About this Research Topic
This research topic (RT), cross-listed between the speciality section Computer Image Analysis of Frontiers in ICT and Frontiers in Neuroinformatics, is devoted to the methodological aspects and existing solutions to support the constitution and the management of large cohorts and facilitate data sharing between distributed data repositories in life science domain. Moreover, specific links to dedicated software and hardware infrastructures should be developed for the sharing and execution of image processing workflows making easier replication and comparison of data analysis procedures. This RT emphasizes the main conceptual and technical challenges posed by population imaging at a large scale: in brief, do we need standards for data model as provided by domain and application ontologies? How to interoperate between distributed repositories? Which levels of quality control (manual or automatic) and data provenance are required? Are big data centers preferable to federated distributed systems? What are the current solutions for high performance computing for in vivo imaging large repositories? Should we develop generic or tailored to usages solutions? Are cloud-computing clusters better solutions than grids or crowd computing? Is image processing pipelines sharing different of data sharing?
Submitted papers should be related to methodological issues for population imaging including data management and processing of large bio-imaging databases. Topics of interest include, but are not limited to, the following conceptual and technical approaches for:
• New paradigms and techniques for handling large image datasets:
o Data structures, domain and application ontologies,
o Federated databases, interoperability of data repositories,
o Data quality control,
o Data provenance,
o Data curation
• Image processing of large datasets:
o Data-intensive computing, parallel algorithms,
o Pipelines composition,
o Information fusion,
o Statistical techniques, semantic queries, data mining, machine learning and
meta-analysis,
o Data protection methods
• Infrastructures for facilitating data and software sharing, reused and re-analysis:
o Environments to support data-intensive computing,
o High computing access facilitation,
o Image computing in the cloud,
o High performance computing,
o Distributed storage systems
• Applications of population imaging
o Case studies using specific platforms (pros and cons, ...)
o Needs and requirements for specific multi-centre studies.
o Ethical considerations
Keywords: data structures, domain and application ontologies, federated databases, data quality control, data provenance, data curation, data-intensive computing, parallel-algorithms, piplines composition, information fusion, statistical techniques, semantic queries, data mining, machine learning, meta-analysis, data protection methods, environments to support data-intensive computing, high computing access facilitation, image computing in the cloud, high performance computing, distributed storage systems, distributed databases, ethical considerations, crowd science, collective mind
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.