

production perturbs cortisol-regulated gene networks in peripheral tissues and

thereby promote CVD.
KEYWORDS

cortisol, corticosteroid-binding globulin, gene networks, systems genetics,
causal inference
1 Introduction

The steroid cortisol is the major glucocorticoid hormone

involved in mediating the human stress response, with effects on

metabolism, cardiovascular homeostasis, and inflammation (1).

Excessive cortisol production occurs in Cushing’s syndrome

either in response to chronic activation of the hypothalamic-

pituitary-adrenal (HPA) axis by increased adrenocorticotropic

hormone (ACTH) secretion or through autonomous production

of cortisol in an adrenocortical tumor (2). The incidence of

Cushing’s syndrome is low, with the number of cases estimated to

be between 0.7 and 2.4 cases per million (3). It results in insulin

resistance, obesity and hypertension with increased risk of

cardiovascular disease (CVD). Similarly, higher plasma cortisol

within the population, in the absence of overt Cushing’s

syndrome, is associated with risk factors for CVD such as

hypertension (4) and type II diabetes (1, 5).

Interindividual variation in plasma cortisol levels has a genetic

basis with heritability estimated between 30% and 60% (6). The

Cortisol Network (CORNET) consortium conducted a genome-

wide association meta-analysis (GWAMA) with the intention of

uncovering genetic influences on the HPA axis function (7). This

was followed in 2021 with an updated GWAMA of 25,314

individuals across 17 population-based cohorts of European

ancestries (8), expanded from 12,597 individuals in the original

GWAMA. In an additive genetic model, the new CORNET

GWAMA identified 73 genome-wide significant single-nucleotide

polymorphisms (SNPs) associated with variation for plasma cortisol

at a single locus on chromosome 14. These SNPs were used in a

two-sample Mendelian randomization analysis showing that higher

cortisol is causative for CVD (8).

The locus on chromosome 14 spans the genes SERPINA6 and

SERPINA1 that both play roles in the regulation of corticosteroid-

binding globulin (CBG), a plasma protein produced in the liver that

is responsible for binding 80%–90% of cortisol in the blood (9, 10).

SERPINA6 encodes CBG (11), and SERPINA1 encodes a1-
antitrypsin, an inhibitor of neutrophil elastase, a serine protease

that can cleave the reactive center loop of CBG resulting in a 9–10-

fold reduction in binding affinity to cortisol (12, 13).

The CORNET GWAMA showed that 21 cortisol-associated

SNPs were also cis-expression Quantitative Trait Loci (eQTLs) for

SERPINA6 in the liver and demonstrated that the genetic variation
02136
associated with plasma cortisol is driven by SERPINA6 rather than

SERPINA1 (8). However, although variation in CBG production

could explain changes in total plasma cortisol, it is the free fraction

of cortisol that is considered to equilibrate with target tissue

concentrations and signal through intracellular glucocorticoid

receptors (GR) (14, 15). While CBG deficiency may be associated

with symptoms (16–18), variations in CBG have not been shown

conclusively to influence the tissue response to cortisol in humans.

To test the hypothesis that cortisol-associated genetic variants

in the SERPINA6/SERPINA1 locus influence cortisol delivery to,

and hence action in, extrahepatic tissues, we investigated

transcriptome-wide associations between cortisol-associated SNPs

and gene transcripts across seven different vascular and metabolic

tissues from the Stockholm Tartu Atherosclerosis Reverse Networks

Engineering Task (STARNET) study (19). As well as conducting a

multi-tissue eQTL analysis using STARNET transcriptomics and

plasma cortisol-associated SNPs, we identified tissue-specific trans-

eQTL-associated genes under the regulation of GR. Moreover, we

used a causal inference framework, with cis-eQTLs as genetic

instruments, for the reconstruction of causal gene networks

within STARNET tissues.

These results provide evidence that genetic variations in CBG

production in liver influence extra-hepatic cortisol signaling and

provide plausible pathways leading to CVD.
2 Materials and methods

2.1 Data

STARNET is a cohort-based study of 600 individuals undergoing

coronary artery bypass grafting (CABG) for coronary artery disease

(CAD) and was used as the primary discovery cohort in this study.

These individuals underwent blood genotyping preoperatively for

951,117 genomic markers, and during surgery, seven different tissue

samples were obtained and underwent RNA-sequencing (RNA-seq):

liver, skeletal muscle, atherosclerotic aortic root, internal mammary

artery, visceral abdominal fat, subcutaneous fat, and whole blood.

STARNET data are available through a database of Genotypes and

Phenotypes (dbGaP) application (accession no. phs001203.v2.p1). A

detailed description of data processing can be found in the

Supplemental Material of this article (section S1.1).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1186252
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bankier et al. 10.3389/fendo.2023.1186252
The Stockholm Atherosclerosis Gene Expression (STAGE) study

(n = 114) (20) and the Metabolic Syndrome inMan (METSIM) study

(n = 982) (21) were used in the replication of causal gene networks

identified using STARNET. Gene expression data for the METSIM

and STAGE studies are available publicly at Gene expression

omnibus (GEO) (accession no. GSE70353 and GSE40231,

respectively). Microarray data for the liver, subcutaneous fat, and

visceral abdominal fat were used from the STAGE study, and gene

expression data from subcutaneous fat were measured in the

METSIM study using RNA-seq.
2.2 Multi-tissue trans-eQTL discovery

A list of SNPs associated with plasma cortisol was obtained

from the summary statistics of the 2021 GWAMA conducted by the

CORNET consortium (available at https://datashare.ed.ac.uk/

handle/10283/3836) (8). We filtered this list to obtain SNPs that

were found to be associated with plasma cortisol at a level of

genome-wide significance (p< 5 × 10-8) that were taken forward 68

and tested against all genes across STARNET tissues.

The secondary linkage test (P2) is a likelihood ratio test in the

Findr package (22) (version 1.0.8) that was used to identify

associations between a given SNP (E) and a gene (B) using

categorical regression. P2 proposes a null hypothesis where E and

B are independent and alternative hypotheses where E is causal for

B (E→B). Maximum likelihood estimators are then used to obtain a

log likelihood ratio (LLR) between the alternative and null

hypotheses. The LLR is then converted to the posterior

probability of the alternative hypothesis H(P2)
alt being true with

empirical estimation of the local false discovery rate (FDR) as a

value from 0 to 1 (Equation 1).

P(E → B) = P(H(P2)
alt jLLR(P2)) : (1)
2.3 Identification of glucocorticoid-
regulated trans-genes

Multiple datasets were used to identify genes that had prior

evidence of putative regulation by GR (23–27). These datasets have

been filtered to include targets for NR3C1, the gene that

encodes GR.

Trans-genes were categorized according to evidence of GR

regulation from datasets shown in Supplementary Table S1. Genes

were scored against these criteria: 1) appearing in a transcription

factor database (ENCODE, TRANSFAC, CHEA); 2) identified as a

GR target from chromatin immunoprecipitation sequencing (ChIP-

seq) experiment in adipocytes from Yu et al. (23); 3) differentially

expressed in response to dexamethasone treatment in adipocytes

from Yu et al. (23); and 4) murine homolog of human gene

differentially expressed in response to dexamethasone treatment

using adrenalectomized mice (FC >1; p-value<0.05) (24). Genes

were then ranked according to how well they met the criteria for

GR regulation (+1 for each item matched from criteria 1–4).
Frontiers in Endocrinology 03137
2.4 Causal gene network reconstruction

Pairwise causal inference was used for the reconstruction of

cortisol-responsive transcriptional networks across STARNET

tissues using cis-eQTL genotypes as genetic instruments with

gene expression data from STARNET, as implemented by the

Findr software (22). A detailed description of these methods can

be found in the Supplementary Material of this article

(Section S1.2).
2.5 Transcription factor target enrichment

Lists of known transcription factor targets for both NR3C1 and

IRF2 were obtained from ENCODE and TRANSFAC datasets,

respectively. These datasets were used to test for an enrichment of

known transcription factor targets within novel gene sets derived

from gene network targets. This was performed using Fisher’s

exact test from the Python module Scipy Stats (28) and involved

the creation of a 2 × 2 contingency table based on a tissue-

specific background consisting of all genes available in the

corresponding tissue.
2.6 Gene network replication

Correlations between gene network targets were calculated

using gene expression data from STARNET, STAGE, and

METSIM. Gene expression matrices were filtered to only include

the target genes under investigation. Correlation matrices of

corresponding Pearson correlation coefficients as absolute values

were constructed in Python.

A background gene set was constructed from the overlapping

genes between the STARNET gene expression set that was used for

network discovery and the corresponding gene expression set that

was being used for replication. The previously described correlation

analysis was then repeated using a random set of genes (the same

size as the target set) selected from the background gene set. The

Kruskal–Wallis test was implemented in Python using Scipy Stats

(28) to test if the targeted and randomly sampled correlations follow

the same distribution. Both the targeted and random correlations

were then plotted as a boxplot using the Python plotting package

Seaborn (29).
2.7 Gene expression clustering

Hierarchical clustering was performed on correlation values

between network targets using the discovery (STARNET) gene

expression data and hierarchical clustering from Scipy Stats (28)

in Python. The leaves list that resulted from the clustering of the

discovery dataset was then extracted and applied to the correlations

between target genes from the corresponding replication dataset.

Both sets of clustered correlation values were then plotted as

opposing correlation heatmaps with Seaborn (29).
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3 Results

3.1 Cortisol-associated trans-genes

SNPs associated with plasma cortisol at the SERPINA6/

SERPINA1 locus have previously been linked as expression single-

nucleotide polymorphisms (eSNPs) for SERPINA6 in the liver (8).

Using genotype and tissue-specific RNA-seq data from the

STARNET cohort, we explored the hepatic and extrahepatic

consequences of genetic variation for plasma cortisol using 73

cortisol-associated SNPs at genome-wide significance (p< 5 × 10-

8) identified from the CORNET GWAMA (8). We identified 704

eQTL associations in cis and trans between plasma cortisol-

associated SNPs and genes measured across all STARNET tissues,

composed of 262 unique genes and 72 SNPs at a 15% FDR threshold

(Supplementary Tables S2, S3).

The tissues with the greatest number of trans-genes were the

liver, subcutaneous fat, and visceral abdominal fat, with a combined

total of 157 trans-genes and 422 total SNP–gene associations (FDR

= 15%) (Figure 1A). The vast majority of trans-eQTL associations

were specific to a single tissue. A single trans-gene, the

glycosyltransferase-encoding gene OGT, was identified in both the

liver and visceral abdominal fat. However, as this was the only

cross-tissue trans-gene identified, suggesting that the

transcriptional impact of genetic variation at the SERPINA6/

SERPINA1 locus is highly tissue-specific. The CORNET GWAMA

describes four blocks of SNPs in linkage disequilibrium (LD), which

represent the cortisol-associated variation at the SERPINA6/

SERPINA1 locus (8). We observed that LD blocks 2 and 4

represent the majority of the variation across all tissues in the

trans-gene sets (Figures 1B, C).
3.2 GR-regulated trans-genes associated
with plasma cortisol

As the GR is the primary mechanism by which cortisol

influences transcription, we sought to identify a subset of cortisol-

associated trans-genes that were also regulated by the GR. The

cortisol-associated trans-genes identified in this study were

compared to sets of known GR targets identified from different

sources as described in Supplementary Table S1. This included large

projects such as ENCODE, TRANSFAC, and CHEA that predict

transcription factor-binding targets from high-throughput

transcription factor-binding assays. We also included predicted

GR targets from perturbation-based experiments in specific

tissues. ChIP-seq and microarray analysis has been used to

identify 274 glucocorticoid-regulated genes in 3TS-L1 adipocytes,

a murine-derived cell line (23). In addition, RNA-seq data in

subcutaneous fat from adrenalectomized mice treated with

dexamethasone, a GR agonist, have been used to identify genes

that are differentially expressed (24).

The greatest number of unique cortisol-associated trans-genes

was identified in the liver (n = 43), subcutaneous fat (n = 54), and

visceral abdominal fat (n = 59) at a 15% FDR threshold. The

involvement of these tissues in glucocorticoid signaling and
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physiological effects has been well documented in the literature

(31–34); therefore, the identification of GR-regulated trans-genes

was restricted to these tissues. Comparisons of genes identified as

glucocorticoid-regulated in 3T3-L1 adipocytes were only made with

subcutaneous and visceral adipose trans-genes. Likewise, as the

murine RNA-seq experiments were restricted to subcutaneous

adipose, only subcutaneous adipose trans-genes were compared to

these differentially expressed genes.

In the liver trans-gene set, 19/43 genes were identified that were

present in either the ENCODE, TRANSFAC, or CHEA datasets

(FDR = 15%) (Figure 1D; Supplementary Table S4). This includes

SERPINA6 that is cis-associated with genetic variation for plasma

cortisol, as described previously (8). One gene, CPEB2, was

identified in more than one dataset and was present in both

ENCODE and CHEA. CPEB2 (posterior probability = 0.89) is a

regulator of translation, splice variants of which have been linked to

cancer metastasis (35).

Visceral adipose tissue had the largest number of cortisol-

associated trans-genes. Here, 21/59 of these genes had some

evidence of being targets of GR (Figure 1E; Supplementary Table

S5). There were five genes that had been identified as GR targets

from both high-throughput transcription factor-binding assays and

adipose-specific experiments. These include CD163 and LUC7L3.

CD163 is a hemoglobin scavenger protein that is expressed in

macrophages and involved in the clearance of hemoglobin/

haptoglobin complexes that may play a role in the protection

from oxidative damage. It also plays a role in activating

macrophages as part of the inflammatory response (36). LUC7L3,

also known as CROP, encodes a protein that is involved in

alternative splicing and is associated with human heart failure

(37). It has also been shown to play a role in the inhibition of

hepatitis B replication (38).

Of the cortisol-associated trans-genes identified in subcutaneous

adipose (FDR = 15%), 28/54 genes were either present in a

transcription factor dataset or identified from the adipose-specific

perturbation datasets (Figure 1F; Supplementary Table S6). There

were 13 genes that had been identified as GR targets from both

high-throughput transcription factor-binding assays and adipose-

specific experiments. These include RNF13 that encodes IRE1a-
interacting protein that plays an important role in the endoplasmic

reticulum (ER) stress response through regulation of IRE1a, a critical
sensor of unfolded proteins (39). Also IRF2, encoding the transcription

factor Interferon Regulatory Factor 2 that plays an important role as a

repressor of IRF1 that in turn is involved in the interferon-mediated

immune response (40). Furthermore, IRF1 has previously been

identified as a marker for glucocorticoid sensitivity in peripheral

blood (41).
3.3 Reconstruction of cortisol-associated
gene networks

Having identified cortisol-associated trans-genes that are

regulated by GR, causal estimates were obtained for pairwise

relationships between GR-regulated trans-genes and all other

genes within the given tissue. This was carried out for all GR-
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regulated trans-genes in the liver, subcutaneous fat, and visceral

abdominal fat with a valid cis-eQTL instrument (12, 19, and 7

genes, respectively) (Supplementary Table S7). A 10% global FDR

threshold was then imposed for each gene set (Table 1). Primary

networks were obtained by filtering to include only GR trans-genes

with a minimum of four target genes at the global FDR threshold.

In the liver, we identified a single gene network driven by

CPEB2, which was found to be trans-associated with the cortisol-

associated SNP rs4905194 (Figure 2A). This network contained 48
Frontiers in Endocrinology 05139
causal interactions driven by CPEB2 at a 10% FDR threshold

(Figure 2D; Supplementary Table S9). It is notable that CPEB2

appears as the only network regulator in the liver considering it was

also the cortisol-associated trans-gene with the strongest links to

GR regulation from the liver trans-gene set. A detailed description

of the CPEB2 network and all other networks identified can be

found in the Supplementary Information (Section S2.1).

In subcutaneous fat, two major subnetworks were identified

under the regulation of the genes RNF13 and IRF2. This includes a
D

A

B

E F

C

FIGURE 1

Identification of cortisol-associated trans-genes across STARNET tissues (FDR = 15%). (A) Upset plot showing the distribution of trans-genes across
STARNET tissues, including genes shared by multiple tissues. Tissues include the atherosclerotic aortic root (AOR), skeletal muscle (SKLM), internal
mammary artery (MAM), blood (Blood), liver (LIV), subcutaneous fat (SF), and visceral abdominal fat (VAF). (B) Distribution of trans-eQTLs across
tissues and colored by genomic locus (LD block) of associated SNP. (C) LocusZoom plot (30) showing the location of cortisol-associated SNPs
within defined LD blocks. (D) Venn diagrams where groupings represent different sources used to identify GR-linked trans-genes in the liver, (E)
visceral abdominal fat, and (F) subcutaneous fat. These sources include transcription factor databases (db), ChIP-seq from perturbation-based
experiments (23), and differential expression of dexamethasone-treated mice (24).
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total of 343 causal relationships across both subnetworks, including

two genes shared by both subnetworks. RNF13 was found to be

trans-associated with the cortisol-associated SNP rs11622665

(Figure 2B) and represents the largest subcutaneous fat

subnetwork with 215 gene targets at a 10% FDR threshold

(Figure 2E; Supplementary Table S10).

The transcription factor IRF2, which was associated with the

cortisol-linked SNP rs8022616 (Figure 2C), was found to putatively

regulate a network of 128 genes (FDR = 10%) (Figure 2F). Some

notable targets of IRF2 include LDB2 (posterior probability = 0.94)

and LIPA (posterior probability = 0.91). GWAS suggests functions

for LIPA related to CAD and ischemic cardiomyopathy (42), while

LDB2 has been demonstrated to be involved in the development of

atherosclerosis (43). Additionally, cortisol has been shown to

induce a 5-fold reduction in LDB2 expression in adipocytes (44).

Predicted IRF2 transcription factor targets have been previously

described as part of the TRANSFAC dataset.We examined the overlap

between predicted IRF2 targets in TRANSFAC, and gene targets

within the IRF2 causal networks were identified in subcutaneous fat.

A true network of IRF2 targets would be expected to show an

enrichment of predicted IRF2. Using Fisher’s exact test on data

from subcutaneous fat, at a 10% FDR threshold, the IRF2 network

had 128 target genes, 35 of which were also predicted IRF2 targets (p =

0.08); at a 15% FDR threshold, 104/247 causal targets were also

predicted targets of IRF2 in TRANSFAC (p = 0.005). Decreasing the

global FDR beyond this threshold increased the number of

TRANSFAC targets within the pool of causal targets, however at a

lower enrichment (p = 0.046) (Supplementary Table S12).

In addition to examining the prevalence of IRF2 targets within

the IRF2 causal network, we investigated the overlap between

network genes that are also regulated by GR. We observed an

enrichment of ENCODE GR targets at 15% and 20% FDR

thresholds (p< 0.05) including 68 and 138 GR targets,
Frontiers in Endocrinology 06140
respectively. No GR enrichment was observed in either CHEA or

TRANSFAC datasets for IRF2 networks.
3.4 Co-expression of cortisol network
targets in independent datasets

Causal gene networks represent coordinated changes in gene

expression in response to changes in the expression of network

regulators. Therefore, it is possible to examine if these changes in

gene expression are present in independent datasets using gene

expression data alone. We used RNA-seq and microarray data from

the METSIM and STAGE datasets, respectively, to compare

patterns in gene expression within causal networks predicted

from STARNET. As METSIM only contains gene expression data

for subcutaneous fat, analysis was restricted to the causal networks

identified in STARNET subcutaneous fat.

Absolute correlation coefficients between the targets of the

previously described network regulators were calculated, and their

distributions were compared to distributions of random sets of

genes selected from the replication gene expression data, the same

size as the corresponding target gene set. The difference between

targeted and random distributions was formalized using the

Kruskal–Wallis test for each subnetwork (Table 2).

In the liver, correlations between network targets of the single

subnetwork under the regulation of CPEB2 were observed in

STARNET and STAGE. Hierarchical clustering within the

STARNET liver also revealed clustering of correlated genes that

were retained when the clustered gene order was then applied to the

STAGE liver (Figure 3A). Correlations between the 44 CPEB2 target

genes in the STAGE liver were stronger than their random

counterparts (p = 8.2 × 10-32), with this shift also being observed

in the STARNET liver (p = 2.32 × 10-197) (Figure 3D).
TABLE 1 Number of network targets following FDR filtering.

Tissue FDR threshold Total targets Network regulator Regulator targets

Liver 15% 197 CPEB2 190

10% 48 CPEB2 44

Subcutaneous fat 15% 1,701 RNF13 416

IRF2 247

PBX2 883

10% 486 RNF13 215

IRF2 128

PBX2 138

Visceral abdominal fat 15% 396 CD163 378

LUC7L3 15

10% 17 CD163 4

LUC7L3 11
Total targets include all pairwise interactions at the given threshold, and network regulators correspond to trans-genes with at least four network targets at the given FDR threshold. Inclusive of
network regulators present at both 10% and 15% thresholds.
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In subcutaneous fat, correlations were observed between the

network targets of RNF13 and IRF2, and hierarchical clustering

patterns from STARNET were applied to the replication datasets of

STAGE and METSIM (Figures 3B, C). For RNF13, similar patterns

of co-expression were observed in the STAGE subcutaneous fat

following clustering; however, this was not the case in the METSIM

dataset (Figure 3B). Despite this, RNF13 targets appeared more
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highly correlated than their randomly selected counterparts in

STARNET (p< 1.0 × 10-300), STAGE (p< 1.0 × 10-300) and to a

lesser extent in METSIM (p = 2.3 × 10-7) (Figure 3E).

In subcutaneous fat, patterns of co-expression between IRF2

targets were conserved most prominently in METSIM; however, co-

expression was less strongly correlated compared with RNF13

targets (Figure 3C). IRF2 subcutaneous fat subnetwork targets
D

A B

E F

C

FIGURE 2

The 10% FDR gene networks in STARNET across different tissues. (A) Gene expression boxplot in the liver showing trans-association with cortisol-linked SNP
rs4905194 and CPEB2, (B) in subcutaneous fat between rs11622665 and RNF13 and (C) rs8022616 and IRF2 (p-value obtained from Kruskal–Wallis test
statistic). Box shows quarterlies of the dataset, with whiskers indicating the upper and lower variability of the distribution. (D) Causal gene network
reconstructed from pairwise interactions from GR-regulated trans-genes against all other genes in the corresponding tissue for CPEB2, (E) RNF13, and (F)
IRF2. Edges represent Bayesian posterior probabilities of pairwise interaction between genes (nodes) exceeding 10% global FDR. Arrow indicates direction of
regulation, and interactions were only retained where parent node had at least four targets.
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were more strongly correlated than their random counterparts in

STARNET (p< 1.0 × 10-300), STAGE (p = 8.35 × 10-86), and

METSIM (p< 1.0 × 10-300) (Figure 3F).
4 Discussion

In this study, we have characterized the impact that genetic

variation for plasma cortisol has upon tissue-specific gene

expression. We showed that cortisol-linked genetic variants at the

SERPINA6/SERPINA1 locus mediate changes in gene expression in

trans across multiple tissues, in addition to the cis-associations in

the liver that have been described previously (8). We have

scrutinized these trans-associations to identify a subset of genes

that are regulated by glucocorticoids and in turn regulate

downstream transcriptional networks, thus providing a deeper

understanding of the transcriptional landscape driven by cortisol-

linked genetic variation that may underpin the progression to CVD.

CBG, as encoded by SERPINA6, is responsible for binding

cortisol in the blood. It has remained uncertain whether variation

in CBG impacts the availability of cortisol within tissues, since any

resulting change in free cortisol concentrations would be expected

to be adjusted by negative feedback of the HPA axis (45). However,

deleterious mutations in CBG are associated with dysfunction in

animals and humans, suggesting an impact of CBG on cortisol

signaling (45). Our major finding that downstream transcriptomic

changes in extrahepatic tissues are associated with genetic variation

at the SERPINA6 locus lends strong support to the hypothesis that

CBG influences tissue delivery of cortisol and modulates

glucocorticoid-induced changes in gene expression.

For the STARNET study, whole-blood samples were taken

preoperatively and all other tissues including the liver were taken

during the CABG surgery. In addition to any rise in cortisol due to

anxiety and disturbed sleep in anticipation of surgery, the human

stress response to surgery has been well characterized and results in

stimulation of the HPA axis leading to high levels of cortisol in the

blood both during and post-surgery (46). Surgery is also associated

with a very rapid fall in CBG production. Therefore, it is uncertain if

cortisol-associated gene expression patterns observed in STARNET

would also be observed in an unstressed healthy population. It may
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be that CBG influences the dynamic range of alterations in free

plasma cortisol during stress rather than affecting the delivery of

cortisol to tissues in unstressed conditions. However, considering

that co-expression of the network targets was reproducible within

independent samples from the METSIM study, obtained under

nonsurgical conditions, this suggests that the cortisol-associated

networks we inferred from STARNET do operate also in

unstressed conditions.

The tissues with the greatest number of trans-genes identified

were the liver and both subcutaneous and visceral abdominal fat, all

tissues known to play a role in glucocorticoid biology. In the liver,

glucocorticoids have extensive effects on glucose and fatty acid

metabolism (31, 32), while in adipose tissue, glucocorticoids

regulate lipogenesis and lipid turnover (33, 34). Skeletal muscle is

also a major target of glucocorticoids, where they modulate protein

and glucose metabolism (47). A lack of available data for identifying

tissue-specific GR targets in other tissues means that potential GR

targets may have been missed in tissues outside of the liver

and adipose.

We identified a subset of GR-responsive genes in the liver,

subcutaneous fat, and visceral adipose fat. However, we did not

observe a statistical enrichment of GR-regulated genes in any of

these trans-gene sets. This does not negate the identification of GR

targets that are associated with plasma cortisol, but it may imply

that there are some effects of cortisol-linked genetic variation that

are mediated by mechanisms other than directly by GR either

through secondary regulation by GR-regulated genes or through the

alternative mineralocorticoid receptor. Indeed, some of the genes

with higher levels of evidence for GR regulation also demonstrated

regulation of transcription networks, e.g., CPEB2, IRF2, and RNF13.

This supports our strategy of setting a relatively lenient FDR

threshold and then filtering to identify cortisol-associated trans-

genes with prior evidence of GR regulation.

It should be noted that different FDR thresholds were used for

the trans-gene discovery and for the network reconstruction.

Initially, we selected a more lenient threshold of 15% for the

identification of trans-genes, considering that trans-eQTLs tend

to exhibit weaker associations compared to their cis counterparts

(47). We then decided to restrict our list of trans-associations by

implementing a biological rather than a statistical threshold,
frontiersin.or
TABLE 2 Correlations between network targets within replication datasets.

Replication dataset Tissue Network regulator p-value No. target genes

METSIM Subcutaneous fat IRF2 < 1.0×10-300 128

RNF13 2.3×10-7 215

STAGE Liver CPEB2 8.2×10-32 44

Subcutaneous fat IRF2 8.3×10-86 128

RNF13 < 1.0×10-300 215

Visceral abdominal fat CD163 2.6×10-3 4

LUC7L3 4.4×10-1 11
The Kruskal–Wallis test calculated for the distribution of correlations between network targets compared to correlations within random gene sets of the same size.
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FIGURE 3

Replication of cortisol-associated gene networks in independent datasets. (A) Correlation heatmap showing pairwise Pearson correlations between
CPEB2, (B) IRF2, and (C) RNF13 network targets. Hierarchical clustering of genes in STARNET (discovery) was applied to the same genes within
replication datasets. (D) Correlations between network targets in discovery vs. replication datasets for CPEB2, (E) IRF2, and (F) RNF13 networks. The
Kruskal–Wallis test calculated for the distribution of correlations between network targets compared to correlations within random gene sets of the
same size.
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limiting the number of trans-genes to those with evidence of GR

regulation. However, given that there was no biological threshold

implemented with network reconstruction, a more stringent FDR

threshold was appropriate. The 10% FDR in this context implies

that 1 in 10 edges of a given network is a potential false positive.

However, given the strength of the replication within independent

datasets, this suggests that these networks are considerably robust.

We identified causal gene networks in the liver, subcutaneous

fat, and visceral abdominal fat where cortisol-associated trans-genes

act as regulators of subnetworks within overarching tissue-specific

networks. Pairwise causal relationships were established between

network regulators and downstream targets using cis-eQTLs as

genetic instruments. This approach has the benefit of generating

directed relationships between a regulator and target while

accounting for any unobserved confounding. However, a

drawback of this approach is that we are limited by only being

able to examine GR-regulated trans-genes with valid cis-eQTLs.

This means that there could be valid cortisol-responsive networks

regulated by GR trans-genes that we were unable to predict due to

lack of a corresponding instrument.

IRF2 stands out as a network regulator of particular interest.

There is strong evidence of GR regulation, where IRF2 has been

identified as a GR target from published dexamethasone-treated

adipocyte ChIP-seq experiments (23) and as a putative GR target

within ENCODE. It is robustly associated with its corresponding

cis-eQTL instrument, and there is an enrichment of IRF2 targets

within our predicted IRF2-regulated causal network. Additionally,

we show evidence of regulation by glucocorticoids within the targets

of IRF2, potentially suggesting evidence of a feed-forward loop

motif (48). Interestingly, the genotype for rs8022616, the cortisol-

associated SNP linked to IRF2 expression in subcutaneous fat, is

associated with a decrease in IRF2 expression. Previous evidence

suggests that interferon signaling is inhibited by glucocorticoids

(49, 50).

Although we have determined the direction of causality

between the regulator and target genes, we do not know if the

expression of the target gene is upregulated or downregulated in

response to modulation of the regulator. This could be investigated

through functional experiments within a relevant cell line,

whereby the differential gene expression of target genes is

measured in response to perturbation of the network regulator.

To take this one step further, the results of a cell line experiment

could be used to determine the dynamics of the putative cortisol

networks using systems biology approaches for modelling gene

expression (51).

In conclusion, we have linked genetic variation for plasma

cortisol to changes in gene expression across the genome, beyond

that which has been previously described at the SERPINA6/

SERPINA1 locus (8) and extending to adipose tissue as well as the

liver. Furthermore, we have shown that a subset of these trans-

genes is driven by the GR and in turn drives transcriptional

networks across different tissues. These networks have been

found to be robust and their network targets appear co-expressed

within independent gene expression datasets of the same tissue.

Further study of these networks and their downstream targets could

be used to enhance our mechanistic understanding of the pathways
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linking cortisol with complex diseases as described in

observational studies.
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21. Laakso M, Kuusisto J, Stančáková A, Kuulasmaa T, Pajukanta P, Lusis AJ, et al.
The Metabolic Syndrome in Men study: a resource for studies of metabolic and
cardiovascular diseases. J Lipid Res (2017) 58.3:481–93. doi: 10.1194/jlr.O072629

22. Wang L, Michoel T. Efficient and accurate causal inference with hidden
confounders from genome-transcriptome variation data. PloS Comput Biol (2017)
13.8:e1005703. doi: 10.1371/journal.pcbi.1005703

23. Yu C-Y, Mayba O, Lee JV, Tran J, Harris C, Speed TP, et al. Genome-wide
analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network
involved in triglyceride homeostasis. PloS One (2010) 5.12:e15188. doi: 10.1371/
journal.pone.0015188

24. Bell RMB, Villalobos E, Nixon M, Miguelez-Crespo A, Murphy L, Fawkes A, et al.
Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose
tolerance in lean mice. Mol Metab (2021) 48:101225. doi: 10.1016/j.molmet.2021.101225

25. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al.
Landscape of transcription in human cells. Nature (2012) 489.7414:101–108. doi:
10.1038/nature11233

26. Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, Hehl R, et al. TRANSFAC ® :
transcriptional regulation, from patterns to profiles.Nucleic Acids Res (2003) 31.1:374–8. doi:
10.1093/nar/gkg108

27. Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, and Ma’ayan A ChEA:
transcription factor regulation inferred from integrating genome wide ChIP-X
experiments. Bioinformatics (2010) 26.19:2438–44. doi: 10.1093/bioinformatics/btq466

28. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D,
et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat
Methods (2020) 17.3:261–72. doi: 10.1038/s41592-019-0686-2

29. Waskom ML. seaborn: statistical data visualization. J Open Source Softw (2021)
6.60:3021. doi: 10.21105/joss.03021

30. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al.
LocusZoom: regional visualization of genome-wide association scan results.
Bioinformatics (2010) 26.18:2336–7. doi: 10.1093/bioinformatics/btq419

31. Rahimi L, Rajpal A, Ismail-Beigi F. Glucocorticoid-induced fatty liver disease. Diab
Metab Syndr Obesity: Targets Ther (2020) 13:1133–45. doi: 10.2147/DMSO.S247379

32. Præstholm SM, Correia CM, Grøntved L. Multifaceted control of GR signaling
and its impact on hepatic transcriptional networks and metabolism. English. Front
Endocrinol (2020) 11. doi: 10.3389/fendo.2020.572981

33. Pavlatou MG, Vickers KC, Varma S, Malek R, Sampson M, Remaley AT, et al.
Circulating cortisol-associated signature of glucocorticoid-related gene expression in
subcutaneous fat of obese subjects. Obesity (2013) 21.5:960–7. doi: 10.1002/oby.20073

34. Lee RA, Harris CA, Wang J-C. Glucocorticoid receptor and adipocyte biology.
Nucl receptor Res (2018) 5. doi: 10.32527/2018/101373

35. DeLigio JT, Lin G, Chalfant CE, ParkMA. Splice variants of cytosolic polyadenylation
element–binding protein 2 (CPEB2) differentially regulate pathways linked to cancer
metastasis. J Biol Chem (2017) 292.43:17909–18. doi: 10.1074/jbc.M117.810127

36. Etzerodt A, Moestrup S. CD163 and inflammation: biological, diagnostic, and
therapeutic aspects. Antioxid Redox Signaling (2013) 18.17:2352–63. doi: 10.1089/
ars.2012.4834

37. Gao G, Xie A, Huang S.-C, Zhou A, Zhang J, Herman AM, et al. The role of RBM25/
LUC7L3 in abnormal cardiac sodium channel splicing regulation in human heart failure.
Circulation (2011) 124.10:1124–31. doi: 10.1161/CIRCULATIONAHA.111.044495
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2023.1186252/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2023.1186252/full#supplementary-material
https://doi.org/10.1530/EJE-07-0455
https://doi.org/10.1113/jphysiol.2014.282871
https://doi.org/10.1016/S0140-6736(06)68699-6
https://doi.org/10.1016/0039-128X(94)00033-9
https://doi.org/10.2337/dc06-1267
https://doi.org/10.1023/A:1025321609994
https://doi.org/10.1023/A:1025321609994
https://doi.org/10.1371/journal.pgen.1004474
https://doi.org/10.1038/s10038-020-00895-6
https://doi.org/10.1210/edrv-11-1-65
https://doi.org/10.1210/edrv-11-1-65
https://doi.org/10.1038/nrendo.2012.134
https://doi.org/10.1038/336257a0
https://doi.org/10.1210/jc.2012-4280
https://doi.org/10.1016/j.cca.2015.10.028
https://doi.org/10.1016/j.cccn.2005.03.044
https://doi.org/10.1016/j.jaci.2013.09.007
https://doi.org/10.1210/jcem.86.8.7724
https://doi.org/10.1007/s00702-006-0620-5
https://doi.org/10.1210/jc.2014-3130
https://doi.org/10.1126/science.aad6970
https://doi.org/10.1016/j.cels.2016.02.002
https://doi.org/10.1194/jlr.O072629
https://doi.org/10.1371/journal.pcbi.1005703
https://doi.org/10.1371/journal.pone.0015188
https://doi.org/10.1371/journal.pone.0015188
https://doi.org/10.1016/j.molmet.2021.101225
https://doi.org/10.1038/nature11233
https://doi.org/10.1093/nar/gkg108
https://doi.org/10.1093/bioinformatics/btq466
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.03021
https://doi.org/10.1093/bioinformatics/btq419
https://doi.org/10.2147/DMSO.S247379
https://doi.org/10.3389/fendo.2020.572981
https://doi.org/10.1002/oby.20073
https://doi.org/10.32527/2018/101373
https://doi.org/10.1074/jbc.M117.810127
https://doi.org/10.1089/ars.2012.4834
https://doi.org/10.1089/ars.2012.4834
https://doi.org/10.1161/CIRCULATIONAHA.111.044495
https://doi.org/10.3389/fendo.2023.1186252
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bankier et al. 10.3389/fendo.2023.1186252
38. Li Y, Ito M, Sun S, Chida T, Nakashima K, Suzuki T, et al. LUC7L3/CROP
inhibits replication of hepatitis B virus via suppressing enhancer II/basal core promoter
activity. Sci Rep (2016) 6.1:36741. doi: 10.1038/srep36741

39. Arshad M, Ye Z, Gu X, Wong CK, Liu Y, Li D, et al. RNF13, a RING Finger
Protein, Mediates Endoplasmic Reticulum Stress induced Apoptosis through the
Inositol-requiring Enzyme (IRE1a)/c-Jun NH2-terminal Kinase Pathway. J Biol
Chem (2013) 288.12:8726–36. doi: 10.1074/jbc.M112.368829

40. Harada H, Kitagawa M, Tanaka N, Yamamoto H, Harada K, Ishihara M, et al.
Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2.
Science (1993) 259.5097:971–4. doi: 10.1126/science.8438157

41. Chapin WJ, Lenkala D, Mai Y, Mao Y, White SR, Huang RS, et al. Peripheral
blood IRF1 expression as a marker for glucocorticoid sensitivity. Pharmacogenetics
Genomics (2015) 25.3:126–33. doi: 10.1097/FPC.0000000000000116

42. Zhang H, Reilly MP. LIPA variants in genome-wide association studies of
coronary artery diseases. Arteriosclerosis Thrombosis Vasc Biol (2017) 37.6:1015–7. doi:
10.1161/ATVBAHA.117.309344

43. Shang M-M, Talukdar Husain A, Hofmann Jennifer J, Niaudet Colin Asl Hassan
Foroughi, Jain Rajeev K, et al. Lim domain binding 2. Arteriosclerosis Thrombosis Vasc
Biol (2014) 34.9:2068–77. doi: 10.1161/ATVBAHA.113.302709

44. Bujalska IJ, Quinkler M, Tomlinson JW, Montague CT, Smith DM, and Stewart
PM Expression profiling of 11beta-hydroxysteroid dehydrogenase type-1 and
Frontiers in Endocrinology 12146
glucocorticoid target genes in subcutaneous and omental human preadipocytes. J
Mol Endocrinol (2006) 37.2:327–40. doi: 10.1677/jme.1.02048

45. Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and
cortisol secretion and implications for disease. Endocrine Rev (2020) 41.3:470–90.
doi: 10.1210/endrev/bnaa002

46. Finnerty CC, Mabvuure NT, Ali A, Kozar RA, Herndon DN. The surgically
induced stress response. JPEN. J parenteral enteral Nutr (2013) 37.50:21S–9S. doi:
10.1177/0148607113496117

47. Pierce BL, Tong L, Chen LS, Rahaman R, Argos M, Jasmine F, et al. Mediation
analysis demonstrates that trans-eQTLs are often explained by cis-mediation: A
genome-wide analysis among 1,800 South Asians. PloS Genet (2014) 10.12:e1004818.
doi: 10.1371/journal.pgen.1004818

48. Mangan S, Alon U. Structure and function of the feed-forward loop network
motif. Proc Natl Acad Sci (2003) 100.21:11980–5. doi: 10.1073/pnas.2133841100

49. Hu X, Li W-P, Meng C, Ivashkiv LB. Inhibition of IFN-g Signaling by
glucocorticoids. J Immunol (2003) 170.9:4833–9. doi: 10.4049/jimmunol.170.9.4833

50. Flammer JR, Dobrovolna J, Kennedy MA, Chinenov Y, Glass CK, Ivashkiv LB,
et al. The type I interferon signaling pathway is a target for glucocorticoid inhibition.
Mol Cell Biol (2010) 30.19:4564–74. doi: 10.1128/MCB.00146-10

51. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a
single cell. Science (2002) 297.5584:1183–6. doi: 10.1126/science.1070919
frontiersin.org

https://doi.org/10.1038/srep36741
https://doi.org/10.1074/jbc.M112.368829
https://doi.org/10.1126/science.8438157
https://doi.org/10.1097/FPC.0000000000000116
https://doi.org/10.1161/ATVBAHA.117.309344
https://doi.org/10.1161/ATVBAHA.113.302709
https://doi.org/10.1677/jme.1.02048
https://doi.org/10.1210/endrev/bnaa002
https://doi.org/10.1177/0148607113496117
https://doi.org/10.1371/journal.pgen.1004818
https://doi.org/10.1073/pnas.2133841100
https://doi.org/10.4049/jimmunol.170.9.4833
https://doi.org/10.1128/MCB.00146-10
https://doi.org/10.1126/science.1070919
https://doi.org/10.3389/fendo.2023.1186252
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Tarunveer Singh Ahluwalia,
Steno Diabetes Center Copenhagen
(SDCC), Denmark

REVIEWED BY

Anton Terasmaa,
National Institute of Chemical Physics and
Biophysics, Estonia
Tajudeen Yahaya,
Federal University, Birnin Kebbi, Nigeria
Edith Hofer,
Medical University of Graz, Austria
Sulev Kõks,
Murdoch University, Australia

*CORRESPONDENCE

Jehad Abubaker

jehad.abubakr@dasmaninstitute.org

Thangavel Alphonse Thanaraj

alphonse.thangavel@

dasmaninstitute.org

†These authors have contributed equally to
this work

RECEIVED 14 March 2023

ACCEPTED 11 September 2023
PUBLISHED 04 October 2023

CITATION

Hammad MM, Abu-Farha M, Hebbar P,
Anoop E, Chandy B, Melhem M,
Channanath A, Al-Mulla F, Thanaraj TA and
Abubaker J (2023) The miR-668 binding
site variant rs1046322 on WFS1 is
associated with obesity in Southeast Asians.
Front. Endocrinol. 14:1185956.
doi: 10.3389/fendo.2023.1185956

COPYRIGHT

© 2023 Hammad, Abu-Farha, Hebbar,
Anoop, Chandy, Melhem, Channanath, Al-
Mulla, Thanaraj and Abubaker. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 04 October 2023

DOI 10.3389/fendo.2023.1185956
The miR-668 binding site variant
rs1046322 on WFS1 is associated
with obesity in Southeast Asians

Maha M. Hammad1,2†, Mohamed Abu-Farha1†,
Prashantha Hebbar3†, Emil Anoop4, Betty Chandy4,
Motasem Melhem4, Arshad Channanath3, Fahd Al-Mulla3,
Thangavel Alphonse Thanaraj3* and Jehad Abubaker1*

1Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait, Kuwait,
2Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait,
3Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait, 4Special
Service Facility Department, Dasman Diabetes Institute, Kuwait, Kuwait
The Wolfram syndrome 1 gene (WFS1) is the main causative locus for Wolfram

syndrome, an inherited condition characterized by childhood-onset diabetes

mellitus, optic atrophy, and deafness. Global genome-wide association studies

have listed at least 19WFS1 variants that are associated with type 2 diabetes (T2D)

and metabolic traits. It has been suggested that miRNA binding sites on WFS1

play a critical role in the regulation of the wolframin protein, and loss of WFS1

function may lead to the pathogenesis of diabetes. In the Hungarian population,

it was observed that a 3’ UTR variant from WFS1, namely rs1046322, influenced

the affinity of miR-668 to WFS1 mRNA, and showed a strong association with

T2D. In this study, we genotyped a large cohort of 2067 individuals of different

ethnicities residing in Kuwait for theWFS1 rs1046322 polymorphism. The cohort

included 362 Southeast Asians (SEA), 1045 Arabs, and 660 South Asians (SA).

Upon performing genetic association tests, we observed significant associations

between the rs1046322 SNP and obesity traits in the SEA population, but not in

the Arab or SA populations. The associated traits in SEA cohort were body mass

index, BMI (b=1.562, P-value=0.0035, Pemp=0.0072), waist circumference, WC

(b=3.163, P-value=0.0197, Pemp=0.0388) and triglyceride, TGL (b=0.224, P-
value=0.0340). The association with BMI remained statistically significant even

after multiple testing correction. Among the SEA individuals, carriers of the effect

allele at the SNP had significantly higher BMI [mean of 27.63 (3.6) Kg/m2], WC

[mean of 89.9 (8.1) cm], and TGL levels [mean of 1.672 (0.8) mmol/l] than non-

carriers of the effect allele. Our findings suggest a role forWFS1 in obesity, which

is a risk factor for diabetes. The study also emphasizes the significant role the

ethnic background may play in determining the effect of genetic variants on

susceptibility to metabolic diseases.
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WFS1, ethnicity, obesity, triglycerides, polymorphism, waist circumference
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1 Introduction

Obesity has now become a global epidemic with an alarmingly

increasing rate of incidence (1). The World Health Organization

(WHO) reports that the worldwide prevalence of obesity nearly

tripled between 1975 and 2016 and is expected to double in the next

25 years (2, 3). Different ethnicities exhibit different rates of obesity.

This is evident in the different rates of obesity in ethnicities such as

those of Southeast Asians, Arabs, and South Asians. The Southeast

Asian countries have some of the lowest rates of overweight and

obesity globally ranging from 2.2 to 15.5%. A recent review of all

national surveys for some of the major South Asian countries

(including Afghanistan, Bangladesh, India and Sri Lanka)

reported that the prevalence of being overweight or obese in

adults ranged from 22.4 to 52.4% (4). As for Arabian countries,

WHO reported that the prevalence of obesity has a wide range

between 4 and 55% (5).

Obesity is a complex multifactorial disorder with several risk

factors that contribute to its development. People with obesity not

only suffer from a poor quality of life, but are also at risk of

developing serious complications, such as diabetes, cardiovascular

diseases, sleep disorders, or hypertension (1). Therefore, it is

important to understand the underlying multifactorial causes of

obesity. Although environmental factors and lifestyle practices are

the main causes of obesity, genetic susceptibility also plays a very

significant role. Several reports confirm the association of certain

genes with obesity, fat distribution, energy expenditure, and

appetite regulation. Studies have shown that 40–70% of the

variation in body mass index (BMI) among individuals can be

attributed to genetic factors (6, 7). Furthermore, at least 200 genetic

variants have been reported to be associated with obesity in several

populations; however, such studies have focused on Caucasians

from Europe (8, 9). Ethnicity can play an important role in

determining the genetic susceptibility of an individual to obesity

(10, 11).

Wolfram syndrome 1 gene (WFS1) was identified in the year of

1998 on chromosome 4p16 as a novel gene that causes a rare

autosomal recessive neurodegenerative disorder, namely Wolfram

syndrome (WFS) (12) alias DIDMOAD syndrome (diabetes

insipidus, diabetes mellitus, optic atrophy, and deafness). It is

clinically characterized by the juvenile-onset of diabetes mellitus

as the main symptom in the early stage of the disease, and by

bilateral progressive optic atrophy in later stages (13–15). The

WFS1 gene encodes wolframin, a protein present in the

membrane of the endoplasmic reticulum (ER), and is mainly

detected in certain brain regions as well as in pancreatic b-cells
and the heart (16, 17). Several WFS1 polymorphic variants have

been associated with the risk of developing diabetes mellitus (18,

19). Among these variants, two microRNA-single-nucleotide

polymorphisms (miR-SNPs), rs1046322 and rs9457, were strongly

associated with both type 1 and type 2 diabetes, and this association

remained statistically significant after applying multiple corrections

(19). Considering that obesity is a risk factor for diabetes associated

with insulin resistance, we aimed to evaluate, in the present study,

the association of these two WFS1 variants with obesity in

individuals of different ethnicities.
Frontiers in Endocrinology 02148
2 Materials and methods

2.1 Study population

This study included a cohort of 2067 participants residing in

Kuwait. Upon enrolment, we recorded the following information:

age, sex, baseline characteristics (height, weight, waist

circumference (WC)), and underlying diagnosed disorders (such

as diabetes). The study protocol was reviewed and approved by the

Ethical Review Committee of Dasman Diabetes Institute and was

conducted in accordance with the guidelines of the Declaration of

Helsinki and the US Federal Policy for the Protection of Human

Subjects. All participants signed an informed consent form before

participating in the study. The ethnicity of each subject was defined

via self-reporting and was confirmed through detailed questioning

on parental lineage up to three generations.
2.2 Sample processing

We collected blood samples in accordance with established

institutional guidelines. After confirming that the participant was

under an overnight fast, we collected blood samples in the morning,

between 8 and 11 am. We performed DNA extraction using a

Gentra Puregene kit (Qiagen, Valencia, CA, USA) and assessed

quantification using Quant-iT PicoGreen dsDNA Assay Kits (Life

Technologies, Grand Island, NY, USA) and an Epoch Microplate

Spectrophotometer (BioTek Instruments). We checked absorbance

values at 260–280 nm for adherence to an optical density range of

1.8–2.1.
2.3 Anthropometric measurements and
blood biochemistry

The BMI of each participant was calculated as the ratio of their

weight (Kg) to height (m) squared. We assessed lipid profiles,

including triglyceride (TGL), low density lipoprotein (LDL), high

density lipoprotein (HDL), and total cholesterol (TC) levels, using a

Siemens Dimension RXL integrated chemistry analyzer (Diamond

Diagnostics, Holliston, MA, USA).
2.4 Genotyping

We performed candidate SNP genotyping using the TaqMan

Genotyping Assay on an ABI 7500 Real-Time PCR System (Applied

Biosystems, Foster City, CA, USA). We set the polymerase chain

reaction (PCR) sample with 10 ng of DNA, 5 × FIREPol Master Mix

(Solis BioDyne, Estonia), and 1 ml of 20 × TaqMan SNP Genotyping

Assay. We set thermal cycling conditions at 60°C for 1 min and 95°

C for 15 min, followed by 40 cycles of 95°C for 15 s and 60°C for

1 min. We used Sanger sequencing to validate certain selected cases

of homozygous and heterozygous genotypes using a BigDye

Terminator v3.1 Cycle Sequencing Kit on a 3730xl DNA Analyzer

(Applied Biosystems, Foster City, CA, USA).
frontiersin.org

https://doi.org/10.3389/fendo.2023.1185956
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hammad et al. 10.3389/fendo.2023.1185956
2.5 Quality assessment of the rs1046322
and rs9457 SNPs

We assessed the quality and statistical association of the

rs1046322 and rs9457 SNPs using the PLINK genome association

analysis toolset (version 1.9). Next, for quality assessments, we

determined minor allele frequency (MAF) and consistency with the

Hardy–Weinberg equilibrium for the WFS1 variants.
2.6 Statistical analysis

Data are presented as mean± standard deviation (SD). We

determined statistical significance using Student’s t-test for

quantitative variables and Fisher’s exact test for categorical

variables, and P values ≤ 0.05 were considered significant. We

assessed allele-based associations between the rs1046322 variant

and the quantitative traits (BMI, TGL, and WC) using genetic

models based on additive mode of inheritance (GG versus GA

versus AA) adjusted for the confounders of age, sex and diabetes

status. We assessed changes in the mean of phenotype measurement

using regression coefficient (Beta), where a positive regression

coefficient indicated that the minor allele increases the risk effect.

Multiple comparisons were corrected by generating empirical P

values (Pemp) using the max(T) permutation procedure available in

PLINK, based on 10,000 permutations. A threshold of < 0.05 was set

for both the P value and Pemp value to assess the statistical

significance of the association signal. Any quantitative trait value

lesser than Q1–1.5 × the interquartile range (IQR) or higher than

Q3 + 1.5 × IQR was considered to be an outlier and was excluded

from the statistical analyses. Statistical analyses were performed

using PLINK, version 1.9, and R software, version 4.0.2.
3 Results

3.1 Characteristics of the study participants
and genotyping data

The average rate of successful genotyping of the two SNPs

rs1046322 and rs9457 in each of the three subpopulations, namely

Arab, South Asians, and Southeast Asians was > 99%, and the SNP

was within the Hardy–Weinberg equilibrium. Of the two SNPs, the

rs9457 did not show significant associations with any of the

examined obesity traits in any of the three ethnic cohorts, though

an association is seen with HDL in the Arab cohort with a P value of

0.0334 albeit with an insignificant empirical P (Pemp) value

(Supplementary Table S1; the allele and genotype frequencies for

the variant are listed in the notes to the table). Thus, rs9457 was not

included in further analyses.

The frequencies of the minor allele (A) at the WFS1 rs1046322

SNP in the Arab, South Asian, and Southeast Asian populations

were 17.27%, 11.67%, and 6.77%, respectively. Of the 362 genotyped
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samples from the Southeast Asian population, 314 (86.7%) were

homozygous for G, only 1 (0.3%) was homozygous for A, and 47

(13%) were heterozygous (GA). Of the 1045 genotyped samples

from the Arab population, 715 (68.4%) were homozygous for G, 31

(3%) were homozygous for A, and 299 (28.6%) were heterozygous

(GA). Of the 660 genotyped samples from the South Asian

population, 515 (78%) were homozygous for G, 9 (1.4%) were

homozygous for A, and 136 (20.6%) were heterozygous (GA).

The mean (SD) age of participants in the Southeast Asian

cohort was 41.1 (9.4) years, in the Arab cohort was 47.6 (11.6)

years and in the South Asian cohort was 42.9 (9.7) years. Thus, the

participants in each of the three ethnic cohorts are uniformly largely

middle-aged. Table 1 presents a genotype-wide distribution (GG

versus (GA+AA)) at rs1046322 of the characteristics of the three

ethnic cohorts. After examining the genotype-specific differences in

the phenotypic traits, we observed statistically significant differences

in the Southeast Asian population (Table 1). The phenotypic traits

that showed statistically significant genotypic differences in the

Southeast Asian population were as follows: (i) Mean (SD) of

BMI was significantly higher in the participants that harbored the

A allele as compared to non-carriers [27.63 (3.6) Kg/m2 vs. 26.02

(3.6) Kg/m2; P = 0.004] (Figure 1A and Table 1); (ii) WC of the SNP

carriers was significantly higher than that of the non-carriers [89.9

(8.1) cm vs. 85.9 (9.6) cm; P = 0.006] (Figure 1B and Table 1); and

(iii) Participants that harbored the A allele had higher TGL as

compared to non-carriers [1.672 (0.8) mmol/l vs. 1.43 (0.7) mmol/l;

P = 0.037] (Figure 1C and Table 1).
3.2 Association between WFS1 rs1046322
and obesity-related markers

The association tests for the variant and obesity markers

showed that obesity traits were significantly associated with the

WFS1 rs1046322 variant only in the SEA subpopulation, and not in

the Arab or South Asian populations (Table 2). The traits showing

statistically significant differences included BMI (b:1.562, P =

0.0035), WC (b:3.163, P = 0.0197), and TGL (b:0.224, P = 0.034).

Further, the associations with BMI and WC also exhibited

significant empirical Pempvalues of 0.0072 and 0.0388, respectively

establishing the BMI and WC as strong contenders for association

with the SNP.
3.3 P value threshold after correction for
multiple testing

Having found association of the SNP with triglyceride at a P

value of 0.034, we investigated the associations of the SNP with the

cholesterol traits of HDL, LDL and total cholesterol. We found that

the associations for these cholesterol traits with the SNP were

insignificant (Supplementary Table S2). As regards multiple

testing for considering the cholesterol traits along with

triglycerides and BMI and WC, it is to be noted that not all the

cholesterol traits are independent of each other. In our earlier
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work (20), we queried independent variables among the four

lipid traits by way of performing Pearson correlation analysis

between the traits followed by matSpD analysis (21) (http://

neurogenetics.qimrberghofer.edu.au/matSpD/), and found that the

estimated effective number of independent traits among the lipid

traits as 3. Upon including the WC and BMI as independent traits,

we have a total of 5 independent traits tested for associations with

the SNP. The P value threshold after multiple testing correction for

significant associations turns out to be 0.01 (=0.05/5). Thus, after
Frontiers in Endocrinology 04150
multiple testing correction, only the BMI association with the

rs1046322 SNP (at a P value of 0.0035) remains significant.
4 Discussion

In this study, theWFS1 rs1046322 and rs9457 were assessed for

association with obesity in the ethnic populations of Arabs, South

Asians and Southeast Asians. The rs9457 SNP did not exhibit any
A B C

FIGURE 1

Boxplots displaying data distribution for the phenotype traits (A) Body mass index, (B) Waist circumference, (C) Triglyceride levels in Southeast Asian
individuals with genotypes (GA+AA) containing the effect allele or homozygous (GG) genotypes for reference alleles of the WFS1 rs1046322 variant.
TABLE 1 Overview of the Southeast Asian, Arab, and South Asian populations as per genotype distribution of the WFS1 rs1046322 variant.

Southeast Asians (SEA)
MAF = 6.77%

Arabs (Arab)
MAF = 17.27%

South Asians (SA)
MAF = 11.67%

Trait GG GA+AA P Value GG GA+AA P Value GG GA+AA P Value

Distribution*
314
(86.7)

47 + 1
(13 + 0.3)

715
(68.4)

299 + 31
(28.6 + 3)

515
(78.0)

136 + 9
(20.6 + 1.4)

Sex*
(M:F)

109: 205
(34.7: 65.3)

16: 32
(33.3: 66.7)

393: 322
(54.97: 45.03)

157: 173
(47.58: 52.42)

376: 139
(73: 27)

101: 44
(69.66: 30.34)

Age$

(years)
40.59 (9.351) 44.6 (8.997)

48.2 (11.24) 46.35 (12.19) 42.83 (9.935) 43.15 (8.861)

Diabetes*
(NO : YES)

265: 49
(84.4: 15.6)

37: 11
(77.1: 22.9)

0.213 437: 278
(61.1: 38.9)

203: 127
(61.5: 38.5)

0.946 352: 163
(68.3: 31.7)

100: 45
(69: 31)

0.9197

Obesity*
(NO : YES)

261: 53
(83.1: 16.9)

37: 11
(77.1: 22.9)

0.312 317: 396
(44.5: 55.5)

149: 181
(45.2: 54.8)

0.841 405: 109
(78.8: 21.2)

105: 40
(72.4: 27.6)

0.116

BMI$

(Kg/m2)
26.02 (3.6) 27.63 (3.6) 0.004 31.26 (5.5) 30.87 (5.469) 0.288 26.73 (3.841) 27.34 (3.939) 0.099

Waist
Circumference$

(cm)
85.9 (9.6) 89.9 (8.1) 0.006 101.3 (12.06) 100.6 (11.97) 0.407 91.8 (9.04) 92.98 (9.2) 0.188

TGL$

(mmol/l)
1.43 (0.7) 1.672 (0.8) 0.037 1.396 (0.6) 1.389 (0.7) 0.868 1.419 (0.64) 1.4 (0.63) 0.756

TC$

(mmol/l)
5.41 (0.98) 5.61 (1.1) 0.208 4.998 (1.007) 5.017 (0.9873) 0.788 5.189 (0.983) 5.172 (0.917) 0.849

LDL$

(mmol/l)
3.39 (0.9) 3.59 (0.9) 0.133 3.16 (0.9) 3.18 (0.88) 0.807 3.42 (0.9) 3.39 (0.8) 0.7301

HDL$

(mmol/l)
1.29 (0.3) 1.209 (0.3) 0.114 1.141 (0.3) 1.138 (0.312) 0.877 1.082 (0.242) 1.062 (0.262) 0.404
fro
*Number (%), $Mean (SD), MAF, minor allele frequency; SD, standard deviation; IQR, interquartile range; BMI, body mass index; TGL, triglyceride; TC, total cholesterol; LDL, low-density
lipoprotein cholesterol; HDL, high-density lipoprotein cholesterol.
Statistically significant data are bolded.
ntiersin.org

http://neurogenetics.qimrberghofer.edu.au/matSpD/
http://neurogenetics.qimrberghofer.edu.au/matSpD/
https://doi.org/10.3389/fendo.2023.1185956
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Hammad et al. 10.3389/fendo.2023.1185956
significant associations with obesity traits. However, the results

demonstrated that WFS1 rs1046322 is significantly associated with

BMI and WC in the Southeast Asian population, but not in the

Arab or South Asian populations. The SNP is also associated with

TGL levels only in the Southeast Asian population, and not the

other two subpopulations. Furthermore, carriers of the SNP had

significantly higher BMI, WC, and TGL levels, as compared to non-

carriers in the Southeast Asian subpopulation alone.

The 1000 Genome Project reported a MAF of 8% for the WFS1

rs1046322 variant. However, this SNP varies in its frequency across

different populations, ranging from 7.2% in Chileans to 50% in

Siberians. Although MAFs in the subpopulations of the present

study fall within the lower range, we observed some differences

among the three groups, with the Southeast Asian population

showing the lowest MAF (6.8%), followed by the South Asian

(11.7%) and Arab (17.3%) populations.

Upper body, or truncal, obesity is strongly associated with

obesity-related complications, such as diabetes and cardiovascular

diseases. Considering that WC is a measure of truncal obesity, it is

interesting to note the effect sizes of the associations between the

variant and WC and BMI (Table 2). The observed effect sizes in the

SEA population indicate that the effect allele in WFS1 rs1046322

resulted in an increase by 3.163 cm in WC and by 1.562 Kg/m2 in

BMI. Interestingly, a recent in vitro study by Ivask et al. (22)

examined WFS1 heterozygous mouse model for response to high

fat diet (HFD) in terms of body weight and metabolic

characteristics. The authors found that the impaired body weight

gain found in WFS1 mutant mice is prevented by HFD. They

further observed that in WFS1 heterozygous mutant mice, HFD

impaired the normalized insulin secretion and the expression of

endoplasmic reticulum (ER) stress genes in isolated pancreatic

islets. HFD increased the expression of Ire1a and Chop in

pancreas and decreased the expression of Ire1a and Atf4 in liver

from these mutant mice. The authors concluded that quantitative

WFS1 gene deficiency predisposes carriers of single functional
Frontiers in Endocrinology 05151
WFS1 copy to diabetes and metabolic syndrome and makes them

susceptible to environmental factors such as HFD.

There is a lack of literature reports on associations between

WFS1 and obesity. However, previous studies have linked several

WFS1 SNPs with type 2 diabetes and biomarkers related to diabetes

across various ethnicities, including the United Kingdom

population, Swedish population and Ashkenazi population (23–

26). One of the recently published large studies that confirmed the

association between WFS1 and type 2 diabetes included 81,412

type 2 diabetes patients and 370,832 healthy individuals of

diverse ancestries (27). Furthermore, the DESIR (Data from

Epidemiological Study on the Insulin Resistance Syndrome)

prospective study demonstrated in French cohorts that allelic

variations at three SNPs in the WFS1 gene were associated with

incident type 2 diabetes (28).

Considering the established role of wolframin as an ER stress

regulator that negatively regulates ER stress signaling, discovering a

link between the gene and obesity does not come as a surprise.

Additional studies are required to further investigate the mechanism

for this regulation. Given that wolframin plays a key role in mediating

the ER export of vesicular cargo proteins, it could be speculated that it

regulates the processing and release of different gut hormones or

melanocortin hormones in the brain, similar to its role in regulating

proinsulin cleavage and insulin secretion (29). In addition, a recent

study demonstrated that WFS1 regulates anti-inflammatory

responses in pancreatic b-cells. Specifically, the study reported that

the pancreatic islets of WFS1 whole-body knockout mice display M1-

macrophage infiltration and hypervascularization (30).

WFS1 rs1046322 is a 3’ UTR variant and is a putative miRNA

(miR-668) binding site polymorphism. This variant was previously

shown to influence the affinity of miR-668 to WFS1 mRNA (31).

Though there exist no previous studies investigating the role of

miR-668 in obesity, it has been recently shown that miR-668-3p can

suppress mediators of inflammation and oxidative stress (32).

Therefore, it would be interesting to examine the effect of this
TABLE 2 Association tests for the WFS1 rs1046322 variant (A as the effect allele) with the phenotypic traits of BMI, WC and TGL using genetic models
based on additive mode of inheritance (GG versus GA versus AA).

Southeast Asians Arabs South Asians

Trait Sample
Size

Effect
Size
(b

value)
[95%
CI]

P
Value

Pemp

Value
Sample
Size

Effect
Size
(b

value)
[95%
CI]

P
Value

Pemp

Value
Sample
Size

Effect
Size
(b

value)
[95%
CI]

P
Value

Pemp

Value

BMI 351
1.562
[0.52,
2.60]

0.0035 0.0072 1017
0.224
[0.016,
0.432]

0.1905 0.333 640
0.467
[-0.19,
1.12]

0.1609 0.2868

WC 354
3.163
[0.52,
5.81]

0.0197 0.0388 869
-0.583
[-1.99,
0.82]

0.4162 0.6534 636
0.911
[-0.60,
2.42]

0.2380 0.4229

TGL 345
0.224
[0.02,
0.43]

0.0340 0.0725 857
-0.006
[-0.08,
0.07]

0.8847 0.9877 619
-0.014
[-0.12,
0.095]

0.7996 0.9595
fron
[95% CI], 95% confidence intervals; Pemp, empirical P values; BMI, body mass index; WC, waist circumference; TGL, triglyceride.
The models were corrected for the confounders of age, sex and diabetes status.
Statistically significant data are bolded.
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miRNA in obesity and its expression level in participants who suffer

from obesity or metabolic syndrome.

In conclusion, the findings of the present study suggest an

ethnic-specific role for WFS1 in obesity. While the current study

included a large cohort with three different ethnic populations,

further studies would benefit by examining the observed

associations in more diverse ethnic populations. The study also

highlights the importance of including ethnic groups that are

under-represented in current global genetic studies of genotype–

phenotype associations.
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