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Only then do we have the broader context within which to understand evolution, 
movement mechanics, neural control, energetics, disability and rehabilitation.

In addition to enabling new basic science directions, understanding the interrelations 
between movement neural and mechanical function should also be leveraged for 
the development of personalized wearable technologies to augment or restore the 
motor capabilities of healthy or impaired individuals. Similarly, this understanding 
will empower us to revisit current approaches to the design and control of robotic 
and humanoid systems to produce truly versatile human-like physical behavior and 
adaptation in real-world environments. This Research Topic is therefore poised at 
an opportune moment to promote understanding of apparently disparate topics 
into a coherent focus. 
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Editorial on the Research Topic

Neuromechanics and Control of Physical Behavior: From Experimental and Computational

Formulations to Bio-inspired Technologies

INTRODUCTION

The motivation behind this research topic was to cut across conventional boundaries that separate
movement neuroscience, biomechanics, and robotics. The aim was to underscore that brain
and body collaborate to produce behavior in biological organisms. While this is a simple idea,
compartmentalization in education and science has often artificially separated brain from body.
We also bring forward research paradigms to investigate physical behavior at the interface between
humans and interacting robots. Understanding human-robot physical interaction requires the
understanding of the complex interplay between brain, body, and the external environment.
This could be achieved by employing a neuro-mechanical approach to the study of human and
robot movement.

Within the context of a neuromechanical approach, we aimed to collate a research corpus that
included work on experimental and neurophysiological analysis, computational modeling, and
applications in rehabilitation and bio-inspired robotics. The 22 contributions to this research topic
provide a wide range of perspectives and methodologies. The high-caliber contributions to this
research topic also highlight the existence of a significant community of researchers interested in
an interdisciplinary view toward the study of brain-body and human-robot interactions.

THE CONTRIBUTIONS

Several of the studies enclosed in this research topic combined experimental work with
state-of-the-art technologies and novel methodologies to measure and analyze neural control in
humans (Banks et al.; Mojtahedi et al.; Logan et al.; Krüger et al.; Reyes et al.; Úbeda et al.).

6

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2019.00013
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2019.00013&domain=pdf&date_stamp=2019-03-19
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:manishs@uow.edu.au
mailto:m.sartori@utwente.nl
https://doi.org/10.3389/fncom.2019.00013
https://www.frontiersin.org/articles/10.3389/fncom.2019.00013/full
http://loop.frontiersin.org/people/149890/overview
http://loop.frontiersin.org/people/76815/overview
http://loop.frontiersin.org/people/104534/overview
http://loop.frontiersin.org/people/312149/overview
http://loop.frontiersin.org/people/304831/overview
http://loop.frontiersin.org/people/58825/overview
https://www.frontiersin.org/research-topics/4698/neuromechanics-and-control-of-physical-behavior-from-experimental-and-computational-formulations-to
https://doi.org/10.3389/fncom.2017.00078
https://doi.org/10.3389/fnbot.2017.00021
https://doi.org/10.3389/fncom.2016.00146
https://doi.org/10.3389/fncom.2017.00093
https://doi.org/10.3389/fncom.2017.00017
https://doi.org/10.3389/fncom.2018.00003


Sreenivasa et al. Editorial: Neuromechanics and Control of Physical Behavior

A common theme among many studies was a cohesive and
complimentary use of numerical modeling, signal processing and
experimental approaches, with one supporting and enhancing
the findings of the other to understand the basic mechanisms
of movement (Guarín and Kearney; Golkar et al.; Song and
Geyer; Petrič et al.; Laine et al.; Mehrabi et al.; Sreenivasa et al.;
Alexandrov et al.; Lippi and Mergner; Pasma et al.; Von Walden
et al.). Yet another inspiring aspect of this research topic was
the crossover toward efforts in biomarkers of pathology and
rehabilitation (Laine et al.; Reyes et al.; Sreenivasa et al.; Von
Walden et al.; Shuman et al.; Banks et al.; Úbeda et al.) and
robot control (Pasma et al.; Lippi and Mergner; Alexandrov
et al.; Szczecinski et al.). Taken together, the contributions to
this research topic illustrate the wide scope of research being
conducted in neuromechanics and the vital role this will play in
the future of rehabilitation and robotics.

The remainder of this editorial provides an overview of the
scientific contributions. These are presented within three macro
categories including:

1. Neuromechanics
2. Biotechnology and Rehabilitation
3. Bio-inspired Robotics

NEUROMECHANICS

Although there is detailed understanding of the mechanisms
taking place in the central nervous system or in the
musculoskeletal system during movement, there is far less
knowledge of the interplay between these two systems during
complex motor tasks (Tresch and Jindrich, 2014; Sartori et al.,
2016, 2017; Sreenivasa et al., 2016; Valero-Cuevas and Santello,
2017; Cohn et al., 2018; Schouten and Mugge, 2019). This
motivates a neuromechanical approach to the study of human
behavior when producing movements and forces to interact with
the environment.

One way to better understand the interplay between the
neural and biomechanical apparatus is by identifying the system
dynamics using a combination of models and experimental
observations. Guarín and Kearney developed a methodology
to dissociate the time-varying intrinsic and reflex components
during movements at the human ankle joint. Their results
indicate that the joint stiffness is modulated dynamically during
non-stationary movements. The relevance of their work lies in
proposing methodologies for extracting joint stiffness profiles
during dynamic conditions, a step forward with respect to
current methods that predominantly investigate quasi-stationary
scenarios. Golkar et al. also focused on dynamic stiffness
about the ankle joint, using human experiments to study
the modulation of intrinsic and reflex stiffness with muscle
activation. Logan et al. applied harmonic transfer function
analysis to investigate how humans control upright posture and
speed during locomotion. Their results support the existence
of a temporal hierarchy of subtasks during locomotion, with
the control upper-body posture taking precedence over others.
Schumacher and Seyfarth used a feedback-based neuromuscular
modeling approach to study reflex gains during hopping.

Interestingly, their results indicate that different combinations
of gain values enable optimizing specific hopping characteristics
(e.g., performance and efficiency), and that this was invariant
with respect to changes in the model’s mechanical properties.
With another feedback-based approach, Song and Geyer
investigated the response of a walking model to simulated
disturbances such as electrical stimulation and perturbations
applied to the legs and to the whole-body. Their results show
that the model behavior compares favorably to experimental
recordings of similar disturbances during human locomotion. In
a conclusion that resonates with this research topic, the authors
comment on how such model approaches can complement the
experimental study of human motor control.

Another branch of contributions investigated whole-body
human movements (either free or when interacting with the
environment), which require the coordination of multiple
degrees of freedom, and are often directed toward completing
specific tasks accurately and efficiently. The study of such
movements provides themeans to answer fundamental questions
about motor control and brain-body interaction. Krüger et al.
applied canonical correlation analysis to study movement
variability in discrete goal-directed reaching tasks. They tested
the effects of ischemia, (temporary) artificially reduced blood
flow to the arms, and found that while this reduced the
complexity of movement control, the endpoint variability did
not increase. Petrič et al. comment on the lack of movement
studies on real-world tasks such as hammering a nail into wood.
In their work, they investigated the kinematics and dynamics
of hammering both from an experimental and modeling
perspective. They found that for periodic impact tasks, a model
that relates the distance moved as a logarithmic function of
time provided better predictions than Fitts’ Law. Le Mouel and
Brette proposed the hypothesis that postural adjustments follow
spatial and temporal patterns that provide impetus for future
movement. In a thought-provoking article, they relate this ability
to learned proficiency in movements and the impairment of
these skills with aging. Mojtahedi et al. studied how two humans
collaborate to complete a physical task and the strategies used
to infer movement direction. Interestingly, their findings suggest
that the modulation of arm stiffness during cooperative tasks
could be an effective means to communicate intended direction
of movement. The authors relate this to future applications in
human-robot interaction.

Even the simplest of movements often require the coordinated
and smooth control of several muscles. Investigations at the
neuromuscular level can provide an interesting way to reverse-
engineer how the brain controls movements. Reyes et al. studied
corticomuscular and intermuscular coherence between the
muscles of the finger and the thumb during pinch grips. They
found significantly reduced coherence when individuated
control of the thumb and index finger was required, and
interpret their findings as supporting the notion that the
cortex bonds task-related motor neurons into task-dependent
functional units. Laine et al. used complimentary experimental
and modeling approaches to study how the neuromechanics of
voluntary force production in the index finger were sufficient
to produce involuntary tremor. The authors suggest that their
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findings represent a new category of tremor, one related to the
viscoelastic response of a closed-loop musculotendon system to
dynamic inputs. Moreover, they underscore the importance of
coherence analysis, a well-established and neurophysiologically
informative phenomenon (Farmer, 1998), to the study of muscle
coordination in neuromechanics. Mehrabi et al. modeled a
musculoskeletal planar arm and compared predictions using
non-linear model predictive control (NMPC), to those from
dynamic optimization and to experimental recordings. The
authors motivate the NMPC approach by highlighting its
effectiveness in simulating motion where the kinematics may or
may not be prescribed, and where the target position may move
during execution. Their results show that NMPC predicted the
hand trajectory quite well, but not the hand velocities or muscle
activations. Sreenivasa et al. developed optimal control-based
predictive simulations of a child’s gait with and without an ankle-
foot orthosis. The motivation behind their work was to provide
modeling-based tools to identify the patient-specific optimal
stiffness of the orthosis, while reducing the effort required for
the clinical procedure of fitting an orthosis to a patient. These
studies inform the debate on the extent to which optimality (as
understood by engineers) occurs in the neural control of our
bodies (Loeb, 2012).

BIOTECHNOLOGY AND REHABILITATION

The knowledge gained from the study of human motor
control, and the methods developed to analyze and synthesize
human biomechanics are invaluable for the development of
biomarkers of pathology, biotechnologies and rehabilitation
processes that directly interact with the human body during
complex movements. In a review article, Pizzolato et al. set an
optimistic yet cautious note on the application of computational
musculoskeletal models for the design and control of wearable
devices. An interesting focus of the review was on bioinspired
technologies that not only support or augment movement, but
also foster tissue strengthening and repair through optimal tissue
loading. Von Walden et al. studied the forearm flexor muscles
in children with cerebral palsy (CP). They experimentally record
the muscle strength and cross-sectional area, and use a modeling
approach to estimate passive muscle stiffness independent of
reflex activity. With a study title that conveys a concise take-
home message, the authors found that the forearm flexor
muscles of children with CP are weak, thin, and stiff, something
that may inform personalized treatments. This underscores the
plastic relationship between brain and body: damage to the
neural controller can lead to physical changes in the anatomical
actuators and plant.

The conclusions from Shuman et al. and Banks et al. are
of significant importance to the research on muscle synergies
during movements. Shuman et al. comment on the impact
that filtering and scaling of recorded electromyography (EMG)
data can have on the computed synergies for CP and typically-
developing children, and the implications this can have when
comparing results across studies and laboratories. Banks et al.
investigated 30 variations in the methodology used for muscle

synergy analysis, and evaluated the impact of these variations in
identifying responders in post-stroke population. Their results
highlight the sensitivity of MSA to methodological choices, and
a need to standardize and/or provide exacting detail about the
methodology used in future work. Úbeda et al. proposed a
method to decode spinal primitives of multi-muscle control from
electroenchephalography (EEG) recordings. The authors apply
their method to healthy individuals as well as to patients with
incomplete spinal cord injury, and comment on the future usage
toward a new class of brain-exoskeleton interfaces. This work,
together with that of Reyes et al. and Laine et al. helps clarify the
ongoing debate on whether and how one can detect prescriptive
synergies of neural origin—as opposed to descriptive synergies of
numerical origin (Brock and Valero-Cuevas, 2016).

BIO-INSPIRED ROBOTICS

Robot sensors and actuators remain vastly different from those
on humans and animals, yet bio-inspired control methods
find rich application in robotics. Szczecinski et al. developed
methodology to design subnetworks that perform specific
mathematical operations, and can be assembled into larger
networks to mimic to some extent an animal’s nervous system.
Humanoid robots, with their anthropomorphic form and
capabilities for bipedalism, are an excellent example for the
translation of insights from human movement research to
robotics. One interesting focus is on maintaining balance and
posture, with robots possibly learning from humans, but also
providing a real-world platform to test models and hypotheses
for human balance. Alexandrov et al. proposed the use of the
eigen-movement control concept derived from human hip-ankle
coordination, as a simpler and more stable way to control
humanoid robot balance. Lippi and Mergner implemented a
modular human-derived control architecture for maintaining
balance and posture in a humanoid robot. Interestingly, their
results show that the mechanical coupling from the robot’s
body was sufficient to stabilize movements in the frontal and
sagittal planes, without a need for an explicit link between
the respective control modules. Pasma et al. quantified human
balance control using the independent channel (IC) model
and implemented the IC model in a humanoid robot. Their
results show that the IC model, a descriptive model in the
frequency domain, can imitate human balance behavior in real
world situations with a humanoid robot. This provides further
evidence that the IC model is a valid description of human
balance control.

CONCLUSIONS

This research topic posed direct focus on the neuromechanics
of movements and the forces generated in interaction
with the environment. This is described as an integrative
approach that combines the neuromuscular control and
the biomechanical aspects of body and the physics of the
tasks in humans. We assert that this approach is overdue
and necessary to obtain the theoretical and experimental
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frameworks for understanding the evolution, mechanics,
neural control, energetics, disability, and rehabilitation of
physical behavior. Moreover, understanding the neuromechanics
of physical behavior should also leverage the development
of personalized wearable robotic technologies that can
interact with biological tissues within the composite
neuromuscular system. This is central to ultimately
mimic, restore or augment motor capabilities in healthy or
impaired individuals.
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Voluntary control of force is always marked by some degree of error and unsteadiness.

Both neural andmechanical factors contribute to these fluctuations, but how they interact

to produce them is poorly understood. In this study, we identify and characterize a

previously undescribed neuromechanical interaction where the dynamics of voluntary

force production suffice to generate involuntary tremor. Specifically, participants were

asked to produce isometric force with the index finger and use visual feedback to

track a sinusoidal target spanning 5–9% of each individual’s maximal voluntary force

level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS)

muscle were recorded and their frequency content was analyzed as a function of

target phase. Force variability in either the 1–5 or 6–15Hz frequency ranges tended

to be largest at the peaks and valleys of the target sinusoid. In those same periods,

FDS EMG activity was synchronized with force fluctuations. We then constructed a

physiologically-realistic computer simulation in which a muscle-tendon complex was set

inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce

phase-dependent modulation of tremor similar to that observed in humans. Further, the

gain of afferent feedback from muscle spindles was critical for appropriately amplifying

and shaping this tremor. We suggest that the experimentally-induced tremor may

represent the response of a viscoelastic muscle-tendon system to dynamic drive, and

therefore does not fall into known categories of tremor generation, such as tremorogenic

descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical

resonance. Our findings motivate future efforts to understand tremor from a perspective

that considers neuromechanical coupling within the context of closed-loop control. The

strategy of combining experimental recordings with physiologically-sound simulations will

enable thorough exploration of neural and mechanical contributions to force control in

health and disease.

Keywords: tremor, force control, muscle models, closed-loop system, dynamics

INTRODUCTION

It is well known that humans cannot produce a perfectly stable force. Within the context of precise,
goal-directed actions, involuntary force fluctuations can reveal clinically relevant information
about neuromuscular control in disorders such as dystonia (Xia and Bush, 2007; Chu and Sanger,
2009), Parkinson’s disease (Vaillancourt et al., 2001; Ko et al., 2015), bruxism (Laine et al., 2015b),
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and essential tremor (Héroux et al., 2010), among others. In such
tasks, the nature of force variability may be influenced by both
central and peripheral components of sensorimotor integration.

Unfortunately, the utility of measuring involuntary force
fluctuations (i.e., tremor) within scientific or clinical settings
has been limited due to the large and often ambiguous set
of factors which can influence such measures. In some cases,
tremor may reflect a mechanical resonance whose frequency
depends on the physical characteristics of the muscle/limb in
question (Lakie et al., 2012; Vernooij et al., 2013). At the same
time, tremor may stem from cycles of excitation around the
stretch-reflex loop (Lippold, 1970; Young and Hagbarth, 1980;
Christakos et al., 2006; Erimaki and Christakos, 2008). The
two mechanisms likely interact, since reflex activity is itself
influenced bymuscle/tendon compliance (Rack et al., 1983), limb
loading (Joyce and Rack, 1974), contraction history (Gregory
et al., 1998), and the temporal dynamics of force production
(Xia et al., 2005).

It is clear that the specific type and extent of neuromechanical
coupling influencing performance of a given task are of key
importance for understanding the generation of force variability.
Understanding the factors which influence dynamic force control
is especially important given that this is the basis of manual
dexterity during activities of daily living. However, the neural
and/or mechanical origins of unintended force variability are not
always clear, particularly within the context of dynamic force
control.

In this study, we investigated the relationship between
voluntary force production and involuntary force variability in
a group of healthy adults engaged in a dynamic, isometric
force tracking task. Given the various links between reflex
activity, contraction dynamics, and tremor, our hypothesis was
that involuntary force variability would depend upon voluntary
contraction dynamics. In order to better understand the potential
sources of force variability within our experimental task, we used
a physiologically-realistic computer simulation to determine the
sufficiency of muscle-tendon mechanics and reflex pathways to
reproduce our experimental results. The simulation also allowed
us to characterize the sensitivity of force variability to parameters
such as reflex gain.

The significance of our study is two-fold. First, we describe
a novel source of tremor along with a method for its
experimental induction, and strong evidence for its origin
in musculotendon dynamics. Second, the sensitivity of this
tremor to both neural and mechanical factors within our
simulation implies that simple force tracking tasks, such as
described here, may represent a novel approach to investigating
peripheral components of sensorimotor integration in health and
disease.

METHODS

All procedures were approved by the institutional review
board at the University of Southern California and all
participants gave informed written consent prior to
participation. Ten healthy participants were recruited

(4 female, 6 male, aged 23–31 years) to carry out force tracking
experiments.

Physiological Data
Task
Participants were seated∼1m from a 17-inch computer monitor
which displayed a sinusoidal target with a vertical range
representing forces from 5 to 9% of the maximum force that each
individual could exert with the index finger of their self-reported
dominant hand (see Figure 1A). Visual feedback of exerted force
was provided in the form of a cursor which moved left to right
across the computer screen for 40 s before looping back to the
left. Prior to recordings, participants practiced tracking several
target cycles to become familiar with the task. Each participant
then tracked the 0.25Hz sinusoidal target for two 80 s trials
separated by several minutes of rest. A slow sinusoidal target is
a rich behavior that is ideal for probing dynamic dependencies.
For example, if tremor depended on force velocity, then tremor
amplitudes would appear to follow the derivative of the target
sinusoid (i.e., a cosine). If one direction of force (increasing
vs. decreasing) were tied to tremor amplitudes, then tremor
amplitudes would be largest along either the rising or falling
phase of the target sinusoid. If the magnitude of force were most
relevant, tremor amplitudes would essentially follow the target
trajectory, being largest at the peaks and smallest at the valleys.

As depicted in Figure 1A, a miniature single-axis force
transducer was fixed to the top of a plastic cylinder and located
under the tip of the finger. Participants were asked to produce
a downward force perpendicular to the force sensor, an action
requiring contraction of the index finger slip of the flexor
digitorum superficialis (FDS) muscle. This particular muscle
and joint action were chosen because flexion at the proximal
interphalangeal (PIP) joint is necessary for manipulation
activities of daily living, and because this straightforward
mechanical action is well suited for simulation.

Force and EMG Measurements
Surface EMG recordings were made over the distal portion
of the index finger slip of the FDS muscle using an active
bipolar electrode (Biometrics Ltd, Newport, UK) grounded at
the wrist. Confirmation of correct electrode positioning was
accomplished via palpation of the distal muscle belly (∼7 cm
proximal to the crease of the wrist, on the ulnar side) during index
finger flexion, as well as observation of ongoing EMG signals
during PIP joint flexion/extension and during our isometric task.
The EMG signals were acquired at 1000 samples per second
using a Biometrics DataLog system and associated software.
The measurement of force, and the display of visual feedback
to participants, was accomplished using custom MATLAB
(The MathWorks, Natick, MA, USA) scripts to acquire force
signals from a miniature load cell (ELB4-10, Measurement
Specialties, Hampton, VA, USA) using a USB-DAQ (National
Instruments, Austin TX, USA). The data acquisition unit sent a
synchronization pulse to the biometrics system at the start of each
recording. The data were analyzed offline using customMATLAB
scripts.
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Data Analysis
Conversion of Sinusoidal Force to Instantaneous

Phase
To uncover the slow, voluntary force associated with the intended
target trajectory, the force produced by each participant was
low-pass filtered at 0.5Hz. Using the Hilbert transform, the
instantaneous phase of this tracking force was calculated and
expressed in degrees (0–360◦) over the course of each target
cycle. This conversion was useful since instantaneous phase holds
information about the actual dynamics of force production at a
given time, regardless of tracking error. Although tracking error
was not a focus of this investigation, it was still important to
eliminate poorly tracked target cycles. Target cycles in which the
absolute tracking error exceeded 4% of a participant’s MVC level
at any time point were excluded from all further analysis.

Calculation of Instantaneous Tremor Amplitude
To quantify the presence of involuntary force fluctuations, the
sinusoidal force trajectories produced by each participant were
filtered into two different frequency bands.

First, we investigated the presence and magnitude of force
fluctuations at high frequencies (>6Hz), which cover the
frequency range of physiological tremor (Lippold, 1970; Elble and
Randall, 1976; Burne et al., 1984; Christakos et al., 2006). These
force fluctuations were extracted by band-pass-filtering the force
produced by each individual between 6 and 15Hz (zero-phase,
4th order Butterworth filter). Beyond about 15Hz, the amplitude
of force fluctuations is essentially negligible due to the low-pass
filtering effects of tissue (finger pad, tendon) and muscle.

Second, we quantified slow (1–5Hz) force fluctuations.
Generally, slow fluctuations in force stem from changes in the
overall drive to motor neurons (Allum et al., 1978; De Luca
et al., 1982; Miall et al., 1993; Slifkin et al., 2000; Squeri et al.,
2010). These slow fluctuations do include voluntary correction
of tracking errors, but our analysis focused on fluctuations that
were consistently present at particular phases of the target cycle,
and therefore reflect an involuntary process. To extract these
fluctuations, we used a 1–5Hz band-pass-filter (zero phase, 4th
order Butterworth filter).

An example of band-pass filtered force traces in relation to the
target sinusoid is depicted in Figure 1A (right).

Calculation of Tremor Modulation as a Function of

Tracking Phase
As described above, the tracking force produced over time by
each participant was converted to a trace of instantaneous phase
angles where each complete target cycle was represented as
a progression from 0 to 360◦. Each cycle was then divided
into 36 phase-bins (each representing 10◦). Again, it should
be noted that all analyses are based on the temporal dynamics
of the force produced by the participants and not on the
displayed target. This renders any positive or negative tracking
lags irrelevant [although they would be minimal given the
highly feed-forward nature of this type of task (Erimaki et al.,
2013)]. To examine the relationship between tracking phase and
force variability, we first converted each band-pass filtered force
signal into an instantaneous amplitude signal by rectification

FIGURE 1 | Experimental task and simulation. Participants were asked to

produce isometric force against a small load cell with the tip of the index finger

(A). Using feedback of their applied force, participants tracked a 0.25Hz

sinusoid during 80 s trials. The range of the target sinusoid was 5–9% of each

individual’s maximum voluntary contraction (MVC) force. An example of the

recorded force from one participant is depicted to the right (top trace). Below,

the same force trace has been filtered into 2 different bands, a 1–5Hz band

which captures slow tremor and tracking error (middle), and a 6–15Hz band

which reveals physiological tremor and fast twitches (bottom trace). In this

example, both high and low frequency force fluctuations appear to depend

upon the phase of the tracked sinusoid. (B) Depicts the implementation of a

control loop used to simulate the tracking experiment above. At the “spinal

cord,” three sources of input are summated. The first two sources are

proprioceptive signals from the muscle spindle (via group Ia and II afferents),

and Golgi tendon organ (GTO) (via Ib afferents) models, which provide positive

and negative feedback to the “spinal cord,” respectively. The third input is a

tracking signal sent from a supraspinal controller. This “tracking controller”

sends an output (C) which is continually updated according to the difference

between the target and the force (F) produced by the muscle (see text for

details). From the “spinal cord,” a neural drive (ND) signal is sent to a Hill-type

muscle model via an “activation filter” which further shapes the neural drive to

account for calcium dynamics within physiological muscle. The filtered muscle

activation (MA) signal sent from the “activation filter” generates contraction

(Fm), accounting for physical properties of the muscle-tendon complex, such

as a series and parallel elastic element (SE and PE), mass (M), viscosity (B),

and pennation angle (alpha). The delays and sign associated with each

feedback loop are also depicted.

and smoothing with a 200ms Gaussian window. The magnitude
of the resulting smoothed/rectified signal also serves as a
simple estimation of instantaneous variance within the specified
frequency band, given the equivalence between total signal
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power (in frequency domain) and total signal variance (in time
domain) (i.e., Parseval’s theorem). We then found the sum of the
filtered/rectified force values associated with each phase interval,
and divided each by the integral of the filtered/rectified force
trace. This procedure gives the relative proportion of total force
variability (within the specified frequency band) associated with
each 10◦ phase interval of the target cycle.

Under the null hypothesis, the proportion of force variability
in each phase bin does not depend on the phase progression of
the target cycle. Thus each 10◦ phase bin would be expected to
show about 2.8% (100%/36 bins) of the total force variance. To
test the null hypothesis, we compared our recorded proportions
to a phase-randomized distribution generated directly from the
recorded data (i.e., shuffled versions of our own data). We
constructed these shuffled distributions of proportion values
by randomly selecting a different 10◦ phase bin in each
tracked target cycle, and then calculating the proportion of
total force variability, as previously described. The process
was repeated 5000 times, creating a distribution of shuffled
proportion values which allowed us to determine a 95%
confidence interval. Proportions falling outside of this interval
would then represent statistically significant deviations from
chance level. Our use of aMonte–Carlomethod provides a direct,
conservative, and assumption-free statistical analysis. Similar
methods are often used in neuroscience, where analysis of real
vs. shuffled/randomized neural activity is common (Perkel et al.,
1967; Tam et al., 1988; Türker et al., 1996; Rivlin-Etzion et al.,
2006; Laine et al., 2012). In our case, alternative methods such as
testing for differences between individual phase bins, would be
ill-suited for identifying the timing of tremor modulation with
respect to the target phase, and would also not account for the
fact that the proportion within each phase bin is not strictly an
independent measurement.

The above methodology was applied to individual
participants. To evaluate the population as a whole, the
proportions for each phase bin were averaged across individuals.
As a statistical evaluation, we calculated, for each phase bin, the
number of individuals whose tremor proportion fell above or
below the 95% confidence interval. For any given phase bin, a
5% error rate might be expected. Since our analysis included
10 individuals, it could be expected that at least one may have
exceeded the confidence level purely by chance. However, the
binomial probability that 2 of 10 individuals should show a (false
positive) significance at the 95% confidence level is 0.015. For
this reason, our population significance level was set to 0.015, or
2 out of 10 individuals, for our consistency analysis.

In addition to analyzing the proportion of force variance in
each phase interval, we also calculated the cross-cycle average
tremor amplitude in each phase interval. This analysis yielded
an amplitude profile for each individual (and frequency band),
similar to the proportion profiles described above. We then
recorded the maximum and minimum values observed in the
amplitude profile of each individual, regardless of the particular
phase at which these values were found. This allowed us to
evaluate the actual extent of tremor amplitude modulation,
uncoupled from any particular pattern of tremor modulation
across target phases.

Force to EMG Coherence across Target Phases
Coherence is a frequency-domain measure of synchronization
(primarily phase-locking) between signals, and is bounded
between 0 (no correlation between signals) and 1 (perfect linear
correlation). Coherence between rectified EMG activity and force
is useful for identifying the frequency content of force-relevant
neural drive to muscles, since action potential shapes/sizes and
other recording artifacts only influence the EMG spectrum, but
would not be synchronized with force. In addition, coherence
between FDS activity and force tremor provides validation
that our simulation of a dynamically activated FDS muscle is
appropriate for exploring the potential origins of recorded force
fluctuations.

To calculate EMG to force coherence, the force and EMG
signals were concatenated across all trials from all subjects to
form two long signals. These signals were then converted to time-
frequency-representations (TFRs) via wavelet analysis. We chose
a wavelet approach so that we could precisely determine which
frequencies of force were synchronized with EMG, and at what
times. The technique is common where temporal variation of
spectral power or synchronization is of interest (e.g., Siemionow
et al., 2010; Tscharner et al., 2011). This was accomplished
through convolution of each original signal x(t) with a Gaussian-
windowed complex sinusoid (a Morlet wavelet), the duration
of which was set to span 3 cycles of each frequency (f) from
1 to 20Hz. The process can be expressed by the following
formula:

TFR
(

t, f
)

=
∫

x (t)
1

σ
√
2π

e−
(t − τ )2

2σ 2
e−j2π f (t−τ )dt

where the standard deviation (σ ) of the Gaussian window is set to
3/(2π f). The force trace (band-pass filtered between 1 and 20Hz)
as well as the EMG activity (rectified, normalized per subject to
have unit variance) were thus converted to complex-valued TFRs
(herein defined as TFR_Force and TFR_EMG, respectively).
The spectral power of each signal can be calculated as
follows:

Power_Force (t, f) = TFR_Force (t, f) • conj (TFR_Force (t, f))

Power_EMG (t, f) = TFR_EMG (t, f) • conj (TFR_EMG (t, f))

Where conj refers to the complex conjugate.
Likewise, the time-frequency cross-spectrum can then be

defined as:

TFR_cspec (t, f) = TFR_Force (t, f) • conj (TFR_EMG (t, f))

The time course of coherence can then be calculated per
frequency as:

TFR_Coherence (f) =
| TFR_cspec

(

f
)

∗W |∧2
(Power_Force

(

f
)

∗W) • (Power_EMG
(

f
)

∗W)

Where the term ∗W represents convolution of the indicated time
series with a rectangular window (W), the duration of which was
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set per frequency to be 7/f. The multiplication and division in the
above equation are simply element-by-element operations on the
time series data.

Prior to further analysis, coherence values were normalized
using Fisher’s r-to-z transform Fz = atanh(

√
C) where C

is the coherence at a given time-frequency point (Benignus,
1969).

Because of the short time scales involved in the calculation
of wavelet coherence, it is best to recast coherence values as a
statistical deviation from chance level. Here, the chance level
was derived empirically by recalculating the time-frequency
coherence after reversing the concatenated EMG signal in time.
This causes EMG signals from one participant to be tested for
coherence with force traces produced by a different participant,
and completely misaligns the signals with respect to the phase
progression of the sinusoidal target. The actual coherence values
for each frequency were then converted to standard Z-scores
with respect to the distribution of coherence values obtained
from the “fake” time series. This method helps to emphasize any
synchronization which varies significantly across target phases.
Values > 1.65 (the one-sided 95% confidence level for a Z-test)
indicate that the time-localized coherence between EMG and
force was greater than expected by chance at a given phase and
frequency.

Simulations
Closed-Loop Control Overview
We used a computational model of an afferented muscle to
study the dependence of tremor on the dynamics of force
production. A schematic diagram of the feedback-driven control
loop is shown in Figure 1B. Briefly, a Hill-type muscle-tendon
model was driven by a neural activation signal to produce force
under isometric conditions. The simulation was intended to
approximate the action of the FDS muscle in our experimental
data. The muscle-tendon model describes changes in force
as well as the magnitude and rate of associated changes in
the length of the muscle fascicle and tendon, accounting
for their viscoelastic properties. Our simulation includes two
spinal proprioceptive systems; the muscle spindle and the
GTO. Upon muscle fiber lengthening, the muscle spindle sends
excitatory feedback through primary (Ia) and secondary (II)
afferent fibers proportional to eccentric changes in muscle
fiber length and velocity; while GTOs send inhibitory feedback
(Ib) proportional to the force in the tendon. A tracking
controller, whose operation includes conduction and synaptic
delays appropriate for a transcortical loop (Lourenço et al.,
2006; Pruszynski et al., 2011; Sohn et al., 2015), sends a
command signal (C) to the “spinal cord” which is corrected
at each time step according to the difference between the
target force level and the actual force output from the muscle.
This tracking control signal simply ensured that the afferented
muscle-tendon model could follow the target force trajectory,
and is not intended to model a specific neural pathway, or
to recreate human visuomotor or voluntary tracking behaviors.
Signals from the tracking controller, muscle spindle, and
GTO, are integrated at the “spinal cord” to generate the α-
motoneuron drive to the lumped-parameter muscle model. This

neural drive (ND) at each ms (t) can be expressed in the
following form:

ND(t) = Ia (t− 15)+ II(t− 25)− Ib(t− 17)+ C(t)

The output of the tracking controller (C) is calculated as:

C(t) = C (t− 1) + k • (Target(t)− F(t− 35))

where F is the force on the tendon and k is a constant. Note that
the above represents a simple “iterative learning control” (ILC)
scheme (Wang et al., 2009).

To translate the neural drive into force, the signal was delayed
by an additional 22ms before reaching the muscle fibers to
account for conduction time along efferent fibers. At the muscle,
the signal was passed through an “activation filter” which shapes
the signal to account for calcium dynamics in physiological
muscle. Finally, the muscle-tendon model converts this muscle
activation signal to the force output of the tendon. In this
simulation, the delays for each pathway have been matched to
physiological recordings from humans and reflex latencies from
the FDS muscle in particular (Lourenço et al., 2006).

The muscle model, muscle spindle, and GTO elements of this
control loop have been published previously by various groups
and will be described and referenced individually below.

Control Loop Elements
Muscle Model
Our Hill-type muscle-tendon model and its mathematical
derivation were adopted from previous literature (He et al., 1991;
Brown et al., 1996). The schematic diagram of this muscle-tendon
model is presented in Figure 1B. The muscle fascicle consists
of a mass (M), two passive elastic elements (PE in Figure 1B),
a viscous element (B), and a contractile element (Fm), which is
connected with a pennation angle (α) to a series elastic element
(SE) representing tendon and aponeurousis.

The contractile element generates muscle force as a fraction
of the maximal force that the muscle is capable of producing.
This is defined as the product of its physiological cross-sectional
area and a constant factor (45N/cm2) (Holzbaur et al., 2005).
Two parallel elastic elements characterize passive behaviors
of muscle fascicles. The first (non-linear) spring acts against
stretch of muscle fascicle, while the second (linear) spring resists
compression (Brown et al., 1996). The series elastic element (SE)
shown in Figure 1B is a lumped non-linear spring model of
tendon and aponeurosis. The force produced by this element in
relation to the length of the tendon has been implemented as in
Brown et al. (1996). The contraction dynamics within themuscle-
tendon unit are modeled as a second-order differential equation
(He et al., 1991).

Taking the above factors into account, the output force
function (F) can be summarized as follows

F(t) = MA(t) • FL (t) • FV (t)+ F_PE1 (t)+ F_PE2 (t)

+ (B • v(t))+ (a (t) •M)

Where MA is the muscle activation (the output of the activation
filter), FL is the force-length function, FV is the force-velocity
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function, F_PE1 and F_PE2 are the forces produced by the two
elastic passive elements in the model, v(t) and a(t) are the velocity
and acceleration ofmuscle fiber contraction, and themuscle mass
(M) and viscosity (B) are constants.

Because the force produced by human participants ranged
from 5 to 9% of maximal effort, we applied the same forces to
the simulated FDS muscle. Given our focus on understanding
the general nature of tremor modulation by dynamic force
production, it was not necessary to calculate the precise, isolated
contribution of the FDS muscle to the generation of index
finger force in our experimental task. To simulate the FDS
muscle, architectural parameters were set (Table 1) according to
published anatomical data (Lieber et al., 1991; Holzbaur et al.,
2005). For our purposes, the muscle fibers of the FDS muscle
associated with the tendon acting on PIP joint of the index finger
were combined into a single belly for simplicity.

Muscle Spindle Model
The muscle spindle model employed in this study is adapted
from Mileusnic and Loeb (2006). This computational model
was chosen because it is both physiologically realistic and, at
the same time, is immediately compatible with the inputs and
outputs of the other elements within our control loop. The model
comprises three types of intrafusal fibers, namely, the bag1, bag2,
and chain fibers, all of which are modeled as a second-order
mechanical system (a mass, a viscous element, and parallel and
series elastic elements), similar to a Hill-type muscle-tendon
model. Each of the intrafusal fibers receives input describing
the muscle fascicle length, velocity, and acceleration, as well
as a fiber-type-specific fusimotor activation signal (dynamic or
static). In this study, fusimotor activation was set to be constant
during each simulation run. The fusimotor gains tested were 75,
150, and 350. Functionally, these are arbitrary units, but can
be expressed conceptually as pulses per second. We chose to
define our baseline value as 75, since this is near the previously
published value of 70 (Mileusnic and Loeb, 2006), and we varied
that parameter because fusimotor drive is known to depend
upon task and individual psychology (Ribot et al., 1986; Ribot-
Ciscar et al., 2000, 2009; Hospod et al., 2007). Because fusimotor
drive is modified by the nature of the task independently of
(and even without) α-motoneuron firing (neural drive, in our
model), we chose not to assume obligatory α-γ coactivation.
It is true that mechanisms other than fusimotor drive may
change the effective gain of afferent activity (e.g., presynaptic
inhibition). Here, variation in fusimotor drive is not only a
likely physiological occurrence, but also serves to more generally

TABLE 1 | Architectural parameters of the slip to the index finger of the

flexor digitorum superficialis (FDS) muscle.

Mass (g) 12

Optimal fascicle length (cm) 8.4

Resting fascicle length (cm) 6.8

Tendon slack length (cm) 27.5

Pennation angle (◦) 6

Cross-sectional area per head (cm2) 1.7

represent the overall gain of spindle feedback to motor neurons.
For integration with the feedback control loop, the final outputs
of the spindle model were normalized to fall between 0 and 1.

Golgi Tendon Organ Model
The GTO model was adopted from Elias et al. (2014). This GTO
model presents the overall behavior of a population of Ib fibers.
It was placed in series with tendon, so that it receives tendon
force as an input. The force was then converted into Ib fiber
output. The transfer function described in Elias et al. (2014) was
implemented using the c2d function in MATLAB. The Ib fiber
output was scaled between 0 and 1, as was carried out for the
spindle outputs.

Activation Filter
The activation filter adjusts the neural drive signal to account for
the effects of calcium dynamics (release and reuptake) on cross-
bridge formation, as described in Song et al. (2008). The resulting
muscle activation signal (MA in Figure 1B) is the “effective” drive
delivered to the muscle model.

Simulation Analysis
Force tracking was simulated for 128 s with new values for each
output parameter derived every ms. To be certain that only
consistent, steady-state behavior was analyzed, only the last 30
cycles were used for analysis. The muscle forces produced by the
simulation were analyzed in the same way as the experimentally
recorded force tremor, providing a direct comparison.

RESULTS

Tremor during Force Tracking
The phase of voluntary force modulation influenced both low
(1–5Hz) and high (6–15Hz) frequency bands of involuntary
tremor. For reference, the top panels of Figures 2A,B show
the target isometric force sinusoid, which spanned from 5 to
9% of each individual’s maximum voluntary force level. The
panels immediately below the target in Figures 2A,B show the
proportion of total tremor variance associated with each phase
of the target sinusoid. The proportion of total force variance
accumulated in each 10◦ phase bin is shown for low (Figure 2A,
upper trace) and high (Figure 2B, upper trace) frequency bands.
Each plot represents a grand average over all 10 participants, who
together tracked a total of 357 target cycles. The largest tremor in
either frequency band was observed at the beginning of the rising
phase of the target. A second time period of increased tremor
amplitude appeared at or slightly after the peak of the target cycle,
mainly for high frequency tremor. The dashed line indicates the
proportion of variance to be expected in each phase bin if force
variability were evenly distributed over all phase bins.

Below these average tremor profiles are the cross-participant
standard deviations associated with the mean proportions in the
traces above. Variance across participants was highest at the base
of the target sinusoid, where bursts of tremor (e.g., Figure 1) were
often observed. The bottom panels of Figures 2A,B depict the
number of participants (out of 10 total) whose tremor profiles
showed statistically larger (above 0 line) or smaller (below 0
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FIGURE 2 | Phase-dependent modulation of tremor amplitude. The

amplitude of force variability within the 1–5 and 6–15Hz frequency bands

depended upon the phase of the target cycle (shown at the top of each

column, for reference). The first data panel of (A) (left column) shows the mean

proportion of total force variability (within the 1–5Hz band) observed in each

10◦ phase bin, calculated over all participants. The same panel of the right

column (B) shows this analysis for 6–15Hz force fluctuations. The horizontal

dashed line in each figure represents the proportion expected per bin if tremor

amplitude were constant across target phases. The 1–5Hz frequency band

shows a clear peak at the initiation of the rising phase of the target sinusoid. A

similar profile was observed for 6–15Hz force fluctuations, but with a more

pronounced tremor amplification at the peak of the target sinusoid. Below

these grand averages are depicted the cross-participant standard deviation for

each phase bin. The cross-participant variability is generally highest at the

valley of the target sinusoid, when bursts of high amplitude tremor were more

likely to occur (as can be seen in Figure 1A). The bottom panels are

histograms which depict the number of individuals (out of 10), whose tremor

profiles deviated significantly from chance level at each phase-bin, as

determined by a Monte-Carlo test (see text for details). In these histograms,

counts above the 0 line record the number of individuals who displayed

greater than chance-level proportions. Counts below 0 indicate the number of

individuals showing lower tremor than expected by chance at each phase.

Note that these “less than chance” histogram counts are an effect of other

phases showing high proportions of tremor, and do not indicate suppression

of ongoing tremor, which was never observed. Histogram counts exceeding

the shaded region indicate that significant effects at a given phase were more

consistent across individuals than could have occurred by chance (according

to a binomial test). The histograms show that the modulation of tremor by

target phase was fairly consistent across individuals. The arrows on each

histogram (A,B bottom), emphasize that tremor was most often larger than

expected at the peaks and valleys of the target sinusoid, for both

frequency bands.

line) proportions in each phase bin than expected by chance
(as determined by a Monte–Carlo test, as previously described).
The shaded region marks the number of participants that may

have been expected to show significant effects by chance. That
is, histogram counts exceeding the upper limits of the shaded
range represent a consistent amplification of tremor occurred
across the population of participants. Histogram counts below
the 0 line are caused by the high proportions observed in
other phase bins and do not represent suppression of tremor,
which was never observed. Again, column A shows results for
1–5Hz force fluctuations and column B shows results for 6–
15Hz force fluctuations. For both frequency bands, a significant
population effect was observed at the beginning of the rising
phase of the target sinusoid, and at the beginning of the
falling phase.

EMG to Force Coherence
To confirm that the cross-cycle modulation of force variability
was also reflected in the activation of the FDS muscle, we
calculated EMG-to-force coherence. Using wavelet coherence,
we were able to examine the coupling between signals at each
frequency, and at each phase of the target cycle. The statistical
magnitude of coherence (z-score with respect chance-level)
shown in Figure 3 for each time-frequency pixel was calculated
from the full data set (all 357 tracked cycles). Pixels with values
greater than 1.65 can be considered as significant at the 95%
confidence level.

Importantly, the coupling between EMG and force signals
closely resembles the phase progression of force tremor
amplitudes, and reflects the same frequency profile. The
phase-related modulation of coherence demonstrates temporal
variation in synchronization between signals, which would be
expected if the frequency content of neural drive depended on
the phase progression of the tracking action.

Actual Tremor Amplitudes during Force
Tracking
Although our study is primarily focused on the modulation
pattern of normalized tremor amplitudes as a function of
voluntary force dynamics, it is also important to address actual
tremor amplitudes, and the extent of amplitude modulation
across target phases. Since the pattern of tremor modulation
could vary across individuals (described below), we chose to
record the maximum, minimum, and 1 amplitude (max-min).
The latter was important for better comparability with our
simulation results, since our simulation does not contain noise or
ongoing physiological tremor, both of which are typically present
in human participants. In general, we found tremor amplitudes
fluctuated by a factor of about 2 over the course of a target
cycle. Figure 4 shows the mean and cross-participant SD for each
measure.

Tremor Modulation across Different
Individuals
Although the phase-dependent modulation of force variability
shown in Figure 2 was representative of the population overall,
tremor profiles did vary across individuals. Figures 5A–D depicts
the tremor proportion profiles for high and low frequency bands
in 4 individuals whose profiles differed from each other. Overall,
most participants showed some degree of increased tremor
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FIGURE 3 | EMG to Force Coherence. To confirm a correlation between

force fluctuations and muscle activity, coherence between FDS EMG activity

and force was analyzed as a function of target-phase (x axis) and frequency

(y-axis). The statistical magnitude of coherence (z-score with respect

chance-level) is represented by the color of each pixel. Values >1.65 indicate

statistically greater coupling than expected by chance. Each phase-frequency

pixel represents the average coherence observed at that specific pixel,

calculated over 357 tracked target cycles. The pattern of coupling is similar to

the behavior of force fluctuations (as shown in Figure 2). This plot confirms

that FDS activity corresponds with phase-dependent force fluctuations.

(in either frequency band) at the peaks and/or valleys of the
target sinusoid. The modulation of tremor amplitudes in these
individuals, shown in the bar graphs at the bottom of each
column, indicate that 1–5Hz tremor amplitude was consistently
higher than 6–15Hz tremor amplitude, but the ratio could vary
across individuals.

Simulation Results
By embedding a modeled FDS muscle within a feedback-driven
control loop, we were able to simulate the force tracking
experiment carried out by human participants. Surprisingly, this
simple model of an afferented FDS muscle sufficed to produce
much the same pattern of tremor modulation in relation to the
0.25Hz sinusoid as seen in Figures 2, 5. Figures 6A–C shows
the modulation of tremor obtained when the simulation was
run using low, medium, and high fusimotor drive. Adjusting the
fusimotor drive, and thus, the gain of afferent feedback from
the muscle spindle, could produce variation in simulation results
similar to the type of variation observed across different subjects
(e.g., compare Figure 5A with Figure 6A, or Figure 5C with
Figure 6C). Force fluctuations near the valley of the sinusoidal

FIGURE 4 | Tremor modulation amplitude. For each participant, the

average cross-cycle tremor amplitude was calculated for each phase of the

target sinusoid. The resulting amplitude profile was characterized (for both 1–5

and 6–15Hz frequency bands) in terms of the maximum tremor amplitude, the

minimum amplitude, and the difference between the two, which indexes the

average amplitude modulation across one target cycle. The cross-participant

mean amplitudes for each feature (regardless of the precise phase at which

they occurred for each individual) are depicted by the red (low frequency) and

blue (high frequency) bars. The error bars show the cross-participant standard

deviations for these features. For both frequencies, there was a nearly two-fold

modulation of tremor amplitude across a target cycle, on average.

target were present in all cases, although the fluctuations
occurring at the peak of the sinusoid was reduced as the
afferent gain was increased. As with the experimental data, the
rising and falling phases of the target sinusoid did not appear
to be associated with consistent changes in tremor activity.
At the bottom of each column in Figure 6 are bar graphs
showing the average extent of amplitude modulation. Since
the minimum amplitude was nearly 0 in all cases, these bars
also represent the average maximum amplitude across phases
as well. Of particular importance is the fact that increasing
fusimotor gain resulted in a doubling (B) and tripling (C)
of high frequency tremor amplitudes, as compared with the
low fusimotor drive condition (A). Low frequency tremor
did not appear to be consistently influenced, but if anything,
was actually reduced in amplitude as fusimotor drive was
increased. It should be noted that the amplitudes measured
from our simulation should not be expected to precisely
match those recorded experimentally. Of greater importance
is the relative relationship between high and low frequency
tremor amplitudes, and how they vary across individuals or
simulation parameters. That said, our simulated amplitudes
appear to be smaller than those recorded experimentally by a
factor of about 10, which is reasonable considering the highly
reduced/simplified nature of the model and the absence of any
noise.

We also ran the simulation after eliminating various
elements of the control loop. Figure 7 shows the resulting
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FIGURE 5 | Phase-dependent tremor modulation varies across individuals. Tremor profiles were often variable across individual participants. Panels (A–D)

depict the dependence of high frequency (bottom traces) and low frequency (top traces) force variability on target phase. Panels (A–D) represent profiles from four

individuals. The shaded regions show the 95% confidence interval, as derived by a Monte–Carlo test. Tremor in either frequency range tended to be largest at the

initiation of the rising phase of the target sinusoid and/or at the peak of the target sinusoid. At the bottom of each column, the average cross-cycle amplitude

modulation (maximum-minimum amplitude) is plotted for the 1–5 and 6–15Hz frequency bands.

tremor modulation pattern when the simulation was run
completely feedforward (Figure 7A), using only feedback from
the controller (Figure 7B), using only the controller and GTO
feedback (Figure 7C), and using only the controller and spindle
feedback (Figure 7D). Where spindle feedback is present, the
fusimotor drive was set to 75 (as in Figure 6A). An increase
in 6–15Hz fluctuations occurred roughly at the peak and
valley of the target sinusoid regardless of the feedback utilized
in the control loop. However, the precise shape, timing, and
magnitude of these fluctuations were altered by the type of
feedback utilized. Inclusion of spindle feedback (Figure 7D)
was necessary to produce realistic tremor variance patterns

(compared with Figures 2, 5) at the initiation of the rising
phase of the target sinusoid. Also it is worth noting that tremor
amplitudes (bar graphs at bottom of Figure 7) were drastically
reduced in the absence of spindle feedback roughly by a factor
of 10 for 1–5Hz tremor and by a factor of about 50 for 6–15Hz
tremor. These observations are well aligned with previous
findings where reduction of afferent feedback was associated
with reduced/eliminated physiological tremor (Halliday and
Redfearn, 1958; Sanes, 1985; Erimaki and Christakos, 2008).
Tremor modulation was in general particularly sensitive to
spindle feedback, since increasing its effective gain through
fusimotor drive (Figures 6B,C) or removing spindle feedback
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FIGURE 6 | Phase-dependent force tremor in simulation. The simulated FDS muscle activity produced target-phase dependent tremor, as observed in human

participants (Figures 2, 5). Panels (A–C) show the proportion of within-band force variability observed at each 10◦ phase bin when the simulation was run using

different levels of fusimotor drive: low (A), medium (B), and high (C). As before, the top traces show 1–5Hz force variability and the lower traces show 6–15Hz force

variability. Alteration of fusimotor drive in this simulation was able to alter the phase-dependent modulation of tremor in both frequency bands. At the bottom of each

column, the average extent of cross-cycle amplitude modulation is depicted, as in Figure 5. While changes in fusimotor drive did somewhat alter the extent of

low-frequency tremor amplitude modulation, the effects were greatest on the 6–15Hz tremor, which roughly tripled as fusimotor drive was increased from low to high.

Also, the relationship between high and low frequency amplitude modulation is similar to that observed in the experimental data (Figures 4, 5, bottom).

entirely (Figures 7A–C) both influence the overall shape,
timing, and amplitude of tremor fluctuations. This occurred
even though the largest change in muscle fascicle length
was only about 1.1mm. Interestingly, removal of GTO
feedback had minimal effect (Figure 7D compared with
Figure 6A).

DISCUSSION

In this study, we show that involuntary tremor can arise
simply from the dynamic viscoelastic response of afferented

muscles during voluntary production of isometric force. We
characterized this tremor in two frequency bands as healthy
adults performed a sinusoidal force tracking task. Furthermore,
we simulated the spontaneous emergence of tremor from
purely peripheral mechanisms using a computational closed-loop
model comprised of well accepted musculotendon, spindle, and
GTO computational modules. Our results extend the current
understanding of how force variability arises independently
of central mechanisms during production of isometric force.
Importantly, our results suggest that simple force tracking
tasks may provide a clinically and scientifically relevant
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FIGURE 7 | Simulation results after removing sources of feedback control. Each panels (A–D) depicts the results of the simulation after removing elements of

the control loop. (A) Depicts the tremor modulation profile that emerged when the simulation was run completely feedforward, with no feedback. (B) Depicts the

results when using the controller output, but no neural feedback. Panel (C) shows the tremor modulation occurring when Gogli tendon organ feedback was added to

the controller, while panel (D) shows the tremor profile that emerged when only controller and spindle feedback were used. The baseline condition (before removal of

feedback) was the same as in Figure 6A. Removal of the GTO feedback had minimal influence on the overall shape and timing of force fluctuations (compare

Figure 6A with panel D). In contrast, elimination of spindle feedback not only reduced the magnitude of force tremor, but also influenced the general shape and timing

of tremor modulation (panels A–C), particularly at the initiation of the rising phase of the target sinusoid. Shown at the bottom of each column are bar graphs depicting

the average tremor amplitude modulation for each frequency band (as in Figures 5, 6). The addition of spindle feedback (D) to the model was the only condition which

greatly modified tremor amplitudes. Note the change of scale for the bar graph in (D) as compared with (A–C). While low frequency tremor modulation was increased

by roughly a factor of 10 with the addition of spindle feedback, the high frequency tremor increased by about a factor of 50, with respect to any other condition.

window into the neural and mechanical factors which generate
involuntary tremor.

Although tremor is not often attributed to the specific
dynamics of voluntary force production, several investigations
have suggested the existence, and potential importance, of such
an interaction. For example, muscle stretch has been suggested
to play a role in tremor modulation during dynamic force
production. Specifically, declining isometric force is associated

with at least some small degree of muscle fiber lengthening,
toward resting state (Ito et al., 1998). Compared with shortening
contractions, lengthening contractions are associated with
increased force variability (Christou and Carlton, 2002) and
increased motor unit coherence within the physiological tremor
range (Semmler et al., 2002). However, it does not appear that
muscle fiber lengthening, or associated spindle activity, could
explain our results, since we would have expected a systematic
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and consistent increase in tremor during the descending phases
of our sinusoidal target trajectory.

Similarly, in the production of bite force, 7–10Hz jaw tremor
is reduced in slowly increasing force ramps compared with
constant or slowly decreasing force (Sowman et al., 2008). In
the present study, a simple relation between force direction
(increasing or decreasing) and finger tremor was not observed,
likely due to differences in the physiology of bite vs. grip force
control. Jaw tremor in the 7–10Hz range depends upon the
activity of periodontal mechanoreceptors (Sowman et al., 2006),
and different bite-force dynamics may have led to different
levels of dental intrusion (Schoo et al., 1983), and presumably
adaptation of the periodontal mechanoreceptors (Sowman
et al., 2008). Accordingly, both the dynamics of bite-force
production and afferent feedback are important considerations
when comparing healthy adults to those who suffer from bruxism
(Laine et al., 2015b). While jaw tremor may depend on specific
mechanical properties of the gums and their interaction with
periodontal mechanoreceptors, these studies do demonstrate that
tremor modulation can stem from afferent responses to dynamic
force.

Stretch-reflex amplitudes have, in fact, been reported to
change during the production of sinusoidal forces. For example,
rhythmic (sinusoidal) pen-squeezing has been shown to produce
stretch-reflex modulation in the FDS muscle (Xia et al., 2005).
This is important in the context of the present study because
oscillations of excitation around the stretch reflex loop are
considered to be one of the major contributors to physiological
tremor (Lippold, 1970; Young and Hagbarth, 1980; Christakos
et al., 2006; Erimaki and Christakos, 2008). In the study of Xia
et al. (2005), it was observed that stretch-reflex amplitudes were
roughly modulated in a sinusoidal fashion such that increased
reflex amplitudes were associated with higher background FDS
EMG levels. A similar conclusion was reached by Stanislaus and
Burne (2009), who reported a consistent relationship between
stretch-reflex gain and overall contraction level regardless of
force dynamics. If a similar sinusoidal modulation of reflex gain
were responsible for tremor modulation in our study, we should
have observed a sinusoidal modulation of tremor amplitude,
which was not the case.

Few tasks involve only one muscle, as thus, it is possible
that some tremors stem from an interaction among co-activated
muscles. Due to the simplicity of our task and the posture of
the hand, it is likely that any co-activated muscles were also
co-modulated synergistically during tracking. It has been shown
that synergistic muscles may share neural drive over a wide
range of frequencies (Laine et al., 2015a). Moreover, we have
shown that changes in the magnitude of an isometric fingertip
force are likely produced by a simple scaling of a same muscle
coordination pattern (Valero-Cuevas, 2000), while others have
shown that isometric force magnitude does not influence the
frequency content of shared neural drive among muscles of
the hand (Poston et al., 2010). In addition to the potential
for shared descending drive, neighboring co-activated muscles
would likely show temporally-coordinated afferent activity and
reflex responses as well. At the very least, it seems that the effects
of slow sinusoidal contractions on musculotendon dynamics

would be similar across all co-activated muscles, leading them
to tremor at the same time relative to the slow voluntary
action.

During voluntary force production, tremor may also stem
from the recruitment, de-recruitment, and firing rates motor
units. For example, the force level at which motor units are
recruited can be lower than the force level at which they are
de-recruited (De Luca et al., 1982), and due to the activation
of persistent inward currents, the magnitude of neural drive
needed to recruit a motor unit is often higher than the drive
at which the same unit is de-recruited (Gorassini et al., 2002).
Therefore, the population of motor units which generate a given
force is partly determined by the recent contraction history
of the muscle. Motor unit activity, especially the twitches of
motor units near threshold, may contribute to isometric force
tremor (McAuley and Marsden, 2000). The relevance of such
mechanisms to the present study is not clear, but we can speculate
that the contribution would be minimal, given the sufficiency of
our simulation (which does not include firing motor units, their
intrinsic properties, or any source of signal-dependent noise) to
replicate the experimentally-observed tremor modulation. We
would, however, assume that simulated tremor amplitudes would
more closely match those observed experimentally if signal-
dependent noise and/or intrinsic motor unit properties were
included in our closed-loop system. This is a topic which certainly
merits future investigation.

It is of course possible, even likely, that many of the above
mentioned sources of force variability were still present to
some degree in our study, but were not very consistent across
participants or across target cycles. In that sense, they may
explain some of the variation in tremor profiles observed across
participants. Similarly, the degree to which any differences in
muscle/tendon strength, size, and compliance across individuals
would have influenced our results remains a topic for future
investigation. We can speculate, however, that tendon strain
magnitudes would likely be important, given that the dynamics
of muscle stretch influence spindle output, which had the largest
influence on tremor in the present study. The fact that our
model could at least partly replicate cross-subject variation in
tremor modulation through manipulation of fusimotor gains,
which would be expected to vary across individuals (Ribot
et al., 1986; Ribot-Ciscar et al., 2000, 2009; Hospod et al.,
2007), adds validity to our simulation results and helps to
mitigate concerns about its simplifications/assumptions. While
it is beyond the scope of this study to precisely match the
tremor profiles of every individual, or to exhaustively test the
influence of all possible parameters, our results should serve
as an important proof of principle upon which to base future
investigation.

Despite the many possible sources of tremor within our
task, it is clear that the dominant phase-dependent source of
tremor was peripheral neuromechanical coupling, rooted in the
viscoelastic properties of muscle and tendon. While smooth
tracking is initially disrupted as a mechanical consequence of
musculotendon dynamics, the spindle reflex system plays an
important role in determining the overall magnitude and timing
of the resulting tremor.
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Our results, therefore, motivate and justify the development
of similar experimental paradigms for scientific and clinical
applications. For example, we propose that the tremor induced
by slow voluntary force modulation may provide a simple
measure of reflex integrity, providing an alternative to direct,
yet time-consuming and often uncomfortable, perturbations of
nerves or tendons. Further, it may be that characteristic patterns
of tremor modulation would emerge within the context of
spasticity, dystonia, or within conditions such as Parkinson’s
disease or essential tremor. As a means of probing peripheral
neuromechanical coupling, the type of tremor described in
this study may hold potential as a tool for understanding
and assessing dysfunctional sensorimotor control in those with
congenital or developmental disorders, or in those with acquired
dysfunction due to trauma or disease. Finally, neuromechanical
coupling may contribute mechanistically to the maintenance or
amplification of pathological tremor. While we did not test the
effects of inserting a descending tremor-frequency input into our
simulation, such investigation may be informative, and perhaps
even suggest novel avenues for clinical intervention.
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During force production, hand muscle activity is known to be coherent with activity

in primary motor cortex, specifically in the beta-band (15–30 Hz) frequency range.

It is not clear, however, if this coherence reflects the control strategy selected by

the nervous system for a given task, or if it instead reflects an intrinsic property of

cortico-spinal communication. Here, we measured corticomuscular and intermuscular

coherence between muscles of index finger and thumb while a two-finger pinch grip of

identical net force was applied to objects which were either stable (allowing synergistic

activation of finger muscles) or unstable (requiring individuated finger control). We found

that beta-band corticomuscular coherence with the first dorsal interosseous (FDI) and

abductor pollicis brevis (APB) muscles, as well as their beta-band coherence with each

other, was significantly reduced when individuated control of the thumb and index finger

was required. We interpret these findings to show that beta-band coherence is reflective

of a synergistic control strategy in which the cortex binds task-related motor neurons into

functional units.

Keywords: coherence, dexterity, beta-band, neuromuscular, synergy, EMG, EEG

INTRODUCTION

Both corticomuscular and intermuscular synchronization, as quantified by coherence analysis
(Rosenberg et al., 1989; Farmer et al., 1993; Conway et al., 1995), provide an important means
of understanding the cortical drive to muscles (Conway et al., 1995; Baker et al., 1997; Brown, 2000;
Boonstra et al., 2009a). Corticomotor drive contains a 15–30 Hz (beta-band) oscillatory component
(Murthy and Fetz, 1992, 1996a,b; Sanes and Donoghue, 1993; Stancák and Pfurtscheller, 1996;
Donoghue et al., 1998; Mima and Hallett, 1999; Lebedev and Wise, 2000; Witham et al., 2010),
which entrains targeted motor neurons (Farmer et al., 1993, 1997; Mima and Hallett, 1999) and
leads to synchronization between cortical and muscular activities in that frequency range (Murthy
and Fetz, 1992; Conway et al., 1995; Baker et al., 1997; Salenius et al., 1997). Functionally-related
muscles also share a common intermuscular beta-band input (Kilner et al., 1999; Boonstra and
Breakspear, 2012; Boonstra, 2013), which is widely accepted as cortical in origin (Brown et al.,
1999), as the motor cortex is the only well-established source for such beta-band drive.

Although beta-band cortical drive has received a great deal of attention, its functional
significance for motor control remains unclear. Currently it is suggested that oscillations in this
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range functions to support a constant motor state (Kilner et al.,
2000; Pogosyan et al., 2009; Engel and Fries, 2010). This is
consistent with the observation that, during the production
of a constant force, beta-band coherence is strengthened with
continued sensory feedback and minimal voluntary movement
(Gilbertson et al., 2005; Androulidakis et al., 2006, 2007; Lalo
et al., 2007; Engel and Fries, 2010; Aumann and Prut, 2015).
While the magnitude of beta-band corticomuscular coherence
does correlate with force(Conway et al., 1995; Baker et al., 1997;
Kilner et al., 1999, 2000, 2004; Baker, 2007; Kristeva et al., 2007;
Witte et al., 2007), it disappears during movement (Baker et al.,
1997; Kilner et al., 1999, 2000, 2004; Brown, 2000; Feige et al.,
2000) and imagined movements (De Lange et al., 2008), and
there is even evidence that the signal is not entirely feed-forward
(Fisher et al., 2002; Baker et al., 2006; Witham et al., 2011). Such
findings raise important questions as to the functional role of
beta-band drive to muscles.

Numerous studies have investigated low force (< 5 N)
precision pinch paradigms to characterize cortico-spinal
interactions through the use of corticomuscular coherence
(CMC) (Muir and Lemon, 1983; Lemon and Mantel, 1989;
Lemon et al., 1995, 1998; Baker et al., 2003). Findings have
revealed that beta-band CMC is modulated by digit displacement
(Riddle and Baker, 2006), object compliance (Kilner et al., 2000),
and similar studies suggest a dependence upon the history and
time course of muscle contraction (Chakarov et al., 2009; Omlor
et al., 2011; Nazarpour et al., 2012). In nearly all cases, findings of
decreased beta-band CMC can be interpreted as reflecting either
(1) a departure from steady-state control of a particular muscle,
or (2) the cortical “unbinding” of muscles when individuated,
rather than synergistic, activation is called for. Given that beta-
band cortical activity has been suggested as a “binding” signal for
many years (Gray, 1994; Santello, 2014), and that such binding
would naturally favor synergistic rather than individuated
control of the fingers (Boonstra et al., 2009b; Danna-Dos Santos
et al., 2010; Kattla and Lowery, 2010; Aumann and Prut, 2015),
our overall hypothesis was that beta-band corticomotor drive
should be reduced or eliminated when the degree of individuated
muscle control is increased.

To address these issues, we studied beta-band corticomuscular
and inter-muscular coherence (CMC and IMC, respectively)
while participants applied low magnitude precision pinch forces
to one of two different objects. The first object was a solid wooden
dowel. Production of a constant pinch force against a solid
object represents a relatively simple task for the nervous system.
The second object was a custom-designed spring which buckles
when compressed unless prevented from doing so through
precise dynamic adjustment of thumb and index fingertip
forces. The spring task described herein has been modified
from Valero-Cuevas et al. (2003) and described in Dayanidhi
et al. (2013b). This task requires the dynamic regulation of
thumb and index fingertip force vectors in 3-D to stabilize
the spring, which can be modeled as undergoing an instability
similar to a subcritical pitchfork bifurcation (Venkadesan et al.,
2007). The physical movement of the fingers remains negligible
because large movements tend to increase the likelihood of
buckling.

If beta-band coherence depends on the generation of a
relatively stable pinch force, then coherence should change
relatively little across these two tasks. If beta-band coherence
is inherently an intermuscular binding signal, then we would
expect to see little coherence during compression of the unstable
spring, either in terms of CMC or IMC. Our findings support
this hypothesis and suggest that the dynamic, mechanical
relationships amongmuscles are likely critical factors shaping the
frequency content of corticomotor drive.

METHODS

Participants
We recruited 15 healthy participants (30.3 ± 4.6 years, 6
females) who were self-reported as right-handed. There were no
known prior or current neurological conditions in any of the
participants, nor did they report any previous hand injuries or
surgeries. This study was carried out in accordance with the
recommendations of Institutional Review Board (IRB) at the
University of Southern California (USC) with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the Office for the Protection of
Research Subjects at USC.

Task 1: Establishing Maximal Unstable
Spring Compression Force
The Strength-Dexterity test provides a quantitative measure of
hand dexterity by requiring dynamic regulation of endpoint force
direction and magnitude to stabilize a slender and compliant
spring prone to bucking (Valero-Cuevas et al., 2003). The
instability in the spring increases with compression force, and
thus the maximal compression force reached is indicative of
the greatest instability the neuromuscular system can control.
The force required to bring the spring to solid length was
approximately 3.7–3.8 N, however the maximal compression
force healthy adults can reach is less than 3.0 N (Dayanidhi,
2012). We specifically chose a spring with a low strength
requirement (<15% maximal precision pinch force) to focus
primarily on cortical drive involved with dexterity demand,
rather than strength. The resting length of the spring measured
4.2 cm in length, weighed approximately two grams and had
a spring constant of 0.86 N/cm. Custom designed 3-D printed
acrylonitrile butadiene styrene (ABS) plastic end caps were glued
to both ends of the spring to create flat surfaces on which to attach
a force transducer. Additional ABS end caps were attached on top
of the sensor for two purposes: (1) to provide a place for subjects
to grasp the object and (2) to serve as a thermal barrier to prevent
body heat from adding a bias to the temperature-sensitive force
transducer. With the addition of the end caps and sensor, the
effective resting length of the spring was 5.7 cm (Figure 1A).

In this task, subjects rested their right arm on a table and used
their index finger and thumb to compress the spring with their
hand resting on the table. During the task, we asked participants
to ensure that their 3rd–5th fingers did not assist in the task by
tucking them into their palm. They were given four attempts (90 s
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FIGURE 1 | Visuomotor force tracking paradigm for a representative subject. (A) A small compliant spring is compressed between the index finger and

thumb. Fingertip forces and bipolar surface EMG from the intrinsic hand muscles FDI and APB (not shown) were recorded. (B) Force tracking task showing three

random presentations during spring compression at forces of 1.0 and 2.1 N. Each force level (high or low) was presented to the subject for 30 s with an inter-stimulus

interval of 5 s. The blue trace represents the recorded compression force. Red dotted lines indicate the ±15% tolerance limits relative to target force. Data that are

within the tolerance limits for a minimum of 5 s in duration (shaded regions) were used in the coherence analysis. In the fourth hold, the compression force briefly fell

out of the tolerance range. (C) The visuomotor task is repeated with a stable wooden dowel. (D) Force tracking profile with the dowel at the same force levels and

tolerance limits as with the spring. Gray areas represent data within tolerance and dowel-low and dowel-high refer to dowel-low and dowel-high, respectively.

each) to try to compress the spring as much as possible (Valero-
Cuevas et al., 2003; Dayanidhi et al., 2013a,b; Lawrence et al.,
2014). The average maximal compression force reached prior
to spring buckling was taken as a normalized measure of their
dexterous performance. We rounded this maximal value to the
nearest tenth of a Newton and defined this as the subject-specific
Fmax. We then calculated 40 and 80% of the subject-specific Fmax

for use in the second phase of the study.

Task 2: Visuomotor Force Tracking
Subjects were seated comfortably in front of a computer
providing visual feedback of their precision pinch compression
force. They compressed either the same slender spring or a
wooden dowel (length= 5.2 cm, diameter= 0.12 cm, Figure 1C)
to visually track a series of randomly presented step targets set
to 40 and 80% of their Fmax. For three trials for a given object,
target force levels were presented at 30 s intervals with 5 s of rest
in between (Figures 1B,D). The trial lasted until five repetitions
of each force level were presented. During the resting periods,
the subjects would hold the object with just enough force to
prevent dropping it. Breaks were given in between trials when
necessary to prevent fatigue effects. Subjects then repeated the
procedure with the other object for the same number of trials and
force levels. This two-by-two factorial design yielded four force
conditions: spring-low, spring-high, dowel-low, and dowel-high.

Recordings
Force
Normal compression forces were measured by affixing a uni-axial
load cell (ELFF-B4-10L, Measurement Specialties, Hampton, VA)
with double-sided tape to the index finger side of either the
compliant spring or the wooden dowel. The circular load cell
measured 0.41 cm in height, 1.27 cm in diameter and aligned
perfectly with the diameter of the objects. Signals from the sensor
were differentially amplified with a custom designed circuit

operating in the 0–5 N range. Data were captured using a USB
Data Acquisition (DAQ) system (National Instruments, Austin,
TX) sampling at a rate of 2,048 Hz. Prior to data collection,
the sensor voltage was converted to Newtons by removing the
DC offset and calibrating the load-cell using a four-point linear
regression with fixed weights. The offset and gain of the load cell
were corrected periodically to ensure accurate force recordings.

Electromyography (EMG)
Bipolar surface EMG were collected using a Delsys Bagnoli
system (Delsys, Natick, MA) from the first dorsal interosseous
(FDI) and abductor pollicis brevis (APB). Data were filtered
between 20 and 450 Hz, amplified by 1000, and then sampled
at a 2048 Hz. The reference electrode for the recordings was
placed on the olecranon of the right arm. Recording locations
were identified by palpating the muscle during force production
in the direction of mechanical action for each muscle.

Electroencephalography (EEG)
Sixty four channels of EEG were recorded at a sampling rate of
2048 Hz (ANT Neuro, Enschede, The Netherlands). The fixed
recording sites were arranged according to the international 10–
20 system for scalp electrode placement. We ensured repeatable
recordings of cortical areas across subject by taking skull
measurements and placing electrode Cz at the cross section of
the midway point between the nasion and inion and the midway
point between the left and right tragus of the ear. Electrode
impedances were kept below 10 k with respect to the reference
electrode CPz.

Following digitization, EEG signals were bandpass filtered
between 10 and 500 Hz and both EEG and EMG signals were
notch filtered at 60 Hz and its harmonics up to 500 Hz using a 4th
order Butterworth filter implemented in MATLAB (Mathworks,
Natick,MA) and FieldTrip, a software package for EEG and EMG
analysis (Delorme and Makeig, 2004; Oostenveld et al., 2011).
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Subsequently, EMG were rectified to extract group activity of
motor units (Halliday et al., 1995; Mima and Hallett, 1999). Data
formats collected from two separate systems were synchronized
by configuring theNI-DAQ to send a trigger pulse to the EEG and
EMG systems via a split BNC cable. Custom scripts were created
to read in trigger events and synchronize all data.

Trial Selection
The start of a trial was defined as the time when the on-screen
target transitioned from a resting value to either 40 or 80%
of Fmax, and its end was defined as the time when the target
value returned back to rest. Trial windows were 30 s in duration
with a 5 s inter-stimulus interval. Sample traces of the matching
paradigm are shown in in Figure 1B for the spring (blue trace)
and in Figure 1D for the dowel (orange trace); each showing
three randomized presentations of the low and high force levels
(note that the force levels are the same across objects). Force
data during these steady hold phases were visually examined to
determine if the task was performed correctly. Our requirement
was that the hold phase must be within a ±15% tolerance of the
target force value and be held within this range for at least 5 s. The
force profiles meeting these criteria are shown as the gray shaded
areas in Figures 1B,D. Force profiles not meeting these criteria
were excluded from analysis. The accuracy of the force matching
task was analyzed by taking the root mean square error of the
steady hold force compared to the target level for each of the four
conditions.

Epochs of synchronized EEG and EMG from each condition
that satisfied the steady-state criteria were normalized and pooled
across conditions and subjects (Amjad et al., 1997). Normalizing
each epoch of data gives equal weight to each section and
effectively eliminates the possibility of coherence bias which
favors sections with high EMG amplitude (Amjad et al., 1997;
James et al., 2008; Schoffelen et al., 2011).

Coherence Analysis
Synchronous oscillations between cortical activity and EMG
indicate functional connectivity which can be assessed through
coherence analysis (Nunez et al., 1997; Mima and Hallett, 1999).
Briefly, coherence measures the temporal correlation between
two signals through the strength of the consistency of their phase
lag as a function of frequency. The result is a coherence spectrum
bounded between 0 and 1 for each frequency of interest. A value
of 1 indicates a perfect temporal correlation, while 0 indicates no
correlation.

For a given time series, x(t), let the auto spectrum be
represented as

Pxx(f) =
1
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L
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Coherence is calculated by normalizing the square of the cross-
spectral density between signals x (t) and y(t) by the product of
their individual auto spectral densities (Baker et al., 1997; Nunez
et al., 1997) as represented by
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Corticomuscular coherence (CMC) refers to the specific case
where cortical and muscular signals represent x (t) and y(t).
CMC was computed for each EEG-EMG electrode pair as well
as FDI-APB coherence using FieldTrip, an open-source toolbox
in MATLAB for the analysis of EEG and MEG data (Oostenveld
et al., 2011). We used discrete prolate spheroidal sequences
(DPSS) or Slepian tapers (Slepian, 1978) for the calculation of
the auto and cross spectra. The multi-taper method provides
several measures of the spectral estimation by multiplying the
data series by a series of orthogonal tapers prior to calculating the
Fourier transform (Pesaran, 2008). Three tapers were used in our
analysis, providing a spectral bandwidth of ±5 Hz (Maris et al.,
2007; Schoffelen et al., 2011).

Selection of EEG Electrodes
Although CMC can be calculated between each muscle and every
scalp electrode, we limited our selection to EEG electrodes that
showed high FDI-EEG coherence during the dowel-low task.
Similar low-force isometric precision task have been previously
used in literature for CMC analysis (Baker et al., 1997; Kilner
et al., 2000; Fisher et al., 2002; Riddle and Baker, 2006; Chen et al.,
2013). Raw coherence values were first normalized by conversion
to standard Z-scores using the following formula

Z =
arctanh

(√
C
)

√
1/2N

Where N is the total number of tapers used in the calculation
of coherence (C) (Baker et al., 2003; Laine et al., 2013, 2014).
The electrode locations selected for further analysis were those at
which the average Z-score exceeded a Bonferroni-corrected 99%
confidence level (Z = 3.6). The correction accounts for the total
number of EEG channels.

Linear Mixed-Effects Model
A linear mixed-effect model provides a method of describing a
relationship for a measurable quantity as a function of the sum of
weighted independent variables (Winter, 2013). We investigated
the effects of task condition on beta coherence using a linear
mixed-effect model with the following format:

CMCβ = β0 + β1 · Condition+ β2 ·
(

1|Participant
)

+ ǫ

where CMCβ is the average beta-range coherence of an epoch,
Condition (high and low force for both the spring and dowel)
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is the fixed-effect term, Participant is the random-effect term,
βn terms are the coefficients for the independent variables, and
ǫ is the error. The random-effects term was inserted to account
for subject variability since several measurements were taken for
each condition.Models were generated to estimateCMCβ for the
FDI and APB well as beta intermuscular FDI-APB coherence.

RESULTS

Baseline Corticomuscular Coherence
To confirm the spatial sensitivity and validity of our analysis
procedures, we calculated FDI-EEG coherence for the dowel-
low condition. Figure 2A shows a head map of the average Z-
transformed corticomuscular coherence between the FDI and
all EEG channels. The locations of the four electrodes that
exceeded our significance threshold (described previously) are
shown in white over the left primary motor cortex and labeled
C3, C1, CP3, and CP1. The spatial localization and magnitude
shown over the left sensorimotor cortex coincides with previous
literature findings during low force production (Witte et al., 2007;
Chakarov et al., 2009; Piitulainen et al., 2013).

Cortical drive to the FDI during the dowel-high and spring-
high conditions was directly compared. Figure 2B shows the
average Z-transformed coherence spectra (5–100 Hz) of the
four significant electrodes for the dowel-high (orange trace) and
spring-high (blue trace) conditions. The peak coherence for both
conditions appeared in the beta frequency range (gray shaded
area in Figure 2B). The peak Z-transformed coherence during
the dowel-high condition was 6.84 at 20.1 Hz. Despite matched
force levels, however, the peak coherence during the spring-high
condition decreased to 4.59 at 21.1 Hz.

Linear Mixed-Effect Model
Figure 3 shows the results of the linear mixed-effects model
which tests the effects of condition on beta FDI-EEG (Figure 3A)

and APB-EEG (Figure 3B) beta-range coherence. Using an F-
test, we compared the difference in effect of spring-low and
dowel-low model coefficients on beta CMC. We found no
significant difference in effect of low force coefficients on either
FDI-EEG or APB-EEG beta coherence. It is important to note
that, in these low force conditions, both objects remain in the
stable domain as the spring has not been compressed enough to
exhibit instability.

A similar comparison of the difference in the linear mixed-
effect coefficients for the spring-high and dowel-high conditions
revealed a significance difference in effect on both FDI-EEG
(p = 6.8459e-08) and APB-EEG (p = 1.6889e-05) beta-range
coherence. Overall, CMC was reduced in the unstable task
(spring-high condition) compared to the stable task (dowel-high
condition) with matched force levels. During the high force
compression conditions, the dowel remains in the stable domain,
but the spring has been compressed to the point of instability.

EMG-EMG Coherence
We tested for changes in FDI-APB beta coherence across
the higher force conditions. Figure 4A shows the FDI-APB
intermuscular coherence for the spring and dowel objects. The
dowel-high condition showed a peak beta range Z-transformed
coherence of 6.59 at 24.6 Hz. This peak value was significantly
higher than for that of the spring-high condition, which had a
peak value of 2.33 at 24.4 Hz. Figure 4B depicts the results of the
linear mixed-effect model showing that the effects of the dowel
was significantly higher than for the spring at the high force level
(p= 4.9415e-10).

DISCUSSION

In this study, we have examined the functional meaning of beta-
band corticomotor drive. Specifically, we tested the hypothesis
that beta-band cortical drive reflects the “binding” of motor

FIGURE 2 | Results for the dowel-low task. (A) Grand average Z-transformed FDI-EEG coherence head map for the dowel-low task with all electrode locations

marked. The four electrodes used for statistical analyses were C1, C3, CP1, and CP3 (labeled) with respective Z-transformed coherence values of 4.81, 5.26, 4.66,

and 4.54. The cluster of electrodes appears over the left sensorimotor cortex. (B) Average coherence spectra of the four electrodes shown in (A) for the spring-high

(blue trace) and dowel-high (orange trace) tasks. The beta frequency band (15–30 Hz) is shown as the gray shaded area. Peak coherence of the average for the

spring-low condition was 4.59 at 21.05 Hz and for the dowel-high condition, 6.84 at 20.1 Hz.
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FIGURE 3 | Results of the linear mixed-effects model for the four conditions: dowel-low (DL), spring-low (SL), dowel-high (DH), and spring-high (SH).

The model was constructed to predict mean beta range coherence using condition as the fixed-effect with corrections for the random effects of participant. In each

bar graph, the mean beta range CMC is shown on the vertical axis and condition is on the horizontal axis. Bars representing one standard error are shown for each

condition and significance above the matched force level column pairs represent the statistical difference in the linear mixed-effect coefficients as determined using an

F-test. (A) Linear mixed-effect found no differences in FDI-EEG beta coherence for the low forces, but found a significant difference between the higher force

compression conditions. (B) Linear mixed-effect model results for APB-EEG coherence show the same statistical results for low and high conditions as in FDI-EEG.

FIGURE 4 | FDI-APB intermuscular coherence. (A) Grand average EMG-EMG coherence calculated between the FDI and APB for the spring-high (SH, blue trace)

and dowel-high (DH, orange trace) tasks. Peak coherence was 6.59 at 24.63 Hz for the dowel-high condition and 2.33 at 24.44 Hz for the spring-high task. (B) Linear

mixed-effect model results for the effect of condition on FDI-APB coherence. The effect of dowel-high on beta coherence was significantly higher than for the

spring-high condition (p < 0.001).

neurons into functional units for synergistic cortical control, and
thus should depend upon the type/degree of muscle coordination
required by a task. Our findings provide evidence that beta-band
corticomotor drive is inherently a reflection of intermuscular
“binding” rather than steady isometric force production.

It is known that synergistically-activated muscles share
beta-band cortical drive, as measured by intermuscular EMG
coherence (Kilner et al., 1999; Boonstra and Breakspear, 2012;
Boonstra, 2013). It has been suggested that this phenomenon
reflects the “binding” of these muscles into a functional unit (or
synergy) at the cortical level (Gray, 1994; Santello, 2014). As
such, we predicted that beta-band CMC should emerge more
prominently when the task of the motor cortex can be reduced
to scaling the activation of a functional group of motor neurons

(Valero-Cuevas, 2000). The idea that cortical output should
reflect the dimensionality of a task is in line with the work of
Rathelot and Strick (2006, 2009) who proposed that the motor
cortex in humans and some higher primates may have evolved
specific pathways (an “old” and “new” M1) to allow optional and
flexible utilization of muscle synergies or “motor primitives.”

In this study we have used compression of a slender
spring to obligate time-varying fingertip force adjustment while
minimizing physical movement and changes in net force (Valero-
Cuevas et al., 2003; Dayanidhi et al., 2013a,b; Lawrence et al.,
2014). This paradigm has been shown in an fMRI study
to increase the engagement diverse brain networks (Mosier
et al., 2011) beyond what is required for less-demanding
actions. Succeeding at the unstable task (spring-high) requires
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a level of independent dynamic control of the muscles of
the thumb and index finger to dynamically regulate fingertip
force vectors to stabilize the spring (Johanson et al., 2001;
Venkadesan et al., 2007), which is not the case for isometric
tasks like when a wooden dowel is pinched (Valero-Cuevas,
2000). Accordingly, our data showed a general reduction of
intermuscular coherence between the EMG signals recorded
from the APB and FDI muscles when the spring was compressed
at a level that induced instability. The reduction of beta-band
(15–30 Hz) coherence between muscles can be interpreted
as stemming from an “unbinding” of these two muscles at
the level of the cortex. Changes in force alone would not
explain our results, since little change in IMC was observed
in the dowel-low vs. dowel high condition. Further, increased
spring compression force is associated with increased instability,
but not changes in spring compliance. Our results almost
certainly reflect a neural reaction to the demands of controlling
instabilities.

Similar to our findings for IMC, CMC in the beta-band
was markedly reduced for the FDI and ABP muscles when the
spring became unstable in the spring-high condition. If this
phenomenon were simply due to increased noise in the EEG
signal (e.g., due to increased cortico-cortical communication
during the more difficult task) we would expect that IMC would
have been preserved (since the muscles would still share beta-
band cortical drive), but this was not the case. Further, a change
from static to dynamic force production is known to increase
high-frequency (30–50 Hz) CMC as beta-band CMC shifts to
higher frequencies (Omlor et al., 2007). We did not observe this
type of shift. The simplest interpretation would be that the beta-
band cortical drive was fundamentally an intermuscular signal
in this task, and that a shift in cortical control strategy occurred
when the thumb and index finger muscles required independent
control. This interpretation is also in line with evidence from a
pilot study in which within-muscle motor unit coherence was
reduced in the APB muscle during the same high-force spring
compression task (Laine et al., 2015). A relationship between
beta-band cortical drive and control strategy also agrees with
its dependence on psychosensory aspects of a task (Laine et al.,
2014), although typically it is the higher frequencies of cortical
drive (30–50 Hz) which show the greatest sensitivity to such
features (Brown et al., 1998; Omlor et al., 2007, 2011; Patino et al.,
2008; Mehrkanoon et al., 2014).

Recently it has been hypothesized that beta oscillations arise
from closed loops from M1 to muscle synergies back to M1
(Aumann and Prut, 2015). As such, during sustained contraction
of a muscle, groups of sensorimotor neurons oscillate in
synchrony to maintain the current state (Engel and Fries, 2010).
Conversely during movement, de-synchrony of the local group
disrupts beta rhythms. The results obtained in this study support
this closed-loop hypothesis given in the fact that during the
stable conditions (i.e., spring-low, dowel-low and dowel-high),
synergistic muscle activations were necessary for producing the
target forces. However, in the spring-high condition, it was
necessary to disrupt these synergies despite the fact that a
relatively constant net force was maintained.

Confounds and Alternative Explanations
Physical differences in the objects compressed are of key
importance to this study. Our interpretation is that the primary
factor was the decreased stability of the spring when compressed
at higher forces, however, small differences finger position,
movement, object compliance, etc. could influence coherence
measures and must be considered.

In a previous study, Kilner et al. found positive correlations
between the magnitude of beta-band CMC and object
compliance during a ramp and hold precision pinch task
(Kilner et al., 2000). In our study, we did not observe a difference
in beta-band CMC between the dowel-low and spring-low
conditions, and at high forces, we observed a reduction rather
than an increase in beta-band CMC. While the study of Kilner
et al. shares many similarities with the work presented here, the
compliant object used in our study was free at both ends and
had the propensity to buckle and slip out of the hand when
compressed at applied forces>2.2 N. In contrast, two fixed levers
with programmable compliance were compressed in the study of
Kilner et al. Such differences make direct comparison between
studies inexact, but it is clear that the higher compliance of the
spring relative to the dowel should, if anything, favor beta-band
coherence (Kilner et al., 2000), as should higher force relative
to lower force (Witte et al., 2007). Accordingly, our observation
of decreased beta-band coherence in the spring-high condition
appears to be related to a change in neuromuscular control
strategy in response to the reduced stability of the spring. If very
small movements can influence CMC (Kilner et al., 1999), then
it is possible that the underlying reason for this may relate to the
fact that movement may not allow muscles to be “bound” in the
same way as is possible during static isometric force production.
Although the physical positioning of the fingers can also have
an influence on coherence (Riddle and Baker, 2006) the final
position of the fingers during spring vs. dowel compression did
not differ by more than about 1 cm, and we have no reason to
believe that this would have been a major factor in the present
study. Moreover, prior fMRI work in this same task has shown
that the presence of instability has an effect distinct from that of
compliance (Mosier et al., 2011).

It is also important to consider potential drawbacks of using
EEG and surface EMG signals. For example, surface EMG will
not be as sensitive as single motor unit recordings (Keenan et al.,
2012) and may be influenced by signal processing techniques
such as filtering or rectification (Boonstra and Breakspear, 2012;
Farina et al., 2013). Even so, a systematic difference in the
sensitivity of EMG signals to beta-band drive across tasks seems
an unlikely explanation for our results, especially given the low
levels of force required and our use of the most appropriate
signal processing methods (i.e., EMG rectification) under these
conditions (Farina et al., 2013).

It is relevant that compression of the spring to the point that
it becomes unstable is an inherently difficult and demanding
task. While there is increasing evidence that M1 activity may be
involved with the perception of task goals (Shen and Alexander,
1997; Cisek et al., 2003; Scott, 2003), our suggestion is that the
perception of difficulty in motor tasks is secondary to more
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tangible factors, such as the need for time-critical sensorimotor
corrections, and individuated vs. synergistic control of muscles.
In one recent study, for example, beta-band CMC was reduced
when the degree of bimanual muscle coordination was increased
through a visual feedback manipulation (de Vries et al., 2016).
The interpretation was that beta-band CMC relates to the
control of individual muscles, rather than coordination. The
opposite argument could also be made, however, because in
that study, errors of force may have been perceived and
corrected individually for each hand in order to achieve better
overall bimanual coordination. This would be in line with our
coordination-based interpretation of beta-band drive to muscles.
The same study also found that low-frequency IMC (∼10 Hz)
across hands was highest when bimanual coordination was
highest. Because ∼10 Hz CMC is not present in that study nor
our own, low-frequency drive to individual muscles cannot be
measured or compared concurrently with inter-muscular drive
(i.e., IMC). This makes it difficult to attribute changes in IMC
to inherently coordination-related aspects of our tasks, rather
than other factors which might influence the production of low-
frequency neural drive in general. That said, our Figure 4A

does visibly show low-frequency IMC reduced along with the
beta-band in the spring-high condition, which certainly justifies
further investigation of this issue.

Overall, our study tests the notion that beta-band cortical
drive essentially reflects the dimensionality of cortical
commands, and our results strongly suggest that beta-band
CMC should be interpreted carefully, with special attention to

muscle coordination and time-critical sensorimotor demands.
Our current speculation, supported by the findings of this
investigation, is that beta-band CMC reflects the use of a low-
dimensional mode of cortical control over groups of muscles,
rather than the maintenance of a steady-state force output. While
fully understanding the neurophysiology and task-dependence
of cortico-motor oscillations requires further study, our results
justify such future work and provide a springboard for more
focused investigations into the relationship between the physical
requirements of a task and neural control strategies necessary
to satisfy them. Finally, such insights into the origin and
modulation of cortico-motor oscillations would not only clarify
fundamental mechanism for sensorimotor control, but perhaps
provide well-founded tasks and analyses directly translatable to
clinical measures and diagnostic tests (Norton and Gorassini,
2006; Hammond et al., 2007; Pogosyan et al., 2009; Fisher et al.,
2012; Ko et al., 2016).
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Of particular interest to the neuroscience and robotics communities is the understanding  
of how two humans could physically collaborate to perform motor tasks such as holding 
a tool or moving it across locations. When two humans physically interact with each 
other, sensory consequences and motor outcomes are not entirely predictable as 
they also depend on the other agent’s actions. The sensory mechanisms involved in 
physical interactions are not well understood. The present study was designed (1) to 
quantify human–human physical interactions where one agent (“follower”) has to infer the 
intended or imagined—but not executed—direction of motion of another agent (“leader”) 
and (2) to reveal the underlying strategies used by the dyad. This study also aimed 
at verifying the extent to which visual feedback (VF) is necessary for communicating 
intended movement direction. We found that the control of leader on the relationship 
between force and motion was a critical factor in conveying his/her intended movement 
direction to the follower regardless of VF of the grasped handle or the arms. Interestingly, 
the dyad’s ability to communicate and infer movement direction with significant accuracy 
improved (>83%) after a relatively short amount of practice. These results indicate that 
the relationship between force and motion (interpreting as arm impedance modulation) 
may represent an important means for communicating intended movement direction 
between biological agents, as indicated by the modulation of this relationship to intended 
direction. Ongoing work is investigating the application of the present findings to opti-
mize communication of high-level movement goals during physical interactions between 
biological and non-biological agents.

Keywords: human–human interaction, impedance, leader and follower, physical interaction, stiffness

inTrODUcTiOn

Collaboration, defined as the act of cooperation among multiple agents toward the attainment 
of a common goal, is one of the most sophisticated behaviors exhibited by biological organisms. 
Although cooperation is ubiquitous among a wide range of species ranging from ants to primates, the 
level of sophistication reached by humans in their ability to cooperate is unparalleled in the animal 
kingdom. Of particular interest to the neuroscience and robotics communities is the understanding 
of how humans collaborate to perform motor tasks.

Physical collaboration between two homologous biological agents, such as two humans hold-
ing a tool or moving it across locations, entails complex sensorimotor processes. Specifically, the  
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problem of physically collaborating with another agent to 
perform a given motor task introduces control problems that go 
well beyond those encountered when controlling one’s own limb. 
For example, planning and execution of reaching or grasping 
movement are thought to occur through an internal model of the 
agent’s limb that allows prediction of the sensory consequences 
of the motor action (Johansson and Flanagan, 2009; Wolpert 
et  al., 2011). Examples of such phenomena are the temporal 
coupling of grip and load forces associated with moving an 
object denoting anticipation of movement-related inertial forces 
(Flanagan and Wing, 1997), or the anticipatory control of torque 
prior to lifting an object with an asymmetrical center of mass 
(Salimi et al., 2003; Bursztyn and Flanagan, 2008; Fu et al., 2010, 
2011; Fu and Santello, 2012; Mojtahedi et al., 2015). However, 
when two humans physically interact with each other, sensory 
consequences and motor outcomes are not entirely predictable 
as they also depend on the other agent’s actions. Therefore, the 
question arises as to how the central nervous system of each 
agent factors in the other agent’s actions when physically inter-
acting with each other to perform a collaborative task. A better 
understanding of this problem can help developing biologically 
inspired controllers supporting human–robot physical interac-
tions, e.g., exoskeletons used for neurorehabilitation or physical 
augmentation, and optimizing the way these interactions can be 
performed.

Physical interaction between humans and robots has been 
mainly investigated using the notion of mechanical impedance. 
Hogan (1985) first proposed robot impedance controllers as 
a way to guarantee stable and robust behavior of a robot that 
interacts with a human. Since then, a plethora of robot applica-
tions involving physical human–robot interaction use control 
of impedance, and in most cases, this is done to purposefully 
impose a specific dynamic behavior to the human agent. For 
example, the MIT-MANUS—used extensively for upper limb 
rehabilitation—uses the concept of impedance control in a 
back-drivable system to restrict the motion of the patient’s arm 
along a specific path, while the patient tries to reach a target via 
a manipulandum attached to his/her paretic arm (Krebs et al., 
1998). For this scenario, impedance control is used to assist the 
human subject to reach a pre-defined target and imposes high 
resistive forces to motion that is not congruent with the desired 
trajectory.

The main objective of our study was to quantify the extent 
to which the human body (mainly upper limb) impedance can 
be used to infer intended movement direction of a cooperating 
agent in absence of other sensory cues (e.g., vision, hearing). 
Specifically, the present study sought to characterize the role 
of haptic information, which includes the relationship between 
force and displacement in a power exchange between two agents. 
We pursued this objective by quantifying human–human physi-
cal interactions where one agent (“follower”) was asked to infer 
the intended direction of motion of another agent (“leader”). 
In this design, the follower is trying to estimate the direction 
that the leader would allow them to move. Our interpretation 
of this interaction is that (1) the leader’s intended movement 
direction modulates this relationship in a direction-specific 
manner and (2) the follower can interpret this direction-specific 

modulation of this relationship to infer the leader’s intended 
movement direction. Note that the impedance in formal sense 
is quite complicated to measure due to the involvement of 
inputs/responses from both leader and follower who are physi-
cally coupled. So, even if the leader hypothetically modulated 
impedance to “instruct” the follower, the measure of leader’s 
impedance would not reflect the follower’s behavior as they 
both probe and react to the forces and motions. Briefly, we 
hypothesize that the emergent dyadic behavior (follower’s 
inference of leader’s intended direction) could be captured 
by the relationship between resultant force and displacement. 
Certainly, dyad’s arm impedances could affect this relationship, 
but certain aspect of dyad’s behavior interaction such as fol-
lower’s probing strategy could not be considered as impedance. 
Thus, the current study could only directly show and support 
how the relationship between force and displacement would 
change while we interpret the changes in the relationship as arm 
impedance modulation.

We also investigated the role of visual feedback (VF) in com-
municating intended directions via arm impedance modulation. 
We hypothesized that cooperating agents would be able to use 
arm impedance modulation to effectively communicate intended 
movement direction among cooperating agents. Previous studies 
have shown that humans can adapt to force fields during reaching 
tasks by modulating their arm impedance over time (Franklin 
et al., 2007; Wong et al., 2009). Therefore, we hypothesized that 
repeated exposure to the leader’s impedance would lead to a 
trial-by-trial modulation of arm impedance and improvement in 
follower’s ability to infer the leader’s intended direction. Finally, 
we hypothesized that haptic feedback would be sufficient to 
enable cooperating agents to accurately communicate intended 
movement direction through modulation of arm impedance.

MaTerials anD MeThODs

subjects
We tested 20 right-handed subjects (12 males, 8 females; age: 
18–28 years). Hand dominance was self-reported. Subjects had 
no history or record of neurological disorders and were naïve to 
the purpose of the studies. Subjects gave informed written consent 
to participate in the experiments. The experimental protocols 
were approved by the Institutional Review Board at Arizona 
State University and were in accordance with the Declaration 
of Helsinki. Five pairs of subjects (dyads) were assigned to the 
experiment with VF, whereas the other five dyads were assigned 
to the experiment with no visual feedback (NVF).

experimental apparatus
Each dyad was shown 12 lines oriented 30° apart from each other 
denoting movement direction and a circle (5-cm radius) on a 
computer screen (Figure 1). A number (1–12) was displayed at 
the outer end of each line. In the VF experiment, the dyad saw a 
dot on the screen. The dot position was colocated with the posi-
tion of the handle the two subjects were holding and was located 
underneath the screen. The dot displayed on the monitor moved 
the same amount as the handle (ratio 1:1). The handle movement 
was constrained by the robot arm in the horizontal plane. The 
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FigUre 1 | experimental apparatus. (a) The robot arm constrains the movement of the grip device handle such that dyad can only move within the horizontal 
plane. The “leader” and “follower” grasped the lower and upper grip handles, respectively. Dyads were shown 12 direction lines and a circle on a computer screen. 
The cardinal directions are 1, 4, 7, and 10. The dot position on the screen was colocated with the position of the handle. (B) The follower and leader grasp upper 
and lower handles, respectively.

Mojtahedi et al. Inference in Human–Human Physical Interaction

Frontiers in Neurorobotics | www.frontiersin.org April 2017 | Volume 11 | Article 21

screen prevented the dyad from seeing the arm configuration of 
the other agent and the grip handle. In the NVF experiment, the 
dyad could not see the dot position but could still see the direc-
tion lines and circle.

For both experiments, we used an anthropomorphic 7-degree-
of-freedom robot arm (LWR4+, KUKA) with the associated KRC 
robot controller and the KUKA’s Fast Research Interface. We used 
two load cells (Model: 3140-500 kg, precision: 0.02% FS, one-axis 
force sensor) embedded in the grip device to measure the result-
ant forces of the dyad in x- and z-axis (Figure 1).

experimental Tasks
One subject was designated as the “leader,” whereas the other was 
designated as the “follower.” At the start of the trial, the handle 
and corresponding dot displayed on the screen were positioned 
in the center of the circle. For each trial, the experimenter showed 
a specific number on a sheet to only the leader. This number was 
one of the 12 possible movement directions, which we will refer to 
as the “intended direction of movement” for that trial. The leader 
was instructed that his/her goal was to plan the movement in 
the direction that was shown to them by the experimenter while 
keeping the object as close as possible to the center of the circle 
(Figure 1). Therefore, leader thought about performing a move-
ment rather than executing it in the direction assigned by the 
experimenter. The follower was instructed that his/her goal was 
to infer the leader’s intended direction of movement. The follower 
was also instructed that he/she could move the grip handle as 
he/she desired, but that he/she had to stay within the circle. The 

leader was instructed to react to the forces and motion of the  
follower while preserving the intention to move in a given 
intended direction. Thus, the leader tried to hold the handle in 
the middle of the work space and resisted all motion. The fol-
lower explored the space to infer the intended direction of leader. 
Whenever the position of the grip handle and the corresponding 
dot moved out of the circle, the color of circle and direction 
lines changed from blue to red to signal that the trial had to be 
stopped and repeated. Therefore, both groups received VF of 
the error, i.e., they were shown when the grip handle crossed 
the boundaries of the circular workspace. The subject pairs in 
the VF group never moved out of range. For the NVF group, the 
handle moved out of range only on four trials performed by three 
subject pairs (0.95% of all trials across five subject pairs in NVF). 
The grip handle range of motion was not physically constrained. 
After performing each trial, the follower was asked to write the 
number of the inferred direction on an answer sheet. During the 
whole experiment, neither the follower nor the leader received 
any feedback about his/her performances from experimenter, nor 
was the leader informed about the follower’s performance by the 
follower or the experimenter. Verbal communication between the 
subjects, as well as between the subjects and the experimenter, 
was not allowed before, during, or after the trial.

The role of each subject in the dyad can therefore be described 
as follows.

The “leader” was asked to

• Plan his/her intended direction (1 out of 12).
• Sense the follower’s applied force direction.
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FigUre 2 | Percentage of accurate inferences of follower across 
trials for both visual feedback (a) and no visual feedback (B) groups 
(all subjects). Vertical bars denote SEMs.
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• React to the follower’s forces by maintaining the handle as 
still as possible at the center of the circle while preserving the 
intention to move in the instructed direction.

The “follower” was asked to

• Apply forces to infer the leader’s planned movement direction 
while remaining within the circle (5 cm radius).

• Sense the leader’s reaction to his/her own forces.
• Infer the planned direction and write it in the answer sheet.

Subjects were asked to keep their right hand close to the grip 
handles and wait for a “go” signal. As soon as they heard the 
“go” signal, they were asked to grasp the handle and started to 
interact with each other. Subjects initially performed 24 trials 
(2 repetitions per directions; Trial: 1–24) to reach a plateau in 
the performance, e.g., correct inference of the leader’s intended 
movement direction. Pilot data had revealed that this number 
of trials had been found to be sufficient for familiarization 
purposes. Then, subjects continued to perform 60 more trials 
(5 repetitions per direction; Trial: 25–84). The order of direc-
tions was randomized in both Trial: 1–24 and Trial: 25–84. We 
used different randomized order across dyads. Each trial lasted 
30 s. The same instructions were given to the groups with and 
without VF.

At the beginning of each trial, the arm posture was inspected 
by the experimenter to ensure the same posture would be used 
across trials. Handle position was always located on the sagit-
tal plane, and the trunk was as close as possible to the frame to 
prevent both subjects from viewing their arm configuration. The 
experimenter also verified that subjects kept their gaze on the 
monitor on each trial.

Data recording, Processing, and 
experimental Variables
The robot was used to restrict motion of the fixture to the hori-
zontal plane, prevent rotation of the fixture, and record the posi-
tion of the grip handle during the experiment. We synchronized 
collection of position and force data. Position and force data were 
recorded at a sampling rate of 100 Hz and run through a fifth-
order Butterworth low-pass filter (cutoff frequency: 30 Hz). The 
first-time derivative of force or position data was also low-pass 
filtered with cutoff frequency of 15 Hz.

Percentage of inferences
The dyad’s goal was to minimize the error between the leader’s 
intended direction and the follower’s inference. Therefore, all the 
metrics were defined based on this task requirement. To quantify 
the extent to which the follower could correctly infer the leader’s 
intended movement direction, we computed the percentage of 
accurate inferences (PAI) by each follower relative to the total 
number of trials based on his/her responses in the answer sheet. 
The follower’s error direction with respect to the leader’s intended 
direction was defined as the difference between leader’s intended 
direction and follower’s response. This error direction could be 
any number ranging between −6 and +5. An accurate inference 
of the follower would correspond to a difference of 0, whereas 
non-zero differences would denote inaccurate inferences. Positive 

sign of error direction (with respect to the leader’s intended  
direction) indicated counterclockwise difference between the 
leader’s intended direction and the follower’s response (Figure 1). 
One error direction with respect to intended direction is equiva-
lent to 30° (Figures 1 and 2).

In Figure 1, we define the directions 1, 4, 7, and 10 as cardinal 
directions and all other directions as non-cardinal. This distinc-
tion was motivated by the fact that accurate inferences of the 
leader’s intended movement direction differed across cardinal 
versus non-cardinal directions (see Statistical Analysis).

Force–Displacement relationship
In the present work, the term impedance denotes to the effect 
of voluntary muscle activations of mainly the upper limb to 
the limb dynamics. Those dynamics largely affected by the 
muscle activations include both the stiffness and the damping 
characteristics of the arm, which are only apparent when there 
exists force interaction with the environment, in the current 
case the follower. In the dyadic interaction, the resultant 
force denotes to the net force which both leader and follower 
together generated on the handles. In the current experiment, 
the robot is entirely passive because the friction and damping 
effects of the robot are feed-forwarded to the joints by a torque 
controller, and therefore, their magnitudes are negligible (close 
to 0; the robot inertia and damping are by default compensated 
through the built-in impedance controller of the KUKA arm). 
The inertia effects are also negligible due to the low acceleration 
in the handle motion. The average of absolute acceleration of 
the handle was 16.02 (±0.35) cm/s2 (1.63 ±  0.04% of gravity 
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FigUre 3 | Percentage of accurate inferences of follower for each 
leader’s intended movement direction computed (across all subjects). 
(a) Trial: 1–24. (B) Trial 25–84. Data for each direction are means averaged 
across all subjects. The cardinal directions are 1, 4, 7, and 10. The dash lines 
represent the SE. The four concentric gray circles represent the ring axes of 
percentage. 100% is the biggest ring, while 0% is a dot in the center which is 
not shown.

FigUre 4 | Percentage of accurate and inaccurate inferences of follower (all subjects). (a) Trial 1–24. (B) Trial 25–84. Data are means averaged across all 
subjects. Vertical bars denote SEMs. Asterisks indicate a statistically significant difference (p < 0.001). Percentage of accurate inferences is the percentage value of 
0 error direction with respect to intended direction. One error direction with respect to intended direction is topographically equivalent to 30°.
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acceleration). Thus, the damping and inertia effects are mini-
mum relative to the stiffness effects due to the low velocity and 
low acceleration, respectively, of the handle motion. Therefore, 
consistent with the previous work (Mussa-Ivaldi et  al., 1985; 
Formica et al., 2012), we assume that the total change in force 
[ΔF(n)] is primarily caused by the stiffness of the subjects 
interacting with each other.

In the present work, the estimation of the stiffness depends on 
the follower’s exploration of the workspace, which is very different 
from the systematic exploration of an equal number of movement 

directions as tested in previous work (Perreault et al., 2001; Krebs 
et al., 2003). So, we had to use a different approach to quantify 
the relationship between force and motion due to limitations of 
applying a conventional approach to estimate stiffness. We used 
Eq. 2 to calculate the force–displacement relationship (|k|):

 F n F n F n U n U n U nx z x z( ) ( ) ( ) ; ( ) ( ) ( )= + = +2 2 2 2
 (1)
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Equation  1 describes how to calculate the force [F(n)] and 
displacement [U(n)] magnitudes for each time point (n). As we 
see later in Figure 5, the follower did not explore all the points in 
the circle with 5-cm radius; and it illustrates that the magnitudes 
of force and displacement are changing reversely regardless 
of their directions or vector properties, e.g., small forces and 
large displacements are along the intended direction, while we 
have large forces and small displacements for other directions 
(Figures 5A,B). Therefore, it seems that considering only mag-
nitudes is enough to discriminate the relationship between force 
and displacement across directions. So, the k in Eq.  2 should 
be calculated on the points visited by the follower. To avoid the 
canceling effect of k value due to positive and negative k values 
(according to movement direction relative to start location), we 
computed absolute value of k [|k(n)|]. For example, if the follower 
pulled the handle in direction 1 for 3 cm distance, this creates 
positive values of k in Eq. 2. By contrast, when the leader pulls 
back the handle to the center to maintain the handle at the center, 
this creates negative values of k in Eq. 2.

As |k| value was associated with a specific position point 
within the circle (Figure  1), we averaged |k(n)| over time to 
obtain the best value of the force–displacement relationship 
for each visited point. We gave |k| the value of 0 to the points 
that were not visited. If the position of the grip handle did not 
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FigUre 5 | Displacement, forces, and normalized |k|–position profiles. One representative trial is shown for the dyad from the visual feedback group. The 
displacement–position profile is shown in panel (a). The force–position profile (quiver plot) is shown in panel (B). The normalized |k|–position profile is shown in panel 
(c). The selected trial is representative of correct response.
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change relative to its starting position (center of the circle), we 
assigned the maximum value of |k| of that trial (infinite) to the |k| 
at that position. The denominator is equal to 0 while the handle 
position does not change. So, we consider the |k| as infinite (the 
maximum |k| which is recorded when they did move the handle 
in that trial).

The position resolution in the horizontal workspace plane was 
1 mm2. We calculated the average of non-zero values of |k| for all 
the position points within each 1 mm2 and assigned that |k| value 
to that square. Therefore, each square in the horizontal plane was 
assigned a specific |k| value. By doing so, the average |k| associated 
with each direction could be obtained by calculating the average 
of non-zero values of |k| of the squares located in that direction 
(within ±15° of each direction). This procedure led to the extrac-
tion of 12 |k| values, 1 for each of the 12 movement directions 
with respect to the leader’s intended direction (|k|i,Average; i: −6 to 
+5; i is movement direction with respect to intended direction). 
First, we calculated the average |k| across all movement directions 
(|k|Average; Eq. 3). Second, we normalized the |k| values (|k|i,Normalized; 
i: −6 to +5; Eq. 5) based on the maximum of the average |k| values 
in all directions for each trial (|k|Max; Eq. 4) to remove differences 
in |k| across dyads.
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Briefly, we had 100 × 100 points (|k| estimates). We assigned 
a 0 value to |k| at the points that were not visited by the handle. 
For the visited points, we obtained the average value of estimated 

|k| across time samples to capture the behavior of both leader 
and follower at that point. We then calculated the spatial average 
of |k| values (non-zero values) within ±15° of each direction to 
obtain average |k| of that direction. Although the measure of |k| 
is not formal stiffness or impedance, it is suitable for capturing 
the relationship between force and motion of a dyad in our para-
digm, which may imply aspects of dyad’s modulation of stiffness/
impedance.

statistical analysis
Inference of Intended Movement Direction
We chose to break down the trials by 24 for the first block and 60 
trials for the second block. Analysis of pilot data revealed that the 
accuracy of predicting the intended movement direction reached 
a maximum and converged to a steady state after the first 24 tri-
als. The results of the current study also confirmed these pilot 
observations (Figures 2A,B).

To assess whether PAI was sensitive to the leader’s intended 
direction along the cardinal directions and non-cardinal direc-
tions, we performed analysis of variance (ANOVA) with repeated 
measures on PAI with two within-subject factors (Trial; trials 
1–24 and trials 25–84; two levels, Direction; cardinal and non-
cardinal directions; two levels) and one between-subject factor 
(Group; VF and NVF groups, two levels; see Figure 3).

Force–Displacement Relationship Is Modulated 
across Trials for the VF Group
We performed ANOVA with repeated measures on the average 
|k| of all directions, |k|Average, with one within-subject factor (Trial; 
two levels). We also performed ANOVA with repeated measures 
on the normalized |k|, |k|i,Normalized, with one within-subject factor 
(Direction; direction −6 to +5; 12 levels; Figures  6C,D). Note 
that |k| normalization was performed to only remove the strength 
differences between subjects.
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FigUre 6 | Force–displacement relationship analysis of group with visual feedback (all subjects). (a,c) Trial: 1–24. (B,D) Trial: 25–84. Asterisks in panels 
(c,D) indicate a statistically significant difference of pairwise comparison between 0 (yellow bar) and other (dark brown bar) movement direction with respect to 
intended direction (p < 0.05). Data in panels (a–D) are means of values averaged across all subjects. Vertical bars denote SEMs.
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Comparisons of interest for statistically significant differences  
(p  =  0.05) were further analyzed using post  hoc tests with 
Bonferroni’s corrections. We conducted the normality and sphe-
ricity tests and statistical models were valid. Statistical analysis 
was performed using IBM Sciences Statistical Package for the 
Social Statistics.

resUlTs

Pai of Follower
Percentage of accurate inference analysis was divided into three 
sections. First, we report the evolution of PAI over trials. Second, 
we investigate the effects of Group, Trial, and Direction on PAI 
by keeping the original direction in order to assess the effect of 
cardinal directions on PAI. Third, we assess PAI without regard-
ing the effect of direction to assess how both groups performed 
when we had a common reference (i.e., 0 error direction).

PAI Analysis across Trials
Visual inspection of the trial-to-trial fluctuations of the PAI 
revealed that performance was more variable in the early trials 
(1–24). To minimize the effect of large random trial-to-trial 

PAI fluctuations in these early trials, for statistical purposes, we 
averaged PAI across a variable number of trials. We found that 
averaging PAI across 3, 4, 6, 8, and 12 trials gave approximately 
the same result, i.e., PAI stopped improving after the first 24 trials.

Percentage of accurate inferences improved in both VF and 
NVF groups (Figures  2A,B, respectively). In the beginning, 
both groups could not perform consistently above 60% of PAI. 
However, after approximately 24 trials, both groups reached a 
steady-state performance.

We analyzed the time it took followers to report inferred 
leader’s intended direction. When VF was available, followers 
reported the follower’s intended direction within 29.6  ±  0.2  s, 
whereas the response time was slightly shorter (27.4 ± 1.1 s) when 
VF was not available.

Cardinal versus Non-Cardinal Directions
Figure  3 shows PAI for all directions. We compared the PAI 
associated with the leader’s intended movement in the cardinal 
directions (1, 4, 7, and 10; Figure 1) versus non-cardinal direc-
tions. Although VF did not affect PAI [no main effect of Group; 
F(1,8)  =  0.697, p  =  0.428], PAI was significantly different as 
a function of Trial [F(1,8)  =  28.891, p  =  0.001, η2  =  0.78] and 
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movement direction [F(1,8) =  7.254, p =  0.027, η2 =  0.47]. No 
significant interactions were found (all p values >0.320). As found 
earlier across all movement directions, PAI of Trial: 25–84 was 
significantly larger than Trial: 1–24 (p = 0.001). For the experi-
mental trials, PAI associated with the leader’s intended movement 
along the cardinal directions was significantly larger than along 
non-cardinal directions (93.5 and 80.5%, respectively; p = 0.027).

VF versus NVF
Figure 4 showed the PAI of follower for the VF and NVF groups 
computed from Trial: 1–24 and Trial: 25–84 (Figures  4A,B, 
respectively). PAI was well above chance level (equivalent to 1 out 
of 12 possible directions, i.e., 8.33%). After 24 trials, PAI values 
were 87.33 and 83.33% when performed with and without VF, 
respectively. If we assume that ±1 error direction with respect to 
intended direction is a negligible performance error (±30°), the 
combined PAI were 94.67 and 96.33% for trials performed with 
and without VF, respectively.

The availability of VF did not significantly affect PAI [no main 
effect of Group; F(1,8) = 0.535, p = 0.485]. However, we found 
statistically significant differences in PAI as a function of Trial 
[F(1,8) = 30.444, p = 0.001, η2 = 0.79], but no significant interac-
tion between Group and Trial [F(1,8) =  0.309, p =  0.594]. We 
found that PAI from Trial: 25–84 was significantly larger than 
from Trial: 1–24 (Figure  4; p  =  0.001). Note that we reported 
the effect size (partial-eta squared) as a measure of magnitude of 
our effect. The effect size of learning was quite large (η2 = 0.79). 
This indicates that the significance of the result was unlikely to be 
marginal, for example, large variation within one subject could 
have driven the result. Therefore, we were confident that our 
sample size (five subjects per group) was adequate. The results 
(effect sizes) were highly consistent among the 5 subjects within 
each group, and—most importantly—highly consistent across 
the 10 subjects across both groups.

In summary, the follower’s ability to infer the leader’s intended 
movement direction was insensitive to whether the follower could 
view the position of the dot on the screen or not. Furthermore, 
PAI improved with practice, implying that the follower and leader 
gradually adapted to each other’s actions to communicate and 
collaborate with each other. Specifically, the follower learned to 
infer the leader’s intended movement direction, of the leader, 
while the leader learned how to react to the follower’s forces. 
Finally, the follower was more accurate in inferring the leader’s 
intended movement direction for cardinal than non-cardinal 
directions.

Force–Displacement relationship analysis
We first present one representative trial from a dyad performing 
our task with VF, followed by analysis of |k| adaptation for the VF 
group. We present the force–displacement relationship analysis 
for only VF group because they had the reference point of the 
center of circle. This allowed us to perform force–displacement 
relationship analysis relative to this reference point.

Representative VF Trial
Figure 5 shows the displacement–position profile (Figure 5A), 
force–position profile (Figure 5B), and normalized |k|–position  

profile (Figure 5C) of a sample trial of a VF dyad. The displacement– 
position profile for the VF group reveals that the dyad per-
formed the task as instructed, i.e., within the boundaries and 
close to the center of the circular workspace. Note that the 
dyad exhibited larger handle displacement along the leader’s 
intended direction (Figure  5A). With regard to the force–
position profile of the VF group, the leader could generate a 
reasonable force field (impedance field) for each direction as 
if the resultant force tended to be directed toward the leader’s 
intended direction at each position (Figure 5B). Visual exami-
nation of the normalized |k|–position profile of the VF group 
reveals that the dyad exhibited lower |k| in the intended leader’s 
movement direction (Figure 5C).

Force–Displacement Relationship Analysis:  
Dyads with VF
To elucidate the force–displacement relationship analysis in 
the VF group, we compared the |k| measured during the dyad 
interaction during trials 1–24 and trials 25–84. We captured the 
evolution of normalized |k| (|k|Normalized) across two blocks of trials 
(1–24 and 25–84; Figures 6C,D). We then performed pairwise 
comparisons of |k|Normalized within each block to investigate how 
dyads selectively generated |k|Normalized across different directions 
with respect to the leader’s intended movement direction.

We found a main effect of Direction in |k|Normalized for both 
trials [in Trial: 1–24, F(11,44) = 15.182, p = 0.001, η2 = 0.81; in 
Trial: 25–84, F(11,44) =  37.058, p =  0.001; η2 =  0.90]. For the 
Trial: 1–24, we found no significant difference in |k|Normalized on 
pairwise comparisons between the intended movement direction 
(0, yellow bar) and directions of ±1 (orange bars), −6, ±5, and ±2 
(dark brown bars, Figure 6C; all p > 0.05). However, there was 
significant difference in |k|Normalized between intended direction and 
adjacent directions of ±3 and ±4. Similarly for Trial: 25–84, no 
significant differences were found when comparing |k|Normalized at 
the leader’s intended movement direction and adjacent directions 
(±1; orange bars). However, we found significant difference in 
|k|Normalized on pairwise comparisons between the intended move-
ment direction (0, yellow bar) and all other directions except ±1 
(dark brown bars, Figure 6D; all p > 0.05). Figure 7 illustrates 
how |k|Normalized of movement direction with respect to intended 
direction changed across trials. Figure 7 shows that the variations 
in |k|Normalized of movement direction with respect to intended 
direction of 0 (yellow line in Figure 7) were gradually settled in 
the gray box over the trials and also became more discriminable 
from |k|Normalized of movement direction with respect to intended 
direction of 1 (orange line in Figure 7). Figure 7 shows how the 
force–displacement relationship in dyadic interaction evolves 
across trials, and this might imply that dyad learns to modulate 
their stiffness to perform the task.

To further quantify the effect of trial (practice) on force– 
displacement relationship modulation, we compared the average 
|k| of all directions (|k|Average) across two blocks of trials (1–24 and 
25–84). Statistical results showed that |k|Average did not change 
significantly across Trial (p = 0.447).

These results indicate that, following early exposure to our 
task, the dyad learned to modulate force–displacement relation-
ship across movement directions. Importantly, the dyads’ |k| 
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FigUre 7 | normalized |k| analysis of group with visual feedback across trials (all subjects). The gray rectangle box represents the range of normalized |k| 
(mean value ±3 × SE) on movement direction with respect to intended direction. Vertical bars denote SEMs.
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became minimum at the leader’s intended movement direction, 
even though the average |k| did not change significantly.

DiscUssiOn

The primary goal of our study was to quantify the extent to which 
human body impedance can be used to infer intended movement 
direction of a cooperating agent. We found that the success in 
conveying inferring intended direction of motion between two 
agents was correlated with the control of leader’s impedance as a 
function of the follower’s direction of motion. Hence, we were able 
to show that the leader was conveying the information of intended 
direction to the follower by controlling his/her impedance at the 
object they were interacting with. Therefore, our results may imply 
that two cooperating agents could use arm stiffness modulation 
during physical interaction as a viable means of communication of 
intended movement direction. We discuss these results in relation 
to previous work, potential sensorimotor mechanisms, and appli-
cations of the proposed framework to human–robot interactions.

effect of Practice on accuracy of 
Movement Direction inferences and 
Force–Displacement relationship
A moderate amount of practice (1–24 trials) led the followers 
to a significantly greater accuracy of inferences of the leader’s 
intended movement direction (Figures  2 and 4). This result 
indicates that subjects might have needed some practice to gauge 
and interpret each other’s physical response. Nevertheless, the 
small number of trials leading to a very high level of accurate 

inferences (>83%) also suggests that humans (a) can maintain 
the high level of accurate responses after 24 trials (Figures  2 
and 4), which might imply that within 24 trials the dyad was 
already specialized for modulating arm stiffness, (b) are very 
sensitive to the directional tuning of arm impedance (see force– 
displacement relationship analysis below; Figure 6), and (c) can 
therefore learn fairly quickly to correctly interpret such direc-
tional tuning (Figure 7).

The adaptation of force–displacement relationship (|k|) as 
function of intended movement direction evolved gradually 
(Figures 6C,D). Gradual discrimination of normalized |k| across 
different direction of motion (Figure 7) implies that dyads could 
convey the intended direction of motion by modulating and per-
ceiving normalized |k| associated with the physical interaction. 
We interpret these data as follows: after performing 24 trials, the 
leader selectively generated less |k| in his/her intended direction 
in response to follower’s force perturbations. Therefore, we inter-
pret this finding as evidence that control of the leader’s stiffness 
might be a critical factor in conveying the intended direction to 
the follower regardless of VF of the handle or arms. Our results 
also indicate that subjects learn this strategy by experiencing our 
task for the 12 directions. It is conceivable that exposure to fewer 
movement directions might result in faster learning across trials, 
or shorter exploration duration within each trial.

sensorimotor integration Mechanisms  
for Movement Direction inference
Visual feedback of the movement of the shared handle did 
not affect the extent to which followers correctly inferred the 

42

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Mojtahedi et al. Inference in Human–Human Physical Interaction

Frontiers in Neurorobotics | www.frontiersin.org April 2017 | Volume 11 | Article 21

leader’s intended movement direction. This result suggests that 
haptic feedback elicited by physical interaction is sufficient to 
extract intended movement direction from the perceived force– 
displacement relationship (Figures  2 and 4). VF of movement 
trajectory was not necessary also in tasks performed by individual 
subjects requiring adaptation to stable or unstable dynamics 
(Franklin et al., 2007). Furthermore, final adaptation was similar 
with and without VF even when the learning signals (proprio-
ception and vision versus only proprioception) were different 
(Franklin et al., 2007). Another study found that visual informa-
tion of the movement trajectory alone might not be sufficient to 
modulate limb stiffness in response to an unstable elastic force 
field applied to the limb (Wong et  al., 2009). Specifically, such 
adaptation might rely on somatosensory feedback to a greater 
extent than vision because of a direct relationship with perturb-
ing forces. In reaching tasks, visual perturbations (manipulation 
of the cursor position) did not result in stiffness modulation, 
whereas force perturbation in elastic force field caused a signifi-
cant increase in stiffness (Wong et al., 2009).

Movement kinematics appears to be sensitive to whether VF 
is available or not during adaptation of movement trajectories. 
Specifically, the movement profiles were significantly more linear 
when VF was available in “no force” and “velocity force” fields. 
However, the linearity did not change for visual and no visual condi-
tions in a position force field (Franklin et al., 2007). The current study 
found different movement profiles of net displacement during the 
physical interaction between VF and NVF groups. However, even 
with this difference, the subjects learned the task and performed 
equally well in later trials. We should note that these results do not 
rule out a role of VF in our physical interaction task, but rather point 
to the fact that haptic feedback alone was accurate enough to enable 
correct inference of intended movement direction.

Subjects’ ability to use non-visual feedback to estimate human 
body (mainly upper limb) stiffness and infer intended movement 
direction likely arises from their ability to integrate sensory feed-
back about movement and force. Specifically, based on the defini-
tion of stiffness, movement direction associated with low stiffness 
would result in a larger displacement due to smaller force and 
smaller displacement due to larger force for high stiffness. Our 
focus on stiffness incorporates this relation between force and 
displacement, and our interpretation about stiffness as a means 
of communication includes the use of position sensing for this 
purpose. Specifically, we propose that position and force sensing 
combined was involved in the estimation of intended movement 
direction (see Supplementary Material; Figures S1 and S3 in 
Supplementary Material). As impedance cannot be sensed by a 
specific type of sensory receptor, impedance estimation would 
have to rely on integrating estimation of muscle length and force, 
each of which is mediated by distinct mechanoreceptors (muscle 
spindles and Golgi tendon organs, respectively). In Figure S3 
in Supplementary Material, the logistic regression analysis is in 
favor of the proposed notion that force–displacement relation-
ship (|k|) is a better predictor of PAI than either average resultant 
force or maximum displacement alone at intended direction. 
This proposition is also consistent with experimental evidence 
showing that subjects estimate object stiffness by differentially 
weighing feedback information provided by muscle length and 

force receptors (Mugge et al., 2009). Since the leader was never 
required to execute a voluntary movement but just to “plan” 
(but not execute) a movement in a prescribed direction, it is 
conceivable that motor cortical areas involved with upper limb 
control were activated, as shown by literature on motor imagery  
(e.g., Vogt et al., 2013; Eaves et al., 2016; Hanakawa, 2016).

impedance-Based communication in 
human–human and human–robot 
interactions
Human arm impedance control has received increased atten-
tion during the last decades due to its importance in physical 
interaction with robotic devices, for assistive, rehabilitation, 
and performance augmentation purposes. Humans can vary 
the dynamics of their interaction with a robot by changing the 
configuration of their limbs and/or modifying limb stiffness 
through co-contraction of opposing muscles (Perreault et  al., 
2001; Krebs et al., 2003; O’Neill et al., 2013; Patel et al., 2013). 
From a robotics point of view, Hogan (1985) showed that these 
dynamics can be dealt with by effectively utilizing impedance as 
a way of controlling the robot and its interactions with humans 
and external objects.

Human–robot interaction applications motivated the design 
of our study. Nevertheless, our results should be considered a 
preliminary step in the context of these potential applications 
due to the fact that our setup is a simplified version of tasks 
with more complex mechanics. Although the human–human 
interaction scenario we investigated is not representative of all 
contexts involving physical collaborations between two human 
agents, or human–robot agents, we believe that our work provides 
important insights about the feasibility of using impedance as a 
viable means of human–robot communication. Specifically, in a 
collaboration task similar to the one used for the present study, the 
robot arm controller could be trained to probe or sense—as the 
“leader” or “follower,” respectively—the impedance or explora-
tory movements of the human agent and assist his/her movement 
accordingly. Further work, however, is needed to quantify the 
extent to which such impedance-based controller can mimic the 
human–human co-adaptation described in the present study.

It is worth noting that several studies have investigated physical 
human–robot interaction (Duchaine and Gosselin, 2009; Lecours 
et al., 2012; Cherubini et al., 2013) and the use of impedance in 
human–robot interactions (e.g., Lin et al., 2013; Nisky et al., 2013; 
Quek et al., 2013). The key difference between prior work and the 
current study is that this work is the first investigation of humans’ 
ability to use stiffness as a means of communicating intended 
direction of motion. It should be emphasized that the intended 
movement direction was effectively communicated without gen-
erating significant motion. Thus, this result underscores humans’ 
ability to convey and to understand intended movement direction 
through the modulation of stiffness in the absence of or before an 
actual movement. Our approach points to applications where a 
human or robot follower can intuitively learn to recognize when 
or whether the movement direction of the leader may be incor-
rect or hazardous. Additionally, this approach can also be utilized 
as a two-way method of communication for ambiguous situations 

43

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Mojtahedi et al. Inference in Human–Human Physical Interaction

Frontiers in Neurorobotics | www.frontiersin.org April 2017 | Volume 11 | Article 21

during cooperative tasks. As such, our work contributes to the 
insights provided by research in the area of human–human and 
human–machine physical interaction (Reed and Peshkin, 2008; 
Jarrasse et al., 2012; Ganesh et al., 2014; Sawers and Ting, 2014).

With respect to the time it took followers to infer the leader’s 
intended direction (~30 s), these latencies are too long in human–
robot interaction scenarios where speed and safety are important 
criteria. Nevertheless, it is conceivable that the response latencies 
could be potentially reduced were participants to be exposed 
to a lower number of intended directions (e.g., four cardinal 
directions). Further work is needed to leverage our findings for 
human–robot interaction applications.

impedance-Based communication  
of high-level Movement goals
At least two theoretical frameworks—that differ in terms of 
whether a physical interaction between two agents is necessary 
or not—could account for our results. One of these frameworks 
would predict that humans modulate their arm stiffness as a 
function of planned movement in a given direction, regardless 
of whether another agent is probing their intended movement 
direction. If so, our findings would indicate that the follower 
learns how to capture the force–displacement relationship, 
which might imply the stiffness modulation to correctly infer 
the leader’s intended movement direction. However, an alterna-
tive framework would predict that the leader—consciously or  
sub-consciously—gradually learned that modulating arm stiff-
ness was an effective or the best way to communicate his/her 
intended movement direction to the follower.

Our present data do not allow distinguishing between these 
two alternative frameworks. Therefore, future work is needed to 
determine the neural mechanisms responsible for non-verbal 
communication of movement direction through stiffness modu-
lation and co-adaptation of two cooperating agents. Nevertheless, 
the fact that our dyads improved with practice in communicating 
and inferring movement direction would favor the second frame-
work as the most plausible scenario. Future work will address the 
underlying neural mechanisms.

In the aspect of admittance/impedance relation to describe the 
coupled interaction (Hogan, 1985), the way the roles of leader and 
follower were defined may suggest that the leader must operate 
as an admittance (reading an input force and responding with a 
motion) and the follower as an impedance (apply a force and read 

a motion). The question is raised to what extent the two actors can 
strictly interpret the task in this sense, in which case the leader 
would in fact modulate admittance not impedance. However, 
another scenario could be that the follower applies probing motions 
(not forces), senses the leader’s resistive force, and observes the 
error caused by the leader’s resistance. As the follower’s task has a 
positional constraint (remaining within the 5-cm circle), it is more 
likely that the follower tries to perform a motion and senses a resist-
ance, i.e., the follower is interpreting the leader as an impedance.

cOnclUsiOn

We found that agents performing a collaborative manipulation task 
were able to non-verbally communicate/infer intended movement 
direction even when VF of arm configuration or handle was not 
available. With practice, the ability to correctly infer intended 
movement direction improved in parallel with a directionally tuned 
modulation of force–displacement relationship which might imply 
aspects of peoples’ modulation of arm stiffness/impedance. We 
conclude that human body (mainly upper limb) stiffness, extracted 
through haptic feedback alone, can be successfully used to infer/
communicate intended movement direction. These results provide 
proof of concept for potential applications to human–robot inter-
actions, where artificial controllers could be designed to capitalize 
on estimating and reacting to human limb stiffness.
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Children with cerebral palsy (CP) often develop reduced passive range of motion with age.

The determining factor underlying this process is believed to be progressive development

of contracture in skeletal muscle that likely changes the biomechanics of the joints.

Consequently, to identify the underlying mechanisms, we modeled the mechanical

characteristics of the forearm flexors acting across the wrist joint. We investigated skeletal

muscle strength (Grippit®) and passive stiffness and viscosity of the forearm flexors in 15

typically developing (TD) children (10 boys/5 girls, mean age 12 years, range 8–18 yrs)

and nine children with CP Nine children (6 boys/3 girls, mean age 11 ± 3 years (yrs),

range 7–15 yrs) using the NeuroFlexor® apparatus. The muscle stiffness we estimate

and report is the instantaneous mechanical response of the tissue that is independent of

reflex activity. Furthermore, we assessed cross-sectional area of the flexor carpi radialis

(FCR) muscle using ultrasound. Age and body weight did not differ significantly between

the two groups. Children with CP had a significantly weaker (−65%, p < 0.01) grip and

had smaller cross-sectional area (−43%, p < 0.01) of the FCR muscle. Passive stiffness

of the forearm muscles in children with CP was increased 2-fold (p < 0.05) whereas

viscosity did not differ significantly between CP and TD children. FCR cross-sectional

area correlated to age (R2 = 0.58, p < 0.01), body weight (R2 = 0.92, p < 0.0001) and

grip strength (R2 = 0.82, p < 0.0001) in TD children but only to grip strength (R2 = 0.60,

p < 0.05) in children with CP. We conclude that children with CP have weaker, thinner,

and stiffer forearm flexors as compared to typically developing children.

Keywords: cerebral palsy, skeletal muscle, muscle stiffness, muscle size, upper limb

INTRODUCTION

An insult to the immature, developing brain before the age of two results in a condition clinically
referred to as cerebral palsy (CP), characterized by motor impairment (Rosenbaum et al., 2007).
Despite that the brain injury is non-progressive, motor function commonly deteriorates over time
and a progressive contracture formation, i.e., a decrease in passive range of motion (pROM), is
common (Hagglund andWagner, 2011). For many children, surgical treatment is needed to restore
and preserve musculoskeletal function. Clinical experience suggests that contracture formation is
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due to shortening/stiffening of the musculotendinous complex,
as the range of motion of the joint often is practically normal
when tendons of contractedmuscles are cut during surgery.What
causes the increased stiffness and shortness of the muscle is not
known, but clinically we know that it affects joint biomechanics.

Children with CP generally have less skeletal muscle mass
as compared to typically developing (TD) children (Barrett
and Lichtwark, 2010). Recent reports have highlighted stunted
growth in the lower limb as a contributing factor to contracture
development (Gough and Shortland, 2012) and slowed growth
rate has been detected as early as 15-months of age (Herskind
et al., 2015). Several investigators have described increased
passive stiffness of the calf muscle in children with CP and
different tests have shown that the calf muscle is 22–120% stiffer
in CP children compared to TD (Ross et al., 2011; de Gooijer-
van de Groep et al., 2013; Geertsen et al., 2015). The process
starts early and increased whole muscle passive stiffness in the
calf has been described as early as 3 years of age (Willerslev-Olsen
et al., 2013). Biochemical studies of muscle in CP have shown
an increased content of intramuscular collagen (Booth et al.,
2001), with an increased amount of connective tissue around
fiber bundles i.e., a thickening of the perimysial extracellular
matrix (de Bruin et al., 2014). The perimysium is considered to
be in a physical continuum with the tendon (Passerieux et al.,
2007). Thus, marked collagen deposition in the perimysium
could potentially offer an increased resistance to passive stretch.

Less information is available on how skeletal muscle size
correlates to joint biomechanics and muscle function for the
upper limb. This is unfortunate as the clinical importance
of accurate information on skeletal muscle function and
biomechanical properties prior to for example tendon transfer
surgery of the wrist is of great importance and a guide in clinical
decision making. Therefore, we aimed to model the mechanical
characteristics of the forearm flexors acting across the wrist joint
in children with CP during passive stretch. Second, we aimed
to correlate skeletal muscle size and biomechanics to age, body
weight and strength.

MATERIALS AND METHODS

Participants
Nine children [6 boys/3 girls, mean age 11 ± 3 years (yrs),
range 7–15 yrs] with CP (3 bilateral/6 unilateral) scheduled
for upper limb surgery at Karolinska University Hospital,
Stockholm, Sweden were consecutively included in the study.
Inclusion criteria were confirmed CP diagnosis, age between
7 and 18 yrs, and cognitive ability to follow instructions. The
children with CP were classified according to the Gross Motor
Function Classification Scale (GMFCS) and the Manual ability
classification system (MACS). GMFCS I means that the child
can walk indoors and outdoors without limitations, and children
in GMFCS V has no means of independent mobility. The
GMFCS classification has been shown to be the best predictor of
treatment results in CP (Shore et al., 2012). Eight of the children
were classified as GMFCS I and one child as GMFCS III. The
GMFCS III child needed a walking aid indoors and a wheel chair
outdoors. MACS I means that the child handles objects easily and

successfully with minimal limitation in speed and accuracy, and
children in MACS V do not handle objects and has limited ability
to perform even simple actions (requires total assistance). The
children in the current study were classified as follows; MACS
I three children, MACS II four children and MACS III two
children.

As controls, a convenience sample (n= 15) of TD children was
recruited (10 boys/5 girls, mean age 12 yrs, range 8–18 yrs). This
study was carried out in accordance with the recommendations
of the Regional Ethical Review Board in Stockholm with written
informed consent obtained from all subjects and minimum one
parent per subject in accordance with the Declaration of Helsinki.
The protocol was approved by the Regional Ethical Review Board
in Stockholm.

Clinical Assessment and Strength
Measurements
Passive range of motion (pROM) of the wrist was assessed by a
physiotherapist or trained medical student using a goniometer.
All children were thereafter tested for maximal grip strength
using a dedicated device, Grippit R© (AB Detektor, Göteborg,
Sweden). The arm of the subject was placed in a neutral
position (thumb upwards) with the ulnar side resting in a
padded semicircular plastic tube. All subjects received verbal
encouragement and were instructed to grip the handle as hard
as they could and maintain the same intensity for a 10 s period.
The handle size was adjustable and each child was allowed to
independently choose the handle size.

Neuroflexor Measurements and Data
Processing
For wrist stiffness measurements, we used the NeuroFlexor

R©

(NeuroFlexor R© Scientific, Release 0.0.6, Aggero MedTech AB,
Solna, Sweden). With the elbow in 90◦, the hand was placed on
the NeuroFlexor R© platform, so that the axes of rotation of the
wrist and the platform were aligned. Subjects were instructed
to remain relaxed throughout the experiments and the device
applied ramp-and-hold perturbations with a velocity of 5◦/s, by
extending the wrist from 20◦ palmar flexion to 30◦ extension.
It recorded the angle of the wrist and the forces exerted by the
limb and device. For each subject, we recorded 5 trials. We also
recorded a trial following removal of the subject’s hand from
the device (no-hand trial) to account for forces generated by the
mechanical properties of the apparatus only.

We subtracted the no-hand force from the with-hand forces
and used a linear least-squares technique to identify the
biomechanical model (Schouten et al., 2008; Meskers et al., 2015):

FWH(t) − FNH(t) = ml2θ ′′(t)+ Bθ ′(t)+ Kθ(t)+ K1θ
2(t)

+ K2θ
3(t)+mg cos(θ(t))

where FWH(t) and FNH (t) are the recorded forces in the with-
hand and no-hand trials,m is the mass of the hand (point mass),
l is the length of the hand from the wrist joint, θ(t) is the recorded
wrist angle and θ ′(t), θ ′′(t) are its first and second derivatives
(angular velocity and acceleration) computed numerically by
differentiating the recorded joint angle, g is the gravitational
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acceleration and finally K and B are the joint stiffness and
viscous parameters, respectively. The second and third-order
power of joint angles (θ2(t), θ3(t)) were also included in the
model to account for nonlinear changes of joint biomechanics
as a function of joint angle (Sobhani Tehrani et al., 2013). The
main assumption of the model is that the neural component of
the force is negligible, which is a fair assumption as the velocity
of perturbation was low enough to avoid evoking reflex responses
(Jalaleddini et al., 2016). Thus, the muscle stiffness we estimate
and report is the instantaneous mechanical response of the
tissue that is independent of reflex activity. From this model, we
quantified and reported the mean and standard deviation of the
stiffness and viscous parameters across the trials. Figure 1 shows
typical measured and predicted forces using the biomechanical
model. The biomechanical model accounted for 95.5 ± 3.6% of
the variance in measured force, on average.

Skeletal Muscle Ultra Sound Assessment
and Image Processing
The cross sectional area of the flexor carpi radialis muscle
(FCR) was measured with B-mode ultrasonographic equipment
with a linear probe (BK medical Flex focus 1202, 8670,
scanning frequency 12 MHz Herlev, Denmark). The subjects
were instructed to place their elbow on a height adjustable table
with the dorsum of the hand toward the examiner and the fingers
extended. If this position was difficult for the child to maintain,
the caretaker was instructed to assist and hold the arm in the
above-described position. Then, the distance from the olecranon
to the styloid processes of the ulna was determined using a
measuring tape. Skin markings were made at the transition
between the proximal and middle third of the forearm, using
a black permanent marker, to ensure correct placement of the
ultrasound probe. During the ultrasound examination the subject
was sitting in a standardized position with the dorsum of the
forearm resting flat on a height adjustable table, the elbow
at approximately 60◦ of flexion, arm supinated and fingers
extended. Following generous application of water-soluble gel
(Gurò Medigel, Gurò s.a.s.—Catenanuova (En)—Italy) the head
of the ultrasound probe was placed proximal and parallel to
the line marking, and at a right angle to the radius and ulna.
The interfaces between subcutaneous adipose tissue and muscle
tissue, between muscle tissue and fascia and between muscle
tissue and bone were identified on the ultrasonic image. The
border of the muscle was outlined by free hand, and the supplied
software in the ultrasonograph was used to calculate the cross-
sectional area.

Statistical Analysis
Values are reported as means ± SD. Differences in age, body
weight, isometric grip strength, skeletal muscle cross sectional
area, muscle passive stiffness and viscosity were investigated
by the Mann-Whitney-Wilcoxon test. Linear regression was
used to investigate correlations between FCR area and age,
body weight, grip strength and passive stiffness and viscosity,
respectively. Significance level was set at p< 0.05 for all statistical
comparisons.

RESULTS

No difference was seen between the groups with respect to age
(CP 11.3 yrs± 3.1 vs. TD 12.3 yrs± 3.7, ns) and body weight (CP
46.8 ± 26.1 kg vs. TD 44.7 ± 14.9 kg, ns). FCR cross sectional
area was 43% smaller in children with CP as compared to TD
children (CP 0.84 cm2 ± 0.38 vs. TD 1.47 cm2 ± 0.75, p < 0.01).
As expected, grip strength (10 s isometric contraction) was also
significantly lower,−65% in CP as compared to TD children (CP
58.3N± 32.1 vs. TD 167.5N± 93.5, p < 0.01, Figure 2).

Skeletal muscle passive stiffness was increased 2-fold in CP
as compared to TD (CP 4.65 ± 3.42 vs. TD 1.96 ± 0.62, p <

0.05) whereas skeletal muscle viscosity didn’t differ significantly
between the groups (CP 1.71± 1.22 vs. 1.27± 0.86, Figure 3).

Skeletal muscle size correlated to age (R2 = 0.58, p < 0.01),
body weight (R2 = 0.92, p< 0.0001) and strength (R2 = 0.58, p<

0.01) in TD children. Interestingly, the same relationship between
skeletal muscle size did not correlate to age and body weight in
children with CP, however still showing a significant correlation
to strength (R2 = 0.60, p < 0.05). Skeletal muscle size did not
correlate to passive stiffness or viscosity in CP or in TD children
(Figure 4).

DISCUSSION

This study shows that forearm flexor muscles in children with
CP are stiffer as compared to TD children. Similar findings have
been described for the lower limb, specifically the ankle flexors.
Previous reports have estimated the passive tension to be 22–
120% higher in CP for the ankle flexor muscles (Ross et al., 2011;
de Gooijer-van de Groep et al., 2013; Geertsen et al., 2015). Thus,
our finding of a 2-fold increase in skeletal muscle stiffness of the
forearm flexors is comparable to data on weight bearing muscles
of the lower limb. Information on the current status of themuscle
is of great clinical importance when planning treatments, such as
stretching, use of splints and surgical interventions e.g., tendon
transfer surgery. Tendon lengthening, rerouting and transfer in
the upper limb aim to balance the muscles of the wrist, so that
the wrist can be maintained in a functional neutral position. All
these surgical techniques have a component of dosing—how tight
should the tendon transfer be, how long the tendon lengthening?
This dosing is highly dependent on how stiff the transferred or
lengthened muscle is. Long-term results are difficult to predict,
as there often is a progression of contracture formation and
stiffness. Abnormalities such as contracture and stiffness in even a
few muscles will add yet another obstacle to smooth and efficient
movements (Keenan et al., 2009; Kutch and Valero-Cuevas, 2011;
Valero-Cuevas et al., 2015) which can progress very quickly in
these children.

Spastic CP is characterized by a hyperexcitibility of the
stretch reflex (Lance, 1980). Due to the fact that many
children with spastic CP eventually develop skeletal muscle
contractures, spasticity has been believed to be causative
and clinical practice has up until recently been focused on
spasticity reducing therapies for the preservation of motor
function. However, recent reports have clearly demonstrated
that despite good control of spasticity and reduction of muscle
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FIGURE 1 | Typical trials demonstrating the prediction of the measured force using the biomechanical model in response to ramp-and-hold

perturbation of 50 degrees with a low velocity (5◦/s) experiment. Left; (A) TD. Right; (B) CP. The hand is moving from time 0 to 10 s. Data was recorded for

another 2 s (time 10–12 s). The black and red line represents measured and predicted forces, respectively.

FIGURE 2 | (A) Age in years of included research subjects, typically developed children (TD) and children with cerebral palsy (CP). (B) Body weight in kg in TD and

CP. (C) Grip strength (N) in TD and CP. **Denotes significantly different from TD, p < 0.01. (D) Cross-sectional area of the flexor carpi radialis muscle (FCR) in cm2 in

TD and CP. *Denotes significantly different from TD, p < 0.05. For all bar graphs, TD (white) & CP (red). (E,F) Representative ultrasound images of forearm muscles in

TD (E) and CP (F) children. Encircled areas represent FCR.

tone, by intramuscular botulinum toxin injections (chemical
denervation) or selective dorsal rhizotomy that disrupts the
reflex loop, skeletal muscle contracture formation progresses
(Alhusaini et al., 2011; Tedroff et al., 2014). The poor
effect of spasticity reduction on contracture development has
raised the question of whether other factors such as growth
disturbances and/or alterations in muscle composition are of
greater mechanistic importance. Furthermore, recent findings
suggest an overestimation of the contribution of spasticity
to increased passive tension in muscle of young children

with CP and at the same time an underestimation of the
presence of contractures (Willerslev-Olsen et al., 2013; Herskind
et al., 2015). In a large population study of children with
CP, spasticity has been shown to peak around 4 years of age
and thereafter decreases and level out at 12 years of age,
whereas reductions in passive range of motion i.e., skeletal
muscle contractures is progressive (Hagglund and Wagner,
2011). Therefore, we have chosen to focus on the instantaneous
mechanical response of the muscle that is independent of reflex
activity.
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FIGURE 3 | (A) The NeuroFlexor® with hand at 30◦ extension. (B) The NeuroFlexor® at 20◦ Flexion. Blue arrow and crossed rings highlight the axis of rotation.

White ring highlights the position of the force sensor. The red line was used to localize the center of the force sensor. (C) Skeletal muscle passive stiffness (N) in TD

and CP. *Denotes significantly different from TD, p < 0.05. (D) Skeletal muscle viscosity (N) in TD and CP. For all bar graphs, TD (white) & CP (red). Photos in (A,B)

were used with permission from Aggero Medtech AB.

Muscle fiber size increases from 10–12µm2 at birth to 40–
60µm2 after puberty (Oertel, 1988). Lexell et al have shown
that skeletal muscle fiber size continuously increases with age
up until and shortly after puberty. The same study also found a
close relationship between fiber size and muscle cross sectional
area (Lexell et al., 1992). Children with CP have reduced growth
in general (Day et al., 2007). Skeletal muscle growth rate is
reduced, evident as early as at 15-months of age (Herskind et al.,
2015) and without showing any tendency to catch up later in
life (Malaiya et al., 2007; Barber et al., 2011, 2016; Noble et al.,
2014b). Just as for passive stiffness of skeletal muscles, deficit
in skeletal muscle size in children with CP has so far only been
described for the lower limb. The cross sectional area of the
FCR muscle was significantly smaller in children with CP as
compared to TD children. We have shown in previous studies
that wrist flexors in children with CP have a greater fiber size
variability and altered myosin composition compared to TD
children (Ponten and Stal, 2007). In addition, the sarcomere, the
smallest contractile unit of the muscle, has altered properties in
CP (Ponten et al., 2007). By using laser diffraction methodology,
we have measured sarcomere lengths of wrist flexors intra-
operatively during tendon transfer surgeries. With the wrist
held in neutral position, the sarcomeres were longer in CP
compared to control, and sarcomeres were also longer—i.e.,
more stretched out- the worse the wrist contracture was (Ponten

et al., 2007). This means that the wrist extension movement
by the NeuroFlexor R© likely results in extreme stress of the
sarcomeres, with less overlap of the actin and myosin filaments
and more stress on the perimyseal collagen surrounding the
fiber bundles (de Bruin et al., 2014). In our study population
the cross sectional area of the wrist flexor FCR, as determined
by ultrasound, was significantly smaller in CP as compared to
TD children and did not correlate to age or body weight. This
implies that the differing brain damage the children with CP
have, has a greater impact on muscle growth than age and body
size. This further supports the impression of great heterogeneity
within CP previously reported (Handsfield et al., 2016) and
underscores the need for structured, individualized longitudinal
follow-up.

Increased skeletal muscle echo intensity as measured by
ultrasound has previously been used to infer altered skeletal
muscle composition (Heckmatt et al., 1982; Nielsen et al., 2006).
Pitcher et al. recently investigated the gastrocnemius muscle of
40 children with cerebral palsy and compared their findings to
typically developed age matched controls (n= 12) (Pitcher et al.,
2015). They show increased skeletal muscle echo intensity in CP
and suggest that the underlying cause is due to increased content
of non-contractile tissue e.g., collagen. Biochemical analysis of
hydroxyproline content, a measure of intramuscular collagen
content, correlates to spasticity severity (muscle tone as assessed
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FIGURE 4 | (A,B) Correlational analysis of the flexor carpi radialis muscle (FCR) cross-sectional area (cm2) and age (yrs) in TD (graph A) and CP (graph B). (C,D)

Correlational analysis of FCR cross-sectional area (cm2) and body weight (kg) in TD (graph C) and CP (graph D). (E,F) Correlational analysis of FCR cross-sectional

area (cm2) and grip strength (N) in TD (graph E) and CP (graph F). R2 and significance level indicated in each graph when relevant.

by Modified Ashworth Scale, MAS) in children with CP (Booth
et al., 2001). Staining muscle collagen using Sirius red has in
CP shown increased amount of perimyseal collagen surrounding
muscle fiber bundles (de Bruin et al., 2014). Similarity, MRI
assessment of the lower limb indicates that young adults with
CP have higher intramuscular fat content as compared to healthy
controls (Noble et al., 2014a). Thus, it’s without a doubt that
skeletal muscle in individuals with CP with time contains an
increased amount of non-contractile material. We interpret this
as an indicator of the progressive remodeling in CP muscle.
Despite that CP is defined as a non-progressive disease, skeletal
muscle pathophysiology seems to continuously worsen over
time.

We conclude that children with CP have weaker, thinner
and stiffer forearm flexors as compared to typically developed
children.
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Muscle synergies calculated from electromyography (EMG) data identify weighted groups

of muscles activated together during functional tasks. Research has shown that fewer

synergies are required to describe EMG data of individuals with neurologic impairments.

When considering potential clinical applications of synergies, understanding how EMG

data processing impacts results and clinical interpretation is important. The aim of this

study was to evaluate how EMG signal processing impacts synergy outputs during

gait. We evaluated the impacts of two common processing steps for synergy analyses:

low pass (LP) filtering and unit variance scaling. We evaluated EMG data collected

during barefoot walking from five muscles of 113 children with cerebral palsy (CP)

and 73 typically-developing (TD) children. We applied LP filters to the EMG data

with cutoff frequencies ranging from 4 to 40Hz (reflecting the range reported in prior

synergy research). We also evaluated the impact of normalizing EMG amplitude by unit

variance. We found that the total variance accounted for (tVAF) by a given number

of synergies was sensitive to LP filter choice and decreased in both TD and CP

groups with increasing LP cutoff frequency (e.g., 9.3 percentage points change for one

synergy between 4 and 40Hz). This change in tVAF can alter the number of synergies

selected for further analyses. Normalizing tVAF to a z-score (e.g., dynamic motor control

index during walking, walk-DMC) reduced sensitivity to LP cutoff. Unit variance scaling

caused comparatively small changes in tVAF. Synergy weights and activations were

impacted less than tVAF by LP filter choice and unit variance normalization. These

results demonstrate that EMG signal processing methods impact outputs of synergy

analysis and z-score based measures can assist in reporting and comparing results

across studies and clinical centers.

Keywords: electromyography, muscle synergies, low pass filtering, amplitude scaling, walk-DMC, non-negative

matrix factorization, cerebral palsy
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INTRODUCTION

Muscle synergies have been used to describe the low-dimensional
sets of weighted muscle groups that are recruited during
functional tasks (Tresch and Jarc, 2009; Bizzi and Cheung,
2013). Prior research has theorized that the nervous system
uses these synergies as a simplified method of control, rather
than controlling each muscle individually. Recent research has
applied muscle synergies as a framework to evaluate altered
neuromuscular control in individuals with neurologic disorders.
Research on individuals with stroke and CP have shown that
fewer synergies are required to describe EMG data during
functional tasks compared to unimpaired individuals, and this
reduction in activation complexity may contribute to movement
impairments (Cheung et al., 2009b; Clark et al., 2010; Monaco
et al., 2010; Allen et al., 2013; Roh et al., 2013; Routson et al.,
2014; Steele et al., 2015). However, despite the general agreement
that synergy complexity is reduced in stroke and CP, there is no
consistent methodology for calculating muscle synergies. Prior
to calculating muscle synergies, raw EMG data are processed to
generate linear envelopes describing the activation of eachmuscle
during a task such as walking. In general, this process consists of
an initial filtering (e.g., high pass or band pass filtering), full wave
rectification, low pass (LP) filtering, and amplitude scaling. As
researchers investigate potential clinical applications of synergy
analyses, such as in clinical gait analysis, understanding the
impact of EMG preprocessing is important to compare across
studies or clinical centers.

Prior synergy research has used a wide variety of EMG
preprocessing methods. In particular, a wide range of LP filters
have been used to smooth EMG data, with LP cutoff frequencies
ranging from 1 (Muceli et al., 2010) to 40Hz (Torres-Oviedo and
Ting, 2010), and including many intermediate values including
4 (Clark et al., 2010), 10 (Steele et al., 2015), 20 (Cheung et al.,
2009a), 30 (Torres-Oviedo et al., 2006), or 35Hz (Sawers et al.,
2015). Despite this, there has been little research examining
how muscle synergy calculations are impacted by these LP filter
choices. Kleissen (1990) showed large differences in smoothness
and cycle-to-cycle variability in EMG envelopes from the gluteus
medius during gait when LP filtered at 3.4 or 25Hz. For synergies,
Van der Krogt et al. (2016) showed that the total variance
accounted for (tVAF) by a given number of synergies was reduced
with increasing LP cutoff frequency in children with CP for
EMG data LP filtered between 2 and 25Hz. Since tVAF is
commonly used to pick or choose the number of synergies for
further analysis (e.g., the number of synergies required for tVAF
> 90 or 95%), impacts of LP filtering on tVAF can further
impact conclusions about muscles that are activated together or
differences in synergies between control and clinical populations.
Hug et al. (2012) noted that the number of synergies required
to explain 90% of the variance in EMG data changed between
4, 10 and 15Hz LP filters. However, it has not been shown how
LP filters can affect calculated synergy weights, which describe
muscles commonly activated together, or synergy activation
curves, which describe how each synergy is activated over time.

After filtering, the processed EMG data amplitudes are often
scaled through one of several methods. These include peak

measured amplitude (Clark et al., 2010; Steele et al., 2015),
maximum voluntary contractions (Berger et al., 2013; Zelik
et al., 2014), or median trial maximums (Cheung et al., 2009b).
Additionally, for synergy analyses, prior research has scaled the
amplitude so that each muscle has unit variance (Torres-Oviedo
et al., 2006; Roh et al., 2013; Sawers et al., 2015). Unit variance
scaling has been applied to avoid larger representations of high-
variance muscles in the output synergy weights (Cheung et al.,
2009a). As with filter cutoff, the effects of amplitude scaling on
synergy outputs remains unclear.

To reduce potential impacts of EMGpreprocessing on synergy
results and facilitate comparison across studies or clinical centers,
some prior research has suggested normalizing data to a z-score.
For example, the dynamic motor control index during walking
(walk-DMC) provides a summarymeasure of synergy complexity
by normalizing tVAF by one synergy to the average and standard
deviation of a group of unimpaired individuals (Steele et al., 2015;
Schwartz et al., 2016). By normalizing to a group of controls from
a given clinic or research lab, walk-DMC may help to reduce the
impacts of different equipment, muscles, or EMG preprocessing
methods across institutions. walk-DMCdiffers between typically-
developing (TD) children and children with CP and is associated
with treatment outcomes for children with CP (Schwartz et al.,
2016). The impact of EMG processing on walk-DMC has not
been investigated.

The goal of this research was to examine how EMGprocessing,
specifically the choice of LP filter cutoff frequency and amplitude
scaling, affects synergy analyses for TD children and children
with CP. We evaluated how processing choices impact synergy
complexity, in terms of tVAF and walk-DMC. We also evaluated
how synergy weights and synergy activation curves change with
processing choices. We hypothesized that walk-DMC would be
more consistent across EMG processing conditions than tVAF,
and that synergy weights and activations would change across
processing parameters. Further, we hypothesized that both the
TD and CP children’s synergies would be similarly impacted
by processing choices. Understanding the impact of EMG data
processing on synergy outputs will help inform comparisons
between studies and guide future clinical applications of synergy
analyses.

METHODS

Human subjects’ approval was obtained from both the University
of Washington and the University of Minnesota for this study.

We retrospectively analyzed individuals who previously
received gait analysis at Gillette Children’s Specialty Healthcare.
For this study, we sought to identify 40 individuals with diplegic
CP, belonging to each of the Gross Motor Function Classification
System (GMFCS) Levels I, II, and III (120 total participants), who
had EMG data collected from five muscles during routine clinical
gait analysis. For GMFCS Level III, only 33 individuals met
these inclusion criteria. Data for TD children were obtained from
the control database at Gillette Children’s Specialty Healthcare.
Table 1 summarizes the demographic data for all participants in
this study.
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TABLE 1 | Study population.

N Sex Age Height Mass

F:M (year) (m) (kg)

TD 73 30:43 10.5 ± 3.5 1.44 ± 0.20 40.3 ± 13.3

GMFCS I 40 22:18 10.4 ± 4.8 1.35 ± 0.19 33.6 ± 15.6

GMFCS II 40 14:26 10.9 ± 5.8 1.34 ± 0.22 33.5 ± 15.9

GMFCS III 33 17:16 12.2 ± 9.4 1.28 ± 0.18 32.8 ± 21.9

N, number of participants; F, Female; M, Male; GMFCS, Gross Motor Function

Classification System.

Electromyography Data
Surface EMG data (Motion Laboratory Systems, Baton Rouge,
LA, USA) were collected at 1,080 Hz for five muscles
(rectus femoris, medial hamstrings, lateral hamstrings, medial
gastrocnemius, and tibialis anterior) during barefoot walking at
a self-selected speed. For each individual, one limb was randomly
selected for analysis. We took the middle 80% of the entire gait
trial to avoid transient accelerations and decelerations near the
beginning and end of the trial and maximize data for analysis
(Oliveira et al., 2014). Raw EMG data were band pass filtered
between 35 and 500Hz upon collection.

EMG data for each child were digitally processed with a high
pass (HP) filter and a set of varying LP filters (Figure 1). The filter
parameters were based upon prior studies of synergies during gait
(Torres-Oviedo et al., 2006; Cheung et al., 2009a; Clark et al.,
2010; Torres-Oviedo and Ting, 2010; Steele et al., 2015). The
pipeline for processing EMG data for synergy analysis involves
the following sequence: (1) HP filtering (40 Hz) to eliminate DC
drift and movement artifacts, (2) full wave rectification, and (3)
LP filtering to create a linear envelope of muscle activity. For
both filtering steps, we used 4th order Butterworth filters, which
have commonly been used in synergy analyses (Neptune et al.,
2009; Clark et al., 2010; Allen et al., 2013; Routson et al., 2014).
The specific LP cutoff frequencies evaluated were: 4, 6, 8, 10, 20,
30, and 40 Hz. Since maximum voluntary contractions are not
collected as part of clinical care at Gillette, EMG data were scaled
to the peak amplitude for each muscle. Since some prior synergy
analyses scale EMG data to unit variance, we also investigated
the impact of unit variance scaling with varying filter parameters.
Each EMG channel was scaled to unit variance across the walking
trial. After filtering and amplitude scaling, the EMG envelopes
were down-sampled to 100 Hz to reduce synergy computation
time.

Synergy Analysis
Synergies were calculated from the EMG data processed with
each filtering condition using non-negative matrix factorization
(NMF) (Figure 2). This method calculates a set of synergy
weights (Wmxn) and synergy activations (Cnxt), such that EMG =
W × C + error where n is the number of synergies (1–4 in
this study), m is the number of muscles (5 in this study), and
t is equal to the number of EMG data points. The error term
is defined as the difference between the filtered EMG data and
the EMG data reconstructed from the product of the synergy
weights and activations. We calculated synergies with NMF in

FIGURE 1 | Processing steps and filter parameters used in this study to

evaluate the impact of LP filter choice and amplitude normalization methods

on the results of synergy analyses. RF, rectus femoris; MH, medial hamstrings;

LH, lateral hamstrings; MG, medial gastrocnemius; AT, anterior tibialis.

Matlab (Statistics and Machine Learning Toolbox, MathWorks,
Inc., Natick, Massachusetts, United States) using the following
parameters: 50 replicates, 1,000 maximum iterations, a 1 × 10−4

minimum threshold for convergence, and a 1 × 10−6 threshold
for completion. Note that specific synergies were calculated
separately for each number of synergies specified. In other words,
a synergy from a 2-synergy solution may be different than all of
the synergies from a 3-synergy solution.

We used three measures to evaluate synergy complexity: (1)
the total variance accounted for (tVAF), (2) the number of
synergies required for tVAF > 90%, and (3) a z-score of tVAF
(walk-DMC). The tVAF by n synergies was defined as one minus
the ratio of the sum of squared errors to the sum of filtered EMG
data over all muscles (Equation 1, Ting and Macpherson, 2005).
Traditionally, tVAF is used to define the number of synergies to
evaluate in synergy analyses. For each LP filter, we used a t-test
to compare tVAF and a Mann-Whitney U-test to compare the
number of synergies between CP and TD groups.

tVAFn =



1−

[

∑t
j

∑m
i (error)2

]

[

∑t
j

∑m
i (EMG)2

]



 × 100% (1)

walk-DMC is a z-score based upon tVAF by one synergy (tVAF1,
Equation 2), and uses the average and standard deviation of
tVAF1 (tVAFAVG and tVAFSD) from unimpaired controls. Thus,
the average walk-DMC score for the TD group is 100, and each
10-point deviation represents one standard deviation from the
TD controls. Note that a higher tVAF1 results in a lower walk-
DMC score. For example, a walk-DMC of 80 indicates that an
individual’s tVAF1 during walking is two standard deviations
above the TD group, suggesting simplified control.

walk−DMC = 100+ 10

[

tVAFAVG − tVAF1

tVAFSD

]

(2)
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FIGURE 2 | Example data from a representative TD participant. (A) EMG data were processed with varying LP filter cutoffs. (B) Synergy weights (W) and activations (C)

were calculated for n = 1–4 synergies. (C) Total variance accounted for by n synergies provides a measure of synergy complexity and is often used to select a number

of synergies for further analysis (e.g., tVAF > 90%). RF, rectus femoris; MH, medial hamstrings; LH, lateral hamstrings; MG, medial gastrocnemius; AT, anterior tibialis.

To evaluate the effect of filter parameters on synergy weights and
activations, we calculated the correlation coefficients comparing
synergy weights and activations across all filter conditions. We
computed the average correlation coefficients between the W
matrices output by NMF for each of the LP filtering conditions.
Similarly, we computed the average correlation coefficients for
synergy activations between the Cmatrices output by NMF from
each of the LP filtering conditions.

Since some prior studies (Torres-Oviedo et al., 2006; Cheung
et al., 2009a) scale EMG data for each muscle to unit variance
before running NMF, we also evaluated the impact of unit
variance scaling on the resulting synergies. We compared the
outputs of synergy analyses performed with EMG scaled by unit
variance and by peak activation. We calculated the change in
average tVAF1 and walk-DMC with each LP filter condition
to examine the impact of unit variance scaling on synergy
complexity. Similarly, we calculated the correlation coefficients
in synergy weights (W) and activations (C) with each LP filter
condition between the unit variance and peak activation scaling
methods. Note that EMG may be scaled directly to unit variance
(Cheung et al., 2009a; Roh et al., 2013) or scaled to peak
amplitude and then to unit variance (Torres-Oviedo et al., 2006;
Hayes et al., 2014; Sawers et al., 2015) with equivalent synergy
outputs. In this paper, we first scaled to peak amplitude and then
to unit variance.

RESULTS

Synergy Complexity
LP filter cutoff frequency impacted synergy complexity, as
measured by tVAF. Varying the LP cutoff frequency from
4 to 40 Hz decreased tVAF1 by 9.6 percentage points (i.e.,
from 72.0 to 62.4%) for the TD group, and 9.4, 8.9, and 9.1
percentage points for the GMFCS Level I, II, and III groups,
respectively (Figure 3A). For individual participants, changes

in tVAF1 ranged from 2.2 to 15.1 percentage points across LP
filtering conditions. For more than one synergy, tVAF2−4 also
decreased with increasing LP cutoff frequency with an average
absolute reduction in tVAF of 6.5 percentage points for tVAF2, 3.8
percentage points for tVAF3, and 1.6 percentage points for tVAF4,
across all participants. Despite changes in tVAFn with LP cutoff
frequency, tVAF was still significantly greater in CP compared
to TD across all LP cutoff frequencies and numbers of synergies
(t-test, p < 0.01 for all comparisons).

Changes in tVAF influenced the choice of number of synergies
(Figure 3B). When we applied a threshold of tVAF > 90% to
identify the number of synergies, only 27% of individuals with
CP and 52% of TD had the same the number of synergies
across all LP cutoff frequencies (Figure 4). The average number
of synergies during walking with the 90% tVAF threshold was
2.12 (0.58) and 2.89 (0.36) for CP and TD groups when we
applied a 4Hz LP cutoff frequency, vs. 2.88 (0.43) and 3.37
(0.49) with a 40Hz LP cutoff frequency. However, the number
of synergies was significantly less in CP compared to TD across
all LP cutoff frequencies (Mann-Whitney U-test, p < 0.01 for
all cutoff frequencies). A total of 69% of children with CP and
44% of the TD group increased the number of synergies by one
with increasing LP cutoff frequency, while 4% increased by two
synergies in both groups. Increasing LP cutoff frequency did not
always lead to a greater number of synergies; four TD children
decreased the number of synergies with increasing LP cutoff
frequency.

Walk-DMC reduced the impact of LP cutoff frequency on
synergy complexity. Between 4 and 40 Hz, GMFCS Levels I,
II, and III average walk-DMC scores increased by 1.7, 1.6, and
3.3 points, respectively (Figure 3C). Since walk-DMC normalizes
tVAF1 based upon the mean and standard deviation of the
TD group, the TD group’s average walk-DMC does not change
(average of 100 with a 10 point standard deviation). For
individual participants, the change in walk-DMC with LP cutoff
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FIGURE 3 | Average ± one standard deviation of (A) total variance accounted

for by one synergy (tVAF1 ), (B) number of synergies for tVAF > 90%, and (C)

walk-DMC across LP cutoff frequencies for TD and CP groups. As LP filter

cutoff frequency increased, tVAF decreased and number of synergies

increased for all groups. Average walk-DMC scores had minimal changes

across LP cutoff frequencies.

frequency ranged from <0.01 to 15.4 points with an average
change of 4.0 points. Some individual’s walk-DMC increased with
increasing LP cutoff frequency, while others decreased.

Synergy Weights
Similar to tVAF, changes in LP cutoff frequency also impacted
synergy weights. Synergy weights calculated with a 4 and 40 Hz
LP filter had an average correlation coefficients of 0.68, 0.87, 0.93,
and 0.92 for 1–4 synergies, respectively (Figure 5). The average
correlation coefficients by group were 0.68, 0.89, 0.94, and 0.93
for the TD children for 1–4 synergies, respectively; 0.69, 0.86,
0.94, and 0.92 for GMFCS Level I; 0.63, 0.85, 0.92, and 0.91
for GMFCS Level II; and 0.68, 0.86, 0.90, and 0.90 for GMFCS
Level III. For an individual participant, the minimum correlation
coefficient of synergy weights across LP cutoff frequencies was
<0.01, 0.09, 0.47, and 0.57 for 1–4 synergies. Between 4 and
40Hz, the correlation coefficient was>0.8 for 56, 20, 11, and 17%
of all individuals for 1–4 synergies.

Synergy Activations
Synergy activations calculated with 4 or 40Hz LP filters had an
average correlation coefficient of 0.79, 0.78, 0.78, and 0.74 across
all participants for 1–4 synergies, respectively (Figure 5). The
average correlation coefficients were 0.79, 0.81, 0.81, and 0.78 for
the TD children for 1–4 synergies, respectively; 0.79, 0.78, 0.79,
and 0.74 for GMFCS Level I; 0.79, 0.76, 0.76, and 0.72 for GMFCS
Level II; and 0.79, 0.75, 0.74, and 0.70 for GMFCS Level III. For
an individual participant, the minimum correlation coefficient of
synergy activations across LP cutoff frequencies was 0.51, 0.23,
0.40, and 0.45 for 1–4 synergies.

Unit Variance
Scaling EMG data to unit variance impacted synergy complexity,
structure, and activations. Scaling to unit variance had a variable
impact on tVAF1, increasing tVAF1 for some children and
decreasing tVAF1 for others when compared to peak amplitude
scaling (average difference across all participants: 1.7, SD 1.6
percentage points). However, group average tVAF1 changed
only slightly with unit variance scaling, with a maximum
change of 1.3 percentage points for TD with a 4 Hz LP filter
(Figure 6A). Changes in walk-DMC due to unit variance scaling
were largest with a 4 Hz LP filter with increases of 4.0, 5.4,
and 6.2 points for GMFCS Levels I, II, and III and smallest
with a 40 Hz LP with group changes of 1.0, 1.1, and -0.7
points, respectively (Figure 6B). The synergy weights correlation
coefficients calculated with and without unit variance scaling
were lowest for one synergy and decreased with greater LP cutoff
frequency (Figure 6C). Synergy activations were similar between
scaling methods and correlation coefficients slightly decreased
with increasing LP filter cutoff (Figure 6D).

For EMG data scaled to unit variance, LP cutoff frequency
caused slightly larger changes in tVAF1, with an average change of
10.5 percentage points between 4Hz and 40Hz LP filters. When
we applied a threshold of tVAF > 90% to choose the number of
synergies, 12% of children with CP and 11% of TD children had
the same the number of synergies across all LP cutoff frequencies.
Changes in walk-DMC were similar with changes of 1.2, 2.8,
and 3.7 points for GMFCS Levels I, II, and III, respectively. The
correlation coefficients of synergy weights were higher with unit
variance scaling than EMG data normalized by peak amplitude,
with average correlation coefficients of 0.90, 0.94, 0.95, and 0.96
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FIGURE 4 | Number of synergies required for tVAF > 90%. Each TD and CP group is shown as the percentage of the total number of individuals in that group. As LP

cutoff frequency increased the number of synergies increased for all groups.

FIGURE 5 | Correlation coefficients of synergy weights and synergy activations between LP cutoff frequencies, averaged across all subjects (TD and CP) for one to

four synergies.

for 1–4 synergies comparing 4Hz and 40Hz LP filters. The
correlation coefficients of synergy activations were also slightly
higher than EMG data normalized by peak amplitude, with
average correlation coefficients of 0.81, 0.81, 0.79, and 0.77 for
1–4 synergies comparing 4Hz and 40Hz LP filters.

DISCUSSION

A z-score normalized measure of synergy complexity, walk-
DMC, was more stable across LP filter parameters than tVAF
or number of synergies. For both TD and CP children,
tVAF decreased with increasing LP cutoff. Amplitude scaling
of EMG data had smaller effects than LP filter choice on
synergy complexity. These results highlight one disadvantage
of using tVAF thresholds (i.e., tVAF > 90%) to identify the
number of synergies for further analyses. Since tVAF is sensitive
to filtering parameters, different studies may report different
synergy numbers and co-activation patterns, depending on their

choice of LP cutoff frequency. Despite the sensitivity of tVAF
to LP cutoff, the TD and CP groups were significantly different
across all LP filters for all measures of synergy complexity.
These results suggest that z-score measures may be useful for
comparing synergy results across studies or clinical centers.
However, z-score normalization requires EMG data from TD or
control participants, whichmay not be available at all institutions.
Similarly, caution should be exercised when picking a single
tVAF threshold for selecting number of synergies or comparing
number of synergies across studies.

The choice of LP filter also affected individual muscle
contributions (muscle weights) within each synergy. Synergy
weights for solutions with fewer synergies (e.g., n = 2 synergies)
were more sensitive to LP cutoff. Increasing the number of
synergies increased similarity of synergy weights since fewer
muscles were activated together in each synergy. In this study
we used a clinical dataset with EMG data from five muscles. We
anticipate that the impacts of LP filter choice on synergy weights
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FIGURE 6 | Average change in (A) tVAF and (B) walk-DMC for synergies

calculated with EMG data scaled by peak activation or unit variance. Positive

values indicate that results from unit variance scaling were greater than peak

activation scaling. Average correlation coefficients of (C) synergy weights and

(D) synergy activations between EMG data scaled by peak activation or unit

variance.

may be greater for datasets that have more muscles, since more
muscles would be activated together in each synergy (Steele et al.,
2013). Our results support work by Chvatal and Ting (2012) who
demonstrated that further smoothing EMG data LP filtered at
40 Hz by subsequently averaging across bins ranging from 10

to 200 ms resulted in similar synergy weights (similarity >0.85
for the selected number of synergies with a threshold of tVAF >

85%). The correlation coefficients of the synergy activation curves
also decreased with increasing LP filter cutoff. The decrease in
correlation with increasing LP cutoff for the activation curves is
reflective of the input EMG data, which retains additional high
frequency components when processed with a higher LP filter
(Figure 2).

The choice of amplitude scaling between unit variance and
peak amplitude also impacted the individual muscle weights
within each synergy. Synergy weights and activations were more
similar across LP filter conditions for EMG data scaled to unit
variance than peak amplitude, since scaling by unit variance
reduces differences between muscles that may impact synergy
weights and activations. All amplitude scaling methods involve
applying a unique scaling factor to each EMG channel, which
impacts the scaling of calculated synergy weights. Note that
scaling to unit variance negates the effects of any previous scaling
(e.g., peak amplitude or maximum voluntary contraction). As
with LP filter choice, analyses that calculated fewer synergies
(e.g., n = 2 synergies) were more sensitive to amplitude
scaling. The stronger influence of EMG processing methods on
synergy solutions with fewer synergies is especially important for
evaluations of clinical populations, which typically have reduced
synergy complexity compared to control populations.

Just as we found a range of LP filters used in prior research,
we also found a range of HP filters used before rectification,
including 40Hz (Bowden et al., 2010; Clark et al., 2010; Routson
et al., 2014), 35Hz (Torres-Oviedo and Ting, 2010; Sawers
et al., 2015), and 20Hz (Hug et al., 2012; Van der Krogt
et al., 2016). We could not explore the effects of HP filter
choice with our dataset since our data were originally recorded
with an on-board 35 Hz HP filter. However, the International
society of Electrophysiology and Kinesiology (ISEK) currently
recommends a HP filter from 5 to 10Hz (Merletti and Torino,
1999). De Luca et al. (2010) found that a 20 Hz HP filter was
the best compromise between eliminating movement artifacts
and retaining EMG power. HP filters primarily act to reduce
DC drift in the EMG signal due to motion artifact and other
nonphysiological signals. Consequently, we do not expect large
impacts from HP filters on synergies, but the precise impacts of
HP filtering on synergy analyses remain an open question.

Beyond filter cutoff frequency and amplitude scaling methods,
there are other EMG preprocessing choices we did not explore,
including filter type and filter order. Devaprakash et al. (2016)
compared a 2nd order critically damped filter to a 2nd order
Butterworth filter with consistent cutoff frequencies and found
only small differences in the EMG data that did not affect clinical
interpretation. (De Luca et al., 2010) found >1% difference in
root mean square difference between EMG profiles processed
with 2nd or 3rd order Butterworth filters. Taken together, these
results suggest that filter choice and order are less significant than
LP cutoff frequency for EMG and synergy analyses.

Given the wide variety of EMG data processing methods
used in prior research, exploring and discussing the underlying
biological mechanisms that should inform the choice of filters
and synergy analyses methods would be useful for future
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research. Current EMG data processing methods are largely
based upon technical specifications. Prior work has found
that LP filters should be tailored to the specific task (Shiavi
et al., 1998; Hug, 2011). However, there is a need to explore
the neurophysiology underlying synergy analyses, especially
considering some of the limitations of surface EMG data (Farina
et al., 2004). For example, if synergies are driven by an underlying
central pattern generator, what are the rates of these reflex
loops, and how can these biological processes inform data
preprocessing and interpretation of synergy analyses? If central
pattern generators are driven by low-frequency mechanisms,
then perhaps low-frequency LP cutoff frequencies are more
appropriate. Future research, such as newly developed methods
with direct central nervous system recordings and surface EMG
data may assist in understanding these relationships (Godlove
et al., 2016).

Output measures of synergy analyses including tVAF,
synergies weights, and synergy activations were sensitive
to EMG processing methods. We found that increasing
LP filter cutoff frequency decreased synergy complexity,
as measured by tVAF. Since tVAF is commonly used to
identify the number of synergies, LP filter choice can impact
conclusions about the number of synergies and muscle co-
activation patterns from synergy analyses. Synergy weights
and activations are less sensitive to LP cutoff frequency
when calculated for two or more synergies. Future studies
of synergy analyses and potential clinical applications should

carefully consider and report EMG processing methods to
enable comparisons across studies and institutions. As synergy
analysis is adopted in clinical gait analysis to inform treatment
planning, these results highlight the importance of carefully
considering EMG processing methods and the utility of a
control database. We found that z-score based measures,
such as walk-DMC, that compare to control populations can
reduce sensitivity to LP filter choice and facilitate comparisons
between studies and clinical centers with different EMG
protocols.
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Muscle synergy analysis (MSA) is a mathematical technique that reduces the

dimensionality of electromyographic (EMG) data. Used increasingly in biomechanics

research, MSA requires methodological choices at each stage of the analysis. Differences

in methodological steps affect the overall outcome, making it difficult to compare results

across studies. We applied MSA to EMG data collected from individuals post-stroke

identified as either responders (RES) or non-responders (nRES) on the basis of a

critical post-treatment increase in walking speed. Importantly, no clinical or functional

indicators identified differences between the cohort of RES and nRES at baseline. For this

exploratory study, we selected the five highest RES and five lowest nRES available from

a larger sample. Our goal was to assess how the methodological choices made before,

during, and after MSA affect the ability to differentiate two groups with intrinsic physiologic

differences based on MSA results. We investigated 30 variations in MSA methodology

to determine which choices allowed differentiation of RES from nRES at baseline.

Trial-to-trial variability in time-independent synergy vectors (SVs) and time-varying neural

commands (NCs) were measured as a function of: (1) number of synergies computed; (2)

EMG normalization method before MSA; (3) whether SVs were held constant across trials

or allowed to vary duringMSA; and (4) synergy analysis output normalizationmethod after

MSA. MSA methodology had a strong effect on our ability to differentiate RES from nRES

at baseline. Across all 10 individuals and MSA variations, two synergies were needed to

reach an average of 90% variance accounted for (VAF). Based on effect sizes, differences

in SV and NC variability between groups were greatest using two synergies with SVs that

varied from trial-to-trial. Differences in SV variability were clearest using unit magnitude

per trial EMG normalization, while NC variability was less sensitive to EMG normalization

method. No outcomes were greatly impacted by output normalization method. MSA

variability for some, but not all, methods successfully differentiated intrinsic physiological

differences inaccessible to traditional clinical or biomechanical assessments. Our results

were sensitive to methodological choices, highlighting the need for disclosure of all

aspects of MSA methodology in future studies.

Keywords: muscle synergies, motor modules, stroke, locomotion, EMG, variability
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INTRODUCTION

Muscle synergy analysis (MSA) is a mathematical strategy
developed under the premise that complex patterns of muscle
activity are driven by a small set of activation components termed
synergies. Nikolai Bernstein first proposed the idea of synergies
to explain how the nervous system simplifies control of a vast
number of independent parameters (Bernstein, 1967). While
the relationship between the underlying neuromuscular control
strategies and the mathematical concept of synergy analysis are
still under debate, MSA is arguably an effective method for
reducing the dimensionality of a data set into units that represent
most of the variability in the original signals. Importantly, there
are numerous analytical parameters involved in MSA. A priori
decisions and assumptions regarding MSA may influence the
outcomes and interpretation of results. Among these choices are:
number of synergies used, filtering parameters, electromyogram
(EMG) normalization method, computational algorithm, output
variable normalization method, and which components [i.e.,
synergy vectors (SVs) or neural commands (NCs)] remain
constant and which can vary between trials. Many research
groups base these methodological decisions on the intended
application of the synergy analysis [e.g., a musculoskeletal model,
a device controller, or a comparison to kinematic, kinetic, or
functional variables within and across populations (Ivanenko
et al., 2003; Bowden et al., 2010; Berger and d’Avella, 2014;Walter
et al., 2014)]. Importantly, when comparing studies that utilize
MSA, great care is required to understand the consequences of
these decisions. Methodological inconsistencies in performing
MSA create challenges not only for interpreting results but also
replicating analyses across research groups. These inconsistencies
limit our ability to build a body of evidence based on this
analytical approach and detract from resolving debate regarding
the physiological relevance of MSA.

MSA decomposes EMG activation patterns into a smaller
dimension of time-varying signals, often referred to as neural
commands, and a matrix of weights, or synergy vectors, that
can be linearly combined to reconstruct the original EMG
signals. Neural commands are sets of basis functions that
represent the time-varying component of the signal and are
also known as activation components or activation signals
(Ivanenko et al., 2005; Cappellini et al., 2006; Gizzi et al.,
2011). Synergy vectors are scalar values that represent activity
patterns across all EMG signals and are also referred to as m-
modes or weighting coefficients (Ivanenko et al., 2005; Ting
and Chvatal, 2010). Collectively, one synergy vector and its
corresponding neural command can be termed a synergy or
module (Clark et al., 2010; Ting and Chvatal, 2010). The number
of synergies selected to represent a data set typically stems from
the percentage of variance (or variability) accounted for (VAF)
by a combination of synergies. Variability is a key component of

Abbreviations: MSA, Muscle synergy analysis; RES, treatment responders;
nRES, treatment non-responders; SV, synergy vector; NC, neural command;
VAF, variance accounted for; NNMF, non-negative matrix factorization; MagPer,
magnitude per trial; MaxOver, maximum value over all trials; MaxPer, maximum
value per trial; UnitPer, unit variance per trial; UnitOver, unit variance over all
trials.

MSA because the synergies must be flexible enough to combine
into the variable movement patterns that humans or animals
employ to perform a task. Several numerical methods can be
applied to perform MSA decomposition, including principal
component analysis (PCA), independent component analysis
(ICA), and non-negative matrix factorization (NNMF). PCA is
a linear eigenvalue decomposition technique that finds a set
of orthogonal components that represent the covariance of the
original data set (Chau, 2001). ICA is a non-linear blind-source
separation technique that identifies the statistically independent
sources that can be re-combined to generate a mixed set of signals
(Bell and Sejnowski, 1995; Hart and Giszter, 2004). Non-negative
matrix factorization creates a parts-based representation of the
final signal using only positive, additive components (Lee and
Seung, 1999). Once the choice of analysis method has been made,
the corresponding analysis parameters should be carefully chosen
based on the intended outcomes.

Myriad methodological choices are required throughout the
MSA process. First, EMG signals are processed, typically
involving filtering, time normalization, and amplitude
normalization. Filtering and amplitude normalization strategies
vary greatly in the literature (Ivanenko et al., 2005; Hug et al.,
2012; Santuz et al., 2016). Prior to or during the analysis,
depending on the algorithm, a decision must be made regarding
the number of synergies needed to reconstruct an intended
activity. Some investigators specify a minimum percent VAF
(or R2) threshold across all muscles (Roh et al., 2012; Routson
et al., 2013), while others include additional criteria such as
the requirement that the addition of one more synergy will
not increase the VAF by a considerable amount (Ting and
Chvatal, 2010; Hayes et al., 2014). In some cases investigators
take additional steps, such as measuring the slope of the VAF or
R2 curve and adding a synergy if doing so leads to a substantial
change in either of these parameters (Gizzi et al., 2011; Frère and
Hug, 2012; Berger and d’Avella, 2014). Additionally, the SVs can
be held constant or allowed to vary from trial-to-trial (Frère and
Hug, 2012). Finally, after the synergy algorithm is complete, the
SVs or NCs are typically normalized in some fashion to facilitate
comparisons in the final output.

MSA has a wide range of applications, from musculoskeletal
modeling to complementing a biomechanical analysis, and more
recently to studying characteristics of movement pathology.
Clark et al. showed that fewer synergies could be used to
account for muscle activity patterns during walking in the
paretic leg of stroke survivors compared to the non-paretic
leg or either leg of healthy controls (Clark et al., 2010).
Based on these results, they hypothesized that some of the
synergies employed by healthy individuals may be merged
in the paretic leg of persons following stroke (Clark et al.,
2010). This merging of modules was also described in the
upper extremity (Cheung et al., 2012) and lower extremity
following stroke, incomplete spinal cord injury, and Parkinson’s
disease, respectively (Rodriguez et al., 2013; Routson et al., 2013;
Hayes et al., 2014). However, two other studies reported no
difference in the number of synergies between stroke survivors
and healthy controls during walking (Gizzi et al., 2011) or in
studying the upper extremity (Roh et al., 2012). This variation
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in results could be attributable to many factors, including:
synergy analysis methods, number and choice of muscles
included, task performed, chronicity of pathologic condition, and
heterogeneity of deficits inherently present following stroke. The
latter two details are difficult to control, but careful selection
of synergy analysis methods should improve our ability to
replicate or compare results across studies. In the absence of
repeatable results both within and across clinical populations, it
becomes a challenge to understand the significance and utility of
MSA.

Recently, several studies have investigated key methodological
details involved in MSA, ranging from EMG collection and
processing to the chosen factorization algorithm. Selecting
the largest and most dominant muscles within a movement
synergy decreases the effect of experimental constraints on the
outcome of synergy analysis (Steele et al., 2013). The choice
of high-pass and low-pass filter cutoff frequencies impacts the
number of synergies selected and the quality of reconstruction
of the original signals (Hug et al., 2012; Santuz et al., 2016).
The number of trials, as well as whether trials are analyzed
individually, averaged, or concatenated into a single matrix, has
not been found to produce a major impact on the number
of synergies extracted, but averaging or concatenating smaller
data sets decreases reconstruction quality (Oliveira et al., 2014).
Some studies have compared factorization algorithms (Ivanenko
et al., 2005; Tresch et al., 2006), while another has focused
on comparing variations of the NNMF algorithm (Devarajan
and Cheung, 2014). Collectively, researchers are moving toward
standardizing synergy analysis methods in an effort to advance
the field and allow for better validation of the utility of MSA in
context.

Here our goal was to assess how variations in MSA
methodology affect the quantification of trial-to-trial variability
in muscle synergies. We chose to quantify variability because
of Bernstein’s theories regarding the importance of variability
within the nervous system; while variability is always present
in cyclical movements like walking, this movement variability
likely arises from the same movement synergy (Bernstein, 1967).
We applied MSA to EMG data collected during assessments
prior to an experimental rehabilitation intervention that targeted
walking recovery in chronic stroke. While the primary outcome,
walking speed, improved overall following intervention, the
cohort was divided equally between responders (RES) and
non-responders (nRES) (Clark and Patten, 2012). Importantly,
at baseline no clinical or neuromechanical gait parameter
differentiated individuals who were identified as RES and
nRES post-intervention. These data, having a known functional
outcome, afford an ideal test-bed for analyzing the impact
of variations in MSA methodology. Specifically, we sought to
determine the ability of MSA to differentiate RES and nRES
using only pre-treatment data. We applied MSA to the five
greatest and five least treatment responders with useable datasets
to evaluate differences in synergy vector and neural command
variability. We hypothesized that one or more methods of MSA
would detect differences in synergy variability between RES
and nRES.

METHODS

This study involves a subset analysis of subjects with chronic
hemiparesis following stroke who participated in 8 weeks of
rehabilitation. The intervention consisted of 5 weeks of paretic
lower extremity power training and 3 weeks of traditional
clinic-based gait training (Clark and Patten, 2012). At baseline
and post-treatment, self-selected walking speed and EMG data
were collected while participants walked over three force
plates (Advanced Mechanical Technology, Inc., Watertown,
MA). Gait events of heel strike and toe-off were recorded
(200 Hz) using a vertical ground reaction force threshold
(F>20 N) and target pattern recognition from heel marker
placement using a seven-camera Qualisys motion capture system
(ProReflex MCU 240, Göteborg, Sweden). Analog force signals
were low-pass filtered (second order bidirectional Butterworth,
10 Hz cutoff). Marker data were low-pass filtered (second
order bidirectional Butterworth, 6 Hz cutoff). Surface EMG
data were sampled (1 kHz) from eight paretic leg muscles:
tibialis anterior (TA), medial gastrocnemius (MG), soleus (SO),
rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF),
semitendinosus (ST), and gluteus medius (GM) using active,
pre-amplified electrodes (17 mm inter-electrode distance, input
impedance>100,000,000 �, CMRR>100 dB at 65 Hz, and
signal bandwidth 20–3,500 Hz; MA-411, Motion Lab Systems,
Baton Rouge, LA). All procedures were approved by the
Stanford University Administrative Panels on Human Subjects
Research and conducted in accordance with the Declaration of
Helsinki.

Participants were classified as either RES or nRES based on
post-treatment change in self-selected walking speed. Individuals
demonstrating a post-treatment change exceeding a minimal
important difference of 0.123m/s were classified as treatment
RES (n = 15). Conversely, individuals who did not produce or
exceed this change were classified as nRES (n= 17). Importantly,
clinical and functional measures at baseline were not different
between the RES and nRES in the original cohort (Clark and
Patten, 2012). The five highest RES and five lowest nRES with
useable EMG data sets were selected for the primary analysis. To
evaluate the validity of our findings, we compared five additional
nRES to the five lowest nRES. The number of trials included for
each subject ranged from 2 to 12, with a mean of 10 trials. Subject
characteristics for each group can be found in Table 1.

Muscle Synergy Analysis
We used non-negative matrix factorization (NNMF) to perform
the MSA for all conditions (Lee and Seung, 1999; Ivanenko et al.,
2005; Ting and Chvatal, 2010). All EMG data were band-pass
filtered (fourth-order zero phase-lag Butterworth filter, cutoff
20–200 Hz), demeaned, rectified, low-pass filtered (fourth-order
zero phase-lag Butterworth) with a variable cutoff frequency of
7/gc Hz (gc corresponds to the duration of the subject’s average
gait cycle) and time interpolated using the gait events to obtain
101 points per gait cycle (Clark et al., 2010; Chvatal and Ting,
2013; Routson et al., 2013). An individual’s ideal low-pass filter
frequency relates to the frequency of the task performed, which

Frontiers in Computational Neuroscience | www.frontiersin.org August 2017 | Volume 11 | Article 7865

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Banks et al. Methodological Choices in Muscle Synergy Analysis

TABLE 1 | Subject demographics.

Responders

(RES)

Non-responders

(nRES)

Validation

nRES

DEMOGRAPHICS

n 5 5 5

sex (m/f) 4/1 3/2 4/1

age (yrs) 56.4 ± 6.97 65.5 ± 5.83 66.5 ± 9.79

self-selected walking

speed (m/sec)

0.46 ± 0.23 0.33 ± 0.24 0.41 ± 0.32

post-treatment walking

speed change (m/sec)

0.26 ± 0.08 0.03 ± 0.03* 0.06 ± 0.03*

chronicity (mos) 10 ± 3.14 12.8 ± 3.27 15.2 ± 2.34

affected side (r/l) 2/3 0/5 4/1

CLINICAL CHARACTERISTICS

Fugl-Meyer Synergy

Subscore (/22)

16 (14,21) 14 (6,18) 16 (3,21)

Demographic and clinical data are presented mean ± SD and median (range),
respectively. *Indicates a significant difference from RES, p < 0.05.

is variable in this sample because subjects walked overground at
self-selected speed (Shiavi et al., 1998; Hug, 2011; Meyer et al.,
2016).

We performed MSA using a total of 30 methodological
variations comprised of: five approaches for EMG normalization,
two approaches for SV calculation, and three approaches for
synergy output normalization. The five EMG normalization
approaches were: unit magnitude per trial (MagPer), maximum
value over all trials (MaxOver; Clark et al., 2010; Frère and
Hug, 2012; Routson et al., 2013; Zelik et al., 2014), maximum
value per trial (MaxPer; Gizzi et al., 2011; Walter et al., 2014),
unit variance per trial (UnitPer), and unit variance over all
trials (UnitOver; Roh et al., 2012; Steele et al., 2013). The SV
calculation approaches either held SVs constant across all trials
(Clark et al., 2010; Ting and Chvatal, 2010) or allowed them
to vary (Ivanenko et al., 2005; Cappellini et al., 2006). The
three synergy output normalization approaches were: SVs by
unit magnitude (SV Mag)1, SVs by maximum value (SV Max;
Safavynia and Ting, 2012; Chvatal and Ting, 2013; Rodriguez
et al., 2013), and NCs by maximum value (NC Max; Ivanenko
et al., 2005; Gonzalez-Vargas et al., 2015). If SVs were normalized,
then NCs were multiplied by the same normalization values
so that their product remained constant, and vice versa. Every
possible combination of EMG normalization, SV calculation,
and synergy output normalization was applied, thus creating 30
different methodological variations of MSA.

EMG normalization was either computed within individual
trials (per trial) or across all trials within a given muscle (over
all trials). MagPer normalization involves dividing each element
within the vector of 101 EMG data points by its 2-norm, to create
a unit vector:

yMagPer =
1

||x||
x, (1)

1MATLAB. Statistics and Machine Learning Toolbox. Natick, MA: The
MathWorks, Inc.

where x is the original EMG vector and y is the normalized EMG
vector.

In MaxPer normalization, each vector element is divided by
the vector’s maximum value:

yMaxPer =
1

max(x)
x (2)

MaxOver normalization involves the same calculation as MaxPer
except the denominator is replaced with the maximum EMG
value for the given muscle over all walking trials. UnitPer
normalization involves dividing each element of the EMG vector
by the vector’s standard deviation:

yUnitPer =
1

std(x)
x (3)

Similarly to MaxOver, UnitOver involves dividing the EMG
vector elements by the standard deviation over all trials for a
given muscle within a subject.

After each iteration of NNMF, the calculated synergies
were sorted within each trial, since NNMF algorithms do
not output synergies in any particular order. The neural
commands were sorted using the maximal cosine similarity
(cossim):

cossim (a, b) = cos θab =
a · b

||a|| ||b||
, (4)

where a and b are two neural commands within a synergy and
θ is the angle between the two vectors. This step was performed
to ensure that each synergy was similar across trials within each
subject (d’Avella and Bizzi, 2005; Santuz et al., 2016).

Once MSA was completed for each subject, we calculated the
trial-to-trial variability in the SVs and the trial-to-trial similarity
in NCs as a basis for identifying differences between RES and
nRES at baseline. VAF was averaged within subjects to quantify
mean differences between RES and nRES. Standard errors in the
SVs were averaged within and across subjects for each of the
RES and nRES to quantify the variability within these outcome
measures. Neural command similarity was calculated two ways:
using the cosine similarity and the maximum value of the circular
cross-correlation coefficient. The cosine similarity was calculated
as in Equation (4), above, for every combination of trials within
each synergy (d’Avella and Bizzi, 2005; Coscia et al., 2014; Santuz
et al., 2016). These values were then averaged to determine
the trial-to-trial similarity of each NC. The cross-correlation
coefficient was also averaged across all possible combinations of
trials (Ivanenko et al., 2004; Frère and Hug, 2012).

A two-way group∗synergy analysis of variance (ANOVA)
was conducted on mean VAF across all methods. Tukey’s HSD
was applied post-hoc to assess significant effects. Hedges’ g-
test was used to compare trial-to-trial differences in the SVs,
NCs, and VAF in the RES and nRES across MSA methods.
Hedge’s g is complementary to the t-test, but due to the small
sample size and the desire to determine the generalizability
of results to larger data sets, we computed effect sizes rather
than performing inferential statistics. We interpret results using
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effect thresholds as follows: small = ±0.2, medium = ±0.5,
large = ±0.8, very large = ±1.3 (Cohen, 1977). Because the
present study is a test-bed for MSA, we considered medium
effect sizes and larger noteworthy, with special emphasis on
large and very large effects. To evaluate our results, we also
calculated effect sizes of noteworthy MSA methods between

FIGURE 1 | Pre-treatment variance accounted for (VAF). VAF for each synergy,

averaged across all muscle synergy analysis methods for non-responders

(gray) and responders (black). Data represent mean ± standard error across

subjects.

the five worst nRES and five additional nRES from the larger
dataset.

EMG processing, MSA, and Hedge’s g-tests were performed
using Matlab’s Optimization ToolboxTM (Release r2015a, The
MathWorks, Natick, MA) and the Measures of Effect Size
Toolbox (Hentschke and Stüttgen, 2013). Custom functions were
written to analyze these data using each of the MSA methods
described above. ANOVA and post-hoc analyses were conducted
in JMP Pro 11 (SAS Institute, Inc., Cary, NC, USA).

RESULTS

A two-way ANOVA for mean VAF revealed significant main
effects of group (p = 0.005) and synergy (p < 0.0001) but
no interaction effect. RES had a lower average pre-treatment
VAF than did nRES (Figure 1). Across all methods, only two
synergies were needed to reach at least 90% VAF (92.72 ±
1.04% for RES, 94.44 ± 0.50% for nRES, mean ± standard
error). Figure 2 shows example synergies for one RES and one
nRES (top two rows). Addition of a third synergy increased
the average VAF to 95.95 ± 0.61% for RES and 96.90 ± 0.40%
for nRES. Whether an absolute 90% VAF cutoff or an average
95% requirement was applied, the full EMG data set could be
well-approximated using either two or three synergies. Since
VAF is unaffected by output normalization, there are 10 possible
combinations of MSA methods for comparing VAF between

FIGURE 2 | Example synergies for a responder (A), non-responder (B), and validation non-responder (C). The left two columns depict Synergy 1, while the right two

depict Synergy 2. Within each synergy, the leftmost plot represents the synergy vectors (SVs) and the rightmost plot represents the neural commands (NCs). Individual

trials are represented by thin bars (SVs) and thin lines (NCs), while the thicker bars and lines represent the average across trials for each subject. Synergies were

extracted using maximum value per trial EMG normalization, varying SVs, and normalization of SVs to unit magnitude. TA, tibialis anterior; MG, medial gastrocnemius;

SO, soleus; RF, rectus femoris; VL, vastus lateralis; BF, biceps femoris; ST, semitendinosus; GM, gluteus medius.
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groups. With two synergies, all 10 methods produced at least
medium effects, indicating that a larger sample with similar
characteristics is likely to have significantly greater VAF for
the non-responders than the responders (Figure 3). For three
synergies, there was one small effect, four medium effects,
and four large effects. All of the large effects occurred with
varying SVs. Because of these differential effects in VAF, we
examined both two and three synergies for effects in SV and NC
variability.

Synergy analysis methodology greatly influenced the
calculated trial-to-trial variability within the synergy vectors.
With two synergies and varying SVs between trials, six methods
produced medium effects and three methods produced large
effects (Table 2). All of these effects were positive, indicating
greater variability in the RES than the nRES. Figure 4 illustrates
absolute effect sizes when comparing SV variability between RES
and nRES with two and three varying synergies. MagPer EMG
normalization revealed large effects with two synergies regardless
of SV output normalization method. For three synergies, notable
differences between RES and nRES were revealed with six
methods. The greatest effect sizes were revealed with MaxPer
and MaxOver EMG normalization and NCs normalized to their
maximum value.

The trial-to-trial variability within the neural commands
differed depending on both the MSA method and the method
of quantifying variability (Table 3). For both cosine similarity
and cross-correlation, negative effect sizes indicate greater trial-
to-trial variability among RES, compared to nRES. For the
cosine similarity metric with two synergies and constant SVs,
there were three medium effects and no large or very large
effects (Figure 5). Two synergies with varying SVs produced
large effects for all fifteen combinations of EMG and output
normalization. Three synergies with constant SVs revealed
five medium effects and two large effects. Three synergies
with varying SVs revealed five medium and no large or

very large effects. For the cross-correlation comparison with
constant SVs, neither two nor three synergies produced
notable effects (Figure 6). Two synergies with varying SVs
revealed six medium effects and six large effects (Table 3).
Three synergies with varying SVs revealed three medium
effects and one large effect. In general, the same patterns

TABLE 2 | Notable effects in synergy vector variability.

Synergies EMG

normalization

method

Output

normalization

method

Effect sizea

2, Varying SVs MagPer SV Mag 0.904

SV Max 0.830

NC Max 0.949

MaxPer SV Mag 0.762

SV Max 0.720

NC Max 0.655

UnitPer SV Mag 0.680

SV Max 0.697

NC Max 0.665

3, Varying SVs MaxOver SV Max −0.653

NC Max −0.909

MaxPer SV Max −0.647

NC Max −0.909

UnitOver SV Mag −0.653

NC Max −0.597

SVs, synergy vectors; MagPer, magnitude per trial; SVMag, synergy vector magnitude; SV
Max, synergy vector maximum value; NCMax, neural command maximum value; MaxPer,
maximum value per trial; UnitPer, unit variance per trial; MaxOver, maximum value over all
trials; UnitOver, unit variance over all trials.
aEffect sizes calculated using Hedge’s g. Positive values in SV variability indicate greater
variability in RES.

FIGURE 3 | Absolute effect sizes at baseline, measured by variance accounted for (VAF). Effect sizes for two synergies with constant synergy vectors (SVs, A), two

synergies with varying SVs (B), three synergies with constant SVs (C), and three synergies with varying SVs (D). EMG normalization methods include: magnitude per

trial (MagPer), maximum value over all trials (MaxOver), maximum value per trial (MaxPer), unit variance per trial (UnitPer), and unit variance over all trials (UnitOver).

Color bar represents effect size values.
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FIGURE 4 | Absolute effect sizes at baseline for synergy vector (SV) variability.

Effect sizes for two varying synergies (A) and three varying synergies (B). EMG

normalization methods include: magnitude per trial (MagPer), maximum value

over all trials (MaxOver), maximum value per trial (MaxPer), unit variance per

trial (UnitPer), and unit variance over all trials (UnitOver). Output normalization

methods include SVs by magnitude (SV Mag), SVs by maximum value (SV

Max), and neural commands by maximum value (NC Max). Color bar

represents effect size values.

were present across output normalization methods but two
synergies with varying SVs produced large effects most
frequently.

To validate our findings, we compared results from the
original nRES to those from five additional nRES identified
from the larger data set. Example synergies for a validation
nRES are shown in Figure 2 (bottom row), which appear
qualitatively similar to the example nRES in the same figure. Two
synergies were sufficient to achieve 90% VAF in all validation
nRES across all methods, and there were no differences in
VAF between the original nRES and the validation group.
Because two synergies with varying SVs produced the most
consistent effects in the initial RES/nRES analysis, validation
focused on large effects within this subset of results. In this
case, large effects in the initial RES/nRES analysis coupled
with small or no effects in the nRES validation analysis are
desirable findings, indicating that the method has the capacity
to differentiate between response groups. For synergy vector
variability, MagPer EMG normalization produced large effects in
the initial analysis and no effects when comparing nRES to nRES

TABLE 3 | Notable effects in neural command variability.

Synergies EMG

normalization

method

Output

normalization

method

Cosine

similarity effect

sizea,b

Cross-

correlation

effect sizea,c

2, Constant

SVs

UnitPer SV Mag −0.509 –

SV Max −0.506 –

UnitOver SV Mag −0.500 –

2, Varying

SVs

MagPer SV Mag −0.852 −0.707

SV Max −0.853 −0.707

NC Max −0.851 −0.709

MaxOver SV Mag −0.917 –

SV Max −0.917 –

NC Max −0.868 –

MaxPer SV Mag −0.902 −0.858

SV Max −0.896 −0.851

NC Max −0.901 −0.861

UnitPer SV Mag −0.945 −0.912

SV Max −0.940 −0.882

NC Max −0.943 −0.893

UnitOver SV Mag −1.00 −0.718

SV Max −0.998 −0.671

NC Max −0.983 −0.693

3, Constant

SVs

MagPer SV Mag −0.700 –

SV Max −0.695 –

NC Max −0.695 –

MaxOver SV Mag −0.841 –

SV Max −0.789 –

NC Max −0.832 –

MaxPer NC Max −0.749 –

3, Varying

SVs

MagPer SV Mag −0.663 –

SV Max −0.759 −0.656

NC Max −0.756 −0.868

MaxOver SV Mag −0.539 –

MaxPer NC Max 0.558 –

UnitPer SV Max – −0.566

NC Max – −0.658

SVs, synergy vectors; MagPer, magnitude per trial; SVMag, synergy vector magnitude; SV
Max, synergy vector maximum; NCMax, neural commandmaximum; MaxOver, maximum
value over all trials; MaxPer, maximum value per trial; UnitPer, unit variance per trial;
UnitOver, unit variance over all trials; –, no notable effect.
aEffect sizes calculated using Hedge’s g. Negative values in NC cosine similarity and NC
cross-correlation indicate greater variability in RES.
bNeural command similarity compared by trial-to-trial cosine similarity.
cNeural command similarity compared by trial-to-trial cross-correlation.

(Table 4). For cosine similarity within the neural commands,
MagPer EMG normalization produced medium effects when
comparing between nRES and validation nRES across all output
normalization methods. All other EMG methods that produced
large effects from the initial analysis produced small or no
effects in the validation analysis. For NC cross-correlation, all
comparisons within the validation analysis revealed small or no
effects.
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FIGURE 5 | Absolute effect sizes at baseline for neural command (NC) variability as measured by the cosine similarity. Effect sizes are represented for two synergies

with constant synergy vectors (SVs, A), two synergies with varying SVs (B), three synergies with constant SVs (C), and three synergies with varying SVs (D). EMG

normalization methods include: magnitude per trial (MagPer), maximum value over all trials (MaxOver), maximum value per trial (MaxPer), unit variance per trial

(UnitPer), and unit variance over all trials (UnitOver). Output normalization methods include SVs by magnitude (SV Mag), SVs by maximum value (SV Max), and NCs by

maximum value (NC Max). Color bar represents effect size values.

DISCUSSION

This study demonstrates that the methodological choices made
during MSA have a significant impact on the outcome. Several,
but not all, MSA methods were able to differentiate between two
groups of pathologic individuals with no distinguishing clinical
differences, but presumed intrinsic physiologic differences. Two
synergies with varying SVs across trials produced the highest
frequency and greatest magnitude of effects. When assessing SV
variability, MagPer EMG normalization was the most salient
method within this analysis. However, when comparing NCs
by cosine similarity or cross-correlation, any of the EMG
normalization methods other than MagPer produced differences
between RES and nRES that were validated in a secondary
analysis. MSA output normalization had no notable influence
on results. In general, our results were highly sensitive to
changes in MSA methodology, illustrating the need for careful
methodological consideration and disclosure when conducting
MSA or comparing with results found in the literature.

Methodological Considerations
We do not believe that our choice of one signal decomposition
method (i.e., NNMF) limits the ability to detect group differences
within our results. We chose to use NNMF for this MSA for three
reasons: muscle activation signals are inherently non-negative,

other methods require assumptions such as orthogonality and
independence of parameters (Ting and Chvatal, 2010), and
NNMF is a commonly used technique, allowing for greater
generalizability of results. Previous work using MSA illustrates
that NNMF produces synergy vectors and neural commands
that are highly correlated with those produced by other
computational methods such as PCA and ICA (Ivanenko et al.,
2005; Cappellini et al., 2006). NNMF is particularly robust to
differences in data distribution and noise across data sets (Tresch
et al., 2006). NNMF tends to define a solution subspace where
the synergies can be found, building non-negative components
(i.e., SVs and NCs) together to reconstruct the original signals
(Ting and Chvatal, 2010). This approach is appropriate for the
physiological interpretation of the muscle synergy data. There
are several variations of the NNMF algorithm and it is possible
that changing the algorithm could changeMSA results. However,
the current consensus in the literature is that the decomposition
method does not drastically change the structure of the extracted
synergies (Ivanenko et al., 2005, 2006; Cappellini et al., 2006;
Tresch et al., 2006). Ultimately, the choice of decomposition
method should be tailored to the intended application of the
results.

It is common for investigators to specify a minimum
VAF cutoff of 90% for identification of the number of
synergies that can be used to reconstruct the original signals
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FIGURE 6 | Absolute effect sizes at baseline for neural command (NC) variability measured by cross-correlation. Effect sizes are represented for two synergies with

constant synergy vectors (SVs, A), two synergies with varying SVs (B), three synergies with constant SVs (C), and three synergies with varying SVs (D). EMG

normalization methods include: magnitude per trial (MagPer), maximum value over all trials (MaxOver), maximum value per trial (MaxPer), unit variance per trial

(UnitPer), and unit variance over all trials (UnitOver). Output normalization methods include SVs by magnitude (SV Mag), SVs by maximum value (SV Max), and NCs by

maximum value (NC Max). Color bar represents effect size values.

(Clark et al., 2010; Frère and Hug, 2012; Roh et al., 2012). If
this common cutoff was applied to the current analysis, two
synergies would have been more than adequate to reconstruct
the original EMG walking signals with reasonable accuracy.
If a cutoff of 95% VAF for all methods and all subjects was
applied, all but one subject would have required three synergies,
with the remaining subject requiring four. The decision to use
either two or three synergies simplifies the analysis and prevents
potential over-fitting problems. This result is also consistent with
findings that individuals post-stroke require fewer synergies to
reconstruct their movements (Clark et al., 2010; Cheung et al.,
2012). However, three varying synergies were also able to detect
differences between groups for some methods.

Decisions beyond decomposition method and number of
synergies, such as fixing or varying SVs and EMG normalization
method, exhibited a profound influence on the ability to
detect group differences within our sample. Allowing SVs to
vary from trial-to-trial, rather than fixing them across trials,
produced more frequent and larger effect sizes, although this
choice is less common in the literature (Ivanenko et al.,
2005; Oliveira et al., 2014). MagPer EMG normalization
produced large differences between groups for SV variability.
When comparing NCs with cosine similarity, all methods of
output normalization and EMG normalization (except MagPer)
produced group differences that were validated with further
analyses. When applying a cross-correlation analysis, MaxPer

and UnitPer EMG normalization were the best performing
methods across all output normalization approaches. EMG
normalization is a common step in MSA, however one utilized
without much justification for the choice of method. The impact
of normalization strategies is shown when one investigator
attempts to replicate the analysis of another. Two research groups
performed the same experiment with one added condition,
but found different results, which could be attributable in
part to differences in MSA methods (de Rugy et al., 2013;
Berger and d’Avella, 2014). Our analysis indicates that choice of
normalization methods and the choice of constant or variable
SVs across trials have a strong effect on the outcomes, thus
representing a non-trivial choice among MSA parameters.

It is conceivable that variation in the selection of muscles
included in the analysis could impact results (Steele et al., 2013).
Addition of more muscles or muscles that could more accurately
capture the differences between RES and nRES would likely
increase the resolution to detect group differences. These data,
and other synergy analysis data, should be interpreted within the
context of the muscles included in the analysis.

Detecting Physiological Differences
Differences in synergy vector and neural command variability
between RES and nRES were greatest using two synergies with
varying SVs. The largest difference between the two groups was
found in the SVs when EMG was normalized to its maximum
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TABLE 4 | Comparison of initial results for two synergies with varying synergy vectors with non-responder validation analysis.

Metric EMG normalization

method

Output normalization

method

RES vs. nRES effect sizea nRES vs. validation

nRES effect sizea

SV Variability MagPer SV Mag 0.904 −0.178

SV Max 0.830 −0.110

NC Max 0.949 −0.150

NC Cosine Similarity MagPer SV Mag −0.852 −0.687

SV Max −0.853 −0.705

NC Max −0.851 −0.695

MaxOver SV Mag −0.917 −0.070

SV Max −0.917 −0.101

NC Max −0.868 −0.157

MaxPer SV Mag −0.902 −0.361

SV Max −0.896 −0.357

NC Max −0.901 −0.392

UnitPer SV Mag −0.945 −0.127

SV Max −0.940 −0.109

NC Max −0.943 −0.106

UnitOver SV Mag −1.00 0.115

SV Max −0.998 0.127

NC Max −0.983 0.138

NC Cross-Correlation MaxPer SV Mag −0.858 0.040

SV Max −0.851 0.038

NC Max −0.861 0.050

UnitPer SV Mag −0.912 0.261

SV Max −0.882 0.254

NC Max −0.893 0.242

RES, responders; nRES, non-responders; SV, synergy vector; NC, neural command; MagPer, magnitude per trial; SV Mag, synergy vector magnitude; SV Max, synergy vector maximum;
NC Max, neural command maximum; MaxOver, maximum value over all trials; MaxPer, maximum value per trial; UnitPer, unit variance per trial; UnitOver, unit variance over all trials.
aEffect sizes calculated using Hedge’s g. Positive values in SV variability and negative values in NC cosine similarity and NC cross-correlation indicate greater variability in RES.

value per trial, while EMG normalization was less important
when detecting differences in the neural commands. The effect
sizes indicate that RES had more variability in their SVs than did
nRES. Previous findings indicate that the SVs, but not the NCs,
reveal differences between individuals post-stroke and healthy
controls (Gizzi et al., 2011). Our results differ slightly, indicating
that variability in the SVs and NCs can be used to quantify
differences between groups after stroke. However, we compared
two groups, both with neural pathology. Our most salient results
could not have been produced if the SVs were held constant, an
assumption that many investigators have used in their analyses
(Clark et al., 2010; Ting and Chvatal, 2010). Differences in
trial-to-trial neural command similarity between RES and nRES
were also greatest when two varying synergy vectors were used.
Similar to our findings in the SVs, these effects indicate that
RES exhibited more trial-to-trial variability in the NCs than
nRES. This characteristic could be due to a greater flexibility of
commands that can be combined to produce a richer variety of
movement patterns (Bernstein, 1967), which could be relevant
to identifying one’s capacity for recovery or treatment response.
When NCs were compared using cross-correlation instead of
cosine similarity, the results were similar; however, the effects

were often blunted. This difference in effect magnitude provides
further indication regarding the importance of all aspects of MSA
with respect to the final results.

Recommendations for Reporting Results
MSA has been popularized due to its ability to reduce the
dimensionality of complex patterns of muscle activity (Ivanenko
et al., 2006). However, the rapid popularization of a technique,
coupled with the lack of validation of each MSA methodological
choice, presents implementation challenges. In publications
utilizing synergy analysis, some investigators provide more than
adequate disclosure of the methods employed; however, others
provide little to no detail, making comparison of results a
challenge. We therefore propose a list of decisions that should
be reported explicitly in manuscripts performing MSA:

1) Muscles included in analysis,
2) EMG filtering methods,
3) EMG normalization method,
4) computational method (e.g., NNMF, PCA, ICA, FA),
5) whether constant or varying synergy vectors were used,
6) sorting method (if applicable),
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7) output vector normalization method, and
8) synergy comparison method (e.g., cross-correlation)

The present comparison of MSA methods is not intended
to suggest there is any one “best” method for all future
applications of MSA. Rather, our results illustrate and emphasize
the vast differences produced by variations in methodological
choices. Ultimately, the choice of analysis methodology should
be tailored to the application and research design. To
facilitate understanding and reproducibility we recommend
disclosure and justification of methods. Such openness between
investigators will move research forward, improving the
likelihood and timeliness of a research impact involving MSA.

CONCLUSIONS

The main goal of MSA, when applied to pathologic populations,
is to better understand the intrinsic physiologic characteristics
reflected in muscle activity. MSA, with specific focus on
trial-to-trial variability, has the potential to provide insight
regarding neural strategies that could be relevant to human
performance and rehabilitation. Notably, our analysis revealed
large differences between response groups with only 10
subjects. Clinical assessments typically require large samples, lack
sensitivity, and in this case, fail to differentiate subpopulations
that would later respond to an intervention. If information from
MSA can be successfully employed as a predictor of recovery or
intervention response on an individual basis, this information
could improve outcomes of neurorehabilitation. The analysis
must, however, be performed properly, with careful selection and
justification of methods.
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Counteracting the destabilizing force of gravity is usually considered to be the main

purpose of postural control. However, from the consideration of the mechanical

requirements for movement, we argue that posture is adjusted in view of providing

impetus for movement. Thus, we show that the posture that is usually adopted in quiet

standing in fact allows torque for potential movement. Moreover, when performing a

movement—either voluntarily or in response to an external perturbation—we show that

the postural adjustments are organized both spatially and temporally so as to provide the

required torque for the movement. Thus, when movement is performed skillfully, the force

of gravity is not counteracted but actually used to provide impetus to movement. This

ability to move one’s weight so as to exploit the torque of gravity seems to be dependent

on development and skill learning, and is impaired in aging.

Keywords: neuromechanics, posture, balance, motor control, movement

INTRODUCTION

The position of the center of mass (CoM) is adjusted by the central nervous system during quiet
standing (Winter et al., 1998; Sasagawa et al., 2009), in reaction to perturbations (Horak and
Nashner, 1986), and in voluntary movement (Cordo and Nashner, 1982; Pedotti et al., 1989; Lee
et al., 1990). The traditional theory is that the purpose of this postural control is to immobilize
the CoM despite movement and external perturbations (Nashner et al., 1989; Massion et al., 2004;
Horak, 2006; Bouisset and Do, 2008). We will refer to this theory as the immobility theory.
The underlying assumption is that, because of gravity, standing is unstable. Therefore, if the
CoM is displaced from its equilibrium position, then the displacement must be counteracted by
postural adjustments, so as to return the CoM to its equilibrium position, otherwise the person
will inevitably fall. As argued by Hasan (2005), this notion stems from an analysis of how linear
systems respond to perturbations: in linear systems, if deviations from the unique equilibrium
position are not corrected, then they grow exponentially. Balance (the ability to prevent falling),
is therefore assumed to be equivalent to stabilization, in the strict sense of immobilizing the CoM
at a unique equilibrium position by counteracting any displacement away from this position. From
this assumption, it follows that moving poses a threat to balance, since any voluntary movement
might displace the CoM. This theory has motivated a large body of experiments, performed over
the last thirty years, in which a subject is asked to perform a movement of the upper body, while
their muscle activity is being recorded (Cordo and Nashner, 1982; Crenna et al., 1987; Pedotti et al.,
1989; Lee et al., 1990). In these experiments, a change in the contraction of the lower leg muscles is
systematically observed, and this change often precedes the contraction of the upper body muscles.
This is interpreted by saying that movement of the upper body might displace the CoM, and must
therefore be counteracted by the contraction of the lower leg muscles so as to immobilize the CoM
despite movement.
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We will argue however that the equivalence between balance
and immobilization does not hold for human postural control,
and that these postural responses should be understood as
providing the impetus for the movement. We will indeed
show that during quiet standing, voluntary movement, and
in reaction to perturbations, the position of the CoM is
not immobilized at a unique equilibrium position, but on
the contrary adjusted so as to use the torque of one’s own
weight, either to counteract external forces so as to maintain
balance, or to provide impetus for voluntary movement. We
therefore develop an alternative to the immobility theory. We
propose that the purpose of postural control is mobility, the
ability to produce appropriate impetus by adjusting the position
of the CoM. We will refer to this theory as the mobility
theory.

We will first show that the posture which is typically adopted
in quiet standing allows for one’s weight to be used to provide
impetus to potential movement, and that when the direction
of the movement to be performed can be anticipated, the
position of the CoM during stance is shifted in that direction.
Secondly, we will show that, during voluntary movement,
postural adjustments which are traditionally thought of as
immobilizing the CoM despite movement should on the contrary
be interpreted as displacing the CoM at the initiation of the
movement, so that one’s own weight can be used to provide
impetus to the movement. Finally, we will show that this
ability to use displace one’s weight, rather than immobilize
it, plays a crucial role when balance is upset by external
forces.

ADJUSTMENT OF POSTURE DURING
STANCE

The Standing Posture Allows For Mobility
The Standing Posture Requires Tonic Muscular

Contraction
When someone is asked to stand quietly, without further
instructions, they typically maintain their CoM vertically aligned
with the middle of the foot, a few centimeters forwards of the
ankle joint (Schieppati et al., 1994). However, when requested
to do so, a young, healthy person can maintain their CoM at
positions up to 40% of their foot length forwards of its typical
position, and up to 20% backwards (Schieppati et al., 1994).
There is therefore no unique equilibrium position for the CoM
in quiet standing, since a young, healthy person can maintain
a range of standing postures without this posing a threat to
balance.

If the position of the CoM were controlled only in view
of counteracting the torque of one’s weight, then it would
be most appropriate to place it vertically above the ankles,
such that weight would exert no torque (Figure 1A). This
position can indeed be maintained with minimum lower leg
muscle contraction (Schieppati et al., 1994). However, when no
instructions are given, subjects maintain their CoM vertically
aligned with the middle of the foot, a few centimeters forwards
of the ankle joint (Figure 1B), so that the weight exerts

a forwards torque. In order to maintain this posture, an
equivalent backwards torque must be exerted by the ground
reaction force (see Section 1.1 in Appendix). As developed
in the Appendix (Section 1.2), the torque of the ground
reaction force is determined by the contraction of the lower
leg muscles. Indeed, if we consider the forces acting on
the foot, the weight of the body, carried by the skeleton,
is applied at the ankle and therefore exerts no torque. The
ground prevents the foot from turning, therefore the ground
reaction torque instantly opposes the torque exerted by the
lower leg muscles onto the foot (Figure 2). Maintaining a
standing posture with the CoM forwards of the ankles therefore
requires tonic contraction of the calf muscles (Figure 1B,
Schieppati et al., 1994). The normal standing posture is
therefore not the most economical in terms of muscular
contraction.

FIGURE 1 | Standing posture. (A) When the CoM (green dot) is vertically

aligned with the ankle joint (black dot), the weight (green arrow) exerts no

torque around the ankle. In order to maintain this posture, the ground reaction

force (red arrow) must also exert no net torque around the ankle, therefore its

point of application, the CoP (red dot) must also be vertically aligned with the

ankle. (B) In the typical quiet standing posture, the CoM is maintained

forwards of the ankles, therefore weight exerts forwards torque around the

ankles. This is compensated for by backwards torque of the ground reaction

force, which requires tonic calf muscle contraction.
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The Standing Posture Allows Torque for Movement
Why would subjects actively maintain their CoM forwards of
the ankles in quiet standing if this is not efficient? We suggest
that this allows them to use their own weight for initiating
forwards movements. Forwards torque for movement can only
be induced by the external forces: the person’s weight and the
ground reaction force. As we have shown (Appendix Section 1.2)
the ground reaction torque instantly follows the torque of the
lower leg muscles. However, this torque is limited. Indeed, as
long as the person neither jumps up nor collapses, the ground
reaction force has the same magnitude as the person’s weight. Its
torque is therefore the product of the weight, and the distance
between the ankle and the point of application of the ground
reaction force, called the center of pressure and noted CoP.
Thus, contracting the calf muscles (gastrocnemius and soleus)
shifts the CoP forwards of the ankle (Figure 2A), and contracting
the shin muscle (tibialis anterior) shifts the CoP backwards of
the ankle (Figure 2C), but the CoP can only move within the
limited range of the foot (see Appendix Section 1.3 for further
detail).

The net torque is proportional to the distance between the
CoM and the CoP. Whereas, the CoP moves instantly when
the forces exerted by the muscles change, but can only move
within the limited range of the foot, the position of the CoM
on the other hand, does not change instantly when the forces
exerted by the muscles change. This first requires the sum of
the external forces to accelerate the CoM. Displacements of the
CoM therefore occur more slowly than displacements of the CoP
(as seen for example in Burleigh et al., 1994). Thus, the initial

FIGURE 2 | Torques exerted on the foot. The force exerted by the lower leg

bones onto the foot (green arrow) exerts no torque around the ankle. The

torque of the ground reaction force (red arrow) and of the forces exerted by the

lower leg muscles onto the foot (blue arrow) are therefore opposite when the

foot remains immobile: (A) the torque around the ankles exerted by the calf

muscles onto the foot is instantly compensated for by a forwards shift of the

CoP (red dot). (B) When the lower leg muscles exert no torque onto the foot,

then the CoP is below the ankle. (C) The torque around the ankles exerted by

the shin muscle onto the foot is instantly compensated for by a backwards

shift of the CoP.

net torque that can be produced, either for opposing external
perturbation forces or for voluntary movement, is limited by the
initial position of the CoM (see Appendix Section 1.4 for further
detail).

When initiating fast forwards movements, either starting to
walk (Burleigh et al., 1994) or movements performed with the
feet in place such as leaning forwards (Crenna et al., 1987)
or rising onto one’s toes (Nardone and Schieppati, 1988), the
CoP is first brought toward the heel by inhibiting the calf
muscle contraction and contracting the shin muscle (Crenna
et al., 1987; Nardone and Schieppati, 1988; Burleigh et al.,
1994). If the CoM were initially above the ankle, this would
produce little initial forwards torque (Figure 3A), whereas
with the CoM forwards of the ankle this produces larger
torque (Figure 3B). Maintaining the CoM forwards of the
ankle thus allows one’s own weight to be used for initiating
forwards movement. Maintaining the CoM in the middle of
the foot allows for either forwards or backwards initial torque
to be induced by changes in the forces of the lower leg
muscles.

FIGURE 3 | Net torque is limited by the position of the CoM. In order to initiate

a forwards movement, the CoP is brought to the heel by inhibiting calf muscle

contraction and contracting the shin muscle. When the CoM is vertically

aligned with the ankle (A), the net forwards torque is small. When the CoM is

forwards of the ankle (B), the net forwards torque is larger.
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The Standing Posture Is Actively
Maintained
This position of the CoM is precisely and actively maintained
on a short timescale, with small adjustments of the CoP in
quiet standing serving to immobilize the CoM at this position
(Winter et al., 1998). Moreover, the tonic contraction of the
calf muscles is adjusted when standing on different slopes so
as to maintain the CoM aligned with the middle of the foot
(Figure 4A, Sasagawa et al., 2009). This precise positioning is
also maintained at the longer timescales of growth and aging.
Indeed, the curvature of the spine and trunk increases with
aging (red line in Figure 4B, Schwab et al., 2006), and the
position of the CoM is maintained across people with different
trunk curvatures by shifting the position of the pelvis relative
to the heels (Figure 4B, Schwab et al., 2006; Lafage et al.,
2008).

Moreover, this forwards position of the CoM emerges with
skill learning. Thus, Clément and Rézette (1985) observed
acrobats at various competitive levels performing handstands.
All the acrobats were able to maintain their balance in the
upside-down posture, however they did so in different ways. The
acrobats at lower competitive levels maintained their mean CoP
a few millimeters forwards of their wrist; they could therefore
maintain their posture with very little tonic contraction in the
armmuscles (Figure 4C, left). The acrobats at higher competitive
levels maintained their mean CoP more forwards of their wrists,
with the acrobat at the highest level maintaining his mean CoP 3

cm forwards of his wrists; this posture requires tonic contraction
of the wrist extensors (Figure 4C, right).

Thus, the standing posture is actively adjusted so as maintain
the CoM above the middle of the foot (and above the middle
of the hand in handstands). Contrary to the immobility theory,
this position is not a unique equilibrium point, since a variety
of standing postures can be maintained without this leading
to a loss of balance. According to the mobility theory, this
position is maintained because it allows for torque of the
appropriate direction to be produced at short notice, even when
this direction cannot be anticipated. This may be useful both
for opposing external perturbations and for initiating voluntary
movements.

The Standing Posture Is Adjusted in
Anticipation of Movement
When the direction of the appropriate torque can be anticipated,
the mobility theory predicts that the CoM would be displaced
in that direction in anticipation of the movement. Such a shift
can indeed be induced experimentally, either by challenging
someone’s balance in a predictable direction, or by indicating
in advance the direction of a voluntary movement to be
performed.

Someone’s balance can be challenged by having them stand
facing the edge of the platform they are on. According to the
immobility theory, this should lead, if anything, to an even more
stringent immobilization of the CoM at its equilibrium position,

FIGURE 4 | Adaptation of the position of the CoM. (A) The tonic calf muscle contraction decreases when going from a slope with the toes down (left panel), to a flat

slope (middle panel), to a slope with the toes up (right panel) such that position of the CoM is maintained vertically aligned with the middle of the feet. (B) People of

different trunk curvatures maintain their pelvis at different distances from the heel line (vertical line above the heel), such that the CoM line (vertical line passing through

the CoM) is at the same distance from the heel line. (C) Left panel: Acrobats at lower competitive levels maintain their CoP and CoM aligned with their wrist without

tonic contraction of their wrist extensors. Right panel: Acrobats at higher competitive levels maintain their CoP and CoM forwards of their wrist, through tonic

contraction of their wrist extensors.
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but what is observed is that the CoM is shifted slightly backwards
(Figure 5A, Carpenter et al., 2001). This is in accordance with
the mobility theory, since it increases the person’s capacity for
producing backwards torque, in the eventuality that they might
be subjected to a forwards push. In the experiment, the person’s
balance was not challenged beyond placing them in front of a
drop, which might explain why the shift in CoM position was
rather small (less than a centimeter).

Another way of challenging someone’s balance is to have
them stand on a platform (Figure 5B) which is then translated
backwards (Figure 5C). The person ends up with their CoM in
a forward position relative to the feet. A commonly observed
response to such a translation is to straighten up (Welch
and Ting, 2014). This requires backwards torque, however
their capacity for producing backwards torque is limited by
the forwards position of their CoM (Figure 5C). If such a
perturbation is repeated, then over a few trials, the person adjusts
their quiet standing posture by shifting their CoM backwards by a
few centimeters (Figure 5D, Welch and Ting, 2014). This is again
in contradiction with the immobility theory, but in accordance
with the mobility theory, since the backwards shift of the CoM
increases the person’s capacity to produce backwards torque for
straightening up (Figure 5E). When the platform is repeatedly
translated forwards, then the person shifts their CoM forwards
(Welch and Ting, 2014).

The mobility theory predicts that the position of the CoM in
quiet standing would also be shifted if the direction in which a
voluntary movement to be performed could be anticipated. This
occurs at the start of a race: in sprinting, the initial forwards
acceleration is crucial in winning the race. Consistently with the
mobility theory, the CoM in the starting position is shifted even
beyond the toes by several tens of centimeters (Slawinski et al.,
2010). This is achieved by placing the hands on the ground and
having the hands carry some of the weight (Figure 5F). This
ability to use one’s own weight to produce torque for movement
again seems to depend on skill learning. Indeed, in elite sprinters,
the CoM is shifted 5 centimeters further forwards than for well-
trained sprinters (Slawinski et al., 2010).

Summary
Thus, when the direction of the appropriate torque to be
produced cannot be anticipated, the CoM is positioned at the
middle of the feet, in a position which allows for both forwards
and backwards torque to be produced. When the direction of
the torque to be produced can be anticipated, then the standing
posture is adjusted by shifting the CoM in that direction. This
adaptation of the standing posture in view of movement seems to
be dependent on learning.

ADJUSTMENT OF POSTURE DURING
VOLUNTARY MOVEMENT

According to the immobility theory, when a voluntary movement
is being performed, postural control serves to immobilize the
CoM despite the movement or the perturbation. The mobility
theory predicts, on the contrary, that the position of the CoM

FIGURE 5 | Adjustment of the position of the CoM. (A) When a person stands

facing a slope, they shift their CoM slightly backwards. (B,C) When someone

stands normally (B) and the platform they stand on is shifted backwards, their

CoM ends up far forwards of the ankle joints, which limits the net backwards

torque for straightening up (C). (D,E) When a backwards perturbation is

repeated, the person shifts their CoM backwards in quiet standing (D), which

increases the net backwards torque for straightening up after the perturbation

(E). (F) In the posture adopted before a sprint, the CoM is placed far forwards

of the feet by having the arms carry some of the weight.
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is adjusted so as to use the torque of weight for movement.
It therefore predicts that muscular contractions are temporally
organized so as to accelerate the CoM at the initiation of the
movement in the appropriate direction for producing torque for
movement.

Initiation of Voluntary Movement
Pulling on a Handle
When someone pulls on a handle placed in front of them, the
contraction of the arm muscles is preceded then accompanied
by the contraction of the calf muscles (Cordo and Nashner,
1982; Lee et al., 1990). Cordo and Nashner (1982) suggest that
this contraction of the calf muscles allows for the CoM to be
immobilized despite the movement. However, in order for the
CoM to be immobilized, the ground reaction torque would have
to exactly compensate for the handle reaction torque throughout
the movement, and this would notably require the calf and
arm muscle contractions to be simultaneous (as in Figure 6A).
On the contrary, the initial contraction of the calf muscles
which is observed (Cordo and Nashner, 1982) accelerates the
CoM backwards (Figures 6B,C, further details are provided in
Appendix Section 2); and when the person is asked to pull harder
on the handle, this initial period lasts longer, the calf muscle
activation is stronger, and the initial backwards acceleration of
the CoM is larger (Lee et al., 1990). This is in accordance with the
mobility theory, since initially accelerating the CoM backwards
allows one’s own weight to be used to assist the movement
(Figure 6C).

Leaning the Trunk
When someone leans the trunk forwards, the contraction of
the abdominal muscles is preceded then accompanied by the

inhibition of calf muscle contraction and the contraction of
the shin muscle (Figures 7A–C, Crenna et al., 1987). The CoM
could in theory be immobilized if the shin and abdominal
muscle contractions were simultaneous, such that the forwards
acceleration of the CoM induced by the shin muscle contraction
would compensate for the backwards acceleration of the CoM
induced by the abdominals contraction (further details are
provided in Appendix Section 2), as suggested by Alexandrov
et al. (2001). However, these authors report an initial backwards
displacement of the CoP (Figure 7A), followed by a forwards
displacement of the CoM (Figure 7B), in accordance with the
sequential muscular contraction observed by Crenna et al. (1987).
This contradicts the immobility theory, but concords with the
mobility theory’s predictions.

Thus, postural responses should be considered as an integral
part of the movement itself, since they provide the torque
for the movement, first by shifting the CoP and secondly by
accelerating the CoM through sequential muscle contraction (a
more complete explanation can be found in Appendix Section 2).

Gait Initiation
Bouisset and Do (2008) distinguish between two types of
anticipatory postural adjustments. For voluntary movements
without a change in the basis of support, such as raising the arm,
they provide a very classical interpretion for the displacement
of the CoM which precedes the displacement of the arm.
They present it as a counterperturbation whose purpose is to
“counterbalance the disturbance to postural equilibrium due to
the intentional forthcoming movement” (Bouisset and Zattara,
1981). However, for voluntary movements involving a change of
the basis of support, such as walking, or rising onto one’s toes,

FIGURE 6 | Pulling on a handle. When pulling on a handle, the handle reaction force (blue arrow) exerts forwards torque around the ankles which can compensated

for by contracting the calf muscles (A). In preparation for pulling on a handle, subjects contract their calf muscles before their arm muscles (B), which displaces their

CoM backwards, allowing for a larger net backwards torque to be exerted during the handle pull (C). The sequence of activation of the muscles is indicated by the

numbers 1 to 2.
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FIGURE 7 | Leaning the trunk. When control subjects perform fast forwards

leaning, the initial contraction of the shin muscle (A) accelerates the CoM

forwards, thus allowing for more net forwards torque during the subsequent

contraction of the ventral muscles (B), which enables the person to lean the

trunk (C). When control subjects perform fast backwards leaning, the dorsal

muscles contract simultaneously (D), which increases backwards rotational

(Continued)

FIGURE 7 | Continued

momentum without translating the CoM (E). When gymnasts perform fast

backwards leaning, the initial contraction of the calf muscles (F) accelerates

the CoM backwards, thus allowing for more net backwards torque during the

subsequent contraction of the dorsal muscles (G) which enables the gymnast

to lean the trunk (H). The sequence of activation of the muscles is indicated by

the numbers 1 to 3.

they present anticipatory postural adjustments as a perturbation
involved in “body weight transfer” (Do et al., 1991).

We propose that in movements with or without a change
in the basis of support, anticipatory postural adjustments play
the same role of moving the CoM in order to provide impetus
for movement. Indeed, the changes in posture which precede
walking are organized in the same way as those which precede
pulling on a handle or leaning the trunk. Thus, when going
from standing to walking, a few hundred milliseconds before
the heel of the swing foot is raised, the calf muscles are silenced
and the shin muscle contracts, which brings the CoP to the
heels and accelerates the CoM forwards, even before the first
step is taken (Figure 3B, Burleigh et al., 1994). This is in
accordance with the mobility theory, since initially accelerating
the CoM forwards allows one’s own weight to be used to assist
the movement. Indeed, this initial acceleration of the CoM is
correlated with the speed reached at the end of the first step,
and is larger if the person is asked to walk faster (Brenière et al.,
1987).

The Ability to Use One’s Weight for
Movement Requires Practice
For walking, a movement which is learned very early on in life,
the ability to displace the CoM at the initiation of the movement
emerges over the course of development (Ledebt et al., 1998; Bril
et al., 2015). The amplitude of the initial backwards shift of the
CoP thus increases over the first several years of life as children
learn to walk faster (Ledebt et al., 1998; Bril et al., 2015). It then
decreases with age, and with certain neurological diseases such as
Parkinson’s disease (Halliday et al., 1998; Mancini et al., 2016).

For leaning the trunk, the sequential muscle contraction,
which allows for the displacement of the CoM at the initiation
of the movement, seems to be dependent on learning. Indeed,
when control subjects are asked to lean backwards, a movement
for which they presumably have less practice than leaning
forwards, then the calf and dorsal trunk muscle contractions
are simultaneous (Figure 7D), and the movement is performed
twice as slowly as leaning forwards (Pedotti et al., 1989).
This is presumably because the CoM was not displaced
backwards (Figure 7E). However, when gymnasts are asked
to lean backwards, then their calf muscles contract first, and
they perform the movement faster than controls (Figures 7F–H,
Pedotti et al., 1989). Moreover, the ability to displace one’s CoM
during movement seems to remain plastic throughout life, and to
depend on the possibility to use one’s weight to assist movement.
Thus, when astronauts return from a several months journey in
space (during which they could not use their weight to assist
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their movements), the forwards displacement of the CoM when
leaning forwards is no longer observed (Baroni et al., 2001).

Finally, for movements requiring skill learning, the temporal
coordination which enables using one’s weight to provide
impetus formovement seems to develop with skill learning. Thus,
when learning a complex gymnastics skill, such as the swings
under parallel bars, in bent inverted hang position (Figure 8),
beginners swing their legs and arms in synchrony, whereas
experts swing their legs out of phase with their arms, which allows
them to use the work of their own weight to provide impetus to
the swing (Delignières et al., 1998).

BALANCE REQUIRES MOBILITY RATHER
THAN IMMOBILITY

According to the immobility theory, if postural control does
not immobilize the CoM at a unique equilibrium position, then
the person must fall (Nashner et al., 1989; Massion et al., 2004;
Horak, 2006; Bouisset and Do, 2008). We have shown however
that in quiet standing, people can keep their balance over a
range of positions of the CoM (Schieppati et al., 1994), and
actually displace their CoM when their balance is challenged in
a predictable (Carpenter et al., 2001; Welch and Ting, 2014).
Moreover, we have shown that in well-practiced movements,
people accelerate their CoM at the initiation of the movement,
without this leading to a loss of balance (Cordo and Nashner,
1982; Crenna et al., 1987; Pedotti et al., 1989; Lee et al., 1990).
We will now show that the response to an external perturbation
should be considered as a movement in its own right, and
therefore also benefits from the ability to use one’s weight for
movement, rather than to immobilize it.

Responding to External Perturbations
Straightening Up after a Platform Translation
When the platform on which someone stands is translated
backwards, the CoM ends up in a forward position relative
to the feet (Figures 9A,B), as seen in Section The standing
posture is adjusted in anticipation of movement. A response
which is commonly observed is to straighten up (Horak and
Nashner, 1986). The backwards acceleration of the CoM is
performed through a sequential contraction of the dorsal
muscles, starting with the calf muscles (Figure 9A), then the
dorsal thigh then dorsal trunk muscles (Horak and Nashner,
1986). This contraction pattern is usually not considered as
an actual movement, since it moves the CoM closer to its
initial position, in accordance with the immobility theory.
However, we believe it should be considered as a movement
in its own right. Indeed, straightening up after a platform
translation requires producing the appropriate backwards
torque. The sequential contraction pattern allows for the CoM
to be initially accelerated backwards, which increases the
net backwards torque for the movement. Further details are
provided in Appendix—Horizontal acceleration of the CoM.
Moreover, contrary to the immobility theory, returning the
CoM to its initial position is not the only way of preventing
a fall.

Stepping after a Platform Translation
Indeed, another response which is also commonly observed
is to take a step forwards (Maki et al., 2003): the CoM
is then not returned to its initial position, without this
causing a loss of balance. This response takes advantage
of the forwards position of the CoM, such that the CoM
needs not be accelerated backwards, and indeed the initial
calf muscle contraction and forwards CoP shift is much
reduced (Figure 9B) compared to when the person straightens
up (Figure 9A); nor does the CoM need to be accelerated
forwards, and indeed the shin muscle contraction lasts
much less long and the backwards shift of the CoP is
much smaller (Figure 9C, Burleigh et al., 1994) than when
the person takes a step without the platform translation
(Figure 9D).

Emergence Over Development and
Impairment with Aging
The ability to mobilize one’s weight emerges over development.
Thus, when straightening up after a backwards platform
translation, both the systematic recruitment of the dorsal muscles
and their temporal sequencing emerge during development.
They are not observed in pre-walking infants, but are seen in
children with a few years’ walking experience (Burtner et al.,
1998).

This ability is then deteriorated with aging, and with
Parkinson’s disease. The elderly, and even more so Parkinsonian
patients, are less capable of moving their CoM, either when
asked to adjust their quiet standing posture by leaning forwards
or backwards (Schieppati et al., 1994), or during voluntary
movement, such as gait initiation (Halliday et al., 1998). They are
however quite as capable as young healthy adults of remaining
immobile in quiet standing (Schieppati et al., 1994), and adjust
the position of their pelvis to compensate for trunk curvature

FIGURE 8 | Gymnastics skill: swings under parallel bars. (A) Forwardmost

position in the swing. (B) Backwardmost position in the swing.
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such that the CoM remains above the middle of the feet (Schwab
et al., 2006). Nevertheless, they have a heightened risk of falling.
Thus, although the elderly and Parkinsonian subjects are quite
as capable as young adults of maintaining their CoM immobile
during quiet standing, we suggest that their higher risk of falling
is due to a limited capacity to move when this becomes necessary
to prevent a fall. Therefore, not only is immobilizing the CoM
unnecessary for balance, it moreover seems that balance benefits
from the ability to move one’s CoM. This suggests that efficient
balance training for the elderly can be achieved by practicing
mobility (Xu et al., 2005).

DISCUSSION

Posture Is Adjusted in View of Mobility
Rather than Immobility
Although the position of the CoM is adjusted by the nervous
system, this postural control does not serve to immobilize the
CoM. On the contrary, the position of the CoM is adjusted
so as to use the torque of one’s own weight both for self-
initiated movements and for responding to external perturbation
forces.

Thus, in quiet standing, when the direction of the torque
to be produced cannot be anticipated, the CoM is maintained
above the middle of the foot (Schieppati et al., 1994), allowing
for the torque of one’s weight to be used both for forwards
and backwards movements. This position is actively maintained

despite short-term changes in slope (Sasagawa et al., 2009) or
long-term changes in trunk curvature (Schwab et al., 2006).
However, when the direction of the torque to be produced can
be anticipated, then the CoM is shifted in that direction. There
is thus a small backwards shift of the CoM when someone is
placed in front of a drop (Carpenter et al., 2001), or on a platform
which is repeatedly translated backwards (Welch and Ting, 2014).
Skill learning leads to much larger shifts in the position of the
CoM, with the CoM placed forwards of the feet in anticipation of
sprinting (Slawinski et al., 2010).

Moreover, during movement, we have shown that the postural
responses which were thought to immobilize the CoM despite
movement are actually temporally organized so as to accelerate
the CoM at the initiation of the movement, in the appropriate
direction such that the torque of one’s weight can be used for
the movement (Cordo and Nashner, 1982; Crenna et al., 1987;
Pedotti et al., 1989; Lee et al., 1990). These postural responses
should therefore be understood as providing impetus to the
movement.

Finally, we have shown that in order to respond effectively to
external perturbation forces, the CoM need not be immobilized,
since the person can take a step (Maki et al., 2003). When
the person straightens up without taking a step (Horak and
Nashner, 1986), this requires producing forces to counteract
the external perturbation, and may benefit from the ability to
mobilize one’s CoM rather than immobilize it. Balance therefore
requires mobility rather than immobility.

FIGURE 9 | Response to platform translation. When straightening up after a platform translation (A), the initial contraction of the calf muscle accelerates the CoM

backwards which increases the potential net backwards torque. When stepping forwards in response to a platform translation (B,C), this initial calf muscle contraction

is reduced (B). Then, the shin muscle contracts (C). This shin muscle contraction is smaller than the initial contraction of the shin muscle which accelerates the CoM

forwards when the person steps forwards without a platform translation (D). The sequence of activation of the muscles is indicated by the numbers 1 to 2.
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Mobility Emerges Through Development
and Skill Learning
The ability to use one’s weight for movement emerges
through development and skill learning, and remains plastic
throughout life. The appropriate temporal organization of
muscular contraction emerges during development both for
walking and for balancing responses (Burtner et al., 1998;
Ledebt et al., 1998). It is not observed for less practiced
movements, such as when control subjects lean the trunk
backwards (Crenna et al., 1987). The extent to which the
CoM can be mobilized seems to depend on the level of
skill: thus, both for sprinters at the initiation of a race
(Slawinski et al., 2010) and acrobats performing handstands
(Clément and Rézette, 1985), elite athletes place their CoM
further forwards than well-trained athletes. Future work should
address the following questions: how is this ability learned
through development and practice? Does the impairment of this
ability in aging result from a lack of practice, and could this

ability be maintained during aging through appropriate training
regimes?
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In recent years, theory-building in motor neuroscience and our understanding of the

synergistic control of the redundant human motor system has significantly profited from

the emergence of a range of different mathematical approaches to analyze the structure

of movement variability. Approaches such as the Uncontrolled Manifold method or

the Noise-Tolerance-Covariance decomposition method allow to detect and interpret

changes in movement coordination due to e.g., learning, external task constraints or

disease, by analyzing the structure of within-subject, inter-trial movement variability.

Whereas, for cyclical movements (e.g., locomotion), mathematical approaches exist to

investigate the propagation of movement variability in time (e.g., time series analysis),

similar approaches are missing for discrete, goal-directed movements, such as reaching.

Here, we propose canonical correlation analysis as a suitable method to analyze the

propagation of within-subject variability across different time points during the execution

of discrete movements. While similar analyses have already been applied for discrete

movements with only one degree of freedom (DoF; e.g., Pearson’s product-moment

correlation), canonical correlation analysis allows to evaluate the coupling of inter-trial

variability across different time points along the movement trajectory for multiple

DoF-effector systems, such as the arm. The theoretical analysis is illustrated by empirical

data from a study on reaching movements under normal and disturbed proprioception.

The results show increasedmovement duration, decreasedmovement amplitude, as well

as altered movement coordination under ischemia, which results in a reduced complexity

of movement control. Movement endpoint variability is not increased under ischemia. This

suggests that healthy adults are able to immediately and efficiently adjust the control of

complex reaching movements to compensate for the loss of proprioceptive information.

Further, it is shown that, by using canonical correlation analysis, alterations in movement

coordination that indicate changes in the control strategy concerning the use of motor

redundancy can be detected, which represents an important methodical advance in the

context of neuromechanics.
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INTRODUCTION

Analyzing movement variability to gain insights into movement
planning and control processes has been in the focus of
researchers in the field of (computational) human motor
control ever since Bernstein’s (1967) famous Blacksmith example,
which describes that, even in highly skilled movements with
high outcome stability, execution variability can be observed
across repetitions. Originating from that observation, numerous
studies have been conducted to investigate changes in the
amount and structure of movement variability with changing
external task constraints (Gera et al., 2010; van der Steen
and Bongers, 2011; Krüger et al., 2012) or under manipulated
availability of sensory information during movement planning
and execution (Tseng et al., 2002; Krüger et al., 2011),
showing that variability in movement execution is an inherent
characteristic of human performance. In the last recent years,
this research has significantly profited from the emergence of
a range of different mathematical approaches to analyze the
structure of movement variability. Approaches such as the
Uncontrolled Manifold method (Scholz and Schöner, 1999) or
the Noise-Tolerance-Covariance decomposition method (Müller
and Sternad, 2004) allow to detect and interpret changes in
movement coordination by analyzing the structure of within-
subject, inter-trial movement variability. Referring to these
methods, it was shown that changes in the structure of movement
variability can be related to changes in movement planning and
control processes due to learning, aging, and pathology (Cirstea
and Levin, 2000; Müller and Sternad, 2009; Stergiou and Decker,
2011; Krüger et al., 2013).

In that context, particularly the investigation of the time
course of movement variability during movement execution has
stimulated theory-building in motor neuroscience and advanced
our understanding of the synergistic control of the redundant
human motor system. Research on reaching and pointing
movements (Domkin et al., 2002, 2005; Cohen and Sternad, 2009;
Krüger et al., 2012) provided empirical support for theories of
motor control which postulate that the human motor system
exploits its inherent redundancy to cost-optimize movement
execution, such that only variability in task-relevant dimensions
is minimized, a principle referred to as “minimum intervention
principle” (Todorov and Jordan, 2002; Todorov, 2004).

For time course analyses of movement variability, different
time points between movement start and end, usually
corresponding to either certain percent of the normalized
time between movement start and end or to distinct time points
in the movement, such as e.g., time point of maximum velocity,
are examined. Following the definition of relevant time points
between movement start and end, two principally different
approaches can be followed to analyze the time course of inter-
trial movement variability: first, the variance structure of the
effector position at a single time point during the movement can
be analyzed across many movement repetitions, and conclusions
can be drawn from changes of this variance structure between
different time points. As an example for this approach, a range
of studies using the Uncontrolled Manifold method were able
to show significant differences in the control of task-relevant

and—irrelevant variability in the effector space across the time
course of movement execution for, e.g., sit-to-stand, shooting, or
goal-directed reaching movements (Scholz and Schöner, 1999;
Scholz et al., 2000; Tseng et al., 2002). However, this approach
focuses on the relations between variability in the effector and
task space at one or multiple points in time, but does not allow
direct conclusions about statistical coupling of effector variables
across time.

In contrast to this first approach, the second approach focuses
on the coupling of movement variability between different
time points during movement execution. Importantly, while for
cyclical movements (e.g., locomotion), mathematical approaches
exist to investigate the propagation of movement variability in
time (e.g., time series analysis, or Lyapunov exponent, Stergiou
and Decker, 2011), similar approaches are missing for discrete,
goal-directed movements with a redundant effector system, such
as reaching with the arm. Here, we propose canonical correlation
analysis as a suitable method to analyze the propagation of
within-subject variability across different time points during the
execution of discrete movements. While similar analyses have
already been applied for discrete movements with only one
degree of freedom (DoF; Messier and Kalaska, 1999; Richardson
et al., 2011; Kuang and Gail, 2015; Eggert et al., 2016), canonical
correlation analysis allows to evaluate the coupling of inter-
trial variability across different time points along the movement
trajectory for multiple DoF-effector systems, such as the arm.

This method will be illustrated by empirical data from a
study on reaching movements under normal and disturbed
proprioception. Proprioception about joint positions is an
important source of information for the control of complex
reaching movements (Ghez and Sainburg, 1995; Bagesteiro et al.,
2006). Studies on chronically deafferented patients suffering
from severe peripheral sensory neuropathy showed impaired
motor control of arm movements, including slowed movement
execution (Gentilucci et al., 1994; Hepp-Reymond et al., 2009),
increased movement variability (Gentilucci et al., 1994; Medina
et al., 2010) and deteriorated movement coordination (Sainburg
et al., 1993, 1995; Ghez and Sainburg, 1995). Studies of temporary
peripheral deafferentation of healthy humans showed immediate
adjustment to the loss of proprioception on a behavioral
(Moisello et al., 2008, applying limb immobilization) and cortical
level (Björkman et al., 2004a,b, applying a local anesthetic
cream; Ziemann et al., 1998b, applying an ischemic nerve block).
However, these studies mainly requested the production of
simple motor tasks with a limited range of kinematic DoF.
Studies on the production of complex motor behavior, such
as reaching movements, are rare. Here, we investigated the
effect of temporary proprioceptive deafferentation, induced by an
ischemic block at the upper arm level, on the time course of joint
angle variability of complex arm movements.

METHODS

Participants
Fifteen healthy volunteers (mean age ± SD: 26 ± 5 years; 8
female) participated in the study. All participants were right-
hand dominant as determined by the Edinburgh Handedness
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FIGURE 1 | Experimental set up. (A) Overhead view of the experimental set-up. Sitting position was individually adjusted so that the moveable target could be

reached without trunk motion. The target could be located at the two bounds of the table track. Initial starting position was defined by grasping the handrail. (B)

Positions of the six ultrasonic sound-emitting markers and the blood pressure cuff are depicted.

Inventory (Oldfield, 1971) and had normal or corrected-to-
normal vision. None of the participants had any record of
neurological disorder. All participants were paid for their
participation and had given written informed consent prior to
participation. The experimental procedure was in accordance
with the Declaration of Helsinki and was approved by the Ethics
Committee of the Medical Faculty of the Ludwig-Maximilians
University Munich.

Experimental Set-Up
Participants were seated on a chair in front of a table, with
the trunk supported by a chair back. A linear table track was
mounted on the table, with a spherical object (reaching target,
diameter: 80mm) attached to it. Due to its geometric properties,
the reaching target constrained final hand position but not final
hand orientation. The size of the target forced the participants to
grasp it with the whole hand, and not just with two fingers, which
is why single finger motion was not of interest in the current
study. The reaching target could be freely moved horizontally
(in the fronto-parallel plane) between the bounds of the table
track. These bounds (distance: 39 cm) were the two positions at
which the reaching target could be located. The sitting position
of the participants was adjusted so that: (a) trunk movement
was not necessary to reach the target, and (b) body midline was
centered to the table track. To minimize within-subject inter-trial
variability due to differences in the initial position, the starting
position was defined by a wooden lever, attached to the right side
of the chair, which had to be grasped with the dominant right
hand before each trial (see Figure 1A).

Joint angle motion of the arm in its seven degrees of freedom
was recorded by an ultrasonic sound-emitting system (Zebris
Medical, Isny, Germany). Six sound-emitting markers were
attached to the arm and hand of the participant; each marker

recorded at a frequency of 33Hz. The following marker positions
were chosen and are depicted in Figure 1B: marker 1 and 2 were
attached to the metacarpophalangeal joints of the index (1) and
little finger (2). The third marker was at the center of the wrist.
Marker 4 and 5 were attached to the medial (4) or lateral (5)
end of a bracelet directly above the elbow. The sixth marker
was attached at the acromion. From those marker positions, the
individual length of the participant’s upper arm, lower arm, and
hand could be determined. Based on these lengths, a geometrical
model of the arm was created, as described in more detail below
(see section Data Analysis). Further, the signal of the first marker
was used to trigger the opening and closing of shutter glasses
(Translucent Technologies, Toronto, Canada) that were used to
prevent visual online control of the movement. The first contact
with the reaching target was detected by changes in the electrical
resistance between the participant and the target (sampled at
1 kHz).

Procedure and Design
Participants repeatedly had to reach toward and grasp the
reaching target with their dominant right hand. At the beginning
of each trial, participants had to adopt the starting position (see
Figure 1A). Subsequently, participants were instructed to press
a button with their non-dominant hand, after which the target
changed its position. After an acoustic go-signal, participants
had to perform the reaching movement in a natural manner. To
provoke the most natural movement behavior, participants were
informed before movement recording that movement speed and
reaction time were not of interest in the study. Shutter glasses
occluded as soon as the participants started their movement,
thus preventing visual online control of the movement. After the
participants had grasped the target, the shutter glasses opened
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again and the participants returned to the starting position. A
new trial was initiated by pressing the button again.

All participants participated in two experimental conditions
in separate sessions, the order of which was counterbalanced
across participants. Experimental sessions were separated by 1
to 2 days. In the first condition (“ischemia”), a customary blood
pressure cuff was applied to the upper arm of the participants
and inflated up to 150–160 mmHg (i.e., slightly above systolic
blood pressure) to induce a transient ischemic block. Ischemic
nerve block is an established experimental technique to study
sensory control ofmovements (e.g., Glencross andOldfield, 1975;
Ziemann et al., 1998a). It is known to first affect the large, fast
conducting afferent fibers, especially Ia afferents arising from
the muscle spindle afferents (Fellows et al., 1993). In contrast to
acute limb ischemia, a sudden decrease in limb perfusion caused
by e.g., thrombosis, transient ischemic block is an incomplete
block of limb perfusion caused by externally applied pressure
and is non-threatening to the limb. Glencross and Oldfield
(1975) showed that 20–25min of ischemic nerve block results
in complete dropout of finger sensation, and significant sensory
decrease in wrist and elbow. Decrements in the exerted force were
observed only after complete sensory dropout. In the current
study, the duration of inflation was in a range of 20–25min.
This timeframe included 10min of preparation to guarantee
impairment in the global sensory afference, and a subsequent
10–15min of movement recordings. Consequently, other effects
of the ischemic nerve block, such as changes in producible
muscle force (Björkman et al., 2004a), can be disregarded in the
current set-up because of the brevity of the ischemic block. Before
movement recording started, the proprioceptive impairment was
tested indirectly by assessing participants’ touch sensitivity with
von-Frey filaments (Marstock, Schriesheim, Germany, Rolke
et al., 2006). On the back of the participants’ hands it was
tested which of the 12 logarithmically scaled filaments (range:
0.25–512 mN) participants were at least able to perceive. On
average, participants were able to perceive a minimum pressure
of 0.5 mN before the application of the blood pressure cuff
(i.e., mean filament number ± SD: 1.91 ± 0.53). Participants’
touch sensitivity had to be reduced by at least one filament (i.e.,
increase by a factor 2) before the experiment was continued.
On average, participants perceived a minimum of 1 mN at the
start of the movement recordings (i.e., mean filament number ±
SD: 3.09 ± 0.70). This procedure allowed us to be sure about
the effectiveness of the ischemic block. At the same time, the
duration of preparation wasminimized, which was of importance
to prevent unwanted side effects of the ischemic block, as
for example ischemic pain. The second experimental condition
(“control”) served as a control condition, executed identically but
without inflated blood pressure cuff.

Two blocks of 40 trials in each block were recorded in each
session (i.e., 80 trials per session). Each experimental block
consisted of 20 trials of each of the two target positions, arranged
in a random order to avoid predictability of the target position.
Between the blocks a break of maximally 5min was offered to
avoid fatigue. Before movement recording started, participants
were allowed to perform five trials to familiarize themselves with
the experimental task and apparatus.

Analysis
Data Analysis
Data analysis was calculated using Matlab 7.9.0 (Mathworks,
Natick, USA) and was in line with earlier studies by our group
(Krüger et al., 2011, 2012). In a first step, the seven joint
angles of the arm were computed from the marker positions
using a three-segment rigid body model, and expressed as seven
consecutive Cardan angles. The order of the angles was as follows:
two angles for the wrist (vertical, and horizontal), two angles
for the elbow (torsion, and flexion), and three angles for the
shoulder (torsion, horizontal, and vertical). The zero position
of the arm was defined as the arm pointing straight forward
with the elbow extended and the palm facing up. Based on that,
positive joint angle indicated the following directions: vertical
upward, horizontal rightward, and torsion clockwise. The vector
containing the seven joint angles is hereafter referred to as arm
posture. The position of the hand in space (i.e., 3D) was defined
by the center of the two hand markers in world fixed Cartesian
coordinates. In addition, the orientation of the hand in space was
defined in Helmholtz coordinates relative to the external world.

Temporal and spatial movement characteristics were analyzed
separately for each condition, participant, target position and
trial. Overall movement duration was defined as the time
between movement initiation and movement end. To determine
movement initiation, movement start was defined as the
time point at which the hand velocity first exceeded 10% of
its peak velocity. Movement initiation was then determined
by subtracting 10% of the acceleration time (i.e., the time
between movement start and reaching peak velocity) from
movement start. Movement end was defined as the last sample
recorded before the first contact with the reaching target, as
determined by the change in electrical resistance (see section
Experimental Set-Up). Subsequently, duration of acceleration
and duration of deceleration were calculated. In addition, peak
velocity was analyzed. Thus, temporal characteristics of the
reaching movements will be described by four measures: (1)
overall movement duration, (2) duration of acceleration, (3)
duration of deceleration, and (4) peak velocity. To determine
spatial characteristics of the reaching movement, movement
amplitudes were determined by calculating the absolute value of
the difference between the maximum and minimum joint angle
separately for each of the seven joint angles. Subsequently, mean
movement amplitude was calculated as the average movement
amplitude across the seven joint angles. In addition, to evaluate
the changes in the diversion from shortest trajectory between
starting and end position, the total path length in the 7D-joint
space of the arm was calculated.

Within-subject inter-trial movement variability during the
time course of movement execution and at movement end was
analyzed separately for each condition, participant, and target
position. On that account, the full temporal resolution of the
joint angle motion was reduced to 10 equidistant sampling points
between movement initiation and movement end. To account
for small inter-trial variations in the actual starting position
of the arm and in movement duration, a correction of the
joint angle trajectories was calculated as described in detail in
Krüger et al. (2011). Briefly, the within-subject deviations of
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the joint angles from their mean were submitted to a linear
regression analysis with the predictor initial arm position and
movement duration (i.e., 7 + 1 = 8 continuous predictor
variables). Separate regression analysis were conducted for each
participant, experimental condition, target position, and for each
of the 10 sampling points, thus, containing the data of 40 trials.
Subsequently, the joint angle deviations from the mean that
were predicted by this linear model were subtracted from the
actual joint angles. After this correction, the covariance matrix
of the starting position (first sample) reduced to zero and was
not considered in further analytical steps. Thus, the covariance
matrix of the joint angles was analyzed at nine equidistant
sampling points during the movement.

Afterwards, movement variability was analyzed by means of
the two approaches described in the Introduction: first, analyzing
the amount of variability at the nine single sampling points
during movement execution, and second, analyzing the coupling
of movement variability across different sampling points. To
achieve the first, the square-root of the mean within-subject
variance, averaged across the seven joint angles of the arm
(hereafter referred to as: standard deviation of arm posture), was
calculated. Further, the square root of the mean within-subject
variance, averaged across its three dimensions was calculated
for the task variables (a) hand position (standard deviation of
hand position) and (b) hand orientation (standard deviation of
hand orientation). In addition, the coupling between joint angles
within the arm posture at a given sampling point was analyzed
by calculating a principal component analysis on the 7 × 7
covariancematrix of the arm posture. Subsequently, the variances
for each of the seven eigenvalues of the covariance matrix were
averaged across sampling points, and the percentage of total
variance explained by the first two eigenvalues was calculated. A
relative increase of this percentage is closely related to a relative
decrease of the number of kinematic DoF with respect to the
mechanical DoF.

To achieve the second, the coupling between the arm
posture at a given sampling point and the final arm posture
was examined. On that account, the coupling between the
arm posture during the movement and the final arm posture
was assessed by canonical correlation analysis evaluating the
percentage of inter-trial variance of the final arm posture that
could be explained by the variance of arm posture at a given
sampling point. The canonical correlation analysis returns a
coefficient of determination, which equals the mean R2 across the
multiple regressions explaining the final arm posture as linear
functions of the arm posture at a given sampling point.

Statistical Analysis
Statistical analysis was calculated using SPSS 9.0. Pairwise
comparisons were calculated for the temporal and spatial
measures of the reaching movements, the percentage of total
variance explained by the first two eigenvalues, as well as for the
coefficient of determination. A repeated measurement ANOVA
with condition (control vs. ischemia) as the between-group
factor, and sampling point as the repeated factor was calculated
for the following dependent variables: (1) standard deviation of
arm posture, (2) standard deviation of hand position, and (3)

standard deviation of hand orientation. Bonferroni corrected
pairwise comparisons were calculated for post-hoc analysis of
significant interactions. A Greenhouse-Geisser adjustment was
made if the sphericity assumption was rejected by Mauchly’s
sphericity test. Standard deviations of arm posture, hand position
and hand orientation were tested for normal distribution with the
Lilliefors-test. Data was normally distributed for both conditions
and for almost all sampling points. The critical value for
significance was set at p < 0.05. Participants were excluded from
single analyses in case of data corruption, i.e., if the data matrix
for each participant contained <10 valid trials in each condition
and for each target position.

RESULTS

Since the influence of target position on complex reaching
movements was not of interest in the current study, and was
already discussed elsewhere (Krüger et al., 2011, 2012), only
the results for reaching toward the left target position will
be presented here. Similar results were found for reaching
movements toward the right target position, though in general
the observed differences were smaller for the right target position
as compared to the left target position.

Temporal Movement Characteristics
Overall movement duration was 778 ± 167ms (mean ± SD)
for the ischemia condition and 713 ± 142ms for the control
condition (see Figure 2). This difference was significant [paired
t-test: t(14) = −3.55, p < 0.01] and based on a significantly
increased duration of the acceleration phase under ischemia [403
± 83 vs. 352 ± 84ms, t(14) = −3.08, p < 0.01]. Neither duration
of the deceleration phase (375± 116 vs. 360± 101ms), nor peak
velocity (1,068 ± 198.57 vs. 1,095 ± 195 mm/s) differed between
the ischemia and control condition.

Spatial Movement Characteristics
When reaching toward the target, trajectories for five out of
the seven joint angles of the arm (shoulder torsion, shoulder
horizontal, shoulder vertical, elbow torsion, and wrist horizontal)
showed a continuous increase or decrease between movement
initiation and movement end, with the trajectories slightly
curved. For elbow flexion and wrist vertical, joint angle
trajectories showed a reversal in movement direction during the
movement. Under ischemia, total path length in the 7D-joint
space was decreased by 15% (control: 40.8 ± 6.8◦ vs. ischemia:
34.3 ± 5.4◦). Associated with that, the participants’ mean
movement amplitude decreased significantly under ischemia as
compared to the control condition [26.3 ± 4.1◦ vs. 31.3 ±
4.7◦, t(14) = 5.32, p < 0.01, see Figure 3A]. This difference was
especially pronounced in four of the seven joint angles: shoulder
torsion [t(14) = 2.46, p = 0.03], shoulder vertical [t(14) = 2.95, p
= 0.01], elbow torsion [t(14) = 3.93, p < 0.01], and elbow flexion
[t(14) = 5.50, p < 0.01, see Figure 3B].

Movement Variability
First, movement variability at the different sampling points
during movement execution was analyzed with respect to three
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FIGURE 2 | Movement durations (means ± standard deviation) for the three

analyzed parameters: Overall movement duration, duration of acceleration and

duration of deceleration. Statistically significant differences between

experimental conditions are indicated by an asterisk.

measures: (a) standard deviation of arm posture, (b) standard
deviation of hand position, and (c) standard deviation of
hand orientation. The amount of movement variability did
not differ between the two experimental conditions (i.e., no
significant main effect of experimental condition) for any of
the three measures neither across the nine sampling points nor
at movement end. However, for each of the three measures,
a significant main effect of sampling point became evident:
(a) F(2.39, 23.92) = 21.21, p < 0.01, (b) F(2.36, 23.62) = 53.35,
p < 0.01, and (c) F(2.48, 24.83) = 22.93, p < 0.01. In all cases,
movement variability increased until themiddle of themovement
and decreased afterwards. Variability was smallest at movement
initiation and on an intermediate level at movement end (see
Figure 4).

The interaction of experimental condition × sampling
point was significant for standard deviation of hand position.
Qualitatively, this effect became evident as a weaker modulation
of hand position variability across the nine sampling points in the
ischemia condition (see Figure 4B). Post-hoc analysis revealed
that, under ischemia, only the first two sampling points differed
largely from the other sampling points, whereas in the control
condition almost all sampling points differed significantly from
each other (see Table 1). No other effects reached the level of
significance.

The coupling of joint angles within the arm posture was
analyzed using a principal component analysis applied to the
inter-trial 7 × 7 covariance matrix of the arm posture. Under
ischemia, the first two eigenvalues explained 88.90 ± 2.44% of
total joint angle variance compared with 83.40 ± 2.27% in the
control condition (see Figure 5A for group mean and Figure 5B

for a representative participant). This difference was significant
[t(8) =−18.43, p < 0.01].

The coupling of the arm posture was analyzed using the
coefficient of determination between of final arm posture with
respect to the arm posture during movement execution. As
a matter of course, the coefficient of determination increased
toward movement end and finally reached the level of 1 (see

FIGURE 3 | Movement amplitudes. (A) Mean movement amplitude (mean ±
standard deviation) is depicted. Movement amplitude was significantly

decreased under ischemia. (B) Movement amplitudes for each joint (mean ±
standard deviation). Asterisks indicate significant differences between the two

conditions. Movement amplitude was decreased in joints distal, as well as

proximal to the blood pressure cuff.

Figure 5D for a representative participant). The coefficient of
determination of final arm posture with respect to the variance
of the arm posture at the first sampling point was smaller in
the control condition (R2 = 0.4) than under ischemia (R2 =
0.7). Consequently, the subsequent increase in the coefficient
of determination up to the value 1 at movement end was
steeper in the control condition than under ischemia. For group
comparison, only the coefficient of determination with respect
to the fifth sampling point, when the standard deviation of
arm posture was maximal, was analyzed. Under ischemia the
coefficient of determination was significantly higher than in the
control condition [R2: 0.82± 0.18 vs. 0.54± 0.06, t(7) =−3.89, p
< 0.01, see Figure 5C].

DISCUSSION

In the current study, we introduced a method to investigate
the coupling of joint angle variability across the time course of
discrete, goal-directed, natural reachingmovements. Themethod
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FIGURE 4 | Movement variability. (A) Standard deviation of arm posture, representing the mean across participants, is shown. Shaded areas represent the respective

confidence intervals. (B) Standard deviation of mean hand position (+ confidence interval) is depicted. Hand position variability was less modulated under ischemia.

(C) Standard deviation of mean hand orientation and the respective confidence interval is shown.

TABLE 1 | Post-hoc analysis for the significant interaction Condition × Sampling point for the measure: Standard deviation of hand position.

Sampling

point no.

Ischemia

1 2 3 4 5 6 7 8 9

Control 1 p = 0.05 p = 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.02 p = 0.03 p = 0.02

2 p < 0.01 p < 0.01 p < 0.01 p = 0.01 p = 0.03 n.s. n.s. p = 0.07*

3 p < 0.01 p < 0.01 n.s. p = 0.04 n.s. n.s. n.s. n.s.

4 p < 0.01 p < 0.01 p = 0.03 p = 0.06* n.s. n.s. n.s. n.s.

5 p < 0.01 p < 0.01 n.s. n.s. n.s. n.s. n.s. n.s.

6 p < 0.01 p < 0.01 n.s. n.s. n.s. n.s. n.s. n.s.

7 p < 0.01 p = 0.02 n.s. n.s. p = 0.01 p < 0.01 n.s. n.s.

8 p < 0.01 n.s. n.s. p = 0.04 p < 0.01 p < 0.01 p < 0.01 n.s.

9 p < 0.01 n.s. n.s. p < 0.01 p < 0.01 p < 0.01 p < 0.01 p = 0.06*

Data in the upper right half of the table represents p-values of significant pairwise comparisons of single sampling points for the ischemia-condition. Data in the lower left half of the table
represents p-values of significant pairwise comparisons of single sampling points for the control condition. Bonferroni correction for multiple comparisons was applied to all calculations.
Asterisks indicate close to significant interactions.

was exemplified on a dataset that was collected to study the
influence of temporary proprioceptive deafferentation on the
control of a complex reaching movement. In the following,
the main outcomes of the study will be discussed first, followed
by a discussion on the canonical correlation method introduced
to analyze the propagation of movement variability across
time.

Adjustment of Movement Duration
Movement duration was increased by the ischemia as a
result of increased acceleration duration. The influence of
proprioception on the duration of acceleration was already
recognized by Bagesteiro et al. (2006) and associated with
sensory-based online-correction of the movement. Movement’s
peak velocity was not increased under ischemia. Increased
duration of acceleration without increased peak velocity indicates
decreased peak acceleration and, consequently, decreased peak

force. A reduction in total force applied during movement
execution is accompanied by a reduction in signal-dependent
noise (Harris and Wolpert, 1998). This may be advantageous
under ischemia, as the precision of movement planning
is of greater importance when movement online-control
based on proprioceptive feedback is impaired. Our results
suggest that healthy participants are able to immediately
and efficiently adjust the precision of movement planning
to the lack of proprioceptive information in elbow and
wrist.

Adjustment of Movement Amplitude
Movement amplitude was decreased under ischemia.
Importantly, this was not only true for joints distal to the
applied blood pressure cuff (i.e., elbow torsion and elbow
flexion), which were directly affected by the ischemic block,
but also for two joint angles proximal to the cuff (i.e., shoulder
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FIGURE 5 | Coupling of joint angle variability. (A) Group mean (± standard deviation) of the variance explained by the two biggest eigenvalues, averaged across the

nine sampling points, is shown. Under ischemia significantly more variance was explained by the first two eigenvalues as compared to the control condition. (B)

Explained variance by the seven eigenvalues, averaged across the nine sampling points, is shown for one representative participant. (C) The coefficient of

determination (R2) of final arm posture variance with respect to arm posture variance at the fifth sampling point. Error bars represent standard deviations. Under

ischemia the coefficient of determination was higher than in the control condition. (D) The coefficient of determination (R2) of final arm posture variance with respect to

arm posture variance for each sampling point is shown for a representative participant for both conditions.

torsion and shoulder vertical), which were not directly affected
by the ischemia. In combination with the finding of stronger
inter-joint coupling under ischemia, this suggests a more global
change in the strategy of joint angle coordination involving
all joints of the arm to compensate for the ischemia. A reason
for planning a reaching movement with decreased mean
movement amplitude may be the associated decrease in the
signal-to-noise ratio (Harris and Wolpert, 1998), facilitating
the control of movement endpoint variability. This assumption
is also supported by Fitts’ Law (Fitts, 1954), which describes
the relationship between movement amplitude, movement
duration and movement accuracy. According to this law,
in order to keep movement endpoint variability constant
in a task with increased task difficulty, movement duration
and/or movement amplitude must be adjusted. Assuming
that the ischemia may have increased task difficulty, as an

important source of sensory information was disabled, planning
a movement with decreased movement amplitude and increased
movement duration may have allowed the participants to keep
movement endpoint variability constant, as observed in our
study.

Adjustment of Movement Variability
Another important finding of our study was that the modulation
of hand position variability during movement execution was
altered under ischemia in such a way that the initial increase
and subsequent decrease of hand position variability was
less pronounced. The increase-decrease pattern of movement
variability was already described in earlier studies by our group
(Krüger et al., 2011, 2012) and is a sign of successful minimization
of variance at movement end. It indicates that signal-dependent
noise (Harris and Wolpert, 1998), introduced by forces during
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the acceleration period, is successfully compensated by feedback
control acting primarily during the deceleration phase (Elliott
et al., 2001, 2010; Eggert et al., 2016). The fact that this
increase-decrease pattern of hand position variability is less
pronounced under ischemia (see Figure 4) is probably related
to both reduced acceleration forces, resulting in a reduced
increase of variability, and impaired proprioceptive feedback,
resulting in a reduced decrease of variability. Interestingly, both
of these changes compensated for each other in such a way
that endpoint variability was almost identical in the control
condition and under ischemia. This is in contrast to findings
of studies with chronically deafferented patients (Gentilucci
et al., 1994; Gordon et al., 1995; Nougier et al., 1996; Medina
et al., 2009) and reflects the ability of the motor control
system of healthy participants to immediately and efficiently
adjust to the loss of proprioceptive information in parts of the
effector.

Adjustments of Movement Coordination
Movement coordination was altered under ischemia, a finding
similar to that observed in studies on deafferented patients
(Sainburg et al., 1993; Ghez and Sainburg, 1995; Sarlegna
et al., 2006). In the current study, the alterations in movement
coordination became evident for the coupling between single
joints of a specific arm posture as well as for the coupling of
arm posture during movement execution with that at movement
end: for both parameters the coupling was stronger under
ischemia. Increasing the strength of joint angle coupling under
ischemia, i.e., increasing the synergistic coordination of the
redundant DoF at the same time point and across time points,
may reflect a change in the control strategy concerning the
way motor redundancy is used under impaired proprioceptive
feedback. Alternatively, it may reflect the limited capacity of
the brain to plan and control coordinated movement with a
naturally higher number of DoF with decreased proprioceptive
feedback. Similar to that assumption, Gupta (2014) highlighted
the relevance of feedback information for the precise temporal
control of complex motor actions. Independent of which
explanation holds true, the observed effect of stronger joint
angle coupling under ischemia can be interpreted as a reduction
of the number of kinematic DoF of the redundant effector-
system arm and consequently as a facilitation of its online-
control.

Methodological Considerations
In this study, canonical correlation analysis was introduced
as a method to investigate the propagation of movement
variability for discrete movements involving a redundant effector
system. It was shown that, by using canonical correlation
analysis, alterations in movement coordination that indicate
changes in the control strategy concerning the use of motor
redundancy could be detected. To the best of our knowledge,
this is the first time such an approach is suggested for
a multiple DoF-effector system in the context of discrete
movements. Previous approaches to capture the propagation
of movement variability for discrete movements have studied
either eye movements (West et al., 2009; Richardson et al.,

2011; Eggert et al., 2016) or arm movements with a limited
number of DoF (Messier and Kalaska, 1999; Heath, 2005; Kuang
and Gail, 2015). However, to advance our understanding of
the human motor control system in its complexity, natural
movements as used in this study have to be analyzed. In this
context, the introduction of canonical correlation analysis as a
suitable approach represents an important methodical advance
in the context of neuromechanics. One aspect contributing
to the importance of the introduced method is that it
does not substitute or extend other approaches that have
been previously suggested to identify structure in movement
variability, but represents a new approach with the potential to
also broaden the application of already existing methods and
to increase their significance: In this study, it was analyzed
how strongly final arm posture variability was determined
by overall variability of arm posture during movement
execution. Previous studies identified different components of
overall movement variability (Müller and Sternad, 2004, 2009)
and the relevance of independent components of effector
variability for task variability (Scholz and Schöner, 1999; Latash
et al., 2002). Following this line of thinking, future research
could use canonical correlation analysis to investigate the
propagation of certain components of overall effector variability
in time.

CONCLUSIONS

In this study, we introduced canonical correlation analysis
as a method to investigate the temporal propagation of
movement variability in reaching movements under normal
or impaired proprioceptive feedback. As general findings,
we found increased movement duration due to increased
acceleration duration, decreased movement amplitude, as
well as changes in movement coordination under reduced
proprioceptive afference due to ischemia. The changes in
movement coordination became evident as an increased
coupling between arm postures during movement execution
with final arm posture, resulting in a decreased number of
kinematic DoF of the effector-system. Movement endpoint
variability was not influenced by the ischemia. Thus, the
canonical correlation analysis revealed that healthy participants
are able to immediately and efficiently adjust their control
strategy to the impaired flow of proprioceptive information. In
conclusion, canonical correlation analysis provides a valuable
method to advance our understanding of human movement
control by offering an approach to analyze the temporal
propagation of movement variability during discrete movements
executed by multiple DoF-effector systems, such as the
arm.

AUTHOR CONTRIBUTIONS

All authors of this study contributed substantially to its
conception, the interpretation of data, as well as drafting and
revising earlier versions of the manuscript. In addition, MK and
TE were responsible for data acquisition and analysis. MK, AS,

Frontiers in Computational Neuroscience | www.frontiersin.org October 2017 | Volume 11 | Article 9394

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Krüger et al. Time Course Analysis of Movement Variability

and TE all approved the version to be published and agreed to be
accountable for all aspects of the work.

FUNDING

This work was financially supported by the Research Training
Group (GRK) 1091 “Orientation and motion in space” of the

German Research Foundation (DFG) as well as by the Robert
Bosch Foundation (Grant No. 32.5.G412.0007.0).

ACKNOWLEDGMENTS

A modified version of this manuscript has been included as part
of the dissertation thesis of MK (Krüger, 2013).

REFERENCES

Bagesteiro, L. B., Sarlegna, F. R., and Sainburg, R. L. (2006). Differential influence
of vision and proprioception on control of movement distance. Exp. Brain Res.

171, 358–370. doi: 10.1007/s00221-005-0272-y
Bernstein, N. A. (1967). The Co-ordination and Regulation of Movements. Oxford:

Pergamon Press.
Björkman, A., Rosén, B., and Lundborg, G. (2004a). Acute improvement of hand

sensibility after selective ipsilateral cutaneous forearm anaesthesia. Eur. J.
Neurosci. 20, 2733–2736. doi: 10.1111/j.1460-9568.2004.03742.x

Björkman, A., Rosén, B., vanWesten, D., Larsson, E.M., and Lundborg, G. (2004b).
Acute improvement of contralateral hand function after deafferentation.
Neuroreport 15, 1861–1865.

Cirstea, M. C., and Levin, M. F. (2000). Compensatory strategies for reaching in
stroke. Brain 123(Pt. 5), 940–953. doi: 10.1093/brain/123.5.940

Cohen, R. G., and Sternad, D. (2009). Variability in motor learning:
relocating, channeling and reducing noise. Exp. Brain Res. 193, 69–83.
doi: 10.1007/s00221-008-1596-1

Domkin, D., Laczko, J., Djupsjöbacka, M., Jaric, S., and Latash, M. L. (2005). Joint
angle variability in 3D bimanual pointing: uncontrolled manifold analysis. Exp.
Brain Res. 163, 44–57. doi: 10.1007/s00221-004-2137-1

Domkin, D., Laczko, J., Jaric, S., Johansson, H., and Latash, M. L. (2002). Structure
of joint variability in bimanual pointing tasks. Exp. Brain Res. 143, 11–23.
doi: 10.1007/s00221-001-0944-1

Eggert, T., Robinson, F. R., and Straube, A. (2016). Modeling inter-trial variability
of saccade trajectories: effects of lesions of the oculomotor part of the fastigial
nucleus. PLoS Comput. Biol. 12:e1004866. doi: 10.1371/journal.pcbi.1004866

Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J., and Hayes, S. J.
(2010). Goal-directed aiming: two components but multiple processes. Psychol.
Bull. 136, 1023–1044. doi: 10.1037/a0020958

Elliott, D., Helsen,W. F., and Chua, R. (2001). A century later:Woodworth’s (1899)
two-component model of goal-directed aiming. Psychol. Bull. 127, 342–357.
doi: 10.1037/0033-2909.127.3.342

Fellows, S. J., Dömges, F., Töpper, R., Thilmann, A. F., and Noth, J. (1993).
Changes in the short- and long-latency stretch reflex components of the
triceps surae muscle during ischaemia in man. J. Physiol. 472, 737–748.
doi: 10.1113/jphysiol.1993.sp019970

Fitts, P. M. (1954). The information capacity of the human motor system
in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391.
doi: 10.1037/h0055392

Gentilucci,M., Toni, I., Chieffi, S., and Pavesi, G. (1994). The role of proprioception
in the control of prehension movements: a kinematic study in a peripherally
deafferented patient and in normal subjects. Exp. Brain Res. 99, 483–500.
doi: 10.1007/BF00228985

Gera, G., Freitas, S., Latash, M., Monahan, K., Schöner, G., and Scholz, J. (2010).
Motor abundance contributes to resolving multiple kinematic task constraints.
Motor Control 14, 83–115. doi: 10.1123/mcj.14.1.83

Ghez, C., and Sainburg, R. (1995). Proprioceptive control of interjoint
coordination. Can. J. Physiol. Pharmacol. 73, 273–284. doi: 10.1139/
y95-038

Glencross, D. J., and Oldfield, S. R. (1975). The use of ischemic nerve block
procedures in the investigation of the sensory control of movements. Biol.
Psychol. 2, 227–236. doi: 10.1016/0301-0511(75)90022-8

Gordon, J., Ghilardi, M. F., and Ghez, C. (1995). Impairments of reaching
movements in patients without proprioception. I. Spatial errors.
J. Neurophysiol. 73, 347–360.

Gupta, D. S. (2014). Processing of sub-and supra-second intervals in the primate
brain results from the calibration of neuronal oscillators via sensory, motor, and
feedback processes. Front. Psychol. 5:816. doi: 10.3389/fpsyg.2014.00816.

Harris, C. M., and Wolpert, D. M. (1998). Signal-dependent noise determines
motor planning. Nature 394, 780–784. doi: 10.1038/29528

Heath, M. (2005). Role of limb and target vision in the online control of memory-
guided reaches.Motor Control Champaign 9:281. doi: 10.1123/mcj.9.3.281

Hepp-Reymond, M. C., Chakarov, V., Schulte-Mönting, J., Huethe, F., and
Kristeva, R. (2009). Role of proprioception and vision in handwriting. Brain
Res. Bull. 79, 365–370. doi: 10.1016/j.brainresbull.2009.05.013

Krüger, M. (2013). Motor Variability as a Characteristic of the Control of Reaching

Movements: Influence of Sensory Input and Task Constraints. Dissertation thesis,
LMU München: Graduate School of Systemic Neurosciences (GSN), Munich,
Germany.

Krüger, M., Borbély, B., Eggert, T., and Straube, A. (2012). Synergistic control of
joint angle variability: influence of target shape.Hum. Mov. Sci. 31, 1071–1089.
doi: 10.1016/j.humov.2011.12.002

Krüger, M., Eggert, T., and Straube, A. (2011). Joint angle variability in
the time course of reaching movements. Clin. Neurophysiol. 122, 759–766.
doi: 10.1016/j.clinph.2010.10.003

Krüger, M., Eggert, T., and Straube, A. (2013). Age-related differences in the
stabilization of important task variables in reaching movements.Motor Control

17, 313–319. doi: 10.1123/mcj.17.3.313
Kuang, S., and Gail, A. (2015). When adaptive control fails: slow recovery of

reduced rapid online control during reaching under reversed vision.Vision Res.
110, 155–165. doi: 10.1016/j.visres.2014.08.021

Latash, M. L., Scholz, J. P., and Schöner, G. (2002). Motor control strategies
revealed in the structure of motor variability. Exerc. Sport Sci. Rev. 30, 26–31.
doi: 10.1097/00003677-200201000-00006

Medina, J., Jax, S. A., and Coslett, H. B. (2009). Two-component models of
reaching: evidence from deafferentation in a Fitts’ law task. Neurosci. Lett. 451,
222–226. doi: 10.1016/j.neulet.2009.01.002

Medina, J., Jax, S. A., Brown, M. J., and Coslett, H. B. (2010). Contributions of
efference copy to limb localization: evidence from deafferentation. Brain Res.

1355, 104–111. doi: 10.1016/j.brainres.2010.07.063
Messier, J., and Kalaska, J. F. (1999). Comparison of variability of initial

kinematics and endpoints of reaching movements. Exp. Brain Res. 125,
139–152. doi: 10.1007/s002210050669

Moisello, C., Bove, M., Huber, R., Abbruzzese, G., Battaglia, F., Tononi, G., et al.
(2008). Short-term limb immobilization affects motor performance. J. Mot.

Behav. 40, 165–176. doi: 10.3200/JMBR.40.2.165-176
Müller, H., and Sternad, D. (2004). Decomposition of variability in the execution

of goal-oriented tasks: three components of skill improvement. J. Exp. Psychol.
Hum. Percept. Perform. 30, 212–233. doi: 10.1037/0096-1523.30.1.212

Müller, H., and Sternad, D. (2009). Motor learning: changes in the structure
of variability in a redundant task. Adv. Exp. Med. Biol. 629, 439–456.
doi: 10.1007/978-0-387-77064-2_23

Nougier, V., Bard, C., Fleury, M., Teasdale, N., Cole, J., Forget, R., et al. (1996).
Control of single-joint movements in deafferented patients: evidence for
amplitude coding rather than position control. Exp. Brain Res. 109, 473–482.
doi: 10.1007/BF00229632

Oldfield, R. C. (1971). The assessment and analysis of handedness: the edinburgh
inventory. Neuropsychologica 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Richardson, B. A., Ratneswaran, A., Lyons, J., and Balasubramaniam, R. (2011).
The time course of online trajectory corrections in memory-guided saccades.
Exp. Brain Res. 212, 457–469. doi: 10.1007/s00221-011-2752-6

Frontiers in Computational Neuroscience | www.frontiersin.org October 2017 | Volume 11 | Article 9395

https://doi.org/10.1007/s00221-005-0272-y
https://doi.org/10.1111/j.1460-9568.2004.03742.x
https://doi.org/10.1093/brain/123.5.940
https://doi.org/10.1007/s00221-008-1596-1
https://doi.org/10.1007/s00221-004-2137-1
https://doi.org/10.1007/s00221-001-0944-1
https://doi.org/10.1371/journal.pcbi.1004866
https://doi.org/10.1037/a0020958
https://doi.org/10.1037/0033-2909.127.3.342
https://doi.org/10.1113/jphysiol.1993.sp019970
https://doi.org/10.1037/h0055392
https://doi.org/10.1007/BF00228985
https://doi.org/10.1123/mcj.14.1.83
https://doi.org/10.1139/y95-038
https://doi.org/10.1016/0301-0511(75)90022-8
https://doi.org/10.3389/fpsyg.2014.00816.
https://doi.org/10.1038/29528
https://doi.org/10.1123/mcj.9.3.281
https://doi.org/10.1016/j.brainresbull.2009.05.013
https://doi.org/10.1016/j.humov.2011.12.002
https://doi.org/10.1016/j.clinph.2010.10.003
https://doi.org/10.1123/mcj.17.3.313
https://doi.org/10.1016/j.visres.2014.08.021
https://doi.org/10.1097/00003677-200201000-00006
https://doi.org/10.1016/j.neulet.2009.01.002
https://doi.org/10.1016/j.brainres.2010.07.063
https://doi.org/10.1007/s002210050669
https://doi.org/10.3200/JMBR.40.2.165-176
https://doi.org/10.1037/0096-1523.30.1.212
https://doi.org/10.1007/978-0-387-77064-2_23
https://doi.org/10.1007/BF00229632
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1007/s00221-011-2752-6
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Krüger et al. Time Course Analysis of Movement Variability

Rolke, R., Magerl, W., Campbell, K. A., Schalber, C., Caspari, S., Birklein, F.,
et al. (2006). Quantitative sensory testing: a comprehensive protocol for clinical
trials. Eur. J. Pain 10, 77–88. doi: 10.1016/j.ejpain.2005.02.003

Sainburg, R. L., Ghilardi, M. F., Poizner, H., and Ghez, C. (1995). Control
of limb dynamics in normal subjects and patients without proprioception.
J. Neurophysiol. 73, 820–835.

Sainburg, R. L., Poizner, H., and Ghez, C. (1993). Loss of proprioception
produces deficits in interjoint coordination. J. Neurophysiol. 70,
2136–2147.

Sarlegna, F. R., Gauthier, G. M., Bourdin, C., Vercher, J. L., and Blouin,
J. (2006). Internally driven control of reaching movements: a study on
a proprioceptively deafferented subject. Brain Res. Bull. 69, 404–415.
doi: 10.1016/j.brainresbull.2006.02.005

Scholz, J. P., and Schöner, G. (1999). The uncontrolled manifold concept:
identifying control variables for a functional task. Exp. Brain Res. 126, 289–306.
doi: 10.1007/s002210050738

Scholz, J. P., Schöner, G., and Latash, M. L. (2000). Identifying the control
structure of multijoint coordination during pistol shooting. Exp. Brain Res. 135,
382–404.

Stergiou, N., and Decker, L. M. (2011). Human movement variability, nonlinear
dynamics, and pathology: is there a connection? Hum. Mov. Sci. 30, 869–888.
doi: 10.1016/j.humov.2011.06.002

Todorov, E. (2004). Optimality principles in sensorimotor control. Nat. Neurosci.
7, 907–915. doi: 10.1038/nn1309

Todorov, E., and Jordan, M. I. (2002). Optimal feedback control as a theory of
motor coordination. Nat. Neurosci. 5, 1226–1235. doi: 10.1038/nn963

Tseng, Y., Scholz, J. P., and Schöner, G. (2002). Goal-equivalent joint coordination
in pointing: affect of vision and arm dominance. Motor Control 6, 183–207.
doi: 10.1123/mcj.6.2.183

van der Steen, M. M., and Bongers, R. M. (2011). Joint angle variability and
co-variation in a reaching with a rod task. Exp. Brain Res. 208, 411–422.
doi: 10.1007/s00221-010-2493-y

West, G. L., Welsh, T. N., and Pratt, J. (2009). Saccadic trajectories receive online
correction: evidence for a feedback-based system of oculomotor control. J. Mot.

Behav. 41, 117–127. doi: 10.3200/JMBR.41.2.117-127
Ziemann, U., Corwell, B., and Cohen, L. G. (1998a). Modulation of plasticity

in human motor cortex after forearm ischemic nerve block. J. Neurosci. 18,
1115–1123.

Ziemann, U., Hallett, M., and Cohen, L. G. (1998b). Mechanisms of
deafferentation-induced plasticity in human motor cortex. J. Neurosci. 18,
7000–7007.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Krüger, Straube and Eggert. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org October 2017 | Volume 11 | Article 9396

https://doi.org/10.1016/j.ejpain.2005.02.003
https://doi.org/10.1016/j.brainresbull.2006.02.005
https://doi.org/10.1007/s002210050738
https://doi.org/10.1016/j.humov.2011.06.002
https://doi.org/10.1038/nn1309
https://doi.org/10.1038/nn963
https://doi.org/10.1123/mcj.6.2.183
https://doi.org/10.1007/s00221-010-2493-y
https://doi.org/10.3200/JMBR.41.2.117-127
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


ORIGINAL RESEARCH
published: 13 January 2017

doi: 10.3389/fncom.2016.00143

Frontiers in Computational Neuroscience | www.frontiersin.org January 2017 | Volume 10 | Article 143

Edited by:

Massimo Sartori,

University of Göttingen, Germany

Reviewed by:

Leonardo Abdala Elias,

University of Campinas, Brazil

Ton Van Den Bogert,

Cleveland State University, USA

*Correspondence:

Naser Mehrabi

nmehrabi@uwaterloo.ca

Received: 14 September 2016

Accepted: 20 December 2016

Published: 13 January 2017

Citation:

Mehrabi N, Sharif Razavian R,

Ghannadi B and McPhee J (2017)

Predictive Simulation of Reaching

Moving Targets Using Nonlinear

Model Predictive Control.

Front. Comput. Neurosci. 10:143.

doi: 10.3389/fncom.2016.00143

Predictive Simulation of Reaching
Moving Targets Using Nonlinear
Model Predictive Control
Naser Mehrabi *, Reza Sharif Razavian, Borna Ghannadi and John McPhee

Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada

This article investigates the application of optimal feedback control to trajectory planning

in voluntary human arm movements. A nonlinear model predictive controller (NMPC) with

a finite prediction horizon was used as the optimal feedback controller to predict the hand

trajectory planning and execution of planar reaching tasks. The NMPC is completely

predictive, and motion tracking or electromyography data are not required to obtain

the limb trajectories. To present this concept, a two degree of freedom musculoskeletal

planar armmodel actuated by three pairs of antagonist muscles was used to simulate the

human arm dynamics. This study is based on the assumption that the nervous system

minimizes the muscular effort during goal-directed movements. The effects of prediction

horizon length on the trajectory, velocity profile, and muscle activities of a reaching task

are presented. The NMPC predictions of the hand trajectory to reach fixed and moving

targets are in good agreement with the trajectories found by dynamic optimization and

those from experiments. However, the hand velocity and muscle activations predicted

by NMPC did not agree as well with experiments or with those found from dynamic

optimization.

Keywords: reaching, NMPC, prediction horizon, motor control

INTRODUCTION

The human central nervous system (CNS), consisting of brain, and spinal cord, is responsible
for controlling and maintaining body motions. As first formulated by Bernstein (1967),
the CNS simultaneously coordinates the kinematics and kinetics of body motions, despite
uncertain/unknown (future) trajectories and the redundancy inmuscle actuators. As an example, in
a goal-directed planar reaching task, where only the final position of the hand is specified, an infinite
solution set of hand trajectories and muscle activation patterns exist to reach the final position. The
early observations of reaching and pointing tasks led to the well-known “Minimum-X” models
[e.g., minimum-jerk model (Flash and Hogan, 1985; Wada et al., 2001), minimum-torque-change
model (Uno et al., 1989), minimum-variance model (Harris and Wolpert, 1998), and minimum-
work model (Soechting et al., 1995)] to predict the hand trajectory. These models hypothesize
that the CNS coordinates the body movement such that an exertion (X) is minimized. Later, this
hypothesis is extended to consider physiologically-motivated exertions such as muscle activation
effort (Crowninshield and Brand, 1981; Happee and Van der Helm, 1995; Ackermann and van den
Bogert, 2010), metabolic energy expenditure (Anderson and Pandy, 2001; Peasgood et al., 2006),
and muscle fatigue (Sharif Razavian and McPhee, 2015).
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In computer simulations, the Minimum-X model has been
successfully implemented using dynamic optimization (DO) to
predict the average human motion for a given task. A common
DO approach parameterizes the muscle activation profiles for
the period of motion and searches the feasible space to find the
profiles that minimize X (Davy and Audu, 1987; Yamaguchi and
Zajac, 1990; Neptune and Hull, 1998; Anderson and Pandy, 2001;
Kaplan and Heegaard, 2001; Sha and Thomas, 2013; Kistemaker
et al., 2014). This approach provides an open-loop (feedforward)
command of muscle activations to control the given task. This
command can represent the descending command of a well-
repeated/well-learned task [e.g., platform diving (Koschorreck
and Mombaur, 2011)]. In this model, the CNS only recalls
the learned information, and does not intelligently adjust the
commands in real-time. However, during conscious voluntary
movements, the CNS has to continuously update the motor
commands to correct for errors (Todorov, 2004). For example,
previous studies (Sarlegna and Pratik, 2015) on pointing and
reaching have shown that the CNS constantly updates the
hand trajectory based on sensory (feedback) information. This
sensory information can be received from vision, proprioception,
audition, the vestibular system, and internal models that can
predict the motion (Desmurget and Grafton, 2000).

Dynamic optimization implementation of minimum-X
models raises an interesting question: does the CNS predict the
trajectory at the beginning of the motion? Or does it constantly
readjust the trajectory? If the latter is true, how far in advance
does the CNS predict the motion, and how does that affect the
motion? This article focuses on these questions and provides a
computational platform to study the effects of the prediction
horizon using optimal feedback control theory. Optimal control
methods have been previously used to find a unique solution
for motor coordination (Meyer et al., 1988; Loeb et al., 1990;
Sporns and Edelman, 1993; Kuo, 1995; Anderson and Pandy,
2001; Todorov and Jordan, 2002b; Liu and Todorov, 2007);
however, there are few applications of optimal feedback control
to a nonlinear redundantly-actuated musculoskeletal model.
The LQR (linear quadratic regulator) and LQG (linear quadratic
Gaussian) control methods have been applied to a linear arm
model to describe the hand trajectory (Harris andWolpert, 1998;
Todorov and Jordan, 2002a; Liu and Todorov, 2007). Later, to
control the nonlinear dynamics of the neuromuscular system, an
iterative LQG (iLQG) controller has been developed, in which
the nonlinear model is iteratively linearized (Todorov and Li,
2005).

In the present research, a nonlinear model predictive
controller (NMPC) with a finite prediction horizon is employed.
Predicting infinitely into the future is highly improbable
in humans, and a finite prediction horizon allows more
realistic simulation. The NMPC allows us to consider the
complexity and nonlinearity of the musculoskeletal system
without compromising the accuracy and optimality, as occurs
using model linearization. It can be formulated to simulate
trajectory tracking and goal-oriented tasks with both fixed and
moving targets where it only corrects the deviations from the task
goal (Todorov and Jordan, 2002a). The NMPC is a simultaneous
control method because the optimal trajectory and its required

muscular activities are calculated at the same time. To the best
of the authors’ knowledge, this work is the first use of NMPC for
fully predictive simulation of human reaching tasks.

In this research, we are not focused on the source of the
sensory information; we assume that the current biomechanical
states (posture and velocities) are available to the CNS when
necessary. This assumption seems to be valid for healthy
individuals, as a wide range of sensory organs is available to sense
and transmit information to the CNS. However, a pathological
condition might limit the CNS access to this available sensory
information. For instance, in a deafferented patient, the sense of
position (and therefore the motor skills) is largely lost due to the
loss of somatosensory inputs (Bringoux et al., 2016).

This paper is organized as follows. In the Method section, the
experimental procedure, the planar arm model, the nonlinear
model predictive controller, and forward dynamic simulation
framework are provided. Next, in the Results and Discussion
section, the use of NMPC as the motor control unit in human
reaching tasks is presented and discussed. This study investigates
the use of anticipatory planning with continuous error correction
by the CNS during reaching tasks. The first goal of this study
is to study the effects of varying the prediction horizon on
the hand trajectory and muscle activities in a reaching task.
Therefore, we ran a number of NMPC simulations with various
prediction horizons, as well as a DO simulation to obtain a
“gold standard” for comparison. Secondly, the capability of the
NMPC as an optimal feedback controller for tracking predefined
trajectories has been investigated. This ability is useful when an
expected/desired trajectory is available. Lastly, the effectiveness
of the proposed NMPC for the simulation of reaching to
moving targets is studied. We hypothesize that the anticipatory
behavior of the CNS can be modeled by NMPC and verified
by comparing the hand trajectory predicted by NMPC to those
collected in experiments. Finally, Conclusions and Future Work
are presented.

METHODS

Experiments
To examine the accuracy of the NMPC predictions, a 27 year
old male subject was selected to perform reaching tasks. An
Optotrak Certus motion capture system (Northern Digital Inc.,
NDI) was used to measure the arm trajectory at 30 Hz. In these
experiments, the subject was seated with the arm elevated at
the shoulder level. An active marker attached to the back of the
hand (as shown in Figure 1A) has been used to capture center-
out hand motion trajectories. The subject was asked to move
his hand from an initial central position to one of eight final
targets spread evenly on a circle of 20 cm radius at a self-selected
convenient speed. The experiment was repeated 10 times for each
target with 2 min rest intervals between each set. The subject
also performed reaching to moving targets. He was instructed to
reach to a target, which was relocated to another positionmidway
through the movement. The subject was instructed to adjust
his motion to reach to the moving target. The subject was also
given 5min to rest before performing the reachingmoving targets
experiment.
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During the reaching trails, the electromyography (EMG)
activity of seven muscles (anterior/middle/posterior deltoid,
long/lateral triceps brachii, biceps brachii, and brachioradialis)
were collected at 2000 Hz using a Trigno portable EMG system
(Delsys Inc.). The EMGs were band-pass filtered (5–800Hz cut-
off), rectified, low-pass filtered (4 Hz cut-off), and normalized
to maximum voluntary contractions (MVCs). We performed
a Pearson correlation analysis to investigate the correlation
between the EMGs and muscle activity predicted by NMPC and
DO simulations. We resampled both the captured EMGs and
simulation results with a sampling rate of 100Hz, and performed
the Pearson correlation analysis using the “Corr” command in
MATLAB. The experiments have been approved by the Office
of Research Ethics at the University of Waterloo and carried out
with written informed consent from the subject. The subject gave
written informed consent in accordance with the Declaration of
Helsinki.

Planar Arm Model
In this research, a planar arm model similar to the one
developed by Ghannadi et al. (2015) was used. The model
consisted of torso, upper arm, and forearm to simulate the
hand motion. The torso was fixed and the shoulder and elbow
were modeled using revolute joints. Six muscle groups including
shoulder and elbow mono-articular flexors/extensors and two
bi-articular flexors/extensors were used to actuate the arm as
shown in Figure 1B. A modified Hill-type muscle model with
muscle excitation-to-activation dynamics was used to simulate
the skeletal muscle contraction dynamics (see Appendix A
for details). The muscle parameters of the planar arm model
(i.e., insertion and origin positions, maximum isometric force,
fiber optimal length, slack length, and pennation angle) were
tuned to represent the dynamics of the upper extremity in
the experimental condition (reaching targets in a horizontal
plane elevated at the shoulder level). These parameters were
tuned through a series of optimizations so that the planar
model provides the same joint torques as a high-fidelity
three-dimensional upper extremity model (Ghannadi et al.,

2015). Kinematic and dynamic parameters of the arm model and
the Hill muscle model parameters used here can be found in
Tables 1, 2, respectively.

Principles of Nonlinear Model Predictive
Control
The armmotion is controlled by complex commands descending
from the CNS, which are the combination of the motion
prediction (feedforward control) from an internal representation

TABLE 1 | Kinematic and dynamic parameters of the planar arm model.

Segment Mass (Kg) Inertia [Iyy]

(kg.cm2)*

Length (mm) CoM from

proximal (mm)

Upper arm 1.93 141 290 145

Forearm 1.52 188 300 150

*About the center of mass, the mechanical y axis is assumed to be perpendicular to the
plane of movement.

TABLE 2 | Hill-type muscle model parameters.

Muscle ISO force Tendon slack Pennation

[Fmax
0

] (N) length angle

[LSE] (mm) [αp] (deg)

Shoulder mono-articular flexor

(muscle 1)

2525 29.2 21.6

Shoulder mono-articular extensor

(muscle 2)

1672 0 19.5

Elbow mono-articular flexor

(muscle 3)

1452 18.1 1.4

Elbow mono-articular extensor

(muscle 4)

1577 7.2 7.8

Bi-articular flexor (muscle 5) 972 187.6 0

Bi-articular extensor (muscle 6) 798 119.2 12

The details of how the upper-extremity muscle groups are lumped into these
representative muscles can be found in Ghannadi et al. (2015).

A B

FIGURE 1 | (A) Measuring the hand trajectory using NDI Optotrak, (B) A schematic of the planar arm model.
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of the body and environment (or so-called internal model;
Desmurget and Grafton, 2000), and the corrective command
from the sensory organs to correct any errors due to uncertainty
or unknown environment (feedback control). This complexity is
captured here by a model-based NMPC with a receding horizon.
The NMPC uses a control-oriented model (COM) representing
the human’s internal model to predict the optimal trajectory,
and feedback information to correct the prediction errors. The
NMPC predicts the optimal dynamics of the system (x̄, ū) over
a prediction horizon as shown in Figure 2A by minimizing the
following cost function:

J = 9
(

t0 + tph
)

+
∫ t0+tph

t0

ψ (x (t) ,u (t)) dt (1)

subject to : 0 < u (t) < 1 (2)

where 9 is the cost evaluated at the end of prediction horizon,
ψ is the cost evaluated during the prediction horizon, and tph is
the length of prediction horizon. The state variables at the current
time (to) are obtained from the current sensory information. The
input (ū) is an optimal open-loop solution over the prediction
horizon. If there are no external disturbances and no model
uncertainty in the system, with infinitely long prediction horizon,
the open-loop solution can be applied to the system for all time
t > to. However, for the finite horizon case and in the presence
of noise and uncertainty, the open-loop solution should only
be applied until the next sampling time (t0 + δ). At the new
time step, the optimal solution is re-evaluated with the new
initial conditions for the receding horizon and iteratively applied
to the system. By incorporating the feedback information, the
NMPC is converted from a completely open-loop controller
to an optimal closed-loop controller. The NMPC can handle
constraints on both the states and the inputs. In musculoskeletal
models, the muscle activation command must be non-negative
and less than one, and constraints on states can be added to avoid
unphysiological movements.

Mathematical Formulation of NMPC
In this article, the optimal dynamics over the prediction horizon
were calculated using the GPOPS-II optimal control package
that utilizes an orthogonal collocation method (Patterson and
Rao, 2014). This method is a direct (simultaneous) optimization
method in which both states (x) and inputs (u) are parameterized
using a series of connected Legendre polynomials and become
part of a Nonlinear Programing (NLP) problem. Here, the arm
model described in the previous section was used as the COM
of the NMPC and the simulation model for planar reaching and
pointing tasks. The dynamic equation of the arm model can be
described by:

ẋ = f (x (t) ,u (t)) , x (0) = x0 (3)

where x ǫ R
10×1 are the arm model state variables consisting of

shoulder angle and angular velocity plus elbow angle and angular
velocity, and muscle activation states, and x0 is the vector of the
initial states. The muscle excitation inputs u ǫ R

6×1 represent the
ratio of excited motor units to the maximum number of motor
units in that muscle.

In this research, for the particular case of a goal-directed
reaching task, the terminal cost of the NMPC cost function (9)
was removed, and the integral part (ψ) is computed from the
summation of two terms: (i) a choice of specific physiological
cost function, and (ii) a trajectory tracking error. Therefore, the
NMPC cost function shown in (1) is converted to:

J =
∫ t0+tph

t0

(

p(ζ (t)− ζdes)2 + q GM(u (t))
)

dt (4)

where p and q are cost function weightings, and ζ and ζdes are
the hand position and its desired final value (in the Cartesian
coordinate system), respectively. The simulated hand position
ζ varies on the prediction horizon, while the desired final value

A B

FIGURE 2 | (A) Prediction horizon in NMPC. The solid lines shows the optimal muscle activation and state trajectories in the given prediction horizon. (B) Hand

position trajectory. The hand moves from its original position to the marked position on its left.
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ζdes was kept constant. The hand position is calculated from.

ζ = [L1 cos(θ1)+ L2 cos(θ1 + θ2) , L1 sin(θ1) (5)

+L2 sin(θ1 + θ2)]T

where θ1 and θ2 are shoulder and elbow angles, and L1 and L2 are
upper arm and forearm lengths, respectively. The physiological
cost GM (u (t)) is defined as:

GM = u2 (6)

The termGM in the cost function represents the neural excitation
effort to perform the reaching tasks.

GPOPS-II finds the optimal dynamics of each given
horizon by minimizing Equation (4) while satisfying inequality
constraints related to muscle excitation (2) and equations of
motion (3) using the Sparse Nonlinear Optimization (SNOPT)
solver (Gill et al., 2005). An hp-adaptive mesh refinement method
(Liu et al., 2015) has been used within GPOPS-II to refine the
individual interval widths and the polynomial degree to reach
a final optimal solution. Then, the first five-percent (e.g., 50 for
1000 ms prediction horizon) of optimal activations are applied
to the muscles, and the arm motion is simulated. The new
position and orientation of the arm are measured and sent back
to the NMPC as initial conditions of the next iteration. In this
research, we have assumed that the sensory organs can measure
the exact joint angles and angular velocities. Uncertainty can be
added to the measurements to account for the noise within the
sensory organs, and to simulate the variability in the movement
repetition. However, this has not been included in the scope
of this work. The optimal muscle activations are shifted and
considered as the initial guess of the next iteration.

Dynamic Optimization
In addition to the NMPC simulations, a dynamic optimization
(DO) using GPOPS-II was performed to simulate the same task.
Unlike the NMPC simulations, which continue until the position
tracking error passes a certain threshold, the final simulation time
and the final position of the hand are explicitly specified in the
DO simulations. The DO cost function is:

J =
∫ tf

0
GM (u (t)) dt (7)

subject to : 0 < u(t) < 1, and x
(

tf
)

= xf (8)

where tf is the final simulation time, and xf is the state vector
corresponding to the target position. The same physiological cost
function as in the NMPC simulations (Equation 6) was used in
DO to compute the optimal hand position trajectory and muscle
activations.

RESULTS

Effects of the Prediction Horizon Length
In this section, a goal-directed reaching task is simulated and
the effect of prediction horizon length variation on the hand
trajectory and muscle activation is studied. Here, the hand is

initially at rest and in a natural position (θ1 = 44o and θ2 = 58o)
andmoves toward a target 20 cm to the left of its initial position as
shown in Figure 2B. This task was simulated using NMPC with
0.2, 0.3, 0.4, 0.5, and 0.8 s prediction horizons, and DO with a
fixed time duration. In the NMPC simulations, the cost function
weightings (p = 20 and q = 1) were kept the same. The DO final
simulation time was chosen to be 1.5 s, in accordance with the
experimental reach duration (1.431± 0.176 s in 10 repetitions).

Figure 2B demonstrates the hand trajectories for the
aforementioned prediction horizons (tph). Despite the slight
differences between the trajectories, the solutions with 0.4,
0.5, and 0.8 s prediction horizons closely correlate with the
experimental results. The Pearson correlation factors between
NMPC simulations and the experimental trajectories are
0.9351, 0.9758, 0.9947, 0.9991, 0.9994 respectively for 0.2,
0.3, 0.4, 0.5, 0.8 s. The Pearson factor between the DO and
experiment is 0.867.

As shown in Figure 3, the elbow and shoulder angle variations
with 0.2 s prediction horizon are less than those with longer
prediction horizons. This signifies the importance of prediction
horizon; with short prediction horizons, the controller is
more cautious and takes longer to reach a desired position.
Simultaneously, this results in smaller muscle activations for
shorter horizons since the transient time to reach the final
position is longer (see Figure 4). The reaching error at 1.5 s
of the simulation is about 23% for 0.2 s prediction horizon,
and reduces to 0.36% for 0.8 s prediction horizon. As expected
for this motion, the shoulder mono-articular flexor (muscle 1),
elbow mono-articular flexor (muscle 3) and bi-articular flexor
(muscle 5) are activated at the beginning to accelerate the body;
then, the antagonistic muscles are activated to reach a full stop at
the desired position.

In the DO, similar to NMPC, flexor muscles are active at
the beginning of the motion to accelerate the hand toward the
target, then the extensor muscles are activated to stop the hand
movement (a bang-bang control strategy). Since DO has to stop
at the specified final time (1.5 s) the extensor muscle activities
are larger than NMPC predictions at the decelerating phase of
motion. On the other hand, the flexor muscle activities at the
accelerating phase of the simulation are larger for NMPC than
DO because the trajectory error at the beginning of the motion is
large and exponentially reducing when it gets closer to target.

As shown in Figure 4, the muscle activations predicted by
NMPC and DO simulations can capture the general trends
of the experimental measurements. It can be observed that
as the prediction horizon increases, the NMPC predicts larger
muscle activities at the beginning of the motion. A Pearson
correlation analysis was performed between the flexor muscle
activities predicted by the NMPC and DO simulations and
the EMGs from experimental measurements; the correlation
coefficients are presented in Table 3. The correlation coefficient
for extensor muscles are not reported since the EMG activity
of these muscles were minimal in the experiments. As
shown in Table 3, the correlation coefficient of flexor muscles
reduces when the prediction horizon increases in the NMPC
simulations, while the DO predictions correlate better with the
experiments.
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A B

FIGURE 3 | (A) Shoulder angle variation during the reaching task, (B) Elbow angle variation during the reaching task.

A B C

D E F

FIGURE 4 | Optimal activations of flexor and extensor muscles: (A) Optimal activation of shoulder mono-articular flexor (muscle 1), (B) Optimal activation of

elbow mono-articular flexor (muscle 3), (C) Optimal activation of bi-articular flexor (muscle 5), (D) Optimal activation of shoulder mono-articular extensor (muscle 2), (E)

Optimal activation of elbow mono-articular extensor (muscle 4), (F) Optimal activation of bi-articular extensor (muscle 6)

TABLE 3 | Pearson correlation analysis of flexor muscle activations predicted by NMPC and DO vs. experimental measurements.

Muscle Pearson correlation coefficient

NMPC

0.2 s

NMPC

0.3 s

NMPC

0.4 s

NMPC

0.5 s

NMPC

0.8 s

DO

Shoulder mono-articular flexor (muscle 1) 0.322 0.300 0.291 0.284 0.276 0.479

Elbow mono-articular flexor (muscle 3) 0.117 −0.051 −0.131 −0.177 −0.214 0.335

Bi-articular flexor (muscle 5) 0.465 0.356 0.297 0.277 0.262 0.565

Average 0.301 0.202 0.153 0.128 0.108 0.422
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As suggested by Morasso (1981), subjects tend to move in
straight lines with bell-shaped tangential-velocity profiles when
reaching for a target. Figure 2B shows that the NMPC with
long-enough prediction horizon can realistically predict the hand
trajectory, while Figure 5 shows the differences in the velocity
profiles of the NMPC and DO predictions. In these simulations,
the NMPC tends to accelerate the hand more quickly than the
DO; in DO, the optimization knows the final time and can
distribute the acceleration over a longer time. On the contrary, in
the receding horizon NMPC, the controller can only predict the
motion as far as the prediction horizon. This results in the fast
acceleration at the beginning the motion due to large tracking
errors and slow deceleration at the end of motion due to small
tracking errors.

Reaching Targets Using a Predefined
Trajectory
Reaching to eight different directions was also simulated using
NMPC with 0.8 s prediction horizon. The target positions of
the hand are located on a circle centered at the initial position
of the hand with a radius of 20 cm (see Figure 1). In the
NMPC simulations, a smooth 5th-order polynomial with zero
initial and final velocities and accelerations is used as the desired
straight-line hand trajectory. These trajectories begin at the initial
position of the hand and end at the target positions. As shown
in Figure 6, the NMPC is able to follow the desired trajectories,
which are qualitatively correlated with the measured trajectories
in experiments.

Reaching a Moving Target
We have assumed that the CNS plans a trajectory to reach a target
and constantly monitors the deviations from this trajectory and
the target position. In this section, we study the case where the
target position is suddenly relocated. Here, the hand is initially at
rest at point O (Figure 7A) and moves toward the target at point
A. Then 1 s later, the target position suddenly moves to the point
B. This protocol was achieved in the lab by manually moving the
target from its initial point A to B when the subject reached half
the way to A. In this simulation, the time delay related to the

visual cognition of this change [about 150 ms, (Jeannerod, 2006)]
has not been considered.

Figure 7 depicts that the NMPC controller can track the
location of the target and correct the hand trajectory to reach the
new target. As shown in Figure 7A, it seems that when the target
moves, the subject over-compensates by moving the hand to the
right, while the NMPC finds a trajectory that minimizes both
position error and control effort. It is not possible to simulate
this scenario with DO; it is one of its disadvantages compared
to NMPC, which is able to make online adjustments to the hand
trajectory.

DISCUSSION

In this research, we presented a NMPC to mimic the human
motor control system. The results showed that it can successfully
replicate certain features of human motor control such as path
planning and target tracking. This controller is a fully predictive

FIGURE 6 | Optimal trajectories of reaching motions in all directions.

A B

FIGURE 5 | (A) Hand speed vs. displacement. In DO simulation, the final time is specified as 1.5 s. (B) Hand speed vs. time. The hand moves to a target 20 cm to the

left of its initial position.
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A B

FIGURE 7 | (A) The hand trajectory when the target is suddenly moved from A to B, (B) Displacement of hand in X and Z directions when the target is suddenly

moved from A to B.

optimal controller that simultaneously solves the kinematic
redundancy and muscle-sharing problem.

In hierarchical models (Menegaldo et al., 2006; Guigon
et al., 2007; Mehrabi et al., 2015), the computational burden
is reduced by separating the computation into two steps. In
the first step, an optimal trajectory is generated based on a
kinematic criterion; then, in the second step, the muscle sharing
problem is solved based on another criterion (kinetic criterion).
The main drawback of hierarchical models is that they follow
a preplanned trajectory (output of the first step); therefore
the online movement corrections are in favor of trajectory
tracking. However, the NMPC controller simultaneously takes
into account both kinetic and kinematic exertions to determine
an optimal path along with the optimal muscle activations to
achieve it. Therefore, it can be argued that this controller is
more similar to the human CNS, as it receives proprioceptive
information to adjust the predicted trajectory that satisfies the
new condition and in favor of the end goal.

Thelen et al. (2003) developed a feedback/feedforward
controller (computed muscle control, CMC) that uses inverse
dynamics and static optimization to find muscle activities that
track a set of desired kinematics. However, such an approach is
applicable only if the kinematics is known or if there is a desired
kinematics. One advantage of NMPC is its ability to control the
motion with and without a prescribed motion, or when the target
position moves.

In our study and for the first time, the effect of varying the
prediction horizon on the path planning ability in reaching tasks
has been investigated. As expected, increasing the prediction
horizon improves the tracking performance, but makes the
solution computationally more expensive. The prediction
horizon length can be adjusted to capture the characteristic
of a desired motion. Here, simulation results showed that the
resultant hand trajectory with long enough prediction horizons
resembles those found from the experiments. However, NMPC
accelerates the hand faster and decelerates it slower than the
bell-shaped speed trajectories reported by Morasso (1981) and
observed in our experiments. This can be due to the fact that
the reach time is not specified in the NMPC, or due to the

selection of minimum control effort as the physiological cost
function. The proposed NMPC is not limited to the suggested
cost function; various cost functions can be implemented. For
example, Kistemaker et al. (2014) studied the effect of different
cost functions on the trajectory of the hand while performing a
reaching task using a DO approach.

The Pearson correlation coefficients reported in Table 3

show that muscle activities predicted by an NMPC with a
short horizon can better predict (in a temporal sense) the
experimental measurements. In contrast, the hand trajectory
predictions (in a spatial sense) of anNMPCwith larger prediction
horizons can more closely replicate those from the experiments
as shown in Figure 2B. Finally yet importantly, the NMPC
simulations can be used to reproduce the experimental hand
trajectories with a moving target as shown in Figure 7. The
differences between the experiments and simulations may be
due to the subject anticipation of another movement of the
target point, while the final target position is known to the
controller immediately following the shift. This unique feature of
NMPC simulations can advance our theoretical understanding
of hand movements and enables the next generation of
assistive.

Online Implementation of NMPC
The focus of this paper has been on the proof-of-concept of
the NMPC as a possible model for CNS control of human
movement. The current implementation of this approach is
computationally expensive and is not real-time. For instance,
with a prediction horizon of 0.5 s, the NMPC takes 0.45 ±
0.24 s to find the optimal dynamics at each time step and
re-plan the movement. These simulations were performed
on a computer with an Intel CoreTM i7-4790 processor and
CPU 3.60 GHZ and RAM 16 GB. However, online NMPC
methods such as the Continuation/GMRES method (Ohtsuka,
2004), advanced-step NMPC (Zavala and Biegler, 2009), and
explicit MPC (Kouramas et al., 2013) can be used to achieve
real-time performance. As an example, Mehrabi et al. (2016)
developed a Newton/GMRES NMPC controller to control
the functional electrical stimulation of knee extension. This
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controller by discretising the system dynamics and employing
a fast online optimization method (GMRES), significantly
reduced the computational time and allowed the real-time
implementation of the NMPC. Furthermore, the COM can be
further simplified using muscle synergy theory, in which the CNS
coordinates human body movements by bundling individual
muscles into groups. This allows a low-dimensional control input
that significantly reduces of the size of the control problem
(Sharif Razavian et al., 2015).

Conclusions and Future Work
In this research, the first use of NMPC to simulate human
motor control in reaching movements was presented. It was
shown that NMPC can replicate certain properties of the human
motor control system (i.e., path-planning, prediction, and target
tracking), and can be used to realistically simulate reaching
movements. Due to its feedback nature, it can correct the
tracking errors for static targets or can follow a moving target
seamlessly. The NMPC prediction horizon can represent the
time horizon for which the CNS minimizes a physiological
cost function. It should be noted that the NMPC conclusions
from this research are specific to the cost function used here;
stronger conclusions can only be made if more diverse cost
functions are investigated. Nonetheless, this method opens
up new opportunities to study challenging problems such as
predictive forward dynamic simulation of biomechanics and
biomechatronic systems.

As a possible future research direction, an online NMPC
can be used to represent a user/patient in an assistive devices
controller to facilitate the shared control between the device
and user. This shared control allows the device to perform
some tasks independently of the user by sensing information
about the environment (Millán et al., 2010). By predicting the
motion of the user and adjusting the trajectory online, the
NMPC can reduce the cognitive workload imposed on the user,
who does not need to consider low-level executions in the
presence of external disturbances or obstacles (Tucker et al.,
2015). The variability in limb movement is another known
characteristic of reaching movements. This characteristic can be
incorporated in the NMPC assistive device by accounting for
noisy sensory information and sending noisy motor commands
to musculotendon units.
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APPENDIX A

Hill-Type Muscle Model
In this research, a Hill-type muscle model is used to simulate the
muscle contraction dynamics. The Hill muscle model shown in
Figure A1A has three elements: contractile element (CE), parallel
elastic element (PE), and series elastic element (SE) (Thelen
et al., 2003). In this work, we assume that the SE length is
constant during the motion; therefore, the SE is replaced with an
inextensible string (see Figure A1B). To justify this assumption,
we performed an analysis (in Appendix B) that shows that the SE
length variation during an NMPC simulation of a straight-line
reaching task is negligibly small.

With this assumption, the musculotendon force is simplified
to

FTM = Fmax
0

(

FPE (t, LM)+ FCE (t, a, LM ,VM) cos
(

αp
))

(A1)

where Fmax
0 , FCE, and FPE are the maximum isometric force, CE

and PE forces, and αp is the muscle pennation angle. Here, LM
and VM represent muscle fiber length and velocity. Muscle fiber
length is defined as LM = (LTM – LSE) cos(αp) where LTM and
LSE are total length of musculotendon unit and slack length of
tendon, respectively. The force generated by FCE can be separated
into force-length and force-velocity relations scaled by themuscle
activation command (a):

FCE = a(t)FLCE(t, LM)FVCE(t, a, LM ,VM) (A2)

where the force-length (FLCE) and force-velocity (FVCE) relations
are:

FLCE = e

−





LM

L
opt
M

−1





2

/γ

(A3)

FVCE =
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M L
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VMBF̄lenmax

Vmax
M L

opt
M
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FIGURE A1 | (A) Hill muscle model as shown in Thelen et al. (2003), (B) Adopted Hill-type muscle model for simulations.

where γ, A, B, and C are shape factors, Vmax
M is the

maximum fiber velocity, L
opt
M is the optimal length of fiber

at which FCE is a maximum, and F̄lenmax is the maximum
normalized muscle force during lengthening. The numerical
values of the muscle parameters are taken from (Thelen,
2003).

The Parallel Elastic force of muscle (FPE) is represented by an
exponential function:

FPE =
e

kpe





LM

L
opt
M

−1



/ǫm0

− 1

ekpe − 1
(A5)

where kpe (= 0.5) is a shape factor and ǫm0 is passive muscle strain
due to maximum isometric force.

In this research, a first-order differential equation based on He
et al. (1991) is used to simulate muscle excitation-to-activation
dynamics. In this case, muscle activation (a) is related to the
excitation (u) as follows:

ȧ = (u− a)(t1u+ t2) (A6)

where u and a are muscle excitation and activation respectively,
and t1 and t2 are defined as follows:

t2 =
1

τfall
and t1 =

1

τrise
− t2 (A7)

where τfall is the deactivation time constant (=50 ms), and τrise is
the activation time constant (=15ms).

APPENDIX B

In this section, we have computed the SE strain using the
optimal muscle activations from an NMPC simulation. Since
the SE element (representing the tendon) is in series with the
PE and CE elements of the Hill muscle model, the tendon
force is equal to the muscle fiber force, and to that of the
musculotendon unit. Therefore, we used the musculotendon
force computed in NMPC simulations (with the prediction
horizon of 0.8 s) as the tendon force. Then, based on the tendon
force-length relation described in Thelen (2003), the tendon
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FIGURE A2 | Simulated tendon strain based on the results for NMPC

simulation of reaching with the prediction horizon of 0.5 s.

strain was calculated using following equation:

FT = Fmax
0







F̄Ttoe
ektoe − 1

(

ektoe ǫ
T/ǫTtoe − 1

)

; ǫT ≤ ǫTtoe

Klin

(

ǫT − ǫTtoe
)

+ F̄Ttoe; ǫT > ǫTtoe

(A8)

where FT is the tendon force, ktoe (=3) is an exponential shape
factor, Klin (= 1.712/ǫT0 ) is a linear scale factor, F̄Ttoe (=0.33),
ǫT0 (=0.033) is tendon strain due to maximum isometric force,
and ǫTtoe(= 0.609ǫT0 ) is the tendon strain above which the
tendon exhibits linear behavior. The tendon strain ǫT is defined
as ǫT = LT−LSE

LSE
. To find the tendon strain, the first term of

the piecewise equation (B.1) was used. If the calculated strain
was within the linear region (less than ǫTtoe) the strain value is
valid; otherwise the second term of (B.1) was used to calculate the
tendon strain.

Figure A2 shows the tendon strain variations during the
NMPC simulation of reaching with a 0.8 s prediction horizon.
The tendon strains are less than 0.5%; therefore, the SE element
of the Hill muscle model can be neglected in the planar
arm model.

Frontiers in Computational Neuroscience | www.frontiersin.org January 2017 | Volume 10 | Article 143108

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


ORIGINAL RESEARCH
published: 14 March 2017

doi: 10.3389/fncom.2017.00015

Frontiers in Computational Neuroscience | www.frontiersin.org March 2017 | Volume 11 | Article 15

Edited by:

Manish Sreenivasa,

Heidelberg University, Germany

Reviewed by:

Boris Prilutsky,

Georgia Institute of Technology, USA

Jacques Duysens,

KU Leuven, Belgium

*Correspondence:

Seungmoon Song

smsong@cs.cmu.edu

Received: 23 December 2016

Accepted: 28 February 2017

Published: 14 March 2017

Citation:

Song S and Geyer H (2017) Evaluation

of a Neuromechanical Walking Control

Model Using Disturbance

Experiments.

Front. Comput. Neurosci. 11:15.

doi: 10.3389/fncom.2017.00015

Evaluation of a Neuromechanical
Walking Control Model Using
Disturbance Experiments
Seungmoon Song* and Hartmut Geyer

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Neuromechanical simulations have been used to study the spinal control of human

locomotion which involves complex mechanical dynamics. So far, most neuromechanical

simulation studies have focused on demonstrating the capability of a proposed control

model in generating normal walking. As many of these models with competing

control hypotheses can generate human-like normal walking behaviors, a more

in-depth evaluation is required. Here, we conduct the more in-depth evaluation on a

spinal-reflex-based control model using five representative gait disturbances, ranging

from electrical stimulation to mechanical perturbation at individual leg joints and at the

whole body. The immediate changes in muscle activations of the model are compared to

those of humans across different gait phases and disturbance magnitudes. Remarkably

similar response trends for the majority of investigated muscles and experimental

conditions reinforce the plausibility of the reflex circuits of the model. However, the

model’s responses lack in amplitude for two experiments with whole body disturbances

suggesting that in these cases the proposed reflex circuits need to be amplified by

additional control structures such as location-specific cutaneous reflexes. A model

that captures these selective amplifications would be able to explain both steady

and reactive spinal control of human locomotion. Neuromechanical simulations that

investigate hypothesized control models are complementary to gait experiments in better

understanding the control of human locomotion.

Keywords: neuromechanical simulation, human locomotion, spinal control, model evaluation, spinal reflex, central

pattern generator

1. INTRODUCTION

Understanding the control that underlies human locomotion remains a challenging problem. One
reason for this is that many experimental techniques provide only incomplete access to the control
circuits, making it impossible to directly probe the entire control involving millions of neurons in
complex animals (Vogelstein et al., 2014). Another reason is that the control mechanism seems to
vary across species (Orlovskĭı et al., 1999; Capaday, 2002), which limits our ability to extrapolate
control circuits identified with direct methods in other animals to humans (Arshavsky et al., 1985;
Zehr and Stein, 1999; Moraud et al., 2016). Yet a third reason is that theoretical results from
modeling studies of the control circuitry remain inconclusive (Ijspeert, 2014; Sartori et al., 2016).

Neuromechanical simulations are used as a theoretical tool to study human locomotion control.
Since bipedal locomotion emerges from the interaction between the legs and the ground by utilizing
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and resisting gravitational force (Mochon and McMahon, 1980;
McGeer, 1990; Perry and Burnfield, 1992), accounting for
the mechanical dynamics as well as the neural control is
essential. This integrative approach of simulating the neural
control with the biomechanical dynamics allowed researchers
to investigate the spinal control layer where a large portion
of locomotion control is conducted (Enoka, 2008; Dietz, 2010;
Kiehn, 2016). Previously proposed spinal control models range
from central pattern generators (CPGs; Aoi et al., 2010) to
reflexes (Günther and Ruder, 2003; Geyer and Herr, 2010; Song
and Geyer, 2015a) and to a mix of both (Taga et al., 1991;
Ogihara and Yamazaki, 2001; Hase and Yamazaki, 2002; Jo and
Massaquoi, 2007; Dzeladini et al., 2014). Many of these models
with competing control structures are plausible candidates for
human control, since they produce locomotion with kinematics,
kinetics, or muscle activations similar to the ones observed in
humans. Therefore, to genuinely evaluate the plausibility of these
models a more in-depth comparison to experimental results is
required.

Disturbance reactions provide such a more in-depth
comparison. Studying the reaction to disturbances is a common
approach to establish system models and to identify controllers
(Ogata and Yang, 1970). Specifically for human locomotion,
several walking experiments have been conducted that report
on the immediate responses of the human spinal control to
different types of unexpected disturbances including electrical
stimulation (Simonsen and Dyhre-Poulsen, 1999; Courtine
et al., 2007), mechanical perturbation at individual leg joints
(Dietz et al., 1990; Sinkjaer et al., 1996; Faist et al., 1999),
and more natural mechanical perturbation of the whole body

FIGURE 1 | Spinal reflex-control model of human locomotion. The sagittal plane components of a 3-D model (Song and Geyer, 2015a) are adopted for the

current study. The model mainly uses proprioceptive reflexes to control nine major muscle groups per leg, including hamstrings (HAM), rectus femoris (RF), vasti (VAS),

gastrocnemius (GAS), soleus (SOL), and tibialis anterior (TA). The activations of these muscles during normal walking of the model (black lines) and of humans (gray

lines) are shown in the right panel. MN, motor neuron; IN, interneuron.

(Schillings et al., 1999; Sloot et al., 2015). Although external
disturbances have been used in neuromechanical human walking
models to either test the robustness of control models (Aoi
et al., 2010; Kim et al., 2011; Song and Geyer, 2015a) or to
study specific high-level recovery strategies (Jo, 2007; Murai
and Yamane, 2011), comparisons of the reference data on
the reactions of the human spinal control to the reactions
predicted by the different walking models have so far not been
performed.

Here, we perform the in-depth comparison of disturbance
reactions for one neuromechanical spinal control model of
human locomotion (Song and Geyer, 2015a). In previous
work, we have shown that this model, which consists of
primarily proprioceptive spinal reflexes (Figure 1), can explain
undisturbed locomotion behaviors. The model not only produces
kinematics, dynamics, and muscle activations similar to humans
during normal walking (Figure 1 and Video S1) but also
generates other locomotion behaviors such as running, walking
on slopes and stairs, and avoiding obstacles. We investigate
the plausibility of the model by comparing its reactions
against disturbances to those of humans and discuss its
implications in better understanding the control of human
locomotion.

2. METHODS

We select a range of unexpected disturbances used in human gait
studies from the literature, replicate them in simulation with the
neuromechanical model, and compare the models reactions to
the reported human experimental data.
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2.1. Experiment Selection
Five disturbance experiments are selected from the literature:
electrical stimulation of the lumbar spinal cord to evoke
multisegmental monosynaptic responses (MMR; Courtine et al.,
2007), mechanical tap of tendons to induce tendon tap reflexes
(TR; Dietz et al., 1990; Faist et al., 1999), actuation of the ankle
joint to induce stretch reflexes (SR; Sinkjaer et al., 1996), and
tripping (TRIP) of the swing leg (Schillings et al., 1999), and
slipping (SLIP) of the stance leg (Sloot et al., 2015; refer Video S2
for visual guidance). In these experiments, the reactions of the
spinal control are assessed through the changes that occur in the
leg muscle activations within a short time after the disturbances.
Specifically, the activation changes are measured by surface
electromyograms (EMGs) and their trend with respect to gait
phase or disturbance magnitude is used to estimate the activity
of spinal reflexes.

The five experiments are selected to cover a broad range of
disturbances and responses. For instance, from several reports
of studies using similar types of disturbances, the ones that
include the EMG changes for more leg muscles and across more
conditions are selected. Specifically, while both MMR (Courtine
et al., 2007) and H-reflex (Capaday and Stein, 1986; Simonsen
and Dyhre-Poulsen, 1999) experiments disturb afferent signals
using electrical stimulations, the former was selected since MMR
disturbs multiple afferents and, as a result, induces responses
in more muscles. Similarly, the SR (Sinkjaer et al., 1996), TRIP
(Schillings et al., 1999), SLIP (Sloot et al., 2015), and TR (Dietz
et al., 1990; Faist et al., 1999) experiments were chosen over
similar ones that apply disturbances for fewer conditions (Berger
et al., 1984; Yang et al., 1991; Eng et al., 1994; Van de Crommert
et al., 1996; Cronin et al., 2009; Chvatal and Ting, 2012; Villarreal
et al., 2016). Note that the SLIP experiment by Sloot et al.
(2015) reports on muscle responses with latencies of about 150
ms, which are longer than usual for spinal reflexes. Although
it is acknowledged that one cannot completely exclude that
these responses are long-latency reflexes, we still included the
study, as the authors clarify that these apparent latencies are in
part an outcome of their experimental protocol for detecting
disturbances, and as we could not find an alternative study
reporting responses against a range of disturbance intensities.
However, to further support our analysis on the response
amplitudes in the SLIP experiment (compare Section 3.2), we
have verified the consistency of our model results for a similar
experiment by Berger et al. (1984), in which the reported
responses are clearly within the time window of spinal reflexes.

2.2. Replication in Simulation
We adapt the original neuromechanical model (Song and Geyer,
2015a) for each of the five experiments (Table 1). Since all the
experiments reported on sagittal plane disturbances, the model is
first reduced to its sagittal plane musculoskeletal architecture and
spinal control. Then, the musculoskeletal properties are scaled
(Winter, 2009) to match the average height and weight of the
subjects in each experiment (Courtine et al., 2007; Sloot et al.,
2015). If this information is not reported (Dietz et al., 1990;
Sinkjaer et al., 1996; Faist et al., 1999; Schillings et al., 1999), the
height and weight are set to 1.8m and 80 kg. Finally, the model’s T
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control parameters are optimized with the cost function

J = CE + cv
∥

∥vavg − vtgt
∥

∥ , (1)

which encourages energy efficient walking at a target walking
speed. In this equation, CE is the metabolic energy consumed
by the muscles, cv = 100 is a weighting factor, and vavg and vtgt
are the average and target walking speeds. The target walking
speed, vtgt , is set to the reported speed in each experiment. A
demonstration of the simulationmodel can be found inVideo S2.
More details about the original model and the optimization
procedure to obtain control parameters for stable and steady
walking are given in (Song and Geyer, 2015a).

The disturbances were simulated for the reported conditions
in each experiment, which either included different gait phases
(for MMR, TR, SR, and TRIP) or different disturbance intensities
(for SLIP). The mechanical disturbances of the SR, TRIP, and
SLIP experiments were directly replicated in the simulation
by modeling an unexpected ankle flexion, the encounter of
the tripping obstacle, and the shift of the supporting ground
with the same parameters as reported in each experiment,
respectively.

The MMR and TR experiments were less straightforward
to replicate in simulation, as the neuromechanical model does
not include the corresponding physiological detail. In the MMR
experiment (Courtine et al., 2007), muscle responses (spikes with
about 20 ms durations) are induced by percutaneous electrical
stimulation (1 ms square pulses) at the lumbar spinal cord,
which disturbs the afferent pathways from the legs. Instead
of modeling the electrophysiological dynamics such as the
filtering effects of the skin layer, the MMR disturbance was
simulated as 10 ms square pulses that were simultaneously
added to the afferent signals from all muscles. The duration of
10 ms was chosen because it created similar muscle responses
(spikes with about 20 ms durations) in the model. The
amplitudes of the square pulses were set to be arbitrarily
large (maximum isometric forces, Fm, for force afferents;
optimum length, lce, for length afferents; and maximum-
contraction-velocity value, |vmax|, for velocity afferents) to
evoke responses much larger than the normal activations
seen during walking, as reported in the MMR experiment
(Courtine et al., 2007).

For the TR experiment, it is generally observed that the
tendon tap reflex amplitude is proportional to the tapping force
(Mildren et al., 2016), although the neurophysiological process
behind this observation is not well understood (Zhang et al.,
1999). The effect of tendon taps was modeled by simulating
the length changes in the muscle tendon unit affected by the
tapping. Specifically, we simulated the length change based on
the tension of the muscle and the kinetic energy of the tapping
hammer. As a result, the effect of the taps on length change
varied over the gait cycle according to the variation of the muscle
tension.

2.3. Reaction Comparisons
The response trends and amplitudes were compared separately
for each experiment and muscle. While the model has nine

muscles per leg, data for only six muscles was available in the
literature (compare Figure 1). Similarities of the response trends
were quantified as the % of themodel responses that lie within±1
standard deviation (s.d.) of human responses when linearly scaled
to maximize overlap. For example, 12 out of 16 of the model’s
SOL responses in the MMR experiment lie within ±1 s.d. of the
corresponding human responses and thus the similarity is 12/16
= 75% (Figure 2).

The response amplitudes are only compared for the SR,
TRIP, and SLIP experiments. The MMR and TR disturbances
induce synchronous and artificially exaggerated muscle
activation responses, which is not observed in normal
voluntary activations (Yang et al., 1991). As the model does
not include these artificially synchronized muscle activations, the
response amplitudes are not meaningful to compare for these
studies.

3. RESULTS

3.1. Response Trends
The neuromechanical control model and humans react to
disturbances with a similar trend for the majority of investigated
muscles and experimental conditions. Figure 2 summarizes
the changes in muscle activation organized by disturbance
experiment and leg muscle. The changes observed in humans
(gray lines and shaded areas indicating ±1 s.d.) are normalized
to their peak value and overlaid by the corresponding
changes of the model (scaled to maximize overlap and
compare trends as described in Section 2.3, black lines).
While some of the response trends do not match well (≤50%
overlap within one s.d., comparisons marked with ∗), for
the majority of the investigated muscles and experimental
conditions the scaled model responses lie within one s.d.
of the human responses (78% average overlap for unmarked
comparisons).

For several of the marked comparisons, simple modifications
of either the reflex control or the model tuning could improve
the overlap. First, in the model, the rectus femoris muscle (RF)
is used mainly for sensing but not actuation. As a result, it
cannot change activation except during swing. In the human
experiments, by contrast, RF shows response trends similar to
the synergistic vasti muscle group (VAS) throughout stride,
although careful interpretation of these RF responses is needed,
since surface EMGs of RF, which are used in the disturbance
experiments, are prone to crosstalk from VAS (Nene et al.,
2004). If fine wire EMG of RF reveal response trends similar
to those of VAS, these trends can be reproduced by modifying
the model to control RF with the same reflex pathways as
VAS. Such modification is tenable in the functional point
of view, since RF and VAS share a common role of knee
extension.

Second, the difference between human and model responses
of the vasti and the gastrocnemius muscles (GAS) during late
swing may be an artifact of the model tuning process, which
only considered undisturbed walking. The late swing reflexes
that control VAS and GAS in the model do not engage during
undisturbed locomotion (Song and Geyer, 2015a), and thus the
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FIGURE 2 | Response trends. The responses of the model and human subjects in all five disturbance experiments are shown. Human responses (gray lines) are

normalized with respect to their maximum value in each experiment and for each muscle. The model responses (black lines) are linearly scaled to place as many of the

responses as possible within ±1 s.d. of the human responses (gray shaded area). The % of the model responses within ±1 s.d. of human responses are shown at the

top of each graph, and those which are ≤50% are marked with *.

optimization process sets their parameters to arbitrary values as
far as they do not effect normal walking. In other words, these
control parameters could be further tuned to improve the overlap
with human responses for the two muscles without changing the
undisturbed walking behavior.

Finally, the weak overlap for the soleus muscle (SOL)
in the late swing phase of the SR experiment may be the

result of natural variability in humans. It is known from
human experiments using the H-reflex, the electrically elicited
equivalent of the stretch reflex, that the swing phase responses
in SOL vary among subjects between no responses (similar
to the trend predicted by the model) and the responses
shown in the SR experiment (Simonsen and Dyhre-Poulsen,
1999).
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3.2. Response Amplitudes
Whereas, the model captures the majority of the human response
trends, it clearly underestimates the response amplitudes for the
more natural, whole body disturbances. In the SR experiments,
the model reacts with amplitudes in the muscle activation
changes that are similar to the ones reported for humans (about
90% of human amplitudes). Yet in the more natural TRIP
and SLIP experiments, the response amplitudes are very small
in the model (about 20 and 4%, respectively, and 8% for the
experiment in Berger et al., 1984 as noted in Section 2.1). The
difference occurs as the reflexes of the model only respond to
changes in the muscle lengths, velocities and forces, and the
SR disturbance induces much larger changes (up to about 100
times) in these proprioceptive signals than the TRIP and SLIP
disturbances, which act on the muscles through the entire body
and its mechanical inertia.

One explanation for the shortfall in the model’s response
amplitudes could be the missing integration of reflex pathways
from skin receptors. Experimental studies have shown that
cutaneous reflexes evoke muscle responses with different trends
across the gait cycle depending on the location of the skin
receptors (Van Wezel et al., 1997; Duysens et al., 2000; Nakajima
et al., 2016). Additional modulation of the model’s current
proprioceptive reflexes by location-specific cutaneous reflexes
(Figure 3), which have been observed in cat experiments
(Lundberg et al., 1987), could produce human-like muscle
response amplitudes in all experiments without altering the
response trends. Such additional modulation against specific
disturbances, such as those in SLIP and TRIP experiments, is
also in agreement with previous observations that cutaneous
stimulations are not accountable for the responses against certain

FIGURE 3 | Example of proposed cutaneous amplification of

proprioceptive reflex control during tripping. Location specific skin

sensors at the foot detect an obstacle encounter. Cutaneous reflex pathways

return this information to the spinal cord and amplify the proprioceptive reflex

control of locomotion.

joint specific disturbances (for example, in SR experiment;
Grey et al., 2001) but do evoke muscle responses during
human walking (Nakajima et al., 2016). However, the functional
relevance of this amplification remains open for speculation. For
instance, it could promote the recovery strategies seen during
human tripping (elevating and lowering strategies in early and
late swing; Eng et al., 1994) and slipping (ankle and hip strategies
for anterior-posterior and medial-lateral perturbations; Oliveira
et al., 2012).

4. DISCUSSION

A neuromechanical model of human locomotion has been
evaluated by comparing its reactions to disturbances with those
of humans during walking. The comparison of the response
trends reinforces the plausibility of the majority of the model’s
reflex circuits. However, the observation of smaller response
amplitudes of themodel for the whole body disturbances suggests
that these circuits are selectively amplified in humans.

An extension of the current control model with additional
circuits that modulate the current reflex gains would likely be
able to better reproduce both the human response trends and
amplitudes (Figure 4A). For example, instead of the abrupt
switches in the reflex gains in the current model, either
the supraspinal control (Jo and Massaquoi, 2007; Song and
Geyer, 2015a) or CPGs can gradually change these reflex
gains (Figures 4A-a,b) and shape the response trends closer to
humans (for example, during the transitions between stance and
swing phases in VAS, GAS, and SOL, Figure 2). In addition,
selective amplifications of response amplitudes for particular
disturbances can be realized through additional reflex pathways
that modulate the reflex gains based on the detection of those
particular disturbances (Figure 4A-c). These additional reflex
gain modulations would be able to reproduce the human control
during steady walking as well as its reactions against unexpected
disturbances.

On the other hand, it remains open whether other types of
models, where CPGs generate motor outputs, can reproduce
steady and reactive human walking behaviors with a similar
level of agreement. It is often hypothesized that CPGs generate
some portion or most of the normal (background) muscle
activations while reflexes in parallel generate the remaining
portion (Duysens and Van de Crommert, 1998; Dominici et al.,
2011; Kiehn, 2016; Figure 4B). However, it is less likely that
the previously proposed human walking models based on this
hypothesis (Ogihara and Yamazaki, 2001; Jo and Massaquoi,
2007; Dzeladini et al., 2014) can explain human responses
observed in the disturbance experiments, because the more of
the normal activations is generated in a feed-forward manner by
CPGs the smaller the response amplitudes will be, which stands in
contrast to the large reactions observed in humans. For example,
in a model that generates 90% of the normal activations with
CPGs and the remaining 10% with the reflex pathways of the
reflex-based model (Dzeladini et al., 2014), the response trends
will remain the same but the response amplitudes will only be
a tenth of the reflex-based model. Alternatively, the responsive
activations could also be partially generated by CPGs as they get
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FIGURE 4 | Spinal control hypotheses of the generation of muscle

activations. Each block diagram represents a spinal mechanism of

generating muscle activations, where the spinal control can potentially consist

of serial and parallel combinations of the each mechanism. Outputs of reflex

circuits and CPGs are marked in blue and green, respectively, afferent signals

(Continued)

FIGURE 4 | Continued

during normal walking are marked in yellow, and those signals in response to

disturbances are marked in red. (A-a) Responses through the supraspinal

system appears with larger time delays than the spinal responses. This holds

true for supraspinal modulations of any spinal control (not shown for B,C).

(A-b) Modulation of reflex circuits by pure CPGs does not change the

responsive activations. (A-c) Response activations of reflexes can be

selectively modulated by additional reflex circuits. (B) If muscle activations are

generated mostly by CPGs, in other words, if the reflex circuits generate only a

small portion of the activation signals, the response to the change in afferent

signals would be small as well. (C-a) Phase resetting of CPGs results in

persistent phase shift of the muscle activation signals. (C-b) If CPGs are

continuously modulated by sensory feedback, all afferent signals, including the

disturbance signals, get modulated by CPG dynamics.

modulated by sensory feedback (Figure 4C). For example, phase
shifts in CPG activations in response to perturbations, which is
called phase resetting (Figure 4C-a), have been observed in cats
(Conway et al., 1987; Schomburg et al., 1998) and have been
proposed to increase the robustness of human walking (Yamasaki
et al., 2003; Aoi et al., 2010). However, the responses observed
in the disturbance experiments considered in this study do not
seem to originate from phase resetting of CPGs since they are
transient responses rather than persistent phase shifts. Finally,
CPGs have also been proposed to be continuously modulated by
sensory feedback in many models, where the muscle responses
result from more complicated CPG dynamics (Taga et al., 1991;
Ogihara and Yamazaki, 2001; Hase and Yamazaki, 2002; McCrea
and Rybak, 2008; Figure 4C-b). CPGs are usually modeled to
consist of mutually inhibiting neurons with internal dynamics
(Matsuoka, 1985), and many human walking models (Taga et al.,
1991; Ogihara and Yamazaki, 2001; Hase and Yamazaki, 2002)
incorporate continuous sensory feedbackmodulation of CPGs by
adding afferent signals to this internal dynamics (for example,
in the form of τ u̇ = −u + other-terms + feedback, where τ

is a time constant and u is the neural output). In this case,
the muscle responses are likely to be slower and smaller, since
the disturbance signals need to be integrated to appear in the
neural outputs of the CPGs. Therefore, in order to explain
both steady and reactive behaviors during human walking with
control structures in which CPGs generate muscle activations,
more complicated reflex circuits may be necessary that selectively
amplify the responses not only for the whole body disturbances
but also for the other disturbances.

Still, there is clear evidence that CPGs are highly involved
in locomotion of many animals including mammals, and it
is reasonable to expect human locomotion involves a similar
control structure if the functional role of CPGs remained valid in
the course of evolution to upright bipedal locomotion (Capaday,
2002; MacKay-Lyons, 2002; Ijspeert, 2008). One functional role
that has been proposed to be realized by CPGs is the generation
of transitional behaviors such as changing gait, as well as
locomotion speed and direction. This view is supported by
observations on decerebrate animals, where simple supraspinal
stimulations control locomotion by modulating the frequency
and amplitude of CPGs (Armstrong, 1988; Stein et al., 1997;
Sirota et al., 2000). It has been shown with a neuromechanical
model that human locomotion speed can be controlled in a
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similar way by modulating CPGs of the hip muscles (Van der
Noot et al., 2015). On the other hand, transitional behaviors
including speed and directional changes also can be realized
in the absence of CPGs by changing the reflex gains directly
through the supraspinal control (Song and Geyer, 2012, 2015a,b).
Therefore, the role of CPGs in transitional locomotion behaviors
of humans calls for further experimental studies. To this end,
investigating the responses of the hip muscles (Hof and Duysens,
2013), which lack in previous gait disturbance experiments, can
be crucial.

Our results also show that solely relying on indirect
experimental observations can be misleading when assessing the
role of reflexes. First, the changes in muscle responses do not
necessarily indicate modulation of reflex gains. For example, in
the TR experiment the changes in the model’s HAM and VAS
responses during stance (Figure 2) result from the changes in
muscle configurations while the reflex gains remain constant.
Second, the correlation between the muscle states and muscle
responses is not sufficient to explain the underlying muscle
reflexes. For instance, in a gait experiment similar to the SR
experiment, Yang et al. (1991) suggested velocity feedback to
contribute about 45% in the generation of SOL activations
during the stance phase. The suggested contribution is based on
the correlation between the changes in ankle velocity and the
responses in SOL activation. However, as noted by the authors of
the study, this quantification neglects the potential contributions
of different afferent pathways. Performing the same correlation-
based analysis in our model suggests a contribution of about 40%
of velocity feedback in the stance control of SOL, even though the
model uses no velocity feedback but 100% force feedback.

Although, the findings of our study may help to construct
a model that can explain the steady and reactive spinal control
of human walking, it will take further research to settle the
actual circuitries in humans. First, neuromechanical simulations
with more physiological details will be needed to incorporate
other types of experimental studies in the evaluation of control
models. For instance, we would be able to compare the
response amplitudes of our control model to human responses
in MMR and TR experiments if our simulations could more
faithfully describe the relationship between cutaneous electrical
stimulation and synchronous muscle activation as well as
the related neurophysiology. Second, other models which can

explain normal human walking should also be subjected to gait
disturbance experiments to genuinely evaluate their plausibility
and arrive at a consensus about what the human circuitry
might be. Finally, the resulting control model should be verified
by direct probing of the proposed neural circuits in human
experiments. Although, it is currently impossible to probe the
entire control of humans that involves millions of neurons, a
control model that is thoroughly evaluated and specified may
substantially reduce the search space. Evaluation beyond steady
behavior will play an important role in this quest.
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Stiffness during Time-Varying
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Mahsa A. Golkar *, Ehsan Sobhani Tehrani and Robert E. Kearney

Department of Biomedical Engineering, McGill University, Montréal, QC, Canada

Dynamic joint stiffness is a dynamic, nonlinear relationship between the position of a

joint and the torque acting about it, which can be used to describe the biomechanics of

the joint and associated limb(s). This paper models and quantifies changes in ankle

dynamic stiffness and its individual elements, intrinsic and reflex stiffness, in healthy

human subjects during isometric, time-varying (TV) contractions of the ankle plantarflexor

muscles. A subspace, linear parameter varying, parallel-cascade (LPV-PC) algorithm

was used to identify the model from measured input position perturbations and output

torque data using voluntary torque as the LPV scheduling variable (SV). Monte-Carlo

simulations demonstrated that the algorithm is accurate, precise, and robust to colored

measurement noise. The algorithm was then used to examine stiffness changes

associated with TV isometric contractions. The SV was estimated from the Soleus EMG

using a Hammerstein model of EMG-torque dynamics identified from unperturbed trials.

The LPV-PC algorithm identified (i) a non-parametric LPV impulse response function

(LPV IRF) for intrinsic stiffness and (ii) a LPV-Hammerstein model for reflex stiffness

consisting of a LPV static nonlinearity followed by a time-invariant state-space model of

reflex dynamics. The results demonstrated that: (a) intrinsic stiffness, in particular ankle

elasticity, increased significantly and monotonically with activation level; (b) the gain of

the reflex pathway increased from rest to around 10–20% of subject’s MVC and then

declined; and (c) the reflex dynamics were second order. These findings suggest that in

healthy human ankle, reflex stiffness contributes most at low muscle contraction levels,

whereas, intrinsic contributions monotonically increase with activation level.

Keywords: joint stiffness, ankle biomechanics, system identification, time-varying, linear parameter varying

1. INTRODUCTION

Ankle joint biomechanics can be described by the relationship between the joint position and
the torque acting about it, defined as dynamic joint stiffness. It describes the properties of the
human actuator and determines (a) the internal load that the central nervous system (CNS) must
control and (b) the joint behavior in response to external loads or perturbations. Consequently, a
quantitative knowledge of joint stiffness is essential for understanding the normal control of posture
and movement and the nature of motor function disorders such as spasticity, rigidity, hypertonia,
hypotonia, and flaccidity (Amato and Ponziani, 1999; Bar-On et al., 2014). Also, a good model of
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joint stiffness is invaluable for the design and control of ankle
prostheses and orthoses (Palazzolo et al., 2007).

Joint stiffness modeling has been extensively investigated in
the literature (e.g., Kearney et al., 1997; Mirbagheri et al., 2000;
Jalaleddini and Kearney, 2011; Sobhani Tehrani et al., 2014). Two
distinct physiological mechanisms contribute to joint stiffness:
(i) Limb inertia, viscoelasticity of muscle-tendon complex, and
active properties of muscle contraction that together define
intrinsic stiffness; and (ii) Stretch reflex feedback that changes
muscle activation in response to changes inmuscle length leading
to reflex stiffness. At the human ankle, this has been efficiently
modeled with a Parallel-Cascade (PC) structure having separate
pathways for intrinsic and reflex stiffness (Kearney et al., 1997).
This study showed that under quasi-stationary conditions, where
the joint is perturbed around an operating point (OP) defined
by joint position and activation level, the intrinsic stiffness can
be modeled by an impulse response function (IRF) and the
nonlinear reflex stiffness can be modeled by a Hammerstein
system consisting of a static nonlinearity followed by a linear
dynamics.

However, numerous quasi-stationary studies, using system
identification techniques, demonstrated that both intrinsic and
reflex stiffness parameters change drastically and systematically
with ankle position and activation level (Weiss et al., 1986;
Sinkjaer et al., 1988; Carter et al., 1990; Mirbagheri et al., 2000;
Van der Helm et al., 2002; Bar-On et al., 2014; Jalaleddini
et al., 2016). Thus, in many functional tasks, like normal gait,
where joint position and neural activation continuously change
to control movement and counteract external perturbations, joint
stiffness will exhibit time-varying (TV) behavior. Furthermore,
there is evidence that this TV behavior cannot be predicted
simply by interpolating local TI models identified under quasi-
stationary conditions (Kirsch and Kearney, 1997). Therefore,
more advanced methodologies are required to identify and
characterize joint stiffness during movement or functional tasks.

To this end, a number of approaches have been proposed
and used over the years. These include intramuscular mechanism
modeling using optimization that minimizes a predefined cost
function (Sartori et al., 2015), system identification techniques,
or a combination of both (de Vlugt et al., 2010). Methods for
identification of TV systems can be divided into four main
categories: (i) short segment, (ii) ensemble-based, (iii) time-
varying, and (iv) linear parameter varying (LPV).

Short segment methods (Ludvig and Perreault, 2012; Rouse
et al., 2014; Jalaleddini et al., 2017) divide non-stationary data
into a number of segments with quasi-stationary behavior
and identify a time-invariant model for each segment. The
segmentation is not always trivial and often requires the TV
behavior to be very slow. Ensemble-based methods (MacNeil
et al., 1992; Kirsch et al., 1993; Ludvig et al., 2011; Lee and
Hogan, 2015) are effective but require many trials with identical
TV behavior, which is hard to achieve in many experimental
conditions. Moreover, repeating the same task many times may
result in fatigue and affect the reliability of estimates. Time-
varying identification techniques (Sanyal et al., 2005; Ikharia
and Westwick, 2006, 2007; Guarin and Kearney, 2015) use
temporal expansion to estimate how the system parameters

change continuously with time using data from a single trial; thus
simplifying data requirements significantly. However, selecting
proper basis functions for temporal expansion is often difficult
and the number of model parameters increases significantly if
the time-dependent changes are fast; thus reducing the quality of
the estimates. Moreover, none of the models identified by these
methods can predict the system response to novel trajectories.

LPVmodels have a structure resembling that of linear systems
whose parameters change as functions of one or more time-
dependent signal called scheduling variables (SV). As such,
the LPV structure is an excellent candidate for modeling joint
stiffness during functional tasks where the TV behavior is mostly
due to dependency on neuromuscular variables that vary with
time. Also, by relating TV behavior to SVs rather than time, LPV
models model the nonlinear mechanisms that generate the TV
behavior and thus have the ability to predict the response to novel
trajectories. Finally, control theory is well developed for LPV
systems (Mohammadpour and Scherer, 2012), which makes LPV
models suitable for prostheses and orthoses control.

Despite the significant advantages of LPV models, methods
for LPV identification of nonlinear physiological systems have
not been studied much. Examples include the LPV modeling
of glucose-insulin dynamics in type I diabetes (Cerone et al.,
2012) and of the hemodynamic response to profiled hemodialysis
(Javed et al., 2010). Our lab has pioneered the use of LPV
methods for the identification of joint stiffness. Specifically,
Sobhani Tehrani et al. (2013a) identified a LPV mass-spring-
damper (LPV IBK) model of intrinsic ankle joint stiffness for
imposed movements at rest. Soon after, Van Eesbeek et al.
(2013) used a LPV subspace method to identify time-variant
intrinsic impedance of the human wrist joint. Subsequently,
Sobhani Tehrani et al. (2014) developed subspace LPV parallel-
cascade (LPV-PC) method for the identification of both intrinsic
and reflex stiffness during large passive ankle movements.
However, these studies were conducted under passive (i.e., at
rest) conditions and quantified position dependent changes in
stiffness. The study of joint stiffness changes during large time-
varying muscle contractions is challenging since neither the
muscle activation level nor the voluntary torque are directly
measurable as scheduling variable.

In this work, we used the subspace LPV-PC
algorithm (Sobhani Tehrani et al., 2014) to characterize
changes in both intrinsic and reflex stiffness during isometric,
time-varying contractions of the ankle plantarflexors of healthy
human subjects. This algorithm, models the intrinsic pathway
as a non-parametric LPV impulse response function (LPV IRF)
and reflex stiffness as a LPV-Hammerstein cascade of a LPV
static nonlinearity and a time invariant (TIV) linear dynamics.
The reflex linear dynamic was assumed TIV, similar to previous
works (Sinkjaer et al., 1996, 1988; Ludvig et al., 2011). The
scheduling variable, the joint voluntary torque, was estimated
from EMG signals using a time-invariant Hammerstein model
of EMG-Torque dynamics, which was previously identified
using an error-in-variable subspace algorithm. In addition to the
experimental examination of the subspace LPV-PC identification
method, we also performed Monte-Carlo simulations to
demonstrate its accuracy and precision.
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2. METHODS

2.1. Problem Formulation
Figure 1 shows a block diagram of the subspace LPV-PC model
with joint angle as input (θ), total torque as output (TQtot), and
voluntary torque as scheduling variable (µ). The total torque is
the sum of intrinsic (TQI), reflex (TQR), and voluntary torques
(TQV ), and the colored measurement noise (n). This can be
written as:

TQtot(k) = TQI(k)+ TQR(k)+ TQV (k)+ n(k) (1)

and the stiffness torque is:

TQs(k) = TQI(k)+ TQR(k) (2)

where,

TQs = [TQs(0) . . .TQs(N − 1)]T

TQI = [TQI(0) . . .TQI(N − 1)]T

TQR = [TQR(0) . . .TQR(N − 1)]T

(3)

E = [n(0) . . . n(N − 1)]T (4)

and N represents the total number of samples. The intrinsic
stiffness is represented by a LPV IRF model:

TQI(k) =
l= L
∑

l=−L

hl(µ(k))θ(k − l) (5)

where hl are the IRF weights that are functions of SV (µ(k))
represented by a basis expansion on the SV:

hl ,

ni
∑

j= 0

hljgj(µ(k)) (6)

where hij is the (i, j)-th coefficient for the i-th lag of IRF, gj
represents the j-th basis expansion of the SV and ni is the
expansion order. Now, rewrite this equation in matrix form to

obtain a data equation for the intrinsic pathway; the unknown
intrinsic stiffness parameters are:

βI = [H−L . . .Hl . . .H+L]
T (7)

where Hl contains the LPV IRF weights for lag l,

Hl =
[

hl0 . . . hlni
]T

(8)

The basis expansion of the SV can be represented in vector form:

Gi(k) =
[

g0(µ(k)) . . . gni (µ(k))
]T

(9)

and the lagged position inputs with the vector:

2(k) =
[

θ(k+ l) . . . θ(k) . . . θ(k− l)
]T

(10)

Then, the input to the intrinsic pathway is constructed by the
Kronecker product of Equations (9, 10):

UI(k) = 2(k)⊗ Gi(k) (11)

Now, rewriting Equation (5) in vector form, the data equation for
the intrinsic pathway is:

TQI = 9IβI (12)

with the regressor:

9I =
[

UI(L) . . .UI(N − 1− L)
]T

(13)

The reflex stiffness is modeled by a differentiator, a delay, and
a Hammerstein system comprising a LPV static nonlinearity
followed by a time-invariant linear state-space model. The input
to the Hammerstein system is the delayed joint velocity (due to
reflex delay) denoted by dvel in the equations. The output of

FIGURE 1 | Subspace LPV Parallel-Cascade (LPV-PC) model of joint dynamic stiffness.
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the static nonlinearity is approximated by an orthonormal basis
function expansion of the Hammerstein system input, dvel:

z(k) = f (dvel(k),µ(k)) ≃
np
∑

i= 0

ωi(µ(k))gi(dvel(k))

where,

ωi =
nr

∑

j= 0

ωijgj(µ(k))

(14)

and gi(dvel(k)) is the i-th basis expansion of reflex input (dvel),
gj(µ(k)) is the j-th basis expansion of the SV, and ωij is the
coefficient of their products; np and nr are the expansion orders
of the input (dvel) and the SV, respectively. Thus, using basis
expansions of the input, the static nonlinearity is converted
to np parallel linear functions, where the expansion weights
are dependent on the SV. The vectors of input and SV basis
expansions, for reflex pathway, can be written as:

Gr(k) =
[

g0(µ(k)) . . . gnr (µ(k))
]T

DV(k) =
[

g0(dvel(k)) . . . gnp (dvel(k))
]T

(15)

with unknown parameters:

� = [�0 . . . �np ]
T

�i = [ωi0 . . . ωinr ]
T

(16)

Thus, the input to reflex linear dynamics becomes:

UR(k) = DV(k)⊗ Gr(k) (17)

The linear system is modeled using a discrete-time state-space
representation of orderm:

X(k + 1) = AX(k)+ Bz(k)

TQR(k) = CX(k)+ Dz(k)
(18)

where X(k) is the state vector, z(k) is the input to reflex linear
dynamics, and A, B, C, and D are the state-space matrices and:

B =
[

b1 . . . bm
]T

, D = [d] (19)

Substituting Equation (17) in Equation (18) yields:

X(k+ 1) = ARX(k)+ B�UR(k)

TQR(k) = CRX(k)+ D�UR(k)
(20)

where,

B� = B⊗ � =









b1�
T
0 . . . b1�

T
np

...
. . .

...
bm�T

0 . . . bm�T
np









,

D� = D⊗ � =
[

d�T
0 . . . d�T

np

]

(21)

Combining the data equations for intrinsic and reflex pathways
(Equations 12, 20), the total joint stiffness can be represented with
aMulti-Input-Single-Output (MISO) state-space model:

X(k + 1) = ARX(k)+ BTUT(k)

T̂Qs(k) = CRX(k)+ DTUT(k)+ n(k)
(22)

where,

UT(k) =
[

UR(k) UI(k)
]

(23)

BT =
[

B� 0 . . . 0
︸ ︷︷ ︸

(2L+ 1)nicolumns

]

DT =
[

D� βI

]

(24)

2.2. Subspace LPV-PC Identification
Algorithm
An orthogonal projection algorithm (Sobhani Tehrani et al.,
2014; Jalaleddini et al., 2016) was used to first decompose intrinsic
and reflex torque components and subsequently estimate the
unknown model parameters. The unknown parameters to
estimate are (i) the intrinsic IRF parameters (βI in Equation 7);
(ii) the reflex non-linearity coefficients (� in Equation 16); and
(iii) the reflex linear system matrices A, B, C, and D in Equation
(18). This can be achieved through the following steps:

1. Construct the input signal UT(k) from Equation (23).
2. Use the Past Input-Multivariable Output Error State Space

algorithm (PI-MOESP) (Verhaegen and Dewilde, 1992) with
input and output signals (UT(k) and TQs(k)) to estimate the
order of the system (Equation 22),m.

3. Construct the extended observability matrix using m and the
input and output signals, and use it to estimate the state-space
matrices ÂR and ĈR.

4. Form the data equation, and isolate the intrinsic and reflex
parameters (βI ,βR) in separate terms:

ˆTQs = TQI + TQR + E = 9IβI + 9RβR + E (25)

where,9I and βI are defined in Equations (7, 13), respectively,
and:

9R =







0 UT
R (0)

...
...

∑N−2
τ = 0 U

T
R (τ )⊗ ĈRÂ

N−2−τ
R UT

R (N − 1)







βR =
[

BTd
]T

⊗ �

5. Use orthogonal projection to decompose the total torque into
its intrinsic and reflex components:

T̂QI = (I − 9I
†9R9R

†9I)
†9I

†(I − 9R9R
†)T̂Qs

T̂QR = T̂Qs − 9I β̂I

6. Use the subspace Hammerstein method described
in Sobhani Tehrani et al. (2013b) to estimate the reflex
pathway model using dvel(k) as input and T̂QR(k) as output.
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3. SIMULATION STUDY

3.1. Methods
We evaluated the performance of the subspace LPV-PC
identification algorithm using a simulation study of the LPV-
PC model of human’s ankle stiffness dynamics (Figure 1). All
parameter and nominal values of simulation model were selected
based on experimental results reported in literature (Mirbagheri
et al., 2000; Jalaleddini et al., 2016).

3.1.1. Model
The intrinsic stiffness was simulated as the LPV IBK model:

TQI(k) = Iθ̈(k)+ Bθ̇(k)+ K(µ(k))θ(k) (26)

The inertia (I) and viscosity (B) were set to 0.015 Nm.s2/rad and
1.1 Nm.s/rad. The intrinsic elastic parameter (K) and reflex gain
and threshold were simulated to have a non-linear behavior with
changes in voluntary torque (SV). The linear dynamics of reflex
pathway was assumed TIV. Figure 2 demonstrates the simulated
parameters. Elasticity was modeled as a polynomial of order 3
for SV. The reflex gain (represented as NL slope in Figure 2C)
and threshold (NL threshold, Figure 2D) of reflex Hammerstein
system were modeled as polynomial of order 6 for input and a
polynomial of order 4 for the SV.

The linear dynamic element of the reflex pathway was
assumed to be a second-order low-pass filter with the dynamics:

H(s) =
Gω2

n

s2 + 2sζωn + ω2
n

(27)

where G = 1 is the system gain, ωn = 25 rad/s is the natural
frequency and ζ = 0.9 rad/s is the damping factor. The reflex
delay was assumed to be 40 ms. This system was simulated using
MATLAB Simulink at 1 kHz for 120 s.

3.1.2. Input and Noise
The input signal was a pseudo random arbitrary level distributed
signal (PRALDS) with random switching time uniformly
distributed over [250, 350] ms, and maximum amplitude equal
to 0.05 rad. This input signal was then filtered with a second
order Butterworth low-pass filter with cutoff frequency of 30 Hz
to represent the actuator dynamics.

Output noise was modeled as a white Gaussian signal filtered
with a second order Butterworth low-pass filter with cutoff
frequency equal to 15 Hz. The noise amplitude was adjusted to
produce an average signal-to-noise ratio (SNR) of 10 dB. SNR
was calculated as:

SNR(dB) = 20log10

(

RMSsignal
RMSnoise

)

(28)

Figure 3 shows a 4s segment of the position input and noise free
and noisy output data, and Figure 4 shows the simulated input
(position), scheduling variable (voluntary torque), and torques.

3.1.3. Analysis
To avoid aliasing, all simulation data were filtered with an
eighth-order low-pass filter with cutoff frequency of 45 Hz and
decimated to 100 Hz before analysis. The intrinsic pathway was
identified using a LPV IRF model as described by Equation (5).
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We calculated the equivalent elasticity of the identified model
as the low-frequency (or DC) gain of the LPV IRFs at each SV
snapshot. This gain is the steady state value of the integral of
identified intrinsic LPV IRF at each SV snapshot.

We assessed the quality of fit by calculating the variance
accounted for (VAF):

%VAF =

[

1−
∑N

i= 1 (TQi − T̂Qi)
2

∑N
i= 1 TQ

2
i

]

× 100 (29)

where TQi represents the noise free simulated torque at time
interval i and T̂Q represented the estimated value; N is the
number of samples.

We quantified the quality of identification estimates by
using 200 Monte-Carlo trials, each having a new realization of
input and noise. The bias and random errors for reflex static
nonlinearity estimates were calculated as:

Bias Error = ρ − E(ρ̂)

Random Error = E(ρ̂ − E(ρ̂))2
(30)

where ρ and ρ̂ represent true and estimated parameter
respectively. Note that both Bias Error and Random Error are
also functions of delayed velocity and SV.

3.2. Results
Figure 5 shows the torque prediction profiles for a typical trial.
The subspace LPV-PC identification algorithm used, identified
the simulated model very accurately as confirmed by high
VAFs calculated for each pathway. Figure 6 summarizes the
torque prediction accuracy for each pathway as well as the
stiffness torque, for 200 Monte-Carlo trials identified, in boxplot
representation. The VAFs were always above 98% for the high
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and (C) total stiffness, for a typical trial. A 20s segment of data with largest

variation in voluntary torque (i.e., SV) is presented for better visualization. VAFs

confirmed the accuracy of method in identifying the simulated model.

noise level tested in this simulation study, confirming the
efficiency of method in decomposing the total torque into
intrinsic and reflex contributions.

Figure 7A shows the simulated values of intrinsic pathway
elasticity (K) as a function of SV in blue and the mean of 200
Monte-Carlo identification estimates bracketed by two standard
deviations of the estimates in red. It is evident that mean of
estimates were very close to true value with small variance.

Figures 7B,C show the simulated (blue) and estimated (red)
slope and threshold of the estimated nonlinearity extracted from
3D nonlinearity. These values were obtained by finding the best
half-wave rectifier (HWR) fit to estimated nonlinearity at each SV
using Levenberg-Marquardt method in MATLAB curve fitting
toolbox. The red curve shows the mean of 200 Monte-Carlo
identification estimates bracketed by two standard deviations
of the estimates. The mean of the estimates for slope was
very close to simulated values showing that we can accurately
retrieve the reflex gain. The estimates of thresholds at some
SVs were subject to a maximum of 25% error. There are two
explanations for this: (1) the simulated model was different from
the identified model, i.e., HWR was simulated and Chebyshev
polynomials were used for identification. (2) The distribution
of input (velocity for reflex pathway) affects the estimation of
threshold. The estimates are expected to be more accurate for
an input with rectangular probability distribution. However,
these choices were made intentionally in this work to evaluate
the performance of the algorithm for a practical case, i.e., true
nonlinearity may not be the same as that used for identification
for physiological systems, and the actuator dynamics affects the
input distribution. Nevertheless, the overall estimated threshold
variation trend is very close to the true simulated value. Note that
since torque has little power at thresholds, the bias in threshold
estimate has little effect on torque prediction.

The LPV nonlinear block of reflex pathway is plotted
in Figure 8 in 3D representation; Figure 8A shows the true
simulated nonlinearity whereas the average of 200 estimated
nonlinear block is plotted in Figure 8B of this figure. The
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FIGURE 7 | True (blue) and the mean of estimated (red) (A) intrinsic elasticity, (B) reflex LPV-static nonlinearity slope and (C) threshold for 200 Monte-Carlo

simulations, bracketed by 2× standard deviation, SNR = 10dB. Parameters of static nonlinearity were estimated by fitting a half-wave rectifier to nonlinearity at each

SV.
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lower two panels show the bias and random errors for
static nonlinearity estimate for 200 simulation trials from
top view; both errors were small with maximum bias error
occurring around nonlinearity threshold. This is consistent with
our estimation of threshold demonstrated in Figure 7C. The
maximum bias error was around 10 Nm/rad and the maximum
random error was 1 Nm/rad, while the nonlinearity has a
maximum gain of 160 Nm/rad. This confirms the efficiency of the
proposed algorithm for estimating the LPV static non-linearity.
The frequency response of reflex linear dynamic estimate is
demonstrated in Figure 9. The linear system was calculated as a
subspace system; the frequency response representation is used
for better visualization of accuracy at different frequencies. Both
the gain and phase estimates were close to true simulated values.

4. EXPERIMENTAL STUDY

4.1. Methods
The new algorithm was used to characterize the modulation of
joint stiffness with activation level in healthy humans performing
an isometric torque tracking task of the ankle plantarflexors.

4.1.1. Apparatus
Figure 10 shows a schematic of the experimental setup which is
described in details in Morier et al. (1990). Subjects lay supine on
an experimental table with the left foot attached to a hydraulic
actuator using a costume-made fiberglass boot. The neutral
position was defined as a 90 degree angle between the foot and
shank. Dorsiflexing rotations were taken as positive. The mean
ankle angle was set to 0.2 rad.
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4.1.2. Subjects
Five healthy subject (one female and four males) aged 26–
33 with no history of neuromuscular disorders participated.

FIGURE 9 | True (blue) and the mean of estimated (red) reflex linear

dynamics (in frequency response representation) (A) gain and (B) phase,

for 200 Monte-Carlo simulations, bracketed by 2× standard deviation, SNR =
10 dB. The bode plot is presented up to 50Hz where the input has enough

power for identifications.

Subjects gave informed consent to the experimental procedures,
which had been reviewed and approved by McGill University
Research Ethics Board. Table 1 summarizes the subjects’
demographics.

4.1.3. Data Acquisition
EMG signals from tibialis anterior (TA) and triceps surae
(TS) including lateral and medial Gastrocnemius muscles were
recorded separately using differential surface electrodes. EMGs
were amplified and band-pass filtered with a gain of 1,000
and cutoff frequencies 20–2,000Hz. Ankle torque was low-pass
filtered with an eighth-order Bessel filter with cut-off frequency
equal to 0.7 Hz in real time and provided to the subject as visual
feedback signal. Position, torque and EMG signals were filtered

TABLE 1 | Subject characteristics: gender, age, Maximum Voluntary

Contraction (MVC) torque in Plantarflexion (PF), and the normalization

factors.

Age PF Intrinsic elasticity Reflex gain Reflex

Subject Gender (years) MVC normalization normalization delay

(Nm) factor factor (ms)

S1 F 33 26.40 18.24 9.9 45

S2 M 32 55.02 174.06 23.1 45

S3 M 32 43.12 90.94 64 40

S4 M 26 79.25 58.61 95 45

S5 M 33 60.14 126.28 80 40

FIGURE 10 | Schematic of the experimental setup. The subject’s left foot was attached to the actuator pedal by a custom boot. Ankle torque and a target signal

were displayed on an overhead monitor. The subject generated dynamic, isometric contractions by tracking the target signal.
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with an anti-aliasing filter at 486.3 Hz, sampled at 1 kHz, and
recorded.

4.1.4. Trials
Subjects were instructed to modulate their ankle torque by
tracking a visual command signal. The command signal
comprised of a sine-wave with a period of 60 s and peak-to-peak
amplitude equal to 40% of their maximum voluntary contraction
(MVC). Two conditions were examined:

1. Unperturbed trial (UT): a low-amplitude pseudo random
binary sequence (PRBS) signal was added to the command
signal. No position perturbations were applied. The PRBS
perturbation was added to command signal (sine-wave) to
provide the rich, persistently excitatory input needed for
accurate identification of the EMG-Torque dynamics.

2. Perturbed trial (PT): random perturbations of ankle position
were applied by the hydraulic actuator. The perturbation
signal was a PRALDS signal with switching rate of 250–350
ms with amplitude of 0.05 rad.

Data were recorded for 120 s at sampling frequency of 1kHz and
then decimated to 100 Hz for analysis. Data were examined for
evidence of fatigue or co-activation; there was no evidence of
either in any of the trial.

4.1.5. Analysis
Identification was performed in three steps:

1. EMG-Torque Dynamics Estimation:We used a time-invariant
error-in-variable (EIV) subspace Hammerstein identification
algorithm to estimate the dynamic relationship between
rectified voluntary Soleus EMG, and torque from UT data.
This algorithm provides unbiased estimates of EMG-Torque
dynamics in experimental conditions where the feedback
is significant as discussed in Golkar and Kearney (2015).
This method uses past inputs and outputs as instrumental
variables in a manner similar to the subspace Hammerstein
identification approach described by Jalaleddini and Kearney
(2013).

2. Estimate of Voluntary Torque in PT trials: The voluntary
component of the EMG was estimated from the EMG
record by removing spikes associated with reflex activation.
These reflex spikes are generated in response to positive
perturbations (muscle stretch). The spikes were located by
calculating the derivative of the input perturbation signal (i.e.,
perturbation velocity) and finding the times where the velocity
was large enough to generate a reflex EMG response. The reflex
EMG was then replaced by values that linearly interpolated
the EMG values preceding and following the spike onset.
The voluntary EMG was adopted to the EMG-Torque model
identified in step 1 to estimate the voluntary torque (T̂Qv).

3. Joint Stiffness Identification: The subspace LPV-PC
identification algorithm was used to estimate the Parallel-
Cascade system relating ankle position (θ) to the estimated
stiffness torque response (T̂Qs) from PT data. The voluntary
torque estimated in step 2 was used as the scheduling variable
(µ). Stiffness torque (T̂Qs) was estimated by removing the

estimated voluntary torque (T̂Qv) from total measured torque
(TQtot).

4.2. Results
4.2.1. EMG-Torque Dynamics Estimation
Figure 11 shows the joint position, visual command, full-wave
rectified Soleus EMG and measured and predicted voluntary
torque from a typical UT trial. The model estimated between
Soleus EMG and torque, predicted the torque extremely well; the
variance accounted for was 93% for this subject and 92 ± 3%
for all subjects. Figure 11E shows the measured and estimated
transient torques. These were obtained by filtering the torques
with a moving average Butterworth low-pass filter to remove the
slow time-varying torques (sine-wave). The VAF for transient
response was 81% for this subject.

4.2.2. Joint Stiffness
Figure 12 shows the position perturbation, the visual command,
and the resulting torque from a typical PT trial. The voluntary
torque, estimated from the UT EMG-Torque model is shown
in magenta in Figure 12C, superimposed on the total measure
torque in blue. The three lower panels show the intrinsic, reflex,
and stiffness torques estimated using LPV-PC identification
algorithm for the trial segment with largest variation in voluntary
torque (SV). Comparing the stiffness torque and that predicted
using LPV identification algorithm, it is evident that the LPV
method captured the TV behavior of the system well with a VAF
of 82% for stiffness torque and 95% for total torque (stiffness +
voluntary torque). The total VAF was never <90% in any trial.
Figure 13 shows the LPV-PCmodel estimate for a typical subject.
Figure 13A shows the TV behavior of the intrinsic dynamics
and how it varies with voluntary torque. Figure 13B shows that
the static nonlinearity has a strong uni-directional sensitivity to
velocity; the slope varies with voluntary activation increasing
from rest to 5 Nm and then decreased. Figures 13C,D show the
bode diagram of estimated TIV reflex linear dynamics resembling
a second-order low-pass filter system.

Figure 14 shows the variation of estimated parameters with
voluntary torque for the five subjects. The estimates of intrinsic
elasticity and reflex gain (nonlinearity slope) were normalized
to their maximum value for the contraction range studied for
each subject to allow inter-subject comparison. The original
values corresponding to data points in the Figure, can be
calculated by multiplying the x-axis value by subject’s MVC and
y-axis value by their corresponding normalization factor. The
MVC and normalization factors for each subject are given in
Table 1. The intrinsic elasticity (K) (Figure 14A), monotonically
increased with contraction level in all subjects. The reflex gain
(Figure 14B) and threshold (Figure 14C) of the static non-
linearity systematically changed with voluntary contraction. The
reflex gain increased with voluntary torque up to 10–30% MVC
in different subjects and then decreased. The variation in reflex
gain was higher than 50%. The reflex nonlinearity threshold
also varied with voluntary torque and was not always zero as
assumed in most quasi-stationary studies. Given the results of
the simulation study, the estimates of threshold values may be
biased but the overall trends are expected to be informative.
The reflex linear block was estimated to be a second-order
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FIGURE 11 | Typical UT experimental trial from an isometric contraction experiment, Subject S1: (A) position perturbations, (B) visual command signal,

(C) soleus EMG, (D) measured (blue) and predicted (red) ankle torque. The TIV Hammerstein model, estimated between rectified EMG and torque, accurately

predicted the voluntary torque with a VAF equal to 93%, (E) the transient torque prediction after removing the large slow-varying torque from both measured and

predicted torques. The VAF for transient response was 81%.

low-pass filter with delay varying between 40 and 45ms (see
Table 1). Figures 14D,E show the gain and phase of reflex linear
dynamics represented in frequency domain. The bandwidth
of reflex pathway varies between 1.65 and 2.9 Hz in subjects
examined in this work.

5. DISCUSSION

This paper investigated and quantified the effects of voluntary
contractions on ankle joint dynamic stiffness and its intrinsic
and reflex components. Previous work has demonstrated that
voluntary muscle activation causes substantial changes of
stiffness during functional tasks (Ludvig and Perreault, 2014).
Thus, studying this system during large, continuous variations
in voluntary contraction will lead to better understanding of the
control of movement. We used a subspace LPV-PC identification
algorithm to track stiffness changes during large, isometric
voluntary torque contractions. We first validated the method

using a Monte-Carlo simulation study. These demonstrated
that the method yielded estimates that were accurate, precise
(thus reliable) and capable of capturing time-varying stiffness
changes similar to those expected from quasi-stationary results,
efficiently. We then applied the method to experimental data
acquired while healthy human subjects made large, transient
voluntary contractions. Our analysis of these data showed that
the stiffness dynamics varied significantly with the contraction.
We believe that the system identification algorithm used in this
study provides an accurate description of intrinsic and reflex
stiffness dynamics throughout a voluntary contraction and so
can be used to asses the contribution of each pathway to joint
mechanics in functional tasks.

5.1. Simulation Study
We used simulations of a realistic stiffness model to validate the
performance of the subspace LPV-PC identification algorithm
when torque varied sinusoidally. The variation in stiffness

Frontiers in Computational Neuroscience | www.frontiersin.org May 2017 | Volume 11 | Article 35129

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Golkar et al. Identification of Joint Stiffness during TV Contractions

−20
−10

0
C

o
m

m
a
n
d

 (
N

m
) 

 

0.15

0.2

0.25

P
o
s
it
io

n
 

(r
a
d
) 

  
 

20 40 60 80 100

−20
−10

0

T
Q

to
t

(N
m

)

 

 

TQ
tot

TQ
v

−10

0

10

T
Q

I (
N

m
)

−10

0

10

T
Q

R
 (

N
m

)

30 35 40 45 50 55 60 65 70
−10

0

10

Time(s)

T
Q

s
 (

N
m

)

 

 

TQ
s

Predicted TQ
s

A

B

C

D

E

F

FIGURE 12 | Typical PT experimental trial from an isometric contraction experiment, Subject S1: (A) position perturbations, (B) visual command signal,

(C) total torque (blue) and estimated voluntary torque, used as SV of LPV-PC method (magenta), (D) identified intrinsic torque, (E) identified reflex torque, and (F)

estimated stiffness torque (TQtot − ˆTQv ) (blue) and identified stiffness torque (red). LPV method captured the TV behavior of the system well with a Stiffness VAF of

82% and total VAF (stiffness + voluntary torque) of 95%.

parameters with torque was obtained by interpolating the results
of quasi-stationary experiments with normal human subjects.
We used colored output noise with its amplitude adjusted
to give an average SNR of 10 dB for each simulation trial.
The true experimental noise is expected to be lower than this
value (Ludvig et al., 2011). Thus, we evaluated the identification
algorithm under condition that is more challenging than that
actually seen experimentally. There are two main differences
between our simulation study and the experimental conditions:
(i) SV estimation: In the simulations we assumed that the
voluntary torque could be measured and completely removed
from total torque. However, in the experiments, the SV must
be estimated from the recoded EMG signal. Any errors in
estimating the SV will result in identification performance
to be lower than that predicted from the simulations. (ii)
Identification model structure: We made two assumptions about
the model structure: (1) Stiffness dynamics at the ankle can be
represented using a PC model structure; this model has been
widely used and shown to be successful in predicting the stiffness
torque for both quasi-stationary and TV conditions (Mirbagheri
et al., 2000; Sobhani Tehrani et al., 2014; Jalaleddini et al.,
2017), (2) The reflex pathway has a delay of 40–45ms; this

is shown to be true in many studies (Stein and Kearney,
1995; Kearney et al., 1997; Mirbagheri et al., 2000). There
were few assumptions about structures of the elements of
the PC model. Thus, for the intrinsic pathway the linear
dynamics were modeled as a nonparametric IRF whose length
was limited to be less than the reflex delay. For the reflex
pathway, the nonlinearity is modeled with an orthonormal
expansion whose order minimize the prediction error; the
linear dynamics were modeled with a parametric model whose
order is determined as part of the identification. The excellent
prediction ability of the resulting model demonstrates that
it accurately reproduces the observed behavior. It is possible
that the true structure is more complex than the PC model
(i.e., involve more pathways or have complex pathways such
as nonlinear-linear-nonlinear cascade). If so, the model is
still useful as an approximation since an arbitrary nonlinear
system can be represented by a parallel cascade of block
structured elements. However, in such a case, there would
no longer be a direct relation between the structure of the
model and that of the underlying physiological system; this
possibility must be taken into account in the interpretation of
the results.
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5.2. Dynamic Stiffness
Our experimental results showed that stiffness increased with
contraction level suggesting that system became more stiff at
high contraction levels. The increase in stiffness may be justified
by increase in the number of cross-bridges occurring at higher
contraction levels. Reflex gain increased going from rest to lowest
active level (occurring between 10 and 20% MVC) and then
started to decrease. The variation in reflex gain can be explained
by recruitment of more muscle fibers at higher contraction
levels and existence of an upper-limit in motoneuron pool
excitation. The changes in the nonlinearity threshold suggest
changes in motoneuron pool excitation threshold with torque
levels. These results indicate that contribution of reflex stiffness
is highest at low contractions and decreases as contraction level
increase, whereas, intrinsic stiffness monotonically increases with
contraction level. Note that we did not attempt to parameterize
the LPV IRFs for the intrinsic pathway as a second-order
system because: (1) intrinsic dynamics may be more complex
than the I,B,K model as demonstrated recently in Sobhani
et al. (2017) (2) the fitting procedure would involve non-
linear minimization that would introduce an additional source
of error.

These findings are essential in understanding the role of
stretch reflexes during a motor task particularly those involving
low contraction levels such as the control of posture and balance.
Other works suggested that intrinsic stiffness is not sufficient to
maintain stable upright posture (Morasso and Sanguineti, 2002;

Moorhouse and Granata, 2007). Our results show that the range
of activation where reflex stiffness is significant, varies among
subjects and the reflex contribution was substantial in all subjects
examined in this study. Comparing our results to those reported
in quasi-stationary condition, the reflex maximum contribution
was found to occur around 10%MVC and above whereas this was
reported to occur at 5%MVC (Mirbagheri et al., 2000). However,
it is not clear whether this is due to the dynamics changes due
to task or simply because of differences between the subjects who
participated in these studies.

In a separate work, we used a similar approach as that used
here to estimate the Hammerstein system of reflex pathway,
and evaluated the variation in position-reflex EMG dynamics
with contraction levels, in isometric condition (Golkar et al.,
2015). It was demonstrated that both gain and threshold of
static nonlinearity changed with contraction levels. The results
presented in this work combined with that study gives us a
comprehensive understanding of how stiffness modulates during
isometric TV contractions in plantarflexors of healthy human
subjects.

Given the limited dataset required for the subspace LPV-
PC identification algorithm used in this study, this can be
used toward exploring the effect of some other factors such as
contraction history, contraction rate, and contraction trajectory
on dynamics of joint stiffness. This can be achieved by repeating
the experiment when: (i) the TV torque-matching task starts after
a constant activation level is maintained for a short period of
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representation of Reflex Linear Dynamics (D) gain, (E) phase; reflex linear dynamics was a second-order low-pass filter and cutoff frequency between 1.65 and 2.9Hz

for different subjects.

time, (ii) use torque-tracking trajectory with different bandwidths
(e.g., different periods for sine-wave) as command signal, (iii)
use different torque trajectories, e.g.,multi-level, and compare the
estimated models for each case.

5.3. Comparison to Previous Works
The overall trends in our findings agree with the results of
quasi-stationary studies. For example, we found that the intrinsic
elasticity increased with activation level, similar to the results
of Mirbagheri et al. (2000). Also, for reflex gain, We observed
a behavior similar to that reported in Jalaleddini et al. (2016).
Nonetheless, the magnitudes of the changes were different. We
observed 50% increase in stiffness whereas Mirbagheri et al.
(2000) reported this to be around 90% for the same range of
contraction. Our estimates of reflex gain were similar to those
of Mirbagheri et al. (2000), except that we observed a persistence
of reflex contribution for a wider range of contraction levels (up
to 30% for some subjects). Some other quasi-stationary works
reported the maximum reflex contribution to occur around 50%
MVC in dorsiflexors (Sinkjaer et al., 1988; Cathers et al., 2004).
Based on our experience, this level of activation is very likely

to cause fatigue which affects the reliability of results from such
experiments. Also, the nominal values reported for maximum
reflex contribution based on %MVC might vary among different
works due to the differences in measuring the MVCs or the
muscle studied.

Van Eesbeek et al. (2013) also used the LPV identification to
study wrist stiffness in an activation varying task. However, their
method was limited to intrinsic estimates and did not decouple
the effects of reflex contribution on the total torque variations.
Reflex contributions were reported to be minimal in the upper
arm (Bennett et al., 1992) but found to be significant in the
ankle (Kearney et al., 1997), wrist (Sinkjær and Hayashi, 1989),
and knee (Ludvig and Perreault, 2014). Consequently, the results
of Van Eesbeek et al. (2013) cannot be directly compared to
ours. Also, the range of activation is very different in the wrist
compared to the ankle. Nevertheless, they showed that the main
variation in intrinsic parameters at human wrist was in the elastic
parameter, variations in viscosity were small and the inertia was
found invariant. This is consistent with our results.

Other studies have used ensemble-based method to evaluate
the effect of activation level on joint stiffness. Visser (2010)
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studied ankle joint stiffness during a sinusoidal torque matching
task, where a monotonic increase in elastic parameter with
voluntary torque was observed similar to the observation of
this study. The main difference with our results was that Visser
(2010) found two peaks in the reflex gain at the lowest and
highest activation levels. Also, Ludvig and Perreault (2014)
used a similar ensemble-based method to study knee stiffness
during rapid activation and reported similar results for the
elastic parameter. Nonetheless, using ensemble-based methods
for activation-varying experiments have a number of drawbacks.
It requires the exact same time-varying behavior to be repeated
many times while (i) it is extremely difficult to match muscle
activation levels between trials, (ii) the muscle recruitment
strategy might change to avoid fatigue, (iii) antagonist muscle(s)
might be activated in some trials to assist the tracking task, (iv)
occurrence of fatigue is inevitable especially if activation levels
above 30% are used in the study, (v) the desired torque trajectory
needs to be slow enough so that subject can repeat the same task
many times, and (vi) system behavior may change from the first
experiment to the last one considering the large number of trials
required.

The LPV identification algorithm described here, models
the underlying dependency of system parameters on torque
mean and thus should predict the response to novel trajectories
for similar conditions. This predictive ability is a strong asset
for studying physiological systems. The experiments described
here were not designed to demonstrate this ability but are an
important next step. In addition, it is not yet known how
this predictive ability depends on the temporal and amplitude
properties of the SV. This is an important topic for future work.

5.4. Limitations of the study
In this study, we used the subspace LPV-PC algorithm and
identified a nonlinear model of both intrinsic and reflex ankle
stiffness during isometric, time-varying contractions. The model
accurately predicted non-stationary torques recorded from
experiments with five healthy subjects. In the identified subspace
LPV-PCmodel, the time-varying behavior of the joint was related
to background voluntary torque, instead of time, defined as
the scheduling variable. Consequently, it provided insight into
functional relationships underlying biomechanics of the joint.
Also, themodel is expected to predict joint response to novel time
trajectories of isometric muscle contractions. However, this study
has some limitations too, including:

• It assumed that the time-varying behavior of the joint is
a function of an a priori known scheduling variable. This
assumption was valid for the slow isometric contraction
experiments of this study. However, may not hold for other
situations such as muscle fatigue, rapid contractions, or
neuromuscular disorders where the SV is not well known.
Similarly, it will almost certainly not hold in functional tasks
where stiffness parameters depend on multiple variables. For
example, during most movements both torque and position
change; stiffness parameters are known to depend strongly on
both, so it is to be expected that modeling this behavior would
require at least two SVs.

• Reflex linear dynamics were assumed to be time-invariant
except for its gain that can be modeled by the LPV
nonlinearity. This seems to be a valid assumption for
healthy subjects performing isometric, slow time-varying
contractions (for the contraction range studied in this study)
or large imposed movement at rest (Sobhani Tehrani et al.,
2014; Jalaleddini et al., 2015). However, it may not be valid for
pathological subjects whose reflex dynamics have been shown
to change with contraction level (Mirbagheri et al., 2001).
Nevertheless, if the subspace LPV-PC identification algorithm
is used to analyze a system with TV reflex dynamics,
the estimates of intrinsic pathway and corresponding
interpretations should remain almost intact. This is because,
the subspace LPV-PC identification algorithm uses an
orthogonal projection approach to decompose the torque
into intrinsic and reflex torques. Thus, any inaccuracy in
system structure assumed for reflex dynamics is not expected
to affect the estimates of intrinsic dynamics. Rather it
would bias estimates of reflex nonlinearity and result in a
decrease in torque VAF. Sobhani Tehrani (2017) recently
has developed a non-parametric LPV-PC method that
can identify SV-dependent changes in reflex dynamics.
Future work will use this to investigate the importance of
TV changes in reflex dynamics and if this improves the
predictions.

• The model parameters are assumed to be static functions
of the SV while dynamic dependencies may occur in some
functional tasks. For the slow isometric contraction trajectory
used in this work, the static dependency assumption is
expected to be valid. The VAF of its predicted torques
supports this assumption. However, assumption must be
validated for rapidly changing contractions. In general, if the
model parameters depend dynamically on the SV, the LPV
identification algorithm would not be expected to predict well.
We are not aware of any work investigating potential dynamic
dependencies between voluntary torque and joint stiffness
parameters. Indeed, the subspace LPV-PC identification
algorithm provided the tool needed to investigate such
dependencies.

• Since the voluntary torque (i.e., the SV) is not directly
measurable, we estimated it using an EMG-Torque
Hammerstein model, identified from experimental data.
The risk is that inaccuracies in the EMG-torque model, and
thus the estimated scheduling variable, may bias the identified
LPV stiffness model parameters.

Finally, note that this study was performed under open-loop
experimental conditions, where the perturbing actuator was
many times more stiffness than the ankle. Consequently, the
torque generated at the ankle could not change the position of
the actuator. This is not the case when subjects interact with
compliant loads, where closed-loop conditions may arise. The
subspace family of identification algorithms are believed to work
with data acquired in closed-loop conditions (Van Wingerden
andVerhaegen, 2009); however, validating this with experimental
data acquired specifically for LPV-PC modeling of joint stiffness
is a subject of future work.
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5.5. Clinical Significance
The subspace LPV-PC method would be an invaluable tool
for objective and quantitative assessment of neuromuscular
performance (or impairment) and motor function (or
dysfunction). In fact, the early signs of recognizing the
clinical benefits of exploiting system identification and modeling
approach have recently appeared in the literature (Meskers et al.,
2015; Sloot, 2016), where, for example, system identification was
used to assess motor dysfunction in children with cerebral palsy.
The subspace LPV-method can actually enable and expedite
this shift from conventional scoring techniques to model-based
clinical assessment, diagnosis, and treatment recommendation.
Few of the reasons are:

• It works for much more functional tasks compared to quasi-
stationary studies. In addition, the identified LPV model is
not just a predictive model. Rather, it provides a coherent
representation of the joint biomechanics where the systematic
changes are functionally related to variables within the
neuromuscular system.

• It is far more efficient than the quasi-stationary methods
because it requires many fewer trials. For example, in the
isometric TV contraction experiment of this study, we used
only two trials (UT and PT) to identify the LPV-PC model;
whereas the quasi-stationary studies require many more
trials to cover the same range of activation levels with a
fine resolution. For example, 11 trials are needed to cover
activation levels from rest to 40% MVC with a resolution of
2% MVC; thus the LPV method reduces the required number
of trials by more than 80%. Such reductions are of utmost
importance and value working with patients and in clinical
applications.

• By estimating the individual elements of the subspace
LPV-PC stiffness model, the method distinguishes between

the mechanical and reflex contributions to the abnormal
joint mechanics, which is very important from a clinical
standpoint. Thus, the method will have significant
clinical benefits for diagnosis and treatment monitoring
of patients suffering from neuromuscular diseases such as
cerebral palsy, spinal cord injury, stroke, and Parkinson’s
disease.
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In human and animal motor control several sensory organs contribute to a network

of sensory pathways modulating the motion depending on the task and the phase

of execution to generate daily motor tasks such as locomotion. To better understand

the individual and joint contribution of reflex pathways in locomotor tasks, we

developed a neuromuscular model that describes hopping movements. In this model,

we consider the influence of proprioceptive length (LFB), velocity (VFB) and force

feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance

and efficiency (metabolic effort). Therefore, we explore the space describing the

blending of the monosynaptic reflex pathway gains. We call this reflex parameter

space a sensor-motor map. The sensor-motor maps are used to visualize the functional

contribution of sensory pathways in multisensory integration. We further evaluate

the robustness of these sensor-motor maps to changes in tendon elasticity, body

mass, segment length and ground compliance. The model predicted that different

reflex pathway compositions selectively optimize specific hopping characteristics (e.g.,

performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB

resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had

the ability to disable hopping. For the tested case, the topology of the sensor-motor maps

as well as the location of functionally optimal compositions were invariant to changes

in system designs (tendon elasticity, body mass, segment length) or environmental

parameters (ground compliance). Our results indicate that different feedback pathway

compositions may serve different functional roles. The topology of the sensor-motor

map was predicted to be robust against changes in the mechanical system design

indicating that the reflex system can use different morphological designs, which does

not apply for most robotic systems (for which the control often follows a specific design).

Consequently, variations in body mechanics are permitted with consistent compositions

of sensory feedback pathways. Given the variability in human body morphology, such

variations are highly relevant for human motor control.

Keywords: feedback pathways, hopping, motor control, functional decomposition, neuromechanics, multisensory

integration, muscle-tendon function, sensor-motor map
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1. INTRODUCTION

The redundancy of the musculoskeletal and neural systems
poses a major challenge in human locomotion research. For
instance, the motor control systemmay utilize different strategies
for performing specific motions with redundancy in the
body’s physiology (e.g., many involved muscles), kinematics
(e.g., redundant motion trajectories) (Bernstein, 1967), and
neuromuscular control (e.g., recruitment of motor units)
(Henneman et al., 1965) including neural networks in the
spinal cord that contribute substantially to controlling rhythmic
and repetitive motions. To date, it is unknown how the
neuromuscular system explores and exploits the redundancy and
how the different levels are organized and interconnected to
achieve functionally relevant activation patterns (Donelan and
Pearson, 2004b). Proprioceptive feedback and central pattern
generators (CPGs) presumably generates appropriate motor
control commands depending on the tasks and the phase of the
motion (Dietz, 1992; Taube et al., 2012).

Similarly, computational approaches aiming at mimicking
human activation patterns and motion trajectories must
address the “redundancy problem” in motor control. Most
commonly, these approaches reduce the degrees of freedom by
specific neuromuscular structures or hierarchies (e.g., specific
combinations of CPGs, sensory pathways etc.) that follow
certain control policies or rules. For instance, Song and Geyer
(2015) used multiple “spinal modules” (decentralized feedback
control) coordinated by a supra-spinal layer to predict several
gaits and generate robust behavior even after perturbations
(Song and Geyer, 2017). Other studies used combinations
of CPGs and proprioceptive feedback (modifying the central
patterns) to generate appropriate activation patterns (Taga, 1998;
Ogihara and Yamazaki, 2001; Hase et al., 2003; Paul et al.,
2005). Moreover, muscle synergies (groups of synchronized co-
contracting muscles during a motion) are used to reduce the
dimensionality and thus the redundancy of the neuromuscular
system (D’Avella et al., 2003; Bizzi et al., 2008). For instance, Ting
et al. (2012) used a neuronal network for generating a muscle
synergy driven balancing task based on center of mass (COM)
kinematics.

In contrast to previous studies with a detailed representation
of the neural networks (including their hierarchies), this
study focused on integrating multiple sensory pathways at the
elementary sensor-motor-level (Loeb, 1995) to determine how
individual reflex pathways of muscle force (FFB), fiber length
(LFB) and velocity (VFB) can support—in isolation and in
combination—the repulsive leg function (Sharbafi and Seyfarth,
2017) during the stance phase of hopping (Haeufle et al., 2012).
By blending individual sensory pathways, we investigated the
capacity of the neuromuscular feedback system to generate goal-
directed motions. We visualized and evaluated the space in
which the monosynaptic reflex system can operate to generate
functional motions (for generating stable, performant or efficient
hopping). We call these reflex parameter spaces sensor-motor
maps and suggest that studying their topology can be used
to explore the redundancy of multisensory integration. This
approach differs from previous approaches because the general

concept of such sensor-motor maps only relies on a few primitive
assumptions on the neuromuscular structure. The topologies of
these sensor-motor maps reflect the task-specific contributions
of the sensory pathways that are moderated by the mechanical
interaction of the locomotor system with the environment. Our
overall goal was to identify enabling and disabling pathways
for individual locomotor functions. We expected that several
different pathways may generate stable hopping, but that
pathway-specific features determine hopping performance and
efficiency.

To show the general validity of our approach we varied
parameters of the environment (ground compliance) and the
body morphology: compliance (tendon elasticity), geometry
(segment lengths) and inertia (body mass). Furthermore, we
explored the sensitivity of themodel to variations of feedback and
model parameters.

2. MATERIALS AND METHODS

To focus on the integration of different sensory pathways, we
considered a highly simplified muscle-driven model allowing
the evaluation of motion execution with respect to stability,
performance and efficiency. Therefore, we used the hopping
model by Geyer et al. (2003) with idealized sensory receptors and
motorneurons capturing the basic neural control principles with
the least possible system complexity (Full and Koditschek, 1999;
Brown and Loeb, 2000; Pearson et al., 2006).We chose the signals
of three muscle receptors (muscle force of Golgi tendon organs,
fibre length and fibre velocity ofmuscle spindles) to focus on local
proprioceptive circuits.

2.1. Mechanical Hopping Model
The model of Geyer et al. (2003) consists of a point mass m
(center of mass, COM) and two massless segments (length lS)
representing the thigh and shank (Figure 1). The leg length
during flight (lf ) is held constant until the vertical COM height
equals the flight leg length (touch-down). During stance, a
muscle-tendon-complex (MTC) modeling the knee extensors
counteracts the gravitational force (gravitational constant g). The
MTC consists of a contractile element (CE) and a serial elastic
element (SE) (Equations 1, 2). Take-off occurs when the leg force
vanishes or when the vertical displacement of the point mass
exceeds the flight leg length.

lMTC = lCE + lSE (1)

FMTC = FCE = FSE (2)

The length of the MTC is defined by a reference length
(lMTC,ref ), a corresponding reference knee angle (ϕref ) and the
knee lever arm (d): lMTC = lMTC,ref − d (ϕ − ϕref ). The
force of the CE is calculated as FCE = Fmax ∗ fl ∗ fv ∗
ACT using the maximum isometric force (Fmax), force-length-
relationship (fl), force-velocity-relationship (fv) and activation
state of the contractile element (ACT, see Equation 11).
The force-length-relationship and force-velocity-relationship
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FIGURE 1 | Vertical hopping model (Geyer et al., 2003) comprising a point mass (m), two massless leg segments and a leg extensor muscle-tendon-complex (MTC),

consisting of a contractile element (CE) and a serial elastic element (SE). During flight phase, the leg flight length (lf ) stays constant. In stance, the MTC generates a

pulling force that acts on the lever arm (d) which creates an extension torque.

are implemented by non-linear approximations (Geyer et al.,
2003):

fl(lCE) = exp

(

c

∣

∣

∣

∣

lCE − lopt

lopt w

∣

∣

∣

∣

3
)

(3)

fv(vCE) =

{

N + (N − 1) vmax − vCE
7.56 K vCE − vmax

vCE ≥ 0
vmax − vCE

vmax + K vCE
vCE < 0

(4)

These equations use a width (w) and a curvature constant
(c) of the force-length-curve as well as optimum length of
the CE (lopt), eccentric force enhancement (N), maximum
shortening velocity (vmax) and a second curvature constant
(K). The force-length-relationship values can range from 0 to
1. The force-velocity-relationship values can range from 0 to
1 for concentric contractions and from 1 to 1.5 for eccentric
contractions (because of the eccentric force enhancement N).
To define the serial elastic element in the MTC a progressive
force-length dependency (Equation 5) was used (van Ingen
Schenau, 1984). Therefore, the reference strain (εref ) determines
the relation of the force acting on the serial element and
its corresponding stretch in relation to its rest length (lrest)
(Equation 6).

fSE(ε) =

{

(ε/εref )
2 ε > 0

0 ε ≤ 0
(5)

ε =
(

lSE

lrest

)

− 1 (6)

2.2. Extension of the Neuromuscular Model
To consider fused feedback pathways, we extended the
neuromuscular feedback model by a linear combination of
muscle force (FFB), fibre length (LFB) and fibre velocity feedback
(VFB) pathways (Figure 2). All three afferent pathway signals
are multiplied by a blending factor λi weighting the individual

pathways resulting in the summation signal S(t) (Equation 7)
where Gi, Fmax, Loff and Voff denote the individual gains,
maximum isometric force and offsets of length and velocity
pathways, respectively. By restricting the sum of all blending
factors (Equation 8), one weight can always be calculated from
the other two (Seyfarth et al., 2001).

S(t) = λF ∗ GF ∗ FCE/Fmax

+λL ∗ GL ∗ (lCE − Loff )

+λV ∗ GV ∗ (vCE − Voff )

(7)

λF + λL + λV = 1, 0 ≤ λF,L,V ≤ 1 (8)

This normalizes the blending of individual contributions and
reduces the dimensionality by projection onto a two-dimensional
space (of independent blending factors). Triangles visualize
all possible (projected) feedback compositions (Figure 3). The
corners of the triangle represent the isolated individual
feedback pathways (purely FFB, LFB, or VFB). Every point
within the triangle represents a blending of the individual
feedback pathways and refers to two-dimensional Cartesian
coordinates (space V , x, and y between 0 and 1). The
projection to the blending factors (space W) is described
by: f :V → W (Equation 9). Hence, the larger the
distance of a point to a corner (e.g., VFB) the smaller is
the contribution of that specific feedback pathway in the
blended signal S(t). Individual feedback pathways in isolation
(corners) are parameterized by optimization (see section
2.3).

f =

{

x → λL 0 ≤ x ≤ 1

y → λF 0 ≤ y ≤ 1
(9)

After blending, the proprioceptive signal (S(t)) is delayed by
1S, gained by G and added to the stimulation bias (PreStim)
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FIGURE 2 | Neuromuscular reflex model which fuses Ia afferent signals (lCE , vCE and offsets Loff , Voff ) and normalized Ib afferent (FCE ) pathways: All three sensory

signals are gained (GL, GV , GF ≥ 0) and weighted (λi ). The resulting summation signal S(t) is then delayed (1S) and gained (G ≥ 0). This signal is then added to a

constant pre-stimulation value to mimic a positive excitatoric postsynaptic potential at the α-motoneuron. The stimulation signal STIM(t) is confined to values between

0 and 1 and delayed by the excitation-contraction-coupling (ECC) resulting in the activation signal ACT(t) of the CE.
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FIGURE 3 | Schematic explanation of sensory pathway blending through

parameter reduction (Equation 8). Corners of the triangle represent a full

contribution of one single feedback (e.g., 0% VFB, 0% FFB, 100% LFB). Every

point within the triangle (coordinates x and y) represents a unique combination

of the three feedback pathways. Arrows (thick) and contour lines (thin) explain

the blending of feedback pathways. The larger the distance of a point to a

corner (e.g., LFB) the smaller the contribution of that feedback pathway in the

blended signal. Exemplary, the middle point describes an equal composition of

all feedback pathways (1/3 VFB, 1/3 FFB, 1/3 LFB). Optimal tuning of the

individual feedback pathways is done by optimization for full contribution of

only one sensory reflex (corners). These optimal reflex pathways are used for

all compositions (see section 2.3). The blue circles (S1(F ) to S7(F, L,V )) denote
the specific compositions of feedback pathways used for the sensitivity

analysis (see section 2.3.8).

(Equation 10). Then, this signal is confined to values between
0 and 1 and input into the excitation-contraction-coupling
(Equation 11) described by a first-order differential equation

resulting in the activation signal ACT(t) (Geyer et al., 2003;
Haeufle et al., 2012).

STIM(t) =

{

PreStim t < 1S

PreStim+ G ∗ S(t − 1S) t ≥ 1S
(10)

τ
dACT(t)

dt
= STIM(t)− ACT(t) (11)

2.3. Model Parameter and Optimization
2.3.1. Model Parameters
Parameters of the mechanical model (Table 1) were taken from
Geyer et al. (2003). The initial position of the point mass was set
to 1.05 m and its initial velocity to 0 m/s.

2.3.2. Optimization of Feedback Parameters
To identify feedback parameters of the extended neuromuscular
model (optimal tuning part in Figure 2), a pattern search
optimization algorithm was used (Torczon, 1997). The pattern
search algorithm was implemented to search for parameters sets
that result in stable hopping patterns (more than n = 50 steps,
first criterion). As second optimization criterion, the maximum
height of the body mass hmax = ymax,apex for steady-state
hopping (n = 49 step) was chosen. Simulations were checked
for steady-state motion. Optimizations of all individual feedback
pathways (in isolation) were done for “stiff tendon” and “rigid
ground” and repeated five times each with random starting points
to avoid finding local maxima. The limits of parameter values
were 0.1 ≤ GF ≤ 3 (FFB), 0.1 ≤ GL ≤ 200 and 0 ≤ Loff ≤ 3
(LFB) as well as 0.1 ≤ GV ≤ 3 and−1 ≤ Voff ≤ 0 (VFB) aligned
to results from Geyer et al. (2003). The best performing solution
was used for further simulation and analysis.

2.3.3. Simulation and Optimization Environment
Simulations and optimizations were implemented in Matlab
Simulink (release 2016b, Mathworks, Natick, Massachusetts,
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TABLE 1 | Parameters of the hopping model taken from Geyer et al. (2003).

Parameter Value Unit

Body mass m 80 [kg]

Gravitational constant g 9.81 [m/s2]

Initial body mass height y0 1.05 [m]

Flight leg length lf 0.99 [m]

Segment length lS 0.5 [m]

Knee lever arm d 0.04 [m]

MTC reference length lMTC,ref 0.5 [m]

Reference knee angle ϕref 110 [◦]

Maximum isometric force Fmax 22,000 [N]

Optimum length of CE lopt 0.1 [m]

Curvature constant of fl c 0.05 [ ]

Width w 0.4 [ ]

Maximum shortening velocity vmax –12 [m/s]

Eccentric force enhancement N 1.5 [ ]

Curvature constant of fv K 5 [ ]

SE rest length lSE,rest 0.4 [m]

“Stiff” reference strain of SE εstiff 0.01 [ ]

“Moderate” reference strain of SE εmoderate 0.03 [ ]

“Compliant” reference strain of SE εcompliant 0.05 [ ]

“Heavy” body mass mheavy 96 [kg]

“Moderate” body mass mmoderate 80 [kg]

“Light” body mass mlight 64 [kg]

“Long” segment length lS,long 0.6 [m]

“Moderate” segment length lS,moderate 0.5 [m]

“Short” segment length lS,short 0.4 [m]

“Stiff” ground stiffness kstiff 9,999 [kN/m]

“Moderate” ground stiffness kmoderate 500 [kN/m]

“Compliant” ground stiffness kcompliant 100 [kN/m]

Excitation-contraction time constant τ 0.01 [s]

Feedback signal time delay 1S 0.015 [s]

USA). For the simulations, the variable-step solver “ode45” with
relative and absolute tolerances of 10−8 was used. Optimization
was done using the Global Optimization Toolbox (Version 3.4.1).

2.3.4. Tendon Elasticity Changes
To change the SE elasticity, three configurations for the reference
strain were used: (1) “stiff tendon” (εstiff = 0.01), (2) “moderate
tendon” (εmoderate = 0.03), and (3) “compliant tendon”
(εcompliant = 0.05). For equal forces, smaller reference strain
values indicated less associated stretch and thus a stiffer length-
force dependency of the SE. These SE elasticity levels are in
a range used by other simulation studies (Pandy et al., 1990;
Bobbert, 2001; Nagano et al., 2004).

2.3.5. Body Mass Changes
The body mass of the model (m) was varied to 80 and 120% of
the original body mass (80 kg): (1) “light mass” (mlight = 64 kg),
(2) “moderate mass” (mmoderate = 80 kg), and (3) “heavy mass”
(mcompliant = 96 kg).

2.3.6. Segment Length Changes
The leg geometry was altered by changing the length of both
segments (lS) to 80 and 120% of the original segment length
(0.5 m): (1) “short segments” (lS,short = 0.4m), (2) “moderate

segments” (lS,moderate = 0.5m), and (3) “long segments” (lS,long =
0.6m). To keep the take-off conditions and energy level of
the system consistent for all segment length configurations,
the initial body mass height (y0 = 2 ∗ lS + 0.05m) and
the flight leg length (lf = 2 ∗ lS − 0.01m) were adjusted
accordingly.

2.3.7. Ground Compliance Changes
To modulate the vertical ground stiffness, the model was slightly
adapted. During stance, a linear spring constant (kground) and the
leg force or vertical ground reaction force (Fleg) define the foot
position (yFP):

yFP(Fleg) =

{

yCOM − lf during flight

− Fleg
kground

during stance
(12)

The foot position during stance can only reach values ≤ 0
because the take-off condition is met for vanishing leg
force (Fleg < 0). To change the ground compliance,
three configurations for the spring constant were chosen:
(1) “compliant ground” (kcompliant = 100 kN/m), (2) “moderate
ground” (kmoderate = 500 kN/m), and (3) “stiff ground” (kstiff =
9, 999 kN/m). These ground stiffness values are in a range
used by other computational or experimental studies (Farley
et al. (1998): 20–35,000 kN/m, Moritz and Farley (2004): 27–
411 kN/m, van der Krogt et al. (2009): 75–3,100 kN/m).

2.3.8. Sensitivity Analysis
To evaluate the performance of the model for different parameter
settings, we analyzed its parametric sensitivity. We randomly
altered feedback parameters (GF , GL, Loff , GV , Voff , PreStim, 1S)
as well as model parameters (εref , lS,m). Physiological parameters
were normally distributed (lS: µ = 0.5 m, σ 2 = 0.02 m;
m: µ = 80 kg, σ 2 = 5 kg) whereas other parameters were
uniformly distributed (1 ≤ GF ≤ 5; 100 ≤ GL ≤ 160; 0.06m
≤ Loff ≤ 0.1m; 1 ≤ GV ≤ 5; −1 m/s ≤ Voff ≤ 0 m/s;
0.01 ≤ PreStim ≤ 0.2; 0.01 s ≤ 1S ≤ 0.05 s; 0.01 ≤ εref ≤
0.05). For the sensitivity analysis, the ground stiffness remained
unchanged (no compliance). Because parametric influences differ
depending on the feedback blending, we considered seven reflex
pathway compositions for our sensitivity analysis. Figure 3 shows
the location of these seven compositions (S1(F) to S7(F, L,V)).
For each composition, n = 1,000 simulations with randomized
parameters were performed. Maximum hopping height (1hmax)
and hopping efficiency (η) were calculated as performance
measures (see section 2.4.2). The sensitivity of these variables
was further tested with SPSS 24.0. (IBM Corporation, Armonk,
New York, USA). Spearman’s rho correlation coefficients (r) with
significance values (two-sided test) and standardized regression
coefficients (β) were calculated for simulations that resulted in
stable hopping. Correlations were considered to be moderate for
0.5 ≤ r < 0.7 (−0.5 ≥ r > −0.7) or high for r ≥ 0.7 (r ≤ −0.7)
if p-values were significant (p < 0.01).

2.4. Performance Metrics
Depending on the force generated during stance, the predicted
motion will result in continuous and stable hopping or in a
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bound motion (leg remains in contact to the ground) where
the model lands but does not lift off. In case of hopping,
the blending compositions were evaluated by calculating the
following metrics.

2.4.1. Stability Criterion
To determine if the extended neuromuscular reflex model will
result in stable hopping or bound motion, we examined the
number of steps to fall, and simulations resulting in at least 50
steps were considered stable.

2.4.2. Hopping Metrics
The following criteria were used to evaluate the performance
of the hopping model with respect to energetics and motion
dynamics for the last step (n= 49) of the simulation. Simulations
were checked for steady-state motion.

1. The model generates a motion performance or a mechanical
output during hopping defined as the steady-state vertical
hopping height of the body mass (1hmax = yapex − lf ) at the
instance of apex (vy,apex = 0). During flight, the system energy
is equivalent to the potential energy at the apex: Esystem =
m g hmax.

2. To describe the hopping motion we calculated the hopping
frequency (fhop) and the effective stiffness of the leg kleg =
Fleg,max/1lleg,max.

3. Because the tendon andmuscle share the same force (Equation
2), knowledge about the relative work generation (and length
deflection) of the CE and the MTC is of interest. Hence,
we calculated the maximum amount of work generated by
the CE (WCE,max) relative to its equivalent of the whole
MTC (WMTC,max) that was then simplified to the ratio of
the maximum deflection of both elements with respect to the
elements’ rest lengths:

α =
WCE,max

WMTC,max
=

FMTC,max ∗ 1lCE,max

FMTC,max ∗ 1lMTC,max
=

1lCE,max

1lMTC,max

(13)

This factor describes the maximum amount of work produced
in the muscular element relative to the overall maximum
contribution of the MTC.

4. To evaluate the metabolic effort of the CE, we used
the velocity-dependent metabolic cost model by Minetti
and Alexander (1997) and Robertson and Sawicki (2014)
favoring eccentric contractions with reduced metabolic effort
(Equation 15). This is scaled by the activation signal during
ground contact (ACT(t)), maximum isometric Force (Fmax)
and maximum shortening velocity (vmax) to calculate the
metabolic rate (Meff (t)) (Krishnaswamy et al., 2011; Robertson
and Sawicki, 2014):

Meff (t) = 8(vCE) ∗ ACT(t) ∗ | Fmax ∗ vmax | (14)

8(vCE) =

{

0.23− 0.16 ∗ e(−8∗ vCE
vmax

) vCE ≥ 0

0.01− 0.11 ∗ vCE
vmax

+ 0.06 ∗ e(8 ∗ vCE
vmax

) vCE < 0

(15)

TABLE 2 | Optimization results of individual feedback parameters (y0 = 1.05m,

G = 1, PreStim = 0.01, εstiff = 0.01, rigid ground).

Parameter Force

feedback (FFB)

Length

feedback (LFB)

Velocity

feedback (VFB)

Individual gain GF = 2.6 GL = 130 GV = 2.9

Individual offset − Loff = 0.08 Voff = −0.6

Maximum hopping height

1hmax

0.126m 0.063m 0.002m

We derived the averaged metabolic effort (Meff ) per hopping
cycle by an integration of the metabolic rate (Meff (t)) during
ground contact and a normalisation with the body mass (m)
and the contact time (Tcontact) (Robertson and Sawicki, 2014):

Meff =
∫ Tcontact

0
Meff (t) dt/(m ∗ Tcontact) (16)

5. Hopping efficiency was quantified as the ratio of hopping
height (1hmax) (output) to averaged metabolic effort of the

CE (input): η = 1hmax

Meff
.

3. RESULTS

3.1. Individual Hopping Patterns
The optimization of the individual feedback pathways (with
εstiff = 0.01) resulted in neuromuscular model parameters
that produced a maximum hopping height for stable hopping
patterns (Table 2). For these feedback parameters, FFB was the
best performing optimization with a hopping height of 0.126 m.
The maximum hopping height of LFB was 0.063 m. VFB did
not produce a high performance with a maximum hopping
height of 0.002 m just above the flight leg length. The predicted
leg forces and activation signals are shown in Figure 4. The
activation profile and subsequently the leg force profiles of FFB
showed an increasing amplification. Compared to leg forces of
FFB, LFB produced higher peak leg forces but shorter contact
times. The rise of the LFB activation signal was delayed to
the instance of touch-down by about 50 ms. Here, the length
offset Loff suppressed the early activation signal (also reported
by Geyer et al., 2003). VFB produced half the leg force and half
the contact time compared to FFB and LFB reflected in the small
hopping height (0.002 m). While FFB and LFB showed delayed
increase in the leg force (more than 50 ms after touch-down), the
VFB caused an almost instantaneous response in the activation
signal resulting in high (eccentric) force generation and thus
high energy losses during leg compression. The CE remained less
stretched and started to shorten before reaching optimal fibre
length (fl < 0.2) limiting positive (concentric) muscle work
during leg extension.

3.2. Sensor-Motor Maps
The following section describes the results of the blended
feedback pathways and the Sensor-motor maps for different
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FIGURE 4 | Leg forces and activation signals during one stance phase for optimized feedback parameters of individual pathways (y0 = 1.05m, G = 1,

PreStim = 0.01, εstiff = 0.01, rigid ground): (A) force feedback (GF = 2.6), (B) length feedback (GL = 130, Loff = 0.08) and (C) velocity feedback (GV = 2.9,

Voff = −0.6). Maximum hopping heights are 1hmax = 0.126m (FFB), 1hmax = 0.063m (LFB) and 1hmax = 0.002m (VFB).

motion characteristics (e.g., hopping stability, performance and
efficiency).

3.2.1. Hopping Stability
The blended feedback pathways produced both stable and
unstable motions (Figure 5A). Motions of stable hopping (more
than 50 hops) were found for compositions of FFB and LFB with
small proportions of VFB. Here, a balanced composition of FFB
and LFB resulted in greater stability (with respect to higher VFB
proportion) compared to predominant FFB. A thin envelope of
transitions (between 1 and 49 steps) was observed representing a
distinct margin of stable and unstable areas.

3.2.2. Hopping Performance
The performance map (Figure 5B) shows the maximum hopping
height (1hmax) for all feedback compositions of steady-state
motions where only stable predictions were considered. The
contours show greater hopping heights for smaller proportions
of VFB. In areas close to unstable solutions, the maximum
hopping height (maximum vertical displacement of COM) was
just above the leg length leading to smooth transitions from
unstable (no hopping) to slight hopping patterns. Thus, the
energy level of the system (Esystem) gradually increased when
VFB was reduced. Compared to LFB, high proportions of FFB
performed better, and higher hopping heights occurred closer
to pure FFB. A composition of FFB and LFB (but not VFB)
produced maximum performance (see red point in Figure 5B).
Although, compared to individual contributions (e.g., pure
FFB or LFB) hopping performance was amplified by blending
multiple sensory pathways, the pathway-specific feature enabling
motion performance (Geyer et al., 2003) was found for dominant
FFB.

3.2.3. Hopping Efficiency
To identify feedback compositions resulting in hopping patterns
that required less metabolic resources than others, the energetic

relation of output and input: η = 1hmax

Meff
was used. In the

topology of the efficiency map (Figure 5C), efficient motions

were predicted in areas with dominant LFB and only small
proportions of VFB (below 0.2), and a small band of efficient
hopping patterns evolved. The spectrum of this band ranged
from small proportions of FFB to pure LFB and gradually spread
toward pure LFB. Themost efficient feedback blending was found
for a combination of small FFB, dominant LFB and no proportion
of VFB (see maximum). Because VFB resulted in lower hopping
heights (Figure 5B), VFB also reduced the hopping efficiency (η).
Moreover, only moderate hopping heights led to most efficient
hopping (Figure 5C). For the used metabolic model, hopping
efficiency increased if the amount of positive work used for
propulsion (and consequently hopping height) was reduced.
Higher proportions of LFB led to lower force (and also work)
production during late stance caused by a reduced activation
signal in late stance due to the length offset (Figure 4B). In areas
of higher hopping heights (dominant FFB and minor VFB), the
metabolic model predicted a high metabolic effort leading to
low efficiency values. As observed for hopping performance, the
most efficient hopping pattern was found for a fusion of sensory
pathways.

3.2.4. Hopping Motion
To evaluate and compare the predicted hopping motions
with human hopping data (where possible), we calculated
biomechanical parameters of the motions. Hopping frequencies
ranged from 1.5 to 3.0 Hz (Figure 6A). Higher frequencies were
found for higher VFB and hence in areas of smaller hopping
heights (Figure 5B). The effective leg stiffness of our hopping
model ranged from 15 to 30 kN/m (Figure 6B). This parameter
depended mostly on the relation of VFB and LFB but was slightly
influenced by increases in FFB (see vertical contour lines). Thus,
the model produced motions of the best performing and most
efficient compositions at small hopping frequencies (around
1.5 Hz) and low leg stiffness (around 15 kN/m).

3.3. Robustness of Sensor-Motor Maps
To explore the robustness of the sensor-motor maps, the
effects of parameter variations of the model configuration
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(tendon elasticity εref , body mass m, segment lengths lS) and
the environment (ground compliance kground) were analyzed.
Moreover, we investigated the parametric sensitivity of the model
to variations of feedback and model parameters.

3.3.1. Tendon Elasticity Changes
The three performance maps of altered elasticity of the serial
elastic element showed only slight differences (Figure 7A). For

all three tendon elasticity configurations, the size and location of
stable hopping patterns were consistent, and smooth transitions
from unstable to stable hopping patterns (with only small
hopping heights) were predicted. While the topology of the
performancemaps remained similar (compared to the “moderate
tendon”), the level of the predicted hopping height changed.
The greatest hopping heights were found for a more compliant
tendon and gradually decreased for stiffer configurations.
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Maximum hopping heights for each configuration ranged from
0.18 m (“compliant tendon”) to 0.15 m (“moderate tendon”) to
0.13 m (“stiff tendon”) and were found for consistent feedback
compositions. For the stiffest elasticity (εstiff = 0.01), a
second margin of stable solutions for high proportions of the
VFB evolved. However, these feedback compositions resulted in
hopping patterns just above the leg length (see also Figure 4C).

3.3.2. Body Mass Changes
For all body mass configurations, performance map regions of
stable hopping emerging for FFB and LFB remained similar
(Figure 7B). A reduction of the bodymass was predicted to result
in higher maximum hopping height while the blending location
of the most performant hopping patterns did not change. For
the light mass, stable hopping patterns were found for dominant
VFB.

3.3.3. Segment Length Changes
The sensor-motor map topology remained similar for changes in
the leg geometry (Figure 7C). Only for short segment lengths,
VFB resulted in stable hopping patterns (with small hopping
heights). Motions with the highest performance were found for a
consistent sensory pathway blending, and the performance level
increased with decreasing segment lengths.

3.3.4. Ground Compliance Changes
Similar to the other parameter variations, changes in
ground stiffness only minimally influenced regions of stable
solutions (Figure 7D). Steady-state hopping heights decreased
with increasing proportions of VFB (for all three ground
configurations). Thus, maximum hopping heights were found
for no proportions of VFB and dominant FFB, and decreased
with decreasing ground compliance. The location of the maxima
was consistent for different ground compliance and changes in
the other parameter variations. The topology of the performance
maps remained similar.

3.3.5. Sensitivity of the Model
We evaluated the sensitivity of specific model and feedback
parameters to predicted hopping performance (1hmax) and
hopping efficiency (η) for seven feedback compositions (S1(F)
to S7(F, L,V), Figure 3). Correlation coefficients (r), p-values
and the standardized regression coefficients (β) are shown in
Table 3. While pure VFB (S3(V)) did not generate any stable
hopping pattern, for FFB (S1(F)) and LFB (S2(L)) 958 out of
1,000 simulations resulted in stable hopping. For both individual
feedback pathways, hopping height was moderately influenced
by the feedback signal time delay (1S): β = 0.637 (r = 0.585,
p < 0.01, FFB) and β = 0.531 (r = 0.521, p < 0.01,
LFB). Also, moderate correlations between hopping efficiency
and reference strain (εref ) were found for FFB (β = 0.628,
r = 0.643, p < 0.01) and LFB (β = 0.431, r = 0.494, p < 0.01).
For all feedback compositions, the model was most sensitive to
the feedback signal time delay and the reference strain of the
serial elastic element. Other feedback parameters such as gains
(Gi), offsets (Loff , Voff ), the pre-stimulation bias (PreStim) or the
model parameters segment length (lS) and the body mass (m) did
not result in moderate or high correlations.

3.3.6. Muscle-Tendon Interaction
To further explore the robustness of the sensor-motor maps we
investigated the muscle-tendon interaction because the elasticity
of the SE also influenced the interplay of the CE and the SE.
The muscle interaction maps in Figure 8 show the calculated
index α for each tendon configuration describing the relation
of maximum work generated by the CE to the whole MTC.
While values of α were mostly determined by the relation
of VFB and LFB (see vertical contours), the map topologies
were only slightly influenced by changes in serial elasticity.
α values decreased with increasing tendon compliance, and α

values at the location of maximum hopping heights ranged
from 0.9 (“stiff tendon”) to 0.75 (“moderate tendon”) to 0.57
(“compliant tendon”). The related work loops show the detailed
interplay of CE and SE for simulations that predicted the highest
hopping heights (red points). At touch-down, the MTC was
stretched by a low force. The MTC generated forces (feedback
response) while being stretched (eccentric contraction) which led
to negative work loops. During leg extension, theMTC shortened
during force generation (concentric contraction) and produced a
positive work loop. More compliant tendon resulted in slightly
higher MTC deflections and less lengthening of the CE. Because
maximum MTC forces did not change with different elasticity,
a stiffer configuration caused less deflection and reduced the
energy recoil. The energy stored in the SE decreased from
728 J (“compliant tendon”) to 437 J (“moderate tendon”). For a
maximal hopping height of 0.13 m, the “stiff tendon” stored the
least amount of energy with 142 J.

4. DISCUSSION

This simulation study investigated the composition of afferent
feedback pathways for generating a repulsive leg response in
hopping. Therefore, a neuromuscular reflex model (Geyer et al.,
2003) was extended by blending length (LFB), force (FFB) and
velocity feedback pathways (VFB) of one anti-gravitational leg
extensor muscle. Sensor-motor maps were derived to evaluate
the predicted motion with respect to stability, performance and
efficiency. The topology of the sensor-motor maps was further
evaluated for different tendon elasticity, body mass, segment
lengths and ground compliances. Below, we first highlight the
key insights gained by our hopping model, which will then be
discussed in more detail.

1. Different feedback pathways had specific functional
contributions: Both FFB and LFB pathways enabled
hopping. FFB resulted in largest hopping heights, LFB
enhanced hopping efficiency (ratio of hopping height
to metabolic effort), and VFB had the ability to disable
hopping (also in combination with FFB and LFB). These
pathway-specific responses established sensor-motor maps
with function-selecting and -tuning pathways in hopping
(Figure 5).

2. For the tested case, the topology of these sensor-motor maps
as well as the location of functionally optimal compositions
was invariant to altered system designs (tendon elasticity,
body mass, segment lengths, Figures 7A–C) or environmental
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FIGURE 7 | Influence of parameter variations on performance maps: Maximum hopping height (1hmax ) for blended feedback signals

(y0 = 1.05m,G = 1,PreStim = 0.01). Global maxima are visualized by red points. Every point within the triangle represents a unique combination of the three

feedback pathways. The larger the distance of a point to a corner (e.g., LFB) the smaller the contribution of that feedback pathway in the blended signal (see Figure 3

for explanation of triangles). (A) Tendon elasticity changes: “compliant tendon” (εcompliant = 0.05), “moderate tendon” (εmoderate = 0.03), “stiff tendon” (εstiff = 0.01);

(B) body mass changes: “light mass” (mlight = 64 kg), “moderate mass” (mmoderate = 80 kg), “heavy mass” (mheavy = 96 kg); (C) segment length changes: “short

segments” (lS,short = 0.4 m), “moderate segments” (lS,moderate = 0.5 m), “long segments” (lS,long = 0.6 m); and (D) ground compliance changes: “compliant ground”

(kcompliant = 100 kN/m), “moderate ground” (kmoderate = 500 kN/m), “stiff ground“ (kstiff = 9, 999 kN/m).

changes (ground compliance, Figure 7D). Thus, in our model
the neuromuscular feedback system relied on a consistent
topology of feedback compositions.

The modeling framework presented here can be used to establish
relations to biomechanical (loco-)motion concepts (e.g., preflex
Loeb, 1995; Brown and Loeb, 2000) and template models
(Full and Koditschek, 1999) and to explore the capacity and

physiological limitations of the biological neuromuscular system
(Pearson et al., 2006), e.g., due to signal delays or muscle
dynamics. Moreover, neuromuscular simulation models can
be validated, improved and used for different applications,
for instance to derive model-based experimental designs for
investigating human or animal motor control. The results of our
study should be confirmed by experimental studies in biological
systems.
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TABLE 3 | Results of the sensitivity analysis.

Correlations r S1(F) S2(L) S4(F,L) S5(L,V) S6(F,V) S7(F,L,V)

(regression (n = 958) (n = 958) (n = 808) (n = 733) (n = 959) (n = 950)

coefficients β) 1hmax η 1hmax η 1hmax η 1hmax η 1hmax η 1hmax η

GF −0.083** −0.442** – – 0.115** 0.43 – – 0.037 −0.084** 0.100** −0.045

(−0.111) (-0.450) – – (0.127) (0.066) – – (0.120) (0.005) (0.154) (0.020)

GL – – 0.016 −0.031 −0.022 −0.011 0.040 0.110** – – 0.010 0.068*

– – (0.004) (−0.052) (−0.021) (−0.008) (0.016) (0.052) – – (0.007) (0.057)

Loff – – 0.198** 0.428** 0.350** 0.309** 0.097** 0.224** – – 0.138** 0.146**

– – (0.216) (0.396) (0.538) (0.447) (−0.157) (0.104) – – (0.116) (0.117)

GV – – – – – – 0.038 −0.304** −0.079* −0.246** −0.060 −0.384**

– – – – – – (0.083) (−0.314) (−0.078) (−0.234) (−0.086) (−0.414)

Voff – – – – – – 0.021 0.224** 0.007 −0.004 0.096** 0.050

– – – – – – (−0.088) (−0.014) (0.008) (0.009) (0.048) (0.002)

PreStim −0.483** −0.190** 0.198** −0.014 −0.046 −0.009 −0.028 −0.051 −0.036 −0.040 −0.006 −0.003

(-0.530) (-0.231) (−0.028) (−0.039) (−0.049) (−0.019) (0.0001) (−0.005) (−0.007) (−0.030) (−0.020) (−0.023)

1S 0.585** 0.442** 0.521** 0.325** 0.426** 0.233** 0.677** 0.569** 0.837** 0.707** 0.737** 0.523**

(0.637) (0.500) (0.531) (0.304) (0.624) (0.414) (0.740) (0.463) (0.843) (0.709) (0.731) (0.510)

εref 0.287** 0.643** 0.119** 0.494** 0.379** 0.670** 0.268** 0.528** 0.287** 0.504** 0.246** 0.510**

(0.338) (0.628) (0.084) (0.431) (0.429) (0.701) (0.238) (0.492) (0.306) (0.480) (0.264) (0.492)

lS 0.240 −0.010 0.023 −0.028 −0.22 −0.012 0.017 0.031 0.007 0.032 0.008 −0.003

(0.029) (−0.024) (0.026) (−0.005) (−0.008) (−0.008) (0.018) (0.004) (−0.018) (−0.006) (0.001) (0.025)

m −0.304** −0.014 −0.246** −0.123** −0.313** −0.196** −0.225** −0.092* −0.233** −0.140** −0.303** −0.105**

(−0.411) (−0.107) (−0.263) (−0.112) (−0.360) (−0.231) (−0.298) (−0.077) (−0.272) (−0.151) (−0.313) (−0.112)

*p < 0.05; **p < 0.01

For each specific composition, n depicts the number of stable simulations (max(n) = 1, 000). Correlations r (Spearman-Rho) and standardized regression coefficients β (in parentheses)
of predictors on the maximum hopping height (1hmax ) and the hopping efficiency (η). Composition S3 (V ) (pure VFB) did not result in any stable hopping simulations (n = 0). High
(r ≥ 0.7 or r ≤ −0.7) and very significant (p < 0.01) correlations are highlighted. (y0 = 1.05m, G = 1, PreStim = 0.01, εstiff = 0.03, rigid ground). *p < 0.05; **p < 0.01. The italic font
corresponds to the standartized regression coefficients, the bold font highlights high correlation and very significant results.

4.1. Different Feedback Pathways Have
Different Functional Contributions
We found pathway-specific features that resulted in different
characteristics of the hopping motion. Firstly, FFB was the
dominant feedback pathway to produce high hopping heights
and thus high hopping performance. Previous studies reported
that the combination of the muscle force-velocity-relationship
and positive force feedback (FFB) produced stable and high-
performing motions (Prochazka et al., 1997b,a; Geyer et al., 2003;
Haeufle et al., 2012). In contrast to a combination of the force-
length-relationship (fl) and negative LFB (which would result in
similar behavior compared to FFB Prochazka and Yakovenko,
2002), negative LFB did not provide self-stabilizing behavior
(Haeufle et al., 2010). An elastic structure or the fl helps to achieve
energy efficient and spring-like behavior, but does not generate
energetically stable hopping on its own (Haeufle et al., 2010).
However, experimental evidence for functional force feedback

of ankle extensor activity to generate a repulsive leg function
has been found for walking cats (Donelan and Pearson, 2004a,b)
and humans (Grey et al., 2007; af Klint et al., 2010), but may be
different for hopping motions.

Secondly, efficient hopping was found for areas of moderate
hopping height in which LFB is dominant. This occurred because
the feedback suppression of the length offset (e.g., through
fusimotor drive) reduced the positive work production of the
CE in late stance phase also reported by Geyer et al. (2003)
resulting in high metabolic effort. In our simulations, this
suppression could be used to fine-tune the hopping efficiency
by determining the length-dependent activation of the CE
during stretch-shortening cycle (SSC) (Gollhofer, 2003). This
influenced the force-lengthening characteristic of the MTC and
thus the energy recoil of the serial elastic element (with the used
tendon elasticity). Raburn et al. suggested that proprioceptive
information is used to adjust a periodic bouncing motion pattern
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FIGURE 8 | Left side: Influence of serial elasticity on muscle interaction maps: Maximum work ratio of CE to whole MTC (α) for blended feedback pathways

(y0 = 1.05m,G = 1,PreStim = 0.01, rigid ground). Global maxima of hopping heights are visualized by red points. Every point within the triangle represents a unique

combination of the three feedback pathways. The larger the distance of a point to a corner (e.g., LFB) the smaller the contribution of that feedback pathway in the

blended signal (see Figure 3 for explanation of triangles). (A) “Compliant tendon” (εcompliant = 0.05), (B) “moderate tendon” (εmoderate = 0.03) and (C) “stiff tendon”

(εstiff = 0.01). Right side: Influence of serial elasticity on individual work loops of CE (red), SE (black) and MTC (blue) for maximum hopping heights. Positive (energy

generation) and negative (energy dissipation) work loops are indicated by positive and negative signs.

to achieve energetically optimal patterns (Raburn et al., 2011). If
afferent pathways of muscle spindles are blocked by an ischemia
blockage, the patterns are less adapted (Raburn et al., 2011).
It was argued, that the observed effect was most likely caused
by an update of the internal model for planning the motion.
Nonetheless, implications of direct activation pattern changes as
considered in our model could not be ruled out (Dean, 2012). It
seems reasonable that reflex contribution directly influences the

SSC (e.g., through generating “muscular stiffness” Nichols and
Houk, 1976; Gollhofer, 2003) and thus the hopping efficiency
(Komi, 2003).

Surprisingly, blending dominant VFB and other feedback
pathways did not result in a higher performance, but lead to
substantial losses in hopping height resulting from an early rise
of the activation signal. Next to this extensive force generation
(during leg compression) the CE remained less stretched during
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stance (force-length-relationship below 0.2) leading to lower
push-off forces and hopping performance. This shift of the
CE operation point was also found in the simulation study by
Robertson and Sawicki (2014) where higher muscle stimulation
frequencies (earlier stimulation onset) and magnitudes resulted
in less CE lengthening. In our model, this effect was stronger
than the resultant performance increase associated with an
increased proportion of FFB. Thus, we found a function disabling
behavior for compositions with dominant VFB and small
feedback signal time delays. These results indicate that VFB
might function as the primary regulator of the system energy
in hopping complementing the previous suggestion that FFB
might be used to control the energy state of the system (Geyer
et al., 2003). McDonagh and Duncan (McDonagh and Duncan,
2002) provided evidence for the contribution of velocity-
sensitive afferent signals in their experimental study of landing
motions. Increased electromyographic (EMG) amplitudes of
gastrocnemius and rectus femoris muscles were found for
increased ankle and knee joint velocities at touchdown (due to
different landing heights) during false floor landings compared to
expected grounds (McDonagh and Duncan, 2002). For hopping,
it might be necessary to delay or inhibit the VFB for example
by presynaptic inhibition to functionally enable FFB or LFB
pathways. Such inhibition of VFB in hopping were indicated by
results by Voigt et al. (1998) who reported a negative correlation
between peak stretch velocity and EMG amplitude of the soleus
muscle. However, the disabling function of the VFB may not be
transferable to other motion tasks such as walking. Because such
feedback mechanisms are strongly task and phase dependent the
contribution of a feedback pathway may have opposite effects
for different motion tasks, e.g., in walking and standing (Pearson
and Collins, 1993; Donelan and Pearson, 2004b). In a biological
system this mechanism might be superimposed or modulated by
fusimotor action (Prochazka and Ellaway, 2012) or descending
signals (see section 4.3). Thus, further research is warranted to
identify the task-specific role of VFB in generating appropriate
leg extensor muscle activation in humans and animals.

4.2. Robustness of Sensor-Motor Maps
Regions of stable and unstable hopping motions were only
minimally influenced by the changes in tendon stiffness,
body mass, segment lengths and ground compliance. Stable
solutions for pure VFB were found for “light mass,” “short
segments” or “stiff tendon” and resulted in very low hopping
performance. This result is in agreement with previous studies
where VFB produced stable hopping only in the absence of
serial compliance (Geyer et al., 2003; Haeufle et al., 2012).
More compliance resulted—as expected—in greater hopping
heights and more efficient hopping patterns. Similar results were
found in experimental and computational studies (Anderson
and Pandy, 1993; Kubo et al., 1999; Bobbert, 2001; Nagano
et al., 2004). While the level of hopping height was influenced
by all altered configurations, the topology of these maps was
not affected. Interestingly, we found that for all parameter
variations a consistent pathway composition resulted in the
maximum hopping performance suggesting a unified sensor-
motor map topology with consistent optimal solutions. Apart

from this isolated observation, the (multidimensional) sensitivity
analysis also revealed only small to moderate dependencies of the
predicted hopping height and hopping efficiency for changes in
tendon elasticity, body mass or segment lengths.

Our results indicate that sensor-motor maps are robust against
these morphological changes. Previous studies showed that the
elastic leg function is highly determined by the interplay of
the compliant tendomuscular system and the neuronal control
system (Nichols and Houk, 1976; Lin and Crago, 2002; Gollhofer,
2003; Taube et al., 2012; Robertson and Sawicki, 2014). In
our simulations, a more compliant tendon was able to store
and release more energy during hopping agreeing with other
studies (Anderson and Pandy, 1993; Bobbert, 2001). Moreover,
the model predicted decreasing α values with increasing
tendon compliance (increased tendon lengthening) revealing
a compensatory behavior of the CE by stiffening (producing
equal forces with less deflection). Such behavior was observed
by experimental studies, where changes in ground stiffness lead
to adaptations of the leg stiffness, such that the total stiffness,
consisting of leg and ground, remains similar (Ferris and Farley,
1997; Moritz and Farley, 2004; van der Krogt et al., 2009).
A similar stiffness adaptation was found for hopping with a
passive ankle joint orthesis acting in parallel to the ankle (Ferris
et al., 2006). For our model, this effect may be accomplished
by the stabilizing function of the non-linear muscle properties
(van Soest and Bobbert, 1993; Moritz and Farley, 2004; van der
Krogt et al., 2009; Haeufle et al., 2010) as the feedback pathway
composition remained the same for all three conditions. These
“exploit mechanics” or “preflex” function (Loeb et al., 1999) may
serve as a selector (functional filter) to offer favorable solutions
for the neural motor control system (sensor-motor maps) that
allow to learn its simple (Loeb, 1995) and consistent topology.

4.3. Integration of Spinal Reflexes and
Feed-Forward Control
Although we did not consider supra-spinal motor commands,
we would like to reflect our results on their functional
integration with feed-forward commands. Our model suggests
that the neuromuscular feedback system alone could generate
appropriate adjustments of the muscle activation to permit a
fine-tuning of hopping motions. In addition to our results,
previous experimental studies revealed the importance of pre-
planned feed-forward commands in hopping and drop jumps.
Descending commands may contribute during the early contact
phase (Zuur et al., 2010) and toward push-off (Taube et al., 2008).
Accordingly, the EMG activity of ankle extensor muscles (such
as the soleus) was found to be pre-programmed and adjusted
dependent on the task (e.g., jumping or landing) (Leukel et al.,
2008a, 2012) and with respect to the timing of the touch-down
(Santello and McDonagh, 1998; McDonagh and Duncan, 2002).
Integrating feed-forward commands would certainly influence
the results presented in this study. For example, pre-planned
motor commands could compensate the repressive behavior
following dominant VFB. Such descending commands could be
superposed to our blended feedback signal (as PreStim in our
model) (Taube et al., 2012) or adapt and suppress the afferent
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gating (G in our model), for instance by presynaptic inhibition
(McDonagh and Duncan, 2002; Leukel et al., 2008b,a).

The motor control system is likely to rely more on afferent
feedback in the case of misplanned motions (if perturbations
occur) or if knowledge about the environment is uncertain
and planning is difficult (Donelan and Pearson, 2004b).
The contribution of afferent feedback pathways may increase
under these conditions (McDonagh and Duncan, 2002). A
function specific fine-tuning of hopping motions with respect to
different movement targets or cost functions (e.g., performance,
efficiency), as found for our model, would support the generation
of appropriate activation patterns in such conditions. Therefore,
supra-spinal centers might plan an appropriate blending of the
afferents (setting of λF,L,V ) before touch-down. For example,
in our model shifting from targeting hopping performance to
hopping efficiency could be moderated by fading from dominant
FFB to dominant LFB (see Video in Supplementary Material).
By comparing predicted and actual afferents (Wolpert et al.,
1995; McDonagh and Duncan, 2002), the overall feedback
gain (in our model G) might increase if deviations and errors
are detected. If so, the pre-setting of the afferent blending
permits a fast and function-oriented contribution (performance,
efficiency) of feedback responses. Another advantage would
be the reduced control effort due to the low-dimensionality
of the blending (setting of λF,L,V ). However, higher centers
must be able to learn such feedback blending even in the case
of sensorial and mechanical perturbations. Thus, in order to
be functionally useful, the solution space of possible feedback
compositions (as shown in the sensor-motor maps) must follow
a simple and consistent topology (Loeb, 1995). Indeed, we
found compact and robust topologies that were invariant to
changes of morphological design or environmental parameters
with respect to motion stability and optimal compositions.
Nonetheless, we can only derive hypotheses about a potential
integration of our feedback model and feed-forward commands.
The discussion presented here warrants validation and support
from experimental studies.

4.4. Comparison of the Model to Human
Hopping
The neuromechanical hopping model (with a reference strain
of εmoderate = 0.03, “moderate” mass, “moderate” segment
lengths and rigid ground) produced similar hopping motions
as those of human hopping. A high effective stiffness of the
leg was found for high hopping frequencies. While similar
results have been reported in experimental studies (Farley and
Morgenroth, 1999; Riese et al., 2013), other studies reported
higher leg stiffness values ranging from 30 to 55 kN/m (Farley
et al., 1991; Hobara et al., 2011; Kuitunen et al., 2011). However,
hopping frequency and leg stiffness were in reasonable ranges
and changed accordingly (Rapoport et al., 2003). Moreover,
our model predicted increasing hopping performance with
increasing tendon elasticity agreeing with results of experimental
studies (Kubo, 2005; Fukashiro et al., 2006) and other simulation
studies (Anderson and Pandy, 1993; Bobbert, 2001; Nagano et al.,
2004). Although this study utilises a highly simplified model

structure the model predicted the basic dynamics (e.g., hopping
frequency and leg stiffness) of human hopping. We thus consider
this model a valid simplification for the scope of this study.

4.5. Model Limitations
We chose a rather simplistic model to integrate multiple sensory
pathways at the elementary sensor-motor-level to determine
how individual reflex pathways of muscle force (FFB), fiber
length (LFB) and velocity (VFB) can support—in isolation and
in combination—the repulsive leg function during the stance
phase of hopping. By blending individual sensory pathways, we
investigated the capacity of the neuromuscular feedback system
to generate goal-directed motions. These simplifications may
have influenced our results.

We selected a bouncing task (one dimensional hopping) as
primary locomotor function. The functional contribution of the
different feedback pathways predicted for hopping will most
likely be different for other motion tasks. The hopping model
of Geyer et al. (2003) utilized one anti-gravitational leg extensor
muscle representing all involved muscles during the stance phase
of hopping. The foot segment and ankle joint were neglected
possibly influencing the overall leg stiffness of the model because
the ankle joint was found to be the main contributor for
leg stiffness modulations at higher hopping frequencies (above
2.2 Hz; Farley et al., 1998; Farley and Morgenroth, 1999; Hobara
et al., 2011). Nonetheless, the model of Geyer et al. (2003) and
our simulations generated biomechanically reasonable results.
In addition, we simplified the distributed mass of the human
body to a point mass neglecting the effects of wobbling masses
and their influence on impact dynamics (Seyfarth et al., 1999;
Schmitt and Günther, 2011). This helped to focus on the muscle-
tendon interaction and the functional contribution of different
feedback pathways. The model of the MTC did not consist of
a parallel elastic element that could (additionally to the SE)
store and release energy in SSC (Anderson and Pandy, 1993;
Lindstedt et al., 2002; Robertson and Sawicki, 2014) when the CE
is stretched beyond its optimal length (van Soest and Bobbert,
1993). However, in our simulations, the CE did not operate above
its optimal length. Hence, we argue that it is tenable to neglect
the parallel elastic element in this particular case. In addition,
jumping simulation models by Anderson and Pandy (1993) and
Seyfarth et al. (2000) showed only insignificant contribution
of the parallel elastic elements. Moreover, while in our study
damping within the MTC was neglected, a damping element has
also been found to be negligible for hopping (Rapoport et al.,
2003).

The used neuromuscular feedbackmodel is a highly simplified
representation of the complex biological network. Sensory signals
were handled as ideal, averaged and analogue physical quantities
without frequency modulation and sensory or signal noise. By
using simple delays, offsets and gains, we only considered a
highly simplified neural processing of themonosynaptic feedback
pathways. In particular, no time-variant feedback gains (Pearson,
1995; Pearson et al., 1998) or other sensory signals such as joint
position and velocity, mechanoreceptors or cutaneous receptors
were considered. Because we found moderate correlations for the
feedback time delay, feedback-specific delays (Prochazka et al.,
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1997b) will certainly influence the performance and efficiency of
the model. Possible causes of afferent gain changes as discussed
in Sreenivasa et al. (2015) were not investigated here. All these
factors were simplified and neglected for the sake of simplicity
and comprehensibility (Full and Koditschek, 1999; Brown and
Loeb, 2000; Pearson et al., 2006). For this study, it was important
to separate and isolate the pathway and task-specific effects in
the frame of the mechanical structure and muscle mechanics.
Previous studies of similar model complexity (Kuo, 2002; Geyer
et al., 2003; Haeufle et al., 2010, 2012) not only demonstrated
realistic motions but also elucidated the functional roles of
the different contributors of feedback, feed-forward or muscle
properties.

4.6. Outlook and Future Directions
Based on the results of this study, the robustness of the system
against mechanical or sensory perturbations can be investigated.
From a control point of view, combinations of multiple sensory
pathways or information channels about the system state will
result in more robust and more precise estimations of the
system state (Donelan and Pearson, 2004b; Green and Angelaki,
2010). Comparing effect sizes resulting from muscle properties
(Haeufle et al., 2010), feedback blending and an integration of
feed-forward controls (Kuo, 2002; Haeufle et al., 2012) is of
high interest. In a next step, we will expand our models to
other motions tasks (e.g., running and walking) and underlying
locomotor subfunctions (Sharbafi and Seyfarth, 2017) such as
swing and balancing (Seyfarth et al., 2012; Sharbafi et al.,
2017). For these scenarios, other feedback pathways, e.g., from
vestibular organs or as suggested by Song and Geyer (2015), may
be used to examine the generalisability of the sensor-motor maps.

Moreover, we would like to explore the use of this type of
neuromuscular model as non-invasive distinguishing tool for two
purposes: (1) to further explore the mechanisms and interactions
of mechanical, neuromuscular and sensory templates and
(2) for a model-based design of experimental protocols
and settings (e.g., perturbation profiles). While computational
modeling approaches help to investigate underlying principles
of locomotion, they could potentially help to predict the value
and usefulness of experimental settings. Such a model-based

identification of experimental settings might improve future
experimental designs.

5. CONCLUSION

The novel sensor-motor maps provide a tool for analysing human
(and animal) motor control strategies and investigating how the
biological neural control system recruits function-specific sensor-
motor pathways. The maps of muscle force, fibre length and
velocity pathways are predicted to be robust with respect to
changes in body and environment mechanics (e.g., compliance).

In addition to central (or spinal) pattern generators, muscle-
reflex based control circuits are able to generate adjustable cyclic
motions by exploiting the musculoskeletal dynamics and gravity.
We call these neuromechanical pattern generators (nmPG’s).
Accordingly, the sensory feedback pathways (e.g., positive force
feedback) operate as an antagonist system to the mechanics of the
body (muscles, segments) and gravity. The mechanical system is
consequently not only the target of (neuronal) control but at the
same time an essential part of pattern generating networks.
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While movement is essential to human wellbeing, we are still unable to reproduce the

deftness and robustness of human movement in automatons or completely restore

function to individuals with many types of motor impairment. To better understand how

the human nervous system plans and controls movements, neuromechanists employ

simple tasks such as upper extremity reaches and isometric force tasks. However, these

simple tasks rarely consider impacts and may not capture aspects of motor control that

arise from real-world complexity. Here we compared existing models of motor control

with the results of a periodic targeted impact task extended from Bernstein’s seminal

work: hammering a nail into wood. We recorded impact forces and kinematics from 10

subjects hammering at different frequencies and with hammers with different physical

properties (mass and face area). We found few statistical differences in most measures

between different types of hammer, demonstrating human robustness to minor changes

in dynamics. Because human motor control is thought to obey optimality principles,

we also developed a feedforward optimal simulation with a neuromechanically inspired

cost function that reproduces the experimental data. However, Fitts’ Law, which relates

movement time to distance traveled and target size, did not match our experimental

data. We therefore propose a new model in which the distance moved is a logarithmic

function of the time to move that yields better results (R2 ≥ 0.99 compared to R2 ≥ 0.88).

These results support the argument that humans control movement in an optimal way,

but suggest that Fitts’ Law may not generalize to periodic impact tasks.

Keywords: motor control, biomechanics, upper extremity, optimal control, arm movement, impact, Fitts’ Law

INTRODUCTION

Movement is essential to human wellbeing. However, the control of movement is a very difficult
problem. To produce deft and robust movements, the human nervous system must continuously
control over 600 muscles while handling nonlinearities, nonstationarities, delays, noise, and
uncertainties (Franklin andWolpert, 2011). Despite these difficulties, humans move with apparent
ease. However, human motor capability may become impaired due to age, illness, or injury.
Robotic systems are also faced with many of the same challenges (Egeland et al., 1991; Park, 2002;
Guigon et al., 2007; Peters et al., 2009), but meet with much less success than their healthy human
counterparts (Yang et al., 2011; Vanderborght et al., 2013). A better understanding of the roles that
the nervous and musculoskeletal systems play in producing movement will likely lead to advances
in rehabilitation and robotic control.

Many neuromechanists employ simple tasks to study the nervous system in action under
controlled conditions. Isometric tasks in which subjects interact with an immoble force sensor and
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reaching tasks in which the hand is moved from one
point to another are commonly used to study sensorimotor
learning (Rotella et al., 2015), movement control (Fitts, 1954),
and neurophysiology (Shadmehr and Krakauer, 2008) in the
upper extremity. Subjects may also be asked to interact with
robotic co-workers that can record reaching dynamics (Burdet
et al., 2001), generate disturbances, or create force fields
(Shadmehr and Mussa-Ivaldi, 1994) during these tasks. When
carefully considered, these experiments can provide a wealth of
information on how the nervous system controls movement.
However, these tasks are greatly simplified from real-world tasks.
To study more complex tasks, some researchers have developed
simple games, such as conkers, to study sensoriomotor learning
(Sternad et al., 2011). However, even these studies simplify real-
world tasks and rarely consider certain features of real-world
tasks such as impacts.

Despite many possible ways to performmost tasks (Bernstein,
1967), upper extremity movements are highly stereotyped.
Researchers note consistent characteristics such as bell-shaped
velocity curves (Hollerbach and Atkeson, 1987; Berardelli et al.,
1996) and speed-accuracy tradeoffs characterized by Fitts’ Law
(Fitts, 1954; Bootsma et al., 2004; Zhai et al., 2004). Fitts’ Law
expresses the time to complete a reach as a logarithmic function
of the size of the target and the distance to the target (see
Equation 1). In experiments relating to Fitts’ Law, the kinematics
(the beginning and final position of the arm or cursor) are
prescribed and the subject is left to determine the time to reach.
In certain periodic movements however, the time to complete an
upper extremity movement can be specified and the subject left
to determine the kinematics.

Movement is constantly refined by biological processes such as
learning and evolution (Todorov, 2004). Because of this constant
refinement, many researchers note that optimal control models
utilizing cost functions such as minimum variance (Harris and
Wolpert, 1998), minimum effort (Crowninshield and Brand,
1981), minimum jerk (Flash and Hogan, 1985), and minimum
torque change (Uno et al., 1989) can be excellent models for
the nervous system. In fact, many of the observed stereotypical
behaviors discussed in the previous paragraph can be explained
by optimality principles. Optimal control models have been used
to reproduce human-like behaviors such as reaches (Todorov
and Li, 2005), walking (Anderson and Pandy, 2001), and
jumps (Anderson and Pandy, 1999; Ong et al., 2016). Though
occasionally studied (Côté et al., 2008; Müller and Sternad, 2009),
one activity that remains conspicuously unmodeled is Bernstein’s
hammering task (Bernstein, 1967; Müller and Sternad, 2009) that
inspired much research into motor control and learning.

Here we extend Bernstein’s hammering task into a targeted
periodic impact task. We recorded impact forces and upper
extremity kinematics in hammering. In order to examine how
hammering strategies might change with different conditions,
we used a set of hammers with different physical properties
(hammer face area and mass) and prescribe different hammering
frequencies. We hypothesized that hammering impact velocity
and maximal height attained are the result of a tradeoff
between maximizing task performance (quantified here as a
maximal impact velocity) and minimizing effort (Crowninshield

and Brand, 1981; Nelson, 1983). In order to test whether
the mechanics of this task adhere to current theories in
optimal human motor control, we implemented a feedforward
optimal controller (Todorov, 2004) on a planar torque-driven
3-segment dynamical model of the upper extremity holding
a hammer (Figure 8) using model parameters from Winter
(2009). Our results show that humans appear to select optimal
impact velocities that reflect a tradeoff between accomplishing
the task and minimizing effort that do not adhere to
Fitts’ Law.

METHODS

Subjects
Ten healthy male volunteers (age = 27.6 ± 3.6 years, height
= 176.9 ± 5 cm, weight = 77.7 ± 11.2 kg) participated in
the study. All subjects were right-handed and had no known
neuromotor or sensory disorders (self-reported). Prior to their
participation, subjects were informed of the course of study
and gave their written informed consent in accordance with
the code for ethical conduct in research at the Swiss Federal
Institute of Technology (EPFL). This study was approved by
the EPFL Human Research Ethics Committee (HREC No.: 008-
2015/17.08.2015).

Experimental Protocol
Each subject was asked to step in front of a table on top of
which was a wooden board mounted on a force plate (Kistler
Instrument AG, Winterhur, Switzerland) as shown in Figure 1.
Subjects were given one of four differently sized and weighted
hammers (Table 1) and asked to drive a pre-started nail, i.e., a
nail that had previously been driven to the point at which it
would stand on its own, into the wooden board while matching
their hammer strikes to the clicks of a metronome. Please note
that subjects were not explicitly instructed to strike with their
maximum impact speed but were allowed to self-select the
best impact speed for their skill level. The metronome was set
to one of five frequencies: 1, 2, 3, 4, or 5 Hz. The hammer
used and metronome frequency for each trial were randomized.
Note that subjects were not allowed to do a training trial
first, but we assume that the random trial order cancels any
learning effects. Subjects were allowed to use their nondominant
hands to stabilize the wooden board. In each trial, the forces
on the wooden board and the kinematic motion (14 Prime
Series cameras, OptiTrac, USA) of the upper extremity and
hammer were recorded at 1 kHz and 250 Hz, respectively.
After completing the experimental trials, subjects were asked to
subjectively rank each of the hammers in order frommost to least
preferred.

Data Processing
Statistical analyses were performed using the Statistics and
Machine Learning Toolbox inMatlab.We calculated the hammer
velocity, average maximal heights of the hammer, average
times required for the hammer to go from maximal height to
impact, and average maximal impact forces during hammering
for each subject. We then used these average values from
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FIGURE 1 | Experimental setup of the study. Each subject was asked to stand

in front of a table on top of which a wooden board was placed on a force

plate. Subjects were given one of four differently sized and weighted hammers

at random and asked to drive a nail into the wooden board. The hammering

frequency was controlled by asking each subject to match their hammer

strikes with the clicks of a metronome. The forces on the wooden board were

recorded by the force plate and the kinematic motion of the subjects’ arms

and of the hammer were recorded using an optical motion capture system.

TABLE 1 | Specifications of the hammers used in these experiments.

Hammer Face size [cm × cm] Weight [kg]

Small heavy 1.4× 1.4 0.402

Small light 1.4× 1.4 0.218

Big heavy 2.2× 2.2 0.394

Big light 2.2× 2.2 0.217

each subject for statistical analyses. We investigated the effects
of time to impact, maximum height of the movement, and
maximal force normalized with the hammer weight using two-
way repeated-measures ANOVA with independent variables
[hammers(4)×(frequency(5)]. The effect of maximum height of
the movement, and maximal force normalized with the hammer
weight for each combination of hammers and frequency was
further determined using one-way repeated measures ANOVA.
The differences between maximal heights and the differences
between the normalized maximum forces at impact were
tested with post-hoc t-tests with Bonferroni correction. The
level of statistical significance used was 0.05 for all statistical
tests.

Modeling
In order to determine whether human hammering strategies
adhere to Fitts’ Law (Fitts, 1954; Bootsma et al., 2004; Zhai et al.,
2004), we attempted to fit Fitts’ model,

Tf = a+ b · log2(2D/W), (1)

with data collected in our experiment. In this formulation, the
movement time, Tf , is a function of the distance from the
hammer at peak height to the nail, D, and the face width of the
hammer, W. The values of a and b were selected using a least
squares difference regression.

In order to examine whether the human nervous system
uses optimality principles to control hammering movements,
we employed a feedforward optimal controller on two joints
(shoulder and elbow) while the wrist was maintained at a
desired position with an impedance controller. The human arm
holding a hammer was modeled as a 3 link torque-driven robot
operating in the saggital plane (Figure 8, right-hand column)
whose parameters were computed based on data from Winter
(2009) (see Appendix for more details) and whose dynamics are
given by

τ + J
T
Fe = H(q)q̈+ h(q, q̇)+ g, (2)

where τ is a vector of joint torques, q, q̇, and q̈ are vectors
describing the joint angular position, velocity, and acceleration
respectively, H(q) is the inertia matrix, h(q, q̇) consists of the
Coriolis, centrifugal, and viscous friction force vectors, g is the
gravity force vector, Fe is a vector representing external forces
(zero throughout the simulation), and J

T is the transpose of the
Jacobian matrix. The model was simulated inMatlab using a time
step of 0.001 s beginning at the instant after one impact and
terminating at the time of the next impact.

Human hammering is a difficult control task due to the need to
balance energy transfer to the nail with accuracy. We hypothesize
that the human nervous system determines an optimal tradeoff
between maximal impact velocity (complete the task in the most
effective manner) and minimal effort (Crowninshield and Brand,
1981; Nelson, 1983; Missenard and Fernandez, 2011). We thus
determine the optimal joint torques by minimizing the cost
function,

Cost = (1− α)

∑n
i=1

∑T
j=1 τ 2i,j

Cτmax

− α
yT−1 − yT

Cẏmax

, (3)

where τi,j represents joint torques for i = 1, . . . , n joints over
j = 1, . . . ,T discretized time points, yT and yT−1 are the vertical
positions of the hammer head at the last and second-to-last
time points of the simulation, 0 ≤ α ≤ 1 was designed as
an expertise factor to represent the tradeoff in relative emphasis
between impact velocity and effort (large α places more emphasis
on energy transfer to the nail and a small α places more emphasis
on effort conservation), Cτmax is a scaling factor representing
maximal effort (i.e., if maximal torque is applied for the duration
of the simulation), and Cẏmax is a scaling factor representing the
maximum achievable impact velocity. We compute Cτmax as the
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discrete integral of the joint torque limits (whichever direction
has the larger magnitude) over the length of the simulation and
Cẏmax by simulating a hammer trajectory in which α = 1 and
Cẏmax = 1. Because maximum effort and final velocity depend
on the length of the simulation, we computed unique values of
Cẏmax and Cτmax for each hammering frequency. We constrain
the model so that the hammer hits the same place in subsequent
impacts ((x0, y0) = (xT , yT)) and there is no initial velocity
((ẋ0, ẏ0) = (0, 0)). We match the initial posture (location of
(x0, y0) relative to the simulated shoulder) to the average posture
used by our subjects determined by inverse kinematics. The
terms, Cτmax and Cẏmax , are scaling factors included to facilitate
direct comparison of the two terms making up the cost function,
minimum effort and maximum final impact velocity. In order
to determine whether the parameter, α, is constant within or
across individuals, contours of constant α were generated and
compared with experimental results. The optimal joint torques
were determined using the interior point method implemented
with the Matlab Optimization Toolbox.

RESULTS

Experimental Results
Subjects were adept at matching hammering frequency withmost
of those dictated by the metronome. The hammering frequencies
achieved by the subjects for metronome frequencies 1, 2, 3, 4, and
5 Hz were 0.99± 0.01, 2.02± 0.01, 3.01± 0.03, 4.01± 0.01, and
4.71±0.04 Hz respectively (mean± standard error). Hammering
frequencies of 5 Hz were too fast for our subjects to reliably
match. A hammering frequency of 1 Hz was uncomfortably slow
for most subjects. To compensate, many subjects developed a
strategy of pausing after each impact before initating an up-
and-down hammering motion at a more comfortable frequency
(Figures 2, 3).

Vertical trajectories (Figure 2) and speeds (Figure 3)
exhibited by the subjects in hammering showed very few
differences between the different hammers. However, decreasing
the hammering frequency increased the variability in these
movements. Rather than the single bell-shaped speed profile
characteristic of reaching movements, subjects showed a
bell-shaped speed profile for raising the hammer and another
truncated bell-shaped speed profile for the descending motion
(Figure 3).

Analysis of variance showed significant effects of both
hammers [F(1.61, 14.5) = 4.95, p = 0.03] and frequencies
[F(1.14, 20.25) = 22.35, p < 0.01] on the time to impact
from maximum height. There was no significant interaction
[F(1.73, 16.05) = 2.56, p = 0.11] between the effects of hammers
and frequencies on the time to impact from maximum height.
The diagram in Figure 4 shows the means and standard errors
(SEM) of time to impact for all hammers and frequencies.

Analysis of variance showed significant effects of hammers
and frequencies on the normalized maximal heights. Significant
effects of both hammers [F(2.91, 26.2) = 22.8, p < 0.01],
frequencies [F(1.77, 15.99) = 53.09, p < 0.01] and interaction
between hammers and frequencies [F(4.14, 37.26) = 2.71, p =
0.04] were observed. Further analysis of the effects of hammers

on normalized maximal heights showed significant effects of
hammers [F(3, 27) = 6.46 − 11.08, p < 0.01] in all frequencies.
Post-hoc t-tests showed that Big Light and Small Heavy maximal
heights were statistically different from any of the others [t(9) =
2.97− 5.75, p < 0.01]. The diagram in Figure 5 shows the means
and standard errors (SEM) of normalized maximal heights for all
hammers and frequencies.

Similarly, analysis of variance showed significant effects of
hammers and frequencies on the impact forces normalized by
hammermass. Significant effects of both hammers [F(2.06, 23.42) =
32.07, p < 0.01], frequencies [F(1.34, 12.07) = 6.84], but
no significant effect of interaction between hammers and
frequencies [F(4.39, 39.55) = 0.69, p = 0.63] were observed.
Further analysis of the effects of hammers on the impact
forces normalized by hammer mass showed significant effects
of hammers [F(3, 27) = 11.8 − 17.97, p < 0.01] in all
frequencies. Post-hoc t-tests showed that Small Heavy was
statistically different than Small Light [t(9) = 4.71 − 5.65, p <

0.01] and Big Heavy [t(9) = 5.4 − 6.61, p < 0.01], and Big
Heavy was statistically different than Big Light [t(9) = 3.04 −
3.91, p < 0.01] for all frequencies. The diagram in Figure 6

shows the means and standard errors (SEM) of impact forces
normalized by hammer mass for all hammers and frequencies.
The number of impacts needed to totally drive in the nail under
each condition–a function of impact velocity–are reported in the
appendix (Table A2).

Modeling Results
Fitts’ Law accurately predicted the movement time from the
maximum height to impact (R2 ≥ 0.88). However, despite
the high value of R2, the accepted formulation for Fitts’ Law
does not appear to follow the contours of the experimental data
(Figure 7, light gray traces). Therefore, we propose a slightly
altered model that reverses the relationship between movement
time and distance to move and was able to improve upon Fitts’
predictions (R2 ≥ 0.99),

D = W/2
[

a+ b · log2(Tf )
]

, (4)

whereD is the maximal height of the hammer, Tf is the time from
the maximal height to impact in milliseconds,W is the minimum
width of the hammer face (our hammers were square, so both face
length and width were the same), and a and b are parameters fit
to the data using a least squares difference regression (Table 2).

The optimal feedforward model was able to accurately
reproduce the motions of the arm during hammering (Figures 2,
3, dashed lines, RMSE ≤ 0.1) using the cost function given by
Equation (3). This model allows for the generation of optimal
hammering trajectories by selecting just one parameter, α. This
model also shows that subjects use roughly the same value
of α for each hammer, despite the different properties of the
different hammers (Figures 2, 3, α values in each row are
very similar). The superpositioning of experimental data with
computed contours of constant α values (Figure 8) showed that
in practice subjects do not use a constant value of α for all
hammering frequencies, but rather emphasize lower effort at
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FIGURE 2 | Vertical movement for all hammers and frequencies. The normalized vertical position of the hammer head was plotted with respect to time. Solid lines

indicate the average trajectory while shading represents standard error. The black dashed line indicates the optimal behavior of the model using an estimated α

parameter for frequencies 1, 2, 3, 4, and 5 Hz. The root mean squared error (RMSE) of the model for each case has a root mean squared error of RMSE < 0.1.
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FIGURE 3 | Speeds for all hammers and frequencies. The speed (magnitude of the velocity vector) of the hammer head was plotted with respect to time. Solid lines

indicate the average speeds while shading represents standard deviation. The black dashed line indicates the optimal behavior of the model using an estimated α

parameter for frequencies 1, 2, 3, 4, and 5 Hz. The root mean squared error (RMSE) of the model for each case has a root mean squared error of RMSE < 0.1 m/s.
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FIGURE 4 | Means and standard errors (SEM) of time to impact for all

hammers and frequencies. The time from maximal height to impact was

statistically the same for all hammers at each hammering frequency despite

some statistically different maximal heights (Figure 5). The time to impact

decreases and becomes less variable as the hammering frequency increases.

FIGURE 5 | Means and standard errors (SEM) of the normalized maximal

height of all hammers and frequencies. The normalized vertical height of the

hammer head decreases as hammering frequency increases. Big Light and

Small Heavy maximal heights were statistically different from any of the others

(*p < 0.05).

slower hammering frequencies and energy transfer to the nail at
faster hammering frequencies.

The Big Heavy hammer was the most preferred hammer
followed by the Big Light, Small Heavy, and Small Light hammers
in that order based on subject ratings (Table 3).

FIGURE 6 | Means and standard errors (SEM) of the normalized maximal

impact forces for all hammers and frequencies. Impact forces normalized by

hammer mass varied between hammers. The heavy hammers generally had

lower impact forces per unit mass than the lighter hammers across hammering

frequencies. The Small Heavy hammer had the lowest normalized impact

forces across conditions. The Big Light hammer produced the highest

normalized impact forces, though the Big Heavy hammer produced the largest

absolute impact forces. The Small Light and Big Heavy hammers were similar

with statistical differences only found at 2 Hz (*p < 0.05).

FIGURE 7 | Relationship between time to impact and maximal height for all

four hammers. The average normalized height was plotted with respect to

average time to impact for each hammer. Fitts’ Law was fit to the experimental

data and overlayed on the experimental data (gray curves,

R2 ≥ 0.88,RMSE ≤ 0.24). Because Fitts’ Law appears to have opposite

curvature to the experimental data, a modified model was developed

(Equation 4) and overlayed on the experimental results (colored traces,

R2 ≥ 0.99,RMSE ≤ 0.02).
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TABLE 2 | Parameter estimations for Equation (4) and the original Fitts’ Law

Equation (1).

New model a b SSE RMSE R2

Small heavy −135 30.6 0.0005 0.015 0.99

Small light −150 34.5 0.0001 0.007 0.99

Big heavy −119 25.4 0.0012 0.020 0.99

Big light −103 24.4 0.0008 0.016 0.99

Fitts’ model a b SSE RMSE R2

Small heavy 223 100 776 16 0.93

Small light 201 99 871 17 0.92

Big heavy 226 118 1,350 21 0.93

Big light 197 117 1,841 24 0.88

DISCUSSION

The goal of this study was to examine the mechanics of a human
upper extremity impact task and determine whether existing
models of upper limb movement can explain the data. We found
that subjects plan optimal trajectories that are a tradeoff between
maximum impact velocity and minimal effort reminiscent of
Fitts’ Law and that are robust to different hammer conditions.
However, we found that an altered version of Fitts’ Law was
able to better match the data than the typical formulation. We
also found that end-effector speeds follow a “bell curve and a
half” trajectory in hammering in which the hammer head moves
upwards with a bell-shaped speed profile and then downwards
with a bell-shaped profile before being truncated before the
zenith of the curve (Figure 3).

Our analyses showed that Fitts’ Law can be applied to human
hammering (R2 ≥ 0.88). However, the large R2 values belie
an apparent discrepancy between the curves generated using
Fitts’ Law and the experimental results (Figure 7, gray lines).
Therefore, we identified a relationship between movement time
and target distance that better reproduces the experimental data
(Equation 4, R2 ≥ 0.99). In most Fitts’ Law experiments, subjects
are prescribed a reaching distance and are asked tomove as fast as
possible (Fitts, 1954). However, in our experiments, we constrain
permitted movement time using the metronome and subjects
were allowed to select the distance to reach. This difference may
account for the relative effectiveness of our inverted formulation
of Fitts’ Law. However, other previous studies have reported
violations of Fitts’ Law (Adam et al., 2006; Glazebrook et al.,
2015). Glazebrook et al. (2015) determined that these Fitts’ Law
violations are the result of pre-planning of movements. This
explanation is also certainly plausible in the context of a cyclical
task such as hammering. Finally, several studies have noted that
Fitts’ Law does not hold for movements in which subjects were
not asked tomove as quickly and as accurately as possible (Young
et al., 2009). We do not explicitly instruct our subjects to move as
quickly and accurately as possible. Instead, we instructed them
to accomplish a task that is directly dependent on the speed
of the movement and allow them to balance that movement
speed with their motor capability, which we believe to be an

approximation of the instructions to move as quickly and as
accurately as possible. In hammering frequencies above 1 Hz, the
computed values of α indicate that subjects weight movement
speed very highly (Figures 2, 3), and thus likely approach a fast-
as-possible movement for which Fitts’ Law is presumed to be
valid.

Our feedforward optimal hammering simulation was able
to reproduce many of the features of human hammering
(Figures 2, 3). Our simulations also allow us to show that
humans prefer to emphasize energy transfer to the nail (larger
values of α) when task constraints are high (high hammering
frequencies) and minimal efforts (smaller values of α) when
task constraints are low (low hammering frequencies; Figure 8).
Our cost function was formulated to minimize the sum squared
actuator effort, which serves to keep commanded joint torques
small. These small actuation signals prevent excessive energy
expenditure during the task (Crowninshield and Brand, 1981;
Missenard and Fernandez, 2011), but this quadratic formulation
might also serve to keep disturbances from motor noise whose
effects are multiplicative with actuator effort small (Harris and
Wolpert, 1998; Todorov and Li, 2005; Franklin and Wolpert,
2011). In this context, the adaptive prioritization that we
observed (changing values of α) might be due to fewer task
constraints permitting higher peak heights to be attained at slow
hammering frequencies, thus increasing the potential for errors
to accrue and increasing the relative importance of accuracy.
While the exact cost function used by the nervous system cannot
be known exactly, the current formulation reproduces many
of the features observed in the experimental results including
maximum heights attained, the general trajectories followed,
and the robustness to different hammers (similar values of α

for different hammers at the same hammering frequencies).
However, this model failed to capture the latency after impact
before initiating the upward movement of the hammer. This
discrepancy may be due to compliance in the musculoskeletal
system (e.g., series-elastic muscle-tendon units, Hill, 1938; Fung,
2013) that was not captured by our model.

Despite different hammer dynamics (Table 1), hammering
kinematics were fairly uniform across many different cases with
few statistical differences found between the different hammers
in the time from maximal height to impact, maximal hammer
height, and impact velocity. Previous studies have suggested
that the redundancy of the human musculoskeletal system
(Bernstein, 1967) may contribute to considerable robustness to
slight changes in dynamics (Martelli et al., 2015; Simpson et al.,
2015) or to dysfunction (Arnold et al., 2005; Hicks et al., 2008;
Correa et al., 2012; Steele et al., 2012). While these studies
rely on highly redundant lower body musculoskeletal models,
other studies examining less redundant body parts have shown
limited ability to compensate for dysfunction (Valero-Cuevas and
Hentz, 2002; Kutch and Valero-Cuevas, 2011). However, detailed
models of the upper extremity indicate muscular redundancy on
the same level as detailed models of the lower body (Table 4)
suggesting that similar robustness to perturbations might be
expected. The human nervous system may also select control
strategies that are purposefully robust (Mitrovic et al., 2010;
Franklin and Wolpert, 2011), but our formulation does not
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FIGURE 8 | Comparison between experimental results and constant contours of α. A map showing the maximal height attained and time to impact generated using

constant values of α (Equation 3) was overlayed on experimental results from two different hammers. Solid colored lines (yellow and orange) indicate mean

experimental results while dashed lines indicate the standard error. A direct comparison shows that subjects emphasize effort conservation (low values of α) at low

hammering frequencies (greater time between impacts) and energy transfer to the nail (high values of α) at high hammering frequencies (less time between impacts)

rather than a constant relationship for all hammering speeds. The plots on the right hand side show examples of arm trajectories using different values of α. The

specific values used are marked on the left hand plot by a white square, rhombus, and triangle for the top, middle, and bottom plots, respectively.

TABLE 3 | Results of subjects’ ranking of the hammers, e.g., S-H, Small Heavy;

S-L, Small Light; B-H, Big Heavy; and B-L, Big Light.

Ranking vs. Hammer S-H S-L B-H B-L

Best (10) 0 0 9 1

7 3 1 1 5

3 3 4 0 3

Worst (1) 4 5 0 1

Score 3.4 2.4 9.7 5.5

TABLE 4 | Musculoskeletal models used in examinations of robustness.

Body part Degrees of

freedom

Number of

muscles

References

Upper extremity 15 50 Holzbaur et al., 2005

Lower body 23 54+ Delp et al., 1990, 2007

Index finger 4 7 Kutch and Valero-Cuevas, 2011

Simple leg 3 14 Kutch and Valero-Cuevas, 2011

include any such criteria, suggesting that consistent movement
patterns across conditions might be due to embodied intelligence
(e.g., redundant actuators and compliance).

Stiffness, or impedance, is a crucial parameter modulated
by humans to stably interact with their environment (Burdet

et al., 2001; Franklin and Wolpert, 2011). Impedance is difficult
to record experimentally, but previous studies have attempted
to estimate joint stiffnesses based on muscle properties (Hu
et al., 2011), through simulation (Thelen et al., 2003), or by
experimentally recording endpoint stiffnesses (Burdet et al., 2000,
2001). Because of practical limitations, measurements of muscle
activity or impedance were not included in this study, but likely
play an important role in impact tasks and should be considered
in future works.

Despite the difficulty of controlling a highly nonlinear
plant using noisy control signals and noisy sensors with
variable delays in an uncertain environment, biological
movement appears to be highly robust. However, robustness
has not been well addressed in robot learning (Schaal and
Atkeson, 2010; Nguyen-Tuong and Peters, 2011) primarily
because it is difficult to design controllers that are robust
to the model structure or parameter errors. One possible
solution is to use control policies with optimization criteria
based on biological models. For example, the tradeoff
between maximizing task performance and accuracy could
potentially serve as an optimization criteria for robot
hammering.

In this paper, we have extracted the mechanics involved
in a targeted upper extremity impact task and demonstrated
that the human motor control strategies involved are robust
to many different conditions including hammer mass, hammer
face area, and timing constraints. We have shown that while
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many traditional models of human reaching hold for this novel
task (bell-shaped speed profiles and Fitts’ Law), an altered
version of Fitts’ Law can better match experimental results. We
have also demonstrated that optimality principles previously
demonstrated for reaching movements can be generalized
to targeted impact tasks and thus lay a framework that
can be used for the planning of targeted impact tasks in
robots.
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APPENDIX

Model Parameters
In this paper, we have modeled the human arm holding a
hammer as a torque driven 3 degree of freedom (DOF) robot
operating in the sagittal plane. Each DOF is driven by an
independently controlled torque generator capable of producing
both positive and negative torques. The robot parameters (link
lengths, center of mass locations, etc.) were computed based on
data from Winter (2009) using the mean height (176.9 cm) and

TABLE A1 | Parametes of the dynamical model.

Part Upper Arm Lower Arm Hand + Hammer

Link No. 1 2 3

Length 0.2794 0.2667 0.0855

Mass 2.0751 1.2225 0.4810

Center of mass location 0.1613 0.1220 0.0676

Inertia 0.0131 0.0067 0.0010

Note that all units are SI (m, kg). Note also that the center of mass location is relative to
the proximal end of the relevant link.

weight (77 kg) of subjects that participated in this study. The
hammers were simulated by adding the relevant mass to the end
effector. Parameters of the hammers are in Table 1. The robot
parameters are given in Table A1.

Hammer Hits
The table reports how many cycles were necessary to
totally drive in the nail with respect to the hammer and
frequency.

TABLE A2 | Number of impacts required to drive nail by hammer and frequency

(mean ± standard error).

Hammer

S-H S-L B-H B-L

Frequency 1 12 ± 5.114 9.9 ± 1.215 7.1 ± 1.663 8.5 ± 1.258

[Hz] 2 16 ± 3.303 12.2 ± 1.679 9.7 ± 2.285 13.4 ± 2.817

3 19.7 ± 4.6 14.4 ± 2.579 10.6 ± 1.655 14.4 ± 1.968

4 22 ± 3.48 19.5 ± 2.693 12.9 ± 2.089 14.1 ± 2.677

5 29.2 ± 6.2 23.8 ± 3.62 14.2 ± 2.732 20.2 ± 3.511
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Here we apply a control theoretic view of movement to the behavior of human locomotion

with the goal of using perturbations to learn about subtask control. Controlling one’s

speed and maintaining upright posture are two critical subtasks, or underlying functions,

of human locomotion. How the nervous system simultaneously controls these two

subtasks was investigated in this study. Continuous visual and mechanical perturbations

were applied concurrently to subjects (n = 20) as probes to investigate these two

subtasks during treadmill walking. Novel application of harmonic transfer function (HTF)

analysis to human motor behavior was used, and these HTFs were converted to the

time-domain based representation of phase-dependent impulse response functions

(φIRFs). These φIRFs were used to identify the mapping from perturbation inputs to

kinematic and electromyographic (EMG) outputs throughout the phases of the gait cycle.

Mechanical perturbations caused an initial, passive change in trunk orientation and, at

some phases of stimulus presentation, a corrective trunk EMG and orientation response.

Visual perturbations elicited a trunk EMG response prior to a trunk orientation response,

which was subsequently followed by an anterior-posterior displacement response. This

finding supports the notion that there is a temporal hierarchy of functional subtasks

during locomotion in which the control of upper-body posture precedes other subtasks.

Moreover, the novel analysis we apply has the potential to probe a broad range of

rhythmic behaviors to better understand their neural control.

Keywords: human locomotion, sensorimotor control, harmonic transfer functions, phase-dependent impulse

response functions, subtask control

INTRODUCTION

Treadmill walking is very useful to study the neural control of locomotion as it constrains
locomotive behavior, at a minimum, to two requirements. First, treadmill walking requires subjects
adjust their speed so that they do not fall off the front or back of the treadmill. Second, as in any
walking task unaided by weight support, subjects must maintain orientation relative to vertical and
not allow the proportionally massive trunk to topple over the legs. What is less clear is how the
nervous system simultaneously adjusts speed for maintaining position and trunk orientation for
upright posture, which is the focus of this study.

Here we use visual and mechanical perturbations, as both have been used separately to
successfully learn about subtasks during walking. Changes in virtual visual scene motion have been
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previously used to alter speed (Konczak, 1994), trunk orientation
to vertical (Logan et al., 2010), stride length (Prokop et al., 1997),
translation of the body on the treadmill (Warren et al., 1996;
Logan et al., 2010), speed of the walk-run transition (Mohler
et al., 2007) and its kinematic/energetic features (Guerin and
Bardy, 2008).

Mechanical perturbations during walking have also been used
to investigate many subtasks of walking. An early investigation by
Nashner made use of support surface perturbations to show that
stabilizing muscle activations during walking mimicked those
occurring during standing posture (Nashner, 1980), reflecting
postural control within locomotion. Further investigation into
postural control during walking revealed that subjects will first
stabilize posture prior to performing an additional, planned
lever pulling task (Nashner and Forssberg, 1986). Mechanical
perturbations have also been used to study the subtask of obstacle
avoidance/ accommodation during walking, and have revealed
an elevating or lowering strategy (Eng et al., 1994) or mixture
of the two (Forner Cordero et al., 2003) depending on phase of
the gait cycle. More recently, Ahn and Hogan (2012) used torque
perturbations at the ankle and found that the gait period will
entrain to the perturbation when advantageous for propulsion,
supporting a neuro-mechanical oscillator for propulsion control.
The authors interpreted these findings as a separation in control
of low level propulsion and higher level “episodic supervisory
control of a semi-autonomous periphery” when needed for cases,
such as irregular footholds or obstacle avoidance, compatible
with a subtask-dependent control scheme. In sum, visual and
mechanical perturbations have been previously used in isolation
to provide insight into human walking control.

Here we used simultaneous virtual scene motion and
distributed pulling at the back of the trunk to probe the
control of treadmill walking. Using the control theoretic view
of movement shown in Figure 1 (Kiemel et al., 2008, 2011;
Logan et al., 2010), we sought to perturb treadmill walking
at distinct points in the control loop to investigate whether
the nervous system changes the priority of different subtasks.
Our assumption is that scene motion in an immersive virtual
environment perturbs the sensorimotor feedback portion of the
control loop and a motor attached to the upper trunk through
a spring mechanically perturbs the musculoskeletal plant (see
Figure 1). The mechanical perturbation first moves the body,
which then elicits active (neurally-driven) electromyographic
(EMG) responses. In contrast, a visual perturbation first
elicits muscle activation, which then moves the body. Using
these perturbations simultaneously in this investigation is
a step toward understanding both the control problem
(musculoskeletal plant) that the nervous system faces and its
solution (neural feedback) during bipedal locomotion.

To do so we used small, continuous perturbations, which are
considered probes of the control structure and are less likely to
change the control structure (e.g., increased effective stiffness).
We sought to probe walking with perturbations that yield small,
significant deviations of response variables (kinematics, EMG)
from mean behavior for insight into the closed-loop control
system. Perturbations across gait cycle phases were used as the
effects of visual and mechanical perturbations during walking

FIGURE 1 | Control theoretic view of motor behavior. In this model, motor

behavior consists of two components: musculoskeletal plant and neural

feedback. The plant is composed of joint torques produced by musculotendon

dynamics and ensuing body dynamics, with muscle activity as precursor.

Feedback consists of those sensory signals arising from sensory systems,

which update the neural controller based on orientation and movements of the

body. Positions and velocities are estimated (state estimation), and appropriate

motor commands (control strategy) are specified in the feedback portion of the

control loop.

will, in general, depend on the phase of the gait cycle at which
they are applied (Nashner, 1980; Nashner and Forssberg, 1986;
Eng et al., 1994; Forner Cordero et al., 2003; Logan et al., 2014).
The effects of continuous perturbations on response variables
were characterized with a novel application of phase-dependent
impulse response functions (φIRFs, where we use “φ” to denote
phrase-dependence) to the study of humanwalking (Kiemel et al.,
2016, pre-print available at http://arxiv.org/abs/1607.01746). For
a linear time periodic (LTP) system with input u(t) and output
y(t), a φIRF h(tr, ts) describes the response at time tr to an impulse
applied at time ts (Möllerstedt and Bernhardsson, 2000). For a
nonlinear system with a stable limit cycle, a φIRF approximates
its response to any small transient perturbation:

y(tr) = y0(tr)+
tr
∫

−∞

h(tr, ts)u(ts)dts, (1)

where y0(tr) is the unperturbed periodic output.
The φIRF of an LTP system can be computed directly in

the time domain using ensemble methods for general linear
time-varying systems (Soechting et al., 1981; Lacquaniti et al.,
1982; MacNeil et al., 1992). Ludvig and Perreault (2012)
noted that these methods may require many experimental
trials (realizations) and proposed a more efficient method that
is applicable for an LTP system in which φIRF responses
decay quickly relative to the system’s cycle period. The
φIRF can be computed efficiently without this constraint by
first computing a harmonic transfer function (HTF) in the
frequency domain (Wereley and Hall, 1990) and then converting
the HTF to a φIRF in the time domain (Möllerstedt and
Bernhardsson, 2000). However, methods used to compute the
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φIRF of an LTP system are not necessarily valid for limit-
cycle systems, because perturbations can reset the phase of
the oscillator, violating the assumption of periodicity. Much
of the theory for LTP systems assumes that a transient
perturbation produces a transient response (Sandberg et al.,
2005), which is not true when the perturbation resets phase.
The novelty of the method used in this study is that it accounts
for phase resetting and, thus, can be applied to walking.
Our method is a modification of the HTF-to-φIRF method
for LTP systems and retains its advantage of experimental
efficiency.

As seen in Figure 2, presenting the data as the φIRF allows a
characterization of the input perturbation and output response
variable throughout the phases of the gait cycle with respect
to stimulus phase and normalized response time. Stimuli and
impulse response functions of hypothetical walking data at three
stimulus phases are observed in Figure 2A with corresponding
visualization as a φIRF in Figure 2B. The φIRF in Figure 2B

would quickly tell us in a single picture that perturbations
occurring solely during swing phase yield responses in the stance
phase of the following gait cycle. A φIRF describes the response
to a small brief discrete perturbation at any phase of the gait cycle.
However, it is methodologically inefficient to experimentally
use discrete perturbations to determine the φIRF (as in Logan
et al., 2014). Instead, responses to continuous perturbations are
analyzed in the frequency domain and then converted to the time
domain to compute the φIRF (see Methods and Kiemel et al.,
2016).

Working within the theoretical framework shown in
Figure 1, mechanical and sensory perturbations have been
successfully applied to non-parametrically identify both the
musculoskeletal plant (Kiemel et al., 2008) and the sensorimotor
feedback (Kiemel et al., 2011) portions of the control loop
during standing postural control. Here we attempt a similar
identification scheme aimed at walking while simultaneously
probing subtask control. Supported by the finding that postural
corrections are initiated prior to performance of an additional,
mechanically destabilizing task (Nashner and Forssberg, 1986),
we hypothesized that both perturbations would elicit a control
strategy that prioritized control of trunk orientation for staying
upright over adjustments in speed to maintain position on the
treadmill.

MATERIALS AND METHODS

Subjects
Twenty healthy subjects [8 males and 12 females, between
19 and 30 years. of age, 67.9 ± 12.9 kg (mean ± SD)]
participated in this study. All subjects were self-reported to
have normal (or corrected to normal) vision. The studies
conformed to the Declaration of Helsinki, and all participants
provided informed, written consent to the experimental
procedures detailed in this manuscript. These experimental
procedures and consent process were approved by the
Institutional Review Board of the University of Maryland,
College Park.

Apparatus
Virtual Reality Environment
Subjects walked at 5 km h−1 on a treadmill (Cybex Trotter 900T,
Cybex International, Inc., USA) surrounded by three screens
(width, 3.05 m; height, 2.44 m; Fakespace, USA), one in front of
the subject and one on either side. Subjects wore goggles with the
top shield occluded to prevent them from seeing motion capture
cameras mounted above the screen in front of them. Visual
displays were rear projected to the screens at a frame rate of
60Hz by JVC projectors (model DLA-M15U; Victor Company of
Japan). CaveLib software (Mechdyne, USA) was used to generate
a virtual moving visual scene consisting of three walls attached at
right angles that coincide with the screens when the visual scene
is not moving. Each wall consisted of 500 non-overlapping white
small triangles (3.4 × 3.4 × 3.0 cm) with random positions and
orientations on a black background. To reduce aliasing effects
in the fovea region, no triangles were displayed on the front
wall within a 30-cm-radius circular region directly in front of
the participant’s eyes. The display on each screen was varied in
time to simulate rotation of the visual scene about the medial-
lateral axis located at the subject’s ankle height at 1m from the
screen, assuming a fixed perspective point at the participant’s eye
height 1m from the screen. The signals specifying scene-rotation
angle were created offline (Matlab, Mathworks, USA) and were
generated via Labview (National Instruments, USA) on a desktop
computer (Precision T5500, Dell, USA).

Mechanical Perturbation
As seen in Figure 3, a weak continuous mechanical perturbation
was applied to the subject from behind as a spring with one end
attached to a modified trunk harness worn by the subject and the
other end attached to a linear motor (LX80L; Parker Hannifin
Corporation). The spring was attached in series with a 45.7 cm
rigid cable fixed to the back of the harness. The harness was
adjusted for each subject so that the point of attachment was at
mid-scapula height centered on the midline of the upper trunk.
The actual displacement of the motor in the anterior posterior
(A-P) direction, as indicated by a VICON reflectivemarker on the
motor, was used as the mechanical perturbation signal. The force
on the body was F(t) = k(u(t)− y(t)− u0), where k is the spring
constant, u(t) is the perturbation signal, y(t) is the A-P position
of the point on the body at which the perturbation is applied,
and u0 is a constant such that F(t) < 0 (force in the backward
direction) throughout each trial. We used a weak spring (k =
0.0175 N/mm) so that the effect of the mechanical perturbation
on gait kinematics and EMG signals would be small. Since k is
small, the φIRF for ourmechanical perturbation is approximately
equal to k times the φIRF that would be measured if, instead
of specifying motor position, we would have specified the force
applied to the body.

Perturbation Signals
Both visual and motor signals were filtered white noise signals.
For each trial of each subject and each perturbation type, a
different seed was used to generate a white noise signal using a
random number generator. To create a signal specifying the angle
of the visual scene, white noise with a one-sided spectral density
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FIGURE 2 | Visualization of the φIRF. Hypothetical responses to discrete perturbations applied at three stimulus phases and their corresponding impulse response

function (IRF) are presented in (A). A transfer of these discrete perturbation responses to a φIRF visualization in (B) allows observation of the input-output relationship

across stimulus phase and normalized response time (see Methods for details on computation of the φIRF using continuous perturbations). As in the experimental

data presented in this manuscript, normalized time in this hypothetical case is in gait cycle units. The gray horizontal bars below indicate stance phase with times of

double support indicated with a lighter shade.

FIGURE 3 | Experimental setup. Subjects walked on a treadmill located

within a three panel virtual “cave” providing rotating visual scene motion in the

sagittal plane. Subjects were also attached to a motor through a spring and

rigid cable in series.

of 150 deg2/Hz was filtered using a first-order low-pass filter with
a cutoff frequency of 0.02 Hz and a second-order Butterworth
low-pass filter with a cutoff frequency of 5 Hz. Across subjects,
these visual signals had an average root mean square (RMS)
value of 2.13 deg. In our analysis (described below), visual-scene
angular velocity was used as the perturbation signal. The RMS
velocity of visual signals, averaged across subjects, was 3.62 deg/s.
A positive/negative signal corresponded to a forward rotation
into the screen/backward rotation toward the subject.

To create a signal specifying the position of the motor, white
noise with a one-sided spectral density of 1.1 cm2/Hz was filtered
using an eighth-order Butterworth low-pass filter with a cutoff
frequency of 4 Hz. Across subjects, these driving signals had an
average RMS position of 1.30 cm and RMS velocity of 19.40 cm/s.
These parameters were used for the motor signal as a balance
between ensuring a flat power spectrum up to highest frequency
possible and staying within traveling distance and velocity limits
of the motor. Visual display generation, motor motion, and data
collection software were synchronized via an external trigger.
Furthermore, EMG data were synchronized in time with rest of
the experimental setup by correcting for a 48 ms group delay
occurring when analog output is used by TRIGNO (DELSYS,
USA) EMG system.

Kinematics
Body kinematics were measured using a 10 camera VICON-MX
motion analysis system (VICON, Inc, Oxford, UK). Reflective
markers (diameter, 1.4 cm) were placed on the right and left
sides of the body at external landmarks corresponding to: base
of the 5th metatarsal, posterior calcaneus (heel), lateral malleolus
(ankle), lateral femoral condyle (knee), greater trochanter (hip),
anterior superior iliac spine (ASIS), posterior superior iliac spine
(PSIS), iliac crest, superior acromion process (shoulder), mastoid
process (head) and frontal eminence (head). Additionally,
markers were placed at the medio-lateral center of the back of
the head and the midline of the spine at the level of C6, T10, and
L1 vertebrae. All markers were attached at the skin of these bony
prominences except those placed on the shoe at the 5thmetatarsal
and heel. All kinematic data were collected at 120Hz.
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Our analysis focuses on the trunk segment in the sagittal
plane as well as whole-body displacements in the A-P direction.
Trunk orientation relative to the vertical in the sagittal plane was
computed as the angle formed by the L1 to T1 markers. Whole-
body displacement in the A-P direction was measured as the
displacement of L1 in the A-P direction.

Muscle Activity (sEMG)
Muscular activity of the right leg and trunk was measured
using surface electromyographic (sEMG) recordings. Recordings
of the following 16 muscles were made: tibialis anterior,
gastrocnemius lateralis, gastrocnemius medialis, soleus, vastus
medialis, vastus lateralis, rectus femoris, tensor fascia latae, biceps
femoris, semitendinosus, gluteus maximus, gluteus medius,
rectus abdominus, lumbar erector spinae, thoracic erector spinae
(EST, recorded at T9), and posterior deltoid. Electrodes were
positioned at the muscle belly with placement carefully chosen
to minimize cross-talk (Cappellini et al., 2006). Recording sites
were shaved, lightly abraded, and cleaned with isopropyl alcohol
prior to electrode application. The sEMG data were recorded at
2160 Hz using the wireless TRIGNO system (DELSYS, USA).
This recording system has built in bandwidth of 20–450 Hz
and gain of 909 V/V. Using Matlab, these signals were high-
pass filtered using a zero-lag forward-backward cascade of a 4th
order Butterworth filter with a 20-Hz cutoff frequency, full-wave
rectified, and then low-pass filtered with a zero-lag forward-
backward cascade of a 4th order Butterworth filter with a 10-
Hz cutoff frequency. Although consistent sEMG responses were
observed in many muscles to the visual perturbation, we focus on
an erector spinae muscle (EST) in the results presented below as
consistent responses were observed solely in this muscle for both
perturbations.

Procedures
Prior to experimentation, subjects experienced a static visual
display at the experimental locomotion speed. An experimenter
was always behind the treadmill in close proximity to the subject
to ensure safety in case of falling (never occurred). Subjects began
each experimental trial by looking straight ahead at the static
visual display at the experimental treadmill speed (5 km/h) for
approximately 30 s to reach steady-state treadmill walking. At
this point, the subject would declare if he or she was ready for the
trial to begin. The experimenter then initiated data acquisition,
scene motion and the motor simultaneously with variable delays
on each trial to avoid start-up effects. Each trial was 250 s in
duration with a rest of at least 60 s between trials. The initial
and final 5 s of each 250 s signal were multiplied by increasing
and decreasing ramps, respectively, to insure that the value of the
signal at the beginning and end of the trial would be 0. Only the
middle 240 s of each trial was analyzed. The experimental design
consisted of 10 trials of visual scene and motor motion. Upon
inspection of trajectories of the kinematic marker on the spring
attached to the motor there were instances where the spring
clearly went slack during the trial. These instances were removed
from analysis, resulting in shorter trials in 13 of the 200 trials
recorded across subjects.

Data Analysis
Phase-Dependent Impulse Response Functions
Here we describe the analysis steps used to compute (φIRFs).
A fuller description with equations and expanded motivation
can be found in Kiemel et al. (2016, pre-print available
at http://arxiv.org/abs/1607.01746). Our method is based on
existing theory for linear time-periodic systems (e.g., Wereley
and Hall, 1990; Möllerstedt and Bernhardsson, 2000; Sandberg
et al., 2005) extended for general limit-cycle systems in which
perturbations can reset the phase of the oscillator. Our method
assumes that the system has smooth dynamics (see Ankarali and
Cowan, 2014 for a method designed for hybrid LTP systems). The
goal of the analysis is to describe the effect of u(t), a visual scene
velocity or motor position perturbation, on y(t), a kinematic or
sEMG response variable. The majority of results presented are

full φIRFs, and are calculated in step 6. Computing the full φIRF
consists of six steps:

1. Approximate phase. First we compute heel-strike times
tk(k = 1, ..., K) for a reference leg. Then we compute T̄, the
mean of the stride times tk+1 − tk(k = 1, ..., K − 1), and
compute the estimated gait frequency as f0 = 1/T̄. Next we
define a discontinuous approximation of phase as θd(t) =
k + f0(t − tk) for tk ≤ t < tk+1. Approximate phase θd(t)
is designed to be causal, that is, to only depend on data up to
and including time t. To obtain a continuously-differentiable
causal approximation of phase, θ(t), we apply a second-order
low-pass filter to θd(t):

θ̈(t)+ 2d(θ̇(t)− f0)+ d2θ(t) = d2θd(t).

Here d represents the filter rate constant for estimating phase,
which was 2. Note that for strictly periodic gait, approximate
phase θ(t) matches the usual definition of the phase of the gait
cycle.

2. Replace time with approximate phase. Let p be the inverse
of θ: p(θ(t)) = t and θ(p(ϑ)) = ϑ . Let approximate phase ϑ

take the place of time t = p(ϑ) as the independent variable
and compute ũ(ϑ) = u(p(ϑ)), ỹ(ϑ) = y(p(ϑ)), and q̃(ϑ) =
θ̇

(

p(ϑ)
)

. (We use the symbol ϑ to distinguish approximate
phase as an independent variable from approximate phase as
a function of time.)

3. Compute output variables for harmonic transfer function

(HTF) analysis. For each ϑ , let ỹ0(ϑ) be the mean of ỹ(ϑ).
Then compute the deviations ỹ(1)(ϑ) = ỹ(ϑ) − ỹ0(ϑ)
and q̃(1)(ϑ) = q̃(ϑ) − f0. For kinematic response variables,
derivatives of position (velocity) were calculated prior to this
step with integration of impulse response functions occurring
after step 6.

4. Compute transient and phase-derivative HTFs. To account
for shifts in phase that affect all response variables, both
a transient and phase-derivative HTF are computed. We
compute the transient HTF from ũ(ϑ) to ỹ(1)(ϑ), denoted H̃y,

and the phase-derivative HTF from ũ(ϑ) to q̃(1)(ϑ), denoted
H̃q, as follows. Let z(ϑ) be either ỹ(1)(ϑ) or q̃(1)(ϑ). Compute
the power spectral density (PSD) pũũ(f1) and the double-
frequency cross-spectral density (CSD) pũz(f1, f2) (Bendat
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and Piersol, 2000). The double-frequency CSD describes the
relationship between the input signal ũ(ϑ) at input frequency
f1 and the output signal z(ϑ) at output frequency f2. The PSD
and CSD are computed using Welch’s method with 40-cycle
Hanning windows (aligned to start at an integer value of ϑ)
and 50% overlap. The k-th mode of the HTF Hz from ũ(ϑ) to
z(ϑ) is computed as Hz,k(f1) = pũz(f1, f1 + kf0)/pũũ(f1). Note
that Hz is a function of both the mode index k and the input
frequency f1.

5. Compute transient and phase φIRFs. For a (LTP) mapping
from ũ(ϑ) to z(ϑ), its HTF Hz can be converted to its φIRF
hz by a two-dimensional inverse Fourier transform. The φIRF
hz is a function of response phase ϑr and stimulus phase ϑs

and can be used to represent the LTP mapping from ũ(ϑ) to
z(ϑ) as

z(ϑr) =
ϑr
∫

−∞

hz(ϑr,ϑs) ũ(ϑs)dϑs.

Using this procedure, compute the transient φIRF h̃y and

phase-derivative φIRF h̃q from H̃y and H̃q, respectively. Then
compute the phase φIRF by integrating the phase-derivative
φIRF:

hθ (ϑr,ϑs) =
ϑr
∫

ϑs

h̃q(ϑ ,ϑs)dϑ .

6. Compute φIRF. Up to now, IRFs have been functions of
response phase ϑr and stimulus phase ϑs. The φIRFs h̃y and
hθ can be combined to obtain the φIRF from (u(t)) to (y(t))
that is a function of response time tr = T̄ϑr and stimulus time
ts = T̄ϑs:

hy(tr, ts) = f0h̃y(tr/T̄, ts/T̄)+ ỹ
′
0(tr/T̄)hθ (tr/T̄, ts/T̄).

The φIRF hy (tr, ts) resulting from this procedure describes for
each tr and ts the response measured at time tr due to a small
brief perturbation applied at time ts. Specifically, hy(tr, ts) is the
change in y divided by the integral of the perturbation. It follows
that hy(tr, ts) = 0 for tr < ts and hy

(

tr + T̄, ts + T̄
)

= hy(tr, ts).
The usefulness of the φIRF lies in the fact that it describes the
response for any small transient perturbation u(t), as described
by (Equation 1) in Introduction, where y0(tr) = ỹ0(tr/T̄). We
plot a φIRF hy(tr, ts) as a function of stimulus phase ts/T̄ and

normalized response time tr/T̄.
Steps 1–4 were computed on a trial-by-trial basis with

averages of PSDs and CSDs taken across trials for each subject
for completion of the HTF analysis and to compute the
full φIRFs in step 6. Full φIRFs are shown in Figures 4–6,
with vertical slices in Figures 7, 8 showing the impulse
response function at specific stimulus phases. Full φIRFs
defined above are now termed φIRFs in the following
text.

The φIRF for mechanical perturbations is a response to
an impulse in motor position while the φIRF for visual

FIGURE 4 | Trunk orientation φIRFs. φIRFs from visual scene velocity

(A) and motor displacement (B) to trunk orientation. Intensity of colors indicate

magnitude and direction at the plotted combination of stimulus phase and

normalized response time. The diagonal black line is where stimulus phase is

equal to the normalized response time, which indicates stimulus onset. The

horizontal bar below indicates either double limb or single limb support phases

in gray and white, respectively.

perturbations is a response to an impulse in visual scene
velocity, which is equivalent to the response to a step in
visual-scene position. A positive impulse response (i.e., a
positive response) indicates that the variable’s response is
in the same direction as the perturbation and a negative
impulse response (i.e., a negative response) indicates that
the variable’s response is in the opposite direction as the
perturbation.

Statistics
Statistical tests of the φIRFs of all response variables were
performed at each stimulus phase. For illustration, confidence
intervals computed based upon the sample mean using
the Matlab function “normfit” are plotted in Figures 7, 8.
Permutation tests (1000, Manly, 1997) based on the t-statistic
(null hypothesis mean = 0) at all normalized response times up
to three cycles post stimulus onset were tested simultaneously
and family-wise error rate (FWER) was controlled at each
stimulus phase for each response variable. The tmax method
(Blair and Karniski, 1993) was used to adjust the p-value for
each value at values of normalized response time within each
stimulus phase (alpha = 0.05). These tests were performed
in functions written by Groppe (Groppe et al., 2011). These
tests are non-parametric and suited for this study as FWER
control is strong compared to other methods (e.g., cluster-
based permutation testing, false discovery rate) allowing
determination of reliable effects in the φIRFs (Groppe et al.,
2011).
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FIGURE 5 | L1 Displacement φIRFs. φIRFs from visual scene velocity

(A) and motor displacement (B) to L1 AP displacement. Intensity of colors

indicate magnitude and direction at the plotted combination of stimulus phase

and normalized response time. The diagonal black line is where stimulus

phase is equal to the normalized response time, which indicates stimulus

onset. The horizontal bar below indicates either double limb or single limb

support phases in gray and white, respectively.

RESULTS

Phase-dependent impulse response functions (φIRFs) presented
in Figure 4 show responses of trunk orientation to mechanical
perturbations (input is motor position) and visual perturbations
(input is visual-scene velocity). Although φIRFs were computed
based on responses to continuous perturbations, they predict
the response to a small brief perturbation applied at any phase
of the gait cycle and, by extension, the response to any small
transient perturbation (Equation 1). Color represents impulse
response value and responses have been plotted as a function of
both stimulus phase and normalized response time, the time at
which the response is measured in units of cycles. A φIRF value
is the amount of change in the response variable divided by the
integral of the perturbation. For the visual perturbation, a small
brief perturbation in visual-scene velocity is equivalent to a small
step in visual scene position, so the φIRF value is the change in the
response variable divided by the change in visual-scene position.

Normalized response time is time divided by the mean gait
cycle period T̄ of the given trial (1.04± 0.05 s, mean± s.d. across
subjects). Doing so allowed a gait cycle-based representation of
responses when the perturbation occurred (stimulus phase) and
when the response did or did not occur (normalized response
time). For example, if T̄ = 1.1 s, a heel strike occurs at time
0 s, a perturbation is applied at time 0.55 s, and the response is
measured at time 1.1 s, then stimulus phase is 0.5 and normalized
response time is 1. For readability, we describe responses to
positive perturbations: a brief increase in visual scene velocity

FIGURE 6 | Trunk Extensor (EST) φIRFs. φIRFs from visual scene

velocity (A) and motor displacement (B) to erector spinae at T9. Intensity of

colors indicate magnitude and direction at the plotted combination of stimulus

phase and normalized response time. The diagonal black line is where

stimulus phase is equal to the normalized response time, which indicates

stimulus onset. The horizontal bar below indicates either double limb or single

limb support phases in gray and white, respectively.

or a brief transient forward movement of the motor. From the
definition of a φIRF (Equation 1), it follows that a negative
perturbation would produce the opposite response.

For both perturbations, initial trunk orientation responses
were observed as forward rotations at all stimulus phases,
as indicated by the diagonal red band observed in both
Figures 4A,B which notes positive responses across phases. Put
simply, the trunk rotates forward in response to either a brief
increase in visual scene velocity or a brief transient forward
movement of the motor.

The red band in both figures is approximately parallel to
the black line noting stimulus onset, indicating that onset of
the response occurs with similar time delay across all phases in
which the stimulus occurs. On average across stimulus phases,
peaks of the initial forward trunk rotation to vision observed in
Figure 4A occur at 0.68± 0.06 (mean± s.d.) cycles (normalized
response time) after stimulus onset. As indicated by the black
diagonal line in Figure 4, stimulus onset shifts based on stimulus
phase, which means that these peak responses are occurring on
average 0.68 cycles (normalized response time) in Figure 4A

from the black diagonal line at each stimulus phase with small
variability across stimulus phases. These initial peaks observed as
darker red regions in Figure 4A have an average peak response
value of 0.40 ± 0.05 deg/(degs−1), indicating a consistent
response across stimulus phases. Figure 4B shows that initial
peaks in forward trunk rotation to the motor displacement occur
with comparatively shorter latency than responses to vision,
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FIGURE 7 | Responses to visual and mechanical perturbation at 28% stimulus phase. Impulse response functions of trunk orientation (A,B), L1 AP

displacement (C,D) and normalized erector spinae activations (E,F) to motor position and visual scene velocity. Mean waveforms are plotted below impulse response

functions. Shaded blue error bars represent confidence intervals at increment of normalized response time. Asterisks at base of subplots indicate significant difference

from zero at increment of normalized response time, corrected for the multiple comparisons made within the stimulus phase (p < 0.05).

FIGURE 8 | Responses to visual and mechanical perturbation at 42% stimulus phase. Impulse response functions of trunk orientation (A,B), L1 AP

displacement (C,D) and normalized erector spinae activations (E,F) to motor position and visual scene velocity. Mean waveforms are plotted below impulse response

functions. Shaded blue error bars represent confidence intervals at increment of normalized response time. Asterisks at base of subplots indicate significant difference

from zero at increment of normalized response time, corrected for the multiple comparisons made within the stimulus phase (p < 0.05).
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with average peak responses occurring at 0.17 ± 0.01 cycles
(normalized response time), or 0.18 ± 0.01 s, after stimulus
onset. These initial peaks in Figure 4B have average peak
response value of 0.11 ± 0.02 deg/cm. Interestingly, vertical blue
bands indicating a backward trunk rotation to the mechanical
perturbation are observed at four stimulus phase ranges in
Figure 4B. However, these negative responses are significant
(p < 0.05 with FWER control, see Methods) only when stimuli
are presented at 0.38–0.46 and 0.88–0.96 (“phase of stimulus”)
of the gait cycle, which correspond to single limb support
phases.

As observed in Figure 5, initial forward responses were also
observed in L1 displacement responses to both visual and
mechanical perturbations. Forward L1 displacement responses
due to visual scene velocity occurred at all stimulus phases and
persisted through the 3rd gait cycle of normalized response time.
On average across stimulus phases, peaks of the forward L1
displacement due to vision observed in Figure 5A occur at 1.89±
0.14 s.d. cycles (normalized response time), or 1.97± 0.15 s, after
stimulus onset. These initial peaks observed as darker red regions
in Figure 5A have an average peak response value of 1.80 ±
0.17 cm/(degs−1). Initial, forward displacements due to changes
in motor position, on the other hand, were not consistently
observed across stimulus phases as seen in Figure 5B. When
tested at each stimulus phase, significant responses were observed
before and after heel strike at 0–0.22, 0.40–0.68, and 0.96–1
ranges of stimulus phase. Since phase is a circular variable, these
values correspond to two ranges of stimulus phase which differ
by roughly half a cycle: 0.40–0.68 and 0.96–1.22. Within these
ranges, mean peak of the positive response occurred at 0.87 ±
0.30 cycles (normalized response time), or 0.90 ± 0.31 s, after
stimulus onset and had average peak response value of 0.21
± 0.05 cm/cm. Although backward L1 displacements due to
changes in motor position were observed in Figure 5B, these
were not significant when tested (with FWER control) at each
stimulus phase.

Figure 6 demonstrates that erector spinae (EST) responses
were dependent on both phase of stimulus and normalized
response time for both perturbations. A typical pattern of
response in EST to increased visual scene motion is an initial
decrease in activation within a cycle after perturbation which is
observed as the blue band parallel to the stimulus onset line in
Figure 6A. These initial responses are then followed by increased
(red) to decreased (blue) bands of activation following at 1.5
and 2.5 normalized response time. This pattern of responses
was found to be significant (p < 0.05 with FWER control)
at the majority of stimulus phases (0.16–0.48 and 0.56–0.82).
Also clear from Figure 6A, increased activation does occur
after the initial decrease in activation, which was found to be
significant at a subset of these stimulus phases (0.16–0.34, 0.76–
0.82). Figure 6B shows a comparatively less organized response
to the mechanical perturbation, with few of these responses
actually being significant. In all, increased activation of EST to
the mechanical perturbation was observed in a limited range of
stimulus phases including 0.42–0.48, 0.82–0.84, and 0.90–0.92.
On average across these stimulus phases, significant responses
were observed 0.04± 0.02 s.d. cycles (normalized response time),

or 0.04 ± 0.02 s, after stimulus onset, and are seen as the red
regions which run parallel to stimulus onset in Figure 6B.

To investigate the relationship of the kinematics andmuscular
activity where significant responses were observed, we focus on
specific stimulus phases of the φIRFs in Figures 4–6. In Figure 6,
clear responses of EST to either the visual scene velocity,
motor position or both are seen at the 0.28 and 0.42 stimulus
phases. Figures 7, 8 simultaneously show trunk orientation, body
displacement and EST at these specific stimulus phases.

As noted in Figures 7A,C with asterisks, significant trunk
orientation responses to the visual perturbation occurred prior
to L1 displacement responses. At this stimulus phase of 0.28,
forward trunk rotations began at 0.54 normalized response
time while forward L1 displacements began at 0.64 normalized
response time. In Figure 7E, an initial decreased activation at
0.46 normalized response time is followed by an increased
activation at 0.54 response time in the EST muscle. This initial
decrease in EST activation when virtual scene motion increases
velocity occurs prior to forward rotation of the trunk (trunk
flexion). Thus, EST decreases its activation prior to trunk
flexion when scene motion increases velocity. For the mechanical
perturbation, as seen in Figures 7D,F, there are no significant
effects of the mechanical perturbation on L1 displacement or
EST at this stimulus phase. However, there is a significant
forward rotation of the trunk due to the mechanical perturbation
occurring at 0.3–0.66 normalized response time, as observed in
Figure 7B and observed previously in Figure 4.

At the stimulus phase of 0.42 shown in Figures 8A,C,E, a
decreased activation of EST to visual scene motion occurs from
0.52 to 0.56 normalized response time just prior to the initiation
of a forward trunk rotation response at 0.66 response time. Once
again, a decrease in EST activation occurs with increased virtual
scenemotion velocity. Trunk orientation responses were initiated
prior to L1 displacement responses at this stimulus phase, and at
the majority (44/50 observed) of stimulus phases. The pattern of
significant EST response followed by trunk orientation responses
and then L1 displacement occurred at 28 of 50 stimulus phases,
with the specific stimulus phases eliciting this pattern at 0.24–
0.44, 0.56–0.82, and 0.92–0.96 of the gait cycle. In all, the
combination of responses illustrated in Figures 7, 8 suggests
that the EST muscle typically facilitates the response of trunk
orientation to visual scene motion.

Responses of the trunk to the mechanical perturbation shown
in Figures 8B,D,F also show perturbation induced deviations
in trunk orientation occurring prior to deviations in L1
displacement. Noted with asterisks at the stimulus phase of
0.42 shown in Figure 8B, significant forward trunk rotations
are initiated at 0.44 normalized response time while forward L1
displacements are first observed at 0.7 normalized response time.
As the motor perturbation will first cause responses observed
in kinematics which reflect passive responses of the body to
decreased pull of the motor-spring apparatus, sEMG responses
to the mechanical perturbation are a critical indicator that an
active, neural driven response to the mechanical perturbation
has occurred. Significant, increased activations of EST were first
observed at 0.46 normalized response time at the 0.42 stimulus
phase observed in Figure 8F. This occurs prior to initiation of
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the downward trend of the trunk response at 0.62 normalized
response time. At this stimulus phase, the downward trend in
trunk orientation results in a significant backward trunk rotation
from 0.92 to 1.2 normalized response time. The positive response
of the trunk extensor indicates an increased EST activation when
the motor is moved forward. A forward motion of the motor
decreases the backward force of pulling at the trunk to cause
trunk flexion, which results in an increased activation of EST, a
trunk extensor, to initiate trunk extension. Significant increases
in EST activation due to change in motor position were also
observed at 0.44–0.48, 0.82–0.84, and 0.90–0.92 stimulus phases,
and were always observed after an initial trunk flexion and
prior to the decrease from peak of the trunk flexion response.
In sum, the EST response observed in Figure 8, in addition
to that observed at other stimulus phases, indicates an active
response which resists the mechanical effects of changing the
motor position.

DISCUSSION

Continuous, probing visual and mechanical perturbations to
treadmill walking were used in this study to learn about
the neural control of human locomotion. Coupled with the
novel use of phase-dependent impulse response functions to
describe locomotor responses to perturbations, these continuous
perturbations allowed an efficient investigation of walking
control throughout phases of the gait cycle. Modifications of
both sagittal plane trunk orientation and L1 A-P displacement
due to visual scene motion were observed at all phases in
which the perturbation was applied (stimulus phase). This
phase-dependentmethodology, however, revealed that additional
modifications in these kinematic response variables due to
mechanical perturbations occurred at different stimulus phases.
Responses of the trunkmusculature occurred in conjunctionwith
responses of trunk orientation kinematics to each perturbation,
and reflect an active, neural-driven response for control of trunk
orientation occurring prior to modifications initiated for whole-
body displacement. These findings suggest that control for the
subtask of trunk orientation is enacted prior to control of the
subtask of positional maintenance.

Subtask Timing Suggests Prioritization
Responses in the trunk resulting from both perturbations
showed the initiation of an active response for sagittal plane
trunk orientation control prior to onset of responses of L1
displacement, which is an indicator of A-P whole body motion
on the treadmill. Decreased responses in EST to changing visual
scene motion were observed prior to increased responses in
trunk orientation, indicating that EST responses facilitated the
observed trunk orientation responses to vision. In the case of
increased visual scene velocity, the visual system sensed changes
in visual scene motion leading to the perception that the trunk
was orienting backwards, or extending, and relayed to spinal
centers for proximal musculature to decrease activation and
promote trunk extension. For the mechanical perturbation at
some stimulus phases, an EST response occurs just prior to the
trunk orientation’s decrease from peak response. In the case of

a forward motion of the motor, the mechanical perturbation
decreases force applied to the upper trunk to cause an increased
trunk flexion. Proprioceptive afferents in trunkmusculature relay
this change to the spinal cord and higher for an increase in trunk
extensor muscle activation for maintaining trunk orientation
upright. The combination of these results suggests both an
active resistance to the mechanical perturbation and use of
visual scene motion information for maintenance of orientation
upright which occurs before active use of vision for positional
maintenance on the treadmill.

The notion that one function, or subtask, of locomotion can
be prioritized over another is certainly not a new idea. An early
example observed in cats found that animals will alter their
strategy for responding to electrical stimuli placed at the dorsum
of their paw in a phase-dependent manner (Forssberg et al.,
1975). So-called “reflex reversals” whereby stimuli used during
an animal’s support phase increase extensor activation and delay
a flexor withdrawal show that the animal prioritizes the subtask of
upright stability at the expense of completing the withdrawal task.
More recently, this prioritization of subtask has been observed in
human walking as the lowering strategy for obstacle avoidance
has been shown to decrease step length of the perturbed limb on
the treadmill with increased speed needed in ensuing recovery
steps (Forner Cordero et al., 2003). Thus, subjects delay how
they maintain speed on the treadmill in order to avoid hitting
the obstacle, indicating a subtask prioritization that is ultimately
related to upright postural maintenance.

The prioritization of subtask in such studies and suggested
here is in terms of time. Both the trunk toppling over the
moving legs and being too forward or backward on the treadmill
would have dire consequences for walking. However, responses
in trunk orientation to the visual perturbation were observed
before responses in whole body position on the treadmill.
One interpretation of this result is that maintaining upright
orientation (postural control) within locomotion is a greater
concern to the nervous system than maintaining position on the
treadmill (positional control).

This subtask prioritization was observed solely in terms of
time, however, without clear decrement in quality of positional
control at the expense of postural control that would further
support the claim that postural control is more important
than positional control. There are two factors other than
importance that may influence the relative timing of postural
and positional responses. First, postural adjustments may occur
before positional adjustments because the nervous system can
act to change trunk orientation at any phase of the gait cycle
(for example, by modulating the activity of the erector spinae
muscles), whereas the nervous system can only effectively act
to change position on the treadmill at certain phases of the gait
cycle (for example, by modulating the activiation of plantarflexor
muscles during push-off). Second, trunk orientation may
respond before whole body position due to the way walking speed
is controlled. That is, the initial changes in trunk orientation
are anticipatory changes, required to counteract expected trunk
movement that would result from a self-induced speed change.
This would be in line with the notion of anticipatory postural
adjustments (Massion, 1992) suggested to occur prior to
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expected perturbations to standing posture or the initiation of
stepping.

In sum, a temporal ordering of trunk orientation prior to
AP displacement suggests the nervous system’s prioritization
of trunk orientation control over that for altering speed to
maintain position on the treadmill. Whether this temporal
prioritization of trunk orientation observed during walking
is driven by importance of the postural control subtask to
the nervous system, biomechanical constraints of the walking
behavior, or anticipatory postural adjustment for changing speed
is not yet clear. Teasing these alternatives apart will take further
experimentation including increased task constraints, such as
limiting trunk motion and/or use of a self-paced treadmill that
does not require subjects to adjust position on the treadmill.

Interestingly, if we apply a similar impulse response function
analysis used here on data collected in a previous posture
experiment (Kiemel et al., 2011) where subjects stood upright
(“quiet stance”) in the same visual cave, we also observe a
response of trunk orientation prior to hip AP displacement,
a similar indicator of whole body displacement. As seen in
Figure 9, when the visual scene rotates forward, the trunk
starts to rotate forward before the hip moves forward. Thus,
the same temporal ordering of responses occurs in both
standing and walking, suggesting an alternative interpretation
that the reason for this temporal ordering in walking is
not a subtask prioritization during walking, but stems from
the general mechanics of interactions between lower- and
upper-body motion and how the nervous system takes
these interactions into account to more efficiently control
movement.

A Phase-Dependence for Mechanical
Perturbations
From Figures 4, 5 in combination with the report of significant
responses found above, it is clear that active (neurally-driven)
responses to the mechanical perturbation occurred in a phase-
dependent manner. These phase-dependent active responses to
the mechanical perturbation suggest that the nervous system
corrects for mechanical disturbances occurring at critical,
destabilizing phases in a reactive manner. Winter and colleagues
have shown that the proximal musculature (erector spinae and
others) activates prior to heel strike to counteract a destabilizing
flexion of the head, arms and trunk (HAT) segment due to
posterior hip acceleration occurring at heel strike (Winter et al.,
1990;Winter, 1995). Themoment of force produced by CNS with
combined activations of proximal musculature has been deemed
the “balancing moment” while the destabilizing force has been
deemed the “unbalancing moment” (Winter, 1995). Tang and
colleagues have noted that these results by Winter and colleagues
(Winter et al., 1990) were found during unperturbed walking, and
suggested they reflect a phase-dependent proactive control when
walking is not perturbed (Tang et al., 1998). Using perturbations
at the support surface they found that proximal muscles of the
trunk (rectus abdominus and erector spinae) are not sufficiently
modulated during reactions to such stimuli, and do not play a
role in active balance responses.

FIGURE 9 | Responses to visual perturbation during quiet stance.

Impulse response functions of trunk orientation (A) and hip AP displacement

(B) to visual scene velocity. Shaded error bars represent confidence intervals

at increment of time. These data were obtained from a previous posture

experiment where subjects stood upright (“quiet stance”) in the same visual

cave (see Kiemel et al., 2011 for experimental details).

Here we observe a counteracting erector spinae response to a
mechanical perturbation which is applied at the trunk, providing
a reactive, active balance response. Interestingly, common
stimulus phases of both the responses in the erector spinae
and the eventual “overshoot” responses in trunk orientation
are observed at terminal swing phases in either foot, and these
are phases in which Winter’s “balancing moment” at the hip
is ramping up to its peak to counteract the peak “imbalancing
moment” of heel strike. Thus, the reactive response observed here
occurs simultaneous with the proactive ramping up of muscular
activations for the “balancing moment,” and we can speculate
the nervous system’s control strategy is to diminish any (internal
or external) destabilizing mechanical threats to upright trunk
orientation at these critical phases of the gait cycle. In sum,
both the site (limb level) of application and gait cycle phase will
dictate if the nervous system needs to correct for deviations to a
mechanical perturbation during walking.

Clearly, active control in response to the mechanical
perturbation must involve sensing the change in trunk
orientation at some phase prior to initiating the phase-
dependent active response. Phase-dependent stimulation of
sensory afferents through perturbations, such as vibration of
trunk muscles could likely inform about the role of trunk muscle
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afferents for these phase-dependent modifications for trunk
orientation. Vibration of erector spinae has been successfully
performed during walking and has shown that continuous
vibration can elicit deviations in walking trajectory (Schmid
et al., 2005; Courtine et al., 2007). As phase-dependence
in somatosensory inputs of the lower limbs has been well-
documented (Duysens et al., 1990; Sinkjær et al., 1996), it is
surprising that trunk vibration dependent on gait cycle phase
was not tested in those studies (Schmid et al., 2005; Courtine
et al., 2007) and has not yet, to our knowledge, been tested in
other studies. The question of whether or not somatosensory
information regarding trunk motion is available to the nervous
system on a phase-dependent basis is an open one.

Somatosensory input may inform that trunk motion has
been altered at all phases, yet this input is only used at
specific phases. As seen from the impulse responses and mean
waveforms in Figure 8, modulation of EST muscle activity
to the mechanical perturbation occurs during the phase of
the gait cycle that EST is typically most active. The EST
activations occurring at early stance observed here counteract
the potentially increased “unbalancing moment” at the trunk
due to the mechanical perturbation, and prevent inappropriately
large flexion of the trunk after heel strike. It is most likely that
the observation of active trunk responses to the mechanical
perturbation are facilitated by a phase-dependent change in
activation, and we suggest that it takes place because the phase
of perturbation where the mechanical perturbation occurs is a
known preparatory phase for balance adjustments.

Limitations
This study assumes that walking is the output of a system with
a stable limit cycle. We also assume that both intrinsic and
external perturbations are small, yielding a local limit cycle (LLC)
approximation of the system in which the only nonlinearities
are periodic functions of the system’s phase (Ermentrout and
Kopell, 1984). If the system has a “clock” that prevents phase
resetting (for example, walking in sync with a metronome), then
the nonlinear functions are periodic functions of time and the
system is approximately (LTP) (Möllerstedt and Bernhardsson,
2000). The method used in this study extends the computation
of φIRFs from LTP systems to LLC systems. However, not all
LTP analyses can be extended to LLC systems. For example, for
stable linear time varying systems, including LTP systems, one
can compute variance accounted for (VAF), the percentage of a
system’s variance due to its response to a specific perturbation
(e.g., MacNeil et al., 1992). This definition of VAF depends on
the system’s linearity and, therefore, cannot be applied to LLC
systems. Phase in a LLC system is a neutrally stable direction, so
that phase variability due to perturbations will, in general, grow
with time until it is affected by the phase nonlinearities of the LLC
approximation (Demir et al., 2000).

Implications for Locomotive Control and
Future Directions
A mechanistic extension of the experimental setup used here
would be to work within the control theoretic framework

of Figure 1 with the long term goal of closed loop system
identification (Roth et al., 2014) using the joint input-output
(JIO) approach (Katayama, 2005; van der Kooij et al., 2005;
Kiemel et al., 2011). Doing so relies on the observation of
both kinematic and EMG responses to sensory and mechanical
perturbations (Kiemel et al., 2011), and could lead to the non-
parametric identification of the musculoskeletal plant and neural
feedback for walking, such as that revealed in standing postural
control (Kiemel et al., 2008, 2011). This would require a scaling
of the analytical tools used for postural control already begun in
the HTFs and φIRFs used here (Kiemel et al., 2016), and also
require considerable advances in experimental methods used for
perturbation.

Prior to full identification with use of the JIO, however,
one can learn about a system with careful manipulation
of experimental conditions. For example, a mechanical
perturbation that produces the same kinematic responses
but different EMG responses in an experiment with two
conditions indicates that properties of the neural feedback
change between the two conditions. As we have emphasized
trunk orientation control in this experiment, it is expected that
an experiment with conditions which require varying needed
corrections of trunk orientation, such as use of a backboard
or not would elicit changes in EST, and potentially other
muscles, contributing to the trunk orientation subtask. We
expect that simultaneous mechanical and visual perturbations
used during experimental conditions which subjects perform a
specific function will inform about how that specific function is
controlled during walking. Such experiments offer a novel way
to distill out how control differs between subtasks, and offers
great promise for distinguishing differences in locomotive
control between those with neural deficits and healthy
controls.

Our present focus is to work within a system identification
framework to investigate the neural control of human walking.
However, these tools could be applied to study the neural
control of other forms of locomotion approximated as a limit
cycle, such as running, cycling, or swimming. Additionally, these
techniques are ideal for the study of rhythmic motor behaviors,
such as juggling and have already shown promise for application
in animal models, such as the isolated lamprey spinal cord
(Massarelli et al., 2014, 2015).
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Estimation of Time-Varying, Intrinsic
and Reflex Dynamic Joint Stiffness
during Movement. Application to the
Ankle Joint
Diego L. Guarín * and Robert E. Kearney

Biomedical Engineering Department, McGill University, Montréal, QC, Canada

Dynamic joint stiffness determines the relation between joint position and torque, and

plays a vital role in the control of posture and movement. Dynamic joint stiffness

can be quantified during quasi-stationary conditions using disturbance experiments,

where small position perturbations are applied to the joint and the torque response

is recorded. Dynamic joint stiffness is composed of intrinsic and reflex mechanisms

that act and change together, so that nonlinear, mathematical models and specialized

system identification techniques are necessary to estimate their relative contributions to

overall joint stiffness. Quasi-stationary experiments have demonstrated that dynamic joint

stiffness is heavily modulated by joint position and voluntary torque. Consequently, during

movement, when joint position and torque change rapidly, dynamic joint stiffness will be

Time-Varying (TV). This paper introduces a new method to quantify the TV intrinsic and

reflex components of dynamic joint stiffness during movement. The algorithm combines

ensemble and deterministic approaches for estimation of TV systems; and uses a TV,

parallel-cascade, nonlinear system identification technique to separate overall dynamic

joint stiffness into intrinsic and reflex components from position and torque records.

Simulation studies of a stiffnessmodel, whose parameters varied with time as is expected

during walking, demonstrated that the new algorithm accurately tracked the changes in

dynamic joint stiffness using as little as 40 gait cycles. The method was also used to

estimate the intrinsic and reflex dynamic ankle stiffness from an experiment with a healthy

subject during which ankle movements were imposed while the subject maintained a

constant muscle contraction. The method identified TV stiffness model parameters that

predicted the measured torque very well, accounting for more than 95% of its variance.

Moreover, both intrinsic and reflex dynamic stiffness were heavily modulated through the

movement in a manner that could not be predicted from quasi-stationary experiments.

The new method provides the tool needed to explore the role of dynamic stiffness in the

control of movement.

Keywords: biological system modeling, nonlinear system identification, time-varying systems, dynamic joint

stiffness, joint neuromechanics
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1. INTRODUCTION

The role of the short-latency stretch reflex during movement
remains controversial (Dietz et al., 1979; Sinkjaer et al., 1996;
Zehr and Stein, 1999). While some studies suggest that reflex
response serves to facilitate all voluntary movements (Dufresne
et al., 1980; Gottlieb and Agarwal, 1980), others have proposed
that the reflex response plays a role only in extreme or
pathological cases (Dietz et al., 1980), or during early adaptation
to new tasks or conditions (Burdet et al., 2013).

EMG is often used to study the functional role of
reflexes (Dietz et al., 1979; Stein and Capaday, 1988; Zehr and
Stein, 1999; Burdet et al., 2013). However, EMG is influenced
by factors other than reflexes, such as voluntary activity, and it
is difficult to separate the reflex EMG response from the overall
EMG activity. In addition, the relation between EMG and joint
torque is influenced bymuscle length and contraction velocity, so
that is difficult to estimate themechanical contributions of stretch
reflex from EMG alone (Toft et al., 1991; Stein and Kearney, 1995;
Kearney et al., 1999).

H-reflexes have also been used to quantify the reflex
activity (Sinkjaer et al., 1993). However, H-reflexes bypass
the response of muscle spindles to joint position changes,
which can be heavily modulated during function via γ -motor
neurons (Sinkjaer et al., 1996). In addition, direct stimulation of
the nerve may excite a range of afferent mechanisms that project
to α−motorneurons (e.g., skin sensors, Golgi tendon organs) so
that the resultant response will be generated by unphysiological
combination of afferent activity (Van der Helm et al., 2002).
Consequently, the functional relevance of these H-reflex studies
is not completely clear.

A better approach would be to directly measure the
mechanical consequences of reflex activity. However, it is
difficult to separate reflex torques from those due to the
mechanical or intrinsic properties of the muscle and connective
tissue. Experimentally this has been achieved by comparing the
mechanical behavior of a joint before and after deafferentation
using surgery (Kirsch et al., 1994), or some other manipulation
to suppress the reflex response (Dietz et al., 1980; Allum and
Mauritz, 1984). However, it is not possible to be sure that the
deafferentation process affects only the stretch reflex, and to what
extent. This process will likely also affect the intrinsic properties
of the joint (Kearney et al., 1997; Van der Helm et al., 2002).

An alternative approach is to perform the “deafferentation” by
using mathematical models and system identification techniques
to separate the mechanical effects of intrinsic and reflex
mechanisms. System identification techniques, using small,
random position or torque perturbations to excite the intrinsic
and reflex dynamics, have been successfully applied to multiple
joints with different model types (Gottlieb and Agarwal, 1978;
Zhang and Rymer, 1997; Van der Helm et al., 2002; Klomp
et al., 2014). These models have typically been linear; however,
the mechanical response produced by stretch reflexes are highly
nonlinear (Stein and Kearney, 1995), so that these models fail to
completely characterize the stretch reflex mechanisms or simply
ignore it. The parallel-cascade model, proposed by Kearney et al.
(1997), describes the intrinsic and stretch reflex mechanisms in

terms of dynamic joint stiffness, that determines the dynamic
relation between joint position and torque. Intrinsic dynamic
stiffness, also referred to as joint impedance, arises from the
inertial and visco-elastic properties of the joint, passive tissue,
and active muscle fibers, and is described by a linear model
relating joint position and torque. Reflex dynamic stiffness arises
from changes in muscle activation due to the short-latency
stretch reflex, and is described by a nonlinear, Hammerstein
model relating joint velocity and torque (Kearney and Hunter,
1990).

Successful applications of these analytical techniques have
been typically limited to stationary conditions, where the
dynamic properties of the joint remain constant for the duration
of the experiment. Such experiments have shown that the
parallel-cascademodel parameters change with joint position and
voluntary torque (Mirbagheri et al., 2000; Guarin et al., 2013).
Consequently, during most functional activities when the joint
position and voluntary torque change rapidly and continuously,
the dynamic joint stiffness model parameters will be time-varying
(TV).

Several studies have characterized dynamic joint stiffness
during TV conditions by modeling the intrinsic and reflex
response together using a single linear model (Bennett et al.,
1992; MacNeil et al., 1992; Kirsch and Kearney, 1997; Rouse et al.,
2014; Lee andHogan, 2015). These type ofmodels cannot provide
any information regarding the modulation of reflex mechanisms
and likely overestimate the contribution of intrinsic mechanisms
to the overall dynamic joint stiffness. We have introduced
methods to estimate intrinsic and stretch reflex mechanisms
using the parallel-cascade model structure during TV conditions;
however, these methods require very large data sets for parameter
estimation, which severely limits their application (Giesbrecht
et al., 2006; Ludvig et al., 2011; Guarin and Kearney, 2012, 2015b);
or make the strong assumption that there is a static-nonlinear
relation between the parallel-cascade model parameters and joint
position or torque (Sobhani Tehrani et al., 2013; Jalaleddini et al.,
2015). Despite their limitations, these studies have shown that
the interpolation of parameter values obtained from stationary
experiments does not describe dynamic joint stiffness during
TV conditions. Therefore, methods able to track the fast, large
changes in the model parameters using short data records are
required to characterize the modulation of the dynamic joint
stiffness during function.

This paper develops and validates a novel method to
estimate the intrinsic and reflex components of dynamic joint
stiffness during periodic movements. This method improves over
previous algorithms in several ways: (i) it reduces the size of the
data set required for accurate parameter estimation; and (ii) it
parametrizes the system and noise plants independently, which
eliminates biases in parameter estimates due to the colored noise
present in measurements of joint torque.

This paper is organized as follows: Section 2 presents the TV,
parallel-cascade model of dynamic joint stiffness and introduces
a novel re-parameterization that approximates, the non-linear,
TV model with a set of linear, time-invariant models. It then
introduces an algorithm to estimate the parameters of this model
using data acquired during periodic, TV conditions. Section 3
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describes a simulation study that evaluated the performance of
the new model parameterization and identification algorithm.
Section 4 demonstrates the practical application of the algorithm
by using it to estimate intrinsic and reflex dynamic ankle
stiffness during experiments where movements were imposed on
subjects while they exerted a constant voluntary torque. Section 5
summarizes the contributions and discusses some important
aspects underlying the method and its application.

2. MODEL FORMULATION AND
PARAMETER IDENTIFICATION

2.1. Joint position perturbations and torque
Estimation of dynamic joint stiffness requires the application
of small position perturbations that do not modify joint
position and have power over a wide enough range of
frequencies to excite the system adequately (Kearney andHunter,
1990). Consequently, to estimate dynamic joint stiffness during
movement, small position perturbations must be superimposed
on the movement trajectory, producing an overall, perturbed
joint position given by

θ(tk) = θ0(tk)+ θp(tk), (1)

where θ0(tk) is the movement trajectory and θp(tk) is the position
perturbation.

Under stationary conditions, when the joint trajectory and
voluntary torque are almost constant, the net moment at the joint
is

TQ(tk) = TQ0 + TQp(tk),

where TQ0 is a constant torque, produced by passive mechanisms
due to θ0 (which might be equal to zero if the joint is at its neutral
position), and by active mechanisms due to the constant muscle
activation; and TQp(tk) is a perturbation torque, produced by the
excitation of intrinsic and reflex mechanisms given by

TQp(tk) = TQI(tk)+ TQR(tk)

where TQI(tk) and TQR(tk) are the torques produced by the
intrinsic and reflex mechanisms, which cannot be measured
directly. Under stationary conditions, an estimate of the
perturbation torque can be retrieved from measurements of
total joint torque by removing the constant offset TQ0. The
perturbation position and torque can then be used to estimate
the intrinsic and reflex contributions to the total torque.

In contrast, under TV conditions, when the joint trajectory
(θ0(tk)) and/or the muscle activation level vary, the torque
produced by passive and voluntary mechanisms (TQ0(tk)), is
no longer constant. Consequently, estimating the perturbation
torque from measurements of total joint torque requires three
steps: First, a perturbed joint trajectory is applied and the total
joint torque, given by

TQ(tk) = TQ0(tk)+ TQp(tk),

is recorded. Second, an unperturbed joint trajectory is applied
and the joint torque TQ∗

0(tk) is recorded. Finally, the difference

between the net joint torque in the two experiments is computed
to estimate the torque due to the perturbations. However, it is
not realistic to expect that the joint will follow exactly the same
trajectory and/or that the subject will exert exactly the same
voluntary torque in the perturbed and unperturbed experiments.
Therefore, under TV conditions, the perturbation torque will be
given by

TQp(tk) = TQI(tk)+ TQR(tk)+ TQ1(tk), (2)

whereTQ1(tk) is an additional torque due to difference in passive
and voluntary torques during the perturbed and unperturbed
experiments.

2.2. Time-Varying Dynamic Joint Stiffness
Once the perturbation position and torque are available, system
identification can be used to separate the intrinsic and reflex
components analytically. Under stationary conditions, this can
be achieved by modeling the overall dynamic joint stiffness with
a parallel-cascade model, where intrinsic stiffness is described by
a linear system relating joint position and intrinsic torque, and
reflex stiffness by a Hammerstein system relating joint velocity
and reflex torque (Kearney et al., 1997; Guarin et al., 2013;
Jalaleddini et al., 2016).

Under TV conditions, a TV version of the parallel-cascade
structure, shown in Figure 1, has been successfully applied to
describe the overall dynamic joint stiffness (Giesbrecht et al.,
2006; Ludvig et al., 2011; Guarin and Kearney, 2012, 2015b;
Jalaleddini et al., 2017). However, the identification algorithms
used to estimated the TV model parameters require very large
data sets and so are difficult to use in practice.

Here, we introduce an alternative parameterization of the TV,
nonlinear, parallel-cascade model of dynamic joint stiffness that
transforms it into a set of pseudo-linear, time-invariant models.
Next, we will introduce an identification algorithm that uses a
small data set to estimate the TV model parameters.

2.2.1. Intrinsic Dynamic Stiffness
Intrinsic dynamic stiffness is usually described by a second order,
linear model with limb inertia, joint viscosity, and static stiffness
relating perturbation position and torque (Kearney and Hunter,
1990)

TQI(tk) = K(tk)θp(tk)+ B(tk)
d[θp(tk)]

dtk
+ I

d2[θp(tk)]

d2tk
, (3)

where K(tk), B(tk) and I are the intrinsic static stiffness, viscosity
and inertia. However, recent experimental evidence suggests that
the intrinsic dynamics stiffness is more complex than second-
order (Sobhani Tehrani et al., 2017). Therefore, we choose to
describe intrinsic stiffness with the TV, non-parametric model

TQI(tk) =
τ=L
∑

τ=−L

hI(τ , tk)θp(tk − τ ), (4)

where hI(τ , tk) is a TV, impulse response function (IRF) that
requires no a priori assumption of model order. The length of
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FIGURE 1 | Time-Varying, Parallel-Cascade model structure representing the intrinsic and reflex responses to small position perturbations. Measurable signals are

shown in blue while those that can only be estimated are shown in red.

the system memory must be specified a priori, and there is much
evidence than a memory of 40 ms is adequate for the ankle
joint (Kearney et al., 1997). Therefore, intrinsic dynamic stiffness
is represented by a two sided IRF with a memory from−40ms to
40ms.

2.2.1.1. Model re-parameterization
The TV parameters in Equation (4) will be approximated by a
linear combination of basis functions as

hI (τ , tk) =
j= nλ
∑

j= 0

λτ ,j3j (tk) ,

where {3j(tk)}
j=nλ

j= 0 are a set of time-varying basis functions and
λτ ,j their coefficients. Intrinsic dynamic stiffness can then be
approximated by the linear, time-invariant (LTI) model

TQI(tk) =
τ=L
∑

τ=−L

j=nλ
∑

j=0

λτ ,j3j (tk) θp(tk − τ ). (5)

2.2.2. Reflex Dynamic Stiffness
Reflex dynamic stiffness can be described by a series connection
of a differentiator, a delay of 40 ms and a Hammerstein system,
comprising the series combination of a static-nonlinearity and a
second-order, linear dynamic system, relating joint velocity and
reflex torque (Kearney et al., 1997; Guarin et al., 2013; Guarin and

Kearney, 2015b). The input-output relation is given by

¯̇θp(tk) = g
(

θ̇p(tk), tk
)

, (6a)

d2[TQR(tk)]

dt2
k

+ 2ζ (tk)ω(tk)
d[TQR(tk)]

dtk
+ ω2(tk)TQR(tk)

= G(tk)ω
2(tk)

¯̇θp(tk), (6b)

where θ̇p(tk) is the delayed joint velocity, and g(•, tk) is a TV,
static non-linearity. G(tk), ω(tk), and ζ (tk) are the gain, natural
frequency and damping of the reflex linear dynamics.

This TV, continuous-time model can be approximated by the
set of discrete-time, transfer function models

TQR(tk) =
b0(tk)

(

1+ 2q−1 + q−1
)

1+ a1(tk)q−1 + a2(tk)q−2
¯̇θp(tk), (7)

where b0(tk), a1(tk) and a2(tk) are discrete-time, TV parameters
and q−1 is the backward shift operator. The continuous-time and
discrete-time parameters are related to each other by

G(tk) = 4

[

b0(tk)

1+ a1(tk)+ a2(tk)

]

,

ω(tk) =
2

Ts

[

1+ a1(tk)+ a2(tk)

1− a1(tk)+ a2(tk)

]1/2

,

ζ (tk) =
1− a2(tk)

[(

1+ a1(tk)+ a2(tk)
) (

1− a1(tk)+ a2(tk)
)]1/2

.

where Ts is the sampling time in seconds.
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2.2.2.1. Model re-parameterization
The TV, static non-linearity will be approximated by

¯̇θp (tk) = g
(

θ̇p(tk), tk
)

≈
i=nc
∑

i=0

ci (tk)Ci

(

θ̇p (tk)
)

,

where Ci(•) are a set of pre-defined basis functions (e.g.,
polynomials, radial basis) and ci are their TV coefficients.
Following the same procedure as before, these are approximated
by a linear combination of basis functions as

ci(tk) =
j=nγ
∑

j=0

γi,jŴj (tk) ,

where {Ŵj(tk)}
j=nγ

j=0 are a set of time-varying basis functions and
γi,j their coefficients.

Similarly, the TV parameters of the linear dynamic element
will be approximated by a linear combination of basis functions

b0 (tk) =
j=nβ
∑

j=0

β0,j9j (tk) ,

ai (tk) = αi,0 +
j=nα
∑

j=1

αi,j5j (tk) , i = 0, . . . , na.

where αi,0 6= 0; {9j(tk)}
j=nβ

j=0 and {5j(tk)}
j=nα

j=0 are sets of time-
varying basis functions with 50(tk) = 1, ∀tk; β0,j, and αi,j their
coefficients.

Using the approximations with the basis functions, the
relation between the reflex torque and joint velocity is now
time-invariant and can be described by the discrete-time, time-
invariant, Hammerstein system

¯̇θp (tk) =
i=nc
∑

i= 0

j=nγ
∑

j=0

γi,jŴj (tk)Ci

(

θ̇p (tk)
)

, (8a)

TQR (tk) =
1

F
(

q−1
)



−
nα
∑

j= 1

α1,j5j (tk)TQR (tk − 1)

−
nα
∑

j= 1

α2,j5j (tk)TQR (tk − 2) +
j=nβ
∑

j= 0

β0,j9j (tk)
¯̇θp (tk)



 ,

(8b)

where F
(

q−1
)

is the polynomial

F
(

q−1) = 1+ α1,0q
−1 + α2,0q

−2,

2.2.3. Other Components
TQ1(tk) is expected to be a stochastic, low-frequency signal that
will be described by a linear combination of basis functions

TQ1(tk) =
j=np
∑

j=0

piPi(tk), (9)

where {Pi(tk)}
j=np
j=0 are a set of time-varying basis functions and pi

their coefficients.

2.2.4. Overall Joint Stiffness
Using these re-parameterizations, the overall relation between
joint position and torque, shown in Figure 1, can be
approximated by the LTI models shown in Equations (5),
(8a), (8b), and (9) the unknown parameters

ρI =
[

λ−L,0 · · · λ−L,nλ
· · · λL,0 · · · λL,nλ

]

, (10a)

ρR =
[

α1,0 · · ·α1,nα
· · ·α2,0 · · ·α2,nα

β0,0 · · ·β0,nβ

γ0,0 · · · γ0,nγ
· · · γnc ,0 · · · γnc ,nγ

]

, (10b)

ρ1 =
[

p0 · · · pnp
]

, (10c)

where ρI , ρR, and ρ1 are vectors containing the unknown
parameters used to describe the intrinsic, reflex and additional
torques, respectively.

2.3. Identification of TV, Dynamic Joint
Stiffness
We now describe an algorithm for the identification of the re-
parametrized models of TQI(tk), TQR(tk), and TQ1(tk). There
are four key elements to the algorithm: First, as Figure 1

illustrates, these torques cannot be measured directly so the
models describing each component cannot be estimated directly
from measured data. Consequently, the intrinsic and reflex
components will be estimated using an iterative algorithm that
estimates the parameters of each pathway sequentially, removing
the influence of the other pathways in the total torque before
estimating the parameters of each component (Kearney et al.,
1997; Guarin and Kearney, 2015b).

Second, the parameters of each element of the Hammerstein
system that represents the reflex component will be estimated
using a second iterative algorithm. This method estimates
the coefficients of the static nonlinearity and reflex dynamics
iteratively using a coordinate ascent approach. The algorithm
is guaranteed to converge to the true values under general
conditions (Bai and Li, 2004; Guarin and Kearney, 2015a).

Third, an instrumental variable approach, that provides
unbiased estimates of the model parameters even in the presence
of non-white noise, will be used to estimate the reflex linear
dynamic element (Laurain et al., 2010; Guarin and Kearney,
2016).

Finally, the identification algorithm assumes that there are
available multiple input-output trials presenting the same time-
varying behavior. The algorithm exploits this to estimate the
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parameters’ time-course from multiple realization of input-
output data. Moreover, the algorithm assumes that the time-
varying behavior is periodic and it automatically estimates the
initial conditions at each trial.

The identification algorithm combines two TV identification
methodologies: temporal expansion and ensemble approaches.
We recently introduced this hybrid identification approach and
showed that it can track faster parameters changes than the
temporal expansion method while requiring less data than
classical ensemble approaches (Guarin and Kearney, 2016).

2.3.1. Identification Algorithm
Assume that n cycles, each with N data points, of joint
position and torque were measured for both the unperturbed
and perturbed joint movements. The position perturbation
and torque signals are computed by aligning and subtracting
the unperturbed from the perturbed measurements. Following
Equation (2), the noise-free perturbation torque for n cycles can
be organized in matrix form as







TQp{1}
...

TQp{n}






=







TQI{1}
...

TQI{n}






+







TQR{1}
...

TQR{n}






+







TQ1{1}
...

TQ1{n}






, (11)

where

TQp{j} =
[

TQp(1){j} · · ·TQp(N){j}
]T

,

is the perturbation torque for the j-th cycle. The identification
algorithm assumes that intrinsic and reflex dynamics have
the same TV behavior in each cycle and that the TV model
parameters are periodic. In contrast, TQ1(tk) is assumed to be
different for each cycle, so that the parameters describing it are
different for each cycle.

The identification algorithm proceeds as follows:

1. Initialize

̂TQI{j} = ̂TQR{j} = O, j = 1, · · · , n.

2. Estimate TQ1 for each cycles as

˜TQ1{j} = TQp{j} −
(

̂TQI{j} + ̂TQR{j}
)

- Use ˜TQ1{j} and the linear, identification algorithm introduced in Guarin
and Kearney (Submitted) to estimate ρ̂1 for each cycle.
- Use these estimates to predict ̂TQ1{j} for each cycle.

3. Estimate the intrinsic torque as

˜TQI{j} = TQp{j} −
(

̂TQR{j} + ̂TQ
1
{j}

)

- Use the current prediction of the intrinsic torque and the perturbation
position with the algorithm introduced in Guarin and Kearney
(Submitted) to estimate ρ̂I . As the joint trajectory is the same at each
realization in the ensemble, the algorithm estimates a single set of
coefficients using all the realizations.
- Use these estimates and the perturbation position to update the
prediction of ̂TQI{j} for each cycle.

4. Estimate the reflex torque as

˜TQR{j} = TQp{j} −
(

̂TQI{j} + ̂TQ
1
{j}

)

- Use current prediction of the reflex torque, the perturbation velocity and
the algorithm introduced in Guarin and Kearney (2015a) to estimate ρ̂R.
As the joint trajectory is the same at each realization in the ensemble, the
algorithm estimates a single set of coefficients using all the realizations.
- Use these estimates and the perturbation velocity to update the prediction
of ̂TQR{j} for each cycle.

5. Compute the net predicted torque for all cycles as

̂TQp{j} = ̂TQI{j} + ̂TQR{j} + ̂TQ
1
{j}

and calculate the variance accounted for (%VAF) between the predicted
and measured torque signals as

%VAF =

















1−

tk=N∗n
∑

tk=1

(

TQp(tk)− ̂TQp(tk)
)2

tk=N∗n
∑

tk=1

(

TQp(tk)
)2

















× 100%,

where N ∗ n is the total number of samples.
6. Repeat the procedure from step 2 until successive iterations fail to improve

the %VAF.

The identification algorithm predicts the intrinsic (̂TQI(tk)),
reflex (̂TQR(tk)), and additional (̂TQ1(tk)) torques, as well as the
model parameters ρ̂I and ρ̂R. A Matlab implementation of this
algorithm and an application example are provided by DLG in
GitHub1

3. SIMULATION STUDY

3.1. Methods
The accuracy of the new algorithm was evaluated using
simulations of TV, dynamic ankle stiffness throughout a periodic
movement resembling the ankle movement during gait.

3.1.1. Simulated Model
Figure 2 shows the TV, dynamic joint stiffness model used in the
simulation. Intrinsic stiffness was simulated as a TV, continuous-
time, second-order system. Reflex stiffness was modeled as
the series connection of a 40 ms delay, a differentiator, and
a Hammerstein system whose static-nonlinear element was a
half-wave rectifier with a TV threshold (th(tk)), and whose
linear dynamic element was a TV, continuous-time, second-order
system. The model was simulated in Simulink (the MathWorks)
using a third order solver with a sampling rate of 1 kHz.
Each simulated cycle lasted 1.4 s, which is equivalent to slow
walking Sinkjaer et al. (1996); 40 cycles were simulated so that
each trial lasted for 56 s. Perturbation position and torque were
filtered and decimated to 100 Hz for analysis. The 56 s trial was
repeated 100 times with a different input and noise realizations
to compute statistical properties for the parameter estimates.

3.1.1.1. Model parameters
Figure 3 shows how the simulated parameters were varied
periodically in the simulations. The variation of the intrinsic
stiffness parameters, shown in Figures 3A–C, was based on
results reported by Lee et al. (2016).

1https://github.com/dguari1/Frontiers2017.
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FIGURE 2 | Simulated, TV, Parallel-Cascade model. Intrinsic dynamic stiffness was modeled as a TV, second order, continuous-time system. Reflex dynamic stiffness

was modeled as a Hammerstein system comprising a TV static-nonlinearity followed by a second order, continuous-time system.

The variations of the parameters of the linear, reflex dynamics
are shown in Figures 3D–F. The reflex gain changes were
based on those reported by Sinkjaer et al. (1996), while those
of the natural frequency and damping were generated by
interpolating results from stationary experiments at different
joint positions (Guarin et al., 2013). The threshold of the reflex
static nonlinearity changed during the portion of the cycle where
the reflex gain was largest, and remained constant at zero during
the remainder of the cycle.

3.1.2. Typical Trial

3.1.2.1. Input
Figure 4A shows the position input perturbation sequence
which was a Pseudo Random Arbitrary Level Distributed Signal
(PRALDS) with a random switching rate drawn from a uniform
distribution between 250 and 350 ms, and a peak-to-peak
amplitude of 0.06 rad. PRALDS signals have velocities distributed
over the entire range of possible values and so it provides
a rich set of values with which to estimate the reflex static-
nonlinearity (Jalaleddini and Kearney, 2013).

3.1.2.2. Experimental noise
Figure 4B shows a realization of the noise used in the
simulations. This was obtained from a library of ankle torque
records acquired while subjects maintained a constant torque
at a fixed ankle position (Ranjbaran et al., 2013). The library
comprised 100 records each lasting 60 s, from six subjects
generating dorsiflexing torques corresponding to 5, 10, and 15%
of their maximum voluntary torque. The experimental noise

signal is composed of a low-frequency trend (corresponding to
TQ1(tk)), physiological tremor, 60 Hz noise, and white-Gaussian
measurement noise (Bezrukov et al., 2003; Ranjbaran et al., 2013).
For each simulation trial, a 56 s section of the recorded torque
noise was chosen at random from the library, its mean removed,
and its amplitude adjusted to give an average signal-to-noise ratio
(SNR) of 15 dB across the trial. This SNR is lower than that
expected experimentally; (Ludvig and Kearney, 2007) reported it
to be around 40 dB.

3.1.2.3. Output
Figure 4C shows the noise-free output-torque, the sum of the
simulated intrinsic and reflex torques.

3.1.3. Basis functions
Cubic B-splines were selected as the basis functions to represent

the TV coefficients of the intrinsic TV-IRF ({3j(tk)}
j=nλ

j=0 ); these
basis functions were selected because they describe smoothly
changing signals, such as the simulated TV parameters, very well.
A total of 10 B-splines were used to represent each TV parameter
since this was found to be the minimum order necessary to
account for 99% of the variability of the true TV parameters. The
B-splines knots were uniformly distributed along the cycle.

B-splines were also used to represent the TV, reflex static-

nonlinearity ({Ŵj(tk)}
j=nγ

j=0 ), and the numerator of the TV, reflex

linear dynamics ({9j(tk)}
j=nβ

j=0 ). However, they could not be
used to represent the parameters of the denominator due to
technical limitations associated with the identification algorithm
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FIGURE 3 | Simulated time-varying model parameters as a function of time. (A) Intrinsic Static Stiffness (K), (B) viscosity (B), and (C) inertia (I). (D) Reflex gain (G), (E)
natural frequency (ω), (F) damping (ζ ), and (G) reflex static-nonlinearity with the red line showing the TV threshold.

FIGURE 4 | Typical simulation results: (A) position perturbations (input), (B)

experimental noise and (C) perturbation torque (output).

as described in Guarin and Kearney (2016). Consequently,
Chebyshev polynomials of order 0–7 were selected as the basis
functions to represent the coefficients in the denominator of the

TV, reflex linear dynamics ({5j(tk)}
j=nα

j=0 ).

Chebyshev polynomials of order 0–4 were used to represent
TQ1(tk), since we found that they provided a more parsimonious
representation of the low-frequency component, TQ1(tk), than
cubic B-splines.

Moreover, Chebyshev polynomials were used to parametrize

the reflex, static-nonlinearity ({Cj(θ̇p(tk))}
j=nc
j=0 ). There are some

advantages of using this polynomial representation: (i) the first-
order polynomial is linear, C1(θ̇p(tk)) = θ̇p(tk), so that the
estimated parameters can be used to validate whether a nonlinear
model is needed or not; and (ii) the variance of the output is
finite in its support, which guarantees the numerical stability of
the estimation process. Polynomials of order 0–4 were used to
approximate the TV static-nonlinearity.

As the gain of the Hammerstein system can be arbitrarily
assigned to the static-nonlinearity or the linear dynamic element
without affecting the output, we assigned the gain of the reflex
pathway to the static-nonlinearity and fixed the gain of the linear
dynamics to unity.

3.1.4. Validation
The predictive ability of the estimated model parameters were
quantified in terms of the Variance Accounted For (VAF)
between the predicted and simulated torques. An average-VAF
was computed for the entire simulation trial as described in step
5 of the identification algorithm. In addition, a TV-VAF was
computed by dividing each gait cycle in 20 segments of equal
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length and computing the VAF between predicted and simulated
signals for each segment.

The joint intrinsic static stiffness (K(tk)), viscosity (B(tk)) and
inertia (I) were computed directly from the estimated TV-IRF
by using a non-linear least-squares fit algorithm (Kearney et al.,
1997), and compare to the simulated parameter.

The shape of the estimated reflex, TV, static-nonlinearity
(which includes the reflex gain) was compared to that of
the simulated TV, half-wave rectifier. The TV, reflex natural
frequency (ω) and damping (ζ ) were computed directly from
the estimated, discrete-time parameters and compared to the
simulated values.

3.1.4.1. Ensemble identification algorithm
For comparison purposes we estimated the model parameters
using the ensemble identification algorithm for estimation of the
parallel-cascade model structure previously introduced by our
group (Ludvig et al., 2011). This algorithm uses an ensemble only
identification approach for estimating the TV parameters of the
intrinsic and reflex dynamic joint stiffness.

3.1.4.2. Time-invariant, dynamic joint stiffness model
Furthermore, a time-invariant (TI), dynamic joint stiffnessmodel
was estimated between the perturbation position and noisy
torque signals using the entire record. The TI, intrinsic and
reflex model parameters were estimated using the new algorithm
with the orders of the basis functions used to represent the TV
intrinsic and reflex model parameters set to one, forcing them to
be a constant, all-ones vector.

3.2. Results
3.2.1. Time-Invariant Results
The TI model did not predict the simulated torque well, the
average-VAF was always less than 70% for both intrinsic and
reflex torques. Furthermore, Figure 5 shows that the TV-VAF
varied greatly across the cycle; it ranged between 0 and 99%
for the intrinsic and between 0 and 90% for the reflex torque,
indicating that the TI models did not captured the simulated
system dynamics.

3.2.2. Ensemble identification algorithm
The ensemble only identification algorithm required at least 400
input-output realizations to produced acceptable results. With
this large data set, the average-VAF was larger than 90% for both
intrinsic and reflex torques. Furthermore, Figure 5 shows that the
TV-VAF for the intrinsic torque was greater than 98% at all points
in the cycle, indicating that ensemble identification algorithm
accurately captured the linear, intrinsic dynamics. However, the
TV-VAF for the reflex models varied greatly across the cycle;
it ranged between 55 and 99%, indicating that the ensemble
identification algorithm did not captured the non-linear, reflex
dynamics.

3.2.3. Hybrid Identification Algorithm
The TV model predicted the output extremely well, the average-
VAF was always larger than 99% for both intrinsic and reflex
torques. Furthermore, Figure 5 shows that the TV-VAF for both
the intrinsic and reflex torques was greater than 97% at all points

in the cycle; the lowest values were observed around the portion
of the cycle where the gain of the intrinsic and reflex pathways
were smallest.

3.2.3.1. TV intrinsic dynamic stiffness
Figures 6A–C compares the simulated (red) and estimated (blue)
intrinsic static stiffness, viscosity and inertia, demonstrating that
the estimated parameter tracked the true value very closely and
with little variability in all 100 simulation trials.

3.2.3.2. TV reflex dynamic stiffness
Figures 7A–D present snapshots of the estimated and simulated
TV static-nonlinearity at different points of the cycle. It is evident
that the estimated, polynomial static-nonlinearity accurately
tracked both the TV threshold and slope of the simulated half-
wave rectifier. It can also be observed that the variability of
the polynomial nonlinearity was smaller for velocities around
zero. The bottom panels of the figure show the simulated and
estimated natural frequency and damping of the reflex, linear
dynamic element, demonstrating that the estimated parameters
tracked the true values closely. The reflex damping was slightly
underestimated; but this did no affect the VAF, indicating that the
model output is less sensitive to the damping than to the other
elements.

4. EXPERIMENTAL STUDY

The practical utility of the new TV, identification algorithm was
evaluated by using it to estimate the dynamic ankle stiffness from
experimental data acquired during an imposed movement with
constant voluntary torque. Data was acquired from one healthy
subject who provided written informed consent. The experiment
was approved by the McGill University Research Ethics Office.

4.1. Experimental Methods
The subject lay supine with his left foot attached to the pedal
of a stiff electrohydraulic actuator operating as a position
servo, which prevented the subject from voluntarily moving its
ankle, by means of a custom made fiberglass boot (Kearney
et al., 1997). Ankle movement was restricted to dorsiflexion
and plantarflexion, defined as positive and negative angles
respectively with respected to a zero-position reference, taken 90◦

between the foot and shank.
Ankle position, torque, and surface EMG from the medial and

lateral gastrocnemius (GM and GL), soleus (SOL) and tibialis
anterior (TA) were measured, filtered at 400 Hz to prevent
aliasing and sampled at 1 kHz by a 16-bit A/D converter. Data
were low-pass filtered and decimated to 100 Hz for analysis.
Surface EMG electrodes were placed following the SENIAM
recommendations (Hermens et al., 2000).

During each experimental trial the actuator moved the ankle
to zero position and held it there for a 1 min. Then, an
unperturbed trajectory, consisting of the angle of the ankle joint
during walking, with a duration of 2 s, was applied; this trajectory
was extracted from Lee and Hogan (2015). The trajectory was
repeated periodically 30 times; the trial was repeated twice to
obtain a total of 60 cycles.
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FIGURE 5 | TV-VAF between the noise-free torque and that predicted by the time-invariant (red) and time-varying models, estimated with the ensemble (green) and

hybrid (blue) algorithms. Bars represent the mean, 5th and 95th percentiles observed in 4,000 simulated cycles. (A) Intrinsic Torque, and (B) Reflex Torque.

FIGURE 6 | Intrinsic dynamic stiffness. Simulated (red) and estimated (blue) (A) static stiffness (K(tk )), (B) joint viscosity (B(tk )), and (C) limb’s inertia (I(tk )) as a function

of time.

The unperturbed trials were performed two times. The first
time the subject was instructed to (i) be relaxed, and (ii) not
react to the imposed movement. The second time, the subject
was instructed to: (i) maintain a constant plantarflexion torque
corresponding to 10% of its maximum torque at zero position
(recorded previously at 70 Nm); and (ii) not react to the imposed
movement. To assist with this task, the subject was presented

with a visual feedback of a low-pass filtered (0.7 Hz) version of
the measured torque minus the passive torque recorded in the
previous experiment. The subject was allowed to train for several
minutes before the beginning of the trial.

The trials were then repeated using a perturbed ankle
trajectory by adding a PRALDS signal, similar to that used in
the simulation study, to the walking trajectory. In the perturbed
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FIGURE 7 | Reflex dynamic stiffness. (A–D) Snapshots of the the simulated (red) and estimated (blue) TV, static nonlinearity at the four points of the cycle indicated

by vertical lines in (D,E). Simulated (red) and estimated (blue) (E) reflex natural frequency (ω(tk )), and (F) damping (ζ (tk )) as a function of time.

trials the subject was instructed to: (i) maintain a constant
plantarflexion torque corresponding to 10% of his maximum
torque; and (ii) not react to the imposed movement and
perturbations.

Perturbed and unperturbed position and torque records
were subtracted to give the perturbation position (θp(tk))
and torque (TQp(tk)). Each trial was then divided into
identification and validation segments; 40 cycles were
used for parameters estimation and the remaining 20
cycles for model validation; validation data was not used
for parameter estimation, only for model validation. The
model was validated by computing the average-VAF between
the measured and predicted torques for the validation
data.

The identification procedure was started with the same
number of basis functions used in simulations; a subset of basis
functions was then selected automatically by using a sparse
identification algorithm, which forces the weights associated to
basis function that do not contribute to the reduction of the
prediction error to zero so that they can be discarded Guarin and
Kearney (Submitted).

Finally, joint velocity was computed by numerically
differentiating the perturbation position signal. Then, the
reflex delay was computed by finding the time difference
between the positive peaks in the joint velocity signal and the

corresponding peaks in the soleus EMG signals associated with
the reflex response.

4.2. Results
4.2.1. Typical Trial
Figure 8 shows two cycles of the perturbed and unperturbed
position, where the dorsiflexion and plantarflexion directions
are indicated with black arrows; soleus EMG, and torque
records. The blue lines in Figures 9A,B show the corresponding
perturbation position (θp(tk)) and torque (TQp(tk)).

4.2.2. Time-Invariant Results
The output of the TI model estimated from these data did not
predict the ankle torque very well (data not shown). The average-
VAF never exceeded 75%, demonstrating that a TV model is
required to capture the system dynamics.

4.2.3. Time-Varying Model
In contrast, the estimated TV model predicted the measured
torque very well; the average-VAF for the validation trials
was never less than 95%. The brown line in Figure 9B shows
the predicted total torque (the sum of intrinsic, reflex and
additional torques) for two validation trials, whose average-
VAF was 95%. This excellent agreement between measured
and predicted torques indicates that the TV model estimates
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FIGURE 8 | Typical signals recorded during a un-perturbed (blue) and perturbed (brown) trajectory. (A) position, (B) Soleus EMG, and (C) torque.

FIGURE 9 | Results for a typical validation trial as a function of time. (A) Perturbation position input, (B) Measured (blue) and predicted (brown) perturbation torque,

(C) Estimated intrinsic torque, (D) Estimated reflex torque and (E) Estimated additional torque. The predicted perturbation torque is the sum of the intrinsic, reflex and

additional torques.

accurately captured the system dynamics. Figures 9C–E also
show the predicted ̂TQI(tk), ̂TQR(tk), and ̂TQ1(tk) as a function
of time. The intrinsic torque accounted for most of the

variance of the measured data for this experiment; however,
both the reflex torque and TQ1(tk) were non-zero for all the
cycle.
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4.2.3.1. TV intrinsic dynamic stiffness
The parameters of the TV-IRF describing the intrinsic dynamic
stiffness underwent large, fast changes throughout the cycle.
Figure 10A presents the variation in the intrinsic static stiffness
along with the 95% confidence interval, computed by a bootstrap
analysis with 100 repetitions (Press, 2007). The intrinsic elasticity
increased three fold (from 35 Nm/rad to 100 Nm/rad) in the
first half of the cycle, it then decreased sharply and stayed nearly
constant during the remainder of the cycle.

Figure 10C shows the static intrinsic stiffness as a function
of ankle position, demonstrating that: (i) static intrinsic stiffness
is larger in plantarflexion than dorsiflexion; (ii) the relation
between joint position and intrinsic elasticity is nonlinear and
is influenced by the immediate history of the movement, as
different values of the static stiffness were observed for the same
joint position during different parts of the cycle.

Furthermore, the upper pathway of Figure 11 shows
the time-frequency response of the TV-IRF as a function
of the cycle with the purple line indicating the static
stiffness. The intrinsic dynamic stiffness showed a high-
pass behavior, typically observed during stationary
experiments (Kearney et al., 1999), and underwent large,
fast changes in the low and mid-frequency components,
related to the joint visco-elastic properties, throughout the
gait cycle. The high-frequency components, related to the
joint inertial properties, did not change much throughout
the cycle.

Attempts to fit a second order model to the estimated TV-
IRF provided inaccurate parametric models unable to properly
describe the intrinsic joint dynamics. This is consistent with
recent evidence that joint mechanical properties are more
complex than second order (Sobhani Tehrani et al., 2017).

4.2.3.2. TV reflex dynamic stiffness
The parameters of the polynomial nonlinearity representing
the reflex, static-nonlinearity underwent large, fast changes
throughout the gait cycle. Figure 10B shows the variation in the
reflex gain, computed as the slope of the static nonlinearity, along
with the 95% confidence interval. The reflex gain increased six
fold (from -2 Nm/rad/s to -12 Nm/rad/s) during the first half of
the cycle, and then decreased rapidly to an almost constant value
for the remainder of the cycle.

Figure 10D shows the reflex gain as a function of ankle
position. This plot indicates that: (i) the reflex gain is larger in
plantarflexion than dorsiflexion; (ii) the relation between joint
position and reflex gain is nonlinear and is influenced by the
immediate history of the movement.

The parameters of the second-order, linear system
representing the reflex, linear dynamics did not vary much.
The lower pathway of Figure 11 summaries the TV reflex
behavior. It shows the TV, static-nonlinearity as a function of
cycle and the frequency response of the linear dynamics. The
estimated static-nonlinearity resembles a half-wave rectifier;
whose gain underwent large, fast changes throughout the cycle.
The linear dynamics are low-pass in nature and did not vary
throughout the cycle. The shape of the static nonlinearity and
the cut-off frequency of the linear dynamic element are similar

to what has been observed in stationary experiments (Kearney
et al., 1999).

5. DISCUSSION AND CONCLUSIONS

This paper presents a new model parameterization and
identification algorithm for the accurate estimation of the
intrinsic and stretch reflex components of dynamic joint stiffness
during movement. The algorithm combines ensemble and
deterministic approaches to estimate TV model parameters from
position and torque records. Simulations demonstrated that
the new algorithm successfully decomposed the dynamic joint
stiffness into its intrinsic and reflex components, and accurately
tracked the fast, large changes in the parameters of each pathway
using only 40 cycles in the presence of complex, experimental
noise. This represents a much-needed improvement over
ensemble only algorithms, which were not able to accurately track
the changes in intrinsic and reflex dynamics even after using
400 cycles. Furthermore, the practical application of the method
was successfully demonstrated by using it to track the changes
in ankle stiffness in a human subject in an experiment that
involved an imposed walking movement with constant muscle
activation. The excellent agreement between the predicted and
experimental torques demonstrated that the new methodology
accurately describes the modulation of dynamic ankle stiffness
during the movement.

5.1. Methodological Issues and Limitations
Methods that estimate TV, dynamic joint stiffness make three
underlying assumptions: (i) The small perturbations applied to
the joint do not change much the operating point (Kearney
et al., 1997); (ii) the mechanical response of the joint to small
perturbations and to large changes in the operating point are
linearly superimposed (Gottlieb and Agarwal, 1978); and (iii)
changes in the system dynamics with joint position and torque
can be described by a set of local models at each point in
time (Bennett et al., 1992). The excellent agreement between the
predicted and measured torques suggests that these assumptions
hold for the slow ankle trajectory used in our experiments, which
resembles slow walking. However, it remains to be determined if
these assumptions are valid during faster joint movements.

Our methodology leverages these assumptions and introduces
a novel parameterization of the parallel-cascade model where the
time-course of the local models parameters are approximated by
a linear combination of basis functions. These approximations
transform the TV model into a set of TI models at the cost of
increasing the number of free parameters. This raises a number
of issues with the new algorithm:

First, the number of free-parameters increased by the
re-parameterization procedure; therefore, the identification
algorithm requires large data sets for accurate parameter
estimation. This limitation was addressed here by combining
the basis function expansion with an ensemble identification
approach, which uses multiple, input-output trials with the
same TV behavior. However, compared with ensemble-only
identification methods, our algorithm requires a lot less
repetitions, which translates into much shorter experiments
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FIGURE 10 | Gain of intrinsic and reflex stiffness as a function of time (A,B) and ankle position (C,D). Shadows represent the 95% confidence interval. The beginning

of the cycle is indicated by the diamond, arrows show the progression of the cycle.

FIGURE 11 | TV, Parallel-Cascade model estimated from experimental data. Intrinsic dynamic stiffness modeled as a TV-IRF model. Reflex dynamic stiffness

modeled as a Hammerstein system with TV static-nonlinearity followed by a time-invariant, low-pass filter.
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making it easier to acquire enough trials with the same TV
behavior.

Second, the type and number of basis functions used to
parametrize the TV coefficients must be known a priori; the
quality of the parameter estimates will depend on selecting a set of
basis functions capable of efficiently describing the TV parameter
changes. This study uses B-splines and Chebyshev polynomials,
both of these basis functions are well suited to describe smooth
parameter changes. B-splines are useful when the changes
are rapid, polynomial basis are adequate to approximate low-
frequency trends (Zou et al., 2003; He et al., 2013).

Third, this method was designed to work with data measured
in open-loop. This is the case in experiments, such as ours,
where a very stiff actuator, acting as a position servo, imposes
a desired joint trajectory so that any torques produced by the
joint in response to the perturbation do not result in position
changes. That is, the relation between joint position and torque
is open-loop. In contrast, during most natural movements, the
joint interacts with a compliant load so that torques generated
in response to position changes will in turn modify the joint
position, resulting in closed-loop measurement of joint position
and torque. Most methods for identification of dynamic join
stiffness have been designed to work with open-loop data,
and using these methods with data measured in closed-loop
will lead to biased parameter estimates (Kearney and Hunter,
1990).

The method presented is an open-loop method; however,
it can be reformulated to work with data measured in
closed-loop. This would require adopting a new model of
dynamic joint stiffness, with the feedforward and feedback
pathways comprising the intrinsic and reflex components
respectively (Van der Helm et al., 2002). The algorithm described
here for identification of intrinsic dynamics cannot be used
with closed-loop data as it will provide biased results. However,
an instrumental variable algorithm for parameter identification
can be used directly to estimate the intrinsic component from
closed-loop data as described in Guarin and Kearney (2016). The
method presented here for estimation of reflex dynamic stiffness
uses instrumental variables and so can be applied directly to
estimate the nonlinear, Hammerstein system representing the
reflex dynamics from data measured in closed-loop (Young,
2011).

Moreover, our implementation of the identification algorithm
assumes that the time-varying behavior is periodic, so that the
initial conditions of each trial in the ensemble will be the same
facilitating their estimation. However, the algorithm could be
modified to work with non-periodic data; this would require
estimating the initial conditions of each trial in the ensemble as
part of the identification problem as done in Jalaleddini et al.
(2017).

Finally, the algorithm relies on knowledge of the reflex
response delay to accurately separate the intrinsic and reflex
components from the measured position and torque data. It
assumes that the delay remains constant throughout the cycle.
We measured the reflex delay from joint velocity and soleus
EMG signals, and found that it remained constant across the
cycle.

5.2. Simulation study
System identification methods are often validated using idealistic
input and noise sequences. However, the performance of these
algorithms often degrades when applied to experimental data,
where inputs are non-ideal and the noise is neither zero-
mean, nor white. Our simulation was intended to mimic real
experiments; model parameters were based on those reported in
the literature; inputs signals had limited bandwidth; and the noise
was extracted from experimental observations. Consequently,
we believe that our simulation results are more relevant to
experimental conditions.

As Figures 6,7 show, the simulated, intrinsic and reflex
stiffness model parameters were accurately estimated by
the identification algorithm. The large variability in the
polynomial nonlinearity at large velocities is likely related
to the amplitude distribution of the velocity signal, which
despite having velocities distributed over the entire sets of
values, is highly concentrated around zero (Jalaleddini and
Kearney, 2013). Finally, the reflex natural frequency was
accurately estimated, and the reflex damping was slightly
underestimated. However, this did not affect the prediction
ability of the estimated models, indicating that the model
output is not very sensitive these small differences in the
damping.

5.3. Experimental Study
We also applied the new method to actual experimental data to
estimate the intrinsic and reflex dynamic ankle stiffness during
an movement. Results showed that the model structure predicted
the output torque to novel perturbation sequences, indicating
that the estimated model successfully captured the TV, nonlinear
dynamics.

Figure 10A shows that the static stiffness changed
dramatically during the imposed movement, it increased
substantially during the first part of the cycle (from around
35 Nm/rad to 100 Nm/rad) and then sharply decreased (to
20 Nm/rad) in just 200 ms, it maintained a nearly constant
value for the remainder of the cycle. Figure 10C demonstrates
that the ankle static stiffness can take different values for
the same ankle angle depending on the immediate history
of the movement. This demonstrates a true TV behavior in
the joint neuromuscular properties, and not just a static-
nonlinear dependency on joint position, as has been previously
assumed (Sobhani Tehrani et al., 2013; Jalaleddini et al.,
2015).

Figure 10B shows there were also large TV changes in the
reflex gain, it increased (from around −2 Nm/rad/s to −12
Nm/rad/s) during the first 800 ms of the cycle, then rapidly
decreased to almost zero over the next 400ms, and then remained
relatively constant for the remainder of the cycle. Moreover,
Figure 10D demonstrated that there is a significant history-
dependent behavior, with the reflex gain showing values with a
difference of up to 300% for the same value of joint position. The
other components of the reflex pathway did change during the
movement.

Furthermore, the reflex gain attained its maximum value
at least 100 ms before the intrinsic static stiffness, this is
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consistent with the idea that the tonic stretch reflex might
mediate the changes in muscle activation, leading to an increased
intrinsic static stiffness Feldman and Levin (2009). In addition,
the history-dependent behavior was observed in both the
intrinsic static stiffness and reflex gain; however, as Figure 10D
demonstrates, this behavior was much more significant for the
reflex than the intrinsic component. This might be explained
by the fact that reflex dynamic stiffness is generated only
by the active muscle response to stretch activation whereas
intrinsic dynamic stiffness is generated by both active and passive
components.

We conclude that the new algorithm will be a useful tool in
the study of dynamic joint stiffness during TV conditions and

that it will help further the understanding of the modulation of
this system during function.
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Predicting the movements, ground reaction forces and neuromuscular activity during

gait can be a valuable asset to the clinical rehabilitation community, both to understand

pathology, as well as to plan effective intervention. In this work we use an optimal

control method to generate predictive simulations of pathological gait in the sagittal

plane. We construct a patient-specific model corresponding to a 7-year old child with gait

abnormalities and identify the optimal spring characteristics of an ankle-foot orthosis that

minimizes muscle effort. Our simulations include the computation of foot-ground reaction

forces, as well as the neuromuscular dynamics using computationally efficient muscle

torque generators and excitation-activation equations. The optimal control problem

(OCP) is solved with a direct multiple shooting method. The solution of this problem

is physically consistent synthetic neural excitation commands, muscle activations and

whole body motion. Our simulations produced similar changes to the gait characteristics

as those recorded on the patient. The orthosis-equipped model was able to walk

faster with more extended knees. Notably, our approach can be easily tuned to simulate

weakenedmuscles, produces physiologically realistic ground reaction forces and smooth

muscle activations and torques, and can be implemented on a standard workstation to

produce results within a few hours. These results are an important contribution toward

bridging the gap between research methods in computational neuromechanics and

day-to-day clinical rehabilitation.

Keywords: pathological gait, neuromechanics, movement prediction, model-based optimization, parameter

identification

1. INTRODUCTION

The clinical treatment of neuromuscular gait abnormality is a complex process that demands
significant investment of time and effort from the patient (and caregivers), surgeons and orthotists.
Often there may be multiple suitable treatment regimes (surgery, orthotics, rehabilitation exercise,
etc.) without a clear indication of an optimal choice. The use of computational methods can assist in
these decisions in two ways. First, by estimating internal physiological states that cannot be directly
measured to help understand the pathology. Second, by predicting the change in such states under
manipulation of virtual patient models to help understand the effects of the possible interventions.
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There is a growing number of studies that apply the former, so
called inverse methods, to healthy and pathological movements,
e.g., (Nakamura et al., 2005; Damsgaard et al., 2006; Delp et al.,
2007; Erdemir et al., 2007; Sreenivasa et al., 2015; Choi et al.,
2016). By matching recorded kinematics and ground reaction
forces, one may solve for muscle activations under various
optimization criteria (Jonkers et al., 2003; Thelen et al., 2003;
Erdemir et al., 2007; Groote et al., 2016). Another approach is to
use the concept of modularity in neural and muscle recruitment
to generate a low dimensional manifold of control signals. Sartori
et al. (2013) used this approach to generate EMG signals and
joint moments for a lower body neuromuscular model. There
are far fewer examples that explore the possibility of predicting
the kinematics and dynamics of the body during gait. Here we
distinguish betweenmethods that can predict muscle forces given
body movements, and those that can predict both muscle forces
and bodymovements. This work focuses on the latter by applying
optimal control based methods to predict movements, ground
reaction forces and neuromuscular dynamics during walking
with and without an orthosis. The goal here is to support an
important clinical routine—fitting of an orthosis to a patient—
with the use of computational methods and patient-specific
models.

The ideal combination of model/method would be one that
is computationally efficient, includes neuromuscular dynamics,
produces realistic ground reaction forces, can be tuned to
an individual (healthy or pathological) quickly and accurately,
and can predict movements. Each of these requirements
is challenging, however, methodological and technological
advances have made some of these possible. Anderson and Pandy
(2001) famously used 10,000 h on a Cray super-computer to solve
for a metabolically efficient gait for a lower-body neuromuscular
model. More recently Wang et al. (2012) and Dorn et al. (2015)
predicted gait patterns for their models with around 1,000 CPU-
hours of processing. This level of computational infrastructure
and the long time to a solution is not feasible for routine
clinical work. In contrast, the works of Schultz and Mombaur
(2010), Ren et al. (2007), Felis et al. (2013), Felis and Mombaur
(2016), and Srinivasan et al. (2008, 2009) produce results using
desktop computers in less than an hour. While the faster solution
time is impressive, these works do not include a representation
of the muscles, which is necessary to address most clinical
questions.

Ackermann and van den Bogert (2010) and Dorn et al.
(2015) included muscles and activation dynamics, however,
their results were accompanied by ground reaction force
peaks that were twice as large as would be expected from
healthy human walking. Using an alternative reflex-
feedback approach, Geyer and Herr (2010) produced a
muscle and reflex-driven simulation of walking that produced
ground reaction force profiles that had a comparable form
and magnitude to healthy human walking. While these
results are impressive, it would be challenging to estimate
individualized reflex parameters, especially in a clinical
setting.

An alternative to the model-based approaches presented
so far is the use of methods from machine learning to

adaptively adjust assitive devices to the user. Autonomous
learningmethods have found application in clinical rehabilitation
related to functional electrical stimulation (see e.g., Abbas
and Chizeck, 1995; Chang et al., 1997; Ferrante et al., 2004).
However, these methods typically require pre-existing datasets
and/or a large number of training trials. This makes their
extension to the prediction of whole body neuromechanics
challenging, as patient data may be sparse or not available
at all.

In addition to these computational aspects, a major challenge
that must be addressed is the validation of the models and the
simulation results. This is a multi-faceted issue that needs to be
dealt with at both the technical and clinical fronts. For example,
for neuromuscular models a common hurdle is that internal
neurological states cannot be measured in vivo, and surface
EMG can only roughly approximate muscle function (Farina
et al., 2014). In addition, a prospective clinical trial is a major
undertaking that needs a close collaboration between research
and clinical teams. As an initial step, studies such as the one
presented here can at the very least compare their results to those
measures that are relatively easy to record (e.g., joint kinematics,
ground reaction forces, surface EMG). While this is not a full
validation, a model that can match these observations can at least
assure the clinician of exhibiting behavior that is physiologically
realistic.

In the following we detail a patient-specific model and
formulate an optimal control problem (OCP) to identify the
optimal individualized stiffness of an ankle foot orthosis that
minimizes muscle effort while walking. It is important to note
that the identification of the stiffness parameters occurs in
advance of the patient walking with the orthosis. We do not
identify the stiffness parameters from experimental data, but
rather predict what the parameters should be for that patient.
In general, an OCP defines a minimization problem where an
objective function is minimized while abiding the dynamics
describing a physical system (in our case the human body +
orthosis dynamics). Such methods have been used successfully
for robot and human motion generation in the past (Bobrow
et al., 1985; von Stryk and Schlemmer, 1994; Schultz and
Mombaur, 2010), and to a limited extent for the design of human-
assistive devices (Koch andMombaur, 2015; Mombaur, 2016). In
the current work, we strike a balance between model complexity
and computational efficiency by modeling the muscles as lumped
torque generators rather than anatomically equivalent line-
type actuators. The solutions combine physically consistent
neuromuscular dynamics and ground-contact dynamics, and can
be achieved in a matter of hours on a standard desktop computer.
We implement several OCPs that mimic the patient condition as
he walked barefoot as well as with an orthosis. Note that in these
OCPs we predict movements, joint torques and ground-reaction
forces. For the orthosis OCP, we evaluate two cost functions, one
that only minimizes muscle effort, and another that minimizes
muscle effort while favoring a higher walking speed. In addition
we also present a dynamic fit of the model to the recorded gait
kinematics. Our simulation results are compared to experimental
recordings from a 7-year old patient with neuromuscular
deficits.
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2. METHODS

2.1. Patient Data
Gait data of a 7-year old male (weight 24.7 kg, height 1.25 m)
are retrospectively used in this study. The patient presented with
multiple bony deformities of neuromuscular origins, which were
corrected in a single event multilevel surgery 1.5 years prior to the
recording of the gait data. At the time of recordings he presented
with a mild crouch, slow walking speed and unstable gait.
Recordings were made of the patient walking on level ground
with bare feet and with bilateral ankle-foot orthosis. The orthosis
stiffness (see Section 2.2.3 for details) was tuned manually by an
orthopedic professional overseeing the recordings. Positions of
35 reflective markers attached to the patient’s limbs and torso
were recorded at 120 Hz during level gait using a 10-camera
Vicon system (Vicon, UK). Simultaneous ground reaction forces
were recorded at 1080 Hz using Kistler force plates (Kistler
GmbH, Germany).

In total 13 barefoot left and right steps and 12 orthosis left
and right steps were recorded that contained gait kinematics
suitable for further processing. From this set, 3 barefoot left
steps and 2 barefoot right steps, as well as 5 orthosis left

steps and 4 orthosis right steps, had suitable recorded ground
reactions forces. The reduced number of trials with valid
ground reaction forces highlight the experimental difficulties
associated with getting an under-age patient with neuromuscular
deficits to step cleanly on the successive force-plates. The gait
recordings were part of a standard clinical routine. Written
informed consent was obtained from the parents and the subject.
The recordings were conducted according to the guidelines of
the Declaration of Helsinki 2013 and approved by the ethics
committee of the Medical Faculty Heidelberg of Heidelberg
University.

2.2. Model Formulation
We model the human body as an articulated multi-body system
with 8 segments, each with one rotational Degree of Freedom
(DoF) in the sagittal plane. The pelvis is modeled as a floating
base with two additional translational DoFs in the X and
Z directions (Figure 1). Segment lengths were approximated
from motion capture data, and segment mass and inertia were
calculated based on anatomical regression equations for children
as per (Jensen, 1986).

FIGURE 1 | Torque muscles fitted to the patient were used to actuate a sagittal plane rigid-body model. (A–C) Show the normalized active-torque-angle

curve, fA (θ ), and the torque-angular-velocity curve, fV (ω), of the torque muscles. (D) Illustrates the degrees of freedom of the rigid-body model along with the modeled

ankle-foot orthosis as an adjustable-stiffness torsion spring.
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2.2.1. Patient-Specific Muscle Torque Generator
The rotational DoFs at the hips, knees, ankles and the torso
were each actuated by a pair of agonist-antagonist Muscle Torque
Generators (MTG), which represent the combined torques being
generated by muscle forces in that direction (Figure 1). The
active tension developed by a muscle varies non-linearly with
the length and contraction velocity of the muscle, while the
passive tension varies non-linearly with its length (Zajac, 1988;
Millard et al., 2013) (Figure 1). In this study we only model
the active components of muscle torque generation. The active
torque developed by a MTG varies non-linearly with the angle θ

of the muscle and is represented by the normalized active-torque-
angle curve fA(θ) which peaks at a torque of τ M

o at an angle of
θo. During non-isometric contractions the torque developed by
the muscle varies non-linearly with the angular velocity ω of the
muscle, which is represented by the normalized torque-angular-
velocity curve fV(ω). Muscle torque τ M is computed using these
characteristic curves as follows:

τ M = τ M
o (afA(θ)fV(ω)) (1)

where a is the muscle activation. The active-torque-angle and
torque-angular-velocity curves are modeled using C2 continuous
Bézier curves (Figure 1) fitted to the experimentally derived
torque curves of (Anderson et al., 2007). Anderson et al.’s
parameterized curves are not used directly because they are not
all C2 continuous, which is required by the OCP solver.

Patient-specific maximum torques in extension for the hip,
knee and ankle are estimated under the assumption that during
the recorded trials the patient was walking at 90% of his
maximum capability (i.e., maximum muscle activations were
0.9). This assumption is motivated by the clinical assessment
of this patient’s musculature, the pronounced crouch, and slow
walking speed observed in the recorded barefoot gait. First,
we use inverse dynamics analysis to compute the maximum
extension torques generated during the recorded trials. Using
a = 0.9 and the θ , ω where this maximum occurred, the
corresponding maximummuscle torque in extension is found by
solving Equation (1) for τ M

o . Maximum flexion torques are then
computed based on the extension-flexion torque ratios recorded
in the study by Anderson et al. (2007). Table 1 lists these values
for an age-matched and weight-matched healthy child, as well
as for the patient considered in this study. Torso strengths are
assumed to be the average of the right and left hip strengths. Note
that theMTGmodels developed here do not take into account the
active and passive-dynamic coupling effects of muscles that span
multiple joints.

2.2.2. Excitation-Activation Dynamics
The physiological activation of muscle is an electro-
chemical process at the motor unit end plates that converts
incoming motor unit action potentials to changes in ion-
concentration, and subsequent contraction in muscle
fibers. Lumped models provide a simplified representation
of this process by relating the overall muscle activation
a, to the rate of change of activation ȧ and neural
excitation e. Here, we use the formulation by Thelen et al.

TABLE 1 | Maximum isometric joint torques for an age and

weight-matched healthy control and the patient considered in this study.

τ
M
o (Nm)

Healthy Pathological

Left Right Left Right

Hip extension 48.82 48.82 30.35 18.64

Hip flexion 34.27 34.27 21.31 13.08

Knee extension 36.08 36.08 24.55 22.40

Knee flexion 19.26 19.26 13.10 11.95

Ankle extension 39.46 39.46 16.84 32.32

Ankle flexion 13.71 13.71 5.85 11.23

Torso extension 48.82 24.49

Torso flexion 34.27 17.19

(2003):

ȧ =











(e− a)

(

e

τA
+

1− e

τD

)

if e ≥ a

e− a

τD
otherwise

(2)

where, τA = 0.011, τD = 0.068 denote the activation
and deactivation time constants as per (Winters and Stark,
1988).

2.2.3. Parametrized Orthosis Model
The orthosis worn by the patient consisted of custom-built
carbon fiber shank and foot segments joined together by
an adjustable-stiffness spring-loaded rotational joint at the
ankle. The adjustable stiffness joint was constructed using the
Neuroswing Joint (Fior and Gentz, Germany) which needs to
be tuned to each patient. The foot segment consist of foot-plate
fitted to the patient’s foot size and inserted into a standard shoe.
The masses of the shank and foot segments are estimated to be
0.34 and 0.69 kg, respectively. Note that the foot segment mass
referred to here includes themass of the shoe. In the following, we
refer to the gait with the orthosis+shoe combination as orthosis
gait. These masses are added to the shank and foot segments of
the patient model for the simulations of orthotic gait.

The stiffness of the orthosis is modeled as torques generated at
the ankle as a function of the ankle angle. The behavior is divided
into 5 stages for the extension-flexion range of motion (Figure 2).
The parameter θ0 defines the offset between the neutral pose of
the ankle and the orthosis in a torque-free angular position. In
a small angle window θW about this neutral pose, a small pre-
load defined by τ0 acts on the joint. As the shank rotates with
respect to the foot, the torques are produced by the joint springs
(spring stiffness KD, and, KP). Upon hitting the adjustable hard
stops (θDH , and, θPH) the shank may rotate further by flexing
the carbon fiber material. This relatively stiffer material results
in large torques defined by the parameters, KDH and KPH . The
positional parameters listed in Table 2 were measured by the
medical professionals during the clinical process. The stiffness
of the orthosis-shoe combination is estimated using inverse
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FIGURE 2 | Parametrized orthosis torque-angle profile: Torques

resulting from the stiffness of the orthosis springs and frame are

plotted as a function of ankle angle. The shape of this curve changes as a

function of the free parameters KD and KP.

TABLE 2 | Orthosis parameters.

Parameter Value

KDH (Nm/radian) 200

θDH (radian) −0.12 (L)

−0.13 (R)

KD
a (Nm/radian) 55

θ0 (radian) −0.02

θW (radian) 0.01

τ0 (Nm) ±1

KP
a (Nm/radian) 5

θPH (radian) 0.09 (L)

0.1 (R)

KPH (Nm/radian) 200

aKD and KP are free parameters of the optimal control problem (OCP) that are to be
determined. Values indicated here are the initial guess provided to the OCP. The other
parameter values are fixed in the OCP.

dynamics analysis of recorded orthosis gait (further details in
Section 2.4). While the positional parameters and masses can be
measured with a high degree of certainty, the stiffness values of
the combined orthosis-shoe unit are tougher to measure and is
not part of the clinical routine. In the current approach, we place
the initial guess for the stiffness values well below the estimate
calculated from the torque-angle characteristics.

Note that during the clinical fitting/tuning process, the
orthotist would adjust the spring stiffness denoted here by the
parameters KD, and, KP. While it is possible to adjust the other
orthosis characteristics, these springs are the easiest to access
and one can quickly test their effects on gait during a fitting

procedure. Consequently, we make these two parameters KD,
and, KP, free parameters of the OCP that are to be determined.
The other parameters in Table 2 are fixed, however, future
extensions of this approach could include a more extensive
parameter set to be identified. Finally, the overall orthosis torque-
angle profile is approximated using C2 continuous Bézier curves
that are generated on-the-fly as a function of the changing
parameters while running the OCP.

2.3. Gait as an Optimal Control Problem
Gait is formulated as a multi-phase OCP, with each phase defined
by the attachment and breaking off of sets of contact constraints
between the feet and the ground. Due to left-right asymmetry in
the patient’s gait we model a consecutive left and right stride with
np = 8 phases as follows (see insets in Figures 4A,B): Right
Flat—Left Toe Off, Right Toe On—Right Heel Off, Right Toe
On—Left Heel On, Right Toe On—Left Flat, Left Flat—Right Toe
Off, Left Toe On—Left Heel Off, Left Toe On—Right Heel On,
Left Toe Off—Right Flat. Here, “Flat" indicates that both heel and
toe contacts are active. In addition to the position constraints
at foot contacts, contact velocities are also constrained to be
zero at the start of phases, to ensure continuity in velocities and
ground forces. Forces at the load bearing points of the feet are
constrained to ensure strictly positive vertical ground reaction
forces during the step. Forces in the anterior-posterior direction
are constrained to lie within the limiting friction, assuming a
coefficient of friction of 0.8 (Chang and Matz, 2001). Forward
dynamics computations for the multi-body system subject to
the stepping constraint sets are computed using the method
described by Kokkevis (2004), implemented in the open-source
dynamics library RBDL1 by Felis (2017). The OCP then has the
general form:

min
x(·),u(·),p,ν

np
∑

0

(

∫ νj

νj − 1

φj(x(t), u(t), p)dt

)

(3)

s.t. ẋ(t) = fj(t, x(t), u(t), p) for t ∈ [νj − 1, νj],

j = 1, ..., np, ν0 = 0, νnp = T (4)

0 = req(x(0), .., x(T), p) (5)

0 ≤ rineq(x(0), .., x(T), p) (6)

0 ≤ gj(t, x(t), u(t), p) for t ∈ [νj − 1, νj] (7)

where, Equation (3) describes a general objective function to
be minimized. Equation (4) is a place-holder that denotes
the dynamics of the multi-body system. Note that the actual
neuromuscular and multi-body dynamics are described by
differential algebraic equations (detailed formulation available in
Felis et al., 2015; Felis and Mombaur, 2016; Mombaur, 2016).
x(t) denotes a vector of state variables (generalized coordinates
q, generalized velocities q̇, and muscle activations a). u(t) is a
vector of control variables (neural excitations e). p denotes a
vector of free model parameters (if any), and, ν is a vector of
variable phase switching times with T = tnp = overall time for

1https://rbdl.bitbucket.io
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themotion. Equation (5) denotes coupled and decoupled equality
constraints (e.g., switching foot contacts at phase changes),
and Equation (6) the inequality constraints (e.g., maintain
positive ground reaction force during stepping). Equation (7)
denotes all continuous inequality constraints (e.g., bounds of
the state variables). Controls u(t) are subject to constraints
formulated in Equation (5) to ensure continuity at phase
changes. This is done to ensure 2nd order continuity in muscle
activations.

To solve the OCP we use a direct multiple-shooting
method (Bock and Pitt, 1984) implemented in the software
package MUSCOD-II (Leineweber et al., 2003). The direct
multiple-shooting approach transforms the infinite dimensional
OCP, Equations (4–7), into a finite dimensional non-linear
programming problem by first discretizing the continuous
controls u(t) on a grid and then solving the resulting boundary
value problem using a multiple-shooting method. Note that with
this method the system dynamics are also satisfied between
the multiple shooting intervals, leading to physically consistent
results throughout the simulated motion. The multi-phase
problem described above is discretized into 64 shooting nodes.
The controls u(t) are modeled as piecewise linear functions
between discretization points. The works by Felis et al. (2015);
Felis and Mombaur (2016) and Mombaur (2016) provide
further detail on the constraint formulation, the solution of
the multi-body mechanics, and numerical treatment of the
OCP. The models and constraints formulation are available as
supplementary software code to this article. In our current study
we implement four OCPs:

1. LS-Barefoot: Dynamic least-squares fit to recorded barefoot
gait

2. MAPD-Barefoot: Minimal activation per distance walked for
barefoot gait

3. MAPD-Orthosis: Minimal activation per distance walked for
orthosis gait

4. MAPD-WS-Orthosis: Variation ofMAPD-Orthosis favoring a
higher walking speed

The LS-Barefoot OCP is used to show that our model is capable
of tracking the patient’s gait in a dynamically consistent manner.
Note that we only apply this fitting-type objective function
to the recorded barefoot gait, as in a real-world application
the gait with orthosis would not be available in advance. The
MAPD-Barefoot OCP is used to test how close the chosen cost
function can reproduce recorded barefoot gait of the patient. The
MAPD-Orthosis OCP is used to predict the patient gait with an
orthosis, and simultaneously identify the orthosis spring stiffness
parameters. In initial trials we noticed that the predicted walking
speed of the MAPD-Orthosis OCP was slower than that of the
patient. To further investigate whether our model could be made
to walk as fast as the patient, we implemented the OCP MAPD-
WS-Orthosis, that contains an additional objective function term
favoring a higher walking speed. Note that the OCPs MAPD-
Barefoot, MAPD-Orthosis and MAPD-WS-Orthosis are purely
synthetic results and no experimental data is used to compute the
solutions.

2.3.1. Dynamic Least-Squares Fit to Recorded Gait
We formulate a fitting-type objective function for the LS-
Barefoot OCP that provides a dynamically consistent gait as close
as possible to the recorded patient joint kinematics. The objective
function is formulated as:

min
x(·),u(·)

np
∑

j = 1

[

∑nM,j

m = 1(q(tjm)− qM(tjm))TW(q(tjm)

− qM(tjm))+ δ
∫ νj
νj−1

u(t) · u(t)dt

]

(8)

Here, the phase times ν are fixed to those obtained from the
recorded gait. Note that the generalized coordinates qM are
computed using inverse kinematics at discrete measurement
points. W is a diagonal scaling matrix that may be used to give
preference to a closer fit to a subset of the generalized coordinates.
Here, we use an identity matrix which provides an overall good
fit to all the coordinates. The second term, δ

∫ νj
νj−1

u(t) · u(t),
introduces a small cost that regularizes the control inputs, i.e., it
smoothens the control input (neural excitation) and avoids that
the solution follows noise in the experimentally recorded data. δ
was set to 1e − 4 for our computations. For this regularization
term all controls are weighted equally relative to each other.

2.3.2. Gait Prediction with MAPD-Type Objective

Functions
We formulate two objective functions for predicting gait: the first
minimizes total muscle activations squared per distance walked,
and the second contains an additional term that favors a higher
walking speed. The first objective function is formulated as:

min
x(·),u(·),ν,p

∑np
1

∫ νj
νj−1

a(t) · a(t)dt

r(T)
(9)

Note that dividing by the total distance traveled, r(T), provides
the impetus for moving forward, as without this term the
model has no reason to move. Objective functions similar to
the one above are commonly used in literature (Thelen et al.,
2003; Damsgaard et al., 2006; Ackermann and van den Bogert,
2010) and are associated with the minimization of muscle effort
(Ackermann and van den Bogert, 2010). We introduce additional
periodicity constraints on all the state variables and the controls,
such that the initial states at the start of the first phase matched
the final states at the end of the last phase.

The second objective function includes a term favoring a
higher walking speed and is formulated as:

min
x(·),u(·),ν,p

∑np
1

∫ νj
νj−1

a(t) · a(t)dt

r(T)
− λ

r(T)

T
(10)

where, λ is a scaling term. The objective function (Equation 9)
is used in the OCPs MAPD-Barefoot and MAPD-Orthosis. The
objective function (Equation 10) is used in the OCP MAPD-
WS-Orthosis. For the OCPs MAPD-Orthosis and MAPD-WS-
Orthosis, there are 4 free parameters to be determined during
the optimization. These corresponded to the left and right pairs
of orthosis spring stiffness parameters (KD,KP). The orthosis
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dynamics in these OCPs are simulated using the values listed in
Table 2.

2.4. Evaluation Procedure
We evaluate the model and the predicted results in the following
ways:

1. We report the residuals from inverse dynamics analysis
of the recorded data. Inverse dynamics analysis computes
generalized forces that are consistent with the kinematics
of the patient and the measured ground forces. Since our
kinematic model has a floating pelvis frame the inverse
dynamics results will include residual forces: the generalized
forces between the ground frame and the pelvis frame. If these
residual forces are small in magnitude then we can conclude
that the geometry and mass distribution of the model fits the
subject well.

2. We use the LS-Barefoot formulation to assess the quality of
the foot-ground contact model. This is because, although the
objective function is trying to drive the model to walk with the
same kinematics as were used in the inverse dynamics analysis,
the foot-ground constraints must be satisfied. Any differences
that show up between the LS-Barefoot results and the recorded
gait can be ascribed to how well the model of foot-ground
contact fits the patient.

3. We compare the solution of MAPD-Barefoot to the
kinematics and kinetics of patient to assess how well our
chosen cost function fits the movement of subject.

4. We evaluate the predicted orthosis parameters and subject
gait by comparing the solution of MAPD-Orthosis to the
corresponding experimental data. Any new differences that
appear between the OCP results and the experimental data
are either due to differences between our orthosis model and
the real orthosis, or because the patient no longer walks in a
manner that is consistent with our chosen cost function.

To separate these differences, we compare the net
torque-angle profile of the MAPD-Orthosis results to the
corresponding experimental data. If the net ankle torque-
angle profiles are similar it is likely that the remaining
differences we observe are happening because the patient is
no longer walking in a manner that is consistent with our
chosen cost function. It is necessary to use the net ankle torque
(the sum of the torque contribution of the ankle MTGs and
the orthosis) in this comparison because the kinematics and
kinetics of the patient’s ankle were not recorded separately
from the orthosis.

5. We perturb the free orthosis parameters by −5% in the
vicinity of the identified optimal values to compute how the
cost function value, knee flexion angle (and thus severity of
crouch), step lengths and walking speed vary with the stiffness
of the orthosis.

3. RESULTS

The residual forces from the inverse dynamics analysis for
barefoot and orthosis gait are under 3.3 N in the anterior-
posterior and vertical directions while the sagittal plane moments
are under 0.12 Nm (Table 3). The kinematics of the LS-Barefoot

TABLE 3 | Residuals from inverse dynamics analysis.

Mean Min Max

Barefoot A-P (N) −0.02 −0.27 0.16

Vert. (N) 1.36 −0.04 2.8

Mom. (Nm) −0.02 −0.11 0.09

Orthosis A-P (N) −0.05 −0.16 0.01

Vert. (N) 1.6 0.0 3.28

Mom. (Nm) −0.05 −0.15 0.11

A-P denotes the forces in the anterior-posterior direction, Vert. denotes the forces in the
vertical direction, Mom. denotes the moments about the free flier joint.

solution closely matches the patient’s barefoot gait kinematics
(dashed lines in Figures 3D–F), with RMS differences of 0.83◦

at the pelvis, 1.52◦ at the hips, 2.43◦ at the knees, and 2.64◦ at the
ankles. The ground reaction forces of the LS-Barefoot solution
deviate from the patient’s recorded ground reaction forces with
RMS differences of 68.24 N in the vertical direction. Note that
all RMS differences are computed with respect to the average
corresponding recorded gait kinematics and ground reaction
forces.

TheMAPD-Barefoot gait step lengths and walking speed were
within the range recorded on the patient (Table 4). The kinematic
differences were larger when compared to LS-Barefoot, with RMS
differences of 7.57◦, 12.95◦, 13.67◦, 12.22◦, for the pelvis, hip,
knee and ankle angles respectively. To put these kinematic
differences in perspective, note that the patient walks with a
high degree of variability, exhibiting maximum variances in the
barefoot trials of between 5.5◦ and 13.34◦. The RMS values of the
MAPD-Barefoot ground forces are 81.1 N. The MAPD-Barefoot
problem took 4 h to solve as a single-thread execution on a 3.6
GHz processor.

The MAPD-Orthosis model walked with a lower cost, less
of a crouch, a longer right step, and a higher walking speed
than the MAPD-Barefoot trial (Table 4). Compared to the
MAPD-Barefoot gait the MAPD-orthosis gait extends its right
and left knees 9.26◦ and 8.3◦ more during stance, respectively
(indicated as filled circles in Figures 3B,E). This improvement
in knee extension angles matched the trend seen in the patient
recordings. The RMS differences for MAPD-Orthosis gait are
8.48◦ at the pelvis, 14.48◦ at the hips, 16.11◦ at the knees, and
8.28◦ at the ankles (Figures 3A–C). The RMS differences for
ground-reaction forces are 128.04 N for MAPD-Orthosis, which
is higher than that for MAPD-Barefoot gait. Even though the
orthosis pushed the model to walk faster, the left step length and
the walking speed are below the corresponding recorded ranges
(Table 4). The OCP MAPD-WS-Orthosis with the modified
objective function, Equation (10) and a λ = 2, results in a
walking speed of 0.77 m/s which is within the recorded range.
TheMAPD-Orthosis problem took 7 h to solve as a single-thread
execution on a 3.6 GHz processor.

Ankle muscle extension torques are substantially reduced for
the MAPD-Orthosis gait compared to those for MAPD-Barefoot
(Figures 5A,B). Despite the faster walking speed for orthosis
gait, the corresponding activations and excitations are generally
smaller or equivalent to those for MAPD-Barefoot (Figure 6).

Frontiers in Computational Neuroscience | www.frontiersin.org April 2017 | Volume 11 | Article 23201

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Sreenivasa et al. Predictive Walking Gait Simulation

FIGURE 3 | Gait kinematics: Top panels plots the joint angles for orthosis gait for the (A) hip, (B) knee, and (C) ankle joints. Solid lines plot the solution of the

MAPD-Orthosis. Shaded areas indicate the range of the recorded patient joint angles. (D–F) plot the corresponding results for MAPD-Barefoot (solid lines), and the

results from the LS-Barefoot dynamic fit (dashed lines). Note that the LS-Barefoot results have a discontinuity as indicated by asterisks on (D–F). This is due to the

difference between the setup of the optimal control problem (starting at left toe off), and the plots (starting at left heel strike), as well as an asymmetry in the patient’s

gait over one complete left-right stride. We denote 100% along x-axis as the full left and right stride. Insets in panels (A,D) indicate the starting pose of the right and

left foot. Filled circles in panels (B,E) indicate the minimum knee angle during stance.

TABLE 4 | Comparison of recorded gait characteristics and results from

the corresponding optimal control problems.

Step length (m) Walking speed (m/s)

Left Right

Recorded range barefoot 0.30– 0.43 0.22–0.37 0.51–0.73

MAPD-Barefoot 0.37 0.29 0.60

Recorded Range 0.40–0.47 0.34–0.46 0.70–0.98

MAPD-orthosis 0.32 0.41 0.62

Overall the objective function cost for the MAPD-Orthosis is
smaller than that forMAPD-Barefoot (0.61 and 2.2, respectively).
The computed optimal orthosis spring stiffness are KD = 45.9
Nm/rad and KP = 13.2 Nm/rad for the right ankle orthosis, and
KD = 62.8 Nm/rad and KP = 19.7 Nm/rad for the left ankle
orthosis.

The net torque-angle profiles of the MAPD-Orthosis gait have
a similar angular offset and slope to the mean torque-angle
profiles of the patient (Figure 7). Though the peak torques of
the MAPD-Orthosis gait are larger than those of the patient,
the profiles overlap with the ± 1 standard deviation regions
of the patient data (shaded regions). The average slope of the
torque-angle profiles from the patient data range from 95.7 to

135.5 Nm/rad, while the slope of the MAPD-Orthosis torque-
angle profiles range from 122.3 to 150.1 Nm/rad.

The perturbation analysis reveals a maximum difference of
1.75% in cost function value, min. knee angles, step lengths
and walking speeds for −5% changes in the orthosis stiffness
parameters (Table 5).

4. DISCUSSION

Wehave presented an optimal control approach to generate novel
movements with physically consistent dynamics and applied it to
the simulation of patient gait. Our simulations result in smooth
ground reaction forces (Figure 4) as well as muscle torques
(Figure 5), and can be computed with modest computational
resources. The ground reaction forces are continuous and have
similar shape and magnitude as the patient observations. This
is an improvement from published literature in this field, where
large transients as well as deviations upto 150 to 200% of body
weight have been reported (Ackermann and van den Bogert,
2010; Dorn et al., 2015). Physiologically realistic ground reaction
forces are important, because a discrepancy here propagates
through the model resulting in unrealistic joint torques and
muscle forces. These characteristics, along with the possibility of
tuning the model parameters to reflect weakened muscles, are
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FIGURE 4 | Ground reaction forces (GRF): (A) Solid lines plot the simulated GRFs for MAPD-Orthosis gait. (B) GRFs for MAPD-Barefoot gait. Dashed lines indicate

results for the LS-Barefoot gait. Shaded areas indicate the range recorded. Vertical dashed lines indicate the phase changes (foot contact events as shown in the

figure insets). We denote 100% along x-axis as the full left and right stride. Note that the LS-Barefoot results have a discontinuity as indicated by the asterisk. This is

due to the difference between the setup of the optimal control problem (starting at left toe off), and the plots (starting at left heel strike), as well as an asymmetry in the

patient’s gait over one complete left-right stride.

important first steps toward applying such methods in clinical
settings.

The low residual forces from the inverse dynamics analysis
(Table 3) indicates that the geometry andmass distribution of the
model fit the patient well2. For comparison these residual values
are 1.0% of the peak ground reaction forces during walking. The
LS-Barefoot results reveal that the model is able to follow the
recorded patient kinematics with the RMS differences smaller
than the stride-to-stride variation in the patient. However, the
ground reaction forces are markedly less smooth (dashed lines
in Figure 4B) when compared to those recorded from the
patient. In contrast the model kinematics for MAPD-Barefoot
show larger RMS errors than LS-Barefoot, however, the ground
reaction forces are smoother. We also note that the duty factor
(ratio stance vs. swing time) in our simulated gait is different
from that recorded, with shorter double stance durations for
MAPD-Orthosis (Figure 4A).

Taking these results together, we conclude that the most likely
reasons for these differences are the shape of the foot and the
enforced sequential nature of the contact phases. Modeling the
foot as a flat surface simplifies the resolution of the contact
dynamics, however, it overlooks the natural curvature of the foot

2http://simtk-confluence.stanford.edu:8080/display/OpenSim/Simulation+with+
OpenSim+-+Best+Practices

and the associated influence this can have on the behavior of the
rest of the body (Dorn et al., 2012). Foot contact dynamics has
been recognized as an issue of significant importance in model
based estimation and prediction of gait as the foot forces affect
those at the hip, knee and ankle (Dorn et al., 2012; Millard and
Kecskeméthy, 2015). The use of a suitable curved foot model
would therefore help improve the contact dynamics as well as
avoid the strict phases that we have imposed in our current
formulation. We expect that a curved foot model would also
improve the simulated kinematics of the knee and ankle, which
currently show large deviations from recorded behavior.

The orthosis provides additional ankle torque especially
during push-off, and the resulting orthosis-equipped model
could walk faster, with more extended knees than the barefoot
model. The slope of the torque-angle profile of the MAPD-
Orthosis is close to that of the patient (Figure 7). This indicates
that the identified orthosis stiffness values are likely close to those
of the patient’s orthosis. We recall that the patient’s orthosis was
manually tuned by the orthopedic professional during the clinical
procedure. We remark that while the slopes and angular offsets
of the orthosis-equipped model lie within the experimentally
recorded variation, the magnitude of the torques were higher
in the model. This indicates that either the foot-shape (lever
arm during toe-off) or the cost-function need to be updated
to better match the patient. Our perturbation analysis reveals a
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FIGURE 5 | Effect of orthosis on MTG torques (extension + flexion) at

the ankle: Vertical dashed lines indicate the phase changes (A)

MAPD-Orthosis gait. Dashed lines indicate torques generated by the orthosis.

(B) MAPD-Barefoot gait.

systematic increase in the cost function value (which is consistent
as the perturbation was applied about the optimal solution)
and relatively small influence of parameter changes on the gait
characteristics (Table 5).

Despite the higher walking speed of the orthosis gait, the
overall distance-normalized muscle activations based cost is
smaller than that for barefoot gait. We observe a strong reduction
in the muscle activations for orthosis walking (Figure 6).
Although this is a desirable effect as it points toward a less
fatiguing gait, it is presently unclear whether these changes
actually occurred in the patient’s real muscular efforts. As we
are missing the experimental EMG recordings for this gait,
our simulated reduction in muscle activations must be viewed
as plausible but unverified. As noted in our Introduction, this
is a general open problem with neuromuscular models, which
require further experimental efforts as well as technological
advances in EMG technology.

4.1. Choosing an Optimality Criterion for
Gait
Our simulations are driven by an optimization criteria that
minimizes the square of muscle activations per distance walked.
Higher powers of activations have been suggested to be associated
with muscle effort (Ackermann and van den Bogert, 2010), and
our results from MAPD-Barefoot show that this formulation
provides a reasonable match to the recorded gait characteristics
(Table 4). For orthosis-equipped gait, we observe that the same
formulation (MAPD-Orthosis), resulted in gait that is slower

and has smaller steps. With an additional term in MAPD-WS-
Orthosis we could drive the simulation toward more desirable
characteristics, in this case faster walking. We speculate that
there are subtle differences in the patient’s walking behavior
with orthosis, that are not entirely covered by the MAPD-only
formulation.

Note that an alternative explanation for the slow walking
speed in MAPD-Orthosis could lie in an underestimation of
the maximum isometric torques of the patient’s muscles, as well
as the missing torques provided by the passive musculotendon
components. We explored this avenue by simulating gait of a
healthy age-matched, weight-matched child (torque values listed
in Table 4). The detailed plots are provided in the supplementary
section to this article. With healthy muscle strengths, we
observed that the model was capable of longer steps and faster
walking speed, matching the recorded gait of typically developing
children (Schwartz et al., 2008). This leads us to believe that
the major reason for the slower gait in MAPD-Orthosis lies in
the cost function formulation, and that this deserves further
investigation. For example with the use of inverse optimal
control methods to identify the particular cost function that best
describes experimentally recorded behavior (Mombaur, 2016),
and especially the specification of cost functions that are better
suited for pathological gait.

From our current work, we show that the specification of
muscle strength in our models and the MAPD-type objective
function is capable of reproducing, at least in our case study, a
range of walking behaviors from healthy to pathological. Overall,
it is foreseeable that a generic class of such objective function
terms may be made available to the medical specialist, that
would correspond to the clinical goals for the patient (e.g., faster
walking, less crouch, reduced movement of the center of pressure
etc.). The ultimate decision on which of these characteristics
are suitable for the patient, would be the responsibility of the
orthotist and other medical professionals. Our methods could
provide a virtual window into the expected behavior under these
conditions without inconveniencing the patient.

4.2. Limitations and Perspectives
In addition to the shape of the foot, we believe that another
improvement to the model would be to decouple the orthosis and
body models. This would allow for a more realistic simulation
of the body-orthosis interaction as well take into account the
inertial effects of the orthosis independently from the body.
Specifically, this decoupled formulation would enable us to
calculate a comfort-like cost function term based on the contact
forces being generated, and as well simulate the effects of non-
aligned rotations between the foot and the orthosis. Together, we
believe that these changes will contribute toward more natural
looking behaviors in our synthesized gait.

The simulated activations and active muscle forces of our
model may be further improved. We estimated the patient
muscle strengths based on inverse dynamics analysis and a
qualitative clinical assessement of how close the patient was to
his maximum strength during the recorded gait. The muscle
curves used in our MTG model come from (Anderson et al.,
2007), that are based on adult subjects. These curves may look
different from children, especially for those with a pathology
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FIGURE 6 | Comparison of neural excitations e and muscle activations a for MAPD-Orthosis and MAPD-Barefoot gait. Note that the two simulations

resulted in different overall durations and are presented here with respect to % left-right stride. (A–F) Plot the results for the muscles of the left lower limbs, and (G–L)

those for the right lower limbs.

FIGURE 7 | The MAPD-Orthosis net torque-angle profiles (solid red and blue lines) are plotted against the mean torque-angle profile of the patient

(solid black line) and the area that encompass ± 1 standard deviation (shaded regions). Note that the torque that is plotted is the sum of the net MTG

torques (extension + flexion) and the orthosis torque. This torque is equivalent to the torque computed by the inverse dynamics analysis of the patient when he is

wearing the orthosis.

that affects the muscle and overall strength. To the best of
our knowledge, no such quantative muscle studies exist for
children, and it would be of interest to bridge this gap in
experimental data in the future. In a general context, the accurate
specification of the model to a person is still an open problem.
There may be various approaches to solve this, for example by

using direct dynamometry information when available, and/or
by making the maximum isometric torque as parameters of an
OCP. Future iterations of this approach would include passive
musculotendon forces in the simulations. To this end we are
evaluating methods to estimate passive forces and muscle model
coefficients from experimental data. Additionally, modeling the
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TABLE 5 | Results from the parameter perturbation analysis.

Perturbed

parameter

Perturbation

size

8 Min. knee

angle

Step

length

Walking

speed

Left Right Left Right

Left KD −5% 1.75 −0.32 −1.14 0.30 0.35 −0.002

Left KP −5% 1.10 −0.65 −0.11 −0.26 0.68 0.39

Right KD −5% 0.11 0.08 −1.39 0.03 0.27 −0.06

Right KP −5% 0.67 −1.02 0.87 0.09 0.89 0.56

A −5% perturbation was applied to each of the optimal identified spring stiffness values.
Rows indicate the % change in MAPD-Orthosis results for a change in the corresponding
orthosis spring parameter. Φ Denotes the cost function value (Equation 9). A negative %
change in the min. knee angle indicates a straightening of the knee during stance.

effects of muscles that span multiple joints is an important next
step. This may be implemented as a combination of the MTGs
used in this work, and some of the major anatomical muscles
as line-type models. For the study of pathological gait this may
be especially important, as it would then allow the freedom to
include the more complicated line-type muscle models based
on the specific question/pathology at hand. In this initial work
we do not model the feedback dynamics of muscle reflexes
like for example those in the work by Geyer and Herr (2010).
Including these closed-loop dynamics makes the OCP harder
to solve, and we are currently exploring formulations that work
well with our framework. While reflexes are typically subdued
during normal locomotion (Brooke et al., 1991), they play
an important role in making gait robust against perturbation
rejection. In addition, neuromuscular pathology can adversely
affect the ability to modulate reflexes (Hodapp et al., 2007;
Pearson and Gordon, 2013), and any implementation of reflex
feedback for pathological gait would necessarily require more
detail and study than currently available in the state of the art.

Finally, we have focused so far on movements in the sagittal
plane and used a case study to provide an important proof-of-
concept of our methods. Our comparison to experimental data
provides a first evaluation of our model and technical platform,
that needs to be further validated with a prospective clinical trial
and extended to include movements in the transverse plane. We
acknowledge that for application in a clinical setting our methods
would also need to allow an easy setup and tuning to individual
patients. Note that although the setup of the OCPs in this work
took a significant amount of time, these efforts do not need to
be replicated for each patient. In a future clinical application, we

envision that a standardized gait simulationmay be solved within
a few hours with an individualized patient model (which requires
relatively little time). This scenario provides a realistic means to
apply our methods in a true clinical setting, and would be the
ultimate goal of our future efforts related to this work.
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Control of a multi-body system in both robots and humans may face the problem

of destabilizing dynamic coupling effects arising between linked body segments. The

state of the art solutions in robotics are full state feedback controllers. For human

hip-ankle coordination, a more parsimonious and theoretically stable alternative to the

robotics solution has been suggested in terms of the Eigenmovement (EM) control.

Eigenmovements are kinematic synergies designed to describe the multi DoF system,

and its control, with a set of independent, and hence coupling-free, scalar equations. This

paper investigates whether the EM alternative shows “real-world robustness” against

noisy and inaccurate sensors, mechanical non-linearities such as dead zones, and

human-like feedback time delays when controlling hip-ankle movements of a balancing

humanoid robot. The EM concept and the EM controller are introduced, the robot’s

dynamics are identified using a biomechanical approach, and robot tests are performed in

a human posture control laboratory. The tests show that the EM controller provides stable

control of the robot with proactive (“voluntary”) movements and reactive balancing of

stance during support surface tilts and translations. Although a preliminary robot-human

comparison reveals similarities and differences, we conclude (i) the Eigenmovement

concept is a valid candidate when different concepts of human sensorimotor control

are considered, and (ii) that human-inspired robot experiments may help to decide in

future the choice among the candidates and to improve the design of humanoid robots

and robotic rehabilitation devices.

Keywords: human sensorimotor system, neuromechanics, biorobotics, motor control, eigenmovements

INTRODUCTION

Most human skeletal movements involve several interconnected body segments. Starting from
buttressing segments such as the feet when standing, a chain of segments interleaves to the end
effector such as the hand in reaching. The joint rotations in such a reaching-while-standing
movement occur in a coordinated way, with two aims dictated by physics standing out. A kinematic
aim is to maintain the center of mass (COM) of all body segments supported by the ankle
joints above the base of support, which is the area under and between the feet, in order to
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maintain balance against external forces acting on the body
such as gravity. A kinetic aim of movement coordination
is to minimize effects of inter-segmental coupling torques.
Dysfunction in the matching of timing and torque magnitudes
across the chain of segments results in inappropriate
compensation for body segment masses and inertia and
neural time delays, imposing clinically for the kinematic chain
as balance problems (Massion, 1992; Mergner, 2012) and for
the kinetic chain as irregular and oscillating movements, a
pathological symptom called ataxia that is typically found in
cerebellar patients (Bastian, 1997). So far neuroscientists devoted
considerable attention to the neural mechanisms underlying
human kinematic coordination (Massion, 1992), but paid
less attention to the neural mechanisms underlying kinetic
coordination, on which this paper focuses.

In the technical domain, where industrial robotic devices are
often fixed to the ground, kinematic coordination plays a minor
role and the kinetic problem in controlling a chain of serially
connected links with coupled dynamics such as a robotic arm
can easily be solved. The solution is traditionally done by a full
state approach, meaning that feedback and feed forward controls
of all joints are computed together in a coordinated way that
takes into account a full dynamic model of the arm and solves
the inverse dynamics problem. In humanoid robots controlling
position of an unstable body posture, the situation is more
complex and inter-link force compensation is often performed
using servo controllers, one for each joint. If feedback time delays
are too large to be fully accounted for by predictive algorithms
and if damping of the dynamic coupling effects is insufficient,
destabilization of the control may result (Ott et al., 2014, 2016).
Also, problems of control stability may arise in humanoid
robots with several degrees of freedom (DoF) when the body
dynamics are not fully known. Measuring acceleration in each
link or a distal link using inertial sensors may help to solve the
problem. Also, learning algorithms can be used to produce the
needed coordination patterns. Usually reinforcement learning is
employed in this context where the desired output is known
in terms of performance, but not yet in terms of the needed
controller outputs.

In the biological domain, neuroscientists studied for example
the electromyographic effects from externally evoked coupling
forces in the arm muscles. They observed typical response
patterns in muscle activity (Lacquaniti and Soechting, 1986)
belonging to the long-latency reflexes, which take into account
the current arm configuration (Kurtzer et al., 2009) with a
response amplitude scaling that involves the cerebellum (Kurtzer
et al., 2013). The underlying neural control mechanisms are
still unknown. Theoretically, at least, one could conceive that
humans use a neural representation of a full state control. A
more parsimonious solution has been suggested in terms of the
Eigenmovement (EM) concept (Alexandrov et al., 2001a,b, 2005;
Alexandrov and Frolov, 2011). It allows designing the control
of the kinematics of the chain in the form of independent SISO
(single input, single output) controllers.

Since the EM principle often produces coaction of joint
torques in the context of predetermined kinematic synergies,
there exists a clear overlap with the important concepts of

motor primitives and modular control. Many aspects of motor
modularity are discussed by d’Avella et al. (2015) and Flash
and Bizzi (2016) including its theoretical and experimental
substantiations and robotic applications. According to the
modularity concept any movement can be decomposed as a
superposition of motor primitives or synergies used as building
blocks in a modular control architecture. Each module imposes
as a specific pattern of motor activity in terms of kinematic,
kinetic or EMG synergy. The specificity of an EM mechanism
in this context is that it solves the problem of the dynamic
coupling as the basis for controlling each kinematic synergy
independently from the others. Although the independent
control was demonstrated experimentally so far mostly in
relatively simple movements we conceive that the EM concept
can be extended to the wide class of multi-joint movements (see
Discussion, also for robotic implementations).

Development of the EM concept started from biomechanically
describing human hip-knee-ankle coordination during trunk
bending as movements along eigenvectors of the motion
equation (Alexandrov et al., 2001a,b). After showing that the
contribution from the knee joints to this coordination tends to be
negligible, the approach was restricted to hip-ankle coordination,
and it was shown that the concept is applicable to independently
controlled feed-forward and feedback situations (Alexandrov
and Frolov, 2011) and that postural reactions to external
perturbations can be formalized using a PD (proportional,
derivative) control with time delays in the feedback loops
(Alexandrov et al., 2005). In their studies, the authors considered
the possibility that humans use EM controllers in some neurally
implemented form. However, similar as with other concepts
of human sensorimotor control, the evidence is indirect and
still rather limited as long as analogies are drawn mainly
from mathematical calculations or computer simulations, while
biological constrains such as neural feedback time delays have
experimentally not been considered in face of “real world”
challenges such as noisy and inaccurate sensors and non-
linearities from computational and mechanical “dead zones” and
friction, backlashes, etc. Such limitations may constrain also the
potential use of the EM concept in humanoid robots and robotic
rehabilitation devices.

With these reservations in mind, this paper investigates
whether the EM concept is able to control a humanoid robot that
shows human anthropometrics and is equipped with human-
inspired sensors and actuators. The robot used, PostuRob II
(Figure 1), served already before in experiments that tested
a human-derived control concept as robotic implementation
(Hettich et al., 2014). Similarly, it is currently used in modified
form in another neurorobotics study for the overarching goal to
experimentally evaluate the “real-world robustness” of human-
inspired control concepts and to obtain back from the robot
experiments inspirations for the human sensorimotor research.

The following sections describe first the hip-ankle
biomechanics model and the EM controller and its operational
capabilities. The subsequent sections describe identification
of the robot’s specific transfer characteristics by estimating
its inertial, gravitational and geometric parameters and the
properties of the transformation from joint torque commands
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FIGURE 1 | Postural humanoid robot PostuRob II standing freely on a 6

DOFs motion platform. (A) weights for human-like weight distribution; (B),

artificial vestibular system; (C), pneumatic system; (D), hip joint (joint angle and

torque sensors); (E), artificial pneumatic “muscles”; (F), ankle joint (joint angle

and torque sensors). (See Appendix 1 in Supplementary Material for details)

at the controller output to the actual torques that were
experimentally observed at the joints (which in autonomous
systemsmay be achieved by learning). Then, experimental results
from testing the robot in a human posture control laboratory are
described, including preliminary comparisons with human data,
followed by Discussion. Details of the mathematical concepts,
the robot, and experimental procedures are given in Appendices.

MATERIALS AND METHODS

Eigenmovement (EM) Concept and
Biomechanical Hip-Ankle Model
Humanoid sagittal movements around hip and ankle joints in the
vicinity of vertical body position (Figure 2) are described by

B0q̈ − G0q = τ con (1)

where q is the vector of hip and ankle joint angles, B0 and G0

are the inertial and gravity matrices, and τ
con is the vector of

joint control torques. The coefficients of B0 andG0 are calculated

FIGURE 2 | Two-link biomechanical model of the humanoid robot. The

trunk is represented by red dotted line and the legs are represented by a green

solid line. L1, L2, c1, and c2 are lengths and locations of centers of mass for

legs and trunk respectively. On the left body position is expressed in terms of

joint coordinates (ankle and hip angles, q1 and q2), on the right in terms of

space coordinates trunk in space (TS) and leg in space (LS) relative to the

gravitational vertical.

via the length-mass parameters of Posturob II, as described in
Appendix 1 in supplementary Material.

Each EM is in the linear approach the movement along one
eigenvector wi that, by definition, satisfies equation

B0wi = λiG0wi, (i = 1, 2) (2)

where λi is the corresponding eigenvalue (Alexandrov et al.,
2001a). The vector ξ of the time courses of the two EMs is
obtained by transforming the vector q by inversion of equation.

q (t) = Wξ (t) (3)

where the two columns of matrixW are the eigenvectors wi, (i=
1,2). According to Equations (2) and (3), the dynamic equation
(1) takes the following form in terms of EMs.

3ξ̈ − ξ = η
con (4)

where 3 is a diagonal matrix with eigenvalues λi, and

η
con = Uτ

con, U = (G0W)−1 (5)

The two columns ui (i= 1,2) of matrix U in Equation (5) are the
vectors, whose components define the contributions of ankle and
hip joint torques to the EM dynamics.

EM PD-Controller
As shown previously (Kuo, 1995; Welch and Ting, 2008; Frolov
et al., 2000, 2006), the joint torques τ

con, which generates the
desired body movement, can be implemented as a PD-controller
with time delay 1t in the form

τ
con(t) = −G0q(t − 1t)+ S(qd(t − 1t)− q(t − 1t))

−Vq̇(t − 1t) (6)
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where qd and q define the time course of the desired and actual
changes in joint angles, while S and V represent “stiffness” and
“viscosity” matrices whose elements define the gain coefficients
in the feedback loop.

In EMs, Equation (6) takes the form:

η
con(t) = −ξ (t − 1t)+ Seig(ξd(t − 1t)− ξ (t − 1t))

−Veig
ξ̇ (t − 1t) (7)

where

Seig = (G0W)−1SW, Veig = (G0W)−1VW (8)

Independent control of each of the two EM means that matrices
Seig andVeig are diagonal, so that the vector Equation (1) in terms
of joint angles and torques splits into two scalar equations in
terms of EMs (Alexandrov et al., 2001a, 2005; Alexandrov and
Frolov, 2011), each equivalent to a PD-control of a single-link
inverted pendulum:

λiξ i(t)− ξ i(t) = −ξi(t − 1t)+ S
eig
i [ξdi (t − 1t)− ξ i(t − 1t)]

−V
eig
i ξ̇ i(t − 1t) (9)

where Sieig and V i
eig are the diagonal elements of matrices Seig

and Veig , respectively (λ = J/mgh; J, moment of inertia relative to
pendulum axis of rotation; m, pendulum mass and h its altitude;
g, gravitational acceleration).

The inverse transformation of Equation (8) gives the stiffness
and viscosity matrices S and V in Equation (6) in terms of joint
angles:

S = G0WSeigW−1, V = G0WVeigW−1. (10)

When matrices Seig and Veig are diagonal, then matrices S

and V are symmetrical, but not diagonal (Alexandrov et al.,
2005). Therefore, the PD-control in terms of joint angles needs
to take into account not only the kinematics and dynamics of
a given joint, but also those of all other joints. The number of
feedback control parameters in this kind of control, referred to
as “full-state feedback control” (Barin, 1989; Park et al., 2004),
is equal to the number of elements in the stiffness and viscosity
matrices S and V . In the EM approach, notably, the number of
feedback control parameters is reduced to the number of diagonal
coefficients in the matrices Seig and Veig .

The EM PD-controller is shown schematically in Figure 3.
The time delays outside the controller represent time delays 1t1
and 1t2 between controller commands τ

C and actual torque τ

applied to the robot segments, which are mainly induced by the
generation of the torques in the robot. These “actuation” delays
were intentionally equalized in the present study inside the PD-
controller by adding delays of 1tC1 and 1tC2 to the respective
joints (Figure 3) such that the total time delays ∆tA and 1tH of
the transformation for ankle and hip joint torques respectively
were equal and amounted to 1tA = 1t1 + 1tC1 = 1tH = 1t2 +
1tC2 = 1t.

For the robot experiments (see below), the controller has been
implemented as a program in Simulink, which allows controlling
the robot in real time. As to the controller inputs, the joint

angles q give the desired body position in terms of joint angles
with respect to each other and the support surface. This is by
itself not sufficient to balance in the general case in which the
support surface is not a stable reference. The Posturob platform
integrates a human inspired vestibular system,mechanically fixed
to the upper body and providing the trunk orientation in space
(Mergner et al., 2009). Using the vestibular information, the
control can be generalized to the condition of support surface tilt
in space. In particular, in experiments with the robot standing
on moving platform, the information of leg-in-space angle was
calculated with help of the vestibular sensor and used as input
signal q1 for the leg segment control, and the joint angle signal
from the hip joint sensor was used for the hip control.With stable
platform, angle and vestibular sensor signals were combined for
each joint to improve the signal to noise ratio.

Theoretical Analysis of Control Stability
The independent control for each EM allows the analysis of
whole body control stability by two separate analyses of each EM’s
stability. The stability of each EM is defined by the roots µ of the
secular equation of Equation (9):

µ
2 λ − 1+

(

Seig + 1
)

e−µ1 t + µVeige−µ1 t = 0. (11)

When in equation (9) 1t > 0, Equation (11) has an infinite
number of complex roots µ = α + iω, where α and ω are the
real and imaginary parts of the root and i is the imaginary unit
(Alexandrov et al., 2005). The solution of equation (9) is stable if
the real part α of all the roots of equation (11) is negative. The
maximum value of the real part of all the roots of the secular
equation is called Lyapunov index. Thus, the solution of equation
(9) is stable if its Lyapunov index α < 0. The Lyapunov index
defines the characteristic time ∆tchr = |α|−1 of the complex
system response to the external perturbation.

The minimization of the Lyapunov index for each EM was
used as a criterion for optimizing the PD-controller parameters.
The optimum parameters were obtained according to a method
based on calculations of the ranges in the space of Seig and Veig

in which the Lyapunov index does not exceed given values α

(Appendix 2 in Supplementary Material). The main results are
shown in Figure 4. It shows the minimal Lyapunov index αmin

which can be achieved for a given λ and 1t. The values of
Seig and Veig which provide αmin were treated as optimal. For
each delay 1t there exists some critical value λcrit at which αmin

becomes zero. If λ < λcrit, no range space of stability for the given
feedback loop delay exists, meaning that the PD-controller does
not provide stable control of this dynamic system. Thus, stable
PD-control is impossible if feedback loop delay 1t > 1tmax for a
given λ or if λ < λcrit for a given 1t.

Experimental Setup
The humanoid robot PostuRob II (Figure 1) comprises trunk,
legs and feet segments interconnected by the hip and ankle
joints. Signals from mechatronic vestibular and joint angle
sensors are real-time inputs to a PC. The implemented control
system controls artificial pneumatic “muscles” (FESTO AG
&Co.KG, Esslingen, Germany; Typ MAS20), which generate a
desired torque in the hip and ankle joints. The EM control
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FIGURE 3 | Scheme of EM control. Shown are the EM controller, the actuation, the plant and the sensors. The PD-controller transforms desired and sensory

variables q into EM kinematic variables ξ (boxes W−1) and then into EM dynamic variables η
con (boxes Seig + 1 and Veig) which are in turn transformed into output

joint torques τ
C (box U) with controller time delays (boxes ∆tC). Torque τ

C becomes effective at the robot segment after an actuation time delay (boxes 1t). Note, that

in boxes Seig + 1 the unit is added to Seig in order to take into account the first “gravity” term in the right side of Equation (7). Matrices Seig, Veig, W and U are

defined above.

FIGURE 4 | Effects of feedback delay time on PD-control stability. The

negative Lyapunov index αmin (ordinate), is plotted as a function of the

inversed index of inertia λ (abscissa) for different delay times 1t as indicated.

model was executed as a compiled Simulink model (Real-Time
Windows Target, The Math Works Inc., Natick, USA). In the
presented experiments, the robot was standing freely on firm
support, a 6 DoF motion platform (Mergner et al., 2003), and
performed active sinusoidal trunk and leg movements in the
sagittal plane with different frequencies and amplitudes, reactive
postural responses to external disturbances such as support
surface rotation or translation in the sagittal plane. During the
experiments, performed in a human posture control laboratory,
sensory signals of joint angles and joint angular velocities as
well as desired joint angle signals and actual joint torques were
recorded with an acquisition rate of 200Hz (further details in
Appendix 1 in Supplementary Material).

In the first series, the robot’s characteristics were evaluated in
terms of (a) its inertial and gravity matrices B0 and G0, (b) the
“actuation” time delays 1t1 and ∆t2 in the transformation of

joint torque commands to effective torques at the robot’s joints,
(c) the optimal PD-controller parameters, and (d) the dynamic
response characteristics of the robot and (e) Experimental transfer
functions and dynamic response of the controlled system. For
a, preliminary (theoretically optimal) parameters of the PD-
controller were calculated based on the model of the two-linked
rigid rods described above, and for b the time delays1t1 and1t2
for the transformation of torque commands to the effective joint
torques were preliminarily estimated to be 100ms. This allowed
for stable PostuRob II movements within the tested conditions
and, at a later step (comparing the theoretical with the measured
transfer functions), to finally calculate optimal parameters of
the PD-controller on the basis of the experimentally obtained
matrices B0 and G0.

Experimental Stimuli
The commanded joint angles in this approach, qd1(t) for the ankle

joint and qd2(t) for the hip joint in Equation (1), had synchronous
sinusoidal time courses with seven different frequencies f : 0.05,
0.1, 0.2, 0.4, 0.6, 0.8 and 1.0 Hz. Five pairs of amplitudes A1

and A2 of desired signals qd1 (t) = A1sin(2π ft) and qd2 (t) =
A2sin(2π ft) were tested for each frequency: (A1, A2) = (0, 10◦),
(−2.5◦, 7.5◦), (−5◦, 5◦), (−4.5◦, 1.5◦), and (3◦, 0). With these
amplitudes, the zero moment point position remained inside the
support area defined by the area comprised by the feet.

Evaluation of the Robot’S Inertial and Gravity

Matrices
The evaluation was performed by integration of Equation (1)
with the help of the experimentally recorded joint torques and
a given set of elements for matrices B0 and G0 ( compare
Kuo, 1995; Alexandrov and Frolov, 2011). The elements of these
matrices, which minimize the error between the joint angles
obtained by the numerical integration and the experimental joint
angles, were taken for estimating the robot’s characteristics. Their
search was performed by the gradient descent method given in
the MATLAB software. Parameters presented in Appendix 1 in
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SupplementaryMaterial were taken as the initial ones. The search
terminated on the step when the tolerance function decreased less
than by 10−4 as compared with the previous step.

Evaluation of Time Delays in Transformation from

Torque Commands to Effective Joint Torques
The transformation from the joint torque commands at the PD-
controller output to the experimentally obtained joint torques
is realized in PostuRob II independently for the hip joint and
the ankle joint. Crosstalk between the joint torques is negligible
and the transformation is performed in each joint separately
with different time delays (boxes 1t1, 1t2 in Figure 2). The
matrix Fττ describes the transfer function of the desired torque
commands to the effective torques at the robot segments by

Fττ =
(

e−iω1t1 0
0 e−iω1t2

)

(12)

where ω = 2πf, f is the frequency of the sinusoidal robot
movement, i is the imaginary unit, and 1t1, 1t2 are the delays
in the transformation of torque commands to the torques in the
ankle and hip joints, respectively. The delays ∆t1 and 1t2 that
provided the best fit with the experimental transfer function were
then taken for the subsequent estimations.

RESULTS

The experiments with Posturob II were performed on a
motion platform in a human posture control laboratory. They
comprised in addition to voluntary movement tests also tests
of balancing biped stance during external disturbances (details
in Appendix 1 in Supplementary Material). We refrained from
adjusting the above control parameters to specific experimental
conditions even when this was associated with particular
technical insufficiencies such as an increased static friction.
Proactive leanmovement and reactive postural lean responseswere
tested. Both could be performed either in space coordinates using
the artificial vestibular sensor (change in trunk-space angle, TS,
or leg-space angle, LS) or in proprioceptive coordinates (change
in trunk-leg angle, TL, or leg-foot angle, LF).

Evaluation of the Robot’S Inertial and
Gravity Matrices
The elements of matrices B0 and G0 obtained experimentally
amounted to B011 = 65.01N m s2 rad−1, B012 = B021 = 10.09N
m s2 rad−1, G011 = 460.01N m rad−1, G012 = G021 = G022 =
103.02N m rad−1 (these values replaced in the following the
initial values given in Appendix 1 in supplementary Material).
The experimental transfer function F

qτ
e was calculated according

to Appendix 3 in Supplementary Material for the case that the
two components of the signalX(t) are the joint angles and the two
components of the signalY(t) are the corresponding joint torques
recorded during the above 35 described cyclic movements of
PostuRob II. The theoretical transfer function F

qτ
t was calculated

according to equation

F
qτ
t = −ωB0 − D0 (13)

using the inertial and gravity matrices B0 and G0 obtained
experimentally. The root-mean-square error of the mismatch
between F

qτ
t and F

qτ
e amounted to 9.9%.

Evaluation of Delays in Torque Actuators
Figure 5 shows the experimentally obtained transfer function
Fττ
e and the theoretical transfer function Fττ

t for the
transformation of the torque commands to the joint torques.
The function Fττ

t was calculated according to Equation (12) and
Fττ
e according to Appendix 3 in Supplementary Material. The

two components of the signal X(t) are the control signals τC1
and τC2 at the PD-controller output (Figure 3) for the ankle and
hip joints respectively, and the two components of the signal
Y(t) are the corresponding experimental recordings of the joint
torques. The “actuation delays” that provided the minimum
root-mean-square error between the Fττ

e and Fττ
t amounted to

1t1 = 0.091 s (ankle) and 1t2 = 0.053 s (hip). The minimum
root-mean-square error amounted to 5.1%. Note that the
off-diagonal elements of the experimental transformation matrix
Fττ
e are small compared to the diagonal elements, indicating very

small crosstalk torques between the joints.

Readjustments of the Parameters for the
EM PD-Controller
The solutions of Equations (2) and (5) for the experimentally
obtained matrices B0 and G0 give the following eigenvalues λi,
eigenvectors wi, and vectors ui (i = 1, 2) defined in Appendix 1
in Supplementary Material:

λ1 = 0.15 s2; w1 =
(

−0.89
−0.46

)

; u1 =
(

455.6
138.9

)

λ2 = 0.02 s2; w2 =
(

−0.29
−0.96

)

; u2 =
(

35.6
−68.5

)

(14)

The actuation delays 1t1 = 0.091 s and 1t2 = 0.053 s were
intentionally equalized by adding delays of τC1 = 0.009 s and
τC2 = 0.047 s to the respective joint inside the PD-controller
(Figure 3). As a result, the total delays for both ankle and hip
joint torques amounted to 1t = 0.1 s. The two markers in
Figure 4 located on the dashed curve for 1t = 0.1 s and the two
eigenvalues λ1 and λ2 of PostuRob II indicate that the Lyapunov
indexes in the experimental movements amounted to αmin1 =
−5.6 s−1 for the first EM and αmin2 = −4.1 s−1 for the second
EM.

The following optimal values of stiffness S
eig
opt and viscosityV

eig
opt

in the PD-controller were calculated according to Appendix 2 in
Supplementary Material for the obtained values of λ1, λ2, and 1t
= 0.1 s:

S
eig
opt1 = 1.04; V

eig
opt1 = 0.73 s;

S
eig
opt2 = 0.06; V

eig
opt2 = 0.15 s. (15)

To obtain the estimate of the transfer function Fqq from desired
to actual kinematics, cyclic movements of PostuRob II were
recorded using the optimal parameters obtained so far. These
recordings were used to calculate an experimental transfer
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FIGURE 5 | The gain (A) and phase (B) characteristics of theoretical transfer function Fττ
t (curves) calculated according to (13) with joint torque delays τ1 = 0.091 s

(ankle) and τ2 = 0.053 s (hip) and experimental Fττ
e (markers) for the transformation of the controller output joint torques to the actual joint torques. Experimental data

points: ◦ Fττ
e11, � Fττ

e21, H Fττ
e12, ♦ Fττ

e22.

function from desired to actual kinematics (Appendix 3 in
Supplementary Material) and were compared to a theoretical
transfer function (Appendix 4 in Supplementary Material).

Figure 6 shows the gain (Figure 6A) and phase (Figure 6B)
characteristics of the transfer function Fqq from the desired
kinematics to the actual kinematics in terms of joint angles.
The experimentally obtained values F

qq
e calculated according

to Appendix 3 in Supplementary Material are compared with
the theoretical ones F

qq
t calculated according to Appendix 4 in

Supplementary Material.
The off-diagonal elements F

qq
12 and F

qq
21 of the transfer function

Fqq are theoretically and experimentally non-zero. However, the
off-diagonal elements are small as compared with the diagonal
elements F

qq
11 and F

qq
22 . In general, the experimental data points

in Figure 6 qualitatively correspond to the theoretical results
(curves), this despite some data scatter.

Proactive Movements of the Robot
Proactive TS and LS movements were performed in addition
to the robot experiments also in model simulations. A first
overview was obtained with desired sinusoidal TS movements
in space coordinates. Figure 7 shows the “voluntary”
signals (desired trunk-space angle, TS!) in comparison
with the executed movements signal (TS) for 0.2 and 1.2
Hz sine frequency (A, simulation data; B, robot data). At
0.2Hz, only a very small coupling effect of TS on LS is
visible in the simulations (A1), whereas a small in-phase
reaction occurs in the robot (B1). At 1.2 Hz, the evoked LS
excursions are increased and shifted toward counter-phase

already in the simulation (A2) and more so in the robot
(B2).

Noting that the separation between dynamic and static
effects and the use of space coordinates Pcomplicate the
interpretation of the robots behavior, movement commands with
smoothed ramp-like waveform (raised cosine velocity function,
see Appendix 1 in Supplementary Material) and proprioceptive
coordinates were used in the simulations and robot experiments
(Figure 8). Stable stance was obtained in both scenarios. In the
model simulations a desired trunk-leg angle signal of 4◦ (TL!=
4◦) leads to a slight TL overshoot and a weak dynamic LF counter
excursion (A1). With a desired leg-foot angle (LF!) as command
a slight LF overshoot and a clearly larger transient dynamic TL
counter responses occurred (A2). In the corresponding robot
experiments, the resulting TL movement also shows a dynamic
response, mainly attributed to static friction effects (B1). LF
showed no considerable dynamic effect, but a static excursion
in TL lean direction. With a desired LF command, the resulting
LF lean movement showed a dynamic overshoot (B2). The
effect on TL consisted of very small dynamic counter-effects
and a relatively large static excursion in the direction of LF of
approximately 5.5◦. The large TL response is mainly due to the
relatively large weight of the trunk. It should be noticed that the
used controller (PD) does not guarantee a null static error in
the general case. This is more evident in robot experiments (B2)
than in simulations (A2) where the control parameters can be
perfectly tuned to the system. Taken together, dynamic coupling
in simulations and the robot experiments were not completely
abolished, but strongly reduced (e.g., A2), while gravitational
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FIGURE 6 | The gain (A) and phase (B) characteristics of the theoretical Fqqt (curves) and experimental Fqqe (data points) transfer functions of the desired kinematics

to the actual kinematics in terms of joint angles q. Experimental points: ◦ - Fqqe11, � Fqqe21,H Fqqe12, ♦ Fqqe22.

FIGURE 7 | Model simulation (A) and robot experiments (B) of internally generated (“voluntary”) sinusoidal rotations of desired trunk-space angle (TS!). Dynamic

effects on leg-in-space (LS) would ideally be absent (see text). Note that the support surface is here not rotating, so that desired ankle angle qd1 is equal to leg in

space, LS, while qd2 = TS!− LS! (i.e., using a notation that is more intuitive in the following).

torque effects where prominent, this mainly when the control
operated in proprioceptive coordinates (Figure 8) and less so in
space coordinates (Figure 7).

Reactive Responses to External
Disturbances
Using the pseudo-random ternary sequence (PRTS) stimulus
allows to analyze externally evoked LS and TS sway responses
over a broad spectrum of frequencies (Hettich et al., 2014;
adopted from Peterka, 2002). The method allows analyzing the
data in the frequency domain in terms of frequency response
functions (FRFs) and coherence functions (see Appendix 1
in Supplementary Material). Examples of the time series of
the stimulus and responses in the sagittal plane are given in
Figure 9A for support surface tilt with vestibular input (control

of leg segment operated in coordinates of gravitational space) and
in Figure 9B for support surface translation (control operated
in joint coordinates). Note that the robot successfully maintains
balance with relatively small angular leg and trunk excursions in
the two experiments shown and in other balancing experiments
performed (see also Film in Supplementary Materials). The
FRF results for the tilt experiments with pp 2◦ and pp 8◦

are given in Figure 10. They show that the robot keeps the
orientation of the legs in space and the trunk in space upright.
The robot was able to maintain balance also without vestibular
input (control of leg segment operated with respect to the
feet) when the support surface tilt amplitude was reduced to
3◦ or smaller (Figures 11, 12), a performance that qualitatively
is similar to that of vestibular loss human subjects (see
Discussion).
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FIGURE 8 | Model simulation (A) and robot experiments (B) of internally

generated (“voluntary”) rotations with ‘raised cosine velocity profile’ (amplitude,

4◦; dominant frequency, 0.2Hz) of TL (desired, TL!) in (A1,B1) and of LF

(desired, LF!) in (A2,B2).

DISCUSSION

Theoretically, the EM concept is a relatively simple and efficient
method to cope in a multi-DoF system with the coupling
forces between mechanically linked segments. This study tested
whether the EM concept is able to cope with coupling forces
also in the control of a real-world technical device such as a
humanoid robot, in which the control faces non-ideal properties
such as noisy, inaccurate and non-linear sensors, friction and
backlash, etc. These real world conditions may challenge control
robustness in face of human-like feedback time delays. The robot
experiments demonstrate that the EM control method copes
considerably well with the real-world properties in a humanoid
robot with human-like anthropometrics and equipped with
human-inspired sensors and actuators. Therefore, we consider
the EM control method a valid candidate that should be
considered when making inferences on which method humans
may use for their sensorimotor control. In the following, we
first briefly address general issues of the EM concept before
considering our experimental findings and consider alternatives
to the EM control method.

Considering the EM method in this study was not meant to
reduce the number of degrees of freedom of the system or to solve
a redundancy problem, because the number of DOFs is the same
when controlling joints or EM spaces. Rather, the benefit of using
the EM concept is a control simplification in that multiple EMs
can simultaneously be controlled dynamically independently of
each other. For example, with a trunk bending forward the robot
may simultaneously move the leg segment backwards in order to
balance the COM over its feet as base of support (corresponding
to a kinematic synergy), but alternatively may maintain the leg
segment vertical (coping with forward shift of the COM through
corresponding ankle torque). Generally, it should be noted that

EMs are not synergies observable in the space of joint angles,
but a step in the design of a control system that can produce
arbitrary poses and trajectories (within the limit of the robot’s
dynamic responses). Independent PD-control of separate EMs
allows clearly longer time delays in the feedback loop than the
independent PD control of separate joints. For example, the
Lyapunov index showed that the independent PD-controls of
separate EMs in PostuRob II is stable up to a time delay of ∆t
= 200 ms, while the limit is ∆t = 150 ms using independent
controls of separate joints (see Appendix 5 in Supplementary
Material). Conceivably, in amore complex control system such as
the human one, additional or other mechanisms may contribute
to control stability in face of long time delays.

The definition of the EMs implies a linearization of the system.
With the control of upright body posture, a natural choice for the
linearization point is the vertical position. Principally, however,
the system has previously been shown to work also for a wider
range of movements, exploiting successive linearization points as
described for arm movements (Frolov et al., 2013). It remains to
be shown how complexity increases when the EM method has to
deal continuously with large operative spaces.

Despite the fact that the design of Posturob II takes into
account the human anthropometry, time delays in the control
loop and some human-inspired sensors and actuators it ignores
several known constituents of the human posture control
system such as load-related proprioceptive sensors (Dietz, 1998),
foot deformation (Wright et al., 2012), some minor role of
the knee joints (Alexandrov et al., 2001b), and more. Even
though ignoring these parts of the human posture control,
the EM approach provided stable maintenance of posture and
movements in the humanoid robot. Similarly, previous feedback
control models, using in the absence of visual information
only joint angle proprioceptive and vestibular sensory inputs,
were sufficient to quantitatively describe human responses to
moderate support surface tilt stimuli in the sagittal plane, as
also shown with other control models such as the independent
channel (IC) model (SIP biomechanics Peterka, 2002) or the
disturbance estimation and compensation (DEC) model (DIP
biomechanics; (Hettich et al., 2014); this study includes a
direct comparison between data of humans and of Posturob
II using the human-derived model). The model of Park et al.
(2004); see also (Kuo and Zajac, 1993), one of several currently
available models of posture control, used proprioceptive linear
full state feedback control to describe human responses to
backwards translation and found only moderate improvement
when increasing complexity from a 2-segment to a 4-segment
model.

The main result of the present study is the experimental
demonstration that the EM method copes well with a PD-
control of a “real-world” mechanical anthropomorphic robot.
The feedback loop parameters for the independent control
in each EM were calculated from the robot anthropometrics,
including human-like feedback time delays. Other characteristics
of the robot as a “real-world” system, which typically are
not exactly known such as friction, nonlinearities, noise,
backlashes, inaccuracies, etc., were ignored. These unaccounted
factors led to clear deviations of measured results from model
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FIGURE 9 | Time series of stimulus and sway responses of the robot to support surface tilt (A, with vestibular function; leg-in-space tilt, LS, and

trunk-in-space tilt, TS, in space coordinates) and support surface translation (B, without vestibular function; leg-in-space tilt, LS, and trunk-in-space tilt, TS, in platform

coordinates) using the PRTS stimulus waveform.

FIGURE 10 | (A–C) Sway responses to support surface tilt of the robot with vestibular input presented in terms of frequency response functions (FRF) of LS to tilt (A),

TS to tilt (B), and the ratio curves of TS gain to LS gain and difference curves between TS phase and LS phase (C) (PRTS stimulus of pp 2◦ and pp 8◦).

predicted results, but influenced relatively little the overall
characteristics of the movements and did not contradict the
hypothesis that the EM concept can provide in principle
stable performance of the robot. This applies to both proactive
movements and reactive balancing of stance during unforeseen
external disturbances in the sagittal plane (such as horizontal
translation of the support surface and, when vestibular

information was included into the control, support surface
tilt).

Another aspect to be considered in the present approach was
that the EM implementation aimed at an optimal stability of the
control (see Section Theoretical Analysis of Control Stability).
This does not imply that thereby the robot’s postural responses
automatically become similar to human subjects. In other words,
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FIGURE 11 | Time series of stimulus and sway responses of the robot without vestibular function to support surface tilt. (A) PRTS tilt stimuli of peak-peak

amplitudes of 1◦, 2◦, and 3◦. (B) Responses of leg in space, LS, and trunk in space, TS. Limiting tilt peak-peak amplitudes to 3◦ prevented falling.

FIGURE 12 | Balancing of stance on tilting support surface of the robot

without vestibular function (control is exclusively proprioceptive).

Shown are frequency response functions (FRFs) and coherence functions for

leg in space (LS; A) and trunk in space (TS; B). Superimposed are human data

for comparison (mean of 5 vestibular-loss subjects, eyes closed).

optimizing the EM control for Posturob II does not mean that
the robot’s postural responses become human-like because of
its human-inspired sensors and actuators alone. The present
approach differs from that in a previous study, which also used
Posturob II (Hettich et al., 2014). There, human-like postural

responses of the robot were obtained by fitting the control
parameters of a posture control model, which later controlled
the robot, to the human responses. Still, we considered it as
interesting to compare in the present context the robot data
with human data to visualize differences in the sway response
behavior. To this end, we superimposed on the robot’s frequency
response functions shown in Figure 12 the results obtained with
the same stimulus and set up obtained from a group of vestibular
loss human subjects with eyes closed. The reason for this choice
was to consider an especially simple control that uses mainly
proprioceptive sensors (in humans possibly including force cues;
Mergner et al., 2009). Outstanding differences between human
and robot data are larger human sway responses in the mid-
frequency range of the PRTS stimulus, a slightly different phase
behavior, and smaller coherence in the low to mid frequency
range, possibly indicating higher sensory ormotor noise (ormore
general, effects not fully taken into account by the model). Future
studies may use parameter identification methods in order to fit
the EM concept to human data.

Possible Implications for Robotics
Kinematic synergies are widely used in humanoid robotics,
typically with the purpose to simplify movement control. Kinetic
synergies, i.e., predefined coordination between joint torques,
although considered in numerous human studies (Prattichizzo
et al., 2010; Shim et al., 2010), are rather sparsely implemented in
explicit form in robots. As to the EM, they are formally kinematic
synergies, yet the variables η are kinetic synergies defined by
the coefficients of the matrix U . Formally, EM are defined to
be coupling-free and to cover the whole space of joint motion.
They are not producing a simplification of the control in terms
of DOFs, yet, being dynamically independent, they simplify the
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structure of the control problem to the case of the control of
several independent SISO systems. This can be advantageous
for robotic control both in simplifying the design of the control
system and to improve robustness with respect to modifications
in control parameters, since modifications to one of the SISO
controllers does not affect the others. This can be important
in cases when the control parameters need to be dynamically
adjusted, e.g., to improve balance performance during different
tasks or in different scenarios.

However, the simplification of the control design by
using SISO controllers comes at the cost of designing the
transformation matrices U andW. This transformation requires
a reliable model of the body dynamics, whichmay be problematic
with certain tasks such as with full body control of a humanoid
that involves a large number of DOFs. A further limitation is
given by the system linearization required to define the Eigen
movements, since this implies the necessity to linearize the
system in different points of the control space when trying to
cover a wide range of motions and/or when involving several
distributed DOFs in complex behaviors such as walking. Overall,
considering advantages versus limitations of the EM concept
applied to robotics, we conceive that whole body control tasks
like balancing upright stance would profit from it, because
the limited range of motion makes errors due to linearization
negligible. We would expect profits also for applications in which
the dynamic requirements of the task and the presence of time
delays make the coupling forces highly relevant, such as in the
control of fast arm reaching (Frolov et al., 2013). In case that the
number of DOFs involved in a task is large so as to make full
state solutions non trivial, use of the EM approach with accurate
definition of W and U still may be practicable, this especially if
the control task is reduced to a subset of variables by means of
integration of task specific constraints.

CONCLUSIONS

A major conclusion from the present experiments refers to
the robot experiments as an experimental tool when studying

the human sensorimotor control system. Using a humanoid

robot for comparing different bio-inspired control concepts with
each other on the same robot will help to define criteria for
presumed human-likeness of control algorithms—with potential
benefits also for use in humanoid robotics and user acceptance in
robotic neurorehabilitation. In doing so, the robot experiments
provide a valuable “real world” test that complements model
simulations, especially in addressing the problem of control
stability in face of human time delays. Finally, an experience from
this study is that “learning by doing” in the robot experiments
provides inspirations also for the research of the human control
system.
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The Independent Channel (IC) model is a commonly used linear balance control model

in the frequency domain to analyze human balance control using system identification

and parameter estimation. The IC model is a rudimentary and noise-free description

of balance behavior in the frequency domain, where a stable model representation

is not guaranteed. In this study, we conducted firstly time-domain simulations with

added noise, and secondly robot experiments by implementing the IC model in a

real-world robot (PostuRob II) to test the validity and stability of the model in the time

domain and for real world situations. Balance behavior of seven healthy participants

was measured during upright stance by applying pseudorandom continuous support

surface rotations. System identification and parameter estimation were used to describe

the balance behavior with the IC model in the frequency domain. The IC model with

the estimated parameters from human experiments was implemented in Simulink for

computer simulations including noise in the time domain and robot experiments using

the humanoid robot PostuRob II. Again, system identification and parameter estimation

were used to describe the simulated balance behavior. Time series, Frequency Response

Functions, and estimated parameters from human experiments, computer simulations,

and robot experiments were compared with each other. The computer simulations

showed similar balance behavior and estimated control parameters compared to the

human experiments, in the time and frequency domain. Also, the IC model was able

to control the humanoid robot by keeping it upright, but showed small differences

compared to the human experiments in the time and frequency domain, especially at

high frequencies. We conclude that the IC model, a descriptive model in the frequency

domain, can imitate human balance behavior also in the time domain, both in computer

simulations with added noise and real world situations with a humanoid robot. This

provides further evidence that the IC model is a valid description of human balance

control.

Keywords: balance control model, system identification, parameter estimation, robotics, human balance control
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INTRODUCTION

Human balance control helps us to keep our body in an
upright position during daily life activities. In human balance
control several systems are involved, like the sensory systems, the
nervous system, and the muscles, which interact continuously
with each other (Horak, 1997). Visual, proprioceptive (muscle
spindles and Golgi tendon organs) and vestibular cues are
integrated by the nervous system to obtain body orientation
with respect to the visual scene, the support surface and gravito-
inertial space, respectively. The nervous system integrates these
sensory cues to generate a desired torque signal realized by the
muscles. This torque results in a corrective movement to bring
the body toward the desired upright position. The body position
and velocity thus changes and the new body position and velocity
are again sensed by the sensory systems. Thus, balance control
can be described as a closed loop control system (Collins and De
Luca, 1993; Peterka, 2002; van der Kooij et al., 2005).

To describe and understand the interaction between the
underlying systems, human balance control models are useful
(Engelhart et al., 2014). The Independent Channel (IC) model
is a frequently used linear parametric model describing the
interaction between the underlying systems during stance in
a closed loop (Peterka, 2002). In this model the human body
is modeled as a single inverted pendulum and each sensory
system is modeled as a separate feedback channel with a
weighting factor, which reflects the contribution of each sensory
system during stance. Peterka (2002) quantified the changes
in sensory contributions depending on the balancing situation,
showing that changes in sensory contributions, referred to as
sensory reweighting, plays an important role in human balance
control.

The IC model is a simple descriptive model of the balance
behavior and is formulated by a transfer function in the
frequency domain, which allows easy and fast implementation
of parameter estimation (Schoukens et al., 2004). To describe
dynamic balance behavior, a non-parametric approach in
the frequency domain can be used in combination with a
continuous periodic perturbation with specific frequency content
for system identification (Johansson and Magnusson, 1991;
van der Kooij et al., 2005). Fitting the frequency domain
model on the measured balance behavior then provides a
limited set of physiologically interpretable parameters describing
the underlying systems (Peterka, 2002; Kiemel et al., 2011).
Theoretically, however, frequency domain models are a global
description over the whole frequency range and may show small
imperfections at specific frequencies. They may even include
unstable subsystems in the fitting procedure. Furthermore, the IC
model is used on averaged data and therefore in approximately
noise free situations. As noise is inherent in human balance
control, the IC model may not be able to stabilize this noisy
system. In addition, the ICmodelmaymiss some essential details,
as it is a simplified representation of human balance control and
the human body is modeled as a linearized inverted pendulum
(Peterka, 2003). Thus, the IC model may not always be a valid
representation of the human balance behavior in real world
situations.

In this study, we evaluated the validity of the IC model
(i.e., a frequency domain model) by testing the model in time
domain simulations with added noise and in a real world
environment with the humanoid robot PostuRob II (Hettich
et al., 2014) to show the functionality of a frequency domain
model in the time domain and in real world situations. The robot
has human-like anthropometrics, pneumatic muscle actuation
and noisy and inaccurate sensors. The human IC model was
used to control the robot, i.e., to generate a torque command
based on the weighted sensory information. Comparing the
robot’s balance behavior to human balance behavior in similar
experimental conditions is an important validation of the
model. The real world environment may provide additional
insight into human balance control and the robustness of the
model.

MATERIALS AND METHODS

Independent Channel Model
The IC model (see Figure 1) describes the aforementioned
process of balance control in the form of a simplified descriptive
linear model. The model consists of a single inverted pendulum
(body dynamics: BD) controlled by a feedback mechanism with
a PD controller (neural controller: NC) and a time delay (TD).
The sensory integrationmechanism consists of a weighted sum of
the sensory contributions, where the weights always sum to unity
(Peterka, 2002). The first contribution is the relative orientation
of the body to the feet (BF), sensed by the proprioceptive
system (Wp). The proprioceptive signal BF refers here to an
abstract internal representation of body orientation with respect
to the feet instead of the ankle joint angle itself (Peterka, 2002;
Mergner, 2010). The second is the body orientation with respect
to the space vertical (BS), sensed by the vestibular system
(Wves). The third is the visual surround orientation relative
to the body (VB), sensed by the visual system (Wvis). The
weighted signals are summed with a low-pass filtered positive
force feedback (FF; Peterka, 2003), which accounts for a relatively
good compensation of body lean at low frequencies. Together
they provide an error signal as feedback into the PD controller
(see Figure 1). In the time delay (TD) all delays in the loop
are lumped, including muscle activation, neural delays, and
processing time.

Study Design
To validate the IC model, three steps were performed
(Figure 2A). First, human balance behavior of healthy
participants was obtained in human experiments using
support surface rotations in space (SS) and body-in-space sway
(BS) measurements (Figure 2B). SS rotations evoke body sway
through changes of the body angle relative to the feet (BF)
sensed by proprioception and the resulting sensory conflict with
the body angle in space (BS) sensed by the vestibular system
and by vision in a stationary visual surround (Figure 2B). The
human balance behavior was analyzed in the frequency domain
using system identification techniques. Parameter estimation
was performed using the IC model (Peterka, 2002) resulting in
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FIGURE 1 | Schematic representation of the human balance control (adapted from Peterka, 2003). The human body is represented by an inverted pendulum (body

dynamics, BD) controlled by the neuromuscular controller producing a torque (T). The neuromuscular controller consists of the neural controller (NC), represented by a

PD controller, a lumped time delay (TD) and the sensory feedback “channels” with their weighting factors [i.e., for proprioception (Wp), vision (Wvis), and vestibular

system (Wves)] and force feedback (FF). The external perturbation is a support surface (SS) rotation around the ankle joint axis. It changes the orientation of the feet in

space relative to the horizontal (FS) and therefore changes the body angle with respect to the feet (BF, sensed by proprioception). This results in a conflict between the

proprioceptive information and the information sensed by the vestibular system [i.e., body angle in space relative to the gravitational vertical (BS)] and vision [i.e., the

visual surround orientation relative to the body (VB)] and evokes a change of the body angle in space (BS).

FIGURE 2 | Flowchart of the study set up and the experimental set up. (A) First, a human experiment (1) was performed using support surface rotations [SS(t)] as
shown by the experimental set up (B), in which the SS is rotated around the ankle joint axis. This rotation changes the feet orientation in space (FS) relative to the

earth horizontal. Based on the body sway responses, BS(t), the Frequency Response Function [FRF, SSSBS(f)] was calculated, which allowed to estimate the control

parameters (p) that described the balance behavior. These parameters were then implemented into the models used for the computer simulations and the robot

experiments (2) using the same perturbation signal as in the human experiment. BS(t) obtained from the simulations and robot experiments was again used for system

identification and parameter estimation and for describing the balance behavior in terms of FRFs and estimated parameters. Finally, balance behavior obtained from

computer simulations and robot experiments were compared with balance behavior obtained from the human experiments, using the time series, FRFs, and

estimated parameters.

parameters describing the underlying human balance control
system.

Secondly, the time domain computer simulations using the
IC model with added noise and the estimated parameters from

human experiments were performed. Thirdly, the model was
implemented in the humanoid robot to test the IC model
under real world conditions. To compare the human balance
behavior in the time domain, the same perturbations as in the
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human experiments were used. Again, system identification and
parameter estimation were used to describe the balance behavior
and to estimate the model parameters representing the balance
behavior obtained from the computer simulations and robot
experiments. Finally, the balance behavior obtained from the
computer simulations and robot experiments were compared
with the balance behavior obtained in the human experiments.

Human Experiments
Participants
Seven healthy young participants (5 males, 2 females, age 26.1
± 2.1 years, height: 1.79 ± 0.09m, mass: 77.7 ± 10.8 kg) were
included in the study. The participants gave written informed
consent prior to participation. The protocol was approved by
the medical ethics committee of the Medical Spectrum Twente,
Enschede, the Netherlands and was in accordance with the
Declaration of Helsinki.

Apparatus
A Bilateral Ankle Perturbator (BAP) (Forcelink B.V., Culemborg,
the Netherlands) was used to apply support surface (SS) rotations
around the ankle joint axis (Schouten et al., 2011). The actual
angles of rotation of the SS on the BAP were measured.

The body kinematics of the lower and upper body were
measured in anterior-posterior direction using two draw-
wire potentiometers (Sentech SP2, Celesco, Chatsworth, CA,
United States) by connecting them to the participant’s trunk and
hip. Together with the SS rotation, the body kinematics were
measured using a Matlab interface with a sample frequency of
1,000Hz.

Perturbation Signal
A pseudorandom ternary sequence (PRTS) with 80 states and a
time increment of 0.25 s was generated, resulting in a signal with
a period of 20 s (Davies, 1970; Peterka, 2002). This signal was used
as SS angular velocity of both the left and right SS simultaneously.
Integration of this signal provided the perturbation signal of
the SS rotation with a wide spectral bandwidth where only the
odd harmonics contain signal power (Peterka, 2002; Figure 3).
The even harmonics were not excited by the perturbation and
were used to detect nonlinearities in the output (Pintelon and
Schoukens, 2001). Each trial consisted of six complete repetitions
of the perturbation signal resulting in a trial duration of 2min.
The signal was applied with peak-to-peak amplitudes of 0.5 and
1 degrees.

Procedure
During all experiments the participants stood on the BAP
wearing socks. The participants were instructed to stand with
their arms crossed at chest level and to keep both feet on
the support surface. The perturbations were applied at both
amplitudes during eyes open and eyes closed conditions,
resulting in four trials of 2min each. Before recording, the
participants were given sufficient time to familiarize with the
perturbation (∼10 s). The participants wore a safety harness to
prevent falling, which did not constrain normal body sway and
did not provide support or body orientation information.

Preprocessing
Data analysis was performed with Matlab (The Mathworks,
Natick, MA, United States). Leg and hip angles were calculated
using the potentiometer data and the attachment height of the
potentiometers, resulting in the segment angle of the legs relative
to the vertical and the joint angle of the trunk relative to the legs.
The body-in-space sway (BS), taken as the angular displacement
of the whole body Center of Mass without feet (CoM) relative
to the vertical, was calculated using the leg and hip angles and
body anthropometrics obtained from Winter et al. (1990). The
time series of the body sway and the actual SS rotation were used
for further analysis.

System Identification and Parameter Estimation
The time series of the body sway and SS rotation were segmented
into six data blocks of 20 s (i.e., the length of the perturbation
signal) and were transformed to the frequency domain. The
periodic part of the frequency coefficients was calculated by
averaging the frequency coefficients across the six data blocks.
The Cross Spectral Density (CSD) of the body sway and the
perturbation and the Power Spectral Density (PSD) of the
perturbation were calculated.

To test for nonlinearities in the body sway as response
to the perturbation, the PSD of the body sway on the odd
and even harmonics were calculated. Effect of nonlinearities
within each tested condition was quantified by the percentage
of total body sway power on the even harmonics, where the
perturbation had no power. Thus, a higher percentage indicates
excitation of body sway at frequencies which were not excited
by the perturbation, and therefore more non-linearities. A low
percentage of nonlinearities is a prerequisite for the application
of linear system identification techniques.

Next, the Frequency Response Functions (FRFs) representing
the sensitivity function of the SS rotation to the body sway
were estimated by dividing the CSD of the body sway and the
perturbation by the PSD of the perturbation (Equation 1; Peterka,
2002; van der Kooij et al., 2005). Only the excited frequencies
(i.e., odd harmonics) were analyzed. In case the amount of
nonlinearities is low, the response on the excited frequencies
(i.e., odd harmonics) represents the total balance behavior. The
function is given by

Hexp(f ) = 8SS,BS(f ) · [8SS,SS(f )]
−1 (1)

where8SS,BS andΦSS,SS represent the CSD and PSD, respectively.
The magnitude and phase represent the relation between the
perturbation and body sway per frequency in terms of amplitude
ratio and timing, respectively.

The coherence reflects the amount of body sway evoked
by the perturbation on the excited frequencies, i.e., the linear
response, and decreases with noise and nonlinearities (Pintelon
and Schoukens, 2001). The coherence is given by

γ 2
SS,BS(f ) =

∣

∣8SS,BS(f )
∣

∣

2
[8SS,SS(f )8BS,BS(f )]

−1 (2)

where8BS,BS represents the PSD of the body sway. The coherence
varies between 0 and 1, with a coherence close to one reflecting a
good signal to noise ratio and linear behavior.
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FIGURE 3 | Perturbation signal and the corresponding power spectral density on the odd harmonics with the analyzed frequencies shown in red.

The FRFs and coherences were obtained with nonparametric
analysis and were averaged across the participants for each
condition resulting in four FRFs and coherences (i.e., for the 0.5
and 1 degrees perturbation amplitudes with eyes open and eyes
closed), which were used for further validation.

The IC model was fitted on the estimated balance behavior
during each condition, represented by the FRFs averaged across
participants, using the theoretical transfer function of the IC
model, as presented in Equation (3), to obtain parameters
describing the balance behavior (Peterka, 2003). To characterize
the postural effects evoked by the SS rotation around the ankle
axis, the proprioceptive weight (Wp) was estimated from

Hest(f , p) =
BS(f )

SS(f )
=

Wp · NC · TD · BD
1− FF · NC · TD+ NC · TD · BD

(3)

where NC represents the neural controller, TD the time delay,
BD the body dynamics and FF the force feedback. f represents
the frequency vector and p the model parameters, namely the
mass (m), CoM height (h), moment of inertia (J), proprioceptive
weight (Wp), the reflexive stiffness (KP), the reflexive damping
(KD), time delay (τD), force feedback time constant (τF) and force
feedback gain (KF) (Figure 1). As the sum of the weights equals
one, in case of eyes closed,Wvis is zero andWves can be calculated
by 1 –Wprop. With the eyes open, the sum ofWvis andWves equals
1 –Wprop (see Peterka, 2002), where visual and vestibular weight
cannot be separated mathematically.

The body mass, CoM height and moment of inertia were used
as fixed parameters. The CoM height and moment of inertia
were calculated using the method of Winter et al. (1990). The
model was fitted on the FRFs (0.05–2.05Hz) of the averaged
human experimental data using a nonlinear least-square fit
(Matlab function: lsqnonlin) by minimizing the sum squared

error (E), equation (5), in which more more weight was given
to the low frequencies and the frequencies with higher coherence
(Equation 4).

ε(f , p) =

√

γ 2
SS,BS(f )

1+ f
·
∣

∣

∣

∣

log

(

Hexp(f )

Hest(f , p)

)∣

∣

∣

∣

(4)

E =
1

N
ε(f , p)Tε(f , p) (5)

γ 2
SS,BS represents the averaged coherence between the SS rotation

and body sway, Hexp the averaged experimental or simulated
sensitivity function, Hest the estimated sensitivity function based
on the estimated model parameters (p) and N the number of
frequencies.

The quality of the model fit was represented by the Variance
Accounted For (VAF) (Equation 6) identifying how well the
model describes the observed time series averaged across data
blocks and participants. The VAF is given in percentage; 100%
indicates that the model accounts fully for the experimental data.
A lowerVAF indicates deviations between themodel and the time
series averaged across data blocks and participants.

VAF = 1−

T
∑

t=0.01

∣

∣BSexp,t − BSest,t
∣

∣

2

T
∑

t=0.01

∣

∣BSest,t
∣

∣

2
∗ 100% (6)

where BSexp,t represents the body sway measured in the
experiment and BSest,t represents the body sway obtained from
simulations with the estimated model parameters.

The Standard Error of the Mean (SEM) of each parameter
represents the sensitivity of the error (ε, Equation 4) to changes in
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parameters andwas calculated using the diagonal of the estimated
covariance matrix (P) obtained during the parameter estimation
procedure (Ljung, 1999; Equation 7).

∧
P = E(JTJ)

−1
(7)

in which J is the Jacobian (matrix of partial derivatives of each
parameter’s prediction error ε given in Equation 4) and E the
sum squared error. Since the parameters are estimated using the
averaged experimental FRFs, the SEM reflects the precision of
the estimated parameters and not the amount of variation of the
model parameters.

Computer Simulations
The IC model as described in section Independent Channel
Model and Figure 1 was implemented in Simulink, Matlab (The
Mathworks, Natick, MA, United States) with added pink noise
to mimic sensory and motor noise (van der Kooij and Peterka,
2011). The human body was modeled as a single inverted
pendulum and all parameters (Equation 3, Figure 1) were set
to the values found in the human experiments. The same
perturbation signal (section Perturbation Signal) and analyses
(section System Identification and Parameter Estimation) as used
in the human experiments were applied resulting in time series,
FRFs, and estimated parameters describing the balance behavior
simulated by the computer.

Robot Experiments
PostuRob II
To imitate human balance control in a real world situation, the
humanoid robot PostuRob II was used (Hettich et al., 2014).
The robot was constructed with human-like anthropometric
parameters (mass: 51 kg, CoM height above feet: 0.97m, moment
of inertia: 40 kgm2) consisting of trunk, leg, and feet segments
interconnected with two actuated ankle and hip joints (hip joints
were fixed during this study).

The sensory signals of the vestibular system, joint torque,
joint angular position, and velocity were measured using
mechatronic sensors. The technical analog for the vestibular
system are accelerometers and gyrometers, where the signals
are processed to provide body angular velocity and angle with
respect to the gravitational vertical, and linear acceleration
in the sagittal plane (Mergner et al., 2009). In the current
study only the angular orientation with respect to gravity was
used in the robot experiments as the IC model only uses this
signal.

Torque commands were sent to the robot to actuate artificial
pneumatic “muscles” at the ankle joints (Type MAS20, FESTO
AG&Co.KG, Esslingen, Germany). An inner torque control loop
ensured that the actual torque matches the torque commands.
A real time PC with Simulink (Real-Time Windows Target, The
Mathworks Inc., Natick, USA) was used as the control module,
running the compiled IC model.

Apparatus
A custom-built motion platform (Hexapod, Stuart principle;
Mergner et al., 2003) was used to apply SS rotations around

the ankle axis. The same perturbation signals as in the human
experiments were used (see section Perturbation Signal). The
body kinematics of the lower and upper body of the robot
were measured in anterior-posterior direction using an optical
motion capture system with two active markers attached to
the robot’s hip and shoulder, respectively (Optotrak 3020;
Waterloo, Canada). The body kinematics together with the actual
angle of rotation were measured using custom made software
written in LabView (National Instruments, Austin, USA) with
a sample frequency of 100Hz and were stored for further
analysis.

Procedure
The same procedure was performed with the PostuRob II as
in the human experiments; the experiments consisted of four
2-min long trials with SS rotations and different perturbation
amplitudes. Before each trial the parameters estimated from the
human experimental data for each condition were implemented
in the robot. This step was necessary, as the IC model
requires a different set of model parameters for each condition.
The neural controller parameters were corrected to account
for the difference in mass and CoM height between human
participants and the robot. Note that the robot had no visual
sensor. Instead, the artificial vestibular sensor was also used
for the robot experiments to mimic eyes open conditions,
where only the model parameters were adjusted according
to the changes identified in the human participants. Data
were analyzed according to the procedures described in
sections Preprocessing and System Identification and Parameter
Estimation.

RESULTS

Time Series
Figure 4 shows the time series of the averaged body sway
for the human experiments, computer simulations, and robot
experiments for each condition. Sway responses of computer
simulations and robot experiments followed the general pattern
of the human sway responses. The VAFs between the human
experiments and the computer simulations (“VAFS”) were in the
range of 94.1–98.7% for all conditions and in the range of 62.9–
79.0% for the robot experiments (“VAFR”; Table 1). For both
the computer simulations and the robot experiments, the VAF
tended to increase with increasing perturbation amplitude and
was higher in eyes closed, as compared to eyes open conditions.
Computer simulations and robot experiments were robust with
respect to the noise and the inaccuracies, and control stability was
maintained throughout all conditions.

Frequency Response Functions
Figure 5 shows the FRFs with the corresponding coherence
for each condition of the human experiments, together with
those obtained from the computer simulations and the robot
experiments. In general, the pattern of the FRFs and the
changes across conditions were similar in humans, computer
simulations, and robot experiments. Simulations and the robot
experiments showed some differences in the magnitude as
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FIGURE 4 | Time series of support surface rotation and body sway for the four conditions investigated in the human experiments, computer simulations, and robot

experiments. The four conditions refer to the two amplitudes (0.5 and 1 degrees peak-to-peak perturbation amplitude) and the eyes open (EO; left) and eyes closed

(EC; right) condition. The data are shown for the human experiments, averaged across participants (solid black lines) presented by the mean value with standard

deviation (shaded), the computer simulations (dash-dotted gray lines), and the robot experiments (dotted gray lines).

TABLE 1 | Differences between human experiments and computer simulations or robot experiments per experimental condition given for the time series and estimated

parameters.

Computer simulation vs. human experiment Robot experiment vs. human experiment

0.5 1 0.5 1 0.5 1 0.5 1

EO EO EC EC EO EO EC EC

Time series

Variance Accounted For (VAF, %) 94.2 97.2 94.1 98.7 63.2 62.9 69.2 79.0

Estimated parameters

Relative mean difference (%) 16.9 14.6 13.3 10.7 27.3 26.3 19.8 13.6

Data are presented for the four conditions with perturbation amplitude of 0.5 and 1 degrees peak-to-peak and eyes open (EO) versus eyes closed (EC).

compared to humans with the largest difference between robot
and human experiments at about 0.7Hz. The coherence was
considerably larger in simulations and the robot as compared
to humans, indicating differences in the noise properties. The
percentage power of the body sway on the even harmonics
varied between 1.8 and 7.4% of total body sway power in
the human experiments and therefore did not show strong
nonlinearities.

Estimated Parameters
The quality of the model fits was represented in the time
domain by the VAF. For the human experimental data the
VAF varied between 98.0 and 99.1%, for the simulated data
between 91.9 and 99.0% and for the robot experiments
between 93.4 and 98.3%, indicating only small deviations

between the measured (or simulated) data and the fitted
model.

Figure 6 shows the estimated parameters with the
corresponding SEM of the human experiments, the computer
simulations and the robot experiments. The estimated SEM
values indicating the sensitivity of the fitting error to changes in
the given parameter were low for most parameters. Exceptional
large SEM values stand out in the simulations for the reflexive
stiffness (only eyes closed 0.5 degrees) and the force feedback
time constants, and in the robot experiments for the time delays,
the proprioceptive weight, and the force feedback gain values
obtained for the small perturbation amplitudes (0.5 degrees).

The mean relative differences between the parameters is
presented in Table 1. The differences between the parameters
of the computer simulations and the parameters of the human
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FIGURE 5 | Frequency Response Functions representing the sensitivity functions of the support surface rotation to body sway. The four conditions refer to the two

amplitudes (0.5 and 1 degrees peak-to-peak perturbation amplitude) and the eyes open (EO) and eyes closed (EC) condition. Shown are the magnitude, phase and

coherence for the human experiments (averaged across participants, solid black lines) presented by mean values with standard deviations (shaded) and

correspondingly for computer simulations (dash-dotted gray lines) and robot experiments (dotted gray lines).

experiments were in the range of 10.7–16.9%. The differences
between the parameters of the robot experiments and the
human experiments were in the range of 13.6–27.3%. Again, the
differences decrease with increasing perturbation amplitude and
with closing the eyes.

Overall, the estimated parameters of the human experiments,
the computer simulations, and robot experiments are comparable
for all conditions. Clear differences were found in the
force feedback time constant and gain, which also show a
large SEM. Furthermore, the reflexive stiffness, and reflexive
damping showed a larger difference between the human
experiments and the robot experiments compared to the other
parameters.

DISCUSSION

In this study we validated the IC model, a commonly used
descriptive model in the frequency domain, in the time domain
using computer simulations with added noise and in the real
world using robot experiments. The results show that both the
computer simulations and robot experiments can reproduce
human balance behavior, where computer simulations described
the human sway responses better compared to the robot. The
model simulations showed that the IC model is stable in the time
domain with added noise, which adds an important aspect to the
descriptive nature of this frequency domain model. Furthermore,
the robot, controlled by the IC model, maintained the desired
upright position, which showed that the IC model is robust
enough to deal with the real-world properties of the robot (i.e.,
human-like anthropometrics, noisy and inaccurate sensors, and
mechanical dead zones).

Experimental Balance Behavior
The experimental balance behavior was estimated using a linear
approach. The low percentage power of the body sway of the
healthy participants at even harmonic frequencies shows that no
considerable nonlinearities that are effective across frequencies
were found within the steady state of one condition. The absence
of such nonlinearities allowed the use of a linear approach by only
analyzing the excited frequencies (i.e., odd harmonics).

A linear model was fitted for each condition of the
experimental data to describe the balance behavior. The high
VAF of the model fits indicate that the model explains the
data well. The estimated parameters obtained from human
experiments are comparable with previous studies and show
sensory reweighting, i.e., a change in the use of sensory
information (e.g., decrease in proprioceptive weight) with
changing perturbation amplitude and sensory condition (i.e.,
with increasing perturbation amplitude and opening the eyes;
Peterka, 2002; Cenciarini and Peterka, 2006; Pasma et al., 2015).
Also an increase in reflexive stiffness was found with increasing
perturbation amplitude, which is in agreement with previous
studies (Peterka, 2002).

Replication of Human Balance Behavior
With Computer Simulations
The results revealed small differences between the time series of
the human experiments and those of the computer simulations.
Small differences between time series, FRFs, and estimated
parameters were expected, as pink noise was implemented in
the computer simulations. Furthermore, we observed that the
IC model described the human responses in the high frequency
range not as accurately as in the low and mid frequency
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FIGURE 6 | Estimated parameters of the Independent Channel model of each condition for the human experiments, computer simulations and robot experiments.

The estimated values are shown together with the Standard Error of the Mean (SEM) representing the reliability of the estimates obtained from fitting. Results of the

four tested conditions [0.5 and 1 degrees peak-to-peak perturbation amplitude with eyes open (EO) and eyes closed (EC)] are shown. The reflexive stiffness and

damping were normalized to the gravitational stiffness (i.e., Center of Mass height multiplied by mass and the gravitational constant g). §SEM values > 190 s; ¶SEM

values > 5.0 × 10−4 rad/Nm.

ranges. This can be explained by the used prediction error
function, which gives more weight to the frequencies with a high
coherence.

These results provide evidence that the IC model, a frequency
domain model, is able and therefore valid to be used to control
a system in the time domain. The stable computer simulations
showed that the frequency domain model does not represent
an unstable subsystem and is able to tolerate physiologically
plausible noise without loss of balance.

Also, the estimated parameters of the human experiments
and the computer simulations are comparable. An exception is
the force feedback time constant, which mainly affects balance
behavior at low frequencies. The large SEM value indicates that
the estimate is less reliable. Due to the length of the perturbation
signal (i.e., 20 s), the perturbation contained little information in
the low frequency range, resulting in the observed low reliability
in the estimates. Notably, however, this parameter had only small
influences on the time series and FRFs.

Replication of Human Balance Behavior
With Robot Experiments
The main purpose of the study was to show the functionality of
the IC model in real world situations using robot experiments.
Similar approaches have been used to test other balance control
concepts, like the Disturbance Estimation and Compensation
concept or the Eigen movement concept (Hettich et al., 2014;
Alexandrov et al., 2017). Here, the IC model was able to control
the robot in the time domain when adjusting the estimated neural
controller parameters (i.e., the reflexive stiffness and damping) to
the mass and weight of the robot. The robot’s control was stable
across conditions and in the presence of manually applied pushes
(results not shown). In response to the pushes, the robot showed
a compliant behavior (relatively small resistance to the push),
which is related to the low loop gain used in the IC model and
an important characteristic of healthy human balancing.

The differences between the robot experiments and the human
experiments in the time series, the FRFs, and the estimated
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parameters were larger than those between computer simulations
and human experiments. One likely reason is that the mechanical
components of the robot introduce additional inaccuracies due
to dead zones, friction, etc., which remained unconsidered in the
robot’s control model. The ability of the IC model to stabilize the
robot despite these unconsidered effects suggests a considerable
robustness of the control mechanism. This robustness is also
a major aspect in human balance control, which lends further
support to the evidence that human balance control can be
explained by such a simple feedback mechanism as described by
the IC model.

A difference between the robot experiments and the human
experiments concerned a peak around 0.7Hz in the magnitude
of the FRFs. The peak decreased with increasing perturbation
amplitude and increasing torque level. Manual changes in the
model parameters and additional experiments (not shown in the
results) suggest that this peak might be due to the activation
dynamics of the robot’s actuators in terms of a resonance peak.
As the peak decreased with increasing perturbation amplitude,
this suggests a nonlinear behavior of the robot’s actuation.

The peak around 0.7Hz also may explain the higher reflexive
stiffness and lower reflexive damping estimates for the robot
experiment data as compared to the human experiment data.
Furthermore, a clear difference was found for the force feedback
gain. As already mentioned above, the force feedback estimates
showed a high SEM value and primarily affects the low frequency
range, where the differences between the FRFs and between the
estimations of the force feedback parameters were largest.

Decrease in Differences With Increasing
Perturbation Amplitude
The results show that, overall, the differences between the human
experiments and the computer simulations on the one hand
and the human experiments and the robot experiments on the
other hand decreased with increasing perturbation amplitude,
as shown by the VAFs and the relative mean difference of the
parameters shown in Table 1. In the computer simulations, these
differences can be attributed mainly to the noise injected into the
model. The amplitude of the noise was kept constant across the
conditions. Thismeans that with a higher perturbation amplitude
the noise had less influence on the time series (resulting in a
better signal to noise ratio) and therefore had less influence on
the FRFs and the estimated parameters. This may explain why the
differences between the human experiments and the computer
simulations became less with increasing perturbation amplitude
and why the SEM of the estimated parameters became smaller.

The argument could also hold for the robot experiments if
one assumes that with increasing perturbation amplitude, the
effects of the sensory and motor noise became relatively smaller,
and similarly also the effects of the activation dynamics and
mechanical inaccuracies. The reduced difference with increasing
perturbation amplitude and with closing the eyes suggests that
the robot controlled by the IC model is able to reproduce human
balance behavior.

Limitations
The IC model is a simplification of the human balance control,
in which the human body is modeled as an inverted pendulum

pivoting around the ankle joint axis and the equations of motion
are linearized. The model can be used to describe balance
behavior in the frequency domain at a specific operating point as
long as the balance conditions are not changed and the deviations
from this point are small. Therefore, the model can only be used
during steady state conditions, e.g., within one amplitude, which
might also be possible with other models.

In case of larger perturbations, which result in larger
deviations and also in rotation around the hip joints in addition
to the rotation around the ankle joints, the IC model would
miss essential details as suggested by studies which used balance
control models that incorporate also the hip joints, modeling the
human body as a double inverted pendulum (Qu and Nussbaum,
2012; Boonstra et al., 2013; Hettich et al., 2014; Engelhart et al.,
2015; Hwang et al., 2016). These models are able to identify
both the control of the upper and lower body separately and the
intersegmental coupling.

The somewhat lower coherence of the human experimental
data likely originates from noise and variability present in the
measured time series given the low amount of nonlinearities in
the system. The coherence is plausible since the sway amplitude
evoked by the small perturbation was comparable to the sway
amplitude not evoked by the perturbation (i.e., spontaneous
sway in quiet stance). The coherence values are also comparable
to other studies (Pasma et al., 2012, 2015; Boonstra et al.,
2013). Despite the somewhat lower coherence in the human
experimental data, the sensitivity function described the linear
balance behavior in the humans rather well and can be explained
well by the IC model, as shown by a high variance accounted for.

Intrinsic dynamics of the passive tissue and tendon structures
were neglected in the formulation of the IC model. This
simplification was implemented based on earlier studies
suggesting that the intrinsic dynamics contribute only about 10%
to the overall torque generated by the active muscle contractions
(Peterka, 2002; Maurer et al., 2005; Cenciarini and Peterka, 2006;
Assländer et al., 2015; Vlutters et al., 2015; Wiesmeier et al.,
2015). Furthermore, previous studies showed that it is difficult to
experimentally determine the intrinsic dynamics during balance
control (Peterka, 2002; Pasma et al., 2015; Engelhart et al.,
2016). As our model was able to explain the obtained sensitivity
functions well without the intrinsic dynamics, we decided to
dismiss them here.

CONCLUSIONS

This study showed that the IC model, a descriptive linear model
in the frequency domain, is able to imitate human balance
behavior in both the time and frequency domain, this both in
computer simulations and robot experiments. Therefore, the IC
model represents a good descriptor of human balance control.
The capability to tolerate noise and keep the robot in an upright
position, while being externally perturbed, indicates that the
IC model is robust in the time domain and in a real world
situation.

The IC model may help in the future to obtain further
insights into human balance control and to develop better
and more human-like balance control mechanisms for robotic
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assistive devices such as exoskeletons. Furthermore, the robot
implementation is useful for educational purposes, as it opens
the possibility to experience the functionality of the IC model
in a direct interaction with the human-like behaving robot.
It remains to be shown to what extent the IC model can
help to detect and classify changes underlying impaired balance
control.
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A dynamical model of an animal’s nervous system, or synthetic nervous system (SNS),
is a potentially transformational control method. Due to increasingly detailed data on the
connectivity and dynamics of both mammalian and insect nervous systems, controlling
a legged robot with an SNS is largely a problem of parameter tuning. Our approach to
this problem is to design functional subnetworks that perform specific operations, and
then assemble them into larger models of the nervous system. In this paper, we present
networks that perform addition, subtraction, multiplication, division, differentiation, and
integration of incoming signals. Parameters are set within each subnetwork to produce
the desired output by utilizing the operating range of neural activity, R, the gain of the
operation, k, and bounds based on biological values. The assembly of large networks
from functional subnetworks underpins our recent results with MantisBot.

Keywords: synthetic nervous system, design tools, functional subnetworks, leaky integrator, arithmetic, differen-
tiator, memory

1. INTRODUCTION

The development of robotic control that can closelymatch the dexterity and adaptability found in the
animal kingdom has so far remained elusive. This is because the control of locomotion is a complex
process controlled by dynamic systems which are not fully understood. However, recent advances in
neural imaging and recording has lead to an increase in the abundance and detail of our knowledge
of how an animal’s nervous system controls its body within the context of its environment (for a
recent review, see Buschmann et al. (2015)).

These advances have lead to an explosion of bio-inspired robotic systems in recent years (for a
review, see Ijspeert (2014)). These models can be broadly categorized into a range of template and
anchor models. In a template model, biological principles are abstracted, such using as a spring-
loaded inverted pendulum (SLIP)model to investigate bipedal locomotion (Blickhan, 1989) or using
Whegs to investigate insect locomotion (Allen et al., 2003; Schroer et al., 2004). These models seek
to explain how specific characteristics of animal locomotion lead to desired behaviors, or they
exploit certain principles of animal locomotion for more agile robotic systems. Anchor models,
in contrast, seek to directly mimic particular mechanical or control mechanisms from animals,
in order to understand how they function. Robots such as Pleurobot (Karakasiliotis et al., 2016),
Puppy (Hunt et al., 2017), MantisBot (Szczecinski and Quinn, 2017; Szczecinski et al., 2017a), and
others are relevant anchor models, because they seek to use highly articulated robots with central
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pattern generator controllers to understand how specific animals
are capable of providing adaptable locomotion with their unique
morphology and physical constraints.

The template versus anchor model distinction is not limited
to physical models; it can also be applied to control systems.
The majority of robotic controllers so far have been template
models, either mathematical abstractions of neural systems, or
black box artificial neural networks. This is because effective tools
for setting parameters in more realistic, dynamic neural models
to produce reliable behavior in a robotic system do not yet exist.
In spite of growing knowledge about the neural connectivity that
underlies locomotion control, detailed data for tuning these sys-
tems (neural time constants, ion channel conductivities, synap-
tic conductivities, etc.) remain largely unavailable, requiring the
modeler or engineer to tune these parameter values. However, this
is an inherently difficult task because there are many parameters
to be tuned in a model, and likely many different parameter
combinations that lead to indistinguishable performance (Prinz
et al., 2004; Marder and Taylor, 2011). Thus, the emphasis in
choosing parameter values should not be on selecting the singu-
lar “correct” values, but rather sufficiently “effective” values. In
this work, we tune parameter values in functional subnetworks
for addition, subtraction, multiplication, division, differentiation,
and integration of incoming signals and use analytical techniques
to identify constraints on the parameter values that must be met
for the intended calculations to occur. Larger networks can then
be assembled from these subnetworks with no additional tuning
(Szczecinski and Quinn, 2017; Szczecinski et al., 2017a). In this
manuscript, “tuning” refers to selecting the static parameter values
for a network; “learning” refers to changing the parameter values
while the model performs a task, either in simulation or in a
robot, based on its performance; and “adapting” refers to a model
qualitatively changing its behavior (e.g., walking more slowly),
either with or without “learning.”

Neuromechanical models may be tuned in a supervised or
unsupervised way. A supervised tuning method adjusts the
parameters of the model until the model replicates animal data.
This includes tuning the model by hand (Daun-Gruhn and Tóth,
2010; Szczecinski et al., 2014; Markin et al., 2016), which is a
time-consuming and imprecise process. Such imprecision may be
acceptable in simulation studies, but provides many difficulties
for robots that must interact with real environments. Techniques
do exist for tuning controllers based on animal locomotion data
(Schilling et al., 2013; Hunt et al., 2015b, 2017; Karakasiliotis et al.,
2016). However, collecting kinematic and dynamic data from
animals is time-consuming and expensive, and once collected,
must be further processed to scale the dynamics of the animal to
the robot (Karakasiliotis et al., 2016;Hunt et al., 2017). In addition,
using cross-individual average values for tuning dynamical neural
models may fail in many cases, because the average may not
represent any one individual (Golowasch et al., 2002; Marder
and Taylor, 2011). Large amounts of animal data may be used
to tune a control network of abstracted artificial neural networks
(Schilling et al., 2013). Methods like back-propagation can be
used to adjust synaptic weights in the network until it captures
the animal data arbitrarily closely, if it has enough connections
(Trappenberg, 2009). However, because the control network

is abstracted, so are the biological insights gained from the
model.

Unsupervised tuning methods, in contrast, tune the model
based on how well the model accomplishes a task, such as
navigating toward a goal, without comparison to animal data.
These methods frequently use genetic algorithms (GAs) (Beer
and Gallagher, 1992; Haferlach et al., 2007; Agmon and Beer,
2013; Izquierdo and Beer, 2013) or reservoir computing (RC)
(Dasgupta et al., 2015) to testmany different networks and param-
eter values, based on a simulated agent’s performance. GAs can
be effective at finding networks that perform specific opera-
tions, such as oscillating (Beer and Gallagher, 1992), navigat-
ing (Haferlach et al., 2007), or switching between foraging tasks
(Agmon and Beer, 2013). However, this approach has some draw-
backs. Specifically, the evolution process is slow, requiring the
simulation of hundreds or thousands of parameter combinations
(Agmon and Beer, 2013), which may take days without great
computing power. The speed and likelihood of success can be
increased by embedding functional subnetworks in the network
(Pasemann et al., 2001; Haferlach et al., 2007), which may be
identified by brute-force (Prinz et al., 2003), dynamical systems
analysis (Hunt et al., 2017), or constraints on network connectivity
and parameter values (Haferlach et al., 2007). In this paper, we
analytically derive parameter constraints to eliminate the need for
GAs altogether, and guarantee network performance.

RC methods simulate large “reservoirs” of randomly connected
dynamical neuron models, and then use optimization methods to
map reservoir activity to learned useful values. While this method
can produce capable robotic controllers (Dasgupta et al., 2015),
the final system is likely more complicated than is ultimately
necessary, increasing its computational cost to implement. In
addition, the final system is a black box, which does not provide
any insights about nervous system function. The methods in
this paper enable the direct assembly and tuning of dynamical
networks without the need of large reservoirs of neurons.

This work analytically derives constraints that govern the
behavior of synthetic nervous systems (SNSs) built from dynam-
ical neural networks. These constraints were derived as a result
of our previous network design work (Szczecinski et al., 2017b)
and have enabled the rapid assembly and testing of our recent
robot control networks (Szczecinski andQuinn, 2017; Szczecinski
et al., 2017a). An SNS designer can apply these constraints to
find parameter values needed for a functional network. Section
2 presents the neural and synaptic models and explains how the
neural system encodes mechanical inputs and outputs. Section 3
derives two basic synapse types, “signal transmission” and “signal
modulation,” and uses them to derive constraints on synaptic
parameters in networks performing addition, subtraction, multi-
plication, and division of two incoming signals. Section 4 derives
constraints on neural and synaptic parameters in networks that
differentiate and integrate incoming signals as a function of time.
Results showing that the networks perform as intended are pro-
vided throughout the manuscript, and Tables 1 and 2 summarize
the design constraints. Finally, Sec. 6 explores how these tech-
niques may be used to tune robot controllers and neuromechan-
ical models of animals, and how they may be improved in the
future.
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2. METHODS: MODELS AND APPROACH

We model neurons as non-spiking Hodgkin–Huxley compart-
ments (Cofer et al., 2010), the same basic model as used in
continuous-time recurrent neural networks (Haferlach et al.,
2007; Agmon and Beer, 2013). The leaky integrator dynamics cap-
ture the most basic behavior of neurons and allow more complex
behaviors to be addedwith additional ion channels, if desired. This
work is not concerned with the specifics on how action potentials
are generated and have left out Hodgkin–Huxley sodium and
potassium currents. The membrane voltage, V, may be seen as
a proxy for the spiking frequency of a spiking neuron. V varies
according to the differential equation

Cm
dV
dt = Ileak + Isyn + Iapp (1)

where
Ileak = Gm · (Er − V), (2)

Isyn =
n∑

i=1
Gs,i · (Es,i − V), (3)

and Iapp is an optional external stimulus. Equations (2) and (3)
define the leak and synaptic currents, respectively. Both follow the
same basic form of a conductance G multiplied by the difference
between the current membrane voltage, V, and a constant refer-
ence voltage (i.e., reversal potential),E.Er is the resting potential of
the neuron, and Cm and Gm are the capacitance and conductance
of the cell membrane, respectively. Unless otherwise noted, all
units in this paper are scaled to nA for current, mV for potentials,
nF for capacitances, and µS for conductances.

Neurons communicate via synapses. The conductance, Gs,i in
equation (3), is a threshold linear function of the ith incoming
(i.e., presynaptic) neuron’s voltage. Synapses communicate via
piecewise-linear functions described as

Gs,i =


0, if Vpre < Elo,
gs,i · Vpre−Elo

Ehi−Elo , if Elo < Vpre < Ehi,
gs,i, if Vpre > Ehi.

(4)

The parameters gs,i, Elo, and Ehi are constants representing
the synapse’s maximum conductance, its lower threshold, and its
upper threshold, respectively. The relationship between the presy-
naptic neuron voltage, synaptic conductance, and postsynaptic
neuron voltage is illustrated in Figure 1A.

We prefer this piecewise-linear representation better than a
sigmoidal function for several reasons. First, the thresholds ensure
that for low activations, synapses conduct exactly 0 current. This
could represent a reducedmodel of a spiking neuron, which trans-
mits no information while it is not spiking. Second, equation (4)
contains no transcendental terms, facilitating analytical manipu-
lation of the equations. A discontinuous system does complicate
traditional gradient-based optimization methods, but this struc-
ture can be exploited to make these methods unnecessary. In the
following sections, we showhownetworks of three or four neurons
with synapses between them can be constructed and analytically

FIGURE 1 | Graphical representation of synaptic dynamics and mapping
between mechanical and neural values. (A) Graphical representation of how
synapses couple neural dynamics. Note that R is marked on the plot.
(B) Enhanced version of the motor control network from Szczecinski et al.
(2017b), showing how R relates mechanical and neural values. Mechanical
values are drawn in red, and neural values are drawn in blue. Gray shaded
boxes map from mechanical to neural values (i. and ii.), or from neural to
mechanical values (iii.).
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tuned to perform mathematical operations on the input signals,
such as addition or differentiating with respect to time.

Instead of analyzing V when designing these networks, we
shift the neural activity to simplify analysis. For each neuron,
we substitute U =V −Er, the activation level above the resting
voltage. A typical value is Er =−60mV, but using U for analysis
rather than V lets us apply the same analysis no matter what Er
is. We also set Gm = 1µS, which is a typical value (Daun-Gruhn
et al., 2009; Daun-Gruhn, 2010).

For the synapses, we set Elo =Er of the presynaptic neuron,
and introduce a new parameter R=Ehi −Elo. Thus, a synapse’s
conductivity rises as the presynaptic neuron’s voltage rises above
its resting potential, and exhibits an “operating range” of R mV.
The constraints we apply ensure that Upre ∈ [0, R], meaning that
the synapse is always active, but never saturates. Thus, we can
replace Gs with the second line of equation (4). Applying the
substitutions described so far,

Gs = gs · Vpre − Elo
Ehi − Elo

= gs · Upre

R =
gs
R · Upre. (5)

For each synapse, we also introduce the parameter
∆Es,i =Es,i −Er,post, where Er,post is the resting potential of
the postsynaptic, or receiving neuron.

Making all of these substitutions in equations (1)–(3) gives the
response

Cm
dU
dt = −U +

n∑
i=1

gs,i
R · Upre,i · (∆Es,i − U) + Iapp. (6)

When U =R, the neuron is fully active, and when U = 0,
the neuron is inactive. We can use this knowledge to categorize
synapses as excitatory or inhibitory, depending on the sign of
∆Es,i. If ∆Es,i ≥R, then the ith synapse will always transmit
positive current, no matter the instantaneous value of U. Thus,
this synapse will cause U to increase and is, therefore, excitatory.
Similarly, if ∆Es,i ≤ 0, then the ith synapse will always transmit
negative current, no matter the instantaneous value of U. Thus,
this synapse will cause U to decrease and is, therefore, inhibitory.

2.1. Mapping between Neural and
Mechanical Values
The nervous system encodes physical quantities as neural activity.
In insects, the firing rate of sensory neurons encode the stretch
of chordotonal organs (Field and Matheson, 1998) and the strain
of campaniform sensilla (Zill et al., 2004), among other physical
quantities. Typical robot controllers perform operations on these
signals to provide meaningful information for control actions.
These operations may include the subtraction of measured and
reference values, differentiation or integration of error values, or
gain adjustments. Neural systems perform these same operations,
but in a transformed space. The exact transformation that nervous
systems use is not known, but for reliable behavior, it is necessary
that sensory information is mapped to neural activity in apre-
dictable way. Thus, we map any sensory input, θ, to an applied
current

Iapp = R · θ − θmin

θmax − θmin
, (7)

where R is the “operating range” specified in the previous section.
Figure 1B illustrates such a transformation within a diagram of
a neural feedback loop that controls the position of a motor. The
purpose of this paper is not to analyze how this particular network
functions; for a detailed analysis of this network and its function,
see Szczecinski et al. (2017b). Instead, the purpose is to show how
R and other functional values (time constants, gains, etc.) may be
used to constrain neural and synaptic parameter values.

Figure 1B (i,ii) graphically illustrate the mapping in equation
(7), and Figure 1B (iii) graphically illustrates the inverse relation-
ship (i.e., neural value to mechanical value). If a sensory neuron
has only this applied current and leak current, equation (6) shows
that

Cm
dU
dt + U = R · θ − θmin

θmax − θmin
. (8)

Thismeans that the sensory neuron acts as a low-pass filter with
time constant τ =Cm. It is trivial to show that, when the neuron
is at equilibrium (i.e., dU/dt= 0),

U∗ = R · θ − θmin

θmax − θmin
, (9)

where the superscript “∗” specifies the equilibrium value.
(Throughout this manuscript, the equilibrium activation of neu-
ron U will be referred to as U∗, and the neuron itself will be
referred to as U.) Equation (9) means that the neuron’s activation
above its rest potential encodes the sensory signal. In addition
to perceiving sensory information, commands must be issued in
the same transformation. Thus, we map the commanded sensory
quantity, θcomm, to the commanded neural activation,Ucomm, with
the inverse function of equation (9),

θcomm = θmin +
Ucomm

R · (θmax − θmin). (10)

In this way, the nervous system may specify an intended
motion, such as the rotation of a joint, encoded in neural activity.
In our synthetic nervous systems, R specifies how mechanical
quantities and neural activation are related. Thus, the tuning of
every functional subnetwork described in this work relies on R,
which the designer specifies before tuning the rest of the network.
Two other parameters are critical for tuning these subnetworks:
the amplification of synaptic transmission, ksyn (discussed in Sec.
3.1), and the synaptic reversal potential, ∆Es. From these values,
biological parameters such as synaptic conductance and neural
tonic drive can be directly calculated. This makes network design
intuitive, enabling the designer to select biological parameter
values based on functional ones.

3. METHODS: ARITHMETIC
SUBNETWORKS

This section describes how to use typical engineering quantities
to design neural and synaptic pathways. We can understand how
these pathways work by manipulating their equilibria, something
that naive optimization does not leverage. The steady-state activa-
tion U∗ is calculated by solving for U when dU/dt= 0

0 = −U∗ +
n∑

i=1

gs,i
R · Upre,i ·

(
∆Es,i − U∗)+ Iapp. (11)
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Moving all U∗ terms to the left hand side

U∗ ·

(
1 +

n∑
i=1

gs,i
R · Upre,i

)
=

n∑
i=1

gs,i
R ·Upre,i ·∆Es,i+ Iapp. (12)

Solving for U∗,

U∗ =
∑n

i=1
gs,i
R · Upre,i · ∆Es,i + Iapp

1 +
∑n

i=1
gs,i
R · Upre,i

. (13)

This solution is the basis for the remainder of Sec. 3.

3.1. Signal Transmission Pathways
The goal of a signal transmission pathway is to cause the post-
synaptic neuron’s voltage to be some ratio of the presynaptic
neuron’s voltage. We call this ratio ksyn. The Upre,i terms in the
denominator of the right hand side of equation (13) mean that
ksyn changes as Upre changes, so we approximate ksyn as Upost/Upre
when the presynaptic neuron is fully activated (i.e.,Upre =R). The
steady-state response of a neuron with a single synaptic input
and no applied current can be written based on equation (13), as
below:

U∗
post =

gs
R · Upre · ∆Es
1 + gs

R · Upre
. (14)

To find ksyn for this synapse, we first divide both sides of
equation (14) by Upre,

U∗
post

Upre
=

gs
R · Upre · ∆Es

Upre ·
(
1 + gs

R · Upre
) . (15)

Next, we want to find ksyn, which can be calculated for any
value of Upre. To simplify analysis and improve the clarity of this
derivation, we set find ksyn when Upre =R. Then, we show how
to set parameter values to keep ksyn nearly constant, even as Upre
changes. Making this substitution,

U∗
post

R = ksyn =
gs
R · R · ∆Es

R ·
(
1 + gs

R · R
) . (16)

Finally, reducing R/R terms reveals

ksyn =
gs · ∆Es

R · (1 + gs)
. (17)

Rearranging to solve for gs,

gs =
ksyn · R

∆Es − ksyn · R . (18)

Because gs must be positive, and the numerator of equa-
tion (18) is always positive, equation (18) is also subject to the
constraint

∆Es > ksyn · R. (19)

Equation (18) will be used to tune addition, subtraction, multi-
plication, and division networks (Secs. 3.3 through 3.6).

3.2. Signal Modulation Pathways
We may also use synapses to modulate a neuron’s sensitivity to
other inputs. Based on equation (13), the steady-state response of
a neuron with only an applied current Iapp is simply

U∗
post = Iapp, (20)

if we setGm = 1. For example, this is the case for a sensory neuron
that receives applied current proportional to a sensor’s state, such
as a joint angle (Figure 1B), muscle stretch, or touch sensor.
However, the nervous system may need to actively increase or
reduce the sensitivity of the sensory neuron depending on con-
text. Hyperpolarizing or depolarizing the neuron, however, would
cause sensory information to be truncated (i.e., Vpre <Elo). We
can change the sensitivity of this neuron without losing sensory
information by adding a synaptic input to the response from
equation (20):

U∗
post =

gs
R · Upre · ∆Es + Iapp

1 + gs
R · Upre

. (21)

To quantify how Upre modulates U∗
post for a given Iapp, we

introduce the parameter csyn, which quantifies this degree of mod-
ulation. We define csyn as U∗

post/Upre, the same as ksyn, but with
the understanding that Upre will decrease U∗

post in this case. Divid-
ing both sides of equation (21) by Upre and using the definition
of csyn,

U∗
post

Upre
= csyn =

gs
R · Upre · ∆Es + Iapp
Upre ·

(
1 + gs

R · Upre
) . (22)

As in the previous section, we will solve for csyn when Upre =R
to simplify analysis. Making this substitution and reducing R/R
terms,

csyn · R =
gs · ∆Es + R

1 + gs
. (23)

Multiplying both sides by the denominator of the right hand
side and expanding,

csyn · R + csyn · R · gs = gs · ∆Es + R. (24)

Collecting gs terms on the left hand side,

csyn · R · gs − gs · ∆Es = R − csyn · R. (25)

Solving equation (25) for gs,

gs =
csyn · R − R

∆Es − csyn · R . (26)

Just as in Sec. 3.1, gs > 0 depends only on R, which the designer
specifies beforehand, ∆Es, which is limited by biological con-
straints, and csyn, which the designer picks based on network
function. ∆Es should be negative, and as close to 0 as possible to
minimize hyperpolarization of the postsynaptic neuron. Equation
(26) will be used to tune division and multiplication networks
(Secs. 3.5 and 3.6).
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3.3. Addition
A subnetwork that approximates linear addition of the form
U∗

post = ksyn · (Upre,1 + Upre,2) may underlie positive feed-
back mechanisms, which increase motor neuron activation pro-
portional to sensory inputs such as force sensing organs (Zill
et al., 2004), or used to sum sensory signals from different
body segments (Mittelstaedt, 1957). We construct such a net-
work by using two Signal Transmission pathways as presented in
Sec. 3.1.

Let us rewrite equation (13) here, for clarity:

U∗ =
∑n

i=1
gs,i
R · Upre,i · ∆Es,i + Iapp

1 +
∑n

i=1
gs,i
R · Upre,i

. (27)

This equation shows Upre,i in both the numerator and denom-
inator. To capture addition, we wish to minimize the impact of
Upre,i on the denominator. This is accomplished by minimizing
gs. However, if gs = 0, then the network will not function at
all. Therefore, we instead maximize ∆Es, which yields a small
gs (equation (18)). Mathematically, there is no limit on ∆Es,
but synaptic potentials are limited in biological systems. In our
work, we choose the reversal potential of calcium (Es = 134mV),
which yields ∆Es =Es −Er = 134− (−60)= 194mV, and specify
R= 20mV. To design a pathway where ksyn = 1, for example, we

TABLE 1 | This table assumed that the designer has already selected a value of R
for the subnetwork.

Operation Component
pathways

Constraint
equations

Free
parameters

Addition Syn. 1, gs,1 = ksyn,1·R
∆Es,1− ksyn,1·R ksyn ,1

transmission ∆Es ,1 − ksyn ,1·R>0 ∆Es ,1, maximize

Syn. 2, gs,2 = ksyn,2·R
∆Es,2− ksyn,2·R ksyn ,2

transmission ∆Es ,2 − ksyn ,2·R>0 ∆Es ,2, maximize

Subtraction Syn. 1, gs,1 = ksyn·R
∆Es,1− ksyn·R ksyn

transmission ∆Es ,1 − ksyn·R>0 ∆Es ,1, maximize

Syn. 2, gs,2 = ∆Es,1
∆Es,2

· −ksyn·R
∆Es,1− ksyn·R ∆Es ,2, minimize

transmission

Division Syn. 1, gs,1 = ksyn·R
∆Es,1− ksyn·R csyn

transmission ksyn = 1 ∆Es ,1, maximize

∆Es ,1 − ksyn·R>0

Syn. 2, gs,2 = csyn·R−R
∆Es,2−csyn·R

modulation ∆Es ,2 = 0

0< csyn <1

Multiplication Syn. 1, gs,1 = ksyn·R
∆Es,1− ksyn·R

transmission ksyn = 1

∆Es ,1 − ksyn·R>0 ∆Es ,1, maximize

Syn. 2, gs,2 = −R
∆Es,2

modulation ∆Es ,2 <0 ∆Es ,2, maximize

Syn. 3, gs ,3 = gs ,2
modulation ∆Es,3 =∆Es,2

In this table, “minimize” refers to making a value as negative as possible and “maximize”
refers to making a value as positive as possible.

plug these values into equation (18), which gives gs = 115 nS. The
contour plots in Figure 2A show that the network matches the
ideal behavior very closely over the operating rangeUsum ∈ [0, R].
These design constraints are summarized in Table 1.

3.4. Subtraction
A subnetwork that approximates linear subtraction of the form
U∗

post = ksyn · (Upre,1 − Upre,2) may underlie negative feedback
mechanisms, which are important for controlling many param-
eters in locomotion (Pearson, 1993; Peterka, 2003; Buschmann
et al., 2015). Just as in the previous section, equation (18) is used
to find gs for each pathway.

Designing a subtraction network requires that we pay attention
to how the two synapses affect one another. Since the reversal
potentials of hyperpolarizing ion channels are not much more
negative than typical resting potentials, larger gs,2 values are
required to transmit information than for depolarizing ion chan-
nels. This makes it harder to minimize gs like we did in the
previous section. Equation (13) enables us to constrain gs ,2 such
that when Upre ,1 =R and Upre ,2 =R, U∗

post = 0. Starting with the
neuron response in equation (13) for two synaptic currents and
no applied current,

U∗
post =

gs,1/R · Upre,1 · ∆Es,1 + gs,2/R · Upre,2 · ∆Es,2
1 + gs,1/R · Upre,1 + gs,2/R · Upre,2

. (28)

Substituting in Upre ,1 =R, Upre ,2 =R, and U∗
post = 0,

0 =
gs,1/R · R · ∆Es,1 + gs,2/R · R · ∆Es,2

1 + gs,1/R · R + gs,2/R · R (29)

0 =
gs,1 · ∆Es,1 + gs,2 · ∆Es,2

1 + gs,1 + gs,2
(30)

0 = gs,1 · ∆Es,1 + gs,2 · ∆Es,2 (31)

gs,2 =
∆Es,1
∆Es,2

· −gs,1. (32)

Substituting equation (18) for gs ,1,

gs,2 =
∆Es,1
∆Es,2

· −ksyn · R
∆Es,1 − ksyn · R . (33)

To be physically realizable, gs ,2 > 0. Because gs ,1 > 0 and
∆Es ,1 > 0, gs ,2 > 0 if and only if ∆Es ,2 < 0. Thus, it is critical that
∆Es ,2 < 0.

Just as for the addition network, we minimize gs ,1
by maximizing ∆Es ,1. If R= 20mV and ksyn = 1, then
gs ,1 = 115 nS and ∆Es ,1 = 194mV. To tune gs ,2, we first select
∆Es ,2 =−40mV, thenwe solve equation (33) to find gs ,2 = 558 nS.
These design constraints are summarized in Table 1, and
Figure 2B graphically shows the accuracy of the subtraction
network.

3.5. Division
A subnetwork that approximates division of the form

U∗
post =

Upre,1

1 + 1−csyn
csyn·R · Upre,2

(34)
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FIGURE 2 | Data demonstrating the function of arithmetic networks. Each contour plot represents cross sections of the response surface, as depicted at the top.
The network diagram, relevant parameters, and data are shown for addition (A), subtraction (B), division (C), and multiplication (D). Triangular synaptic terminations
stand for excitatory inputs, and filled round terminations stand for inhibitory inputs. For each operation, the contour on the right is the ideal output, and the contour on
the left is the actual operation for the parameter values listed. Free parameters from Table 1 are highlighted in gray.

replicates the function of GABA synapses that regulate activity in
the brain. A key reason for this behavior is that the reversal poten-
tial of GABA-ergic synapses is about equal to the resting potential
of the postsynaptic neuron (Trappenberg, 2009). Equation (26) is
used to find gs for the division pathway.

The synapse from Upre ,1 to Upost is tuned as an excitatory
Signal Transmission pathway with k= 1, as in Sec. 3.1. In our
work, R= 20mV, ∆Es ,1 = 194mV, and equation (18) tells us that
gs ,1 = 115 nS. Such a small gs ensures that the signal from Upre ,1 to

Upost is transmitted without greatly affecting the sensitivity ofUpost
to inputs. That is, the effect of Upre ,1 on the denominator of U∗

post
is very nearly 0.

The synapse fromUpre ,2 toUpost is tuned as a SignalModulation
pathway, as analyzed in Sec. 3.2. Setting ∆Es ,2 = 0 will eliminate
Upre ,2’s influence on the numerator of U∗

post. Substituting this case
into equation (26) and reducing,

gs,2 =
1 − csyn
csyn

, (35)
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where U∗
post = csyn · R when Upre ,1 =Upre ,2 =R, their maximal

value. Equation (35) also reveals that since gs ,2 > 0, 0< csyn < 1.
The steady-state response of the network is the result of these

two synaptic inputs, as written in equation (28). Substituting
equation (35), and specifying that ksyn ,1 = 1, U∗

post simplifies to

U∗
post =

������: 1
gs,1/R · ∆Es,1 · Upre,1 + gs,2/R ·���* 0

∆Es,2 · Upre,2

1 +��* 0gs,1 · Upre,1/R + 1−csyn
csyn · Upre,2/R

≈
Upre,1

1 + 1−csyn
csyn·R · Upre,2

(36)

In our network, we wishedU∗
post = 1 whenUpre ,2 =R, so we set

csyn = 1/R= 0.05, which makes gs ,2 = 19µS. When csyn is close
to 0, Upre ,2 can strongly reduce Upost’s sensitivity to inputs. When
csyn is close to 1, Upre ,2 can only weakly reduce Upost’s sensitiv-
ity to inputs. Figure 2C shows that this network performs the
intended division of the signals. Table 1 summarizes these design
constraints.

3.6. Multiplication
A subnetwork that approximates multiplication of the form
U∗

post = Upre,1 · Upre,2/R can be used to control the gain of
a sensory feedback loop, a frequently observed characteristic of
neural systems that control locomotion (Cruse, 1981; Gabriel and
Büschges, 2007) and posture (Peterka and Loughlin, 2004).

A multiplication network can be assembled by replacing the
Modulatory Pathway in the division network with two identical
Modulatory Pathways in series, connected into a disinhibitory
network (see Figure 2D). This works because the product of
two numbers, a·b= a/(1/b). However, tuning the Modulatory
Pathway for the multiplication network differs from tuning the
division network. This is because the right-side pathway of the
network in Figure 2DmustmakeU∗

post = 0, nomatter how active
Upre ,1 becomes (because a·0= 0, no matter the value of a). Thus,
according to equation (22), csyn = 0, unlike the division network,
for which 0< csyn < 1. Solving equation (26) when csyn = 0 reveals
that

gs,2 = −R/∆Es,2. (37)

To solve for gs ,2, we must first select ∆Es ,2. If ∆Es ,2 = 0 like for
the division network, then equation (37) divides by 0. If∆Es ,2 > 0,
then gs ,2 < 0, which is physically not realizable. Therefore, wemust
choose a value ∆Es ,2 < 0. The more negative ∆Es ,2 is, the more
small-amplitude signals are clipped; however, the less negative
it is, the larger gs ,2 must be. Therefore, gs ,2 is the limiting factor
to maintain biological realism. We have chosen gs ,2 = 20µS and
R= 20mV, making ∆Es ,2 =−1.

Now that we have designed one of theModulatory synapses, we
can calculate the response of the complete multiplication network
seen in Figure 2D, which includes two identical Modulatory
Pathways in series. WhenUpre ,2 is inactive, then it does not inhibit
Uinter, which is tonically active. In this case, Uinter’s activity com-
pletely desensitizes Upost to inputs. When Upre ,2 is active, then it
inhibits Uinter. In this case, Uinter is hyperpolarized, and cannot
desensitize Upost to inputs. To show that this is the case, let us
find the full response of the system.We first calculateU∗

inter, which

has one Modulatory Pathway input and a tonic applied current
Iapp =R. Its response is the same as in equation (21), with the
constraint from equation (37), which causes terms to cancel:

U∗
inter =

gs,2
R · Upre,2 · − R

gs,2 + R

1 − Upre,2
∆Es,2

=
R − Upre,2

1 − Upre,2
∆Es,2

. (38)

Upost has two presynaptic neurons,Upre ,1 andUinter. The synapse
fromUpre ,1 is a Signal Transmission synapse, and the synapse from
Uinter is a Signal Modulation synapse. Its response is found via
equation (13),

U∗
post =

gs,3
R · Uinter · ∆Es,3 + gs,1

R · Upre,1 · ∆Es,1
1 + gs,3

R · Uinter + gs,1
R · Upre,1

. (39)

We showed in Sec. 3.3 that equation (18) can be used to design
a synapse that transmits the presynaptic neuron’s activity to the
postsynaptic neuron, while minimizing its impact on the denom-
inator of the postsynaptic neuron’s steady-state response, U∗

post.
This enables us to approximateUpre ,1’s effect onU∗

post as an applied
current Iapp ≈Upre ,1. Making this substitution in equation (39),

U∗
post ≈

gs,3
R · Uinter · ∆Es,3 + Upre,1

1 + gs,3
R · Uinter

. (40)

Because we previously specified that the Modulatory Pathways
are identical, we can apply the constraint from equation (37),

U∗
post =

Upre,1 − Uinter

1 − Uinter
∆Es,3

. (41)

We can now substitute equation (38) for Uinter,

U∗
post =

Upre,1 − R−Upre,2

1−
Upre,2
∆Es,2

1 − 1
∆Es,3 · R−Upre,2

1−
Upre,2
∆Es,2

. (42)

This expression can be simplified. First, as noted previously,
synapses 2 and 3 are identical, so ∆Es ,2 =∆Es ,3 =∆Es. Second,
we can multiply the first term in both the numerator and denomi-
nator by the factor (1−Upre ,2/∆Es), which enables us to combine
terms. Performing these simplifications,

U∗
post =

Upre,1 − Upre,1 · Upre,2/∆Es − R + Upre,2

1 − Upre,2/∆Es − R/∆Es + Upre,2/∆Es
, (43)

U∗
post =

−Upre,1 · Upre,2/∆Es + Upre,1 + Upre,2 − R
1 − R/∆Es

. (44)

Equation (44) contains a lot of information about how the
multiplication network functions. First, Upost’s response indeed
contains a term that multipliesUpre ,1 andUpre ,2. When ∆Es =−1,
then U∗

post scales with Upre ,1·Upre ,2 in a 1:1 fashion. Second, the
numerator will be≤ 0 if either Upre ,1 = 0 or Upre ,2 = 0, U∗

post ≤ 0.
This is because Upre ,1 and Upre ,2 must each be less than or equal
to R. If either input is greater than R, then their synaptic inputs
to Upost will saturate (see equation (4)), preventing this condition
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from being violated. Third, the denominator does not depend on
the input values. Technically, because of the approximation made
in equation (40), the denominator does change slightly withUpre ,1.
However, with our chosen values of R (20), ∆Es (−1), and gs ,1
(0.115), this change is less than 1%, justifying this approximation.
Figure 2D demonstrates that this network multiplies the two
inputs.

Table 1 summarizes the function, component pathways, con-
straint equations, and free parameters of each network from this
section. This analysis enables direct construction and parame-
ter selection for functional subnetworks that can be assembled
into more complex networks capable of performing real-time
robotic control (e.g., Szczecinski and Quinn (2017) and Szczecin-
ski et al. (2017a)). Additionally, one of the key advantages to
using dynamic neural systems for motor control is the handling of
time varying signals. The next section examines how the dynam-
ics of these neurons can be exploited to perform calculus on
signals.

4. METHODS: DYNAMIC NETWORKS

The differential equation for a single neuron’s response (equation
(1)) can be solved analytically. Solving an equation dx/dt= f (x)
is simplified if the equilibrium state is x∗= 0, so as in Sec. 3,
the substitutionU =V −Er is made. Additionally, the membrane
conductance Gm and capacitance Cm can be combined into a new
parameter τ =Cm/Gm, which is a more intuitive parameter when
discussing dynamic networks. This section uses analysis from the
previous section, plus additional analysis, to derive design con-
straints for networks that differentiate or integrate input signals
over time.

4.1. Differentiation
One dynamic response neural systems are known to utilize is
differentiation of signals. Early examination of neural networks
led to the discovery of the Reichardt detector network (Reichardt,
1961), an autocorrelation network with delays that approximates
the differential of an incoming signal. Other examples include
human balance, which relies on feedback proportional to the
position, velocity, and acceleration of the center of mass (Peterka,
2003; Safavynia and Ting, 2012). Also, positive velocity feedback
plays an important role in insect muscle control (Cruse, 1981).

We have developed differentiation networks based on the
Reichardt detector network, shown in Figure 3A. We can under-
stand its function by examining a neuron’s response to a ramp
input, Iapp =A·t, where A is an arbitrary slope of the ramp. The
response of the network should be a stepwith amagnitude propor-
tional to A, as shown in Figure 3B. Inserting this applied current
into equation (6), a single neuron’s response is

Cm · dUdt = −U + A · t (45)

Cm · dUdt + U = A · t. (46)

The response of the neuron, U(t), is the sum of the particular
and homogeneous solutions to equation (46), Up(t) and Uh(t),
respectively. Simulating the dynamics of equation (46) suggests

TABLE 2 | This table assumed that the designer has already selected a value of R
for the subnetwork.

Operation Components Constraints and
useful relations

Free parameters

Differentiation Neuron 1 Cm ,1 <Cm ,2 τd

Neuron 2 Cm ,2 = τd kd
Cm ,1 =Cm ,2 − kd

Syn. 1, ksyn =1/kd ∆Es ,1, maximize

transmission gs,1 = ksyn·R
∆Es,1− ksyn·R

∆Es ,1 − ksyn·R>0

Syn. 2, gs,2 = ∆Es,1
∆Es,2

· −ksyn·R
∆Es,1− ksyn·R ∆Es ,2, minimize

transmission

Integration Neuron 1 Iapp,1 =R ki ,mean

Cm,1 = 1
2·ki,mean

Neuron 2 Iapp,2 =R

Cm,1 =Cm,2

Syn. 1, ∆Es,1 = −R
gs,1

ki ,range

transmission gs,1 = 2·Cm,1
1/ki,range−Cm,1

Syn. 2, gs,2 = gs,1
transmission ∆Es,2 =∆Es,1

In this table, “minimize” refers to making a value as negative as possible and “maximize”
refers to making a value as positive as possible.

that the particular solution is a ramp of slopeA, which lags behind
the input with a time constant Cm. To confirm this, we can substi-
tute a candidate solution and its derivative into equation (46), and
check for equality. The result is the particular (i.e., steady-state)
response,

Up(t) = A · (t − Cm) (47)
This means that if the same Iapp were injected into neurons

with different Cm values, and then their outputs were subtracted
fromone another with a network from Sec. 3.4, the networkwould
perform a finite-difference approximation of the derivative of Iapp,
once the transient response decays (illustrated in Figures 3A,B).

Calculating the homogeneous solution, Uh(t), informs us how
quickly the transient response decays. The homogeneous solution
to first-order linear equation like equation (46) is well-known,
Uh(t)= b·exp(− t/Cm). The constant b is found by plugging the
initial condition into the full response, U(t)=Up(t)+Uh(t),

b = A · Cm. (48)

To tune this network, the response of Upost is written as the
difference between neuronUpre ,1 withCm ,1 and neuronUpre ,2 with
Cm ,2 >Cm ,1,

Upost(t) = Upre,1(t) − Upre,2(t)
= A · t − A · Cm,1 ·

(
1 − exp(−t/Cm,1)

)
−
(
A · t − A · Cm,2 ·

(
1 − exp(−t/Cm,2)

))
. (49)

Canceling the terms that are linear in t and expanding,

Upost(t) = A · (Cm,2 − Cm,1)

+ A ·
(
Cm,1 · exp(−t/Cm,1) − Cm,2 · exp(−t/Cm,2)

)
.

(50)
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FIGURE 3 | (A) A network can exploit neural dynamics to compute the differential of an incoming signal. (B) When given an applied current in the form of ramps, the
network returns steps whose heights are proportional to the slopes of the ramps. (C) The amplification of the differential, kd, and the time constant of the network,
τd, depend on the capacitance of the neurons, Cm ,1 and Cm ,2. (D) Frequency domain analysis enables the identification of the cutoff frequency ωc, enabling the
network to naturally filter out high-frequency noise.

Properly tuning a differentiator network requires tuning Cm ,1
and Cm ,2 to obtain the intended gain of the network, kd, and
an appropriately high cutoff frequency, ωc. Equation (50) reveals
how these may be tuned. First, the steady-state response of this

network to a ramp input defines kd = (Cm ,2 −Cm ,1). Second, the
cutoff frequency ωc = 1/τ d quantifies the frequency of incom-
ing signals (i.e., Iapp =A·sin(ω·t)) above which the network’s
response has less than half the energy of a lower-frequency signal.
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This is especially useful because although differential calcula-
tions amplify high-frequency noise, this network filters out noise
with a frequency ω > ωc. Because Cm ,2 >Cm ,1, the time constant
τ d =Cm ,2.

Figure 3C shows contours of kd and τ d asCm ,1 andCm ,2 change.
The plots show that increasing Cm ,2 relative to Cm ,1 increases
kd, which may be valuable for amplifying signals. However, this
also increases τ d, making ωc impractically low, which will cause
the network’s output to lag behind the input substantially. The
contour for kd = 1 is drawn on the contour of τ d, showing that the
smallest τ d achievable for this gain value is 1,000ms, which would
filter out all incoming signals for which ω >ωc = 1/(1 s)= 1 rad/s
(0.159Hz).

We can gain further insight into tuning τ d using our Feed-
backDesign tool (Szczecinski et al., 2017b). Figure 3D shows
Bode plots for this network’s response, given two different values
for Cm ,2. When Cm ,2 = 1,000 nF, like in Figure 3B, the network
functions properly for inputs with ω < 1 rad/s, as predicted in
the previous paragraph. Lowering Cm ,2 to 50 nF increases ωc
to 20 rad/s (3.18Hz). Lowering Cm ,2 also lowers the magnitude
response as a function of ω, that is, it decreases kd. To regain this
lost gain, wemay increase ksyn in the subtraction network.Figure 4
shows simulation data that explores this tradeoff.Table 2 lists how
to use τ d and kd to tune the entire differentiation network.

4.2. Integration
Our neuron model is a leaky integrator, which means that the
membrane voltage will integrate an applied current, but “leak”

current to return to its resting potential. As a result, data cannot
be stored in individual neurons, because neurons only have one
stable equilibrium point. A network that is constructed to have a
marginally stable equilibrium curve (or subspace) will not leak. A
network will have this property if the determinant of the Jacobian
matrix is 0, or in other words, if it is not full rank (Khalil, 2002).
Instead of leaking, it will maintain its activation when no external
currents are applied; when currents are applied, the state of the
system will change continuously. This is analogous to the position
of a box on a table with friction; it will remain wherever it is placed
indefinitely, unless an external force is applied. In this section,
we expand on previous work (Szczecinski et al., 2017a) to show
how to construct a network that is marginally stable by applying
constraints to reduce the rank of its Jacobian matrix; demonstrate
that such a network can be used to integrate signals over time;
and relate the integration rate, ki, to the parameter values of the
network, such that U̇1 = ki · Iapp.

Marginally stable networks are hypothesized to play an impor-
tant role in navigation (Haferlach et al., 2007) and the regulation
of muscle forces in posture (Lévy and Cruse, 2008). Some mem-
ory models use carefully tuned self-excitation to cancel the leak
current with excitatory synaptic current (Seung et al., 2000). In
a similar vein, our network uses self-disinhibition (Figure 5A)
to produce a line-attractor network in which a continuum of
marginally stable equilibrium states exist. Simulation data in
Figure 5B shows that stimulating U1 with an applied constant
current u causesU1 to increase at an apparently constant rate, and
when u is removed, neitherU1 norU2 leak to their rest potentials.

FIGURE 4 | Simulation data from eight trials with the differentiator network are shown. Different values of Cm ,1 and Cm ,2 were used in each. U∗
post is plotted in blue,

U2 −U1 is plotted in dotted red, and the actual rate of change of the input, d/dt(Iapp), is plotted in gold.
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FIGURE 5 | (A) A disinhibitory network can exploit neural dynamics to compute the integral of an incoming signal. (B) When given an applied current in the form of a
step, the network response is a ramp whose slope is proportional to the amplitude of the step. (C) A plot of this data in the (U1, U2) phase space shows that when
stimulated by applied current u, the system state, x(t)= [U1(t), U2(t)]

T (blue), moves in the X1 direction (green) while maintaining a constant distance from the
equilibrium subspace (dashed violet) in the X2 direction (red). This difference in behavior in each direction is because the eigenvalue associated with eigenvector X1,
λ1 = 0, and the eigenvalue associated with eigenvector X2, λ2 <0. X1 and X2 are drawn in multiple places because they depend on x(t), as shown in Appendix.
(D) The mean rate of integration, ki ,mean (left), and the range of the rate of integration, ki ,range (right), depend on the synaptic conductance of mutual inhibition, gs, and
the membrane capacitance of the neurons, Cm. Note that the x-axis of these plots are 1/Cm, to better space the contour lines.

This is the behavior of an integrator, as described in the previous
paragraph.

Let us write the response of the integrator network as shown
in Figure 5A to find its equilibrium states. Each neuron has leak
current, synaptic current, and a constant applied current. Let
all parameter values be symmetrical between the two neurons.
We make the same substitutions as before; U =V −Er, Er =Elo,

∆Es =Es −Er, and R=Ehi −Elo. If Iapp =R,

Cm · dU1

dt = −U1 + gs · U2

R · (∆Es − U1) + R (51)

Cm · dU2

dt = −U2 + gs · U1

R · (∆Es − U2) + R. (52)
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Moving dynamical terms to the left hand side, and applied
current to the right hand side,

dU1

dt +
1
Cm

(
U1 − gs · U2

R · (∆Es − U1)
)

=
R
Cm

(53)

dU2

dt +
1
Cm

(
U2 − gs · U1

R · (∆Es − U2)
)

=
R
Cm

(54)

Solving equation (53) when dU1/dt= 0 reveals the equilibrium
curve

U2 =
R · (U1 − R)

gs · (∆Es − U1)
. (55)

Solving equation (54) when dU2/dt= 0 reveals the equilibrium
curve

U1 =
R · (U2 − R)

gs · (∆Es − U2)
, (56)

which can be algebraically rearranged to be the same as equation
(55) as long as gs and ∆Es are constrained such that

gs · ∆Es = −R. (57)

Multiplying both sides of equation (56) by the denominator of
the right hand side, and expanding,

gs · ∆Es · U1 − g · U1 · U2 = R · U2 − R2. (58)

Collecting multiples of U2 and applying equation (57),

U2 =
R · (U1 − R)

gs · (∆Es − U1)
. (59)

Thus, equations (55) and (56) are the same equilibrium curve if
gs and ∆Es satisfy equation (57). This curve, drawn on the phase-
space diagram in Figure 5C, describes every equilibrium state
that this network can have. In other words, a [U1, U2] pair is an
equilibrium state of the system if and only if it satisfies equation
(55). In the coming paragraph, we will use eigenvalue analysis to
show that this network always functions as an integrator, as long
as equation (57) is satisfied.

To find the system’s eigenvalues, let us write equations (53) and
(54) together in matrix form,

[
U̇1

U̇2

]
+

1
Cm

·

[
1 + U2 · gs

R
−gs
R · (∆Es − U1)

−gs
R · (∆Es − U2) 1 + U1 · gs

R

]
·

[
U1

U2

]
=

1
Cm

·

[
R
R

]
,

(60)

in which the square matrix is J, the system Jacobian. Because J
contains U1 and U2 terms, it is not constant, but still describes
the stability of the system, given specific values of U1 and U2. To
construct a marginally stable equilibrium subspace for the net-
work, we must show that J has insufficient rank (i.e., the rows are
identical) whenU1 andU2 are at equilibrium (i.e., equation (55) is
satisfied). However, the rows are identical, no matter the values of
U1 and U2, if we apply the constraint from equations (57) to (60),[

U̇1

U̇2

]
+

1
Cm

·

[
1 + gs

R · U2 1 + gs
R · U1

1 + gs
R · U2 1 + gs

R · U1

]
·

[
U1

U2

]
=

1
Cm

·

[
R
R

]
.

(61)

Thus, the system will always have one null direction, and we
do not need to calculate J for specific equilibrium conditions to
determine the system’s stability. To make notation more compact,
let us define

a = 1 + gs/R · U1 (62)

b = 1 + gs/R · U2. (63)

These expressions let us write equation (61) as simply[
U̇1

U̇2

]
+

[
b/Cm a/Cm

b/Cm a/Cm

]
·

[
U1

U2

]
=

[
R/Cm

R/Cm

]
. (64)

Plotting the simulation data of the network’s forced response
from Figure 5B on a phase-space diagram (Figure 5C) suggests
thatu causesU1 andU2 to change in such away that the state of the
system (⃗x(t), blue)moves tangent to the equilibriumcurve (dashed
violet), with some constant distance away from it. These curves
do not overlap because the forced response is not the same as
the equilibrium condition while the external current u is applied.
Motion in the X2 direction is resisted by the neural dynamics,
much how a spring resists the translation of an object with an
applied force.

Nonetheless, these direction-dependent responses suggest that
the state can be generalized into two decoupled degrees of free-
dom in the phase-space: unresisted, marginally stable motion
parallel to the equilibrium curve (X1, green in Figure 5C); and
resisted, stable motion away from the equilibrium curve (X2, red).
The natural coordinates, x⃗ = [U1,U2]T, are transformed into
generalized coordinates, q⃗ = [q1, q2]T, by a matrix X comprised
of the eigenvectors of J. This same transformation matrix is used
to transform J into the generalized coordinate system, yielding
Jq. Jq is diagonal, decoupling the dynamics of the generalized
coordinates and enabling us to quantify how quickly x⃗ moves
parallel to the equilibrium curve.

Appendix shows the calculation of X, with q1 representing
the marginally stable mode and q2 representing the stable mode.
Using X, we can transform the system into generalized coor-
dinates. First, we write the dynamics from equation (64) in a
compact format.

˙⃗x + J⃗x = F⃗, (65)

where J is the square matrix in equation (64) and

F⃗ =

[
R/Cm + u/Cm

R/Cm

]
. (66)

The generalized coordinates, q⃗, are defined as

x⃗ = Xq⃗. (67)

To transform equation (65) into generalized coordinates, pre-
multiply both sides of equation (65) by X−1,

˙⃗q + Jqq⃗ = Q⃗, (68)

where Jq =X−1JX and Q⃗ = X−1F⃗. The top and bottom rows
of equation (68) are decoupled because Jq is a diagonal matrix.
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Furthermore, Ji,iq = λi, meaning that J1,1q = 0, so the system
simplifies even further.

To find the particular solution of this system, we can guess the
form of qp ,1 and qp ,2, and substitute those in to equation (68). We
observe that q̇1(t) = B · u in steady state, where B is a constant
that relates q̇1(t) and u. q1(t) would be the integral of q̇1(t), but
because the top rowof Jq is zeros, it will not appear in the particular
solution, and thus need not be explicitly included.We also observe
that q̇2(t) = 0 in steady state, so q2(t)=D, a constant. We can
calculate Q⃗ = X−1F using X−1, which is calculated in Appendix
(equation (A9)). Solving for the particular solution of this system,
˙⃗qp(t),

˙⃗qp(t) + Jqq⃗p =

[
B · u
0

]
+

[
0 0
0 a+b

Cm

]
·

[
qp,1
D

]

=

[ a·d
Cm·(a+b) · u

R
√

2
Cm

+ b
√

2
Cm·(a+b) · u.

]
(69)

B =
a · d

Cm · (a + b) , (70)

where d is defined in equation (A5). B describes how quickly qp ,1
varies with u, but we want to know how quickly U1 varies with u.
Therefore, we use equation (67) to transform ⃗̇qp = [B · u, 0]T into
natural coordinates to find ˙⃗x,

˙⃗xp = X ˙⃗qp (71)[
U̇1,p(t)
U̇2,p(t)

]
=

[
1/d 1/

√
2

−b/(ad) 1/
√

2

]
·

[
a·d

Cm·(a+b) · u
0

]
(72)

U̇1,p(t) =
a

Cm · (a + b) · u (73)

ki =
a

Cm · (a + b) . (74)

Recall that a and b are functions ofU1 andU2, respectively. This
means that ki, the integral gain of the network, is not a constant.
To place bounds on ki, let us substitute equations (62) and (63)
into equation (74),

ki =
1 + gs/R · U1

Cm · (2 + gs/R · (U1 + U2))
. (75)

We can now plug in different values of U1 and U2 to see how
ki varies. Using equations (55) and (56), we find that the most
extreme cases are when [U1, U2]= [0, R] and [U1, U2]= [R, 0].
We can plug these cases into equation (75) to find the minimum
and maximum values for ki,

ki,min =
1 + gs/R · 0

Cm · (2 + gs/R · (0 + R))
=

1
Cm · (2 + gs)

(76)

and

ki,max =
1 + gs/R · R

Cm · (2 + gs/R · (R + 0))
=

1 + gs
Cm · (2 + gs)

. (77)

The difference between ki ,min and ki ,max:

ki,range =
1 + gs

Cm · (2 + gs)
− 1

Cm · (2 + gs)
=

gs
Cm · (2 + gs)

. (78)

To find the mean rate of integration, we can calculate
ki ,mean = (ki ,min + ki ,max)/2,

ki,mean =
1

2 · Cm
. (79)

This is the same value of ki obtained from computing ki when
U1 =U2. This simple expression is a useful relationship for tuning
the integrator network. One may select Cm to obtain the intended
mean integration rate, and then minimize the variation of the
integration rate by minimizing gs, as long as equation (57) is
satisfied.

Figure 5D graphically demonstrates how ki ,mean and ki ,range
determine Cm and gs. Just as in equation (79), ki ,mean is a function
only of Cm. Therefore, the contour only shows vertical lines. The
value of ki ,range is minimized by decreasing either gs or C−1

m (i.e.,
increasing Cm). Figure 6 shows simulation data of the integrator’s
response to a step input with eight different parameter value
combinations. In every case, the change in U1 is bounded by the
values of ki ,mean and ki ,range. As shown in Figure 5D, increasing
Cm decreases the integration rate, and increasing gs increases the
variation in the integration rate.

Table 2 summarizes the design approach for this integrator
network. The mean and range of the integration rate are free
parameters that are determined by the intended network perfor-
mance. Using these values and the constraint in equation (57), the
neurons’Cm value and the synapses’ gs and ∆Es values can be fully
specified.

5. APPLICATION TO A ROBOT
CONTROLLER

We have used the methods in this paper to tune (i.e., select
parameter values for) several different networks that control
robotic stepping (Szczecinski and Quinn, 2017; Szczecinski et al.,
2017a) and visual tracking (Szczecinski et al., 2017a). Once a
network layout is determined, whether hypothetical or based on
neurobiological findings, individual subnetworks can be identi-
fied and tuned to work together. Figure 7 shows a simplified
joint-control network in which different functional pathways are
color-coded. This illustrates how these functional subnetworks
enable the direct assembly of control networks based on neuro-
biology. The neurobiological inspiration for these networks and
the results of robotic experiments are presented in Szczecinski
and Quinn (2017) and Szczecinski et al. (2017a), and so are
omitted here.

The joint network in Figure 7 uses three simple descending
commands (body heading, stride length, and reference leg load)
to control the walkingmotion of one joint of a leg. The descending
commands modulate the output of a central pattern generator
(CPG) to control the speed of the motion, and sensory feed-
back is used to adjust both the timing and amplitude of motor
output. Addition pathways are drawn in red. These include the
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FIGURE 6 | Simulation data from eight trials are shown. Different values of Cm and gs were used in each. Neural dynamics are plotted as blue lines. The expected
final values of the simulations are plotted in dotted red lines. Regions bounded by ki ,mean ± ki ,range are shaded in violet. In every case, the actual outcome is correctly
bounded. As demonstrated mathematically in the text, ki ,mean only depends on Cm. In addition, ki ,range depends on gs, leading to more variation in ki, as indicated by
larger shaded areas.

mapping between body heading and stride length (i.e., descending
commands, drawn in gray) to the PEP and AEP (Szczecinski
and Quinn, 2017). The PEP can also be modulated by force
feedback, which compares the load on the leg to a reference
value (Szczecinski and Quinn, 2017, in review). This requires
a subtraction network, drawn in orange, to compute if there is
too much or too little load on the leg. The difference is used to
adjust the PEP Memory network, which is an integration net-
work, drawn in blue. This network adjusts the PEP over time,
and remembers the motor command that produces the intended
force.

The output of the CPG, drawn in purple, excites the motor
neurons. Tuning CPG dynamics is discussed in our previous work
(Szczecinski et al., 2017b). The PEP and AEP neurons adjust
the motor output via multiplication pathways, drawn in green,
which scale CPG output to the motor neurons based on the
intended range of motion. Motor neuron activity controls the
motor velocity, and the θ neuron receives position feedback from
the motor via the mappings in Figure 1B. The motor velocity,
computed by the cyan differentiation pathway, reinforces ongoing
CPG behavior through the θ̇ neuron (Szczecinski et al., 2017b).
A division pathway (not shown) can be used to normalize the
velocity feedback to the joint’s commanded range of motion,
simplifying the control of stepping frequency. The θ̇ neuron also
receives some input from the Load neuron, ensuring that stance
phase is stable (Szczecinski and Quinn, 2017, accepted). By using

the functional subnetworks and the design constraints presented
in this paper, we can rapidly and directly assemble models of
neural systems that perform as intended without hand-tuning or
optimization methods.

How are the “Free Parameters” in Tables 1 and 2 chosen?
The free parameters fall into two classes: reversal potentials
(i.e., ∆Es) and dynamical constants (e.g., k, τ , etc.). The rever-
sal potentials are informed by biology. In this paper, we kept
−40<∆Es < 194mV (i.e., −100<Es < 134mV). The modeler
could use reversal potentials from specific synapses if that data
were available. The dynamical constants are informed by the
function of the robot. For example, the ksyn of the subtraction
network in Figure 1B controls the stiffness of the controller, and
may destabilize the system if not tuned to match the mechanical
properties of the robot (Szczecinski et al., 2017b).

As another example, τd and kd of the differentiator network in
Figure 7 determines the robustness of CPG rhythms, and howwell
it entrains to sensory feedback (Szczecinski et al., 2017b). A slow,
adaptively-walking robot may want a high kd to regularize CPG
oscillations, whereas a fast running robot may want a low kd to
be less sensitive to sensory feedback. Picking specific values for
these free parameters ultimately depends on the intended behavior
of the robot. The constraints in this paper enable the designer to
think in terms of more traditional robotics quantities, and use
these to set neural and synaptic parameter values, which may be
less intuitive.
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FIGURE 7 | A simplified joint-control network from our previous work
(Szczecinski and Quinn, 2017; Szczecinski et al., 2017a), with pathways
color-coded based on the functional subnetwork.

6. DISCUSSION

In this paper, we presented analytical methods for setting parame-
ters in dynamical neural networks that can add, subtract, multiply,
divide, differentiate, and integrate incoming signals. Such opera-
tions are at the core of control, and these techniques enable control
networks to be assembled rapidly and tuned directly. This work
primarily identifies constraint equations, not unique values, that
govern how parameters should be tuned. Thus, many different
networksmayperform the same functionwith different parameter
values, as observed in real neural circuits (Prinz et al., 2004).
Since these results are analytical, not based on machine learning
or optimization, there is no concern about these networks over- or
under-fitting training data, and their behavior is provable. These
techniques build on our previous analysis of synthetic nervous sys-
tems (Szczecinski et al., 2017b) and have been validated through
several studies with our robot,MantisBot (Szczecinski andQuinn,
2017; Szczecinski et al., 2017a).

All of the results from this paper make it easier to tune neu-
romechanical models of animals, as well. Many such models have
been created to study the principles underlying insect (Daun-
Gruhn and Tóth, 2010; Szczecinski et al., 2014) and mammalian
(Hunt et al., 2015a; Markin et al., 2016) locomotion alike. Often-
times, parameters of these models are tuned by hand to obtain the
intended motion, which is a painstaking, slow, and imprecise pro-
cess. The analysis in this paper canmake neuromechanicalmodels
come together more quickly, and have more predictable behavior,
leading to more thorough scientific investigations. More precise

tuning methods enable more thorough validation or invalidation
of hypotheses. Faster tuning methods enable more rapid valida-
tion or invalidation of hypotheses. For example, these methods
could be used to improve the coordination our previous cockroach
model (Szczecinski et al., 2014). In the model, curve walking
of varying radii was achieved by modulating muscle activations
with broad descending commands. However, the coordination,
reliability, and repeatability of such motion could be improved
with the methods of this paper, enabling us to improve or reject
the model.

6.1. Simplifications
Some of the calculations in this paper are based on approxi-
mations, which lead to inaccuracies in the calculations of the
subnetworks. One example is that the subtraction network does
not produce linear output. This non-linearity occurs because the
reversal potentials of synapses are rarely much lower than the
resting potentials of neurons, requiring large values of gs ,2 to build
a subtractor where ksyn = 1. A large gs ,2 value increases Upre ,2’s
effect on the denominator ofU∗

post’s response, causing the synaptic
input to reduce Upost’s sensitivity to inputs. This is particularly
noticeable in the differentiator’s response (Figure 4), especially as
ksyn increases.

Another example of a simplification we made is that our cal-
culation of ki only used the particular solution of the system.
This means that a transient response also exists, which we did
not compute. In addition, ki is a function of U1 and U2. This
means that ki is not a constant for this network. However, the
impact of U1 and U2 on ki can be minimized by minimizing gs
and maximizing R, as we showed in Sec. 4.2.

However, the developed networks are not intended to act as per-
fect analogs to their mathematical counterparts. These networks
are intended to act as representations of real neural circuits, which
likely do not act as perfect adders, multipliers, differentiators, etc.
Dynamic and transient effects are a real part of biological control
systems, and effective neural controllers have developed around
these idiosyncrasies and have likely evolved to even exploit many
of these aspects. In spite of these issues, the methods in this paper
are valuable. Our recent robotics work (Szczecinski and Quinn,
2017; Szczecinski et al., 2017a), as well as related work in progress,
is proof of the effectiveness of this approach.

6.2. Why Put Neurons in the Way?
The methods in this paper enable the direct construction of net-
works that perform arithmetic and dynamic calculations. Why
bother building neural networks just to recreate mathematical
operators? We believe there are several reasons to take this
approach. From a neurobiology perspective, the constraints that
we have identified may help explain why certain structures are
common in the nervous system (David Friel, personal correspon-
dence). For instance, mutually inhibitory parallel pathways are
common in the thoracic control of insect locomotion (Büschges
and Wolf, 1995), which may function as subtraction networks
in negative feedback loops. As another example, networks in the
retina of the rabbit are selectively sensitive to motion in one
direction or the other (Barlow and Levick, 1965). Such a network
could be constructed by using adjacent cells in the retina as
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inputs to differentiator networks. This would be consistent with
both the function of direction-sensitivity, as well as the laterally
inhibitive structure. Even though such consistency does not guar-
antee that the animal’s nervous system functions precisely this
way, the design methods in this paper may aid in understanding
the function of neural networks found in animals.

Additionally, the constraints that we identified may be used
to constrain parameter values in large brain models. Rather than
using global search techniques to understand the dynamics of a
large pool of neurons, we believe it may be faster to begin with
a number of functional subnetworks, and then use local search
techniques to tune the connections between them. In this way, the
designer is certain that parts of the network perform specific, use-
ful computations, rather than naively optimizing a large network
(Haferlach et al., 2007;Agmon andBeer, 2013; Izquierdo andBeer,

2013). The end result is something like a genetic program, but in
a neuroscience context.
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APPENDIX

A. Derivation of Integrator Eigenvalues and
Eigenvectors
We find the eigenvalues λ1 and λ2 and the associated eigenvectors
X1 and X2 of the Jacobian matrix by the eigenvalue problem,

det(J − λi · I) = 0 (A1)

J · Xi = λi · Xi, (A2)

where i is the index of the eigenvalue (1 or 2), I ∈ R2×2 is an
identity matrix, and J is the square matrix from equation (64).
Solving for λ,

λ1 = 0, λ2 =
a + b
Cm

> 0. (A3)

Because J is on the same side of the equation as ˙⃗x (see equation
(65)), λ2 > 0 indicates a stable system (e.g., as the stiffness matrix
of a physical system). λ2 > 0∀ x⃗, because a> 0 and b> 0. The
definition of a in equation (62) shows that a> 0 because gs > 0
(it is a physical quantity) and U1/R∈ [0, 1]. The same reasoning
applies to b.

We use the eigenvalues to find their associated eigenvectors,

X1 =
[

1
−b/a

]
. (A4)

Normalizing X1 to 1,

X1 =

 1√
12+(−b/a)2

−b/a√
12+(−b/a)2

 =

[
1/d

−b/(ad)

]
, d =

√
12 + (−b/a)2.

(A5)
Next, we calculate

X2 =
[
1
1

]
. (A6)

Normalizing X2 to 1,

X2 =
[
1/

√
2

1/
√

2

]
. (A7)

We now know the transformation matrix between the natural
coordinates, x⃗ = [U1,U2]T, and the generalized coordinates, q⃗ =
[q1, q2]T:

x⃗ = X · q⃗, X = [X1,X2] =
[

1/d 1/
√

2
−b/(ad) 1/

√
2

]
. (A8)

We will also make use of X−1 when transforming between
natural and generalized coordinates. We can analytically invert X
from equation (A8),

X−1 =
a · d ·

√
2

a + b ·

[
1/

√
2 −1/

√
2

b/(ad) 1/d

]
=

[ a·d
a+b

−a·d
a+b

b·
√

2
a+b

a·
√

2
a+b .

]
(A9)
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The high complexity of the human posture and movement control system represents

challenges for diagnosis, therapy, and rehabilitation of neurological patients. We envisage

that engineering-inspired, model-based approaches will help to deal with the high

complexity of the human posture control system. Since the methods of system

identification and parameter estimation are limited to systems with only a few DoF,

our laboratory proposes a heuristic approach that step-by-step increases complexity

when creating a hypothetical human-derived control systems in humanoid robots. This

system is then compared with the human control in the same test bed, a posture

control laboratory. The human-derived control builds upon the identified disturbance

estimation and compensation (DEC) mechanism, whose main principle is to support

execution of commanded poses or movements by compensating for external or self-

produced disturbances such as gravity effects. In previous robotic implementation, up

to 3 interconnected DEC control modules were used in modular control architectures

separately for the sagittal plane or the frontal body plane and successfully passed

balancing and movement tests. In this study we hypothesized that conflict-free

movement coordination between the robot’s sagittal and frontal body planes emerges

simply from the physical embodiment, not necessarily requiring a full body control.

Experiments were performed in the 14 DoF robot Lucy Posturob (i) demonstrating that

the mechanical coupling from the robot’s body suffices to coordinate the controls in

the two planes when the robot produces movements and balancing responses in the

intermediate plane, (ii) providing quantitative characterization of the interaction dynamics

between body planes including frequency response functions (FRFs), as they are used

in human postural control analysis, and (iii) witnessing postural and control stability when

all DoFs are challenged together with the emergence of inter-segmental coordination in

squatting movements. These findings represent an important step toward controlling in

the robot in future more complex sensorimotor functions such as walking.

Keywords: sensory-motor system, humans, neuromechanical modeling, modular control architecture, humanoid

robot experiments
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INTRODUCTION

Human Posture Control Modeling and

Neurorobotics
Human postural control attracts considerable interest in
healthcare research worldwide for reasons such as “fall of the
elderly” and neurological impairments such as ataxia in cerebellar
patients or deficient movement control in Parkinson’s disease.
Developing model-based diagnostics as well as therapeutic
and rehabilitative interventions is an important aim of this
research. Engineering-inspired approaches to model the human
sensorimotor control and its failures have a long tradition (e.g.,
Nashner, 1972; Hajos and Kirchner, 1984; Johansson et al., 1988;
Kuo, 1995; Fitzpatrick et al., 1996). These approaches often
address reactive postural responses to well-controlled external
stimuli, which lend themselves to system identification, whereas
the exact input for voluntary movements is generally unknown.
Two of the following recent modeling approaches were especially
influential, yet their clinical application can often prove to be
problematic.

Onemodeling approach used system state estimation based on
multi-sensory integration under noise optimization principles.
This approach builds on biological textbook knowledge on
human sensors and anthropometrics and, based on this
knowledge and engineering principles, analyzes the human
posture control using noise optimizing principles (van der
Kooij et al., 2001; Kuo, 2005). For example, it predicts
that, whenever possible, posture control preferentially uses
proprioceptive rather than vestibular information, as the
vestibular information is the one containing more noise. These
models allow general predictions on human preferences for
certain sensory environments and may define which sensory
deficit in patients tends to increase the danger of falling.
However, poor correspondence of these models with human
neurophysiology and anatomy restricts its clinical usefulness
for diagnosing more specific posture control problems of an
individual patient.

The other modeling approach used time series or frequency
domain data gathered from posture control experiments in
humans to establish the simplest model compatible with known
human physiology and anatomy that would allow reproduction
of the data with identified model parameters. Best known is the
independent channel (IC) model of Peterka (2002) for single
inverted pendulum (SIP) scenarios. It identifies sensory weights
depending on the proper selection and interpretation of results
using different stimuli and test conditions. From extensions of
this model to more complex scenarios it was concluded that
available engineering methods are in principle capable of arriving
at multi-segmental control models. However, the increasing
model complexity and the proliferation of parameters tend
to reduce the chance of unequivocally identifying the control
parameters in health and disease (Mergner and Peterka, 2017).
The problem is aggravated by non-linearities of the human
control system (described as detection thresholds inMaurer et al.,
2006).

As such, there currently exists a dilemma as to which
methodology can be used to establish model-based diagnostics

and therapeutic or rehabilitative interventions for patients with
impaired postural control. The goal of the present study is to
contribute to a heuristic solution. By this we mean a practicable
solution that proceeds from an established model of the human
control in the SIP scenario and uses plausible arguments and
steps for its extension to more degrees of freedom (DoFs).
To evaluate the appropriateness of these steps, we test their
effects in special-purpose humanoid robots with human-inspired
anthropometrics, sensors, and actuators. In this way a “real
world” challenge is imposed which accounts for noisy and
inaccurate sensors and non-ideal actuation andmechanics. For as
much correspondence as possible to the human situation, these
tests are performed in the same testbed that is also used for
the human subjects, i.e., in a human posture control laboratory.
As described below, first steps in this heuristic approach
have successfully been performed. Point of departure was the
“disturbance estimation and compensation” (DEC) model for
the SIP scenario, which shares basic similarities with the IC
model (Mergner et al., 2003; Maurer et al., 2006; Mergner, 2010).
While several extension steps have been described previously (see
section Previous and Current Steps in the Heuristic Approach),
here we report on an extension to a 14 DoF robot and examine
whether a modular architecture consisting of a net of DEC
controls in the robot’s sagittal plane cooperates in a conflict-free
way with a corresponding but independent net of DEC controls
in the frontal plane during both disturbance compensation and
commanded (“voluntary”) movements.

The following subsections aim to combine state of the
art human sensorimotor issues with recent robotics issues
dealing with posture control. Here and in later sections, we
include brief descriptions on the current state of our bottom-
up implementation of a human-like postural control in robots.
First, we briefly review the biological basis of the DEC model
(section Main Features of the Human DEC Model), then
consider related issues in neuroscience and robotics (section
Modular Control Issues in Neuroscience and Robotics), and
finally present a list of the previously performed steps in
our neurorobotics approach and the new steps taken in this
study (section Previous and Current Steps in the Heuristic
Approach).

Main Features of the Human DEC Model
Both the DEC model and the clearly simpler IC model can
describe results from the same protocols for human balance
control experiments. The IC model is a linear model that
analytically describes human sway responses to support surface
tilt in the frequency domain based on a control by proprioceptive,
vestibular, and visual feedback channels (Peterka, 2002). The
model allows for identification of important features of the
human postural control system, the most important ones being
time delays in the order of 100–200 ms associated with low loop
gain and, as a consequence, soft mechanical compliance, and
low energy consumption. It also identifies sensory reweighting,
meaning that humans adjust their use of sensory information
to changes in perturbation amplitude and modality. While
the IC model describes this feature by using different sets
of control parameters, the DEC model (Figure 1) is able
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FIGURE 1 | Schema of DEC control of the ankle joint in the single inverted pendulum, SIP, scenario with support surface tilt forward (this model is the basis for the

modular control architexture in multi-DoF systems). Four external disturbances (external force Fext, gravitational force Fg, foot-space rotation αFS and foot-space

linear acceleration ẍFS) give rise to the joint torques (Text, Tgrav, Tprop, and Tin(=inertial), respectively). Sensors (VEST, vestibular; PROP, proprioceptive; TORQUE) are

actually networks that combine signals from a variety of transducers (e.g., 3 VEST sensors result from vestibular canal-otolith intractions; Mergner et al., 2009) to yield

information on the following physical quantities: ẍhx , head acceleration in x (sagittal forward) direction, and αhs and α̇hs, head-in-space angle and angular velocity

(dashes indicate proprioceptive coordinate transformation to lower body segments, see Figure 2; here they point out that in the SIP scenario these vestibular signals

refer to the whole body above the anke joints, includinging the legs, i.e., αls and α̇ls); αlf and α̇lf represent leg-to-foot angle and angular velocity, respectively. Colored

boxes derive disturbance estimates (indicated by hats) from the reported physical quantities. Variable foot-in-space angular velocity (α̇fs) is time-integrated leading to

the estimate α̂fs of foot-in-space position; by means of this signal the proprioceptive signal αlf is being “upgraded” (transformed) into space coordinates (αls′ ). C,

neural controler; 1t, lumped neural time delay; αls!, desired leg-space angle. Box 1/mgh transforms torque into an equivalent of an angle. Passive stiffness and its

modulation (in humans achieved by muscle co-contration) is omited here for simplicity (compare Ott et al., 2016 as to its role for control stability). In current versions of

the DEC concept, the input may be varied in three ways depending on the task. The task shown in this figure is to reach and maintain a given orientation of the

supported body segment, here the leg segment (in fixed alignment with upper body), in space (αls!). In situations where the body COM changes with the body

configuration or load distribution, the task refers to the body COM in space (bs; αbs!) and requires that the current COM location is taken into account in the control.

This has been experimentally tested and modeled for human responses in ankle and hip joints to support surface tilts in the sagittal plane (Hettich et al., 2014). As an

intuitive third possibility, one may want to reach and maintain a given joint angle, which in the scenario of this figure would mean to command the leg-foot angle αlf ! as

input and to neglect estimate α̂fs.

to predictively describe the data from various experimental
conditions with one set of control parameters. The DEC model
contains synthetic and holistic features-synthetic in the sense
that it uses disturbance estimations inspired from studies on
multisensory fusions in human self-motion perception (Mergner
et al., 1997; Mergner and Rosemeier, 1998), holistic in the sense
that it also integrates the control of movements in a single
structure.

The DEC model extends upon the engineering concept of
the servo control by negative feedback (see Wiener, 1948, for
the early developments of the concept). In neurology, Merton
(1953) used this concept to explain the role of the muscle stretch
reflex for the control of posture and movements. He posits that
a PD-controller adjusts the force of the muscles so as to produce
the desired pose or movement. This would be achieved through
negative feedback from proprioceptive sensors, i.e., by feeding the
controller with the difference between the desired and the sensed
joint angle. However, later researchers considered this concept to

be problematic. One reason was that the biological time delay
in the feedback loop does not allow for stable performance
when large external disturbances such as gravity require high
loop gains (see McIntyre and Bizzi, 1993). The DEC model
overcomes this problem by estimating the external disturbances
and commanding the servo to produce the extra force required
for their compensation. The underlying principle is known
in control theory under different names, e.g., “feed forward
disturbance correction” (Roffel and Betlem, 2006); similar
(Luecke and McGuire, 1968; Zhong et al., 2012); in German
consistently “Störgrößenaufschaltung;” Bleisteiner et al., 1961).
The DEC mechanisms operate context- and intent-dependently
(Mergner, 2010). In the terminology of sensorimotor physiology,
we subsume them in contradistinction to “short latency reflexes”
under “long latency reflexes,” which are known to be modifiable
by higher brain centers such as the cerebral cortex (see Pruszynski
and Scott, 2012). Disturbance compensation in the DEC is
thought to arise reactively with unforeseen external disturbances
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FIGURE 2 | (A) Schematic representation of the interconnections between the DEC control modules, in terms of down-channeling and up-channeling of sensory

information in a given body plane (here sagittal plane; compare Figure 4 for analogies in the frontal plane). Shown by solid downward arrows is the distribution of the

vestibular signal “head angle with respect to the gravitational vertical” (αhs). Analog distributions hold for the angular velocity signal α̇hs and the head linear

acceleration signal in x (sagittal forward) direction, ẍHx . The gray upward arrows show the up-channeling of processed signals, representing the causal physical

interactions in a stack of superimposed body segments. For example, up channeling of α̂fs from the ankle module to the knee module and fusing it with the

proprioceptive αlf signal may be used in the knee module as a predictor of αhs (a mechanism that bypases the sensory feedback chain and increases control stability).

This up-channeling is especially effective if the support surface is stationary, whereby α̂fs becomes subthreshold (through a velocity threshold) and with it the effect of

the particularly noisy vestibular α̇hs signal; see Mergner et al., 2009). (B) Picture of Lucy Posturob (from right and behind) balancing on the motion platform in the

human posture control laboratory.

as well as in the form of predicted-sensory estimates, issued
by higher brain centers with foreseen external or self-produced
disturbances. Such a “proactive” compensation is assumed to be
advantageous compared to a “reactive” one due to short central
time delays and absence of sensory noise, leading to more stable
control (see Maurer et al., 2006). Noticeably, several reactive
and proactive compensatory actions may arise simultaneously,
even during voluntary movements (i.e., the “superposition law”
applies despite the non-linarities in the disturbance estimates).

As previously explained in more detail (Maurer et al., 2006),
humans use several sensory inputs (proprioceptive, vestibular,
visual, haptic contact, torque, and pressure) for posture control.
They combine this information in various ways to estimate
physical variables such as joint angle and angular velocity
from muscle spindle, skin receptor, tendon organ, and torque
inputs, as well as head linear and angular acceleration from
vestibular otolith and semicircular canal inputs, for example.
From the estimated physical variables, the DEC model then
derives estimates of four classes of disturbances that may
influence the torque acting on the skeletal joints (colored boxes in
Figure 1): (1) Rotation and (2) translation of the support (be this
a supporting body segment or an external support), (3) gravity
and other field forces, and (4) contact forces (“external torque”).
As depicted in Figure 1 (which refers to the SIP scenario), in the
case of balancing, the input of the model is the desired angle

of the leg segment (here for SIP) in space αls!, a signal that is
thought to stem from higher brain centers including the cerebral
cortex. The cortex builds a coherent and continuously updated
sensorimotor model of the body as a whole from many input
sources. This is often referred to as “body schema:” a conception
from neurology that has found its way into humanoid robotics
(Morasso, 2013). In the DEC model, noticeably, both the cortical
movement commands from the body schema and the conscious
perception of the produced movement almost exclusively reflect
kinematics. Signals related to stereotypically occurring forces
from gravity, link inertia, inter-link coupling forces, etc. are
hidden, so to speak, because they are compensated by the DEC
mechanism (details in Mergner, 2010).

In this form, the DEC concept qualified for a modular
control architecture in scenarios with >1 DoF (see Section
Previous and Current Steps in the Heuristic Approach). Modular
control as a concept has attracted considerable interest earlier
in neuroscience and robotics. The following section points out
differences to the present concept.

Modular Control Issues in Neuroscience

and Robotics
In the DEC concept, a modular control by two DEC modules has
been used for the modeling of human ankle joint and hip joint
responses to support surface tilt and for mimicking the responses
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in a robot (Hettich et al., 2014). Further work supported this idea
of a modular control, for example when we added a third DEC
control in a robot for proactive squatting in the knee joints during
reactive balancing (Ott et al., 2016 and https://www.youtube.
com/watch?v=3ALCTMW3Ei4).

Generally, modularity is often applied at the level of
kinematics, as is the case in neuroscience with “movement
synergies,” where each control module commands a subset of
the controlled DoFs. Specifically, a kinematic synergy is often
defined as a function mapping a scalar value to several DoFs.
Such synergies are often used to reduce the dimensionality
of the control problem with the result that the number of
controlled synergies is smaller than the total number of DoFs.
The principle has not only inspired research of human walking
(e.g., Ivanenko et al., 2003), but also various fields of humanoid
control (Hauser et al., 2007). Noticeably, however, the number
of required synergies in complex movements may reach the
number of DoFs. This may happen for example when movement
control is organized in terms of eigenmovements (Alexandrov
et al., 2017) where the aim is to free the control from coupling
forces stemming from other movements. Certain synergies
studied in humans, such as torque synergies, are so far largely
neglected in robotics. Another related concept is that of motor
primitives, originally meaning basic kinematic, dynamic, or
muscular building blocks of movements arising at neuronal
levels (Flash and Hochner, 2005). Generally, motor primitives
can be combined in several ways, i.e., to act simultaneously
by summing them or to obtain superposition of effects, as is
the case with synergies, or serial effects when using them in a
sequence, as with predefined trajectories or velocity profiles. The
concept of motor primitives has found extensive application in
robotics for learning of motor tasks (Schaal et al., 2003). Some
implementations of modularity are not only advantageous in that
they reduce complexity in control design, but also in increasing
control robustness (in case one module fails, remaining modules
can take over).

Compared to these modularity concepts, the architecture of
combining DEC modules is clearly distinct. Here, each DoF of
the human skeletal system is controlled by one DEC module.
This even applies to situations where two or more modules do
the same job and conceptually may be viewed as one module
(e.g., during sagittal body sway about the two ankle joints with
aligned axes and the body weight equally distributed on both
feet). Each module determines the torque to be applied to the
controlled DoF. The desired trajectory is specified as an input
to each module. All modules have essentially the same structure
and have no internal model of the whole system. Yet, the
modules operate not completely independently of each other,
because they exchange sensory information through coordinate
transformation across the joints that interconnect the body
segments (Figure 2A). Compared to the above examples of
modular control, the DEC model can be defined as a low
level control system that takes care of the fundamental task
of posture control for undisturbed motor execution and acts
at the level of joint kinematics. Coordination between different
joints may emerge from the interaction between the modules and
the body mechanics under task, even if no kinematic synergy

is explicitly specified. For example, hip-ankle coordination in
the experiments of Hettich et al. (2014) emerged from the
tasks for the ankle and hip controllers to maintain the body
COM over the feet as base of support and the trunk upright,
respectively.

Further aspects will be considered in section Discussion.

Previous and Current Steps in the Heuristic

Approach
In previous works, the DEC model was subjected to “real world”
tests, separately for the sagittal and the frontal plane. The tests
were performed with humanoid robots equipped with human-
inspired sensors, actuation, and anthropomorphic properties
in the human posture control laboratory. Robot responses
to support surface tilt in the sagittal plane were successfully
compared to human responses once in a SIP scenario (Mergner
et al., 2009) and later in a DIP scenario (Hettich et al., 2014).
The latter study also showed that it sufficed to use interconnected
DEC control modules for the ankle and the hip joints in order to
simulate the human responses in the robot (for simplification, the
joints on both sides were mechanically coupled). Interestingly,
the ankle-hip coordination emerged from the interconnection
of the two modules (see section Modular Control Issues in
Neuroscience and Robotics). Subsequent experiments focused on
a transfer of DEC to the frontal plane (14 DoF robot; Lippi et al.,
2016) and the use of the knee joints to test the control of squatting
movements in the sagittal plane. To this end, realization of the
control in Simulink (The MathWorks Inc., Natick, USA) and
using force controlled actuation allowed us to transfer the DEC
control to the DLR robot TORO for comparison with a fully
model-based control (Ott et al., 2016 and https://www.youtube.
com/watch?v=3ALCTMW3Ei4).

This study investigates whether the networks of DECmodules
previously controlling the robots’ sagittal plane and frontal
plane separately would adequately cooperate when combined
during movements in intermediate planes. Specifically, we asked
whether the physical linkages given by the robot’s body suffice
to guarantee adequate cooperation between the sensorimotor
controls, or whether a supervising full body model or some
other form of software linkage between the two networks
would be required. The experiments are performed in a robot
with 14 DoFs (Lucy Posturob, Figure 2B) using one and the
same set of control parameters for non-trivial scenarios that
draw on the scalability of the DEC modular control. The tests
included both voluntary movements and balancing responses
to passive body motions in an intermediate plane. Postural
and control stability across all DoF of the robot were tested
when the robot performed squatting movements in the knee
joints, evoking the emergence of inter-segmental coordination
in the ankle and hip joints. Further experiments aimed to
provide a quantitative characterization of the robot’s balancing
responses in terms of FRFs (as they are used in human
postural control analyses) and tested postural stability when
increasing frequency of voluntary movements simultaneously
in the sagittal and frontal body planes up to the performance
limits.
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METHODS—ROBOTIC PLATFORM AND

EXPERIMENTAL PROCEDURES

Humanoid Robot Lucy Posturob
The Posturob III robot, Lucy Posturob (details in Figure 3), was
constructed as a humanoid of 1.5m body height and ∼20 kg
body weight with anthropometric parameters inspired byWinter
(1990). Its body consists of the upper body (HAT, for head, arms,
and trunk), pelvis, the two thighs, shanks (lower leg), and foot
segments, all made of aluminum and interconnected by hinge
joints. The total of 14 DoF (Figures 3A,B) comprise 2 DoF per
ankle joint, 1 per knee, 3 per hip, and 2 DoF for the lower
vertebral column (“lumped” DoFs across the vertebrae of the
back bone).

Using an analog acquisition board, a PC read from
mechatronic sensors the signals joint torque, joint angular
position and velocity, and the anterior-posterior and medio-
lateral pressure distribution under each foot (not used in
the present experiments). The same computer also read via
USB the signals from a custom-made human-inspired artificial
vestibular system (Mergner et al., 2009). The DEC control
model was implemented and executed as a compiled Simulink
model (Real-Time Windows Target, The MathWorks Inc.,
Natick, USA). The control system worked at 200Hz. The delay
of the system as a whole is estimated to be 20ms (which
corresponds approximately to the value to which we adjusted

all sensory signals for correct time-matched interactions in
the disturbance estimations). This delay is, admittedly, shorter
that the lumped delays identified in humans (see section Main
Features of the Human DEC Model). However, additional
features have to be added to the DEC control modules in the
Lucy robot before we can aim to repeat some of our experiments
with more human-inspired time delays (as in Hettich et al.,
2014).

The vestibular sensor was fixed to the robot’s HAT segment.
A bio-inspired algorithm (Mergner et al., 2009) fuses the inputs
from 3 accelerometers and 3 gyrometers to estimate (i) HAT
angular velocity in space, (ii) HAT angle with respect to the
gravitational vertical, and (iii) linear acceleration of the upper
HAT end representing head position (compare Figure 3A).
Joint actuation was achieved by DC electric motors (part a
in Figure 3C) that rigidly interconnected the two links by a
screw/spindle system (part b). The spindle drive transformed the
rotational movement of the motors into a lever movement, as
measured by a linear potentiometer, part c, for producing joint
angle. An inner torque control loop was implemented on the on-
board robot electronics, receiving the torque command signal
from the higher-level bio-inspired DEC algorithms on the PC.
The force sensor, part d in Figure 3C, measured the tangential
force acting on the joint in order to compute the joint torque
signal used (i) in the DEC control loop and (ii) in the on-board
control of the torque.

FIGURE 3 | Details of the humanoid robot Lucy. (A) Scheme of the 14 degrees of freedom. (B) Picture of Lucy Posturob (arms represented by weights; vestibular

system is located in head; no visual system is currently provided by the eyes; electronics for actuation is contained in the pelvis). (C) Details of foot with actuation (a,

DC motor; b, spindle; c, enconder; d, load cell as torque sensor). Actuation is the same in all DoFs.
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Disturbance Estimation in Multiple DoF

System
The four estimated disturbances in a DEC control module are not
directly available as sensory inputs and are hence reconstructed
through inter-sensory interactions. The sensory inputs used in
these and our previous robot experiments with the DEC model
are from the vestibular system, joint proprioception and joint
torque (compare Figure 1). Currently unconsidered are visual
self-motion cues for balancing (see Assländer et al., 2015), and
foot pressure cues.

In the multi-segment human body, the sensor fusions for
the disturbance estimates use signals from both local sensors
(proprioceptive joint angle and angular velocity sensors and
torque sensors) and remote (e.g., vestibular) sensors. The
vestibular signals in Lucy are conveyed to the control modules
through down-channeling from their source in the head, as
schematically shown in Figure 2. Additional information is
required for the disturbance estimations concerning mass and
inertia distribution of the supported body segments with respect
to the supporting joint, as described for the SIP scenario in
Mergner (2010). To further account for momentary changes
of these parameters in the multi-segment system, Lippi et al.
(2013) provided a general description of the down-channeling
of the processed sensory information. In particular, for the
two disturbance estimators of support rotation and gravitational

torque, α̂fs and T̂grav (see Figure 1), the COM location of all
segments above a given supporting joint is calculated step-wise
downwards. This allows for treating the COMs of all supported
segments in a given joint as if they were the COM of a single-
segment body. For example, with sagittal support surface tilts the
hip joints compensate the gravity impact from any upper body
lean, while the ankle joints are compensating the gravity effect
due to the lean of the whole body COM. This example also shows
that, while the action of a control module is local, the estimated
disturbances represent global effects acting on the body. For

the support surface translation estimates T̂in, the simplification
by down-channeling concerns the joint torque produced by the
combined inertial forces exerted by all upper body segments,
while for the contact force estimates T̂ext it is the torque produced
by combined forces having impact on the supported segments.
The sensor fusions used to reconstruct these global variables are
distributed among modules and are based on signal exchanges
between modules.

The present study explains the generalized concepts of
disturbance estimations with down and up channeling between
modules (Figure 2) in more detail. It is worth noting that an
advantage of using up-channeling is that the information of the
physical variables conveyed upward are already processed at a
lower level. This is especially relevant for the estimate of support
surface tilt in the ankle joint. Running the input velocity signal
through a threshold reduces noise of this estimate (see below).
The up-channeling of this signal is used in upper segments,
instead of the local input signals in these segments, which carry
more noise. This up-channeled foot(support)-in-space signal
contributes to the computation of the variables controlled by the
servo loops of the higher modules. Module inputs and outputs

are shown inTable 1. Included are also the inputs coming directly
from the sensory system (e.g., joint angle). These sensor fusions
are described here in more detail than before, using a generalized
notation that allows for an arbitrary number of DoFs.

Support Surface Tilt
In the SIP scenario of Figure 1, an estimate of support surface tilt
is obtained by combining a vestibular derived leg-in-space signal
and a local ankle proprioceptive leg-on-foot signal. Specifically,
the signal used to compensate the support surface rotation is
derived from the rotation speed of the foot in space, when the

foot is in firm contact with the support surface α̇1
fs
.

̂α1
fs
=
∫ t

0
ρ(α̂

·
1
fs )− kα̂1

fs dτ (1)

In the generalized notation used, the pedix fs stands for foothold
in space, i.e., the orientation in space of the link under the
controlled joint, which represents an extension of the variable
foot in space. Similarly, in the following the variables ls for link in
space and lf for link to foothold denote the generalization of the
variables leg in space and leg to foot as used in the SIP and the DIP
(double inverted pendulum) case before (Mergner, 2010; Hettich
et al., 2013; Lippi et al., 2013). This notation now allows for a
description of the sensor fusion process with a generic number
of modules, where the index n represents the position of the
controlled joint (n = 1 is the ankle, n = 2 the knee, etc.). For
specific cases, a notation referring to the names of body segments
can be used for simplicity, as shown in Figure 2A where ts for
example means thigh in space. All the signals in (1) are estimates,
with the hat denoting here the up-channeled estimate, ρ(·) is the
threshold function and t the current time. The integration is leaky
(modulated by the term k).

Given the threshold 2 >0, the function ρ(·) is defined as

ρ (α) =







α + θ α ≤ −θ

0, −θ < α < θ

α − θ α ≥ θ

(2)

The value of 2 is a parameter of the control module. The
presence of the threshold function ρ (·) introduces a gain non-
linearity in the balance behavior (i.e., larger support surface tilts
aremore compensated than smaller ones), as previously observed
in human experiments (e.g., Hettich et al., 2014).

The estimate of support surface tilt from Equation (1) is
used to reconstruct the orientation in space of the link above

the controlled joint α̂n
ls
inside each module. The signal is up-

channeled and fused with the proprioceptive input throughout
all the modules of a given body plane. The resulting value in the
nth module is

̂αn
ls
=̂α1

fs
+
∑n

k=1
αk
lf (3)

This is different with the other three sensory disturbance
estimates (below), in that these are based on the down-channeled
position. This scheme reproduces human-like responses in robot
experiments and model simulations. However, the interactions
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TABLE 1 | Signals and parameters used in the sensor fusion process.

Signal Symbol Description

Body in space sway, up-channeled ̂αn
bs

Angle sway of the COM of all the segments above the controlled link, obtained using the

upchanneled ̂αn
fs
signal. It can be used in the servo loop as controlled variable

Body in space sway, down-channeled |αn
bs

Angle sway of the COM of all the segments above the controlled link, obtained using the

down-channeled |αn
fs
signal. It is used to compute external disturbances.

Desired value for the controlled variable αn
lf
!, αn

bs
!, αn

ls
! Reference for joint angle (lf), body COM orientation in space (bs) and link orientation in space

(ls)

Proprioceptive input αn
lf

The angular position of the controlled joint. Used to compute |αn
fs
and ̂αn

ls
. It can be used in

the servo loop as controlled variable.

Foothold link orientation in space, downchanneled |αn
fs

Orientation in space of the link supporting the controlled joint, it is used to compute |αn
bs
and

it is passed to the underlying module as |αn
ls
.

Foothold link orientation in space, up-channeled ̂αn
fs

In the module controlling the support joint it is computed using |ˇα̇n
fs
as shown in Equation (1).

In the other modules it is up-channeled from the underlying module as ̂αn
ls
.

Controlled link in space rotation speed, down-channeled. |̇αn
fs

It is down-channeled and used for the computation of
̂

α0
fs
.

Controlled link in space orientation down-channeled. ̂αn
ls

Angle sway of the COM of all the segments above the controlled link. It is used to compute

external disturbances.

Controlled link in space orientation up-channeled. ̂αn
ls

It can be used in the servo loop as controlled variable

Center of mass position in the controlled plane �COMn Position in space of the center of mass of all the links above the n th joint. It is

down-channeled so that in each module it can be updated to take in account the controlled

body segment.

Mass of all the segments above the controlled joint mn
up This parameter is down-channeled. Each module is updating it adding the mass of the

controlled link, that is an internal parameter

Moment of inertia of all the segments above the controlled

joint

Jnup The moment of inertia is down-channeled and updated in each module on the basis of the

internal parameters describing the controlled link and the configuration of the body.

between up-channeled and down-channeled signals in the
general case are still under research.

Field Forces Such As Gravity
The gravity torque Tg in the general case is calculated by

Tg = mn
upgCOM

n
x (4)

where COMn
x is the horizontal component of the position

of the center of mass COM
n of all the segments above the

controlled joint. The estimated COM
n is computed performing

the weighted sum

�COM
n=

(

�COM
n+1+Ln

[

cos(|αn
ls
)

sin(|αn
ls
)

])

mn+1
up + hn cos (|αn

ls
)mn

mn
up

(5)

where Ln is the length of the link controlled by the joint and hn

is the distance of the COM of the nth link from the nth joint,
mn is the mass of the nth link, and mn

upthe total mass of all the
links above the nth joint. The inverted hat denotes estimators
based on down-channeled signals. The modules can be set to
use �COMn

x or to apply a small angle approximation as done in
previous experiments (Mergner, 2010; Hettich et al., 2014). The
estimate then becomes

|Tg = mn
upgh̃

n |αn
bs

(6)

where the expression |αn
bs
= atan2(�COM

n

y ,�COM
n

x) represents the
angular sway in space of the center of the body mass above the

nth joint, while h̃n is the average height of the COM of all the
segments above the controlled joint.

Support Surface Linear Acceleration
In the presence of support surface acceleration described in the
reference system of the support, an inertial force on the center of
mass of the body arises. The external acceleration is computed
for each joint. The part of the vestibular head acceleration
signal not explained by trunk rotation at the hip or at any joint
below is taken to stem from support surface acceleration. This is
expressed as

αEXTERNAL = αVESTIBULAR − αSELF (7)

where the acceleration produced by the joint movements is:

|a
n

SELF =|a
n+1

SELF + Ln
d2

dt2

[

sin(|α
n

ls )

cos(|α
n

ls )

]

(8)

The disturbance inertial torque then results from

|Tin =|aEXTERNAL |COM
n
mn

up (9)

For simplicity, here only the horizontal translation is considered

Tin = ẍEXTERNALCOM
n
ym

n
up (10)

Frontiers in Neurorobotics | www.frontiersin.org September 2017 | Volume 11 | Article 49259

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Lippi and Mergner Human Sensorimotor Control in Humanoid

Contact Force Disturbance (Such as a Push or Pull)
Humans may sense amount and location of a force exerting
impact on the body directly (locally), and in addition may sense
the impact that the force has on their balancing in terms of the
evoked center of pressure (COP) shifts under the feet, which
is proportional to ankle torque. Recall the SIP case scenario
of Figure 1, where the external torque Text affects the sensory
measure of the actively produced torque (Ta). It contributes
together with the gravitational torque, inertial torque, passive
torque (frommuscle and connective tissues) and total torque (Tg ,
Tin, Tp, and TA, respectively) to Text , which thus is given by

Text = TA − Tg − Tin − Tp − Ta (11)

The term TA is computed using the down-channeled signal |αn
bs

and, Jnup, the moment of inertia of the supported body segments
as

TA =
d

dt

(

d|αn
bs

dt
Jnup

)

(12)

This expression takes in account that also Jnup may change with
respect to time due to the movements of other DoF. Similarly to
mn

up, also J
n
up is computed down-channeling information through

the modules. For simplicity the down-channeled value is the
moment of inertia computed as

˜Jnup = ˜Jn+1
up +mn

up

∥

∥

∥

�COM
n+1−�COM

n
∥

∥

∥

2
+ Jn

+ mn
∥

∥

∥
COM

n
link−�COM

n
∥

∥

∥

2
(13)

Where Jn and COMn
link are, respectively, the moment of inertia

and the position of the COM of the nth link. The moment of
inertia used in Equation (12) is

Jnup = ˜Jnup+mn
up

∥

∥

∥

�COM
n
∥

∥

∥

2
(14)

Compensating the estimated Text may imply that, in a system
with neural time delays, positive feedback in Ta requires a
limitation of the compensation (gain < 1, low-pass filtering),
similarly to the case of the translation estimator. Model
simulations suggest that humans may deal with these flaws by
transiently increasing passive stiffness, which has zero time delay,
through co-contraction of antagonistic muscles pairs.

Servo Loop and Compensation of External Disturbances
The disturbance compensation is implemented by summing the
disturbance estimates with the input of the controller (PD) with
negative sign for compensation (compare Figure 1). In the case
of the support surface tilt this can be seen as a coordinate
transformation of the controlled variable from joint coordinates
to space coordinates. The other disturbances are normalized by

mn
upgh̃

n, which represents an angle equivalent to the torque,
i.e., the angle that would produce the torque evoked by gravity
during body (or segment) lean in linear approximation. This
makes the input of the PD controller homogeneous. The torque

commanded by the servo controller in the nth module is
defined by

Ta = Kp

[

ε −
(

Tg + Tin + Text

)

/mn
upgh̃

n
]

+Kd

[

ε̇ −
(

Ṫg + Ṫin + Ṫext

)

/mn
upgh̃

n
]

(15)

where Kp and Kd are the proportional and the derivative gain,
respectively, and ε is the error of the controlled variable as
computed using the up-channeled information

ε =











αn
ls
!− ̂αn

ls
if the controlled variable is αn

ls

αn
bs
!− ˜αn

bs
if the controlled variable is αn

bs
αn
lf
!− αn

lf
if the controlled variable is αn

lf

(16)

where ˜αn
bs
is an estimate of the COM sway of all the links above

the controlled joint, as computed using the up-channeled variable
̂αn
ls
.
The effect of each disturbance input and of the error signal

of the servo loop can be adjusted by gains (specified as
control module parameters). In contrast, the relation between
proportional (Kp) and derivative (Kd) gain is fixed for all
disturbances. Gravity compensation with lasting body lean
represents a special case. Modeling of human responses to slow
support surface tilts yielded better results when using a PID
controller instead of a PD controller (Mergner et al., 2003;
Peterka, 2003) For force feedback as an alternative for the I, see
Peterka (2009). The solution used here is a gain elevation in the
gravity estimator for low frequencies (Schweigart and Mergner,
2008). As an alternative, Ott et al. (2016) used a PID controller
for the servo in robot experiments and in addition a specific PD
controller for each disturbance estimator.

The DEC implementation used in the robot experiments of
Ott et al. (2016) included feedback from passive joint stiffness and
damping. In humans, passive stiffness and damping amount to
∼10% of the active stiffness and damping, stemmingmainly from
connective tissue properties of muscles and tendons. Having
impact with virtual zero latency, they improve control stability in
face of the considerable time delays of the reflexive loops (lumped
delay ≥100 ms for the ankle joint). Their implementation in
the robot experiments of Ott et al. (2016) helped in stabilizing
the control, as was the case in our previous experiments with
Posturob II (Hettich et al., 2014). Implementation of passive
stiffness and damping in the Lucy robot is still pending. Further,
the implementation of predicted-sensory estimates with pro-
active movements, whose effectiveness has been shown before in
Posturob I (Mergner, 2010), awaits implementation in Lucy.

DEC Control in the Frontal Plane and

Combined in the Sagittal and Frontal

Planes
Conceptually, one DEC control module can be used to control
both legs during stance control in the sagittal plane, as realized
in our robot experiments in Posturob I and II (Mergner et al.,
2009; Hettich et al., 2014). This applies when the two legs and
feet are aligned in parallel such that the rotations in the two ankle
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joints occur approximately around a common axis (for special
conditions in which humans weight the proprioceptive input into
the controls of the two legs independently of each other, see
Pasma et al., 2012). Analogous simplifications hold for the hip
joints when extending the control to upper body rotations, and
to the knee joints when considering vertical body movements. A
mechanically special situation (“four bar linkage”) with only one
DoF is given with biped balancing in the frontal plane. In this
study, stance width with approximately parallel legs is exclusively
considered (Figure 3A). In particular, the torque produced in the
frontal plane around the ankle joints is relatively small, but the
legs can overall produce a large torque on the support surface and
hence on the body COM for body stabilization and movements.

Inspired by a model interpretation of human balancing in
the frontal plane (Goodworth and Peterka, 2010), Lippi et al.
(2016) suggested for the Lucy robot a preliminary generalization
of the DEC control to the frontal plane, formalizing the body
kinematics as a double inverted pendulum. The four bar linkage
system with one degree of freedom for the lower body control
applies if the knee movements are negligible (true with moderate
disturbances) and when the feet are continuously kept in contact
with the support surface. Then, a simplified model in terms of
the SIP scenario applies to lower body sways about a virtual
ankle joint between the two actual feet and can be connected
by a virtual link to the pelvis joint (Figure 4A). Body balancing
is then achieved in terms of controlling the position of the
COM of the whole body in the frontal plane by applying the
appropriate torque to the support surface and maintaining the
vertical orientation of the HAT segment above the pelvis. The
desired torque for the virtual joint is distributed in the robot
on the four actuated joints (ankles and hips). Using the control
equations of the previous section, two DEC modules suffice for
the control in the frontal plane, for simplification, one for the
lower body and one for the upper body.

The frontal and sagittal planes are mechanically coupled
in the physical robot, as are the intermediate planes between
them. Theoretically, the interaction between the planes could be
considered problematic in terms of coupling forces if the two
planes are controlled independently of each other.Our hypothesis
in this study for the control system of Lucy is that, in face of the low
loop gain for the disturbance compensations used in the control,
the coupling between the dynamics in the two planes is not critical
and should allow us to control the two planes independently of each
other. Independent control in the frontal and sagittal planes based
on kinematic synergies has been successfully applied for posture
control in a small position-controlled humanoid in earlier studies
(Hauser et al., 2007).

In the experiments reported below, Lucy was freely standing
while actively controlling its balance in the sagittal and frontal
planes using the two sets of DEC control modules: one set
for the sagittal plane and the other set for frontal plane, while
the controls of the horizontal-plane in the hip joints were
“passive” through local joint angle proportional and derivative
(PD) “proprioceptive” feedback (indicated in red in Figure 4B).

Experimental Procedures and Testbed
Performance of the DEC system was investigated experimentally
when it controlled the sensorimotor behavior of the humanoid

robot during balancing of upright stance while compensating
external disturbances and self-produced disturbances arising
from voluntary movements. Voluntary movements were
produced by defining a reference trajectory for the specific
control variables (see below). During the experiments
(Figure 2B), the robot was standing on a 6 DoF motion platform
(Stewart platform) in a human posture control laboratory
(Mergner et al., 2003). Motions of the robot were recorded
by capturing motion signals from the robot’s internal sensors
(same as used for its control) for comparison between desired
and actual poses or movements. The responses to external
disturbances were recorded using an external opto-electronic
device (Optotrak 3020; Northern Digital Inc.; Waterloo,
Canada).

List of experiments performed:

(1) Test: Balancing of COM during upright stance on
periodically tilting support surface (SS)—this tested
steady state balancing performance.
Disturbance: Sinusoidal SS tilts of peak-to-peak (pp) 2◦ at
0.1 and 0.2Hz were applied in three trials: (a) sagittal plane,
(b) frontal plane, and (c) 45◦ with respect to the sagittal and
frontal planes.
Aim: Demonstration of stable balancing in all three planes,
with cooperative effects for c from the simultaneous
balancing in the sagittal and frontal planes.

(2) Test: Balancing of COM during upright stance as in (1),
but with transient tilts of the SS. This experiment allowed
us to distinguish between static and dynamic balancing
performance.
Disturbance: SS tilts with raised cosine velocity profile
(dominant frequency, 0.2Hz) of peak-to-peak 4◦ were
applied again in three trials: (a) in the sagittal plan, (b) in the
frontal plane, and (c) 45◦ with respect to frontal and sagittal
planes.
Aim: Evaluation of static and dynamic balancing
performances in the sagittal and frontal planes and
their cooperative effects occurring in the intermediate plane.

(3) Test: Balancing of COM during upright stance while pseudo-
randomly tilting the SS using the PRTS stimulus1. This
stimulus allowed us to describe the balancing behavior in
terms of FRFs.
Disturbance: Support surface tilts of peak-to-peak (pp) 1◦, 2◦,
4◦, and 8◦.
Disturbance waveform: PRTS1 (0.016–2.2 Hz), applied again
in the sagittal, the frontal, and the 45◦ intermediate planes.
Analysis: Spectral analysis of the angular excursions of the
body COM in space.
Aim: Demonstration of stable balancing in the sagittal and
frontal planes across a broad spectrum of tilt frequencies
and the cooperative effects occurring between the balancing

1PRTS stands for pseudo-random ternary sequence stimulus (see Peterka, 2002). It
allows evaluation of gain of the disturbance-evoked body excursion and its phase
and coherence (e.g., with support surface tilt) over a defined frequency range. Data
processing comprises a spectral analysis of the stimulus vs. the body (e.g., COM)
angular excursions in space using a discrete Fourier transform. The pseudorandom
sequence of the tilts makes them unpredictable for humans. See Hettich et al.
(2014) for details of the stimulus used.
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FIGURE 4 | (A) Balance control in the frontal plane modeled as a double inverted pendulum. (B) For balancing during the squatting experiments (see section

Experimental Procedures and Testbed (5), Voluntary Squatting Movements and Figure 10), the control is extended to employ 6 DEC control modules that control 10

mechanical DOFs in the frontal and sagittal planes. Note that horizontal hip control is passive proportional-derivative (PD). This full body posture control can, in

principle, be used to start gait. Low loop gain provides mechanical compliance (and keeps energy consumption low).

in the two planes. Varying stimulus amplitude would allow
us to test for the human-like non-linearity of responses
(expected from the velocity threshold in the ankle module,
see Equations 1 and 2).

(4) Test: Voluntary rapid full body movements in the
intermediate sagittal-frontal plane.
Movement command: Starting from a leaning body COM
position in an intermediate plane with 45◦ orientation
with respect to sagittal and frontal planes, a fast voluntary
movement was commanded to reorient the COM into
the vertical position above the feet, using step function
references for all the commanded DoFs. The movement was
repeated six times to observe the variability of the response.
A similar movement was also performed in the frontal plane
and in the sagittal plane separately. This allowed us to
observe how the coupling effects are affecting the dynamic
response in the two planes.
Aim: Demonstrating proactive movements and testing the
robustness of the system in face of strong self-produced
disturbances including coupling effects between different
joints and between the two controlled planes.

(5) Test: Squatting movements (knee bending).
Movement and task commands: Raised sinusoids with 4◦

amplitude at 0.17 Hz were used for commanding knee-
bending in repetitive cycles from and back to straight. With
the instructed tasks of COM balancing in the ankle and hip
joints, the commanded knee-bending was associated with
reactive compensatory movements of the whole body in the

ankle joints and of the upper body in the hip joints. The
task of the pelvis-HAT joint was to maintain a vertical HAT
orientation in space.
Aim: This test challenged the robot’s postural stabilization
in that all DoFs in the sagittal and frontal planes
were interacting. Demonstrating postural stability with the
“emerging” movements of the whole body in the ankle joints
and of the upper body in the hip joints were secondary
aims of the test. For corresponding experiments restricted
to the sagittal plane in a 3 DoF DEC implementation in the
TORO robot of DLR, see: https://www.youtube.com/watch?
v=3ALCTMW3Ei4).

(6) Test: Voluntary full body movement at increasing speed.
Movement and task commands: Voluntary body sway
movements were commanded simultaneously in the sagittal
and frontal planes (the result was a combined movement
in some intermediate plane). The common reference signal
followed a sinusoidal function with linearly increasing
frequency (i.e., chirp signal). The amplitude of the reference
signal was set to 1◦ in the sagittal plane and to 2◦ in the
frontal plane. The frequency range was∼0.2–0.7 Hz.
Aim: This experiment tests the frequency limits of the
active body sway in the sagittal and frontal planes
of the ankle joints. While the previous tests were
performed within the margins of the system’s stability
(to characterize the normal behavior of the system), this
test pushes the robot beyond these margins to performance
limits.
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EXPERIMENTAL RESULTS

In the robot experiments, we investigated how the DEC control
mechanisms in the sagittal and frontal body planes interact
through mechanical coupling of the robot’s body in producing
reactive responses to external disturbances applied in the 45◦

intermediate plane (sections Responses to Sinusoidal Support
Surface Tilts; Responses to Raised Cosine Support Surface Tilts;
Responses to PRTS Support Surface Tilts). A further experiment
investigated this interaction for rapid voluntary full body lean
movements in the intermediate plane, which were generated
by commanding combined action in the sagittal and frontal
planes (section Commanded Fast Full-Body Movements in the
Intermediate Plane). A fifth experiment (section Voluntary
Squatting Movements) tested control stability across all DoFs of
Lucy during commanded squatting.

Responses to Sinusoidal Support Surface

Tilts
Lucy’s steady state postural responses in terms of body COM
sway evoked by the sinusoidal support surface tilts are shown in
Figure 5. The responses to the±2◦ tilts in the sagittal and frontal
plane at 0.2 Hz (Figures 5A1,B1) and 0.1 Hz (Figure 5A2,B2)
are compared with corresponding responses in the intermediate
45◦ plane (Figures 5C1,C2). Note that compensation is similarly
stable in all three stimulus planes, with some residual COM lean

resulting in the direction of the tilt. This under-compensation is
“human-like,” stemming mainly from imperfect support surface
tilt estimations in the DEC modules with gain < 1 and velocity
threshold (see notches around maxima and minima).

Responses to Raised Cosine Support

Surface Tilts
Figure 6 shows Lucy’s COM transient and static sway responses
in the sagittal, frontal, and intermediate plane to support surface
tilt stimuli with raised cosine velocity profile and amplitude
of 4◦ with respect to the horizontal. Dynamic and static
response components reflect under-compensation of the tilt
stimulus similarly as observed in Figure 6. The responses in
the intermediate plane approximately reflect the sum of the
responses in the sagittal and frontal planes. The finding of larger
dynamic responses in the sagittal as compared to the frontal plane
mainly reflects a stronger effect from body inertia.We can further
note an absence of static error when the support surface has
moved back to the horizontal position, owing to properties of the
support surface tilt estimator with velocity threshold and leaky
integrator (see Equation 1).

Responses to PRTS Support Surface Tilts
Testing the robot with the PRTS stimulus allowed us to
more comprehensively characterize the frequency and amplitude
behavior of the system. Being composed of several velocity step

FIGURE 5 | Lucy’s sway responses are balancing its body COM during sinusoidal support surface tilt stimuli of ±2◦ about horizontal. The stimuli were applied at

stimulus frequencies of 0.2 Hz and 0.1 Hz in the sagittal plane (A1,A2), frontal plane (B1,B2) and in an intermediate (45◦ diagonal) plane (C1,C2). All sway responses

show some under-compensation (body slightly sways in direction of support surface tilt). The responses show slow fluctuations, stemming mainly from vestibular

noise (but never showed lasting drifts that might have led to loss of balance). See text for further details.
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FIGURE 6 | Lucy is balancing its body COM during support surface tilt stimuli with “raised cosine velocity” waveform (4◦ excursions from horizontal). The tilt was

applied in the sagittal plane (A), frontal plane (B), and in the intermediate diagonal plane (45◦ degrees from the frontal) (C). The robot’s responses are slightly

under-compensating the disturbances (compare Figure 5). (Waveform resembles that of most human voluntary movements; it is derived from a bell-shaped velocity

profile, v(t) = –A · f · cos(2πft) + A · f, where t is time, A is angular displacement, and f is dominant frequency).

functions, this stimulus has a power spectrum with significant
components over the whole range of the frequencies that are
of interest here to describe the system dynamics [compare
section Experimental Procedures and Testbed (3)]. The stimulus
was applied with different amplitudes (pp 1, 2, 4, and 8◦) for
the support surface tilts in the robot’s sagittal, frontal, and
intermediate body plane. Lucy’s PRTS responses in terms of
time series data are shown in Figure 7. They again show under-
compensation as in the previous experiments with the sine and
raised cosine stimuli. Here, the under-compensation exhibits a
non-linearity upon increase in stimulus amplitude. The non-
linearity stands out better in Figure 8 where the responses are
expressed in the upper panels of the corresponding FRFs as
sway (error) gain (zero with full compensation and unity if body
motion equals platform motion). Note that gain in Figures 8A,B

decreases with increasing stimulus amplitude, being lowest with
the pp 8◦ stimulus—again as can be expected from the velocity
threshold contained in the support surface tilt estimation. The
basic feature in terms of gain, phase, and coherence resemble
each other across the tests in the three body plane tested
(Figures 8A–C). Interestingly, we observe a smaller amplitude
non-linearity for low frequencies in the intermediated plane
(Figure 8C; also compare across in Figures 7B1–B3). Again, we
can observe that the coupling between the two planes does no
harm to the stability of the system.

Commanded Fast Full-Body Movements in

the Intermediate Plane
This test challenged the robustness of the modular control in
face of rapid self-produced movements in the sagittal-frontal

45◦ intermediate plane. The movement is associated with strong
disturbances acting mainly through coupling forces arising
between most of the robot’s controlled DoFs. The test may be
critical in a system with distributed modular controls that have
time delays. Figure 9A shows the path of the COM sway in
the two planes from the starting position at the right upper
corner back to primary position (coordinates x = 0 cm, y =
0 cm). The complex path of the return reflects differences in the
system’s control and mechanical compliance in the two planes.
The Figure 9B reports the temporal relaxation in the frontal
plane (red) and the sagittal plane (green) following the step. The
panel shows decaying oscillations of the relaxation. In the frontal
plane, the rise time amounted to 0.584 s, the settling time to
5.115 s, and the overshoot to 33.2% of the step with a peak time
of 1.620 s. The corresponding values for the sagittal plane were
0.621 s rise time, 5.141 s for the settling time, and an overshoot
of 60.3%. This experiment shows differences in the dynamics in
the two body planes, with larger oscillations in the sagittal plane
due to higher compliance in this plane. Overall, it demonstrates
stable performance when the control andmechanics in the robot’s
sagittal and frontal planes are dynamically interacting in rapid
movements.

In the additional experiments shown in panels Figures 9C,D,
the movement was restricted to the sagittal and frontal plane,
respectively. They demonstrate that a rapid movement in one
plane has only a small effect on the COM in the other plane. The
cross talk from the sagittal to the frontal plane is again clearly
larger than vice versa. Note that the responses in Figures 9C,D

are similar to those shown in Figure 9B with respect to the
actively moved component. This suggests that the controllers
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FIGURE 7 | Body COM sway responses of Lucy to PRTS support surface tilts of peak-peak amplitudes of 1–8◦ (A) presented as averaged (n = 6) time series (B1

sagittal plane, B2 frontal plane, and B3 intermediate plane). Note that the shown responses represent under-compensation of the stimuli, which is relatively more

pronounced for small than for large stimuli (compare gain curves in Figure 8).

efficiently compensate the disturbance produced by the coupling
between the planes. Note also that in all three experiments
(Figures 9A–C) the control was active in all the DoFs of the
sagittal and frontal planes in order to keep the body upright.

Voluntary Squatting Movements
In this experiment, Lucy performed repetitive squatting
knee-bending movements with reactive balancing movements
occurring mainly in the ankle and hip joints [see section
Experimental Procedures and Testbed (5)]. This experiment
challenged Lucy’s movement and balancing performance in a
situation where all DoFs in the sagittal and frontal planes were
interacting. The robot successfully performed this test (see film
sections in Figure 10 and film in Supplementary Materials).
Lucy executes the voluntary and reactive movements in the
sagittal plane, while the frontal plane controls prevent falling
by keeping the body upright. No kinematic synergy is imposed
explicitly and the resulting joint configurations are produced by
the interactions between the modules.

Voluntary Full Body Movement at

Increasing Frequency
In this experiment, Lucy performed voluntary body sway
movements in the frontal plane and in the sagittal plane
simultaneously. The reference trajectory was a sinusoid with
increasing frequency (chirp signal) with the amplitude of 1◦ in
the frontal plane and 2◦ in the sagittal plane. In contrast to

the previous experiments, which were aimed to characterize the
behavior produced by the DEC control within the margins of
stability of the system (frequency range similar to that used in
human posture control experiments), this trial was performed
to the limit of failure (until the robot’s feet lost contact with
the support surface). The resulting movements are shown in
Figure 11. In the low frequency range up to 0.4 Hz, tracking
performance was almost accurate in both planes. With further
increase in frequency, the responses in the sagittal plane develop
a peak and then get smaller, while the responses in the frontal
plane remain essentially similar as before and then increase in
amplitude, before the response becomes unstable at 0.65 Hz,
where the robot lost contact with the support surface. Thus,
notably, this task pushed the robot to its stability limits. This
owed mainly to limitations of the actuators, which were not
designed for high frequencies and torques (which also would
exceed human capabilities). Interferences between the sagittal
and the frontal plane are relatively small, which supports our
notion that the two planes of the robot’s body can be controlled
by two independent control systems.

DISCUSSION

The main aim of our neurorobotics approach is to investigate
whether the networks of DEC modules so far used separately for
the sagittal plane and frontal plane (Lippi et al., 2016; Ott et al.,
2016) would adequately cooperate with each other without using
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FIGURE 8 | Lucy’s sway responses in the sagittal, frontal and intermediate planes (A–C) in terms of frequency response functions (FRFs) and coherence functions

(bottom) from response averages of 6 repetitions of the PRTS stimulus. Shown are gain, phase and coherence curves over frequency for the four indicated peak–peak

stimulus amplitudes. Gain of zero would indicate ideal tilt compensation, a gain of unity that the evoked body COM excursion equals the tilt excursion. The phase

gives the temporal response to stimulus relation. Coherence is a measure of the frequency dependent signal-to-noise ratio. Note non-linearity of gain curves (due to

the threshold applied to |̇αn
fs
) in (A,B), less so in (C).

a supervising full body model or some other form of software
linkage between the two networks. In particular, we asked
whether the mechanical coupling between the planes given by the
physics of the robot’s body would provide postural stability when
the robot performs movements in the 45◦ plane intermediate
to the sagittal and frontal planes, or when it balances external
perturbations in this plane. We envisaged that the underlying
DEC with both voluntary movements and postural reactions
follows the rules of vector decomposition from the intermediate
into the sagittal and frontal planes. In the experiments 1–5, the
robot performed well within the stability margins based on the
mechanical properties of the robot and the dynamics of the
controls in the two planes, as ascertained empirically also in
experiment 6 (Figure 11).

The described experiments and results considerably
contribute to our aim of building a robotic system to further
develop our human-derived DEC control with the ultimate goal
of mirroring in robot experiments the human sensorimotor
functions. This approach is complex and cannot be reached in
one step, but requires several steps. The here-described steps
comprise the cooperation between control modules in the frontal
and sagittal planes of our modular control architecture, the

testing of both reactive and proactive movement controls in
view of control stability including mechanical aspects, and to
provide measures such as frequency responses functions for
robot-human comparisons. The current steps are important
for further DEC developments that aim to implement in future
steps more complex sensorimotor functions such as human-like
walking.

The main computational challenge we expected in the present
experiments was control stability in face of the feedback time
delay of 20 ms, which is still much shorter than the known
human time delay. Furthermore, the physical anisotropy of the
robot’s body in the sagittal and frontal planes represented a
challenge. This arises among others from differences in body
inertia and length of the base of support between the two planes,
as reflected in the different responses to external disturbances
and the different dynamic performance in voluntary squatting
movements shown in the results section (Figures 5–8, 10).
Yet, the robot successfully mastered with the same set of
control parameters the disturbance and movement scenarios
we applied. Thus, our finding demonstrate that the modular
DEC control architecture is able to coordinate the movements
across the robot’s 14 DoF without signal exchange between
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FIGURE 9 | (A,B) Return of body COM back to primary position in the course of repeated rapid voluntary movements of the COM in intermediate plane. Starting from

an eccentric position (2.3 cm forward, 1.7 cm on the right), the robot was commanded to perform a rapid return of the COM to the upright position. The system

response is shown in (A) and the COM trajectories are shown in (B) (for commands, see profiles of dashed and dotted step functions). (C,D) In order to visualize the

coupling effects between the two body planes, additional experiments were performed where the robot moved only in the sagittal plane (C) and only in the frontal

plane (D). Note that all plots are displayed with the same scales to facilitate the comparisons. The control was always active in both planes to keep the system stable.

the DEC module nets for the sagittal and the frontal planes
or some higher order control mechanism. This is reminiscent
of the so-called embodied approaches (e.g., Brooks, 1991)
according to which the body or other loops through the physical
world can mediate interaction effects directly, i.e., without the
need of explicit connections at control levels. The frequency
responses functions obtained in the present experiments give
us a comparison basis for future experiments in robots and
humans.

The following discussion firstly considers related issues
in humanoid robotics and the relevance for robotic
neuro-rehabilitation (section Related Issues in Humanoid
Robotics and Relevance for Robotic Neuro-Rehabilitation),
then insights for the modeling of the human postural
control (section Insights for the Modeling of the Human
Postural Control), and finally future steps and developments
expected for the extended DEC concept (section Future
Steps and Developments Expected for the Extended DEC
Concept).

Related Issues in Humanoid Robotics and

Relevance for Robotic

Neuro-Rehabilitation

Taking human bipedal control in standing and walking as a
basis for comparison is an important research topic in humanoid
robotics (Torricelli et al., 2014). One reason is that human
postural andmovement skills are still considered to be superior to
those of robots, beingmore robust and efficient, and also covering
a wider range of external conditions (Nori et al., 2014). Another
reason is that humanoids acting in the human sphere may profit
from human-like sensorimotor behavior when interacting with
humans and their world.

Among the various tasks of sensorimotor control, maintaining
balance is a primary task in the DEC concept as well as a
basic rule that is followed in many fields of humanoid robotics.
Secondary tasks can be performed in parallel with this primary
task exploiting the kinematic redundancy of the robot, e.g.,
by projecting the secondary task into the null space of the
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FIGURE 10 | Lucy performing squatting movements. The robot was commanded to perform knee bending at 0.17 Hz while balancing to keep the body upright. The

observed coordination between knee, ankle, and hip movements (in terms of compensatory bending in hip and ankle joints) is a property emerging from the

interaction between the control modules during the squatting movements (see text).

FIGURE 11 | Lucy performing a body sway in the ankle joints in the sagittal and the frontal plane simultaneously at increasing frequency (indicated at top of panels;

time at bottom). The responses in the sagittal plane show a peak around 0.42Hz. For higher frequencies, response amplitude tends to decrease. The response in the

frontal plane increases markedly above 0.6Hz. The recording was finished (right boundaries) when the robot’s feet started to lose contact with the support surface

due to large oscillations in the frontal plane. The difference in the dynamic responses in the two planes is mainly due to the body mechanics, i.e., the different size of

the support base and the different mass distribution (which humans may account for by adjustments in the control, as future work may show).

Jacobian of the balancing task (Sentis and Khatib, 2005). Care
is generally taken to constrain secondary tasks such that they
are not conflicting with the balancing task. In the present work,
multiple tasks are achieved simultaneously, defined by different
control variables for different modules. For example, in the

squatting movement (section Voluntary Squatting Movements),
the ankle module balances the body, while the knee module
performs the vertical bodymotion and the othermodules balance
the COM of the supported body segments. In general, each
module controls a joint (mechanical or virtual), along with all
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other segments supported by it. This works under the assumption
that the controlled variable is affected directly by the controlled
joint angle in that every rotation of the ankle joint produces the
same rotation of the COM of the whole body around the ankle.
For upright stance, the relation between COM sway and ankle
joint is

∂

∂α1
lf

α1
bs = 1, (17)

so that the servo controller can use the ankle control torque
to control α1

bs
. The dynamic effects of joint movements on the

supporting links are here neglected. The integration of tasks in
which a joint is controlled in order to produce an effect on
the supporting links, e.g., using hip movements to control sheer
forces under the feet, is currently still an open issue in the DEC
concept.

An often-used balance control based on sensory signals is
in humanoid robotics the method of the zero moment point
(ZMP) criterion (Vukobratović and Borovac, 2004). It allows for
balancing against moderate disturbances, which do not require
hand contact or a step. This method has been successfully applied
in robots with stiff actuation to adjust actual to desired ZMP, e.g.,
for walking (Hirai et al., 1998; Sentis and Khatib, 2006). However,
many robots nowadays use compliant joints, as is the case with
Lucy and the human system. The compliance has advantages
for robot-world interactions such as collisions and for robot-
human interactions. However, the control of compliant joints
is more complex due to higher complexity of the dynamics.
On the other hand, an important advantage of compliant
actuation based on passive stiffness and damping is its immediate
response to impact, starting well before time-consuming sensory
feedback mechanisms take action (Haddadin et al., 2007). This
is comparable to the immediate passive stiffness “feedback
loop” in humans from muscles, tendons, and connective tissues,
where previous modeling and robot experiments suggested an
improved control stability in face of considerable sensory, neural
and muscular time delays (Antritter et al., 2014; Ott et al., 2016).
While passive stiffness was implemented in Posturob I and II
of this laboratory by using pneumatic muscles and in some
experiments springs as tendons (e.g., Mergner et al., 2009), it
has not yet been implemented in Lucy. This is one of the aims
for future experiments with Lucy (see section Future Steps and
Developments Expected for the Extended DEC Concept).

In the DEC-controlled robots including Lucy, compliant
behavior and low energy consumption are positive side effects
from the low control loop gain, which in humans appears to
be mainly related to control stability in face of the biological
time delays. Effects of the compliance showed up in the
presented experiments in the form of residual body sway
following external disturbances as well as overshoot and under-
damped dynamics with fast voluntary movements. A particularly
important beneficial side effect of using low actuation torques was
that the robot’s feet did not loose contact with the support surface
in the experiments 1–5. The effects that passive stiffness has
for reducing impact magnitude and improving energy efficiency
has been an issue in actuator design (e.g., Ham et al., 2009)
and recently has received considerable interest in humanoid

robotics. The method has been combined for example with active
compliance modulation in the robot COMAN (Li et al., 2012).
In this robot, joint stiffness is modulated in response to an
external disturbing force by shifting desired body COM such
that the resulting center of pressure (COP) shift compensates for
the disturbance. This mechanism is employed in combination
with other assisting mechanisms that controlled upper body
orientation and energy dissipation. Furthermore, flexible robots
such a humanoids with compliant “ankle” and “hip” joint
equivalents have been controlled with the so-called Reaction
Null Space (RNS) formalisms that aim for a reactionless motion
control via a feed forwardmechanism and an error compensation
via feedback (Nenchev, 2013).

Currently, our experiments do not include large
perturbations; this topic remains to be addressed in future
work (section Future Steps and Developments Expected for
the Extended DEC Concept). For example, explicit inspirations
from human balancing research for humanoids often address
the “ankle strategy” and “hip strategy” (Nishio et al., 2006).
In the “ankle strategy,” ankle torque suffices to produce shifts
of the body COP to compensate moderate perturbations,
whereas the “hip strategy” becomes involved or dominates
when the COP is expected to exceed the limits of the support
base for balancing, be these limits determined by the feet or
a restricted or compliant support surface. Another limiting
factor is the maximal ankle torque. The hip movement then
generates horizontal ground forces in order to keep the COM
over the base of support (Nashner and McCollum, 1985). These
bio-inspired dynamic balance mechanisms have been technically
realized in a compliant humanoid robot by Hyon et al. (2007)
and other groups. Measures related to COM and COP shifts
were found to describe postural stability decision limits with
increasing perturbation magnitude in three steps: from (1) “COP
balancing” in the ankle joints via (2) “centroidal moment point,
CMP, balancing” in the hip joints involving a moment about
the COM, up to (3) a rescue step, often resulting in a double
support (Stephens, 2007). Simulations showed that human
“hip” and “ankle” balancing strategies tend to emerge in the
presence of perturbations of different magnitudes from the same
optimization criterion (Atkeson and Stephens, 2007). These
robotic studies in turn provide inspirations from robotics back
to human posture control research.

As stated in section Introduction, an important aspect of
the DEC control is its modularity. Modular concepts have been
widely applied before to both the analysis of human movement
and the control of robots. In general, the concept of modular
control implies the subdivision of the control problem into
several sub-problems that can be managed by separate control
modules. Such modules may interact in different ways, e.g.,
directly by exchange of signals or through the effects they
produce on the system. Control modularity has been defined
at different levels of abstraction. For example, in the “behavior-
based” control systems several sub-behaviors may operate in
concert with each other, organized according to a hierarchical
principle (Brooks, 1991). In the context of posture control for
biped humanoids, such sub-behaviors can be used to control low-
level tasks like joint torque profiles, or to process higher-level
issues such as adapting control parameters to contextual
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situations, or performing specific reactive adjustments. For
example, an implementation on a simulated humanoid is shown
in Luksch (2010).

Higher-level functionalities can emerge from the complexity
of behavior based systems. Recently, the integration of internal
representations has been considered in behavior based system
research; this allows for a direct solution of issues such
as movement planning. It finds its basis in that several
tasks in biological systems are considered to rely on internal
representations for inverse modeling, forward models and sensor
fusion (Schilling, 2011). Internal representations are different
from a behavior in that they are not designed specifically as
tasks, but instead have a general validity, as e.g., realized in the
principle ofmean of multiple computations (MMC). This method
can represent body kinematics independently from the specific
task and be generalized to arbitrary joint configurations (e.g.,
of a planar arm in Schilling, 2011 or of a hexapod in Schilling
and Cruse, 2008). The DEC control, on the other hand, is
specifically addressing posture control and disturbance rejection.
Yet, although its bottom-up control design by the integration
of locally acting modules shows interesting emerging properties
such as segment coordination, it is not expected in general to
cover higher level aspects of motor control. An integration of
DEC with the above methods can be imagined, e.g., in a set up
where high level processing receives sensory input preprocessed
through the DEC sensor fusions and where the high level
controller outputs into the DEC posture control, e.g., estimates
of disturbances that are self-produced by voluntary movements.

Another modularity concept, the Modular Modality Frame
model (Ehrenfeld and Butz, 2013), envisages multiple cross-
coordinations between cortical sensorimotor representations for
processing states of the body and the body parts and the
integration of corresponding multisensory information with
Bayesian optimality. Again, this concept addresses probabilistic
mechanisms of the body schema for movement planning and
commanding, whereas the DEC concept deals with the postural
control that, on a lower level, helps movement execution by
disturbance compensation. Yet, parallels to the DEC concept
possibly exist concerning multisensory processing. Specifically,
the DEC concept combines in a first step signals from a
variety of transducers to obtain estimates of relevant physical
variables. In a second step, from these estimated physical
variables estimates then the four disturbances are derived. This
two-step transformation of transducer signals into estimates
of disturbances occurs without probability weighting. The
processing in the DEC involves at least partially known transfer
characteristics and noise properties and aims to fulfill the
commanded task, using a direct reconstruction of the physical
relationship between disturbing forces, joint positions and
transducer stimulation.

The uncertainty of the results caused by the sensor noise
(mainly vestibular noise; van der Kooij and Peterka, 2011)
can partially be mitigated by thresholds (Mergner et al.,
2009) and disturbance prediction (Mergner, 2010). Estimated
disturbances smaller than a given threshold are excluded from
the compensation and the control process. This prevents
noise from sensory signals that are not participating in
the control from influencing the system. To which extent

this approach fulfills optimality criteria remains to be
investigated.

Exchange of knowledge and inspirations between the robotic
and the human domains is especially relevant when it comes to
the use of robotic sensorimotor devices such as exoskeletons for
neuro-rehabilitation and assistive devices in the development of
new invasive or non-invasive stimulation methods to intervene
with human sensorimotor functions and more. Knowing
the neural control mechanisms behind human sensorimotor
behavior will likely prove to be a key for ensuring an intuitive
and safe use of such devices by patients.

A related consideration concerns the observation in the
present experiments that the robot was able to balance across
a broad range of scenarios and conditions using the same sets
of control parameters, while automatically adjusting its motor
performance to changes in stimulus modality and amplitude, this
in combination with the afore discussed low loop gain, and soft
mechanical compliance and low energy consumption. Versatility
of the control is instrumental for the sensorimotor behavior
in a rich and changing environment, which represents a major
and still open challenge in the field of humanoid robotics and
robotics-inspired assistive devices. The concept of a modular
DEC architecture may provide a realistic solution in face of these
challenges.

Insights for the Modeling of the Human

Postural Control
The coordination of disturbance compensation observed in our
experiments when using support tilts in the intermediate plane
resulted from mechanical forces that were produced by the
controls for the sagittal and frontal planes. A human skeletal
body equipped with sensors, actuators and DEC control modules
can be expected to function similarly to Lucy. We take this as
evidence that the DEC control can be considered as a valid
control concept for human reactive postural control. This even
applies if the realization in humans would differ in some respect
from that of our robot. Differences may owe to the much
larger number of sensory transducer and actuators in humans as
compared to the robot, whichmay reflect the fact that humans are
experiencing and producing a richer spectrum of sensorimotor
behaviors than currently faced by Lucy.

One may object that here exists a conflict between the DEC
concept and the notion of those neuroscientists, who assume that
movement planning and commanding at the level of the cortical
homunculus (compare section Introduction) entails a full-body
control. Note, however, that the cortical motor commands, with
few exceptions, do not reach the spinal motor centers directly.
Rather, the commands pass through and interact with subcortical
structures, mainly the basal ganglia and cerebellum, where they
undergo modifications. Thereby, they may better fit to the DEC
concept. In this view, one important role of these subcortical
structures is to complement the voluntary movement commands
by predicted-sensory disturbance estimates. These centrally
generated estimates are thought to represent fast and low-noisy
predictions of the sensory-derived disturbance estimates evoked
by the movements, which they substitute for compensation.
This allows for a distinction between self-produced and external
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disturbances and thus allows compensating both even when they
occur in superposition (Maurer et al., 2006; Mergner, 2010).

Although the robot experiments provide no direct insights
into human postural control, they may provide valuable
support for one or the other hypothetical model when this is
tested in robot experiments for “real world” robustness (see
section Introduction). This neurorobotics approach will allow
neuroscientists and roboticists to compare different models both
with respect to specific and general performance criteria (e.g.,
versatility, failsafe robustness, etc.). For example, a concept
of how humans may deal with inter-link coupling forces
using Eigenmovements has recently been tested in a robot of
this laboratory, where it successfully passed the “real world”
test (Alexandrov et al., 2017). The DEC concept provides an
alternative solution for the problem of inter-segmental force
coupling in terms of a bundle of counter measures, which include
the DEC mechanisms for Text and Tacc in Figure 1, modulation
of passive stiffness and damping, and the use of waveforms for
commanded movement trajectories, which are optimized for low
acceleration and jerk (compare waveform in Figure 6).

In the previous robot experiments of Hettich et al. (2014),
the DEC concept was restricted to the DIP scenario and used
for the ankle and hip control estimated parameters, which
were directly derived from the modeling of human reactive
movements. The control parameters related to mass and COM
heights of the robot’s segments previously used were adjusted
in the present experiments to Lucy accordingly. This does not
apply, however, to the lumped time delay. Instead, a delay of
20 ms was used for all joints, which is clearly less than that
used previously or and cannot be considered “human-like.”
Identified lumped delays for the ankle joint control in our
previous experiments were ≥100 ms. We have not yet tested
such lumped delays in Lucy, but plan to test them together
with a number of yet pending robot implementations of related
other issues such as the aforementioned envisaged solution
for the inter-segmental coupling forces, the up-channeling of
control parameters, and the passive stiffness and damping. A
further aim is to replace the concept of a lumped time delay
by the biologically more appropriate concept of “short latency
reflexes” (local proprioceptive mechanisms with latencies of 20–
40ms) and “long latency reflexes” (responses with latencies
of 60–300ms, which involve volition and intention; compare
Mergner, 2010). With the integration of these mechanisms we
expect stabilizing effects also for coupling forces and a better
dynamic performance in faces of challenges that may occur
during walking. This also may apply when horizontal body
segment movements are included into the control, such as rapid
head movements during gaze shifts (Falotico et al., 2017).

In future experiments, we also will address in more detail
the emergence of conflict-free interactions between control
constituents, as we observed it in our previous and present
robot experiments. It allowed here the superposition of voluntary
movements and reactive compensations of external disturbances,
but also may allow superposition of two or more disturbances at
a time. Compliance to the superposition law may represent an
important criterion when judging a given robot performance as
human-like.

Future Steps and Developments Expected

for the Extended DEC Concept
To develop the robotic model of the human sensorimotor system
further, we consider the following steps important:

(A) Installing the ability for an automatic reconfiguration of
the control model for certain tasks such as walking. There,
it will account for changes in the robot’s configuration
with the alternation between the double leg support and
the single leg support while the other leg swings. Smooth
human-like walking in future DEC implementations may
furthermore benefit from DEC extensions in terms of whole
body coordination, which may includes the upper body,
and it will involve integration of an open loop gait pattern
(compare Lapeyre et al., 2013a,b).

(B) Predictions of disturbance estimates through both down-
and up-channeling of signals that are produced during
voluntary and reactive movements—with an expected
improvement of control stability from lower noise and
shorter time delay as compared to sensor-derived signals.

(C) Further improvement of control stability by using passive
stiffness modulation during contact force and support
translation disturbances and during rapid voluntary and
passive movements.

(D) Addition of visual self-motion information to improve
the balance performance of Lucy. Improvements of
accuracy and noise of vestibular and proprioceptive sensor
information through interaction with the visual signal can
be expected on the basis of human experiments (e.g.,
Assländer et al., 2015).

(E) Superposition of more than one external perturbation (e.g.,
support surface tilts and contact forces) during quite stance
and voluntary movements.

(F) Implementation of human-derived lumped time delays.
(G) Attempts to mimic sensorimotor impairments of

neurological patients using DEC-controlled robots
(compare Mergner et al., 2009, for balance model without
vestibular function).
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Musculoskeletal tissues respond to optimal mechanical signals (e.g., strains) through

anabolic adaptations, while mechanical signals above and below optimal levels cause

tissue catabolism. If an individual’s physical behavior could be altered to generate optimal

mechanical signaling to musculoskeletal tissues, then targeted strengthening and/or

repair would be possible. We propose new bioinspired technologies to provide real-time

biofeedback of relevant mechanical signals to guide training and rehabilitation. In this

reviewwe provide a description of howwearable devicesmay be used in conjunction with

computational rigid-body and continuum models of musculoskeletal tissues to produce

real-time estimates of localized tissue stresses and strains. It is proposed that these

bioinspired technologies will facilitate a new approach to physical training that promotes

tissue strengthening and/or repair through optimal tissue loading.

Keywords: biomechanics, mechanobiology, wearable devices, tissue strain, biofeedback, modeling

INTRODUCTION

Musculoskeletal diseases, such as osteoarthritis and tendinopathy, impose substantial burden on
individuals and health care systems. As a community of scientists and clinicians, we have been
largely ineffective in managing musculoskeletal diseases, as current prevalence, incidence, and
socioeconomic burden are at alarming levels and projected to increase sharply in coming decades
(Hunter et al., 2014). In particular, we have a limited understanding of how physical behavior, i.e.,
whole-body mechanics, influences tissue state (Forwood and Burr, 1993), and this could underpin
our failure to cure, or curb, these prevalent, harmful, and costly diseases. A case in point is the study
of the effects of physical activity on cartilage morphology. Studies of animals (Kiviranta et al., 1987,
1988, 1992; Newton et al., 1997) and humans (Jones et al., 2000, 2003; Roos and Dahlberg, 2005)
have reported increased physical activity to be associated with positive structural and biochemical
adaptations in weight-bearing joints, while other studies have reported no effects of physical activity
on bulk measures of cartilage morphology (Eckstein et al., 2002, 2006).

The failure to effectively treat musculoskeletal disease is frustrating for scientists and clinicians
alike. We possess a wealth epidemiologic data detailing risk factors for many musculoskeletal

274

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2017.00096
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00096&domain=pdf&date_stamp=2017-10-18
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:david.lloyd@griffith.edu.au
https://doi.org/10.3389/fncom.2017.00096
https://www.frontiersin.org/articles/10.3389/fncom.2017.00096/full
http://loop.frontiersin.org/people/420730/overview
http://loop.frontiersin.org/people/69267/overview
http://loop.frontiersin.org/people/442635/overview
http://loop.frontiersin.org/people/167254/overview
http://loop.frontiersin.org/people/456852/overview
http://loop.frontiersin.org/people/485498/overview


Pizzolato et al. Connecting Mechanobiology to Rehabilitation

diseases, e.g., increased age, female sex, body mass, prior joint
trauma, obesity, abnormal physical activity levels, and joint
structural deformity (Felson et al., 1997, 2000, 2013; Cooper et al.,
2000; Coggon et al., 2001; Lohmander et al., 2004, 2007; Roemer
et al., 2009; Andriacchi et al., 2015). At tissue- and sub-tissue
levels, studies have explored the effect of loading on structure
and biology (Radin and Paul, 1971; Simon et al., 1972; Radin
et al., 1973, 1984; Rubin and Lanyon, 1985; Forwood and Turner,
1995; Wang et al., 2013, 2015; Joo Kim et al., 2016). However,
integrating experimental results with whole-body-, tissue-, and
cell-level computational models, and using these models to
modulate physical behavior to affectmusculoskeletal tissue health
remains challenging (Erdemir et al., 2015). In a recent narrative
review, Ng et al. (2017) proposed physical therapy to enhance
and promote tissue regeneration, linking external mechanical
stimuli to tissue mechanobiology. In line with Ng et al. (2017),
we describe an approach to deterministically quantify the link
between physical behavior and tissue mechanobiology, inspired
by integration of biomedical technologies (i.e., wearable devices,
contemporary motion capture, and medical imaging) coupled to
computational models of joints and musculoskeletal tissues.

Wearable body sensors and systems for “Quantified-Self ” are
set to transform how people interact with their environment and
may facilitate personalized training and rehabilitation programs
in the future. Biofeedback is a psychophysical process to augment
awareness of afferent signals from sensory receptors in the human
body. In the case of musculoskeletal tissues, biofeedback can
be used to increase awareness and modify physical behavior
(Sigrist et al., 2013). However, current rehabilitation and
training protocols which incorporate biofeedback to modulate
physical behavior target external biomechanics, such as the
knee adduction moments (Barrios et al., 2010; Shull et al.,
2011, 2013a,b; Wheeler et al., 2011) or gait spatiotemporal
parameters (Wrigley et al., 2009; Erhart-Hledik et al., 2017).
Eternal biomechanics are readily measured or calculated, and
thus viable for use in biofeedback paradigms. Unfortunately,
external biomechanics have tenuous relationships with internal
biomechanics, such as articular contact loads (Walter et al., 2010;
Winby et al., 2013; Saxby et al., 2016b).

Musculoskeletal tissue stresses and strains are potentially
superior to external biomechanics for use in biofeedback
paradigms because they are physically coupled to the processes
of mechanotransduction, whereby mechanical signals are
registered as biologic stimuli, and result in cell- and tissue-level
adaptations controlled by biologic regulatory mechanisms.
However, musculoskeletal tissue stresses and strains have
not been used in biofeedback technologies, because their
computation is non-trivial, and depends on a complex interplay
of multiple factors, including external biomechanics, neural
control, tissue morphology and micro-architecture, and
material properties (Figure 1). Importantly, recent advances
in neuromusculoskeletal modeling have enabled real-time
prediction of whole-body kinematics and external loading
(Pizzolato et al., 2017a), as well as musculoskeletal tissue loading,
such as muscle-tendon unit and articular contact forces during
walking gait (Pizzolato et al., 2017b). Real-time musculoskeletal
modeling can now be coupled to models of internal tissue

mechanics and mechanobiology, and used to provide feedback
to target training for tissue strengthening and repair.

In this narrative review we present an overview of (1)
the known mechanical stimuli for promoting positive tissue
adaptation inmusculoskeletal tissues, (2) how local tissue stresses
and strains can be estimated using computational methods, (3) an
approach to estimating musculoskeletal tissue stresses/strains in
real-time, and (4) challenges and future directions for research in
this area.

MECHANOBIOLOGY AND THE OPTIMAL

MECHANICAL ENVIRONMENT FOR

MUSCULOSKELETAL TISSUES

Mechanobiology is the study of the effect of mechanical
stimuli on tissue biology. It is well-established that mechanical
loading plays an essential role in (1) musculoskeletal tissue
development throughout human maturation (Carter, 1987;
Carter and Wong, 1988a,b, 1990; Wong and Carter, 1990; Carter
et al., 1998, 2004; Beaupre et al., 2000), (2) maintenance of
mature structures (Frost, 1988, 1990a,b,c,d), and (3) healing
following injury, e.g., bone fracture (Pivonka and Dunstan,
2012). In particular, musculoskeletal tissues, such as articular
cartilage, tendon, and bone, respond to strains by modulating
tissue composition and organization. Generally, strains depend
on the nature of applied loading, i.e., magnitude, location,
orientation, duration, and frequency, as well as structural state of
the object, i.e., morphology and material properties (Figure 1).
Important to our study of musculoskeletal tissues, identical
loads applied to different tissues (e.g., cartilage vs. bone vs.
tendon), or same tissues but of different structural features (e.g.,
healthy vs. compromised, developing vs. mature), will produce
different strains and eventually different biologic responses.
Thus, to develop therapies targeting positive musculoskeletal
tissue adaptations we must quantify relevant states. Equally
important, if we wish evaluate therapeutic effectiveness we must
also quantify changes to tissue states in response to those
interventions.

Estimating the State of Musculoskeletal

Tissue
Musculoskeletal tissue state encompasses tissue morphology and
function, both of which may be non-invasively assessed using
medical imaging. Morphology, which encompasses all spatial
descriptions of an object, can be measured using different
medical imagingmodalities, such as computed tomography (CT),
magnetic resonance (MR), and ultrasound (US).

Computed tomography is well-suited to the study of bone and
provides high-resolution images that can be automatically-
or semi-automatically segmented to render volumetric
representations (Dufresne, 1998). Peripheral quantitative CT can
be used to image cortical and trabecular bone microstructure
(Lespessailles et al., 2017), which are important structural
features to include in analysis of bone remodeling (Hambli,
2011). However, CT exposes tissues to ionizing radiation and
may not be suitable for certain clinical or developing populations.

Frontiers in Computational Neuroscience | www.frontiersin.org October 2017 | Volume 11 | Article 96275

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pizzolato et al. Connecting Mechanobiology to Rehabilitation

FIGURE 1 | Schematic of complex dynamic interplay between external rigid body biomechanics, internal tissue biomechanics, tissue mechanobiology, and tissue

state.

Magnetic resonance imaging is a powerful modality that
does not produce ionizing radiation, and can be used to
image a wide range of musculoskeletal tissues (Hunter et al.,
2015). However, individuals with implanted medical devices
(e.g., cardiac stimulators) or ferrous prosthetics cannot safely
undergo MR imaging. Unlike CT, MR images require manual
segmentation to produce three-dimensional reconstructions of
musculoskeletal tissues. Currently, manual segmentation is time
consuming, but advances in image auto-segmentation (Mimics,
Materialize NV, Leuven, Belgium) will hopefully reduce labor
demands. Once MR images can be rapidly segmented, this will
make MR imaging a routine process to assess musculoskeletal
tissue morphology.

Ultrasound is an inexpensive, non-invasive, and non-
radiatingmodality to imagemusculoskeletal tissues. Importantly,
US can accurately measure muscle morphology (Barber et al.,
2009), track muscle fascicles during contractions (Cronin
et al., 2011; Gillett et al., 2013), and measure in vivo tendon
morphology at rest and under load in healthy (Obst et al.,
2014a,b) and pathologic tendon (Nuri et al., 2017). In addition
to muscle-tendon applications, US has been used to measure
bone landmark coordinates (Peters et al., 2010; Passmore and
Sangeux, 2016) and make in vivo clinical measurements of
bone alignment (Passmore et al., 2016). However, limited
signal penetration into the body means that many deep
anatomic structures cannot be imaged using US. Furthermore,
deformation of soft tissues out of the imaging plane impairs
measurement fidelity. To summarize, CT, MR, and US are
imaging modalities capable of measuring musculoskeletal tissue
morphology, however, morphology is only one component of
tissue state, and alone is an insufficient indicator of tissue
function and integrity.

Tissue function is related to tissue mechanical properties, such
as stiffness and strength. As many pathologic tissue changes
are accompanied by changes in tissue elasticity (Ophir et al.,
1991), measures of tissue mechanical properties may serve as
surrogate measures of tissue health and integrity. Henceforth,
we will refer to medical imaging modalities used to assess
musculoskeletal tissue mechanical properties as “functional
imaging.” Elastography is a class of functional imaging, and is
the study of elastic properties of materials. Elastography uses
principles from the physics of wave propagation to quantify
tissue mechanical properties (Ophir et al., 1991). In general,
an internally- or externally- generated stimulus causes tissue
deformation, which is measured and related to tissue elastic
modulus (Yamakoshi et al., 1990). Relaxography is another
class of functional imaging, whereby MR is used to indirectly
assess tissue integrity by measuring time constants, e.g., T2, T∗

2 ,
and T1ρ , associated with the slow motion of water molecules.
Relaxography has emerged as a potent method to study and
detect early signs of articular cartilage degeneration (Baum
et al., 2013). As cartilage degenerates, its extracellular matrix is
disrupted and proteoglycan content is reduced, which results
in increased water content and motility. Relaxographic imaging
is sensitive to early degenerative changes, as T2 relaxation
times associated with healthy cartilages (∼25–45ms) are lower
than those associated with degenerated cartilages (Dunn et al.,
2004). Overall, there are several imaging modalities capable of
assessing musculoskeletal tissue state, thus enabling creation of
personalized musculoskeletal tissue models as well as quantifying
intervention outcomes. However, it is first necessary to identify
the optimal mechanical environments of each musculoskeletal
tissue, which will serve as targets for bioinspired rehabilitation
and training.
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Just as hyper-physiologic loading can cause musculoskeletal
tissue damage (Bonnevie et al., 2015; Christiansen et al., 2015),
load deprivation due to low-gravity (Lang et al., 2006), or spinal-
cord injury (Vanwanseele et al., 2002, 2003) causes tissue atrophy
and weakening. More subtle changes in tissue loading can also
affect tissue properties. For example a lower than normal knee
contact force following orthopedic surgery has been associated
with future onset of knee osteoarthritis (Wellsandt et al., 2016).
Specifically, reductions of 10–20% of a body weight in the
medial contact forces 6-months after anterior cruciate ligament
reconstruction were associated with onset of medial knee
osteoarthritis 5-years post-operation (Wellsandt et al., 2016).
Similarly, animal experiments of unloading the weight-bearing
limbs following knee ligament transection found subsequent
muscle atrophy and loss of trabeculae (Anderson et al., 2016).
Likewise, the human proximal tibia experiences substantial bone
mineral density loss over the first year following anterior cruciate
ligament reconstruction (Mundermann et al., 2015), which may
be related to lower magnitude ambulatory tibiofemoral contact
forces (Saxby et al., 2016a; Wellsandt et al., 2016). Overall,
these results re-inforce the concept that inappropriate loading,
due to over- and/or under-loading, precede articular tissue
degeneration. It therefore follows that each tissue must have an
optimal mechanical stimulus or “sweet spot” which maximizes
anabolic tissue adaptation, where loads are neither too high to
cause tissue damage, or too low to result in tissue degeneration
(Figure 2).

Tendon Optimal Mechanical Environment
An illustrative example of a “sweet spot” in tissue regulation
is drawn from in vitro studies of Achilles tendon. The Achilles
tendon is a viscoelastic structure that links calf muscles, i.e.,
gastrocnemii and soleus, with the calcaneus bone of the foot,
thus spanning the ankle joint. The Achilles tendon is crucial

to common ambulatory tasks, such as walking, running, and
jumping, through its role in biomechanical power generation and
movement efficiency. When conditioned in a bioreactor, excised
sections of Achilles tendons have shown optimal biomechanical
response when subjected to ∼6% cyclic tensile strains (Wang
et al., 2013, 2015). Cyclic 6% tensile strains, 0.25Hz loading
cycle, 8 h per day, maintained tendon homeostasis (Wang et al.,
2013) and, importantly, regenerated injured tendon (Wang
et al., 2015). Consistent with the idea of over- and under-
loading as mechanisms for tissue degeneration, tendon tensile
strains below 3% or above 9% disrupted extracellular matrix
(Wang et al., 2013), while tenocytes optimally responded to 4–
6% strains (Joo Kim et al., 2016). These results reinforce the
need to target specific strain ranges to maintain and repair
tissue.

Cartilage Optimal Mechanical Environment
Articular cartilage caps the terminal regions of long bones
involved in synovial joints, and provides a smooth ultra-low
friction bearing surface for articulation. Articular cartilage is
considered biphasic, consisting of a solid phase composed
primarily of organized collagenous extracellular matrix
interposed with chondrocytes, highly charged macromolecules,
and immersed in an ionized interstitial fluid phase. Interaction
between solid and fluid phases causes the mechanical behavior
of cartilage, i.e., anisotropy, strength, and viscoelasticity (Mow
et al., 1980; Armstrong and Mow, 1982). Indeed, the network
of collagens and macromolecules of the extracellular matrix
provide enormous resistance to internal fluid motility, primarily
through friction. Consequently, during rapid loading of cartilage,
as occurs during sport and activities of daily living, cartilage
behaves as a nearly incompressible isotropic material. Internal
resistance to fluid flow is an essential mechanism by which
cartilage resists externally applied compression. However, as

FIGURE 2 | Schematic of mechanobiologic interplay between tissue strains that induce damage and remodeling. Within the anabolic “sweet spot” (i.e., red shaded

area), tissues experience hypertrophy and improved mechanical properties. Within catabolic regions (i.e., two blue shaded areas), which are brought about due to

over- or under-loading, tissues atrophy or degenerate, and this results in increased compliance and loss of strength. Adapted from Wang et al. (2013).

Frontiers in Computational Neuroscience | www.frontiersin.org October 2017 | Volume 11 | Article 96277

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pizzolato et al. Connecting Mechanobiology to Rehabilitation

cartilage is avascular (Buckwalter, 2002; Buckwalter and Brown,
2004), large resistance to internal fluid flow prevents effective
transport of materials and cells to injury sites. When cartilage
deteriorates due to age, injury, or disease, it becomes more
compliant (Setton et al., 1999). Consequently, collagen networks
in the extracellular matrix experience larger, and potentially
injurious, strains.

Limited interstitial motility combined with the avascular
nature of cartilage, results in minimal regenerative capabilities
(Newman, 1998; Buckwalter, 2002; Buckwalter and Brown,
2004). Understandably, research has focused on engineering
cartilage implants and effective scaffolding to promote seamless
uptake of implanted constructs into native cartilage. A recent
review of literature found in vitro compressive strains of >20%
applied at 0.5–1Hz, were optimal for promoting cartilage
cultivation (Natenstedt et al., 2015). A 20% strain is in
the middle of the physiologic range experienced by cartilage
(Grodzinsky et al., 2000), and 0.5–1Hz loading rates are similar
to the natural knee loading frequency during human gait.
Thus, ∼20% and 0.5–1Hz cartilage strain and loading rate,
respectively, provide logical targets to condition cartilage to
prevent future degeneration, and may be effective to attenuate,
stop, and even reverse degeneration in cases of established
disease.

Bone Optimal Mechanical Environment
In vitro studies provide a rich source of direct measurements
of strains that stimulate bone remodeling, as well as strains
that injury or fracture bone. As many strain measures in
the literature were acquired from experiments that did not
incorporate bone dynamics, they should be considered time-
independent mechanical targets, that may stimulate bone
remodeling (Lanyon et al., 1975; O’connor et al., 1982; Rubin
and Lanyon, 1985; Ehrlich and Lanyon, 2002). Different bone
components, i.e., cancellous and cortical bone, may have different
optimal strain ranges required to elicit adaptive remodeling.
However, a range of ∼200–1,000 µε (1µε = 1 microstrain;
1 µε = 0.0001% strain) represents everyday strains. During
vigorous physical activities, such as sprinting, bone strains
may reach peak values of ∼2,000–3,000 µε (Burr et al., 1996)
and strain rates of ∼10,000–50,000 µεs−1 (Lanyon et al.,
1975). Even during vigorous physical activities, bone strains
and strain rates do not necessarily damage tissue, as injurious
strains are ∼25,000 µε in tension or compression directed
longitudinally (Reilly and Burstein, 1974). Bone durability is
first due to its innate capacity to withstand large stresses at
low strain rates, i.e., ∼80–170, ∼100–300, and ∼150–240 MPa
in tensile, compressive, and bending modes, respectively (Reilly
and Burstein, 1974). Second, bone is a viscoelastic material
and its stiffness increases when subject to high strain rates,
for example during running and jumping. Bone strains during
strenuous physical activities have been reported to be ∼10% of
ultimate failure, well below bone fracture threshold and therefore
considered safe healthy for individuals (Burr et al., 1996). Low
impact and activities such as walking do not appear to be
oesteogenic.

ESTIMATING THE MECHANICAL

ENVIRONMENT OF MUSCULOSKELETAL

TISSUES

Musculoskeletal tissue state varies between individuals, and is
affected by disease processes. To personalize therapy, we must
account for subject-specificity, such that training programs can
be tailored to the individual. A further technical challenge is that
we need to estimate musculoskeletal tissue mechanics in real-
time, providing an appropriate form of biofeedback to enable
individuals to volitionally modulate tissue mechanics during
rehabilitation, recreation, or daily activities. To achieve this goal
we must merge whole-body representations of human physical
behavior with models of musculoskeletal tissue mechanics and
mechanobiology within efficient computational frameworks.

Currently, there is no feasible method to directly measure
in vivo loading applied to, and stresses/strains within,
musculoskeletal tissues in native human joints. Articular contact
forces can be measured in cadavers through a combination
of robotic control and mathematical modeling (Wang et al.,
2014) or by inserting pressure sensitive film between articulating
surfaces (Ihn et al., 1993). However, a valid method of applying
physiologic muscle, body, and inertial loads to cadavers has not
been reported, thus casting doubt whether these measurements
are representative of in vivo loading. Contact forces can also
be measured by instrumenting prostheses used in arthroplasty,
as has been done at knee (D’lima et al., 2005, 2006; Heinlein
et al., 2007, 2009; Fregly et al., 2012), hip (Rydell, 1966; English
and Kilvington, 1979; Bergmann et al., 2010), and shoulder
(Bergmann et al., 2007) joints. Contact loads measured by
instrumented prostheses provide critical information to implant
designers regarding the nature of the mechanical demands placed
upon these devices. Unfortunately, instrumented prosthetic
implants are only appropriate for measuring contact loads
in arthroplasty patients, who are typically elderly individuals
with substantially degenerated joints and peri-articular muscle
atrophy. Furthermore, arthroplasty, by definition, does not
preserve the native joint and restricts the activity types that
could be studied in these patients, e.g., it is unethical to ask an
elderly knee arthroplasty patient to perform vigorous athletic
movements. Consequently, contact loads sustained by implants
are unlikely to be representative of contact loads in native joints
of young physically active populations.

In addition to articular contact forces, muscle-tendon unit
forces have also been directly measured in both animals
(Walmsley et al., 1978; Hodgson, 1983; Herzog et al., 1992) and
humans (Gregor et al., 1987; Komi et al., 1987; Fukashiro et al.,
1995) by surgically implanting mechanical gauges. Proficient
surgical implantation results in minimal inflammatory response,
and instruments may left in situ in animals for days or
even weeks. However, extrapolating in vivo animal muscle-
tendon force measurements to humans is questionable and
certainly of limited clinical relevance. In humans, surgical
implantation of strain gauges into tendon may affect an
individual’s physical behavior, thus limiting ecologic validity
of the measurements. Furthermore, muscle-tendon forces are
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subject-, task-, and state-specific, thus limiting applicability of
measurements from an individual performing a specific task
to another individual, movement or control task, or the same
individual at a later date, i.e., following an intervention, suffering
an injury, or onset of disease. Given the serious limitations of
direct measurement of musculoskeletal tissue loads, researchers
have used computational neuromusculoskeletal to predict
musculoskeletal tissue loading.

Neuromusculoskeletal Models to Estimate

Musculoskeletal Tissue Loading
Neuromusculoskeletal models are bioinspired mathematical
representations of specific neurologic, physiologic, and anatomic
characteristics of an individual (Hatze, 1977; Buchanan et al.,
2004, 2005; Lloyd et al., 2005). Neuromusculoskeletal models
may be used to estimate muscle (Lloyd and Besier, 2003; Erdemir
et al., 2007), ligament (Shelburne and Pandy, 1997; Pandy and
Sasaki, 1998; Lloyd et al., 2005; Shelburne et al., 2005), and
articular contact forces (Shelburne et al., 2005; Winby et al.,
2009; Gerus et al., 2013; Manal and Buchanan, 2013; Erdemir
et al., 2015; Walter et al., 2015; Saxby et al., 2016b; Smith et al.,
2016; Konrath et al., 2017), and have been deployed across a
wide range of scientific, industrial, and clinical applications,
such as investigating fundamental properties of human motor
control (Haeufle et al., 2014; Sartori et al., 2015), evaluating
ergonomic demands of automotive operation (Rasmussen et al.,
2009), and informing medical device designs by predicting in
vivo loading conditions (Marra et al., 2015). Typically, structural
characteristics used in a model are based on measurements
from a small number of cadavers, and subsequently used as a
generic template for each analysis. Bone dimensions and mass-
inertia properties in a generic template are linearly scaled to
match subject’s dimensions (Delp et al., 1990), thus providing
a basic level of model personalization. Using generic templates
facilitates rapid and routine use of neuromusculoskeletal models,
but scaled generic models are often poor representations
of an individual’s musculoskeletal anatomy, which may lead
to inaccurate results, spurious conclusions, and potentially
detrimental clinical decisions. For example, linear scaling of a
generic model template may result in incorrect representation of
muscle moment arms (Arnold et al., 2000; Scheys et al., 2008) and
consequently erroneous joint contact force estimates (Lenaerts
et al., 2009; Gerus et al., 2013; Wesseling et al., 2016).

Several aspects of neuromusculoskeletal models can be
personalized to the individual to improve simulation results.
Bone morphology and joint mechanics have been shown to
influence kinematics and kinetics estimates (Brito da Luz et al.,
2016; Kainz et al., 2016), and knee contact forces have been shown
to be sensitive to tibiofemoral alignment (Lerner et al., 2015).
Skeletal geometry also affects muscle-tendon paths and insertion
points, which in turn define muscle-tendon lines of action,
influencing both muscle-tendon lengths and moment arms.
Overall, better representation of an individual’s musculoskeletal
anatomy has been shown to produce more realistic results,
e.g., improved representation of muscle-tendon moment arms,

improved knee (Gerus et al., 2013) and hip (Modenese et al.,
2013) contact forces estimates.

Muscle activation patterns are known to vary between
individuals and controls tasks (Tax et al., 1990; Buchanan and
Lloyd, 1995), and are affected by training (Menegaldo and
Oliveira, 2011) and pathology (Besier et al., 2009). Incorporating
experimental measures of muscle activation patterns into
neuromusculoskeletal models adds an important dimension
of personalization. Electromyography (EMG)-informed
neuromusculoskeletal models (Manal et al., 2002; Lloyd
and Besier, 2003; Manal and Buchanan, 2013; Sartori et al., 2014;
Pizzolato et al., 2015) are a class of neuromusculoskeletal models
sensitive to variations in motor control. Specifically, EMG-
informed neuromusculoskeletal models use experimentally
measured muscle excitations and movement patterns to account
for complex interplay between external biomechanics and
muscle recruitment to estimate musculoskeletal tissue loadings,
i.e., joint, muscular, ligamentous, and articular contact loads,
that may serve as boundary conditions for continuummechanics
analysis.

Finite Element Method to Estimate

Musculoskeletal Tissues Mechanical

Environment
The finite element method (FEM) is a well-established
computational method used in many branches of engineering.
In a FEM model, the real system is discretized into a field of
elements of known geometries and material properties, from
which constitutive equations may be developed. The model
system dynamics are then equilibrated by imposing a set of
boundary conditions, e.g., musculoskeletal tissue loads informed
by a neuromusculoskeletal model. Halloran et al. (2010) applied
this combined neuromusculoskeletal and FEM modeling to foot
and ankle strains, while Besier et al. (2009) verified predicted
patellofemoral stresses/strains using measurements of cartilage
deformation acquired in a vertical bore MR unit. Recently, others
have explored tibiofemoral cartilage stresses/strains during gait
(Shim et al., 2016; Smith et al., 2016) and acetabulum stress
distributions in relation to bone remodeling (Fernandez et al.,
2014). These studies have shown the potential of the FEM
models, but the models employed were not fully personalized.

Generating personalized FEM models of tissue requires
both morphology and material properties. As previously
described, different imaging modalities can be used to directly
acquire tissue-specific morphology, but non-invasive methods
to estimate material properties are scarce. Musculoskeletal
tissues have a heterogeneous multiphasic structure, resulting
in anisotropies and non-linear time-varying behavior (Freutel
et al., 2014), thus making the estimation of material properties
challenging. Relaxography (Labadie et al., 1994) is a powerful
tool to assess tissue function, but it only provides measures
which correlate with, but do not quantify, tissue material
properties (Lammentausta et al., 2006). Elastography (Ophir
et al., 1991) can provide direct measurement of musculoskeletal
tissue stiffness by analyzing the response of tissue to external
stimuli. In MR elastography, low frequency vibrations are
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externally introduced to the body by means of electromechanical
devices, while multiple images are recorded to analyse tissue
response at different time points and directions (Glaser et al.,
2012). Ultrasound elastography works by the same principle as
MR elastography, but the external stimuli can be provided by the
US transducer itself. Ultrasound-based shear-wave elastography
has recently been applied to musculoskeletal tissues (Eby et al.,
2013) to quantify stiffness, but is limited to superficial tissues
and subject to errors due to probe positioning (Brandenburg
et al., 2014). Reverse FEM could also be used to estimate
tissue material properties, whereby tissue is subject to multiple
and explicitly known applied loading conditions that alter
morphology. A numerical optimization then estimates a set of
material properties best fitting the measured morphology change
(Hansen et al., 2017).

Informing tissue material properties in FEM models through
non-invasive imaging would provide a level of personalization
well beyond current standard approaches, which typically apply
literature values established through experiments performed
on cadavers. Indeed, tissue material properties are specific to
individuals and are affected by aging, training, injury, and
disease (Arokoski et al., 2000; Buckwalter, 2002; Buckwalter
and Brown, 2004). Different tissue stress and strain patterns
will arise from FEM simulations that use different tissue
material properties, even when composed of identical tissue
morphology and subjected to identical boundary conditions.
Finally, simulations of musculoskeletal tissue mechanics
may use physiologic and personalized boundary conditions
informed by neuromusculoskeletal models (Besier et al., 2005,
2009; Fernandez et al., 2014). Overall, when FEM models
of musculoskeletal tissues are informed by measurements
of subject-specific morphology, material properties, and
boundary conditions, they are powerful tools to understand
musculoskeletal tissue mechanics.

Finite Element Method to Estimate

Musculoskeletal Tissue Remodeling
Considerable research focus has been applied to studying
relationships between applied tissue loading and morphology,
with a fundamental assumption that tissue healthmay be assessed
through structural analysis (e.g., thicker cartilage is indicative
of healthy cartilage; Koo and Andriacchi, 2007). Rigid-body
computational models have been used to determine external
joint or articular loads, which in turn have been compared to
measures of articular tissue structure using linear statistics (Koo
and Andriacchi, 2007; Koo et al., 2011; Scanlan et al., 2013; Van
Rossom et al., 2017). However, primary focus on applied loading
may not be appropriate, as other biomechanical signals, such
as extracellular fluid motion in bone (Zadpoor, 2013; Villette
and Phillips, 2016) or bone strain energy (Kerner et al., 1999),
are physically closer to cellular mechanisms of remodeling and
have been shown to influence tissue adaptation. Simulations of
trabecular remodeling have been performed whereby structural
modifications were driven by local mechanical criteria, e.g.,
minimizing density of material anisotropy with respect to
principle stresses (Fyhrie and Carter, 1986) or non-uniformity

in local stresses (Adachi et al., 1997; Tsubota et al., 2002). Such
simulations were able predict trabecular distributions consistent
with experimental observations (Fyhrie and Carter, 1990), and
results were highly sensitive to loading condition complexity.
When complex loading patterns were applied to FEM models
with embedded bone remodeling algorithms, predicted bone
material property distributions were consistent with ex vivo
imaging (Geraldes et al., 2016). Similarly, features such as bone
cortical thickness and regional femoral trabecular density were
better predicted when complex physiologic loads were applied
compared to simple axially oriented compressive loads (Geraldes
et al., 2016). When complex muscle loading patterns were
included in FEM simulations of femoral bone remodeling in
the context of prosthetic hip implants, simulations predicted
bone retention patterns in regions of muscle attachment,
which is not predicted by FEM models using simple idealized
boundary conditions (Bitsakos et al., 2005). These results suggest
incorporation of complex biomechanical loads into FEM models
is required to predict correct spatial distribution and peculiar
features of musculoskeletal tissue structure.

The complex biomechanical loads sustained by the human
body are generated by non-linear muscle dynamics and their
interaction with convoluted three-dimensional musculoskeletal
architecture. Including muscle dynamics into FEM models
directly affects spatial distribution of musculoskeletal tissue
strains, and hence influences predictions of tissue remodeling
(Duda et al., 1998). When pairing together computational rigid-
body neuromusculoskeletal and FEM models, the degrees of
freedom associated with the respective models must be consistent
(Phillips et al., 2015). For example, the popular musculoskeletal
modeling software OpenSim (Delp et al., 2007) enables users to
define complex joint motions that are both arbitrarily bounded
and computationally efficient (Seth et al., 2010). The OpenSim
model may then be used to solve external joint and muscle loads,
which can, in principle, be applied to FEM models. However, the
FEM model must be constrained in an analogous manner to the
OpenSim model to ensure model degree of freedom consistency.
This is not a peculiar consideration of OpenSim models, rather,
all hierarchical modeling frameworks which combine boundary
conditions from a rigid-body simulation to a FEM model should
respect this demand for consistency. In the context of bone
remodeling simulations, Phillips et al. (2015) presented a method
to ensure model degree of freedom consistency, but noted that
the constraints of model displacement may limit scope of the
analysis.

Optimal mechanical environments for musculoskeletal tissue
adaptation have been provided from ex vivo, in vitro, and in
silico studies. This knowledge, combined with an appreciation
for modeling complexity required to estimate musculoskeletal
tissue stresses and strains, leaves us well posited to move forward
and apply these models in clinical contexts such as training or
rehabilitation. If we can gain control of an individual’s physical
behavior through biofeedback paradigms, and target the optimal
in vivomechanical environment of their musculoskeletal tissues,
we may be able to prevent tissue deterioration or restore health.
We represent our vision in Figure 3, and its realization would be
a breakthrough for rehabilitation science andmedicine. However,

Frontiers in Computational Neuroscience | www.frontiersin.org October 2017 | Volume 11 | Article 96280

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pizzolato et al. Connecting Mechanobiology to Rehabilitation

FIGURE 3 | Framework to estimate in vivo musculoskeletal tissue stresses and strains. Medical imaging is used to create personalized musculoskeletal geometry and

FEM models of the tissue of interest. Biosensors (e.g., EMG, inertial measurement units, and/or motion capture) are used to drive a neuromusculoskeletal model,

which provides boundary conditions necessary for the FEM model to estimate musculoskeletal tissue stresses and strains. Tissue stresses and strains can be

fed-back, in real-time, to enable the person to modify their behavior to affect tissue mechanical environment. Finally, tissue and physical behavior adaptations update

the computational system indicated by orange dashed feedback arrows.

to realize this aim, current computation processes that are
performed offline must be performed in real-time.

REAL-TIME ESTIMATION AND

BIOFEEDBACK OF MUSCULOSKELETAL

TISSUE STRESS AND STRAIN

Behavioral movement changes, in the form of modulation of
body kinematics and kinetics, have been used in rehabilitation
to assist motor learning and improve function following injury
or disease (Sigrist et al., 2013). Much research has focused on
biofeedback technologies to improve movement and function
in knee osteoarthritis patients (Barrios et al., 2010; Shull
et al., 2013a,b; Van Den Noort et al., 2015). In these patients,
larger magnitude walking knee adduction moments have been
associated with structural progression of knee osteoarthritis (i.e.,
joint space narrowing;Miyazaki et al., 2002) and knee pain (Amin
et al., 2004), making reduction of the magnitude of the knee
adduction moment a logical target for physical therapy.

Numerous studies have combined biofeedback technologies
with gait modification strategies to modify joint kinematics or
external loads with the aim of improving health outcomes or
reducing movement variability. For example, real-time visual
biofeedback of upper-body posture (Hunt et al., 2011) and
dynamic knee alignment (Barrios et al., 2010) have been

used to reduce walking knee adduction moments in healthy
individuals and knee osteoarthritis patients, respectively. Knee
braces instrumented with auditory feedback have been used
to reduce knee loading rates during walking (Riskowski et al.,
2009), while instrumented footwear has been used to reduce
lateral foot pressures through vibrotactile feedback (Dowling
et al., 2010). Notably, Shull et al. (2013b) provided haptic
feedback, delivered through body worn vibrating motors, to
inform participants of their changes in foot progression and
trunk sway during treadmill walking. This resulted in patients
with knee osteoarthritis reducing their peak knee adduction
moment magnitudes. However, the main limitation of modifying
external kinematics and kinetics is their tenuous relationships
with internal loads (Walter et al., 2010, 2015; Winby et al., 2013;
Saxby et al., 2016b), which implies weaker still relationships to
articular tissue stresses and strains. The reason for these poor
relationships is external biomechanics cannot account for the
direct effect of muscles on musculoskeletal tissue loading (Walter
et al., 2010; Winby et al., 2013; Saxby et al., 2016b).

As previously discussed, neuromusculoskeletal models can
provide FEM with appropriate boundary conditions to estimate
musculoskeletal tissue stresses and strains (Besier et al., 2005,
2009; Fernandez et al., 2014). This may be done in an offline
analysis, but real-time estimation of musculoskeletal tissue
stresses and strains requires interfacing with, and enabling data
flow from, external devices to modeling software to complete
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necessary computations within given time constraints. For
neuromusculoskeletal models, this means solving kinematics,
kinetics, and muscletendon forces in real-time. Muscle forces
have been calculated in real-time using a static optimization
method (van den Bogert et al., 2013), where an algorithm
determined the minimized weighted sum of muscle forces
that matched external joint moments (Van Der Helm, 1994).
However, the real-time approach presented by (van den
Bogert et al., 2013) was based on a generic anatomic
model that could not be personalized. Model personalization,
noted earlier in this review, is essential when coupling
neuromusculoskeletal and FEMmodels of musculoskeletal tissue
mechanics. Furthermore, many neuromusculoskeletal models
rely on mechanical optimization to solve the muscle redundancy
problem (Crowninshield, 1979; Crowninshield and Brand, 1981),
however, mechanical optimization methods struggle to predict
many empirical features of muscle coordination, such as
patterns of muscle activation (Herzog and Binding, 1992), co-
contraction (Herzog and Binding, 1993), and force sharing
(Binding et al., 2000). To our knowledge, the first use of
a real-time EMG-informed neuromusculoskeletal model was
by Manal et al. (2002), and first applied to musculoskeletal
tissue loading in Achilles tendon rehabilitation by Manal
et al. (2012). These papers advanced the field and should be
acknowledged as pioneering, but were limited in application to
quasi-static movements and a single joint with few degrees of
freedom. Recently, Pizzolato et al. (2017b) developed software,
based on OpenSim (Delp et al., 2007), to calculate full-body
kinematics and kinetics (Pizzolato et al., 2017a), as well as
musculoskeletal tissue loading (Pizzolato et al., 2015, 2017b), in
real-time. Their method is fully extensible to other joints and
musculoskeletal tissues, but is currently limited to expensive
and immobile laboratory-based stereophotogrammetry systems
(Pizzolato et al., 2017b).

Wearable sensors that accurately estimate human kinematics
are a promising alternative to laboratory-based measurement
systems. Linear accelerometers have been used for many years
to quantify movement patterns relative to the gravitational
field and ambulatory temporal-spatial parameters (Kavanagh
and Menz, 2008), but their estimates of joint kinematics are
limited by signal drift caused by integration errors (Djuric-Jovicic
et al., 2011). Improvements in microelectromechanical systems
have enabled embedding tri-axial accelerometer, gyroscope, and
magnetometer into a single sensor. These integrated sensors are
known as inertial measurement units and are able to estimate
spatial orientation (Sabatini, 2006; Madgwick et al., 2011)
and, when used in combination with anatomic models, joint
angles. Strain sensors are another class of promising wearable
sensors that can be used to estimate joint angles (Nakamoto
et al., 2016). Strain sensors are low profile, flexible, and can
be easily embedded into garments or mounted on the skin
(Amjadi et al., 2016). To date, strain sensors have been used in
biomechanics primarily to classify movement (Mattmann et al.,
2007) or estimate single joints angles (Nakamoto et al., 2016).
However, continuous technologic improvements in smart textiles
(Honarvar and Latifi, 2017) may soon lead to advanced garments
capable of estimating full-body kinematics.

Measuring or estimating reaction forces between body and
ground is required to correctly estimate load applied to specific
musculoskeletal structures, such as joints and ligaments. In
laboratory conditions, ground reaction forces are acquired via
ground mounted force plates, but alternative solutions are
required for applications in the real-world. Pressure-sensitive
insoles can be used to estimate the normal component of
the ground reaction force, but they neglect shear components
(Chesnin et al., 2000). Conversely, shoes instrumented with tri-
axial force sensors have shown agreement with force plates for all
components of the ground reaction force vector (Liedtke et al.,
2007). Alternative to measurements, deep learning algorithms
have been shown to correctly estimate ground reaction forces
during walking (Oh et al., 2013). However, these data-driven
models require big data as training sets. Mechanical approaches
can be used to solve dynamics of motion and estimate ground
reaction forces without body-worn force sensors. For example,
the zero-point moment is an algorithm developed for humanoid
robots (Xiang et al., 2009) that has also been successfully applied
human biomechanics (Fluit et al., 2014; Dijkstra and Gutierrez-
Farewik, 2015). However, to correctly estimate ground reaction
forces, full-body kinematics and subject-specific musculoskeletal
models are required (Fluit et al., 2014).

Overall, advances in wearable sensors, i.e., smaller, lighter,
low-power, and integrated sensor systems, will enable novel
real-world applications (Brodie et al., 2008). Currently, intrinsic
limitations and measurement inaccuracies associated with these
devices prevent their use in advanced biomechanical analysis.
Combining wearable sensors with sophisticated biomechanical
models may help to minimize the limitations associated with
wearable sensors. Realistic musculoskeletal models, such as
those offered by OpenSim (Delp et al., 2007), associated with
probabilistic frameworks that adequately model wearable sensor
inaccuracies (Latella et al., 2016) and computationally efficient
real-time software architectures (Pizzolato et al., 2017a,b), have
the potential to accurately estimate human motion in real-world
setting free from the laboratory.

As previously stated, boundary conditions for subsequent
FEM model simulations may be computed in real-time using
neuromusculoskeletal models. However, even if appropriate
boundary conditions are provided, real-time solutions to
continuum mechanics problems is an ongoing computational
challenge. When implementing entire musculoskeletal structures
in FEM models (e.g., complete bones), computational demand
may be substantially reduced by spatially averaging many
microstructural features, such as trabecular and cortical bone
architecture. However, spatial averaging neglects analysis of
tissue anisotropy and micro-architecture, which are known to
influence tissue function (Stein et al., 2010). Generally, FEM
models are computationally demanding and not solvable in
real-time. Thus, FEM models must be reduced to surrogates
by a process known as “Kriging” (Matheron, 1963), whereby
the continuum model is first solved offline for all possible, or
physiologic, configurations (Wu et al., 2014; Eskinazi and Fregly,
2016), and simulation results are then be stored for future real-
time use. However, it is computationally expensive to establish
robust surrogates of musculoskeletal tissue continuum models,
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given the large data throughput imposed by performing many
multi-scale simulations (Erdemir et al., 2015). One potential
strategy we are pursuing is use of high-performance computing,
whereby a large number of simulations are managed and solved
by a remote computing cluster.

CHALLENGES AND FUTURE DIRECTIONS

Our proposed framework to modify an individual’s physical
behavior to optimize musculoskeletal tissue mechanobiology
(Figure 3) is feasible and currently being developed. In Table 1

we have summarized several challenges and possible future
directions discussed in the text. To move these bioinspired
technologies to clinical settings we need to direct our efforts
toward: (1) rapid generation and seamless integration of
personalized neuromusculoskeletal and FEM models, (2) use of
wearable sensors, and (3) improvement of biofeedbackmodalities
for stress and strain modulation.

Currently, creating personalized anatomic models from
medical imaging is expensive (i.e., involves costly image
acquisition and numerous man-hours to process raw medical
imaging into high-fidelity computational models). However,
improvements in image processing software, such as automatic
segmentation and statistical shape modeling (Zhang et al.,
2014; Zhang and Besier, 2017) may greatly accelerate model
generation. Statistical shape modeling is promising as it may
limit the need to acquire expensive medical imaging, relying
instead upon a musculoskeletal atlas database to characterize

an individual’s anatomy from sparse or meta-data (Zhang and
Besier, 2017). However, it is unclear whether current publically
available medical imaging databases are sufficient to represent the
variability in musculoskeletal anatomy in clinical populations,
or those with traumas or implants. This is a limitation that will
eventually be addressed by data sharing amongst research teams,
which is an effort we thoroughly support.

Another limitation is that motion capture systems typically
used in research gait laboratories are seldom used into clinical
settings, because of their complexity, space requirements,
and high purchase and operational costs. For bioinspired
technologies to be broadly adopted, we need to free ourselves of
traditional motion capture systems and look to wearable sensors
to measure movement, external loads, and muscle excitation. A
promising and relatively inexpensive example of wearable sensors
that could help us on this mission are inertial measurement
units, which provide a wealth of data that may be used to
determine whole-body motion. Currently, inertial measurement
units are limited by issues such as insufficient shielding from
electromagnetic interference (i.e., while walking on treadmills
or near informatics cabling) and registration of body-worn
sensor positions to anatomicmodels.Wireless EMG systems have
been used effectively in research and clinical settings for many
years, and are now being integrated with inertial measurement
units and other sensors as standalone devices or embedded
into garments. Future research should aim to first establish
if these wearable sensor systems can match the performance
of traditional motion capture systems, and then minimize

TABLE 1 | Summary of the various challenges faced in modeling tissue mechanobiology and using biofeedback to modulate in vivo tissue strains in real-time.

Area Challenge Possible solution

Mechanobiology Validating in vitro and in silico estimates of optimal

remodeling strains

Targeted mechanobiology experiments in bioreactor

Neuromusculoskeletal

models

Rapid generation of personalized models Rapid autosegmentation of medical imaging

Statistical shape modeling based on large medical imaging databased

FEM models In vivo, non-invasive, accurate determination of

material properties

Advancements in elastography and relaxography methods

Numerical optimization via reverse FEM

Real-time evaluation Surrogate models

High performance computing

Generation of robust surrogates of continuum

models

Open challenge

Wearable biosensors Measuring body motion, loading, muscle activation

out of the laboratory

Wearable biosensors embedded in garments

Reducing the number of required sensors

Accurate kinematics estimation Inertial measurement units or strain sensors coupled with accurate anatomic models

and probabilistic frameworks

Accurate kinetics estimation Deep learning algorithms and training databases

Zero-point moment algorithms coupled with optimization, deep learning, or pressure

sensors to solve for double stance

Instrumented shoes

Biofeedback Establishing effective biofeedback variable Processing tissue strain using mechanoreceptors transfer functions

Clinical translation Seamless technology simple to use Target specific tissues to reducing the number of sensors and details of models

Analyse the effect of model simplifications on tissue strain prediction
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the number of sensors required to drive neuromusculoskeletal
models.

Very little is currently known about the ability of individuals
to volitionally modulate musculoskeletal tissue stresses and
strains in response to real-time feedback. To our knowledge,
musculoskeletal tissue stresses and strains have never been
estimated in real-time, let alone used to modify physical
behavior. To date, only two research groups (Manal et al., 2012;
Pizzolato et al., 2017b) have provided real-time biofeedback of
musculoskeletal tissue loads, but their work has been limited to
muscle-tendon and rigid articular contact forces, and did not
model tissue stresses and strains.

We know from previous studies people can use visual
biofeedback to manipulate external biomechanical variables,
muscle excitations, and tibiofemoral contact forces (Manal et al.,
2012; Pizzolato et al., 2017b). Future research should strive
to identify the biofeedback modality optimal for modulating
musculoskeletal tissue stresses and strains through changes
in human movement and muscle activation. Further, it may
be possible to draw inspiration from a variety of native
mechanoreceptors in the human body to provide enhanced visual
biofeedback of stresses and strains. We imagine a technology
whereby estimates of musculoskeletal tissue loading (i.e., forces
or stresses and strains) could be transformed according to golgi
organelle and muscle spindle transfer functions to provide more
intuitive biofeedback.

By optimizing the mechanical environment it may be possible
to regulate musculoskeletal tissue mechanobiology, potentially
preventing disease, or restoring degraded tissue to health.

Consequently, modeling and controlling physical behavior
of individuals has enormous implications for development
and management of chronic musculoskeletal diseases such
as osteoarthritis or tendinopathies. We have presented a
framework to move from in vitro and ex vivo studies of
tissue mechanobiology to personalized in silico real-time
models of musculoskeletal tissue loading. Integrating and
translating these bioinspired technologies to clinical settings
will prove challenging and resource intensive. Skepticism
from clinicians accustomed to generic recommendations
based on linear statistics is anticipated and will need to be
overcome by demonstrating the efficacy and clinical utility
of the proposed new approach. However, there awaits a wide
spectrum of important clinical conditions to which these
bioinspired technologies could be applied with the goal of
reducing the socio-economic burden of musculoskeletal
diseases.
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One of the current challenges in human motor rehabilitation is the robust application

of Brain-Machine Interfaces to assistive technologies such as powered lower limb

exoskeletons. Reliable decoding of motor intentions and accurate timing of the

robotic device actuation is fundamental to optimally enhance the patient’s functional

improvement. Several studies show that it may be possible to extract motor intentions

from electroencephalographic (EEG) signals. These findings, although notable, suggests

that current techniques are still far from being systematically applied to an accurate

real-time control of rehabilitation or assistive devices. Here we propose the estimation

of spinal primitives of multi-muscle control from EEG, using electromyography (EMG)

dimensionality reduction as a solution to increase the robustness of the method. We

successfully apply this methodology, both to healthy and incomplete spinal cord injury

(SCI) patients, to identify muscle contraction during periodical knee extension from the

EEG. We then introduce a novel performance metric, which accurately evaluates muscle

primitive activations.

Keywords: brain-machine interface, muscle primitives, corticospinal mapping, linear decoders, gait rehabilitation,

lower-limb exoskeletons

1. INTRODUCTION

A brain-machine interface (BMI) is a tool that can translate brain activity into device control
commands, thus enabling an alternative pathway for the brain to physically act upon the
environment (Wolpaw et al., 2002). In a rehabilitation context, BMIs are conveniently combined
with wearable robots such as exoskeletons (Contreras-Vidal et al., 2016). One of themain challenges
is the ability of restoring ambulatory functions in paraplegic patients with neurological conditions
including incomplete spinal cord injury or stroke (del Ama et al., 2012). Within this scope, the
combination of BMIs and lower limb exoskeletons can may exploit the concept of neuroplasticity,
i.e. linking descending neural commands and peripheral somatosensory feedback to promote
the reorganization of central nervous system damaged pathways in charge of motor control
(López-Larraz et al., 2016).
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BMI-extracted neural commands, which encode user’s
motor intentions, should be subsequently translated into
control commands to the exoskeleton in real-time during
the rehabilitation procedure. Reliable decoding of motor
intentions and accurate timing of the robotic device actuation
is fundamental to optimally enhance the patient’s functional
improvement (López-Larraz et al., 2016). It has been shown that
motor intentions can be detected from electroencephalographic
(EEG) signals and used to trigger an ankle exoskeleton
so that the assisted movement was perceived as voluntary
(Mrachacz-Kersting et al., 2012).

Current research has also focused on the relationship between
low-frequency cortical modulations and motor tasks. Slow-
cortical potentials (SCPs) reflect shifts in the cortical electrical
activity lasting from several hundreds milliseconds to several
seconds (Birbaumer et al., 1990; Shibasaki and Hallett, 2006).
An example of this paradigm are movement-related cortical
potentials (MRCPs) (Jiang et al., 2006; Shakeel et al., 2015).
SCPs are triggered naturally as a person commences or imagines
the onset of a movement. Moreover, there have been studies
proposing the use of global cortical activity to extract kinematic
information of upper and lower limb movements. In these
studies, kinematic parameters were directly decoded from the
activity of larger regions of the scalp by applying linear decoders
to SCPs for decoding both upper and lower limb jointmovements
(Bradberry et al., 2010; Presacco et al., 2011), sitting and
standing states (Bulea et al., 2014), finger movements (Paek
et al., 2014), and types of grasping (Agashe et al., 2015). Other
studies have dealt with the characteristics of the performed
movement, showing that hand kinematics are better decoded
when continuous and linear movements are performed (Úbeda
et al., 2015) and exploring the possibility of using them to classify
reaching directions (Úbeda et al., 2017).

In general, the use of linear decoders applied to SCPs
are subject of controversy. Mechanical artifacts strongly affect
the EEG low-frequency range during cyclic motion activities.
This is suggested to directly influence the reliability of these
decoders (Castermans et al., 2014; Costa et al., 2016). Moreover,
other studies show that performance is not statistically different
from chance levels due to the inherent properties of linear
regression (Antelis et al., 2013). As a result, there is general
consensus suggesting that current techniques are still far from
being systematically applied to an accurate real-time control of
rehabilitation or assistive devices (Úbeda et al., 2017). Indeed,
only a few attempts reported to have obtained a reliable real-
time decoder of movement kinematics (Bradberry et al., 2011).
This study has been as well criticized for the way results are
assessed which lead to performance similar to chance level (Poli
and Salvaris, 2011).

The present study seeks to establish a reliable procedure to
be applied in future real-time environments. Previous works are
based on a single macroscopic regression function to directly
map neural activity into the emerging/desired limb kinematics.
In this, a single regression function may not be sufficient
to capture all intermediate neuro-mechanical processes, thus
only partly representing the mechanisms underlying movement.
We suggest a possible solution to these major problems

that is based on the combined use of linear decoders (for
extracting high-level neural information) and multi-muscle
electromyography dimensionality reduction (for capturing the
basic spinal primitives of muscle control). Motor primitives
encode information of the neural drive and have shorter
pathways with respect to the cortical activity. As a consequence,
our proposed method may be intrinsically robust (better signal
to noise ratio) because it enables reconstructing a shorter neuro-
mechanical gap (from brain activity to spinal cord activity)
and applies the regression to a lower dimensional space (low-
dimensional muscle primitives). Importantly, primitives have a
lower dimensionality than lower limb kinematics, i.e., 12 degrees
of freedom are needed to control 2 legs but only 4 primitives
are needed to represent lower limb locomotion. To explore
this methodology, we propose a novel approach that consists
of detecting knee extensions from SCPs through the decoding
of EMG primitives extracted from the recorded activity of the
quadriceps femoris group.

2. MATERIALS AND METHODS

2.1. Experimental Setup
Four patients (P01–P04) (2 males and 2 females, age: 43.5
± 12.4 years old) were recruited from the patients services
at the National Hospital for Spinal Cord Injury in Toledo.
Only adults with incomplete spinal cord injury (iSCI) lesion
above D7-D8, with ASIA C or D were selected. All patients
were able to maintain standing position and ambulate for 30
m without external assistance and had enough functionality
and strength in the upper limbs to use a walker or crutches.
Additionally, four healthy subjects (H01–H04) (3 males and
1 female, age: 33.5 ± 7.9 year old) participated in the
study. This study was carried out in accordance with the
recommendations of the ethical committee of the National
Hospital for Spinal Cord Injury and Miguel Hernández
University of Elche, with written informed consent from
all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by both committees.

Subjects seated comfortably on a chair and were asked
to perform self-paced knee flexion-extension movements from
full flexion (90◦) to full extension (0◦) (Figure 1, left). For
each subject, data were recorded for 3 min, divided into
30-s runs with a 15-s rest period between them. Subject
P04 only performed five runs due to fatigue. In the case
of healthy subjects, the dominant leg was used to perform
the movements. In the case of SCI patients, the movements
were performed with the leg most affected by the lesion. All
patients were capable of performing the knee flexion-extension
movements, although more resting time between runs was given
when necessary. During the performance of the knee flexion-
extension movements, electroencephalographic (EEG) signals
were recorded with two gUSBamp amplifiers (g.Tec, GmbH,
Austria) at 1,200 Hz from 32 electrodes placed over the central
and parietal cortex according to this distribution: FZ, FC5, FC1,
FCZ, FC2, FC6, C3, CZ, C4, CP5, CP1, CP2, CP6, P3, PZ, P4,
PO7, PO3, PO4, PO8, FC3, FC4, C5, C1, C2, C6, CP3, CPZ, CP4,
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FIGURE 1 | Experimental setup (left). Example of muscle primitive extracted during the performance of several self-paced extension movements: synergy weights

(center) and non-negative activation coefficients (right). In this example, the subject performed four knee extensions in a period of 10 s.

P1, P2 and POZ. Subjects were asked to avoid blinks and head
movements during each run. EMG signals were also recorded
at 2,000 Hz from bipolar electrodes placed on 16 different
muscles (Wave Wireless EMG, Cometa SRL, Italy). Additionally,
knee angles were measured at 30 Hz using two inertial sensors
(Technaid SL, Spain) placed on the thigh and on the leg.

2.2. Signal Preprocessing
First, EMG signals were resampled to match EEG signal time
stamps. Raw EEG signals were analyzed to reject blinks. To
that end, sections of EEG data with abnormal amplitude were
rejected. Afterwards, EEG signals were low-pass filtered with a
zero-phase 2nd-order Butterworth filter (2 Hz). Finally, EEG data
from each electrode were standardized by subtracting, for each
time sample (t), the mean (V̄) of the signal and dividing the result
by the standard deviation (SDV ) as shown in Equation (1). This
standardization was computed for each individual run.

EV[t] =
V[t]− V̄

SDV
(1)

Raw EMG recordings were band-pass filtered (30–100 Hz),
full-wave rectified, and low-pass filtered (6 Hz) using a zero-
phase second-order Butterworth filter. For each subject and
muscle group, the resulting linear envelopes were normalized
with respect to the overall peak amplitude for that muscle.
This was selected as the maximum value of a 50 ms moving-
average window applied to the muscle linear envelopes across
each recorded run (Gonzalez-Vargas et al., 2015).

2.3. Muscle Excitation Primitives
Non-negative matrix factorization (NNMF) (Lee and Seung,
2001) was performed for the set of consecutive extension cycles
of each subject. Muscle activations are inherently non-negative.
NNMF decomposes a data matrix (EMG activity) into a synergy
matrix, W, and a command matrix, A, such that EMG = W∗A,
where the components of EMG, W, and A are all non-negative.
During the knee flexion-extension exercise two primitives were
identified, one active during the knee flexing phase and one

during the knee extending phase. The knee extending phase was
performed against gravity, resulting in pronounced extension
primitives when compared to those extracted during the flexing
phase. As a consequence, extension primitives (non-negative
factors) were selected as major determinants of periodical multi-
muscle contractions during the self-paced knee movements. An
example of this behavior can be observed in Figure 1, right,
where a representative subject performs four consecutive knee
extensions. Each extension is commanded by an almost equal
activation of all the muscles included in the quadriceps femoris
group and can be explained by the extension primitive.

2.4. Linear Decoder
To decode the muscle primitive in charge of knee extension, a
multidimensional linear regression has been applied in a similar
way to Úbeda et al. (2017) and according to the formula:

x [t] = a+
N

∑

n=1

L
∑

k=0

bnkSn
[

t − G∗k
]

(2)

where x[t] is the non-negative factor of the primitive at time t and
Sn is the voltage measured at electrode n. L is the number of lags
(past voltage samples), G is the gap between lags, N the number
of electrodes and a and b are the weights of the linear regression.
N corresponds to 16 (number of electrodes introduced in the
decoder). L was fixed to 10, meaning that 10 time samples per
electrode are selected to feed the decoder.

2.5. Automated EEG-Based Detection of
Periodical Muscle Contractions
2.5.1. Electrode Selection
Several distributions of electrodes have been evaluated to extract
valuable information of the activation of different cortical regions
during the performance of the movements (Figure 2). The first
distribution covers all the recorded electrodes (global activity).
This is in line with previous decoding studies where it is
suggested that regions not located over the motor cortex have
a significant contribution in decoding performance and, thus,
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FIGURE 2 | Electrode distributions used in the analysis. Each picture shows the location of each selected electrode (black dots) over the cortex. The colored area

represents the approximate region of cortical activation.

they should not be discarded in the analysis (Agashe et al.,
2015). However, under a classical electrophysiological basis,
cortical modulations in charge of lower-limb motor control
should be mainly located over the motor and premotor cortex
midline (Brouwer and Ashby, 1990). Two distributions (midline
region and midline) have been selected based on the assumption
that motor cortex regions will provide a better performance
than the activity of the whole cortex. The final distribution
(lateral regions) has been selected to show if regions apparently
not related to lower-limb motor activity have a significant
contribution in the decoding performance.

2.5.2. Decoding Process
The proposed linear decoder has been applied for each electrode
distribution. To improve decoding performance, the parameter G
(gap) has been swept to evaluate a processing time interval from
100 ms to 2.5 s. Processing time interval has been limited to 2.5 s
to minimize the effect of previous cycles in the decoding process.
For each subject, a cross-fold validation (6-folds) has been
applied (5-folds in the case of subject P04 who only performed
5 runs). For each fold, the training data was used to compute the
weights of the linear regression that are then applied to the test
data to obtain the decoded non-negative factors. We computed
the Pearson correlation coefficient between the real and decoded
primitives for each testing fold and reported the performance in
terms of average correlation. All electrode distributions have been
then compared to select the one with higher performance. From
the selected distribution, the processing time interval with the
higher correlation has been fixed for further analysis.

2.5.3. Significance Analysis
Shuffled data have been used as input to assess if the decoding
accuracy was above chance levels. Shuffled data was obtained by
randomly mixing trials of real cortical data and the associated
non-negative factors to keep the temporal structure of the
EEG signals in a way similar to Agashe et al. (2015). Shuffled
data were filtered and standardized in the same way as the
actual experimental data. Shuffled data decoding coefficients
were computed for each subject with the previously selected
best processing time interval for each electrode distribution. This

means that, for each electrode distribution and subject, the cross-
fold validation was applied to obtain a total of 96 correlation
coefficients for healthy subjects and 92 for SCI subjects. This
helps to avoid chance effects due to the stochastic nature of the
process and also reduces the possible bias of a particular electrode
distribution or subject.

2.5.4. Identification of Muscle Contractions
The EEG-decoded muscle primitive was then compared to the
one extracted from EMGs. To that end, peaks of maximum
contraction were computed for both the original and decoded
signal to obtain similarity metrics. Peaks were detected by
looking for downward zero-crossings in the first derivative that
exceeded a slope threshold and an amplitude threshold. The slope
threshold was fixed to a very low value (10−6) while the amplitude
threshold was fixed to 0.3 in the case of the original primitive and
0.05 in the case of reconstructed primitives, which were usually
decoded with lower amplitudes.

True positive rate (TPR) was computed as the number
of positive matches between the peaks extracted from both
signals divided by the total number of extracted peaks. Only
reconstructed peaks, which were closer thanM times the average
peak-to-peak distance in the original signal, were considered
as positive. Detection rate (DR) was computed as the number
positive matches divided by the number of peaks extracted
from the original signal. Finally, time shift (TS) was computed
as the average time shift between all the positive extracted
peaks and their corresponding peak in the original signal. For
comparison purposes, all the similarity metrics were computed
for three different values of the parameter M: 0.1, 0.25, and
0.5. Additionally, the previously generated shuffled data was
processed in the same way and compared to real data to evaluate
the significance of the identification.

3. RESULTS

We performed three tests to evaluate the performance of
the proposed methodology. The first test assessed decoding
performance trends across subjects and conditions. Figure 3

shows average decoding performance across subjects and cortical
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FIGURE 3 | Average decoding performance for four different electrode configurations (global activity, midline region, midline, and lateral regions). Curves computed

after sweeping the processing time interval (from 0.1 to 2.5 s) in the decoding protocol have been represented for healthy subjects (first and second row) and

incomplete spinal cord injured patients (third and fourth row).
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regions. Each plot shows four curves that correspond to each
preselected electrode distribution including: global activity,
midline region, midline, and lateral regions. Each curve evaluates
decoding performance for different processing time windows
ranging from 100 ms to 2.5 s. Results show that decoding
performance steadily increases from the minimum time window
(i.e., 100 ms) and peaks at a subject-specific processing time
interval (see Table 1). Then, decoding performance steadily
decreases to levels similar to the starting point. This behavior is
particularly evident for subjects H01, H02, H04, and for patient
P03. Across all subjects and conditions decoding performance
peaks approximately in the time frame 2–3 s (Figure 3). Subject
H04 and patient P03 have however earlier peak decoding
performance values, i.e., 0.66 s. Interestingly, lateral areas
generally show worst decoding performance than global and
midline areas. This is particularly visible in most of the subjects
and patients, i.e., P01, P02, P04, H01, and H02. This is however
not so clear in subjects H03 and H04 where lateral area decoding
performance is most favorable.

The second test (Figure 4) identified the best decoding
performance levels for each subject. These correspond to
the processing time interval peaks in a particular electrode
distribution (see Table 1). Additionally, chance levels (mean and
STD) are represented for both healthy and SCI patients. The
results obtained for all subjects are significantly different from
chance levels (Wilcoxon Sum-Rank Test, p < 0.05). For most of
the subjects and patients average decoding performance is >0.3
(subjects H04 and P04). Decoding performance for subjects H02
and P01 is >0.5. Interestingly, there is no significant difference
between healthy and SCI subjects (Wilcoxon Sum-Rank Test, p >

0.05). Figure 5 shows a representative example of how decoding
performance influences the behavior of the reconstructed signals.
It presents the original muscle primitive (activation coefficients)
and its reconstruction for 4 representative folds. Figure 5 (top-
left and top-right) shows a similar behavior of the reconstructed
signal despite the fact that decoding performance largely differs
between these 2-folds. In the case of patient P02 (Figure 5,
bottom-left), the decoding performance is high but the amplitude
level mismatches between the original and the reconstructed
signal. Finally, a poor reconstruction is shown in Figure 5

(bottom-right), where the reconstructed primitive does not
correctly match the original signal.

The third test assessed the ability of detecting periodical
muscle contraction patterns based on reconstructed primitives
and subsequently investigate how well they matched with the
original primitives, i.e., those experimentally derived from EMG
information. True positive rate (TPR), detection rate (DR), and
time shift (TS) are presented (mean and STD) in Table 2 for
each selected detection margin (M). From the table, we can see
that TPR and DR increase with higher margins. Unsurprisingly,
TS also increases with M. In this situation, the matching peaks
rise in number, as there is a wider window of detection.
TPR is generally consistent with previously obtained decoding
performance. Subjects with higher decoding performance, such
as H02 and P01, obtain the best results. Good TPR is also
achieved for subjects H01 and P03 who, on the contrary, have
lower correlation levels. Significant TPRs have been highlighted

TABLE 1 | Selected electrode distribution and processing time interval (PTI) for

each subject.

Subject Electrode

distribution

PTI (s) CC (mean ± STD)

H01 Midline 1.83 0.38 ± 0.13

H02 Midline region 2.16 0.56 ± 0.12

H03 Lateral regions 2.50 (max) 0.36 ± 0.18

H04 Global activity 0.66 0.28 ± 0.10

P01 Midline 2.50 (max) 0.50 ± 0.17

P02 Midline 2.33 0.36 ± 0.19

P03 Midline 0.66 0.36 ± 0.18

P04 Midline 2.33 0.28 ± 0.11

The corresponding decoding performance in terms of correlation coefficient (CC) is also
shown.

FIGURE 4 | Optimal decoding performance for each subject (mean ± STD).

Chance levels were also computed to infer the significance of the results

(Wilcoxon Sum-Rank Test, ***p < 0.001).

in the table after comparing them to chance levels (Wilcoxon
Sum-Rank Test, p > 0.05). Interestingly, TPR computed for M
= 0.5 is always above chance, while the remaining values are
not always significantly different. To illustrate how the peaks
are detected on both the original and the reconstructed signal,
Figure 6 shows an example for the same representative subjects
and folds shown in Figure 5. Peak detection performance on
each of the graphs is clearly consistent with previous results on
signal reconstruction. Figure 6 (top-left), with the best decoding
performance of all four, presents a very good detection of
original peaks (13 correct detections, 1 false detections, and 3
no detections). Figure 6 (top-right) also shows a high number
of accurate detections (11 correct detections, 2 false detections
and 3 no detection). The number of detected peaks is quite
lower for Figure 6 (bottom-left), although peaks are identified
with very good precision (9 correct detections, 0 false detections,
9 no detections). This is probably due to the bad scaling
of the decoded primitive whose amplitude was comparatively
lower than the rest. Finally, the fold with the worst decoding
performance (Figure 6, bottom-right) shows, consequently, a
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FIGURE 5 | Example of reconstructed primitives for several representative subjects and folds, including the Pearson correlation coefficient (CC) obtained for the

particular fold. Decoding performance does not depend on amplitude or baseline (subject P02) but decreases with increased phase delays (subjects H03 and P04).

quite low identification accuracy (6 correct detections, 3 false
detections, 5 no detections).

4. DISCUSSION

Themain goal of this study was to obtain a robust way to translate
brain signals into control commands provided to assistive devices
such as robotic exoskeletons. For this purpose we proposed to
identify motor primitives from SCPs. This enabled extracting
high-level motor-related neural information and capturing the
basic spinal primitives of multi-muscle control. As many motor
processes are usually rhythmic, this methodology can provide a
framework to identifiy periodical muscle activation from brain
modulations that could be later applied to map full lower-limb
mechanical information.

Current EEG-based continuous decoding techniques measure
performance based on the cross-correlation between the
original and the reconstructed signal. This correlation (Pearson
correlation coefficient) is reported to be generally <0.4, which
leads to difficulties in robustly translating the approach to a
real-time assistive or rehabilitation scenario (Bradberry et al.,
2010; Paek et al., 2014; Úbeda et al., 2017). One possible reason
for low correlation metrics is the fact that current paradigms
create direct mappings to body kinematics as a pure function
of brain activity, thus bypassing all intermediate non-linear
transformations, i.e., transmission pathways at the spinal and

at the muscular level. As a consequence, important information
may not be captured by a single macroscopic mapping. In our
study we have decoded muscle primitives from brain activity
instead of the direct kinematics of the lower limb. Results showed
high decoding performance significantly above chance-level for
all participants (Figure 4), with correlation coefficients being
on average between 0.3 and 0.4, and reaching higher standard
deviation values of up to 0.7. The obtained decoding performance
was in line or higher than what was obtained in previous studies
(Bradberry et al., 2010; Paek et al., 2014; Úbeda et al., 2017).

Moreover, our proposed approach offers the possibility to link
decoded primitives to neuromusculoskeletal (NMS) models. In
this context, it is not important to decode the exact shape and
amplitude of activation primitives but just their timings. These
would represent, in our formulation, the descending neural burst
produced by the central nervous system (CNS) in the control of
a group of muscles. In combination with modeling we propose
in the near future to translate this burst into precisely timed
mechanical function.

Our study resulted into three main findings: (1) decoding
performance generally increases when only taking into account
the information from motor cortex areas related to lower-
limb movements and, thus, our approach is physiologically
consistent with previous results of cortical motor control
(Brouwer and Ashby, 1990), (2) we provide evidence that the
processing time interval should be increased to achieve the
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TABLE 2 | Similarity metrics (mean ± STD) for different detection margins (M).

Subject M TPR (%) DR (%) TS (%)

0.1 42.07 ± 9.92 40.99 ± 12.72 0.08 ± 0.05

H01 0.25 74.19 ± 10.33 72.39 ± 18.28 0.19 ± 0.04

0.5 87.48 ± 3.73 84.63 ± 14.32 0.26 ± 0.07

0.1 60.51 ± 13.92 53.18 ± 15.22 0.06 ± 0.01

H02 0.25 88.08 ± 11.02 76.78 ± 13.31 0.11 ± 0.01

0.5 98.81 ± 2.92 85.97 ± 7.97 0.15 ± 0.05

0.1 25.09 ± 9.39 17.86 ± 11.68 0.09 ± 0.04

H03 0.25 76.25 ± 9.35 54.67 ± 28.88 0.24 ± 0.04

0.5 100.00 ± 0.00 69.96 ± 31.47 0.32 ± 0.06

0.1 33.07 ± 5.98 29.72 ± 7.18 0.10 ± 0.03

H04 0.25 70.99 ± 15.33 64.03 ± 17.89 0.20 ± 0.03

0.5 94.86 ± 4.00 84.72 ± 10.56 0.31 ± 0.08

0.1 40.99 ± 18.93 42.08 ± 22.10 0.10 ± 0.04

P01 0.25 81.19 ± 21.04 80.14 ± 22.80 0.27 ± 0.09

0.5 90.95 ± 11.94 88.84 ± 12.20 0.34 ± 0.14

0.1 31.08 ± 17.31 22.82 ± 9.98 0.09 ± 0.03

P02 0.25 65.48 ± 27.39 65.48 ± 27.39 0.16 ± 0.03

0.5 95.57 ± 3.59 74.44 ± 14.46 0.25 ± 0.07

0.1 35.30 ± 17.79 26.81 ± 19.33 0.08 ± 0.03

P03 0.25 80.14 ± 19.16 58.03 ± 30.94 0.18 ± 0.04

0.5 93.10 ± 9.91 64.65 ± 27.05 0.22 ± 0.06

0.1 39.72 ± 7.32 33.33 ± 7.42 0.11 ± 0.04

P04 0.25 67.61 ± 12.59 56.36 ± 9.07 0.19 ± 0.06

0.5 94.11 ± 5.47 78.94 ± 9.59 0.37 ± 0.06

True positive rates (TPR), detection rates (DR) and time shifts (TS) are presented for each
subject and condition. In gray, conditions that are significantly different from chance levels
(Wilcoxon Sum-Rank Test, p < 0.05).

optimal performance in the decoding process and that this
time interval is generally in the proximity of 2 s which is
consistent with the generation of anticipatory low-frequency
potentials (Jahanshahi and Hallett, 2003); and (3) our proposed
method to identify muscle contractions from the decoded
primitives is less dependent on amplitude and phase variations
compared to other correlation metrics such as the correlation
coefficient.

This study was based on a small subject size so caution must
be applied in the interpretation of results. However, it is worth
stressing that our method proved to operate on individuals with
spinal cord injury and with disrupted neuromusclar control. This
itself is an important element providing initial evidence that
our approach could be further extended and translated to larger
clinical scenarios.

4.1. Evaluation of Cortical Involvement in
the Decoding
Cortical modulations in charge of lower-limb motor control
are mainly located over the motor and premotor cortex
midline (Brouwer and Ashby, 1990). For this reason, we have
hypothesized that decoding performance of knee extension

muscle primitives should increase if these particular areas are
taken into consideration (test 1). We have compared decoding
performance for different cortical regions to evaluate which
distribution of electrodes increase the accuracy of the decoding
(Figure 2). Closer inspection of the graphs in Figure 3 reveals
that most of the subjects obtained a lower performance when
taking into account lateral regions. This is consistent with our
hypothesis, suggesting that regions not related to the lower-limb
motor cortex have less influence in the decoding performance.
For most of the subjects, the optimal electrode distribution is
centered on the cortex midline (H01, P01–P04) or on the midline
area (H02), which again suggests that these areas are more
relevant when decoding lower-limb activity.

In contrast, in the specific case of subject H03, when the
processing time interval increases, performance levels for lateral
areas increased compared to the other distributions. Subject
H04 also obtained better results from the global activity of the
whole cortex. A possible explanation of this behavior may be
found in the variability of the cortex modulations across subjects.
Indeed, EEG analysis is highly subject-specific and, for singular
individuals, certain regions, different from the motor cortex,
could contribute to motor control as previously suggested in
Agashe et al. (2015).

Another possible reason could be related to the presence
of motion artifacts affecting the global activity of the whole
cortex. Motion artifacts are a key limitation in the application
of BMIs under ambulatory conditions, particularly during gait
rehabilitation procedures (Costa et al., 2016). This fact could
also explain why all the configurations showed a similar behavior
in subjects P03 and P04. Even so, our results suggest that
artifact influence, if any, is limited due to the experimental
conditions: the experimenter permanently monitored head
movement and the proposed task did not involve important
movement transmission through the body affecting the head
of the participants (subjects sitting during the performance of
knee extensions). Also, the lower decoding performance that
many subjects obtained for lateral areas in comparison to other
configurations indicates that artifact activity is not dominating
the decoded output, being more dependent on actual cortical
modulations. However, a future application of the proposed
methodology in more complex conditions, such as the decoding
of locomotion, should consider this element, as it may hinder the
translation of the BMI system to the technology level in a realistic
environment.

4.2. Analysis of the Processing Time
Interval
Previous works used short processing time windows (i.e., 100ms)
in the application of linear decoders to SCPs, (Bradberry et al.,
2010; Presacco et al., 2011; Úbeda et al., 2015). By using this
approach, it is possible to obtain significant performance (in
terms of signal-to-signal correlation) in the decoding of upper
and lower limb kinematics. However, from the point of view of
signal analysis, there is little variation of the signal amplitude in
such a short time window, as the signals of interest are previously
filtered below 2 Hz. This is even more critical in the case of
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FIGURE 6 | Example of identified peaks for several representative subjects and folds, including the Pearson correlation coefficient (CC) obtained for the particular fold.

Scale differs between the decoded and the original peaks to improve visibility.

EEG modulations, where the signal to noise ratio is particularly
low. Our proposed approach provides robustness in this aspect.
As a result, we could enlarge the processing time interval (i.e.,
increasing it up to 2.5 s), thus enabling information extraction
from larger low-frequency EEG modulation windows.

The analysis of the processing time window revealed that
decoding performance peaks were associated to larger processing
time intervals, i.e., generally between 2 and 3 s (Table 1).
Our results showed that longer processing time intervals not
only carried more information of low-frequency modulations,
but also have electrophysiological consistency, e.g., previous
studies reported anticipatory SCPs initiating around 2 s prior to
movement onset (Jahanshahi and Hallett, 2003). These findings
are limited to the small size of the population (8 subjects) so
the assessment of larger populations is necessary to validate this
conclusion.

One of the limitations of our experimental setup is the
requirement of periodicity of the knee extensions as the
synergistic analysis generates primitives for cyclic movements.
However, important functional tasks in daily life are cyclic, e.g.,
locomotion, stairs climbing, ramp ascending, etc. Therefore, our
approach is expected to have important implications despite the
cyclic constraint imposed by muscle primitives analysis. Indeed,
this fact can explain why, for particular subjects and channel
distributions, decoding performance curves do not peak (for

instance, subject H3 for lateral regions or P1 for midline area)
(Figure 3). If the processing time interval is longer than one cycle,
cortical modulations responsible for previous cycles can sum
their influence into the decoding performance. To minimize this
effect, we limited the selected processing time interval to 2.5 s.
We also believe that a longer resting period between extensions
(instead of continuous movements) will provide a better analysis
of the proper processing time interval. In this sense, further
evaluation should analyze how well this method adapts to pauses
or absence of the periodical activity. This is a critical aspect to
be considered in future experiments that assess similar single-
joint lower limb movements as well as those related to human
locomotion.

4.3. Identification of Muscle Contractions
It is worth stressing that current correlation metrics may be
limited in determining the true performance of our proposed
system. Correlation is invariant to scale and location (baseline)
but very dependent on phase. This can be clearly seen in
our results. High correlation coefficients could be obtained
from a very good reconstruction (Figure 5, top-left) or with
important differences in amplitude (Figure 5, bottom-left). On
the contrary, a low correlation did not always translate into a poor
reconstruction, as it happened in Figure 5, top-right, where the
reconstructed signal was only slightly shifted but accurate. Future
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work will determine the proper performancemetric to be applied,
which will eventually depend on the final goal of the study. In
this sense, recent works have already discussed about the effects
of applying different performance metrics (Spuler et al., 2015),
from the more typical Correlation Coefficient (CC) applied in
our study, to other methods such as Normalized Root Mean
Squared Error (NRMSE) or Signal to Noise Ratio (SNR), among
others.

As a result, our study employed additional metrics for
evaluating decoding performance by extracting peaks in
the reconstructed signals that match the original muscle
contractions. This is more suitable for detecting neural bursts to
feed NMS models, as this method solves some of the limitations
of the previous performance metric, e.g., the high dependence
on phase. As an example, the reconstructed primitive for Subject
H03 in Figure 6, top-right, which had a quite low correlation,
achieved a very high identification accuracy, while folds with high
correlation kept a very low detection error (Figure 6, top-left
and bottom-left). In the case of Subject P02, the bad scaling in
the reconstruction increased no detections, but did not affect the
number of false detections.

Our proposed identification method is still dependent on the
tuning of internal parameters including the margin of detection
(M) or the amplitude threshold (Section 2.5.4). When parameter
L was increased, the true positive rate importantly increased
(Table 2). This is somehow misleading and does not represent
a proper identification of decoded peaks because of the already
mentioned continuous periodicity of the knee extensions. In
fact, a very wide margin can lead to the misidentification
of many detected peaks that are not really close to one of
the peaks in the original signal. On the other hand, short
margins failed to detect most of the peaks. To evaluate this
issue we have a applied a paired test between our identification
results and chance levels showing that both low (M = 0.1)
and high (M = 1) margins reduce the significance of the
identification accuracy (true positive rate) and, that an average
length of this margin (M = 0.5), which corresponds to half
of the peak-to-peak distance in the original signal, is a more
suitable tuning for parameter M. This tuning is a critical
aspect in the timing of actuated gait-assisting devices in realistic
scenarios.

4.4. Further Application of Corticospinal
Mapping
Our proposed procedure accurately extracts the activation onsets
of muscle primitives and, thus, reduces the dimensionality of
the decoding by directly mapping corticospinal transmission.
Extracting muscle primitives from EEG signals may be more
physiologically plausible than directly decoding joint kinematics
as EMG extracted motor primitives encode alpha motor neuron
discharges and have shorter pathways with respect to the cortical
output.

Another important advantage of the proposed method is the
reduction of dimensionality in the decoding procedure. In cyclic

movements, such as locomotion, up to 12 different variables
are needed to define movement, e.g., during gait, while with
this procedure it is possible to reduce this output to just 4
primitives.

In addition, we evaluated new metrics that may be more
suitable to trigger, for instance, an exoskeleton during gait
assistance, as they are more sensitive to cyclic muscular
activations. In this regard, the influence of mechanical artifacts
affecting corticospinal mapping should be evaluated and
removed to increase the robustness of the method and make it
feasible to be applied in a realistic scenario.

In the future, corticospinal mapping may be combined
with explicit models of the composite musculo-skeletal system.
This will enable extracting whole-limb mechanical information
from decoded muscle primitives, as previously proposed in,
Sartori et al. (2013, 2016, 2017). This novel approach may
open new avenues for the clinically viable interfacing with an
individual’s nervous system and the concurrent reconstruction of
the intendedmusculoskeletal function. This methodology has the
potential of, in the future, establishing man-machine interfaces
that are robust and intuitive.
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