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Several recent papers underline methodological points that limit the validity of published results 
in imaging studies in the life sciences and especially the neurosciences (Carp, 2012; Ingre, 2012; 
Button et al., 2013; Ioannidis, 2014). At least three main points are identified that lead to biased 
conclusions in research findings: endemic low statistical power and, selective outcome and 
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selective analysis reporting. Because of this, and in view of the lack of replication studies, false 
discoveries or solutions persist. To overcome the poor reliability of research findings, several 
actions should be promoted including conducting large cohort studies, data sharing and data 
reanalysis.

The construction of large-scale online databases should be facilitated, as they may contribute 
to the definition of a “collective mind” (Fox et al., 2014) facilitating open collaborative work or 
“crowd science” (Franzoni and Sauermann, 2014). Although technology alone cannot change 
scientists’ practices (Wicherts et al., 2011; Wallis et al., 2013, Poldrack and Gorgolewski 2014; 
Roche et al. 2014), technical solutions should be identified which support a more “open science” 
approach. Also, the analysis of the data plays an important role. For the analysis of large datasets, 
image processing pipelines should be constructed based on the best algorithms available and 
their performance should be objectively compared to diffuse the more relevant solutions. Also, 
provenance of processed data should be ensured (MacKenzie-Graham et al., 2008). In popula-
tion imaging this would mean providing effective tools for data sharing and analysis without 
increasing the burden on researchers. 

This subject is the main objective of this research topic (RT), cross-listed between the specialty 
section “Computer Image Analysis” of Frontiers in ICT and Frontiers in Neuroinformatics. 
Firstly, it gathers works on innovative solutions for the management of large imaging datasets 
possibly distributed in various centers. The paper of Danso et al. describes their experience with 
the integration of neuroimaging data coming from several stroke imaging research projects. They 
detail how the initial NeuroGrid core metadata schema was gradually extended for capturing 
all information required for future metaanalysis while ensuring semantic interoperability for 
future integration with other biomedical ontologies. With a similar preoccupation of inter-
operability, Shanoir relies on the OntoNeuroLog ontology (Temal et al., 2008; Gibaud et al., 
2011; Batrancourt et al., 2015), a semantic model that formally described entities and relations 
in medical imaging, neuropsychological and behavioral assessment domains. The mechanism 
of “Study Card” allows to seamlessly populate metadata aligned with the ontology, avoiding 
fastidious manual entrance and the automatic control of the conformity of imported data with 
a predefined study protocol. The ambitious objective with the BIOMIST platform is to provide 
an environment managing the entire cycle of neuroimaging data from acquisition to analysis 
ensuring full provenance information of any derived data. Interestingly, it is conceived based 
on the product lifecycle management approach used in industry for managing products (here 
neuroimaging data) from inception to manufacturing. Shanoir and BIOMIST share in part the 
same OntoNeuroLog ontology facilitating their interoperability. ArchiMed is a data management 
system locally integrated for 5 years in a clinical environment. Not restricted to Neuroimaging, 
ArchiMed deals with multi-modal and multi-organs imaging data with specific considerations 
for data long-term conservation and confidentiality in accordance with the French legislation. 
Shanoir and ArchiMed are integrated into FLI-IAM1, the national French IT infrastructure for 
in vivo imaging.

Secondly, dedicated software and hardware infrastructures are proposed for the sharing and 
execution of image processing workflows making easier the replication and comparison of 
data analysis procedures. The contribution of Das et al. presents the functionalities added to 
the LORIS-CBRAIN software ecosystem to fulfill the technical challenges raised by supporting 
an Open Science approach. Specific mechanisms have been introduced for ensuring privacy 
and security of the stored data, quality control checking and heterogeneous tools integration. 
Fastr is a workflow engine dedicated to the automation of complex medical imaging processing 
pipelines. It allows the composition of different software elements to design pipelines, checks 
datatype compatibility of linked outputs and inputs, ensures data provenance and finally creates 
a list of jobs for execution. In the same vein, OpenMOLE is designed to optimize execution of 
workflows on distributed computing architectures. Although no specific application domain is 
targeted by OpenMOLE, case studies are reported to illustrate its suitability to neuroimaging 
data processing. How to document data provenance to facilitate processed data sharing and 
reuse is the question explored by Pauli et al. from datasets processed using the most common 
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software package used in Neuroimaging. They provide a set of results as a benchmark for testing 
automated provenance software.

Finally, two papers are more concerned with the usage of such platforms. Serag et al. propose 
SEGMA, a supervised solution for brain tissue and structure segmentation combining sparse 
training data selection, linear registration and random forest classification for processing large 
MR datasets with a reduced computational time. Brain atlases are often used by automated work-
flows for imaging population studies. The paper by Dickie et al. reviews the brain MRI atlases 
currently available, which appear of modest size, based on limited image sequences and where 
some populations are under-represented. The next challenge is then to develop nonparametric
brain atlases including a wide number of parameters extracted from different imaging sequences 
from a large set of individuals, representative of more different classes of population.

To conclude, this RT demonstrates that, since the pioneer experiments of neuroimaging data 
sharing with the fMRIDC project (Van Horn and Gazzaniga, 2013) or the BIRN initiative (Keator 
et al., 2008), many technical efforts have been performed or are currently underway to facilitate 
data and tools sharing. Solutions now exist that are mature enough to help us make substantial 
changes to how we conduct health research (Chan et al., 2014), improving reproducibility and 
quality of published research findings.

(1) https://project.inria.fr/fli/en/
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Editorial on the Research Topic

MAPPING: MAnagement and Processing of Images for Population ImagiNG

Several recent papers underline methodological points that limit the validity of published results in 
imaging studies in the life sciences and especially the neurosciences (Ioannidis, 2005; Carp, 2012; 
Button et al., 2013; Ingre, 2013). At least three main points are identified that lead to biased conclu-
sions in research findings: endemic low statistical power, selective outcome, and selective analysis 
reporting. Because of this, and in view of the lack of replication studies, false discoveries or solutions 
persist. To overcome the poor reliability of research findings, several actions should be promoted 
including conducting large cohort studies, data sharing, and data reanalysis. The construction 
of large-scale online databases should be facilitated, as they may contribute to the definition of a  
“collective mind” (Fox et al., 2014) facilitating open collaborative work or “crowd science” (Franzoni 
and Sauermann, 2014). Although technology alone cannot change scientists’ practices (Wicherts 
et al., 2011; Wallis et al., 2013; Poldrack and Gorgolewski, 2014; Roche et al., 2014), technical solu-
tions should be identified, which support a more “open science” approach. Also, the analysis of the 
data plays an important role. For the analysis of large datasets, image processing pipelines should be 
constructed based on the best algorithms available and their performance should be objectively com-
pared to diffuse the more relevant solutions. Also, provenance of processed data should be ensured 
(MacKenzie-Graham et al., 2008). In population imaging, this would mean providing effective tools 
for data sharing and analysis without increasing the burden on researchers. This subject is the main 
objective of this research topic (RT), cross-listed between the specialty section “Computer Image 
Analysis” of Frontiers in ICT and Frontiers in Neuroinformatics. First, it gathers works on innovative 
solutions for the management of large imaging datasets possibly distributed in various centers. The 
paper of Danso et al. describes their experience with the integration of neuroimaging data coming 
from several stroke imaging research projects. They detail how the initial NeuroGrid core metadata 
schema was gradually extended for capturing all information required for future meta-analysis 
while ensuring semantic interoperability for future integration with other biomedical ontologies. 
With a similar preoccupation of interoperability, Shanoir relies on the OntoNeuroLog ontology 
(Temal et al., 2008; Gibaud et al., 2011; Batrancourt et al., 2015), a semantic model that formally 
described entities and relations in medical imaging, neuropsychological, and behavioral assessment 
domains. The mechanism of “Study Card” allows to seamlessly populate metadata aligned with 
the ontology, avoiding fastidious manual entrance and the automatic control of the conformity of 
imported data with a predefined study protocol. The ambitious objective with the BIOMIST platform 
is to provide an environment managing the entire cycle of neuroimaging data from acquisition 
to analysis ensuring full provenance information of any derived data. Interestingly, it is conceived 
based on the product lifecycle management approach used in industry for managing products (here 
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neuroimaging data) from inception to manufacturing. Shanoir 
and BIOMIST share in part the same OntoNeuroLog ontology 
facilitating their interoperability. ArchiMed is a data management 
system locally integrated for 5 years in a clinical environment. Not 
restricted to Neuroimaging, ArchiMed deals with multimodal 
and multi-organs imaging data with specific considerations for 
data long-term conservation and confidentiality in accordance 
with the French legislation. Shanoir and ArchiMed are integrated 
into FLI-IAM,1 the national French IT infrastructure for in vivo 
imaging.

Second, dedicated software and hardware infrastructures are 
proposed for the sharing and execution of image-processing 
workflows making easier the replication and comparison of data 
analysis procedures. The contribution of Das et al. presents the 
functionalities added to the LORIS-CBRAIN software ecosystem 
to fulfill the technical challenges raised by supporting an Open 
Science approach. Specific mechanisms have been introduced for 
ensuring privacy and security of the stored data, quality control 
checking, and heterogeneous tools integration. Fastr is a workflow 
engine dedicated to the automation of complex medical imaging 
processing pipelines. It allows the composition of different soft-
ware elements to design pipelines, checks datatype compatibility 
of linked outputs and inputs, ensures data provenance, and finally 
creates a list of jobs for execution. In the same vein, OpenMOLE is 
designed to optimize execution of workflows on distributed com-
puting architectures. Although no specific application domain is 
targeted by OpenMOLE, case studies are reported to illustrate its 
suitability to neuroimaging data processing. How to document 
data provenance to facilitate processed data sharing and reuse 

1 https://project.inria.fr/fli/en/.

is the question explored by Pauli et al. from datasets processed 
using the most common software package used in Neuroimaging. 
They provide a set of results as a benchmark for testing automated 
provenance software.

Finally, two papers are more concerned with the usage of such 
platforms. Serag et al. propose SEGMA, a supervised solution for 
brain tissue and structure segmentation combining sparse train-
ing data selection, linear registration, and random forest classifier 
for processing large MR datasets with a reduced computational 
time. Brain atlases are often used by automated workflows for 
imaging population studies. The paper by Dickie et al. reviews 
the brain MRI atlases currently available, which appear of mod-
est size, based on limited image sequences and where some 
populations are underrepresented. The next challenge is then to 
develop non-parametric brain atlases including a wide number 
of parameters extracted from different imaging sequences from 
a large set of individuals, representative of more different classes 
of population.

To conclude, this RT demonstrates that, since the pioneer 
experiments of neuroimaging data sharing with the fMRIDC 
project (Van Horn and Gazzaniga, 2013) or the BIRN initiative 
(Keator et al., 2008), many technical efforts have been performed 
or are currently underway to facilitate data and tools sharing. 
Solutions now exist that are mature enough to help us make 
substantial changes to how we conduct health research (Chan 
et al., 2014), improving reproducibility, and quality of published 
research findings.
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A framework for building an infrastructure that semantically integrates, archives, and 
reuses data for various research purposes in human brain imaging remains critical. In 
particular, problems of aligning technical, clinical, and professional systems in order to 
facilitate data sharing are a recurring issue in brain imaging. However, large samples 
of well-characterized images with detailed metadata are increasingly needed. This 
paper outlines the experience of the NeuroGrid Stroke Exemplar and further work in the 
Brain Research Imaging Centre and Stroke Trials Unit in developing an infrastructure 
that facilitates the linkage, archiving, and reuse of imaging data from stroke patients 
for large-scale clinical and epidemiological studies. We examined data from 12 past 
stroke projects carried out over the past two decades in our center and two large trials 
with 329 centers. We assessed previously published schemas and those developed 
specifically for large multicentre ischemic and hemorrhagic stroke treatment trials. We 
then developed our own harmonized and integrated schema and database with a web-
based interface system, Longitudinal Online Research and Imaging System (LORIS), 
aiming to be flexible and adaptable to future trials and observational studies. We then 
linked image and metadata from 3,079 patients acquired in stroke research in one center 
in a 14-year period (1996–2010) with prospective central hospital health statistics to 
obtain long-term follow-up. Our integrated database includes 3,079 subjects and over 
550 federated and searchable data items including imaging details, medical history, and 
examination, stroke, and laboratory details, which map to large multicentre stroke trials 
with imaging data from over 10,000 patients from 30 countries. The central linkage 
identified 879 of 3,079 patients had died, 525 had recurrent strokes, and 291 developed 
dementia during up to a 19-year period (range = 0–19; median = 9.04; IQR = 12.17) 
of follow-up, demonstrating its utility. The core metadata schema has benefited from 
extensive development in large clinical trials. Further trials’ data can now be added. It 
provides an opportunity to crosslink and reuse data for a range of large-scale stroke 
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brain imaging clinical and research purposes including developing data analytics models 
for research into common brain diseases and their consequences.

Keywords: multicenter imaging, heterogeneous data, metadata schema, ischemic and hemorrhagic, image bank, 
neuroimaging, data sharing, stroke

INtRodUCtIoN

There is a global drive to develop strategies and frameworks to 
facilitate archiving, sharing, and reuse of data obtained from 
original research projects in order to maximize the value of the 
data (Pilat and Fukasaku, 2007; Walport and Brest, 2011; Mennes 
et  al., 2013; Ferguson et  al., 2014; Poldrack and Gorgolewski, 
2014). This involves developing the required infrastructure that 
aligns technical, clinical, and biomedical systems and semanti-
cally integrates data from multiple sources, archiving, and 
making it available to be reused. Such integration is particularly 
important when creating large datasets from smaller individual 
studies for use in large-scale image analysis projects, especially 
for stratified medicine and machine learning which require very 
large amounts of individualized subject-specific data. In spite of 
the significant progress made in several neuroimaging domains 
such as the Biomedical Informatics Research Network (Keator 
et  al., 2008); LORIS (Das et  al., 2012), XNAT Central (Marcus 
et  al., 2007); the Alzheimer’s Disease Neuroimaging Initiative 
(Jack et al., 2008); the Human Connectome Project (Van Essen 
et  al., 2013); and the BRAINS project (Job et  al., 2016), the 
problem remains partially solved particularly for neurological 
diseases such as stroke (Warach et al., 2016).

Stroke researchers have access to imaging and associated data 
from multiple sources, in many different formats and at different 
levels of granularity. However, despite stroke being one of the most 
advanced fields among common neurological diseases in terms of 
(a) having a standard outcome measure for trials [the modified 
Rankin Scale (Lees et al., 2012)] and (b) effective treatments and 
prevention (Lindley et al., 2015), in general, the data collection 
protocols lack widely used standards, vary considerably, without 
clearly published provenance information between and within 
studies, which has significantly impeded the utility of the data 
(Ferguson et  al., 2014; Nichols et  al., 2016). Meanwhile, there 
would be numerous benefits that can be derived from semantically 
integrated data for various endeavors. Specifically, trials of new 
treatments for stroke require imaging data as part of the patient 
assessment (Wintermark et al., 2013), but the sample size needs 
to be large enough to obtain reliable results, particularly where 
treatment effects are likely to be modest (Lindley et  al., 2015): 
the ability to combine image as well as clinical data facilitates 
meta-analyses (Laird et  al., 2011). Furthermore, a semantically 
integrated patient database could be an efficient and cost-effective 
way to obtain data from many different centers and many dif-
ferent countries in order to obtain the sample size required to 
be able to observe a statistically significant difference between 
the subtypes of stroke and other key clinical variables or treat-
ment effects in observational studies or clinical trials (Poldrack 
and Gorgolewski, 2014). Additionally, an integrated image bank 
offers the potential for building data analytics models, which 

will offer researchers the opportunity to develop new insight and 
understanding (Gomez-Cabrero et al., 2014).

The paper details our experience on the NeuroGrid Stroke 
Exemplar (Wardlaw et  al., 2007) and further work that was 
carried out at the Brain Research Imaging Centre (BRIC), 
University of Edinburgh in collaboration with Stroke Trials 
Unit, University of Nottingham. The aim of the project was to 
develop an infrastructure to facilitate linkage, archiving, and 
reuse of neuroimaging data from stroke patients for large-
scale clinical trials, focused observational, mechanistic, and 
epidemiological studies. We outline the recurring challenges 
associated with integrating neuroimaging data from multiple 
sources. We then describe the approach employed to develop an 
integrated metadata and schema for ischemic and hemorrhagic 
stroke, as the first step toward integrating neuroimaging data 
that combines clinical, demographic, and treatment data from 
patients. We further describe how we developed an integrated 
schema and database with a web-based interface system, with 
the aim of being flexible and adaptable to future trials and 
observational studies. We finally demonstrate the utility of the 
schema by linking the images and data to prospective central 
hospital health statistics.

Recurring Issues in Integrating 
Neuroimaging data from Multiple sources
Integrating and sharing imaging and associated data across 
multiple studies requires shared understanding of the datasets 
within the domain. Data from patients with common neuro-
logical disorders such as stroke are collected increasingly from 
a growing range of imaging modalities, especially computerized 
tomography (CT) and magnetic resonance (MR) imaging, and 
both produce multiple types of images. Images from different 
sites reflect differences in the scanner manufacturer and models 
used, and calibrations employed (Warach et  al., 2016), even 
when similar MR sequences are deployed, although frequently 
MR in stroke still omits key sequences such as T2* weighted or 
T1 weighted. Figure 1 shows an example of four early ischemic 
signs commonly seen in stroke patients imaged soon after stroke, 
distilled from a large literature survey to represent common fea-
tures and terminologies (Wardlaw and Mielke, 2005) and which 
can then be captured efficiently by expert scan readers, e.g., in 
multicenter clinical trials, providing a simplified shared naming 
convention for ischemic lesions that allows translation between 
research and clinical practice.

However, even in an apparently simple process such as plain 
CT bran scanning (the commonest method used in stroke), there 
is variability in image and associated clinical data acquisition, 
transfer and storage that reflects the complexity, and variability 
in clinical practice as well as those that exist in the structural 
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FIgURe 1 | extract from scan reading pro forma in third International stroke trial, illustrating a condensed and simplified terminology for the four 
features that are commonly seen in ischemic stroke. Developed from an extensive literature survey in Wardlaw and Mielke (2005) and other works. The 
features are (1) hypoattenuation (loss of gray/white differentiation or basal ganglia outline), (2) mass effect, (3) hyperdense artery (indicating thrombus), and (4) the 
lesion extent. Image © J. Wardlaw, reproduced with permission.
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representation of the heterogeneous brain data (Keator et  al., 
2008). These issues have major integration challenges for machines 
(less so for humans), which can be addressed by metadata schema 
harmonization to achieve a simplified shared naming convention 
required in order to be accessible for machines (Keator et  al., 
2009). “Metadata” are facts about a given dataset that provides 
additional information regarding the parameters in which the 
dataset was acquired and the assumptions made about the experi-
ment or analyses that helps one understand and use the data. For 
example, in the context of medical imaging data, metadata will 
allow machine-based reference models to be built and embedded 
into software for rapid determination of the validity of imaging 
data at the point of image acquisition. This is applicable to all data 
acquisition where imaging has a key role.

Progress toward Integrating Neuroimaging 
data for stroke Image Bank
Attempts are being made toward developing infrastructures to 
facilitate sharing and reuse of neuroimaging data from hetero-
geneous sources. To the best of our knowledge, Table 1 shows 
all image banks specifically developed for stroke. We examine 
each briefly to determine their relevance and scope for stroke 
clinical trials.

The descriptions provided in Table 1 demonstrate the scope 
and limitations of the existing stroke image banks, with respect 
to facilitating clinical trials of new treatments for stroke, which 
was the focus of the NeuroGrid project (Geddes et  al., 2005; 
Wardlaw et al., 2007). NeuroGrid focused on two exemplar large 
multicenter clinical stroke trials that were ongoing at the time, 

the Third International Stroke Trial (IST-3) (Sandercock et  al., 
2012) and the Efficacy of Nitric Oxide in Stroke (ENOS) trial (The 
ENOS Trail Investigators, 2015). In order to create an integrated 
searchable database that could ultimately house the image data 
of both trials for future meta-analyses and data sharing to which 
other trials could be added, we had to design purpose-specific 
stroke imaging metadata and a related schema to accommodate 
different data structures and purposes, including, in addition 
to the actual images, collection of data on initial clinical assess-
ments across several domains, long-term outcomes, treatments, 
and radiological interpretations of the images, which would be 
sufficiently flexible and adaptable for use in any future clinical 
trial or observational study in ischemic or hemorrhagic stroke 
(Wardlaw et al., 2007).

MAteRIALs ANd Methods

The concepts and methods described here arose from NeuroGrid, 
followed by our work in developing an image bank of normal 
subjects across the lifespan in the BRAINS project1 and also 
described in Job et al. (2016). The BRAINS project was carried out 
in parallel with adapting the stroke data schema to accommodate 
all data acquired in a series of 12 observational mechanistic and 
diagnostic studies in patients with various subtypes of stroke 
acquired in one center between 1996 and 2013 (but to which 
subsequent studies are being added).

1 http://www.brainsimagebank.ac.uk.
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FIgURe 2 | schematic diagram of the framework for the stroke image 
bank. LORIS, Longitudinal Online Research and Imaging System; ICD-10, 
the World Health Organization’s International Classification of Diseases 
coding version 10; SNOMED-CT, a systematized nomenclature of 
medicine—clinical terms; STIR, Stroke Imaging Repository coding standards. 
*Initiated with terminology from NeuroGrid stroke exemplar, i.e., an early 
version of the present schema.

tABLe 1 | stroke image banks.

Reference stroke image bank 
project

scope

Hanser  
et al. (2007)

neurIST Focuses on very specific terminologies for describing vascular abnormality, clinical features, treatments and outcomes for 
subarachnoid hemorrhage

Colombo  
et al. (2010)

NeuroWeb Focuses on genetics means that there is less priority given to recording image data in the detail required for many acute 
stroke treatment trials or other types of stroke research where highly specialized phenotyping including detailed imaging is 
required

Gibaud et al. 
(2011)

NeuroLOG Focuses on the neuropsychological aspects of stroke and computational image analysis and does not provide for 
documenting more clinically relevant acute treatment and outcomes

Wang  
et al. (2011)

Medical Image 
Management System

This is particularly useful for managing imaging data in clinical trials but neither relevant to stroke specifically nor to 
observational studies with heterogeneous data

Ali et al. (2012) Virtual International 
Stroke Trials Archive

Focuses on clinical stroke research for prevention, rehabilitation, imaging, and intracerebral hemorrhage. However, data are 
limited to demographic and clinical data from baseline and follow-up visits (2 h–90 days)

Wintermark  
et al. (2013)

Stroke Imaging 
Repository

Focuses on terminology and standardization for acute ischemic stroke trials but not metadata schema required for 
integrating heterogeneous imaging data (initiated with early terminology from NeuroGrid Stroke exemplar, an early version of 
the Stroke Schema in the present paper)

Kim et al. (2014) CRCS-5 Focuses on ischemic stroke monitoring and management in hospitals. Also, although data are collected from multiple 
centers, it does not require metadata schema for integration as it uses a single data management with web-based interface 
system

Seghier  
et al. (2016)

PLORAS Data are not heterogeneous and also focuses on only speech and language abilities-related outcomes of stroke

Danso et al. Integrated Imagebank for Cerebrovascular Disease

Frontiers in ICT | www.frontiersin.org December 2016 | Volume 3 | Article 32 |

our Approach
Image bank development begins with data integration. Data 
integration approaches could be broadly grouped into two. The 
“centralized approach” is where data sources are accessed through 
a single access point based on a predefined common metadata 
schema (Keator et al., 2009). The alternative is the “federation-
based approach,” which requires a framework in order to present 
a unified view of the data from multiple sources (Wiederhold, 
1992). Our framework is, of necessity, federation-based, based on 
semantic rules derived from expert knowledge underpinned by 
many years of professional experience in stroke research includ-
ing in clinical trials. Figure 2 shows the schematic diagram of the 
framework, which we subsequently describe in detail.

Step1: Examination of Datasets from Past Projects 
and NeuroGrid Stroke Example Metadata
As a first step toward developing an integrated schema, we started 
with the NeuroGrid schema based on the two large multicentre 
international trials, ENOS and IST-3, and examined data from 12 
past stroke imaging research projects with various different objec-
tives including different stroke subtypes and types of imaging, 
carried out over the past two decades in our center. These projects 
varied in research objectives and data collection protocols. This is 
demonstrated with two examples.

First, the Salvageable Tissue study (Wardlaw et al., 2013) was 
a multicenter study carried out in three acute stroke centers in 
Scotland (Aberdeen, Glasgow, and Edinburgh) between 2008 and 
2010. The objective was to assess the practicalities of perform-
ing acute stroke imaging with CT and MR including perfusion 

imaging, to assess the proportion of patients with perfusion-
evidence of salvageable tissue [perfusion-diffusion mismatch on 
MRI or reduced flow on CT perfusion (CTP)], and markers of 
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subsequent lesion growth on follow-up imaging to provide sample 
size estimates for future treatment trials. This involved recruit-
ing patients with moderate to severe cortical ischemic stroke in 
three centers, performing imaging [diffusion weighted imaging 
(DWI), perfusion-weighted imaging, fluid attenuation inversion 
recovery (FLAIR), gradient echo (GRE/T2*), MR angiography 
(MRA); or with CT, CTP, and CT angiography (CTA)] within 6 h 
of stroke, repeated at 2–5 days (mostly MR) and 1 month (MR T2, 
GRE, DWI, and MRA). A final clinical follow-up was performed 
at 3 months.

The second is the Mild Stroke Study (Wardlaw et  al., 2009) 
performed between 2005 and 2009. The aim was to investigate 
causes of lacunar stroke and associations with retinal vascular 
appearances (as a surrogate for cerebral small vessels). This was 
to test the theory that lacunar stroke and small vessel disease 
arise through blood–brain barrier damage. It recruited patients 
with lacunar or minor cortical ischemic stroke, all of whom had 
diagnostic MR imaging with DWI, FLAIR, T2-weighted, GRE, 
T1-weighted, and (in a subset) blood–brain barrier permeability 
imaging. A subset was followed up clinically and had follow-up 
imaging at 3 years after stroke.

The stroke exemplar metadata designed originally in the 
NeuroGrid project was an extension to the NeuroGrid core 
metadata and was designed to be scalable and modifiable to suit 
other stroke studies using imaging. The NeuroGrid core metadata 
was constructed to accommodate studies in stroke, dementia, and 
psychosis and was in response to one of the key infrastructure 
objectives of NeuroGrid—to develop management systems to 
allow large “living archives” of images linked to key metadata 
for diseases that require long-term study to understand their 
true natural history and the effects of treatment (Wardlaw et al., 
2007). This involved developing a simple repository browser to 
perform ad hoc searches against the core metadata and display 
user-readable, navigable listings of search results including the 
images for administration and quality control. An example of a 
search could be to generate a list of all patients in trial X who 
were scanned at location Y and had a clinical feature Z and an 
imaging feature A.

In the stroke exemplar, the NeuroGrid core metadata schema 
was extended significantly based on the two large multicentre ran-
domized stroke trials, IST-3 and ENOS. IST-3 was a 3035-patient 
multicenter randomized controlled trial of alteplase given up to 
6 h after onset of acute ischemic stroke (Sandercock et al., 2008, 
2012). IST-3 sought to determine whether a wider range of patients 
might benefit from intravenous recombinant tissue plasminogen 
activator (rt-PA). ENOS (The ENOS Trial Investigators, 2006, 
2015) was a 4011-patient multicentre randomized controlled trial 
in patients with acute (<48 h of onset) ischemic or hemorrhagic 
stroke. ENOS tested the safety and efficacy of transdermal GTN, 
and of continuing or stopping temporarily prior antihypertensive 
medication. Both the trials required a CT brain scan at randomi-
zation (minimum requirement plain non-contrast CT brain), but 
MRI could be used instead (minimum sequences T2-weighted, 
FLAIR, DWI, and GRE). Advanced imaging, such as CTA, MRA, 
or perfusion imaging, was also collected where performed. Both 
the trials involved multiple centers (n  =  329), and therefore, 

inevitably the images came from a very large variety of scanners 
(Wardlaw et al., 2007).

The extension of the core metadata schema was governed by 
issues relating to where, when, and how datasets are collected, 
published to the database, or required by clinicians. Thus, the 
resulting extended NeuroGrid core metadata for stroke allowed 
a search across a wide range of patient baseline characteristics 
(including history factors: vascular risk factors, prior treatments, 
past medical history), stroke clinical characteristics (severity, 
clinical subtype, neurological examination details), type and 
timing of imaging, appearance of the stroke lesion on imaging 
(including site and size), laboratory test results, details of trial 
treatment administration, details of any non-trial treatments, 
subacute and late clinical functional measures (symptomatic 
intracranial hemorrhage or brain swelling, modified Rankin 
Scale, death), cognitive and imaging outcomes, and adverse 
events.

We then compared our 12 study datasets from our center 
with the NeuroGrid stroke exemplar metadata. We noted the 
differences and overlaps that existed and iterated modifica-
tions to address items that were not covered in the original 
NeuroGrid exemplar or that were present but required more 
granularity and fed this into the subsequent developments of 
the data schema. We demonstrate this with some examples of 
the differences that were observed in data collection proto-
cols between the Salvageable Tissue and Mild Stroke Studies 
described earlier. For example, the NeuroGrid exemplar 
schema required information about stroke severity using the 
National Institute of Health Stroke Scale (NIHSS) (Goldstein 
et  al., 1989). While the Salvageable Tissue protocol required 
a detailed data to be recorded for each symptom (e.g., “Bast 
gaze,” which is one of the items on the NIHSS is recorded as 
either “forced deviation” or “Normal” or “Partial gaze palsy”), 
the Mild Stroke Study protocol, on the other hand, required 
summary data, which is the total score assigned to each NIHSS 
symptom to be recorded. The reverse of this was observed in 
another instance. The NeuroGrid exemplar schema required 
data on classification of stroke based on the Oxford Community 
Stroke Project classification—OCSP (Bamford et al., 1987). In 
this instance, The Salvageable Tissue protocol required a sum-
mary of the data by recording either “present” or “not present” 
for each of the classifications [e.g., Partial Anterior Circulation 
Syndrome (PACS) is to be recorded as either “present” or “not 
present”] based on the assessment and knowledge of the clini-
cian. On the other hand, the Mild Stroke Study protocol did 
not rely on the knowledge of the clinician to classify but only 
required data to be collected on symptoms such as weakness/
sensory deficit in arm, leg, and face. The differences in data 
as result of differences in collection protocols demand some 
amount of adaptation from data integration and image bank 
perspective, which is subsequently described in step 2. The 
guiding principles adopted in this work were that the approach 
must be pragmatic; the metadata and schema should be relevant 
to clinical practice, as well as scalable to other researches where 
details might need to be added or switched off in particular 
domains, without requiring major redesign.
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Step 2: Semantic Integration
“Semantic integration” is the process of ensuring that all semanti-
cally related data elements and items are grouped together based 
on expert knowledge of domains and other resources. This was 
achieved through a series of steps described below.

Mapping and Harmonization
Mapping ensures that data items that have different names, but 
that are considered to be semantically the same or very similar, 
are captured as a single schema data item. This involved mapping 
the IST-3 and ENOS trials metadata and schema developed in 
NeuroGrid, then refining, and extending the schema based on 
the process described in step 1 above. Examination of the 12 local 
prior stroke research projects showed a high degree of variability 
in the datasets (from the machine point of view though not the 
human point of view), which is noted to be a common issue asso-
ciated with data from multiple sources (Gomez-Cabrero et  al., 
2014), or in this case, even from a series of studies of one disease 
in one center that basically collected the same clinical variables 
even though each study might collect some other information. 
Figure 3 illustrates an example of the variabilities and how these 
are handled.

For example, Figure  3 shows three different variables 
(“weak face,” “face motor,” and “facial paresis”) in three differ-
ent projects being mapped to a single search item “face motor 
loss,” which is part of the integrated schema data element, 
“NeurologicalExamDetails.” On the other hand, harmonization 
is a process that ensures uniformity in how schema search items 
are encoded and represented. For example, “lesion age” in one 
dataset is encoded in categories (1 = “less than 6 h”; 2 = “6–12 h”; 
3  =  “greater than 12  h”), whereas in another dataset, different 
encoding scheme (e.g., raw values) are employed. Specifically, 
with regards to the examples of the problems between the 
Salvageable Tissue study and Mild stoke dataset described in step 
1 above, the data on the individual symptoms were mapped to 
the corresponding numeric values for each symptom based on 
the NIHSS documentation (Goldstein et al., 1989). This enabled 
us to transform the responses into a total score representing 
the severity of stroke for each patient as required by our new 
metadata schema. Again, to be able to harmonize the OSCP data, 
rules were developed to transform the symptoms collected by the 
Mild stroke study based on the OSCP classification rules. So for 
example, if a patient had weakness and/or sensory problems in 

the face, arm, or leg and also has dysphasia, the stroke is clas-
sified as PACS being “present,” otherwise “not present.” Thus, 
reasonable encoding and representation were achieved through 
harmonization. This strategy was applied to all issues that were 
identified and documented as part of the provenance, which is 
also made available to potential users of the image bank. This 
process was automated using the Python programming language 
(version 3.2, see Python Software Foundation2).

Use of Coding Standards
In order to further enhance the interoperability and reusability of 
the integrated schema and image bank to facilitate future integra-
tion with other biomedical ontologies, we cross compared our 
terms with other data coding standards and medical taxonomies. 
This included standard terminologies that were originally derived 
from the NeuroGrid work with additional modification for use in 
the Stroke Imaging Repository of acute treatment and secondary 
prevention stroke trials (Wintermark et  al., 2013), which also 
aligns with the National Institute of Neurological Disorders and 
Stroke Common Data Elements.3 The World Health Organization’s 
International Classification of Diseases coding version 104 and 
the systematized nomenclature of medicine—clinical terms 
(SNOMED-CT) (Cote and Robboy, 1980) provide a familiar and 
useful common vocabulary in clinical practice where other rel-
evant data may be cross-referenced. ICD-10 and SNOMED-CT, 
in particular, are implemented as standards by health services in 
many countries hosting multi-site trials and has the additional 
benefit that allows integration with national health information 
systems and electronic health records (Westra et al., 2015).

Figure 4 shows schematic diagram of the integrated metadata 
schema with its data elements, which have over 550 integrated 
searchable data items contained within them.

As demonstrated in Figure 4, the resulting integrated schema 
will allow searches across a wide range of patient baseline and 
outcome characteristics described as part of the stroke exemplar 
and additional searchable data elements and items including 
read-by-an-expert, visual scores, and computationally measured 
imaging features. This includes categorization of the acute stroke 

2 https://www.python.org/.
3 http://www.ninds.nih.gov/research/clinical_research/toolkit/common_data_ele-
ments.htm.
4 http://apps.who.int/classifications/icd10/browse/2016/en.
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lesion (infarct or hemorrhage, extent, background brain changes); 
volumetric measurements (e.g., intracranial volume, brain vol-
ume, infarct volume, white matter hyperintensity volume); other 
visual scores as relevant to, for example, small vessel stroke (e.g., 
perivascular spaces, lacunes, microbleeds by brain region); and 
lesion-specific anatomical locations (e.g., thalamus, gray white 
matter, deep white matter) where relevant.

Step 3: Implementation
Our implementation took advantage of available open source 
technologies as described below.

Longitudinal Online Research and Imaging System (LORIS) 
Integration
We integrated our integrated schema with the Longitudinal 
Online Research and Imaging System (LORIS) database in order 
to take advantage of its capabilities. LORIS is an open-source data 
management system, well engineered for managing imaging and 
associated behavioral longitudinal data, and implemented using 
MySQL and  NoSQL (CouchDB)5 for back-end web interface 
and Hypertext Preprocessor (PHP) programming language6 for 
front-end web interface (Das et al., 2012), which we deployed in 
Linux Ubuntu 14.04 box.

Our clinical trial datasets also have longitudinal characteris-
tics as projects required subjects to be followed up after the initial 
visit, sometimes over many years. Therefore, it was prudent to 
take advantage of the functionalities available in LORIS in order 
to avoid duplication of effort. MySQL, NoSQL and PHP are both 

5 http://couchdb.apache.org/.
6 http://php.net/manual/en/intro-whatis.php.

open source and widely used relational database management 
systems and frameworks (Bakken et al., 1997; Bretthauer, 2002). 
Both MySQL and NoSQL as employed in LORIS offered us the 
following database design capabilities: (a) performance, which 
was to ensure speed processing of queries and a quick access to 
the data; (b) integrity, which was to ensure accurate storage of the 
data as obtained from the original sources; (c) comprehensibility, 
which was concerned with ensuring coherence in the structure 
of the database as presented to users; and (d) extensibility, which 
was to ensure the database can be extended without the need 
to redesign. The functionalities adaptation process involved 
integrating our Python-based scripts with the PHP-based script 
functionalities used in LORIS. The integration process was 
achieved through collaboration and support from the LORIS 
software development team.7

Data Anonymization and Loading
All images had already been anonymized of metadata by passing 
through DICOM Confidential (González et  al., 2010), a freely 
available data anonymization tool for imaging.8 It is a Java-based 
de-identification toolkit that enforces confidentiality policies as 
defined by the Medical Research Council.9 It is also specifically 
designed to support batch processing for multicentre clinical 
trials. Additionally, all identifiable information contained in the 
columns of the associated clinical data was also removed to ensure 
complete anonymity. After the data anonymization process, we 

7 http://loris.ca/.
8 https://sourceforge.net/projects/privacyguard/.
9 https://www.mrc.ac.uk/documents/pdf/personal-information-in-medical- 
research.
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then loaded the data by populating the integrated database with 
data from the clinical the trial datasets described in step 1 above. The 
loading process also accounts for the mapping and harmonization 

process that was carried out to ensure that the correct data items 
were populated to conform to our new integrated schema. This 
process was also automated using Python-based scripts.
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Linkage to Hospital and National Statistics
We made provision for linking the integrated imaging database 
to hospital and national statistics to obtain long-term outcomes 
such as recurrent stroke, dementia, other vascular events, and 
death. We first obtained regulatory approvals from the relevant 
institutions. This include Caldicott Guardian and Community 
Health Index Advisory Board, NHS Lothian (reference: CG/
DF/1559); NHS Lothian Research & Development (reference: 
2015/0296); Information Services Division (ISD) and Scottish 
Stroke Care Audit (reference eDRIS-1516-0337); and West of 
Scotland Research Ethics Service (reference: 15/WS/0157). This 
allowed us to create a database of identifiable details of subjects 
scanned at our center in Edinburgh for the purpose of central 
matching with routinely collected health data by the Information 
Services Division of NHS Scotland.10 In order to achieve the link-
age between our integrated database and hospital and national 
statistics database, a “linked table” was created which holds 
the patients’ hospital primary IDs and randomly generated IDs 
assigned to subjects in the integrated database by LORIS-based 
ID generation algorithm. Access to the linked table is restricted 
and only accessible to key approved members of research team 
covered by the data access agreements. The data anonymization 
and loading step described above also populated the integrated 
database with the individual “key” stored in the linked table.

Quality Control
In order to ensure data accuracy and consistency, an end-to-end 
quality control procedure was performed on samples of the data. 
This involved randomly selecting sample records from the web 
interface and checking data values against the source as well as 
data provenance.

ResULts

Our integrated schema contains over 550 searchable data 
variables. Additionally, the integrated schema maps to IST311 
and ENOS,12 which are the two original NeuroGrid exemplar 
large multicentre stroke trials with over 7,000 patients from 30 
countries between them. This demonstrates its utility within 
the context of ensuring data standards to facilitate seamless 
integration of heterogeneous multicentre neuroimaging data for 
ischemic and hemorrhagic stroke as well as stroke subtypes such 
as small vessel lacunar stroke. Moreover, our integrated database 
contains over 3,079 unique subjects from our 12 research studies, 
who were scanned in our local BRIC, Edinburgh, with neuroim-
aging data for ischemic and hemorrhagic stroke and small vessel 
disease studies. Figure 5 shows the LORIS-based interface of our 
integrated database.

We submitted records on 3,245 patients from the combined 
dataset of 12 stroke studies in our 1 center for central linkage 
with routinely collected health records achieving an overall link-
age success rate of 95% with the National Health Service (NHS) 

10 http://www.isdscotland.org/.
11 http://www.dcn.ed.ac.uk/ist3/.
12 http://www.strokecenter.org/trials/clinicalstudies/the-efficacy-of-nitric-oxide- 
in-stroke-enos-trial.

Hospital Information System and Stroke Audit databases of 
Scotland. A detailed breakdown showed that up to 19 years since 
inclusion in the research project and scanning (median = 9.04; 
IQR = 12.17, range 0–19 years) of follow-up, 879/3079 patients 
had died, 525 had had one or more recurrent stroke, and 291 had 
developed dementia, which further demonstrates the utility of 
our integrated database. The metadata schema for the integrated 
database and provenance information including data dictionary 
are available online under Apache 2.0 and CC-YB 4.0 licenses, 
respectively.13

dIsCUssIoN

Our neuroimaging data acquisition and management for stroke 
research has evolved from large pragmatic clinical stroke trials of 
acute stroke treatments with fairly basic imaging in NeuroGrid 
in the mid-2000s to include much more detailed bespoke obser-
vational mechanistic studies with much more complex imaging 
and longer follow-up linked with more detailed outcomes. This 
evolution demanded new approaches and also presents new 
opportunities. With the advent of “big data” science for medical 
and clinical research (Wang and Krishnan, 2014) and also for 
neuroimaging (Van Horn and Toga, 2014), our image bank will 
provide stroke researchers with new opportunities to explore 
big data science for stroke. An image bank with special focus on 
ischemic and hemorrhagic stroke and subtypes such as small ves-
sel disease adds substantially to the dynamic range of capabilities 
of secondary research with cerebrovascular diseases data, thereby 
contributing to the volume and veracity of stroke data which 
characterize big data (Laney, 2001). Furthermore, employing 
international data standards facilitates the creation of Linked 
Data (Heath and Bizer, 2011), thus expanding the data space 
useful for new data management and technological initiatives 
for stroke. Also, the provision made in our integrated database 
to allow data from hospital information systems and national 
statistics to be linked provides opportunities to investigate a 
range of clinically highly relevant issues in stroke and to make 
use of centrally housed routinely collected image data in National 
Picture Archiving and Communication Systems PACS, such as 
the many thousands of brain scans collected in the first 8 years 
of the Scottish National PACS, now stored at the Farr Institute, 
Edinburgh.14 To demonstrate this potential, for example, we are 
currently using imaging data from our 12 stroke studies linked to 
data from NHS Scotland’s Information System and Stroke Audit 
databases to investigate imaging predictors of neurodegeneration 
measured at presentation with suspected stroke and subsequent 
adverse outcomes of recurrent stroke, dementia, or death.

From image analysis perspective, well-characterized images 
with detailed metadata are increasingly needed for studies that 
typically need larger samples or more variety of cases than are 
available in individual studies—these include studies to develop 
machine learning methods for image analysis, in stratified medi-
cine, and large studies of genetics, e.g., genome wide association 

13 https://sourceforge.net/projects/cvd-db.brainsimagebank.p/.
14 http://www.farrinstitute.org/.
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studies where typically many thousands of cases are needed 
(Hernández et  al., 2013; Caligiuri et  al., 2015). The availability 
of large amount of data could help develop models that can be 
generalizable based on the patterns the underlying algorithms 
are able to “learn” from the data. Large amounts of data can 
also provide enough statistical power for valid conclusions to be 
drawn (Cooper et al., 2011). This could be achieved by having 
access to selected cases with particular characteristics that are 
pulled from multiple studies for testing these algorithms and 
hypothesis. For example, Maillard et al. (2008) demonstrated the 
usefulness of image bank when they pulled over 1,100 of elderly 
subjects (with similar characteristics) from two large MRI studies 
to evaluate the performance of an automated method for detec-
tion, quantification, localization, and statistical mapping of white 
matter hyperintensities in T2-weighted images. An integrated 
image bank such as this will afford researchers the opportunity 
to carry out similar studies.

The framework that we employed offers an alternative to other 
frameworks proposed in the literature. The ontology-based fed-
eration is the most common approach within the neuroimaging 
domain (Hanser et al., 2007; Colombo et al., 2010; Gibaud et al., 
2011). These approaches tend to rely on some specialized ontol-
ogy to serve as a mediation layer between databases to integrate 
heterogeneous neuroimaging datasets (Wiederhold, 1992) and 
require that all potential submitters of data to the database stick 
religiously to the described schema terminology, which in reality 
is difficult across multiple sites. Within the context of stroke, the 
neurIST Project employed description logic-based ontology to 
represent concepts that are associated with cerebral aneurysms 
and subarachnoid bleedings (Hanser et al., 2007). Similarly, an 
ontology-based approach was also employed in the NeuroLOG 
(Gibaud et al., 2011) as well as NeuroWeb (Colombo et al., 2010) 
projects. A hybrid approach has also been proposed by Keator 
et  al. (2013), where an ontology-based resource, NeuroLex 
(Larson and Martone, 2013), is combined with information 
obtained from other resources such as the Human Imaging 
Database15 and XNAT.16 None of these were suitable for stroke, 
thereby suggesting that lack of ontology for a given specialized 
domain raises significant neuroimaging data integration chal-
lenges (Smith et al., 2015). Furthermore, it has been noted that 
ontology-based approaches result in tensions between logical 
(research) and clinical representations of a domain, which make 
it difficult to create shared models resulting in tensions between 
ontological consistency and clinical usability (Bodenreider, 2004; 
Bodenreider and Stevens, 2006; Rector and Rogers, 2006). Thus, 
our approach is an important advance that overcomes the lack 
of a specialized ontology for ischemic and hemorrhagic stroke.

Moreover, there is an implicit expectation that medical con-
cepts of disease, based on signs and symptoms, can be transposed 
as formally defined classes and relations, which are often much 
more complex to model in practice and resistant to simplification. 
Thus, the pragmatic and simplified approach adopted here makes 
our framework and data integration approach easy to implement. 
However, it is important to note that this is heavily dependent for 

15 http://www.nitrc.org/projects/hid/.
16 http://www.xnat.org/.

its development on domain knowledge. In our case, the domain 
experts lead the project and were motivated to combine their 
datasets from individual studies, thus providing the required 
domain and semantic knowledge. Such exercises are not achiev-
able without the close working of experts in the disease of interest 
(and in this case its imaging) with experts in the technological 
infrastructure required to host complex interrelated medical and 
imaging data, the former having the motivation and the content 
knowledge and the latter the essential knowledge to manage the 
data efficiently.

The mapping and harmonization process described as part 
of our framework involved data provenance documentation of 
the integrated schema.17 This provides a detailed account of pro-
cesses carried out on the datasets from the point of acquisition, 
descriptions of the imaging hardware and parameters used in the 
acquisition of the data, as well as mapping and harmonization 
(including transformations) as previously described (MacKenzie-
Graham et  al., 2008). The importance of this information has 
been emphasized (Keator et  al., 2013) and documented as one 
of the guiding principles of data sharing best practices (Nichols 
et al., 2016).

CoNCLUsIoN

This paper summarizes our experience in developing an integrated 
image bank and schema suitable for hosting data from multiple 
individual stroke imaging research projects and enabling large-
scale research in cerebrovascular diseases, with a particular focus 
on ischemic and hemorrhagic stroke and small vessel diseases. 
This will facilitate research into new treatments for stroke by 
enabling large meta-analysis as well as testing computationally 
based image analysis methods (e.g., machine learning) for build-
ing predictive models specifically for stroke and other related 
conditions. In addition to adding more research data, we open the 
door to adding new data such as that routinely collected in health 
services, for example, by using Natural Language Processing 
(Chapman et  al., 2011). Additionally, the past decade has seen 
unprecedented attempts to develop frameworks and infrastruc-
ture that can facilitate integration, archiving, and reuse of neuro-
imaging from multiple sources. We believe that the experience 
and framework described in this manuscript could be applied to 
neuroimaging data from other domains where resources such as 
ontologies do not currently exist.
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Two of the major concerns of researchers and clinicians performing neuroimaging exper-
iments are managing the huge quantity and diversity of data and the ability to compare 
their experiments and the programs they develop with those of their peers. In this con-
text, we introduce Shanoir, which uses a type of cloud computing known as software as 
a service to manage neuroimaging data used in the clinical neurosciences. Thanks to a 
formal model of medical imaging data (an ontology), Shanoir provides an open source 
neuroinformatics environment designed to structure, manage, archive, visualize, and 
share neuroimaging data with an emphasis on managing multi-institutional, collaborative 
research projects. This article covers how images are accessed through the Shanoir 
Data Management System and describes the data repositories that are hosted and 
managed by the Shanoir environment in different contexts.

Keywords: neuroimaging, database, data sharing, neuroinformatics, software as a service, cloud computing, web 
application, web services

INtRodUCtIoN

Context
Two of the major concerns for researchers and clinicians performing neuroimaging experiments 
are managing the huge quantity and diversity of data and the ability to compare their experiments 
and the programs they develop with those of their peers. In practice, researchers and clinicians in 
the neuroimaging field are encouraged to set up large-scale experiments, but the inability to recruit 
sufficient local subjects who meet specific criteria results in the need for cooperation to gather the 
relevant imaging data. Pooling experimental results via the Internet and cooperative efforts by cent-
ers provide larger and more specific subject populations that expand the scope and value of scientific 
research.

Abbreviations: DICOM, Digital Imaging and Communications in Medicine; DOLCE, Descriptive Ontology for Linguistic 
and Cognitive Engineering; IRC, imaging resource center; J2EE, Java platform enterprise edition; JAX-WS, Java API for XML 
web services; JWS, Java web start; NIfTI, neuroimaging informatics technology initiative; OFSEP, Observatoire Français de 
la Sclérose en Plaques (French multiple sclerosis observatory); OWL, web ontology language; PACS, picture archiving and 
communication system; PI, principal investigator; SaaS, software as a service; Shanoir, sharing neuroimaging resources; SOAP, 
simple object access protocol; WSDL, Web Service Description Language.
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Searches on distributed neuroimaging databases for similar 
results and images containing singularities (quirk, peculiarities, 
etc.) or the use of data mining techniques may highlight possible 
similarities. Such efforts also broaden the possible panel of people 
involved in neuroimaging studies while maintaining the quality 
of the work. Indeed, the explosion of data generated by the neuro-
sciences community in the early 1990s has resulted in the need for 
innovative techniques for data and knowledge sharing and reuse 
(Roland and Zilles, 1994; Mazziotta et al., 1995; Shepherd et al., 
1998). This has led to the emergence of large-scale projects on 
the human brain. A recent objective added to these initial issues 
is the application of data analysis and data processing software to 
various data repository systems for knowledge discovery and data 
mining, including its more recent extension to merging imaging 
and genetic data (Hibar et al., 2015). In parallel, the development 
of web applications has stimulated the interest of researchers and 
clinicians in distributed databases and information sharing.

Background
It is now commonly accepted in the neuroimaging community 
that sharing data and image processing services will play a crucial 
role in translational research (Barillot et al., 2003; Walport and 
Brest, 2011; Poline et al., 2012; Keator et al., 2013; Van Horn and 
Gazzaniga, 2013; Poldrack and Gorgolewski, 2014). Research 
funding agencies now clearly identify the sharing of scientific 
resources (data processing) as a top priority. International organi-
zations such as the International Neuroinformatics Coordinating 
Facility (INCF)1 are now dedicated to promoting the field of neu-
roinformatics (Book et al., 2013; Kennedy et al., 2015). Sharing 
data and image processing services for translational research are 
needed for:

(1) the integration of large data sets for population-wide studies 
and construction of imaging cohorts (Shepherd et al., 1998; 
Van Horn et al., 2001; Barillot et al., 2006; Evans and Brain 
Development Cooperative Group, 2006; Jack et  al., 2008; 
Hall et al., 2012; Weiner et al., 2012; Marcus et al., 2013; Van 
Essen et al., 2013),

(2) the validation of image processing tools on reference data-
sets for validation and quality control of image processing 
procedures (Styner et al., 2008; Menze et al., 2015),

(3) the reuse of image processing pipeline on different sets of 
data and different peers for sharing processing tools (Keator 
et  al., 2009, 2013; Ooi et  al., 2009; Dinov et  al., 2010; 
Gorgolewski et al., 2011; Bellec et al., 2012; Glatard et al., 
2014), and

(4) the validation of research results based on proofed control 
statistical analysis of images for validation and quality 
control of experimental research (Carp, 2012; Button et al., 
2013; Ioannidis, 2014; Ioannidis et al., 2014).

This is particularly significant in the field of neuroimaging 
as several large recent multicenter initiatives have shown. These 
include Evans and Brain Development Cooperative Group 
(2006), which performed a study using magnetic resonance 

1 http://www.incf.org/. 

imaging (MRI) of normal brain maturation from birth to adult-
hood in approximately 500 children with behavior disorders, and 
the Alzheimer’s disease neuroimaging initiative (ADNI), which 
has assembled a very large variety of images for its work (Weiner 
et  al., 2012). The Human Connectome Project (HCP), which 
worked with 1,200 healthy volunteers to investigate brain con-
nectivity in the normal brain (Marcus et al., 2013; Van Essen et al., 
2013), is another well-known example illustrating the importance 
of aggregate imaging data and relating data warehouses to image 
processing resources.

To provide archiving solutions for large or various multicenter 
projects, several architectures have already been proposed. The 
Biomedical Informatics Research Network (BIRN) has been 
a pioneer in launching brain imaging solutions (Gupta et  al., 
2003; Keator et  al., 2008, 2009; Ashish et  al., 2010). Another 
early initiative, the FMRIDC project sought to share task-based 
fMRI imaging data (Van Horn and Gazzaniga, 2013). @NeurIST 
set up a dedicated solution (funded by an Integrated European 
Project) to support research and treatment of cerebral aneurysms 
using heterogeneous data, computing, and complex processing 
services (Benkner et  al., 2010). The LORIS/CBRAIN project is 
an initiative to develop a pan-Canadian platform for distributed 
processing, analysis, exchange, and visualization of brain imaging 
data (Das et al., 2011; Sherif et al., 2014). Finally, other generic 
data management systems have been proposed to offer shared 
solutions for managing multicenter studies. These include the 
Extensible Neuroimaging Archive Toolkit (XNAT) (Marcus 
et  al., 2007), which has been successful due to its integration 
in the management of large projects (Marcus et  al., 2013) and 
ability to communicate with data management servers via 
dedicated REST web services, and the Collaborative Informatics 
and Neuroimaging Suite (COINS), which provides a web-based 
neuroimaging and neuropsychology software suite (Scott et al., 
2011). Although the extensibility of these platforms is part of the 
motivations, none of them are built on top of a formal semantic 
model or ontology that can guarantee the sustainability of any 
evolution of the original data scheme.

significance
In this context, the Sharing Neuroimaging Resources (Shanoir) 
environment enables sharing between distributed sources 
of neuroimaging information over the Internet, whether the 
sources are located in various centers of experimentation, clini-
cal departments of neurology, or research centers in cognitive 
neurosciences or image processing. A large variety of users can 
thus share, exchange, and have controlled access to neuroimaging 
information using the software as a service (SaaS) type of cloud 
computing (Rimal et al., 2009) almost as easily as if the data were 
stored locally.

In this paper, we introduce the Shanoir software environment 
for managing neuroimaging data production in the context of 
clinical neurosciences and show how the images are accessible 
through the Shanoir Data Management System. Shanoir is an 
open source neuroinformatics environment designed to structure, 
manage, archive, visualize, and share neuroimaging data with an 
emphasis on multi-institutional, collaborative research projects. 
The software offers features commonly found in neuroimaging 
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FIGURe 1 | shanoir software architecture.
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data management systems along with research-oriented data 
organization capabilities and enhanced accessibility. It also pro-
vides user-friendly secure web access and an intuitive workflow 
that facilitates the collection and retrieval of neuroimaging data 
from multiple sources.

In Section “Shanoir Software Environment,” we provide a brief 
overview of the software environment including its core (web 
portal, Study Card, and quality control) and extensions for load-
ing, querying, and processing data. Section “Data Repositories” 
describes the data repositories, while Section “Conclusion and 
Perspectives” covers the use of these repositories and potential 
evolution.

shANoIR soFtWARe eNVIRoNMeNt

General description of the software 
environment
Shanoir is an open source software environment with QPL licens-
ing designed to archive, structure, manage, visualize, and share 
neuroimaging data with an emphasis on managing collaborative 
research projects. It includes the common features of neuroimag-
ing data management systems along with research-oriented data 
organization and enhanced accessibility. Shanoir is based on a 
secure J2EE application running on a JBoss server that is accessed 
via graphical interfaces in a browser or by third-party programs 
via web services using simple object access protocol (SOAP). It 
behaves like a repository of neuroimaging files coupled with a 
relational database containing metadata (Figure 1).

Shanoir uses semantics for structuring the concepts as defined 
by the OntoNeuroLOG2 ontology (Temal et al., 2008; Michel et al., 
2010). OntoNeuroLOG reuses and extends the OntoNeuroBase 
ontology defined earlier (Barillot et al., 2006) (see Figure 2). Both 
were designed using the methodological framework (Temal et al., 
2008) of the foundational Descriptive Ontology for Linguistic 
and Cognitive Engineering (DOLCE) (Masolo et al., 2003) and 

2 OntoNeuroLOG: http://neurolog.i3s.unice.fr/public_namespace/ontology. 

a number of core ontologies that provide generic, basic, and 
minimal concepts and relationships in specific fields such as 
artifacts, participant roles, information, and discourse acts. In 
Shanoir, the OWL-Lite implementation was manually derived 
from the OntoNeuroLOG initial expressive representation to Java 
classes. The data model based on this ontology is dedicated to 
the neuroimaging field and is structured around research studies 
in which patients are examined to produce image acquisitions 
or clinical scores. Each image acquisition is composed of data-
sets represented by acquisition parameters and image files. For 
security and legal reasons, all data on the system are anonymous 
by default, this can be customized with specific algorithm (e.g., 
defacing is not currently implemented but can easily be embed-
ded in a specific anonymizer that Shanoir will call).

Raw as well as derived (i.e., post-processed) image files can also 
be imported into the system using medical imaging technology 
[e.g., media based on the Digital Imaging and Communications 
in Medicine (DICOM) standard, picture archiving and com-
munication system (PACS), or image files in the Neuroimaging 
Informatics Technology Initiative (NIfTI)/Analyze-style data 
format] using online wizards, which complete related metadata, 
command line tools, or SOAP web services. Once identity infor-
mation has been removed from raw data during the importation 
process, the DICOM header content is automatically extracted, 
enriched, and inserted into the database with the customizable 
“Study Card” feature. Shanoir can also record any execution 
process for retrieval of workflows applied to a particular data-
set along with the derived data.

Clinical scores from instrument assessments (e.g., neuropsy-
chological tests) can be recorded and easily retrieved and exported 
in different formats (Excel, CSV, and XML). The instrument 
database is scalable and new measures can be added in order to 
meet specific project needs (Figure 3). Scores, image acquisitions, 
and post-processed images are bound together, so that relation-
ships can be analyzed. Using cross-data navigation and advanced 
search criteria, the user can quickly indicate a subset of data for 
download. Client-side applications have also been developed to 
locally access and exploit data though web services. The security 
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FIGURe 2 | shanoir data organization.
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features of the system require authentication with user rights set 
for each study. A study manager can define the users allowed to 
see, download, or import data into his/her study or simply make 
it public.

In practice, Shanoir serves neuroimaging researchers by 
efficiently organizing their studies while cooperating with other 
laboratories. By managing patient privacy, Shanoir offers the 
possibility of using clinical data in a research context. Finally, it is 
a handy solution for publishing and sharing data with a broader 
community.

study Card and Quality Control Concepts
Images can be imported in Shanoir from various sources: 
DICOM media, PACS (with DICOM Query and Retrieve), 
and 3D/4D image files (in NIfTI/Analyze format). Users are 
guided step-by-step through online forms to perform imports. 
In addition to archiving DICOM files, NIfTI copies are auto-
matically generated and saved. This is convenient since the 
NIfTI format is better suited to perform image processing (such 
as registration, segmentation, and statistical analysis) than the 
DICOM format.

The Study Card
During archiving, the DICOM files are processed in two phases. 
The first phase de-identifies the images. The second phase 

populates the database with the new metadata items generated 
from the DICOM header and enriched with the Study Card, 
which enables online metadata wrapping between the local data 
to be imported (center, acquisition equipment, etc.) and the 
semantic concepts of the research study to which the data will 
be assigned. The actual DICOM metadata can thus be aligned 
with the ontology and also provides additional allocation of 
concepts to the stored images that are more closely related to 
the research study protocol (e.g., functional MRI, perfusion 
imaging, contrast agent, diffusion imaging, etc.). The mecha-
nism behind this feature is based on a set of rules that the user 
predefines to associate specific acquisition equipment and a 
specific data production site to the desired research study. Each 
rule determines the specific value of a metadata item according 
to the value(s) of one or more specific DICOM tag(s) (e.g., Series 
Description, see Figure 4). This greatly facilitates the consistent 
recording and alignment to the ontology of metadata for all data 
in a research study without the need for tedious workflow during 
the online import of images. Due to the simplicity of the process, 
no specific skills are required to perform data import, and it only 
takes a few minutes over the Internet. The “Study Card” concept 
makes possible an automatic quality control of the imported 
data using their metadata. For instance, a conformal statement 
can be attached to the imported data according to a match score 
to the Study Card rules.
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FIGURe 3 | shanoir “instrument” database can be used for attaching clinical scores to images (e.g., edss score in Ms). An instrument can be any 
record where an alphanumerical value can be attached.
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Quality Assessment
Shanoir’s next major functionality concerns the quality check 
of the images for conformity of the imported data with the pre-
defined study protocol and ensures the integrity of the archived 
data. We have identified three levels of control:

• study protocol: controls the time interval between examina-
tions (expected visits) as defined by the principal investigator 
(PI) of the study;

• acquisition protocol: controls the presence of all the sequences 
of the imaging protocol as defined by the PI of the study; and

• raw data:

⚬ the software automatically checks the range of parameters 
for a given protocol, experimental center, or acquisition 

scanner as defined in the Study Card by the PI’s technical 
representative;

⚬ visual inspection of the image quality and integrity can be 
reported and assigned to the imported data; however, the 
mechanism to detect the visual quality is not yet integrated 
in the Shanoir environment.

In the next release of Shanoir, quality assessment will be present 
as flags (flawless, acceptable, or inadmissible) in the database.

This QA capability does not address the control of image 
formation as, for instance, to check image artifacts (bias, 
motions, ghosting, etc.). This category of QA can be imple-
mented in a dedicated image visualization and processing 
tools that interoperate with Shanoir through the dedicated 
web services.
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FIGURe 4 | example of a “studyCardRule” for a 3d t1-Gd sequence.
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Web Portal
Shanoir provides user-friendly secure web access and offers an 
intuitive workflow to facilitate the collection and retrieval of neu-
roimaging data from multiple sources (Figure 5). On the home 
page, the user has direct access to the most frequent functionali-
ties: Find and Download Datasets, Explore the Research Studies, 
Find Clinical Scores, and Import Data (Figure 6). On the top of 
all pages, the user always has a very complete navigation menu 
that leads to all services.

Interoperability
Interoperability is a very important concern for the Shanoir 
environment. Shanoir offers web services interface that is open 
to a large variety of clients. We already offer several dedicated 
interface that are already in used by different external applica-
tions. Hereafter, we described four of these external services that 
are currently available and run independently to each other: 
ShanoirUploader, QtShanoir, medInria, and iShanoir developed 
either in C++, Java, or Objective-C environments.

SOAP for Integration of Services
The Shanoir web services interface is based on the SOAP. 
Messages between clients and the server are exchanged using 
Extensible Markup Language (XML) with well-defined ele-
ments. The Hypertext Transfer Protocol (HTTP) is used with 
Transport Layer Security (TLS). Elements and services are 
described with the Web Service Description Language (WSDL). 
Based on this description, client stubs can be automatically 
generated to simplify the connection of new clients. The web 
service layer is implemented with the Java API for XML web 
services (JAX-WS). Shanoir offers numerous dedicated web 
services:

• “EntityCreator”: creates new entities, such as creating a new 
subject in the database

• “CredentialTester”: validates if username and password are 
correct

• “Downloader”: downloading files/datasets on base of dataset IDs

• “CenterFinder”: find center(s) based on different search crite-
ria, i.e., study or investigator

• “DatasetAcquisitionFinder”: find acquisition(s) based on IDs 
or examinations

• “DatasetFinder”: find dataset(s) based on multiple search 
criteria/filters

• “DatasetProcessingFinder”: find dataset processing(s) based 
on IDs

• “ExaminationFinder”: find examination(s) based on multiple 
search criteria/filters

• “ExperimentalGroupOfSubjectsFinder”: find group of subjects 
based on multiple criteria

• “InvestigatorFinder”: find investigator(s) based on IDs or 
centers

• “MrDatasetFinder”: find MR dataset(s) based on multiple 
search criteria/filters

• “StudyFinder”: find study/-ies based on multiple search 
criteria/filters

• “SubjectFinder”: find subject(s) based on IDs with multiple 
filters

• “DatasetImporter”: import dataset files to already existing 
entities in the database

• “ReferenceLister”: shows list of reference strings stored in the 
database

• “FileUploader”: upload files in local archive for later import, 
used by ShanoirUploader

ShanoirUploader for Seamless Integration of Data
“ShanoirUploader” is a Java desktop application that transfers 
data securely between a PACS and a Shanoir server instance 
(e.g., within a hospital). It offers both a direct DICOM query/
retrieve connection to search and download images from a local 
PACS and a DICOM CD upload facility. After retrieval, the 
DICOM files are locally anonymized and then uploaded to the 
Shanoir server (the anonymization algorithm can be custom-
ized according to specific operational/regulation constraints). 
The primary goals of the application are to enable mass data 
transfers between different remote server instances and reduce 
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FIGURe 6 | shanoir menu organization (on top of all web pages).

FIGURe 5 | shanoir web portal summary of the main functionalities.
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user waiting time when importing data into Shanoir. Most of 
the import time thus involves data transfer.

“ShanoirUploader” requires a local Java installation. For 
a simpler distribution and installation of the software, Java 

Web Start (JWS) can be used. The application can be installed 
with a simple web link that is opened in a web browser. Java 
takes care of the installation and, later, of automatic updates. 
Internal components are based on Java Swing for the graphical 
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FIGURe 7 | shanoir Uploader architecture for secure transfer of local PACs data to a shanoir server (left) and user interface (right).
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user interface (Figure  7), dcm4chee3 libraries to connect with 
a PACS and Java, and WebServices (JAX-WS) to transfer data 
to a Shanoir server.

Apache Solr for Metadata Querying
Shanoir integrates the open source enterprise search plat-
form Apache Solr,4 which provides users with a vast array of 
advanced features such as near real-time indexing and queries, 
full-text searching, faceted navigation, autosuggestion, and 
autocomplete.

One of the most important features of the Solr search is 
the faceted navigation. Facets correspond to properties of 
the Solr information elements and are derived by analyzing 
pre-existing metadata that are related to the ontology model 
used by Shanoir.

Shanoir users can access all metadata with a simple Solr 
search bar. After entering at least one character, a user will be 
automatically guided to complete his search. Data are sorted 
by categories and dynamically displayed once a facet is chosen. 
By clicking on Solr data results, users access all the additional 
information available in Shanoir corresponding to their search, 
and then use these queries for local downloading (Figure 8).

All metadata are indexed in a JBoss server that hosts the Solr 
servlets. A custom security post-filter has also been developed 
and implemented in Shanoir to control user access. This filter 
retrieves user identification and access rights in Shanoir and 
interacts with the Solr server to show relevant results that the 
user is allowed to access.

iShanoir for Mobile Data Access
An iOS application, iShanoir, has been developed for iPhones 
and iPads. It opens a secure connection with a Shanoir server 

3 http://www.dcm4che.org. 
4 http://lucene.apache.org/solr/. 

and enables the user to access data stored on a Shanoir server. 
With iShanoir, the user can navigate within the Shanoir data tree 
structure on the server. After data are selected from the mobile 
app, the images can be downloaded to the local device, displayed, 
and analyzed with any local DICOM viewer or through cloud 
services (i.e., Dropbox, iCloud, Google, or OneDrive).

The iShanoir application has been developed with Xcode and 
implemented in Objective-C. For the graphical user interface, 
two storyboards have been developed to fit the different display 
sizes between iPhones and iPads (Figure 9). It uses the follow-
ing iOS frameworks: Foundation, CoreFoundation, UIKit, and 
CFNetwork. For implementation of the SOAP web services client, 
the WSDL2ObjC utility has been used as it offers a client stub 
code generation based on the server WSDL document.

QtShanoir for Image Processing
Shanoir web services may also be queried from standalone C++/
Qt applications through the QtShanoir library,5 which uses SOAP 
web services provided by a Shanoir server to access and display 
studies, patients, and data with their associated metadata. In 
QtShanoir, a set of Qt widgets are defined that can be embed-
ded in any Qt application. The library was used to implement 
a Shanoir query plugin inside the medInria visualization and 
processing software6 for interrogation and downloading of image 
data from Shanoir for processing within medInria, for example, 
using the available processing tools and then upload the process-
ing results back to the Shanoir server with the correct metadata 
values (Figure 10).

distribution of shanoir
The Shanoir server can be freely downloaded on request. It is 
currently deployed using Docker containers running on a Linux 

5 QtShanoir library: http://qtshanoir.gforge.inria.fr. 
6 medInria: http://med.inria.fr. 
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FIGURe 8 | example of Apache solr search of the shanoir server.
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kernel. Linux containers are implemented using namespaces for 
locating each type of resource. Dockers are tools for managing 
lightweight method of virtualization (named containers) on 
Linux that are lighter than traditional virtual machines. The host 
and guest systems share the same kernel. The kernel is responsible 
for host ↔ guest and guest ↔ guest isolation (the result of system 
calls depends on the container in which the calling process is 
running). As described in Figure 11, a minimal Shanoir deploy-
ment consists of four servers running in at least four separate 
containers:

• “shanoir_container”: the actual Shanoir server. It relies on a 
mysql container (for the database) and on the PACS container 
(for archiving DICOM data),

• “pacs_container”: the DICOM PACS server, currently man-
aged by dcm4chee,7

• “mysql_container”: the database server that is hosting two 
databases: shanoirdb and pacsdb,

• “nginx _container”: the web frontend server based on a nginx8 
HTTP server configured as a reverse-proxy for reaching the 
Shanoir server. It is the only server that is publicly reachable. 
It provides TLS encryption and security filtering, and

• “smtpsink _container”: an optional SMTP server for outgoing 
e-mails.

7 http://www.dcm4che.org/. 
8 http://wiki.nginx.org/. 
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FIGURe 9 | example of storyboard interfaces under the ishanoir ios mobile application connected to a shanoir server.
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dAtA RePosItoRIes

Each Shanoir repository has an administrator that manages the 
access rights of the repository. Each user requests an account 
through a web-based form and specifies which study he/she 
wants to access, contact, role in the study, required level of 
expertise/access (guest, user, expert, and admin), etc. According 
to the information provided, the Shanoir administrator of the 
repository determines whether the user can access the system. 
Access to a specific study is granted by the person responsible for 
the study (i.e., the PI of the research study or the official repre-
sentative). Depending on these settings, the new user will be able 
to see, download, and import datasets or even modify the study 
parameters. The corresponding rights are set for a limited time 
and must be renewed regularly. If requested, the user can receive 
a report by e-mail each time data are imported into the study.

the shanoir@Neurinfo Repository
Started in 2009, the Neurinfo MRI research facility9 promotes 
translational clinical research and supports the development 

9 http://www.neurinfo.org/. 

of clinical research, technological activity, and methodological 
activity. It offers resources for in  vivo human imaging acquisi-
tion, image data analysis, and image data management. A large 
community of users, both clinicians and scientists, uses the 
resources as part of local, national, and international imaging-
based research projects.

All data produced at Neurinfo for academic or clinical 
research purposes are managed through a dedicated Shanoir@
Neurinfo repository (Figure  12) administered by the facil-
ity’s staff. The Shanoir@Neurinfo server also hosts data from 
imaging studies at multiple sites. In total, around 2To of 
data from 42 centers and 50 MR scanners are archived at this 
repository. The amount of data increases by 30  GB per month  
(see table in Figure 12).

In daily practice, DICOM data are imported by a techni-
cian from either a local PACS, a CD/DVD, or a disk drive 
containing the DICOMDIR in its root directory and the  
DICOM files.

The clinical studies stored on the Shanoir@Neurinfo server 
concern the whole body (brain, spine, heart, lung, pelvis, 
vasculature, etc.) with a major focus on brain anatomy and 
function in normal control and pathological populations. 
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FIGURe 10 | example of a shanoir query service within the medInria environment by using Qtshanoir web services.
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Out of the 70 or so ongoing research studies on the Neurinfo 
platform, 75% relates to brain imaging, 15% concern abdomi-
nal imaging, and 10% concern heart imaging. Among the 
neuroimaging clinical studies, multiple sclerosis, dementia, 
tumors, stroke, and mood disorders are the most investigated  
pathologies.

Depending on the specific nature of the research study, typical 
neuroimaging protocols include structural imaging, functional 
BOLD MRI, Arterial Spin Labeling perfusion imaging, diffusion 
imaging, relaxometry sequences, pre- and post-gadolinium T1w 
sequences, or vascular sequences. The following studies are exam-
ples of research carried out with the Shanoir@Neurinfo service 
as well as the types of data that are managed by the Shanoir@
Neurinfo repository.

Along with the MRI raw data, post-processed images can be 
stored for each dataset. For example, in a study on functional 
motor activation, the motor areas were delineated by a trained 
radiologist and associated with each 3D T1w image. Multiple 
sclerosis (MS) lesion segmentation masks can also be attached 

to the examination. In addition to image data, clinical scores 
can also be stored for each subject in the repository. Several 
MS clinical studies collect measurements such as the number 
of T2 new lesions, and number of T1w Gd enhancing lesions 
or clinical scores such as EDSS. These measurements are also 
included in the search engine and consequently easily accessible 
through requests. For more advanced clinical follow-ups, Shanoir 
can easily be interfaced with existing databases.

The general policy for the Shanoir@Neurinfo repository for 
dissemination of data related to a particular study is decided 
upon beforehand with the PI in compliance with the informed 
consent form approved by the ethics committee and signed 
by the participant. Any opening of the data to third parties is 
submitted to the approval of the PI prior to allowing (complete 
or partial) access to a third-party user. Nonetheless, to ensure 
dissemination and the best use of data acquired from public 
funding, the Neurinfo team strongly encourages investigators 
to share their data, which is usually done after an embargo 
period.
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FIGURe 11 | schematic diagram of a shanoir server. There is one set of containers for production: prod-Shanoir, prod-pacs, prod-mysql, and prod-nginx, and 
one set for qualification: qualif-shanoir, qualif-pacs, qualif-mysql, and qualif-nginx (not represented here). The arrows represent relationships between containers.
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shanoir@oFseP Repository
The French Multiple Sclerosis Observatory (OFSEP),10 a major 
epidemiological tool on MS for the scientific community, was 
selected after a call for projects for Cohorts 2010, funded by 
France’s Investment in the Future Program. It is a collaborative 
project involving over 40 MS research centers in France. The 
aim of the project is to build and maintain a nationwide cohort 
of patients with MS and enrich the clinical data with biological 
samples, socio-economic data, and neuro-images.

10 The OFSEP MS Cohort observatory: http://www.ofsep.org/en/. 

A dedicated imaging working group is in charge of acquiring, 
processing, and integrating imaging and derived imaging data 
into a shared imaging resource center (IRC), and ensuring that 
the IRC is integrated with clinical databases. The consistent 
assessment of MRI-based measurements on a large scale requires 
robust and efficient image processing pipelines. A further 
goal of this project is to establish an information technology 
infrastructure enabling audited access to imaging data, as well 
as a virtual laboratory environment supporting the distributed, 
synergistic development, validation, and deployment of special-
ized image analysis procedures developed by different national 
and international research centers. To ensure easy access to the 
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FIGURe 12 | evolution of the shanoir@Neurinfo repository Global statistics (left) and service Infrastructure (right).
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imaging data and allow modifications, queries, annotations, and 
access control, the Shanoir environment has been selected. It 
will also ensure interoperability and data management related 
to the imaging aspect of the cohort (the clinical part is managed 
by the EDMUS11 system). For this purpose, we have set up a 
specific Shanoir@OFSEP image repository that is currently in 
its pilot phase.

Begun in 2012, the Shanoir@OFSEP server was installed to 
store the imaging data of the OFSEP cohort, which will study 
the neuroimaging data of 40,000 MS patients over the next 
10 years. A consensus has emerged concerning the acquisition 
protocol, which requires (at least) one brain MRI every 3 years, 
one spinal MRI every 6 years, i.e., 200,000 MRIs over 10 years. 
The Shanoir@OFSEP database will grow during this period and 
beyond (Cotton et al., 2015).

Since OFSEP is a nationwide project covering many patients, 
many IRCs, and many different kinds of MRI acquisition equip-
ment, a national repository with nationwide access and uniform 
measures was therefore needed. The OFSEP imaging working 
group is continuously gathering new acquisition centers volun-
teering to take part to the cohort. In Shanoir@OFSEP, there are 
currently about 30 IRCs which include 31 pieces of MRI acquisi-
tion equipment representing 14 different MR scanner models 
from three MR manufacturers (Siemens, Philips, and GE). All 
the centers are importing data in one main study called the 
“Mother Cohort.” Each center follows the OFSEP protocol, which 
will be checked through the quality control module as described 
in Section “Quality Assessment.” If necessary, derived imaging 
data can then be imported back to the server in order to refer to 
potential post-processing information and MS-specific imaging 
biomarkers to make them available for authorized users.

Currently, the Shanoir@OFSEP repository is hosting five stud-
ies: the “Mother Cohort” (200,000 MRIs planned over the next 

11 EDMUS: http://www.edmus.org. 

10 years) as well as four MS imaging clinical research projects. 
More of these “OFSEP-labeled” clinical research projects or 
nested cohorts will be integrated in coming years. Everyone can 
join the “Mother Cohort” study as long as they use the OFSEP 
protocol. One can also ask the OFSEP to contribute to the project 
through his study as soon as the PI presents his research study 
subject to the OFSEP scientific committee that can grant (or 
not) the hosting. Data hosted on Shanoir@OFSEP will remain 
confidential (private) throughout the duration of the study but 
can be made available to all researchers through a specific OFSEP 
application.

CoNCLUsIoN ANd PeRsPeCtIVes

The Shanoir SaaS manages the sharing of distributed informa-
tion sources in neuroimaging over the Internet, whether these 
resources are located in centers of experimentation, clinical 
departments in neurology, or research centers in cognitive neu-
rosciences or image processing. Through the description of two 
repositories that administer a Shanoir environment (Neurinfo 
and OFSEP), we have illustrated how a large variety of users 
can diffuse, share, or access neuroimaging information between 
peers almost as easily as if the data were stored at their local 
hospital, research lab, or company. Through the description of 
the Shanoir software environment, we have illustrated how neu-
roimaging data can be structured, managed, archived, visualized, 
and shared.

In the medium term, we plan to integrate Shanoir’s resources 
and services with the open community through the French 
National Infrastructure’s “France Life Imaging” (FLI),12 and more 
specifically, the “Information Analysis and Management” (IAM) 
node that is dedicated to provide large scale IT infrastructure 
for in  vivo imaging. For this purpose, the FLI–IAM node will 

12 France Life Imaging https://www.francelifeimaging.fr) with the IAM node 
(https://project.inria.fr/fli/) is a national infrastructure for in vivo imaging. 
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build and operate an infrastructure to store, manage, and process 
in vivo imaging data from human or preclinical procedures. The 
main achievements of the IAM node will consist of a versatile 
software platform composed of several subcomponents that will 
connect hardware and software facilities to build:

• an archiving and management infrastructure of in  vivo 
images as well as provide solutions to process and manage 
the acquired data through dedicated software and hardware 
solutions;

• versatile image analysis and data management solutions 
for in  vivo imaging to facilitate interoperability between 
production sites and users and provide heterogeneous and 
distributed storage solutions for raw and metadata indexing 
(e.g., through the use of semantic models).

As such, we are under integrating Shanoir as one of the data 
management solutions of the FLI-IAM facilities along with a 
collection of companion data management software platforms 
such as CATI-DB13 and ArchiMed, or a collection of processing 
clients or high-performance computing workflow facilities such 
as medInria, BrainVisa,14 and the VIP platform.15 For this pur-
pose, within FLI-IAM, we are setting up the “glue” between these 
platforms that will make it possible to connect and interoperate 
between them. In addition, through FLI-IAM, we will provide 
the necessary information for additional resources to join the 

13 http://www.cati-neuroimaging.com. 
14 http://brainvisa.info. 
15 http://www.creatis.insa-lyon.fr/vip. 

FLI-IAM infrastructure by defining the basic conformal state-
ment that will make the technology and scalability of FLI-IAM 
possible.

Nonetheless, as described in Section “Introduction,” there 
are a lot of similar initiatives going on recently in the medical 
imaging research field, such as Human Brain Project, ADNI, 
XNAT-based solutions, etc. For these initiatives, as well as 
for Shanoir, the goal is to share the data at a large extent. This 
cannot be done without a significant additional effort on stand-
ardization in the field and on interoperability between software 
platforms addressing similar services. This is what motivates the 
integration of Shanoir in the French FLI-IAM e-infrastructure 
initiative. This challenge of tomorrow is to continue this effort 
at the international level.
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The data management needs of the neuroimaging community are currently addressed 
by several specialized software platforms, which automate repetitive data import, 
archiving and processing tasks. The BIOMedical Imaging SemanTic data management 
(BIOMIST) project aims at creating such a framework, yet with a radically different 
approach: the key insight behind it is the realization that the data management needs 
of the neuroimaging community—organizing the secure and convenient storage of large 
amounts of large files, bringing together data from different scientific domains, managing 
workflows and access policies, ensuring traceability and sharing data across different 
labs—are actually strikingly similar to those already expressed by the manufacturing 
industry. The BIOMIST neuroimaging data management framework is built around the 
same systems as those that were designed in order to meet the requirements of the 
industry. Product Lifecycle Management (PLM) systems rely on an object-oriented data 
model and allow the traceability of data and workflows throughout the life of a product, 
from its design to its manufacturing, maintenance, and end of life, while guaranteeing 
data consistency and security. The BioMedical Imaging—Lifecycle Management data 
model was designed to handle the specificities of neuroimaging data in PLM systems, 
throughout the lifecycle of a scientific study. This data model is both flexible and scalable, 
thanks to the combination of generic objects and domain-specific classes sourced from 
publicly available ontologies. The data integrated management and processing method 
was then designed to handle workflows of processing chains in PLM. Following these 
principles, workflows are parameterized and launched from the PLM platform onto a 
computer cluster, and the results automatically return to the PLM where they are archived 
along with their provenance information. Third, to transform the PLM into a full-fledged 
neuroimaging framework, we developed a series of external modules: DICOM import, 
XML form data import web services, flexible graphical querying interface, and SQL 
export to spreadsheets. Overall, the BIOMIST platform is well suited for the management 
of neuroimaging cohorts, and it is currently used for the management of the BIL&GIN 
dataset (300 participants) and the ongoing magnetic resonance imaging-Share cohort 
acquisition of 2,000 participants.
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InTRoDUcTIon

provenance complexity in neuroimaging 
Studies
Cognitive neuroscience is multidisciplinary “by its very nature” 
(Van Horn et al., 2001) and relies on a large set of complementary 
approaches for probing brain function and behavior. Different 
combination of methods, such as computerized experimental 
psychology, magnetic resonance imaging (MRI), electro and 
magneto encephalography (EEG/MEG), functional near-infrared 
spectroscopy, eye tracking, genetics, etc., can be used during a 
scientific project and require an active interaction between many 
specialties—physics, medicine, mathematics, and engineering 
among others. Resulting data are complex, and neuroscience 
researchers have to deal with many data sources, natures, and 
types of processing (Goble and Stevens, 2008).

One can only expect the heterogeneity of the tools and data 
formats involved in research to increase over time. With more 
and more studies—neurogenetic, neuroepidemiology, and 
longitudinal—requiring large cohorts and therefore producing 
huge amounts of data in a multicentric context. Besides, these 
large-scale studies may need to be aggregated into meta-analyses 
to reach the adequate level of statistical power, given the stagger-
ing number of hypotheses being tested. This implies the frequent 
reuse of pre-existing data, for validation of new findings. In 
addition, the high cost of data (both acquisition and processing) 
and the need for reproducibility make data reuse and sharing a 
necessity (Yarkoni et al., 2010; Poline et al., 2012).

The information of what a piece of data is, when, where, and 
how it was produced, why and for whom it was performed is called 
provenance—the origin and history of a set of data (Simmhan 
et  al., 2005). The provenance in BioMedical Imaging studies is 
complex: acquisition devices and parameters impact raw data, 
processing algorithm, parameters, and tools impact on derived 
data, processing input traceability is intricate. All this informa-
tion is required to be able to reproduce scientific results and also 
to share data and understand how specific data were obtained.

Sharing study data between scientific teams—inside and 
outside the institutions that produced the data—implies to 
ensure consistency of data and their provenance on one side, and 
data security on the other side, particularly on studies involving 
human subjects.

The lifecycle of a study can be described by four stages: (1) 
study specifications define the purpose of the study, what data will 
be acquired, stored, and analyzed, (2) raw data are acquired with 
appropriate devices and following protocols, (3) derived data 
are generated from raw data by analytical means, and (4) results 
are published and the data may be shared with the community. 
Figure 1 summarizes the links between the stages with examples 
of data at each stage along with required provenance information.

existing Systems for the Management of 
the provenance of neuroimaging Studies
So far, this challenging need for neuroscience data sharing has 
been met by the emergence of dedicated systems, especially for 
modalities that were made affordable to researchers because they 

were so widely used in hospitals, and this chiefly applies to MRI. 
In this case, the best solution was to build upon the pre-existing 
medical standard, namely, Digital Imaging and COmmunications 
in Medicine (DICOM), with the development of research-
dedicated picture and archival communication systems (PACS). 
Compared with traditional clinical PACS, neuroimaging data 
management systems can manage research projects involving 
large sets of subjects instead of being confined to the individual 
patient, storing data from other sources than DICOM entities 
and controlling access to the data in a fine-grained way. They 
also include procedures to clean patient health information from 
the data to comply with human research ethical norms, visual 
and/or automated quality control procedures, and are capable of 
interacting with computing clusters or workflow managers for 
data processing.

Existing neuroimaging data management systems so 
far—XNAT (Marcus et  al., 2007a), LORIS (Das et  al., 2012), 
COINS (Scott et al., 2011), IDA (Crawford et al., 2016), MIDAS 
(Kitware Inc.), HID (Keator et  al., 2016), NIDB (Book et  al., 
2013), SHANOIR (Barillot et al., 2015), etc.—were implemented 
using the standard web technologies, in the form of J2EE or PHP 
web applications, with a browser-based graphical frontend and 
a relational database backend, and some also provide means to 
automate interactions through application programing interfaces 
(APIs; REST or SOAP). Such web systems leverage DICOM 
libraries such as dcm4che or DICOM toolkit to implement at least 
a DICOM receiver and offer separate upload services for non-
DICOM data, over HTTP. This scalable web architecture makes it 
possible to serve brain imaging and associated data to distant users 
over the web or store data in the cloud, as best exemplified with 
XNAT at the Human Connectome Project. Naturally, with this 
multiplication of like-minded, yet idiosyncratic web applications 
for neuroimaging data management, came the need for database 
federation and interoperability, and for a common lexicon across 
different systems, such as shared ontologies (Gupta et al., 2008).

A detailed comparison of 18 neuroimaging data management 
systems is presented in (Allanic et al., 2017). Criteria of compari-
son are:

 – Type of managed data: which disciplines (imaging, genet-
ics, psychology, clinical, etc.) and which level of data (raw, 
derived, and published) can be managed in the system. Most 
of the existing data management systems focuses on one or 
two levels (raw and derived or derived and published) and 
most of them manage only imaging data [except HIS (Keator 
et al., 2009), LORIS (Das et al., 2011), XNAT (Marcus et al., 
2007b), and fMRIDC (Van Horn et al., 2001)].

 – Provenance strategy: how is the provenance described and 
made available to enable data sharing and reuse. It appears 
that data provenance is sometimes more precise and complete 
in systems managing published results, as users must provide 
additional metadata that describe how data were produced to 
be allowed to submit their data (Fox et al., 2005); openfMRI 
(Poldrack et  al., 2013), fMRIDC, and BrainMap (Fox and 
Lancaster, 2002) are good examples.

 – Data model flexibility: how the system can be adapted to new 
types of data, new protocols. Few data management systems 
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allow to customize their data model; among them REDCap, 
COINS (Scott et al., 2011), XNAT, CVT (Gerhard et al., 2011), 
NiDB (Book et  al., 2013), DFBIdb (Adamson and Wood, 
2010), and Neurolog (Dojat et al., 2011).

 – Integration of processes and existing tools: how pipelines, 
quality workflow, and visualization software can be integrated 
to the system. Some neuroimaging data management systems 
allow to launch pipelines and to visualize results directly from 
the database interface.

There is to our knowledge no existing data management 
system that allows to manage and to analyze study data from 
study specifications to publication; we aim at providing such an 
environment.

product lifecycle Management (plM) 
Systems: A Key to provenance 
Management
The main assumption in our work is to reuse a proven data 
management system designed for manufacturing industry to the 
management of data from neuroimaging studies at every stage, 
ensuring full provenance.

Regarding data management, the manufacturing industry is 
confronted with the same issues as neuroimaging: heterogeneous 

product data must be tracked throughout the product lifecycle—
product requirement, design, manufacturing, maintenance, and 
end of life. Products are made from the collaboration of multi-
disciplinary teams, not always working on the same site. PLM 
system has been designed since the 1990s to answer the needs of 
the manufacturing industry and enable the storage, versioning, 
and collaborative work on computer-aided design (CAD) data, 
with a strong focus on traceability. The aim of PLM systems could 
be summarized by providing the right data at the right person 
and at the right moment: they facilitate collaborative and concur-
rent work, in addition to multi-sites data sharing, answering the 
imperative need to exchange data seamlessly between various 
geographic locations within a worldwide company (Kiritsis et al., 
2003; Terzi et al., 2010).

Although the design of PLM software is not oriented toward 
neuroimaging data, or any kind of scientific data in particular, 
their inherent properties make them a very compelling IT 
solution for scientific laboratories, and neuroimaging labs in 
particular (Allanic et al., 2017).

outlines of the paper
We present in the paper the BIOMedical Imaging SemanTic data 
management (BIOMIST) platform, whose aim is to respond to 
the need of data management, sharing, reuse, and reproducibility 
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of the neuroimaging domain by ensuring automated provenance 
tracking throughout the lifecycle of a study and access to analysis 
software in a unique environment.

The targets of the BIOMIST platform are new neuroimaging 
studies from small (100 subjects) to medium (5,000 subjects) 
cohort, with multimodal, longitudinal, and multi-sources acqui-
sitions requiring complex pipelines, quality controls, and efficient 
access management.

Section “Design: The BIOMIST Platform” presents the 
BIOMIST platform and the integration of its components. The 
technical details of the implementation of the platform are devel-
oped in Section “Implementation.” The benefits of the platform 
were tested on the BIL&GIN dataset and the I-Share study: 
results are presented in Section “Application.” This paper closes 
with a discussion and leads for future work toward the BIOMIST 
platform in Section “Discussion.”

DeSIgn: The BIoMIST plATFoRM

This section presents the BIOMIST platform, whose purpose is to 
manage heterogeneous data of neuroimaging cohorts, from study 
specifications to published results, in order to ensure data repro-
ducibility, sharing, and reuse. Section “Design Method” explains 
our design method, and then sections “Key Principles of PLM,” 
“The BMI-LM Data Model to Manage Data and Provenance,” 
“Mapping Strategy for Data Import,” “The DIMP Method for 
Integration of Processing Pipelines,” and “Querying Strategies” 
develop the characteristics of each component of the platform: 
the core PLM system is customized by the BioMedical Imaging—
Lifecycle Management (BMI-LM) data model, data are imported 
into the PLM thanks to mapping strategies and processed with 
the data integrated management and processing (DIMP) method, 
to end with, users query data managed by the PLM through two 
interfaces, graphical and Open Database Connectivity (ODBC). 
Figure 2 shows the integration of the components of the BIOMIST 
platform.

Design Method
To understand the concerns of daily neuroimaging research 
work and the associated data management issues, we studied 
the literature and interviewed the staff of a representative neu-
roimaging laboratory (GIN, from the University of Bordeaux, 
France). Ongoing projects at this laboratory rely on structural 
and functional MRI acquisitions performed over hundreds of 
participants, as well as smaller scale task-based functional MRI 
projects. Over the 2006–2009 period, this group designed its own 
relational database (GINdb, based on SQL technology) in order to 
manage experiments: processing data, subject data and paths to 
files stored on disks of their IT system (Joliot et al., 2009).

Eleven members of the research group (eight tenured research-
ers, two research engineers, and one post doc) were interviewed, 
by small groups of two or three people to avoid group effects. They 
were asked to express their needs: what was missing in GINdb 
and what would be their ideal system. They mainly highlighted 
that the data model should feel natural for the users, especially 
regarding the queries, and that it should be flexible enough to 
allow future changes. Besides, they would like to launch analyses 

batch directly from the database and to label data with one or 
several statuses, such as “valid exam” or “checked data.”

From these interviews and the review of the literature, four 
main axes are defined:

 1. Provenance: manages all the data generated during a study, 
from its specifications to published results, and track the 
associated provenance to be able to share and reuse data opti-
mally. The PROVenance Data Model (PROV-DM) standard is 
developed by the World Wide Web (W3) consortium to help 
exchanging data, a main objective is to comply with it.

 2. Heterogeneity: accepts all data formats and manage the con-
cepts of the disciplines involved in a neuroimaging study.

 3. Integration: allows automated data import, processing launch, 
data analysis, and visualization from the platform.

 4. Flexibility: allows data model changes without consequences 
on existing data to handle new data format, as well as semantic 
changes, evolution of acquisition protocols.

To validate the resulting BIOMIST platform, we tested it with 
two use cases from the GIN: (1) the 300 subjects BIL&GIN and (2) 
the I-Share study. Results are presented in Section “Application.”

Key principles of plM
PLM systems supports multisite sharing and collaborative 
work, by managing product data throughout its lifecycle along 
with advanced access management features that guarantee data 
security and with file and database replication mechanisms that 
allows multisite collaboration even through low latency or low-
bandwidth networks.

Product Lifecycle Management systems do not only manage 
data (i.e., documents/files + metadata) but concepts, thanks to 
its object-oriented data model. Concepts at every phase of the 
product lifecycle are represented by objects instantiated as items 
whose versions are tracked. Items can be classified with a fully 
flexible hierarchy of concepts and vocabulary. Any kind of file 
types and formats are allowed and are stored in objects called 
datasets. Every event on an item is tracked: it is possible to know 
who created, modified, updated or validated it, when and why. 
Automated or manual workflows can be launched by users from 
the system; these workflows can be customized and can be used to 
implement a process with validation from several users (e.g., vali-
dating an acquired dataset) and to perform automated actions on 
items or datasets (create new version, add status, update metadata, 
comment, classify, etc.). A typical application in manufacturing 
industry would be a workflow that follows validations of a design 
change in a product. Query facilities complete the features of 
PLM systems: queries can be customized, both to retrieve items 
and datasets and to generate reports. Data can be accessed from 
the web and visited directly into the PLM interface, as soon as a 
suitable visualization software is integrated, or downloaded on 
users’ computer, automatically opened in the right software. For 
managing large set of data, the PLM infrastructure includes vari-
ous replication strategies that enables access to sites that may have 
low latencies or low-bandwidth network connections.

Data security is ensured in PLM systems through their 
infrastructure and an advanced module for access management. 
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The infrastructure of PLM systems is composed of four tiers 
(resource, enterprise, web application, and client tiers) that are 
presented in Figure 3. In resource tier, the SQL database man-
ages data instances and metadata, and one or several volumes 
contain data files that may be encrypted according to users’ needs. 
This organization implies that data (files and instances) can only 
be accessed through a client who ensures data consistency. An 
account is required to connect to the client: users are associated 
to roles and belong to group and projects, which determine their 
level access to the data stored in the PLM system (none, read, 
write, export, promotion, validation, etc.).

The compatibility of PLM features with the four axes required 
for neuroimaging data management—that were highlighted in 
Section “Design Method”—is presented in Table 1. The basic fea-
tures of PLM systems allow (1) to fulfill context and traceability of 
the provenance axis, (2) to manage every data types and formats, 
which fulfill part of the heterogeneity axis, and (3) the integration 
of visualization software and the possibility to connect to external 
software, web services, etc. These features do not cover all parts 
of the perimeter of the four axes. Therefore, we developed a data 
model to complete provenance, heterogeneity, and flexibility 
axes, as the data model of a PLM system can be easily modified.

The BMI-lM Data Model to Manage Data 
and provenance
The stages of a neuroimaging study can be modeled as a cycle that 
constitutes the lifecycle of a research study, from study specifica-
tions to published results (see Figure 1).

First, the BMI-LM developed for the BIOMIST platform 
is presented from its two aspects: generic objects (see Generic 
Objects to Manage Heterogeneity) and specific classes (see 
Specific Classes to Bring Flexibility). To end with, the BMI-LM 
data model is compared with PROV-DM specifications (see 
Conceptual Equivalence Between the BMI-LM Data Model and 
the PROV-DM Standard).

Generic Objects to Manage Heterogeneity
The BMI-LM data model is composed of generic objects repre-
senting concepts related to a study. The 17 generic concepts (see 
Table 2 below) are divided into three categories:

 1. Definition objects: they described how result objects were 
obtained and can be reused from one study to another. They 
are part of the provenance strategy.

 2. Result objects: they store data of a study, raw and derived, in 
shape of datasets (files) and metadata.

 3. Ambivalent objects: depending on the context, these objects 
can be used as a definition object or a result object. They are 
part of the provenance strategy.

The generic objects are presented in Table 3 according to their 
category and their stage in the study lifecycle. Figure 4 presents 
a UML model of BMI-LM with the relationships between objects 
and related cardinalities.

Specific Classes to Bring Flexibility
To enable flexibility in the semantic definition of the objects, 
“classes” may be associated with instances of the data model. A 
class in the context of the PLM system is a name (hopefully with 
a meaning for the end user: names were issued from ontologies 
of the application domain, see Section “Domain Classification for 
Neuroimaging”). A class has typed attributes that allows values to 
be associated with items. All the classes are organized in a stand-
ard inheritance hierarchy tree and attributes are inherited. Every 
item of the BMI-LM data model can be classified, and the root 
structure of the classification is organized by object categories: 
definition branch, result branch, and ambivalent branch, which are 
themselves divided into subcategories. The classes play the role 
of subtypes of objects; for example, an exam result object can be 
classified as an imaging, psychology, or genetic examination.

The different domains involved in neuroimaging studies 
do not use the same vocabularies, as well as acquisitions and 
processing tools. Such information is stored in the attributes of 
the classes, so a classification is domain dependent. The highest 
level of the classification (the main categories) will be used in 
every deployment of BMI-LM, the lower-level branches may be 
deployed where needed; and new classes/attributes may be easily 
created.

Conceptual Equivalence between the BMI-LM Data 
Model and the PROV-DM Standard
A representation of provenance is proposed by the World Wide 
Web (W3) consortium, who develop standards to support the 
expansion of the web. According to the PROV-DM standard, the 
provenance is defined “as a record that describes people, institu-
tions, entities and activities involved in producing a piece of data 
or thing in the world” (Moreau and Missier, 2013). An entity can 
be physical, numeric, or conceptual. An activity occurs on a time 
period and act with or on one or many entities. This includes 
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consumption, processing, transformation, modification, using, 
or generation of entities. An agent is responsible in the execution 
of an activity. Entities, activities, and agents are modeled by seven 
relationships, which are given in Figure 5A.

Figure  5B shows how the BMI-LM data model and the 
PROV-DM standard are equivalent in a conceptual way: result 
objects are entities, definition objects are activities and some PLM 
features (users, workflows) are agents.

Mapping Strategy for Data Import
The strategy for data import is essential to ensure that the 
BIOMIST platform will be integrated as a study data manage-
ment tool. Import processes must stay flexible and easy enough 
for any data format or acquisition process. In order to set up 
automatically the provenance, a mapping between the data to 
import and the data model of the platform must be efficient. First, 
we present two key principles of our mapping strategy to import 
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TABle 3 | generic objects of the BioMedical Imaging—lifecycle 
Management data model according to study stages and categories.

Study stages Definition objects Result objects Ambivalent 
objects

Specification Study

Raw data Subject Study subject
Exam definition Exam result
Acquisition definition Acquisition result
Data unit definition Data unit result
Acquisition device

Derived data Processing definition Processing result Reference data
Processing unit definition Processing unit 

result
Subject group

Processing parameters
Software tool

Published results Bibliography 
reference

TABle 2 | generic objects of the BioMedical Imaging—lifecycle 
Management (BMI-lM) data model.

generic object Definition

Acquisition result Indivisible period of data acquisition
Acquisition definition Description of an acquisition protocol
Acquisition device Description of the device used during an examination
Bibliographical reference Published paper
Data unit result Single acquired piece of data
Data unit definition Definition of a piece of data
Exam result Continuous line of acquisitions
Exam definition Examination protocol
Processing result Instance of a processing chain
Processing definition Definition of a processing chain
Processing unit result Derived data
Processing unit definition Definition of a processing to compute derived data
Processing parameters Set of parameters of a processing unit
Reference data Pattern computed from derived data
Software tool Description of a piece of software used to compute 

derived data
Study Research study
Study subject Subject in the context of a study
Subject Unique subject in the database
Subject group Group of study subjects

TABle 1 | Features of product lifecycle Management (plM) systems and the BioMedical Imaging—lifecycle Management (BMI-lM) data model against 
the four axes required for the management of neuroimaging studies.

provenance heterogeneity Integration Flexibility

PLM Context (PROV:Agents) Data types Visualization software
Traceability (PROV:Entity) Formats

BMI-LM Identification (PROV:Activity) Multidisciplinary Evolution of research protocols
Integration of new disciplines

The compliance with PROVenance Data Model standard is indicated for the provenance axis.
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data, and then, this strategy is exemplified for the import of form 
and DICOM data.

Key Mapping Principles
To import data with complete provenance, its context must be 
known—at least the project and the subject it belongs to, its future 

owner—and its definition. For the BIOMIST platform, it means 
that the PLM system must know what kind of item to create 
(result item), how to classify it, and how to link it with existing 
items in the database (definition items and other result items).

Our strategy is to define an XML structure to map imported 
data and its associated metadata to an item of the data model, a 
class associated with the item and class attributes. An example of 
XML mapping is given as Part S1 in Supplementary Material: a 
DICOM series is imported as a data unit in an existing exam and 
in a new acquisition.

The XML mapping file is associated to definition items (e.g., 
an exam definition item since this particular mapping is specific 
to this examination protocol), with two objectives in mind: to 
understand how the data was imported and to reuse the mapping 
for another study.

Form Data Import
A form is a set of simply typed data (set of answers, tracings, 
parameters, etc.) that needs to be acquired for every subject in a 
study. For instance, it may be the result of a behavioral survey, or 
an electronic case report form. The definition of the form is an 
Acquisition Definition item, and the questions are defined by Data 
Unit Definition items. Therefore, the result of the import of a form 
for a subject is an Acquisition Result item with all the related Data 
Unit Result (the answer by a subject to a question).

DICOM Import
Digital Imaging and COmmunications in Medicine (DICOM) is 
a worldwide used protocol for exchanging data between imag-
ing modalities, archival systems, and visualization workstations 
(Mildenberger et al., 2002). A DICOM instance usually contains 
images to which is associated a series of attributes (tags), selected 
from a dictionary described in part three of DICOM standard 
specifications. The standard tags that are used by imaging devices 
to store modality-specific imaging parameters, patient, institu-
tion, and device information, as well as date and time informa-
tion. Beside the standard fields, the DICOM standard allows for 
proprietary fields in dedicated parts of the DICOM header. A 
same DICOM tag will not have the same meaning depending on 
the vendor, and vendor-specific dictionaries are required. Our 
mapping strategy allows tackling this issue as the definition of 
import mapping from DICOM attributes dictionary to BIOMIST 
classification attributes dictionary can be adjusted for every exam 
definition if needed.

A basic mapping between equivalent concepts of the DICOM 
and the BMI-LM data model is given in Table  4. The main 
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FIgURe 5 | links between the pRoV standard and the BioMedical Imaging—lifecycle Management (BMI-lM) data model. (A) Organization of the 
PROVenance Data Model (PROV-DM) standard developed by the W3 consortium (http://www.w3.org/TR/2013/REC-prov-dm-20130430/). Numbers represents 
categories shown in panel (B). (B) PROV relationships between categories of objects of the BMI-LM data model. The Agent concept of PROV-DM is not mentioned 
on the figure, because Product Lifecycle Management (PLM) features naturally fulfill agent provenance: Agent is represented by a PLM user (real person or robot), 
WasAssociatedWith by a workflow order, ActedOnBehalf by the project organization, and WasAttributedTo by the owner of the resulting data (Entity).
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difficulty we face is that there is no equivalent for the definition 
objects in the DICOM standard: if a same scan generates five 
DICOM different images series, we get five seemingly unrelated 
DICOM series. In order to tell the PLM system which series 
derive from which acquisition, we first have to group the DICOM 
series derived from a single scan, based on the contents of several 
different DICOM attributes.

The DIMp Method for Integration of 
processing pipelines
Studies in neuroimaging require complex pipelines for the 
processing of images: registration, segmentation, temporal or 
spatial filtering, etc. The pipelines may include many different 
steps and algorithms, parameters, and software that are regularly 

evolving as research progresses. Their structure varies according 
to the image acquisition techniques employed and the nature of 
the endpoints that are needed to test the studies hypotheses. The 
neuroimaging community has developed elaborate pipeline man-
agement systems, such as LONI pipeline (Rex et al., 2003; Dinov 
et al., 2010) or Nipype (Gorgolewski et al., 2011). With such sys-
tems, Command Line Interfaces tools are wrapped by structures 
describing each of their inputs, options flags and outputs, and 
storing the name of the executable, enabling the software to build 
proper command lines. These structures can be linked together 
into a processing graph with a node representing a processing 
unit and an edge representing an input and output relationships. 
The graph is then analyzed to optimize the parallelization of jobs 
on grid computers.
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DIcoM BMI-lM

Patient Study subject object
Study Exam result object
Series Data unit result object
Set of series from the same scan Acquisition result object
– Definition objects
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Some neuroimaging software suites, such as XNAT, come 
with an integrated pipeline management system, by allowing 
users to launch processing pipelines directly from the database. 
In this case, imaging sessions are launched one by one. When 
processing data in large batches, it is more convenient to push 
and pull the data in and out of the database (Schwartz et  al., 
2012). However, if the pipelines are launched externally, the 
inputs and parameters become more difficult to track. In order 
to ensure research reproducibility, traceability of statistical mod-
els used for prediction, data sharing with peers and data reuse, 
the provenance information of the processing pipelines must 
be properly managed. Because of the complexity of pipelines, 
provenance information has to be generated automatically by the 
pipeline management system and then stored in the database. We 
developed the DIMP method with these two objectives in mind: 
ensuring full provenance and facilitating the launch of processing 
pipelines by users.

Specifying the Inputs to an Image Processing 
Pipeline
To launch a pipeline, users must select: (1) the items to process, 
(2) a processing pipeline to apply, and (3) parameter settings. 
The multiplicity of the parameters involved in image processing 
in neuroimaging studies create a major issue: all the parameters 
involved in the generation of the derived data need to be tracked 
to ensure the reproducibility of results, both on same data and on 
new data. Furthermore, in longitudinal imaging studies, subjects 
undergo imaging sessions regularly over a long period of time (up 
to several years), and exactly the same processing chains must be 
applied so that the data can be compared. Users may also want 
to store concurrent versions of the derived data, differing over 
a few processing parameters or processing steps to understand 
their impact on the results.

To implement this functionality, one needs to add a generic 
object to the BMI-LM data model: the WorkFlow Input object. 
Its role is to gather all the definition items needed to launch 
a processing pipeline: the processing pipeline itself (object: 
Processing Definition), processing parameters for every step 
(object: Processing Parameters), and the definitions of input 
data (objects: Data Unit Definition for raw data, Processing Unit 
Definition for derived data). These last data are crucial: they allow 
the PLM system to query the right data, for the subjects selected 
by the user. Figure 6 shows how using a Workflow Input object is 
particularly valuable to reproduce same processing chain several 
times on new data (acquisitions on the fly, longitudinal studies, 
new studies).

Stages of Integrated Processing in a PLM System
The main objective of the DIMP method is to ensure quality prov-
enance of derived data by reducing manual operations from users: 
data resulting from processing chains are automatically linked to 
input data, definition of processing chain, and parameters. The 
DIMP method is defined by the following stages:

Initialization

 1. (User) build or identify a workflow input
 2. (User) launch integrated processing workflow

 ⚬ Select workflow input
 ⚬ Select subjects

Workflow execution

 3. (PLM system) query input data
 4. (PLM system) export in working folder

 ⚬ Input data
 ⚬ Definition of the pipeline
 ⚬ Parameters of the pipeline and processing nodes (proces-

sing parameters items)
 5. (Computer cluster) launch the pipeline script stored in the 

definition object representing the pipeline. This script param-
eterizes and executes processing operations.

Traceability operations

 6. (PLM system) upload resulting data
 ⚬ Create corresponding result objects
 ⚬ Link result objects to its input data (raw or derived) and 

definition objects (pipeline structure and parameters)
 7. (PLM system) sends an email notification: data are ready

Integration of Existing Neuroimaging Pipeline 
Engines
Processing pipelines are executed outside of the PLM system, 
typically on a computer cluster. Existing neuroimaging workflow 
management systems can therefore be used to execute the pipe-
lines on any software libraries that can be launched in command 
lines. When manual processing is needed (such as expert deline-
ation of brain structure), it is easy to checkout any dataset, modify 
it or create a new dataset, and send the results back to the PLM. 
Indeed, this corresponds to how CAD engineers work.

To facilitate user’s work, the definition objects of the process-
ing pipeline can be generated through software tools, which 
extract the relevant information from pipeline specification files 
and facilitate the specification derived data annotations.

Querying Strategies
Efficiently storing data and managing provenance is not sufficient 
to ensure that data can be reused: the platform also should enable 
easy data querying. One major issue preventing from data access 
is user’s knowledge and understanding of the data model: as prov-
enance is complex so are the queries. Therefore, getting to know 
the different concepts is time-consuming to occasional users. A 
query is defined both by the search criteria and the formatting of 
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FIgURe 6 | Diagram illustrating how the Workflow Input object can be used to reproduce an existing workflow on three use cases: (1) analysis of 
data associated with a new time point in a longitudinal study, (2) analysis of data from a new subject of the same study, and (3) analysis of data from 
a new subject of the different study (different study same processing chain). Definition of input data (raw data in the figure, but it could be derived data), 
definition of processing chain, and parameters are collected in a Workflow Input object by the user. When a processing chain has to be computed again on new 
data (new acquisition or new subject), the Workflow Input object is reused and the targeted subjects are given to the system to query corresponding input data. For 
use case (1), which represents a longitudinal study, appropriate raw data are found by excluding data that has already been computed with the processing chain.
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the retrieved data. The BIOMIST platform provides researchers 
with an intuitive way to retrieve data through a graphical interface 
(see Graphical Querying Interface). With this interface, queries 
are designed using concepts and relationships. Consolidated data 
can also be obtained through ODBC connectivity (see Report 
Building).

Graphical Querying Interface
Even if the neuroimaging community shares many standards, 
each research group—not to say each researcher—uses its own 
vocabulary to label its data. Besides, neuroimaging is a multidis-
ciplinary domain and each discipline has its own concepts and 
ways of using data. In this context, it is difficult for researchers 
to query an unknown or an occasionally accessed database, 
because they are neither familiar with the data model nor with 
the semantics behind it (Pham et  al., 2016). In the BIOMIST 
platform, to facilitate the query definition process of various 
kinds of users—occasional/regular, experienced/inexperienced, 
or the ones who come from different disciplines—we propose a 
graphical and user-oriented query approach.

For the “user-oriented” aspect, the proposed query approach 
is composed of three levels of abstraction—lowest, intermediate, 
and highest corresponding with three kinds of users: technical 
users, regular users, and occasional or non-technical, inexpe-
rienced users, respectively. At the lowest level, technical users, 
who have a good understanding of the way data structured, can 
directly select business objects in the data model to create a query. 
For instance, the Acquisition Result object is used to query all 
acquired data during the data acquisition process.

At the intermediate level, regular users, who manipulate fre-
quently with data and have a certain understanding about them, 
are provided with a more abstract hierarchy of data classes. A 
class can have attributes and is named accordingly to the data it 

represent. Regular users could easily find their interesting data 
from one or many classes. For example, in the “Imaging Result” 
class, users could find all acquired imaging data like “EEG,” 
“MEG,” “MR,” and “PET” data. Some relations between classes 
can be defined to help users make more complex queries on 
multiple kinds of data.

The highest level is dedicated to inexperienced and non-
technical users who have no knowledge about the data model 
and classification. We use ontologies and its graphical representa-
tion to facilitate the query making process of these users. The 
ontology is defined as “an explicit, formal specialization of a shared 
conceptualization” (Studer et al., 1998) and can be used to provide 
an explicit representation of domain knowledge and semantic 
relations between data in the database that is easily understood by 
inexperienced users. Without needing to understand the underly-
ing data structure, inexperienced users express their queries with 
ontological concepts. For instance, the “imaging-acquisition-
data” concept from OntoNeuroLog ontology (Gibaud et al., 2011) 
is used to query all acquired imaging data. The query formulated 
with ontologies is then translated into a formal query over data 
sources by using a set of mappings. Each mapping is an associa-
tion between an ontological concept and the database schema. 
The set of defined mappings is then exported and implemented in 
the query transformation module of the PLM system.

For the “visual” aspect, playing the role of an external cogni-
tive support to understand complexity (Keller and Tergan, 2005), 
graphical visualizations are used at the three levels to facilitate 
users’ query making process. All objects of the data model, classes 
of the classification, or ontological concepts are represented in 
a browsing tree while all eventual relationships between them 
(objects versus objects, etc.) are represented in an intuitive, 
interactive graphical zone to help users quickly and easily define 
their queries.
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For example, at the highest level, a user starts by navigating 
through concept tree to select an interesting concept. When 
a concept is selected, the graph highlights all its relationships 
with the other concepts; user can select one of these concepts 
and add it into the query in order to make a query condition. 
This process is repeated until the query is defined completely. 
During the making process, the query formulated by the user 
is graphically represented to provide an illustrated visualiza-
tion of all selected concepts and query conditions. At the end, 
this query is translated into one executable query by a query 
processor. The query results are displayed on the same interface, 
under the shape of a graph (nodes for resulting objects, edges 
for relationships).

Report Building
In neuroimaging, more and more studies include meta-analysis. 
For example, both supervised and unsupervised classification 
algorithms are typically used for discovering correlation between 
biomarkers extracted from brain images and behavioral observa-
tions or extract hidden structures (Abraham et  al., 2014). The 
building of such data files prepared for analysis is quite fastidious 
because of the multiple sources of data. Furthermore, beside 
classification, deep learning algorithms (LeCun et al., 2015) are 
raising more and more interest in the neuroimaging research 
community since they begin to show a real potential on analyzing 
flexible and high-dimensional data, which is their main advan-
tage. To exploit these heterogeneous data in a machine learning 
context, we designed a data mapping that consists of exporting 
neuroimaging data classification from the PLM, to a database 
server that most statistical analysis softwares should be able 
to address. The connexion between the PLM database and the 
database structured for statistical analyses is enabled with ODBC, 
a standard API (Signore et al., 1995).

IMpleMenTATIon

plM choice and customization
The BMI-LM data model has been implemented in the PLM 
software Teamcenter (v10.6) developed by Siemens Industries 
Software, which has a commercial license. Information about 
Teamcenter architecture and technical details can be found in 
Teamcenter documentation: Teamcenter system administration 
(Siemens PLM Software, 2015b) and Teamcenter access manager 
(Siemens PLM Software, 2015a). Besides, Siemens PLM Software 
published a white paper on security management in Teamcenter 
(Siemens PLM Software, 2011). CIMdata, a leading independent 
global consulting and research authority toward PLM, wrote 
a white paper focused on Teamcenter as a unified platform 
that describes its functionalities (CIMdata, 2010). A type of 
Teamcenter objet is created for each object of the BMI-LM model, 
so that the four stages of a neuroimaging study are supported. 
Data are attached to object instances through dataset objects. The 
object instances are linked through typed relationships as defined 
in the BMI-LM data model. Teamcenter proposes a classification 
feature, which is often used in manufacturing industry to classify 
products in families.

Teamcenter PLM system is easily customizable to fit users’ 
needs: data model, data formats, workflows, access management, 
queries, integrated visualization and analysis tools, and interface. 
These make Teamcenter a backbone that can be adapted to the 
specific features of new domains (processes, formats, tools, etc.).

The organization feature of Teamcenter is used to model users’ 
groups and roles, which are required to design access rules to 
the data. Four roles are defined to access data inside of a study: 
principal investigator (can view all data of the project and edit all 
instances), data administrator (can view some data of project, can 
create and edit instances of objects, and can manage relationships 
between instances), editor (can view some data of the project, can 
edit instances of objects), and guest (can view some data of the 
project). The amount of data viewed and editable for each role 
can be defined.

Three data vaults that store files are set up with different 
backup strategies, according to data value:

 – Raw data: this vault is the most valuable, as it contains all 
acquisition and study data. During acquisition or import 
campaigns, daily backup.

 – Derived data: valuable too, but as these data can be computed 
again thanks to provenance storage and because the volume 
may be very big, the backup is occasional.

 – Definition data: this vault is the lightest, as it contains only 
the data from definition objects. The backup strategy is 
high, as these data are crucial. Domain classification for 
neuroimaging.

Domain classification for neuroimaging
The definition of a classification requires a substantial investment 
in time and expertise. Some ontologies have already been designed 
and used by the neuroscience and neuroimaging communi-
ties (Temal et  al., 2008). Therefore, defining the neuroimaging 
classification on existing organized knowledge seems relevant. 
Besides, the use of existing ontologies allows future data sharing 
between the PLM system and existing neuroimaging databases. 
Ontologies can be used as a mediation model between the data 
models of two databases. Aside of ontologies, standardized and 
partly aligned lexicons also exist, such as NeuroLex1 and DICOM 
that can provide class attributes. In a PLM system, class attributes 
are stored in a dictionary. Classes are stored in a hierarchical tree 
and can receive any number of attributes from the dictionary. 
We imported classes from OntoNeuroLog (Gibaud et al., 2011) 
ontologies for the classification branches that deal with image 
acquisition (image examination, acquisition, and data unit 
definitions) and image processing (processing unit definitions, 
imaging datasets). We based the subject-related branch of the 
classification on QIBO (Buckler et  al., 2013). MRI parameter 
attributes (parameters such as the echo time) were imported from 
the DICOM lexicon (Clunie, 2000). Currently, we use attributes 
in the experimental psychology classes to store labels from the 
cognitive atlas (Poldrack et  al., 2011) or cognitive paradigm 

1 http://neurolex.org.
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(Turner and Laird, 2012) ontologies, as those seemed too large to 
be imported fully in the classification.

The classification that is used in the BIOMIST platform in its 
current state is available as Part S2 in Supplementary Material, in a 
mindmap format that can be viewed with the Freemind software.2

Data and Software Integration
Data Import
We developed a DICOM/Teamcenter interface that relies on the 
dcm4che java DICOM library. This way, the PLM server can act as 
a C-STORE service class provider (a DICOM archive), as well as a 
query/retrieve service class provider. It is therefore able to interact 
with existing PACS instances and DICOM viewing workstations. 
As XNAT, we rely on an intermediary gateway to comply with the 
defined PLM access management policies during query/retrieve 
operations. We also use web services to import other types of data 
(i.e., non-imaging data): for instance, to import the resting-state 
debriefing questionnaires, a web service receives the data from a 
LimeSurvey3 server and imports it into the PLM database.

Data Processing
As neuroimaging pipeline engines are now very mature, there 
was no need to develop a new one for the BIOMIST project. 
To implement the DIMP method, we chose the Nipype4 
(Gorgolewski et al., 2011) pipeline engine, because it is simple to 
extend, flexible (written in Python), able to deal with many grid 
schedulers. Since this software originates from the neuroimaging 
community, it has a very rich catalog of interfaces for neuro-
imaging Command Line Interfaces tools [AFNI (Cox, 1996), 
ANTS (Klein et  al., 2009), SPM (Ashburner, 2012), Freesurfer 
(Fischl, 2012), FSL (Jenkinson et al., 2012), etc.]. When running 
a job on a computer cluster, there are two different aspects to 
take into account: the command line to be executed (what are 
the inputs and options?) and the way the scheduler is going to 
handle it (how much memory, time or CPUs do we need?). The 
former is the domain of specific command line wrappers (i.e., the 
Nipype interfaces); the latter is the domain of generic processing 
node properties. We use the Teamcenter classification system 
to account for both. Accordingly, we developed python tools to 
import the existing Nipype interfaces, which describe the input 
and outputs of each command line tool, within the PLM clas-
sification as processing parameter classes. Based on these tools, 
we also developed tools to import entire Nipype workflows in 
the PLM (processing definition, processing unit definitions, and 
processing parameters items) and build the associated workflow 
input items.

Data Querying
The querying interface was implemented as a Javascript web 
client that connect to Teamcenter through a web service. The 
interface is composed of several windows, displaying informa-
tion to build the query: the domain ontology, the relationships, 

2 http://freemind.sourceforge.net.
3 http://limesurvey.org.
4 http://nipy.org.

the related classification, the criteria of the query chosen so far, 
and the query path itself. A view of the web querying interface is 
presented in Figure 7.

For the implementation of consolidated data files for sta-
tistical analysis, we took advantage of the PLMXQuery tool 
that is an approach for querying and exporting data from PLM 
(Sriti and Boutinaud, 2012). The concept of this approach is 
to make the PLM content seen as a XML document, in order 
to benefit from XML-related technologies, in particular XPath 
and XQuery, which are standard languages working on XML 
structures. XQuery scripts are used to browse PLM content 
(items, classification data, dataset contents, etc.) and to con-
vert that data to any desired format. It can be used to create or 
update anything from a Hive table to a CSV file. It is currently 
used nightly to update data tables containing information 
about ongoing MRI acquisition that are accessed by researchers 
through ODBC connectivity for analysis with the JMP statisti-
cal software.

Example of Workflow: Raw Data Quality Check
Teamcenter PLM system allows creating easily workflows of 
operations. We present an example of workflow that is used to 
control the quality of new imaging raw data. Figure 8 shows the 
steps of the workflow:

 1. Start of workflow: the workflow is initiated with raw data to 
control.

 2. Automated quality control of raw data imaging parameters 
against those stored in the definition items.

 3. A temporary status is assigned depending on control results.
 4. The data manager (technical expert) is notified by email that 

there are new imaging data to control.
 5. The data manager controls new imaging data.
 6. The final status is set on new imaging data. If this status is 

“validated,” then the raw data would be involved in new 
workflows, such as processing workflows.

Speed of Access and Computing
Teamcenter PLM system is an efficient system to query and 
retrieve managed data. Data relationships are browsed as a 
graph and therefore query complexity is equal to graph browsing 
complexity. During the DIMP method, input data are queried 
and retrieved on computing grid and output data are imported 
when computation is done. Speed of data retrieving, as well as 
the speed of data import, is dependent of computing grid network 
performances. Besides, speed of data computing is dependent of 
computing grid performances and analysis tools chosen.

licensing of the BIoMIST platform
The conceptual data model is published and freely available to 
the community, as well as methods and functioning principles. 
The core of the BIOMIST platform is Teamcenter PLM system, 
which has a commercial license and academic licenses that are 
available for education and research purposes. Any analysis or 
visualization tool can be integrated with Teamcenter, whatever 
their type of license. We plan to release the TeamCenter busi-
ness model files (which are meant for the TeamCenter Business 
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Model IDE) under a GPLv3 license, using a web-based version 
control management service. This will still require that users 
have access to a TeamCenter license, however. We hope to have 
provided enough details in the article so that the model as 
described here can also be re-implemented using open-source 
software.

We plan to open in the middle of 2017 the platform to 
researchers through collaborative scientific projects with the 
GIN. We plan to open in the middle of 2017 the platform to 
researchers through collaborative scientific projects with the 
GIN. For those projects, researchers of both groups will decide 
the sharing of their respective data in relation with the goals of 
the collaborative study. For projects that are not in the field of 
scientific expertise of GIN, Ginesis-lab (joint venture project 

between GIN and Cadesis) intents to launch another system to 
give researchers an access to the functionalities of the platform. 
Researcher groups interested are welcome to contact the cor-
responding author.

ApplIcATIon

Study of Brain network connectivity on 
the BIl&gIn Dataset
The GIN first Brain Imaging Laterality (BIL&GIN1) dataset is 
composed of 300 subjects, balanced by gender and handedness, 
and was acquired between 2009 and 2011 (Mazoyer et al., 2016). 
MRI resting-state images are segmented with a 384-region atlas 
and connectivity by pair of regions is measured.
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The use case tested on the BIOMIST platform with the 
BIL&GIN dataset stands in six steps (illustrated in Figure 9):

 1. Acquisition of raw data: the BIL&GIN dataset is imported 
from the GINdb database of the GIN laboratory (Mazoyer 
et al., 2016).

 2. Processing of individual data: a pipeline that computes func-
tional connectivity between regions of the brain is automati-
cally launched with the DIMP workflow.

 3. Creation of analysis groups: groups of subjects are queried 
according to research assumption based on subjects’ char-
acteristics. The chosen criteria are: age, gender, and declared 
handedness, stated in ranges.

 4. Processing of group data: a pipeline computes median func-
tional connectivity for each group, creates from these data a 
MDG and computes a constraint layout to help the visualiza-
tion analysis. All these processing operations are performed 
with the DIMP workflow.

 5. Visual browsing of complex graphs: the resulting MDG is 
analyzed in an integrated visual browser.

 6. Publication of results: the paper presenting the results of the 
MDG analysis would be written with a versioning history 
and linked to the data used for the analysis, which enables the 
replication of the procedures involved.

The BIL&GIN dataset, stored in a SQL-based database, was 
imported into the BIOMIST platform through a scripts that 
converted SQL tables into PLMXML files readable by Teamcenter 
PLM. Figure 10 shows raw data of a subject from the BIL&GIN 
dataset in the BIOMIST platform: the subject has two exams, one 
fMRI resting-state exam with three acquisitions (resting-state, 
anatomical, debriefing form) and one exam about subject’s indi-
vidual characteristics.

Imaging raw data were processed with the DIMP method, 
with four workflows: (1) preprocessing workflow (registra-
tion, segmentation), (2) workflow to compute individual 
adjacency matrices of functional connectivity, (3) workflow 
to build group adjacency matrices, and (4) workflow to 
compute and analyze dynamic graphs from group adjacency 
matrices. Figure  11 shows how the final dynamic graph is 
obtained from individual adjacency matrices of functional 
connectivity.

The study of resting-state networks with MDGs on the 
BIL&GIN dataset is currently under process.

ongoing cohort Acquisition campaign
The MRI-Share study is a subpart of the i-Share epidemiological 
study on students’ health.5 As many as 2,000 students are expected 
to undergo an MRI protocol including structural, diffusion, and 
multiband resting-state acquisitions on a recent 3-T scanner.

The MRI-Share study is particularly suited to test the 
BIOMIST platform, as it is a multidisciplinary study: resting-state 
fMRI acquisitions are followed by a debriefing questionnaire 
(Delamillieure et  al., 2010) and other psychological data and 
genetics acquisitions. Because of the high number of subjects, 
batch data processing, as implemented with the DIMP method, 
is mandatory.

The acquisition campaign started in November 2015. Up to 10 
subjects participate every day in the study from Tuesday to Friday, 
every week. At the time of writing, 1,200 subjects have partici-
pated. The import of a typical MRI-Share DICOM study (about 
2.5 Go of data and 3,300 instances) into the BIOMIST database 
takes an average of 7 min and 56 s, with a SD of 221.7 s (3 min and 
41.7 s). The daily acquisitions are imported every night, through 
an intermediary PACS system (dcm4chee) and a web service.

DIScUSSIon

The BIOMIST platform is designed to manage, share, and reuse 
data from neuroimaging studies. Provenance is tracked through-
out the four stages of the lifecycle of a study, whatever data type 
or format, thanks to:

 – PLM systems that naturally enable collaborative work and 
lifecycle management in a secure environment.

 – The BMI-LM data model that supplements PLM features by 
introducing the concepts of a neuroimaging study and by 
allowing future semantic changes and evolutions of research 
practices. The data model enables the traceability of the data 
in ways similar to PROV-DM standard from W3C.

 – Mapping strategies that allow automated data import, such as 
DICOM files or forms.

 – The DIMP method that allows to launch processing pipelines 
and to retrieve automatically the resulting data; existing work-
flow engines and processing software can be integrated.

5 http://www.i-share.fr/.
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FIgURe 10 | Step 1 of the use case with the BIoMIST platform. (A) Raw data of a subject identified t0444 from the BIL&GIN dataset in Teamcenter client. NifTi 
anatomical image (B) and resting-state debriefing form (c) are displayed.

FIgURe 9 | The six steps of the use case on the BIl&gIn dataset.
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 – A graphical query-building interface accessible to occasional 
users and report building to perform statistical analyses.

 – Easy integration of visualization and processing tools.

The BIOMIST platform is currently used for the management 
of the BIL&GIN dataset (300 participants) and the ongoing lon-
gitudinal MRI-Share cohort acquisition of 2,000 participants, and 
its target is new neuroimaging studies from small (100 subjects) 

to medium (5,000 subjects) cohort, with multimodal, longitudi-
nal and multi-source acquisitions requiring complex pipelines, 
quality controls, and efficient access management. The studies 
managed on the BIOMIST platform are still ongoing; therefore, 
the BMI-LM has not been validated on the fourth stage of a study 
(published results).

The BIOMIST platform distinguishes from existing neuroim-
aging data management systems by providing in one environment: 
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FIgURe 11 | Steps 4 and 5 of the use case with the BIoMIST platform. (A) Traceability of the processing chain of brain connectivity for a group of subjects, 
from adjacency matrix to final dynamic graph. (B) View of the final processing pipeline to compute dynamic graph from the groups of subjects. (c) Display of the 
adjacency matrix of brain connectivity for a group of subjects. (D) Dynamic graph obtained from the matrices of all the groups. (e) Final layout of the dynamic graph 
for analysis.
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(1) study data management throughout study lifecycle, (2) 
heterogeneous data management, and not only imaging, (3) 
managing provenance in order to enable data sharing and reuse, 
(4) allowing data processing and analysis inside the platform, 
with users’ regular software tools, and (5) providing a secured 
access to preserve data consistency and confidentiality. One cur-
rent disadvantage of the BIOMIST platform is the necessity to 
train a specialized data manager in order to maintain the system, 
because it is complex with many possibilities of personalization.

One of the main objectives in designing the platform was to 
enable the use of existing neuroimaging tools and community 
standards: data formats, workflow engines, processing and 
visualization software, and ontologies. To foster data sharing 
through the community, it would also be relevant to bridge PLM 
systems with web-based archival systems such as XNAT or such 
as PubMed in order to link bibliography management of the 
BMI-LM model with the most complete bibliography database 
in medical field. Mediation between databases is possible through 

ontologies. Some work has already been done on this topic in 
the neuroimaging community (Ashish et  al., 2010). Although 
classes from ontologies are being used in the BIOMIST platform 
for the neuroimaging data classification and the graphical query-
ing interface, richer semantics would improve the management 
of relationships between the different objects in PLM systems 
(Assouroko et  al., 2012). For instance, the mapping for data 
import could rely on an ontology-based description, rather being 
described in a XML file. Therefore, future work on the BIOMIST 
platform will focus on application of ontologies within PLM 
systems for improved interoperability, reusing, and simplified 
data management.

Moreover, in order facilitate data exchange between the 
BIOMIST platform and existing neuroimaging data management 
systems, we plan to develop a feature to export data provenance 
in PROV-DM format.

GIN users’ feedback also highlighted that the eclipse-based 
graphical user interface of the deployed PLM system would be 
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unsuitable to them, because of the daunting numbers of sub-
windows and menus that reduce the implicit use of the system; a 
simplified and more adequate user interface is being developed, 
intended for occasional users. Due to the nature of neuroimag-
ing research work, the relationships between database objects 
are complex, so the ability to navigate among data is critical. 
However, current PLM systems do not propose a satisfactory rela-
tion browser or viewer, and they exhibit shortcomings in terms 
of data visualization and analysis, all the more as complex and 
heterogeneous data are managed (Allanic et al., 2014). Therefore, 
a major concern in the upcoming work on the BIOMIST platform 
is to visualize data relationships, using a visual graph representa-
tion, in order to improve the browsing and the visualization of 
data and provenance in PLM systems.

With the current querying facilities of the BIOMIST platform, 
users can build and retrieve data reports for statistical analysis. 
One of our main goals is now to integrate more tightly analytical 
tools, such as deep learning algorithms on large, multimodal 
heteregeneous data. The objective is to be able to extract 
knowledge after analyzing correlations between inter individual 
variables (age, gender, education, handedness, etc.) and brain 
structures, in order to provide additional information for a better 
understanding of brain organization and its mechanisms and also 
to be able to make predictive assumptions about some neurologi-
cal pathologies.
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context: There is a great need in clinical research with imaging to collect, to store, to 
organize, and to process large amount of varied data according to legal requirements 
and research obligations. In practice, many laboratories or clinical research centers 
working in imaging domain have to manage innumerous images and their associated 
data without having sufficient information technology skills and resources to develop 
and to maintain a robust software solution. Since conventional infrastructure and data 
storage systems for medical image such as “Picture Archiving and Communication 
System” may not be compatible with research needs, we propose a solution: ArchiMed, 
a complete storage and visualization solution developed for clinical research.

Material and methods: ArchiMed is a service-oriented server application written in 
Java EE™, which is integrated into local clinical environments (imaging devices, post- 
processing workstations, others devices, etc.) and allows to safely collect data from other 
collaborative centers. It ensures all kinds of imaging data storage with a “study-centered” 
approach, quality control, and interfacing with mainstream image analysis research tools.

Results: With more than 10 millions of archived files for about 4TB stored with 116 
studies, ArchiMed, in function for 5 years at CIC-IT1 of Nancy-France, is used every day 
by about 60 persons, among whom are engineers, researchers, clinicians, and clinical 
trial project managers.

Keywords: clinical research, infrastructure, data storage system, imaging, database, web services, centralized 
resources, data sharing

InTRoDUcTIon

One main challenge of clinical research with imaging is the need to collect, to store, to organize, and 
to process large amount of various data according to legal requirements and research obligations.

In practice, most of labs and Contract Research Organizations (CRO) manage many studies or 
protocols at the same time with several classes of contributors, including radiologists, researchers, 
physicians, and project managers who perform different kinds of data analysis. These contributors 
have to manage innumerous images and their associated data without having sufficient IT skills and 
resources to develop and to maintain a robust software solution.

1 CIC-IT: Clinical investigation center for Technology and Innovation.
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The first approach to solve the important problem is to use 
conventional clinical data storage systems for medical image 
such as “Picture Archiving and Communication System” (PACS) 
(Choplin et al., 1992; van de Wetering et al., 2006). Those sys-
tems, available in most of clinical centers are designed to allow to 
store and transfer only Digital Imaging and Communications in 
Medicine (DICOM)2 images.

The first observation that can be made is that those clinical 
data storage system offer “patient centered” data structure. Such 
structure does not match specific research needs in terms of data 
usage, large-scale processing, and connection with mainstream 
image analysis research tools. It does not allow fine-tune rights 
and restriction management for each user according to different 
studies, either.

DICOM is the most used medical image format but has 
some limitation for research. It is required in research to store 
and process various other formats like image in MR raw data,3 
physiological signals (Odille et  al., 2008), analysis results, or 
segmentations.

Moreover, taking into account the diversity of research con-
tributors and the big data quantity in clinical research context, 
every proposed system must be user friendly and respond quickly. 
More than just a question of appearance, the user experience of 
graphical user interface is the key point for clinicians or research-
ers who want to search data efficiently, import a large number of 
images, or load a dataset into the software that they work with 
every day.

Thus, we need a solution that is able to store all kinds of files 
(DICOM, raw data, etc.) with metadata, allows “batch processing” 
for large-scale studies and has to be fully interoperable within a 
research environment. This means:

• Easy and safe data transfer from/to local clinical environments;
• Easy and safe data import from the outside (e.g., multicenter 

trials);
• Easy access to the data from mainstream image analysis 

research tools.

Considering legal requirements of clinical research, in order 
to comply with the local law, which the data hosting institutes 
have to follow (e.g., MR-001 CNIL4 reference methodology),5 
such a system has to ensure data confidentiality using study based 
access restriction and built-in de-identification (Kushida et  al., 
2012; Tucker et  al., 2016). Take the French law as an example, 
according to article R. 1123-61—decree of August 29, 2008 (French 
Public Health Code),6 clinical centers should ensure the long-term 

2 «DICOM Homepage», http://medical.nema.org/.
3 Image raw data: image signal before any treatment or process. In MRI context, 
raw data contain “Fourier transform” of the MR image measured, before any 
reconstruction or filtering.
4 Commission nationale de l’informatique et des libertés (CNIL), https://www.
cnil.fr/.
5 Méthodologie de référence MR-001 pour les traitements de données personnelles 
opérées dans le cadre des recherches biomédicales, https://www.cnil.fr/sites/
default/files/atoms/files/mr-001.pdf.
6 Article R1123-61 https://www.legifrance.gouv.fr/affichCodeArticle.do?cidTexte
=LEGITEXT000006072665&idArticle=LEGIARTI000006908442&dateTexte=&c
ategorieLien=cid.

conservation of data for at least 15 years after the end of study. 
This means that not only the storage system must guarantee file 
and database integrity (Tucker et al., 2016) but also it must offer a 
quality insurance process to check data validity before integration.

Others emerging research picture archiving system solutions 
like Shanoir7 or CATI8 are specialized in neuroimaging data man-
agement. These solutions are not really adapted for multi organs 
and many other file formats storage.

For all the aforementioned reasons, it is understood that all 
these sensitive data must be stored inside a safe, centralized, and 
isolated system, effectively excluding short-term data support 
like CD/DVD/USB-keys and non-secured shared location such 
as network drives, external hard drives, or common public cloud 
storages.

In response to all these needs and requirement, we introduce 
ArchiMed, a complete, centralized, and modular storage and 
visualization solution developed for clinical research. Designed 
with a “study-centered” approach, which better fits the research 
workflow and organization needs, the server application devel-
oped in Java™ EE is fully integrated into the local clinical envi-
ronment (imaging devices, post-processing workstations, others 
devices, etc.), and is able to safely collect data from collaborative 
centers and ensures all kinds of data storage, quality control, and 
interfacing with mainstream image analysis research tools.

MATeRIAlS AnD MeThoDS

general Description and Software 
Architecture
ArchiMed is based on a three-tier architecture.9 It has been 
designed to be a service oriented application to integrate environ-
ments with multiple clients/users (Figure 1).

The server side of the application is implemented in Java-
EE™10 (Goncalves, 2009) to be deployable on any operating 
system with Java™. It is hosted on a local network and running 
on an open source Glassfish application server.11

Data layer and underlying database is currently deployed on 
a MySQL™ Relational Database Management System (RDBMS) 
but is also compatible with any other database management sys-
tem (e.g., Oracle, Microsoft SQL Server, etc.); thanks to Object 
Relational Mapping.12 This high-level abstraction technique 
creating virtual object database can be used from within the pro-
graming language independently of the host RDBMS. Business 
logic layer is one component of the server part that manages 
how data can be created, displayed, stored, and changed. Some 

7 Shanoir (Sharing NeurOImaging Resources), http://www.shanoir.org/.
8 CATI Neuroimaging, http://cati-neuroimaging.com.
9 3-tier architecture is a client–server typically composed of a presentation tier, a 
domain logic tier, and a data storage tier. This is the most used architecture for 
service oriented applications.
10 Java EE at a glance, http://www.oracle.com/technetwork/java/javaee/overview/
index.html.
11 Glassfish Application Server, https://glassfish.java.net/.
12 Mapping Objects to Relational Databases: O/R Mapping In Detail, http://www.
agiledata.org/essays/mappingObjects.html.
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background tasks (daemons) are dedicated to database cleaning, 
new image importation, and users action queue management.

The web container layer or service layer, only accessible as 
authenticated user, provides HTTP SOAP web services13 for 
database querying and HTTP Servlet14 to perform file download/
upload. FTP15 (Postel and Reynolds, 1985) and DICOM services 
are also available to transfer files from/to clinical devices (scan-
ners, PACS) or post-processing workstations.

All these services are reachable via any third-party application 
to access and exploit data locally and also by a built-in Java™ heavy 
client to administrate, to browse, to visualize, and to manage data 
from ArchiMed. Multi-OS and secured; this client is always up to 
date using a version check and auto-update mechanism.

Regarding authentication requirements, ArchiMed can be 
linked to any existing LDAP16 (Koutsonikola and Vakali, 2004; 
Zeilenga, 2006)-based user directory system (like active direc-
tory) and consequently users can use their own operating system 
login credentials.

13 Web Services Architecture, https://www.w3.org/TR/ws-arch/.
14 Java Servlet Technology Overview, http://www.oracle.com/technetwork/java/
javaee/servlet/index.html.
15 File Transfer Protocol, https://tools.ietf.org/html/rfc959.
16 Lightweight Directory Access Protocol (LDAP): the Protocol, https://tools.ietf.
org/html/rfc4511.

Multiprocessing, Access Speed  
and Throughputs
Knowing the big amount of data to manage (up to 20,000 images 
for a standard fMRI17 exam or up to 2  GB of files for a heart 
exam with raw data and physiological records, etc.), it is criti-
cally important to optimize network stream and parallel access 
to data.

Every consultation request to ArchiMed server is stateless and 
treated over HTTP protocol as an independent transaction that is 
unrelated to any previous request and is executed in a separated 
process. The downloading rate of data stream is predominantly 
limited by local area network throughput; server load is estimated 
as insignificant compare to network flow.

To avoid inconsistency in case of parallel contradictory opera-
tions, user actions (data import, transfer, delete, and modifica-
tion) and every “Create, Update, and Delete” query that involves 
data change are managed in queues executed asynchronously in 
transactional18 context.

17 fMRI: functional magnetic resonance imaging or functional MRI (fMRI) is a 
functional neuroimaging procedure using MRI technology that measures brain 
activity by detecting changes associated with blood flow.
18 Transactional processing is designed to maintain a database or file system’s integ-
rity ensuring that interdependent operations on the system are either all completed 
successfully or all canceled successfully.
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Data Structure
Database and inherent file system are designed with a “study-
centered” approach, which better fits the research workflow and 
organization needs.

ArchiMed data tree is organized around four major node 
types inherited from DICOM standard: study, exam, series, and 
file (Figure 2).

• Study node: regroups exams for a study/protocol. Associated 
information of this node type is

 ⚬ Study code: a unique ID of the study
 ⚬ Study description
 ⚬ Stated investigators and authorized users
 ⚬ …

• Exam node: groups all data linked to one case of the study. Each 
case corresponds to an inclusion in the protocol. Associated 
information of this node type is

 ⚬  Exam code: a unique ID of the case corresponding to the 
subject identification number inside the protocol

 ⚬ Exam description
 ⚬ Exam date, time
 ⚬ Last access date
 ⚬ …

• File type/modality node: groups all data with the same file 
format (file type). In most case, there is a file type for each 
modality (scanner-type) like DCM_MR (MRI DICOMs), 
DCM_CT (CT DICOMS), and AEC (physiological signal 
customized file format).

• Series node: may regroup file of a specific acquisition/sequence. 
Associated information of this node type is

 ⚬ Series number
 ⚬ Series description (acquisition sequence name)
 ⚬ …

• File node: single file/image node. As the leaf of the data tree, 
this node is the representation of the data file that physically 
presents in the file system. Associated information of this node 
type is

 ⚬ File URL: the address of the file
 ⚬ Insertion date

 ⚬  Specific metadata: many other metadata depending on the 
file type (acquisition parameters, voxel size, matrix dimen-
sions, sampling frequency, etc.)

All these metadata and node information extracted from 
file headers are inserted into the database during the insertion 
process using customized rules for each different file type.

It is possible to add a new customer recognized format or file 
type into our system by programmatically defining which meta-
data need to be extracted from the file and how to read them. 
Then database dynamically adapt its structure to integrate this 
new type.

Some meta information are generics and some others are com-
mon to all types (Exam code, location URL, dates, etc.), while 
some others are specific to a certain file type (e.g., echo time and 
repetition time for MR image data, rescale slope, and rescale 
intercept for CT image data, customized comment for result or 
physiological data file, etc.) (Figure 3).

Derived data generated by specific local tools such as recon-
struction and post-processing software can be inserted inside 
ArchiMed as “Result” files and linked to the initials data by shar-
ing the same exam node and series node (relationship between 
data are intrinsically defined inside the database schema). Every 
result file type can embed other analysis file (CSV, segmentations 
file, MESH, etc.).

Integrity and Quality control
Above all, it is important to underline that for security reasons, 
in order to keep full local control of data. ArchiMed has been 
design to be hosted on a local network and not accessible from 
outside (via internet network). This considerably limits the risk 
of intrusion and subsequent data loss or damage.

To avoid unfortunate deletion, move, or file corruption, 
ArchiMed does not allow direct access to file systems. Data are 
only accessible via authenticated HTTP requests19 (Fielding et al., 
1999), which greatly limits direct access to physical files in order 
to reduce human factor error.

A “recycle bin” temporary storage retains data deleted by users 
for several days before permanently erasing them from the file 
system and ArchiMed storage eases built-in standard backup and 
archiving system.

As previously stated, ArchiMed can support usual user and 
group management via a standard LDAP connection. It is, there-
fore, possible to integrate it into an environment with existing 
right management system (such as Microsoft Windows Active 

19 Hypertext Transfer Protocol, https://www.rfc-editor.org/info/rfc2616.
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Directory20 or any other LDAP based user’s directory). This way, 
as a member of a group, a user will be able to perform different 
categories of actions, such as visualization, adding, removing, and 
downloading (view). It allows a flexible and sufficiently sensitive 
right management and data access for every nodes (study, exam, 
series, file). By default, there are four levels of rights with different 
access privileges for each of them

• Limited user: view only,
• Standard user: view and import (data insertion),
• Power user: view, import, update, and delete (into recycle bin),
• Administrator: view, import, update, delete, permanently 

delete, and configuration tasks.

Finally, keeping in mind that only human experts can defi-
nitely validate or reject acquired data before inserting into the 
database, we separated the data integration into two steps

• In the first step, data are automatically transferred in a tem-
porary archive. At this point, users, who are in charge of data 
transfer, must check data validity by checking file information 
and going through all the images.

• In the second step, data are “transferred” to the final storage, 
assigned to a specific study. and eventually de-identified.

Although more time is needed than a single-pass automatic 
import, we believe that these two steps are necessary to prevent 
image insertion error.

20 Microsoft Active Directory, https://technet.microsoft.com/en-us/library/
cc977985.aspx.

confidentiality
In addition to action user right explained above, administrator 
can grant access to a study to users. Thereby, only clinicians, 
researchers, engineer, and project managers identified in the 
protocol of the study can access to the data of this study. At this 
level, there is no consideration of group; access grant to a study is 
allowed individually.

Data files from different study are physically separated in 
different cache directories and totally inaccessible without 
authentication.

ArchiMed offers a built-in de-identification21 (Kushida et al., 
2012) functionality that automatically replaces or erases identify-
ing fields (name, date of birth, acquisition center, etc.) from data 
headers before or after import.

In accordance to legal requirements of clinical research and 
because research centers are not supposed to keep any other trace 
of patients/volunteers across the studies, exam code unique ID 
is the only available information about the case inclusion inside 
ArchiMed database, multicenter data storage.

In multicenter clinical trial context, the main source or error 
in collected data are due to bad de-identification (removed fields, 
missing data) or bad electronic support quality (corrupted CD, 
wrong data, etc.). Since ArchiMed server is hosted on a local 
network not accessible from outside, it cannot replace non-secure 
CD transfers and safely collect data from other collaborative 
centers. Therefore, we developed Eureka, a secure transfer tools 

21 De-identification (DICOM in general). https://wiki.nci.nih.gov/display/Imaging/
De-identification+(DICOM+in+general).
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coupled with ArchiMed, which allows external centers to send 
de-identified data through internet into ArchiMed (Figure 4).

The secondary goal of this auxiliary application is to stand-
ardize and to keep control on data de-identification and transfer 
while allowing centers’ operators to visualize and check image 
before sending.

Interoperability
To connect ArchiMed to the clinical environment, a DICOM 
transfer protocol is implemented (Figure  4). Behaving like a 
DICOM node, it can receive/send images from/to clinical devices 
(e.g., MR, CT, etc.), PACS, or workstation. Specific files like MRI 
raw data are sent via FTP.

Web services and Servlets technologies make ArchiMed inter-
operable on HTTP. This means that every application can query 
the database and upload/download files.

Moreover Plugin Development Toolkit (PDK) provides Java 
developers with the tools necessary to create plugins that extend 
the functionalities of ArchiMed client application. Developed 
plugins can be global or associated to a specific node (exams, 
series, and files).

ReSUlTS

Current version of ArchiMed is in function for 5 years at CIC-IT 
of Nancy-France and used every day by about 60 people, among 

whom are researchers, clinicians, and clinical trial project manag-
ers for local or multicenter studies.

• Studies: 116 (including 7 multicenter studies)
• Stored exams: ~10,000
• Stored files: ~10,000,000
• Disk size: ~4 TB
• Database size: ~7 GB

Figure 5 shows data import activity and amount of data for 
all studies.

Studies examples
“MRI Methodology” CIC-IT Protocol (Local Study 
Code: 2008-0003)
Started in 2008 (before the deployment of the current ArchiMed 
version) and still active, this research protocol, designed to 
improve MRI technology and sequences, represents the most 
important activity using ArchiMed.

• Stored exams: 1,246
• MR Dicom files: ~3,000,000 (~300 GB)
• AEC (physiological signals) files: ~ 4,000 (~100 GB)
• MR raw data: ~14,000 (~600 GB)

On daily practice, images and associated files acquired from 
clinical MRIs are directly sent into ArchiMed temporary storage 
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through DICOM protocol or FTP connections, before being 
validated, identified (if necessary), and transferred to the cor-
responding study cache by project manager.

THRACE (Local Study Code: 2009-007)
Started in 2009, this multicenter protocol has been designed to 
assess effectiveness of endovascular mechanical thrombectomy 
for acute ischemic stroke (Bracard et al., 2016). CIC-IT of Nancy-
France is responsible of collecting, archiving, and analyzing of all 
images from all the 26 participating centers.

• Centers: 26
• Stored exams: 1,402
• MR Dicom files: ~300,000 (~100 GB)
• CT Dicom files: ~400,000 (~200 GB)
• XA Dicom files (angiography): ~10,000 (~80 GB)

DICOM images were sent to CIC-IT via CD in earlier days, 
which is the source of many practical problems (especially con-
cerning de-identification, missing data, or corrupted files) with a 
significant impact in term of time and resources.

The THRACE project experience has motivated the creation 
of Eureka for transferring files from externals centers.

User Interface
Installed on more than 50 computers, the Java client application 
is the most used way to access ArchiMed. It has been designed 

to be easy to use with a comprehensive user interface similar to 
those commonly used in clinical imaging software applications 
(Figure 6).

plugins and external Software 
connections
Interoperable HTTP service interface is already used by differ-
ent external applications, developed either in C++, Java™ or 
Matlab™ environments such as “ORS Visual ArchiMed Loader” 
(loading DICOM from ArchiMed to “ORS Visual™22” viewing 
and processing platform) or “Matlab ArchiMed Connector” 
(loading Dicom or other file into Matlab™23 by querying 
ArchiMed) (Figure 7).

To extend ArchiMed client application functionalities, more 
than 20 plugins have already been developed for specific process-
ing, case report form, statistical analysis, external database filling, 
and connection with other software programs, etc. (Figure 8).

See Table  1 for examples of plugins that have been already 
built.

22 ORS – Radiology Software, PACS, DICOM Viewer and Medical Imaging, http://
www.theobjects.com/en/.
23 MATLAB™ – MathWorks, http://mathworks.com/products/matlab/.
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FIgURe 6 | ArchiMed client gUI: connection menu (A), main options menu (B), images and data browser interface (c).
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DIScUSSIon AnD conclUSIon

ArchiMed is a complete storage and visualization solution 
respecting legal requirements and research obligations. It is in 
function for 5 years at CIC-IT of Nancy-France and is a handy 
research data management system for our 60 staff, among whom 
are researchers, clinicians, and clinical trial project managers for 
local or multicenter studies.

Initially, based on the internal needs of our lab to safely store 
and easily access imaging data, it has met all our expectations and 
is used in more than 100 clinical protocols at CIC-IT of Nancy-
France, France since 2011.

collaborations
It turns out that the functional organization of clinical imaging 
data covered by ArchiMed is not only our own needs. Many labs 
and research centers specialized in imaging face the same issues 

and are experiencing difficulties in finding a solution dedicated 
for research and meeting legal requirements for data preservation 
and confidentiality. This is why ArchiMed has won great attention 
from our partners in France. The very first external deployment 
of our ArchiMed system was with CIC-IT of Tours24 under their 
request. Since 2015, ArchiMed has been under function for their 
local clinical protocols. More installations are currently being 
considered.

In the context of the French research infrastructure in imaging 
(France Life Imaging, FLI), we will interconnect all research data 
storage systems in France. The FLI-IAM25 workgroup will use 
already existing data storage and information processing facilities 

24 Clinical Investigation Center of Tours (France), http://cic-it-tours.fr/.
25 France Life Imaging – Information Analysis and Management (IAM) Node, 
https://project.inria.fr/fli/en/.
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FIgURe 7 | ArchiMed interoperability over hTTp. Loading image data from ArchiMed into Matlab (A) or a ORS Visual 3D dicom viewer (B).
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(including CATI,26 Shanoir,27 and ArchiMed) and will increase 
their capacities for the FLI infrastructure.

current limitations and Improvement
About Metadata and Traceability
So far, metadata extraction and de-identification rules only 
depend on file types and are not related to a specific study. It can 
be problematic especially when we consider that some metadata 
can be relevant in a specific study context but unnecessary in 
another one (e.g., MR diffusion tensor directions will be an 
important factor for brain study while heart’s beat parameter will 
be more relevant in cardiovascular study). For these reasons, we 
are thinking about building in a study profile which defines, by 
study, what header information will be extracted and available as 
metadata in the database and what header information will be 
deleted or de-identified.

26 CATI Neuroimaging, http://cati-neuroimaging.com.
27 Shanoir (Sharing NeurOImaging Resources), http://www.shanoir.org/.

Moreover, current version of our software only logs errors 
and information about data insertion/modification/delete (at 
exam node level). For recording user activities and tracking 
workflow better, it should be interesting to keep reports of data 
consultation/download by user and client application destination 
(processing tool, viewing platform, etc.).

Cloud
ArchiMed has been created to be a local solution, only accessible 
from a local area network by authorized and identified users. 
However, in the age of Cloud computing (Rimal et  al., 2009), 
it will be proper to offer a secured and fully online version of 
ArchiMed. We are seriously considering upgrading it as a cloud 
service based on a Software as a service (SaaS)28 (Levinson, 2007) 
model. Current service oriented architecture renders ArchiMed 
technically compatible with cloud infrastructure, but the impact 

28 SaaS (Software as a Service), https://en.wikipedia.org/wiki/Software_as_a_service.
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TABle 1 | Some existing ArchiMed plugins.

plugin Description

Dcm to Nifti converter Convert a DICOM Series to Nifti format file

Matlab connector plugin Connect with Matlab in two ways: push from 
ArchiMed client to Matlab or pull directly from 
server using web services

XXXX plugin Exam electronic case report form and data analysis 
for XXXX protocol

PC analysis Phase contrast—pulse wave velocity MR image 
analysis

FSL_FA Compute ADC and FA maps from DICOM Series 
using FSL (brain imaging analysis)

DICOM export Export images or movies from stored DICOM

MR quality control Extract quality control parameters from a specific 
normalized protocol

DCM Series splitter Split DICOM series according to specified criterions

App Launcher Launch defined externals applications

XXXX pre-screening Data check and reviewing plugin for XXXX protocol

Colormap display Display DICOM images using different colormaps 
(useful for mapping)

Download and de-identify Download DICOM files/series/exams with 
de-identifying custom tags

FIgURe 8 | ArchiMed integrated plugins—T1 mapping tools example.
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of external storage in terms of data security, confidentiality, and 
legal obligations have to be taken into account.

In conclusion, ArchiMed is a well-adapted research PACS. 
It is working for more than 5 years at CIC-IT of Nancy-France 
and perfectly matches with clinical research needs in terms of 
workflow, organization, legal requirement, and usability.

gloSSARy

CNIL—Commission Nationale de l’Informatique et des Libertés 
(National Commission on Informatics and Liberty) is an inde-
pendent French administrative regulatory body whose mission is 
to ensure that data privacy law is applied to the collection, storage, 
and use of personal data.

DICOM—Digital Imaging and Communications in Medicine 
is a standard for handling, storing, printing, and transmitting 
information in medical imaging. It includes a file format defini-
tion and a network communications protocol.

FTP—The File Transfer Protocol is a standard network proto-
col used to transfer computer files between a client and server on 
a computer network.
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HTTP—The Hypertext Transfer Protocol is an application 
protocol for distributed, collaborative, hypermedia information 
systems.

Java™—Java is a general-purpose computer programing 
language that is concurrent, class-based, object-oriented, and 
specifically designed to have as few implementation dependen-
cies as possible.

Java-EE™—Java Platform, Enterprise Edition is a widely 
used enterprise computing platform developed under the Java 
Community Process.

LDAP—The Lightweight Directory Access Protocol is 
an open, vendor-neutral, industry standard application 
protocol for accessing and maintaining distributed direc-
tory information services over an Internet Protocol (IP)  
network.

MRI—Magnetic resonance imaging is a medical imaging 
technique used in radiology to image the anatomy and the physi-
ological processes of the body.
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Data sharing is becoming more of a requirement as technologies mature and as global

research and communications diversify. As a result, researchers are looking for practical

solutions, not only to enhance scientific collaborations, but also to acquire larger amounts

of data, and to access specialized datasets. In many cases, the realities of data

acquisition present a significant burden, therefore gaining access to public datasets

allows for more robust analyses and broadly enriched data exploration. To answer this

demand, the Montreal Neurological Institute has announced its commitment to Open

Science, harnessing the power of making both clinical and research data available

to the world (Owens, 2016a,b). As such, the LORIS and CBRAIN (Das et al., 2016)

platforms have been tasked with the technical challenges specific to the institutional-level

implementation of open data sharing, including:

(1) Comprehensive linking of multimodal data (phenotypic, clinical, neuroimaging,

biobanking, and genomics, etc.)

(2) Secure database encryption, specifically designed for institutional and multi-project

data sharing, ensuring subject confidentiality (using multi-tiered identifiers).

(3) Querying capabilities with multiple levels of single study and institutional permissions,

allowing public data sharing for all consented and de-identified subject data.

(4) Configurable pipelines and flags to facilitate acquisition and analysis, as well as

access to High Performance Computing clusters for rapid data processing and

sharing of software tools.

(5) Robust Workflows and Quality Control mechanisms ensuring transparency and

consistency in best practices.

(6) Long term storage (andweb access) of data, reducing loss of institutional data assets.

(7) Enhanced web-based visualization of imaging, genomic, and phenotypic data,

allowing for real-time viewing and manipulation of data from anywhere in the world.
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(8) Numerous modules for data filtering, summary statistics, and personalized and

configurable dashboards.

Implementing the vision of Open Science at the Montreal Neurological Institute will be

a concerted undertaking that seeks to facilitate data sharing for the global research

community. Our goal is to utilize the years of experience in multi-site collaborative

research infrastructure to implement the technical requirements to achieve this level of

public data sharing in a practical yet robust manner, in support of accelerating scientific

discovery.

Keywords: neuroimaging, big data, open science framework, cyberinfrastructure, neuroscience, data sharing,

bids, workflow

INTRODUCTION

The challenge of reproducibility in science (Campbell, 2016)
has compelled the neuroscience research community to
adopt new approaches to ensure scientific reliability without
impeding innovation. The recent commitment by the Montreal
Neurological Institute (MNI) to Open Science aims to improve
replicability and transparency in research through collaboration,
and in doing so, accelerate scientific discovery (Owens, 2016a,b).

The MNI’s Open Science initiative calls for the free release
of research data, findings, analytical tools, and publications
from MNI-based researchers. Institutional sharing aims to
prevent data loss, increase sample size and statistical power,
and reduce acquisition costs by encouraging data re-use
(thereby maximizing returns on public funding). In addition to
these advantages, inviting external researchers to access these
institutional resources will expand the reach and impact of
research conducted at the institute (Poldrack and Gorgolewski,
2014).

Open Science initiatives have been spearheaded within the
bioinformatics and neuroscience communities by groups such
as the Center for Open Science (Asante et al., 2016), the Allen
Institute (Koch and Jones, 2016), the Human Connectome
Project (Van Essen et al., 2012), OpenfMRI (Poldrack et al., 2013),
the Consortium for Reliability and Reproducibility (CoRR) (Zuo
et al., 2014), and a multitude of independent data sharing and
open-source academic software initiatives such as BrainHack
(Craddock et al., 2016), Brainstorm (Baillet et al., 2011), SPM
(Friston et al., 1994), FSL (Jenkinson et al., 2012), ADNI
(Petersen et al., 2010), Nipype (Gorgolewski et al., 2011), and
BigBrain (Amunts et al., 2013). At the same time, emerging
definitions of common data sharing standards, practices, and
formats are being established via BIDS (Gorgolewski et al., 2016),
the Neuro-Imaging Data Model (NIDM) (Maumet et al., 2016),
FAIR principles (Wilkinson et al., 2016) and even extending to
data organization and citation strategies (Honor et al., 2016).
Meanwhile, governments and funding agencies in the USA
(National Institutes of Health, 2014; National Institute of Mental
Health, 2015), Canada (Tri-Agency Statement of Principles of
Digital Data Management, 2016), Europe (Horizon 2020, The
Wellcome Trust, 2016) and elsewhere encourage and increasingly
require research programs to establish data management and

sharing plans from the start of the research data lifecycle.
Despite these efforts, such initiatives are frequently constrained
to particular projects or focused collaborations rather than
institutional initiatives, as the sharing of data often remains at the
discretion of individual investigators whose technical resources
and expertise in data infrastructure may be limited.

As the first leading academic research institution to develop
an Open Science framework at the institutional level1, the MNI’s
cyberinfrastructure platform will play a critical role in this
initiative. To fulfill this vision, several key implementational
challenges must be met, including policy, security, and ethics,
as well as infrastructural design, software interoperability, data
harmonization, validation, processing, and provenance capture.
The solutions to these issues must adhere to open data
sharing principles and respect domain-specific best practices
(Honor et al., 2016; Nichols et al., 2016; Wilkinson et al.,
2016).

For effective data sharing at an institutional level, it is
imperative to use a cyberinfrastructure that can incorporate
heterogeneous datasets acquired frommultiple sources over time
as well as across modalities – and to do so in a way that
is robust. Data collected by investigators in multiple studies
across the institute span diverse data types from many domains,
including clinical/behavioral measures, biological samples from
the MNI biobanking collections, genomic data, and a growing
multimodal repository of brain imaging data. The institutional
cyberinfrastructure housing these datasets must also be able to
integrate workflows from all stages of the research data lifecycle,
and interoperate with platforms that capture and disseminate
large datasets.

To this end, the MNI has selected LORIS (Das et al.,
2011) to serve as the core data management platform for
this initiative, coupled to the CBRAIN distributed high-
performance computing environment (Sherif et al., 2014). These
two platforms, combined with embedded data visualization
utilities (Sherif et al., 2015), constitute an “ecosystem” capable
of supporting Open Science at an institutional level (Das et al.,
2016).

1Open Science (Open Access). HORIZON 2020, The EU Framework Programme
for Research and Innovation. Retrieved from https://ec.europa.eu (Accessed on
August 29, 2016).
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This paper describes the ethical and policy challenges,
the technical infrastructure used for storage and curation of
the various data types, and the workflows and processing
environment for the implementation of Open Science at the
MNI.

METHODS

Four cornerstones of the MNI’s Open Science framework
and cyberinfrastructure are discussed below: (1) ethics
(including subject privacy, consent and security), (2) multi-
modal data entry, (3) workflows and quality control, and
(4) high-performance data processing and software-systems
interoperability.

Ethics, Privacy and Security
Embarking on the endeavor of institutional Open Science poses
unique challenges, particularly with regard to respecting ethical
guidelines. One critical component is that personally identifiable
information (PII) of all subjects must be protected and the data
itself must be de-identified and secured within the context of
private and independent databases—but will also be reconcilable
into a single subject record in the Open Science platform.

Since the creation of the first human cell-line (Lucey et al.,
2009), the ethical considerations surrounding the distribution
and use of human subject data have been manifold (Nelson,
2015). In accordance with local Quebec law and research ethics,
informed consent must be obtained from subjects in order to
collect and study tissue and data. The Canadian Tri-Council has
also provided clear criteria to protect the privacy of subjects, and
these criteria must be met in order for researchers to have access
to sensitive data (Canadian Institutes of Health Research Natural
Sciences and Engineering Research Council of Canada and Social
Sciences and Humanities Research Council of Canada, 2014).
Accordingly, a proposal was submitted and approved by the
MNI Research Ethics Board (REB) for the Neuro OpenScience
Clinical Biologic Imaging and Genetic Repository, or C-BIG-R,
addressing the implementation of an infrastructure technically
compatible with these ethics policies. A dual-level governance
structure was created to oversee these ethical concerns via the
REB as well as a newly-established “Tissue and Data” committee.
The REB is tasked with the identification of best practices
employed by comparable initiatives, and the Tissue and Data
committee is responsible for determining what materials are
deposited into the bank, the storage mechanisms, and how
they can be accessed for research. Participating studies may
profit from this governance model throughout the research
data lifecycle, since matters of storage, security, inclusion, and
exclusion criteria, disposal of samples etc., will already be covered
by this ethical framework.

Data sharing at any level requires nuanced procedures
and consent processes, and involves particular technological
constraints. These technical considerations include how to
share data (i) within a single study as well as (ii) between
collaborating investigators, and finally (iii) at an institutional
and public level such that subject data from multiple studies
are linkable and queryable in a unified manner. From its

inception, the MNI’s platform design allows researchers to first
store and share data internally and privately, while ultimately
allowing data to be selectively pushed to the public-facing
platform for dissemination (Figure 1). Both de-identification and
reconciliation of subject records must be carefully designed in
view of the Open MNI platform.

De-identification of subject data is an integral requirement:
the identifier must ensure privacy and ethically-compliant data
sharing, while also preventing data duplication. For this purpose,
a system of hashed identifiers has been designed to safeguard
subject identity at every stage and prevent reconstructive subject
identification. This process encodes identifying information and
is incorporated into LORIS such that PII is never transmitted
over a network; only the encoded information is used (Figure 2).

A one-way cryptographic hash function is employed to
uniquely refer to individual subjects without revealing any of
their identifying information. A given subject’s first, middle
and last names, date of birth and mother’s maiden name are
concatenated and passed through the PBKDF22 (“Password-
Based Key Derivation Function 2”) algorithm to generate a
unique hash value, created by iteratively applying a SHA13

(Secure Hash Algorithm 1) hashing function one million
times. The resulting hashed value (a 125-character string)
is then mapped onto a unique MNI-internal identifier (e.g.,
“StudyA1007”), distinctly generated for every study in which the
subject is a participant. These study-specific identifiers can be
disseminated without compromising the subject’s privacy. The
internal hash is only accessible by database administrators and
is therefore also kept secret within the institution.

Research platforms or researchers that have access to a
subject’s private information will never store PII directly in
the database; rather, they will automatically trigger this hashing
function when registering subject data in LORIS. The function
was selected for its efficiency given a sufficiently short execution
time to perform mass registration of data, yet long enough such
that brute-force attackers cannot identify subjects by repeated
attempts to guess subject names. The entire process of hashing
takes approximately 7 seconds on a current CPU.

Datasets can be shared (at the owner’s discretion) by
uploading to the public-facing Open MNI repository. The
sharing process entails additional data curation steps for further
de-identification, such as transforming images via de-facing to
avoid identification based on facial features (Bischoff-Grethe
et al., 2007). Another of these transformations is an encryption
performed on the locally hashed identifiers. This encrypted hash
is used to detect non-unique subjects for the sole purpose of
avoiding redundancy (i.e., same subject appearing in different
datasets). When a subject is determined to be unique within the
Open Science repository, they are assigned a unique public ID
which unifies their de-identified data from disparate studies.

2PBKDF2 is a key derivation function that applies a pseudo-random function to
a specified input, repeating the process multiple times, to produce a derived key
(https://en.wikipedia.org/wiki/PBKDF2).
3SHA-1 a cryptographic hash function designed as a one-way function to
map data of arbitrary size to a fixed data size, making it unfeasible to
invert. It is considered a U.S. Federal Information Processing Standard
(https://en.wikipedia.org/wiki/SHA-1).
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FIGURE 1 | MNI data flow from internal institutional repository to public-facing Open Science platform. At the institutional level, data are organized within

individual studies and are only accessible by users approved by the study’s principal investigator. Subjects participating in multiple studies are assigned unique IDs for

each study. When data are shared to the Open MNI repository, a subject’s data will be linked across all studies by a new unique subject ID.

In the event that a subject revokes consent, a database
administrator has the capability of removing that subject from
the Open MNI LORIS database using the unique public subject
ID. Upon revocation, the physical data as well as the computer
records will be destroyed and deleted. However, any derived
datasets or results obtained through the analysis of biospecimens
and data for which consent has been withdrawn will not be
destroyed. This process complies with NIH-NDA standards and
methodology regarding Global Unique Identifiers (Johnson et al.,
2010), and is explicitly outlined in the biobank consent form.

Loris Functionality: Multi-Modal Data
Entry, Provenance, Storage, and Linking
The LORIS system (Das et al., 2011, 2016) was designed
specifically for heterogeneous data acquisition, curation and
dissemination. It is a web-based PHP/MySQL database, freely
available on GitHub4 as open-source software. Its modular
organization and support for multiple data modalities (including
behavioral/clinical, neuroimaging, and genetic summary data)
provide a flexible and robust platform for many types of multi-
site studies and projects.

Within LORIS, data are organized based on subject profiles
and longitudinal data-collection timepoints within a given study.
After creating a de-identified profile of a subject, multiple
modalities of data are associated to that subject and their

4https://github.com/aces/Loris

corresponding timepoints. For example, data collected at a
particular subject timepoint may include the acquisition of MRI
and PET volumes, a collection of biospecimens, and a variety of
other clinical measures. All of this information is associated to
the subject within LORIS and can be easily retrieved, reviewed,
and exported.

Data can be imported into LORIS from external software
systems, such as laboratory information management systems
(LIMS) that handle sample registration, tracking, and storage.
Such systems export data in various formats, demonstrate
different data transfer capabilities, and implement varying
configurations in their Application Programming Interfaces
(APIs). To ensure interoperability across this diverse range of
systems, a series of processing scripts have been created in order
to bridge the gap between LORIS and the heterogeneous outputs
of these platforms.

Importation of data is best illustrated through examples from
two contexts: imaging volumes and biospecimen information.
The transfer, insertion and processing of imaging data is
performed via a sequence of open-source scripts5 native to the
LORIS platform. These scripts form a software “pipeline” that
is installed on the server to automate the pre-processing and
insertion of imaging datasets. In addition, a web-based imaging
uploader integrated with these server-side scripts handles image
uploading, filename anonymization validation, and interactive

5https://github.com/aces/Loris-MRI
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FIGURE 2 | Information Flow for De-identification: Identifying subject information is encrypted and protected at each step. Subject information is

collected (1) and then iteratively hashed (2) by a PBKDF2 algorithm using a SHA1 function to generate an Internal Hash value. This Internal Hash is mapped to a

unique subject ID for each study (3); this mapping is stored in a database only accessible by database administrators (Internal MNI LORIS). Users of the Internal MNI

LORIS platform will reference each study participant by this unique private ID, such that an individual enrolled in different studies will be registered under different

subject IDs. For datasets that are selected for sharing via the Open MNI LORIS platform, (4) the Internal Hash value for each subject is encrypted again using a secure

key known only to database administrators, such that data cannot be easily linked back to private subject IDs. At the same time, (5) data are further anonymized and

images de-faced (facial features removed) during transfer from the Internal MNI platform to the public-facing Open MNI LORIS data platform.

flagging of protocol verification checks. Once loaded in the
database, imaging volumes become searchable and sortable in
the Imaging Browser module. 3D visualization of volumes and
morphological surfaces is natively embedded in the interface via
the BrainBrowser6 tool used for quality control review of images
(Sherif et al., 2015).

Another approach is presently being explored for LORIS to
directly import multimodal data organized according to the
emerging BIDS convention (Gorgolewski et al., 2016): data
volumes would be pushed automatically from their respective
acquisition sources (MRI scanners, PET cameras, MEG, and EEG
arrays) into a central BIDS-compliant file system. This consists
of structured folders containing raw and metadata information
in simple JSON files. The new data entries would then be
systematically imported and registered into the database after
being detected by an automated daemon process that monitors
further updates to the BIDS system.

For biospecimen data, a similar automated workflow has been
implemented. Biosamples are collected and processed in a lab, at
which time information about the sample collected (e.g., sample
type, date of collection, etc.) and its current status (e.g., stage of
processing, storage location) are registered within a third-party

6https://github.com/aces/brainbrowser

LIMS data system. Custom scripts are used to extract data based
on archives of these data systems, simultaneously converting and
normalizing the data for use within LORIS.

Once data are acquired and loaded in LORIS (through either
manual data entry or automated pipeline scripts), researchers will
be able to review and curate information using quality control
tools and procedures assuring quality inputs to their analysis
pipelines. Following data acquisition, review and curation,
researchers can download, query, and disseminate datasets via
LORIS’ Data Querying Tool (DQT) which is built on a NoSQL
framework (Katz et al., 2005) to enable fast and precise extraction
of large datasets. Via the DQT, users can construct complex
queries and apply custom filters in order to target populations
and subsets of interest.

Common data description vocabularies are required to
properly address the challenges of Open Science at a large
scale. However, implementing a common vocabulary covering
the range of concepts involved in studies conducted across the
MNI will be a significant undertaking, and will be driven by the
MNI’s researchers as they seek to share their data in a common
Open Science framework; convergence upon a usable solution
will be challenging. LORIS is committed to the standardization
of ontologies, and currently adopts a practical approach where (1)
all the (DICOM) fields related to imaging data are preserved and
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FIGURE 3 | Imaging workflow from subject registration to data sharing in Open Science detailing processes for radiological reviews, quality control,

and dissemination.

made queryable, and (2) terms used for behavioral variables and
biobanking studies are defined on a study-by-study basis, while
their re-utilization is also promoted across studies, compliant
(where possible) with conventions such as BIDS (Gorgolewski
et al., 2016) or NDAR (Hall et al., 2012). Prospectively, LORIS
plans to adopt ontologies under development by the NIDM
initiative to formally and uniformly describe raw data, terms,
workflows and derived data (Maumet et al., 2016), as well as open
data citation standards such as those developed for neuroimaging
(Honor et al., 2016). Further integration of domain-specific
standards, such as MIABIS 2.0 developed for biobanking data
by the BBMRI-ERIC network (Merino-Martinez et al., 2016), is
a priority for integration of data dissemination formats for the
Open Science platform.

Workflows and Quality Control for Imaging,
Clinical/Behavioral and Biobanking
To support data review processes, multiple tiers of quality control
tools are embedded in LORIS, enabling researchers to standardize
data collection, which in turn facilitates reproducible results
and compatible data-sharing in an Open Science environment.
Validating the reliability of assessments for data collected at
different sites and over time enables researchers to control for
variability (Van Essen et al., 2013; Ducharme et al., 2015; Orban
et al., 2015). Figures 3–5 show domain-specific procedures that
allow for data to be both standardized within a study and across
studies in the context of Open Science for imaging (Figure 3),

biobanking (Figure 4), and clinical/behavioral (Figure 5) data
collection.

LORIS implements these new frameworks, techniques, and
procedures, both automatic and manual, to ensure that the
integrity, validity and reliability of data are not compromised
from the collection stage through to data sharing.

High-Performance Data Processing
Open Science at the MNI is further facilitated by the interface
between LORIS and CBRAIN’s high performance computing
(HPC) capabilities (Das et al., 2016). CBRAIN is a web-
based collaborative research platform developed in response to
the challenges raised by data-heavy, computationally-intensive
neuroimaging research (Sherif et al., 2014). It offers transparent
access to remote data sources, distributed computing sites, and
an array of processing and visualization tools within a controlled,
secure environment. The framework code is entirely open-source
and available on GitHub7.

CBRAIN promotes Open Science in several ways by
providing: (1) web access to a wide range of data processing
pipelines, (2) an API open to other systems such as LORIS, (3) a
full provenance trail of software versions, processing logs and all
data manipulations, (4) strong security features, (5) a mechanism
of tool containers and descriptors to facilitate the integration and
open distribution of new analysis tools/pipelines (Glatard et al.,
2015), and (6) connections to new private or shared data sources

7https://github.com/aces/cbrain
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FIGURE 4 | Biobanking workflow from subject registration to data sharing in Open Science detailing data collection, sample tracking, quality control,

and dissemination.

FIGURE 5 | Clinical/Behavioral workflow from subject registration to data sharing in Open Science detailing data validation, range checks, data

integrity flags, and interactive statistics interface at the study and institutional levels.

for research groups. An overview of CBRAIN’s integration with
LORIS is shown in Figure 6 and further detailed in “The MNI
data-sharing and processing ecosystem” (Das et al., 2016).

While LORIS stores and manages the data gathered and
distributed by the institute, the CBRAIN platform provides an
interface to the tools and high-performance computing and

processing capabilities needed by the researchers. CBRAIN and
LORIS each have APIs and can be connected such that data files
managed by LORIS can be transferred to CBRAIN and processed
on its computing ecosystem. When submitted workloads are
completed, the resulting data files can be transferred back and
registered in LORIS under the proper subject profile. This
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FIGURE 6 | LORIS and CBRAIN interaction (Das et al., 2016). Datasets hosted in LORIS’ data-sharing platform are pushed to, processed by, and returned to the

central LORIS repository from the CBRAIN distributed computing platform. Data can be downloaded or disseminated at any stage. Custom tools and pipelines can be

packaged and mounted on CBRAIN for use by a research group or larger community of investigators.

eliminates the complexity of manual multi-site data transfers and
saves the researchers from having to deal with the peculiarities
of each computing center (e.g., queueing system and library
environment, site policies, number of usable cores per nodes,
queue limits, downtime, etc.).

A built-in mechanism allows for extensive provenance
recording of any entity managed by CBRAIN, in particular for
all operations on files, tasks, user groups, data, and computing
resources, as well as the full standard and error logs provided by
the analysis tools during processing. This audit trail is essential
to ensure future reproducibility of results, and is also useful for
troubleshooting and debugging.

CBRAIN’s capabilities integrate well with the institutional
requirements of privacy when dealing with files that are not yet
openly releasable. All CBRAIN data traffic to and from the high
performance computing centers is encrypted. Secure connections
between authorized resources are transient, and temporary files
can be configured to be automatically purged after processing is
finished. Fine-grained access rights can be defined on any data
file via user groups. Strict access permissions can also be defined
for complete data servers, for analysis tools and for computation
sites.

Extensibility is an important component of the CBRAIN
architecture, and includes software and processing pipelines,
data sources and data formats, and computational backends.
Researchers can provide different software packages that make
a vast number of processing tools available to authorized
users. Standardized processing pipelines can be integrated either
by writing dedicated CBRAIN plugins, or by leveraging the

open Boutiques8 framework (Glatard et al., 2015). Boutiques
provides a high-level specification to describe command-line
tools without writing any code, and to install these tools
uniformly on computing systems through Docker9 containers.
CBRAIN is designed to provide a generic data processing
framework, accepting different data-types from various sources
as determined by the data-processing software. This is achieved
by the creation of data models that associate each data-type
with its own processing software and corresponding visualization
tool. Finally, CBRAIN provides a meta-scheduler and adaptors
to common cluster systems (PBS, Torque, SGE, MOAB, LSF,
Amazon EC2 or simple UNIX prompt submission) in order
to extend the computational backends needed to process large
amounts of data through these diverse processing pipelines.

Currently, CBRAIN deploys Docker containers on a 20,000-
node computing cluster provided by Compute Canada, and on
Amazon Elastic Compute Cloud (EC2) using its cloud support
plugin. Several data analysis tools and processing pipelines are
currently deployed in these clusters (CIVET, FreeSurfer, FSL,
etc.), and data models for viewing and processing common
file types (csv, txt) and various neuroimaging data formats
are defined (MINC, NIfTI, BIDS). In the future, other types
of containers, for instance Singularity10, can further facilitate
sharing of new tools in an Open Science context. Other
scheduling systems can be easily added using the modularity

8http://boutiques.github.io
9https://docker.com
10http://singularity.lbl.gov
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of the resource access framework to further extend the
computational backend.

RESULTS

The cyberinfrastructure for Open Science at the MNI consists
of three primary components: the technical infrastructure that
facilitates acquisition, storage, querying, processing, and data
analysis; the workflows, procedures and best practices associated
with data integrity and privacy at each step; and the data
themselves.

Technical Infrastructure
Numerous large-scale projects have already employed LORIS
for multi-site use (Evans and Brain development cooperative
group, 2006; Wolff et al., 2012; Amunts et al., 2013; Paolozza
et al., 2014; Foster et al., 2015; Orban et al., 2015), and
several institutions have chosen or planned for LORIS as their
institutional infrastructure (e.g., PERFORMCentre at Concordia
University, University of Edinburgh’s Brain Research Imaging
Centre). LORIS is used across 150 acquisition sites in numerous
countries with over 500 instruments, over 75,000 variables, and
40 TB of data.

The CBRAIN service deployed at the MNI11 currently
provides over 460 collaborators in 20 countries with web access to
several systems, including six clusters of the Compute Canada12

high-performance computing infrastructure (totalling more than
100,000 computing cores and 40PB of disk storage) and Amazon
EC2. Presently, CBRAIN transiently stores about 10 million
files representing over 50TB distributed over 42 servers. 56
data processing tools are integrated and over 340,000 processing
batches have been submitted since 2010.

Workflows
One of the most important aspects in constructing large-scale
data sharing initiatives is the incorporation of properly-designed
user workflows, which are vital to ensuring effective usability
and viability. Creating software that provides a seamless user
experience for a subset of functionalities is a widely understood
best practice; however, incorporating diversified workflows into
a complex infrastructure, such as institutional Open Science,
requires more than wizardry in programming or knowledge of
the latest code libraries.

To that end, detailed workflows have been created to
facilitate procedures involved in acquiring, storing, and analyzing
neuroscience data including clinical, imaging, genetic, and
biobanking information. These workflows, outlined in the
Methods section of this paper (Figures 3–5), are designed to
improve consistency within studies and are critical in an Open
Science model across studies. Such procedures help ensure
consistency and compliance with data collection standards
(i.e., naming, data collection, and imaging pipelines), and
coupled with proper and intuitive data organization, provide the
foundation of data sharing, for easier interoperability between

11https://portal.cbrain.mcgill.ca
12http://www.computecanada.ca

software systems. Consistent application of such workflows also
serves to reduce time spent manually identifying and addressing
variability in data formatting. These systems are augmented
by a comprehensive set of previously-discussed QC procedures
ensuring validation of data and flagging of data for correction.
As imaging, clinical, or biospecimen information proceeds from
registration through analysis, these streamlined workflows save
significant time and energy for researchers as well as developers,
all while producing a robustly documented and well-validated
dataset.

The Data
Various data types are stored in LORIS including phenotypic,
clinical, demographic, imaging, and genomic data. The MNI’s
Open Science platform will initially consist of contributions
of imaging and biobanking data from two key institutional
resources. Within the MNI, biospecimens will be housed and
tracked in the institutional biobank component of the C-BIG
Repository. Neuroimaging data will also be contributed to the C-
BIG Repository by researchers using the MNI’s McConnell Brain
Imaging Centre (BIC) Imagebank platform. The resulting unified
repository (see Table 1) will serve the MNI with an enriched data
platform, providing multi-modal data querying via the DQT, and
enabling visualizations and analyses of more complex datasets
(European Society of Radiology, 2015).

Imagebank Infrastructure

In its pilot phase, the MNI’s Imagebank will serve as a central
repository of scans primarily collected at the BIC’s MRI unit.
Scans transferred to the Imagebank server will be loaded through
a series of software scripts into LORIS, and automatically made
available for download through the Imagebank’s web-based
browser interface. This repository allows all images, whether
raw or processed, to be available for visualization, quality
control, and download/export. Currently, this database links
to a compressed archive of every MRI dataset sent to the
server, which will grow considerably as the infrastructure is
further deployed and usage grows. Expansion for other imaging
modalities across the MNI, such as PET and MEG (Niso et al.,
2016), is underway. Imaging volumes stored in this LORIS-
based repository can be pushed to CBRAIN for image processing
and returned in an automated manner into the Imagebank.

TABLE 1 | C-BIG repository overview.

MNI C-BIG Centralized LORIS Repository

Type Description Data

Imagebank Multi-modal, raw/processed

neuroimaging data

MRI, PET, MEG, EEG,

Spectroscopy

Biobank Biospecimen data Blood, saliva, skin, muscle &

nerve biopsies, whole brains,

cerebrospinal fluid

Genetic Summary genetic data SNPs, CNVs, CpG, GWAS

Phenotypic Behavioral, clinical data Instruments, Assessments,

Questionnaires

Data types and description of data that will be stored in the MNI’s C-BIG Repository.
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In addition to storing, processing, archiving, and retrieving
data, investigators will have the option of releasing their scans
to the Open MNI platform in accordance with institutional
ethical and policy constraints as discussed in the Methods
section.

Biobank Infrastructure

Biosamples or biospecimens collected from subjects at the
MNI are stored within an infrastructure of freezers and
labs. This physical infrastructure, together with the software
modules within LORIS which retrieve and process data
related to these biospecimens, are collectively referred to
as “The Biobank.” Biosample types collected on-site include
blood, saliva, skin, muscle, and nerve biopsies, whole brains,
and cerebrospinal fluid. LORIS logs specimen information
- including sample type, specimen quantity and availability,
methodology employed, and so on - beginning at the stage
of collection and initial storage and continuing through
successive stages of analysis in the research data lifecycle.
During these stages, samples may also be located offsite in
any number of collaborating institutions or facilities, such
as the Genome Quebec Innovation Centre. Results from the
assays and analysis performed on these specimens are stored in
LORIS.

Both qualitative and quantitative outputs - such as cell counts,
protein expression, or diagnostic information—can be captured
for each biospecimen. Precisely which input fields are used
depends on the study and can be extended and customized on
a per-project and/or per-methodology basis. All of these data are
queryable in conjunction with clinical/behavioral data which are
also stored in LORIS.

LORIS contains a wide range of data collected from physical
biospecimens, including skin, blood and saliva. In addition to
these common sample types, a key strength of the MNI biobank
is enabling access to data obtained via complex, invasive or
rare procedures, such as muscle, brain and nerve biopsies,
cerebrospinal fluid, and whole brain specimens. Information and
analyses collected by one researcher (including data acquisition
log files, observations, models, outcomes, etc.) can be added
to the biobank for review and reuse by others. In providing
access to a large online dataset, LORIS greatly facilitates
optimal use and data re-analysis of rare specimens. This
has clear benefits for the acceleration of new discoveries in
neuroscience.

DISCUSSION

Open Science, at an institutional level, is a concept that has
not yet been widely adopted across the scientific community.
In tandem with the deployment of a robust cyberinfrastructure,
key enhancements to organizational practices are necessary for
Open Science to truly proliferate. Beginning with obtaining
subject consent for data sharing, protecting subject privacy
and complying with ethical regulations, there are challenges
in ensuring that all such considerations are executed properly,
securely, and effectively.

For an institution to go completely open, it requires
considerable buy-in from investigators who will share data and
tools, and a comprehensive institutional policy contingent upon
full support and leadership across the organization. Naturally
there are some risks and challenges associated in the adoption of
an Open Science framework. On an individual level, researchers
may be concerned about the ownership of data they have
generated, or autonomy over their research findings. However
the realities of any such risks are far outweighed by increasing the
outreach of the research and the number of citations (Piwowar
and Vision, 2013) and recognition that is attributed to shared
data, as initiatives such as ADNI (Petersen et al., 2010), the
Human Connectome Project (Van Essen et al., 2012), ABIDE (Di
Martino et al., 2014), FCP (Biswal et al., 2010), ADHD (ADHD-
200 Consortium, 2012), OpenfMRI (Poldrack et al., 2013), and
CoRR (Zuo et al., 2014) have demonstrated. From an institutional
perspective, there is often a fear that foregoing potential patent
royalties will result in lost revenue and recognition of innovation
(David, 2004). However, open access initiatives can result in
greater funding opportunities, increased efficiency, and greater
institutional recognition (Poldrack and Gorgolewski, 2014).

The MNI’s commitment to move toward an Open Science
model of data sharing (Owens, 2016a,b) leverages the benefits
of increased access to datasets in sample sizes and variability
while advancing the data lifecycle toward enriching exploratory
analyses and hypothesis formulation, which allows for new
questions to be asked. Increased sample size and sample variation
also improves reproducibility and reliability of inference testing
as well as publication quality and impact. While simply
releasing data under an Open Science context does not in
itself address all the concerns regarding reproducibility (such as
selective reporting and analysis, processing pipeline deviations,
proper documentation, etc.), it does push toward principles
of replicability by pressuring for improved descriptions and
provenance, allowing for increased analysis and re-analysis, and
facilitating collaborative quality control and validation (Zuo et al.,
2014; Zuo and Xing, 2014).

It is important to note that by facilitating collaborations
through data sharing, the cost of entry for many researchers
will be lowered (Edwards et al., 2009; Abboud, 2016; Owens,
2016a,b), thus maximizing the return on public science funding
and research investments (Poldrack and Gorgolewski, 2014).
Emerging interoperability between specialized data systems,
such as XNAT (imaging, Marcus et al., 2007), REDCap
(clinical/behavioral, Harris et al., 2009) and LIMS systems, as
well as LORIS, will also serve to lower technical barriers to the
federation of datasets across modalities and repositories.

Another important consideration for Open Science at the
MNI is its foundation on an established software infrastructure—
i.e., the combination of LORIS and CBRAIN—that has been
already operational for several years. Over the lifecycle of
these applications, these platforms have been designed and
developed in close collaboration with researchers and have grown
according to their needs and goals. This infrastructure is used
internationally, operating across the full life-cycle of data-sharing
(i.e., acquisition to analysis), and is proven to be scalable for
large-scale datasets. This wealth of experience is key to the
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cyberinfrastructure of the Open Science initiative as it addresses
many of the major hurdles that this endeavor could involve.
However, as the first of its kind, the MNI’s institutional Open
Science initiative has necessitated the addition of the following
features and functionalities.

In LORIS:

(1) A complete de-identificationmechanism has been developed
that allows publication of data beyond the usual confines of a
particular study, while at the same time ensuring ethics and
privacy.

(2) Support for several data modalities is being added, including
PET, EEG/MEG, and biosamples. This is of particular
importance since the range of modalities used at an
institutional level is much wider than in a single project.

(3) Quality control tools have been extended and made more
robust, based on 15 years of experience in a number of data
acquisition project lifecycles.

In CBRAIN:

(1) Tighter integration with the LORIS database to allow for
compute-intensive processing of Open Data.

(2) Streamlined account creation process and handling of
access permissions, so that various user profiles can be
easily handled by administrators. This will be particularly
important when the MNI’s Open Science initiative reaches
its full potential, as users with a wide range of profiles are
expected to access the data and to have various processing
requirements.

(3) Facilitated tool integration, so that external researchers could
contribute their tool to the CBRAIN ecosystem without
expert knowledge of its internal mechanisms.

CONCLUSION

Open Science is a simple concept that masks a daunting
set of ethical, conceptual, and technical challenges. As the
scale of scientific data collection and scope of discovery
increase with technological advancement, the promise of
collaboration through Open Science presents a potential
solution to limits faced by institution-based science, including
statistical power and resource constraints. This Open Science
cyberinfrastructure at the MNI, comprised of the LORIS
and CBRAIN platforms, intends to increase transparency
in data curation, dissemination and analysis, reduce data
loss, facilitate innovation and collaboration, and efficiently
accelerate the discovery and the application of neuroscience

at the Montreal Neurological Institute and across the greater
research community.
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Fastr: A Workflow engine for Advanced 
Data Flows in Medical Image Analysis
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1 Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, 
Netherlands, 2 Imaging Science & Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands

With the increasing number of datasets encountered in imaging studies, the increasing 
complexity of processing workflows, and a growing awareness for data stewardship, 
there is a need for managed, automated workflows. In this paper, we introduce Fastr, 
an automated workflow engine with support for advanced data flows. Fastr has built-in 
data provenance for recording processing trails and ensuring reproducible results. The 
extensible plugin-based design allows the system to interface with virtually any image 
archive and processing infrastructure. This workflow engine is designed to consolidate 
quantitative imaging biomarker pipelines in order to enable easy application to new data.

Keywords: workflow, pipeline, data processing, provenance, reproducible research, distributed computing, data 
flow, python

1. InTRoDUcTIon

In medical image analysis, most methods are no longer implemented as a single executable, but as a 
workflow composed of multiple programs that are run in a specific order. Each program is executed 
with inputs that are predetermined or resulting from the previous steps. With increasing complexity 
of the methods, the workflows become more convoluted and encompass more steps. This makes 
execution of such a method by hand tedious and error-prone, and makes reproducing the exact chain 
of processing steps in subsequent studies challenging. Therefore, solutions have been created that are 
based on scripts that perform all the steps in the correct order.

In population imaging, data collections are typically very large and are often acquired over 
prolonged periods of time. As data collection is going on continuously, the concept of a “final” 
dataset is either non-existent or defined after a very long follow up time. Commonly, analyses on 
population imaging datasets, therefore, define intermediate cohorts or time points. To be able to 
compare intermediate cohorts, all image analysis methods need to produce consistent results over 
time and should be able to cope with the ever growing size of the population imaging. Therefore, the 
process of running analysis pipelines on population imaging data needs to be automated to ensure 
consistency and minimize errors.

When different population imaging cohorts are combined in multi-center imaging studies or 
imaging biobanks (e.g., ADNI (Mueller et al., 2005), OASIS (Marcus et al., 2007b), The Heart-Brain 
Connection (van Buchem et  al., 2014) and BBMRI-NL2.01) where data are often acquired from 
different scanners, the challenge of ensuring consistency and reliability of the processing results also 
calls for automated processing workflows.

Traditionally, this is accomplished by writing scripts created specifically for one processing 
workflow. This can work well, but generally the solutions are tailor-made for a specific study and 
software environment. This makes it difficult to apply such a method to different data or on a 
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TABle 1 | A overview of workflow systems and the important features of each.

Workflow software 

name open-source language Data flow Tools Tool versioning citation 

CBrain Yes Ruby Simple Binaries Yes Sherif et al. (2015)
Fastr Yes Python Advanced Binaries Yes
Galaxy Yes Python Simple Binaries Yes Goecks et al. (2010)
KNIME Yes Java Advanced Wrappers for Java,  

Python, Perl code
No Berthold et al. (2008, 2009)

LONI pipeline No Java Advanced Binaries Yes Rex et al. (2003), Dinov et al. (2010)
Nipype Yes Python Advanced Binaries No Gorgolewski et al. (2011)
Taverna Yes Java Advanced Webservices No Oinn et al. (2006)
XNAT pipeline engine Yes Java Simple Binaries No Marcus et al. (2007a)

The column Data Flow can have the value simple or advanced. Simple means the workflow system supports only sequential data flows whereas advanced indicates support for 
more complex data flows (e.g., the data flows in Section 2.3).
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different infrastructure than originally intended. With evolving 
computational resources, in practice this approach is, therefore, 
not reproducible and difficult to maintain. Additionally, for trans-
parency and reproducibility of the results, it is very important to 
know exactly how the data were processed. To accomplish this, a 
comprehensive data provenance system is required.

Writing a script that takes care of all the aforementioned 
issues is a challenging and time consuming task. However, many 
of the components are generic for any type of workflow and do 
not have to be created separately for each workflow. Workflow 
management systems can be used to address these issues. These 
systems help formalize the workflow and can provide features, 
such as provenance as part of the framework, removing the need 
to address these for every separate workflow.

For our use cases, we desire a workflow management system 
that works with the tools found in the domain of image analy-
sis, can handle advanced data flows (explained more in detail 
in section 2.3), has strong provenance handling, can handle 
multiple version of tools, flexible execution backend, and can be 
embedded in our infrastructure. There are already a number of 
workflow systems available, but none of them fit all our criteria 
(see Table 1).

The most notable open-source, domain-specific workflow 
system that we are aware of is Nipype (Gorgolewski et al., 2011), 
which is aimed at creating a common interface for a variety of 
neuroimaging tools. It also features a system for creating work-
flows. The tool interfaces of Nipype are elaborate, but Nipype only 
tracks the version of tools, but does not manage it. This means the 
system is only aware of the currently installed version of the tool, 
and cannot offer multiple versions simultaneously.

LONI pipeline (Rex et al., 2003; Dinov et al., 2010) and CBrain 
(Sherif et al., 2015) also have been developed for the domain of 
medical image analysis. They include workflow engines, but 
these systems are part of larger environments that includes data 
management and processing backends. This makes it difficult to 
integrate in our infrastructure. Furthermore, LONI is closed-
source, which makes it even more difficult to integrate it.

The XNAT storage system also has a related workflow system 
called XNAT pipeline engine (Marcus et  al., 2007a). The pipe-
line engine is integrated nicely with the XNAT storage system 
and works with simple data flows. However, it does not handle 
advanced data flows and does not provide tool versioning.

Besides the workflow systems specific for the domain of medi-
cal image analysis, there are a number of other notable workflow 
systems that are either domain-independent or have been 
created for a different domain. Taverna (Oinn et al., 2006) and 
KNIME (Berthold et al., 2008, 2009) are well-known and mature 
workflow management systems. These systems are domain-
independent, but mostly used in the bioinformatics field. Their 
support for local binary targets is limited and, therefore, not 
suitable for using most medical imaging analysis tools. KNIME 
needs tools to be created with their API and Taverna is mostly 
focused on web services.

Finally, Galaxy (Goecks et al., 2010) is a web-based workflow 
system for bioinformatics. It is mainly focused on next-generation 
sequencing (NGS). It has a large repository of tools, web interface, 
and large support in their domain. However, the system is not 
designed for batch processing and it does not support complex 
data-flows.

We developed an image processing workflow framework for 
creating and managing processing pipelines: Fastr. The frame-
work is designed to build workflows that are agnostic to where the 
input data are stored, where the resulting output data should be 
stored, where the steps in the workflow will be executed, and what 
information about the data and processing needs to be logged for 
data provenance. To allow for flexible data handling, the input 
and output of data are managed by a plugin-based system. The 
execution of the workflow is managed by a pluggable system as 
well. The provenance system is a built-in feature that ensures a 
complete log of all processing steps that led to the final result.

In the following section, we discuss the design of Fastr. 
In Section 3, we present the resulting software. Finally, we discuss 
related work and future directions in section 4.

2. DeSIgn

The Fastr workflow design follows similar principles as flow-
based programing (Morrison, 2010). This paradigm defines 
applications as a network of black boxes, with predefined con-
nections between the black boxes that indicate the data flow. The 
black boxes can be reordered and reconnected to create different 
workflows. However, it should be noted that other aspects of the 
paradigm are not met, so our design can at most be considered to 
have flow-based programing aspects.
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In Fastr, the workflow is described as a Network, which is 
a directional acyclic graph. The Nodes of this Network are 
based on templates that we call Tools. These Nodes can be 
interpreted as the black boxes from the flow-based programing 
paradigm. In the next subsection, we will discuss the Tools 
in more detail. After that, we will describe the Network and 
its components in more detail using an example from medical 
image analysis.

2.1. Tools
In Fastr, the Tools are the blueprints for the Nodes: they 
describe the input, output, and behavior of the Node. The Tools 
are composed of three main parts: general metadata, a target, and 
an interface. The Tools are stored as XML or JSON files. An 
example of a simple Tool that adds two list of integers element-
wise is given in Listing 1. The general metadata contains informa-
tion about the Tool, such as id, version, author, and license. The 
target describes how to set the execution environment properly, 
e.g., by setting the correct search path to use a specific version 
of the software. The interface describes the inputs and outputs 
of a Tool and how the Tool executes given a set of inputs and 
outputs.

The tools are specified in a schema. This schema validates 
the internal python data structures (after conversion from XML 
or JSON) and is specified as a JSON schema. The schemas are 
located in the source code. There is a schema for the general 
Tool2 and a schema for the FastrInterface.3 Other types 
of Interfaces can also defined by their own data schema 
files.

Listing 1. The XML code that defines the AddInt Tool. Note 
that though it might seem the two author entries are redundant 
or conflicting, the first one states the author of the Tool descrip-
tion file, whereas the second states the author of the underlying 
command (addint.py in this case).

<tool id="AddInt" name="Add two integers" 
 ↪ version="1.0">
<description>Add two integers together. 
</description>
<authors>
<author name="Hakim Achterberg"  

↪ email="h.achterberg@erasmusmc.nl"  
↪ url="http://www.bigr.nl/people/
HakimAchterberg"/>

</authors>
<command version="0.1" url="">
<targets>

<target os="*" arch="*" 
↪ interpreter="python" paths="./" 
↪ bin="addint.py"/>

</targets>

2 https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/
Tool.schema.json
3 https://bitbucket.org/bigr_erasmusmc/fastr/src/default/fastr/resources/schemas/
FastrInterface.schema.json

<description>
addint.py value1 value2
output = value1 + value2

</description>
<authors>

<author name="Marcel Koek"  
↪ email="m.koek@erasmusmc.nl"  
↪ url="http://www.bigr.nl/people/
MarcelKoek"/>

</authors>
</command>
<repository/>
<interface>
<inputs>

<input id="left_hand" name="left hand 
↪ value" datatype="Int" prefix="–– 
↪ in1" cardinality="1-*" repeat_ 
↪ prefix="false" required="true"/>

<input id="right_hand" name="right 
↪ hand value" datatype="Int"  
↪ prefix="––in2" 
↪ cardinality="as:left_hand" 
↪ repeat_prefix="false" 
↪ required="true"/>

</inputs>
<outputs>

<output id="result" 
↪ name="Resulting value" 
↪ datatype="Int" automatic="True" 
↪ cardinality="as:left_ 
↪ hand" method="json" 
↪ location="∧RESULT=(.*)$">

<description>The summation of 
↪ left_hand and right_hand. 
</description>

</output>
</outputs>

</interface>
</tool>

The content of the interface tag depends on the class of 
Interface used. The default Interface class in Fastr cre-
ates a call to a command-line program given the set of Inputs and 
Outputs. In the example, there are two inputs and one output. In 
Fastr, the minimal information required for an Interfaces 
to function is the id, cardinality and data type for each Input and 
Output. The cardinality is the number of values a sample contains 
(e.g., an argument requiring a point in 3D space, represented by 
three float values, would have a cardinality of 3).

In Fastr, there is a notion of datatypes: each input and output 
has a (set of) data types it accepts or produces. The datatypes in 
Fastr are plugins that, in the simplest form, only need to expose 
their id, but can be extended to include functionality, such as 
validators and handlers for multi-file data formats. Data types 
can be simple values or point to files.

Fastr checks if the datatypes of a linked input and output are 
(or at least can be) compatible. In addition, data types can be 
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FIgURe 1 | example Network representing a single atlas-based segmentation workflow implemented using the open source elastix image 
registration software. Green boxes are Source Nodes, purple Constant Nodes, gray normal Nodes, and blue Sink Nodes. Each Node contains two 
columns: the left column represents the inputs, the right column represents the outputs of the Node. The arrows indicate links between the inputs and outputs. This 
image was generated automatically from the source code.
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grouped, which is useful for groups of programs using a com-
mon (io) library (for example, programs created with The Insight 
Segmentation and Registration Toolkit4 (Yoo et  al., 2002) can 
read/write a number of images formats that we grouped together 
in a pseudo-datatype).

2.2. networks
After Tools are defined, a workflow can be created by linking 
a set of Tools that results in a Network. Once a Network is 
defined, it can be executed. Figure 1 shows a graphic representa-
tion of an atlas-based segmentation workflow, using the image 
registration software Elastix (Klein et  al., 2010). Elastix can 
register two images by optimizing the transformation applied to 
a moving image to match it to a fixed reference image.

There are different classes of Nodes: normal Nodes (gray 
blocks in Figure 1), Source Nodes (green), Constant Nodes 
(purple), and Sink Nodes (blue). Data enter the Network 
through a Source Node and leave the Network through a 
Sink Node. A Constant Node is similar to the Source 
Nodes, but has its data defined as part of the Network. When 
a Network is executed, the data for the Source Nodes and 
Sink Nodes has to be supplied. The specifics of the Source 
Nodes and Sink Nodes will be discussed in section 2.4. The 
normal Nodes process the data as specified by the Tool.

The data flow in the Network is defined by links (the arrows 
in Figure 1). A link is a connection between the output of a Node 
and the input of another Node. A link can manipulate the flow of 
the data, which will be discussed in section 2.3.

The Nodes and links in the Network form a graph from 
which the dependencies can be determined for the execution 

4 www.itk.org

order. Since all Nodes are black-boxes that can operate inde-
pendently of each other, this allows for Nodes to be executed in 
parallel as long as the input dependencies are met.

2.3. Data Flow
In Fastr, a sample is defined as the unit of data that are presented to 
an input of a Node for a single job. It can be a simple scalar value, a 
string, a file, or a list of the aforementioned types. For example, in the 
addint Tool presented in Listing 1, the left_hand and right_hand 
inputs of the Tool are required to be (lists of) integers. The result 
output will generate a sample that contains a list of integers. As the 
cardinality of right_hand and result are defined to be the same as 
the left_hand, they will all have to same length.

Fastr can handle multiple samples on a specific input. Figure 2 
shows examples of how Fastr handles inputs with multiple samples 
and in which output samples this results. The inputs and output 
names are abbreviated as lh for left_hand, rh for right_hand and 
res for result. In Figure 2A, we present the simplest situation, in 
which one sample with one value is offered to each input and one 
sample with one value is generated. In Figure 2B, the left_hand 
and right_hand inputs have one sample with two values. The 
result is a sample with two values, as one result value is created 
per input value.

To facilitate batch processing, a Node can be presented with 
a collection of samples. These collections are multi-dimensional 
arrays of samples. In Figure  2C, we depict a situation where 
three additions are performed. Three samples are offered to the 
left_hand input and one sample is offered to the right_hand input. 
This results in three samples: each sample of the left_hand input 
was used in turn, whereas the samples for the right_hand were 
considered constant. In Figure 2D, there are three samples for the 
left_hand and right_hand inputs. The result is again three samples, 
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A B

DC

FIgURe 2 | Illustration of the data flows in a Node. Each rectangle is a sample, and a block of rectangles represents a sample collection. The value is printed in 
each rectangle, where the commas separate multiple values. The samples lh are offered to the left_hand input, the sample rh to right_hand input. The sample res is 
generated for the result output. The subscript of sample res indicates which input samples were used to generate the result.
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as now each pair of samples from left_hand and right_hand inputs 
was taken.

This is useful for simple batch processing where a task should 
be repeated a number of times for different input values. However, 
in certain situation (e.g., multi-atlas segmentation), it is required 
to register every fixed image to every moving image. To simplify 
this procedure, Fastr can switch from pairwise behavior to cross 
product behavior. In Figure 3, this is depicted graphically. Every 
combination of left_hand and right_hand sample is used for 
registration and the result is a two-dimensional array of transfor-
mation samples that in turn contain two transformations each.

Sometimes a Tool outputs a sample with a higher cardinality 
that should be treated as separate samples for further processing, 
or conversely a number of samples should be offered as a single 
sample to an input (e.g., for taking an average). For this, Fastr 
offers two flow directives in data links. The first directive is expand, 
which indicates that the cardinality is to be transformed into a 
new dimension. This is illustrated in the left side of Figure 4. The 
second directive is collapse, which indicates one or more dimen-
sions in the sample array should be collapsed and combined 
into the cardinality. This process is illustrated in the right side of 
Figure 4. These flow directives allow for more complex dataflows 
in a simple fashion and enable users to implement MapReduce 
type of workflows.

2.4. Data Input and output
The starting points of every workflow are Source Nodes, in 
which the data are imported into the Networks. Similarly, the 
endpoints of every workflow are the Sink Nodes, which export 
the data to the desired location. When a Network is constructed 
only the data type for the Source Nodes and Sink Nodes 
needs to be defined. The actual definition of the data is done at 
runtime using uniform resource identifiers (URI).

Based on the URI scheme, the retrieval and storage of the 
data will be performed by a plugin. Consider the following two 
example URIs:

vfs://mount/some/path/file1.txt
xnat://xnat.example.com/data/archive/

projects/sandbox/subj...

The schemes (in red) of these URI indicate by which plugin 
the retrieval or storage of the data is handled. For the first 

URI, vfs indicates that the URI will be handled by the Virtual 
File System plugin. For the second URI, xnat indicates that 
the URI will be handled by the XNAT storage plugin. These 
plugins implement the methods to actually retrieve and store 
the data. The remainder of the URI is handled by the plugin, so 
the format of the schemes URI format is defined by the plugin 
developer.

Plugins can also implement a method to expand a single URI 
into multiple URIs based on wildcards or searches. In the follow-
ing example, URIs we use wildcards (shown in blue) to retrieve 
multiple datasets in one go:

xnat://xnat.example.com/search?projects=test
&subjects=s[0-9]...

vfsregexp://tmp/network_dir/.*/.*/__fastr_
result__.pickle.gz

The XNAT storage plugin has a direct storage as well as search 
URI scheme defined. The VFS regular expression plugin uses 
the regexp filter to generate a list of matching vfs URIs. This 
illustrates that a plugin can expand a url into urls of a differ-
ent type, and the newly generated urls will be handled by the 
appropriate plugin.

The use of URIs makes the Network agnostic to the location 
and storage method of the source and target data. Also, it allows 
easy loading of large amounts of resources using wildcards, csv 
files or search queries.

Currently, Fastr includes plugins for input/output from the 
(virtual) file system, csv files and XNAT. New plugins can be cre-
ated easily as there are only a few methods that need overwriting. 
It is also possible to make plugins that can only read data, only 
write data, or only perform search queries. This allows users to 
create plugins purely for reading or writing.

Fastr does not include a credential store or other solution for 
authentication. For all Network based input/output plugins 
(e.g., the XNAT plugin) a netrc file stored in the user’s home 
directory is used for authentication. However, for running Fastr 
on a grid without a shared network drive this might lead to 
problems.

2.5. execution
The Fastr framework is designed to offer flexible execution of 
jobs. The framework analyzes the workflow and creates a list of 
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FIgURe 5 | An overview of the execution components in Fastr. The 
Network controls the main execution, it sorts the Nodes required and 
executes those, resulting in a list of jobs to be run. The jobs are dispatched 
via an execution plugin. The job is then executed. On execution, all 
arguments are translated to values and paths that the Tool can use. The 
Tool then sets the environment and, finally, calls the Interface for the actual 
running of the underlying task.

FIgURe 4 | collapsing and expanding flows. The start situation on the left expands to the situation in the middle after which data collapses the first dimension. 
Note that in the middle situation there is an empty place in the sample collection (top right). This is possible due to a sparse array representation of the sample 
collections. This results in two samples with different cardinality in the right-most situation.

FIgURe 3 | Illustration of the data flows in a Node that has multiple input groups. The default operator creates a new sample for each combination of input 
groups.
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jobs, including dependencies, that need to be executed. Then 
it dispatches the jobs to an execution plugin. The plugins can 
run jobs locally or dispatch them to an execution system, such 
as a cluster, grid, or cloud. A different plugin can be selected 
for each run allowing for easy switching of the execution 
backend.

The Fastr execution system consists of a number of compo-
nents that work together in a layered fashion (see Figure 5). The 
execution starts when the Network execute method is called. 
We will call the machine on which the Network execution is 
started the Submit Host.

Fastr analyzes the Network and divides it in chunks that 
can be processed further. For each chunk, the Network 
determines in what order the Nodes have to be processed 
and then executes the Nodes in the correct order. When a 
Node is executed, it analyzes the samples on each input and 
creates a job for each combination input (as specified by the 
data flow directives).

Jobs contain all information needed to run a single task (e.g., 
input/output arguments, Tool used, etc). The jobs are then 
dispatched by an execution plugin. The plugin can run the job 
remotely (e.g., on a compute cluster or cloud) or locally (in which 
case the Submit Host and Execution Host are the same).

Jobs are executed on the Execution Host, and during this step 
the arguments are translated from urls to actual paths/values. 
Subsequently, the Tool sets the environment for execution 
according to the target specification and invokes the interface. 
The interface executes the actual Tool commands. Once the 
interface returns its results, they are validated and the paths in 
the results are translated back into urls.

Once the job execution is finished, the execution plugin will 
trigger a callback on the Submit Host that reads the job result 
and updates the Network accordingly. If a chunk is finished, 
the Network will process the next chunk, using the updated 
information. If all chunks are finished, the Network execution 
is done.

Currently, Fastr supports functional plugins for processing 
locally and on a cluster (using the DRMAAv1 API5). Future 
plugins will focus on flexible middleware for grid/cluster/cloud, 
like Dirac,6 that offer support for a wide range of systems. For 
creating a new plugin, five methods need to be implemented: an 

5 http://www.drmaa.org
6 http://diracgrid.org
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FIgURe 6 | The three base classes of the provenance data model with their relating properties. The agents are orange pentagons, the entities are yellow 
ovals and the activities are depicted as blue squares. This image is copied from PROV-O: The PROV Ontology. Copyright © 2015 W3C® (MIT, ERCIM, Keio, 
Beihang). http://www.w3.org/Consortium/Legal/2015/doc-license
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initialization and a cleanup method as well as methods for queu-
ing, releasing and canceling a job.

2.6. provenance
Data provenance is a built-in feature of Fastr and is based on an 
implementation of the W3C PROV-DM: Prov Data model recom-
mendation (Belhajjame et  al., 2013). Fastr records all relevant 
data during execution and ensures that for every resulting file a 
complete data provenance document is included. The standard 
format of a provenance document is PROV-N, which can be 
serialized to PROV-JSON or PROV-XML.

In Figure 6, the three base classes and the properties of how 
they relate to each other are illustrated. For Fastr, Networks, 
Tools, and Nodes are modeled as agents, jobs as activi-
ties and data objects as entities. The relating properties are 
naturally valid for our workflow application. The hierarchy 
and topology of the Network follows automatically from 
the relating properties between the classes, but in order to 
make the provenance document usable for reproducibility, 
extra information is stored as attributes on the classes and 
properties. For every Tool, the version is stored. For every 
data sample, the value or file path and a checksum is stored. 
For every job, the start and end time of execution, the stdout 
and stderr logs are stored, the end status (success, success 
with warnings, failed, etc.), and an exhaustive description of 
the execution environment.

2.7. Visualization
To give the user insight in the data flow through the Network, 
it is possible to visualize the Network using graphviz (Gansner 
and North, 2000). The figures in this paper that show examples 
of Networks (Figures 1 and 7) are generated automatically by 
Fastr. Fastr plots the Tool as a collection of inputs and outputs 
and draws the links between them.

Because Fastr allows for more advanced data flows, there is a 
few visualization options that can aid users in validating the data 
flow. First, the color of a link changes if the flow in the Link is 
different. Second, there is an option to draw the dimension sizes 
in a Network. This shows the number of dimension and the 
expected size (as symbols). A simple example of the visualization 
of a more advanced dataflow is given in Figure 7.

3. eVAlUATIon

A functional version of Fastr is available from https://bitbucket.
org/bigr_erasmusmc/fastr. Fastr is open-source and free to use 
(under the Apache license 2.0). The framework is written in 
Python and easy to install using the python package index (pip 
install)7 or using the included setuptools from the source dis-
tribution. Fastr is platform independent and runs on Linux, Mac, 
and Windows environments. However, Linux support is much 
more stable, since that is the platform used in most processing 
environments.

Documentation is available at http://fastr.readthedocs.io; it 
includes a quick start tutorial, a user manual and a developer 
reference of the code. The documentation is built using Sphinx.

The Fastr software is composed of core modules and plugins. 
The core modules implement the networking, data flow, and 
interfacing with the plugins. The plugins provide the data input/
output, and execution functionality. Fastr is tested for code qual-
ity using both unit tests and functional tests. The unit tests are 
limited to the core modules and ensure the integrity of the core on 
a fine grained level. The functional testing covers the building and 
execution of small Networks. The functional tests validate the 
functional requirements of Fastr. Both the unit and the functional 

7 https://pypi.python.org/pypi/fastr
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FIgURe 7 | An example of flow visualization. The colored arrows indicate the flow directive in the link: red for expand, blue for collapse, and purple for a 
combination of both. After each input and output, the dimensions are printed in square bracket. In this workflow, the dimensions N and O should match, but the 
system can only validate this at runtime.
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tests are performed continuously using the continuous integra-
tion framework Jenkins.8

Currently, we are using Fastr for a number of workflows for 
several single-center and multi-center studies. For example, the 
Rotterdam Scan Study (Ikram et al., 2011), containing over 12.000 
scan sessions, uses a analysis pipeline implemented in Fastr for 
the preprocessing, tissue type segmentation, white matter lesion 
segmentation and lobes segmentation of brain MR images (see 
Figure 8). The data are fetched from the archive and is processed 
in a cluster environment. The resulting data are stored in an image 
archive.

Fastr has been used to run this workflow on new batches of 
subjects since mid 2015. Its performance has proven to be very 
stable as the workflow always succeeded. The overhead is limited 
as the Fastr workflow engine uses only a fraction of the resource 
compared the underlying Tools.

4. DIScUSSIon

With Fastr we created a workflow system that allows users to 
rapidly create workflows. The simple access to advanced features 
makes Fastr suitable for both simple and complex workflows. 
Workflows created with Fastr will automatically get data prove-
nance, support for execution on various computational resources, 
and support for multiple storage systems. Therefore, Fastr speeds 
up the development cycle for creating workflows and minimizes 
the introduction of errors.

Fastr offers a workflow system that works with tools that can 
really be black boxes, they do not need to implement a specific 
API as long as their inputs and outputs can be defined. Fastr can 
manage multiple versions of tools, as we believe it is important to 
be able to keep an environment where all the old versions of tools 
are available for future reproducibility of the results. Additionally, 
it provides provenance records for every result for reproducibility 
of the experiments. Batch processing and advanced data flows are 
at the core of Fastrs design. Fastr communicates with processing 
backends and data providers via plugins allowing interoperability 
with other components of research infrastructures.

8 https://jenkins.io

4.1. Workflow languages
Most workflows systems and languages are simpler with respect 
to data flow. However, there are two languages that have features 
similar to that of Fastr. Taverna, using the SCUFL2 language, has 
a concept of a dot product or cross product for input ports. This is 
equivalent to the use of input groups in Fastr. Also the MOTEUR 
(Glatard et al., 2008) system, using the GWENDIA (Montagnat 
et al., 2009) language, has the same cross product and dot product 
concepts.

A main difference between Fastr and the other two languages 
is that Fastr describes the data as N-D arrays, and a cross product 
increases the number of dimensions, whereas GWENDIA and 
SCUFL2 follow the list (of lists) principle. Of course, a list of lists 
can be seen as a 2D array, but that is not used by the aforemen-
tioned languages.

There is also the recent effort of the Common Workflow 
Language, CWL (Amstutz et  al., 2016). The CWL includes a 
specification for tools and workflows. The CWL has a support 
for an optional scatter directive. This allows a cross product type 
of behavior. However, this is not part of main specification, but 
rather an optional feature.

4.2. limitations
The Fastr workflow system has been created with some clear 
goals, but there are also some limitations in the design. First of 
all, our design is created with automated processing workflows in 
mind and there is no support for interactive steps in the workflow. 
This is a design choice and there are no plans to address this issue.

Maybe the largest drawback of Fastr is that as a new system 
the amount of Tools available is limited. The Tool wrappers 
and interfaces are very flexible, but compared to systems as LONI 
pipeline and Nipype there is a lack of resources. This is a problem 
any new system faces and we believe that in time this issue will 
be resolved.

A similar issue is the limited number of execution backend 
plugins. The system is plugin based and has the potential to 
support almost any computational resource, but currently only 
supports local execution and cluster environments. We will add 
new plugins whenever a project requires one, but do not aim to 
create many additional plugins on the short term. For grid execu-
tion, this could be more challenging due to the lack of credentials 
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FIgURe 8 | The graphical overview of the processing pipeline used for the Rotterdam Scan Study. It performs brain masking, bias field correction, 
segments the brain tissues, white matter lesions, and different lobels of brain.
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management in Fastr. Currently, we do not facilitate advanced 
credential storage, which is often an important requirement in 
grid computing.

The system is currently completely command-line based and 
offers no graphical user interface (GUI). Since the focus of Fastr 
is batch processing, the target environments are mostly headless. 
It is good practice to completely decouple core functionality from 
the user interface, especially when running in headless environ-
ments. Therefore, we decided to spend our time on creating a 
solid workflow engine before creating a GUI. We believe that the 
tooling can always be added and improved later, but that the core 
design limitations are generally harder to solve in the future. We 
plan on adding more (graphical) tools that provide more conveni-
ent user interaction in the future.

And finally, we are not satisfied with our current test code 
coverage. We have test for some core functionally, but the code 
coverage of the unit tests on the low side. This is partially offset 
by the functional testing, but we feel we should improve the test 
code coverage to avoid technical debt.

4.3. Future Directions
Because of the differences in design philosophy, Fastr and 
Nipype are complementary in focus: Fastr is created for managed 
workflows and has tools and interfaces as a necessity, whereas the 
interfaces are the primary focus of Nipype. Considering that there 
are many interfaces available for Nipype, we created a prototype 
NipypeInterface in Fastr, which allows Tools in Fastr to use 
Nipype for the interface. This is still experimental and there are 
still some limitations because Nipype and Fastr have incompat-
ible data type systems.

Another option to increase the amount of tools available is to 
start supporting Boutiques.9 Boutiques are an application reposi-
tory with a standard packaging of tools, so that they can be used 
on multiple platforms. The boutiques applications are somewhat 
similar to Fastr Tools, as they describe the inputs and output 

9 http://boutiques.github.io/

in a JSON file. Additionally, the underlying binaries, scripts, and 
data are all packaged, versioned, and distributed using Docker10 
containers. It would require to either rewrite the boutique inputs/
outputs into a Fastr interface or to create a new interface class for 
Boutiques.

Although the CWL at the moment is as far as we know not 
used in the medical imaging domain, we think that support for 
the CWL is an important future feature for Fastr as we fully sup-
port the idea to have a common standard language. Support for 
CWL tools in Fastr could possible using a new interface class, 
but the support for workflows would probably need to be an 
import/export that transcribes workflows from CWL to Fastr 
and back.

For reproducibility, it is important to be able to re-run analyses 
in exactly the same conditions. Currently, Fastr supports environ-
ment modules to keep multiple versions of software available at 
the same time. However, the same version of the software can 
still be different based on underlying libraries, compiler used, and 
the OS. Virtual Machines or Linux Containers offer a solution 
to this problem. Linux containers, such as Docker and LXC, are 
often seen as a light-weight alternative to Virtual Machines. They 
ensure that the binaries and underlying libraries are all managed, 
but they use the kernel of the host OS. We plan to add support 
for Docker containers to make it easier to share tools and improve 
reproducibility further.

For continuous integration, we have a Jenkins (see text foot-
note 8) continuous integration server that runs our tests nightly. 
Additionally, we use SonarQube11 for inspecting code quality, 
technical debt, and code coverage. We are aiming for each release 
to increase the code coverage and to decrease the technical debt.

Finally, we are working on more (web-based) tooling 
around Fastr to make it easier to visualize, develop, and debug 
Networks and to inspect the results of a run (including prov-
enance information).

10 https://www.docker.com
11 http://www.sonarqube.org/
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gloSSARy

API – An application programing interface, a set of functions and 
protocols that allow the creation of applications that access the 
features another application or service.

Cardinality – The number of elements in a grouping. For 
Fastr specifically, this is the number of elements contained in 
a sample.

Code coverage – A measure indicating what part of the code 
is covered by a test suite. This is often expressed as a percentage 
of the total lines of code.

JSON – JavaScript Object Notation is an open data format that 
is used often in client-server communication and uses human 
readable text to present data in key-value pairs.

Linux Containers – Virtualization for running multiple iso-
lated linux systems on one Linux kernel on the operating system 
level.

MapReduce – A programing model for processing large 
datasets. Typically, it consists of a Map operation on the elements 
and a Reduce operation that aggregates the elements into a final 
result.

Population imaging – Population imaging is the large-scale 
acquisition and analysis of medical images in controlled popula-
tion cohorts. Population imaging aims to find imaging biomark-
ers that allow prediction and early diagnosis of diseases and 
preventive therapy.

Provenance – Report of the origin and operations that has 
been done on an object.

technical debt – A concept in programing that reflects the 
extra work that is the results of using quick solutions instead of 
the proper solution.

XML – eXtensible Markup Language is a human readable 
markup language for encoding documents.
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OpenMOLE is a scientific workflow engine with a strong emphasis on workload

distribution. Workflows are designed using a high level Domain Specific Language

(DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate

the workload resulting from a workflow to a wide range of distributed computing

environments. OpenMOLE hides the complexity of designing complex experiments

thanks to its DSL. Users can embed their own applications and scale their pipelines from

a small prototype running on their desktop computer to a large-scale study harnessing

distributed computing infrastructures, simply by changing a single line in the pipeline

definition. The construction of the pipeline itself is decoupled from the execution context.

The high-level DSL abstracts the underlying execution environment, contrary to classic

shell-script based pipelines. These two aspects allow pipelines to be shared and studies

to be replicated across different computing environments. Workflows can be run as

traditional batch pipelines or coupled with OpenMOLE’s advanced exploration methods

in order to study the behavior of an application, or perform automatic parameter tuning.

In this work, we briefly present the strong assets of OpenMOLE and detail recent

improvements targeting re-executability of workflows across various Linux platforms.

We have tightly coupled OpenMOLE with CARE, a standalone containerization solution

that allows re-executing on a Linux host any application that has been packaged

on another Linux host previously. The solution is evaluated against a Python-based

pipeline involving packages such as scikit-learn as well as binary dependencies. All were

packaged and re-executed successfully on various HPC environments, with identical

numerical results (here prediction scores) obtained on each environment. Our results

show that the pair formed by OpenMOLE and CARE is a reliable solution to generate

reproducible results and re-executable pipelines. A demonstration of the flexibility of

our solution showcases three neuroimaging pipelines harnessing distributed computing

environments as heterogeneous as local clusters or the European Grid Infrastructure

(EGI).

Keywords: high performance computing, reproducibility, pipeline, large datasets, parameter exploration,

neuroimaging, workflow systems
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1. INTRODUCTION

1.1. Problem
Larger sample sizes increase statistical power by reducing the
variance of the sampling distribution. With large datasets like the
Human Connectome Project1 (HCP) now freely available, one of
the reasons why large studies are not more often conducted is the
tremendous amount of computing power required. Distributed
computing can offer this processing power but it can be hard to
set up a distributed experiment for non-computer scientists.

Another important aspect to increase the quality and impact
of scientific results is their capacity to be reproduced, especially
by a different scientist. Researchers are more and more
encouraged to share their experiments and the source code that
led to the results they present. In order to be usable by other
researchers, experiments have to be organized in a certain way.

Researchers are thus faced with two major problems in
order to produce top quality studies: the necessity to provide a
reproducible experimental protocol, and the technical challenge
to upscale their implemented solutions to cope with large
datasets. The whole solution must be made available in a
relatively standard way so that other groups can pick up the
experiment and re-run against their own set of resources and
data.

What is the best way to describe experiments so that they
can easily be reproduced by other researchers? Workflow, or
pipelines, are a common way to model scientific problems
involving different tools along multiple distinct stages. Although
some initiatives try to unify workflow description (Amstutz et al.,
2016), a majority of researchers still compose their pipelines
using plain shell scripts. This approach makes it very hard to
share the resulting pipelines, as shell scripts are strongly tied to
their definition environment. Scripting languages are perfectly
satisfying for workflow definition as long as they offer the
readability and guided design that a high-level programming
language does.

However, canwe simply rely on a high-level scripting language
to distribute the workload resulting from a pipeline? Ad hoc
solutions to submit jobs to a local cluster are very efficient to
quickly run an experiment. However, they cannot manage job
resubmissions on unexpected failures, and are very unlikely to
manage several computing environments. The resulting pipeline
is once again not suitable to share with other researchers using
another computing environment. A very good example in a
widely distributed software package is FSL2 (FMRIB Software
Library), which ships with pipelines that can only be delegated
to a Sun Grid Engine (SGE) cluster.

Some applications might show more complicated than others
to distribute in view of the complex set of dependencies
they require for their execution. The DevOps community has
tackled the problem of complex application deployments with an
increasing use of software containers, the most famous solution
being Docker. However, scientific computing environments are
often designed as High Performance Computing (HPC) clusters,
and cannot be customized for each user’s needs. Cutting-edge

1http://humanconnectome.org/.
2http://fsl.fmrib.ox.ac.uk.

containerization solution such as Docker are not available on
these platforms, most of the time for security reasons as they
require administrator privileges. While this is not a problem to
empower the owner of a virtual machine with such privileges,
HPC administrators are reluctant to grant such powers to
researchers.

In order to build reproducible experiments at large scale, we
thus need three elements:

• a simple access to large scale HPC/cloud environments
• a high-level formalism, such as workflows, to express the

experiment in a portable way
• a standalone container platform that do not require

administrator privileges at any point of its execution
chain

In this paper, we introduce how the OpenMOLE (Reuillon
et al., 2013) workflow management system can be paired
up with the user-level archiver CARE (Janin et al., 2014) to
address these problems in the context of large medical imaging
studies.

1.2. Proposed Solution
OpenMOLE is a generic workflow management solution not
targeting a particular community. It allows users to embed their
own application, rather than limiting them to a set of pre-
packaged tools made available for a specific usage. Although this
approach requires more involvement from the user’s side, it also
gives them more flexibility. Further down the line, a pipeline
solution tailored for a specific field might not be suitable for
multidisciplinary studies. In the specific case of neuroimaging
projects, it is not rare to also collect genetics data in order to
combine it with the information extracted from the images.

Reproducibility and sharing of OpenMOLE workflows start
with its Domain Specific Language (DSL) that is used to describe
the workflow steps and connections. The OpenMOLE DSL is
an embedded DSL, written as a set of extensions to the Scala
programming language. As a superset to Scala, it benefits from all
the constructs available in this high-level programming language
and harnesses Scala’s strong type system to make workflow
descriptions more meaningful and less error-prone. As a Scala
application, OpenMOLE runs in the Java Virtual Machine (JVM)
runtime. This makes it agnostic to its underlying Operating
System (OS) and is another step toward sharing OpenMOLE
workflows from one user to another, regardless of their work
environment.

OpenMOLE is built with a strong focus toward the
distribution of a pipeline workload to remote computing
environments. Pipelines defined within the OpenMOLE
framework are totally decoupled from the environments on
which they are executed. This allows running the same pipeline
on different environments without modifying the definition of
the pipeline itself. On top of that, OpenMOLE was designed
to enable a fine granularity of distribution. Individual tasks,
or groups of tasks, can be deployed to different computing
environments. This is particularly useful when a task of the
pipeline requires specific devices such as GPUs to run, while the
rest of the pipeline can be distributed to classic CPUs.
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This work presents the integration of CARE archives as a
new foundation to make tasks re-executable on the various
computing environments supported by OpenMOLE. The CARE
toolkit (Janin et al., 2014) provides a standalone containerization
solution that does not need administrator privileges to re-execute
on target hosts. While this perfectly fits our requirements for
a solution in par with HPC environments’ constraints, CARE
cannot be used on its own to provide a standard format of
exchange for scientific applications. It has not been built with this
kind of applications in mind and focuses on providing low-level
elements ensuring re-executability of a command line on any
other Linux machine. However, its possibilities can be harnessed
to form the base of a new OpenMOLE task re-executable on
multiple environments.

Medical imaging pipelines are ideal candidates to evaluate
our solution as they typically involve an heterogeneous software
ecosystem. These software pieces usually come with a broad
set of dependencies that are hard to track manually. They
also manipulate large datasets that cannot be embedded in the
software container and have to be transferred separately to the
execution node running the current stage of the pipeline. The
same remark applies to the pipeline’s results as can be seen in
Parisot et al. (2015) for instance.

1.3. Related Work
1.3.1. Generic Workflow Engines
Like OpenMOLE, other initiatives made the choice not to
target a specific community. Kepler (Altintas et al., 2004) was
one of the first general-purpose scientific workflow systems,
recognizing the need for transparent and simplified access to
high performance computing platforms more than a decade
ago. Pegasus (Deelman et al., 2005) is a system that initially
gained popularity for mapping complex workflows to resources
resources in distributed environments without requiring input
from the user.

PSOM (Pipeline System for Octave and Matlab) (Bellec et al.,
2012) is a workflow system centered around Matlab/Octave.
Although this is certainly a good asset for this userbase, it revolves
around Matlab, a proprietary system. This hinders by definition
sharing workflows to the wider community and reduces the
reproducibility of experiments.

1.3.2. Community-Tailored Workflow Engines
On the other hand, some communities have seen the emergence
of tailored workflow managers. For example, the bioinformatics
community has developed Taverna (Oinn et al., 2004) and Galaxy
(Goecks et al., 2010) for the needs of their community.

In the specific case of the neuroimaging field, two main
solutions emerge: NiPype (Gorgolewski et al., 2011) and LONI
(Rex et al., 2003). NiPype is organized around three layers.
The most promising one is the top-level common interface that
provides a Python abstraction of the main neuroimaging toolkits
(FSL, SPM, ...). It is extremely useful to compare equivalent
methods across multiple packages. NiPype also offers pipelining
possibilities and a basic workload delegation layer only targeting
the cluster environments SGE and PBS. Workflows are delegated

to these environments as a whole, without the possibility to
exploit a finer grain parallelism among the different tasks.

The LONI Pipeline provides a graphical interface for choosing
processing blocks from a predefined library to form the pipeline.
It supports workload delegation to clusters preconfigured to
understand the DRMAA API (Tröger et al., 2012).

However, the LONI Pipeline displays limitations at three
levels. First, the format used to define new nodes is XML
(eXtensible Markup Language), and assumes the packaged tools
offer a well-formed command line and its input parameters. On
this aspect, the Python interfaces forming NiPype’s top layer is
far superior to LONI pipeline’s approach. Second, one might also
regret the impossibility to script workflows, to the best of our
knowledge.

The third and main drawback of the LONI pipeline is
in our opinion its restrictive licensing, which prevents an
external user to modify and redistribute the modifications easily.
Previous works in the literature have shown the importance
of developing and releasing scientific software under Free and
Open Source licenses (Stodden, 2009; Peng, 2011). This is of
tremendous importance to enable reproducibility and thorough
peer-reviewing of scientific results.

Finally, we have recently noted another effort developed
in Python: FastR3 (Achterberg et al., 2015). It is designed
around a plugin system that enables connecting to different data
sources or execution environments. At the moment, execution
environments can only be addressed through the DRMA
(Distributed Resource Management Application) API but more
environments should be provided in the future.

1.3.3. Level of Support of HPC Environments
Table 1 lists the support for various HPC environments in the
workflow managers studied in this section. It also sums up the
features and domains of application for each tool.

To the best of our knowledge, we are not aware of
any workflow engine that targets as many environments as
OpenMOLE, but more importantly that introduces an advanced
service layer to distribute the workload. When it comes to
very large scale infrastructures such as grids and clouds,
sophisticated submission strategies taking into account the
state of the resources as well as implementing a level of
fault tolerance must be available. Most of the other workflow
engines offer service delegation layers that simply send jobs
to a local cluster. OpenMOLE implements expert submission
strategies (job grouping, over submission, ...), harnesses efficient
middlewares such as Dirac, and automatically manages end-
to-end data transfer even across heterogeneous computing
environments.

Compared to other workflow processing engines, OpenMOLE
promotes a zero-deployment approach by accessing the
computing environments from bare metal, and copies on-
the-fly any software component required for a successful
remote execution. OpenMOLE also encourages the use of
software components developed in heterogeneous programming

3http://www.fastr.eu/.
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TABLE 1 | Summary table of the features, HPC environments supported and domains of application of various workflow managers.

Workflow engine Local multi-processing HPC support Grid support Cloud support

Galaxy4 Yes DRMAA clusters No No (manual cluster deployment)

Taverna5 Yes No No No

FastR Yes DRMAA clusters No No

LONI6 No DRMAA clusters No No (manual cluster deployment)

NiPype Yes PBS/Torque, SGE No No

Kepler7 Yes PBS, Condor, LoadLeveler Globus No

Pegasus8 No (need local Condor) Condor, PBS No No (manual cluster deployment)

PSOM Yes No No No

OpenMOLE Yes Condor, Slurm, PBS, SGE, OAR

Ad hoc grids,

gLite/EMI, Dirac,

EGI

EC2 (fully automated)9

Workflow engine Scripting support GUI Generic/Community License

Galaxy No Yes BioInformatics AFL 3.0

Taverna No Yes BioInformatics Apache 2.0

FastR Python No Neuroimaging BSD

LONI No Yes Neuroimaging Proprietary (LONI)

NiPype Python No Neuroimaging BSD

Kepler Partly with R Yes Generic BSD

Pegasus Python, Java, Perl No Generic Apache 2.0

PSOM Matlab No Generic MIT

OpenMOLE Domain Specific Language, Scala Yes Generic AGPL 3

Information was drawn from the web pages in footnote when present, or from the reference paper cited in the section otherwise.

languages and enables users to easily replace the elements
involved in the workflow.

1.4. Main Contributions
This paper puts the light on OpenMOLE’s new features enabling
large-scale pipelines to be reproducible while distributed to a
large range of computing environments.

We first describe the three main elements from the
OpenMOLE platform: (1) the DSL to designmeaningful, reusable
workflows, (2) the integration and simple access to a wide range
of High Performance Computing (HPC) environments, and (3)
the embedded parameter exploration methods (Section 2).

As evoked in the introduction, distributing an application
can be troublesome. We list the potential issues encountered
when distributing a typical medical imaging pipeline in Section
3. We then justify the solution chosen to enable re-executability
and sharing of experiments in Section 3.2, and detail its
implementation in OpenMOLE in Section 3.3.

This solution is evaluated with a workflow exploring the
performance of different parameter initializations for decoding
fMRI acquisitions from a canonical dataset (Haxby et al.,
2001) (Section 4). The decoder is taken from the NiLearn

4https://wiki.galaxyproject.org/.
5https://taverna.incubator.apache.org/introduction/taverna-features.
6http://pipeline.loni.usc.edu/explore/features/.
7https://code.kepler-project.org/code/kepler-docs/trunk/outreach/
documentation/shipping/2.5/UserManual.pdf.
8https://pegasus.isi.edu/documentation/execution_environments.php.
9https://github.com/adraghici/openmole/tree/aws-env.

tutorials (Abraham et al., 2014) and demonstrates how a
workflow made of a complex combination of Python and native
binary dependencies can be successfully reproduced on different
computing platforms without any prior knowledge regarding
the state of their software stack. This study demonstrates the
potential of this work to process a well-known dataset for which
the performance and validity of the pipeline can be evaluated.

As a case-study, we finally detail three neuroimaging pipelines
managed by OpenMOLE and the different benefits brought by
the platform and its software ecosystem (Section 5).

2. WHAT IS OPENMOLE?

Scientific experiments are characterized by their ability to be
reproduced. This implies capturing all the processing stages
leading to the result. Many execution platforms introduce the
notion of workflow to do so (Barker and Van Hemert, 2008;
Mikut et al., 2013). Likewise, OpenMOLEmanipulates workflows
and distributes their execution across various computing
environments.

A workflow is a set of tasks connected through transitions.
From a high level point of view, tasks comprise inputs, outputs
and optional default values. Tasks describe what OpenMOLE
should execute and delegate to remote environments. They
embed the actual applications to study. Depending on the kind of
program (binary executable, Java...) to embed in OpenMOLE, the
user chooses the corresponding task. Tasks execution depends on
inputs variables, which are provided by the dataflow. Each task
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produces outputs returned to the dataflow and transmitted to the
input of consecutive tasks. OpenMOLE exposes entry points to
inject data in the dataflow (sources) and extract useful results at
the end of the experiment (hooks).

As shown in Figure 1, OpenMOLE revolves around three
main elements: the Applications, the exploration Methods and
the support of Massively parallel environments. These three
components are put together in a common DSL to describe the
workflows.

We will give a quick overview of these different components
in the subsections. For more details regarding the core
implementation and features of OpenMOLE, interested readers
can refer to Reuillon et al. (2010, 2013, 2015a) and the
OpenMOLE website (Reuillon et al., 2015b).

2.1. A DSL to Describe Workflows
According to Barker and VanHemert (2008), workflow platforms
should not introduce new languages but rely on established ones.
OpenMOLE’s DSL is based on the high level Scala programming
language (Odersky et al., 2004).

OpenMOLE’s DSL introduces new operators in the Scala
programming language to manage the construction and
execution of the workflow. The advantage of this approach
lies in the fact that workflows can exist even outside the
OpenMOLE environment. As a high-level language, the DSL can
be assimilated to an algorithm described in pseudo-code, easily
understandable by most scientists. Moreover, it denotes all the
types and data used within the workflow, as well as their origin.
This reinforces the capacity to reproduce workflow execution
both within the OpenMOLE platform or using another tool.

The philosophy of OpenMOLE is test small (on a local
computer) and scale for free (on remote distributed computing
environments). The DSL supports all the Scala constructs and
provides additional operators and classes especially designed
to compose workflows. OpenMOLE workflows expose implicit
parallel aspects of the workload that can be delegated to
distributed computing environments in a transparent manner.

2.2. Distributed Computing Environments
OpenMOLE helps delegate the workload to a wide range of HPC
environments including remote servers (through SSH), clusters
(supporting the job schedulers PBS, SGE, Slurm, OAR, and
Condor), computing grids running the gLite/EMI middleware
(through the WMS, CREAM and DIRAC entry points) and
Amazon Elastic Compute Cloud (EC2). Support to these
environments is implemented in GridScale10, a Free and Open
Source Scala library.

Building on top of GridScale’s as a service layer, OpenMOLE’s
simple workflow description is quite convenient to determine the
computing environment best suited for a workflow. Switching
from one environment to another is achieved by modifying a
single line in the script. The granularity of the implementation
allows each task of the workflow to be assigned to a different
execution environment. This feature proves very useful when
considering the limited availability of a particular resource
(shared cluster) or its suitability to process a particular problem
10https://github.com/openmole/gridscale.

(necessity to be processed on a GPU or another type of hardware
accelerator).

The final workflow description can thus connect tasks
using different software components but also running on
heterogeneous execution environments thanks to GridScale’s
large support of HPC platforms.

The execution platform of OpenMOLE has proved to be
robust enough to manage no less than half a billion instances
(Schmitt et al., 2015) of a task delegated to the European Grid
Infrastructure (EGI).

2.3. Exploration Methods
OpenMOLE has been designed with distributed parameter space
exploration as a core use case (Reuillon et al., 2013). First
its DSL comprehends a high level representation of design of
experiments11, which is concise and expressive. For instance
expressing the exploration a full-factorial combination on a
discrete parameter i, a continuous one x, a set of files f in a
directory and replicate the experiment 10 times with randomly
generated seeds s is expressed as shown in Listing 1:

val i = Val [Int ]
val x = Val [Double ]
val x = Val [File ]
val x = Val [Long ]
val e x p l o r a t i o n =
ExplorationTask (

( i i n (0 to 10 ) ) x
( x in ( 0 . 0 to 1 0 0 . 0 by 1 0 . 0 ) ) x
( f i n ( workD i r e c t o r y / "inputs " ) ) x
( s in (UniformDistribution [Long ] ( ) t a k e 10 ) )

)

Listing 1 | Sampling example in OpenMOLE.

OpenMOLE also proposes advanced design of experiments
with better coverage properties such as the low discrepancy Sobol
sequence12 and the Latin Hypercube Sampling (LHS)13. These
sampling methods have been widely uses for model exploration
and are also adapted to evaluate other classes of parametric
algorithms.

In addition to these classical a priori sampling methods,
OpenMOLE generic formalism is a prolific playground to
develop innovative exploration methods based on iterative
refinement of the sampling. In these methods the results
(outputs) of the explored program are taken into account in
order to generate additional samples at interesting locations in
the parameter space. These exploration methods are aimed to
better comprehend the behavior of an application, or to finely
tune parameters.

Several state-of-the art iterative methods have been developed,
evaluated and made available through OpenMOLE (multi-
objective calibration (Schmitt et al., 2015), calibration profile
(Reuillon et al., 2015c), Pattern Space Exploration Chérel et al.,
2015; Cottineau et al., 2015a) and more are being developed
such as the model family method (Cottineau et al., 2015b).
Implementations of Evolutionary Algorithms (EA) techniques

11http://www.openmole.org/current/Documentation_Language_Samplings.html.
12https://en.wikipedia.org/wiki/Sobol_sequence.
13http://en.wikipedia.org/wiki/Latin_hypercube_sampling.
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FIGURE 1 | Organization of OpenMOLE around three axes: the Applications, the exploration Methods and the support of Massively parallel

environments.

taken from the literature such as (Deb et al., 2002) are also
available.

Integrating these methods into OpenMOLE makes them
available to a wide range of use cases (modeling, algorithm
benchmarking, parameter tuning and testing applications...). The
methods pair up perfectly withOpenMOLE as they are inherently
parallel algorithms that can be distributed. The exploration
methods elements of OpenMOLE thus benefit from the wide
range of distributed computing environments available in the
platform.

3. THE CHALLENGES OF DISTRIBUTING
APPLICATIONS

3.1. Problems and Classical Solutions
Let us consider all the dependencies introduced by software
bundles explicitly used by the developer. They can take various
forms depending on the underlying technology. Compiled binary
applications will rely on shared libraries, while interpreted
languages such as Python will call other scripts stored in
packages.

These software dependencies become a problem when
distributing an application. It is very unlikely that a large
number of remote hosts are deployed in the same configuration
as a researcher’s desktop computer. Actually, the larger the
pool of distributed machines, the more heterogeneous they are
likely to be.

If a dependency is missing at runtime, the remote execution
will simply fail on the remote hosts where the requested
dependencies are not installed. An application can also be
prevented from running properly due to incompatibilities
between versions of the deployed dependencies. This case can
lead to silent errors, where a software dependency would be
present in a different configuration and would generate different
results for the studied application.

Silent errors break Provenance, a major concern of the
scientific community (Miles et al., 2007; MacKenzie-Graham
et al., 2008). Provenance criteria are satisfied when an application
is documented thoroughly enough to be reproducible. This
can only happen in distributed computing environments
if the software dependencies are clearly described and
available.
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Some programming environments provide a solution to these
problems. Compiled languages such as C and C++ offer to build a
static binary, which packages all the software dependencies. Some
applications can be very difficult to compile statically. A typical
case is an application using a closed source library, for which only
a shared library is available.

Another approach is to rely on an archiving format specific
to a programming language. The most evident example falling
into this category are Java Archives (JAR) that embed all the Java
libraries an application will need.

A new trend coming from recent advances in the software
engineering community is embodied by Docker. Docker has
become popular along with other DevOps techniques to
improve efficiency of software engineers. It enables shipping an
application within a so-called container that will include the
application and its required set of dependencies. Containers can
be transferred just like an archive and re-executed on another
Docker engine. Docker containers run in a sandboxed virtual
environment but they are not to be confound with virtual
machines. They are more lightweight as they don’t embed a
full operating system stack. The use of Docker for reproducible
research has been tackled in Boettiger (2014) and Chamberlain
et al. (2014).

The main drawback of Docker is that it implies deploying
a Docker engine on the target host. Having a Docker engine
running on every target host is an unlikely hypothesis in
heterogeneous distributed environments such as computing
grids. It is also impossible to deploy a Docker engine on the fly
as its execution requires administrator privileges. Such privileges
are not granted to end-users on HPC infrastructures at the heart
of most scientific computing experiments. This is only the case in
a fully-controlled environment, most of the time a cloud-based
deployment where the user controls his own virtual machines.

The last option is to rely on a third-party application to
generate re-executable applications. The strategy consists in
collecting all the dependencies during a first execution in order
to store them in an archive. This newly generated bundle is then
shipped to remote hosts instead of the original application. This
is the approach championed by tools like CDE (Guo, 2012),
ReproZip (Chirigati et al., 2013), or CARE (Janin et al., 2014).

Considering all these aspects, the OpenMOLE platform has
for long chosen to couple with tools providing standalone
packages. While CDE was the initial choice, recent requirements
in the OpenMOLE user community have led the development
team to switch to the more flexible CARE. The next section will
detail why OpenMOLE relies on CARE to package applications.

3.2. Why Should I CARE?
The first step toward spreading the workload across
heterogeneous computing elements is to make the studied
application executable on the largest number of environments.
We have seen previously that this could be difficult with the
entanglement of complex software environments available
nowadays. For instance, a Python script will run only in a
particular version of the interpreter and may also make use
of binary dependencies. The best solution to make sure the
execution will run as seamlessly on a remote host as it does

on the desktop machine of the scientist is to track all the
dependencies of the application and ship them with it on the
execution site.

OpenMOLE used to provide this feature through a third-party
tool called CDE (Code, Data, and Environment packaging) (Guo,
2012). CDE creates archives containing all the items required by
an application to run on any recent Linux platform. To do so, it
tracks all the files that interact with the application and creates
the base archive. At the time of writing, CDE appears not to be
maintained anymore, the last significant contribution to themain
source tree dating back from 201214.

The only constraint regarding CDE is to create the archive on
a platform running a Linux kernel from the same generation as
those of the targeted computing elements. As a rule of thumb,
a good way to ensure that the deployment will be successful
is to create the CDE package from a system running Linux
2.6.32. Many HPC environments run this version, as it is the
default kernel used by science-oriented Linux distribution, such
as Scientific Linux and CentOS.

CARE on the other hand presents more advanced features
than CDE. CDE actually displays the same limit than a traditional
binary run on a remote host: i.e., the archive has to be generated
on a platform running an old enough Linux kernel, to have
a maximum compatibility with remote hosts. CARE lifts this
constraint by emulating missing system calls on the remote
environment. Thus, an application packaged on a recent release
of the Linux kernel will successfully re-execute on an older kernel
thanks to this emulation feature. CARE is, to the best of our
knowledge, the only standalone solution ensuring re-execution
on any Linux host, regardless of the original packaging host and
without requiring administrator privileges.

We have also noted ReproZip (Chirigati et al., 2013) as
a promising packaging solution. ReproZip’s most interesting
feature is to produce a package that can be re-run against
different backends. Standalone archives can be extracted as plain
folders, and then re-executed in a chrooted environment using
the target host’s environment and installed packages. Another
option is to install them in the host system as a package in the
case of a Debian-based Operating System. Although they don’t
require any pre-installed software, these solutions cannot ensure
a successful re-execution due to low-level incompatibilities
between the packaging and extraction environments. Other
extraction solutions for ReproZip offer to run in a Vagrant virtual
machine or a Docker container. However, none of these solution
fit our design assumptions to exploit arbitrary environments
without having to deploy anything beforehand.

The next section will describe how OpenMOLE integrates
CARE seamlessly, as a first-class citizen in the DSL.

3.3. Combining OpenMOLE with CARE
Different types of tasks co-exist in OpenMOLE workflows, each
embedding a different kind of application. Portable applications
packaged with CARE are handled by the CARETask. Packaging
an application is done once and for all by running the original
application against CARE. CARE’s re-execution mechanisms

14https://github.com/pgbovine/CDE/commit/219c41590533846de12d7c5cca3f34a.
ac471aae7., last accessed 12-nov-16.
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allow changing the original command line when re-running an
application. This way we can update the parameters passed on the
command line and the re-execution will be impacted accordingly.
As long as all the configuration files, libraries, and other potential
dependencies were used during the original execution, there is
no need to package the application multiple times with different
input parameters. To ensure all the initial execution conditions
are captured, the environment variables defined in the session are
also stored in the archive and populated on re-execution.

The newly packaged archive is the first argument expected
by the CARETask. The second argument corresponds to a
modified command line, updating the original call to specify
a different parameter combination for each instance. The
CARETask performs two actions: it first extracts the CARE
archives by executing archive.tgz.bin (the archive is a self-
extracting executable). The actual re-execution can then take
place in the freshly unarchived work directory. Note that
for each execution of the CARETask, any command starting
with/is relative to the root of the CARE archive’s filesystem,
and any other command is executed in the current directory.
The current work directory defaults to the original packaging
directory.

Figure 2 represents the interactions between the CARE
archive and the CARETask in OpenMOLE.

The CARETask can be customized to fit the needs of a
specific application. For instance, some applications disregarding
standards might not return the expected 0 value upon successful
completion. The return value of the application is used by
OpenMOLE to determine whether the task has been successfully
executed, or needs to be re-executed. Setting the boolean flag
errorOnReturnValue to false will prevent OpenMOLE
from re-scheduling a CARETask that has reported a return code
different from 0. The return code can be saved in a variable using
the returnValue setting.

Another default behavior is to print the standard and error
outputs of each task in the OpenMOLE console. Such raw prints
might not be suitable when a very large number of tasks is
involved or that further processing are to be performed on
the outputs. A CARETask’s standard and error outputs can
be assigned to OpenMOLE variables and thus injected in the
dataflow by summoning respectively the stdOut and stdErr
actions on the task.

When packaging an application with CARE, we make sure
of excluding any input data from the archived files. CARE
allows this with the option -p. Data can later be reinjected
in the archive from OpenMOLE using the inputFiles

directive. This directive accepts OpenMOLE variables that
describe a set of files to be used as parameters. This
means that each instance of a CARETask will see a different
input data in its archive’s filesystem. The task instance’s
work directory will thus contain the extracted application
supplemented by the specific input data files that were previously
discarded from the packaging stage. In this configuration,
input data are perfectly decoupled from the application and
can be manipulated using OpenMOLE’s advanced parameter
exploration methods, before being injected to the appropriate
task.

Files that are not part of the exploration can also be made
available within the CARETask’s filesystem using either the
hostFiles or resources directives.

Listing 2 demonstrates the elements of the CARETask

described in this section.

// Declare the variable

val ou tpu t = Val [String ]
val e r r o r = Val [String ]
val v a l u e = Val [Int ]
val f i l e = Val [File ]

// Any task

val pythonTask =

CARETask ("hello.tgz.bin", "python hello.py

/data/fileA.txt" ) s e t (
s tdOut := output ,
s t d E r r := e r r o r ,
r e t u rnVa l u e := va lue ,
i n p u t F i l e s += ( f i l e , "myFile$value.txt" ) ,
h o s t F i l e s += ("/home/user/fileA.txt" ,
"/data/fileA.txt" )

)
Listing 2 | Example of a CARETask using a file from the host injected in

the archive.

The support of CARE as a first-class citizen in the platform
added to existing OpenMOLE features enforces provenance in
workflows at two levels. Not only the workflows are defined using
a platform agnostic language, but we can now ship standalone
archives containing re-executable applications for each stage of
the pipeline.

Integrating CARE in OpenMOLE has enhanced the scope of
potential applications for CARE, which was initially designed as
a tool to create comprehensive bug reports. The development
efforts made in OpenMOLE over the past few months have
propelled CARE in the range of potential solutions to enable
reproducibility in scientific experiments. This integration layer
was necessary to bridge the gap between CARE and the scientific
community, in order to provide a simple interaction with the
end-user.

The next section will show how the CARETask can help
explore a canonical dataset on a heterogeneous set of computing
infrastructures, and create a reproducible workflow describing
the experiment.

4. EVALUATION OF THE
REPRODUCIBILITY OF A NEUROIMAGING
WORKFLOW

We will evaluate the reproducibility enabled by the CARETask
using an fMRI decoder on the Haxby dataset (Haxby et al.,
2001). The goal of this experiment is to show that a pipeline
intended to run on a local machine and requiring a set
of preinstalled dependencies can be re-executed on various
distributed computing environments using the CARETask. It
validates the choice of the CARE technology to package
applications and demonstrates the OpenMOLE integration that
enables CARE to be used to reproduce scientific experiments.
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FIGURE 2 | Embedding a CARE archive in OpenMOLE with the CARETask.

4.1. Parameter Space Exploration of a
Classifier
This experiment is based on a tutorial 15 for the NiLearn package
(Abraham et al., 2014). The example compares different classifiers
on a visual object recognition decoding task using the Haxby
dataset (Haxby et al., 2001).

The Haxby dataset consists in the fMRI activity recorded
for 6 subjects exposed to various stimuli from different
categories. The example evaluates the performance of different
parameter initialization of a logistic regression classifier to
predict the category the subject is seeing from the fMRI activity.
Significant prediction shows that the signal in the region contains
information about the corresponding category.

We have slightly modified the online example to focus on
well-known classifier: the logistic regression. In the NiLearn
tutorial, two input parameters vary for this algorithm. The same
parameter ranges are tested for this classifier as detailed in
Table 2. In order to obtain comparable results, we have set the
seed of the pseudorandom number generator used in the logistic
regression to 0.

The OpenMOLE workflow for this experiment is made of
multiple tasks running both locally and on remote execution

15https://nilearn.github.io/auto_examples/02_decoding/
plot_haxby_different_estimators.html, last accessed on 12-nov-16.

TABLE 2 | Parameters and their values for the Logistic Regression

classifier.

Parameter Range Description

C {0.1; 0.5; 1; 5; 10; 50; 100} Inverse of regularization strength

Penalty {11; 12} Norm used in the penalization

Seed 0 Seed initializing the

Pseudorandom number

generator

nodes as depicted in Figure 3. The initial task asks NiLearn
to download the whole dataset from an online repository. An
ExplorationTask then determines the parameter space that
will be explored in parallel by OpenMOLE. The processing task
takes a specific tuple of initialization parameters for the logistic
regression from the exploration, along with a single subject as
in the original example. Each instance of the processing task
computes a leave-one-out cross-validated score for the logistic
regression classifier initialized with the given input parameters.
Result files are retrieved using the OpenMOLE hook mechanism
from the remote execution node. They contain a serialized data
structure with the results of the processing task stored in Python’s
pickle format. The collected results are aggregated on the host
machine and plotted locally in a separate PNG file per subject.
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FIGURE 3 | Representation of the Haxby decoder workflow: OpenMOLE elements (Exploration, Hook) are intertwined with the native pipeline’s steps

(download, processing, display results) to form the whole parallel workflow.

Input and result files are automatically transferred and passed to
the next task, regardless of their format by OpenMOLE’s internal
mechanisms.

4.2. Testing the Reproducibility
The experiment aims at testing the reproducibility of the whole
workflow on each of the platforms described in Table 3. The
workflow is considered successfully reproduced when generating
the exact same result from one machine to another. This for two
reasons:

• The seed of the PseudoRandom Number Generator (PRNG)
was set to the same value (0) for each instance of the parameter
exploration and across the execution environments. This
disables any stochastic variability in the results;

• The floating precision reported in the original version of the
tutorial is low enough (two digits) so that the underlying
hardware does not impact the final results.

The ensemble of Python scripts taken from the NiLearn tutorial
to form the workflow steps were packaged as a single CARE
archive on the host labeled Personal machine in Table 3. There
is no need to know about the packaged tool in details, or
to manually track its software dependencies. Only the input
and output data (results) locations must be known so that
they can be excluded from the archive. Input data and results
are dynamically injected and extracted at runtime from and
to the OpenMOLE dataflow. This perfectly fits OpenMOLE’s
definition of a workflow as a set of connected black boxes only
communicating with the external world through their inputs and
outputs.

The archive embeds the following Python packages installed in
a virtual environment along with their own binary dependencies:

• matplotlib (1.5.1)
• nibabel (2.0.2)
• nilearn (0.2.5)
• numpy (1.11.1)
• pip (8.1.2)

• scikit-learn (0.17.1)
• scipy (0.17.1)
• virtualenv (15.0.2)

The only common aspect between the platforms in Table 3 is that
their Operating System (OS) runs Linux as a kernel.

The heterogeneity in Java Runtime Environment (JRE)
versions is solved by OpenMOLE shipping with its own JRE
(OpenJDK 1.8.0) to execute on remotemachines. It has been built
against a 2.6.32 Linux kernel in order to ensure it re-executes
successfully on the largest possible range of Linux platforms.

The execution time is only reported here as a marker
of successful re-execution on the given platform. Multiple
parameters can explain the variability from one environment to
another, the most obvious being the different availability of the
required resources.

Table 4 reports the prediction scores resulting from running
the pipeline on the first subject of the dataset. The prediction
scores obtained are similar to those obtained in the tutorial for
equivalent parameters (ex: C = l1, p = 50), down to the second
decimal.

An even more interesting aspect of this technique is that
we obtained identical results from one environment to another,
across all the platforms described in Table 3. In order to switch
the execution of the processing task from one environment
to another, only one line was impacted in the workflow. File
transfers are managed by OpenMOLE as well as data injection
at the right location of the CARE pseudo file system. This is
shown in Listing 3 and is further detailed in specific case studies
in Sections 5.1 and 5.2.

val p r o c e s s i n g = CARETask ( wo rkD i r e c t o r y /
"haxby_example.tgz.bin" ,

s"""python processing.py ${d a t a F o l d e r} $$subjectID

$$C $$penalty"""

) s e t (
( i npu t s , ou t pu t s ) += ( sub j e c t ID , C , p e n a l t y ) ,
i n p u t F i l e s += ( d a t a F o l d e r ) ,
o u t p u t F i l e s += ("classifiers_scores.pkl" , r e s u l t F i l e

)
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)

val s lurm = SLURMEnvironment ("jpassera" ,
"predict5.doc.ic.ac.uk" )

val pbs = PBSEnvironment ("jpassera" ,
"login.cx1.hpc.ic.ac.uk" )

c r e a t e D i r s −− download −− exp loDa t a −<
( p r o c e s s i n g on s lurm hook p ick l eHook ) >−

e x p l o R e s u l t s −< p l o t
Listing 3 | Data injection and environment switching in the Haxby

workflow.

This experiment demonstrated OpenMOLE’s ability to
efficiently delegate the workload of a real-world pipeline to
an heterogeneous set of computing environments. Coupling
CARE and OpenMOLE in the CARETask enables experiments
to be designed on a personal machine using any toolkit or
programming language. Experiments can then be distributed to
remote environments regardless of the availability of the tools
they depend on, or the ability of the user to install new software
components on the target environment (as illustrated by the
Administrator Privileges column in Table 3).

On a side note, this experiment has shown that the genericity
of the OpenMOLE platform was not a barrier to exploit
field-specific tools in a workflow, NiLearn in this case. By
focusing on providing a high-level workflow formalism and
simplifying the access to HPC environments, this experiment
has shown OpenMOLE was flexible enough to address the needs
of the neuroimaging community while respecting their popular
software ecosystem.

Finally, this experiment has highlighted the role the
CARETask could play in producing reproducible results and re-
executable pipelines. Section 5 will now feature the CARETask in
combination with the DSL and various computing environments
throughout three real-world examples of neuroimaging pipelines.

5. CASE STUDIES

The source code and required material for the three case studies
is not part of the OpenMOLE market place16 due to license
restrictions induced by some of the binary dependencies. It is
however available in its own repository17 and contains entries
presented as they would be on the original market place. For the
sake of clarity, this section will only highlight the parts relevant
with the use case.

5.1. Multiple Environments in the Same
workflow
The first workflow preprocesses the input data as necessary
for a brain parcellation algorithm. Brain parcellation is an
essential task for the construction of brain connectivity networks,
which has the potential to provide new insights into the brain’s
organization. Brain parcellation aims at regrouping brain regions
that have similar connectivity profiles to the rest of the brain, so
as to construct connectivity networks of tractable dimension for
subsequent analysis.

16https://github.com/openmole/openmole-market.
17https://github.com/openmole/frontiers2016.

The method proposed in Parisot et al. (2015) uses diffusion
Magnetic Resonance Imaging (dMRI) data and structural
connectivity to drive the parcellation task. dMRI provides an
indirect measurement of the brain’s structural connectivity
(white matter fiber tracts), by measuring the anisotropy of water
molecules in the brain. Several processing steps are required
in order to recover the white matter tracts and consequently
parcellate the brain from dMRI volumes. In Parisot et al. (2015),
the data is processed using FSL’s bedpostX and probtrackX
(Behrens et al., 2007; Jbabdi et al., 2012), which estimate the fibres
orientations at each voxel and perform probabilistic tractography
respectively. Both methods are very time consuming. On high
quality data such as the HCP database 18, BedpostX takes
approximately a week on CPU and 3 h on GPU, while ProbtrackX
runs for approximately 30 h. In order to process a large group of
subjects for group-wise analysis in a reasonable amount of time, it
is necessary to use BedpostX’s GPU-enabled version (Hernández
et al., 2013) and process the subjects in parallel.

This workflow benefits from OpenMOLE’s capacity of
delegating different tasks of the pipeline to different computing
environments. In this workflow, the first tasks runs a GPU-
enabled version of the FSL bedpostX tool (Hernández et al.,
2013) while the rest of the workflow is executed on CPU. We
thus leverage two distinct computing environments to delegate
the workload of this workflow. Listing 4 highlights the section
of the workflow description declaring two environments and
connecting them with the corresponding tasks.

/// Execution environments configuration

// cluster environment with GPU computing facilities

val SLURMgpu =

SLURMEnvironment (
"jpassera" ,
"predict5.doc.ic.ac.uk" ,
queue = "gpus" ,
g r e s = List (Gres ("gpu" , 1 ) ) ,
memory = 15000
)

// default cluster environment

val SLURMcpu =

SLURMEnvironment (
"jpassera" ,
"predict5.doc.ic.ac.uk" ,
queue = "long" ,
memory = 15000
)

/// Connect the tasks with transitions and run the

workflow

exp lo IDsTask −< ( bpTask on SLURMgpu ) −− t r a j e c t o r y T a s k
−−

exp loHemisphere sTask −< ( p tTask on SLURMcpu )
Listing 4 | Multiple environments used by the parcellation preprocessing

workflow. The bpTask task requires a GPU to run so it is assigned to the

SLURMgpu environment, whereas pbTask can run on traditional CPUs.

Both SLURMxxx environments are ubiquitous declinations of the same

Slurm cluster, with different requirements.

It is worth noting that the required authentications to connect
to the environment do not have to appear in the workflow
18https://db.humanconnectome.org.
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TABLE 3 | Different configurations employed in the reproducibility experiment.

Denomination Resource manager/Scheduler CPUs Execution time Operating system Linux kernel

Personal machine None 4 cores 20′36′′ Debian 8 4.6.0-1-amd64

Desktop machine SSH 8 cores 28′14′′ Ubuntu 14.04 3.13.0-91-generic

Lab′s private cluster Slurm 312 cores 14′50′′ Ubuntu 14.04 3.13.0-63-generic

College wide cluster PBS 13,558 cores 48′25′′
Red Hat Enterprise Linux

Server release 6.7
2.6.32-573.12.1.el6.x86_64

European Grid Infrastructure (EGI) EMI/gLite 650,000 cores 27′15′′ CentOS 6/Scientific Linux 2.6.32-642.6.2.el6.x86_64

Denomination File system Python version Java runtime environment Administrator privileges

Personal machine Permanent 2.7.12 OpenJDK 1.8.0_91 Yes

Desktop machine Shared, permanent 2.7.6 OpenJDK 1.7.0_101 Yes

Lab’s private cluster Shared, permanent 2.7.6 OpenJDK 1.7.0_101 No

College wide cluster Temporary 2.6.6 OpenJDK 1.7.0_101 No

European Grid Infrastructure (EGI) Shared, temporary 2.7.8 OpenJDK 1.6.0_40 No

description, but are specified once and for all to the platform.
Authentications are from then on encrypted and stored in the
user’s preferences folder.

It is valid in the OpenMOLE syntax for the same remote
host to appear in different environment blocks. This ubiquity in
environments enables specifying different settings for the same
computing host, for example different memory requirements, or
devices in the present case. This feature goes along with the ability
of each task to run on a separate environment to increase the finer
parallelism granularity in the workflow.

Environments are only associated with the tasks at the
final stage of the workflow description when tasks are also
interconnected. The workflow could be shared without the
environments and remain syntactically correct. Users familiar
with other computing environments can simply replace the
environment declaration by the one of their choice, all in a single
location.

5.2. Sharing a Pipeline with the Community
The second workflow in this study segments a collection
of developing brain images using the Draw-EM software.
Draw-EM19 (Developing brain Region Annotation With
Expectation-Maximization) is an open-source software for
neonatal segmentation based on the algorithm proposed in
Makropoulos et al. (2014). The algorithm performs atlas-based
segmentation to divide the neonatal brain MRI into 87 regions.
The different parts of the workflow are:

• Data pre-processing. The original MRI is brain-extracted
to remove non-brain tissue and corrected for intensity
inhomogeneity.

• Initial tissue segmentation. A spatio-temporal tissue atlas is
registered to the brain MRI. The MRI is segmented into
the different tissue types with an Expectation-Maximization
scheme that combines an intensity model of the image with
the tissue priors of the atlas.

19https://github.com/MIRTK/DrawEM.

• Structural atlas registration. Structural atlases (20 in total)
are registered to the subject MRI with a multi-channel
registration technique. The original intensity image and the
GM probability map are used as different channels of the
registration.

• Structure priors computation. The prior probability maps
of the different structures are computed based on the local
similarity of the transformed atlases with the input MRI.

• Label segmentation. The MRI is segmented into the different
structures with a consequent Expectation-Maximization
scheme.

• Post-processing. The segmented labels are merged in different
granularities to further produce the final tissue segmentations
and different hemispheres of the brain. Temporary files used
for the computations are removed.

The software is used in collaboration between two teams, and
potentially more when data from the developing HCP get
publicly released. This workflow is a good example of common
use cases evoked in introduction to this work. Here we are faced
with two problems when we want to share the pipeline with
collaborators: making the description portable from one system
to another, and ensuring that the applications that form each
stage can be re-executed on another environment.

A first excerpt from this workflow in Listing 5 shows how
OpenMOLE interacts with CSV files to explore a fixed parameter
space. The notion of samplings in OpenMOLE is flexible enough
to traverse a parameter space described in a CSV file or using the
more complex methods listed in Section 2.3.

val s u b j e c t ID = Val [String ]
val age = Val [Int ]

val e xp l o = ExplorationTask (
CSVSampling ( wo rkD i r e c t o r y /"ages.csv" ) s e t (

columns += sub j e c t ID ,
columns += age ,
s e p a r a t o r := ’ ’

)
)

Listing 5 | CSV file exploration using samplings.
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TABLE 5 | Description of the parameters optimized for the MSM tool.

Parameter Dimensionality Range Description

Lambda 3 [0.00001, 100.0] Weights the contribution of the regularizer relative to the similarity force.

sigma_in 3 [2; 10] Sets the input smoothing: this changes the smoothing kernel’s standard deviation

Iterations 3 [3; 5] Controls the number of iterations at each resolution.

A single CARE archive was prepared containing the necessary
material for all the tasks of the original pipeline (available from
Draw-EM’s repository20). We have noticed that generating one
archive per task generally leads to a large amount of duplicated
binaries and shared libraries from one archive to another. When
the different tasks of a pipeline share the same dependencies, it
is thus more efficient to gather all of them in a unique archive.
This strategy leverages OpenMOLE’s file replication mechanisms
better and reduces the amount of data transferred to remote
environments.

The generated CARE archive is then integrated using
CARETasks in the OpenMOLE workflow, and fed with input
data files stored on the host machine. The command used in
the original pipeline is reused as is to build the CARETask and
accepts the parameters explored by the sampling in Listing 5. The
resulting CARETask is presented in Listing 6.

val p a c k a g i n gD i r e c t o r y =

"/homes/am411/vol/MIRTK-develop/MIRTK/Packages/DrawEM/

scripts/v1.1"

val p r e p r o c e s s = CARETask (
wo rkD i r e c t o r y /"careArchives/drawem-bundle.tgz.bin" ,
p a c k a g i n gD i r e c t o r y + "/preprocess.sh ${subjectID}

$age"

) s e t (
( i npu t s , ou t pu t s ) += ( sub j e c t ID , age ) ,
h o s t F i l e s += ( workD i r e c t o r y . t o S t r i n g + "/data/T2" ,

p a c k a g i n gD i r e c t o r y + "/T2" )
)
Listing 6 | The preprocessing CARETask extracted from the Draw-EM

pipeline. Input data files are injected from the host system and

parameters subjectID and age taken from the CSV sampling in Listing 5.

As this pipeline is meant to be shared and labeled with a
specific version, the fact that CARE archives are not as flexible
as Docker turns from a drawback to an advantage as it makes
it simpler to ship to the end-user. All the parameterizable parts
of the pipeline are handled by the OpenMOLE script, and the
pipeline can still be customized by inserting new tasks. Still,
any user downloading the OpenMOLE workflow along with the
associated CARE archives will be able to reproduce the same
experiments that have been performed by the packager, or to
reuse the same pipeline for further experiments and comparisons.
It is important to note that the data necessary to run the pipeline
are not included in the shipped CARE archives.

5.3. Advanced Parameter Tuning Methods
This third workflow performs parameter optimization for
cortical surface registration. In this example, cortical surface

20https://github.com/MIRTK/DrawEM/blob/c98022a5b78ee99bef5d329fc23f57f9
c15b1a5f/pipelines/neonatal-pipeline-v1.1.sh.

alignment is performed using the Multimodal Surface Matching
tool (MSM) (Robinson et al., 2013); developed as part of the HCP
to enable between subject alignment of multiple different types of
cortical surface features (for example functional activations and
cortical folding). Registration is optimized to maximize the ratio
of feature similarity relative to surface warp distortions.

Here, we study a simplified version of the parameter
optimization. The workflow consists in optimizing the value of
nine parameters of the MSM tool for a fixed pair of subjects. The
parameters explored can be found in Table 5.

In order to find the optimal values for these parameters, we
need to compute a fitness function that we will try to minimize
using our methods. The fitness function estimates a distortion
metric and is computed within its own OpenMOLE task as in
Listing 7.

Now, Listing 8 shows how the NSGA-II (Deb et al., 2002)
could be initialized to optimize this problem in OpenMOLE.

val s u b j e c t ID = Val [String ]

val f i t n e s s = CARETask (
wo rkD i r e c t o r y /

"estimate_metric_distortion_anat.tgz.bin" ,
"/usr/bin/fsl/MSM/estimate_metric_distortion \

/home/user/data/${subjectID}/L.white.ICO6.native.

surf.gii \

/home/user/data/${subjectID}/L.reg.surf.gii \

/home/user/data/${subjectID}/L.areal_ -abs" )
s e t (

i n p u t s += ( s u b j e c t ID ) ,
s tdOut += me t r i c
)

Listing 7 | The result metric is retrieved from the standard output (the

command lines have been simplified for the sake of readability).

val e v o l u t i o n =

SteadyStateEvolution (
a l g o r i t hm =

NSGA2 (
// Define the population size: 100

mu = 100 ,
// Define the inputs and their respective

variation bounds.

genome = Seq (
Sequence ( lambdas , 0 . 0 0 0 0 1 , 1 0 0 . 0 , s i z e =3 ) ,
Sequence ( s igmaIn_opt , 2 . 0 , 1 0 . 0 , s i z e =3 ) ,
Sequence ( i t e r a t i o n s _ o p t , 3 . 0 , 5 0 . 0 , s i z e =3 ) ,
) ,

// Define the objectives to minimize.

o b j e c t i v e s = Seq ( me t r i c )
) ,

// Define the fitness evaluation

// Define the parallelism level

// Terminate after 1000 evaluations

e v a l u a t i o n = f i t n e s s ,
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p a r a l l e l i s m = 10 ,
t e rm i n a t i o n = 1000

)

. . .

( e v o l u t i o n on env )
Listing 8 | Initialization of the NSGA-II algorithm with the parameters to

optimize according to the fitness function from Listing 7.

Multi-dimensional parameters are seamlessly handled by the algorithm.

Advanced exploration methods are computationally
greedy, but are well suited for parallelization on distributed
computing environments. This exploration can also benefit from
OpenMOLE’s workload delegation by using the on keyword
seen in Listing 4. This shows that exploration methods fit
well in the OpenMOLE ecosystem and can benefit from the
other components of the platform, such as the computing
environments.

6. CONCLUSION

In this paper, we have shown the ability of the OpenMOLE
scientific workflow engine to provide reproducible pipelines that
can be shared and distributed on any Linux based environment.

We have seen that the OpenMOLE DSL provided a high-
level description of experiments that can be shared and reused
by scientists on any platform with a JVM. The newly added
CARETask offers a solution to ensure Linux-based application
can be packaged and re-executed seamlessly on another Linux
host without the need to obtain administrator privileges. This
criterion was necessary to target HPC environments, a de-facto
choice to distribute experiments in the scientific world.

Extensions to the OpenMOLE DSL led to a fine integration
of CARE in the framework. Archives only contain binaries and
their dependencies, leaving the data to process to be injected in
the archive’s pseudo-filesystem at runtime from the dataflow. This
results in a solution that can be shared from one machine to
another, from the description of the pipeline to the applications
composing its steps, with the single assumption that it will be
re-executed on a Linux host.

Our experiments have reported successful re-executions
with the distributed computing environments supported by
OpenMOLE. In particular, Section 4 has shown that results
obtained from a pipeline with complex software dependencies

could be identically reproduced on an heterogeneous set of Linux
computing environments.

Medical imaging pipelines were a perfect testbed for our
solution, as they are composed of very diverse software
tools. A description of case studies inspired from real-
world medical imaging solutions has illustrated the suitability
of the solution to handle reproducible medical imaging
experiments at large scale. Problems such as enabling finer
grain parallelism in pipelines, enhancing pipeline sharing with
the community, and automatic parameter tuning are three of
the concerns that can be encountered by researchers tackling
large-scale medical imaging studies. We have addressed these
topics through OpenMOLE implementations of three inhouse
neuroimaging pipelines. They have showcased various features of
the OpenMOLE platform that can help sharing and reproducing
pipelines.

OpenMOLE, as well as all the tools forming its ecosystem,
are free and open source software distributed under the Affero
General Public License version 3 (AGPLv3). This allows anyone
to contribute to the main project, or build extensions on top of it.

Future releases of the OpenMOLE platform will strengthen
the support of cloud computing environments, with a particular
attention given to Amazon EC2. As major datasets become
publicly available in the Amazon cloud, moving neuroimaging
studies to the cloud is necessary to explore whole datasets.
Reproducible OpenMOLE workflows are a valuable addition to
the set of tools available to the community in order to set up
ambitious experiments.
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BACKGROUND

Data sharing is becoming a priority in functional Magnetic Resonance Imaging (fMRI) research,
but the lack of a standard format for shared data is an obstacle (Poline et al., 2012; Poldrack
and Gorgolewski, 2014). This is especially true for information about data provenance, including
auxiliary information such as participant characteristics and task descriptions. The three most
commonly used analysis software packages [AFNI1 (Cox, 1996), FSL2 (Jenkinson et al., 2012),
and SPM3 (Penny et al., 2011)] broadly conduct the same analysis, but differ in how fundamental
concepts are described, and have a myriad of differences in the pre-processing and modeling steps.
The practical consequence is that sharing analyzed data is further complicated by the idiosyncrasies
of the particular software used.

The Neuroimaging Data Model [NIDM4 (Keator et al., 2013; Maumet et al., 2016)] is an
initiative from the International Neuroinformatics Coordinating Facility (INCF5) that addresses
these practical barriers through the development of a standard format for neuroimaging data.
Ultimately, NIDM will provide a standard format that can handle data that has been processed in
any of the common software packages. In order to achieve this, the development of NIDM requires
publicly available derived data that covers all the major use cases in the main software programs.

The purpose of the current work was to produce a set of results of mass univariate fMRI analyses
using the most common software packages: AFNI, FSL, and SPM [which between them cover
80% of published fMRI analyses (Carp, 2012)], utilizing publicly available data from OpenfMRI6

(Poldrack et al., 2013). The analyses (‘variants’) presented in this paper cover the most common
options available in each software package at each analysis stage, from different Hemodynamic
response function (HRF) basis functions through to group-level tests. The tests are arranged so that
readers can compare the closest equivalent variants across software packages. In particular, these
tests will be useful for comparing the results from default test settings across software packages.

While this collection of analyses was chosen for their relevance to the NIDM project, it
also addresses a gap in the literature where publicly available processed data is concerned.
Specifically, while there are published comparisons of different processing pipelines, the data
are not publicly available (Carp, 2012) or are for resting state fMRI only (Bellec et al., 2016).
Others have shared raw data but lack analysis results (Hanke et al., 2014) or do not include

1http://afni.nimh.nih.gov/
2http://fsl.fmrib.ox.ac.uk/fsl
3http://www.fil.ion.ucl.ac.uk/spm/
4http://nidm.nidash.org
5http://www.incf.org
6https://openfmri.org
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comparisons across multiple software packages [e.g., analyses in
the The Human Connectome Project7 (Van Essen et al., 2013) are
performed with FSL only]. Shared raw data is a useful resource,
but we argue that shared processed data is also important, both
to provide a basis of cross-software comparisons and to create
a benchmark for testing of automated provenance software. The
dataset presented in this paper is a contribution toward this
omission in the literature.

METHODS

Data Source
Data were downloaded from OpenfMRI’s BIDS-compliant
ds000011 dataset8 between 09/02/2016 and 15/02/2016. A full
description of the paradigm is in the original paper (Foerde
et al., 2006). The first task was a training exercise in which
participants counted high tones in a series of high-pitched and
low-pitched tones (‘tone counting’ condition), and then selected
a number that represented the number of high tones (the ‘tone
counting probe’ condition, referred to as ‘probe’ hereafter). We
modeled both the tone counting and probe conditions, using tone
counting as the effect of interest ([1 0] contrast with implicit
baseline). Single-subject tests were conducted with data from
subject 01 only, while group-level tests were run with all 14
subjects. Analyses were conducted in AFNI, SPM12, and FSL.

In AFNI, single-subject variants were conducted using
the uber_subject.py interface, which generates and runs two
scripts: cmd.ap.sub_001 and proc.sub_001. Other variants did
not require changing options in the interface, so were run
directly from the command line, using a copy of the default
cmd.ap.sub_001 script. Scripts for group-level tests were created
manually.

For each of the SPM variants, a batch.m file conducting the full
analysis (using dependencies across processing steps) was created
and run with the Batch Editor GUI.

FSL-specific variants were modeled using FSL’s FMRI Expert
Analysis Tool9, where a.fsf file for the complete analysis was
created using the FEAT GUI.

Pre-defined Settings
In this section, settings held constant over variants (e.g., drift
modeling) are described for each of the packages. These pre-
defined settings (including pre-processing) were identical for
each variant.

Pre-processing
As slice-time information was not available for this study, this
step was not considered in the pre-processing.

In AFNI, pre-processing was conducted using the default
settings in the AFNI uber_subject.py graphical interface. First,
the BOLD images were rigidly aligned to the skull-stripped

7http://www.humanconnectome.org
8https://drive.google.com/folderview?id=0B2JWN60ZLkgkMGlUY3B4MXZIZ
W8&usp=sharing
9http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT

anatomical T1-weighted image using a negative local correlation
cost function. Next, the anatomical image was registered
to standard space using the AFNI default ‘Colin brain’
(TT_N27+tlrc) Talairach space template (Holmes et al., 1998)
with an affine transformation and weighted least squares cost
function. Head motion correction was performed by rigid body
registration of each BOLD volume to the third volume, also using
weighted least squares cost function; all three transformations
were concatenated to allow a single resampling with cubic
interpolation. In addition, volumes presenting an estimated
motion greater than 0.3 mm (as estimated at 85% of the distance
to the cortical envelope10) compared to the previous scan were
censored from the first level regression. The BOLD images were
smoothed with a 4 mm Full Width at Half Maximum (FWHM)
Gaussian smoothing kernel, and each voxel was scaled to have
a mean value of 100 across the run with values larger than 200
truncated to that value.

In FSL, pre-processing was conducted using the Brain
Extraction Tool (BET)11 and the default options of the FEAT GUI.
First, the anatomical image was skull-stripped. To correct for
motion, each volume from the BOLD images was first registered
rigidly to the middle volume using a normalized correlation
cost function and linear interpolation (MCFLIRT12 tool). After
6 mm FWHM spatial smoothing and global scaling to set median
brain intensity to 10,000, first level fMRI model fitting took
place in the subject space. The mean realigned fMRI data was
rigidly registered to the brain extracted anatomical image using
a correlation ratio cost function, followed by affine registration of
the anatomical to MNI space (as defined by the ICBM MNI 152
non-linear 6th generation template image), also with correlation
ratio cost function. For group or second level fMRI modeling,
the preceding registration parameters were composed to directly
resample first level contrast estimates and their variance into
standard space with trilinear interpolation.

In SPM, pre-processing was conducted with the Batch Editor
GUI. To correct for motion, a two-step rigid body registration
procedure was performed with a least squares cost function;
each volume from the BOLD images was first registered to the
first volume, and then registered to the mean of the aligned
images (‘Realign: Estimate & Reslice’ function, cubic spline
interpolation). The anatomical T1-weighted image was then
rigidly registered to the mean BOLD image with a mutual
information cost function (‘Coregister: Estimate’ function, cubic
spline interpolation). Segmentation, bias field correction and
non-linear registration of the anatomical image to standard
space (“unified segmentation”) were then conducted (‘Segment’
function); instead of a simple cost function, this process
uses a model incorporating tissue class, bias field and spatial
deformations to best fit the T1 image data. The estimated
deformation field was then used for warping the realigned BOLD
images (cubic spline interpolation) and bias corrected anatomical
image to MNI space (as defined by the average image of 549

10https://afni.nimh.nih.gov/afni/community/board/read.ph
p?1,149511,149513#msg-149513
11http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
12http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT
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of the subjects from the IXI dataset13, cf. spm_template.man
for more details) using spline interpolation (‘Normalise: Write’
function). Finally, the normalized realigned BOLD images were
smoothed using a 6 mm FWHM Gaussian smoothing kernel
(‘Smooth’ function). Global scaling (1 value for whole 4D
dataset) was used to set the mean brain intensity to target value
of 10014.

Data Analysis
As specified by the tone counting task, for each software package,
the subject-level design matrix included at least two regressors
(“tone counting” and “probe”).

13http://www.brain-development.org/
14Due to an over-sized brain mask used for global mean computation,
SPM’s intracerebral mean tends to be under-estimated, resulting in a scaled
brain mean intensity of 200 or more instead of 100. For more see:
http://blogs.warwick.ac.uk/nichols/entry/spm_plot_units/

By default AFNI adds nine additional regressors in the design
matrix: an intercept, two to model slow signal drifts using
a second-order polynomial, and six motion regressors (three
rotations, three shifts), resulting in a design matrix with 11
columns.

By default SPM adds a discrete cosine transform basis to the
linear model to account for drift. The default cutoff of 128 s with
this 208 s acquisition allowed three regressors. With an intercept,
the model has six regressor parameters, though the drift basis
columns are not displayed to the user.

In FSL, slow signal drifts were removed from the data and
modeled with a Gaussian-weighted running line smoother with
bandwidth parameter 60 s15, a reduction from the software
default value of 100 s, since this is recommended for event-related

15This parameter is only approximately the FWHM of the smoother’s Gaussian,
since FSL uses 2.0 instead of 2.335 in the FWHM-to-sigma conversion.
For more see: https://www.jiscmail.ac.uk/cgi-bin/webadmin?A2=ind1109&L=FS
L&P=R30849

TABLE 1 | Folder names for variants in each software package (columns 3–5), for each variant type (columns 1–2).

Variant name AFNI FSL SPM

Model First-level regression Default
afni_default

Default
fsl_default

Default
spm_default

Second level: 1 sample t-test with ordinary least
squares

afni_group_ols fsl_group_ols spm_group_ols

Second level: 1 sample t-test with weighted least
squares

afni_group_wls fsl_group_wls spm_group_wls

Hemodynamic response
function (HRF)

Gamma difference afni_hrf_gammadiff fsl_hrf_gammadiff Default
spm_default

Gamma Default
afni_default

Default
fsl_default

NA

FIR/TENT Basis Function afni_hrf_tent fsl_hrf_fir spm_hrf_fir

Threshold voxel-wise uncorrected p ≤ 0.001 Default∗

afni_default
Default∗

fsl_default
Default∗

spm_default

voxel-wise uncorrected t ≥ 4 afni_thr_voxelunct4 NA spm_thr_voxelunct4

voxel-wise (peak-wise) FWE p ≤ 0.05 NA fsl_thr_voxelfwep05 spm_thr_voxelfwep05

voxel-wise FDR p ≤ 0.05 afni_thr_voxelfdrp05 NA spm_thr_voxelfdrp05

Cluster-wise uncorrected k ≥ 10, cluster-defining
threshold p ≤ 0.001

afni_thr_clustunck10 NA spm_thr_clustunck10

Cluster-wise FWE p ≤ 0.05, cluster-defining
threshold p ≤ 0.001

afni_thr_clustfwep05 fsl_thr_clustfwep05 spm_thr_clustfwep05

Contrast type t-contrast Default∗∗

afni_default
Default∗∗

fsl_default
Default∗∗

spm_default

f-contrast afni_con_f fsl_con_f spm_con_f

Cluster connectivity 6-Connected: faces Default
afni_default

NA NA

18-Connected: faces and edges afni_clustconn_18 NA Default
spm_default

26-Connected: faces, edges, and corners afni_clustconn_26 Default
fsl_default

NA

Hypothesis type One-tailed test afni_alt_onesided Default
fsl_default

Default
spm_default

Two-tailed test Default
afni_default

NA NA

Default tests are marked in bold in the table. ∗For group-level analyses, the default threshold is cluster-wise p ≤ 0.05 FWE-corrected. ∗∗For analyses using flexible basis
functions to model the HRF the default test is an f-test with an identity matrix of size equal to the number of basis.
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designs16. The design matrix has only two columns, which are
mean centered.

Variants
Users can specify from a range of options at each stage
in the analysis processing pipeline. A one-factor-at-a-time
design was used to run tests with these different options.
In each of the analysis packages, at each processing stage
(Column 1, Table 1.) a single variant was labeled as a
default (Columns 3–5, Table 1.). This default variant was
usually the same in each software package, except for
software-defined defaults, which were left unchanged (e.g.,
HRF).

The variants are presented below. Apart from the aspect that
had been explicitly changed for that variant, all other stages of
the processing pipeline were kept the same as the default analysis.
Using this method, at least one analysis was conducted for each
possible variant at every stage of the processing pipeline in AFNI,
SPM, and FSL.

HEMODYNAMIC RESPONSE FUNCTION

Gamma Function
The HRF was modeled using a Gamma function.

Difference of Gamma Functions
The HRF was modeled using the difference of two Gamma
functions. This is the default in SPM (SPM’s canonical HRF). In
FSL, the Double-Gamma HRF option was used (with a phase 0).

Flexible Factorial Basis Functions
The HRF was modeled using a finite impulse response (FIR)
basis set or a set of TENT functions. In FSL, three basis FIR
functions spread over 15 s were defined. In SPM, 10 basis
FIR functions spread over 20 s were defined. In AFNI, eight
(respectively, seven) TENT functions were defined with a 0 s start
and a duration of 12 s (respectively, 14 s) for the tone counting
(respectively, the probe) regressor.

MODEL VARIANTS

First-Level Regression
The default analysis for all software packages was a single-subject
t-test on the tone counting contrast.

Second Level: 1 Sample t-test Estimated
with Ordinary Least Squares
A one-sample group t-test with ordinary least square estimation
was performed on the tone counting contrast over the 14
participants.

16http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#FEAT_Basics

1 Sample t-test Estimated with Weighted
Least Squares
A one-sample group t-test with weighted least square estimation
was performed on the tone counting contrast over the 14
participants.

THRESHOLD

Voxel-Wise Uncorrected p ≤ 0.001
Results were thresholded with a voxel-wise threshold of p≤ 0.001
uncorrected for multiple comparisons.

Voxel-Wise t ≥ 4
Results were thresholded with a voxel-wise threshold of t ≥ 4.

Voxel-Wise (Peak-Wise) FWE p ≤ 0.05
Results were thresholded with a voxel-wise threshold of family-
wise error rate p≤ 0.05 with correction for multiple comparisons.

Voxel-Wise FDR p ≤ 0.05
Results were thresholded with a voxel-wise threshold of false
discovery rate p ≤ 0.05 correction for multiple comparisons.

Cluster-Wise k ≥ 10
Results were thresholded with a cluster-wise threshold of 10
voxels. Clusters were defined using a cluster-forming threshold
of p ≤ 0.001 uncorrected for multiple comparisons.

Cluster-Wise FWE p ≤ 0.05
Results were thresholded with a cluster-wise threshold of family-
wise error rate p≤ 0.05 with correction for multiple comparisons.
Clusters were defined using a cluster-forming threshold of
p ≤ 0.001 uncorrected for multiple comparisons.

CONTRAST

t-test
The default analysis for all software packages was a t-test on the
tone counting contrast.

f-test
An f -test on the tone counting contrast was performed.

CLUSTER CONNECTIVITY

6-Connected
Neighboring voxels had faces touching. Under this definition a
voxel can have up to six nearest neighbors. This is the default in
AFNI.

18-Connected
Neighboring voxels were defined as those with faces or edges
touching. Under this definition a voxel can have up to 18 nearest
neighbours. This is the default in SPM.
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26-Connected
Neighboring voxels had faces, edges, or corners touching. Under
this definition a voxel can have up to 26 nearest neighbors. This
is the default in FSL.

ALTERNATIVE HYPOTHESIS

One-Tailed Test
A one-tailed test looking at positive effects was performed. This
is the default in SPM and FSL.

Two-Tailed Test
A two-tailed test looking at positive and negative effects was
performed. This is the default in AFNI.

RESULTS

Figure 1 shows the tone counting group level results from a
one-sided test FWE-corrected p ≤ 0.05 cluster-wise inference
with a p ≤ 0.001 uncorrected cluster forming threshold. Despite
differences in smoothing, the unthresholded maps show the
same general pattern of activation. Thresholded maps from SPM
and FSL (6 mm FWHM smoothing) were most similar, while
AFNI (4 mm FWHM smoothing) presented a smaller number
of active voxels. Aside from smoothing, an important difference
with AFNI is the inclusion of motion regressors in the first
level model; this is good statistical practice but can reduce
sensitivity if the subject motion is correlated with the regressor
of interest.

In comparing software packages, there is naturally a tension
between exact matching of parameter sets versus use of
recommended defaults. The analyses presented here remain
faithful to the default settings where possible. Consequently, the
differences between packages can be difficult to interpret fully.
We plan future work with carefully matched analyses, in order to
further elucidate the differences between software packages using
many more datasets.

Finally, it is important to emphasize that these tests
are not intended to demonstrate the superiority of any
particular software package over the others. Each package
has its strengths and weaknesses. For example, SPM cannot
compute cluster-size inference by FWE p-value, while FSL
cannot specify inference by uncorrected cluster threshold.
AFNI has immense flexibility in this regard, but the sheer
number of options available can make it difficult for the
user to judge how to proceed. Ultimately, choice of software
will usually be a matter of personal preference for the
researcher.

Data Sharing
The dataset is named fMRI Results Comparison Library and can
be available at: http://warwick.ac.uk/tenichols/fmri_results. The
folder names for each variant are provided in Table 1.

For the AFNI variants, each folder contains scripts for
running the analysis (cmd.ap.sub_001 and proc.sub_001 for

FIGURE 1 | Areas of significant activations (red) for a one-sided t-test
at a p ≤ 0.05 FWE corrected cluster-wise threshold for the tone
counting contrast (a), (c), (e), and un-thresholded t-statistic maps
(positive values in red to yellow and negative values in blue to green)
(b), (d), (f), at the group level are compared for each of the three
software packages (AFNI, FSL, and SPM).

single-subject tests), scripts for specifying the threshold levels
(batch.sh; these are not standard AFNI output, and are included
so that future users can run the analysis without manually
setting thresholds in the interface), the thresholded dataset
(Clust_mask+tlrc) that contains significant clusters, and files
that AFNI outputs automatically, saved in the sub_001.results
folder.

For the FSL variants, each directory contains the complete
FEAT output, which includes the FEAT setup file (design.fsf),
motion correction reporting (mc/directory), low-res stats
outputs (stats/directory), standard space registration outputs
(reg/directory), resampling of stats images into standard
space (reg_standard/stats/directory), and time series plots
(tsplot/directory). All.html files of the FEAT report are also
included.

For the SPM variants, each directory contains a batch.m file
to run the analysis, as well as the SPM.mat file containing the
design specification. NIFTI files for the regressors, contrasts, and
thresholded results are included, and the results report obtained
from the analysis has been printed in.pdf format.

Finally, a README.md file is contained in every variant
directory, giving a description of the variant and data used in the
test.
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Recommended Uses
The dataset includes all the necessary scripts and files for future
users to replicate the analyses exactly as they were carried out
here. This is especially useful for those seeking quick comparisons
between different processing options (both within and between
software packages). In AFNI, this also removes the need to
enter threshold or cluster information manually via the interface.
In addition, the dataset and accompanying information in this
paper should be useful for novice neuroimagers seeking clear
descriptions and examples of basic tests to guide them in their
own research.
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Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the

life course may be useful for investigating long term effects of risk and resilience factors

for brain development and healthy aging, and for understanding early life determinants of

adult brain structure. Therefore, there is an increasing need for automated segmentation

tools that can be applied to images acquired at different life stages. We developed

an automatic segmentation method for human brain MRI, where a sliding window

approach and a multi-class random forest classifier were applied to high-dimensional

feature vectors for accurate segmentation. The method performed well on brain MRI

data acquired from 179 individuals, analyzed in three age groups: newborns (38–42

weeks gestational age), children and adolescents (4–17 years) and adults (35–71 years).

As the method can learn from partially labeled datasets, it can be used to segment

large-scale datasets efficiently. It could also be applied to different populations and

imaging modalities across the life course.

Keywords: brain, MRI, large-scale, life-course, slidingwindow, random forests, classification, tissue segmentation

INTRODUCTION

During early life, the brain undergoes significant morphological and functional changes, the
integrity of which determines long-term neurological, cognitive and psychiatric functions (Tamnes
et al., 2013). For instance, a wide range of problems including autism spectrum disorder, poor
cognitive aging, stroke and neurodegenerative diseases of adulthood may have early life origins
(McGurn et al., 2008; Shenkin et al., 2009; Hill et al., 2010; Wardlaw et al., 2011; Stoner et al., 2014).
Improved understanding of cerebral structural changes across the life course may be useful for
studying early life determinants and atypical trajectories that underlie these common problems.

Quantitative volumes from brain structural magnetic resonance imaging (MRI) acquired at
different stages of life offer the possibility of new insight into cerebral phenotypes of disease,
biomarkers for evaluating treatment protocols, and improved clinical decision-making and
diagnosis. The literature presents a clear distinction between methods developed for different ages
partly because the computational task is determined by properties of the acquired data and these
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are age-dependent (Cabezas et al., 2011; Despotovic et al., 2015;
Išgum et al., 2015). For example, the infant brain presents
challenges to automated segmentation algorithms developed for
adult brain due to: wide variations in head size and shape in early
life, rapid changes in tissue contrast associated with myelination,
decreases in brain water, changes in tissue density, and relatively
low contrast to noise ratio between gray matter (GM) and
white matter (WM). Therefore, automated segmentation tools
for modeling structure over years are limited, and this hampers
research that would benefit from robust assessment of the
newborn to the adult trajectory.

With regard to methodology, approaches for automatic
segmentation of brain MRI can be classified into unsupervised
(Cai et al., 2007; Leroy et al., 2011; Weglinski and Fabijanska,
2011; Gui et al., 2012) or supervised (Van Leemput et al., 2001;
Fischl et al., 2002; Ashburner and Friston, 2005; Prastawa et al.,
2005; Song et al., 2007; Altaye et al., 2008; Weisenfeld and
Warfield, 2009; Shi et al., 2010; Kuklisova-Murgasova et al., 2011;
Makropoulos et al., 2012; Serag et al., 2012b; Cardoso et al., 2013;
Cherel et al., 2015; Moeskops et al., 2015; Wang et al., 2015; Loh
et al., 2016) approaches. Supervised approaches have proven to
be very successful in medical image segmentation (Aljabar et al.,
2009; Lötjönen et al., 2010; Coupé et al., 2011; Rousseau et al.,
2011; Kaba et al., 2014). However, as they rely on labeled training
data (or atlases) to infer the labels of a test scan, most existing
supervised approaches require a large number of training datasets
to provide a reasonable level of accuracy and they usually carry
a high computation cost due to their requirement of non-linear
registrations between labeled data and the test scan (Iglesias and
Sabuncu, 2015).

To address these challenges, here we describe a method for
automatic brain segmentation of MR images, called SEGMA

(SEGMentation Approach). SEGMA differs from current
supervised approaches in the following ways. First, SEGMA
uses a sparsity-based technique for training data selection by
selecting training data samples that are “uniformly” distributed
in the low-dimensional data space, and hence eliminates the
need for target-specific training data (Serag et al., 2016).
Second, SEGMA uses linear registration to provide an accurate
segmentation (mainly to ensure the same orientation and size for
all subjects). This is useful because it reduces computation time
compared with most supervised methods which require non-
linear registrations between the training images and the target
image. Finally, SEGMA uses a machine learning classification
based on random forests (Breiman, 2001) where a class label
for a given test voxel is determined based on its high-
dimensional feature representation. In addition to incorporating
more information into the feature set (compared with methods
that use voxel intensity information only), we use a sliding
window technique that moves over all positions in the test image
and classifies all voxels inside the window at once, instead of
assigning labels on a voxel by voxel basis. This technique has
the advantage of speeding-up the classification process while
minimizing misclassifications compared with methods that use
a global classifier (Iglesias et al., 2011; Vovk et al., 2011; Zikic
et al., 2014). The feature extraction framework is illustrated in
Figure 1.

MATERIALS AND METHODS

Data And Image Acquisition
The study includes brain imaging data from 179 subjects,
spanning the ages of 0–71 years, from three MRI datasets.

Dataset I

The first dataset contained MR images from 66 infants: 56
preterms (mean post-menstrual age [PMA] at birth 29.23 weeks,
range 23.28–34.84 weeks) were acquired at term equivalent age
(mean PMA 39.84 weeks, range 38.00–42.71 weeks), and 10
healthy infants born at full term (>37 weeks’ PMA). None of
the infants had focal parenchymal cystic lesions. Participants of
the newborns dataset were recruited to a larger study using MRI
to study the effect of preterm birth on brain growth and long-
term outcome. Ethical approval was granted by the National
Research Ethics Service (South East Scotland Research Ethics
Committee) and NHS Research and Development, and informed
written parental consent was obtained.

A SiemensMagnetomVerio 3TMRI clinical scanner (Siemens
Healthcare GmbH, Erlangen, Germany) and 12-channel phased-
array head coil were used to acquire: [1] T1-weighted (T1w) 3D
MPRAGE: TR = 1650 ms, TE = 2.43 ms, inversion time = 160
ms, flip angle= 9 degrees, acquisition plane= sagittal, voxel size
= 1× 1× 1mm3, FOV= 256mm, acquiredmatrix= 256× 256,
acceleration factor (iPAT) = 2; [2] T2-weighted (T2w) SPACE
STIR: TR = 3800 ms, TE = 194 ms, flip angle = 120 degrees,
acquisition plane = sagittal, voxel size = 0.9 × 0.9 × 0.9 mm3,
FOV = 220 mm, acquired matrix = 256 × 218. The image data
used in this manuscript are available from the BRAINS repository
(Job et al., 2017) (http://www.brainsimagebank.ac.uk).

Reference tissue segmentations for the dataset were generated
using an Expectation-Maximization algorithm with tissue priors
provided by the atlas from (Serag et al., 2012a,c). Ground truth
accuracy of reference neonatal segmentations was evaluated by
a radiologist experienced in neonatal brain MRI, who concluded
that they were all plausible representations of anatomical classes.
Quantitative evaluation of the reference segmentations was
performed against manual segmentations from 9 subjects chosen
at random. For each subject, three slices (those numbered
as 25th percentile, median and 75th percentile of the slices
containing brain tissue) were segmented. In order to remove
bias toward any particular anatomical plane, three subjects
were segmented in the axial plane, three in the coronal plane,
and three in the sagittal plane. The quantitative analyses
indicated high agreement for all tissues (mean Dice coefficient
of 92%).

Dataset II

The second dataset contained T1wMRI scans and corresponding
manual expert segmentation of 32 structures from 103 subjects
(mean age 11.24 years, range 4.20–16.90 years) publicly available
from the Child and Adolescent NeuroDevelopment Initiative
(CANDI) at University of Massachusetts Medical School (Frazier
et al., 2008; Kennedy et al., 2012) (http://www.nitrc.org/projects/
candi_share). The data originates from four diagnostic groups:
healthy controls (N = 29), schizophrenia spectrum (N =
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FIGURE 1 | Overview of the SEGMA feature extraction framework. The input test image is preprocessed for brain extraction and bias field correction, before

computing gradients. Then, a sliding window is scanned across the input image at all positions where a feature vector for each voxel over the window is constructed

using intensity and gradient information. The feature vectors are fed into a random forest classifier trained for structure / tissue classification.

20), Bipolar Disorder (N = 35), and Bipolar Disorder with
psychosis (N = 19). The T1w images were acquired using a 1.5T
Signa scanner (GE Medical Systems, Milwaukee, USA) with the
following parameters: a three-dimensional inversion recovery-
prepared spoiled gradient recalled echo coronal series, number of
slices= 124, prep= 300 ms, TE= 1 min, flip angle= 25 degrees,
FOV= 240 mm2, slice thickness= 1.5 mm, acquisition matrix=
256× 192, number of excitations= 2.

Dataset III

The third dataset contained brain images and the corresponding
manual expert segmentation of the whole brain into 32 structures
from 18 healthy subjects including both adults and children;
for the current study, we used only the adult data (N = 10,
mean age 38, range 35–71 years). The dataset is publicly available
from the Internet Brain Segmentation Repository (www.nitrc.
org/projects/ibsr) as IBSR v2.0 (Rohlfing, 2012). The T1w images
were acquired using the following parameters: scanner/scan
parameters unspecified, acquisition plane = sagittal, number of

slices = 128, FOV = 256 × 256 mm, voxel size = 0.8–1.0 ×

0.8–1.0× 1.5 mm3.

Preprocessing
For brain extraction, we used the brain masks which are provided
with each dataset; except dataset I which was brain extracted
using ALFA (Serag et al., 2016). All images from all datasets
were corrected for intensity inhomogeneity using the N4 method
(Tustison et al., 2010).

Training Data
The number of training examples often must be limited due to
the costs associated with procuring, preparing and storing the
training examples, and the computational costs associated with
learning from them (Weiss and Provost, 2003). Therefore, we
use in this work a sparsity-based technique to select a number
of representative atlas images that capture population variability
by determining a subset of n-dimensional samples that are
“uniformly” distributed in the low-dimensional data space (Serag
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et al., 2016). The technique works by first linearly registering
(12 degrees of freedom) all images from each dataset to an
appropriate common coordinate space, and image intensities are
normalized using the method described by (Nyul and Udupa,
2000). For dataset I, the 40 weeks PMA template from the 4D atlas
(Serag et al., 2012a) was used as the common space, which is the
closest age-matched template to themean age of the cohort, while
datasets II and III were aligned to the common space defined by
the International Consortium for Brain Mapping (ICBM) atlas
(Mazziotta et al., 2001). Then, allN aligned images are considered
as candidates for the subset of selected atlases. The closest image
to the mean of the dataset is included as the first subset image.
The consecutive images are selected sequentially, based on the
distances to the images already assigned to the subset. Further
details can be found in (Serag et al., 2016).

Features
We use machine learning to assign a label to all voxels in the
test image, based on training a local classifier. Most existing
methods for tissue classification only utilize information from
voxel intensity, without considering other information. Here, in
addition to voxel intensities, we incorporated various gradient-
based features. Typically for each voxel v, a ten-dimensional
feature vector fv is extracted:

fv =
[

I Ix Iy Iz r θ φ Ixx Iyy Izz
]T

(1)

where I is the gray scale intensity value, Ix, Iy and Iz are the
norms of the first order derivatives, and Ixx, Iyy and Izz are the
norms of the second order derivatives. The image derivatives are
calculated through the filters [−1 0 1]T and [−1 2 − 1]T . The
gradient magnitude (r), azimuth angle (θ) and zenith angle (φ)
are defined as follows:

r =

√

I2x + I2y + I2z (2)

θ = tan−1
(

Iy

Ix

)

(3)

φ = cos−1
(

Iz

r

)

(4)

where r ∈ [0,∞) , θ ∈ [0, 2π), and φ ∈ [0,π].

Random Forests
In the last decade, random forests (RF) (Breiman, 2001) became
a popular ensemble learning algorithm, as they achieve state-of-
the-art performance in numerous medical applications (Yi et al.,
2009; Huang et al., 2010; Geremia et al., 2011; Mitra et al., 2014;
Zikic et al., 2014; Tustison et al., 2015; Pereira et al., 2016). A RF
ensemble classifier consists of multiple decision trees. In order
to grow these ensembles, often random vectors are generated
that govern the growth of each tree in the ensemble. Typically,
each tree is trained by combining “bagging” (Breiman, 1996)
(where a random selection is made from the examples in the
training set) and random selection of a subset of features (Ho,
1998), which construct a collection of decision trees exhibiting
controlled variation.

A test sample is pushed down to every decision tree of the
random forest. When the sample ends up in one leaf node, the
label of the training sample of that node it is assigned to the
test sample as tree decision. Then, the final predicted class for a
test sample is obtained by combining, in a voting procedure, the
predictions of all individual trees.More details on decision forests
for computer vision and medical image analysis can be found in
Criminisi and Shotton (2013).

Sliding-Window Based Classification
A sliding window is used tomove over all possible positions in the
test image, and for each window, the voxels inside the window
are classified into different tissues or structures. The vector in
equation (1) represents the test sample for one voxel in a window,
where the number of test samples is equal to the window size
w. The training samples come from the voxels of the aligned
atlas images that are located at the same location as the voxels
belonging to the test window. This means that the number of
training samples per window is equal to k × w, where k is the
number of training atlases andw is the window size, e.g., 5×5×5,
or 7× 7× 7, etc.

A local RF classifier is then used to assign each voxel in
the test image to a segmentation class. Figure 2 shows an
example of classifying one test window. The SEGMA algorithm
is summarized in Algorithm 1.

Algorithm 1. SEGMA algorithm

Set fv to represent a feature vector for a voxel v
Set cv to represent a segmentation class for a voxel v
Set k to represent the number of training data
Set w to represent the sliding window size
for each windowW do

Construct the training data matrix T Train
W = {f

j
v|j =

1, . . . , k; v = 1, . . . ,w}
Train the RFW classifier for windowW using T Train

W

Construct the test data matrix T
Test
W = {fv|v =

1, . . . ,w}
Determine the labels cv for all voxels inside the test
windowW by applying RFW to T Test

W
end

Evaluation
A leave-one-out cross-validation procedure was performed for
every dataset. Each subject from a dataset in turn was left out as a
test sample and the remaining subjects were used as the training
data where a subset of k atlases is selected. The comparison
between automatic (A) and reference (M) segmentations was
performed using the Dice coefficient (DC) (Dice, 1945) which
measures the extent of spatial overlap between two binary images,
with range 0 (no overlap) to 1 (perfect agreement). The Dice
values are expressed as a percentage and obtained using the
following equation:

DC(A,M) =
2 |A∩M|

|A| + |M|
× 100 (5)
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FIGURE 2 | An example of classifying one test window. The green square in the test image represents the test window. The green rectangle represents the

extracted features from the test window (i.e., test samples). The red rectangle represents the extracted features from training data (i.e., training samples). The voxels

inside the test window are classified into different classes based on training the random forest classifier using the training samples.

Comparison against Other Methods
We compared SEGMA against commonly used segmentation
methods: Majority Vote (MV) (Rohlfing et al., 2004; Heckemann
et al., 2006), Simultaneous Truth And Performance Level
Estimation (STAPLE) (Warfield et al., 2004). The registration
scheme for these methods is based on non-linear image
deformation (Rueckert et al., 1999; Modat et al., 2010).

To compare SEGMA against other RF segmentation methods,
we implemented a global RF classifier, similar to (Iglesias et al.,
2011; Zikic et al., 2014), and experimented training it using
intensity and gradient-based features, and intensity feature only.
Non-linear registration was used as above to map the training
images to the test image coordinate space, and the RF classifier
was trained using 100,000 randomly sampled voxels from each
training image.

Statistical Analyses
To test for differences between segmentation results, t-tests
were used for normally distributed data, and Mann Whitney U
was used to compare non-normal distributions (Shapiro-Wilk
normality test was used). P < 0.05 were considered significant
after controlling for Type I error using false discovery rate (FDR).

RESULTS

To evaluate segmentation performance across the life course,
SEGMA was applied to three publicly available datasets that
provide MR brain images at different stages of the life course:

neonatal period (38–42 weeks gestational age), childhood and
adolescence (4–17 years), and adulthood (35–71 years). Figure 3
shows examples of brain segmentation results across the life
course, and Figure 4 shows the resulting Dice coefficient (i.e., the
agreement between the automatic and reference segmentations).

Brain Segmentation in Neonatal Period
We first applied the proposed segmentation method to a
neonatal cohort (dataset I) consisting of 66 MR images and
associated segmentation of the following tissues / structures:
brainstem, cerebellum, cortex or GM, cerebrospinal fluid (CSF),
deep GM and WM. Quantitative analyses (Figure 4) indicated
high accuracy for all tissues and structures with a mean Dice
coefficient of 91%.

The highest accuracies obtained for brainstem, cerebellum,
deep GM, and WM with mean Dice coefficient of 90–94%, while
cortex and CSF had average Dice coefficients of 89 and 85%,
respectively.

Brain Segmentation in Childhood and
Adolescence
To examine the performance of SEGMA in childhood and
adolescence, we used 103 MR images from subjects aged 4–
17 years (dataset II) with associated anatomical segmentation
of 32 structures. Quantitative analyses (Figure 4) indicated
high accuracy for all tissues and structures with a mean Dice
coefficient of 86%. Nine structures had an average Dice coefficient
higher than 90%, 7 structures had an average Dice coefficient
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FIGURE 3 | Examples of brain segmentation results across the life course (axial view) using SEGMA. The automated segmentation is based on

T2-weighted scans for the neonatal period and T1-weighted scans for the rest of growth stages. The images are taken from single subjects at the shown ages, where

neonatal period images come from dataset I; childhood and adolescence images come from dataset II; and adulthood images come from dataset III.

FIGURE 4 | Bar plots of the Dice coefficient (with standard deviation as error bar) comparing segmentations derived from SEGMA with reference

segmentations using (A) dataset I [neonatal period], (B) dataset II [childhood and adolescence], and (C) dataset III [adulthood].

of 79–89%, and 2 structures had an average Dice coefficient of
51–67%.

Brains Segmentation in Adulthood
A dataset (dataset III) consisting of MR images and
corresponding anatomical segmentation of 32 structures
from 10 subjects (aged 38–71 years) was used to examine the
performance of the segmentation algorithm in adulthood.
Quantitative analyses (Figure 4) indicated high accuracy of 83%.
Seven structures had an average Dice coefficient higher than
90%, 9 structures had an average Dice coefficient of 75–89%, and
2 structures had an average Dice coefficient of 49–57%.

Comparison against Other Methods
SEGMA was compared with two commonly used segmentation
methods [Majority Vote (MV) (Rohlfing et al., 2004; Heckemann

et al., 2006), Simultaneous Truth And Performance Level
Estimation (STAPLE) (Warfield et al., 2004)], and other RF-based
segmentation methods. SEGMA improved overall segmentation
accuracy compared with MV, STAPLE, global-RF-1 (trained
using intensity and gradient features), and global- RF- 2 (trained
using intensity feature only); Table 1 shows Dice coefficients
averaged over all structures, generated by each segmentation
method and applied to datasets I, II and III. (P < 0.001; after FDR
correction).

Reproducibility
As dataset I (neonatal period) included T1-weighted (T1w)
and T2-weighetd (T2w) MR imaging, we used it to test the
reproducibility of SEGMA across different MR modalities by
segmenting the newborn brain using information from T1w
and T2w data separately (Figure 5). SEGMA provided consistent
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TABLE 1 | Dice coefficients averaged over all structures for datasets I, II,

and III.

Dataset SEGMA % Global-

RF-1 %

Global-

RF-2 %

MV % STAPLE %

I 90.68 85.29 84.22 86.97 87.01

II 86.05 78.98 74.90 81.75 79.17

III 82.56 78.75 76.02 77.13 77.54

SEGMA is compared with MV, STAPLE, global-RF-1, and global-RF-2.

segmentation results across different structural MRI modalities
of the newborn brain. There was no statistically significant
difference between mean Dice scores estimated from the two
groups (P = 0.8977).

Influence of Parameters
We evaluated the influence of size of training data on
segmentation accuracy, and found that increasing the size of
the training data improves segmentation accuracy, evidenced by
the increase in average Dice coefficient from 88% (7% training
data) to 91% (30% training data) for neonates, and from 83%
(5% training data) to 86% (20% training data) for children and
adolescents. From our experiments, 5–10 training images were
sufficient to yield accurate results.

Forest parameters such as tree depth and number of samples
per leaf node were set according to pervious work (Geremia et al.,
2011; Zikic et al., 2014; Wang et al., 2015), and in this work, we
only evaluated the influence of number of trees on segmentation
accuracy. The number of trees in the forest characterizes the
generalization power. As the number of trees becomes large,
segmentation accuracy increases, but training time increases and
a threshold value is reached after which further improvement is
not achieved. In this work, number of trees was set to 10.

With regard to window size, the smaller the window, the
longer the classification time. Hence, window size needs to be
chosen carefully as it provides a balance between accuracy and
speed. Therefore, in this paper, we select the window size as
5× 5× 5.

Relative Importance of Features
As partial volume effects in neonatal brain MRI present
challenges for automatic segmentation methods, we evaluated
the influence of each of the features on segmentation accuracy
of the neonatal brain (dataset I). This was done by dropping
one or a group of the ten features and running segmentation
with the remaining features (features of the same type were
dropped together). Therefore, an approximation of relative
importance of each feature was obtained. Our experiments
show that dropping the intensity feature significantly hinders
the segmentation accuracy (Figure 6A), whilst the accuracy is
improved by incorporating gradient-based features. When all of
the features are used, SEGMA yielded higher accuracy than each
individual category (P < 0.001; after FDR correction). Figure 6B
also shows an example of the automatic neonatal cortical GM
segmentation and how the dropping of each of the ten features
affects the segmentation accuracy.

We then analyzed the edge detection for various regions based
on using all features (intensity combined with gradients) and gray
scale intensity only. Figure 7 shows that gradient-based features
improved edge detection for various regions of the adult and
neonatal brain.

Computation Time
One classification task on a 64-bit iMac R© (Intel R© Core i7 @
3.5 GHz × 4.32 GB RAM) takes 5–7 min. The classification has
benefited much from the sliding window strategy used. This is
because instead of performing the classification in a voxel-wise
manner, this is done for a batch of voxels at once. Assuming a
window size of 5 × 5 × 5, the classification time is decreased
by 125-folds. In addition, multi-core processing or computer
clusters could greatly enhance the speed; and then one brain
classification could be performed in about (or less than) 1min.

DISCUSSION

In this article, we present a new method for MRI brain
segmentation (SEGMentationApproach, SEGMA). SEGMAwas
evaluated on three different datasets (span the ages 0–71 years)
that provide different challenges to the brain segmentation task,
and accurate results were obtained at all stages of development.

The method is trained using partially labeled datasets where
a relatively small number of manually labeled images from the
population under study are sufficient to provide accurate results.
It is possible that training the method with a larger dataset might
increase the segmentation accuracy. However, our goal was to
design a methodology that can provide an acceptable, yet high
accuracy result using a small number of training images (and
thence a low computation cost).

The relatively lower performance for CSF could be caused by
its bordering with GM (which is a complex shape). The boundary
between GM and CSF is especially difficult to identify inside the
sulci, where it is often poorly visible. In addition, the relatively
lower performance for the children and adolescence, and adult
datasets compared with the neonatal dataset could be attributable
to scanner strength. Yet, the results obtained are comparable with
those obtained using other methods tested on the same datasets
(Rousseau et al., 2011; Zikic et al., 2014).

SEGMA uses a local RF classifier (trained by information from
neighboring voxels in the same window) to assign a label to
each voxel, which makes it less susceptible to classification errors
such as the partial volume misclassification on the CSF-GM and
CSF-background boundaries (Kuklisova-Murgasova et al., 2011;
Cardoso et al., 2013; Išgum et al., 2015; Moeskops et al., 2015).
We chose to use random forests as the classification technique
since they naturally handle multi-class classification problems
and are accurate and fast (Huang et al., 2010; Geremia et al., 2011;
Criminisi and Shotton, 2013). Also, the sliding window plays an
important role in significantly speeding up the classification task
(compared to voxel-wise approaches).

The method provides an accurate segmentation using only
linear registration, which ensures the same orientation and
size for all subjects. This is an advantage compared with
most supervised methods, which require non-linear registrations
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FIGURE 5 | Examples of SEGMA’s output segmentation results (sagittal view) using T1-weighted (T1w) and T2-weighted (T2w) MR individually.

FIGURE 6 | (A) Relative importance of each of the ten features, expressed as the segmentation accuracy, on removing the feature from the feature vector. The

leftmost bar shows a baseline value—Dice coefficient, when all features are used. (B) An example of the automatic segmentation of cortical GM (coronal view), which

shows how the dropping of each of the ten features affects the segmentation accuracy. The baseline segmentation is obtained by using all features.

between the training images and the test image which increases
segmentation time to several hours thereby compromising
clinical utility (Iglesias and Sabuncu, 2015). SEGMA also has
the advantage of providing an accurate segmentation using a
single modality (which is important as the available data might
be limited to one modality), and features that characterize object
appearance and shape (intensity and gradients). However, the
method is flexible and new features can easily be added to the
high-dimensional feature vector.

To conclude, we present a method for segmentation of
human brain MRI that is robust and provides accurate and
consistent results across different age groups and modalities.
As SEGMA can learn from partially labeled datasets, it can
be used to segment large-scale datasets efficiently. The idea of
SEGMA is generic and could be applied to different populations
and imaging modalities across the life course. SEGMA is
available to the research community at http://brainsquare.
org.
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FIGURE 7 | Examples of edge detection for various regions (cortical gray matter, sub-cortical structures, brainstem and cerebellum) based on using

all features (intensity combined with gradients) and intensity gray scale only, for a neonatal (dataset I) and an adult brain (dataset III).
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Brain MRI atlases may be used to characterize brain structural changes across the

life course. Atlases have important applications in research, e.g., as registration and

segmentation targets to underpin image analysis in population imaging studies, and

potentially in future in clinical practice, e.g., as templates for identifying brain structural

changes out with normal limits, and increasingly for use in surgical planning. However,

there are several caveats and limitations which must be considered before successfully

applying brain MRI atlases to research and clinical problems. For example, the influential

Talairach and Tournoux atlas was derived from a single fixed cadaveric brain from an

elderly female with limited clinical information, yet is the basis of many modern atlases

and is often used to report locations of functional activation. We systematically review

currently available whole brain structural MRI atlases with particular reference to the

implications for population imaging through to emerging clinical practice. We found 66

whole brain structural MRI atlases world-wide. The vast majority were based on T1, T2,

and/or proton density (PD) structural sequences, had been derived using parametric

statistics (inappropriate for brain volume distributions), had limited supporting clinical

or cognitive data, and included few younger (>5 and <18 years) or older (>60 years)

subjects. To successfully characterize brain structural features and their changes across

different stages of life, we conclude that whole brain structural MRI atlases should

include: more subjects at the upper and lower extremes of age; additional structural

sequences, including fluid attenuation inversion recovery (FLAIR) and T2∗ sequences;

a range of appropriate statistics, e.g., rank-based or non-parametric; and detailed

cognitive and clinical profiles of the included subjects in order to increase the relevance

and utility of these atlases.

Keywords: brain mapping, MRI imaging, atlases as topic, brain, systematic review, aging, neurodevelopment,

neurodegeneration
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INTRODUCTION

Structural magnetic resonance imaging (MRI) brain atlases,
frequently also referred to in the literature as templates, are
important tools for research and, increasingly, clinical practice.
Individual brain scans from several individuals can be combined
to form a brain image bank, which can in turn be used to form
a brain atlas—an anatomical representation of the brain showing
group-wise or study population global or regional brain features.

The terms “brain atlas” and “brain template” have both been
used commonly in the literature to date; while they may have
different meanings in some situations, many papers do not make
this clear but rather appear to use the terms interchangeably.
Therefore, for the interests of this paper, we focus on using
the term “atlas” but use both terms interchangeably. Atlases are
derived by statistically summarizing, e.g., averaging, voxel-wise,
regional, or global brain MRI measures from several individuals
and they may be used in research as registration targets for
functional activation, segmentation, and statistical mapping, for
example in analysis of population imaging datasets (Good et al.,
2001; Buckner et al., 2004; Avants et al., 2008). In the future,
atlases may also be used in clinical practice as reference images
to support diagnoses of age-related neurodegenerative disorders
(Farrell et al., 2009); therefore their reliability and relevance to the
clinical population on which they are being used is paramount.

Brain structure in old age and early life is different to brain
structure in younger and middle-aged adults (Gur et al., 1991;
Courchesne et al., 2000; Good et al., 2001; Sowell et al., 2003). For
example, the developing brain presents specific challenges to atlas
construction because of marked variations in head size and shape
in early life, maturational processes leading to changes in signal
intensity profiles (for example, reducing brain water content and
increasing cell density over the perinatal period), relatively lower
spatial resolution (cortical patterning at term birth is broadly
similar to adult patterns but is approximately one third of the
volume at adulthood), and lower contrast between tissue classes
(Matsuzawa et al., 2001). In children >5 years, the brain is still
developing at an accelerated rate. These issues invalidate the
application of adult atlases to data acquired during development,
because ofmisclassification of tissues and structures (Muzik et al.,
2000; Yoon et al., 2009), and have led to the development of
age-specific atlases for early life studies.

In older age the ventricles, particularly the lateral ventricles,
and sulci spaces are generally larger, the gray matter and
white matter atrophy in varying proportions, and white matter
hyperintensities (WMH) are often present (Lemaitre et al.,
2005; Dickie et al., 2015b, 2016b). These and the other many
features of brain aging, e.g., lacunes, microbleeds and enlarged
perivascular spaces, require specific T2-based sequences, such
as fluid attenuated inversion recovery (FLAIR) and T2∗, to be
captured effectively (Wardlaw et al., 2013). Because of these
differences in brain structure, the use of an atlas based on
only younger subjects and a limited range of sequences can
create a bias in life course population studies, e.g., systematic
overexpansion (Buckner et al., 2004) or regional distortion of
older brains. Even within restricted age bands brain structure is
highly variable due to various factors such as ethnicity, medical

history, e.g., hypertension, smoking and cognition (Farrell et al.,
2009; Wardlaw et al., 2011). Therefore, population brain atlases
must include information on age, sex, ethnicity, relevant medical
history, and cognitive testing to have broad uses and relevance.
Further, brain atlases should be derived using statistical methods
that effectively characterize the wide and irregular variance
in brain structure across the life course (Dickie et al., 2013).
Attempts to understand this variation and create brain atlases
have increased exponentially with the advent of MR and other
non-invasive imaging techniques but the origins of this pursuit
extend back many thousands of years.

The gyral and sulcal pattern of the human brain is thought to
have been first described in 3000 B.C. by Imhotep, an Egyptian
“god” of medicine (Adelman and Smith, 1987). Although study
of the structure of the brain continued for more than 4500 years,
it was not until 1664 when Thomas Willis published Cerebri
Anatome (“Anatomy of the Brain”) that robust methods for
measuring brain structure started to be developed (O’connor,
2003). Willis directed novel autopsies of the brain in which it was
first removed from the skull, in contrast to the traditional in situ
dissections of the time, and then sliced from the base upwards.
The slices were then viewed with a microscope and drawn by
ChristopherWren (O’connor, 2003). These 350 year old drawings
arguably represent the first attempt to create a brain atlas but
more detailed atlases of the brains’ cyto- and myelo-architecture
did not emerge until the late nineteenth/early twentieth century
(Betz, 1874; Brodmann, 1909, 1994; Von Economo and Koskinas,
1925). Such atlases are useful to understand the distribution of
tissue types and fibers, but they have little use in modern clinical
practice. One of the first clinically relevant atlases was published
by Talairach et al. (1967), who developed a 3D coordinate system
to assist deep-brain surgery.

The subsequent Talairach and Tournoux atlas (Talairach and
Tournoux, 1988) has become one of the most influential atlases
in brain imaging (Evans et al., 2012). This atlas provides a
standardized set of coordinates to determine specific sites within
the brain. It has been used to describe the site of a biopsy, or
to compare data from structural MRI, functional MRI (fMRI),
SPECT, and PET studies. However, the Talairach and Tournoux
atlas has been described as “woefully inadequate” (Toga and
Thompson, 2007). The reasons for this, including that it was
derived from a single fixed cadaveric brain from an elderly
female with limited clinical information, have been listed by
many and well-known since the atlases’ inception (Evans et al.,
1993, 2012; Devlin and Poldrack, 2007). Indeed, they were noted
in the original author’s foreword, “this method is valid with
precision only for the brain under consideration” (Talairach and
Tournoux, 1988), but this may not be commonly known amongst
users of this and derived atlases, e.g., Montreal Neurological
Institute (MNI)152 (Brett et al., 2001). Population brain atlases,
many of which were descended from Talairach (Evans et al.,
2012), may therefore be lacking in age-appropriate, clinically,
and cognitively described subjects that were synthesized via
appropriate image analysis and statistical methods. It is for
this reason that we undertook the following systematic review
to identify, collate, and describe existing structural MRI brain
atlases.
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In this review, we aim to summarize the currently available
structural MRI brain atlases across the life span—published
in journals and/or on the internet—for researchers in
population based imaging. Following our review we discuss
the practical, technical, and statistical considerations
that should be borne in mind when using brain image
atlases.

MATERIALS AND METHODS

We followed “Preferred reporting items for systematic reviews
and meta-analyses (PRISMA)” reporting guidelines (Moher
et al., 2009) in preparation of this manuscript. From October
2010 to April 2015, we systematically searched for “normal”
brain structural MRI atlases. From April 2015 to August
2016, we supplemented this search with: hand searching of
reference sections in previous review articles and records we
included here (e.g., Mazziotta et al., 2001; Toga et al., 2006;
Evans et al., 2012); periodical searching of Google with a
subset of these terms; review of content alerts distributed
by relevant journal articles, e.g., NeuroImage (http://www.
journals.elsevier.com/neuroimage/), Human Brain Mapping
[http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-
0193], and Frontiers in Neuroscience (http://journal.frontiersin.
org/journal/neuroscience); and, finally, hand searching of
neuroimaging data sharing initiatives NeuroVault (http://
neurovault.org/) and NITRC (http://www.nitrc.org/). Two
authors (DAD and JYL) independently and systematically
searched PubMed (including MEDLINE; http://www.ncbi.nlm.
nih.gov/pubmed/), and the internet using Google (http://www.
google.co.uk/) and Google Scholar (http://scholar.google.co.uk/)
with the terms: “Magnetic Resonance Imaging” or “Magnetic
Resonance Image” or “Magnetic Resonance Images” or “MRI” or
“MR” and “brain” and “template” or “atlas” or “stereotactic” or
“stereotaxic” and “human.”

October 2010-August 2016 was the time during which we
conducted our search, there were no publication date restrictions
on eligibility for inclusion and we included all normal MRI
atlases of whole brain structures from across the lifespan. We
included atlases with “anatomical” or “structural” sequences and
probability maps, e.g., T1-, T2-, T2∗-, FLAIR-weighted images,
and gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) probability maps. We did not include atlases solely
of segmented regional structures (ROI), such as subcortical
GM or individual cortical areas (e.g., Westbury et al., 1999;
Ahsan et al., 2007), or histological sections (e.g., Eickhoff et al.,
2005), but did include atlases that had whole brain and regional
structures. We excluded: (1) non-human brain atlases, e.g.,
macaque; (2) diffusion or functional MRI connectively atlases
without anatomical/structural components, e.g., JHU ICBM-
DTI-81 and NTU-90 (Yeh and Tseng, 2011); (3) functional MRI
brain atlases only, e.g., http://www.brainmap.org/; (4) records
that described atlas methods only (e.g., Maldjian et al., 2003;
Wilke et al., 2008; Van Leemput, 2009; Chen et al., 2012); and (5)
atlases that included patients with known neurological or central
nervous system disease, e.g., Alzheimer’s disease (Desikan et al.,
2006; Loni, 2011).

We provide information reported in each structural MRI
brain atlas on the number, age, and sex of participants; sequences
collected; statistical derivation method; and clinical/cognitive
data found.

RESULTS

We identified 543 potentially eligible records (Figure 1) of which
66 met inclusion criteria. Descriptions of each atlas are provided
in Table 1.

We found 66 structural brainMRI atlases with a total of 10,354
subjects (median = 43, mean = 157, range = 1–2762), including
European, North American, Chinese, Japanese, Korean, Indian,
and Malay participants.

We identified 19 fetal, neonate and infant (0–5 years); six
childhood (5–18 years); 23 young or middle aged adult (18–60
years); seven older adult (aged >60 years); and six life-course
atlases including several age groups. Five atlases did not report
the age of included subjects.

Twenty-seven atlases (41%) reported cognitive/clinical data
but this was generally in summary form, e.g., “subjects had no
history of neurological, psychiatric or other significant medical
illnesses” (Lee et al., 2005) rather than summarized measures
from individual subjects. One atlas of the elderly brain reported
data on age, handedness, MMSE, education level, and proportion
of hypertensive subjects (Lemaitre et al., 2005), but we found no
atlas that reported a comprehensive battery of cognitive, medical,
and demographic data that are increasingly found in large cohort
studies (Wardlaw et al., 2011; Deary et al., 2012).

All atlases were based on T1, T2, and/or PD structural
sequences. No atlas included FLAIR or T2∗ sequences. Almost all
multiple subject atlases (except Farrell et al., 2009; Dickie et al.,
2015a); were derived using parametric mean-based methods
rather than non-parametric percentile ranks or ranges.

Some atlases used the same publicly available databases, e.g.,
Open Access Series of Imaging Studies (OASIS) data were used in
at least two atlases (Dickie et al., 2015a; Richards et al., 2016). We
were not able to quantify the subject overlap between atlases as
subject identifiers were generally not provided. Ten atlases were
based on a single subject. We identified 13 atlases (19.7%) that
were developed by or descended from Talairach and Tournoux
(labeled “T&T” in Table 1).

DISCUSSION

Brain atlases are an important resource for neuroanatomical
definition and are often the basis for automated image analyses,
which are likely to become increasingly used for population
imaging studies. It is important that users are aware of the origins
and assumptions underlying these atlases.We identified 66 whole
brain structural MRI atlases with a total of 10,354 “normal”
subjects from 15 weeks gestational age to 92 years. The number
of subjects in each atlas was generally rather small (median =

43; mean = 157; range = 1–2762; n ≥ 100 = 18; n ≥ 1000
= 3) given that several hundreds or even thousands of subjects
are required to represent population brain structure adequately
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FIGURE 1 | PRISMA flow diagram of systematic identification of whole brain structural MRI atlases.

(Mazziotta et al., 2001; Toga, 2002; Toga et al., 2006; Evans
et al., 2012). Only 622 subjects (6%) had measures of medical,
cognitive, and demographic data to support their classification
as normal (Lemaitre et al., 2005). Thirteen atlases (∼20%) were
descended from the Talairach and Tournoux atlas (Talairach and
Tournoux, 1988), e.g., MNI, ICBM, and “Brain atlas for healthy
elderly.”

Specific populations should be analyzed using an atlas derived
from other subjects in that population, or a closely relevant
population, otherwise systematic errors may be introduced, e.g.,
the overexpansion of atrophied brains registered to younger
subject atlases (Buckner et al., 2004). Relevant to this, we suggest
that the most appropriate atlas for a given study (should there
be multiple atlases available with similar demographic, clinical,
and cognitive profiles) is the one which requires the least amount
of global or regional warping from native subject space to atlas
space (and vice-versa). The consequences of various degrees of
processing and warping individual subjects to an atlas space have
previously been analyzed and discussed (Dickie et al., 2015a).
The presence of cognitive deficits and medical conditions, e.g.,

vascular risk factors, also affect brain structure (Ritchie et al.,
2015; Dickie et al., 2016b) and therefore it is essential for this
information to be measured and tabulated in brain atlases.
Although we appreciate that such depths of data may be difficult
and expensive to acquire their strong influence on brain structure
makes them imperative for understanding the appearance and
structure of brain atlases. Medical, cognitive, and demographic
data that may be useful in understanding the structure of atlases
at different stages of life have been described previously (Job et al.,
2016). Given the wide variation and features of brain structure
across the life course (Good et al., 2001; Sowell et al., 2003;
Allen et al., 2005; Raz et al., 2010), reliable studies, particularly
at the extremes of life, require atlases with many more subjects
including clinical and cognitive data and additional structural
MRI sequences, e.g., T2-based sequences for measuring burden
of small vessel disease (Wardlaw et al., 2013).

Such “big-data” approaches including a wide number of
imaging sequences and supporting textual information have been
successfully applied in studies with limited age ranges such as the
“Human Connectome Project” which aims to map structural and
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functional connections in the healthy brain between ages 22 to
35 years (Van Essen et al., 2012) and UK Biobank (Miller et al.,
2016). The challenge is to collect similarly rich and relevant data,
including sequences such as T2∗ and FLAIR and vascular risk
factor measures for appropriately characterizing cerebrovascular
and cognitive development/aging effects on brain structure,
at the extremes of life. An international collaborative and
aggregative approach may be the best way of achieving this
goal as was recently agreed by a panel of experts in structural
brain mapping in 2014 (Job et al., 2016) and as is evidenced in
similar efforts in functional imaging (Zuo et al., 2014). Although
there are challenges to aggregating brain MRI from multiple
centers/scanners, particularly in functional connectomics (Zuo
and Xing, 2014), these issues have received great attention (e.g.,
Gountouna et al., 2010; Gradin et al., 2010) and the variability
between scanners has often shown to be nominal compared to
the great variability in brain structure among even people of the
same age, gender, and cognitive status (Dickie et al., 2013; Ritchie
et al., 2015; Miller et al., 2016).

High resolution structural MRI is increasingly used in
population imaging to study brain development in fetal (pre-
birth), neonatal (birth to 4 weeks corrected gestational age)
and pediatric (1 month to 18 years) populations because of
its utility to: provide quantitative measures of typical brain
growth; map atypical growth following complications such as
preterm birth, perinatal asphyxia and stroke; evaluate tissue
effects of neuroprotective treatment strategies; identify the neural
substrates of long-term neurodevelopmental impairments; and
because it has potential to uncover early life origins of adult
neurological and psychiatric disease. All of these applications
benefit from the anatomic context provided by atlases.

There are challenges in analyzing structural images in early
and late life. These begin during image acquisition and extend
into image analysis. For example, infant participants are asleep
during scanning while adults are usually awake; motion artifacts
are generally low in mid-life but increase at the extremes of
life; and heart and respiratory rates also vary greatly through
life (Zuo et al., 2017). Brain structural patterns also very
greatly though life: in early life growth is rapid and head
shape and size varies, with a changes in tissue composition
and relatively low spatial resolution (Matsuzawa et al., 2001).
In older people there is accelerated brain tissue loss, reduced
cortical contrast, white matter disease, enlarged perivascular
spaces, stroke infarcts, and microbleeds, among other features
(Raz et al., 2010; Wardlaw et al., 2013; Dickie et al., 2016b).
There have been several (N = 19) fetal, neonate, or infant (<age
5) atlases published, but our review found relatively limited
age-specific childhood (N = 6: >5 and <18 years) and older
adult atlases (N = 7: >60 years) compared to young/middle-
aged adult atlases (N = 23). Despite their current under-
representation in the literature, age-specific atlases in childhood,
and old age may have important uses in research and clinical
practice, such as providing targets for aiding classification and
diagnoses of developmental and neurodegenerative diseases
(Farrell et al., 2009; Dickie et al., 2013, 2014), particularly
since better understanding of normal development, aging, and

dementia prevention are major focuses of many large population
studies.

Most atlases we found were based on mean/parametric
statistics and designed to provide a standard space for voxel-
wise analyses or support tissue/ROI volume segmentation. In
contrast, the “Normal reference MR images for the brain” atlas
was based on qualitatively determined percentile ranks of brain
volumes during normal aging and designed to support clinical
diagnoses of whole brain volume loss in aging (65–70 and 75–80
year old) patients (Farrell et al., 2009). These clinical atlases
are designed to “calibrate” differences in perception between
neuroradiologists and have been of growing interest and in
increased use since their inception in 2009 (Farrell et al., 2009;
Hoggard, 2009; Job et al., 2016). Additionally, increased interest
in use of computational automated image processing in clinical
practice, e.g., to assess brain, hippocampus, or white matter
lesion volumes, relies on availability of relevant and reliable
age-relevant atlases. Atlases based on parametric statistics, e.g.,
mean and standard deviation, are not suitable to define the
irregular brain volume distributions in old age (Dickie et al.,
2013, 2015a). Therefore, non-parametric statistics were recently
applied quantitatively to derive voxel-based percentile ranks
and limits of normal aging GM, but this atlas was limited by
the use of only T1 sequences and a wide age range (Dickie
et al., 2015a). Further, work in developing non-parametric
distributional representations of the brain, including a broad
range of sequences in well-described (cognitively and medically)
age-specific groups, may lead to clinically useful atlases for
supporting diagnoses of developmental and neurodegenerative
disease (Farrell et al., 2009; Wardlaw et al., 2013; Dickie et al.,
2014).

The strengths of our review include the use of structured
methods, that were reported following the PRISMA Guidelines
(Moher et al., 2009), over ∼6 years. We also conducted an
exhaustive manual search of printed and online materials, and
provided a structured evaluation of brain atlases according to
pre-specified criteria. This allowed us to produce a holistic review
of structural MRI brain atlases from across the life course in
detail that we have not found previously. But despite these
strengths, our review also has some limitations. The atlases we
found were openly published, and identified through a formal
search thus we may not have identified all relevant atlases, e.g.,
those described as part of larger studies (and therefore potentially
not visible through traditional search methods) or those not
published/openly accessible. We report data as described in the
paper or website, and it is possible that additional data, e.g.,
on subjects’ age, sex, clinical information, was collected and
may have been published elsewhere. We did not contact authors
for additional information. Further, we did not investigate
potential uses for atlases beyond those described in the original
manuscripts/sources. It could be that any one of these atlases
may be modified to serve additional purposes. Related to this,
we described the methods and uses of each atlas according to
our interpretation of the source manuscripts/reference manuals,
which may differ from the meaning intended by the original
authors.

Frontiers in Neuroinformatics | www.frontiersin.org January 2017 | Volume 11 | Article 1 | 135

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Dickie et al. Systematic Review of Brain MRI Atlases

Notwithstanding these limitations, we have reviewed and
described structural MRI brain atlases from across the life course
and found that they were mostly of modest size with limited
supporting subject information, developed with restricted image
sequences for specific processing purposes, and that childhood
and elderly populations were under-represented. We conclude
that there is a continuing need for multi-sequence structural
MRI, and the associated clinical, medical, and demographic
data, collected in population imaging studies to be made
widely available (with appropriate legal and ethical approvals)
to create non-parametric brain atlases that adequately reflect
the variability and features of brain changes throughout the
life course. Brain image databanks, such as Brain Imaging
in Normal Subjects (BRAINS; https://www.brainsimagebank.ac.
uk/; Job et al., 2016), should work together to maximize sample
sizes, generalizability and optimize data use to benefit analyses in
population imaging studies and in future clinical practice.
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