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Editorial on the Research Topic 


Frontiers in marine geomorphometry


Marine geomorphometry is the science of quantitative terrain characterization applied to the seabed. Like many geospatial applications, techniques used for marine geomorphometry have been sourced from the terrestrial sciences. Through progress in the fields of seabed mapping, marine geomorphology, benthic habitat mapping, and marine ecology, scientists have realized new and unique requirements for characterizing the seafloor terrain. Simultaneously, great advances in seafloor mapping technologies have revolutionized our capacity to map the oceans in high detail. The widespread uptake of swath mapping technologies – namely, multibeam echosounders – enables the production of spatially continuous high-resolution bathymetric surfaces, akin to those produced using electromagnetic remote sensing on land. In parallel, new methods for satellite-derived bathymetry and the increasing availability of bathymetric LiDAR products provide new digital surface models of underwater coastal environments. These innovations, coupled with the unique data requirements of marine science, provide opportunities for innovation within the burgeoning field of marine geomorphometry.

This Research Topic on Frontiers in Marine Geomorphometry is a forum through which to communicate the latest innovations within this field. Here, we invited contributions addressing all aspects of geomorphometry that introduce new knowledge or approaches to improve understanding of seafloor environments – from the coast to the abyss. The United Nations has declared 2021-2030 the Decade of Ocean Science for Sustainable Development, and corresponding efforts to map the global oceans have accelerated greatly. The influx of ocean data creates unprecedented opportunities to study and characterize the seafloor. Our goal in establishing this Research Topic was to support the dissemination of novel approaches and applications of quantitative analysis of seafloor mapping datasets to enhance our ability to understand, monitor, and manage the oceans.




Marine geomorphometry applications

Marine geomorphometry has become well-established within the last decade. The fields of marine geology, geomorphology, and habitat mapping were early adopters of geomorphometric approaches (Wilson et al., 2007; Lecours et al., 2016), which remain the most represented fields in this Research Topic. Studies by Durán et al., Hillman et al., Le Saout et al., Recouvreur et al., and Sklar et al. each utilize geomorphometry to link morphological characteristics to substrate or geological interpretations. Arosio et al., Huang et al., Linklater et al., Nian et al., and Sklar et al. present different approaches to identifying submarine features based on various terrain attributes. These studies represent general geomorphometry – the analysis of a surface as a spatially continuous field – to inform specific geomorphometry classifications. Specific geomorphometry is the characterization of discrete surface entities, or landforms. Klein et al. and Lucieer et al. use geomorphometry in this way to identify known geomorphological seascape features from bathymetric data. Marine geomorphology and habitat mapping are often closely linked, as Fallati et al. demonstrate by associating geomorphic units to habitat types such as bacterial mats and tubeworms. Studies by Arosio et al., Hillman et al., Huang et al., Lucieer et al., and Sklar et al. map extensive seabed areas, often with the aim of optimizing conservation and management efforts.

Marine geomorphometry applications are diverse. Mogstad et al. and Nian et al. employ it as a predictive ecology tool while Durán et al. and Sklar et al. focus on mapping geomorphology. Relatedly, Klein et al. utilize geomorphometry for characterizing volcanic islands that may be at risk of tsunami events through the comparison of geomorphometric parameters. By using data sourced from the General Bathymetric Chart of the Oceans (GEBCO) and ship-based bathymetry, their analysis reveals that morphometric parameters describing island size and slope may be useful for assessing geohazard in areas where high-resolution bathymetric data are lacking. Fallati et al. focus on both ecological and geoscience concepts to explore relationships between geomorphic units and benthic habitats using a combined ROV-based multibeam mapping and underwater photogrammetry approach. This workflow facilitates a deeper understanding of the role that geomorphic variability plays in structuring benthic habitats in extreme settings such as cold seeps.





State of the art approaches

This Research Topic highlights new trends and techniques in marine geomorphometry. We observe decisive progress towards establishing deep learning approaches for the automation of marine geomorphometric and morphological analyses. Semi-supervised and rule-based classifications remain commonplace for the (semi-)automated mapping of marine morphology with bathymetric data, yet new methodologies based on the implementation of convolutional neural networks (CNN) indicate the potential for increased automation and precision. Arosio et al. demonstrate for the first time the application of deep learning CNN models for the accurate semantic segmentation of marine morphological features. Using this approach, they show that these models may “learn” to identify and segment seabed morphological features from bathymetric data according to an accepted and standardized vocabulary with a relatively small number of human annotations over a regional extent. Nian et al. also explore the application of deep learning to classify the seafloor according to observed morphological classes using multibeam bathymetric data. They indicate the potential for developing online and adaptive path selection for underwater vehicles, based on environmental context. Relatedly, Mogstad et al. utilize CNNs for the automated classification of autonomous underwater vehicle acoustic data, but for the purpose of identifying cold-water coral reefs. They mobilize a suite of acoustic and spectral sensors to investigate the morphology of these important habitats across the Tautra Ridge marine protected area, Norway. Here, deep learning enabled the automatic identification of corals from very high-resolution (4 cm) synthetic aperture sonar (SAS) backscatter data at an impressive level of detail and accuracy, providing a basis for morphometric characterization of cold-water coral reefs. These studies suggest the emergence of deep learning as a groundbreaking marine geomorphometry tool; they are amongst the first examples of how artificial intelligence may enhance the efficiency and accuracy with which morphological features are mapped on the seafloor.

We observe continued innovation within the field of marine geomorphometry, and several new tools are presented within this Research Topic for the first time. Two of these are aimed at facilitating efficient morphological classification through semi-automated workflows. Huang et al. present a new toolbox for rule-based classification of bathymetric position features (i.e., highs and lows), as defined by the recent morphology features glossary of Dove et al. (2020). They provided open-source Python tools within ArcGIS that enable the flexible classification of features over multiple scales using only bathymetric data as input, and the authors prove the efficiency and extensibility of these at different and varied study sites. Linklater et al. have also developed a semi-automated toolbox that enables the classification of continental shelf bedforms within ArcGIS. Their toolbox differs notably from that of Huang et al. by focusing on a different set of features at the scale of continental and island shelves. They demonstrate classification of these features using high resolution (2 – 20 m) multibeam and bathymetric LiDAR datasets. Each of these new semi-automated morphological toolboxes were developed in Australia, and we note some interesting methodological congruences such as an initial automated bathymetric segmentation step that is subsequently classified and reviewed by the user.

Additional novel approaches presented within this Research Topic facilitate visualization of geomorphometric data. Gross et al. present an asset-based framework for realistic representation and visualization of geomorphometric data within a virtual environment. They demonstrate how modern game engines such as Unreal Engine 5 may be leveraged to apply realistic lighting and physics to a classified digital surface model to produce an immersive outreach and communication tool. Novak et al. also provide an innovative geomorphometric visualization resource, called the Relief Visualization Toolbox (RVT). They discuss how these tools may enable tailored solutions for bathymetric applications using advanced hillshade and multiscale terrain functions, relief models, and additional methods for “blending” these. The authors make these tools widely and freely available through ArcGIS, QGIS, Python, and standalone executable implementations.

In addition to the new geomorphometry tools presented by Linklater et al. and Huang et al., there is a conspicuous movement towards improving the standardization and objectivity of marine morphological classifications. Lucieer et al. propose a systematic and repeatable approach for the broad-scale mapping of morphological features across 37 Australian Marine Parks to produce consistent data products that may support regional science, planning, and conservation. They demonstrate how this approach enables morphological characterization and comparison of the parks using a standardized and accepted classification scheme. Sklar et al. implement an alternative data-driven approach to mapping morphological features in the Gulf of St. Lawrence, Canada. They derive representative geomorphometric features from broad-scale bathymetry, which were ordinated and clustered to produce a set of discrete morphological features that were interpreted and labelled according to established and standardized definitions from the literature. Recouvreur et al. also demonstrate the advantages of automated and objective approaches to regional mapping of bedrock areas across the northeast Atlantic Irish continental margin. Again, such approaches are enabled through characterization of the terrain using geomorphometry and the calculation of terrain attributes from bathymetric data.





Conclusions

Marine geomorphometry was recognized in 2015 as a distinct sub-discipline of geomorphometry by the International Society for Geomorphometry. It is now a well-established discipline, yet this Research Topic demonstrates continuous evolution of tools and approaches. While “traditional” marine geomorphometry techniques remain highly relevant for studying the marine environment, new approaches are fast developing, such as deep learning and structure-from-motion photogrammetry (Arosio et al., Fallati et al., Mogstad et al.). These are now being used to analyze an increasing diversity of mapping datasets from satellite and drone systems (Gross et al.), AUV/ROV multibeam (Le Saout et al.), bathymetric LiDAR (Linklater et al.), and synthetic aperture sonar (Mogstad et al.). Compared to terrestrial datasets though, these data remain scarce, and there is a strong need to increase discoverability and accessibility of ocean mapping data. The Ocean Decade and other large-scale efforts to compile bathymetric data are promising, but increased data sharing by individual groups has potential to accelerate ocean science, and to benefit the scientific community at large. The trajectory of marine geomorphometry research currently suggests that characterization of seafloor features and habitats are likely to become increasingly automated, while novel geovisualization techniques show great potential to improve interpretation by managers and stakeholders. As the field continues to progress, we look forward to continued innovation that will push the frontiers of marine geomorphometry.
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On the Tautra Ridge – a 39-100 m deep morainic sill located in the middle of the Trondheimsfjord, Norway – some of the world’s shallowest known occurrences of the scleractinian cold-water coral (CWC) Desmophyllum pertusum can be found. The earliest D. pertusum records from the Tautra Ridge date back to the 18th century, and since then, the location has provided easy access to physical coral specimens for numerous scientific studies. In 2013, the ridge was declared a marine protected area by the Norwegian Government due to its unique CWC reefs. However, few attempts have to our knowledge yet been made to characterize the distribution, extent and condition of these reefs extensively. The aim of the current study was therefore to add geospatial context to the Tautra CWC reef complex. In the study, data from multibeam echo sounding, synthetic aperture sonar imaging and underwater hyperspectral imaging are used to assess CWC reef occurrences from multiple perspectives. The study demonstrates how complementary remote sensing techniques can be used to increase knowledge generation during seafloor mapping efforts. Ultimately, predictive modeling based on seafloor geomorphometry is used to estimate both distribution and areal coverage of D. pertusum reefs along the majority of the Tautra Ridge. Our findings suggest that D. pertusum reef distribution on the Tautra Ridge is affected by several geomorphometric seafloor properties, and that the total reef extent in the area likely is close to 0.64 km2. Better description of current patterns across the Tautra Ridge will improve our understanding of the interaction between hydrography and geomorphology at the Tautra CWC reef complex in the future.
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1 Introduction

Situated between 63°40’N 9°45’E and 64°0’N 11°30’E, the 135 km long Trondheimsfjord is one of Norway’s largest fjord systems. The fjord system consists of three main basins: the 617 m deep outer basin, the 440 m deep middle basin and the 270 m deep inner basin (Jacobson, 1983). These basins – respectively denoted as B1, B2 and B3 in Figure 1A – are separated by morainic sills of glacial debris deposited during the Younger Dryas cooling period (Sakshaug and Sneli, 2000). Whereas the surface layer of the Trondheimsfjord (0-25 m deep) to a large extent is characterized by freshwater influx from surrounding rivers, the fjord’s deeper water layers (>50 m during summer) are dominated by a mixture of saline and well-oxygenated Atlantic water (AW) and Norwegian coastal water (NCW). The annual influx of AW and NCW into the fjord system exchanges all water masses below the surface layer twice a year. This provides a relatively stable deep-water environment, with salinities >34, temperatures typically ranging from 7 to 7.5°C and oxygen levels >6 mL L-1 throughout the year (Sakshaug and Sneli, 2000). At the morainic sills, the fjord’s rapid water exchange rate and semidiurnal tidal patterns are manifested as strong currents with speeds typically ranging from 0.4 to 1m s-1 (Jacobson, 1983). These currents, and the suspended food particles they carry, provide suitable conditions for sessile suspension feeders, and at the sill separating the outer basin from the middle basin – the Tautra Ridge – a particularly spectacular suspension feeder assemblage can be found (Sakshaug and Sneli, 2000; Mortensen and Fosså, 2001).




Figure 1 | The area surveyed in the current study. Panel (A) shows a map of the Trondheimsfjord with the fjord’s geographic position indicated in the upper left corner. B1, B2 and B3 correspond to the fjord’s outer, middle and inner basin, respectively. The red square indicates the position of the Tautra Ridge and the extent of panel (B). Panel (B) shows a depth contour map of the most pronounced part of the Tautra Ridge (depths are given in meters) and the spatial extent of the datasets utilized in the study. The data were obtained using three different techniques: multibeam echo sounding (MBES), synthetic aperture sonar (SAS) imaging and underwater hyperspectral imaging (UHI). The maps were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). The depth contour maps are based on data from the Norwegian Mapping Authority (Kartverket), available at https://kartkatalog.geonorge.no/Metadata/dybdedata/2751aacf-5472-4850-a208-3532a51c529a under CC BY 4.0 license. Projection: UTM 32N. Datum: WGS 1984.



Extending from 63°36’30”N 10°30’E to 63°34’N 10°35’E, the ~6-km Tautra Ridge supports some of the world’s shallowest cold-water coral (CWC) reefs (39 m; Brooke and Järnegren, 2013). A reef is here defined as a biogenic framework consisting of both living and dead coral. Radiocarbon labelling suggests that the Tautra Ridge was formed 10,800-10,500 14C years BP (Reite, 1995; Lyså et al., 2008), and with depths generally ranging from 39 to 100 m, it spans the full width of the Trondheimsfjord (Figure 1B). The CWCs associated with the Tautra Ridge do not form a continuous reef structure, but rather a complex of discrete, adjacent CWC build-ups ranging from 10 to 105 m2 in size (Mortensen and Fosså, 2001). The currents across the ridge are influenced by season, tide and local bathymetry, but can invariably be considered strong. At 80-m depth, eastward currents with speeds up to 0.7 m s-1 have for instance been recorded (Jacobson, 1983). Over the past decades, the biological value of the Tautra Ridge has become increasingly acknowledged by the Norwegian Government, and in 2013, the ridge was named one of Norway’s first marine protected areas (MPAs; Lovdata, 2013).

The species that dominates the Tautra CWC reef complex is the scleractinian coral Desmophyllum pertusum (Linnaeus, 1758), formerly known as Lophelia pertusa. Desmophyllum pertusum is a cosmopolitan coral species that so far has proven to be particularly abundant in the North Atlantic and its associated fjord systems (Davies et al., 2008). Its known depth range spans all the way from 39 m at the Tautra Ridge to a maximum recorded depth of 3,383 m in the Northwest Atlantic (Squire, 1959). On the Norwegian continental shelf, D. pertusum is most common at 200-400-m depths, but in Norwegian fjords, it is frequently encountered in shallower waters (Mortensen et al., 1995; Fosså et al., 2002). On a general basis, D. pertusum can be considered relatively tolerant with respect to environmental variables (Järnegren and Kutti, 2014). In the Northeast Atlantic, it does, however, seem to prefer salinities close to 35, temperatures of 6-9°C and oxygen levels of 6.0-6.2 mL L-1 (Davies et al., 2008; Roberts et al., 2009), which coincides well with the environmental conditions at the Tautra Ridge.

Desmophyllum pertusum’s ability to create complex, three-dimensional reef structures makes it an important ecosystem engineer in cold waters (Jones et al., 1994; Mortensen et al., 2010). Despite its slow growth rate (typically <1 cm year-1; Sabatier et al., 2012), the species is capable of forming vast bioherms, and the biggest D. pertusum reef complex known to date is the ~40 km long Røst Reef off the coast of northern Norway (Fosså et al., 2005). As a structure-forming ecosystem engineer, D. pertusum provides substrate and shelter to a range of benthic and demersal organisms. In the Northeast Atlantic as a whole, it is known to co-occur with >1,300 species (Roberts et al., 2006), and at the Tautra Ridge, >120 macrofaunal species have so far been documented (Mortensen and Fosså, 2001; Costello et al., 2005; Mortensen and Fosså, 2006). Historically, published studies of the Tautra CWC reef complex have relied heavily on physical point sampling. However, there also exist non-invasive methods of obtaining coral information that hitherto have remained relatively unexplored in the current study area.

Desmophyllum pertusum’s eco-geographical preferences and morphological properties make the Tautra CWC reef complex an interesting target for acoustic remote sensing surveys. From a geomorphometric perspective, D. pertusum in the Northeast Atlantic is for instance known to be associated with bathymetric highs, steep slopes and irregular seafloor surfaces (Mortensen et al., 2001; Davies et al., 2008; Davies et al., 2017), all of which are seafloor variables that can be quantified using, e.g., multibeam echo sounding (MBES; Wilson et al., 2007). Furthermore, the corals themselves may on multiple levels serve as suitable targets for acoustic detection. Firstly, being a scleractinian coral species, D. pertusum deposits calcium carbonate in the form of aragonite in order to grow. In Norwegian waters, the solid aragonite skeletons of dense D. pertusum frameworks have been shown to produce stronger MBES backscatter than, e.g., soft-bottom sediments, which may provide a partial means of reef identification (Fosså et al., 2005). It should, however, be noted that this is not necessarily thought to be the case if the corals grow in less dense frameworks. Secondly, vertical coral growth may generate abrupt angles between the reef perimeter and the surrounding seafloor. This is an attribute that can be identified by side-scanning sonar systems, which produce imagery where protruding seafloor features typically display strong acoustic backscatter and cast distinctive acoustic shadows (Fosså et al., 1997; Blondel, 2009). Finally, and perhaps most importantly, D. pertusum’s complex three-dimensionality potentially gives its reefs characteristic acoustic signatures in sonar imagery. In Norwegian waters, D. pertusum often has a tightly branching and hemispherical growth pattern, which typically is manifested as noisy, rough-textured areas, sometimes referred to as “cauliflower patterns” (Freiwald et al., 2002; Fosså et al., 2005; De Clippele et al., 2018). In 2012, the Tautra Ridge was acoustically surveyed using a HUGIN 1000 autonomous underwater vehicle (AUV) from Kongsberg Maritime AS (Kongsberg, Norway). The HUGIN AUV was equipped with a synthetic aperture sonar (SAS), and the recorded sonar imagery clearly revealed the presence of cauliflower-patterned reef structures (Ludvigsen et al., 2014). Sture et al. (2018) later demonstrated that these D. pertusum reefs could be accurately identified in SAS imagery by applying a convolutional neural network (CNN) classification algorithm.

The morphological properties of D. pertusum also permit reef detection by means of optical remote sensing. Most notably, D. pertusum is known to have two distinct color phenotypes: white and orange. Both phenotypes spectrally differ considerably from dead coral structures, which potentially may constitute >70% of the reef framework (Vad et al., 2017). The reason as to why the two phenotypes exist and grow side by side is currently a topic under investigation. What is known, is that the color difference as such likely is caused by carotenoid pigments, such as astaxanthin, which are more than twice as abundant in the orange phenotype (Elde et al., 2012). What is yet to be determined, is the exact mechanism behind the difference in carotenoid contents. One of the leading hypotheses is currently that the coloration is linked to the bacterial composition of the D. pertusum mucus layer, which further is thought to influence the coral’s nutritional uptake (Neulinger et al., 2008; Provan et al., 2016). From a physiological perspective, the difference between the two phenotypes is also unclear, but findings from a recent study by Büscher et al. (2019) suggest that the orange phenotype may be more resistant to stress than its white counterpart. At present, only a few published studies feature optical survey results from the Tautra CWC reef complex. In September 2000, the northwestern part of the Tautra Ridge was optically investigated using a remotely operated vehicle (ROV) equipped with two video cameras (Mortensen and Fosså, 2001). The survey was performed by the Norwegian Institute of Marine Research and aimed to map D. pertusum occurrences and associated biodiversity. In total, ~6,200 m of video transect were analyzed, and the documented biodiversity was found to be greater than that of equivalent seafloor areas on the Norwegian continental shelf. In 2012, a small area (200-300 m2) of the Tautra Ridge was surveyed in detail using an ROV equipped with two video cameras, a downward-facing digital camera and an underwater hyperspectral imager (Ludvigsen et al., 2014; Johnsen et al., 2016). During the survey, D. pertusum was optically confirmed to be present, but the resulting data were not analyzed extensively. More recently, ROV-acquired video from the Tautra Ridge was used to verify coral presence in acoustic SAS imagery (Sture et al., 2018). Here, the optical information served as a useful qualitative guide, but the video data were not assessed quantitatively.

Over the past decade, the Norwegian University of Science and Technology (NTNU) has collected both acoustic and optical remote sensing datasets from the Tautra Ridge and its associated D. pertusum reefs. However, very little of this material has to date been published in a geospatial context. The aim of the current study was therefore to synthesize available data to provide enhanced insight into the frequently referenced but poorly documented Tautra CWC reef complex.

The study utilized data from three major remote sensing techniques: (1) ship-based MBES, (2) AUV-based SAS imaging and (3) ROV-based underwater hyperspectral imaging (UHI; Figure 1B). Data from the first of these techniques were used to estimate seven geomorphometric seafloor variables covering most of the Tautra Ridge, whereas data from the latter two techniques were used to outline and characterize D. pertusum occurrences at two different spatial scales. Ultimately, geomorphometric variable values from areas with and without corals present were compared, and an attempt was made to predict CWC reef distribution along the ridge. Figure 2 shows a flowchart that outlines the steps presented in the Materials and Methods section.




Figure 2 | Flowchart of the steps presented in the Materials and Methods Section (sections 2.1-2.8). CNN, convolutional neural network; CWC, cold-water coral; MBES, multibeam echo sounding; SAS, synthetic aperture sonar; SVM, support-vector machine; UHI, underwater hyperspectral imaging.





2 Materials and Methods


2.1 MBES Data

In April 2016, a georeferenced MBES point cloud from the most pronounced part of the Tautra Ridge was obtained from the Norwegian Mapping Authority’s Hydrographic Service (Kartverket Sjødivisjonen, Stavanger, Norway). The point cloud had been collected using a Kongsberg EM 710 MBES system (Kongsberg Maritime AS, Kongsberg, Norway) onboard the survey vessel MS Hydrograf. The data were initially classified, but approved for release to NTNU’s Applied Underwater Robotics Laboratory (AURLab) for the purpose of research and education. The released MBES data featured detailed bathymetric information but did not contain information on acoustic backscatter intensity. Based on the MBES point cloud, a gridded bathymetric dataset with a spatial resolution of 2 m x 2 m was generated. This dataset covered an area of 6.23 km2 and served as the basis for all geomorphometric analyses presented herein.



2.2 SAS Data

The SAS data utilized in the current study were collected in December 2012 during a joint research cruise arranged by NTNU’s AURLab and the Norwegian Defense Research Establishment (FFI, Kjeller, Norway). To record sonar imagery, a Kongsberg HiSAS 1030 synthetic aperture sonar system (Kongsberg Maritime AS, Kongsberg, Norway) was deployed on a HUGIN 1000 AUV. As opposed to regular side-scanning sonar systems, SAS systems utilize more than a single ping to reconstruct a given location in the output imagery, which improves spatial resolution both across- and along-track (Hansen et al., 2004; Sture et al., 2018). Using the SAS-equipped HUGIN AUV, the northwestern region of the Tautra Ridge was surveyed in a systematic lawnmower pattern at a mean seafloor altitude of 26 m. The resulting imagery was post-processed in Kongsberg Maritime’s “Reflection” software, and ultimately georeferenced at a pixel resolution of 4 cm x 4 cm. The final SAS mosaic covered a seafloor area of ~1 km2.



2.3 UHI Data

A Tautra Ridge CWC reef situated at 80-m depth at approximately 63°35’43”N 10°31’3”E was optically surveyed by NTNU’s AURLab in March 2017. The survey utilized a SUB-fighter 30k ROV (Sperre AS, Notodden, Norway) equipped with a 4th generation underwater hyperspectral imager (UHI-4) from Ecotone AS (Trondheim, Norway). UHI-4 is an optical imager that contains two cameras: (1) a regular digital camera (red, green, blue; RGB) and (2) a hyperspectral push-broom scanner capable of recording imagery where each pixel holds a contiguous light spectrum as opposed to an RGB value. The high spectral resolution of the technique potentially provides an enhanced data foundation with potential for the identification of spectral signatures (“fingerprints”) that may be useful for automated mapping of seafloor features based on color. Being a push-broom scanner, the latter camera operates by capturing hyperspectral pixel rows through a narrow light entrance slit at a fixed frame rate. To provide spatially coherent hyperspectral imagery, UHI-4 must therefore be maneuvered in straight lines across the given area of interest, with the light entrance slit of the hyperspectral camera oriented perpendicularly to the instrument platform’s heading. Over the past decade, UHI-based seafloor studies have been carried out within a variety of fields (e.g., marine biology and archaeology), and for an overview of the technique, see Liu et al. (2020) and Montes-Herrera et al. (2021).

For the current study’s optical survey, UHI-4 was mounted on the SUB-fighter 30k ROV in a nadir viewing position, with two downward-facing 250-W Deep Multi SeaLite halogen lamps (DeepSea Power & Light LLC, San Diego, USA) placed 35 cm port and starboard of the instrument. The ROV was subsequently deployed at the survey location, using NTNU’s research vessel, RV Gunnerus. To provide geospatial context to the data acquisition, the ROV utilized a dynamic positioning system (Sørensen et al., 2012) and a navigation filter aided by an acoustic ultra-short baseline (USBL) positioning system mounted on the surface vessel. This permitted the ROV to follow a pre-programmed lawnmower pattern at a seafloor altitude of 2 m. The pattern consisted of 13 parallel, partially overlapping transects and covered a reef area of approximately 800 m2. While following the pattern, UHI-4 captured optical imagery according to the settings specified in Table 1.


Table 1 | UHI-4 specifications relevant for the 2017 cold-water coral (CWC) survey on the Tautra Ridge.



Following the optical data acquisition, the imagery was processed in a succession of steps, according to the procedure described in Løvås et al. (2021). First, the acquired RGB imagery (a total of 21,702 images) was used to generate a three-dimensional (3D) model of the survey area in the photogrammetry software Agisoft Metashape Professional (v. 1.6.2; Agisoft LLC, St. Petersburg, Russia). This model provided highly detailed estimates of UHI-4’s position (northing, easting and depth) and orientation (pitch, roll and yaw) over the course of the survey. Using these estimates, the underwater hyperspectral imagery was subsequently ray-casted onto the 3D model according to the hyperspectral push-broom scanner’s known geometric model relative to the RGB camera. By estimating the geographic intersections between the 3D model and the push-broom scanner’s field of view (FOV), the hyperspectral imagery was georeferenced on a pixel-specific basis at a spatial resolution of 1 cm x 1 cm. Ultimately, the georeferenced UHI data were converted from spectral radiance (L(λ)) to spectral reflectance (R(λ)) using Beer-Lambert’s law for non-scattering media modified from Mobley (1994). The final UHI mosaic covered an area of ~787 m2 (see Supplementary Figure S1).



2.4 Estimation of Geomorphometric MBES Variables

The MBES-derived depth data from the Tautra Ridge were analyzed in the geospatial processing software ArcMap (v. 10.8; Esri Inc., Redlands, USA) using the Benthic Terrain Modeler (BTM) 3.0 plug-in (Walbridge et al., 2018). In addition to depth, six geomorphometric variables were estimated: broad bathymetric position index (BPI broad), fine bathymetric position index (BPI fine), slope, ruggedness, eastness and northness. While depth corresponds to a grid cell’s vertical position relative to the sea surface, BPIs are calculated based on neighborhood analyses and indicate a grid cell’s bathymetric position relative to its surroundings. The exact value range of a BPI will depend on the dataset as well as the chosen analysis settings. Positive and negative values respectively denote bathymetric highs (e.g., ridges and mounds) and lows (e.g., valleys and troughs), whereas values close to 0 represent flat or constantly sloping seafloor areas (Weiss, 2001). As a rule, finer-scale BPIs (smaller neighborhood sizes) are potentially capable of picking up smaller bathymetric features of interest. In the current study, the broad- and fine-scale BPIs were standardized according to Weiss (2001). The slope variable indicates the maximum rate of bathymetric change between a grid cell and its neighbors. Slope is typically given in degrees (°), and possible values range from 0 (flat areas) to 90 (vertical drops). Ruggedness can be characterized as the degree of three-dimensional variation within a grid cell neighborhood. It is calculated based on dispersion of orthogonal grid cell vectors within the given neighborhood, and possible values range from 0 (completely homogeneous surface) to 1 (completely heterogeneous surface). Finally, the variables eastness and northness both relate to the aspect (direction) of a grid cell’s downslope. Possible values for the two variables range from -1 to 1, where -1 denotes an entirely westward (eastness) or southward (northness) downslope direction and 1 denotes an entirely eastward (eastness) or northward (northness) downslope direction. The settings used to derive the geomorphometric variables in the BTM 3.0 ArcMap plug-in are listed in Table 2.


Table 2 | Settings used to estimate six geomorphometric variables in the Benthic Terrain Modeler (BTM) 3.0 ArcMap plug-in.





2.5 Estimation of CWC Reef Distribution in SAS Imagery

CWC reef distribution in the full Tautra Ridge SAS mosaic from 2012 was estimated using a CNN classifier. In recent years, CNNs have grown to become powerful deep learning tools for classifying data that are structured in multiple arrays (e.g., two-dimensional imagery; LeCun et al., 2015). A CNN consists of a set of alternating convolution and pooling layers. During training, each kernel-based convolution layer generates a set of unique feature maps, which subsequently are downsampled in a pooling layer to reduce computational time in the next round of convolutions. Ultimately, all feature maps and their neural couplings are assembled to one or more fully connected layers capable of recognizing patterns based on the utilized training data. When new data are provided to a pre-trained CNN classifier, the output is typically a vector or matrix of probabilistic values corresponding to the input data’s likelihood of belonging to different classes.

The CNN classifier used in the current study was implemented in TensorFlow Keras (Abadi et al., 2016). Structurally, the CNN consisted of four blocks of convolution/pooling, followed by two fully connected layers. The classifier was trained on a selection of SAS image subsets (100 x 100 pixels) from three different HUGIN AUV deployments. All training data had a spatial pixel resolution of 4 cm x 4 cm, and the total CNN training set consisted of >30,000 images distributed among two classes: images with D. pertusum present and images with D. pertusum absent. Of the full training set, 20% of the images were set aside for model validation, and for the final classification model, an accuracy of 95% was reported. For further details on the development and training of the CNN, see Sture et al. (2018).

Applying the pre-trained CNN to the full Tautra Ridge SAS mosaic yielded a CWC reef distribution map with a spatial resolution of 80 cm x 80 cm, where each grid cell contained a georeferenced probability (0-1) of coral presence. These probabilities were subsequently labeled into three discrete classes: the coral class (grid cells with a probability of coral presence >0.99), the control class (grid cells with a probability of coral presence <0.50) and the intermediate class (all remaining grid cells). The thresholds used to define the classes were chosen subjectively based on their perceived ability to accurately isolate coral regions (the coral class) from non-coral regions (the control class). The seafloor regions outlined by the coral class and the control class later provided the basis for the assessment of geomorphometric trends related to D. pertusum coverage on the Tautra Ridge.



2.6 Estimation of Live CWC Reef Coverage in Underwater Hyperspectral Imagery

To estimate live CWC reef coverage in the UHI survey area, the underwater hyperspectral imagery was analyzed using support-vector machine (SVM) classification with a radial basis function (RBF) kernel. The SVM algorithm uses vector-defined decision surfaces to maximize the margins between the provided training set classes and is known to be well-suited for high-dimensional datasets (Cortes and Vapnik, 1995; Mountrakis et al., 2011). It has also performed favorably in previous seafloor mapping studies featuring UHI (Chennu et al., 2017; Dumke et al., 2018; Mogstad et al., 2020). During the optical CWC survey in March 2017, the live fraction of the present CWC reef framework was observed to primarily consist of white D. pertusum, orange D. pertusum and the sponge Mycale cf. lingua (Bowerbank, 1866). The spectral signatures of these species were consequently chosen as supervised classification targets.

For the SVM classification, the georeferenced UHI mosaic was spectrally subset to the range of 400-650 nm and binned down to a spectral resolution of 3.3 nm, resulting in a total of 75 color bands (wavelengths). This was done to remove wavelengths with low signal-to-noise ratio and to make the ensuing spectral classification computationally less intensive. SVM training data were subsequently obtained from pixel regions of the UHI mosaic corresponding to white D. pertusum, orange D. pertusum and Mycale cf. lingua. The total training set consisted of 2,400 pixels, evenly distributed among the three spectral targets (the R(λ) signatures of the different targets are shown in Supplementary Figure S2). By performing a ten-fold cross-validation on the selected training data in the statistical software environment R (v. 4.0.2; R Foundation for Statistical Computing, Vienna, Austria) using the package “e1071” (Meyer et al., 2020), the optimal values for RBF-SVM parameters γ (kernel width) and C (degree of regularization) were in the current study found to be 1e-05 and 1e06, respectively (cross-validation accuracy = 100%). Using these parameter values, the SVM classification algorithm was ultimately applied to the full UHI mosaic in the software application ENVI (Environment for Visualizing Images, v. 5.6; Harris Geospatial Solutions Inc., Broomfield, USA). The full classification was performed with a probability threshold of 0.95, implying that only pixels with probabilities of belonging to a training set class beyond 0.95 were classified.



2.7 Geomorphometric Comparison of Coral and Non-Coral Regions

For the geomorphometric comparison of coral and non-coral regions, all MBES-derived seafloor variables (depth, BPI broad, BPI fine, slope, ruggedness, eastness and northness) were combined into a single 7-band raster. From the combined raster, values from grid cells covered entirely by either the coral class or the control class of the classified CNN coral distribution map were subsequently extracted for analysis. The extracted dataset consisted of 24,388 coral cells and 122,963 control cells (each cell corresponding to a 2 m x 2 m area). For each MBES-derived variable, the median and interquartile range was calculated for both classes, and a two-sided Mann-Whitney rank sum test was performed to investigate whether coral regions differed significantly from control regions.



2.8 Geomorphometric CWC Reef Classification

To assess the feasibility of CWC reef identification by means of geomorphometry alone, the dataset extracted in Geomorphometric Comparison of Coral and Non-Coral Regions was also used to generate a random forest (RF) prediction model. An RF is an assemblage of decision trees created from randomly selected subsets (bootstrapped samples) of the provided training data (Breiman, 2001). For classification purposes, RF training data are typically composed of one categorical response variable (class) and a set of corresponding explanatory variables (predictors). When an unclassified sample is provided to a pre-trained RF prediction model, all decision trees individually vote for the most likely class based on the values of the provided predictors. These votes are subsequently pooled together, and the final output from the RF algorithm is the class that obtained the majority vote (the dichotomization may alternatively be decided by a user-defined probability cutoff). In the current study, the RF algorithm was chosen due to its ability to handle complex interactions, correlated predictors and irregular variable distributions (Cutler et al., 2007). In addition, the RF algorithm has yielded promising results in previous attempts to classify CWC reef structures in MBES-derived data (De Clippele et al., 2017; Diesing and Thorsnes, 2018).

For the RF classification, the extracted data were randomly partitioned into a training set (80% of the samples), a validation set (10% of the samples) and a test set (10% of the samples). The ratio of coral samples to control samples was equal in all partitions (approximately 1:5). The RF prediction model was developed in the statistical software environment R using the package “randomForest” (Liaw and Wiener, 2002). RF modeling requires specification of two parameters: the number of decision trees to grow (ntree) and the number of features (predictor variables) to consider during each split (mtry). These parameters were optimized using ten-fold cross-validation, which revealed that ntree = 1000 and mtry = 5 yielded the best tradeoff between accuracy (out-of-bag error rate = 0.08) and processing time. By subsequently maximizing the model’s overall classification accuracy (OCA) based on the validation set, the optimal probability cutoff for differentiating coral samples from control samples was found to be 0.42 (i.e., samples receiving >42% of the decision tree votes in favor of the coral class were considered to be coral). The final RF prediction model was applied to the test set, and the results were evaluated with respect to the performance metrics listed in Table 3.


Table 3 | Descriptions of performance metrics used to evaluate the random forest (RF) prediction model.



Ultimately, CWC reef distribution was estimated along the Tautra Ridge by applying the RF prediction model to all regions of the full 7-band MBES raster that contained variable values inside the range of the RF training set (amounting to 4.55 km2 of the full raster; regions with variable values exceeding the training set were omitted because RF predictions are known to be unreliable for samples outside the modeled range). For this classification, the results were dichotomized at three different probability cutoffs: maximized validation set OCA (probability cutoff = 0.42), validation set negative predictive value (NPV) = 0.95 (probability cutoff = 0.39) and validation set positive predictive value (PPV) = 0.95 (probability cutoff = 0.72). The former cutoff was chosen to provide a CWC reef coverage estimate with optimized accuracy. The latter two cutoffs were chosen to provide realistic upper and lower boundaries to the optimized estimate. The rationale behind choosing 0.39 as the upper boundary, was that at NPV = 0.95, at least 95% of the negative (control) predictions could be expected to be correct. Similarly, the rationale behind choosing 0.72 as the lower boundary, was that at PPV = 0.95, at least 95% of the positive (coral) predictions could be expected to be correct.




3 Results


3.1 MBES and SAS Results

Figure 3A shows the MBES-derived bathymetric map used to acquire geomorphometric information from the Tautra Ridge. The structure of the ridge was evident in the map, with the ridge crest oriented perpendicularly to the fjord’s direction (see Figures 1, 3A) and notable downward slopes towards the southwest and northeast. Geographic heatmaps of the variables BPI broad, BPI fine, slope, ruggedness, eastness and northness are shown in Supplementary Figure S3.




Figure 3 | Multibeam echo sounding (MBES) and synthetic aperture sonar (SAS) imaging results. Panel (A) shows the MBES-derived bathymetric map of the most pronounced part of the Tautra Ridge (declassified bathymetry, map courtesy of the Norwegian Mapping Authority). The black square indicates the spatial extent of panels (B-D). Panel (B) shows the Tautra Ridge SAS mosaic. Panel (C) shows the georeferenced probabilities of coral presence obtained from the convolutional neural network (CNN). Panel (D) shows the classified coral distribution map generated based on the probabilities in panel (C) and the thresholds defined in Estimation of CWC Reef Distribution in SAS Imagery. The black square indicates the position of the underwater hyperspectral imaging (UHI) mosaic presented in Figure 4. The maps were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.



The AUV-acquired SAS dataset covered ~1 km2 of the 6.23 km2 MBES-surveyed area (Figure 3B), and acoustic cauliflower patterns assumed to correspond to reef structures were interspersed throughout the SAS survey area (an example is shown in Supplementary Figure S4). Based on the results of the CNN prediction model (Figure 3C) and the classification thresholds defined in Estimation of CWC Reef Distribution in SAS Imagery, CWC reefs (the coral class) were estimated to cover 0.12 km2 of the SAS-surveyed area, whereas non-coral regions (the control class) were estimated to cover 0.63 km2 (Figure 3D). The intermediate class covered the remaining 0.25 km2.



3.2 UHI Results

Overall, the UHI results agreed well with the acoustic findings from the SAS analysis. The georeferenced UHI mosaic covered an area of 786.7 m2, and 661.5 m2 of this area corresponded to regions acoustically identified as coral by the CNN classifier (Figure 4A). Based on the hyperspectral SVM classification (Figure 4B), live reef structures (i.e., white D. pertusum, orange D. pertusum and the sponge Mycale cf. lingua) were estimated to cover 15.5% of the total UHI survey area and 17.3% of the UHI survey area identified as coral acoustically (Table 4). Within the surveyed area, white D. pertusum was estimated to be considerably more abundant than both orange D. pertusum and sponges (Table 4).




Figure 4 | Underwater hyperspectral imaging (UHI) results. Panel (A) shows the georeferenced UHI mosaic visualized in red (R; 590 nm), green (G; 530 nm) and blue (B; 460 nm). Regions in the synthetic aperture sonar (SAS) imagery classified as “coral” by the convolutional neural network (CNN) classifier (see Estimation of CWC Reef Distribution in SAS Imagery) are highlighted in pink for comparison. Panel (B) shows the results of the hyperspectral support-vector machine (SVM) classification of UHI classes corresponding to live reef structures. Panels (C, D) show the areas indicated by white squares in panels (A, B), respectively. The maps were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.




Table 4 | Results of the support-vector machine (SVM) classification of the underwater hyperspectral imaging (UHI) dataset from the Tautra Ridge.





3.3 Geomorphometric Comparison of Coral and Non-Coral Regions

Probability densities of the geomorphometric variable values extracted from coral and control regions on the Tautra Ridge are shown in Figure 5. For all MBES-derived variables, the distribution differed significantly between the two classes (Table 5). Furthermore, for all but one of the variables (BPI broad being the exception), slightly elevated values were associated with the coral class. For the exception – BPI broad – the coral class displayed the highest median value, but the lowest overall value distribution (Figure 5B). The magnitude of the observed class difference varied between variables, and the most significant class discrepancies were observed for depth, slope, ruggedness and eastness (Table 5).




Figure 5 | Geomorphometric comparison of coral (n = 24,388 grid cells) and non-coral (control; n = 122,963 grid cells) regions on the Tautra Ridge. The data were obtained from areas classified as “coral” and “control” by the convolutional neural network (CNN) classifier (see Estimation of CWC Reef Distribution in SAS Imagery). The figure shows the class-specific median, interquartile range and probability density of seven multibeam echo sounding (MBES)-derived seafloor variables.




Table 5 | Geomorphometric comparison of coral and non-coral (control) regions on the Tautra Ridge.





3.4 Geomorphometric CWC Reef Classification

The test set performance of the RF prediction model is summarized in the Table 6 confusion matrix. In total, the model performed well, with an OCA of 0.92 and an area under the receiver operating characteristic (AUROC) curve value of 0.95 (Figure 6A). Moreover, the obtained kappa coefficient of 0.71 indicated substantial agreement between predictions and true sample identities (Landis and Koch, 1977). However, the model was not without imperfections, and based on the observed sensitivity, specificity, PPV and NPV (Table 6), the model appeared to display a slight tendency towards underestimating coral abundance.


Table 6 | Confusion matrix displaying the test set performance of the random forest (RF) prediction model.






Figure 6 | Results of the random forest (RF) coral classification. Panel (A) shows the prediction model’s area under the receiver operating characteristic (AUROC) curve for the test set. The dashed diagonal line symbolizes a hypothetical AUROC curve value of 0.5 (no ability to discriminate between coral and control samples). Panel (B) shows the RF prediction model’s mean decrease in accuracy (MDA; scaled by standard deviation) among decision trees when individual variables are randomized. Higher MDA values indicate higher variable contributions to the model’s performance.



In terms of individual predictor importance, the variable slope contributed the most to the prediction model’s accuracy (Figure 6B). In descending order, the variables depth, eastness, BPI broad and ruggedness made intermediate contributions, whereas northness and BPI fine contributed the least. The significance of these findings is further discussed in Geomorphometric CWC Coverage Trends.

Applying the RF prediction model to the 7-band MBES raster with the probability cutoffs defined in Figure 7A yielded the CWC reef coverage estimates displayed in Figure 7B and Table 7. The returned estimates ranged from 0.19 km2 to 0.72 km2, with the optimized OCA estimate suggesting a Tautra Ridge CWC reef coverage of 0.64 km2. Figure 8 shows a spatial representation of the RF classification results. Predicted CWC reef units were interspersed along the entire ridge, and within the regions surveyed by SAS and UHI, estimated coral coverage largely appeared to agree between the different remote sensing techniques (Supplementary Figure S4).




Figure 7 | Cold-water coral (CWC) reef coverage along the Tautra Ridge estimated by the random forest (RF) prediction model at different probability cutoffs. Panel (A) shows the RF prediction model’s validation set negative predictive value (NPV), overall classification accuracy (OCA) and positive predictive value (PPV) plotted as functions of probability cutoff. The black, gray and red vertical lines respectively correspond to probability cutoffs where NPV = 0.95, OCA is maximized (0.92) and PPV = 0.95. Panel (B) shows estimated CWC reef coverage along the Tautra Ridge plotted as a function of RF probability cutoff. The vertical lines correspond to the three cutoffs defined in panel (A).




Table 7 | Tautra Ridge cold-water coral (CWC) reef coverage estimated by the random forest (RF) prediction model at three different probability cutoffs.






Figure 8 | Estimated cold-water coral (CWC) reef distribution along the Tautra Ridge. Panel (A) shows floating point probabilities of coral presence estimated by the random forest (RF) prediction model. Panel (B) shows CWC reef distribution estimated at different probability cutoffs (see Geomorphometric CWC Reef Classification and Figure 7). The maps were generated in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.






4 Discussion


4.1 Survey Techniques and Assumptions

The current study illustrated the value of applying multiple remote sensing techniques during the investigation and mapping of CWC reefs. At present, MBES systems (typically deployed on surface vessels) arguably represent the most efficient way of geospatially mapping ≥km-scale benthic habitats dominated by large biogenic structures. In previous CWC studies, MBES-derived data have for instance been used to address issues ranging from localized distribution of CWC reefs (Roberts et al., 2005; Guinan et al., 2009a; De Clippele et al., 2017; Diesing and Thorsnes, 2018) to D. pertusum habitat suitability along the entire Norwegian continental shelf (Sundahl et al., 2020). MBES also proved valuable in the current assessment of the Tautra Ridge, especially with respect to its superior capacity for areal coverage. To fully capitalize on its potential, a sufficiently extensive ground truth dataset was, however, a vital prerequisite. As shown in this study, the ground truthing requirements concerning MBES mapping of D. pertusum reefs could be fulfilled by combining AUV-based SAS imaging with an ROV-based UHI survey. These two ground truthing techniques represented incremental steps towards increased level of detail in the remote sensing pyramid of observation. In the first step, distinct acoustic patterns assumed to belong to D. pertusum permitted estimation of CWC reef coverage in a ~1-km2 subset of the MBES-surveyed area. In the second step, the identity of the acoustic patterns assumed to belong to D. pertusum was verified optically in an ~800-m2 area. This optical verification increased the confidence not only in the SAS classification accuracy, but also the georeferencing of the SAS dataset, which eventually were to guide the MBES-based CWC reef classification along the entire Tautra Ridge. In summary, all remote sensing techniques employed in the current study played complementary roles in the quest for holistic knowledge: ROV-based optical imaging provided data with unprecedented spatial resolution and ground truthing accuracy but was limited in terms of areal coverage; AUV-based sonar imaging could detect acoustically distinct biogenic structures in large areas but provided little information besides from the geographic extent of the targets of interest; ship-based MBES was limited with respect to spatial resolution but generated data that covered the entire area of interest and brought geomorphometric context to the identified targets. The potential value of using data from multiple sensors and platforms during marine exploration efforts is further elaborated in, e.g., the integrated mapping and monitoring approach proposed by Nilssen et al. (2015), and in the future, application of such approaches will likely become increasingly more important.

The validity of the presented Tautra Ridge findings rests on two principal assumptions. Firstly, it was assumed that the georeferencing of the different remote sensing datasets was consistent. As in any marine seafloor survey, minor geospatial discrepancies were expected, but upon inspection, the alignment of the MBES-, SAS- and UHI-acquired data was considered more than sufficient for the scope of the work. Supplementary Figure S4 exemplifies the observed positional coherence. Secondly, it was assumed that D. pertusum reef extent on the Tautra Ridge was unaltered between the acquisition of the first (December 2012) and the last (March 2017) dataset utilized in the study. It should be noted that this is an inherently erroneous assumption. However, considering D. pertusum’s slow growth rate (<1 cm year-1; Sabatier et al., 2012), and that the Tautra Ridge is an MPA where physical seafloor intervention is prohibited, it was nevertheless deemed reasonable for the analyses presented herein.



4.2 Optical CWC Coverage Trends

ROV-based UHI proved to be a valuable ground truthing technique for optical verification of acoustic CWC reef predictions. This is exemplified in Figure 4A and Supplementary Figure S4, where the CWC reef contours predicted by the acoustic CNN classifier closely match the coral distribution that can be observed in the recorded hyperspectral imagery. In addition to serving as a means of verifying reef presence, the optical UHI survey provided useful information on the survey area’s biological reef composition. Hyperspectral SVM classification for instance indicated that live D. pertusum and associated sponges covered ~17% of the regions in the survey area acoustically classified as coral (Table 4). Although this estimate only is based on spatially two-dimensional image analyses from a bird’s-eye view, it is exceptionally consistent with findings from a study by Vad et al. (2017), in which the ratio of live D. pertusum to whole colony size (i.e., both live and dead coral structures) ranged from 0.10 to 0.27, with a mean value of 0.17. The study by Vad et al. was carried out off the west coast of Scotland at relatively remote locations. If these locations are assumed to represent healthy CWC habitats and the estimated proportion of live coral (~17%) is used as a proxy for health, it can further be speculated that the Tautra Ridge CWC reef optically surveyed in the current study was in good condition. Regarding D. pertusum phenotype distribution, hyperspectral SVM classification revealed that the white D. pertusum phenotype was an order of magnitude more abundant than the orange phenotype within the UHI survey area (Figure 4B and Table 4). This trend is in accordance with observations from several other D. pertusum studies (Roberts, 2002; Larcom et al., 2014; Kellogg et al., 2017; Büscher et al., 2019), but its underlying cause remains to be determined. Overall, the UHI results showed that live D. pertusum easily could be mapped based on its spectral properties. One of the main benefits of applying UHI for the purpose of optical coral mapping was that live coral coverage accurately could be estimated using supervised classification (Figures 4C, D). Notably, the hyperspectral SVM classification only utilized a training set of 2,400 labeled pixels, which merely corresponded to 0.03% of the total UHI mosaic. This vastly increased data processing efficiency and firmly illustrated the value of employing automated approaches to optical seafloor mapping. In the future, we recommend conducting similar optical surveys at other CWC reefs on the Tautra Ridge. This will help substantiate the trends observed in the current study and improve our understanding of the Tautra CWC reef complex as a whole.



4.3 Geomorphometric CWC Coverage Trends

The comparison of coral and non-coral regions on the Tautra Ridge revealed that D. pertusum appeared to have certain preferences with respect to local geomorphometric seafloor variables. In the Mann-Whitney rank sum tests performed to compare coral-covered regions to their surroundings, the value distributions of all investigated variables were for instance found to significantly differ between the two seafloor classes (Table 5). However, some variables displayed more pronounced trends than others, and in terms of the observed probability densities, the variables slope and eastness stood out the most (Figures 5D, F). Specifically, the coral class was associated with steeper slopes (median = 12.41°; median sample difference = 2.72°) and more eastward-oriented terrain (median = 0.63; median sample difference = 0.24) than the control class. The former observation agrees well with findings from previous CWC studies from the Northeast Atlantic, which also suggest that D. pertusum prefers sloping terrain (Davies et al., 2008; Guinan et al., 2009b; Howell et al., 2011). The main reason for this preference is thought to be that slope-induced hydrodynamic phenomena (e.g., localized current patterns) may enhance the availability of suspended food particles (Frederiksen et al., 1992; Thiem et al., 2006; Davies et al., 2009). The interpretation of the latter observation is less clear-cut, as any preference with respect to aspect direction (in this case eastness) likely is linked to the directional dynamics of the surrounding currents. Being sessile suspension feeders, CWCs are often found to be associated with enhanced bottom currents (White and Dorschel, 2010). However, laboratory-based studies by Purser et al. (2010) and Orejas et al. (2016) suggest that excessive current velocities may impede D. pertusum’s food uptake. These findings are supported by a recent in situ study by Lim et al. (2020), in which current velocities ≥75 cm s-1 were found to restrict live D. pertusum coverage. Furthermore, at the Piddington Mound – a coral mound in the Porcupine Seabight exposed to current velocities of ~40 cm s-1 – live CWC reef framework was primarily found on the lee side of the mound (Lim et al., 2017). Interestingly, the interval of 40-75 cm s-1 coincides almost perfectly with the maximum bottom current speeds measured across the Tautra Ridge over the course of June 1974 (Jacobson, 1983). Since it also is known that the prevailing direction of these currents is eastward (Jacobson, 1983), a possible explanation for D. pertusum’s apparent inclination towards eastness on the Tautra Ridge (i.e., the lee side of the ridge) is therefore that it reduces current exposure to a level that facilitates the corals’ food uptake. To further investigate this hypothesis, we recommend deploying acoustic Doppler current profilers (ADCPs) at multiple locations on the Tautra Ridge over time, so that the spatiotemporal complexities of the in situ current patterns can be elucidated. In addition, routine surveys with ADCP-equipped AUVs along the ridge should be carried out, so that site-specific current measurements can be put into a broader spatial perspective.

Although less pronounced, some noteworthy coral coverage trends were also observed for the variables depth, BPI broad and ruggedness. Overall, the coral class was for instance found to be associated with slightly deeper waters and slightly lower BPI broad scores (Figures 5A, B and Table 5) than the control class. This initially seemed counterintuitive, as D. pertusum commonly is known to occur on bathymetric highs (Davies et al., 2008). However, these observations are, in fact, in accordance with the hypothesis stated in the previous paragraph: assuming the currents across the Tautra Ridge are strong enough to potentially impede D. pertusum’s food uptake or inflict unnecessary physical strain, it would be suboptimal for the corals to settle on the summit of the ridge. This could partially explain the observed patterns. It should be noted that the values of both depth and BPI broad displayed highly irregular probability densities, and their interpretation should consequently be treated with caution. Regarding ruggedness, the coral class was associated with significantly higher values than the control class (Table 5). This agrees with coarse-scale studies by Guinan et al. (2009b) and Davies et al. (2008), where D. pertusum also was found to be associated with irregular bathymetry. More importantly, it agrees with acoustic findings from a fine-scale CWC study by De Clippele et al. (2017), which was performed at a spatial resolution of 2 m. The reason for this tendency could be that bathymetric complexity is linked to increased access to suspended nutrition, reduced levels of sedimentation and/or a wider variability of substrate types (possibly favoring larval settling). However, at the high spatial resolution utilized in the current study (Table 2), the enhanced ruggedness could also be attributed to the three-dimensionality of the D. pertusum reef structures themselves. For instance, Price et al. (2019) and Price et al. (2021) recently utilized 3D models with sub-cm resolution to show that the structural complexity of CWC reefs often is considerably greater than that of surrounding non-reef regions. The least significant geomorphometric trends were observed for BPI fine and northness (Figures 5C, G and Table 5). For these variables, the coral class and the control class displayed highly similar median values and probability densities. This suggests that neither conveyed indispensable information with respect to CWC reef distribution in the current study.



4.4 Performance of the Geomorphometric CWC Reef Prediction Model

The RF model created to predict CWC reef coverage along the Tautra Ridge performed very well on the test set. As an example, all obtained accuracy metrics (Figure 6A and Table 6) were comparable to or exceeded those reported in similar studies by De Clippele et al. (2017) and Diesing and Thorsnes (2018). The RF probability cutoff that yielded the highest OCA resulted in a sensitivity of 0.73, a specificity of 0.96, a PPV of 0.79 and an NPV of 0.95. These results – specifically that sensitivity < PPV and specificity > NPV – indicate that the model was inclined to predict false negatives (type II errors) rather than false positives (type I errors). This may be interpreted as the model being conservative rather than exaggerated. The five predictors that contributed the most to the accuracy of the model were the variables slope, depth, eastness, BPI broad and ruggedness (Figure 6B). This was not surprising, considering that these were also the variables where the greatest differences between coral and non-coral regions had been observed previously (Figure 5 and Table 5). As the RF model applied in the current study only was based on seven geomorphometric variables derived from the same MBES dataset, its favorable performance can likely be attributed to the quality and size of the utilized training set. This emphasizes the importance of high-quality ground truthing, and attests to the value of applying multiple sensors and platforms in future studies of CWC reefs. Because the Tautra Ridge represents an unusual CWC habitat, it is unlikely that the utilized model can be directly applied to other locations. However, as the model was built and implemented in open-source software, the methodology can easily be adapted for other situations, provided that similar remote sensing data are available. An interesting future project would be to apply equivalent acoustic prediction models to CWC habitats where D. pertusum is known to form other reef frameworks than the dense cauliflower patterns present on the Tautra Ridge. Examples of such frameworks include fan-like growth patterns found in the Mediterranean Sea and columnar growth patterns found in the Gulf of Mexico and the Florida Straits (Sanna and Freiwald, 2021).

Although the RF prediction model performed favorably, inclusion of certain additional predictors could likely have enhanced its performance. Howell et al. (2011) for instance found substrate type to be highly important for predictive modeling of D. pertusum at coarser scales in the Northeast Atlantic. Similarly, Georgian et al. (2014) found that the availability of hard substrate was an important D. pertusum predictor in the Gulf of Mexico. In the current study, it is possible that acoustic backscatter intensity from MBES could have improved the coral prediction model by serving as a proxy for substrate type or capturing characteristic acoustic properties associated with coral presence (Fosså et al., 2005; Roberts et al., 2005). In addition to substrate, bottom current speed and direction have also proven to be useful variables in previous attempts to model CWC distribution (Davies et al., 2008; De Clippele et al., 2017; Sundahl et al., 2020). Unfortunately, sufficiently detailed data on the aforementioned variables were to our knowledge not available during the writing of this study. To increase the accuracy of future prediction models, it is therefore recommended that maps of substrate distribution, MBES backscatter intensity and current patterns on the Tautra Ridge are acquired.




5 Conclusions

The motivation behind the current study was to provide enhanced insight into the Tautra CWC reef complex, and based on the presented work, we believe the following can be presumed. Firstly, optical UHI analyses suggest that CWC reefs on the Tautra Ridge are dominated by the white D. pertusum phenotype. However, optical data were only acquired from a limited area, and further information is thus needed to support this claim. The underlying reason for the skewed phenotype distribution is also a topic that warrants further investigation. Secondly, acoustic analyses indicate that D. pertusum reef distribution on the Tautra Ridge is partially determined by bathymetric features. Specifically, relatively steep, eastward-sloping areas that are situated off the summit of the ridge appear to facilitate coral growth. The ultimate cause of this is likely linked to the patterns of the prevailing bottom currents, and further data on the surrounding hydrodynamic conditions can likely help elucidate the observed trends. Lastly, predictive modeling based on seafloor geomorphometry suggests that the following three conclusions can be drawn regarding D. pertusum reef extent on the Tautra Ridge: (1) D. pertusum reefs cover at least 0.19 km2 of the Tautra Ridge; (2) it is likely that D. pertusum reef extent on the Tautra Ridge is close to 0.64 km2; and (3) it is unlikely that D. pertusum reef extent on the Tautra Ridge currently exceeds 0.72 km2.

To our knowledge, this is the first attempt to characterize distribution and areal coverage of D. pertusum reefs on the Tautra Ridge extensively. Consequently, there are few data available to verify CWC reef predictions beyond the areas surveyed by SAS and UHI in the current study. Nevertheless, we believe the modeled estimates presented herein represent a valuable knowledge basis that decision-making authorities may refer to in efforts to govern the Tautra Ridge MPA sustainably. Furthermore, the results of this study may serve as a foundation for future research carried out in the area. Although D. pertusum is thought to be a relatively tolerant CWC species, its slow growth rate and high importance as an ecosystem engineer makes it a primary conservation target. In an era of climate change and increasing anthropogenic pressure, mapping and monitoring of such targets can arguably be considered more important than ever. In the future, it is therefore recommended that systematic ground truthing surveys are conducted along the entire Tautra Ridge so that the coral estimates presented in this study can be further refined. This will provide baseline information that should be considered essential not only for satisfactory MPA management, but also the continued existence of some of the world’s least conventional CWC reefs.
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Supplementary Figure 1 | The georeferenced underwater hyperspectral imaging (UHI) mosaic from the Tautra Ridge visualized in red (R; 590 nm), green (G; 530 nm) and blue (B; 460 nm). The map was created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.

Supplementary Figure 2 | The training data used for support-vector machine (SVM) classification of underwater hyperspectral imagery from the Tautra Ridge. Panels (A-C) show the spectral reflectance (R(λ)) signatures of white Desmophyllum pertusum, orange D. pertusum and the sponge Mycale cf. lingua, respectively (n = 800 hyperspectral image pixels per class). Mean R(λ) signatures are shown in black. Panel (D) shows all mean R(λ) signatures plotted together for comparison.

Supplementary Figure 3 | Maps of six multibeam echo sounding (MBES)-derived geomorphometric variables covering the majority of the Tautra Ridge (maps based on declassified bathymetry, courtesy of the Norwegian Mapping Authority). BPI, bathymetric position index. The maps were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.

Supplementary Figure 4 | Comparison of different mapping techniques. Panels (A, B) show results of the synthetic aperture sonar (SAS) survey. Panels (C, D) show results of the underwater hyperspectral imaging (UHI) survey. Panels (E, F) show results of the multibeam echo sounding (MBES)-based random forest (RF) prediction model. All panels correspond to the same geographic area. The maps were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.
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In this study we applied for the first time Fully Convolutional Neural Networks (FCNNs) to a marine bathymetric dataset to derive morphological classes over the entire Irish continental shelf. FCNNs are a set of algorithms within Deep Learning that produce pixel-wise classifications in order to create semantically segmented maps. While they have been extensively utilised on imagery for ecological mapping, their application on elevation data is still limited, especially in the marine geomorphology realm. We employed a high-resolution bathymetric dataset to create a set of normalised derivatives commonly utilised in seabed morphology and habitat mapping that include three bathymetric position indexes (BPIs), the vector ruggedness measurement (VRM), the aspect functions and three types of hillshades. The class domains cover ten or twelve semantically distinct surface textures and submarine landforms present on the shelf, with our definitions aiming for simplicity, prevalence and distinctiveness. Sets of 50 or 100 labelled samples for each class were used to train several U-Net architectures with ResNet-50 and VGG-13 encoders. Our results show a maximum model precision of 0.84 and recall of 0.85, with some classes reaching as high as 0.99 in both. A simple majority (modal) voting combining the ten best models produced an excellent map with overall F1 score of 0.96 and class precisions and recalls superior to 0.87. For target classes exhibiting high recall (proportion of positives identified), models also show high precision (proportion of correct identifications) in predictions which confirms that the underlying class boundary has been learnt. Derivative choice plays an important part in the performance of the networks, with hillshades combined with bathymetry providing the best results and aspect functions and VRM leading to an overall deterioration of prediction accuracies. The results show that FCNNs can be successfully applied to the seabed for a morphological exploration of the dataset and as a baseline for more in-depth habitat mapping studies. For example, prediction of semantically distinct classes as “submarine dune” and “bedrock outcrop” can be precise and reliable. Nonetheless, at present state FCNNs are not suitable for tasks that require more refined geomorphological classifications, as for the recognition of detailed morphogenetic processes.
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1 Introduction

In the fast-expanding field of marine habitat and geomorphological mapping, with an increasing influx of data at high spatial resolution being gathered by geophysical and remote sensing surveys (“Big Data”), rapid, machine-based and cost-effective methods that capture the nuances of the highly varying seabed environments have become essential. Thus, computer-based supervised and unsupervised mapping methods have become progressively more popular, demonstrating equivalence or superiority to traditional manual mapping (Micallef et al., 2012; Diesing et al., 2014; Ismail et al., 2015). Presently, the leading supervised mapping approach is a combination of object-based image analysis (OBIA) (Blaschke et al., 2014) and conventional machine learning models (e.g. Decision Trees, Support Vector Machines, Random Forests etc.). In this approach, OBIA first segments raw data, for example imagery, into a suitable internal representation of descriptive objects, then a machine learning sub-system detects statistical patterns in extracted descriptive features in order to distinguish different class domains. When the raw data are digital surface models (e.g. from multibeam echosounders or Lidar data), as it happens for most marine-based habitat mapping studies, the segmentation and statistics are largely based on morphological and substrate attributes (e.g. relative depth, roughness, backscatter etc.), and habitat prediction is strictly linked to morphology. Recent applications range between identification and analysis of coral mounds (Diesing and Thorsnes, 2018; Conti et al., 2019; de Oliveira et al., 2021), sediment wave characterisation (Summers et al., 2021) to general marine mapping (Ierodiaconou et al., 2018; Linklater et al., 2019). However, the OBIA method still requires careful engineering and considerable domain expertise and manual intervention, which increases processing time and effectiveness.

In the last decade, Deep Learning (DL), and in particular Convolutional Neural Networks (CNNs) have supported more traditional approaches, and have shown state of the art results on a wide range of imaging problems (Long et al., 2014; He et al., 2017; Krizhevsky et al., 2017). Fully Convolutional Neural Networks (FCNNs) are a variant of CNNs that can perform per-pixel classification. Contrarily to traditional machine learning, FCNNs allow for hierarchical feature learning, which in effect combines learning features and training a classifier in one optimisation (LeCun et al., 2015). Furthermore, FCNNs can leverage semi-supervised strategies whereby subsets of labelled data are used for optimisation; this approach can be beneficial for practical applications of FCNNs for marine geomorphology and ecology mapping where the quantity and distribution of labelled data may be limited due to associated costs of in situ surveying (Leitão et al., 2018; Hobley et al., 2021). While interest in DL has been shown early on by the marine community for ecological and habitat mapping (Gazis et al., 2018; Yasir et al., 2021), only a few studies have been focused on automated identification with DL of seabed geomorphological features or textures (McClinton et al., 2012; Valentine et al., 2013; Juliani, 2019; Keohane and White, 2022; Lundine et al., 2023), even though the significance of geomorphology for habitat distribution is widely acknowledged (Brown et al., 2011; Lecours et al., 2016; Harris and Baker, 2020). Deep Learning in geomorphology has found instead a more fertile ground in coastal and geohazard studies (Ma and Mei, 2021; Buscombe et al., 2023), and in outer space, in particular for Martian or Lunar geology, where several studies have taken advantage of the high resolution optical imagery available and attempted to separate specific landforms from a background (Foroutan and Zimbelman, 2017; Palafox et al., 2017; Wang et al., 2017; Rubanenko et al., 2021), or more generally characterise the ground surface to identify optimal landing spots or assess rover traversability (Wilhelm et al., 2020; Barrett et al., 2022). Barrett et al. (2022) in particular have demonstrated the potential of large-scale exploratory morphological mapping, where machine learning assists the geomorphologist to isolate sections of interest in the dataset, sifting through an enormous dataset.

Following on this latter example, and transposing it to the marine realm, in this study we explore the potential of FCNNs to map distinctive morphologies on the seabed, generate the prospective to create an automated, streamlined method to greatly increase the efficiency of many seabed mapping workflows including data exploration of the main morphological signatures, preliminary domain segmentation for ground-truthing campaigns and the identification of areas of interest or generalised habitat predictions. We align the exercise to recurrent situations and practices in seabed mapping, and we test the capability of the FCNNs to their limits, feeding the bare minimum usually available to researchers:

	1) we furnish only bathymetry and bathymetry-derived surface functions as input layers (contrarily to the optical imagery used for the planetary studies) and do not include multibeam backscatter data as it is sometimes unreliable. Elevation as main input in itself poses challenges as DL methods are designed for optical imagery.

	2) we provide only a very limited amount of labelled data, as the creation of large amount of labels would defeat the purpose of automation and time saving. This constitutes a second challenge, as in spite of CNNs success, these models perform best with very large, labelled training datasets (Tarvainen and Valpola, 2017). Labels are a pivotal concern in many real-world scenarios as CNNs are optimised based on an objective error metric between model outcomes and known outcomes.



In the next sections of the paper, firstly we describe the dataset utilised and the classification systems adopted, which include two different classifications and label sets. Secondly, we concatenate various combinations of bathymetry and derivative layer inputs to create pseudo-images and assess the value of the different derivatives in the predictions. In parallel, we trial two FCNN encoders and semi-supervision techniques to gauge their effectiveness with the non-standard input data (i.e. bathymetry). Finally, we discuss the results from the point of view of applicability to marine seabed or habitat mapping studies, including challenges behind finding the optimal set of semantic morphological classes, the impact of mapping landforms with diverging dimensions and the importance of selecting appropriate derivatives for modelling neural networks on bathymetry-derived data.




2 Materials and methods



2.1 Input layers: bathymetry and derivatives

The multibeam echosounder (MBES) bathymetry utilised in this study was obtained from the INFOMAR hydrographic dataset, which is freely accessible on the INFOMAR website (https://www.infomar.ie) (Figure 1). Bathymetric data at 10 m resolution were downloaded and processed using ESRI ArcMap v 10.6. Firstly, fine holes in the dataset were filled with the mean of the surrounding 5x5 pixel neighbours. A general median filter (5x5 rectangle) was applied to remove ‘salt-and-pepper’ imperfections and fine artefacts before re-gridding using a nearest neighbour algorithm. For the purpose of this large-scale mapping, a resolution of 25 m/pixel was deemed a good compromise between morphological detail, partial suppression of acquisition artefacts in the INFOMAR dataset (especially at the outer beam) and computing speed. Bathymetry derivatives were calculated using ArcMap built-in algorithms or with the help of the Benthic Terrain Modeller (BTM) toolbox version 3.0 (Walbridge et al., 2018). The derivatives created include three bathymetric position indexes, a vector ruggedness measurement, two aspect functions (eastness and northness) and three types of hillshades (Table 1). The aspect functions rasters were smoothed using a Gaussian filter (5x5 rectangle) to simplify the signal and reduce salt-and-pepper effects.




Figure 1 | Areal extent of the INFOMAR bathymetric data used in this study, with the location and density of ground-truthing sediment samples consulted at the labelling stage.




Table 1 | List of derivatives and production parameters utilised in this study.



For the purposes of FCNN model training, the bathymetry and derivatives were normalised to a double precision value between 0 and 1 based on the minimum and maximum value recorded or calculated in the case for derivative layers.




2.2 Classification system and labelling

To train the weakly supervised convolutional neural network, we had to define a dataset from which the model could learn the relationship between bathymetry and derivative data and the landforms present. So firstly, a suitable classification system had to be chosen. The classification system adopted is derived from the Mareano-INFOMAR-Maremap-Geoscience Australia (MIM-GA) two-part marine geomorphology scheme, a standardised seabed mapping glossary aimed to enable more consistent seabed classifications (Dove et al., 2016; Dove et al., 2020). This framework independently describes seabed features according to their observed physical structure (Morphology), and the more subjective interpretation of their origin and evolution (Geomorphology). The separation between physical structure and genesis aligned well with the scope of the machine learning-based mapping of this study, where classes were defined based upon the textural characteristics of the surface rather than apparent geological nature or proper geomorphological definitions. This mapping approach was chosen both because of the general lack of geological ground-truthing for novel marine datasets, and for the exploratory nature of the exercise. In general, defined classes describe archetypal seabed textures which, in various combinations, form seabed landforms. The basic distinction between sediment and rock landforms was nonetheless retained (see Table 2), and the INFOMAR sediment grab dataset (https://www.infomar.ie/maps/interactive-maps/seabed-and-sediment) was consulted at the labelling stage (Figure 1). Three principles for classification were adopted (following the advice in Barrett et al., 2022): (a) classes had to be representative of the diversity of seabed morphologies encountered on the Irish continental shelf. This is a “completeness” rule; FCNNs classify pixels in maximum-likelihood fashion, therefore it is essential to fully capture the problem domain as the FCNNs cannot create a new class, or leave a space blank, if an unknown type of seabed is encountered. (b) The classification sets were kept simple and short, as a comprehensive, lengthy list of classes would potentially create difficulties in the training process and especially create more subjective inconsistencies during the labelling work carried out by the expert, and (c) last, but most importantly, classes had to be distinct so that their differences could be confidently isolated visually by the human mapper. This step is critical as the labelling stage may introduce subjectivity and inconsistencies in class delineation that can affect the capabilities of the networks. Therefore, care was taken to semantically define each class, making sure that delineation could be performed with a high level of confidence notwithstanding the limited geological knowledge.


Table 2 | Classifications adopted in this study with either 10 or 12 classes and their correspondence to the MIM-GA classification system (Dove et al., 2020).





2.2.1 Terrain and landform classes

A list of 10 classes (Table 2, Figure 2) was considered sufficient to capture the morphological domain of the study area. These classes include three types (or textures) of hard substrate – Fissured, Hummocky and Layered (rock), which comprise bedrock outcrops of meta-/sedimentary and igneous nature but can also include rough or rubbly glacial surfaces which are often hardly distinguishable from bedrock. Corrugated and Ridge (sediment) capture the extensive current-induced bedform fields, respectively the short wavelength megaripples, sediment ribbons or dunes and the larger dunes of different type (transverse, linear, trochoidal etc.) which occur especially in the Irish and Celtic seas (Van Landeghem et al., 2009; Creane et al., 2022). The Irish shelf glacial vestiges, which include prevalently moraines (Ó Cofaigh et al., 2012) and drumlin fields (Benetti et al., 2010) are captured in the Large Ridge and Hummocky (sediment) classes respectively, although we included the Celtic “megaridges” (Lockhart et al., 2018) and sediment banks in the Large Ridge class. The Depression class includes the bathymetric lows on the shelf, which are prevalently channel-like features including scouring, palaeofluvial channels/tunnel valleys (Giglio et al., 2022) and some isolated cases of large pockmarks. Finally, finer scale, elongated depressions or incisions as iceberg ploughmarks and furrowing are represented by the Grooved (sediment) class. The Plane class act as filler for the areas of smooth and featureless terrain. A second list of 12 classes (Table 2, Figure 2) was created to test the performance of the FCNNs with a slightly more complex problem. The second classification set was established increasing the detail for Large Ridge and Depression, splitting them respectively into Bank (sediment) and Relict Ridge (thus dividing the sediment banks from the glacial ridges), and Depression (enclosed) and Depression (elongated) (thus separating circular or quasi circular scouring and pockmarks from channels and elongated scours).




Figure 2 | General overview of the textures and geometries of the classes.






2.2.2 Labelling procedures

The labelling of seabed classes was carried out by a single human annotator (the first author) utilising expert judgement with the support of published studies and sediment grain size data for ground-truthing (GT samples in Figure 1) available from the INFOMAR website. Classes were labelled by manually digitising polygons on ArcGIS 10.6 and making sure they contained only the landforms or terrain textures of interest, partially or completely, regardless of their dimensions. Therefore, naturally larger landforms (e.g. the class Large Ridge) are defined by larger labels. Two sets of labels were created, one containing 50 labels per class, and a second with 100 labels per class. The labelled areas constitute only a very small proportion of the total study area (97,526 km2), with the 100-label set covering only 3.2% of the total, the 50 label (12 classes) 2.8% and the 50 labels (10 classes) 2.57%.

Each digitised polygon contains a unique semantic value associated to the landform or terrain texture class. FCNNs were trained with rasterised labels that contain one-to-one mappings of pixels from input layers (Long et al., 2014). The rasterised labels employed to train FCNNs were created using the geographic coordinates stored in each digitised polygon label and converting real-world coordinates for each vertex to image-coordinates. Training pseudo-images were created by centre-cropping 256 x 256 pixel (Figure 3) blocks containing multi-layered raster (bathymetry and derivatives) data. By centre-cropping digitised label polygons, the edges of each pseudo-image may possess a number of unlabelled pixels, which in turn allows for semi-supervised approaches to be leveraged (see Section 2.3). Two factors are behind the specific dimension of the pseudo-images. Firstly, the power of two (256 = 28) grants numerical ease in image resizing (i.e., the blocks are divided/multiplied by 2) with sequential pooling operations and up-sample. Secondly, the image size is appropriate for GPU memory constraints and mini-batch optimisation. For instance, 256x256 may allow 8 images per batch which was found to be optimal for neural network optimisation, whereas an image of 512x512 allows only 1 to 2 images per batch and converges the neural network incorrectly. In the case digitised polygons covered a region that extended past the 256 x 256 area, centre-crops were split into several 256 x 256 blocks. This process generated 553 training images for the 50 label 12-class, 543 training images for the 50 label 10-class and 1134 training images for the 100 label 10-class. For each dataset, the training imagery was randomly subdivided into mutually exclusive training (90%) and validation (10%) sets.




Figure 3 | Example of the overall architecture of the FCNN used in this study, showing a VGG13 encoder network. The decoder network applies a transposed 2 by 2 convolution and concatenates feature maps from the encoding network at appropriate resolutions followed by a final 3 by 3 convolution. The final 1 by 1 convolution condenses feature maps to have the same number of channels as the total number of classes in the dataset.







2.3 Fully Convolutional Neural Networks

Fully Convolutional Neural Networks (Long et al., 2014) are an extension of traditional CNN architectures (Krizhevsky et al., 2017) adapted for semantic segmentation. CNNs comprise a series of layers that process lower layer inputs through repeating convolution and pooling operations followed by a final classification layer. Each convolution and pooling layer transform the input image, or in this case bathymetric data, into higher level abstracted representations. FCNNs can be broken down into two networks: an encoder and a decoder network. The encoder network is identical to a CNN, except the final classification layer is removed. The decoder network applies transposed convolutions in order to up-sample feature maps back to the original input size, and each decoding stage combines corresponding feature maps created by the encoder network. The final classification layer utilizes 1 by 1 convolution kernels (Lin et al., 2014) to transform the original bathymetric data and derivatives source into a set of dense probabilities using a softmax transfer function. Network weights and biases are adjusted through gradient descent by minimizing the loss function between network outputs and the ground truth pixel labels.

The overall architecture of the FCNN used in this study (Figure 3) is based on a U-Net (Ronneberger et al., 2015) and the encoder networks are VGG-13 and ResNet50 (Simonyan and Zisserman, 2015; He et al., 2017). Residual learning using ResNet encoders has proven to surpass very deep neural networks such as VGG, but for completeness in results we experimented with both encoder networks. The decoder network applies a transposed 2 by 2 convolution for a learnt up-sample track and concatenates feature maps from the encoding network at appropriate resolutions followed by a final 3 by 3 convolution. The final 1 by 1 convolution condenses feature maps to have the same number of channels as the total number of classes in the dataset (Figure 3).

Semi-supervision is the process of incorporating unlabelled image samples for the optimisation of deep neural networks. This branch of deep learning methods is more applicable when unlabelled data are readily available, while labelled instances are often hard, expensive, and time-consuming to collect. Semi-supervised methods can be capable of building better classifiers that compensate for the lack of labelled training data and therefore present a cost-effective solution to label acquisition. In this study, where semantic segmentation was achieved with a pixel classifier, the masks that were used to label pixels did not cover entire 256x256 pseudo-images and therefore every pseudo-image had pixels that were left unlabelled. This condition allowed for unsupervised loss terms to be added into the optimisation process and thus for semi-supervision to be implemented. The supervised loss term is calculated by processing a mini batch of images   and corresponding segmentation maps  , where B, C, H and W are batch size, number of input channels, height and width. The network produces per-pixel logits  - where K is the number of target classes. The softmax transfer function (1) converts network scores into probabilities by normalizing all K scores for each pixel to sum to one:

	

Where,   is a pixel location and   is the probability for the   channel at pixel location x. The negative log-likelihood loss is calculated between segmentation maps and network probabilities:

	

For each image, the supervised loss is the sum of all losses for each pixel using Equation (2) and averaged according to the number of labelled pixels in Y. Full details on the use of semi-supervision can be found in Hobley et al. (2021). The training parameters and convergence of FCNNs was analysed by testing multiple settings for learning rate and batch size, and assessing computed confusion matrices over several consecutive runs of the algorithm. This ensured that a fair range of different convergence approaches was evaluated. Furthermore, for the semi-supervised approach, several different loss weights were experimented to tune for the unsupervised loss term. The best performing networks were trained for 300 epochs with a batch-size of 12 using AdamW optimiser with a learning rate set to 0.001. With regards to the semi-supervised approach, the unsupervised loss was scaled down by a factor of 10 and the confidence threshold for teacher prediction was set to 0.97. All FCNNs were implemented and trained using Pytorch version 10.2, the code is freely available on our GitHub repository: https://github.com/BrandonHobley/geomorph_deep.




2.4 Quality assessment

The quantitative metrics of interest to evaluate a classification algorithm are precision and recall (Equations (3) and (4)). These metrics are adequate to test classification algorithms over different datasets as well as their capability to detect false positives and false negatives. Precision and recall are metrics that can show how a classifier performs for each specific class, where precision measures the ability of the model to identify only the relevant instances, while recall measures the ability to detect correctly the occurrence of a class of interest. For instance, in a dataset with 17 confirmed landforms and 121 false landforms, an algorithm that detects every case as false would have an accuracy of 87%, but at the same time it would have an extremely poor recall of 13%. The F1-score (Equation (5)) is the harmonic mean of recall and precision, giving a suitable generalised single figure of merit to convey the performance of a classifier.

	

	

	

The quantitative evaluation metrics listed above are valid if the dataset is labelled, which in our study covers a small subset of the total surface mapped. Therefore, these results can give an indication of a particular classifier performance, but visual inspection is still required to fully grasp the capabilities of FCNNs for bathymetric data.





3 Results



3.1 Model performance

For this study, 40 different FCNN model runs were carried out, and total mean of their performances are presented in Table 3. Precision, recall and F1 scores for each class and model are instead given in the Supplementary Material.


Table 3 | Complete list of model results from this study.



The first set of results (models #1 to #12) shows the initial tests carried out on the two different encoders (VGG13 and ResNet50) comparing their efficacy and assessing the utility of semi-supervision and some preliminary combinations of input layers. Overall, the scores show that neither VGG13 nor ResNet50 outperforms the other, although ResNet50 produces slightly better scores at the second decimal point, with increases between 0.01 and 0.05 (e.g. compare models #6 and #7 or #10 and #11).

The use of semi supervision does not improve significantly nor consistently the results, contributing to positive or negative fluctuations. For example, ResNet50 model #11 acquires 0.053 points in Precision compared to non-supervised #12 (Figure 4), with no change in Recall. ResNet50 model #8 gains only 0.004 points in Precision and loses 0.004 points in Recall compared to unsupervised model #7. VGG13 models seem instead to suffer more the application of semi-supervision, leading to higher loss in scores (e.g. compare model outputs #5 and #6).




Figure 4 | Comparison between non-supervised and supervised ResNet50 model runs #11 and #12. A visual inspection reveals only minor differences in the overall classification.



The best model results were achieved using the complete set of input layers, with ResNet50 models #11 and #12 giving F1 scores of 0.724 and 0.688 respectively. Evaluation metrics are supported by the visual assessment of the resulting thematic maps, where models #11 and #12 show the most visually pleasing results (Figure 4). Nonetheless, high scores were also obtained limiting the input to a combination of bathymetry, BPIs, VRM and Aspect functions (models #3 and #8, with F1 scores of 0.677 and 0.660) or bathymetry and hillshades (model #4, F1 score of 0.641). In order to test the contribution of the input layers to the model predictions, a series of additional model runs were carried out using both encoders but without implementing the semi-supervision -which the previous results reveal to be relatively erratic, and increasing the number of labels to 100 per class, to gauge the effect of boosting label number to model performance.

The results of this series of tests are presented in Table 3, model numbers #19 to #40. As expected, the scores show an overall improvement caused by the increase in the number of labels from 50 to 100. While the time effort required to create labels for the classes is doubled (from 500 to 1000 labels in total), the improvements are significant, up to ~0.19 points, i.e., from 0.641 to 0.833 when comparing the F1 scores of the best VGG13 bathymetry and hillshade results (#4 vs #29).

Once again ResNet50 runs are slightly more successful in evaluation metrics compared to VGG13, with ResNet50 scoring higher in F1 8 times out of 11 model runs.

The exploration of the usefulness of each input layer in model performance provides strong indications that the hillshades are the most valuable set of layers for a correct prediction of morphological classes. Models that utilise hillshades have consistently higher scores than those that do not (cf. for example models #21 with #31 or #33 with #37, Table 3). The use of hillshades alone provides very good results (model #26 F1 score: 0.774), although the combination of layers with different azimuths is essential and a single hillshade is insufficient to produce an accurate map. Overall, the combination of the other derivatives alone or with bathymetry leads to substantially inferior predictions, with Precision scores consistently under 0.59 and Recall scores only slightly better. Aspect functions and VRM do not seem to provide useful information to the models, on the contrary their addition is detrimental to their performance. For example, bathymetry as input layer alone (#19 and #20) contributes to a better score than bathymetry combined with aspect functions and VRM (#33 and #34). While the bathymetric position indexes improve the predictions of the bathymetry baseline, they do not seem to enhance significantly the performance of the hillshade layers, with oscillating results when comparing the “HS full” baselines (models #25 and 26) and the “BPI + all HS” (models #31 and 32). The only layer that does improve the predictions of the hillshades alone is the bathymetry, with model runs #29 and 30 presenting the highest scores obtained in this study (VGG13, Precision 0.845, Recall 0.850). Visually comparing the map outputs of hillshades alone against bathymetry-supported hillshades shows improvement in score metrics obtained by the latter as reflected in the outlook of the map (Figure 5), although the crispness of the boundaries is somewhat diminished, creating more “padded” class interfaces and generalisations.




Figure 5 | Comparison between the results of ResNet model #40 (complete set of layers), #30 (bathymetry and hillshades) and #26 (only hillshades); visual inspection supports the better accuracy metrics obtained by ResNet50 model #30.



The effect of the combination of all the input layers is given in runs #39 and 40, where the scores are only slightly superior to the model runs of the hillshades, but inferior to the bathymetry and hillshades runs. Overall, Large Ridge, Plane and Fissured (rock) are the three most successfully identified classes by all 10-class models, with an average F1 score of 0.884, 0.772 and 0.716 respectively. Corrugated (sediment), Hummocky (sediment) and Layered (rock) score instead the lowest across all models, with average F1 scores of 0.471, 0.466 and 0.423. The confusion matrices (see the Supplementary Material) show that the prevalent misinterpretation is related to Type II errors (false negatives) where Layered (rock) is classified as Plane, Hummocky (sediment) as Depression and Corrugated (sediment) as Large Ridge. Probable causes for these misinterpretations are treated in the discussion.

Finally, models #13 to #18 (Table 3) show the results of separate tests carried out to investigate the performance of the FCNNs with an increased number of labels. All the results show a substantial decrease in all the scores when moving from the 10 class to the 12 class problem, with Precision and Recall ranging between 0.442-0.567 and 0.451-0.584. Confusion matrices show a decline in accuracy in all classes, and not only those that were split. Depression (enclosed) and Bank (sediment) scored the lowest amongst the classes, showing that the separation from the original and more general Depression and Large Ridge classes (10 class division) weakens the training.




3.2 Modal voting and combined map

The use of several permutations and combinations of different input layers allows for an ensemble learning scenario to be leveraged. We have tested this hypothesis with a simple modal voting of FCNN pixel classifications for the 10 best performing models (both in terms of scores and visual quality), which produced an excellent map with an overall F1 score of 0.96 and class precisions and recalls superior to 0.87. The results and full map are presented in Table S1 and Figure S1 in the Supplementary Material.





4 Discussion

Scores and qualitative assessment of the results have shown that both ResNet50 and VGG13 encoders can achieve good accuracy, with performances driven mostly by the nature of the input layers and the quantity and precision of the labelling. The unsuccessful attempt with 12 classes is most likely caused by a fallacy in the semantic definition of these classes more than weakness of the networks, and it shows that FCNNs can be very susceptible to deceptive labelling. In the first set of tests the best score result was given by ResNet50 model #11, that included all input layers; however, our subsequent analysis of layer contribution shows that the best results are achieved with hillshades and bathymetry only. It must be said that this discrepancy relies on the comparison with a single observation in the first set (i.e. model #4 vs models #9 to 12), and if we take the worst performing model with all input layers (model #9), its scores are not too different from those of hillshade-based model #4 (only Recall being significantly higher in #9). The limitation in sample comparison coupled with the consistent observation that non-hillshade derivatives do not enhance the performance even in the best of cases, support the conclusion that either model #4 is an underperforming outlier or that the doubling of labels has substantially improved the prediction performance based on hillshades. The evaluation metrics improvement generated by the addition of the bathymetry layer to the hillshades input is possibly partly due to the nature of the offshore physiography, where some classes are preferentially found at specific bathymetric ranges. For example, bedrock outcrops are focussed close to the coastline, and unusually high F1 scores for Fissured (rock) and Hummocky (rock) in the bathymetry-based models (#19, #20, see Table S1 in Supplementary Material) strengthen the suspicion of a regional bias. Therefore, the utility of the bathymetry input is potentially lower in different datasets.

Figures 6–8 give an overview of the results provided by the best performing model (#30) and the combined modal vote map. A qualitative assessment of the maps shows that slightly better performances are sometimes achieved to the detriment, in places, of boundary crispness and detail. The evaluation metrics, calculated on a pixel basis, give a good approximation of the effectiveness of a model, however in order to fully assess the models’ performance and potential for seabed mapping studies, we need to consider the results in term of boundary position, nature of misclassifications, type of class misclassified and general distribution of errors.




Figure 6 | Results from best performing ResNet50 model (#30 – bathymetry and hillshades only) and the modal vote map. While producing overall the best precision and recall scores amongst the model runs, model #30 has underperformed in the detection of the Layered (rock) class (F1 score 0.584), completely misinterpreting the sorted bedforms in the Celtic Sea as rock (A). The modal vote map is instead effective in recognising the bedforms, having better efficacy in identifying Layered (rock) (F1 score 0.90). The glacial streamlined terrain in (B) is well captured by model #30, with only minor mixing between Large Ridge and Hummocky (sediment) where Rogen moraines become larger and are intertwined with larger underlying morainic ridges. While the modal vote map gives also a fair depiction of the area, it overestimates the presence of Depressions, probably due to the interference of the BPI layers.






Figure 7 | Results from best performing ResNet50 model (#30 – bathymetry and hillshades only) and the modal vote map. (A) Model #30 classifies correctly the extent of the large dune field, although once again the Layered (rock) class is erroneously predicted in liminal places. Both (A) and (B) show well the higher detail provided by the modal vote map, for example in (A) singular dune ridges are mapped correctly at the centre of the field, while for model #30 they are generalised with the surrounding flat or depressed terrain.






Figure 8 | Results from best performing ResNet50 model (#30 – bathymetry and hillshades only) and the modal vote map. (A) this inset shows the overinterpreted Depressions for the modal vote map adjacent to the rocky outcrops, possibly caused by the BPI layers and totally absent for model #30. (B) model #30 correctly identifies the series of moraines in Donegal Bay, while the modal vote map produces a result which is a mixture of textural interpretation (corrugated seabed over the moraines) and larger features interpretation. The bathymetry artefacts that cover the otherwise featureless seabed in the southern portion of the inset have caused misinterpretations in both models; in particular model #30 shows again the confusion in predicting the location of Layered (rock), assigning the artefacts that value.





4.1 Sources of error and uncertainty

In the breakdown of evaluation metrics for each class (Table S1 in Supplementary Material) the three most recurring weakest predictions are linked to the classes Corrugated (sediment), Hummocky (sediment) and Layered (rock). Coupling the observations of class type misinterpretation (see Results) and the qualitative assessment of the map outputs has led to the identification of three main types of errors or uncertainty.

Misclassifications linked to liminal spaces between classes is the first type of ambiguities we discuss (Figures 9A, B). This misclassification is reflected in the significant confusion between Layered (rock) and Plane or Hummocky (sediment) and Depression. Stratified, gently dipping bedrock possesses significant extents of planar features within them (bedding planes), that transition into fine elongated and often isolated ridges. This texture is sometimes misidentified as Plane, but in unlabelled data can also be observed as Layered (rock) in areas of sorted bedforms, that possess similar geometry. A similar case is provided by the Hummocky (sediment) class, which includes the occurrences of drumlins (oval shaped, glacial-flow aligned, moraine hills formed beneath fast-moving ablating ice flows). The drumlins are surrounded by depressed areas, the “connecting surface” between the high relief landforms. Models tended to confuse the proximal interconnecting surface as Depression instead of “drumlin”, leading to the lower score. In defence of the networks, it is often very difficult even for a geomorphologist to find the “correct” place to draw a boundary to define a landform (Smith and Mark, 2003). One major reason that labelling was carried out by a single expert, was to try to achieve maximum consistency in delineation, as another geomorphologist might introduce subjective bias and training conflicts for the networks. Moreover, complex terrains or where class assignment felt ambiguous were deliberately not labelled, leaving effectively the model to decide. We have stressed in the Methods section that good care was taken in the definition of distinctive semantic classes, however these errors indicate that morphological textures form part of a spectrum that is fundamentally difficult to compartmentalise (e.g., at what scale and configuration does a corrugation become a hummock or vice-versa)?, and the shortcomings of the FCNNs are at least partly by-products of natural variability and the inability of a set of classes to fully capture it. Without using a more complex set of classes and fuzzy classifiers it is not possible to treat any existing terrain variation.




Figure 9 | Types of error and ambiguities encountered in the maps. (A, B) sharp class transitions/interfaces and misclassification due to the ambiguous nature of the terrain. This is especially evident in (B), where the dunes cross a rugged bedrock terrain with a similar signature. (C) bathymetry artefacts caused by MBES swath merging and correction that leads to a striping effect (misclassified as Large Ridge). (D) bathymetry artefacts and pixelation produced by low quality older MBES data.



The second type of ambiguity is related to scale (Figures 7, 8, 10). Our classifications included the class Large Ridge (or Bank (sediment) and Relict ridge), which can be significantly bigger than other terrain or landform classes. This factor of scale ambiguity was introduced wittingly into the models, as we wanted to explore the “style” and ability of the networks to disentangle the problem of multiscale classification, which is very common in geomorphology and habitat mapping. If restricted to create a single map layer with a small number of classes, the human mind would prioritise the assignation of a class depending on what they think is the most important attribute to classify. So, for example, a large moraine which is covered by a boulder field might be preferentially mapped as “moraine”, even though both classes identify a correct characteristic of the ground. The hierarchical nature of BTM (Walbridge et al., 2018; Goes et al., 2019; de Oliveira et al., 2020) perpetuates this problem. In our results, this multiscale ambiguity is well reflected in the misclassification of Corrugated (sediment) as Large Ridge; corrugated surfaces such as smaller dunes or sorted bedforms occur extensively on the shelf and can overprint larger features, such as sediment banks or large moraines. The networks preferentially choosing the classification as Large Ridge might reduce the scores in the evaluation metrics but do not technically produce a wrong interpretation, rather a partial one. In some instances (e.g. the on shelf edge, see Figure 10), model predictions have dissected longer wavelength dunes (i.e. large underlying landforms) interpreting them partially as Large Ridges and partially as Corrugated (sediment), where the superficial sorted bedforms are more pronounced. Class prioritisation seems to be dependent on the way the model has learned the classes and boundaries, which in turn depends on adjusted weights and biases the model has learned during model training. However, understanding the individual activations and the internal workings of the neural network would require a study of class activation maps or the visualisation of deconvolutional layers (Noh et al., 2015).




Figure 10 | Representation of the different classification styles adopted by the networks when dealing with “nested” bedforms with different dimensions (large dunes, finer megaripples and sorted bedforms) using discrete and non-overlapping classes. All models map the most visible class in an area, reaching different competing results. Models #30 and #40 produce good alternative representations, while model #29 fails to reach a proper depiction of the area.



Finally, a third type of recurring errors is connected to an inherent problem of the input layers: namely artefacts. MBES data can present many type of artefacts mostly caused by the limits of the instrument, the motions of the survey vessel (dynamic systematic errors), poor tidal or water sound velocity control causing vertical shifts and sound refraction. These artefacts are difficult to eliminate completely and a common obstacle in automated marine mapping (Lecours et al., 2017). Artefacts are recurrent in the extensive INFOMAR MBES bathymetry dataset, which is a combination of data from hundreds of different surveys with an array of vessels and survey operators, acquired with different (improving) instrumentation, in the space of about 25 years. The topographic variability introduced may consist in pixelation (salt-and-pepper effects), undulation along the swath, striping effects and cliff-like edges, and the vertical difference is often comparable with real features at seabed (e.g. megaripples or furrowing) (Figures 9C, D). Additionally, our hillshades are particularly susceptible to this kind of “topographic noise”, as they are vertically exaggerated to enhance the visibility of faint terrain patterns, which diminishes considerably their effectiveness. While a study of the effect of artefacts was outside the scope of this paper, it is reasonable to affirm that much stronger predictions can be achieved with a “cleaner” dataset.




4.2 Habitat mapping applications

Morphological maps provide the backbone for seabed habitat mapping studies, with classifications commonly obtained using semi-automated techniques as OBIA, BTM or other GIS tools (Harris et al., 2014; Goes et al., 2019; Linklater et al., 2019; Arosio et al., 2021) that segment the seabed in discrete parcels subsequently classified on the basis of pixel group statistics or geometrical characteristics. While grounded on mathematical rules and granting replicability, these techniques lack flexibility (e.g. how to treat morphological exceptions or near-isomorphisms) and require a good measure of engineering. Moreover, rules applied in one seabed region do not necessarily work elsewhere, so each dataset might need to be treated differently. On the contrary, FCNNs can provide the flexibility needed to capture any instance of discrete landforms or terrain textures without requiring ad hoc segmentation protocols (OBIA) or formulation of classification rulesets (BTM).

A semi-quantitative assessment of the effectiveness of the FCNN predictions for habitat mapping can be made comparing bedrock or sediment texture substrates to existing maps. We compared the predicted FCNN “bedrock” classes (Fissured, Layered and Hummocky (rock)), with the bedrock substrate layer produced by INFOMAR and available on the INFOMAR portal (INFOMAR, 2022). In Figure 11 we take the models with best scores in “bedrock” prediction (model #29 and the modal vote map) and overlap the INFOMAR layer. We limit the comparison area to a subsection of the entire dataset (indicated in Figure 11C), as parts of the INFOMAR layer are mapped at very low resolution (e.g. the areas in Figure 11C pointed by the red arrows), introducing further deviations, and in other zones the Hummocky (rock) class includes also rough glacial till substrate. The best comparison is provided by the modal vote map, with a total bedrock area of 2721 km2 (INFOMAR = 2336 km2) and an overlap of 77%. Model #29 has a slightly better overlap (~78%), but has also a larger area mapped as rock (3276 km2). Most of this excess bedrock is caused by misinterpretation of Layered (rock) (Figure 11D), which is over-represented in the model (F1 score 0.58). These numbers have to be taken with a pinch of salt, the mapping approaches are different (e.g. in the INFOMAR dataset the fissures in the bedrock outcrops are given another class), at a slightly different resolution and using different input layers (the INFOMAR map relies abundantly on backscatter data). Nonetheless, there is a broad agreement between the two, and the FCNNs consistently predict bedrock where it has been effectively mapped (see Figure 11). Moreover they give further information on the texture of the bedrock, which can be useful for habitat predictions (Novaczek et al., 2017). A similar comparison can be made with submarine dune fields. In Figure 12 we compare the general location of submarine dune ridges extracted using semi-automated techniques and checked manually (Arosio et al., 2023) with the class Ridge (sediment) in the best performing models (#12 and the modal vote map). Once more the results show an overall agreement, with Ridge (sediment) predictions corresponding with dune field areas (Figures 12A, B). In some places the FCNN is more efficient in identifying subtler ridges (e.g. Figure 12F), however in parts the related classes Large Ridge and Corrugation (sediment) were preferentially selected (e.g. Figures 12E, F). The models show higher levels of confusion in the presence of trochoidal dunes (Figure 12D) that are often misclassified as Fissured (rock) indicating that the labelling is not effective enough to train for this particular morphological distinction.




Figure 11 | Bedrock mapping results for the best achieving models (in rock-related classes) and comparison with INFOMAR substrate map (A–C). Insets (D, E) show a zoom-in for the results of models #29 and the modal vote map respectively, and the amount of correspondence to the INFOMAR shapefile. The INFOMAR bedrock vector shapefile (in light red) is overlaid on the FCNN green shapefile. Inset (F) shows the hillshaded bathymetry of the same area.






Figure 12 | Submarine dune fields (Ridge, sediment) mapping results for the best achieving models and comparison with unpublished semi-automated mapping performed by the authors (A–C). The semi-automated dune vector shapefile (in light red) is overlaid on the FCNN green shapefile. Insets (D–F) show zoom-ins of the modal vote map.






4.3 Final considerations

This exploratory study has shown that FCNNs have considerable potential for the creation of large scale seabed landforms and terrain textures map, and that even with relatively modest human input the results can be satisfactory. A clear semantic class definition and label delineation (including numerous boundary cases) will improve the accuracy of the classification, while a more rigorous consistency in mapping scale will most likely reduce ambiguity. Our results show that the optimisation of derivative selection helps the model outputs, and a combination of hillshaded layers contribute substantially to prediction improvements. Further insights on the contribution of each layer could be obtained using techniques based on feature importance, as saliency maps (e.g. Simonyan et al., 2014). The ensemble voting map, which constituted the best outcome of these experiments, clearly shows the utility of using learnt biases on different subsets of input data, and that assembling predictions from several ‘weak’ learners outperforms a single ‘expert’ network, which is the premise of ensemble learning (Ganaie et al., 2022). For further work, several FCNNs could be trained concurrently on different subsets of input data, and a loss could be calculated based on the confidence of individual networks (Goyal et al., 2020; Zhou et al., 2021). The latter is akin to several Decision trees in a Random Forest in classical machine learning (Cutler et al., 2012).

From a habitat mapper’s perspective, the use of FCNNs can be successfully applied to seabed maps for morphological characterisation, and very good results and flexibility can be achieved provided the model is well trained and furnished with clean data. Very large scale mapping endeavours, as that presented in Harris et al. (2014), could be easily replicated and improved upon using FCNNs. Moreover previously trained models could be applied on the new datasets that are being collected and gathered for Seabed 2030. If a sufficient volume of labelled classes is cooperatively assembled in a “dictionary” and made publicly available, it could be used by the community to predict morphological classes across different datasets, improving upon map objectivity and inter-comparison. The time invested in creating such a dictionary would be considerable but worthwhile, as the FCNN method will be eventually better, quicker and easily repeatable compared to semi-automated or manual digitisations. We shared our labelled dataset on GitHub (https://github.com/BrandonHobley/geomorph_deep) as a starting point. While discrete computer power it is necessary, the code is open source and requires a relatively basic level of coding expertise to be run, allowing for a widespread adoption.

FCNNs have also their significant drawbacks. Firstly, they are essentially a blackbox whose internal workings are not fully understood. Secondly, labelling and training at one determinate pixel resolution is most likely not transferable to a different one. So having mapped at 25m/pixel our dataset is probably ineffective to map at 2m/pixel, and more ad hoc labelling will be required. Finally, at this stage of sophistication, FCNNs fail to recognize complex geomorphological processes, especially in cases of isomorphism, so human intervention is still required. This limitation is also caused by the input types themselves, as bathymetry-derived raster data alone are often insufficient (for human geomorphologists too!) to unequivocally identify seabed landforms. Only when different types of datasets (seismic lines, ground-truthing etc.) can be included in the predictions, will machine learning be useful for more complex seabed geological interpretations.
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Seabed morphology maps and data are critical for knowledge-building and best practice management of marine environments. To facilitate objective and repeatable production of these maps, we have developed a number of semi-automated, rule-based GIS tools (Geoscience Australia’s Semi-automated Morphological Mapping Tools - GA-SaMMT) to operationalise the mapping of a common set of bathymetric high and bathymetric low seabed Morphological Features. The tools have a graphical user interface and were developed using Python scripts under the widely-adopted proprietary ArcGIS Pro platform. The utility of these tools was tested across nine case study areas that represent a diverse range of complex bathymetric and physiographic settings. Overall, the mapping results are found to be more consistent than manual mapping and allow for capture of greater detail across a range of spatial scales. The mapping results demonstrate a number of advantages of GA-SaMMT, including: 1) requirement of only a bathymetry grid as sole data input; 2) flexibility to apply domain knowledge to user-defined tool parameters, or to instead use the default parameter settings; 3) repeatability and consistency in the mapping outputs when using a consistent set of tool parameters (user defined or default); 4) high-degree of objectivity; and 5) efficiency in mapping a large number (thousands) of seabed morphology features in a single dataset. In addition, GA-SaMMT can comprehensively quantify the characteristics of individual seabed bathymetric high and low features, respectively generating 34 and 46 metrics for each type of feature. Our results indicate that attribute metrics are invaluable in the interpretation and modelling of mapped Morphology Features and provide insights into their formative processes and habitat potential for marine communities.
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1 Introduction

Seabed morphology, as often identified and mapped from bathymetry data, describes the geometry of discrete physical features on the seafloor. Seabed morphology maps provide fundamental information for a range of applications, including mapping coastal and marine habitats (e.g., Erdey-Heydorn, 2008; Micallef et al., 2012; Smith et al., 2015), interpreting seabed geomorphology and its formative processes (e.g., Micallef et al., 2018; O’Brien et al., 2020; Nanson et al., 2022), and understanding seabed stability and sediment dynamics (e.g., O’Brien et al., 2015; Picard et al., 2018b; Nanson et al., 2022; Post et al., 2022). The increasing availability of bathymetry data (e.g., AusSeabed, https://www.ausseabed.gov.au/; Wölfl et al., 2019) has supported the application of seabed morphology and geomorphology mapping at a wide-range of spatial scales (e.g., Ferrini and Flood, 2005; Heap and Harris, 2008; Harris et al., 2014; Huang et al., 2014; Linklater et al., 2015; Picard et al., 2018a; O’Brien et al., 2020; Post et al., 2020; Weinstein et al., 2021; Nanson et al., 2022; Post et al., 2022).

With the increased demand for seabed morphology and geomorphology maps to support ocean science, management and policy there is a pressing need for mapping and classification standards to ensure consistency between sub-disciplines and disparate mapping regions (Dove et al., 2020). Heap and Harris (2008) and Harris et al. (2014) mapped the regional- to global-scale distribution of seabed geomorphic features of the Australian margin and the global oceans, respectively, using terminology that was primarily drawn from the International Hydrographic Organization’s standardised list of undersea feature names (IHO, 2001; IHO, 2008). Dove et al. (2016) similarly drew on this internationally-adopted list of terms, and proposed a novel two-part approach whereby morphological mapping (and classification) is applied separately to the geomorphological classification of each feature. Using this two-part approach, Morphological Features can be characterised by their surface expression (i.e., size, shape, configuration, texture: Part 1 - Dove et al., 2020; note their intentional capitalising of these defined terms as proper nouns), whereas their (subsequent) geomorphic interpretation incorporates knowledge of the environmental process(es) by which they formed (Part 2 - Nanson et al., 2023).

Dove et al. (2020) defined 17 bathymetric high and 14 bathymetric low Morphology Features, using qualitative terms primarily sourced from the IHO (IHO, 2019), and provided an illustrated glossary. These bathymetric high (low) Features which are elevated (depressed) relative to the adjacent seafloor are the targets of the semi-automated bathymetric mapping tools described in this paper. Though Dove et al. (2020) provided only a few dimensional and geometric thresholds for categorical bathymetric classification (e.g. Seamounts must exceed 1000 m in depth range; Mounds must be less than 500 m in depth range), they recommended the development of more comprehensive criteria for the practical implementation of their approach (e.g., shape elongation, topographic gradient and profile symmetry). Importantly, Dove et al. (2020) also emphasised that mapped Morphology Features need not share common spatial boundaries; overlapping seabed Features are common (e.g. Mounds on a Plain) and can provide useful insights into relationships between them (e.g., pockmarks and depressions on plains; Picard et al., 2018b). As a result, mapped Features need not be spatially unique and do not need to adhere to rigid topology principles. These attributes of the Dove et al. (2020) approach determine that the mapping of Morphology Features can be approached using a variety of spatial analyst and image processing techniques that we present in this paper.

Manual and semi-automated methods are frequently used to map seabed features. Many seabed morphological features such as canyons, seamounts, ridges, valleys, banks and depressions have distinct geometries. Consequently, visual interpretations and manual digitisation have often been used to define their extents, sometimes with the support of ancillary data (e.g., Beaman and Harris, 2005; Ferrini and Flood, 2005; Heap and Harris, 2008; Nichol and Brooke, 2011; Nichol et al., 2011; Sacchetti et al., 2011; Huang et al., 2014; Linklater et al., 2015; Tecchiato et al., 2015; O’Brien et al., 2020; Post et al., 2022). The manual mapping method has the advantage of being able to implicitly incorporate domain knowledge and contextual information while tolerating data quality issues. However, the manual mapping method also suffers from subjectivity and, importantly, it is not repeatable in delineating feature boundaries. Critically, the manual mapping method can be prohibitively time consuming and impractical for mapping large numbers of small features in complex seabed environments. Semi-automated mapping tools have since been developed to address these issues.

Semi-automated mapping methods can be unsupervised, supervised or rule-based. Both unsupervised (including object-based segmentation) and supervised mapping techniques aim to divide an area of interest into mutually exclusive classes by maximising between-class variation and minimising within-class variation so that each class is “uniform” in properties. Few cases of seabed morphology mapping have applied either the unsupervised (Jones and Brewer, 2012; Ismail et al., 2015) or the supervised (Lanier et al., 2007) methods. This likely reflects the fact that it is challenging to apply these mapping techniques to complex real world seabed morphological features, such as canyons or seamounts, which do not have “uniform” bathymetric properties. In contrast, the rule-based methods explicitly apply domain knowledge and can be designed to classify complex seabed morphological features. Once the rules are determined by domain experts, these methods can be applied objectively, consistently and efficiently in a GIS environment. Consequently, many previous seabed morphology mapping applications have employed the rule-based methods (e.g., Lundblad et al., 2006; Lanier et al., 2007; Erdey-Heydorn, 2008; Zieger et al., 2009; Micallef et al., 2012; Harris et al., 2014; O’Brien et al., 2015; Jerosch et al., 2016; Picard et al., 2018b; Hebbeln et al., 2019; Lavagnino et al., 2020; Sowers et al., 2020; Weinstein et al., 2021).

Classification rules to map seabed morphology can be based on bathymetry data and/or its derivatives such as Topographic Position Index (TPI; Weiss, 2001), fuzzy morphometrics (Fisher et al., 2004) and geomorphons (Jasiewicz and Stepinski, 2013). The TPI technique is able to map six broad morphological classes (Weiss, 2001) and, with the help of additional slope gradient and bathymetry data, 13 detailed morphological classes (Lundblad et al., 2006; Erdey-Heydorn, 2008). The fuzzy morphometric based technique is able to map six morphological classes, and the geomorphon based technique is able to map 10 morphological classes. Each of these three techniques require the setting of appropriate scale parameters (e.g., window size or distance) to map seabed features of various spatial scales. However, none of these out-of-the box tools are able to adequately map the Morphology Features of the Dove et al. (2020) scheme.

In this study we have developed a semi-automated, rule-based mapping method to target the mapping of ten bathymetric high and eight bathymetric low seabed Morphological Features as defined by Dove et al. (2020). This paper aims to describe this new method, which is implemented as a number of GIS tools (Figure 1; Huang et al., 2022). We also evaluated the performance of these tools through their application to a diverse suite of bathymetry datasets as case studies that represent a spectrum of Features that characterise the Australian and Antarctic margins. In addition, we conducted a controlled experiment to provide more quantitative comparisons between manual mapping and our semi-automated mapping at one of the case study areas. Lastly, we discuss the benefits and limitations of these semi-automated tools based on the results of these case studies.




Figure 1 | Flow Chart of the semi-automated mapping tools (GA-SaMMT). There are three sequential steps: Map (Step 1), Characterise (Step 2) and Classify (Step 3). TPI stands for Topographic Position Index; LMI stands for Local Moran’s Index; CI stands for Convergence Index.






2 Materials and methodology



2.1 Overview of the semi-automated mapping method

The semi-automated seabed morphology mapping method (Geoscience Australia’s Semi-automated Morphological Mapping Tools (GA-SaMMT)) implements a three-step solution – Map, Characterise and Classify (Figure 1). The Map step (Step 1) delineates polygons that outline High and Low features; The Characterise step (Step 2) generates attributes (metrics) to describe the geometry of the mapped polygons from the Map Step; while, the Classify step (Step 3) uses the attributes generated from the Characterise step to assign a Morphology Feature type to each mapped polygon (Figure 1). For each of these three steps a number of ESRI ArcGIS Pro Python tools with graphical user interfaces have been developed to streamline their implementation (Huang et al., 2022; https://dx.doi.org/10.26186/146832).

The subjective components of the semi-automated mapping method are: 1) the requirement for several user inputs as tool parameters; and 2) potential requirement of manual post editing/modification of feature polygon shapes and their classification to obtain an optimal product. These user inputs are necessary to maintain flexibility in mapping Morphology Features at a range of spatial scales and with application-specific conditions. Fundamentally, these user inputs are also required to utilise the additional local domain knowledge of the analyst. Manual editing post GA-SaMMT - Map step may also be needed in some applications to fine-tune the feature boundary and to fix unsatisfactory mapping results of some individual features that are inherited from underlying data quality issues and the inherent complexity of these features.

GA-SaMMT possesses the same advantages of other rule-based mapping methods, including the ability to use domain knowledge, repeatability, boundary accuracy and time-efficiency. Importantly, this semi-automated method operationalises the Dove et al. (2020) seabed morphology classification scheme that offers consistency between study areas. Another key advantage of this semi-automated method is its ability and flexibility to map Morphology Features at a wide-range of spatial scales on a single dataset, from very-fine scale Features such as Hummocks and small Holes/Depressions to broad scale Features such as Seamounts and Canyons. In addition, this semi-automated method offers flexibility for continuous future development, for example to include more mapping tools and to modify the publicly accessible scripts for advanced users. GA-SaMMT are described below in detail.



2.1.1 Mapping bathymetric high/low feature polygons (GA-SaMMT Map; Step 1)

The objective of this first step is to identify and map the polygon boundaries of individual bathymetric high and low features from the input bathymetry data. We developed three ArcGIS Pro Python tools to map bathymetric high and low Features separately (Figures 1, S1-S3). These tools target the mapping of ten bathymetric high Features and eight bathymetric low Features, following the definitions in Dove et al. (2020) (Table 1; Figure 2). These 18 Feature types are a subset of the 31 Morphology Features defined by Dove et al. (2020) that are selected here because they represent commonly targeted morphologies for applications such as habitat mapping, and they have the best potential for capture by semi-automated mapping. Specifically, they have higher (or lower) elevations than the surrounding bathymetric surface. Most of the remaining 13 Feature types defined in Dove et al. (2020) (those greyed out in Figure 2), such as Terrace, Apron, Peak, Floor, Saddle and Gap, require additional steps after mapping the 18 principal bathymetric high and low Features. In addition, a few of the 13 Features such as Block and Fan are also more difficult to map by semi-automation due to their complex definitions (Dove et al., 2020). We will attempt to develop semi-automated tools to map these 13 remaining bathymetric high and low Feature types in future versions of GA-SaMMT. Note that Dove et al. (2020) refer to these Feature types as proper nouns, such that reference to these Features and more specific Feature types (e.g., Seamount, Canyon) are capitalised. Where we refer to mapping by earlier workers who used other classification schemes (i.e. not Dove et al., 2020), their terms remain uncapitalised (e.g., channels, ridges).


Table 1 | Definitions of 18 bathymetric high and low features according to Dove et al. (2020).






Figure 2 | The idealised cross-section profiles of the bathymetric high and low Features modified from Dove et al. (2020). The greyed out Features are not implemented by the current version of GA-SaMMT.





2.1.1.1 TPI tools

The Topographic Position Index (TPI) method, which compares the elevation of the centre cell to the mean elevation of a specified neighbourhood around the cell (Weiss, 2001), has been used extensively to map seabed morphological classes (e.g., Lundblad et al., 2006; Erdey-Heydorn, 2008). This is mainly because a positive (or negative) TPI value (in metres) indicates a bathymetric high (or low) location. Our ‘TPI Tool Bathymetric High’ and the ‘TPI Tool Bathymetric Low’ ArcGIS Pro Python tools (Figure S1) similarly implements the TPI (Weiss, 2001) method to map bathymetric high and low feature polygons from bathymetric data using the following steps:

1. Calculate TPI raster from the input bathymetry raster using the following equation:

 

where x and y are the positions of the centre cell, Ex,y is the elevation (bathymetry) value at the centre cell and WDx,y is the mean elevation (bathymetry) within a neighbourhood window defined by the “TPI Circle Radius” parameter, which is calculated using the ArcGIS Focal Statistics function.

2. Calculate the TPI threshold using Equation 2 for bathymetric high Features or Equation 3 for bathymetric low Features

 

 

where TPIT is the TPI threshold, TPIm and TPIs are the spatial mean which represents the “neutral” condition and the standard deviation statistics of the TPI raster, respectively, and CTPI is the “TPI STD Scale” parameter.

3. Select locations that have TPI values greater (or lower) than the TPI threshold.

4. Convert the selected areas into polygons.

5. Remove the feature polygons with areas smaller than the “Area Threshold” parameter to obtain the final set of bathymetric high (or low) feature polygons as output.

Note that these three parameters (“TPI Circle Radius”, “TPI STD Scale” and “Area Threshold”) have influence on the mapping results. Users need to experiment with different combinations of these parameters to obtain an optimal mapping result with the guidance of a domain expert. For the “TPI Circle Radius” parameter, a rule of thumb is to use a radius slightly larger than the largest bathymetric high (or low) Features to be mapped in the area of interest. For example, for a 5 m resolution bathymetry raster, a radius of 50 cells should be used to capture any bathymetric high Features that are smaller than 500 m in length. This is also the case for other mapping tools outlined below (Openness, TPI LMI and TPI CI in Figure 1). In addition, to capture multiple scales of seabed Morphology Features (e.g., Seamounts, Mounds and Hummocks) in a single bathymetry dataset, several separate applications of the TPI tool using various TPI radius parameters are often required.

For the “TPI STD Scale” parameter (and the similar parameters in other mapping tools described in sections 2.1.1.2 and 2.1.1.3), the diversity and complexity of individual applications means that it is not possible to provide a rule of thumb for the parameter value. Instead, users need to experiment to find the most appropriate parameter values for their dataset.

Users should also adjust CTPI, which is a multiplicative factor, so that the TPIT has a positive (or negative) value for bathymetric high (or low) features. The same is required for similar parameters for the other mapping tools that follow.




2.1.1.2 Openness tools

The ‘Openness Tool Bathymetric High’ and the ‘Openness Tool Bathymetric Low’ ArcGIS Pro Python tools (Figure S2) are used to map bathymetric high (low) feature polygons from bathymetric data using an openness based method (Yokoyama et al., 2002). Openness indicates the degree of dominance or enclosure of a location on a surface by calculating an angular measure of the relation between surface relief and horizontal distance (Yokoyama et al., 2002). The openness can be calculated as negative openness (NO) which represents the “below-ground” view of the landscape and positive openness (PO) which represents the “above-ground” view of the landscape. Both NO and PO range from 0 to 180 degree. Either NO or PO can be used to identify both bathymetric high (convex) and bathymetric low (concave) locations (Yokoyama et al., 2002). In this study, we used NO (or PO) to map bathymetric high (or low) Features because a NO (or PO) value that is smaller than the mean (i.e., the “neutral” condition) indicates a bathymetric high (or low) location. Again, these two Openness tools implement similar steps as follows:

1. Calculate NO (or PO) from the input bathymetry raster using the “Openness Circle Radius” parameter.

2. Identify the possible ‘tops’ (or ‘bottoms’) of the bathymetric high (or low) Features from the inversed (or normal) bathymetry raster based on the ArcGIS Sink function which is able to find cell(s) that are lower than all neighbouring cells (Mark, 1988).

3. For the bathymetric high Features, calculate the NO threshold using Equation 4.

 

where NOT is the NO threshold, NOm and NOs are the spatial mean (i.e., the “neutral” condition) and standard deviation statistics, respectively, of the NO raster, and CNO is the “NO STD Scale Large” parameter or the “NO STD Scale Small” parameter. For the bathymetric low Features, calculate the PO threshold using Equation 5.

 

where POT is the PO threshold, POm and POs are the spatial mean (i.e., the “neutral” condition) and standard deviation statistics of the PO raster, and CPO is the “PO STD Scale Large” parameter or the “PO STD Scale Small” parameter.

4. Select the first set of areas that have NO (or PO) values smaller than the “NO STD Scale Large” (or “PO STD Scale Large”) threshold.

5. Select the second set of areas that have NO (or PO) values smaller than the “NO STD Scale Small” (or “PO STD Scale Small”) threshold.

6. Further select from the two sets of areas only those areas that contain ‘tops’ (or ‘bottoms’).

7. These two new sets of areas are used together to identify individual bathymetric high (or low) Features, through GIS overlay and selection functions.

8. If any polygons in the second set contain more than one polygons in the first set, the multiple polygons from the first set are selected as the first subset.

9. If any polygons in the second set contain only one polygon in the first set, the polygons from the second set are selected as the second subset.

10. Merge the above two subsets of polygons together to form a set of bathymetric high (or low) feature polygons

11. Remove the feature polygons with areas smaller than the “Area Threshold” parameter to obtain the final set of bathymetric high (or low) feature polygons as output.




2.1.1.3 TPI LMI and TPI CI tools

The ‘TPI LMI Tool Bathymetric High’ ArcGIS Pro Python tool (Figure S3A) maps bathymetric high feature polygons using a combination of TPI (Weiss, 2001) and Local Moran’s Index (LMI) (Moran, 1950; Anselin, 1995) methods. Positive TPI indicates a bathymetric high location. LMI measures spatial autocorrelation based on both locations and values within a nominated local area. As a result, positive LMI indicates a spatial pattern of positive (higher than average) local auto-correlation (in this case a similar local pattern of (or clustered) higher bathymetry values). The following are the key steps of this tool:

1. Calculate TPI from the input bathymetry raster using the “TPI Circle Radius” parameter using Equation 1.

2. Calculate the TPI thresholds using Equation 2, only this time CTPI is the “TPI STD Scale Large” parameter or the “TPI STD Scale Small” parameter. Note that the TPI thresholds should always have positive values.

3. Select the first set of areas that have TPI values greater than the “TPI STD Scale Large” threshold.

4. Select the second set of areas that have TPI values greater than the “TPI STD Scale Small” threshold.

5. These two sets of areas and the bathymetry data are used together to select the ‘core’ areas of bathymetric high Features, through GIS overlay and selection functions.

6. These ‘core’ areas are masked from the bathymetry data.

7. Calculate LMI from the masked bathymetry raster using the “LMI Weight File” parameter, which is an ASCII text file that defines the shape of the neighbourhood and the weight of each cell in that neighbourhood.

8. Calculate the LMI thresholds using Equation 6.

 

Where LMIT is the LMI threshold, LMIm and LMIs are the spatial mean and standard deviation statistics of the LMI raster, respectively, CLMI is the “LMI STD Scale” parameter. Note that the LMI threshold should always have a positive value.

9. Select locations from the LMI raster that have LMI values greater than the LMI threshold. These locations (areas) are regarded as the remaining parts of bathymetric high Features.

10. Merge the ‘core’ areas and the ‘remaining’ parts of bathymetric high Features to form individual bathymetric high Features.

11. Remove the feature polygons with areas smaller than the “Area Threshold” parameter to obtain the final set of bathymetric high feature polygons.

Similar user advice and the rule of thumb for the “TPI Circle Radius” parameter are applicable.

The ‘TPI CI Tool Bathymetric Low’ ArcGIS Pro Python tool (Figure S3B) maps bathymetric low feature polygons from bathymetric data using a combination of TPI (Weiss, 2001) and Convergence Index (CI) (Koethe and Lehmeier, 1996; Kiss, 2004; Thommeret et al., 2010) methods. Negative TPI indicates a bathymetric low location. The CI, which is based on the aspect (i.e., slope direction), indicates areas of convergence and divergence (Koethe and Lehmeier, 1996; Kiss, 2004; Thommeret et al., 2010); negative CI also indicates a location of convergence (or bathymetric low). The following are the key steps of this tool:

1. Calculate the Aspect raster from the input bathymetry raster.

2. Calculate CI from the Aspect raster using the following equation (Koethe and Lehmeier, 1996; Kiss, 2004; Thommeret et al., 2010):

 

Where θi is the angle in degrees between the aspect of cell i and its direction to the centre cell of a 3×3 neighbourhood window.

3. Calculate TPI from the input bathymetry raster using the “TPI Circle Radius” parameter.

4. Calculate the CI threshold (CIT) using Equation 8.

 

Where CIm and CIs are the spatial mean and standard deviation statistics of the CI raster, respectively, and CCI is the “CI STD Scale” parameter. The CI threshold should always have a negative value.

5. Calculate the TPI threshold using Equation 3. The TPI threshold should always have a negative value.

6. Select the first set of areas that have CI values smaller than the CI threshold.

7. Select the second set of areas that have TPI values smaller than the TPI threshold.

8. Merge the two sets of areas together to form a set of bathymetric low feature polygons.

9. Remove the feature polygons with areas smaller than the “Area Threshold” parameter to obtain the final set of bathymetric low feature polygons as output.





2.1.2 Characterising bathymetric high/low feature polygons (GA-SaMMT Characterise; Step 2)

After the polygon boundary of each bathymetric high/low feature has been mapped a range of attributes are calculated to characterise the geometry of each feature polygon (Figure 1). Subsets of these feature attributes are subsequently used to classify each feature polygon into a Morphology Feature type (Step 3: detailed in section 2.1.3).

We developed three ArcGIS Pro Python tools to calculate the shape, topographic and profile attributes of bathymetric high and low feature polygons in a sequential order (Figures 1, S4–S6). The shape attributes are metrics calculated from the horizontal (planform) shape of each mapped feature polygon and the vertical (cross-sectional) dimensions of the feature (Figure 3A; Table 2). The topographic attributes are metrics calculated from the bathymetry and slope gradient data (Figure 3B; Table 3). The profile attributes are metrics derived from selected cross-section profile(s) (Figure 3C; Table 4). As a result, these three classes of attributes represent different and diverse characteristics of a mapped feature.




Figure 3 | Graphic illustrations of the shape attributes (A), topographic attributes (B) and profile attributes (C) listed in Tables S1–S3.




Table 2 | Shape attributes for bathymetric high and low features (these attributes are illustrated in Figure 3A).




Table 3 | Topographic Attributes for bathymetric high and low features (these attributes are illustrated in Figure 3B).




Table 4 | Profile attributes for bathymetric high and low features (these attributes are illustrated in Figure 3C).



Importantly, these “characterise” tools can also be applied to feature polygons mapped using manual or other semi-automated methods. The ‘Add Shape Attributes High Tool’ and the ‘Add Shape Attributes Low Tool’ ArcGIS Pro Python tools (Figure S4) calculate 16 and 24 shape attributes for bathymetric high and bathymetric low feature polygons, respectively (Table 2; Figure 3A). The ‘Add Topographic Attributes High Tool’ and the ‘Add Topographic Attributes Low Tool’ ArcGIS Pro Python tools (Figure S5) calculate 10 and 14 topographic attributes for bathymetric high and bathymetric low feature polygons, respectively (Table 3; Figure 3B).

For each bathymetric high (or low) feature polygon, if its area is smaller than a user-defined threshold, the ‘Add Profile Attributes High Tool’ (or the ‘Add Profile Attributes Low Tool’) ArcGIS Pro Python tool (Figure S6) generates one cross-section profile passing through the polygon centre. If, however, the feature area is larger than a user-defined threshold and the polygon is not elongated, then the tool generates five cross-section profiles passing through the polygon centre, with an equal-angle interval. Otherwise, the tool generates five cross-section profiles perpendicular to the orientation of the feature polygon, with an equal-distance interval (Figure 3C). A cross-section profile is formed by the bathymetry values at a series of points along the profile. The number of points in this profile is determined by the length of the profile. This profile is then simplified if we can identify and link a subset of original points as breaks-in-slope points across the profile. Note that a break-in-slope point is a knickpoint that is determined by identifying a sharp change in slope. Also note that, in this case, the start and end points of a cross-section profile are always retained as breaks-in-slope points. After that, eight attributes, which are illustrated in Figure 3C, are calculated to characterise the cross-section profile(s) [or simplified profile(s)] (Table 4).




2.1.3 Classifying bathymetric high/low features (GA-SaMMT Classify; Step 3)

After attributes have been calculated for each bathymetric high (or low) feature polygon, the last semi-automated step is to classify each feature polygon into one of the 18 high and low Feature types (Figure 1). The two ArcGIS Pro Python tools developed for this step are shown in Figure S7.



2.1.3.1 Classification rules for bathymetric high Features

We developed a set of rules for the classification of bathymetric high Features (Figures 4A, S8A) and the classification of bathymetric low Features (Figures 4B, S8B). These rules were modified from the classification scheme of Dove et al. (2020) for their individual Feature types (Table 1; Figure 2). For those few Feature definitions for which they defined quantitative threshold values (e.g., Seamount and Mound; Table 1; Figure 2), these values are hardcoded within the classification rules (Figures 4A, S8A). For most other features with only qualitative definitions, the threshold values are implemented as user-defined tool parameters with suggested default threshold values (Figures 4, S7, S8). This provides flexibility for users to choose appropriate threshold values to suit specific applications. This flexibility also allows users to experiment with these threshold values and apply this step iteratively to achieve optimal classification results.




Figure 4 | Classification rules illustrated as tree diagrams; (A) bathymetric high Features; (B) bathymetric low Features; Notes (lwRatioT: LengthWidthRatio Threshold, areaT1: area threshold 1, areaT2: area threshold 2, areaT3: area threshold 3, depthT1: depth threshold 1, depthT2: depth threshold 2, slopeT1: slope threshold T1, slopeT2: slope threshold T2, circularityT: circularity threshold); attribute short names are listed in Tables 2–4. The values within the square brackets [] are suggested default threshold values.



The classification rules for the bathymetric high Features (Figures 4A, S8A) separate Ridges from other Features using a threshold for their elongation attribute [measured by the lwRatio attribute (Table 2)], as defined by Dove et al. (2020) (Table 1). Feature height [measured by the dRange attribute (Table 3)] is subsequently used to separate three groups of bathymetric high Features: Seamounts (≥ 1000 m), Knolls/Hills (500 – 999 m) and Mounds/Hummocks (< 500 m). This follows the definitions and the cross-section profiles presented in Dove et al. (2020) (Table 1; Figure 2). Knolls and Hills are distinguished by calculating the regularity of their profiles [measured by the pShape attribute (Table 4)] (Table 1). Hummocks are distinguished from smaller Mounds by assigning them smaller areas [measured by the Area attribute (Table 2)] and feature heights (Figure 4A). The definition of Pinnacles as spire-shaped pillars (Table 1) is incorporated into a rule specifying that its feature height must be larger than its width [measured by the meanWidth attribute (Table 2)] (Figures 4A, S8A). As Cones have conical and symmetrical profiles (Table 1) the relevant rule captures those with circular polygons [measured by the Circularity attribute (Table 2)] with triangular and moderate to steep side-profiles [measured by the pSide attribute (Table 4)] (Figures 4A, S8A).

The classification rules for Banks and Plateaus are slightly more complicated because their definitions are not distinctly different from other Feature types such as Mounds, Knolls and Hills (Dove et al., 2020). Considering Plateaus are defined as flat-topped features and Banks are also often considered as flat-topped compared to Mounds, Knolls and Hills, we specified a rule condition that Plateaus and Banks must be flat (measured by the compound attribute of pSlope) (Figures 4A, S8A). The pSlope attribute is calculated as the pTop attribute (Table 4) when pTop ≠ ‘no top’ and as the pSide attribute (Table 4) when pTop = ‘no top’. In addition, because Plateau is defined as having one or more relatively steep sides (Table 1), one condition was added to specify that the slope of at least one of its profile(s) is moderate or steep (Figures 4A, S8A). Moreover, because IHO (2019) defines Plateaus as large features, we added an additional area condition (Area ≥ 100 km2) to its classification rule (Figures 4A, S8A). Bank is often considered as a relatively large feature, we thus also added an area condition (Area ≥ 1.0 km2) to its classification rule (Figures 4A, S8A). In addition, Bank is defined as occurring in shallower water (≤ 200 m) [measured by the minDepth attribute (Table 3)] (Table 1) which is reflected in the corresponding classification rule (Figures 4A, S8A).




2.1.3.2 Classification rules for the bathymetric low Features

The classification rules for the bathymetric low Features (Figures 4B, S8B) separate Hole and Depression from other Features based on the elongation attribute, according to the Feature definitions presented in Table 1. Between Hole and Depression, the separation is based on the circularity of the polygon shape and the gradient of the profile side [measured as the pSide attribute (Table 4)] as defined (Table 1). Note that the important criterion of ‘a closed-contour bathymetric low’ in the definition of Depression (Table 1) creates a mapping challenge (as follows), and was unable to be implemented in the current version of GA-SaMMT. Though the contour function in GIS software such as ArcGIS and QGIS can generate contour (poly-)lines that capture many of the bounding vertices of a Depression, these polylines may not join at their end points to form closed contour polygons [e.g. the polyline encircling the Depression simply may not close between the final two vertices; the contour may continue beyond the Depression where a bedform (high) intersects the boundary of a scour (low)]. In addition, the selection of an appropriate contour interval is problematic because many thousands of tiny depressions (e.g. pockmarks) may be represented by only a small number of cells [e.g., in the case study of Bonaparte Basin (section 3.3 below)]. None of the current set of attributes listed in Tables 2–4, which are based on topography, the horizontal and vertical shapes of the feature polygon, are able to provide suitable proxies to measure closed-contour criterion. New attribute(s) are needed for this purpose and are the focus of future work.

For the remaining elongated features, we used water depth of the feature head [measured as the hDepth attribute (Table 3)] to separate Trench and Trough from Canyon, Gully, Valley, and Channel. Essentially, we considered Trench and Trough as features occurring in deep water. This is because Trench is defined as a deep feature (Table 1); while Trough is often considered as being located in a similar water depth setting as Trench. In addition, Harris and Whiteway (2011) defined that a canyon head must be located in a water depth shallower than 4,000 m. This provides us a reasonable depth value (depthT1 in Figures 4B, S8B) of 4,000 m as the default threshold to separate Trench/Trough from other elongated bathymetric low Features. Between Trench and Trough, Trench is asymmetrical in cross-section [measured by the pSymmetry attribute (Table 4)] and has a steeper bottom (measured by the compound attribute of pSlope) than Trough (Table 1). This is reflected in the corresponding classification rule for these two Features (Figures 4B, S8B). The pSlope attribute, in this case, is calculated as the pBottom attribute (Table 4) when pBottom ≠ ‘no bottom’ and as the pSide attribute when pBottom = ‘no bottom’.

Among the other classes of elongated bathymetry low Features (Gully, Canyon, Valley and Channel), Gully is defined as steep-side and relatively high-gradient channel (Table 1), so the pSide attribute (Table 4) and the meanSegmentSlope attribute (Table 2) are used to capture these two characteristics, respectively. Canyons tend to have larger head-to-foot depth ranges than Valleys and higher gradients than Channels (Table 1; Huang et al., 2014). Therefore, the hfDepthRange attribute (Table 2) and the meanSegmentSlope attribute are used in the classification rule to separate Canyon from Valley and Channel (Figure 4B). The geometry of Gibling (2006), and the definitions for Valleys and Channels (Dove et al., 2020; Table 1), have considerable overlap and require a degree of geomorphic interpretation to decipher these two bathymetric low Features. Rather than applying an arbitrary threshold, we have instead grouped these Features within a single category of Valley/Channel type (Figure 4B).

In this study, we used the suggested default threshold values stated in Figures 4, S7, S8 to classify bathymetric high and low Features in the nine case study areas described below. Two of these default values (depth T1 and depth T2 in Figures 4B, S8B) were extracted from Harris and Whiteway (2011), and Huang et al. (2014); others were derived from domain knowledge. Using these default threshold values resulted in consistency and comparability in mapping results across the case studies.






2.2 Case study areas/data

To ensure that the performance of these semi-automated mapping tools can be properly evaluated, we need case studies that would satisfy the following criteria:

	a diverse range of bathymetric and physiographic settings;

	derived from high-quality multibeam surveys with a range of spatial resolutions;

	previous identification and description of key features (e.g. post-survey reports), and;

	collectively contain all of the ten bathymetric high and eight bathymetric low Morphological Features that can be mapped and classified by GA-SaMMT.



Nine diverse case study areas distributed between Australia’s tropical north and East Antarctica were thus selected (Table S1; Figure 5). Apart from meeting the fourth criterion (Table 5; Figure 2), these case study areas have a depth range of 0 – 5,428 m, are situated in shelf, slope and abyssal settings (Table S1; Heap and Harris, 2008; Harris et al., 2014), and have bathymetry data with spatial resolutions ranging from 2 to 200 m (Table 5). Six of these examples are situated on the coast and continental shelf offshore mainland Australia, including Bynoe Harbour (BH), Bonaparte Shelf (BS), Bonaparte Basin (BB), Leveque Shelf (LS), Point Cloates Shelf (PCS), two are from deep water volcanic seamounts (Tasmanian Seamounts (TS) and Gifford Seamounts (GS)), with the remaining including Broken Ridge (BR) situated in abyssal depths 2,000 km offshore in the South-east Indian Ocean and Sabrina Slope (SS) situated on the east Antarctic margin (Figure 5; Table S1).




Figure 5 | The locations of the nine case study areas, numbered as 1-9. 1: Bynoe Harbour (BH), 2: Bonaparte Shelf (BS), 3: Bonaparte Basin (BB), 4: Leveque Shelf (LS), 5: Point Cloates Shelf (PCS), 6: Broken Ridge (BR), 7: Tasmanian Seamounts (TS), 8: Gifford Seamounts (GS), 9: Sabrina Slope (SS).




Table 5 | Bathymetry grid resolutions and morphology features of the nine case study areas.



Case Study #1: Bynoe Harbour (centred at 12.44° S, 130.43° E) is a tropical estuary located on the northern coast of Australia (Figure 5; Table S1). The area includes Bynoe Harbour and the adjacent shallow shelf with water depths less than 50 m (Siwabessy et al., 2016; Nicholas et al., 2019; Table S1). The multibeam bathymetry dataset was acquired in 2016 using a Kongsberg EM2040C echosounder by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government during a marine survey (GA4452/SOL6432) (Siwabessy et al., 2016). The bathymetry dataset was processed using Caris HIPS/SIPS v8.1 and gridded at 10 m spatial resolution (Figure 6A; Table 5; https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/144556). Nicholas et al. (2019) found that ridges, hummocks, depressions and channels characterise the area.




Figure 6 | Bynoe Harbour (BH) case study. (A) multibeam bathymetric data; (B) broad scale bathymetric low Features mapped using the TPI tool; (C) broad scale bathymetric high Features mapped using the TPI tool; (D) fine-medium scale bathymetric high Features mapped using the TPI tool; (E) fine-medium scale bathymetric high Features at a sub-area indicated on d (black rectangle outline).



Case Study #2: Bonaparte Shelf (centred at 12.75° S, 128.90° E) is located within the Joseph Bonaparte Gulf of northern Australia (Figure 5; Table S1; Carroll et al., 2012). The area is on the continental shelf with water depths ranging from 80 m to 110 m (Table S1). The multibeam bathymetry dataset was acquired in 2012 using a Kongsberg EM3002D echosounder by GA and AIMS during a marine survey (GA0335/SOL5463) (Carroll et al., 2012). The bathymetry dataset was processed using Caris HIPS/SIPS v7.1 and gridded at 2 m spatial resolution (Figure S9A; Table 5; Spinoccia, 2012). Carroll et al. (2012) described palaeo-channels, low-relief ridges and pockmark fields that characterise this grid.

Case Study #3: Bonaparte Basin case study area (centred at 11.42° S, 127.0° E) is located within the Oceanic Shoals Marine Park in the Timor Sea (Figure 5; Table S1). The area is situated on the continental shelf, with water depths in the range of 50-185 m (Table S1). The multibeam bathymetry dataset was collected in 2012 using a Kongsberg EM3002D echosounder by GA, AIMS, the University of Western Australia and the Museum and Art Gallery of the Northern Territory during a marine survey (GA0339/SOL5650) (Nichol et al., 2013). The bathymetry dataset was processed using Caris HIPS/SIPS v7.1 and gridded at 2 m spatial resolution (Figure 7A; Table 5; Siwabessy and Picard, 2014). Banks, mounds, terraces and tiny depressions (interpreted as pockmarks) are the typical morphological features observed in this area (Nichol et al., 2013).




Figure 7 | Bonaparte Basin (BB) case study. (A) multibeam bathymetric data; (B) variable scale bathymetric high Features mapped using the TPI tool; (C) very-fine scale bathymetric low Features mapped using the TPI tool and the PO tool at a sub-area indicated on b (white rectangle outline).



Case Study #4: Leveque Shelf has two sub-areas denoted as A1 (centred at 15.8° S, 121.5° E) and A10 (centred at 15.47° S, 121.67° E). The area is located within the Browse Basin offshore northwest Australia in 70 – 110 m water depths (Figure 5; Table S1). The multibeam bathymetry datasets were collected in 2013 using a Kongsberg EM3002 echosounder by GA and AIMS during a marine survey (GA0340/SOL5754) (Picard et al., 2014). The bathymetry datasets were processed using Caris HIPS/SIPS v7.1 and gridded at 2 m spatial resolution (Figures S10A-S10E; Table 5; Picard et al., 2016). The main morphological features observed in this area include banks, terraces, ridges and valleys (Picard et al., 2014).

Case Study #5: Point Cloates Shelf (centred at 22.77° S, 113.66° E) is located within the Ningaloo State Marine Park, offshore Western Australia (Figure 5; Table S1). It lies within the inner and mid continental shelf with water depths less than 85 m (Table S1). The multibeam bathymetry dataset was acquired in 2008 using a Kongsberg EM3002 echosounder by GA and AIMS during a marine survey (SOL4769) (Brooke et al., 2009). The bathymetry dataset was then processed using Caris HIPS/SIPS v6.1 and gridded at 3 m spatial resolution (Figure 8A; Table 5; Spinoccia, 2011). This area contains typical morphological features of banks, mounds, hummocks and ridges (Brooke et al., 2009; Nichol et al., 2012).




Figure 8 | Point Cloates Shelf (PCS) case study. (A) multibeam bathymetry data; (B) fine-medium scale bathymetric high Features mapped using the TPI tool; (C) results of fine-medium scale bathymetric high Features mapped using the TPI tool vs the NO tool at the southern sub-area indicated in b (black rectangle outline); (D) results of fine-medium scale bathymetric high Features mapped using the TPI tool vs the TPI_LMI tool at the southern sub-area; (E) results of fine-medium scale bathymetric high Features mapped using the TPI tool vs the NO tool at the northern sub-area indicated in b (white rectangle outline); (F) results of fine-medium scale bathymetric high Features mapped using the TPI tool vs the TPI_LMI tool at the northern sub-area.



Case Study #6: Broken Ridge (centred at 36.35° S, 91.26° E) is located in the southeastern Indian Ocean, ~1,800 km west of southwest Australia (Figure 5; Table S1; Picard et al., 2018a). Its water depths range from 2,175 m to 5,428 m (Table S1), with abyssal, basin and seamount settings (Harris et al., 2014) (Table S1). The multibeam bathymetry datasets were collected during the MH370 search mission between June 2014 and June 2016 (Picard et al., 2017; Picard et al., 2018a). The datasets were acquired using a Kongsberg EM 302 echosounder on board the MV Fugro Equator, a Kongsberg EM 122 echosounder on board the MV Fugro Supporter and a modified Reson Seabat 7150 echosounder on board the Chinese naval vessel Zhu Kezhen. The bathymetry datasets were then processed using Caris HIPS/SIPS v7.1 and gridded at 150 m spatial resolution (Figure S11A; Table 5; Spinoccia, 2017). Picard et al. (2018a) observed and mapped ridges, knolls, hills, seamounts, plateaus, valleys and troughs in this area.

Case Study #7: Tasmanian Seamounts (centred at 44.15°S, 146.82°E) are located off the south coast of Tasmania, within and adjacent to the Huon and Tasman Fracture marine parks (Figure 5; Table S1; Althaus et al., 2009). The area has water depths ranging from 150 m to 2,400 m (Table S1), with shelf and slope settings according to Heap and Harris (2008) and Harris et al. (2014) (Table S1). The multibeam bathymetry dataset was collected using a Kongsberg EM 300 echosounder in a RV Southern Surveyor voyage (SS200611) in 2006 (Althaus et al., 2009). The bathymetry dataset was then processed using Caris HIPS/SIPS v7.1 and gridded at 25 m spatial resolution (Figure 9A; Table 5; Williams et al., 2022). Numerous seamount-like (mound) bedforms were observed in this area (Althaus et al., 2009; Williams et al., 2020).




Figure 9 | Tasmanian Seamounts (TS) case study; (A) multibeam bathymetry data; (B) variable scale bathymetric high Features mapped using the TPI tool; (C) variable scale bathymetric high Features at the western sub-area indicated on b (black rectangle outline); (D) variable scale bathymetric high Features at the eastern sub-area indicated on b (black rectangle outline); (E) comparison of three manual morphology mapping and GA-SaMMT mapping at a sub-area; (F) the comparison results at an enlarged sub-area indicated on (E) (black rectangle outline).



Case Study #8: Gifford Seamounts (centred at 26.79° S, 146.82° E) are located within the Gifford Marine Park in the Tasman Sea offshore eastern Australia (Figure 5; Table S1). The area covers a large range of water depths from ~250 m to ~3,500 m (Table S1), with the plateau, basin and abyssal settings according to Heap and Harris (2008) and Harris et al. (2014) (Table S1). The multibeam bathymetry datasets were collected in two marine surveys: the GA TAN0713 survey in 2007 (Heap et al., 2009) and the GA and Japan Agency of Marine-Earth Science and Technology survey in 2017 (Nanson et al., 2018). The TAN0713 survey used a Kongsberg EM300 echosounder to acquire the multibeam data; while the JAMSTEC-GA survey used a Kongsberg 12 KHz deep-water multibeam system. The bathymetry datasets were processed using Caris HIPS/SIPS v7.1 and gridded at 50 m spatial resolution (Figure S12A; Table 5; http://dx.doi.org/10.4225/25/5b3174bf2de9b). This area is known to contain two seamounts, with ridges and valley like bedforms on their flat tops and flanks (Heap et al., 2009; Nanson et al., 2018).

Case Study #9: Sabrina Slope (centred at 64.36° S, 117.67° E) is located on the east Antarctic continental slope and rise, seaward of the Budd and Sabrina Coasts of Wilkes Land (Figure 5; Table S1; O’Brien et al., 2020; Post et al., 2020). The area encompasses a wide-range of water depths from ~400 m to ~3,800 m (Table S1), with the shelf, slope, rise and abyssal settings according to Harris et al. (2014) (Table S1). The multibeam bathymetry datasets were collected in 2017 during a RV Investigator survey (IN2017-V01) using Kongsberg EM122 and EM710 echosounders (O’Brien et al., 2020). The bathymetry datasets were then processed using Caris HIPS/SIPS v9.1. Two grids were used in this study. One is a broad-scale grid with 200 m spatial resolution, covering the entire case study area (O’Brien et al., 2020; Figure 10A; Table 5); the other is a small subset gridded at 25 m spatial resolution, covering the upper slope and outer shelf of the case study area (Post et al., 2020; Figure 10C; Table 5). O’Brien et al. (2020) described submarine canyons and valleys characterising the 200 m grid, whereas upper slope gullies and depressions (interpreted as iceberg scours) characterise the 25 m grid situated over the outer shelf (Post et al., 2020).




Figure 10 | Sabrina Slope (SS) case study; (A) multibeam bathymetry data for the entire area (spatial resolution: 200 m); (B) broad scale bathymetric low Features mapped using the TPI tool; (C) multibeam bathymetry data for the upper-slope and outer-shelf sub area indicated in a (black rectangle outline; spatial resolution: 25 m); (D) fine scale bathymetric low Features mapped using the TPI tool; (E) fine scale bathymetric low features at the western sub-area indicated on d (black rectangle outline); (F) fine scale bathymetric low Features at the eastern sub-area indicated on d (black rectangle outline).






2.3 Evaluating mapping results

In each of these case study areas, there was no existing Morphology Feature map based on the Dove et al. (2020) scheme that could be used as the “ground truth” reference. Instead, GA-SaMMT mapping performance had to be qualitatively assessed by domain experts who visually inspected the results. These qualitative comparisons were also assisted by the visual assessment of the bathymetry and its derived datasets (e.g., Hillshade, slope gradient and TPI), which had also informed the selection of threshold values in GA-SaMMT tools (Huang et al., 2022)

A controlled experiment was also undertaken to provide more quantitative comparisons between manual mapping by domain experts and GA-SaMMT outputs using the ‘TPI Tool Bathymetry High’ for a discrete area. For a portion (2,142 km2) of the Tasman Seamounts case study area (Case #7), which contains pronounced bathymetric high Features (and thus a relatively easy task for manual mapping), mappers visually assessed bathymetry and derived datasets (e.g., Hillshade, Slope, TPI, Contour, etc) and applied the same subset of Dove et al. (2020) Morphology Feature types to delineate and classify the seafloor. The aim of the controlled experiment was to compare relatively subjective manual mapping outputs generated with domain expertise with more objective and repeatable mapping outputs generated from GA-SaMMT. Three experienced practitioners (co-authors on this manuscript) with skills in marine geoscience and GIS data analysis manually digitised and classified polygons of bathymetric high Features following a consistent set of guidelines, including the Dove et al. (2020) nomenclature; a maximum 4 hour time limit; mapping at a scale of 1:25,000; manual vertex placement (i.e., not “streaming mode”). GA-SaMMT were applied to the same dataset using the procedures described in Section 3.7. The manual polygons, attributes and morphology classifications were compared between individual mappers and to GA-SaMMT outputs, and the total length (perimeter), total area, count of feature classes, and count of polygons within each Feature type were quantified and compared. To facilitate a consistent comparison between manual and GA-SaMMT mapping outputs, the manual results were normalised relative to GA-SaMMT result (i.e., GA-SaMMT results comprise 100% of mapped Features against which manual mapping is compared).





3 Results

This section details the results of five case study applications of GA-SaMMT (Bynoe Harbour, Bonaparte Basin, Point Cloates Shelf, Tasmanian Seamounts and Sabrina Slope), which provide diverse representation of physiographic settings across a broad suite of bathymetric spatial scales (Table S1; Table 5). Another four case studies are described briefly here and in more detail within the supplementary materials (Section 1). Specifically, this section describes the application of the mapping tools and their parameters (Table 6) to these diverse datasets, additional spatial analytical steps, and the key mapping results of these case studies.


Table 6 | GA-SaMMT parameters applied to the mapping of the nine case study areas and the numbers of feature polygons mapped.





3.1 Case #1: Bynoe Harbour

A complex array of ridges, channels and depressions characterise the bathymetry of the Bynoe Harbour dataset (Figure 6A; Nicholas et al., 2019); these were the key targets for testing GA-SaMMT in this case example. Accordingly, we mapped broad scale bathymetric low Features, broad scale bathymetric high Features and fine-medium scale bathymetric high Features (Table 6). The TPI tool was used to map the broad scale bathymetric low Features using the corresponding parameters listed in Table 6. The mapping and subsequent classification using the attributes generated from GA-SaMMT Characterise and Classify tools (Figure 1) resulted in 184 Depressions and 41 Valleys/Channels, respectively (Figure 6B). The two largest channels (>60 km2) were accurately mapped and classified as Valley/Channel. The southern Valley/Channel has two long branches with a head-to-foot length of 28 km and a mean width of 2.5 km; the other on the north-east has a head-to-foot length of ~30 km and a mean width of 2.0 km. The Depressions, which are distributed across the entire area, are generally smaller with a wide range of sizes (0.01 – 15 km2).

The TPI tool was also used to map the broad scale bathymetric high Features using the corresponding parameters listed in Table 6. The mapping and classification resulted in three types of bathymetric high Features: Bank (n=7), Mound (n=130) and Ridge (n=141) (Figure 6C). Ridges are the most dominant broad scale bathymetric high Features, occupying one-third of the total area, and mostly located adjacent to the Valleys/Channels and Depressions. Mounds are also common but generally much smaller, with the largest covering 0.98 km2. Banks are few, with their areas ranging from 1.1 km2 to 3.8 km2.

To map the fine-medium scale bathymetric high Features, we used the TPI tool with the corresponding parameters listed in Table 6, and with analytical steps specified in Table S2. These steps effectively combined the fine scale bathymetric high Features with the medium scale bathymetric high Features that overlap broad scale bathymetric low Features. The mapping and classification resulted in three types of bathymetric high Features: Hummock (n=105), Mound (n=4,142) and Ridge (n=2,475) (Figure 6D). The fine-medium scale Ridges that are prevalent in Bynoe Harbour (Figure 6D) have been interpreted as sediment Ridges (Nicholas et al., 2019). The lengths (measured by the sLength attribute) of these Ridges range from 50 m to ~9 km (mean 491 ± 669 m) and display a wide range of orientations that indicate complex seabed hydrodynamics. However, 40% of mapped ridges are in the north-south orientation, indicating a more dominant East-West seabed current direction. Small Mounds are also prevalent in this area, with sizes less than 0.15 km2. As shown in Figure 6E, the boundaries of these fine scale Ridges have been accurately mapped, which demonstrates the satisfactory performance of GA-SaMMT for this case study.




3.2 Case #2: Bonaparte Shelf

In this case study, the broad scale mapping using the TPI tool (Table 6) and the subsequent classification resulted in three types of bathymetric low Features: Depression (n=504), Hole (n=2) and Valley/Channel (n=50) (Figure S9B). The very-fine scale mapping using the TPI tool (Table 6) and the subsequent classification also yielded three types of bathymetric low Features: Depression (n=12,563), Hole (n=95) and Valley/Channel (n=114) (Figure S9C). For bathymetric high features, the broad scale mapping using the TPI tool (Table 6) and the classification resulted in two types of Features: Mound (n=422) and Ridge (n=58) (Figure S9D). The detailed results are provided in section 1.1 of the Supplementary Material.




3.3 Case #3: Bonaparte Basin

The Bonaparte Basin case study aimed to map bathymetric high Features and very-fine scale bathymetric low Features that characterise the dataset (Figure 7A; Table 6), including banks, mounds and depressions reported in Nichol et al. (2013). We used the TPI tool to map the bathymetric high Features using the corresponding parameters listed in Table 6. In this area, there are bathymetric high Features of various scales, not overlapping with each other (Figure 7A). Thus, we attempted to generate a single map of bathymetric high Features using the processing steps detailed in Table S2. Steps 2-4 effectively generated a donut-like feature surrounding the largest rise-up feature; while steps 7 and 9 generated another donut like feature surrounding another rise-up feature.

The resultant map shows three types of bathymetric high Features: Bank (n=3), Mound (n=35) and Ridge (n=4) (Figure 7B). Most of the bathymetric high Features in the area were classified as Mound, which range in area from 0.003 km2 to 0.79 km2 (mean 0.15 ± 0.19 km2) and 0.5 to 25.3 m in feature height (measured by the dRange attribute) (mean: 8.8 ± 8.3 m). The three Banks are larger features (2.0 – 10.3 km2) with the largest Bank rising to 26.8 m feature height. The four Ridges have variable sizes (0.036 – 8.5 km2). The largest Ridge (8.5 km2) is the donut-like feature surrounding the largest Bank, which should be more appropriately classified as a Terrace according to the morphology scheme of Dove et al. (2020). The other smaller donut-like feature is also a Terrace despite being classified as a Bank in this case study. Note that the current version of GA-SaMMT has not implemented a classification rule for Terrace for the reason presented in section 2.1.1.

We applied both the TPI tool and the Openness Tool (denoted as PO tool in Table 6) separately to map the very-fine scale bathymetric low Features (Table 6). Both tools use the same Circle Radius of 10 cells and other associated parameters (Table 6). The TPI tool and the PO tool resulted in a total of 104,590 and 117,758 features, respectively. These widespread very-fine scale features in this area are very small in size, with the majority of them <200 m2 and have previously been interpreted as pockmarks (Nichol et al., 2013). The enlarged map shown in Figure 7C revealed that, in general, both tools were able to reliably map these very-fine scale bathymetric low Features. For most of these features, however, the boundaries mapped by the TPI tool and the PO tool are slightly different. Subsequently, we randomly selected 1,000 of these very-fine scale bathymetric low Features from those resulting from the PO tool for the characterisation and classification steps. The classification result revealed that the vast majority of these features (e.g., 985 out of 1,000) were classified as Depression as expected.




3.4 Case #4: Leveque Shelf

In this case study, for the A1 sub-area, the three largest broad scale bathymetric low Features mapped using the TPI tool (Table 6) and subsequently classified include two Valleys/Channels and one Depression (Figure S10B). The fine-medium scale mapping and classification revealed three types of bathymetric high Features: Hummock (n=1,482), Mound (n=521) and Ridge (n=881) (Table 6; Figure S10C). For the A10 sub-area, the broad scale mapping and classification resulted in two types of bathymetric low Features: Depression (n=5) and Valley/Channel (n=3) (Table 6; Figure S10F). The fine-medium scale mapping and classification resulted in four types of bathymetric high Features: Cone (n=1), Hummock (n=1,516), Mound (n=126) and Ridge (n=928) (Table 6; Table S2; Figure S10G). The detailed results are provided in section 1.2 of the Supplementary Material.




3.5 Case #5: Point Cloates Shelf

The Point Cloates Shelf represents an array of fine-medium scale bathymetric high Features (Figure 8A; Table 6), including banks, mounds, hummocks and ridges reported in Brooke et al. (2009) and Nichol et al. (2012). We used the TPI tool, the Negative Openness tool (NO tool) and the TPI_LMI tool to map the bathymetric high Features separately (Table 6).

The TPI tool with two Circle Radiuses was used to map the fine and medium scales of bathymetric high Features separately before they were combined into a single map of fine-medium scale bathymetric high Features (Table 6; Table S2).The same two Circle Radiuses were used in the NO tool to map the bathymetric high Features (Table 6; Table S2). Similarly, for the TPI_LMI tool, we used the same Circle Radiuses to map the bathymetric high Features (Table 6; Table S2). Note that the feature removed in step 3 was generated due to the edge effect of the TPI_LMI tool.

The mapping of the TPI tool, the NO tool and the TPI_LMI tool resulted in 17,026, 16,732 and 16,914 features, respectively (Table 6). In general, all three tools were able to map the complex and numerous bathymetric high Features in this area. There are, however, some important differences. As shown in Figures 8C, E, the results of the NO tool tend to be more liberal in identifying feature boundaries. As a result, some adjacent features were merged as one single feature. The tool was also sensitive to the artefacts in the bathymetry data, which resulted in over-mapping of unreal smaller features. The TPI_LMI tool and the TPI tool yielded similar results in mapping Hummocks and Mounds (Figure 8D). The TPI_LMI tool, however, was inferior in mapping the narrow linear features than the TPI tool (Figure 8F). For example, a linear feature, which was often mapped as one single feature by the TPI tool, was mapped as a number of shorter features by the TPI_LMI tool. Overall, the TPI tool out-performed both the NO tool and the TPI_LMI tool in this complex case study, as demonstrated in Figures 8C–F.

The classification results of the TPI tool show five types of bathymetric high Features (Figure 8B): Cone (n=2,355), Hummock (n=12,499), Mound (n=1,215), Pinnacle (n=10) and Ridge (n=947). Cones and Hummocks are widespread small features in this area (Figure 8B). They are similar in size, with a mean area of 313 ± 660 m2 for cones and 232 ± 205 m2 for hummocks, respectively. They are also similar in feature height, with a mean of 2.1 ± 1.8 m for Cones and 1.4 ± 0.8 m for Hummocks. The Mounds, which are larger (mean: 5,196 ± 14,331 m2) and higher (mean: 5.9 ± 3.3 m) than Cones and Hummocks, are also distributed widely. Ridge is another widespread bathymetric high Feature in this area. They are very variable in sinuous length (15 m to 14 km; mean: 166 ± 667 m) and variable in feature height (0 – 35 m; mean: 3.5 ± 4.4 m). The longer Ridges are along the western edge of the area, with a northwest orientation (Figure 8B). Some other prominent Ridges are located on the northern part of this area, with a northeast orientation (Figures 8B, E, F).




3.6 Case #6: Broken Ridge

In this case study, the broad scale mapping and subsequent classification resulted in five types of bathymetric low Features: Depression (n=92), Hole (n=4), Trench (n=11), Trough (n=43) and Valley/Channel (n=74) (Table 6; Figure S11B). For the bathymetric highs, the broad scale mapping and subsequent classification resulted in five types of Features: Knoll (n=7), Mound (n=15), Plateau (n=9), Ridge (n=151) and Seamount (n=3) (Table 6; Table S2; Figure S11C). The medium scale mapping and subsequent classification resulted in five types of bathymetric high Features: Knoll (n=24), Mound (n=42), Plateau (n=1), Ridge (n=197) and Seamount (n=10) (Table 6; Table S2; Figure S11D). The detailed results are provided in section 1.3 of the Supplementary Material.




3.7 Case #7: Tasmanian Seamounts

The Tasmanian Seamounts are extant volcanic features that characterise part of the Huon and Tasman Fracture marine parks within Australia’s South-East Marine Region, and provide important habitat for deep-sea coral reefs communities (Williams et al., 2020). This case example sought to map the extent of these numerous bathymetric high Features of variable scales (Figure 9A) using the TPI tool (Table 6) and the analytical steps listed in Table S2 to obtain a single set of bathymetric high Features. Note that step 2 effectively selected the broad scale features on the northern edge (continental slope) of the case study area. Steps 9&10 identified the bottom portions of the bathymetric high Features. As a result, steps 11&12 effectively extended the extent of individual bathymetric high Features further downslope.

The mapping and classification resulted in five types of bathymetric high Features: Cone (n=15), Hill (n=8), Knoll (n=5), Mound (n=161) and Ridge (n=100) (Figure 9B). None of these bathymetric high Features was classified as Seamount because their feature heights are <1,000 m. The Ridges are the most widespread bathymetric high Features in this area. They have variable areas (0.1 – 310 km2; mean: 8.0 ± 38.7 km2), variable lengths (0.8 – 108 km; mean: 4.9 ± 13.2 km) and variable feature heights (11 – 1,235 m; mean: 186 ± 246 m). Most of them are relatively steep in gradient (mean: 11.0° ± 5.5°). The Mounds are also widely distributed and tend to have small areas (mean: 0.6 ± 1.0 km2), with a mean height of 133 ± 122 m and a mean gradient of 14° ± 9°. Among the Knolls, Hills and Cones, the Knolls tend to be the largest in size (mean: 7.7 ± 3.6 km2), followed by the Hills (mean: 5.8 ± 3.1 km2) and the Cones (mean: 3.4 ± 3.6 km2). The Knolls and Hills have similar feature heights (mean: 605 ± 62 m and mean: 693 ± 133 m, respectively), which are larger than those of the Cones (mean: 417 ± 110 m). These three types of features have also similarly steep gradients (mean: 20.1° ± 3.4° for the Knolls, mean: 23.7° ± 3.8° for the Hills and mean: 23.3° ± 5.2° for the Cones). The enlarged images shown in Figures 9C, D indicate the mapping using the TPI tool performed well in delineating the boundaries of these Knolls, Hills, Mounds and Ridges.




3.8 Case #8: Gifford Seamounts

In this case study, the fine scale mapping using the TPI_CI tool (Table 6) and the subsequent classification resulted in five types of bathymetric low Features: Canyon (n=6), Depression (n=583), Gully (n=197), Hole (n=81) and Valley/Channel (n=223) (Figure S12B).The medium-broad scale mapping using the TPI tool (Tables 6, S2) and the subsequent classification resulted in three types of bathymetric high Features: Mound (n=81), Ridge (n=71) and Seamount (n=2) (Figure S12C). The fine scale mapping using the TPI tool (Tables 6, S2) and subsequent classification resulted in four types of bathymetric high Features: Knoll (n=1), Mound (n=230), Pinnacle (n=15) and Ridge (n=842) (Figure S12D). The detailed results are provided in section 1.4 of the Supplementary Material.




3.9 Case #9: Sabrina Slope

The Sabrina Slope area is characterised by abundant valleys, channels and gullies (Figures 10A, C; O’Brien et al., 2020; Post et al., 2020). This case example aimed to capture these broad scale bathymetric low Features for the entire case study area (Figure 10A), and the fine scale bathymetric low Features on a small upper-slope and outer-shelf sub-area (Figure 10C). The broad scale bathymetric low Features were mapped using the TPI tool with a Circle Radius of 70 cells and the associated parameters listed in Table 6. The mapping of the broad scale bathymetric low Features resulted in six features whose boundaries were accurately delineated (Figure 10B). These six features were subsequently all classified as Valley/Channel (Figure 10B). These are very large features with areas ranging from 679 km2 to 4,929 km2 (mean: 2,223 ± 1,619 km2). They are also long features with sinuous lengths ranging from 88 km to 350 km (mean: 215 ± 105 km). Although five out of the six features have head-to-foot depth ranges greater than 600 m, these are relatively flat features as indicated by their segment slope gradients of 0.35° – 0.77° and very large mean width-to-thickness ratios (mean: 236 ± 932). Consequently, they were classified as Valley/Channel according to the classification rule derived from the definitions of Dove et al. (2020) (Figures 4B, S8B). It should be noted that O’Brien et al. (2020) classified these features as submarine canyons, consistent with the broader definition of the IHO (2019), and accepted as such by the IHO-IOC GEBCO Sub-Committee on Undersea Feature Names (SCUFN) in 2020. O’Brien et al. (2020) differentiated valley from canyon based on the much larger width-to-depth ratio for a valley. In this case study, the equivalent attribute of width-to-thickness ratio is indeed quite large for all of these six broad scale features.

To map the fine scale bathymetry low Features in the sub-area, we used the TPI tool with the associated parameters and steps listed in Table 6 and Table S2. The mapping and classification resulted in four types of bathymetric low Features: Canyon (n=11), Depression (n=355), Gully (n=152) and Valley/Channel (n=121) (Figure 10D). The Valleys/Channels have two clear groups. One larger group of Valleys/Channels is located on the outer shelf and these have approximately east-west or southeast-northwest orientations. These Features have quite small head-to-foot depth ranges (mean: 5.8 ± 5.6 m) and were previously interpreted as iceberg scour marks (Post et al., 2020). The other much smaller group of Valleys/Channels are located on the main upper-slope area and are orientated approximately northeast-southwest. They have a much larger head-to-foot depth ranges (mean: 288 ± 133 m). The Gullies are distributed across the entire upper-slope and outer-shelf sub-area and are also generally orientated northeast-southwest. Their sinuous lengths range from 1.0 km to 6.7 km (mean: 2.5 ± 1.3 km), with mean widths ranging from 80 m to 433 m (mean: 175 ± 63 m). They have head-to-foot depth ranges vary from 145 m to 1,317 m (mean: 501 ± 270 m). These Gullies are relatively steep in gradient, with a mean segment slope of 10.5° ± 2.0° and a mean gradient of 13.8° ± 2.1°. A small number of Features among the Gullies and Valleys/Channels were classified as Canyon (Figure 10D). These Canyons tend to be longer (mean: 4.8 ± 1.2 km in sinuous length), wider (mean: 288 ± 145 m in mean width), and larger in head-to-foot depth range (mean: 956 ± 196 m) than the Gullies. However, they have similar slope gradient (mean: 10.6° ± 1.2° in mean segment slope; mean: 13.8° ± 1.2° in mean gradient) as the Gullies. The Depressions are small (mean: 0.04 ± 0.06 km2) and are located mostly among the elongated iceberg scour marks (Figure 10D). They are also relatively gentle in slope gradient (mean: 3.8° ± 3.0° in mean gradient). The enlargedmaps of Figures 10E, F show that the boundaries of the Gullies, Valleys/Channels and Canyons were mapped with reasonable accuracy.




3.10 Manual mapping and semi-automated mapping comparison

The results of the controlled experiment comparing the manual mapping and the semi-automated mapping in a sub-area of the Tasmanian Seamounts case study area are summarised in Table 7 and illustrated in Figures 9E, F. All three manual mappers chose a similar suite of bathymetry derivatives (hillshade and slope gradient) to inform their mapping of polygon outline boundaries. Contour and curvature were also used by different individuals. The ‘TPI Tool Bathymetry High’ in GA-SaMMT, however, utilised only TPI.


Table 7 | Summary of the comparison between manual mappers and GA-SaMMT outputs.



A visual comparison of polygon boundary footprints relative to the underlying seabed features demonstrates some variability in the treatment of adjoined features, for both the GA-SaMMT and between manual mappers. Some mappers lumped while others split adjoined features. GA-SaMMT sometimes adjoined adjacent features as well. Notably, GA-SaMMT tended to underestimate polygon footprints by conservatively interpreting the break-in-slope between bathymetric high features and the planar seabed.

The quantitative results revealed considerable variability between the three manual mappers and GA-SaMMT approach. The key differences were: (1) the total number of feature polygons generated (manual n = 138, 179 and 80 vs GA-SaMMT n = 190); (2) the area they cover (as a percentage of GA-SaMMT 100%: manual mapping covered 117%, 95% and 127%); and (3) the number of Morphology Feature types attributed to individual feature polygons (manual n = 3, 6 and 5 vs GA-SaMMT n = 5). Indeed, Mapper 3 defined only 6 Mounds compared to 97 and 62 from Mappers 1 and 2, respectively. Mapper 3 also mapped far fewer Cones than the other two mappers. However, Mapper 3 mapped many more Hills than the other two mappers. In contrast, Mapper 2 mapped 60 Hummocks while none of these were identified by Mappers 1 and 3. GA-SaMMT mapped 190 feature polygons and 5 Feature types, with many more Ridges and Mounds, and fewer Hills than any of the manual mappers. Some of these differences may be attributed to the manual mapping guideline which instructed mappers to use the definitions described in Dove et al. (2020), however, many of those Morphology Feature definitions are qualitative descriptions rather than quantitative threshold values implemented by the rule-based GA-SaMMT (Figures 4, S8). In addition, the total length (perimeter) and the total area of feature polygons among the manual and semi-automated mappings showed some variations but they were all within an order of magnitude.





4 Discussion

A key objective of seabed morphological mapping is the ability to objectively derive maps that support the quantitative analysis and interpretation of seabed environments from their geomorphic character. The rule-based, semi-automated mapping method tested here for a diversity of seabed environments supports this aim through a technique that allows a structured approach to mapping seabed geomorphology. Collectively, the nine case examples resolved ten types of bathymetric high Features and eight types of bathymetric low Features across a wide range of spatial resolutions, with a total Feature count of 32,006 and 16,524, respectively (Table 5). Additionally, this mapping method can be applied at multiple spatial scales in situations where the data supports the co-existence of features of multiple scales and feature-on-feature mapping. From our case examples, the two medium-resolution bathymetric grids (25 m and 50 m) were able to resolve nine and ten bathymetric high and low Feature types, respectively; while the bathymetric grid with the coarsest spatial resolution (200 m) was only able to resolve one Feature type (Table 5). Of the total number of mapped and classified Features, over 97% are classified as Hummocks (32%), Depressions (31%), Mounds (15%), Ridges (14%) and Cones (5%) (Table 5). Hummocks and most Depressions mapped in this study are primarily fine scale features that have developed in great numbers, many of which are interpreted as vast fields of pockmarks. The common occurrence of Mounds and Ridges in this study (Table 5) is mainly due to the fact that they have the least constrained bathymetric high definitions (Table 1).

In this study, we compared the performance of the TPI tool and the PO tool in mapping very-fine scale bathymetric low Features in the Bonaparte Basin area (Figure 7C). We also compared the performance of the TPI tool, the NO tool and the TPI_LMI tool in mapping fine-medium scale bathymetric high Features in the Point Cloates Shelf area (Figures 8C–F). However, based only on these two comparison studies, we are not able to judge the performance of one tool against another; more comprehensive comparison study would be required for that purpose. In this study, based on the mapping results, we have instead demonstrated that these mapping tools individually perform well in the presented case studies.

One key advantage of using the semi-automated tools (GA-SaMMT), compared to other semi-automated methods (e.g., Lundblad et al., 2006; Lanier et al., 2007; Erdey-Heydorn, 2008; Zieger et al., 2009; Micallef et al., 2012; Harris et al., 2014; O’Brien et al., 2015; Jerosch et al., 2016; Picard et al., 2018b; Hebbeln et al., 2019; Lavagnino et al., 2020; Sowers et al., 2020; Weinstein et al., 2021), is their ability to generate a large number of metrics (Tables 2–4) to comprehensively characterise individual features from a range of aspects. These metrics are invaluable for post-mapping analysis, for their geomorphic interpretation and classification (e.g., Nanson et al., 2023). They also provide valuable insights into their habitat potential for various marine biota (e.g., McArthur et al., 2010; Huang et al., 2011). In the following sections we provide two examples of such post-mapping analyses to demonstrate the value of these metrics for providing further insights into the bathymetric high and low Features mapped in this study.



4.1 Inter-feature variability of bathymetric high features

Six metrics were used to explore broad differences between the ten types of bathymetric high Features mapped across the nine case study areas (Figure 11). Among these six metrics, Area and depthRange have been used in the classification rules of some bathymetric high Features (Figure 4A). The boxplots indicate that:

	While the classification rule (depthRange ≥ 1000 m; Figure 4A) dictates that Seamounts are high-relief (Figure 11D), Figures 11A, C also reveals that they are large seabed Features that often occur in deeper water, the restriction of smaller and low-relief Hummocks, Mounds, Banks, Ridges and Cones to shallower water is independent of these rules;

	Ridges and Cones have the most and the least complex polygon shape, respectively (Figure 11B);

	Hills and Pinnacles were found to be topographically steep features (meanGradient > 20°); while most Banks and Mounds are relatively flat features (meanGradient < 5°) (Figure 11E);

	While the classification rule (Area ≥ 100 km2; Figure 4A) dictates that Plateaus are overall the largest features (Figure 11A), Figure 11C reveals that, independent of the rule, they occur in the deepest water; and

	Mounds and Ridges have the greatest variation in all six attributes (Figure 11). This is mainly because these two Feature types have the least restrained definitions among the ten bathymetric high Feature types (Table 1). The broad geometric variations of mapped Ridges are also partly due to the relatively small lwRatio threshold value of 5.0 (e.g., the default value) used in this study (Figure 4A). It follows that these two Feature types clearly represent a variety of seabed environments and processes such that additional geometric analyses and data (e.g. sub-bottom profiles, physical samples) are required to support further interpretation.






Figure 11 | Different characteristics of the 10 bathymetric high Features across the case study areas; (A) Feature area; (B) Solidity; (C) Maximum (the shallowest) water depth within the feature; (D) Feature depth range (height); (E) Feature mean gradient; (F) Maximum profile relief (in elevation) of the feature. Note that the number of features for each Feature type is listed in Table 5. Each color box represent the inter-quartile range with the median value marked as the line dividing the box; The upper whisker to the upper quartile line represents the upper 25% data points; the lower quartile line to the lower whisker represents the lower 25% data points; the dots represent outliers which are data points that are outside 1.5 times of the inter-quartile range above the upper quartile and below the lower quartile.



These statistics can also be used to highlight depth bias in Feature mapping as bathymetry grid resolutions are generally negatively correlated with their water depth; smaller-scale Features are likely being underrepresented in deeper-water grids (Picard et al., 2018a). For example, Hummocks (≤ 10 m dRange rule: Figure 4A) might be expected to occur in a broad range of water depths, but were only identified in shallow water (Figure 11C), in finer resolution grids (Table 5).




4.2 Inter-feature variability of individual bathymetric low features

Eight metrics are used to quantify the characteristic differences between the eight bathymetric low Features (Figure 12). Among these eight metrics, lwRatio and hDepth have been used in the classification rules of some bathymetric low Features (Figure 4B). These boxplots indicate that:

	Troughs are much larger than other bathymetric low Features (Figure 12A); this is consistent with their origin being typically influenced by large-scale geological processes such as horst and graben structures and faults;

	Depressions and Holes have the least complex polygon shapes for bathymetric low Feature, likely because they are not elongated features (Table 1) (Figure 12B);

	Canyons are the most elongated features (Figure 12C); as their hfDepthRange must exceed 600 m (Figure 4B), it follows, geometrically, that these features also extend over long distances (high lwRatio);

	Valleys/Channels have higher width-to-thickness ratios than Canyons (Figure 12D), which is broadly consistent with their origin being driven by downslope sediment and fluid transport (e.g., Gibling, 2006; Harris and Whiteway, 2011);

	Troughs and Trenches occur in the deepest water depths (Figure 12E), which is dictated by their classification rules (hDepth ≥ 4000 m; Figure 4B); however, independent from the classification rules, Figure 12E also reveals that the Gullies and Canyons occur in intermediate water depths (500 - 1,500 m), and that Holes and Valley/Channels can occur in a large range of water depths from shallow water to water depth of ~2,500 m (Figure 12E);

	Canyons incise deeper into seabed along the long axis, followed by the gullies (Figure 12F); and

	Gullies and Canyons are steeper features (>15°) than Holes, and other bathymetric low Features (Figure 12G); and Troughs and Trenches have higher cross-sectional profile reliefs (>100 m) than other bathymetric low Features (Figure 12H).






Figure 12 | Different characteristics of the eight bathymetric low Features across the case study areas; (A) Feature area; (B) Feature compactness; (C) Feature length to width ratio; (D) Feature mean width-to-thickness-ratio; (E) Water depth at the head of the feature; (F) Feature depth range; (G) Feature mean gradient; (H) Maximum profile relief (in elevation) of the feature. Note that the number of features for each Feature type is listed in Table 5.



Again, although some of the above findings are inherited from their respective classification rules (e.g., regarding Troughs and Trenches as the deepest features), other findings provide additional insights into these Features.




4.3 Limitations of the GA-SaMMT

One limitation of GA-SaMMT is the computing resources required to generate attributes (polygon metrics), particularly since parallel processing has not been implemented in the current version of the software tools. In this study we recorded the time required to generate attributes for the fine-medium scale bathymetric high Features mapped for the A1 sub-area of the Leveque Shelf case study (n=2,884; Figure S10C) and the fine scale bathymetric low Features mapped for the Gifford case study (n=1,090; Figure S12B). To speed-up the tools, for each set of features, we divided them into three equal-number subsets and ran the tools concurrently with each subset. Under the specified computer settings (Intel (R) Core i7-8700 CPU (6 cores), @3.20 GHz, 64 GB RAM), the times required to complete these attribute tools are listed in Table S3. The Add Topographic Attributes Tools required little time to complete (e.g., 0.01 second and 0.04 second per feature, respectively). The Add Shape Attributes High Tool and the Add Profile Attributes High Tool required 2.4 seconds per feature and 9.6 seconds per feature, respectively. The Add Shape Attributes Low Tool and the Add Profile Attributes Low Tool needed 10.8 seconds per feature and 12 seconds per feature, respectively. The four-fold increase in the time required to generate the shape attributes for each bathymetric low Feature compared to that for each bathymetric high Feature is due to the eight extra shape attributes to be calculated (Table 2). For future versions of GA-SaMMT, we intend to examine the coding efficiency and the possibility of parallel processing. However, for the current version and utilising a modern multi-core CPU, we highly recommend sub-setting and concurrent running of datasets to improve the efficiency in the generation of shape and profile attributes for a large number of features.

Another limitation of GA-SaMMT is the expertise required to achieve an optimal mapping result for a mapping application. The semi-automated nature of these tools requires selections of a number of user-defined threshold values. This requirement is particularly challenging for a morphologically complex area that has seabed features of multiple scales. In this study, significant domain knowledge was utilised in the selection of appropriate tool parameters, through iterative applications of GA-SaMMT Map and Classify tools, for each case study. In addition, advanced GIS and spatial analysis skills are required to obtain an optimal mapping result. As shown in this study, our methods employed additional spatial analytical steps to obtain the final sets of the bathymetric high or low Features (Table S2). The mapping results shown in Figures 6–10 and Figures S9-S12 indicate that these seabed morphology maps can also be further improved by conducting additional post-mapping modifications such as editing features’ polygon shapes, merging adjacent features, and splitting a feature into multiple features, etc. In this study, the success of our mapping using GA-SaMMT is attributed to collaborative work in a team of experienced marine geomorphologists and spatial analysts.

The current version of GA-SaMMT are not designed to map all the seabed Feature types defined by Dove et al. (2020). Some 13 out of 31 Feature types cannot be mapped using this version of the tools, for the reasons presented in section 2.1.1. For example, the two Terraces clearly visible in Figure 7A were accurately mapped but were incorrectly classified as a Ridge and a Mound (Figure 7B), likely due to their least restrained definitions (Table 1; Dove et al., 2020) and the corresponding classification rules (Figure 4A). In future versions of GA-SaMMT we will attempt to extend the classification rules to include more of the 13 remaining bathymetric high and low Feature types (greyed in Figure 2). We will also attempt to improve the existing classification rule for Depression to satisfy its definition as a closed-contour bathymetric low Feature (Table 1; Dove et al., 2020).





5 Summary and conclusions

Seabed morphology maps are products critical for interpreting physical, biological and oceanographic processes that operate in the marine environment. They have application across a diversity of users, including engineering, science and policy. The need for tools that support consistent and objective mapping of seabed features is clear. This study developed a number of rule-based, semi-automated GIS tools (GA-SaMMT: Huang et al., 2022) to operationalise the mapping of bathymetric high and bathymetric low seabed Morphological Features, and targeted a subset of common Features defined by Dove et al. (2020). These were developed as Python tools under the widely-used proprietary ArcGIS Pro platform, with user-friendly graphical interfaces and extensive tool tips and metadata, and the source codes are publicly available to users for modification and further development (Huang et al., 2022).

We have tested the utility of these tools across nine case study areas that cover a diverse range of complex bathymetric and physiographic settings (Table S1). Qualitative visual comparisons between the mapping results and the features identified by previous work as being high priority (e.g. in survey reports) indicate that GA-SaMMT can accurately and consistently capture their extents. In our controlled mapping experiment the variations between all three manual mappers (Figures 9E, F; Table 7) highlight the subjectivity of picking feature outlines, even when working at a set mapping scale and using similar bathymetry derivatives to help inform feature boundaries. The variation in manual mapping results further highlight the benefit of objective and repeatable semi-automated approaches such as GA-SaMMT.

We also note the following additional advantages of GA-SaMMT:

	requirement of only a bathymetry grid (preferably derived from high-quality multibeam data) as sole data input;

	the incorporation of domain knowledge via the input of user-defined tool parameters (including the option to retain default parameter settings);

	repeatability and consistency in the mapping outputs when using a consistent set of user-defined tool parameters (or default parameter settings);

	high degree of objectivity;

	flexibility to adapt to individual applications using user-defined tool parameters;

	ability for multi-scale mapping; and

	efficiency in mapping and characterising a large number of seabed Morphology Features.



Another key advantage of GA-SaMMT over other semi-automated methods is the ability of the tools to generate a large number of attributes (Tables 2–4) to quantitatively characterise the Morphology Features. The results of this study clearly indicate that the ten bathymetric high Features and eight bathymetric low Features have distinctly different shapes, topography and cross-sectional profiles (Figures 11, 12).

It should be emphasised that the three-step solution offered by GA-SaMMT (Figure 1) does not require inter-dependency between the first step (GA-SaMMT Map) and the next two steps (GA-SaMMT Characterise and GA-SaMMT Classify). Users have flexibility to map feature polygons using manual or other semi-automated methods suitable for their specific applications and then apply the next two steps to characterise and classify the feature polygons according to Dove et al. (2020) scheme.

In future work we intend to further develop these rule-based, semi-automated tools through their application to further datasets, particularly to enhance their functionalities and efficiency. This will include examining the feasibility of parallel cloud-based processing, the development of new mapping tools (e.g., based on other bathymetry derivatives), and expanding classification tools to incorporate the remaining bathymetric high and low Features defined in Dove et al. (2020). In addition, the availability of the source codes of GA-SaMMT are expected to drive future development/improvement of these semi-automated seabed morphology mapping tools.
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Seafloor pockmarks are abundant around Aotearoa New Zealand, occurring across a diverse range of tectonic, sedimentological and geomorphological settings. Globally, the formation and source of pockmarks is widely researched because they: 1) have potential links to subsurface hydrocarbon systems, 2) can provide important habitats for benthic organisms and 3) may be indications of fluid escape pathways or areas of sediment disturbance, which influence seafloor stability and could pose a risk to infrastructure. Pockmarks are widely associated with fluid release (such as gas or water) from subsurface reservoirs. However, the formation of pockmarks, the processes that shape and modify their morphology over time, and the relative timing of these events, remains enigmatic. Here, we compile the first national database of over 30,000 pockmarks around Aotearoa New Zealand, allowing us to begin to comprehend the dynamic processes that shape and affect pockmarks by exploring regional and inter-regional patterns in pockmark geometry and seabed characteristics. This compilation reveals several significant trends, including a distinct lack of correlation between active seafloor seeps and pockmarks, and a strong association of pockmarks with mud-rich seafloor substrate. Furthermore, we highlight key knowledge gaps that require further investigation moving forward, including a lack of constraint on the timing of pockmark formation, and limited modelling of the processes involved in their formation.
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Introduction

Seafloor depressions, including pockmarks, have been identified in hydroacoustic data since at least 1970, when King and MacLean (1970) described small concave, craterlike depressions occurring on the muddy seafloor of the Scotian Shelf off the Atlantic coast of Canada. Whilst the term ‘pockmark’ is primarily describing a morphology, over time the term has come to be associated with features formed by fluid venting from the seabed into the water column (Whiticar and Werner, 1981; Hovland and Judd, 1988; Paull et al., 2002; Audsley et al., 2019). However, in many circumstances it is very difficult to determine a definitive mechanism of formation, and the connection to fluid flow is assumed. Although numerous focused studies have demonstrated the ubiquity of pockmarks globally, more regional studies of pockmarks across large and diverse areas are needed to investigate common drivers of pockmark formation, due to a lack of coincident data to confirm a fluid seepage origin. In this study, we use the term pockmark to describe seafloor features identified in multibeam bathymetric data as discrete, enclosed depressions. Many of these pockmarks may have been formed as a result of seabed fluid expulsion, but we do not aim to draw definitive links between pockmarks and source fluids in this study. Pockmarks are common morphological features on shelves and slopes worldwide, and have generated considerable interest and debate, particularly as technological advances in seafloor imaging reveal greater detail, and larger areas are mapped (Hovland et al., 2002; Maier et al., 2022). Pockmarks can occur as isolated structures, in clusters or chains, on areas of expansive flat seafloor, or alongside steeply incised canyons. They predominantly occur in fine-grained sediments, in water depths of metres to several thousand metres, and in a wide range of depositional environments (Hovland et al., 2002).

Pockmarks are commonly inferred to result from the erosive power of venting related to overpressured fluids such as gases and (or) interstitial water (Gay et al., 2007; Pilcher and Argent, 2007; Andresen and Huuse, 2011; Hillman et al., 2015). The occurrence of pockmarks is frequently related to subsurface features such as discontinuities that create pathways for fluid migration, further reinforcing the hypothesis of fluid venting induced formation. In this study we also consider processes other than fluid escape that may create enclosed depressions at the seafloor, and that the formation of pockmarks may result from a complex interplay between fluid seepage, biological activity, ocean currents and other factors. For example, turbidity currents scouring the seafloor, and the infilling of abandoned canyons can both generate semi-circular to elongated depressions, and the action of oceanic currents may significantly alter crater-like features formed by alternative mechanisms (Loncke et al., 2004; Heiniö and Davies, 2009; Hillman et al., 2015; Hillman et al., 2018; Wenau et al., 2021; Maier et al., 2022; Warnke et al., 2023; Yu et al., 2023).

Pockmarks around Aotearoa New Zealand were first described by Nelson and Healy (1984) offshore Tairāwhiti Gisborne (Figure 1), in water depths of >15 m in Tūranga-nui-a-Kiwa Poverty Bay (Hovland and Judd, 1988). Subsequent surveys revealed the presence of pockmarks around much of Aotearoa New Zealand. While not all areas have been mapped in detail, transit lines offer some clues as to what may lie in the gaps. In this study we have compiled a database of pockmarks around Aotearoa New Zealand to provide an overview of the characteristics of these diverse features, with a more focused analysis of areas with better data coverage for detailed investigation. This compilation and analysis form the basis of the first national database of pockmarks worldwide. Furthermore, whilst paleopockmarks — those that are buried in the subsurface — have been observed in locations such as offshore Taranaki (Chenrai and Huuse, 2017), the Chatham Rise, and Great South Basin (Davy et al., 2010; Stott et al., 2019; Karaket et al., 2021), and offshore Canterbury and Otago (Hillman et al., 2015; Hoffmann et al., 2019; Micallef et al., 2022) (Figure 1), here we focus only on pockmarks imaged at the present-day seafloor for which other datasets are readily available to investigate modern drivers. This study is unique as it compiles pockmarks across a range of geological and geomorphological regions (Figure 1D), from the tectonically active Hikurangi and South Westland margins to the passive Otago and Taranaki margins (Figure 1A). In doing so, this study will provide: 1) a summary of published pockmark studies around Aotearoa New Zealand, 2) a basis for ongoing research, 3) the first Aotearoa-wide database of pockmarks, and 4) a means to investigate regional and inter-regional trends in pockmark geometry and seabed characteristics to understand the dynamic seafloor processes that form and influence pockmarks.




Figure 1 | (A) Distribution of pockmarks around Aotearoa New Zealand. Purple dots indicate mapped features, interpolated distribution is shown by purple shaded regions. (1) Hauraki Gulf (2) Inner Aotea Basin (3) Te Tai Rāwhiti Gisborne (4) Ngāmotu New Plymouth (5) Te Whanganui-ā-Tara Wellington (6) Tōtaranui Queen Charlotte Sounds (7) South Westland Canyons (8) Mernoo Saddle (9) Otago (10) Otago Submarine Canyons (11) Fiordland Puysegur Margin. (B) Coverage of multibeam swath mapping data. (C) Sedimentary basins around Aotearoa New Zealand (after Mortimer et al., 2020; Strogen et al., 2022). (D) Location of the offshore regions discussed in this study, bounded by red lines. Black dots indicate mapped pockmarks in (C, D).







Data

In this study we have compiled numerous multibeam bathymetry datasets from around Aotearoa New Zealand and identified pockmarks at the present-day seafloor (Figure 1A). These datasets include dedicated mapping surveys, which tend to be of high quality (e.g., sound velocity profiles applied, calm sea state, survey lines planned according to seafloor morphology) and well processed, in addition to transit datasets where the data quality may be significantly lower. Some datasets (e.g., transit data) require cleaning and processing to identify pockmark features accurately, and such work lies outside the scope of the current project. Only 34% of the seafloor within the Exclusive Economic Zone (EEZ) of Aotearoa New Zealand has been mapped by the multibeam bathymetry datasets available in this study (Figure 1B); there is therefore an element of data bias as some areas have far better coverage than others. Bathymetric data used in this study are gridded at between 2–50 m cell size (see Table 1 for more details), depending on data quality, water depth and echosounder capabilities. The average resolution from the coastline to the first contour (<500 m water depth) (Figure 1A) is 25 m, beyond the first contour (>500 m water depth) the average resolution is 25–50 m. For the wider regional context, we utilised the bathymetric grid available online through the E Tūhura – Explore Zealandia data portal (https://data.gns.cri.nz/tez) – a research data compilation that includes all publicly available bathymetric data around Aotearoa New Zealand, gridded at a resolution of 50 m. The average resolution for multibeam bathymetry data grids is 25 m, so it is therefore not possible to identify smaller features (roughly 4x4 pixels = 100 m x 100 m in size), which introduces an element of data bias into our interpretations. Data analysis for this study was carried out in ArcGIS™ and QGIS software packages. Whilst water column imaging and multibeam backscatter data are also valuable tools in the identification of seafloor features such as pockmarks, these are not as widely available across the region. Such datasets also require more intensive processing, and it can be difficult to compare the results across surveys acquired with different instruments. Therefore, to have a regionally extensive, consistent dataset we have only included multibeam bathymetric data in this study.


Table 1 | Summary of previous studies and datasets across the seven offshore regions discussed in this study.



By drawing on existing datasets such as those published by Watson et al. (2020a), Maier et al. (2022) and Micallef et al., (2022), we have established a comprehensive overview of pockmarks around Aotearoa New Zealand. Table 1 summarises the regions covered in this study and previous publications on pockmarks in these areas. The study area around Aotearoa New Zealand has been divided into five broad sections for the purposes of discussion here (Figure 1D), spanning an area of 2.5 × 105 km2, and encompassing different tectonic, sedimentary, and geomorphologic environments (Table 2). The diverse nature of this dataset, and its resulting insights, thereby have global implications, that are applicable to a wide range of situations and contexts.


Table 2 | Summary of regional characteristics across the seven study areas (Bostock et al., 2010; Litchfield et al., 2014, New Zealand Petroleum and Minerals, 2014a; New Zealand Petroleum and Minerals, 2014b; Arnot et al., 2016; Sahoo et al., 2017; Bland and Strogen, 2018; Bland et al., 2018a; Bland et al., 2018b; Bostock et al., 2018a; Bostock et al., 2018b; Strogen et al., 2018; Watson et al., 2019; Boxberg et al., 2020; Maier et al., 2022).







Regions of focused pockmark mapping around Aotearoa New Zealand

The results of the pockmark compilation analysis highlight several common trends in characteristics (Table 2). Aside from those found in shallow water on the Canterbury Shelf and Tōtaranui Queen Charlotte Sound, the majority of pockmarks cluster in water depths of 250–700 m, are <2 km2 in area, and are sub-rounded in morphology (Figures 2, 3). The average area of all pockmarks mapped out as polygons (21,397 features) is 0.165 km2, and if we multiply this by the total number of features mapped, we estimate that >5,600 km2 of the seafloor around Aotearoa New Zealand is covered in pockmarks. This is somewhat skewed by the ‘mega-pockmarks’ on the Chatham Rise (Davy et al., 2010); however, even if we remove all pockmarks with areas >10 km2, we get an average area of 0.022 km2, resulting in a total coverage of over 750 km2. There are of course some outliers across all of these trends, such as the ‘mega-pockmarks’ on the Chatham Rise with areas of 7 – 450 km2, and a handful of structures in South Westland that lie in water depths of >2,600 m (Figures 2, 3). Similarly, in areas of strong bottom currents, the morphology of the pockmarks becomes elongated in the direction of flow, most notably along the east coast of Te Waipounamu South Island, off Canterbury and Otago (Figure 4). Within the available data, the highest accumulation of pockmarks per square kilometre is observed in Tōtaranui Queen Charlotte Sound (Table 1); however, this is somewhat skewed by the small area mapped and relatively high data resolution (2 m) relative to the number of observed features. It is likely that such high-resolution datasets in these shallow environments will reveal features which would have been missed in lower resolution datasets typical of the deeper continental slopes. Another characteristic of the study areas is the spatial proximity of pockmarks to submarine canyons and gullies, with the exception of the Chatham Rise and the shallow water areas, as shown in Figure 5.




Figure 2 | These panels show examples of pockmarks imaged in multibeam bathymetry data. Inset icons show direction of illumination. (A) Mixture of large and small pockmarks in Tōtaranui Queen Charlotte Sound, both with rounded morphology. (B) Rounded pockmarks on the Chatham Rise, alongside elongate depressions modified by ocean currents. (C) Elongated pockmarks adjacent to Waitaki Canyon offshore Otago. (D) Pockmarks on canyon spurs offshore Taranaki. (E) Along the South Westland Margin pockmarks are variably elongate to rounded in shape. (F) ‘Mega-pockmarks’ on the Chatham Rise, partially infilled by sediment drift deposits. (G) Sub-rounded pockmarks in the Pegasus Basin (southern Hikurangi Margin) are associated with elongate ‘tails’ due to erosional bottom currents. (H) Pockmarks are observed in water depths ranging from a few tens of metres to 2600 m, with the majority of these features occurring in depths of 250-700 m.






Figure 3 | Water depth vs. mapped area of individual pockmarks. Area data is not available for all features included in the distribution maps. The vast majority of the pockmarks are small features (<2 km2 in area), with a few exceptions on the Chatham Rise, known as ‘mega-pockmarks’. Note log scales on both axes.






Figure 4 | The orientation of pockmarks aligns well with dominant ocean current pathways (blue) in some areas, such as the Otago Shelf (C, F) and Chatham Rise (E) (red). Along the west coast (A, B) pockmarks are predominantly aligned downslope (blue). On the Hikurangi Margin (D) pockmarks are not strongly aligned; however, current velocities are low in this area. Current pathways after (Chiswell et al., 2015; Sutton, 2003). (1) South Westland Current (2) Southern Tropical Front (3) Southland Current.






Figure 5 | Geomorphological classification of the seafloor using the global seafloor geomorphic features map layers (adapted from Harris et al., 2014). Active faults (black lines) after Litchfield et al. (2015). Black dots indicate mapped pockmarks. HMSZ = Hikurangi Margin Subduction Zone. (A) Pockmarks offshore Taranaki correlate well with slopes. (B) Along the Hikurangi Margin there is a strong correlation between terraces and pockmarks distribution. (C) Pockmarks along the South Westland Margin correspond well with slope and canyon environments. (D) Offshore Canterbury and Otago pockmarks are identified in a range of geomorphic settings, clustering on the slope and out onto the plateau of the Chatham Rise.



The Hikurangi Margin lies off the east coast of Te Ika-a-Māui North Island, where the Pacific Plate is subducting beneath the Australian Plate. The morphology of the region is dominated by the accretionary wedge and deformation associated with the plate boundary since 23 Ma (Ballance, 1993; Lewis and Pettinga, 1993; Nicol et al., 2007; Barnes et al., 2010; Bostock et al., 2018a). The region is characterised by margin-parallel ridges and small fault-controlled basins, occasionally cross-cut by submarine canyons and abundant submarine slope failures (Barnes et al., 2010; Litchfield et al., 2014; Bostock et al., 2018a; Watson et al., 2019). Due to the high influx of sediment from rivers along the east coast of Te Ika-a-Māui North Island, seafloor sediments along the margin are dominated by terrigenous muds (Hicks et al., 2011; Bostock et al., 2018a), with occasional patches of sand, gravel and bioclastic carbonate. Active seafloor gas seeps are abundant along the margin, which, along with observations of seep fauna, indicate widespread ongoing and relict seafloor seeps (Greinert et al., 2010; Naudts et al., 2010; Watson et al., 2020a). The Hikurangi Margin is also the largest gas hydrate province around Aotearoa New Zealand, with extensive accumulations of hydrate, frequently located beneath reverse-fault-controlled topographic ridges associated with contractional deformation (Crutchley et al., 2011; Pecher et al., 2013; Bland et al., 2015; Crutchley et al., 2019; Kroeger et al., 2019; Hillman et al., 2020). Significant gas shows have also been encountered in the Pegasus and East Coast Basins along the Hikurangi Margin (Uruski and Bland, 2010; Bland et al., 2015). Over 1,700 pockmarks were identified along the outer shelf and upper slope of the Hikurangi Margin by Watson et al., (2020a), in water depths of 110 to 2,400 m. Pockmarks in this area are variable in size and morphology, but are generally sub-circular in shape. Bottom simulating reflections (BSRs), interpreted as indications of the base of the gas hydrate stability zone, are abundant on the Hikurangi Margin (Pecher et al., 2013). Interestingly, mapped pockmarks rarely correlate with the location of active seeps, except for some shelfal locations in the northern Hikurangi Margin (Higgs et al., 2019; Watson et al., 2022).

The Chatham Rise is a large bathymetric high of submerged continental crust extending over 1,000 km due east of Te Waipounamu South Island, with water depths of 500–900 m along its crest (Figure 1). It forms part of the fossilised accretionary wedge of the Zealandia section of the Gondwana subduction margin, and the northern boundary of a failed rift associated with the mid-late Cretaceous breakup of Gondwana (Wood et al., 1989; Bland et al., 2015; Mortimer et al., 2017; Nelson et al., 2022; Strogen et al., 2022). The seafloor atop the rise is characterised by complex sediment patterns, including a unique veneer of greensand and glauconite rich deposits that are indicative of minimal sedimentation rates and reworking by oceanic currents (Nelson et al., 2022). The rise is strongly influenced by oceanic currents due to the bathymetrically constrained sub-tropical front that flows along the southern flank (Figure 4) (Hillman et al., 2017; Bostock et al. 2018a). Near-seafloor sediments across the Chatham Rise are predominantly composed of Paleogene and Miocene chalk deposits (Wood et al., 1989). These carbonate-rich units are draped by thin, patchy authigenic and biogenic silty sand, but are locally exposed due to erosion associated with strong oceanic currents flowing along the plateau (McDougall, 1982; Hillman et al., 2017; Bostock et al. 2018a). Along the northern and southern flanks of the Chatham Rise pelagic carbonate and hemipelagic sediment cover is present; however, this is patchy due to winnowing by deep currents and the occurrence of mass failures (Barnes, 1992). The northern flank of the Chatham Rise borders the Pegasus Basin (Bland et al., 2015; Kroeger et al., 2019), where gas reserves have been identified; however, there is no evidence for gas occurrence along the rise itself. The Chatham Rise hosts almost 10,000 identified pockmarks – and is estimated to have >45,000, based on the density of pockmarks in mapped regions to the extent over which they occur. The distribution of pockmarks on the Chatham Rise appears to be strongly bathymetrically controlled. In particular, sub-circular pockmarks with diameters of ~150–500 m occur at ~470–700 m water depths. The Chatham Rise is relatively unique in that it is a large, laterally extensive flat-topped plateau, with densely spaced small pockmarks. This contrasts with the other areas in this study, which are frequently characterised by submarine canyons. Although there are the isolated ‘mega-pockmarks’ located on the central Chatham Rise, halfway between Te Waipounamu South Island and the Chatham Islands (Davy et al., 2010; Collins et al., 2011; Hillman et al., 2017; Klaucke et al., 2018), the vast majority of the pockmarks are small, densely spaced features. Pockmarks on the rise are generally sub-circular in plan view, with isolated areas of elongated morphologies where locally strengthened currents have a greater influence at the seafloor (Figure 2B). The asymmetrical infill of the ‘mega-pockmarks’ by sediment drift deposits indicates that current activity has been significant in this region (Figure 2F) (Hillman et al., 2018; Klaucke et al., 2018).

The region east of Te Waipounamu South Island, south of the Chatham Rise and off Canterbury and Otago is presently a passive margin. The mid-Neogene–Quaternary sedimentary evolution of the margin, which extends out onto submerged Zealandia continental crust, has been controlled by the interplay of the uplift and erosion of the distal Kā Tiritiri o te Moana Southern Alps (Figure 1A), the consequent supply of sediment from onshore rivers, and the strong submarine currents associated with the Subtropical Front (Figure 4) (Mortimer, 2004; Osterberg, 2006; Hillman et al., 2015). The area is underlain by mid-Cretaceous to present-day sediments up to ~8.5 km thick, encompassing non-marine facies including coal measures, and marginal to deep-marine sandstone, mudstone, and marls. Some early Paleogene mudstone units are comparatively rich in terrestrially derived organic matter (Carter, 1988; Cook et al., 1999; Schiøler et al., 2010; Hollis et al., 2014; Sahoo et al., 2017). Sub-commercial gas reserves have been identified in the Great South and Canterbury Basins (Killops et al., 1997; Hoffmann et al., 2019). The shelf off the coast of Otago is incised by seven major submarine canyons, known as the Otago Submarine Canyon Complex (Figure 1A), which are presently supplied with terrigenous sediments from the adjacent shelf (Osterberg, 2006; Mitchell and Neil, 2012). The canyons are bordered by mud-rich levees, predominantly built up on the northern flanks, with sandy deposits on the surrounding seafloor (Lu et al., 2003). Levees and associated sediment wave-field deposits are up to 400 m thick, and built up during glacial periods of wave growth, interrupted by low sedimentation during interglacial phases of pelagic calcareous oozes (Carter et al., 1990; Lu et al., 2003; Lu and Fulthorpe, 2004; Allen and Durrieu de Madron, 2009). Closely spaced pockmarks are also prevalent off Canterbury and Otago with >8,000 features identified. About half of these lie in water depths <350 m on the relatively flat Canterbury Shelf where they form small pockmarks, a few tens of metres in diameter (Hoffmann et al., 2019; Micallef et al., 2022); however, on the Otago Slope the pockmarks are clustered in the vicinity of submarine canyons incising the shelf edge (Figure 2C), in water depths of 600–1,000 m with diameters of 100s of metres (Hillman et al., 2015; Hoffmann et al., 2019; Kumar et al., 2021). Both regions are characterised by strongly elongated pockmarks, where the orientation of elongation correlates well with the position and flow direction of the Subtropical Front flowing northeast along the east coast (Figure 4), while the smaller pockmarks on the shelf are elongated in the opposite direction, potentially related to eddy currents (Micallef et al., 2022).

The South Westland Margin lies off the west coast of Te Waipounamu South Island, where the southernmost extent of the Challenger Plateau meets the West Coast Basin (Figure 1) (Maier et al., 2022). The main structural component in this region is the onshore transpressional Alpine Fault (Figure 5), which forms the boundary between Australian and Pacific Plate continental crust. High uplift rates along the Kā Tiritiri o te Moana Southern Alps have resulted in rapid erosion and high sedimentation rates associated with steep, short, often braided rivers along the margin, leading to seafloor sediments dominated by terrigenous muds (Cox and Sutherland, 2007; Hicks et al., 2011; Bostock et al., 2018a; Maier et al., 2022). There is no evidence in the area for subsurface gas (Maier et al., 2022). The region is influenced by complex, locally variable current systems, dominated by the South Westland current, which generally flow north along the margin (Chiswell et al., 2015). Like much of the shelf edge around Aotearoa New Zealand, the narrow (<60 km wide) South Westland Margin is incised by numerous submarine canyons (Figure 1) (Maier et al., 2022). Pockmarks on the South Westland Margin are observed in water depths of 100–2600 m, with the majority occurring in depths of 400–850 m (Maier et al., 2022). As seen on the Otago Slope, these features occur in the vicinity of submarine canyons that incise the continental slope along the margin. The depressions range from large, irregular features (>0.5 km2 in area) to small, circular depressions (Figure 2E) (0.008–0.03 km2) (Maier et al., 2022). In addition, there are irregular depressions that are elongated along slope. Farther to the south, small, oval pockmarks, up to 200 m in diameter, were observed in the Solander Basin, to the south of Te Waipounamu (Patel et al., 2021). It is likely that such features are more widespread along the southern and western shelf edge; however, existing data coverage limits our observations in this region.

The Offshore Taranaki region, western Te Ika-a-Māui North Island, has been extensively studied due to the occurrence of economically significant petroleum reserves (e.g., King and Thrasher, 1996; Arnot et al., 2016). However, these studies primarily focused on structures deep below the surface, not the modern-day seafloor. In this study we focus on the Inner Aotea Basin (Figure 1) due to the recent acquisition of a large multibeam bathymetry survey (Hillman et al., 2022; Watson et al., 2022). This area is characterised by thick (>10 km) sediments that have accumulated in a rift basin following the breakup of Gondwana (Uruski, 2010; Arnot et al., 2016; Strogen et al., 2017; Strogen et al., 2022). The northern Taranaki shelf is underlain by the Plio-Pleistocene aged Giant Foresets Formation, a strongly progradational late Neogene-Quaternary shelf to slope to basin floor succession of fine-grained mudstones, siltstones and sandstones (Nodder, 1995; King and Thrasher, 1996; Hansen and Kamp, 2004; Strogen et al., 2014; Anell and Midtkandal, 2017). High sediment supply in the region was related to the uplift of Kā Tiritiri o te Moana Southern Alps and the central Te Ika-a-Māui North Island hinterland (Hansen and Kamp, 2004; Kamp et al., 2004; Pulford and Stern, 2004; Trewick and Bland, 2012; Bull et al., 2019). The Offshore Taranaki region is Aotearoa New Zealand’s only area of commercial hydrocarbon production, with significant gas fields and evidence of shallow gas (King and Thrasher, 1996; Singh et al., 2016). Where seafloor mapping data are available, the shelf edge is incised by a series of complex submarine canyons (Hillman et al., 2022; Watson et al., 2022). These are likely more widespread, but much of the area has yet to be adequately mapped. Seafloor pockmarks off Taranaki were little known until late 2021 when two research voyages (TAN2111 and TAN2205) mapped a large area extending >140 km from the shelf edge (Hillman et al., 2022; Watson et al., 2022). This revealed numerous small depressions along the shelf break, clustered along spurs in between submarine canyons in water depths of 300–550 m (Figure 2D). No active seeps were observed in the vicinity of pockmarks during the TAN2111 survey, although sub-bottom profiler and 2D seismic data revealed numerous occurrences of shallow gas.

Pockmarks have been observed in shallow water (<300 m) in several areas around Aotearoa New Zealand (Figure 1), including Tōtaranui Queen Charlotte Sound (Figure 2G) (Watson et al., 2020b), offshore from Ngāmotu New Plymouth (Allis et al., 1997) the Hauraki Gulf (Pallentin et al., 2022) and in Te Whanganui-a-Tara Wellington Harbour (Hoffmann et al., 2023). Tōtaranui Queen Charlotte Sound (Watson et al., 2020b) lies at the northern end of Te Waipounamu South Island, within the Marlborough Sounds, the latter being a lozenge-shaped region bounded by active faults along its northwest and southeast sides(Nicol, 2011; Langridge et al., 2016). During the last glacial maximum (~18 ka) this region, a classic ria geomorphic feature, was subaerially exposed due to sea level being ~113 m below present day (Nodder, 1995; Watson et al., 2020b). Subsequent subsidence and sea-level rise resulted in the deposition of up to 400 m of sediment within the paleo-river valleys that form the sounds (Singh, 2001; Nicol, 2011). Te Whanganui-ā-Tara Wellington Harbour, at the southern tip of Te Ika-a-Māui, formed primarily as a result of vertical movements along the Wellington Fault. Sediments accumulated to thicknesses of over 600 m since the Middle to Late Quaternary (Donaldson and Campbell, 1977; Jones and Baker, 2005). The basin was predominantly filled by alluvial sediments supplied by the Te Awakairangi Hutt River, which are interbedded with fine-grained marine sequences deposited during eustatic sea-level high stands (Mildenhall, 1994).

Whilst this study focuses on the occurrence and distribution of pockmarks around Aotearoa New Zealand, there is one offshore area where these features are notably absent – the Te Moana-a-Toi Bay of Plenty (Figure 1A). This is not for lack of data coverage — as shown in Figures 1A and 2, a substantial proportion of this area has been mapped with multibeam bathymetry data. However, only a small cluster of pockmarks has been identified, to the northwest, in the outer Hauraki Gulf (Pallentin et al., 2022). Interestingly, these pockmarks occur in a distinct linear pattern, suggesting they may be related to a subsurface fluid flow pathway such as a fault. The absence of pockmarks in these areas could be due to limited sediment thickness, a lack of organic matter in sediments to generate biogenic methane, or the presence of volcanic sediments.





Are pockmarks related to seafloor venting?

Pockmarks have often been defined as representing primary evidence of rapid biogenic/thermogenic gas build up and fluid release from seabed sediments to the water column (Hovland and Judd, 1988; Paull et al., 2002; Audsley et al., 2019; Micallef et al., 2022). Through compiling numerous multibeam bathymetry datasets around Aotearoa New Zealand we have identified over 30,000 pockmark structures on the seafloor. These pockmarks occur across passive to active margin settings, variable underlying lithologies, and a diverse range of morphological environments, from canyons to plateaux; however, one of the key things that stands out is that virtually none of these pockmarks are coincident with identified sites of active seafloor seeps. While this is not a unique observation (e.g., Rise et al., 2015), it is the first time this has been demonstrated for Aotearoa New Zealand. This may challenge the assumption that fluid seepage is the primary cause of pockmark formation (Gay et al., 2007; Pilcher and Argent, 2007; Andresen and Huuse, 2011), or highlight that the formation process is time-sensitive, underscoring the need for further investigation into the timing of pockmark formation. One region where fluid venting from the seafloor is known to create pockmarks around Aotearoa New Zealand is the submarine groundwater springs in Te Whanganui-ā-Tara Wellington Harbour (Hoffmann et al., 2023). Here an extensive freshwater aquifer system is recharged on land and creates artesian groundwater discharge that forms pockmarks in the muddy harbour sediments.

Several previous publications have hypothesised that the trigger resulting in the formation of pockmarks was a change in overburden pressure due to sea-level rise or fall (Davy et al., 2010; Sultan et al., 2010; Andresen and Huuse, 2011; Riboulot et al., 2014; Karstens et al., 2018; Ketzer et al., 2020; Micallef et al., 2022). The depth range at which small (<2 km2) pockmarks are predominantly observed around Aotearoa New Zealand coincides roughly with the region of the seafloor that is predicted to move across the methane hydrate stability boundary through glacial-interglacial cycles (Davy et al., 2010; Stott et al., 2019). Gas hydrates have been identified along the Hikurangi Margin, and in localised areas offshore Taranaki and along the Fiordland Puysegur margin (Crutchley et al., 2007, Ogebule and Pecher, 2010). This depth restriction initially led to the hypothesis that the pockmarks on the Chatham Rise, in particular, formed due to methane hydrate dissociation near the end of a glacial period (Davy et al., 2010). While seismic data acquired across the Chatham Rise in 2013 show evidence for fluid migration linked to pockmark formation, sulphate profiles from pore water show no evidence of methane flux (Bialas et al., 2013; Coffin et al., 2013), let alone methane hydrate formation. In addition, δ13C data point towards a lack of isotopically light methane typical for gas hydrate dissociation. Δ14C data, on the other hand, point towards an influx of old carbon from below (Davy et al., 2010; Stott et al., 2019). Gas samples acquired from the Hikurangi Margin and surrounding sedimentary basins (Pegasus and East Coast; Figure 1C) are methane rich, with >99% methane measured at several locations (Hulme et al., 2015). In general, a sediment thickness of >3.5 km is required for organic matter to reach a burial depth great enough for the generation of thermogenic hydrocarbons in the region (Killops et al., 1997; New Zealand Petroleum and Minerals, 2014a). Around Aotearoa New Zealand this restricts significant thermogenic generation of hydrocarbons to the Taranaki, Canterbury-Great South, East Coast and Pegasus basins (Figure 6). However, notable oil seeps and thermogenic gas have been identified onshore along the west coast of Te Waipounamu South Island, and there are oil seeps on the coast of South Westland (Cook, 1982; Czochanska et al., 1987; Beggs et al., 2008; Sykes et al., 2012). This depth constraint is only applicable to thermogenic hydrocarbon generation, whereas biogenic hydrocarbons may be generated at shallower depths, and occurrences of biogenic hydrocarbon generation have been documented along the East Coast Basin (Hikurangi Margin), Canterbury Shelf and offshore Otago (Hulme et al., 2015; Micallef et al., 2022). Notably, pockmarks are found in shallow waters of Tōtaranui Queen Charlotte Sound, offshore from New Plymouth, in Te Whanganui-ā-Tara Wellington Harbour and the inner Canterbury Shelf.




Figure 6 | Sediment thickness map based on analysis of seismic reflection and drillhole data (after Arnot et al., 2016; Sahoo et al., 2017; Bland and Strogen, 2018; Bland et al., 2018a; Bland et al., 2018b; Strogen et al., 2018). Sediment accumulations of <1 km in thickness are not included, and data are limited in some regions, especially the Chatham Rise and South Westland Margin, leading to higher uncertainty in these areas. Black dots indicate the location of pockmarks. The sediment thickness has been sampled at each mapped pockmark location and displayed in the waterfall plot on the right. Pockmarks predominantly correlate to sediment thicknesses of 1-4 km. The majority of those in the <1 km sediment thickness band lie within areas such as Tōtaranui Queen Charlotte Sound (<200 m water depth) and the crest of the Chatham Rise (500-800 m water depth), where limited data is available to assess sediment thickness, or sediment accumulation is highly localised.



Fluid venting, either in the form of free gas mixed with porewater, or groundwater, is the most commonly proposed mechanism of formation for pockmarks (Whiticar and Werner, 1981; Rise et al., 1999; Hübscher and Borowski, 2006). A lack of spatial correlation between pockmarks and gas seeps is evident in this dataset. However, this does not necessarily preclude fluid venting as a mechanism of formation. Seafloor seeps are known to be ephemeral in nature, with some strongly influenced by factors such as tidal or seasonal cycles, or earthquakes (Field and Jennings, 1987; Li et al., 2019; Sultan et al., 2020). Seepage that cannot be imaged (e.g., diffuse seepage rather than focussed gas expulsion), or at scales below detection limits of modern echosounders is possible and may also account for a lack of coincident seep observations across pockmarks. As a result, without repeat surveys at different intervals to capture the full range of conditions, and multi-instrument/sensor observations of seepage, it is difficult to determine whether there truly is no seep activity at a site. Repeat surveys are rare due to the expense and time required, and the ephemeral nature of seeps on timescales of days (tidal) to millennia (glacial cycles) makes results difficult to interpret. Nevertheless, the fact that numerous active seep sites have been imaged, which do not correlate to the presence of pockmarks at the seafloor, suggests that these features are not necessarily coincident. Numerous active cold seeps have been imaged along the Hikurangi Margin (Baco et al., 2010; Jones et al., 2010; Klaucke et al., 2010; Watson et al., 2020a; Turco et al., 2022); however, there are limited observations elsewhere around Aotearoa New Zealand, such as offshore Canterbury (Micallef et al., 2022). This does not necessarily mean that seeps do not occur elsewhere due to their ephemeral nature and the fact that not all multibeam bathymetry surveys include water column imaging; however, it does suggest that they are less common in other regions. Active seep sites along the Hikurangi Margin are predominantly characterised by rugose, irregular seafloor associated with high multibeam backscatter anomalies, indicating carbonate outcrops (Jones et al., 2010; Klaucke et al., 2010; Watson et al., 2020a).

An alternative hypothesis is that there are two different styles of seeps. Firstly, those related to diffuse seepage, (seepage) active over long periods of time, readily imaged in water column data but lacking sufficient flow rates and/or velocity to displace sediment and create pockmarks. Secondly, ‘monogenetic’ episodes of forceful venting due to strongly overpressured shallow gas and/or fluid, such events would require a trigger to cause rapid release of a large volume of fluid, displacing significant volumes of sediment and creating pockmarks. Talukder (2012) describe these two types of fluid flow – venting and seeping – as the end members of a spectrum, ranging from slow, diffuse seepage in mineral prone settings, through to rapid venting in mud prone settings. Without additional, more detailed datasets for the pockmarks identified in this study it is not possible to fully characterise our sites using this type of classification. Furthermore, pockmarks could be formed by very gradual, diffuse fluid flow, which cannot be detected by our water column imaging systems. Such diffuse flow could gradually displace small quantities of sediment over time, forming pockmarks; however, to form discrete features such as pockmarks, there must be some mechanism focusing the flow to a specific area, which seems contrary to the idea of flow being diffuse. Finally, could it be that we cannot image the fluids being released at pockmarks, due to the lack of density contrast between the surrounding water column and the fluid seeping from the seafloor, resulting in sufficient flow to displace sediment without the readily imaged scattering of bubbles? This would be the case for groundwater seepage. The majority of pockmarks in this dataset lie at water depths shallower than 1,000 m, which places them well within the detectable range of fluids with any density contrast using multibeam echosounders (Lurton, 2010; Urban et al., 2017; Nau et al., 2022), even if no ‘true bubbles’ were present. This suggests that further clarification is necessary in discussions of “fluids” within such studies.





Influence of lithology, subsurface structure, and geomorphology

Hovland and Judd (1988) note that pockmarks are generally observed on muddy seabeds; however, here we have quantified this correlation for the first time in offshore Aotearoa New Zealand. The results of this study show that muddy substrate at the seafloor is the best predictor for the location of pockmarks, with a high correlation of pockmark occurrence in areas of >60% mud (Figure 7). Whether this correlation is a matter of preservation or formation remains to be determined. This correlation could be explained as a result of pockmarks forming more readily in mud-rich sediments because, as suggested by Audsley et al. (2019), fine-grained sediments are easier to displace with relatively little force. Or is this a matter of preservation bias, with pockmarks remaining visible at the seafloor for longer periods of time in mud-rich substrate, whereas in sand-rich substrate a pockmark may rapidly collapse in on itself and be lost from the geological record? Or is this simply a coincidence due to muddy substrate being the most abundant seafloor substrate type? According to the framework proposed by Talukder (2012), this would indicate that these pockmarks relate to active venting style settings. Krämer et al. (2017) show that pockmarks abruptly form in sandy sediments of the shallow North Sea (~30 m water depth); however, these pockmarks only remain stable for several months before they are levelled out again and diminish into a flat seafloor. It has been suggested that pockmarks are typically preserved under low sedimentation conditions (Schattner et al., 2016; Watson et al., 2020b). Regional-scale sediment thickness maps for offshore basins within New Zealand’s extended economic zone and extended continental shelf were compiled through the Atlas of Petroleum Prospectivity database (Arnot et al., 2016; Sahoo et al., 2017; Bland and Strogen, 2018; Bland et al., 2018a; Bland et al., 2018b; Strogen et al., 2018). Where data coverage and quality allowed, non-basement Zealandia Megasequence sedimentary ‘cover rocks’, all younger than c. 110 Ma (after Mortimer et al., 2014), were mapped using available 2D seismic reflection lines, well ties, and a regionally consistent set of seismic horizons (after Strogen & King 2014), and then depth converted (e.g., Arnot et al., 2016; Arnot et al., 2018). These sediment thickness maps show a generally good correlation between the distribution of pockmarks and areas with 1-4 km of sediment accumulation (Figure 6), particularly in water depths of 500-800 m. Areas of >4 km sediment thickness are generally restricted to localised areas along the Hikurangi Margin, and offshore Taranaki, Otago, and Canterbury. Along the Hikurangi Margin there is a relatively close correlation between these patches of thicker sediment, which indicate the location of mini-basins bound by thrust faulted ridges, and the occurrence of pockmarks (Bland et al, 2015; Tek et al., 2021).




Figure 7 | Distribution of pockmarks (black dots) in comparison to the surficial sediment maps of Bostock et al. (2018a, b). The sediment composition has been sampled at each mapped pockmark location and displayed in the violin plot on the right, illustrating a strong correlation between the occurrence of pockmarks and higher proportions of mud at the seafloor. The width of the plot for each substrate type is indicative of the number of mapped pockmarks.



The correlation of sediment thickness to the presence of pockmarks is not as evident on the Chatham Rise and along the South Westland Margin, where pockmarks occur in areas of <2 km of sediment thickness. On the Chatham Rise depressions correlate with thin ‘ribbons’ of sediment that form isolated, elongated basins (Cook et al., 1989; Wood et al., 1989; Bland et al., 2018a). Likewise, off the west coast of Te Waipounamu South Island, sediment thicknesses are only 1–2 km (Arnot et al., 2018) where the depressions identified by Maier et al. (2022) occur. However, in both of these areas, seismic data used to assess sediment thickness is relatively sparse, resulting in greater uncertainty. As shown in Figure 1C, pockmarks occur across the majority of offshore sedimentary basins surrounding Aotearoa New Zealand, with one key exception being the Fiordland Basin. In addition to sediment thickness, the rate of sediment deposition may be a key factor in the formation of pockmarks. Rapid sedimentation can result in sediment loading, generating pore pressures that reach and/or exceed lithostatic pressure, which would be sufficient to displace seafloor sediments and interstitial fluids within them, resulting in the formation of pockmarks (Micallef et al., 2022). High sedimentation rates may be connected to rapid uplift and erosion onshore, resulting in increased sediment supply offshore, such as the uplift of Ka Tiritiri-o-te-Moana Southern Alps (Cox and Sutherland, 2007; Hicks et al., 2011; Maier et al., 2022). Changes in sea level also influence sediment supply offshore, with deposition rates that depend on the subaerial exposure of land and changes in erosional processes (Browne and Naish, 2003; Blum and Hattier-Womack, 2009; Carter et al., 2009; Gerber et al., 2010).

Pockmarks are frequently observed in the vicinity of submarine canyons in several locations around Aotearoa New Zealand, including the Otago Slope, South Westland margin, Tasman Sea and the Hikurangi Margin. There are commonalities in the characteristics of these pockmarks, particularly those on the Otago Slope, South Westland margin and offshore Taranaki. These pockmarks occur within similar water depths of 250 – 550 m, are 100-300 m in diameter, and are generally sub-rounded in plan view, except for those on the Otago Slope being elongated due to the influence of oceanic seafloor currents. Furthermore, on both the Otago Slope and South Westland margin pockmarks have been associated with underlying sediment wave fields between submarine canyons (Hillman et al., 2015; Maier et al., 2022).

The majority of pockmarks around Aotearoa New Zealand are <2 km2 in area (Figure 3), with the exception of the ‘mega-pockmarks’ on the Chatham Rise. In general, those pockmarks observed in shallow water in locations such as Tōtaranui Queen Charlotte Sound and offshore Taranaki are smaller in area (<1 km2), while the largest pockmarks occur in water depths >600 m. However, there is no consistent correlation between pockmark size and water depth. Similarly, there is no clear correlation between the size of the pockmarks and the seafloor substrate type (Figure 7) or the geomorphic setting (Figure 5); however, the larger structures are predominantly restricted to the Chatham Rise with a few features >2 km2 along the South Westland Margin. As discussed previously, these larger pockmarks offshore the west coast of Te Waipounamu South Island are thought to be the result of submarine canyons infilling (Maier et al., 2022). The mega-pockmarks on the Chatham Rise are likely the result of multiple formation processes interacting, for example an initial venting episode creating a small pockmark that is then significantly altered and enlarged by the erosive action of currents (Hillman et al., 2018; Klaucke et al., 2018). The larger pockmarks on the South Westland Margin and the Chatham Rise are therefore not considered to be monogenetic, since there are likely to have been multiple stages of their formation and in some cases they may be composites of multiple features amalgamating to form one large pockmark (Judd and Hovland, 2007; Karaket et al., 2021).

Subsurface structures such as faults and fractures also play a role in controlling the location of pockmarks. Seismic data reveal widespread Eocene–Miocene polygonal faulting beneath the Chatham Rise and the Otago Slope (Bland et al., 2018a; Hillman et al., 2018; Klaucke et al., 2018). Such structures are often associated with compaction dewatering (Gay et al., 2006; Andresen and Huuse, 2011) or dewatering during opal A/CT transformation (Klaucke et al., 2018). These polygonal fault systems act as flow conduits bringing fluids to the seafloor, where fluid venting can then form pockmarks. However, along the Otago Slope and on the Chatham Rise, there is no clear correlation between the distribution of polygonal faulting in the subsurface relative to the position of pockmarks at the seafloor (Hillman et al., 2015; Hoffmann et al., 2019).





The role of oceanic currents

The erosive activity of strong oceanic currents such as the Southland Current has been invoked as a possible formation and/or modification mechanism of pockmarks (Hillman et al., 2018; Cojean et al., 2021; Maier et al., 2022). Elongation of depressions due to strong bottom currents has been observed beyond Aotearoa New Zealand, and recently tested using numerical modelling (Hovland et al., 2002; Yu et al., 2023). Due to the geomorphology of the region, the Southland Current is bathymetrically constrained to the shelf edge along the Otago and Canterbury coast, and the southern flank of the Chatham Rise, coinciding with the depth interval in which many pockmarks are observed. Pockmarks observed around submarine canyons on the Otago Slope, and Canterbury Slope are also strongly aligned NE–SW, which fits with the dominant current direction (Figure 4) (Hillman et al., 2018; Micallef et al., 2022). Micallef et al. (2022) also suggest that localised variation in the orientation and morphology of pockmarks off Canterbury may be the result of eddy currents induced by turbulence; such variability is also seen on the Chatham Rise where the variable bathymetry of Mernoo Saddle results in restricted north-flowing currents breaking off from the dominant east-flowing Subtropical Front (Nelson et al., 2000). Further to the south, Patel et al. (2021) observe that currents associated with the Subtropical Front have elongated pockmarks located in the Solander Basin. Similarly, pockmarks observed further north within the South Westland margin are also elongated along slope, correlating with the dominant flow direction of the Westland Current (Chiswell et al., 2015; Maier et al., 2022). The currents discussed here are surface circulation, which may not fully represent the oceanic influence at the sediment-water interface as these currents may not reach nor influence the seafloor. Furthermore, circulation/geostrophic currents are not capturing full water movement, i.e., weak currents do not mean a quiescent setting. Not all pockmarks here are elongated along slope; some are elongated downslope, indicating that overflowing turbidity currents may be a primary factor in modifying the morphology of these depressions (Maier et al., 2022). Furthermore, the action of currents may maintain pockmarks, preventing them from infilling with sediment over time due to the suspension of fine sediment by turbulence as currents flow across the pockmark and/or the deflection of currents due to the irregular seafloor morphology of the pockmarks (Hammer et al., 2009; Pau and Hammer, 2013; Cojean et al., 2021; Maier et al., 2022). Beyond scouring of the seafloor and modification of pre-existing structures, a novel mechanism linking pockmark formation to currents has been proposed: current-induced groundwater flow through canyon walls (Allen and Durrieu de Madron, 2009; Hillman, 2015). As discussed previously, a large number of pockmarks observed around Aotearoa New Zealand occur within the vicinity of submarine canyons (Figure 5); however, it is not clear whether these two geomorphic features are related in all cases, and this could be due to the fact that both sets of features occur in similar water depths.





Biological influence on seafloor geomorphology

The influence of marine mammals and fish on seafloor morphology has been discussed in several studies. Cojean et al. (2021) and Pau and Hammer (2013) suggest that the activity of fish, or bioerosion, may help to maintain pockmarks by preventing infill by sedimentation. Mueller (2015) presents the first evidence that bottom-grubbing fish are responsible for a wide variety of pockmarks along the Australian coastline. Previous studies indicate that grey whale and Cuvier’s beaked whale feeding behaviour creates pockmark like pits on the seafloor (Johnson and Nelson, 1984; Nelson et al., 1987; Woodside et al., 2006), similar features were also identified in the abyssal Pacific Ocean, which are thought to be the result of sperm whale or Ziphiidae (beaked whales) activity (Marsh et al., 2018; Purser et al., 2019). Additionally, Schneider von Deimling et al. (under review) suggest that harbour porpoise create hundreds of thousands of pockmarks in the shallow North Sea, and Purser et al. (2022) discovered large icefish breeding grounds containing circular pockmark-like nest structures. It is therefore evident that biological activity influences seafloor geomorphology and can create pockmark structures. These biogenic pockmarks are often too small to be detected by conventional multibeam echosounder systems in water depths exceeding a few hundreds of metres but can be modified and scoured out by currents. During a recent research voyage offshore from the east coast of Te Ika-a-Māui North Island, small, subtle depressions were observed during an ROV transit (Figure 8). These features are ~2 m in diameter and occur at a water depth of 1,870 m in an area of the seafloor that appears to be predominantly muddy substrate, with signs of extensive bioturbation. Whilst there is no direct evidence to identify a particular species that might be responsible for forming these structures, they are similar in appearance to those observed by Purser et al. (2019) and could conceivably be of similar biogenic origin. Due to the depth at which they occur, and their small size, such features are not visible in ship-based multibeam bathymetry data. It is possible that such features are more abundant and widespread, but poorly known due to limited data in which they can be observed.




Figure 8 | Depression observed at water depth of ~1,800 m during an ROV dive near Madden Canyon on the Hikurangi Margin (location indicated by the black dot on the map). The same dark coloured object on the seafloor is circled in both images as a common reference point. These depressions could be the result of bottom feeding and may be enlarged over time by the action of seafloor currents to form larger pockmarks. Image credit: ROV JASON/NSF.







Constraining the timing of formation

Pinpointing when pockmarks formed is a critical gap in our current understanding. Accurately dating the formation of these structures is problematic in the absence of targeted sampling of infill sediments that may allow us to pinpoint a minimum age of formation. The action of ocean currents further complicates this as infill may undergo phases of erosion and/or resuspension due to current activity. Furthering our understanding of sedimentation rates and their temporal variability would help to decipher not only the potential role of overburden pressure and dewatering in the formation of pockmarks, but also help constrain when they may have formed through enhanced stratigraphic control. Finally, determining the timing of formation would be an important step towards deciphering the mechanism(s) for pockmark formation. For example, correlating coeval widespread formation of pockmarks across different areas around Aotearoa New Zealand with a change in sea level would indicate that the change in hydraulic overburden, and/or changes in sediment supply due to shifting water depths and coastlines played a critical role in their formation. Conversely, if localised variability in formation timing were revealed, this would indicate that locally restricted factors such as biogenic gas generation from shallow, locally heterogeneous sediments may be more influential.

Previous studies have used several approaches to better constrain the timing of pockmark formation. Seismic interpretation has proved useful in some settings (e.g., Cole et al., 2000 , Hustoft et al., 2009; Andresen and Huuse, 2011); however, this approach relies on a robust stratigraphic model for the region in order to tie the formation of pockmarks to specific time horizons, or distinct overprinting of landforms (e.g., Batchelor et al., 2022). Isotopic dating of organic carbon, cold seep fauna, authigenic carbonates and planktonic foraminifera has also been used to better constrain the geological evolution of seep sites and their associated structures (e.g., Paull et al., 2002; Feng et al., 2010). Others have applied non-steady state models in order to further understand the timing of pockmark formation (e.g., Luo et al., 2015). A combination of these methods would likely be the best approach to gain a better understanding of the timing of pockmark formation around Aotearoa New Zealand, as the availability of suitable datasets and samples for analysis is highly variable.





Conclusions

This study provides the first Aotearoa-wide opportunity to bring together observations of pockmarks across diverse tectonic, sedimentological, and geomorphic settings, and investigate trends in pockmark distribution and characteristics. One notable finding is that there is little to no correlation between pockmarks and active seafloor seeps, which suggests that other factors potentially contribute to their formation, or that processes of formation are ephemeral or episodic. Furthermore, pockmarks are more likely to occur in regions with over 60% mud substrate at the seafloor; however, whether this is a factor of formation or preservation remains to be answered. Pockmarks have been found in almost all sedimentary basins around Aotearoa New Zealand, aside from Te Moana-a-Toi Bay of Plenty and the offshore Fiordland Basin where they are notably absent. This study also highlights critical knowledge gaps in our understanding of pockmark formation, particularly the lack of constraints on the timing of pockmark formation, which hinders our understanding of the dynamic seafloor processes that shape and influence them. Future studies would therefore benefit by focusing on constraining the timing of formation of pockmarks across a range of sites to determine whether these structures formed contemporaneously.

This compilation allows us to identify several key knowledge gaps in our understanding of pockmark formation mechanisms and the timing of formation. Firstly, better constraining bottom-current flow velocities and down-canyon flow would help to determine whether the interaction of canyon flow and sidewall groundwater mechanisms could be responsible for the formation of pockmarks. Modern seafloor observations and monitoring would help to resolve this. Furthermore, modelling of pockmark formation through gas, fluid, or mixed venting would help to determine the conditions under which these mechanisms might occur, and help characterise the resulting structures (Beggs et al., 2008). One key element would be constraining the timing of pockmark formation. If pockmarks form rapidly, in one extreme period of violent venting, then that would indicate that we are presently in a period of quiescence, with no such venting occurring. Alternatively, if they formed slowly over a long period of time, then the possibility of gradual diffuse venting that is not readily detected becomes more plausible. Modelling of pockmark formation and active monitoring of pockmark sites using instrumented deployments would also be useful in further understanding the interaction of different processes in the formation and subsequent modification of pockmarks.
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Communicating environmental change and mitigation scenarios to stakeholders and decision-makers can be challenging. Immersive environments offer an innovative approach for knowledge transfer, allowing science-based scenarios to be discussed interactively. The use of such environments is particularly helpful for the analysis of large, multi-component geospatial datasets, as commonly employed in the classification of ecosystems. Virtual environments can play an important role in conveying and discussing the findings gathered from these geomorphometric datasets. However, textured meshes and point clouds are not always well suited for direct import to a virtual reality or the creation of a truly immersive environment, and often result in geometrical artifacts, which can be misinterpreted during the import to a game engine. Such technical hurdles may lead to viewers rejecting the experience altogether, failing to achieve a higher educational purpose. In this study, we apply an asset-based approach to create an immersive virtual representation of a coastal environment. The focus hereby is on the coastal vegetation and changes in species distribution, which could potentially be triggered by the impact of climate change. We present an easy-to-use blueprint for the game engine EPIC Unreal Engine 5. In contrast to traditional virtual reality environments, which use static textured mesh data derived from photogrammetry, this asset-based approach enables the use of dynamic and physical properties (e.g. vegetation moving due to wind or waves), which makes the virtual environment more immersive. This will help to stimulate understanding and discussion amongst different stakeholders, and will also help to foster inclusion in earth- and environmental science education.




Keywords: virtual reality, unreal engine, digital terrain model, landscape materials, coastal geomorphometry, Land-to-Sea (L2S)




1 Introduction

Effective spatial management is key for sustainable development and conservation of resources, ecosystems at risk, and sensitive habitats. Miscommunication between academic researchers and decision makers, however, often prevents or delays implementation of knowledge-based solutions. Overcoming this hurdle requires new approaches for visualizing, communicating, and implementing management strategies. Virtual reality and virtual environments are already commonly used for evaluation and decision-making processes after disasters (Lu et al., 2020). It has been shown that the training effect in response scenarios was significantly increased by the use of virtual reality, and especially the use of head-mounted displays (Buttussi and Chittaro, 2018). The use of virtual environments in combination with virtual reality technology may be a key educational method within earth system sciences to bring remote- and cost-intensive-to-reach environments like geological outcrops into the classroom (Harknett et al., 2022). Nevertheless, while virtual field trips within virtual environments may improve the preparation for real-life experiences (Arrowsmith et al., 2005), they are not perceived as a replacement for real field trips (Spicer & Stratford, 2001; Bond and Cawood, 2021)

An immersive environment can be achieved by means of virtual (VR), augmented (AR) or mixed (XR) reality systems, and creates an accessible way to discuss and manipulate virtual scenario representations with experts and policy-makers, as well as with the general public. The basis for any virtual environment is the creation of immersive virtual worlds, which aim to be as close to the “real world” as possible. In this process, the terms “digital twin” and “metaverse” are often used in different communities, including design, engineering, natural- and computer sciences, but also in human and social sciences. While a “digital twin”, a term that is still in discussion and not always clearly defined (VanDerHorn and Mahadevan, 2021), aims to mirror an existing item or environment with all relevant physical properties and facets, the “metaverse” is a post-reality, multi-user environment, which merges physical reality with digital virtuality (Mystakidis, 2022), and does not necessarily mimic the “real world”. Studies on virtual environments and their uses also highlight the need for storytelling within these virtual instances; the best visualization is useless without a guiding line through the virtual environment.

Computer Game engines like EPIC Unreal Engine (UE) and Unity Technologies Unity are becoming an essential tool for building digital twins and virtual instances. Game engines, which provide graphical and physical properties to a user, enable even less experienced game designers and scientists to build their own games, models and virtual environments (Herwig and Paar, 2002; Calisi and Botta, 2022). As they are designed for cross-platform usage, the implementation of VR devices like head-mounted displays is guaranteed via built-in engine interfaces and is hence also applicable for less experienced users.

Most VR and XR visualizations in science communication are found outside geo- and environmental science, even though VR and XR have the power to overcome the abstract nature of issues like climate change or complex geological systems, and turn them into realistic, spatially explicit experiences (Sheppard, 2012; Swetnam and Korenko, 2019; Huang et al., 2021; Harknett et al., 2022). Vegetated coastal systems are multi-functional and provide various habitats, sequester carbon, dissipate wave energy, and buffer nutrients (e.g., Reddy and DeLaune, 2008; Karstens et al., 2015; Jurasinski et al., 2018; Heckwolf et al., 2021; Buczko et al., 2022). Climate change will impact vegetation patterns and species distribution in the dynamic coastal zone around the globe. While sea level rise might have the largest impact through influencing inundation and salinity regimes, drivers like temperature, rainfall, and the frequency of extreme events will also shape vegetation growth and distribution in coastal landscapes in the years to come (Osland et al., 2016). Communicating climate-induced environmental changes to stakeholders and decision makers can be challenging, and traditional materials such as graphs, maps or photos are often not sufficient to bridge the gap (Huang et al., 2021).

Widely used geomorphometric analysis and visualization techniques, such as photogrammetry and structure-from-motion approaches, typically aim to create performant 3D models and virtual environments of urban and industrial areas (Toschi et al., 2017; Huo et al., 2021) or exact representations of a spatially confined, complex geological scenes (e.g. Harknett et al., 2022). In contrast, open world environments, such as a coastal landscape, are often characterized by numerous individual plants and textures, which are challenging to image with point clouds or textured meshes (Torres-Sánchez et al., 2015). The coastal zone between land and sea is highly variable on both temporal and spatial scales, which presents challenges for its sustainable management (Holzhausen and Grecksch, 2021). The geosphere, hydrosphere and biosphere, which are the natural components of coastal regions shaped by both human and natural dynamics, are inherently interwoven with human–environment relations. Following Döring and Ratter (2021), we refer to this ribbon between land and sea as a coastscape.

In our view, virtual environments are a powerful – but as yet under-utilized – tool for the visualization of different coastscapes, and the changes, both natural and human-induced, they undergo. The aim of this study is to obtain an immersive virtual representation of a coastscape without having to manually build a geomorphologically realistic landscape. The input for this virtual environment can be any geomorphometric data that is based on ground-truthed, (semi-)classified and segmented digital elevation data. In this example, we consider coastal vegetation and changes in species distribution, and link field-generated data (UAS (Uncrewed Aerial System) surveys with RGB cameras and species mapping) with procedural modeling and virtual environment development using the software EPIC Unreal Engine 5. As the input can be any geomorphometric data of any scale, the presented workflow serves as a blueprint for the use of immersive virtual environments in geomorphological analysis and visualization.



1.1 Case study site

To test and implement a workflow for obtaining a virtual environment of a coastscape, we selected the case study site presented by Karstens et al. (2022). The study site, Stein beach, which is situated in northern Germany in the outer part of the Kiel Fjord (Baltic Sea), accommodates a diverse range of vegetation (Figure 1). The seaward wetland edge is largely dominated by common reed (Phragmites australis) with a few patches of salt marsh bulrushes (Bolboschoenus maritimus), followed by dune vegetation in the sandy areas (e.g. Ammophila arenaria, Ammophila x baltica, Leymus arenarius). The swash margin is dominated by annual vegetation such as Cakile maritima, Atriplex littoralis and Atriplex prostrata. Accommodation space is limited as the vegetated area at the study site is bordered by a dike in the hinterland and a marina to the east. As a result of the ongoing shore-parallel sediment transport, most of the bays between Kiel and Fehmarn island are currently being cut off by spit formation. Bottsand, which extends to the west and has been advancing since 1880 (Niedermeyer et al., 2011), is the youngest spit; however, regular dredging at the marina impacts natural sediment transport and coastal dynamics at the study site.




Figure 1 | The case study site, Stein, is situated in northern Germany in the outer Kiel Fjord, Baltic Sea (A) Background map: Open Street Map). Coastal vegetation in the area is diverse, but the wetland edge is dominated by Phragmites australis (B) with a few patches of Bolboschoenus maritimus (C). Transitions from wet habitats to sandy habitats covered by dune vegetation occur over a few meters. Accommodation space is limited by a dike. The orthophoto was generated in August 2022 (D). The workflow presented in this study can be adopted to any other site, and Stein Beach was used as a case study site to setup and test the blueprint.



Transitions from wet habitats that are suitable for plants like Phragmites australis, Bolboschoenus maritimus or Schoenoplectus tabernaemontani to dry habitats with dune vegetation occur across small timescales, such that climate change impacts, e.g. sea level rise or increased wave action during winter (Ahola et al., 2021), will influence vegetation composition and pattern distribution. Bolboschoenus maritimus has a higher resistance to salinity than Phragmites australis, and thus might outcompete reed at the wetland edge in the near future. This would have a significant impact on the coastscape because Phragmites australis, which grows up to >2m in height, is much larger and impacts the visual perception (“shielding”) significantly more than Bolboschoenus maritimus. In this study, we created two virtual representations of the study area: (i) as it is today, with Phragmites australis as the dominant species; and (ii) with Bolboschoenus maritimus replacing Phragmites australis at the wetland edge as it might in higher salinity conditions in the future.





2 Materials and methods



2.1 Prerequisites for virtual environment creation

Our workflow can be easily adapted to suit any geomorphometric data input. Nevertheless, a digital elevation model (DEM), together with segmentation and classification maps for the different terrain types, is required for further processing in EPIC Unreal Engine 5. The images must be converted to the same resolution, cover the same area and be in PNG format. For the best visualization of geomorphology, the size in cm² that is covered by a pixel and the total height covered by the DEM should be known (Figure 2). Resolution of these images depends on flight height as well as the sensors used for the process, and can hence vary significantly from mm-scale to dm-scale. While airborne UAS can produce orthophotos in the mm- to cm-scale, the resolution of data from shipboard multibeam-echosounders may range from some to several tens of meters. The level of detail of the DEM, and the segmentation and classification maps defines the lateral appearance of the displayed landscape material and assets. To prevent visual steps related to pixel boundaries, we recommend the use of images with the highest possible resolution. The application of a Gaussian filter to interpolate pixel boundaries also helps to smooth lateral landscape limits. A Python-based tool that enables the modification of the DEM, segmentation and classification maps can be accessed from our GitHub repository (see “Data availability” chapter).




Figure 2 | Example of a DEM height-map with a resolution of 2 cm (1) and segmentation maps that show areas of different classifications (2-4).



DEMs were generated for our study area during UAS surveys with a RGB camera in 2021/2022 (see Karstens et al., 2022). RGB imagery on the sub-decimeter scale was conducted with a DJI ZenmuseX5S RGB camera mounted on a DJI Inspire II UAS at a flight height of 70 m, resulting in a lateral resolution of 2 cm. Orthophotos and digital elevation models were generated based on structure-from-motion photogrammetry with the open-source software WebODM (Version 1.9.11, OpenDroneMap, 2022, see Mokrane et al., 2019; Vacca, 2020), that uses the structure-from-motion software library OpenSfM (OpenSfM, 2022) in combination with the Multi-View-Stereo (MVS, 2022) technique (Vacca, 2020). The geo-referenced point cloud data were used for the processing of DEMs with an inverse distance weighting interpolation method (Vacca, 2020; Karstens et al., 2022). Segmentation and classification maps were created from the orthophotos using the open-source Orfeo Toolbox (OTB Version 6.0, Grizonnet et al., 2017, see Karstens et al., 2022). The data were segmented with a spatial range of 50 and a radial range of 7, and supervised machine learning was carried out using a support vector machine (see Karstens et al., 2022). Classes for segmentation included, inter alia, “Phragmites australis”, “Other vegetation”, “Sand”, and “Water” (Figure 2).




2.2 An asset-based approach to create an immersive virtual environment: a Blueprint

In this section, we describe our developed workflow for obtaining asset-based virtual landscapes from airborne RGB imagery (Figure 3). For this study, we use Unreal Engine Blueprints (see “Data availability” chapter for the GitHub link). This workflow can easily be adapted to other sensor data, e.g. spaceborne and multispectral photography, or hydroacoustic remote sensing techniques, such as multi-beam echo-sounder (e.g. Backscatter) data. As mentioned above, the prerequisites are a DEM and segmentation/classification maps with the same lateral boundaries. The segmentation and classification maps can be derived from any geomorphometric parameter in the terrestrial and/or the marine realm. The acquired data need to be validated in the field to define the best fitting landscape materials and assets that should be used in the virtual instance of the scene. Within the blueprint, these landscape materials and assets can be replaced by any custom or purchased 3D model.




Figure 3 | Workflow and pipeline to visualize optical- and acoustic remote sensing data in asset-based virtual environments. The input data consist of a DEM and classification/segmentation maps. Whether these data were generated by optical sensing or (hydro-)acoustic sensors is not important. The data pipeline starts with the final segmentation/classification product and transforms these data into virtual environments within the Game Engine EPIC Unreal Engine 5.



Game engines, such as EPIC Unreal Engine 5 (UE5), allow landscape materials to be generated and then draped on digital elevation models or any object within the game engine project. The setup of landscape material within the game engine (in our case UE5) is crucial for obtaining an asset-based virtual instance of original aerial imagery or any other geospatial dataset. The UE5 Blueprint presented in this study is built using a modular setup, so that customization is simple. The classification of the landscape materials is the basis for this workflow, and must be carried out before importing the DEM via the UE5 Landscape Editor.



2.2.1 Texture placement

In our blueprint, a landscape material is linked to each imported landscape (Figure 4), and different terrain types with different textures and colors can be defined within the landscape material. Our case study uses the free “giant Reed” asset from the Unreal Engine Marketplace, as well as the “Softstem Bulrush” and “Narram Grass” from Quixel. Additional textures are freely available via Quixel.




Figure 4 | Example of a landscape material showing the input node (LandscapeCoords) and the output. The input involves four steps: (1) Avoid pattern repetition, (2) Texture sample, (3) Texture merging, and final output. The output includes automated asset placement. See the statement on Data Availability for a link to the entire Epic Unreal Engine 5 Blueprint.



Pattern repetition leads to tiling or a chess board-like appearance of the generated landscape, and should be avoided to enable a smooth display. As such, our blueprint implements a function in which these texture tiles are randomly cut, mixed and re-arranged to avoid pattern repetition. This constitutes the first step of our UE5 Blueprint (Figure 4). The function can easily be adjusted to suit the requirements of individual datasets (e.g. scale or number of materials). This function can also be replaced by any other function that enables the avoidance of pattern repetition.

An immersive virtual environment requires sophisticated textures that include, amongst others, colors, roughness, and lighting. Textures need to be explicitly mapped to individual, pre-segmented areas to enable them to be effectively visualized. This happens during steps 2 and 3 of our UE5 blueprint, where four material functions are mapped to the four pre-defined segments of our case-study. Implementing additional material functions in cases where there are more segments is straightforward. Material layer names (T0-T3) are user defined and are used in the following step to automate asset-placement. Where multiple textures can be mapped to the same segments, e.g. seasonal changes of vegetation within a model, multiple textures need to be implemented.

In the final step of the UE5 Blueprint, the previously mapped textures for different terrain types are combined in a single material, which is output to generate the virtual environment.




2.2.2 Asset placement

Individual 3D models of features within the environment (e.g. vegetation) are key to setting up an immersive virtual environment. In this study, we automate the placement of 3D feature models in the previously defined terrain types by enabling them to automatically spawn in pre-mapped areas defined by prior geomorphometric analysis.

In UE5, we map GrassType objects to landscape layers defined in the landscape material (Figure 5). Asset placement is realized by the extension of landscape material. The assets are thus restricted to the pre-defined areas. GrassType objects are used to define the spawn behavior of any assets within the game engine, and parameters such as density, rotation and size of the asset can be adjusted for each GrassType object. To enable realistic and plausible visualization, these parameters should be chosen carefully and be based on factors that can be groundtruthed or validated from the original data (e.g. canopy height of vegetation). In this step, it may be necessary to finetune the parameters.




Figure 5 | Automated asset placement extension for the UE5 landscape material blueprint (Figure 4). In steps 1-3, assets are mapped to areas in which they should spawn. The asset parameters are adjusted within the GrassType objects in UE5. GrassType objects are selected in step 3 of the extension of the blueprint. See the statement on Data Availability for a link to the entire Epic Unreal Engine 5 Blueprint.



In the first step of the automated asset placement, which is part of the UE5 landscape material blueprint (Figure 5), the landscape layers are selected by referencing the name given during texture placement. In some cases, it could be important to place different assets within the same landscape layer; such as when a specific plant type should be visualized in different phases of life or in different health conditions. Simultaneously displaying these different assets would not lead to a realistic visualization, and so the landscape material needs to be capable of spawning different assets for the same landscape layer. This is realized in step two of the extension of the UE5 blueprint (Figure 5) by defining parameters that can be accessed and adjusted within instances of the landscape material. This means that vegetation types or stages can be modified during model runtime. In step 3, each asset type (GrassType object) is selected and mapped to the corresponding landscape layer.






3 Results & discussion



3.1 The use of asset- and texture-based virtual environments derived from geomorphometric data

The developed workflow highlights the possibilities for improving the appearance and perception of virtual geomorphologic landscapes, and can be considered as a blueprint for the generation of an asset-based virtual environment. In Figure 6, a textured mesh is juxtaposed with the generated asset-based virtual environment. The major advantage of an asset-based virtual environment like this is that it provides a more “realistic” scenic view that is more easily recognized and perceived compared to the coastal landscape of the survey area. This will continue to hold true if the virtual environment is further developed to include additional scenarios (e.g. storm surges) or manipulations of the working area. The automatic spawning of vegetation is key to building this virtual instance, as precise imaging of vegetation is a challenge in both photogrammetry and structure-from-motion algorithms (Cunliffe et al., 2016).




Figure 6 | Virtual reality environment using textured mesh data derived from photogrammetry with WebODM (left panels) vs. An asset-based virtual reality environment using a digital elevation model in combination with segmentation and classification maps (right panels).



The level of detail in the virtual environment, which is based on digital elevation models and classification maps, can be increased by manually placing additional assets (e.g. habitat matching fauna, which is not derivable from terrestrial and/or marine remote sensing). Furthermore, meteorically-induced water level fluctuations, which are high and not infrequent along the Baltic coast, can easily be integrated into the scene by adding water surfaces where necessary. The virtual coastscape allows stakeholders to experience places along the coast that are rarely accessible for them (e.g. large reed stands, which are protected by law and too dense to walk through). Furthermore, (potential) environmental changes can be discovered individually, enabling a more focused debate about possible implications between experts and policy makers, as well as with the general public. Virtual environments thus have great potential to aid dialogue-driven research, such as in transdisciplinary approaches, and in the design and establishment of living-labs. At our case study site, changes in water level and salinity could lead to a switch from Phragmites australis dominated wetland edges to Bolboschoenus maritimus (Figure 7). The resulting decrease in vegetation height would shape the coastal visage and its perception by stakeholders. The view from land towards the sea would improve, but refuge and “hiding” options, which are used not only by fauna but also by beach visitors, would decrease. Several man-made footpaths are also present at the study site at Stein (Figure 1), and modifications to the virtual environment help to demonstrate how changes in these anthropogenic structures would impact the vegetation patterns.




Figure 7 | Visualization of the wetland edge dominated by (A) Phragmites australis, and (B) Bolboschoenus maritimus. Asset-based virtual environments enable visualization and communication of potential environmental changes, both for decision-makers and the general public.






3.2 The use of airborne RGB sensor data to obtain virtual coastscapes

Remote sensing results, such as photogrammetry data from UAS RGB camera surveys or LIDAR data, can be quickly translated into immersive experiences for a variety of landscapes (e.g. Reinoso-Gordo et al., 2020; Rienow et al., 2020; Huang et al., 2021). A virtual environment is thus a powerful tool for visualizing and discussing localized scenarios with different stakeholders, which is particularly important in the dynamic and ever-changing coastal zone. Our asset-based approach allows us to create immersive virtual environments that can easily be modified into different coastscapes. Asset choices are large and often available for free or at low cost (e.g. www.unrealengine.com/marketplace; https://quixel.com/megascans/); yet, whenever a particular asset cannot be externally sourced (e.g. rare plant species, or special textures of rock and sediments), the work flow to create it is more labor-intensive compared to automated photogrammetry, and requires 3D modeling and texturing skills.

UAS surveys with RGB cameras have become popular in the coastal zone, where sediment dynamics (e.g. Albuquerque et al., 2018; Jayson-Quashigah et al., 2019; Robin et al., 2020), dune monitoring (e.g. Scarelli et al., 2017; van Puijenbroek et al., 2017; Laporte-Fauret et al., 2020), and litter detection (e.g. Bao et al., 2018; Bak et al., 2019; Andriolo et al., 2022) have become major themes in recent years. Integrating such UAS datasets with an RGB sensor into our UE blueprint virtual environment would not only enable a better understanding of the environmental dynamics or pollution issues, but also their communication with a non-scientific audience. Scientific communication continues to evolve (Hurd, 2000), and immersive environments are becoming more important; not only in scientific, but also in educational domains (Rubio-Tamayo et al., 2017). The use of immersive virtual environments will help to foster inclusion in geoscience education, making study areas more accessible for students who may not be able to go there in person (Harknett et al., 2022).

Climate change will impact vegetation patterns and species distribution in coastal areas. Our workflow allows users to create a simple virtual representation of a coastscape, where changes in species composition (e.g. Phragmites australis vs Bolboschoenus maritimus) can be performed easily for chosen segments. UAS surveys with RGB cameras have previously been applied for mapping invasive species in vegetated coastal areas (e.g. Samiappan et al., 2017; Zhu et al., 2019; Marzialetti et al., 2021), as well as for monitoring the spatial and temporal variability of vegetation patterns (e.g. Tóth, 2018; Doughty et al., 2021). These datasets can easily be processed to fit our workflow and allow an immersive display of environmental challenges that affect humankind. At our study site, where increased salinity might lead to Bolboschoenus maritimus outcompeting Phragmites australis, the visual perception of the wetland edge would completely change. Tall-growing reed currently forms a visual shield, which would disappear should B. maritimus, which is smaller and less dense, dominate. In order to fully understand and discuss potential environmental changes and their implications, stakeholders need to be an integral part of the research process from the beginning. An asset-based approach, such as that presented in this study, allows researchers to co-create and co-design virtual reality environments together with stakeholders by replacing assets or choosing different asset designs.

Using original research data, such as DEMs and segmentation/classification maps, to generate asset-based virtual environments has several advantages as demonstrated by our case study. In particular, resolution may be much higher than from publicly available data, and segmentation and classification may be more detailed, as the processing of the input data and geomorphometric analysis is carried out by the same person. Nevertheless, the use of original datasets results in comparatively small virtual environments, whose spatial extents are limited to the original dataset and are not comparable to “open world” scenes, in which a user can navigate through large landscapes. Future work will involve blending these specific scenes with open world scenes.




3.3 The benefits and future uses of asset-based virtual environments in Land-To-Sea applications

The workflow and blueprint presented in this study enable the semi-automatic generation of data-based virtual representations of coastscapes. We see great advantages to this simplified yet more immersive representation, as users outside academia may be better approached by a scene populated with familiar objects rather than with textured meshes and point clouds. Even more critically, assets and asset-based vegetation can also respond to in-game physics, displaying wind motion or being manipulated by a character within the virtual environment (e.g. Imbert et al., 2013). We consider our approach to be a baseline for future development of virtual environments using user-collected datasets for transdisciplinary research and decision making, dissemination and outreach. We also see a great field of educational purposes, as on the one hand, the visualization of geomorphometric analyses can be brought into the classroom in the field of Eath sciences, and on the other hand disciplines like social- and human sciences can use such virtual environments to assess other dimension of the visualized scenarios. For this purpose, we implemented in the function of “sea-level rise” into the Stand-Alone versions.

Moreover, the methodological approach and blueprint presented here enables any geomorphometric data to be used as the input for a scene. The created virtual environment does not necessarily need to image a vegetated beach scene, but could be a deep-sea habitat, geomorphological structure, or any in situ derived land to sea (L2S) environment.

In the context of digital twins and a metaverse, we emphasize that our blueprint does not currently meet the standards of a digital twin, as the described workflow has limitations including grain size, sediment distribution, and the loss or over-printing of small-scale features during the segmentation and classification process of the original orthophotos. In addition, the physical properties essential to a digital twin (Qi et al., 2021) are not included at this point, and would need to be implemented in a secondary step. The employment of this blueprint in a metaverse nonetheless presents many advantages, as the virtual representation of the study area displays an appropriate scene for further implementation of long-onset scenarios, including sea-level rise, and short-onset extreme events, such as storms, flooding, and droughts. Moreover, we see great potential for the implementation of L2S scenes, where submarine habitats can be added to the virtual environment. This could act as a basis for a fully accessible virtual environment of a coastscape. To make the scene as accessible as possible, we developed two different instances of the scene: a stand-alone version for the use on a desktop PC and a virtual reality version ready to be used on HMD or dome theatres.





4 Conclusion

Immersive virtual environments may play an important role in the future of stakeholder and decision maker interactions, as well as in education. We present an easy-to-use workflow to semi-automatically generate immersive virtual instances from geomorphometric data such as classified terrain models. In contrast to simply importing a textured mesh or point cloud to a game engine like EPIC Unreal Engine 5, this method enables the designer to apply physics and, consequently, dynamic interaction with a virtual environment without the necessity of manually re-building a given scene or landscape. The visualization of vegetation through assets improves the immersive experience and the ability to manipulate virtual environments, which could prove useful especially in the context of a larger-scale metaverse. We see great potential for this method to be used within the geomorphometric community, in both the marine and the terrestrial realm, as well as in land to sea (L2S) studies that bridge these two domains.
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Digital elevation models (DEMs) are crucial in natural hazard assessments, as they often present the only comprehensive information. While satellites deliver remote sensing information of the land surface of up to 2m resolution, only 25% of the seafloor is mapped with a minimum resolution of 400m. The acquisition of high-resolution bathymetry requires hydroacoustic surveys by research vessels or autonomous vehicles, which is time-consuming and expensive. Predicted bathymetry from satellite altimetry, on the other hand, is widely available but has a significantly lower spatial resolution and high uncertainties in elevation, especially in shallow waters. The research on volcanic islands as a source of both volcanic as well as marine hazards such as tsunamis, is greatly limited by the lack of high-resolution bathymetry. Here we compare 24 geomorphometric parameters of 47 volcanic islands derived from a) the comprehensive bathymetric data of the General Bathymetric Chart of the Ocean (GEBCO) and b) high-resolution (< 250m), ship-based bathymetry. Out of 24 parameters tested, 20 show < ± 2.5% median deviation, and quartiles < ± 10%. Parameters describing the size of a volcanic island are the most robust and slope parameters show the greatest deviations. With this benchmark, we will be able to increase geomorphometric investigations to volcanic islands where little or no high-resolution bathymetry data is available.
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1 Introduction

Digital elevation models (DEM) are crucial in the assessment of natural hazards such as flooding and landslides, as they often provide the only comprehensive information available. While satellites deliver remote sensing information of the land surface of up to 2m resolution on non-polar terrestrial regions of the Earth (i.e. EarthDEM, Porter et al. (2022), only 25% of the seafloor is mapped with a minimum resolution of 400m (National Oceanographic Centre, 2023). Acquisition of high-resolution ship-based bathymetry data is time-consuming and labor-intensive and even the physically highest achievable resolutions of of ship-based surveys (30-50m in most depths) are still not measuring up to the resolution on land. Coastal areas are of special concern considering the increase in population, demand for economic use as well as sea-level rise. Yet, a “coastal white ribbon” remains widely unmapped (Weymer et al., 2022). This is also true for volcanic islands, where not only the population on the island is in danger of volcanic hazards, such as explosive and effusive eruptions, pyroclastic flows, and volcanic earthquakes, but also the population of the surrounding coasts, since volcanic islands can cause considerable tsunamis during eruptions (Lane, 2022) and lateral collapses (Ramalho et al., 2015). These tsunamis often cause high numbers of casualties because of the lack of early warning (Grilli et al., 2019). The volcanic earthquakes associated with eruptions and flank collapses are often not large enough to be felt or identified by the global seismological network. Thus, earthquakes are not suitable as a warning sign and volcanic tsunamis are challenging to detect in time to evacuate the surrounding coasts effectively. It is therefore important to find alternative ways to identify potentially unstable marine volcanic edifices prior to the occurrence of potentially tsunamigenic catastrophic collapses. In an attempt to quantify the tsunami hazard of volcanoes in Indonesia, Zorn et al. (2022) combined all available information into a ranking index. Due to the lack of high-resolution bathymetry, however, they were unable to include information about the submarine flanks of these volcanic islands.

Predicted bathymetry from satellite altimetry provides a promising remedy for previously unmapped areas. The General Bathymetric Chart of the Oceans [GEBCO, GEBCO Compilation Group (2021)] is a combined, continuous land surface and seafloor model relative to WGS84 with global coverage. The recent versions of GEBCO have a resolution of 15 arc seconds, equal to 500m grid cell size at the equator (GEBCO Compilation Group, 2021). GEBCO provides morphological information of the seafloor in surveyed areas, as well as of uncharted ones, derived from ship soundings and satellite altimetry, respectively. However, the low lateral resolution in combination with depth uncertainties of ±150-180m and other limitations (Tozer et al., 2019) make it unsuitable for a lot of scientific questions (Figure 1).




Figure 1 | The volcanic island of Stromboli, Aeolian Islands, imaged from (A) GEBCO and (B) GMRT. Only a small part of the island is subaerial. (A) has a visibly lower resolution.



Here, we evaluate the accuracy of using GEBCO in a shoreline-crossing geomorphometric investigation of volcanic islands. We compare 24 geomorphometric parameters derived from GEBCO with those calculated using high-resolution (< 250m), ship-based bathymetry DEMs. Additionally, we investigate how the parameters are influenced by a partial coverage with ship-based, high-resolution bathymetry.




2 Methods

Figure 2 shows an overview of our workflow. Preparatory steps included the identification and selection of volcanic islands based on the database of the Global Volcanism Program (2023) (GVP), the compilation of high-resolution bathymetry from online platforms and colleagues, as well as the preparation of the DEMs (reprojection, resampling, interpolation if necessary). The major steps were then the delineation of the volcanic base (2.2) with a semi-automated approach, using the 3°slope contour line, the extraction of geomorphometrical parameters (2.3) and finally, the calculation of the deviation of the two datasets (2.4).




Figure 2 | Schematic flow chart of necessary steps to extract and compare morphometric parameters from the DEM.





2.1 Data compilation and preparation

Out of the 2652 Holocene and Pleistocene volcanoes in the Global Volcanism Program (2023) Database, we identified 370 edifices as volcanic islands. In this study, we investigated 47 of these in three groups.

Group A consisted of 26 volcanic islands in 4 archipelagos (Aeolian Islands, Canary Islands, Hawaii, and South Sandwich Islands) that were almost completely covered by high-resolution bathymetry data (Table 1). The only unmapped part in the archipelagos of Group A was the coastal white ribbon, which has proven to be a major challenge to investigate (Weymer et al., 2022). The islands were chosen for their high data coverage, as well as for representing a variety of volcanic island types and sizes. The ship-based high-resolution bathymetry for the Aeolian Islands, the Canaries, and Hawaii were downloaded from the online platform of the Global Multi-Resolution Topography (GMRT) (Ryan et al., 2009), at the highest available resolution, which was between 120m and 240m grid cell size. Besides this global compilation, several regional platforms such as EMODnet (Europe) or JAMSTEC (Japan) as well as bigger more general platforms such as PANGAEA provide bathymetric data. We chose to use only the high-resolution data (masked) and interpolated the coastal white ribbon for these datasets. The data from the South Sandwich Islands was provided by Fretwell (2015). This is a data compilation (200m resolution) of various sources, including GEBCO and, below 60°South, the International Bathymetric Chart of the Southern Ocean (IBCSO), where direct measurements were not available.


Table 1 | Overview of compiled datasets; The data is separated in three groups (A, B, C).



In addition, we investigated 18 volcanic islands from the Marianas and the Galapagos Islands, which form group B. The islands of these archipelagos were only partly covered with high-resolution bathymetry. To study the effect straightforward interpolation has on the geomorphological parameters we investigated, compared to using GEBCO in data gaps (unmasked), we used both versions (unmasked and interpolated) grids of the Marianas. These, along with the unmasked bathymetry of the Galapagos Islands, were also downloaded from GMRT.

The GEBCO grid is a combination of direct measurements and indirect measurements such as predicted bathymetry from satellite altimetry (Weatherall et al., 2015; Tozer et al., 2019). For the volcanic islands of Group A and B, a major part of the grid covering the islands is based on direct measurements. To isolate the difference between indirect measurements and ship-based high-resolution bathymetry, three volcanic islands from Vanuatu (Group C) were included. The high-resolution bathymetry was provided by Daniel (1993) for these islands, however, the GEBCO grid in the same area is based on indirect measurements only.




2.2 Volcanic base delineation

Several automatic algorithms for the delineation of volcanic edifice outlines have been published with the intent to decrease the time and subjectivity a manual delineation is subject to, such as the Matlab-based program MBOA (Bohnenstiehl et al., 2012) or the ENVI IDL-based NetVolc (Euillades et al., 2013). Nevertheless, manual delineation is often less time-consuming and less sensitive to artefacts in the DEM. Thus, morphometric studies of volcanic edifices are often performed with manual delineations. In an attempt to decrease the subjectivity of this critical step, we modified a semi-automated approach by Van Wees et al. (2021), where the 3° slope contour line is used as a starting delineation and is manually edited where necessary. To make the delineation more robust and comparable across different volcanic edifices and less sensitive to artefacts, we resampled all datasets in this study to 1000m grid cell size for the delineation. For the parameter calculation, the unaltered DEM is used. For isolated islands on a flat seafloor and good data coverage, the initial delineation did not need to be modified considerably. For the remaining islands, the three main challenges were a) islands whose edifices share a plateau and need to be delineated separately, b) undulating terrain at the volcanic base due to spreading processes or sediment waves that result in a complex wavy pattern of contour lines and c) other complex terrain at the surrounding seafloor that results in a puzzle of shorter contour lines, rather than a single closed one. Several derivatives of the DEM (hillshade, slope, aspect etc.) were used as visual guides for the manual editing. For the separation of islands, catchment delineations proved the most useful. Of the 47 volcanic islands of this study, 8 were left with minimal manual edits, for 18 the only edits were the separation of edifices, and 21 require > 50% of the outline to be edited manually.




2.3 Geomorphometric parameter extraction

Using the software QGIS and Python, we created an algorithm that is able to extract the morphometric parameters described in Table 2 and in the following section. Though the MorVolc algorithm created by Grosse et al. (2012) was unavailable to us at the time of processing, we did use a modified version of their list of geomorphometric parameters. As we were primarily interested in the shoreline-crossing and submarine characteristics of the volcanic islands, we focus on the basic size and shape and omit any information about the summit region that are important in a terrestrial environment. In addition to the parameters we extracted for the entire edifice, we looked at the subaerial and submarine parts separately. The inputs were the interpolated DEM and the edifice boundary.


Table 2 | List of geomorphometric parameters of volcanic islands.





2.3.1 Size parameters (metric)

We calculated the total height of the island (Htot) as the difference between summit elevation and elevation of the lowest point of the edifice boundary. Similarly, the height above sea level (Hasl) is the difference between summit elevation and sea level, and the depth (Hbsl) is the difference between the elevation of the lowest point of the edifice boundary and sea level. The total area of the edifice (Atot) is the planimetric area enclosed by the edifice boundary. Additionally, we calculated the area of the subaerial part of the island (Aasl) with the help of the coastline. Since available coastline vector files are often inaccurate for the relatively small islands, we used the 0m contour line of the respective DEM. Finally, the area of the submarine part of the island is the difference of (Atot) and (Aasl). The total volume of the edifice (Vtot) is the volume enclosed between the DEM and a horizontal plane at the elevation of the lowest point of the edifice boundary and the subaerial volume (Vasl) between the DEM and a horizontal plane at sea level. For the submarine volume (Vbsl) we used the difference of the total volume (Vtot) and the subaerial volume (Vasl). This is equivalent to the volume enclosed by the DEM truncated with a horizontal plane at sea level and a horizontal plane at the elevation of the lowest point of the edifice boundary.

The minimum (Rmin) and maximum radii were calculated as the shortest and longest distance of the centroid of the polygon enclosed by the edifice boundary and the vertices of the edifice boundary, respectively. Additionally, we calculated the range of the radius (RRange) as the difference between minimum radius (Rmin) and maximum radius (Rmax). While the average radius can be calculated in different ways, our calculations confirm the findings of Favalli et al. (2009) that the most robust values are achieved by using the area of the polygon. For the average radius of the entire edifice (RA) and the average subaerial radius (RA,asl) we calculated the radius of a circle with Atot and Aasl, respectively, using  . The average submarine radius (RA,bsl) is not precisely a radius, but rather the thickness of a circular ring with Absl around a circle with RA,asl, using the transformed geometric formula:  .




2.3.2 Slope parameters (degree)

The slope of the flanks of volcanoes plays a significant role in various processes. Here, we calculated mean values of the slope of the entire edifice (Smn), as well as the mean subaerial slope (Sasl,mn) and the mean submarine slope (Sbsl,mn) from the slope grid derived from the DEM. Slope calculations like these are usually biased by the resolution of the DEM [see Results, Shortridge (2001)]. We therefore calculated the height over radius ratio for the entire edifice (Htot/RA) as well as for the subaerial part (Hasl/RA,asl) and the submarine part (Hbsl/RA,bsl) as a proxy for the average slope, respectively. In this study, all H/R ratios were calculated in degree to be directly comparable to the other slope measurements.




2.3.3 Shape parameters (dimensionless)

ΔM is the planar distance between the summit (highest point in the DEM) and the centroid of the polygon enclosed by the edifice boundary. It was then normalized by RA to get a dimensionless parameter ranging between 0 (the points are in the same location) and 1 (the distance is equal to the average radius). The parameter gives an impression of how asymmetric a volcanic island is. Theoretically, values higher than 1 are possible, but the geomorphological scenarios would be highly unlikely and we did not observe these exceptions here.

The ellipticity (ei) and irregularity indexes (ii) are dimensionless parameters describing the shape of the edifice boundary. They were described in detail by Grosse et al. (2012) and references therein. The ellipticity index of the edifice boundary (ei) is a measure of the elongation.



Where L is the long axis of the polygon enclosed by the edifice boundary and A is its area. It yields values of 1 for a circle and increases with increasing elongation of the edifice. The irregularity index of edifice boundary (ii) is a measure of complexity. It is based on the dissection index di, which describes the relationship between the perimeter of a contour and the area enclosed by it, which was modified by Grosse et al. (2012).



Where A is the area enclosed by the edifice boundary with a perimeter of P. However, di still contains ellipticity, which the irregularity index ii was designed to separate, in order to have a measure of pure irregularity:



Where diellipse is the di of an ellipse with a eiellipse = eicontour. The result is a dimensionless parameter equal to 1 for ellipses and circles. It increases with increasing irregularity of the edifice boundary.





2.4 Calculating deviations

The previous steps were taken separately for each dataset mentioned in Table 1, resulting in a vector file for each volcanic island and DEM. The results were summarized in *.csv files and further processed in Python. We then calculated the deviation (D) of the results of the parameter extraction using GEBCO for both steps (G) from those of the high-resolution data (B) in percent:



D is negative when GEBCO underestimates values compared to the high-resolution bathymetry, and positive when overestimating. Additionally, we produced a table of parameters using the GEBCO DEM with the delineation derived from the high-resolution bathymetry (C). This enabled us to calculate the deviations of the results produced by the difference of the edifice boundary and the DEM used in parameter extraction separately, using the following equations:





In addition to the comparison of the parameters, we calculated the Jaccard Index (aka Tanimoto Index), a measure of the similarity of sample sets in statistics, or in this case, polygons. This will yield information about how different the edifice boundary is, depending on which DEM was used for the delineation. The index is the ratio of Intersection and Union of the polygons enclosed by the edifice boundaries resulting from the delineations with both DEMs, respectively:



Where G and C are the polygons enclosed by the edifice boundaries produced with GEBCO and high resolution bathymetry, respectively. This results in an index ranging from 0 (no overlap) to 1 (perfect overlap).





3 Results



3.1 Parameter statistics

Figure 3 shows an overview of the parameters calculated from high-resolution bathymetry data for all three data groups investigated. In the figure, the x-axis follows a non-linear sorting of the volcanic islands descending by total height Htot for all subplots.




Figure 3 | Distributions of (A) Height, (B) Area, (C) Volume, (D) Radii, (E) slope parameters and (F) shape parameters plus Jaccard Index. The x-axes are volcanic islands sorted descending by Htot.



Our study covers a great range of sizes of volcanic islands from Genovesa (Galapagos), with 78m the smallest island by elevation above sea level to the great Hawaiian Islands which reach more than 4000m a.s.l. (Figure 3A). There is a trend of volcanic islands with higher elevation above sea level also reaching into lower depths (-623m, Floreana, Galapagos; -5864m Maui edifice group, Hawaii), resulting in total heights from 1138m (Pinzon, Galapagos) to 9878m (Hawaii main Islands, Hawaii) from the seafloor to the summit. The distribution of the area is shown in Figure 3B. The area above sea level mostly ranges from 0.5km² (Ka’ula, Hawaii) to 2468km² (Maui edifice group, Hawaii), with Hawaii Island being the exception with 10500km². The area below sea level Absl contributes between 79km² (Pinzon, Galapagos) and 25780km² (Hawaii Island, Hawaii), resulting in total areas between 104.8km² (Pinzon, Galapagos) and 36289km² (Hawaii Island, Hawaii).

In Figure 3C the distribution of the volume of the islands is shown. Vasl ranges from 0.2km³ (Ka’ula, Hawaii) to 12000km³ (Hawaii Island, Hawaii) and Vbsl from 25km³ (Pinzon, Galapagos) to 69000km³ (Hawaii Island). This results in total edifice volumes (Vtot) from 29km³ (Pinzon, Galapagos) up to 81000km³ (Hawaii Island, Hawaii). Additionally, there are two bends visible in Figure 3, separating the islands into three groups by volume; those larger than Kauai (three islands from the Hawaiian archipelago), those larger than Agrihan (islands from Hawaii and the Canaries), and the remaining islands. The radius parameters are visualized in Figure 3D). The average radius of the islands calculated from the area varies from 5776m (Pinzon) to 107477m (Hawaii Island). Its values lie between those of Rmin (3932m - Pinzon, 66572m Hawaii) and Rmax (7957m - Alicudi - Aeolean; 163006m - Hawaii Island). Additionally, we calculated RA,asl producing values between 415m (Ka’ula) and 57838m (Hawaii) and Rbsl ranging from 2912m to 59844m (Maui edifice group). Some of the smaller islands show significantly larger Rmax than expected from their height, producing peaks in the graph in Figure 3D.

Figure 3E shows the distribution of several slope parameters. Unlike the parameters previously mentioned in this section, none of the slope parameters show any trend correlating with the height, the volcanic islands on the x-axis are sorted by. The average slope above sea level Slasl,mn is ranging from 4.3° (Santa Cruz, Galapagos) to 13.1° (Wolt, Galapagos). The average across all the islands of 9.6° is 2° higher than that of the average submarine slope Slbsl,mn (7.6°), which shows values between 2.7° (Santa Cruz) and 10.9° (Wolt). For the average slope of the entire edifice, Slmn ranges between 4.5° (Santa Cruz) and 13.5° (Aoba, Vanuatu). The Height over Radius ratio for the entire edifice H/R, on the other hand, shows higher values, both on average (9.9°) and in a number of high values of up to 17.5° (Filicudi, Aeolian Islands). The most shallow values are in a similar range (4.4°, San Christobal). H/Rasl and H/Rbsl (data not shown) have a similar relationship as the corresponding slope parameters. H/Rasl is ranging from 2.0° (Genovesa, Galapagos) to 28.3° (Alicudi). However, there is one island (Wolt, Galapagos) with an even higher value of 57.7°. We consider this to be an outlier with questionable accuracy. On average the ratio on land (11.6°) is 1.2° higher than the values in the submarine part (10.4°). It ranges from 5.5° (O’ahu, Hawaii) to 17.6° (Salina, Aeolian Islands).

In Figure 3F the dimensionless parameters are summarized. ΔM ranges from 0.07 (Southern Thule; South Sandwich Islands) to 0.84 (Genovesa, Galapagos) with an average of 0.25. The ellipticity index ei describes the elongation of an edifice. The majority of islands show values between 1.003 (Lipari, Aeolian), which is close to a perfectly circular edifice boundary, and 2.72 (Maui group, Hawaii). There are, however, outliers on both sides with Genovesa showing an ellipticity of 3.69 on the one hand and values below 1 for three islands, including Santa Cruz at 0.73. Values under 1 are errors since no edifice can be more circular than a circle. There is no visible trend in Figure 3F regarding ei, but unusually high values usually correlate with high values of Rmax in Figure 3D. Finally, ii is ranging from 1.05 (Alicudi, Aeolian Islands) to 2.56 (Hawaii Island) with an average of 1.63. In Figure 3F, a trend of larger islands having higher values of ii is visible. In addition to the aforementioned parameters, we calculate the Jaccard Index, which is a measure of similarity between the polygons enclosed by the edifice boundaries produced with GEBCO and the high-resolution bathymetry, respectively. It is ranging from 0.79 to 0.97 with a median of 0.91.




3.2 Deviation

Figure 4 shows the deviation of the values calculated using GEBCO from those using high-resolution data (D) as well as the influence of the delineation on the deviation (DDelineation) and the influence of the DEM (DDEM).




Figure 4 | Deviation of (A) size parameters and (B) slope and shape parameters, derived from GEBCO D in percent (Groups A, B and C). Background data in grey, Influence of Delineation DDelineation highlighted in light blue, influence of DEM DDEM in pink.



The total volume Vtot and area Atot as well as volume Vbsl and area Absl below sea level show a median total deviation D of less than ±1% and quartiles lower than ±5%. The influence on the deviation by the delineation DDelineation shows similar values, while DDEM quartiles are below ±1% for these parameters. The total height (Htot) and the depth below sea level (Hbsl) show a slight systematic underestimation of the parameters by GEBCO, mostly visible at the shifted quartiles, rather than the median values (-1.7% and 0.7%, respectively). DDelineation is symmetric around zero, with quartiles lower than ±1% for both of these parameters, while DDEM follows the same trend as D, but with smaller quartiles. Where the outliers of the aforementioned parameters lie well within the ±30%, visualized in Figure 4A, the three parameters calculated above sea level (Hasl, Aasl, Vasl) show significantly higher values of up to ±120% deviation. These outliers are not shown in Figure 4 for reasons of better visualization. While the median deviation of Aasl is close to zero (-0.4%), the height (Hasl) is slightly underestimated (-4.1%) and the volume (Vasl) slightly overestimated (+2.3%) by the values calculated with GEBCO. Here, DDEM is identical to D, while DDelineation is zero for all three parameters.

Figure 4A also contains the results of the parameters related to the radius of the island. All of these parameters show median deviations of less than ±3% and percentiles of less than ±9%. Rmin is slightly overestimated and Rmax underestimated when using GEBCO for our calculations, mostly visible in the shifted quartiles, rather than the median values (1%, -0.5% respectively). Consequently, the range of radius Rrange has a slightly negative median deviation as well (-2.4%). For all three parameters, DDelineation is identical to D and DDEM is zero. The average radius RA shows quartiles of ±1% or less for all deviations. For RA,asl D and DDEM are identical and show quartiles of -5.0% to 1.2% with a median of -0.2% while DDelineation is zero. For RA,bsl the median deviation and quartiles are within ±2.3% with a slightly positive shift. DDEM shows a small upward and DDelineation downward shift, with minimal overall deviations of less than ±1.6%. Three outliers ±30% of Rrange are not shown in Figure 4A.

Figure 4B shows the results of slope-related parameters. Here, we find the highest systematic median deviations of our investigation with -10.3%, -17.4%, and 10.5% for the mean slope of the entire edifice (Slmn), above sea level (Slasl,mn) and below sea level (Slbsl,mn), respectively. The quartiles for all three lie between -6.8% and -22%. These values are almost identical for DDEM. The median and quartiles of DDelineation, however, remain < ± 1% for all slope-related parameters. While the height-over-radius ratios HR, HR(asl) and HR(bsl) show significantly smaller median deviations, they are still all negative with -1.7%, -2.3%, and -1.8%, respectively. For HR and HR(bsl) DDEM shows similar trends with smaller overall deviations, while it is identical to D for HR(asl). DDelineation on the other hand, is zero for HR(asl) and shows quartiles of < ± 2% around a median of almost zero. Additionally, these parameters produce stronger outliers than the slope parameters. Two outliers of HR(asl) were omitted for the creation of Figure 4B.

In Figure 4B the results of the shape parameters are shown. All three parameters show median deviations of less than 2%, and quartiles of < ± 10%. DDEM is almost zero for both the ellipticity (ei) and irregularity index (ii), while DDelineation is almost identical to D. They show a median deviation of -0.6% and -1.9% as well as quartiles of -7.5%, 7.1% and 5.1%, 4.2%, respectively. The parameter ei produced a single outlier of 133% that was omitted in Figure 4B). ΔM, the distance between centroid and summit shows median deviations of ±0.3%, and quartiles of -8.9% and 6.5% as well as many outliers, several of which were higher than 50% and were thus not shown in Figure 4B. DDEM and DDelineation follow similar trends but with lower overall deviations.

In summary, 20 out of 24 parameters show < ± 2.5% median deviation, and quartiles < ± 10%. Only the slope parameters (Slmn,
Slasl,mn,
Slbsl,mn) and Hasl have systematic deviations greater than that.





4 Discussion



4.1 Parameters

The graph of the size parameters in Figures 3A–D follows the trend of the “law of high numbers” or “law of large events” (Verma et al., 2006) where large-scale events, or in this case large volcanic islands are less common than small volcanic islands. This is especially evident in Figure 3C, depicting the volume, where we observe the two bends in the graphs. This confirms that the chosen sample of volcanic islands is indeed representative. Figure 3E illustrates how the ratio of height over radius shows higher peaks and a higher average value than the equivalent slope parameter derived directly from the DEM. This is likely due to the resolution dependency of slope parameters (Carrera-Hernández, 2021), which is further discussed in the following subsections. This does not necessarily mean that the H/R is more accurate, we find high outliers, such as Wolt (Galapagos) with a subaerial H/R of 57.7°. Even though Wolt is known for extremely steep slopes (Mouginis-Mark et al., 1996), this proxy for the average slope exceeds the values commonly found for the steepest parts of the island. We therefore consider this to be an error. Figure 3F shows the dimensionless shape parameters. The irregularity index ii appears to be dependent on the size of the volcanic island. This is due to the enormous difference in the size of the edifices, being investigated with the same resolution. Larger islands such as Hawaii are represented in detail, compared to their size. Consequently, their outline will be more complex than a small island delineated with the same resolution. We also see that islands with high values of ei usually also show higher values of Rmax and ΔM, which confirms the ability of these parameters to give information about the asymmetry of a volcanic island.




4.2 Deviations

In the following section, we will repeatedly refer to parameters being underestimated or overestimated by using GEBCO. This is relative to the higher resolution ship-based bathymetry data, which in itself can be subject to artefacts or other misrepresentations of the bathymetry. It is, however, currently the most accurate data available and for the sake of this evaluation, we assume it to be the best approximation of reality. This subsection refers to the investigation of all three data groups (A, B, C), in subsection 4.3 and 4.4, we investigate Group B and Group C in more detail, respectively. Even though most of the parameters show only small deviations, there are general trends.



4.2.1 Influence of the DEM

Using GEBCO for parameter extraction leads to a slight underestimation of height parameters, but more strikingly, the slope parameters show a significant systematic error. It is known that slope values are dependent on the resolution of the grid (Shortridge, 2001) with lower resolutions resulting in lower average slope values. This also reduces the range of elevation, as rare, extreme values are smoothed out, resulting in the underestimation of elevation parameters in our analysis. Ratios of height over distance are commonly used as a more independent proxy for the slope. In our data, we find that, while H/R is significantly more robust, it is still showing negative deviations (avg. -2%). This is due to the underestimation of H, which propagates into this parameter. This shows that, while height over distance ratios are good proxies for the slope, they are not completely independent of resolution.




4.2.2 Influence of the delineation

Elevation and slope are determined by changes on the vertical axes. Thus, changes in the delineation do not have a significant impact here. Small deviations occur, which are caused by the minimal changes of elevation at the edifice boundary. On the other hand, parameters in the horizontal plane show a great dependence on the delineation and almost none on the DEM. This includes the area (Atot, Absl) and radius parameters (Rmin, Rmax, Rrange, RA) as well as the ellipticity ei and irregularity index ii. Favalli et al. (2009) find that calculating the diameter or radius from the area of the polygon is robust. Here we can confirm this, as RA shows deviations of less than ±5% including outliers. Since both grids have been down-sampled to 1000m pixel size for the edifice boundary delineation, the effect of the resolution differences between GEBCO and the high-resolution bathymetry is eliminated. Nevertheless, there is evidence in the parameters that the edifice boundary is more uniform and circular when using GEBCO. Compared to the processing with high-resolution bathymetry, the range of the radius is underestimated, because the minimal radius shows a positive deviation and the maximal radius shows a negative deviation. Apparently, using higher-resolution data results in more extreme values for the radius, while GEBCO produces edifice boundaries that are more uniform. This is also supported by the irregularity index, which is slightly lower, which means a less complex edifice boundary when using GEBCO. Additionally, a slight negative shift of the ellipticity index (0.6% median) could indicate a trend of boundaries created with GEBCO being less elliptic and more circular. As this trend is below ±1% and the distribution is otherwise random, it is impossible to say so with great certainty. This is also the case for the area parameters, which show negative deviations of less than 1%.

Of course, the delineation process itself is subject to uncertainty as well. In order to be able to quantify this better, we also calculated the Jaccard Index of the two polygons enclosed by the edifice boundaries, derived from GEBCO and the high-resolution bathymetry, respectively. We find that it ranges from 0.79 to values as high as 0.97, with an average of 0.91. These values are higher than those Van Wees et al. (2021) calculated, when evaluating the subjectivity of eight researchers while delineating the same volcanic edifices. This means that the influence of the subjectivity of an individual researcher is higher than the influence of the DEM used to delineate the edifice boundary.




4.2.3 Parameters above sea level

Since this study focuses on the evaluation of two bathymetric grids, we used the terrestrial data integrated in GEBCO and the high-resolution bathymetry. Though this is based on satellite measurements, it is down-sampled and smoothed to match the respective bathymetry data in the processing of the providing platforms. Thus parameters calculated above sea level are creating the same type of systematic deviations as the other parameters. The significantly stronger deviation in the values above sea level is likely a bias caused by the fact that the absolute values are smaller since the terrestrial part of an island is usually only a few percent of its entire volume. Hence, the percentage error is larger, even though the absolute deviations may be within the same magnitude. Additionally, the highest slope values are usually found in the subaerial part of the island, meaning that it is more susceptible to small changes. As expected, the parameters above sea level are independent of the edifice boundary delineation. They are instead calculated within polygons bound by the coastline, which is the contour line of zero elevation and thus dependent on the DEM used to calculate it. These changes are not taken into account in the calculation of DDelineation and thus appear within DDEM. This effect is evident when comparing RA, RA,asl and RA,bsl in Figure 4A. While RA is independent of the DEM, RA,asl seems to be only dependent on the DEM. Since the DEM has so little effect on RA, however, it is safe to assume that this apparent dependency is mostly caused by the differences in coastline delineation. RA,bsl is calculated for the area bounded by both the coastline and the edifice boundary and does indeed show dependencies of both in the data. Similarly, Vbsl and Vtot are mostly affected by the delineation of the edifice boundary, so Vasl is likely dependent on the delineation of the coastline.




4.2.4 Summary

The most robust parameter of our analysis is RA, followed by area, volume and height for the entire edifice and below sea level. While the parameters calculated for the terrestrial part of the island show significantly higher deviations, this can be improved by using adequate satellite data. The highest deviations were shown by the slope parameters, followed by parameters that are dependent on a single value, such as Rmin or contained parameters of the latter, such as Rrange. The most prominent example of this is the parameter showing the highest scattering ΔM. This parameter is dependent on the position of the highest point and the position of the centroid, both easily influenced by small changes in the DEM and the delineation, respectively. Overall we consider all parameters, except average slope and the parameters above sea level in their current form, to be sufficiently reliable to use with GEBCO in future investigations, depending on the nature of the scientific objective.





4.3 Partial high-resolution coverage

In our investigation, we included two archipelagos with partial high-resolution coverage: the Marianas and the Galapagos Islands. We tested the effect of using a nearest neighbour interpolation of the data gaps in the Mariana Islands compared to using the unmasked (i.e. underlain with GEBCO) version of the dataset provided by GMRT. We found random differences of about ±1%, so this does not seem to have a significant effect on the delineation or the resulting parameters. A major challenge with composite datasets, however, is the artefacts on the borders between high-resolution and background information. These cannot be avoided and are often directly visible in the GEBCO grid. They can create problems, both during the delineation, where the edifice boundary falsely follows the artefact, and during parameter extraction, where they can create distortions in the elevation and slope and thus create a bias in some parameters. Figure 5 shows a plot to compare the distribution of the parameters of the Marianas and Galapagos Islands to the other archipelagos. The Marianas do not show a significantly different distribution compared to the rest of the data, except perhaps for the slope parameters. Here, the islands of this archipelago tend to cluster slightly above the median. Since they are only partially covered with high-resolution bathymetry, the interpolated areas are more similar to GEBCO, resulting in overall lower deviations. The Galapagos islands, on the other hand, do show a slightly different picture, especially concerning the most extreme negative outliers. The Galapagos Islands were the most difficult to delineate, not only because of their partial coverage but also because they are situated in shallow water depths and edifices tend to overlap underwater. They contained one of the smaller islands of the study, Wolt, which is responsible for the negative outliers of about -100% in Figure 5. This raises the question of whether there is a size threshold for volcanic islands to be investigated with GEBCO. We are unable to define a clear threshold because too many factors besides the size of the island (proximity to other islands, undulating terrain, artefacts, the morphology of the edifice) influence the success of the automatic part of the delineation.




Figure 5 | Difference of deviation of parameters D between Group A in grey and Group B. Marianas highlighted as pink triangles are in the same range as Group A, Galapagos shown as lightblue diamonds show some more negative outliers.






4.4 No high-resolution coverage

In addition to the two archipelagos with partial high-resolution coverage, we included three examples from Vanuatu. The high-resolution data from Daniel (1993) for these three islands is not freely available and not included in GEBCO. Figure 6 shows a strip plot in which these three islands are highlighted in pink. Though a sample of three is admittedly small, there appears to be no significant systematic error except for the slope parameters, which show a clustering below the median. This is likely the effect of the indirect satellite measurements, which form the base of GEBCO here, already being smoother compared to those areas where high-resolution bathymetry is incorporated in GEBCO. This data is then additionally smoothed during the processing of GEBCO, increasing the difference in slope between the high-resolution data and the satellite-based GEBCO. We, therefore, conclude that even though our dataset mostly consists of volcanic islands covered by bathymetry created from direct measurements, our findings will be applicable to areas where this is not the case.




Figure 6 | Difference of deviation of parameters D between Group A and B in grey and Group C (Vanuatu). The three islands from Vanuatu (pink triangles) fall within the same range as A and B.







5 Conclusion

When using bathymetric data of volcanic islands in geomorphometrical studies, a few guidelines are recommendable: It is crucial to be aware that the lower resolution, as well as the deliberate smoothing of the data in processing steps of the GEBCO data, leads to a significant underestimation of slope-related characteristics. Using proxies such as the H/R is only more robust if the Htot of the edifice is not underestimated by the same effect. Even though high-resolution satellite data is incorporated into GEBCO and GMRT onshore, it is smoothed and re-sampled to a lower resolution. These steps lead to a loss of detail and accuracy. We, therefore, recommend using available satellite data on terrestrial parts of the island, even though the handling of multi-resolution datasets introduces additional challenges.

With the knowledge gained during this study, we will be able to expand our investigations into areas where only GEBCO data is available. The attempt of Zorn et al. (2022) to find potentially tsunamigenic volcanoes in Indonesia, by creating a ranking system based on globally available datasets, for example, can potentially be improved with additional information below the sea level. With an extensive database, a probabilistic volcanic hazard approach, similar to the methods of Bertin et al. (2022) will become possible.

The application of our methods to other marine geomorphologies are possible. While similar investigations for seamounts have been made (Etnoyer, 2005; Gevorgian et al., 2023) investigations of smaller features such as coral reefs and other habitats will rely on bathymetric measurements by ship or autonomous vehicles for the time being. Larger-scale morphologies such as tectonic features (horst and graben structures, trenches and basins) can be investigated with DEMs reliant on indirect measurements. A systematic investigation of continental margins regarding their morphology is an additional possible application.

The availability and quality of bathymetric data is constantly improving. Additional shipborne bathymetry is constantly being collected and added to the GEBCO grid, which is updated annually. Several satellite missions with altimeters on board are currently collecting data (Tozer et al., 2019), improving regions of uncharted seafloor that rely on predicted bathymetry derived from satellite altimetry data. Once these datasets are available, the resolution of the predicted bathymetry is expected to improve and GEBCO will release a new generation of the grid at a higher overall resolution. Simultaneously, a new method of predicted bathymetry is under development (SYNBATH) that statistically corrects the altimetry data to yield more realistic topography (Sandwell et al., 2022).
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Cold-seeps have a unique geo-ecological significance in the deep-sea environment. They impact the variability of present-day submarine sedimentary environments, affecting the evolution of the landscape over time and creating a variety of submarine landforms, one of which is Mud Volcanoes (MVs). MVs form due to the extrusion of mud, fluids, and gas, mainly methane, from deeper sedimentary layers. These natural gas seepage systems could significantly affect climate change and the global carbon cycle. We present a comprehensive method that combines ROV-based multibeam mapping and underwater photogrammetry to enhance the understanding of the physical relationships between geomorphic units characterizing the Håkon Mosby Mud Volcano (HMMV) and the distribution of associated habitats. HMMV is indeed characterized by high thermal and geochemical gradients from its center to the margins resulting in a clear zonation of chemosynthetic communities. Our approach integrates multi-resolutions and multi-sources data acquired using a work-class ROV. The ROV-based microbathymetry data helped to identify the different types of fine-scale submarine landforms in the central part of HMMV. This revealed three distinct geomorphic units, with the central hummocky region being the most complex. To further study this area, ROV images were analyzed using a defined Structure from Motion workflow producing millimetric resolution 2D and 3D models. Object-Based Image Analysis (OBIA), applied on orthomosaics, allowed us to obtain a fine classification of main benthic communities covering a total area of 940m2, including the active seepage area of the hummocky rim. Four major substrate types were identified in these regions: uncovered mud, bacterial mats high-density, bacterial mats low-density, sediments and tubeworms. Their relationship with terrain morphology and seepage activity were investigated at different spatial scales, contributing to a deeper understanding the ecological functioning of cold seep ecosystems in MVs. The applied workflow is proposed as an innovative processing technique for future studies on cold-seep systems. Geomorphic and ecological processes in extreme environments are inherently linked and marked by spatial patterns typifying associated habitats and sedimentary environments. This is poorly investigated in previous studies, leaving a substantial gap in the geomorphological drivers responsible for habitat distribution and extent in cold seep systems.
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Introduction

The diversity and ecological significance of the deep ocean are a growing areas of interest in scientific research, not only for improving the understanding on the planet’s biodiversity and functioning but also for sustainable resource management, conservation efforts, and for addressing global challenges like climate change and ocean health (Mengerink et al., 2014; Thurber et al., 2014; Ramirez-Llodra, 2020). However, the extent and variability of ecologically significant deep-sea benthic habitats are still poorly known (Mayer et al., 2018; Wölfl et al., 2019). The great depths make it challenging for researchers and equipment to access and explore deep-sea benthic habitats at fine-scale, and only the use of large infrastructures (i.e. Research Vessel) and advanced ocean technology (i.e.: remotely operated vehicles - ROVs and autonomous underwater vehicles - AUVs, Huvenne et al., 2018; Whitt et al., 2020) can support the challenging aspect of collecting reliable datasets, especially where the deep landscape shows extreme conditions and a topographic complexity often associated with high lateral variability (Bell et al., 2022), as in the case of cold-seep systems. Cold-seep systems have an important ecological significance (Kallmejer, 2017), affecting the evolution of the submarine landscape in space and time (Etiope, 2015), and creating a variety of submarine landforms, among which Mud Volcanoes (MVs).

Submarine MVs are positive, dome-shaped landforms, formed by the extrusion of mud, fluids and gas (primarily methane) from deeper sedimentary layers (Kopf, 2002; Mazzini and Etiope, 2017). They represent natural gas seepage systems, and since methane is a relevant greenhouse gas, MVs have important implications for climate change and the global carbon cycle (Sauter et al., 2006; Perez-Garcia et al., 2009; Etiope, 2015; Andreassen et al., 2017). As other seepage systems, MVs can also support important ecosystems at the seafloor (MacDonald et al., 2000; Levin et al., 2015; Niemann et al., 2006; Joye, 2020). The sulfate-driven anaerobic oxidation of methane (AOM) occurring in the sediments close to the seafloor releases reduced chemical compounds, i.e. hydrogen sulfides, into the pore waters. These sulfides diffuse toward the seafloor and sustain chemosynthetic communities and complex food webs (Aloisi et al., 2002; Dubilier et al., 2008; Foucher et al., 2009; Joye, 2020). Since chemosynthetic biological communities thrive under uncommon environmental conditions, especially considering the steep chemical (and often thermal) gradient, cold seep systems such as MVs are usually indicated as submarine extreme environments (Kallmejer, 2017).

Submarine MVs have thus attracted considerable scientific interest due to the complex geological and biological interactions that create distinct deep-sea environments (Gebruk et al., 2003; Jerosch et al., 2007). The MVs dome-shaped landforms can largely vary in diameter (up to a few kilometers) and heights (up to a few tens of meters above adjacent seafloor) (Mazzini and Etiope, 2017). Their discovery at the seafloor generally involves ship-based research surveys carried out using a combination of acoustic remote sensing techniques to collect high-resolution bathymetric measurements and seafloor backscattering data (Judd and Hovland 2007; Savini et al., 2018) using multibeam echosounders (MBES). However, as the water depth increases, the resolution of ship-based MBES surveys decreases (Mayer et al., 2018; Savini et al., 2021). In deeper waters, the “beam footprint” (i.e.: the size of each individual data point or sound pulse transmitted by the MBES system - Clarke, 2018) may range from a few meters to a few tens of meters, and the detection of complex surface topography might be more challenging or even not possible because of the resulting low resolution. In such cases, the use of complementary methods, such as ROVs and/or AUVs, may be necessary for detailed mapping and direct exploration (Huvenne et al., 2018). Several deep-water MVs have been explored and mapped through ROV-based multibeam surveys (Dupré et al., 2008; Foucher et al., 2009; Foucher et al., 2010; Paull et al., 2015; Loher et al., 2018; Blouin et al., 2019; Lee et al., 2021), to investigate the extent to which the unique habitats of these dome-shaped features could be linked to the observed fine-scale variability in their geomorphic, biogeochemical, and ecological processes. (Lee et al., 2021).

In the last decades, high-resolution seafloor habitat mapping achieved using ROVs equipped with MBES has greatly revolutionized the field of marine exploration and data acquisition (Opderbecke et al., 2004; Singh et al., 2004; Dupré et al., 2008; Foubert et al., 2011; Lim et al., 2018). In addition, the improved quality, accuracy, and resolution of ROVs underwater cameras and positioning systems allow nowadays to generate scaled and georeferenced two and three-dimensional (2D, 3D) models of deep-sea underwater features (Marcon et al., 2013; Marcon 2014) by employing advanced image processing techniques such as Structure from Motion (SfM) (Conti et al., 2019; Price et al., 2019; Lim et al., 2020). SfM is a computer vision technique that reconstructs 3D structures and camera motion from a sequence of overlapping 2D images or video frames (Westoby et al., 2012). This technique has gained popularity in marine imaging research, both in shallow and deep-sea environments (Leon et al., 2015; Robert et al., 2017; Price et al., 2019; Montalbetti et al., 2022).

In this work, using a novel dataset, we combine data from ROV microbathymetry and ultra-high resolution SfM to enhance our understanding of the geomorphological and ecological characteristics of the Håkon Mosby Mud Volcano (HMMV). Located in the southwestern Barents Sea, HMMV has captured the interest of researchers since its discovery, and it has served as a natural study laboratory for various disciplines over the years (Gebruk et al., 2003; De Beer et al., 2006; Niemann et al., 2006; Jerosch et al., 2007; Perez-Garcia et al., 2009; Rybakova Goroslavskaya et al., 2013; Åström et al., 2020). Terrain variables with a resolution never achieved before, have been derived to correlate the variability of the fine-scale submarine landforms that shape a large sector of the HMMV and the spatial pattern that clearly distinguishes the associated benthic communities. The proposed workflow, along with innovative processing techniques, can serve as a benchmark for future studies on cold-seep systems.





Materials and methods




Study area

The Håkon Mosby Mud Volcano (HMMV) is situated at about 100 km from the southern west Norwegian coast, in the Barents Sea., at 1250 m below the sea surface (Figure 1). The HMMV was discovered in 1987 during an oceanographic expedition dedicated to the regional SeaMARC II side-scan sonar survey (Vogt et al., 1997; Vogt et al., 1999). Since then, extensive ship-based research expeditions and investigations documented the key geological (Perez-Garcia et al., 2009), geochemical (De Beer et al., 2006), geomorphological (Jerosch et al., 2007), bio-ecological and microbiological (Gebruk et al., 2003; Niemann et al., 2006; Rybakova Goroslavskaya et al., 2013; Åström et al., 2020) aspects that have called for its formation processes and ecological patterns.




Figure 1 | Study site area. (A) indicates the Barents Sea, and (B) indicates the position of HMMV. (B) represents the ROV microbathymetry of the central part of HMMV acquired with Ægir 6000 ROV and R/V Kronprins Håkon (not in scale). (C, D) indicate the two areas mapped with ROV photogrammetry during DIVE 26a and DIVE 26b.



The southwestern Barents Sea margin separates the oceanic Eocene-Early Oligocene oceanic crust in the Lofoten Basin from the continental crust in Barents Sea (Faleide et al., 1996; Milkov et al., 2004). Marine geophysical surveys have revealed through time that HMMV lies within a slide scar (Laberg and Vorren, 1993; Laberg and Vorren, 1996) near the depocenter of the Bear Island sedimentary fan. It is underlain by a sequence of Cenozoic sediments more than 6 km thick (Fiedler and Faleide, 1996; Hjelstuen et al., 1999). The boundary between the preglacial bio-siliceous ooze and the glacial mud, lies approximately 3 km below the seafloor and dates to 2.3 Ma, indicating a high sedimentation rate of 1.3 m per 1000 years (Fiedler and Faleide, 1996; Hjelstuen et al., 1999; Perez-Garcia et al., 2009). The deformation below HMMV, as observed in seismic profiles, extends at least to the base of the glacial unit (Hjelstuen et al., 1999).

HMMV forms a typical cone-shaped landform that rises about 100 m above the seafloor, and has a base diameter of approximately 1.5 km (Hjelstuen et al., 1999; Vogt et al., 1999). The central area covers 1.2 km2 and has a relief of 7 to 15 m (Foucher et al., 2010).

The structure of HMMV can be divided into three well-defined morphological units, as described by Jerosch et al. (2007) and Milkov et al. (2004). The volcano’s central crater (1) corresponds to a flat area formed by recent mudflow, and around it, a hummocky rim (2) with varying width and height defines its perimeter (Figure 1B). The width ranges from 440 m in the North to 10 m in the South-West, and the maximum height is 10 m towards the central area. The third unit is a 2 m deep circular moat (3) that surrounds the other two units, with a 100 to 270 m width.

Studies have shown that areas with high methane sediment concentration and CH4 seepage are mostly found in the central and hummocky rims (Jerosch et al., 2007; Feseker et al., 2008). These areas are dominated by chemoautotrophic organisms, such as Beggiatoa mats and pogonophora tubeworms, as well as associated macrofauna (Gebruk et al., 2003; Niemann et al., 2006; Jerosch et al., 2007). However, the abundance of these communities is minor in the moat area due to to lower CH4 fluxes (Jerosch et al., 2007).





ROV data collection

The present study is based on a novel set of data collected during the CAGE 21-1 cruise of R/V Kronprins Håkon from May 22nd to June 9th, 2021 (Bünz and Panieri, 2022). The primary objective of the cruise was to utilize the Ægir 6000 ROV (Kystdesign AS, Haugesund, Norway) to capture guided video imagery and study methane seepage systems. Throughout the cruise, a total of 26 dives were conducted, with four (DIVE 23 to DIVE 26) committed to the exploration of the HMMV.

DIVE 23 and DIVE 24 were dedicated to an initial MBES data acquisition. The ROV was equipped with the high-frequency EM 2040 (Simrad Kongsberg) MBES. Data were acquired along four 1 km long transects flying 60 meters above the seafloor, obtaining a microbathymetric map of the central part of HMMV, with a resolution of 0.6 meters/pixel (Figure 1B). Data acquisition was planned and managed with EIVA NaviSuite® software, and raw MBES data were then processed and cleaned using EIVA NaviModel Producer®.

DIVE 25 was dedicated to visually exploring the entire area. Instead, DIVE 26 focused on video surveys for photogrammetric mosaicking of two regions of the hummocky rim, hereinafter defined as DIVE 26a and DIVE 26b. For this purpose, the ROV was equipped with a dedicated photogrammetry tool sledge (Figure 2A) with a Spinner II Shark - High-End HD Zoom camera (Imenco®) pointed 90° downward, with the lens parallel to the seafloor, two additional strobes able to generate more than 2500W to enlighten the seafloor uniformly, and two deep-sea power lasers spaced at 14 cm. Before the photogrammetric dives, an experimental methodological protocol was designed on board, focusing on defining: (1) camera position and orientation, (2) intensity and coverage of lighting on the footage, (3) survey speed and altitude, and (4) appropriate overlap between adjacent lines, considering the seafloor morphological complexity. Data were then acquired in two selected areas on the north hummocky periphery rim (Figure 2B).




Figure 2 | (A) Ægir600 ROV with dedicated photogrammetry sledge (B) Zoom on the two areas mapped and the ROV tracks. (C) Schematic representation of the ROV photogrammetric acquisition with altitude from the seafloor and speed maintained during the acquisition. (D) Main steps of the photogrammetric workflow in Agisoft Metashape.



During DIVE 26a (Figure 2B) were acquired 6 parallel video transects, 1.8 m spaced and approximately 50 meters long, with a survey speed of ≤ 0.3 knots. This area presented a complex seafloor morphology. For this reason, we added 3 transversal lines crossing the central part of the main video transects, to guarantee the proper overlap between the lines. On the other side, DIVE 26b (Figure 2B) inspected a slightly rounded depression, similar to a small crater. There, 5 parallel video transects were performed, 1.8 m spaced and approximately 30 m long, with a survey speed of ≤ 0.3 knots.

Positioning data for the all the ROV dives (MBES and photogrammetry) were obtained using the HIPAP 501 USBL (Ultra Short Base Line) high-precision underwater system. Such data was subsequently utilized to accurately scale and position the acquired models in their respective geographical contexts.





ROV video preprocessing and SfM models reconstruction

From the video acquired during DIVE 26a and 26b, 1 frame per second (a photogram every 30) was automatically extracted using the Scene Video Filter function of VLC Media Player®. The photograms, with a resolution of 1920x1080 pixels, were saved in PNG format and sorted by dive and the number of transects in each dive (Table 1). All the images were imported in Agisoft Metashape 1.8 Professional Edition® (Agisoft, 2018) and processed following a well-established photogrammetric workflow (Young et al., 2017; Price et al., 2019; Fallati et al., 2020; Lim et al., 2020; Ventura et al., 2020; Ventura et al., 2022; Montes-Herrera et al., 2023). First, an initial camera alignment called Align Photos was performed. This step involves estimating the camera positions and orientations in the scene by identifying overlapping features in the images (Agisoft, 2018). Once the photos were aligned, a detailed 3D Dense Point Cloud was generated. The point cloud serves as the base surface from which an ultra-high-resolution (mm) Digital Elevation Model (DEM) and an Orthomosaic were created for both dives (Figure 2D). During the SfM process, the models were accurately scaled using the two laser pointers as a scale bar.


Table 1 | ROV acquisition parameters, the photogrammetry workflow parameters and the workstation processing characteristics.



After scaling the models, we combined the data derived from USBL (time and coordinates), plotted as point shape file tracks in ArcGIS®, to some of the video frames used in SfM processing. We mostly selected the frames on the edge of the lines and in the middle of the models, correlating the times of these frames with the time and the position of the ROV recorded by the UBLS. Moreover, we also used as a reference the small-scale geomorphic elements detected by ROV-based microbathymetry also visible in the SfM DEMs, to spatially link the two models. This helped us to accurately georeference the models in WGS 84/UTM Zone 33N (Lim et al., 2020).





HMMV high-resolution geomorphometric analysis

Bathymetric layers, such as the processed microbathymetry from ROV and high-resolution DEMs extrapolated from SfM, were imported into ArcGIS Pro® 3.1. The 3D Analyst and Spatial Analyst functions were used to calculate terrain descriptors such as aspect, slope, and roughness for all the models, and Topographic Position Index (TPI) on the ROV microbathymetry. Aspect indicates the orientation of the slopes, expressed in cardinal directions. Slope measures the vertical gradient of the surface in degrees. Roughness measures the heterogeneity of the surface by calculating the difference between the minimum and maximum bathymetric values over a specific surface area. Lastly, TPI (based on a neighborhood size of 10 m) estimates the difference in bathymetry between a central cell and the mean value of surrounding cells within a given group (Sappington et al., 2007; Walbridge et al., 2018).





Seafloor features classification using OBIA

The ultra-high resolution orthomosaics derived from SfMs were imported in eCogniton® Developer 10.3 to perform Object-Based Image Analysis (OBIA) processing. OBIA is a commonly used technique for automatically analyzing images and categorizing features from data gathered from various remote sensors (Hossain and Chen, 2019). The methodology involves two main steps: the application of segmentation algorithms to group pixels into homogenous regions (segments), based on their spectral and geometric characteristics, and the classification of these segments into specified classes (Ventura et al., 2018; Conti et al., 2019; Hossain and Chen, 2019; Fallati et al., 2020).

A Multiresolution Segmentation algorithm was applied to the georeferenced orthomosaics, based on homogeneity criteria (Figure 3). The image layer weights were set equal for all three bands, and the optimal scale parameter found was set as 200 after several attempts. A shape value of 0.1 and compactness of 0.5 were established for the homogeneity criteria. After the segmentation process, a Supervised Classification Technique was used to classify the two surfaces into the four substrate types that characterize the study area: Bacterial Mats High-Density, Bacterial Mats Low-Density, Uncovered Mud, Sediment and Tubeworms. The classification scheme was built based on ROV video analysis, where classes were derived from Jerosch et al. (2007) and Gebruk et al. (2011). At least 30 well-defined samples were selected for each class to serve as training areas for the classification algorithm. Thanks to the high-quality data and the millimetric resolution of the obtained models, the different substrates were easily detected on the orthomosaics. The Support Vector Machine (SVM) algorithm was used to classify the segments considering all information derived from the input dataset, such as spectral value, brightness, size, shape and texture. We used a linear kernel type and a SVM-parameter of 2. SVM has gained much popularity in the scientific community and has proven to provide higher accuracy compared to parametric classification algorithms, such as Machine Learning (Mountrakis et al., 2011; Wahidin et al., 2015; Wicaksono et al., 2019). After the classification, the adjacent segments were merged, and the final output was exported as a shapefile.




Figure 3 | OBIA methodology workflow with eCogniton Developer 10.3 for the classification of ultra-high resolution ROV orthomosaics.







Classification accuracy assessment

The accuracy assessment of the obtained classified maps was done in ArcGIS Pro® 3.1 environment. On each map, 200 random points were plotted, equally distributed among the different classes, using the create accuracy assessment points function. The accuracy of the maps was determined by manually classifying the points and comparing them to the orthomosaics, which served as the ground truth layer. The high resolution of the models (∼1.5 mm/pix) allowed one of the co-authors, with expertise in cold seeps, to conduct an on-screen check of the benthic communities. The accuracy was further evaluated using a confusion matrix (compute confusion matrix function) to estimate the user and producer accuracy, the maps’ overall accuracy, and the kappa index. (Landis and Koch, 1977).






Results




HMMV microbathymetry: geomorphometric analysis

Thanks to the microbathymetry resolution of 0.6 m/cell, it was possible to obtain accurate descriptors of the seafloor morphology (Figure 4) that highlighted a precise subdivision of three main geomorphic units already described by Jerosch et al. (2007): a flat central crater, a peripheral hummocky rim and the external moat (partially covered by our survey to the northwest portion of the map). Geomorphometric parameters such as slope and ruggedness (Figures 4A, B) revealed areas with higher terrain complexity in the hummocky region, with an average slope higher than 40° and ruggedness values > 0.05.




Figure 4 | Morphometric analysis of HMMV ROV microbathymetry performed in ArcGIS Pro® 3.1. D. (A) Slope, (B) Terrain ruggedness, (C) Topographic Positing Index (TPI) and (D) Aspect maps. In the aspect map (D), the black arrows indicate the main direction of the of the principal mudflows.



The TPI (Figure 4C), allowed defining four landforms classes: fissure, lower slope areas, flat areas and ridges. Flat areas dominate the central crater, although the presence of small-scale, slightly arcuate seafloor undulations is more evident in the central and southern parts of this unit, as highlighted by slope and ruggedness. Moreover, the results obtained from the aspect analysis (Figure 4D), suggest the main direction of the principal mudflows along a Northwest-Southeast trend surface, as also documented by Jerosch et al. (2007) and Perez-Garcia et al. (2009).

The hummocky unit is marked by fissures and ridges that typify areas with high terrain complexity. However, based on the aspect map analysis, these landforms have no clear spatial pattern and seem randomly distributed. The northern section of the hummocky unit displays two distinct sub-units, with an uneven seafloor and a prominent network of fissures and ridges (Figure 5).




Figure 5 | Topographic Positing Index (TPI) highlighting the Ridges and the Fissures, plotted on the hill-shaded model of the North part of the hummocky unit. On the model are plotted the ROV tracks of DIVE 26.







Ultra-high-resolution 2D and 3D models from SfM workflow

The SfM workflow on the ROV video frames created two ultra-high resolution seafloor models of 940 m2 at millimetric cell size (Tables 1, 2). The first, DIVE 26a, covered an area of 684 m2 with a resolution of 1.46 mm/pix for the orthomosaic and 2.92 mm/pix for the DEM (Figure 6). In contrast, the second, DIVE 26b, covered a slightly smaller area of 256 m2 but had a similar resolution of 1.33 and 2.63 mm/pix (Figure 7). The reconstructed models have a georeferencing error that falls within the estimated UBSL error of 1% of the ROV depth. Additionally, the scaling error within the models is 1.5 ± 0.7 mm, as calculated from the laser pointers. The georeferenced models are accurately aligned with the ROV microbathymetry and overlap seamlessly.


Table 2 | Areal coverage of benthic classes for DIVE 26a and DIVE 26b derived from the OBIA classification.






Figure 6 | The DIVE 26a Orthomosaic, DEM, and Slope have been plotted on the hillshaded model. The zoom boxes highlight: (A) the edge of the ridge with tubeworms and fine sediment and the area with Uncovered Mud just below the abrupt step; (B) an area with a bacterial mat (High-Density) surrounded by Uncovered Mud; (C) the presence of anthropogenic debris (indicated by a black arrow); (D) a pit opened on the sea floor with uncovered mud (indicated by a black arrow).






Figure 7 | The DIVE 26b Orthomosaic, DEM, and slope plotted on the hillshaded model. The four zoomed boxes highlight: (A) Small cracks on the uncovered mud where continuous mud flow was recorded during the dive (indicated by a black arrow); (B) the edge of the depression marked with the change of slope and the tubeworms and fine sediments that dominate the upper part of the ridge; (C, D) are areas of the central part of the fissure dominated by Bacterial Mats coverage. In zoom box (C) is well visible an anthropogenic debris (burlap bag, indicated by a black arrow).






Dive 26a

Dive26a covered the hummocky unit along an elongated fissure (40 m length) and clearly showed peculiar landforms and chemosynthetic benthic communities thanks to the sub-centimetric resolution of the orthomosaic. As observed on the DEM and the slope analysis, a steepness greater than 70° is reached at some locations, where pits with uncovered sediments are evident (Figure 6D). The main chemosynthetic communities are the bacterial mats, which cover for 35 m2 the surface of the fissure (with variable density), and the pogonophora tubeworms, 542 m2, on the ridge summit. The ridge’s edge is clearly defined by a sudden shift in slope, which is noticeable in both the Slope model and the orthomosaic. Additionally, there is visible anthropogenic debris in the area (upper part of a bucket) (Figure 6C).





Dive 26b

Dive26b models focus on a smaller area that features a subcircular fissure and a marginal ridge. The section measures 25 m, and the DEM and slope models indicate a depression in the center that is surrounded by steep margins (> 70°). As observed on the orthomosaic, the center of the depression shows newly deposited mud and patches of bacterial mats with high coverage density, respectively 189 m2 and 42 m2. Additionally, a section of the seafloor with small fissures (Figure 7A) was detected during the dive, where a continuous mud flow was recorded. (Supplementary Video Material). Moreover, in this area, the ridge edges are well-defined in the slope, and the pogonophora tubeworms community dominates the submittal parts, covering 25 m2. Furthermore, there is man-made waste (probably a burlap bag) also present in this region (Figure 7C).






OBIA orthomosaics classification

eCognition’s OBIA workflow produced two classified maps depicting 940 m2 of hummocky unit seafloor communities (Figures 8, 9). The maps have similar overall accuracy rates of 87% (DIVE 26a) and 83% (DIVE 26b). However, the user accuracy for different classes ranges from 72% to 96%, as shown in Table 1S (Supplementary Materials).




Figure 8 | Classification of Dive 26a ultra-high resolution orthomosaic through OBIA and SVM classification.






Figure 9 | Classification of Dive 26b ultra-high resolution orthomosaic through OBIA and SVM classification.



Dive 26a map (Figure 8) shows a high coverage of pogonophora tubeworms d in fine sediments that create a “dense carpet” of organisms on the higher part of the area (ridge). Dense patches of bacterial mats cover the lower part of the area (fissure) developed on mud surface. There are more patches that are considered “low density” than “high density.” Fine sediments that are not covered by any macrofauna can be found near the pits, which are morphologies that create deep depressions on the eastern part of the model.

Dive 26b map (Figure 9) shows that the classes are distributed similarly to DIVE 26a. The upper part of the ridge is covered with tubeworms mixed with fine sediments, while the center of the fissure has only a few small patches. The depressed part of the map mainly consists of exposed uncovered sediment and bacterial mats. These mats are highly concentrated in the southeast area, near the point where mud flow is released (Figure 7A).






Discussion

Only in the last decade, the advancements in ocean robotic systems (e.g. ROVs), underwater cameras, and navigation/positioning systems made it possible to collect high-quality data in terms of resolution and accuracy in deep-sea environments. For example, Robert et al. (2017), integrated various mapping techniques and ocean technologies, including ROV and AUV MBES data as well as ROV photogrammetry, to map deep-sea vertical structures. Similarly, Conti et al. (2019), Price et al., (2019), Lim et al. (2020), and De Oliveira et al. (2022) utilized the combination of ROV microbathymetry and ROV SfM-derived models to investigate deep-water coral environments. These studies used DEMs and orthomosaics to extrapolate high-resolution terrain variables to investigate spatial patterns of vulnerable benthic habitats with a detail never achieved before in the deep-sea. In our research, we utilized a comparable method that involved combining a dataset made up of microbathymetric and photogrammetric models obtained through the use of a work-class ROV. The analysis of the ROV microbathymetry enabled us to determine an area with a high level of complexity within the hummocky region. Additionally, we were able to classify the landforms and the distribution of the chemosynthetic communities with the help of Sfm DEMs and orthomosaics.




HMMV landforms analysis

The ROV-based microbathymetry dataset (Figure 1) provided an accurate morpho-bathymetric map of the central sector of the HMMV. As emerged from the analysis of the slope and ruggedness maps, two main morphological units can be distinguished over the volcano’s central sector: the flat central crater, and the hummocky rim (Figure 10A). These units have already been described in previous studies by Gebruk et al. (2003) and Jerosch et al. (2007). An additional external unit, the moat, surrounds the two internal geomorphic units. However, it is still not clearly visible in our data as those are mainly focused on the central part of the HMMV (Figure 10A).




Figure 10 | (A) Ruggedness map derived from ROV MBES microbathymerty. The three morphological units and the high-complexity subunit on the north part of the hummocky rim were highlighted on the map. (B) Zoom on the subunit characterized by a high level of ruggedness. Habitat maps of DIVE26a and DIVE26b fall within this area. The dotted line indicates the seafloor portion where most gas bubbles and acoustic flares were recorded in previous studies (Sauter et al., 2006; Foucher et al., 2010).



The ruggedness index reveals that some parts of the hummocky rim are more complex than others, with an intricate succession of ridges and fissures (Figure 4). Furthermore, the northern part of the hummocky unit is the area where most of the observations of large gas flares were detected in the water column through the years (Foucher et al., 2010). Gas bubbles were also observed in situ during previous expeditions, from the ROV videos, like at the so-called “Champagne” (Sauter et al., 2006) and the “Vickign” sites (Foucher et al., 2010). The sources of gas emissions have been located within the area covered by DIVE26a and DIVE26b (Foucher et al., 2010), indicating the intense gas seepage activity and mud extrusion of this subunit (Figure 10B). However, during the Ægir 6000 ROV exploration in 2021 (present study), no direct bubbles were observed. Instead, a continuous mud flow was recorded from small fissures in the area that was mapped during DIVE26b (Figure 7A); (Supplementary Video Materials). The compelling presence of numerous elements on the seafloor (fissures, bacterial mats and chemosynthetic fauna) highlight the frequent, but intermittent in time and space, seepage activity in this area. This was also well marked from the photogrammetric reconstruction of two of the fissures in the subunit (Figures 6, 7).





ROV photogrammetry on the hummocky subunit

Thanks to the ultra-high resolution ROV photogrammetry, we were able to delve deeper into the eco-geomorphological patterns of the hummocky subunit, reaching levels of resolution and accuracy far beyond any previous studies on cold seep environments. In fact, the models derived from the dedicated photogrammetry during DIVE26 have a higher resolution with respect to the video mosaics produced on HMMV by Jerosch et al. (2007) and the photo-mosaics by Marcon et al. (2013; 2014). Moreover, the DEMs (Figures 6, 7) obtained through the SfMs workflow make it possible to analyze the morphometric parameters of the monitored areas, unveiling more clearly the seafloor complexity and its relationship with associated habitats.

Basic surface landform parameters (i.e. hillshade and slope) computed for DIVE 26a, highlight deep pits (edged by ∼90° steep slopes) that form small craters exposing uncovered mud (Figure 6D). The rim of these pits appears composed of fine sediments densely colonized by tubeworms. The craters were likely created by sporadic gas venting that occurred throughout cracks in the seabed, which deeply marked the seafloor complexity in the surveyed subunits of the hummocky area (Foucher et al., 2010). The remaining part of the mapped area is an elongated steep fissure surrounded by sharped ridges; the fissure’s bottom is covered with mud colonized with bacterial mats, while at the top, the ridge is delimited by fine sediment and tubeworm communities. The spatial pattern associated with the detected chemoautotrophic communities (i.e. Beggiatoa mats and pogonophoran tubeworms) is also reflected in the DIVE 26b surveyed area (Figure 7). The occurrence of a dense layer of bacterial mats, covering the fissure’s bottom close to the minor fractures, with active fluid flow, confirms the seepage activity along fissures. On the contrary, the sharp transition marked by an abrupt slope change with the ridge summit, dominated by sediments and tubeworms (Figure 7B) confirms that tubeworms are commonly distributed where more stable conditions characterize the seafloor substrate in gas-charged deep-sea sediment and the seepage activity is not able to disrupt the seafloor.

The preferential allocation of the two communities, respectively on the upper part of the ridge and in the fissure, is related to the magnitude of methane fluxes in the sediment. In fact, the rates of anaerobic oxidation of methane control the availability of hydrogen sulfide used by Beggiatoa and pogonophorans (Boethius et al., 2000; Niemann et al., 2006; Argentino et al., 2022b). Beggiatoa mats are present in major abundance where the methane flux is high and AOM (Anaerobic Oxidation of Methane) occurs near the seafloor, while the pogonophorans, which can achieve sulfide from the deeper sediment layers, indicate a lower methane flux and deeper sediment interval hosting AOM (Jerosch et al., 2007; Åström et al., 2020). The location of these two communities can help determine methane seepage’s intensity. The Beggiatoa mats are often found in mud areas. At the same time, pogonophorans tubeworms tend to thrive in areas with lower (or deeper) levels of methane and hydrogen sulfide, as the upper ridge, indicated a clear spatial succession (Jerosch et al., 2007; Argentino et al., 2021; Argentino et al., 2022a). This succession emerges clearly by analyzing the SfM models obtained from DIVE26a and DIVE26b, especially when combining the terrain features with a visual examination of the seafloor. In fact, the millimetric resolution of the orthomosaic helped us to identify the spatial distribution of communities present in the area and to map them in detail through the OBIA workflow. Moreover, the orthomosaic’s resolution allowed the detection of abundant macrofauna, primarily Zoarcidae benthic fishes, in the mapped seafloor areas (SM Figure 11). These findings highlight the potential of ROV photogrammetry in studying the benthic macrofauna of cold seep environments, which are known as biodiversity hotspots in the ocean (Rybakova Goroslavskaya et al., 2013; Levin et al., 2015; Åström et al., 2018). Thanks to the georeferencing of the models and their high spatial accuracy, it could be possible to perform reliable measurements of the organisms, quantification of individual abundance, and analysis of their relationship with the surrounding environment.





OBIA seafloor classification

The OBIA classification provided accurate maps of the distribution of major benthic classes in DIVE26a and DIVE26b. The use of multiresolution segmentation and supervised classification sped up the classification process, minimizing the operator bias that can result from manual on-screen editing. In addition, the parameters established in the eCognition® decision tree can be used to classify orthomosaics of cold seeps obtained under comparable conditions.

In DIVE26a, Bacterial mats distributed sporadically over the lower parts of the fissure. It seems that colonization began in the eastern portion of the map, where small bacterial patches have been observed in the mud zone. Instead, the DIVE 26b map shows in the southern part, numerous patches of high and low-density Bacterial mats form a nearly continuous layer. This distribution may suggest the presence of high levels of methane in the upper part of the seabed, as evidenced by the active fluid flow recorded from seabed cracks. Moreover, the density of these patches can increase through time following the increment of the seepage activity, as described by Girard et al. (2020) in a long-term monitoring study (LOOME) conducted on a section of HMMV close to the regions mapped in DIVE 26. Scattered patches are present on the remaining fissure area, alternating with uncovered mud. In line with DIVE 26a, the tubeworms class was found to be prevalent in the upper section of the ridge. This redundant distribution of the substrate classes reinforces the clear link between the availability of methane near the sediment surface and the allocation of the two main chemosynthetic communities.





ROV photogrammetry constraints

When using the ROV photogrammetry approach, it is important to consider its limitations. Firstly, proper infrastructure is needed to collect reliable and high-quality data. This involves acquiring data from a R/V and with a work-class ROV. To achieve this, the ROV must be equipped with a high-definition camera that is oriented with the lens parallel to the seafloor, and powerful lights that can uniformly illuminate the camera’s focal view. Additionally, the positioning system must be highly accurate while the pilots must be skilled enough to maintain the ROV’s stability on the defined lines and at the same altitude from the bottom. Any lateral or vertical movements can cause a non-uniform illumination, which may reduce the probability of the alignment of the frames during the SfM workflow (Price et al., 2019). These challenges can be more difficult in areas with complex seafloors, such as the site mapped in this study. Consequently, to ensure the side overlap between the six parallel lines acquired in DIVE 26a, three extra transects had to be added, transversal to the main direction of the ROV.

There is another factor that should be taken into account: the amount of time required for data acquisition. In our research, it took approximately 2 hours of ROV video footage to map an area of 940 m2 (Lim et al., 2020). Additionally, conducting other scientific tasks, such as collecting sediment samples or acquiring MBES data, during photogrammetry can be impossible due to the presence of the dedicated sledge with the camera and the lights. Furthermore, the time required to bring the ROV back to the RV deck to adjust settings can further prolong the operation time.






Conclusion

Our study represents an advancement in understanding the geomorphology and ecological aspects of the Håkon Mosby Mud Volcano (HMMV) and its cold seep environments. Combining data from ROV microbathymetry and SfM photogrammetry, we obtained high-resolution information previously unattainable with traditional acoustic remote sensing methods. The integration of multi-sources and multi-resolution data allowed us to generate scaled and georeferenced bi- and three-dimensional (2D, 3D) models, providing detailed insights into the underwater features and cold seep habitats associated with the HMMV. Moreover, the application of ROV photogrammetry proved to be a powerful tool in deep-sea imaging research, enabling us to analyze the seafloor terrain with great precision.

The obtained ultra-high resolution SfM models facilitated a comprehensive analysis of the cold seep benthic communities, shedding light on their composition and spatial distribution with unprecedented detail. Using OBIA and SVM classification, we were able to accurately map the distribution of the primary chemoautotrophic habitats on 940 m2 of the high complexity hummocky rim. Four prominent substrate types were distinctly imaged in these regions: uncovered mud, bacterial mats high-density, bacterial mats low-density, sediments and tubeworms. This process helped to clarify their relationship with the terrain morphology and seepage activity, providing valuable knowledge for understanding the ecological functioning of cold seep ecosystems in MVs. Furthermore, our SfM models have exceptional spatial and geographical accuracy, making them a useful starting point for long-term studies. In fact, by monitoring the same area over time following the herein-defined workflow, our models can track changes in seafloor morphology and benthic habitat dynamics, providing a reliable baseline for research.
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Supplementary Figure 1 | Benthic macrofauna identified in the orthomosaics. (A) Amblyraja hyperborean, a ray commonly found in cold seep environments, lay on a substrate of fine sediments and tubeworms. (B) Several fishes of the species Lycodes squamiventer (Family Zoarcidae) lay on the uncovered mud scattered with bacterial mats.
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The increasing availability and quality of high-resolution bathymetry data has led to a growing need for automated classification approaches to extract seabed features and better understand our ever-changing and complex seascapes. Here we present a new set of GIS tools designed to classify seabed landforms on continental and island shelf settings. The classification approach utilises bathymetry data and its derivatives of slope, ruggedness and bathymetric position index to delineate key components of the seabed surface. The user is guided through a series of steps to break down the seabed surface into components termed ‘surface elements’ (e.g. smooth, rugose, slope areas), which are subsequently grouped into prominent seabed features termed ‘seabed landforms’ (e.g. reefs, channels, scarps). Manual review and editing are incorporated into the workflow, striking a balance between automation and expert manual interpretation. We present the toolset using examples from the statewide marine lidar dataset from New South Wales, Australia, and explore tool settings using bathymetric data representing different data sources (multibeam and marine lidar), environmental seascapes, data resolutions (2, 5, 10 and 20 m cell size) and data preparation treatments (with and without data smoothing). The GIS toolset presented offers an effective and flexible method to extract key features from high-resolution shelf bathymetry data. Such mapping provides fundamental baseline data for vast applications within marine planning, research and management.
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1 Introduction

An understanding of the presence, extent and configuration of features submerged within a seascape is critical to effectively managing the marine environment. Knowledge of prominent features such as reef outcrops or sediment plains is crucial information for coastal hazard management, marine spatial planning, fisheries management and benthic habitat mapping among a vast range of cross-disciplinary applications (Brown et al., 2012; Hanslow et al., 2016; Porskamp et al., 2018; Kinsela et al., 2022). As sea-level rise accelerates and storm impacts increase with climate change, there is an urgent need for detailed seabed data to help understand and manage coastal hazards which are projected to increase dramatically over future decades (Oppenheimer et al., 2019). With growing anthropogenic pressures on the marine environment, a baseline understanding of the features occurring within a region is crucial for marine estate management in the present-day as well as managing for change over time (Brown et al., 2012).

Seabed bathymetry data forms a foundational product from which the structure of the seafloor can be “seen”, and it is collected in increasing detail as technology improves over time. The growing acquisition of bathymetry data has in turn prompted a growing field of marine geomorphometry – which focuses on the quantitative analysis of digital elevation models (DEMs), including the extraction of terrain variables and discrete features from the seabed surface (Pike, 2000; Lecours et al., 2016). The delineation of seabed features can be connected, with ground-truthing data (e.g. underwater video, sediment samples), to seafloor composition to generate benthic habitat maps and geomorphology interpretations which inform marine planning, management, and research (Brown et al., 2012; Harris and Baker, 2020).

The availability of bathymetric data is ever-increasing due to concerted efforts to increase mapping coverage on regional (e.g. Australian HydroScheme Industry Partnership Program, Houston, 2020) and global scales (e.g. Nippon Foundation-GEBCO Seabed 2030, Mayer et al., 2018; Wölfl et al., 2019) and to generate wide-scale, integrated seabed classifications (Harris et al., 2014; Thorsnes et al., 2018; Lucieer et al., 2019; Sowers et al., 2020). With greater volumes of data capture, there is a rapidly growing need for efficient and effective methods of interpreting and classifying seabed features. Methods of manual digitisation of features are increasingly impractical as the scale and frequency of data collection exceeds the time required to manually interpret and classify, and users instead look to semi-automated approaches. While many tools and approaches are available to perform semi-automated classification procedures, the diversity of seabed features and varied program objectives globally mean that it’s challenging to find a one-size-fits-all approach.

There is evolving discussion around the development and application of standardised classification approaches to enable comparisons and integration of disparate datasets (Lecours et al., 2016; Dove et al., 2019). A number of widely used classification schemes have been developed (Greene et al., 1999; Federal Geographic Data Committee, 2012; Galparsoro et al., 2012; IHO, 2019) although many studies still customise classification schemes for features and habitats for their specific survey area and project focus (Harris and Baker, 2020). Progress on unifying feature terms is continuing to occur with the compilation of standardised terminologies for seabed features (e.g. Dove et al., 2020; Harris and Baker, 2020; Nanson et al., 2023). As these nomenclatures are increasingly adopted, users will in turn require standardised methodologies to define features consistently across studies. To enable users to readily explore marine geomorphometry and generate maps representing prominent seabed features, there is a pressing need for tools which allow users to implement semi-automated methods to define seabed features (Lecours et al., 2016; Dove et al., 2019). Importantly, these tools should be accessible to a range of users of varied backgrounds and GIS expertise (Lecours et al., 2016).

To effectively map seabed features within a seascape, a wide range of derivatives of bathymetry data, as well as varied spatial scales of analysis, have been explored (Diesing et al., 2016; Lecours et al., 2017; Misiuk et al., 2021). A broad range of techniques can be applied, as reviewed by (Lecours et al., 2016), including geostatistical and machine learning approaches, with object-based image analysis (OBIA) methods increasingly being adopted (Diesing et al., 2014; Lecours et al., 2016; Dekavalla and Argialas, 2017; Lecours et al., 2018; Janowski et al., 2022). Such approaches can incorporate other input datasets such as backscatter data or ground-truthing samples. This can present challenges as this data may not be available or consistently collected across the survey area (Lamarche and Lurton, 2017). Unlike bathymetry data, which can be standardised to international hydrographic guidelines (IHO, 2022), backscatter data currently lacks standardisation procedures to enable different surveys to be objectively compared (Lamarche and Lurton, 2017). Ground-truthing samples, such as sediment grabs or underwater video, are important for the validation of interpreted features, however they can be logistically difficult to collect over expansive areas. The scale of ground-truthing samples may also not appropriately match the scale of bathymetry data to enable extrapolation across broad spatial areas (Post, 2008).

Characterising the seabed using only the bathymetry is an appealing first product of seabed interpretation as this is the foundational dataset which most users will have acquired and it is able to be standardised. Bathymetry data enables a morphology-level classification, defining features based on surface shape (e.g. Dove et al., 2020). Such features have been termed ‘geoforms’, ‘bathymorphons’, ‘geomorphons’, ‘morphometric objects’ and ‘landforms’ across other studies (Federal Geographic Data Committee, 2012; Jasiewicz and Stepinski, 2013; Dekavalla and Argialas, 2017; Di Stefano and Mayer, 2018; Masetti et al., 2018; Linklater et al., 2019; Sowers et al., 2020). This classification of seabed morphologies may be undertaken as a non-overlapping, whole-seascape classification approach using specific tools, such as the classification dictionary in Benthic Terrain Modeler (Walbridge et al., 2018) or BRESS landform classifier (Masetti et al., 2018). Alternatively, a selection of different methods may be employed to capture individual features, which are then combined to build a complete classification of the seabed (e.g. Harris et al., 2014; Johnson et al., 2017).

Many classification approaches utilise the bathymetric position index (BPI), or similar measures, which calculate the relative height of features within a seascape, as a key metric to extract landform elements (Lundblad et al., 2006; Elvenes et al., 2014; Harris et al., 2014; Walbridge et al., 2018; Huang et al., 2022; Nanson et al., 2022). BPI has been incorporated into popular tools such as Benthic Terrain Modeler (Walbridge et al., 2018) which has been used to capture seabed features across a range of environments (e.g. Subarno et al., 2016; Goes et al., 2019; Lavagnino et al., 2020; Menandro et al., 2020). Rugosity and other variables of surface complexity (e.g. ‘terrain ruggedness’, Walbridge et al., 2018) have been recognised as effective at capturing shelf outcrops, and have been incorporated as an independently calculated measure overlain onto a Benthic Terrain Modeler classification (e.g. Lundblad et al., 2006; Linklater et al., 2019; De Oliveira et al., 2020).

In the New South Wales (NSW) context, on the southeast Australian continental shelf, a landmark statewide marine lidar dataset was collected in 2018, covering 4,000 km2 of seabed along a 2,000 km coastline (New South Wales Department of Planning and Environment, 2019). This data was acquired under the NSW Department of Planning and Environment statewide mapping program SeaBed NSW, which collects high-resolution bathymetric data to provide foundational data to improve modelling of coastal processes and hazards and inform assessments of coastal risk (Hanslow et al., 2016; Kinsela et al., 2017). The program includes acquisition of multibeam echosounder data, which builds upon an extensive catalogue of multibeam surveys since 2005 (Jordan et al., 2010). Previous methods to classify seabed features within these datasets were primarily manually digitised (Jordan et al., 2010), however with the high volumes of bathymetric data this is untenable, and there was clear need for greater automation.

The extraction of shelf reef features is a priority objective of the SeaBed NSW program to inform coastal hazard assessments and refine modelling of shoreline change based on an improved understanding of seafloor geomorphology and connectivity with sediment compartments (Hanslow et al., 2016; Kinsela et al., 2017; Kinsela et al., 2022). To conduct systematic mapping of features, particularly rocky reefs, at a statewide scale, a number of criteria needed to be met. The methodology must: incorporate semi-automated procedures; be applicable at a statewide scale; use accepted approaches within the seabed mapping community; use accessible software to enable ongoing use of the procedure over time; and provide a consistent approach to enable statistical comparisons along the NSW coast.

Linklater et al. (2019) conducted a pilot study of classification methods for the SeaBed NSW program, including a classification of seabed ‘landforms’ which define the key morphological features of the seascape. Ruggedness was shown to be a key measure in capturing shelf reefs within this southeast Australian shelf setting, out-performing other comparable measures for reef definition, standard deviation and range, which were shown to over-estimate reef extent. Linklater et al. (2019) adapted the Benthic Terrain Modeler (BTM) framework (Walbridge et al., 2018) to substitute ruggedness for depth, in order to capture rocky reefs. Despite the effectiveness of ruggedness in capturing reefs in this shelf setting, the ruggedness variable can present challenges when used to classify remotely sensed datasets as noise and motion artefacts may erroneously be classified as reef outcrops. This can be time consuming to manually correct, particularly when applied across wide-scale datasets. While the selected variables were effective, the framework presented by Linklater et al. (2019) to classify seabed landforms remained too manual to apply at broader scales, such as the NSW statewide marine lidar dataset.

To overcome these challenges and build in greater automation, we have adapted the framework presented in Linklater et al. (2019) into a semi-automated classification toolbox, the ‘Seabed Landforms Classification Toolset’, which focuses on defining seabed landforms within continental and island shelf settings. It translates the methodological approach outlined in Linklater et al. (2019) into sequential classification tools developed within an ArcGIS environment, which guides the user through the classification. Commonly used variables including slope, bathymetric position index (BPI) and ruggedness are utilised to characterise the seabed. The incorporation of ruggedness creates a targeted application for shelf environments where reef outcrops may be the prominent features observed. Procedures are implemented to address inherent noise artefacts and identify the full extent of reef outcrops. Nomenclature is introduced to characterise the seabed features using a suite of terms including reefs/banks, scarps, peaks, plains, depressions and channels. These terms capture the key components of the seascape, providing detail on the structure and expression of features while also balancing a more limited set of terms which group features with similar morphologies.

This study aims to: 1) describe the tools and procedures of the Seabed Landforms Classification Toolset; and 2) demonstrate the application of the toolset to varied scenarios of data types and environments. These tools can be utilised by the seabed mapping community to generate semi-automated classifications of shelf environments and apply a more detailed suite of terms to describe shelf features, with a particular focus on shelf and nearshore reefs. With an ever-expanding global repository of bathymetric data, together with an increased interest from the seabed mapping community to apply semi-automated procedures for seabed classification, this toolset aims to address the growing need for user-friendly approaches to readily classify seabed features. It provides a classification approach that is versatile to the needs of individual survey or program requirements, balancing automation and expert interpretation. The resulting whole-landscape classification product allows users to better understand our complex marine environments and provides detailed information to improve predictions of potential climate change impacts now and into the future.




2 Materials and methods

The Seabed Landforms Classification Toolset presented here was developed for SeaBed NSW, a statewide seabed mapping program conducted by the New South Wales (NSW) Department of Planning and Environment (formerly Office of Environment and Heritage). This program, initiated in 2017, aims to collect and analyse marine lidar and multibeam echosounder data along the NSW coast to characterise seabed composition for coastal hazard management and marine estate planning (Hanslow et al., 2016; Kinsela et al., 2022). Under this program, marine lidar data was acquired in 2018 along the ~2,000 km NSW coastline, in conjunction with ongoing multibeam echosounder mapping of selected regions. The mapping program focuses on the nearshore and inner continental shelf seabed, targeting water depths down to 60 m generally and extending deeper down to 100 m depending on survey requirements.

Prominent features of the NSW continental shelf seabed include temperate rocky reef outcrops (Jordan et al., 2010), and therefore the classification approach adopted needed to adequately capture outcropping reef features. Understanding the occurrence and extent of outcropping reef features is critical to understanding coastal processes and hazards at local and regional scales (see e.g. Kinsela et al., 2017; Kinsela et al., 2022), as well as informing marine planning and management.



2.1 Bathymetry data

High resolution (5 m cell size) statewide marine lidar data was collected along the entire NSW coastline by Fugro in 2018, commissioned by DPE (Table 1). Topographic and bathymetric lidar surveys resulted in 6,900 km2 of data of coastal land (at least 200 m inland of the shoreline) and nearshore waters. For this study, only bathymetry data was utilised and therefore the lidar dataset was clipped to 0 m elevation (Australian Height Datum). The lidar bathymetry covers 4,000 km2 and extends offshore to an average of 35 m depth (maximum 50 m depth) and an average distance of 3 km offshore (maximum 9 km). This data (and associated metadata) can be viewed on SEED NSW environmental data portal (New South Wales Department of Planning and Environment, 2019) or downloaded from the ELVIS Elevation and Depth Spatial Data Portal.

The NSW marine lidar dataset was used in this study to expand upon seabed classification methods piloted by Linklater et al. (2019) and translate the framework into a functional and versatile set of classification tools. The NSW marine lidar dataset was used to explore appropriate settings for the seabed classification toolset as the statewide dataset covers a variety of nearshore and shelf seabed environments. Selected areas within the marine lidar dataset were utilised in this study to demonstrate the classification toolset, including data offshore of Ballina in far north NSW (Figure 1A), Crescent Head in northern NSW (Figure 1B), Long Reef in Sydney’s northern beaches (Figure 1C), and Moruya in southern NSW (Figure 1D).




Figure 1 | Selected areas of marine lidar data utilised in this study, collected along the New South Wales (NSW) coast (A-D) together with multibeam datasets offshore of NSW (E, F) and marine lidar from Western Australia (G). ESRI basemap.



The toolset settings were further explored on a range of different dataset types (source and resolution) and shelf environments (Table 1). Bathymetric data were sourced to represent different environmental seascapes, data sources (multibeam and marine lidar), data resolutions (2, 5, 10 and 20 m cell size) and data preparation treatments (with and without data smoothing). These datasets include multibeam data collected offshore of Shellharbour, NSW by NSW DPE (Figure 1E), multibeam data collected at Middleton Reef, offshore NSW by the Australian National Environmental Science Program and Geoscience Australia (Figure 1F), and marine lidar collected offshore of Perth, Western Australia (WA) by the WA Department of Transport (Figure 1G). To explore the impact of resolution on tool performance, the 5 m cell size Shellharbour dataset was re-gridded to 10 m and 20 m using the Resample tool in ArcGIS. The toolset was run on bathymetric data with and without the toolset’s smoothing function applied.


Table 1 | Bathymetry data sources.






2.2 Seabed landforms classification toolset

The foundational framework for the seabed classification toolset was developed by Linklater et al. (2019). The methodology presented here further extends this framework into a comprehensive suite of tools, the Seabed Landforms Classification Toolset, which guides the user through the classification process. The toolset utilises a suite of ArcGIS functions in conjunction with functions from existing toolsets including ‘terrain ruggedness’ from Benthic Terrain Modeler (BTM, Walbridge et al., 2018) and ‘slope position’ the Geomorphometry and Gradients Metric Toolbox (GGMT, Evans et al., 2014) and incorporates them into a workflow to classify prominent features within the shelf seascape. Four variables are derived from the bathymetry to characterise the seabed: ruggedness (BTM, Walbridge et al., 2018), slope (Spatial Analyst, Esri), finescale and broadscale Bathymetric Position Index (Slope Position, GGMT, Evans et al., 2014).

Our approach creates a two-part classification, first defining ‘surface elements’ (Table 2) which are the base textural components of the seascape (e.g. rugose outcrop, smooth flat, slope), and subsequently defining ‘seabed landforms’ which aggregate surface elements to identify prominent shelf features (e.g. reef/bank, plain, scarp). Terminology for seabed features (Table 2) has been sourced from established nomenclature within the literature, including the International Hydrographic Organization (IHO) Classification Dictionary (IHO, 2019, the Mareano-Infomar-Maremap and Geoscience Australia (MIM-GA) Morphology Features Glossary (Dove et al., 2020), and Evans (2012) and applied here to a marine environment, with the inclusion of ‘ruggedness’ as a defining variable. Here, ‘landforms’ are largely analogous to the morphology-level scheme presented in Dove et al. (2020), although the approach presented here attempts to provide a single, non-overlapping classification of the entire seascape surface using a more limited set of terms. These terms are intended to capture prominent shelf features and can be modified to suit individual user requirements.


Table 2 | Definitions and sources of surface element and landform terms used in classification toolset.



The Seabed Landforms Toolset comprises four main classification stages (Figure 2, Table 3): 1) DEM preparation: this includes steps to prepare the DEM raster for subsequent analysis; 2) Surface Elements classification: this breaks up the surface into key components based on derived variables of ruggedness, slope, finescale and broadscale bathymetric position index (BPI); 3) Landform classification: this translates surface elements into landforms, requiring manual editing and review by the user; 4) Plain classification; this is an optional step to classify plain areas if desired. Each of these classification stages and the tools contained within will be outlined in detail below. The toolset is freely available for download on the NSW Government SEED environmental data portal and GitHub where a user-guide and supporting materials are available, including a web explainer (Linklater et al., 2023). Procedures are introduced to identify polygons within rugose outcrops, reduce potential noise, classify low-relief landforms within plain areas (e.g. bedforms), perform manual editing, as well as a broad range of additional functionality, as outlined below.




Figure 2 | Workflow diagram showing the relationship of the key classification stages and resulting outputs. Dashed outline indicates optional processing steps and outputs. Square = tool; parallelogram = dataset.




Table 3 | Summary of the classification stages within the Seabed Landforms Classification Toolset, and the processing steps and primary tools associated within each classification stage.





2.2.1 DEM preparation

Functionality is included to assist users in preparing the DEM for analysis. Tools are included to grid a DEM from XYZ input data, clip data to set elevation range, and smooth the DEM, as required for the individual dataset. The toolset has been designed for open coast shelf settings and has not been tested for land or estuarine settings, or data that extends beyond the shelf break.

The smoothing function performs a median filter using the ‘Focal Statistics’ tool within ArcGIS (Esri, 2021), where users can input the number of smoothing iterations. Median filters were determined to be the most effective as they do not include the extremities of values as would occur with a mean calculation (Linklater et al., 2018). Where speckled noise artefacts occur within the dataset, smoothing is effective at reducing this noise and improving the distinction between rugose outcrops and surrounding plains (Supplementary Figure 1).




2.2.2 Surface element classification

The surface elements classification breaks up the seascape into components based on slope (ArcGIS Spatial Analyst, (Esri, 2021), ruggedness (Benthic Terrain Modeler, BTM, Walbridge et al., 2018), and bathymetric position index ‘BPI’ (Slope Position, Geomorphometry and Gradients Metric Toolbox, GGMT (Evans et al., 2014). The resultant classification defines slopes, and rugose or smooth highs, lows or planes occurring at finescale or broadscale extents within the seascape. This further develops the framework presented in Linklater et al. (2019) into a sequence of GIS tools (Table 3).

The thresholds to define the surface elements are user-defined, with settings dependent on the resolution and extent of bathymetric data, as well as features of interest. Default settings of the tools are presented in Table 4. These were developed for data inputs of 5 m cell size with three smoothing iterations. The default settings were chosen as they are suitable for the NSW statewide marine lidar and multibeam datasets, but are also representative of common input bathymetry datasets, which will often require smoothing. The 5 m cell size is a mid-level resolution for bathymetric datasets and an appropriate resolution for reef mapping at comparable scales (e.g. Lucieer et al., 2016). These thresholds have been modified where required for each of the datasets presented.


Table 4 | Terrain variables with default values used in classification toolset, key tool utilised and associated script within toolbox.



The surface elements classification outputs 11 classes characterising the surface based on superimposed reclassifications of ruggedness (rugose or smooth), broadscale and finescale BPI (finescale or broadscale high, low or flat) and slope (high slope) variables (Supplementary Table 2). Areas defined by the user as ‘slope’ (for example, all areas greater than 10 degrees with a user-defined threshold of 10) overrides all other classes. The remaining area of the surface, which are slope areas below the user-defined threshold, are classified based on ruggedness and BPI. These 11 classes are in turn aggregated into 7 classes to create a summarised surface elements layer including: rugose outcrop, rugose outcrop peak, smooth outcrop, smooth low, rugose low, smooth flat, and slope (Supplementary Table 2). The surface elements layer represents the full suite of component elements, while the summarised surface elements offer a more practicable layer for users to interpret features.

Within the surface elements classification toolset are two optional functions to generate a theoretical surface drainage grid and a depth reclassification polygon. The surface drainage classification represents theoretical surface drainage and is developed from the steps outlined in Linklater et al. (2019). This tool utilises the Hydrology toolbox in ArcGIS (Esri, 2021) to calculate flow direction and accumulation, with the resultant output of flow drainage log-transformed and clipped to 100 m3 to show dominant drainage pathways. The drainage calculation here is not intended as a precise measure of surface volume and accumulation. The calculation is instead intended as a guide to assist the user in identifying paleochannels within the seascape, as the drainage surface may represent active bottom current or relict drainage across the surface during periods where lower sea level may have exposed the shelf.

The depth reclassification is also an optional function, which is analogous to the ArcGIS ‘contour’ tool, that users can use to generate a depth-stratified polygon based on a user-defined interval. This layer is not utilised elsewhere within the classification but is a complementary layer that may be used for assisting analysis and interpretation. For example, depth intervals may be used to stratify the output landforms classification to calculate the proportion of features in each depth interval.




2.2.3 Landform classification

Seabed landforms are defined from the classified surface elements, where multiple surface element classes may be ultimately grouped to form a landform (Supplementary Table 2, Table 2). Landforms represent key features of the seascape, including “reefs/banks”, “peaks”, “plains”, “scarps”, “depressions and channels”. “Reef/bank” definitions were sourced from the International Hydrographic Organization Dictionary (IHO, 2019), whereby “reefs” represent rocky or biogenic outcrops and “banks” represent soft-sediment outcrops. Using the semi-automated classification approach presented, inferred hard substrate “reefs” and inferred soft sediment “banks” are indistinguishable based on the ruggedness measure where soft sediment expression is sufficiently raised and complex or hard substrate is sufficiently smoothed. “Peaks” represent a pointed elevation rising from a larger feature (Dove et al., 2020), and “depressions” and “channels” are closed contour or elongated bathymetric lows, respectively (Dove et al., 2020). “Plains” are horizontal or near-horizontal areas (IHO, 2019), characterised by consistently smooth areas. “Scarps” are steep areas (IHO, 2019) occurring on rugose outcrops occurring on rugose outcrops. Thresholds to define these features are user-defined within the classification toolset. The terms selected were chosen to capture the most prominent features within a continental or island shelf setting, and do not represent the only landforms that may occur within a seascape. The aggregate term “reef/bank” provides a useful conglomerate term for outcropping rugose features of varied shapes, sizes, and inferred composition.

The procedures to identify landforms from surface elements are semi-automated, with the user required to enter classification thresholds and perform manual editing tasks at several stages. This inclusion of manual inputs provides flexibility within the toolset to edit and customise the classification output. Key stages of the landform classification procedure include: 1) identifying polygons within rugose outcrops; 2) creating preliminary landform labels; 3) manual editing of preliminary landform layer; 4) eliminating ‘noise’ polygons; and 5) finalising landform labels.

If desired, the user may seek to manually separate “reefs” from banks and other plain features (Figure 2). Although the landform classification isn’t intended to explicitly map substrate, inferred hard-substrate ‘reef’ areas could be distinguished from inferred soft-substrate ‘banks’ by the user using expert knowledge and manual editing, with examples of these optional edits presented in this study. Further separation of the classes defined in the toolset, including “reef/bank” outcrops and “depressions and channels” into more detailed morphological terms or regionally specific terms is encouraged where desired by the user.




2.2.4 Plain classification

The plain classification toolset can be utilised where the user desires a separate reef and plain classification. Once the plain polygon area has been determined from the landform classification procedure, the DEM extracted over these areas can be used to generate a detailed classification of prominent inferred soft-sediment features within the plain.

Plain landforms are defined using finescale and broadscale BPI, creating classes including: plain high, plain low, localised high, localised low and plain flat. The plain classification is designed to be performed on areas of DEM data extracted from the classified ‘plain’ features (i.e., excluding other landform areas).

This classification is an optional procedure which intends to capture additional detail across the plain area for users focused on the inferred sedimentary environment. The plain classification is categorised as an ‘optional’ step as it is not required to be run in sequence for other subsequent scripts to operate. It is, however, an important component of the classification approach, and is recommended to be performed in areas of complex soft sediment morphology. Vast areas of continental and island shelf systems are characterised by plain landscapes, and the plain classification method can extract fine and broadscale features within this environment for the user to interpret.

Feature terms utilised in the plain classification (e.g. localised high) are intentionally generic so the user can apply or describe features based on site specific interpretations. “Low” features in the plain classification are similar to the “depressions and channels” features in the main landform classification in that they are both defined using BPI. However, “depressions and channels” in the main landform classification are characterised as occurring within rugose outcrops, and broadscale and finescale low classes are combined. In the plain classification, finescale (localised) and broadscale high and low features are retained, and ruggedness and slope variables are removed as they were determined as less effective at capturing the detailed surface variation of generally smoother plain environments.

Examples of the plain classification are provided for offshore of Ballina and Crescent Head, NSW using the statewide marine lidar 2018 dataset.





2.3 Application of toolset to varied data scenarios

To further assess the performance of the Seabed Landforms Classification Toolset and determine suitable settings, the classification approach was applied to a range of varied bathymetric data scenarios including data representing different: 1) data sources (multibeam and marine lidar); 2) environmental seascapes; 3) data resolutions (2, 5, 10 and 20 m cell size), and: 4) data preparation treatments (with and without data smoothing). Data preparation methods and tool settings were adjusted to assess the suitability of the tools to diverse environmental seascapes across varied data scenarios.

Firstly, the toolset was explored using datasets sourced from different remote sensing technologies including multibeam and marine lidar which were acquired using varied acquisition and processing systems, sensors and vessels. Selected areas from the NSW marine lidar were examined (Moruya, Long Reef, Ballina, Crescent Head), together with multibeam data collected at Shellharbour by DPE, marine lidar data collected offshore of Perth, Western Australia (WA) by WA Department of Transport (Western Australia Department of Transport, 2017), and multibeam data collected around Middleton Reef by the National Environmental Science Program (NESP) with Geoscience Australia (Figure 1, Carroll et al., 2021). The variation in input data sources allows for an exploration of settings relating to noise correction, particularly regarding the level of smoothing for noise artefacts.

Secondly, data collected from different environmental seascapes were utilised to explore the effectiveness of the tools at capturing a variety of outcropping shelf features across diverse environments (see Figure 1). Areas along the NSW coast and offshore, including Moruya, Long Reef and Shellharbour provide examples of rocky reefs outcropping from a surrounding sediment plain (Kinsela et al., 2022). The sediment plain is further examined with Ballina and Crescent Head marine lidar data classified using the optional plain classification functionality. The Shellharbour dataset represents similar features to those observed at Moruya and Long Reef from the statewide marine lidar, though is instead captured with a multibeam sensor and extends to deeper waters down to 64 m depth. Offshore of Perth, WA, submerged landforms may represent drowned Quaternary fossilised barrier and dune sequences, as described in this setting by Brooke et al. (2014). The submerged ridge and mound features surrounding the atoll-like Middleton Reef are of undetermined origins, though appear similar in morphology to drowned fossils reefs observed on the nearby Lord Howe Island shelf, which occur further south in the island-reef chain offshore of NSW (Carroll et al., 2021).

Furthermore, the adjustment of tool settings in relation to input resolution was examined. The highest resolution dataset was represented by the Shellharbour data (2 m), and this data was re-gridded (down-sampled) to 5, 10 and 20 m to explore how input settings change with resolutions. Resolutions beyond 20 m were not explored as the toolset is designed for higher-resolution data that is typically collected in nearshore and shelf settings. Data from the other case study areas ranged from 3 to 5 m cell size (Table 5).


Table 5 | Classification settings for NSW marine lidar selected areas (Moruya, Long Reef, Crescent Head, Ballina), Shellharbour multibeam data (NSW Department of Planning and Environment, DPE), Middleton Reef multibeam data (Geoscience Australia, GA) and Perth marine lidar (Western Australia Department of Transport).



Finally, different data treatments to the input bathymetric data were applied to explore the effect of smoothing. The toolset was applied to each of the Shellharbour datasets (cell size 2, 5, 10 and 20 m) without smoothing, and with the default level of smoothing of three iterations of a median filter. Examining optimal settings for data at a range of resolutions, with and without smoothing applied, provides a guide for users when exploring their own datasets. For the remaining datasets, the most appropriate smoothing treatment was applied to optimise the output classification.





3 Results



3.1 DEM preparation

The NSW marine lidar data was clipped to 0 m elevation (Australian Height Datum) to remove land features, and three iterations of data smoothing was applied due to the increase in speckled noise in deeper waters. Increased noise in turbid or deeper waters is common in marine lidar datasets due to the reduced capacity for laser penetration which results in fewer data points captured (Quadros, 2013). Three iterations of smoothing with a median filter using the ‘Smooth DEM’ tool were shown to improve the noise within the DEM and derived variables (Supplementary Figure 1).




3.2 Surface element classification

The example areas from the marine lidar datasets were classified using the same threshold settings due to the similarities in scale and expression of features, data quality and input resolution (5 m cell size, Table 5). The default ruggedness value of 0.00005 was slightly adjusted to 0.00008, with all other default settings for BPI and slope remaining. The default settings were developed to apply to the entire statewide marine lidar dataset and therefore represent generic settings, however the value has been slightly adjusted in this case to best exemplify reef extent in these areas. In the example of Moruya data (Figure 3), ruggedness effectively captures the prominent rugose outcrop and channels within the outcropping surface. The drainage surface highlights narrow channels on the outcrop surface, which are largely captured as ‘low’ smooth or rugose features at fine and broad scales within the surface elements and summarised surface elements classifications (Figure 4). The uppermost parts of the outcropping rugose feature are captured as ‘peaks’, with limited slope areas on the edges of the outcrop due to the relatively low-profile nature of the rugose outcrop (~ 10 m in relief at peak of structure from the surrounding plain).




Figure 3 | Input terrain variables and reclassification thresholds for Moruya, NSW lidar data. Continuous data shown on LHS, with reclassified data shown on RHS; (A) lidar bathymetry; (B) slope as continuous data (LHS) and reclassified at 10 degree threshold (RHS); (C) ruggedness as continuous data (LHS) and reclassified at 0.00008 (RHS); (D) ruggedness as continuous data (LHS) and reclassified at 0.0005 (RHS); (E) finescale BPI as continuous data (LHS) and reclassified at -100 and 100 (RHS); and (F) broadscale BPI as continuous data (LHS) and reclassified at -100 and 100 (RHS).






Figure 4 | Surface element and drainage classifications for Moruya, NSW lidar; (A) lidar bathymetry; (B) theoretical surface drainage showing dominant pathways; (C) surface elements classification (BS, broadscale; FS, finescale); (D) summarised surface elements classification with grouped classes for ease of use.






3.3 Landform classification

The landform classification carries the summarised surface element terms across to form preliminary landform terms, to be reviewed and edited by the user. Preliminary landform labels for the Moruya and Long Reef example areas are shown in Figures 5, 6 respectively, with required and optional landform edits indicated.




Figure 5 | Landforms classification for Moruya, NSW lidar; (A) lidar bathymetry and (B) preliminary landforms; (C) lidar bathymetry of example classification area; (D) preliminary landforms layer as output from classification toolset, requiring manual review and editing; (E) seabed landform classification finalised with required level of manual editing and review; (F) seabed landform classification finalised with additional optional level of manual editing and review. Small polygons eliminated <100 m2.






Figure 6 | Landforms classification for Long Reef, NSW lidar; (A) lidar bathymetry and (B) preliminary landforms; (C) lidar bathymetry of example classification area; (D) preliminary landforms layer as output from classification toolset, requiring manual review and editing; (E) seabed landform classification finalised with required level of manual editing and review; (F) seabed landform classification finalised with additional optional level of manual editing and review. Small polygons eliminated <100 m2.



A minimum level of manual reviewing and editing is required, including removing estuary extents (if applicable), and reviewing all class labels, ‘noise’ polygons, and polygons at the edges of the dataset. Polygons which form part of the reef/bank structure may be classed as ‘plains’ where they occur at the boundary of the dataset, as the procedures to identify smooth, flat areas within rugose outcrops require the smooth polygons to be wholly surrounded by a rugose outcrop. Therefore, edges of the dataset must be reviewed to ensure correct attribution of landform label, in addition to all classes which must be reviewed and edited by the user to ensure the classification meets the interpreted feature expression.

Optional manual editing may be performed by the user where additional or modified classes are desired. ‘Reef’ features (inferred hard substrate) may be separated from ‘banks’ (inferred soft substrate), where deeper knowledge of the environment is available. Examples of such editing processes are provided in Figures 5, 6. In these examples, reefs/banks which occur as shore-parallel features (surf zone bars) along the nearshore seabed are inferred as soft sediment banks and may therefore be removed by the user if a reef-only classification is desired. Additional channel features may also be included, which involves cutting and relabeling polygons (‘plain’ polygons or ‘depressions and channels rugose REVIEW’ polygons) to capture channels which may occur between or within reef/bank outcrops. For example, optional editing undertaken for the Moruya dataset captured additional channel features including the central channel which divides the two prominent reef outcrops. The resulting classification is flexible to user requirements, and users may further perform optional manual edits and modify landform terminology as desired.




3.4 Plain classification

In the examples of the plain classification shown for Ballina and Crescent Head marine lidar data, localised and broadscale high and low features are captured (Figure 7). In these examples, the reef outcrops have been separated from the surrounding plain, inferred as soft-sediment areas. “High” features which may have been originally captured as reefs/banks in the main landform classification have been relabelled as part of the plain surface. With the ruggedness and slope variables excluded from the plain classification, features within the plain are characterised by finescale and broadscale BPI which captures detailed surface morphology of these inferred sedimentary environments. The BPI-based plain classification captures complex bedforms that have been interpreted as finer scale sandwaves superimposed on larger sand waves and sand ridges (Kinsela et al., 2023). Scour channels, scour depressions and sand ridges are also captured as localised high and low features.




Figure 7 | Plain classification for Ballina and Crescent Head, NSW marine lidar; (A) lidar bathymetry for Ballina with (B) close-up bathymetry and (C) plain classification; (D) lidar bathymetry for Crescent Head with (E) close-up bathymetry and (F) plain classification. Eliminated small polygons <800 m2.






3.5 Application of toolset to varied data scenarios

The application of the Seabed Landforms Classification Toolset was examined using input data from a range of scenarios including acquisition sources, seascape environments, resolutions and data preparation techniques. Input settings were adjusted to each dataset to optimise the resulting classification (Table 5), which can guide users when examining their individual datasets.

Ruggedness was the key variable which required alteration for each scenario, while slope and BPI variables were able to remain at the default settings. All preliminary landform output layers were reviewed and manually edited with required edits, including reviewing noise polygons, class labels, and polygons at the edges of the dataset, as discussed in Section 3.3. An effective classification of seabed landforms with varied morphologies and expressions was achieved across all areas presented (Figure 8). More extensive manual editing was undertaken for the Moruya, Long Reef, Ballina and Crescent Head where reefs were separated, however minimal manual editing was required to generate the final landforms classification for the remaining areas examined. Across all datasets, the resulting classifications captured both networks of larger reef/bank outcropping features, as well as smaller, isolated patchy reef/bank outcrops and output an effective classification of prominent features.




Figure 8 | Applications of seabed classification to; (A) Shellharbour multibeam landforms classification; with example area (B) Multibeam bathymetry data; and (C) classified seabed landforms with required edits; (D) Middleton Reef landforms classification; with example area (E) Multibeam bathymetry data; and (F) classified seabed landforms with required edits; (G) Perth marine lidar data; with example area (H) lidar bathymetry data; and (I) classified seabed landforms with required edits. Basemaps provided by Esri.



The classification tools effectively translated to varied environments, all occurring within a continental or island shelf setting. In Shellharbour, the method is shown to capture the full extent of broad reef outcrops, which have a platform-type morphology. Channelling is detected within the reef outcrop surface, which could be further incorporated with additional optional manual editing (e.g. Figures 5, 6). Classified “reefs/banks” have reliefs ranging 3 to 6 m from the surrounding plain surface. At Middleton Reef, both narrow and broad ridge-like outcropping features are captured (with reliefs up to 8 m) as well as small, patchy outcrops (1 to 6 m in relief). Broader depressions and channels occur as distinct from the outcropping reef/bank feature. “Reefs/banks” features were further differentiated into ridges and mounds in subsequent analysis of the classified dataset by Carroll et al. (2021), where landform terms were aligned to Dove et al. (2020), which outlines a more comprehensive suite of seabed morphological feature terms. The ability to easily adapt the output classification terms as needed demonstrates the flexibility of output classification to meet varied user requirements. In the resulting classification of the Perth dataset, parallel (sub-parallel) elongate ridge-like reefs/banks are effectively captured, with outcrops ranging 1 to 4 m in relief. Using the settings applied here, broader banks inshore (Figure 8G) are less effectively captured to their full extent, and a lower ruggedness setting could be employed to capture a greater extent of these features if desired.

In terms of implementation of the toolset with different data acquisition sources, the main consideration is whether or not to apply smoothing. Typically, bathymetry data sourced from marine lidar may require additional smoothing to reduce noise artefacts (e.g. Supplementary Figure 1). Different smoothing treatments were applied to the multibeam data, with smoothing applied to Middleton Reef dataset and no smoothing applied to the Shellharbour dataset. This resulted in examples with and without smoothing for marine lidar data sources (NSW examples and Perth), as well as multibeam sources (Shellharbour and Middleton Reef).

The application of smoothing, regardless of input source data, alters the ruggedness threshold required. With increased iterations of smoothing, it was shown that the ruggedness threshold needs to be lowered accordingly (Table 5). For the 2 m Shellharbour DEM, a ruggedness threshold without smoothing of 0.0001 is lowered to 0.00008 when smoothed with three iterations. This is due to the nature of the smoothing calculation, which reduces the ‘roughness’ of the surface and therefore the ruggedness value needs to be lowered with each smoothing iteration accordingly. In the Shellharbour example (Supplementary Figure 2), smoothing may not be preferred where reef outcrops are the focus output (i.e. if the user ultimately wants to separate inferred reef from inferred banks). Excess smoothing can reduce the effectiveness of the ruggedness threshold at capturing reef edge, and can introduce more inferred soft-sediment banks, as can be seen in the smoothing of 20 m dataset (Supplementary Figure 2F).

Input resolution was explored using the Shellharbour multibeam re-gridded from 2 m to 5, 10 and 20 m. As the input cell size coarsened, the ruggedness value was lowered to capture a similar extent of rugose outcrops (Supplementary Figure 2). For the 2 m DEM, a ruggedness threshold of 0.00008 was determined suitable, decreasing to 0.00001 for the 20 m DEM. In this example, input cell size does not seem to alter the BPI window scales and thresholds outside the default tool settings (Table 5). While BPI thresholds will vary based on the spatial extent of data, distribution of depths within the data, and occurrence of sharp gradient shifts, overall, the settings for BPI appear largely robust to changing input resolutions for an individual survey.

Overall, it was found ruggedness is the most critical variable to alter with varied input datasets and preparation treatments as the threshold value has the greatest impact on the extent of reef/banks captured. BPI and slope can also be adjusted as needed, though remained the same across the areas presented due to the similarities in the magnitude of features mapped in the examples presented.





4 Discussion

The new classification procedure we have presented as part of the Seabed Landforms Classification Toolset provides users with a whole-landscape classification of prominent shelf landform features. The semi-automated nature of the procedure results in improved efficiency when undertaking seabed classifications, which can be applied more readily to largescale datasets. A number of example areas have been presented to demonstrate tool performance, with notable seabed features shown to be effectively captured across a diverse range of data input scenarios, including varied acquisition sources, environments, resolutions and data preparation settings.



4.1 Effectiveness of classification approach

The use of the ruggedness variable is central to the classification approach presented, forming the basis of the delineation of reef/bank outcrops. Reef/bank features, as presented here, are an aggregate landform term which can encapsulate shelf features referred to in other terms such as platforms, ridges, hills and mounds (e.g. Dove et al., 2020). Ruggedness has shown to be a useful measure for seascape characterisation (Johnson et al., 2017; Linklater et al., 2019; De Oliveira et al., 2020) and this study lends further support to its application in identifying the boundaries of reef outcrops. The introduction of the noise correction procedures through the toolset further enhances the application of ruggedness, as noisiness in the data, which may have previously limited the use of ruggedness in identifying reefs, can be largely addressed. When integrated together with slope, finescale and broadscale BPI, this study has shown the successful characterisation of the key components of a seascape across a range of example areas. The outcropping structures are delineated into a suite of landform terms, which adds meaningful delineations of the surface structure into classes such as scarps and peaks, which can be used for subsequent interpretations and analysis of the dataset. While a more detailed suite of morphological terms may be applied through methods or classification schemes outlined in other studies (e.g. Dove et al., 2020), the more limited suite of terms employed in this study aims to aggregate key features into a practicable set of terms which can be used to classify the entire seascape surface.

With concerted efforts to map seafloor bathymetry at regional (e.g. SeaBed NSW), national (e.g. Australian HydroScheme Industry Partnership Program, Houston, 2020) and global (e.g. SeaBed 2030, Mayer et al., 2018) scales, the semi-automated toolset holds great potential for extracting key landform features. The morphology-level characterisation of the seascape into ‘landforms’ breaks up the surface into components based on surface variation, and therefore does not require ground-truthing validation data as would be required for geomorphology, substrate or benthic habitat maps. It is therefore an ideal first product from bathymetry data collected where ground-truthing data may not be present. Where ground-truthing data is available, the delineated boundaries of landform features may be validated, and the landform classification may be integrated together with substrate or biota classifications to generate maps of seabed geomorphology or benthic habitat (e.g. Linklater et al., 2019). Detailed seabed landform classifications can be applied to wide-scale datasets, such as the SeaBed NSW program, which can in turn contribute towards consolidated seabed mapping products at national scales (e.g. SeaMap Australia, Lucieer et al., 2019).




4.2 Semi-automated approach

The classification workflow is broken down into a set of 10 practical steps for users to apply and review. The use of the toolset will significantly reduce the time required for manual editing, particularly of large bathymetry datasets, and applies a consistent scheme which is less subjective than manual digitisation approaches. The incorporation of a manual component of reviewing and editing features in order to progress to the final landforms classification stage provides this opportunity for expert review, which is necessary to ensure the feature boundaries and terms reflect the users requirement. The semi-automated nature of the methods balances the need for automation due to ever-increasingly high volumes of data, together with the importance of expert interpretation.

Within the seabed mapping community, there is a growing effort toward automation (Lecours et al., 2018) an identified interest in adopting semi-automated classification procedures from users who do not currently employ them in their current workflows (Dove et al., 2019). Available skills, transparent workflows and inconsistencies in standards for terms and procedures were identified as barriers to adopting semi-automated workflows (Dove et al., 2019). These tools are designed to address these barriers of seabed classifications for new users. The design of these tools as an ArcGIS toolbox assists in increasing the accessibility of the tools to the seabed mapping community, utilising ruggedness from the BTM toolbox (Walbridge et al., 2018) as well as functionality within Geomorphometry and Gradients Metrics Toolbox (GGMT), (Evans et al., 2014). Ruggedness is integrated into the workflow to optimise delineations of reef outcrops, and additional steps are incorporated to address and minimise noise and identify the full extent of reef outcrops. Standardised seabed morphology terms (IHO, 2019; Dove et al., 2020) are incorporated, and Python scripts associated with the ArcGIS toolbox are accessible to users, providing a completely transparent methodology.

The toolset presented contributes towards a standardised methodology and symbology for geomorphometric and geomorphological analysis, which has been identified as a key area of focus for the marine geomorphometry community (Lecours et al., 2016). The tools are designed to be accessible to a broad range of GIS users, enabling a wider adoption of marine geomorphometric analysis into the workflows of users interested in performing seabed classifications.




4.3 Targeting classification approach to varied scenarios

A range of bathymetry datasets were presented to exemplify how the tools can be applied across varied shelf environments and data input scenarios, with the classification approach shown to translate effectively across all scenarios with adjustments to input settings. Bedrock rocky reef outcrops along the NSW inner and mid shelf (i.e. Moruya, Long Reef, Shellharbour, Figures 5, 6, 8) were successfully captured by the classification toolset, as well as dynamic soft-sediment bedforms of the northern NSW coast (Ballina, Crescent Head, Figure 7). It can also be effectively applied to submerged ridges offshore of Perth, WA, and submerged features on the shelf surrounding Middleton Reef (Figure 8). In the case of the Middleton Reef landform classification, further analyses undertaken by Carroll et al. (2021) modified the output “reef/bank” label to “mounds/ridges”, demonstrating the ability of the landform terms to be customised to individual user-needs.

The plain classification approach has been effectively applied to capture detailed bedforms within the plain landscape, with examples provided in this study and Kinsela et al. (2023). Classified plain features offshore of Ballina, NSW, aided in the interpretation of sedimentary features by Kinsela et al. (2023) and assisted in assessing the depositional or erosional origins and interactions of features.

The classification toolset intentionally applies a more limited suite of terms to the final classified landforms to aid simplicity for end-user interpretation. However, additional analysis such as depth reclassification into depth intervals or slope reclassification into gentle, moderate and steep slopes, for example, is encouraged. Such analyses are complementary to the classification and can be integrated into the final landforms output where desired by the user.

With adjustments to input settings and data smoothing (Table 5), the classification approach was shown to perform well with data from different acquisition sources (marine lidar and multibeam) and resolutions (2, 5, 10 and 20 m cell size). Ruggedness is the main variable that requires adjustment of the threshold value, with particular attention needed when smoothing the DEM. As resolution coarsens or as the level of smoothing iterations increase, the ruggedness threshold needs to be lowered accordingly. While each dataset needs to be assessed individually, generally marine lidar datasets or satellite-derived bathymetry may be more likely to require smoothing due to speckled noise artefacts that can occur, particularly in deeper and turbid waters.

Exploration of scale is an important factor in seabed analysis (Lecours et al., 2016; Misiuk et al., 2021), and the toolbox presented enables users to adjust scale through the finescale and broadscale BPI variables to suit features of interest/environment. The transparency of the toolset allows for explicit comparison of the varied outputs when altering scale and resolution input settings, as well as other factors which may influence the output classification (e.g. data smoothing).

The toolset presented was developed for open coast, nearshore and shelf seabed data and has not been explored outside these environments. Data resolutions were tested up to 20 m with source depth data equivalent to 20 m point spacing or less. Tool performance on source point data greater than 20 m spacing or interpolated datasets have not been tested. Procedures to reduce noise were incorporated into the classification, which can reduce noise artefacts where speckled noise is present. Such techniques may be less effective where more pronounced noise artefacts occur, such as nadir or edge effects, or roll and heave artefacts which are sufficiently large to be captured by the user-defined ruggedness noise threshold.

All scripts are available within the Seabed Landforms Classification Toolbox should the user require to view or modify the scripts to target individual user requirements.




4.4 Standardising seabed classifications and terminology

Recent developments have focused on creating a standardised approach to classifying the marine seascape, including shelf settings, with Mareano-Infomar-Maremap and Geoscience Australia (MIM-GA) drafting an international framework for marine feature terms (Dove et al., 2020; Nanson et al., 2023). This classification extends the international and national schemes which have attempted to create a unified set of terms that are consistently applied to shelf environments (Greene et al., 1999; Galparsoro et al., 2012; Johnson et al., 2017; IHO, 2019). The suite of terms developed by Dove et al. (2020) provides a comprehensive suite of morphological terms and selected terms applied here, together with terms from the International Hydrographic Organization (IHO, 2019), where appropriate.

Aggregate terms, such as ‘reefs/banks’ and ‘depressions and channels’, were applied here to simplify the classification process and output for users. The challenge with the reef outcrops described along the NSW coast in the lidar and multibeam is that they exhibit a diverse range of shapes and configurations, often as amorphous reef outcrops. Furthermore, the scope of coverage in the case of reefs mapped by the NSW DPE SeaBed NSW lidar and multibeam mapping program, means that aggregate terms are helpful due to the scale of data to be classified. This approach attempts to provide a classification suited for most types of data, where users are attempting to capture the dominant visible features within a seascape, and has applied terms that are commonly used and interpretable by users while also meeting definitions and criteria within the literature and international standards (IHO, 2019; Dove et al., 2020). The polygons defined in this process can be further analysed to separate reef patches and other features into more specific terms, such as hills, mounds, ridges and platforms (e.g. Dove et al., 2020; Carroll et al., 2021). Additional optional manual editing can also be undertaken to further separate depressions and channels into more specific features such as sinuous or straight channels, troughs, crevices, as per Linklater et al. (2019). Overall, the classification approach presented is intended to strike a balance between automation and expert interpretation, and furthermore balances the need for standardised methods with flexibility of individual user-requirements. This toolset contributes toward the standardisation of seabed classification and marine geomorphometric methods and encourages accessibility of methods to new users interested in introducing semi-automated workflows into seabed classification approaches.





5 Conclusions

The Seabed Landforms Classification Toolset offers a semi-automated and effective procedure designed to classify prominent shelf features on continental and island shelf settings. The classification approach generates a ‘landform’ classification of the entire seascape, defining polygon boundaries for morphological features including reefs/banks, peaks, scarps, plains, and depressions and channels. The terms and classified output are customisable to the user’s needs, and the method incorporates manual review and editing to balance the benefits of automation with the benefits of expert interpretation. Optional functionality is included to classify the detailed bedforms of plain areas, as well as additional functions to prepare the digital elevation model and assist in seascape classification and interpretation. The toolset is designed to be accessible to users within the seabed mapping community, offering a user-friendly approach to generate a detailed shelf seabed feature classification which can provide critical foundational information for marine and coastal management, research and planning.
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Bottom trawling is a fishing method that involves towing of nets along the seafloor to catch demersal species. The dragging of trawling gears along the seafloor results in scraping and ploughing of the surficial sediments, leading to the formation of turbid plumes of resuspended sediments and causing measurable changes in the seabed morphology. High-resolution multibeam data, side scan sonar, sediment grain size and vessel tracking data have been used to investigate the impact of bottom trawling on the seafloor morphology and surficial sediments of the northern Catalan continental shelf (NW Mediterranean), providing new insights into the impact of this anthropogenic activity on the seafloor. Multibeam data evidenced the occurrence of large-scale erosive features as a consequence of repeated scouring by fishing gears in localized areas. They are characterized by elongated (70-300 m wide and up to 8 km long) channelized areas of high backscatter with variable incision (from 0.2 m to 1.2 m). The spatial distribution of these morphologies shows a similar pattern to that observed in the fishing intensity, with maximum values in the areas of increased trawling intensity, corresponding to the main fishing grounds. Side scan sonar data also shows higher densities of trawl marks in these areas than in the surroundings. Sediment cores collected on these features show an upward-coarsening trend in the first 4-5 cm of the core, suggesting that part of the finer fraction resuspended by trawling is winnowed, increasing the sand content of the surface sediment. The identification of such large erosive morphologies in the main fishing grounds evidences that repeated trawling over the same fishing ground during decades can result in deep excavation of the seafloor, leading to permanent large-scale morphological changes. Furthermore, the evolution of these erosive features over a 13-year interval points towards long recovery periods after the cessation of trawling activities.
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1 Introduction

Bottom trawling is a fishing method that involves dragging heavy nets along the seabed to catch demersal species. It is recognized as one of the most widespread anthropogenic activities affecting the seabed, particularly on the continental shelf (Eigaard et al., 2017). Globally, about 22 million km2 of the seafloor is affected by commercial trawling each year (Halpern et al., 2008), mostly (61%) on continental shelves (Oberle et al., 2016a). Commercial trawling has direct impacts on benthic fauna and their habitats (Watling and Norse, 1998). In the Mediterranean Sea, the trawling footprint in shallow areas (<200 m) ranges between 57 and 86% (Eigaard et al., 2017). Aside from the impacts on benthic communities, bottom trawling gear has direct physical effects on the seafloor itself. The bottom trawl consists of a large conical net with a funnel-shaped mouth and a small closed end (cod end). The mouth of a trawl net has two weighted trawl doors (otter boards) that help to keep the net open horizontally and provide stability. In addition to the trawl doors, the bottom of the net consist of a thick weighted steel cable (footrope) that remains into contact with the seabed during trawling (Figure S1). The dragging of trawling gears along the seafloor results in scraping and ploughing of the surface sediments. The trawl doors erodes the seabed, creating centimeter to decimeter-scale furrows, known as trawl marks (Krost et al., 1990). In addition, the ground rope and weights of the trawl gear can cause scouring and flattening of the seabed, particularly on muddy substrates (Churchill, 1989; Jones, 1992; Martín et al., 2014). Bottom trawling also leads to sediment resuspension, contributing to the formation of turbid plumes and persistent nepheloid layers, principally when it is conducted over fine-grained sediments (Black and Parry, 1994; Pilskaln et al., 1998; Palanques et al., 2001; Durrieu de Madron et al., 2005; Palanques et al., 2014). Over larger spatial scales, high-resolution multibeam data on steep submarine canyon flanks revealed a general flattening and homogenization of the deep seafloor relief in heavily trawled areas, suggesting that recurrent trawling over the same fishing grounds would also result in a reduction in the morphological complexity (Puig et al., 2012).

The physical impact of bottom trawling on the seafloor morphology can be observed using acoustical and/or optical imaging systems such as side scan sonar, multibeam echosounder and underwater footage (see review by Oberle et al., 2018). In side scan sonar images and high frequency multibeam echosounder backscatter data, the trawl marks are visible as distinct reflectivity tracks or furrows across the seabed. These marks can be observed over large areas and in high densities, thus providing a visual representation of the extent and intensity of trawling activity in a fishing ground (Schwinghamer et al., 1998; Friedlander et al., 1999; Humborstad et al., 2004; Malik and Mayer, 2007; Smith et al., 2007). Remotely Operated Vehicle (ROV) footage provide a close-up view of the seabed, allowing for the identification and differentiation of small-scale features caused by bottom trawling gear. These features include furrow marks from trawl doors; scrape marks from sweeps and trawl wires; local accumulations of sediment displaced and piled up by the action of bottom trawling; and topographical flattening by the trawling nets (Smith et al., 2000; Humborstad et al., 2004; Smith et al., 2007).

The degree of environmental perturbation produced by bottom trawling on the seafloor largely depends on the design and rigging of the gear, its weight, the towing speed, the type of sediment and the local hydrodynamics such as tidal currents, waves or storms (Lucchetti and Sala, 2012; Buhl-Mortensen et al., 2013; O’Neill and Ivanović, 2016). Shellfish and tickler chain beam trawls can penetrate deeper into the sediment than otter trawls and seines (Buhl-Mortensen et al., 2013). The penetration of the trawling gear into the seabed is higher in muddy sediments and the persistence of trawl marks is longer (Krost et al., 1990; Smith et al., 2007). Indeed, trawl marks can persist a few days in coastal sandy areas (Depestele et al., 2016) but up to a few years in rather deeper muddy environments (Palanques et al., 2001; Gilkinson et al., 2015).

The patterns, persistence and degradation of trawl marks in coastal and shelf areas have been intensively studied during the last years because of their interest in estimating the fishing effort and assessing the physical impact of bottom trawling on the seabed (Palanques et al., 2001; Gilkinson et al., 2015; Depestele et al., 2016; Buhl-Mortensen and Buhl-Mortensen, 2018). However, evidence of the physical impact of bottom trawling over larger spatial and temporal scales on continental shelf environments remains poorly constrained (e.g., Oberle et al., 2016a; Oberle et al., 2016b). This study aims to fill this gap by investigating the impact of recurrent bottom trawling on the continental shelf seafloor morphology based on the analysis of high-resolution multibeam data (bathymetry and backscatter), side scan sonar, sediment grain size and vessel tracking data. The study focuses on the northern Catalan continental shelf in the NW Mediterranean Sea (Figure 1), where intense bottom trawling has been occurring for a long time.




Figure 1 | Shaded-relief colored multibeam bathymetry of the Catalan continental margin (4 m grid size) including the morphological interpretation by Durán et al. (2014). MPA, Marine Protected Area of the Cap de Creus Natural Park. Topographic data and orthophoto from the Institut Cartogràfic i Geológic de Catalunya (www.icgc.cat).






2 Study area

The study area extends from the north of the Cap de Creus Peninsula, to the Montgrí promontory, and is affected by fishing activities from Llançà, Port de la Selva and Roses harbors (Figure 1). The continental shelf has a complex morphology and a highly variable width, mainly related to the irregular morphology of the coastline (capes and bays) and the presence of the Cap de Creus submarine canyon (Canals et al., 2004). The shelf is narrower off the Cap de Creus headland (2.6 km) because of the proximity of the southern rim of the submarine canyon to the shore, and it is wider off Roses Bay (up to 30 km), with the shelf edge located at 110-140 m water depth (Durán et al., 2014). The seafloor relief on the inner shelf (down to 60 m depth) displays high variability; it is irregular off the rocky coast north and along the Cap de Creus Peninsula, but it is markedly homogeneous in Roses Bay, where the Muga and the Fluvia rivers discharge (Figure 1). The middle and outer shelf off the Cap de Creus Peninsula is characterized by a large area of rocky outcrops partially covered by very coarse sediment (ITGE, 1994; García-García et al., 2012; Lo Iacono et al., 2012). Erosive features, such as rocky outcrops, lineations, elongated and oval depressions, and obstacle marks dominate this area (Durán et al., 2014). Off Roses Bay, a N–S oriented, 18 km-wide area of silty sediment extends from the Cap de Creus Peninsula southwards along the mid-shelf (Figure 1) (Lo Iacono et al., 2012; Durán et al., 2014). The main seafloor feature observed in this area is a NNE–SSW oriented shallow channel that connects the eroded shelf offshore the Cap de Creus Peninsula with the Palamòs Canyon head, located southward of the study area (Lastras et al., 2011; Durán et al., 2014). At the outer shelf, the sediment is composed of medium and coarse sand or detritic bioclastic gravels interpreted as relict facies (Ercilla et al., 1994; Lo Iacono et al., 2012).

The Catalan coast is microtidal with a tidal range of less than 0.2 m. Wave climate has a seasonal pattern, with severe storms in late autumn, winter and early spring. Waves come mainly from the NNW-N and E, with the eastern storms being the most energetic ones due to the longer fetch. Northerly storms are triggered by the strong, cold and persistent northern wind (known as Tramuntana) that occurs mainly in winter. During the largest easterly storms, wave peak periods of 13 s and maximum significant wave heights of up to 7 m can be reached (Gómez et al., 2005; Sanchez-Vidal et al., 2012). These high energetic eastern storms trigger an intense alongshore current towards the south (MOPU, 1979; DGPC, 1986). The general circulation is dominated by the geostrophic Northern Current, which form a 30-km wide meandering stream that flows southward along the continental shelf break and slope (Millot, 1999), eventually entering into the continental shelf (Font et al., 1995). It moves at speeds of up to 35 cm s-1 near the surface (Durrieu de Madron et al., 1990), generating a dominant south-westward transport of suspended sediment (Arnau et al., 2004).

In the northwestern Mediterranean Sea, bottom trawling is widely distributed over the continental shelf, showing a heterogeneous distribution pattern with intensive bottom trawling in localized regions (Kroodsma et al., 2018). In the study area, up to 29 bottom trawlers from the abovementioned fishing harbors, operate over the same fishing grounds year-round on a daily basis, except for weekends, holidays, and during stormy periods, conducting multiple hauls each day. Trawlers are relatively small (20-28 m in length), with gross tonnage varying from 57 to 178 Gt (Table S1). The most commonly used fishing gear is the “otter trawl”, which involves deploying nets over the stern that are kept open horizontally using otter boards that generate big footprints on the seafloor (Eigaard et al., 2016).

Bottom trawling is allowed throughout the whole study area, albeit with some exceptions, such as the areas shallower than 50 m water depth and the coastal area around the Cap de Creus Peninsula. According to the Order of 30 July 1975 (BOE-A-1975-17128), implemented in 1988 (Spanish Royal Decree 679/1988; BOE-A-1988-16647), bottom trawling on the Spanish Mediterranean continental shelf is banned at depths shallower than 50 meters. This regulation was further implemented in Catalonia in 1999 (BOE-A-1999-4185), extending the restriction to the three nautical mile coastal boundary or within the 50 m isobath when this depth is reached at a shorter distance. In the study area, these boundaries vary throughout the year, being 50 m between September and March and 75 m between April and August. Trawling was particularly banned in the coastal area around the Cap de Creus Peninsula in 1998, after the Cap de Creus Natural Park was established by the Autonomous Government of Catalonia through Law 12/1985. The Cap de Creus Natural Park covers an area of 138 km2, 22% of which corresponds to the marine area that is included in the network of Marine Protected Areas (MPAs) under the framework of Natura 2000.




3 Data and methods

The assessment of the impact of bottom trawling on the Roses continental shelf is based on the interpretation of multibeam echosounder data (swath bathymetry and backscatter), side scan sonar, sediment cores grain size and vessel tracking data (Figure 2).




Figure 2 | Shaded-relief map of the Catalan continental shelf including the multibeam bathymetry coverage acquired in two surveys (2004 and 2017) and the location of side scan sonar data and sediment cores. Topographic data and orthophoto from the Institut Cartogràfic I Geológic de Catalunya (www.icgc.cat).





3.1 Bathymetry

Swath-bathymetry covering the whole continental shelf was acquired in 2004 as part of the ESPACE Project “Characteristics of the systematic study of the Spanish continental shelf and upper slope” by the Spanish Institute of Oceanography, using a Kongsberg EM-3000D multibeam echosounder (Figure 2). The EM-3000D is a system with two sonar heads, each of them with a swath width of 130°. This system uses 254 beams and was operated at a frequency of 300 kHz to assure a narrow beam width (1.5°) and a maximum ping rate of 40 Hz, resulting in a depth accuracy of 5 cm root mean square. Sound velocity profiles (SVP) were collected to correct the acoustic data for water-column sound speed variations. An Octans Inertial Measurement Unit was used for motion corrections and a DGPS provided vessel position during the cruise. A new swath bathymetry was obtained in 2017 by the company GEOMYTSA using a RESON SeaBat 8101, as part of the project “Extension of the marine geophysical survey to a depth of 100 m between the port of Barcelona and Portbou (Girona)” commissioned by the General Subdirectorate for Coastal Protection of the Spanish Ministry for Ecological Transition and the Demographic Challenge. The SeaBat 8101 operates at a frequency of 240 kHz, using 101 beams (beam spacing 1.5°). The surveyed area in this cruise covered the middle continental shelf from 45 m to 115 m water depth (Figure 2). The 2004 survey was used to describe the morphology and backscatter characteristics of the study area whereas the 2017 survey was used to compare both datasets and assess morphological changes.

Post-processing of multibeam data (including correction for heading, depth, pitch, heave and roll) collected during the 2004 survey was conducted using the Teledyne CARIS HIPS and SIPS TM 11.7 Hydrographic Data Processing System. Tidal and sound velocity corrections were applied and the sounding data were cleaned to remove erroneous soundings. Filtered soundings were gridded into 4 m resolution bathymetric surface, providing 100% coverage of the swathed seabed. Backscatter data was processed with QPS Fledermaus software using the Geocoder algorithm for radiometric and geometric corrections, and mosaicking. The original time series registered by the multibeam sonar were corrected for beam pattern and angle varying gains (AVG) using a window size of 300, with a range of normalization between 30° and 60°. The intensity was filtered between 0 and -70 dB. No range filters were applied during processing. Backscatter strength, often measured in decibels (dB), is a measure of the amount of acoustic energy scattered from the seafloor back to the transducer. It depends not only on the environmental and system properties, but also on several seabed characteristics (Collier and Brown, 2005). Main seabed factors include seabed topography (slope), micro-topography, heterogeneity within the near-surface sediments, biotic elements, and sediment characteristics (grain size and sorting or shell content), among others. Therefore, its correlation to grain size is not straightforward (Gaida et al., 2019). In this work, backscatter imagery was used to qualitatively interpret sediment type, based on previous works in the study area (ITGE, 1994; García-García et al., 2012; Lo Iacono et al., 2012; Durán et al., 2014; Durán et al., 2017) and bottom sediment samples. According to this information, in seabed areas with homogeneous relief (no significant variations in slope), fine sediments typically result in weaker backscatter signals (dark tones in the backscatter imagery), while coarser sediments tend to produce stronger backscatter responses (light tones in the backscatter imagery).

Bathymetric and backscatter data were integrated into a geographic information system (QGIS) for the morphological analysis. Bathymetric data from the 2017 survey were processed using HYPACK HYSWEEP® software and provided as a 5 m bathymetric grid by GEOMYTSA. Final maps were projected into Universal Transverse Mercator projection zone 31 N (UTM 31N) in the European Terrestrial Reference System 1989 (ETRS89).




3.2 Side scan sonar

Side scan sonar (SSS) data were collected in the Roses continental shelf in September 2017 aboard the R/V Sarmiento de Gamboa. The side scan sonar used was the deep-towed large-scale Edge-Tech 2400-DSS/DT-1 system, emitting at a frequency of 120 kHz (Figure 2). Side scan sonar records were visualized and analyzed using the SonarWiz software from Cheasepeake Technology. Trawl marks identified and mapped in the side-scan sonar data using SonarWiz were incorporated into the geographic information system to determine density and direction.




3.3 Sediment cores

Sediment cores were also collected during the ABIDES-ROV cruise in 2017, using a HAPS bottom corer (Figure 2). Sampling locations were selected based on the spatial distribution of the areas of high backscatter observed in the 2004 bathymetric survey. A total of 18 sediment cores were retrieved in the Roses Bay (12 cores) and off Llançà (6 cores). The upper 10 cm of each sediment core were subsampled at 1 cm intervals. Grain size fractions were determined using a Horiba Partica LA-950V2 particle-size analyzer, with an accuracy of 0.6% and 0.1% precision. Prior to this analysis, 1–4 g of each sample were oxidized using 20% H2O2 for a week and then left overnight with a solution of P2O7- to disaggregate the sediment particles.




3.4 Fishing activity

The bottom trawling activity in the Llançà continental shelf during the study period (2005-2017) was obtained using data from the satellite-based tracking Vessel Monitoring Systems (VMS) provided by the Fishing Monitoring Centre of the Spanish Secretariat of Maritime Fishing (SEGEMAR). Since VMS data is broadcasted and stored in 2-hours intervals, vessel tracks were interpolated to 10-minute intervals using the R package VMSbase (Russo et al., 2014). With this higher-resolution data, fishing hauls were identified following the method explained in Paradis et al. (2021). This method first identifies trawling speeds, which for this dataset ranged between 2 and 4.3 knots. Hauls were then defined as consecutive entries that met the trawling speed criteria for at least 60 minutes, taking into account possible false-positives and false-negatives. Fishing intensity was then computed as swept area ratio (SAR) by counting the number of hauls within a 50 m radius, assuming a gear width of bottom trawlers operating in this area being ~100 m wide. SARs were then represented in 25 m x 25 m grid cells to report fishing intensity as hauls per hectare.




3.5 Geomorphometry

The quantification of the morphological impact of bottom trawling on the seafloor morphology was particularly challenging due to the low relief of the morphologies produced by trawling in relation to the general seafloor gradient. In this work, we used different terrain attributes derived from bathymetric data using QGIS. These terrain attributes include: terrain slope using an analysis sale of 3 x 3 pixels’ neighborhood; terrain aspect (3 x 3 pixels) and Bathymetric Position Index (BPI), as modified from the topographic position index defined by Weiss (2001), with an inner radius of 4, and an outer radius of 40. The BPI compares the elevation of a focal point with the mean elevation of its neighboring cells that fall within a user-defined annulus. Positive BPI values represent locations that are higher than the average of their surroundings (positive reliefs), whereas negative BPI values indicate locations that are lower than their surroundings (negative reliefs).

BPI was used to identify low-relief features developed on a slope and trace their boundaries. Since bottom trawling causes erosion of the seabed, the morphologies generated from recurrent trawling can be defined by areas of negative BPI values relative to the surroundings. The joint analysis of bathymetry, backscatter and BPI data allowed us to establish the limits of these erosional forms, defined by BPI values of 0.1-0.2. The boundaries were automatically extracted and manually verified by means of cross profiles spaced 50 m apart for each dataset (2004 and 2017). No significant changes were detected between the two boundaries extracted in each dataset, with the exception of newly identified depressions. Therefore, a single boundary resulting from the intersection of the two limits was used to calculate volume changes. For each bathymetry, the top surface of the depression was created from the elevation of the feature boundary using natural neighbor interpolation. The depth (or incision) and volume of the features were calculated by subtracting the elevation of the feature from the top surface using raster differencing. The volume change between the two surveys was derived from the difference obtained by comparing the volumes calculated independently for each bathymetry.





4 Results



4.1 Fishing activity

Satellite-based navigation tracks from bottom trawlers operating in a study area over a 13-year period (2005-2017) provided valuable insights into long-term trends in the location and fishing pressure of the most recurrently visited fishing grounds (Figures 3A, S2). Several highly-impacted fishing grounds were observed on the continental shelf over the study period, particularly off Llançà, off the Cap de Creus Peninsula and in the Roses Bay. Off Llançà, a large (13 km long) fishing ground extends primarily along the 52-62 m depth range from Portbou to Cap de Creus, following the isobaths. Total fishing intensity computed for the period 2005-2017 displays the maximum values in this area (400-750 hauls/ha), particularly to the north of Llançà (Figure 3A). Additionally, other fishing grounds can be observed in the middle and outer shelf showing different orientations (N-S, NE-SW and NW-SE) but with lower fishing intensity (40-160 hauls/ha). Off Cap de Creus Peninsula, the most important fishing ground (160-325 hauls/ha) is located off and southward of the Cap de Creus headland, at 75-100 m water depth. It displays a curved path between the coastline and an elongated rocky outcrop that extends along 6 km at 95-115 m water depth. In Roses Bay, trawlers typically follow two main N-S paths that are parallel to the isobaths at 52-56 m and 67-69 m water depth, with fishing intensities of 240-290 hauls/ha (Figure 3A).




Figure 3 | (A) Total fishing intensity for the period between 2005 and 2017, showing the location of the three main fishing harbors with trawlers operating in the study area (Port de La Selva, Llançà and Roses). (B) Backscatter image of 2004 (0.25 m grid size) of the continental shelf. MPA, Marine Protected Area of the Cap de Creus Natural Park. Topographic data and orthophoto from the Institut Cartogràfic i Geológic de Catalunya (www.icgc.cat). Locations of Figures 4–7 are also included.






4.2 Bathymetry and backscatter

The backscatter map reveals marked across- and along-shelf variations in reflectivity (Figure 3B). The inner shelf shows high backscatter values, particularly to the north and off the Cap de Creus Peninsula, with elongated patches of low backscatter that extend across-shelf from the shoreface down to 25-35 m off small coastal bays. Only in Roses Bay, the inner shelf is characterized by homogeneous medium backscatter. The middle shelf is dominated by low backscatter, particularly to the south of the Cap de Creus Peninsula, where a N–S oriented, 18-km wide low backscatter area extends southwards along the mid shelf, as well as to the north of the Cap de Creus Peninsula. Backscatter is high over the entire continental shelf between the Cap de Creus Peninsula and the Cap de Creus Canyon as well as along the outer shelf. The backscatter imagery also displays large, elongated areas of high backscatter off Llançà and Cap de Creus Peninsula, as well as in Roses Bay, which shows a similar pattern to that observed in the trawling activity (Figure 3).



4.2.1 Llançà shelf

In the continental shelf off Llançà, a narrow (180-220 m wide, locally up to 250 m) and discontinuous high backscatter area extends 12 km along the 43-52 m depth range in a NNW-SSE orientation and along the 52-62 depth range in a WNW-ESE orientation (Figures 3B, 4A). It covers an area of 1.6 km2 and shows very sharp boundaries from low to high backscatter intensities. This high backscatter region corresponds to a slightly depressed area in the bathymetric data (Figure 4B). BPI allows delineating this feature because of the concave profile of the depression (Figure 4C). The incision of the depression varies from 0.4 to 1.2 m (Figure 4D). The depression shows an asymmetric profile with a steep landward flank and a gentle offshore one (Figures 4E, F). The landward limit is well delineated in the gradient map by a marked increase in the mean seafloor gradient from 0.4°-0.6° to 2.2°, whereas the gradient of the seaward flank is significantly lower (>0.4). BPI values vary between -0.2 and -0.4 in the most depressed area of the trench and between 0.1 and 0.2 at the trench boundaries (Figures 4E, F).




Figure 4 | (A) Backscatter image, (B) multibeam bathymetry and (C) BPI maps of the Llançà inner shelf where a shallow depression was identified in the 2004 bathymetric dataset. (D) Shaded-relief map with superimposed trench incision. (E, F) across profiles at two locations along the shallow incision representing the topography, slope, BPI and backscatter values derived from the 2004 bathymetric dataset. MPA, Marine Protected Area of the Cap de Creus Natural Park.



The area occupied by the depression in 2004 was 1.4 km2, which represents an eroded volume of sediment of 582,933 m3 (Table 1). The surveyed area in 2017 does not cover the whole feature identified in 2004, but it allows the identification of a new incision, located slightly offshore of the incision mapped in 2004 (Figure 5). Although the morphological depression has a very subtle relief (0.2-0.3 m), it is well-displayed on the BPI data (Figures 5A, B). When considering the area covered in both surveys, a slight increase of about 1.18% of the volume of sediment eroded can be observed (Table 1). This loss of sediment is mainly related to the new incision mapped in 2017 and further excavation in the central and southernmost sectors of the depression (Figure 5C).


Table 1 | Area and volume of the shallow depression identified in the continental shelf.






Figure 5 | (A) BPI map of the Llançà inner shelf based on data collected in 2017. (B) Shaded-relief map with superimposed trench incision. (C) Difference in elevation between the 2004 and 2017 datasets. Note the formation of a new incision and local over-excavations along the depression. MPA, Marine Protected Area of the Cap de Creus Natural Park.



Offshore, on the middle shelf, other elongated areas of high backscatter and overlapped trawl marks are also observed in the backscatter imagery (Figure S3). The areas of high backscatter are 180-300 m wide and extend along 5-8 km, showing predominant N-S, NE-SW and NW-SE directions (Figure 3B). Some trawl marks show an orientation parallel to the bathymetry, converging towards the narrow continental shelf between the Cap de Creus Peninsula and the submarine canyon head, whereas other trawl marks appear crossing the continental shelf, and they can be traced over several kilometers (> 9 km). Unlike the areas of high backscatter identified on the inner shelf, these areas are more difficult to distinguish because of the smaller difference in backscatter between the morphological feature and the surrounding and because they do not show discernible relief in the bathymetric data.




4.2.2 Cap de Creus shelf

Off the Cap de Creus Peninsula, a narrow (70-160 m wide) area of high backscatter extends 5.6 km along the 70-84 m depth range displaying a N-S orientation and turning towards the SW (Figures 3B, 6A). As observed in the Llançà inner shelf, the area of high backscatter corresponds to a very subtle incision that is observed in the bathymetric data by the formation of an inflection point in the seabed slope caused by a local decrease in the gradient and negative BPI values delimiting the concave profile of the depression (Figures 6B, C). The resulting relief corresponds to an elongated (1.9 km) and narrow (60-120 m) incision that exhibits a discernible depression only in the central region (Figures 6D, E). This depression shows an asymmetric profile with the offshore flank gentler than the landward one (Figures 6F, G). Based on the 2004 dataset, the area covered by this depression is very small, less than 0.1 km, with a volume of 15,642 m3 (Figure 6D, Table 1). In 2017, the volume experienced a twofold increase owing to over-excavation, locally up to 0.8 m (Figures 6E–G, Table 1).




Figure 6 | (A) Backscatter image, (B) multibeam bathymetry and (C) BPI maps of the Cap de Creus inner shelf where the shallow trench is located based on data collected in 2004. (D, E) Shaded-relief maps with superimposed trench incision in 2004 and 2017. (F, G) across profiles at two locations along the shallow incision representing the topography, slope, BPI and backscatter values derived from the 2004 bathymetric dataset. The topographic profiles obtained in 2017 are superimposed on those of 2004 to illustrate the main morphological changes. MPA: Marine Protected Area of the Cap de Creus Natural Park. Topographic data and orthophoto from the Institut Cartogràfic i Geológic de Catalunya (www.icgc.cat).






4.2.3 Roses shelf

Off the Roses Bay, another area of high backscatter was also observed at 50-60 m water depth showing a curve morphology with a predominant N-S orientation, parallel to the isobaths (Figures 3, 7). The area of high backscatter is 170-350 m wide and extends along 7 km. It shows a curve pattern that is less parallel to the 50-m isobath than in the previously described areas (Figure 7A). This area of high backscatter corresponds to a subtle depression in the bathymetric data, showing an alternation of positive and negative BPI values (Figures 7B, C), and an incision varying between 0.2 m and 0.6 m in the most curved area (Figure 7D). The incision is significantly shallower and wider than those observed off Llançà and Cap de Creus (Figures 7E, F). A volume of 68,780 m3 was estimated based on the 2004 dataset (Table 1). In 2017, the volume of the incision has been significantly reduced (62%) (Table 1).




Figure 7 | (A) Backscatter image, (B) multibeam bathymetry and (C) BPI maps of the Roses shelf where the shallow trench is located based on data collected in 2004. (D) Shaded-relief map with superimposed trench incision. (E, F) across profiles at two locations along the shallow incision representing the topography, slope, BPI and backscatter values derived from the 2004 bathymetric dataset. The topographic profile obtained in 2017 is superimposed on that of 2004 illustrating the infill of the depression.







4.3 Side scan sonar

Side scan sonar data acquired in an area of high backscatter of the Roses continental shelf (Figure 2) shows numerous trawl marks displayed as long, parallel to subparallel features with high reflectivity and different levels of visibility (Figure 8).




Figure 8 | (A) Backscatter image (2004 dataset) showing the side scan sonar data coverage collected in 2017 and the location of (C–E). (B) Backscatter image (2004 dataset) with the density of trawl marks identified in 2017 superimposed. (C–E) side scan sonar images showing the morphology of the trawl marks.



The spatial quantification of trawl marks density, length and orientation reveals significant differences between the area of high backscatter and the adjacent shelf. The density of trawl marks (TM) in the area of high backscatter is much higher (320 TM/km2; Figures 8B, C) than in the surroundings (40-100 TM/km2; Figures 8B, D). TM in the area of high backscatter are longer (more than 8 km) and mostly show the same curvilinear morphology and N-S orientation than the high backscatter area identified in the backscatter imagery (Figure 8C). On the contrary, TM outside this area are more widely scattered and show different orientations, predominantly NE-SE (Figure 8D).

In the area of high backscatter, pairs of quasi- parallel tracks separated 40-70 m between them can be distinguished, attributed to the two doors of a given haul (Figure 8C). However, in the nearby low backscatter area, some trawl marks are hardly traceable and cannot be clearly distinguishable from the background, having a rather blurry appearance (Figure 8D). Detailed observations of the trawl scars show 1 m-wide marks corresponding to the size of the otter doors (Figure 8E). Shadows in these trawl marks indicate sediment removal at both sides of the scars produced by lateral push from the doors.




4.4 Sediments

A total of 6 sediment cores were collected off Llançà, inside and outside the area of high backscatter (Figure 9). The sediment cores retrieved in the area of high backscatter (between -29 and -24 dB) corresponding to the trawl-generated erosive feature display sediment coarsening in the upper layers (0-4 cm) (cores L3 and L4, Figure 9C). The sediment grain size of the upper layers consists mainly of silt and sand (28-62% of silt, 22-67% of sand and 5-13% of clay), coarsening upwards, whereas the lower layers are composed of silt and clay (60-79% of silt and 17-21% of clay), with a minor sand fraction (16-21% of sand). In contrast, the grain size of the sediment cores collected seaward of this area, in an area characterized by lower density of trawl marks and lower backscatter (-38 dB), is more homogeneous (i.e., cores L1 and L2, Figure 9). They are mostly composed of silt and clay (55-69% of silt and 9-13% of clay) with a low content of sand (18-36%) and with no differences along the sediment core. Sediment core L5, collected landwards of the area of high backscatter (Figure 9A), shows intermediate characteristics between the cores inside and outside the high backscatter region. It is mostly composed of silt and sand (51-70% silt and 16-40% of sand) coarsening upwards (Figure 9C). Sediment is finer (62-70% of silt and 16-26% of sand) in the lower layers (7-10 cm) of the sediment core compared to the upper layers (0-4 cm), where the sediment grain size consists of silt and sand (50-51% of silt and 37-40% of sand). Sediment core L6 was collected in the inner shelf, in an elongated area of moderate backscatter (-35 dB) that extends from the shoreline down to 40 m water depth, off the mouth of an ephemeral stream (Figure 9A). It displays a different textural pattern dominated by well-sorted fine sand (83-91% of sand and 0.23 mm mean grain size) with a very low content of finer fractions (7-15% of silt and 1.4-2.5% of clay).




Figure 9 | (A) Backscatter image (2004 dataset) showing the location of the bathymetric profile and the sediment cores collected in the continental shelf off Llançà. (B) Bathymetric profile with the location of the sediment cores retrieved on the erosive feature identified in the 2004 dataset (cores L3 and L4) and the sediment cores collected outside the trawled areas (cores L1, L2, L5 and L6). (C) Grain- size distribution of sediment samples. Note the sediment coarsening in the upper layers (0-4 cm) of the sediment cores located in the trawled areas.



A similar pattern is observed in the sediment cores collected along two sampled transects crossing the high reflectivity area in the Roses Bay (Figures 10, S4). Sediment cores R2 and R8, located in an area of moderate trawl marks density (Figure 10A) show slight coarsening trend upwards, more noticeable in the core R8 (Figure 10C). The sediment grain size of the upper layers of core R8 consists mainly of silt and sand (63-69% of silt and 18-26% of sand) with a low clay content (11-12%), whereas the lower layers are composed of silt and clay (67-73% of silt and 12-20% of clay), with a minor sand fraction (6-20% of sand). The sediment coarsening in the upper layers is more evident in the sediment cores retrieved in the area of high backscatter, corresponding to the highest density of trawl marks (i.e., cores R4 and R9, Figure 10). The sediment grain size of the upper layers (0-5 cm) consists mainly of silt and sand (61-62% of silt and 27-30% of sand) with low clay contents (9-12%), whereas the lower layers are composed of silt and clay (60-77% of silt and 11-22% of clay), with a minor sand fraction (1-28% of sand). Conversely, the sediment cores located in the area of low density (or even absence) of trawl marks (cores R5 and R11, Figure 10) are composed of homogeneous fine sediments. Sediment mostly consists of silt and sand (63-72% of silt and 17-29% of sand) with a low clay fraction (9-12%).




Figure 10 | (A) Backscatter image (2004 dataset) showing the location of the bathymetric profile and six representative sediment cores collected in the Roses Bay. (B) Bathymetric profile showing the location of the sediment cores retrieved on areas characterized by different trawling intensity: low (cores R5 and R11), moderate (cores R2 and R8) and high (cores R4 and R9). (C) Grain-size distribution of sediment samples. Note the sediment coarsening in the upper layers (0-5 cm) of the sediment cores located in the trawled areas.







5 Discussion



5.1 Quantification of seafloor erosion by trawling activities

The physical impact of bottom trawling on the continental shelf seabed has been widely recognized by the identification and quantification of trawl marks generated by the otter boards (Friedlander et al., 1999; Smith et al., 2007; Buhl-Mortensen et al., 2016; Depestele et al., 2016; Bruns et al., 2020). In the northern Catalan margin, trawl marks appear widely distributed over the whole continental shelf, but concentrated in specific areas, as observed off Llançà and Cap de Creus, and the Roses Bay (Figures 8, S3). They are better recognized in muddy sediments, but they have also been observed in coarser sediments, even showing a decreased visibility, particularly around the Cap de Creus Peninsula.

Large-scale erosive morphological features have been also identified on the continental shelf as a result of recurrent trawling activities. They are characterized by regions with higher densities of trawl marks relative to the surrounding area (Figures 3B, S3) and exhibit a similar pattern to trawling activities, being localized in areas of increased fishing intensity (Figure 3). These morphologies are displayed on the backscatter data as narrow (less than 300 m wide) and elongated (up to 8 km long) areas of high backscatter relative to the surroundings. The increase of backscatter values in these areas can be mainly attributed to changes in the seabed topography caused by the high density of trawl marks and the reworking of the sediment due to the trawling gear. In the trawled areas, an upward-coarsening trend in the sediment is recorded in the sediment cores, produced by a reduction in the silt content of 14-50% in the first 4-5 cm of the core. Such trend is not observed in the sediment cores of the untrawled area, which are composed of fine sediments and show homogeneous vertical grain size distribution (Figures 9, 10). The coarsening of the uppermost layers suggests that part of the finer fraction resuspended by trawling gears is winnowed, increasing the sand content of the surface sediment. The fine sediment winnowed could be subsequently deposited on the bottom around the trawl marks, as observed in the Llobregat River prodelta (Palanques et al., 2001), or transported away from the trawled areas by dominant SW along-shelf currents. Slight increases in the grain size of surface sediments and upward coarsening trends caused by recurrent trawling have been observed in other fishing grounds: in the Llobregat River prodelta (Palanques et al., 2001), the Gulf of Lions (Ferré et al., 2008), the Ebro shelf (Palanques et al., 2014) or the Bay of Biscay (Mengual et al., 2016). The coarsening of the surficial sediments in the trawl-generated seafloor features in the Llançà and Roses continental shelf suggests ongoing trawling activities in the fishing grounds, also evidenced by VMS data (Figure S2).

The erosive features observed in the fishing grounds with low trawling intensity (140-160 hauls/ha over the study period), such as the fishing grounds of the middle and outer shelf off Llançà (Figure 3A), show no discernible relief in the bathymetric data but they are well displayed on backscatter data (Figures 3B, S3). However, the erosive features located in the fishing grounds with higher trawling intensity (240-750 hauls/ha during the study period) exhibits reliefs ranging from 0.2 to 1.2 m (Figures 4D, E). The shallower incision is in accordance with previous works that reported lithological and structural changes on the sediment column induced by recurrent bottom trawling down to 20 cm on the Ebro continental shelf (Palanques et al., 2014) and to roughly 35 cm on the NW Iberian shelf (Oberle et al., 2016b). The areas off Llançà with greatest incision (up to 1.2 m) correspond to areas of highest fishing intensity, up to 750 hauls/ha over the study period. These observations suggest that the repeated passage of the otter boards during successive fishing hauls of the trawling fleet operating in the same fishing ground can result in deeper excavations of the seafloor, compared to the individual tracks caused by the otter boards, inducing larger bottom trawling impacts than previously observed.

The volume of sediment eroded by recurrent trawling in the most intensively trawled areas varies from 0.11-0.18 m3/m2 in the fishing ground of the Roses Bay to 0.41 – 0.44 m3/m2 in the fishing grounds off Cap de Creus Peninsula and Llançà, respectively, based on the erosion observed in the seafloor features (Table 1). To assess the importance of fishing activities on the sediment dynamics of the continental shelf, these values were compared with the volume of sediment eroded by natural processes in other erosive features, such as lineations, small depressions and obstacle marks identified on the continental shelf between the Cap de Creus peninsula and the submarine canyon (Figures 1, S5). Lineations have lengths ranging from 0.7 to 2 km, with a negative relief between 0.2 and 1 m. Oval depressions are 120-150 m wide and up to 2 m deep. Obstacle marks are variable in length (100-400 m) and width (50-150 m) with reliefs of up to 2 m. The anthropogenically-derived trawl-generated features and the aforementioned natural features are products of distinct processes occurring in different types of sediments (muddy sediments in the fishing grounds and coarse sand and gravels in the bottom current-generated features). However, the results reveal comparable volumes of eroded sediment per unit area. It is estimated that the volume of eroded sediment ranges between 0.11 and 0.44 m3/m2 in the trawling-generated large-scale features, and between 0.10 and 1.22 m3/m2 (0.45 m3/m2 on average) in the bottom current-generated features. However, the area affected by trawling is significantly larger than the area occupied by individual bottom current-generated features (Figure S5).

Previous studies reported that suspended sediment fluxes induced by trawling erosion in muddy areas are comparable to natural-resuspension events by waves and currents (Durrieu de Madron et al., 2005; Ferré et al., 2008). These trawling-induced processes can become a dominant process controlling water turbidity during periods of high trawling intensity (Palanques et al., 2001; Palanques et al., 2014; Mengual et al., 2016). In the Bay of Biscay, in the French Atlantic continental shelf, trawling contribution to annual resuspension is in the order of 1% of the annual resuspension load, winter storms being the dominant processes. However, during the high fishing season, trawl resuspension can indeed be several times greater than natural resuspension in calm conditions (Mengual et al., 2016). In the Ebro delta, trawling introduces additional resuspended sediment that more than doubles the suspended sediment load of the bottom nepheloid layer on the middle shelf, suggesting that recurrent trawling can be able to change the modern sediment record in continental shelf environments (Palanques et al., 2014). The identification of large erosive features generated by recurrent bottom trawling on the continental shelf shows that repeated trawling over the same fishing ground can also lead to persistent changes on the seafloor morphology comparable to those caused by natural processes.




5.2 Changes in the fishing grounds evidenced by trawl-generated seafloor features

The characteristics and distribution of the erosive features generated by trawling activities can provide insights into trawling behavior and its potential cumulative impacts on the seafloor. In the northern Catalan continental shelf, the distribution of trawl marks and large-scale erosive features shows a good correspondence with the fishing grounds identified in the trawler’s tracking data during the period 2005-2017 (Figure 3). Off Llançà, most trawl marks and large-scale erosive features are concentrated along the 52-56 m isobaths, indicating that part of the trawling activities are conducted parallel to the isobaths (Figures 4A, S3). Large trawl marks also extend along the whole middle shelf converging towards the narrower shelf between the Cap de Creus Peninsula and the Cap de Creus submarine canyon head, further supporting trawlers’ preferential haul path parallel to the isobaths (Figure S3). Other trawl marks, however, appear crossing the middle shelf showing an orientation independent from water depth, probably related to the fishing practices (e.g. transits between the harbor and deeper areas).

The comparison of the 2004 and 2017 bathymetric datasets shows the bifurcation of two incisions (Figure 5C), as a result of the existence of two main fishing grounds located at different depths and presumably exploited in different periods. The NNW-SSE oriented incision off Llançà, mapped in 2004, turns continued northward along the 43-52 m depth range (Figure 4E), while the incision mapped in 2017 was located at deeper water depths (52-56 m) and shown a N-S orientation, running parallel to the 50 m isobath (Figure 5). This change in the fishing grounds could be attributed to the implementation of fishing regulations in the mid-1970s (Order of 30 July 1975, BOE-A-1975-17128), when bottom trawling in the Spanish Mediterranean continental shelves at depths less than 50 m was banned, and more precisely to the implementation of the VMS for fisheries monitoring in 2005. Prior to the fishing regulation, trawlers operated as close to shore as possible without risking the fishing gear due to the presence of shallow coastal rocky outcrops. These continued practices over decades explain the formation of a large trawl-generated erosive feature parallel to the coast along the edge of the coastal rocky outcrops, fishing at depths of less than 50 meters. The relief and visibility of this morphology in the backscatter data, coupled with the presence of trawl marks in the 2004 dataset, suggest that despite the implementation of regulations in the mid-1970s, trawlers continued operating in this coastal fishing ground.

The implementation of the VMS in 2005 resulted in the offshore displacement of the fishing activities, which led to a new fishing ground and area of erosion, as observed in the 2017 bathymetric dataset (Figure 5B). Although fishing intensity indicates activity in the new fishing ground as early as 2005, it was not until the year 2010 that fishing along this new ground intensified (Figures 11A, S2). The continuous erosion caused by fishing activities conducted over more than a decade produced an erosive feature with a sufficiently significant relief (0.2 m) to be measured with high-resolution multibeam systems (Figure 11C).




Figure 11 | (A, B) Fishing intensity maps based on trawler’s tracking data in 2010 and 2017 superimposed to the backscatter image obtained in 2004. (C, D) Bathymetric profiles showing the erosion generated by repeated trawling over the same area in relation to the fishing effort. Note the formation of new depressions to the north of Llançà and to the north of Cap de Creus coinciding with the displacement of the fishing grounds, and the increase in the fishing activities in the continental shelf between 2010 (maximum fishing effort of 62 hauls/ha) and 2017 (up to 182 hauls/ha). MPA, Marine Protected Area of the Cap de Creus National Park.



To the north of Cap de Creus Peninsula, there is also a shift in location of the fishing grounds and the erosive morphologies caused by trawling. The ancient fishing ground that extended along the 52-56 isobaths following the northern limit of the MPA (Figure 11A), turned slightly northwards away from the coast in the more recent years (Figure 11B). This change in the fishing ground could also be related to the fishing regulations associated with the Cap de Creus Natural Park and its inclusion as MPA within the framework of the Natura 2000 network. Despite trawling was banned in 1998, when the MPA was established, previous works reported occasionally incursions of trawlers inside the MPA (Lloret and Riera, 2008). De Juan et al. (2013) and Demestre et al. (2015) also noted the presence of trawl marks on side scan sonar data collected in 2009, thus evidencing that periodic fishing activities were still occurring in 2009. These observations are supported by VMS data indicating fishing activity in this area up to 2010. In 2011, trawling activities shifted offshore the boundary of the MPA of the Cap de Creus Natural Park (Figure S2). As observed to the north of Llançà, this change in the trawling pattern is evidenced in the bathymetric data by the formation of another emerging incision in the new fishing ground (Figure 11D).

Off the Cap de Creus Peninsula, trawl marks show the same orientation as the trawlers track, following a direction parallel to the coast up to the Cap de Creus headland, where they then turn southwards, to continue parallel to the mid-shelf rocky outcrop (Figures 3, 6). Trawl marks observed in the multibeam echosounder data appear concentrated in the area of higher fishing activities, where the repeated passage of trawlers resulted in the formation of a slightly depressed area that became incised over time, reaching an incision of up to 0.8 m in 2007 (Figure 6E).

In the Bay of Roses, seafloor features and vessel tracking data show a similar pattern but covering a wider area than in Llançà and Cap de Creus. Overall, the fishing grounds extend along the bay, running parallel to the isobaths. Only in the central part of the bay, the trawling pattern draws a curve away from the 50 m isobath (Figure 3A). Bottom trawlers draw this curve to avoid two obstacles that can be challenging and risk potential gear loss or damage. These include a known shipwreck, the Saint Prosper shipwreck, a 106 m long oil tanker sunk in 1939, and a foul ground of unknown origin (Figure 7A). Erosion caused by recurrent trawling in this area (maximum incision of 0.6 m, Figure 7D) is not as pronounced as that observed off Llançà and Cap de Creus. This is likely associated to the fishing practices, as trawling activities in the Roses shelf are not concentrated in a single location, and instead trawlers spread out over a larger area, reducing the localized impact. Besides, natural sedimentation processes also play a crucial role in the recovery of the impacts by trawling, and the fishing grounds of the Roses Bay are likely directly affected by modern fluvial inputs from the Muga and Fluvià Rivers. Fine sediments delivered by these rivers and deposited in the middle shelf can help to fill any large-scale depressions and trawl marks caused by trawling, reducing their preservation.




5.3 Persistence of trawling impact on the seafloor morphology

The long-term morphological changes observed in the fishing grounds provide information on the persistence of the trawling impact on the seafloor morphology, and its potential recovery after cessation of activities. In the northern Catalan continental shelf, the three studied areas have shown very different morphological evolution over the study period.

The continental shelf off Llançà is the area most affected by trawling, with maximum incisions (up to 1.2 m) and volumes of sediment (> 500 000 m3) removed. In addition, the morphological evolution of this area over the study period shows increased erosion due to continued trawling in active fishing grounds. Volume variations in the shallow fishing ground (located at 43-52 m depth range) was not feasible due to the limited coverage of the 2017 dataset. However, the morphological changes observed in the small area mapped in both years suggest a moderate infilling of the depression (Figure 5C). North of Cap de Creus, however, the variations in the eroded sediment in the fishing ground that was abandoned in 2011 still do not show significant changes in 2017, seven years after its abandonment (Figures 5C, 11D), evidencing the slow recovery of the fishing ground several years after the cessation of the fishing activity.

The persistence of seafloor features caused by bottom trawling on the continental shelf has been intensively explored through morphological evolution of individual trawl marks. Their preservation is strongly influenced by multiple factors like water depth, sediment type, hydrodynamics (e.g., tidal currents, waves, storms) and trawling patterns. A minimum preservation time of 5–7 days was observed in coastal areas (Depestele et al., 2016; Bruns et al., 2020), whereas they can last for months or even a few years in rather offshore waters (Palanques et al., 2001; Gilkinson et al., 2015; Bruns et al., 2020). The penetration of the trawling gear into the seabed and the durability of the trawl marks was shown to be higher in muddy sediments compared to sandy sediments. Whereas scars caused by gears on sandy uncohesive sediments of energetic areas are covered by ripples in a few hours (BEON, 1990), trawling on muddy sediment can have longer-term effects on the seabed. Palanques et al. (2001) observed that trawl marks in muddy sediments on the Ebro Shelf (20–70 m water depth) did not show any changes after a few days but after a year they appeared with lower backscatter values. They related the relative longevity to the cohesive properties of the muddy sediment (mud content >60%). Gilkinson et al. (2015) also examined the effects of experimental clam dredging on the seabed at greater depths (65–75 m water depth) on the Scotian shelf, Canada, observing trawl marks were still visible in side scan sonar data after three years, although showing a blurry appearance. As observed in the Ebro shelf, storms were the main factor in reworking the sediments and, therefore, in flattening the trawl marks (Palanques et al., 2001; Gilkinson et al., 2015).

The long-lasting effects of trawling in the seafloor morphology in the northern Catalan continental shelf could be mainly explained by the intensity and frequency of trawling activities, sediment inputs and local hydrodynamics. The reduced impact of bottom trawling in Roses Bay compared to Llançà and Cap de Creus could be explained by the local fishing practices and natural riverine sedimentary inputs. As previously mentioned, the annual evolution of fishing activity shows a variable distribution of the vessel tracks in Roses Bay over time, minimizing the impact on a specific area (Figure S2). Conversely, the higher frequency and intensity of fishing activities in Llançà and Cap de Creus fishing grounds hinder the capacity of the seafloor to recover between trawling events. The recovery of trawl-generated features in these areas could be favored by stronger local hydrodynamics. However, despite the strong hydrodynamics of the north Catalan continental shelf, as evidenced by large-scale current-erosive features (Lo Iacono et al., 2012; Durán et al., 2014), the main fishing grounds are located in the more sheltered areas, dominated by weak currents and limited sedimentation (Durán et al., 2014), thus contributing to the persistence of trawling impacts. Only off the Cap de Creus, stronger hydrodynamics could compensate the impact of trawling, favoring its recovery. This would explain that despite being a long fishing ground, the trawling impact is concentrated only in the area of maximum fishing intensity. However, as long as fishing activities continue in these areas, the affected seafloor area will increase and become deeper, resulting in larger and long-lasting effects on the seafloor, with their subsequent impact on benthic habitats.

The penetration depth of otter trawl doors has been associated to adverse impacts on benthic habitats. Bottom trawling impacts have been shown to change benthic species composition when disturbed by gear having a significant larger impact with increasing penetration depth (Hiddink et al., 2017; Sciberras et al., 2018). In terms of recovery, benthic community abundance does not recover within 3 years when impacted by gears with penetration depth of ≥16 cm (Sciberras et al., 2018). The seabed excavation produced by recurrent bottom trawling on the north Catalan continental shelf (up to 1.2 m), deeper than the penetration depth of most benthic trawling equipment, suggests longer-lasting effects in such benthic habitats.





6 Concluding remarks

The combined analysis of high-resolution multibeam echosounder and side scan sonar data, sediment grain size and vessel tracking data in the northern Catalan continental shelf (NW Mediterranean) has provided new insights into the long-lasting impact of bottom trawling on the seafloor.

The observations demonstrate that the repeated passage of the otter boards during successive fishing hauls of the trawling fleet operating in the same fishing ground can result in deep excavation of the seafloor, generating large-scale erosive features with sufficient relief to be measured using different morphometric techniques applied to high-resolution multibeam data. In the north Catalan continental shelf, these erosive features can be up to 300 m wide and 8 km long, with a variable relief ranging from 0.2 m to 1.2 m, and maximum values in the areas of increased trawling intensity, corresponding to the main fishing grounds.

The upward-coarsening trend observed in the surficial sediments (down to 4-5 cm) of trawled areas suggests ongoing trawling activities in the fishing grounds, contributing to the maintenance of the trawl-generated large-scale erosive features.

The quantification of the volume of sediment eroded by trawling suggests that recurrent trawling over the same fishing ground during decades may cause changes in seafloor morphology comparable to those generated by natural processes. In the Catalan continental shelf, the volume of sediment eroded by trawling varies from 0.11 to 0.43 m3/m2 and is comparable to sediment volumes eroded in bottom-current-derived seafloor features identified in the study area (between 0.10 and 1.22 m3/m2, 0.45 m3/m2 on average), although the impact of trawling affects larger areas.

The distribution of trawl-generated features shows a similar pattern to that observed in the fishing intensity, and can therefore be used as indicators of fishing grounds in the absence of vessel tracking data. Furthermore, they provide information on the location of the main fishing grounds and the temporal and spatial variations of the trawling effort, such as those derived from fishing regulations. For instance, the distribution and density of trawl marks and large-scale erosional features on the Catalan continental shelf indicate that most trawling activities are conducted parallel to the isobaths, and to a lesser extent crossing the continental shelf, probably related to fishing practices such as transits between port and deeper areas. The shift between the location of fishing grounds and the erosional morphologies caused by trawling also evidences changes in fishing regulations, such as new closed areas.

The persistence of the large-scale trawl-generated erosive features on the north Catalan continental shelf is largely influenced by the trawling intensity and recurrence, limiting the ability of the seafloor to recover between trawling events. The comparison of the large-scale erosive features over a 13-year period also showed extended recovery periods following the cessation of activities, with tracks persisting longer in muddy areas.
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The increasing use of underwater vehicles facilitates deep-sea exploration at a wide range of depths and spatial scales. In this paper, we make an initial attempt to develop online computing strategies to identify seafloor categories and predict biogeographic patterns with a deep learning-based architecture, DenseNet, integrated with joint morphological cues, with the expectation of potentially developing its embedded smart capacities. We utilized high-resolution multibeam bathymetric measurements derived from MBES and denoted a collection of joint morphological cues to help with semantic mapping and localization. We systematically strengthened dominant feature propagation and promoted feature reuse via DenseNet by applying the channel attention module and spatial pyramid pooling. From our experiment results, the seafloor classification accuracy reached up to 89.87%, 82.01%, and 73.52% on average in terms of PA, MPA, and MIoU metrics, achieving comparable performances with the state-of-the-art deep learning frameworks. We made a preliminary study on potential biogeographic distribution statistics, which allowed us to delicately distinguish the functionality of probable submarine benthic habitats. This study demonstrates the premise of using underwater vehicles through unbiased means or pre-programmed path planning to quantify and estimate seafloor categories and the exhibited fine-scale biogeographic patterns.
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1 Introduction

Deep sea is viewed as one of the least explored ocean ecosystems (Snelgrove, 1998; Williams et al., 2010; Teixeira et al., 2013; Copley, 2014). The variety of physicochemical gradients in deep-sea habitats is quite remarkable (Thornton et al., 2016), with diverse biogeographic patterns. Due to difficulties in its sensing accessibility, it is of great challenging to discover how the seafloor surface stretches and functions as submarine benthic habitats in the extremely deep sea (Jannasch and Mottl, 1985; Fisher et al., 1994; Johnson et al., 1994; McCollom and Shock, 1997; Sarrazin et al., 1999; Desbruyères et al., 2000; Luther et al., 2001; Van Dover et al., 2002; Bergquist et al., 2007; Nakamura and Takai, 2014; Lamarche et al., 2016).

Over the decades, a multitude of geomorphometric techniques have utilized bathymetric sensors to characterize seafloor stretching attributes (Chakraborty et al., 2013; Masetti et al., 2018; Neil et al., 2019; Pillay et al., 2020; Wang et al., 2021a; Wang et al., 2021b). The increasing use of underwater vehicles, such as Autonomous Underwater Vehicles (AUVs) or Remotely Operated Vehicles (ROVs), e.g., Bluefin (Panish and Taylor, 2011), Hugin (Marthiniussen et al., 2004), Remus (Freitag et al., 2005), Autosub (Furlong et al., 2012), JAMSTEC (Tamura et al., 2000), Urashima (Sawa et al., 2005), and so forth, provides more opportunities to facilitate deep-sea inspection with flexibility and adaptability (Singh et al., 2004; Bewley et al., 2012; Smale et al., 2012; Huvenne et al., 2018).

Advanced sensing techniques have provided the opportunity to investigate the detailed seafloor stretching morphology over a wide range of spatial scales. Underwater vehicles could be equipped with a series of sensors and proceed at shallower depths closer to the seafloor surface, providing higher-resolution morphological images and benthic habitat observations. A multibeam echosounder (MBES) is one of the most widely mounted sensors in bathymetric surveys, which can give insight into noteworthy benthic habitats at large scales, like hydrothermal vent sites, cold springs, mud volcanoes, and seamounts along subduction zones and trench areas. Meanwhile, the optical sensors would enable the provision of video transects at increasing depths in the deep sea to explore the potential biogeographic distribution, the submarine benthic habitat, and biological community structure in detail at smaller scales in the field.

Therefore, increasing attention has been paid to exploring the regional and even global seafloor stretching morphology, the extent of geographical ranges, and the submarine benthic habitats in the deep sea (Lonsdale, 1977; Bach and Edwards, 2003; Trenkel et al., 2004; Williams et al., 2012; Pizarro et al., 2013; Kuhnz et al., 2014; Nakamura and Takai, 2014; Thornton et al., 2016; Thornton et al., 2016; Dunlop et al., 2018; Misiuk and Brown, 2022). The increased diversity of seafloor surface morphology may account for spatial habitat heterogeneity. The formation and types of benthic habitats are typically associated with the physical and geological attributes of seafloor surface stretching. While the benthic habitat, indicator taxa, biodiversity, and community assemblages at one site may still be greatly different from other sites, they may show significant differentiation along similar geomorphometric characteristics. The classification of the seafloor would probably serve as the physical and geological elements to exert a significant impact on the benthic habitats and the biodiversity of organisms inhabiting the underwater environments. Corrêa et al. (2022) conducted an exploration of the plateau and rifts in the Rio Grande Rise (RGR) area with the HyBIS robot and analyzed the description of the structuring factors regarding seafloor topography and habitat types, which revealed highly heterogeneous and rapidly changing habitats with differences in geomorphology, slope, and substrate textures. Urra et al. (2021) characterized the geomorphologic diversity, habitats, and associated biodiversity in the Gazul MV mud volcanoes with underwater imaging and multibeam bathymetry techniques, identifying habitats harboring a characteristic faunal assemblage and highlighting the slope and water depth as the main factors explaining the distribution of the assemblages. Perez et al. (2022) explored seamounts located within the Discovery Rise and classified the types of benthic habitats based on substrate hardness, texture, slope, and physical and biological modifiers. Pierdomenico et al. (2015) conducted a comprehensive analysis of acoustic mapping and optical surveys with underwater vehicles to complete ultra-high-resolution bathymetric and backscatter imagery of geomorphological features of seafloor stretching and to characterize benthic habitat variation in the Hudson Canyon. Swanborn et al. (2023) examined how multiscale seafloor heterogeneity influences commercially important fish families on seamounts of the Southwest Indian Ridge by quantifying seascape heterogeneity from bathymetry and geomorphological habitat maps. De la Torriente et al. (2018) observed a highly diverse range of habitats from multibeam bathymetry and high-resolution seismic profiles with ROV at the Seco de los Olivos Seamount and identified depth and slope as the main significant factors structuring epibenthic assemblages.

Most of the seafloor bathymetric surveys tend to retrieve comprehensive topographic and morphological factors and other auxiliary variables and identify seafloor stretching attributes during post-processing. With the rapid development of hardware embedded in underwater vehicles, more and more expectations are cast to promote online smart computing capabilities, enabling the immediate understanding of seafloor surface stretching and submarine benthic habitat on site from on-board perception sensors rather than relying only on routine post-processing back from missions. Due to the great success of deep learning, all kinds of emerging and advanced algorithms have been developed and enhanced recently, from Deep Belief Networks (DBN) (Hinton et al., 2006), Deep Convolutional Neural Networks (CNN) (Karpathy et al., 2014), and AlexNet (Krizhevsky et al., 2012) to more recent Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), Deep Residual Networks (ResNet) (He et al., 2016), Densely Connected Convolutional Networks (DenseNet) (Huang et al., 2017), and Transformer (Vaswani et al., 2017). Recently, Conti et al. (2019) employed Marine Object-Based Image Analysis (MOBIA) and machine learning classification to identify the distribution and zonation of individual organisms on a cold-water coral (CWC), the Piddington Mound within the Porcupine Seabight, Ireland Margin, from a high-resolution reef-scale video mosaic and ROV-mounted multibeam data. Qin et al. (2021) applied shallow-water, side-scan sonar imaging from the Pearl River Estuary, established the ResNet architecture for acoustic seafloor classification (ASC), and explored the use of GANs for augmentation. Rimavicius and Gelzinis (2017) developed an accurate Norwegian seafloor interpretation and classification system with state-of-the-art deep learning techniques. Martin-Abadal et al. (2019) presented a highprecision semantic segmentation performed automatically in Posidonia oceanica meadows and its habitat by a deep learning-based network, VGG16. Dyer et al. (2020) proposed the identification of seafloor landslides in images with the deep learning model ResNet101 in the Gulf of Mexico, from the advanced bathymetry raster and its derivatives rendered to high-resolution seafloor topography.

However, the above has not yet been extensively applied to specify seafloor stretching characteristics and intrinsic relations with the limited computation resources in underwater vehicles due to the difficulties of simultaneously bathymetry mapping, classifying, and validating. The hardware configuration for embedded supercomputing, such as a high-performance Graphics Processing Unit (GPU), may promote online computational capacities. Hence, we attempted to accelerate the identification and localization process of seafloor morphology and to deduce possible biogeographic patterns with a deep learning-based architecture, DenseNet. DenseNet connects each layer to every other layer in a feed-forward fashion, where the feature maps of all preceding layers are inputs and its own feature maps are inputs to all subsequent layers (Huang et al., 2017). DenseNet offers significant advantages over many state-of-the-art deep learning algorithms. It addresses the vanishing gradient problem, enhances feature propagation, and significantly reduces the number of parameters, thereby demanding fewer computational resources. Moreover, various new variants have been developed recently (Jégou et al., 2017; Zhu and Newsam, 2017; Wang et al., 2018; Lee et al., 2019; Lu et al., 2021; Xiao et al., 2021).

We aimed to establish a generalized deep learning-based architecture so as to develop smart capabilities to identify seafloor categories for underwater vehicles. This could facilitate online computing strategies for unbiased path planning with real-time perception and autonomous decision-making, and adapt to dynamic, unknown, and complex underwater conditions. Such unbiased path planning tends not to rely so much on predetermined global seafloor mappings or predefined routes but focuses on current environmental states, efficiently updating the path selection with the understanding of seafloor categories or potential biogeographic distribution retrieved along the mission route points. The model parameters could be updated and fine-tuned by the local underwater geology, dynamically promoting solutions to viable path planning optimization in an online manner. This could also benefit pre-programmed path planning that utilizes deterministic or optimization algorithms to search offline for optimal or shortest routes from the known underwater environment mapping. Such pre-programmed path planning typically requires prior acquisition of knowledge of regional and even global seafloor stretching morphology. The quality and strength of such approaches partially lie in the ability to identify seafloor categories with high quality and high computational efficiency.

In this paper, starting from the inspiration to explore the seafloor surface stretching and biogeographic patterns along the traces of underwater vesicles, we directly retrieved the multibeam bathymetric mapping from the MBES scans and calculated a variety of morphological parameters from the digital elevation to help semantic segmentation and localization. We established online computation strategies via DenseNet and took the multibeam bathymetric measurements and the joint morphological cues as inputs, with the annotations manually labeled as expected outputs. The minimalistic transition-up blocks, the channel attention module, and the spatial pyramid pooling have been seamlessly integrated to systematically strengthen the dominant feature propagation and encourage feature reuse with the global contextual prior. The developed model has been comprehensively evaluated in terms of PA (Pixel Accuracy), MPA (Mean Pixel Accuracy), and MIoU (Mean Intersection over Union Ratio). We further proposed a preliminary study on the potential biogeographic distribution statistics to provide initial insights into the connective and predictive evidence between seafloor categories, benthic habitats, and even species assemblages.

The remainder of the paper is organized as follows: Sections 2, 3, and 4 describe the basic principles of multibeam bathymetric mapping, the basics of seafloor surface morphological calculation, and DenseNet, respectively. Section 5 introduces the seafloor surface classification via DenseNet, coupled with the channel attention module and spatial pyramid pooling. Section 6 shows the simulation experiment and the analysis of the results. Finally, the conclusions are given in Section 7.




2 High-resolution multibeam bathymetric mapping



2.1 MBES principle

MBES refers to a type of highly integrated multibeam bathymetric sensor. It could help with full-coverage depth measurements at high resolution and determine the nature of seafloor surfaces in the deep sea. The basic principle of MBES is shown in Supplementary Figure A1. The MBES transducer is essentially a combination of an acoustic projector array and a perpendicular hydrophone array. The former emits acoustic pulses at a specific frequency, with a narrow opening along-track angle and a wide across-track angle, in a given swath (Mahmud and Yusof, 2006; Costa et al., 2009). The latter is built to listen to echo reflections with received beams. Thus, the seafloor strips, ensonified by the projectors, will intersect with those observed by the hydrophones, producing the beam footprints. When receiving across-track beams of certain time intervals one after another, the position and depth of the seafloor measurement could be calculated, given the angle of incidence and the two-way travel time of each beam (Zhao et al., 2020; Wu et al., 2021). In a complete transmission and reception period, the projector array runs only once to generate acoustic pulses, while the hydrophone array acquires multiple received beams with appropriate delays. As underwater vehicles proceed forward, a strip of water depth measurements reflecting bathymetric mapping at a specific width could be derived from the MBES, providing full coverage of the seafloor surface morphology, which would benefit the identification and location of seafloor categories with high precision, high density, and high efficiency.




2.2 Digital elevation model

Essentially, we utilized the Digital Elevation Model (DEM) to solve the numerical problem of visualizing the geospatial entities of the seafloor surfaces with a finite set of depth measurements from the MBES. The core interpolation calculation allows the production of a gridded multibeam bathymetric map. We applied a weighted average point-to-point interpolation to generate the digital elevation. Assuming that the elevation point is to be inserted in the center of each sliding sampled window, the elevation value   is determined by approximating the weighted averaging of the surrounding elevation values within the window, which can be formulated as

 

where the number of neighboring elevation points in the sliding window is denoted as  ,   refers to the   th elevation value, and   represents the corresponding weight. For the output elevation values, the sum of the products between the surrounding elevation values and their corresponding weights within the window is divided by the sum of all the weights. Each weight   is defined as the reciprocal of the spatial distance   between the surrounding elevation points and the center to be inserted,

 

The greater the spatial distance  , the smaller the corresponding weight  , and vice versa. An example of a seafloor strip before and after the interpolation is shown in Figure 1, where the color bar denotes the water depth values. We can see from the experimental results that the high-resolution multibeam bathymetric mapping could reasonably depict the integrity of the seafloor surface stretching in the DEM, especially the stitching of the gaps in the edges.




Figure 1 | Example strip of seafloor surface mapping. (A) before interpolation, (B) after interpolation.







3 Seafloor surface morphological calculation

We further elaborated on the thematic maps of seafloor surface morphological cues from high-resolution multibeam bathymetric mapping. Let the depth value of the given elevation point on a certain seafloor surface be  , with   and   representing the horizontal and vertical coordinates at the seafloor location, respectively. We essentially employed several topological attributes in aid of the first and second derivatives calculated from the neighborhood within a sliding window to consider every elevation point in turn.



3.1 Slope

The slope refers to the measurement that determines the steepness or degree of inclination in seafloor bathymetric mapping relative to the horizontal plane, which constitutes the fundamental index of benthic habitat and colonization at a variety of scales (Friedman et al., 2013). Multibeam bathymetric mapping can be approximated by a bivariate quadratic equation, and we compute the slope with the first derivative of the elevation values. The slope with the origin at the central point in the local coordinate system within the sliding window is hereby calculated as

 

The slope direction   could be defined as,

 

where   and   represent the slope with respect to   and   directions, which can take a variety of forms. We determine the slope value of the central point from the finite differential of the surrounding neighbors within the sliding window, as is shown in Supplementary Figure B.1. The slope   and   of the horizontal and vertical directions could be denoted as,

 

 

where   are the elevation values in the sliding window, respectively, and   is the grid length.




3.2 Curvature

The curvature behaves as a quantitative measurement of the degree of distortion on the surface of the seafloor geomorphic changes, providing a possible assessment of uplift or depression (Shary, 1995). The profile curvature values stand for the stretching morphology of the seafloor surface, with positive curvature attesting to an upwardly concave and a negative curvature, indicating upwardly convex, and a value of zero indicating flat seafloor surfaces. It helps to delimit distinct habitat regions by identifying boundaries in seafloor morphology, delineating between favorable and unfavorable habitats for communities. The curvature is a second spatial derivative of the seabed terrain, which can be expressed as

 

where   and   are the first derivatives of the elevation values in the horizontal and vertical directions, respectively;  ,  ,   correspond to the derivative of the horizontal slope with respect to   direction, the derivative of the horizontal slope with respect to   direction, and the derivative of the vertical slope with respect to   direction, respectively.

 

 

 

 



where  ,   are the first derivatives of the elevation values in the horizontal and vertical directions within the sliding window, as is calculated in Supplementary Figure C1.




3.3 Roughness

Surface roughness reflects the degree of the structural complexity of the seafloor surface stretching, which to some extent indicates its macrotopographic characteristics and undulation status, and can be defined as the ratio of the total seafloor surface of the sampled region to a projected plane to decouple measurements from the overall slope (Friedman et al., 2013). Each topographic seafloor surface stretching can be divided into non-overlapping virtual quadrats, and the surface roughness value is derived from each virtual square as

 

where   and   are the seafloor surface area and the horizontal projected area, respectively, in a given virtual quadrat. Let the slope at a given   th elevation point in the sliding window be  , the corresponding surface roughness   could then benefit from the calculation of this available topographic factor as follows:

 

The surface roughness   of each virtual quadrat with   elevation points can then be expressed as

 




3.4 Joint morphological cues

It was believed that such thematic maps of topological parameters reflecting the seafloor elements and types are effective in classifying seafloor categories in terms of their formation processes and evolution (Burrough and McDonnell, 1998). The topological parameters of high similarity would most likely be shared with the identical seafloor categories. Since most attempts to characterize seafloor elements are limited to a relatively restricted range of morphological attributes, while seafloor types represent characteristic patterns that repeat regardless of scales (MacMillan et al., 2000), we endeavored to utilize high-resolution multibeam bathymetric mapping to extract micro geomorphologic factors such as slope and curvature, as well as macro geomorphologic factors like surface roughness, and to assess the effectiveness of individual or joint morphological cues in distinguishing seafloor surface types. It should be noted that the formation of seafloor surfaces can be viewed from a variety of spatial scales, and the effect of scales involves geomorphology in a complex, hierarchical context. Thus, seafloor classification is related to the issue of scales in different geomorphological settings and the role that morphological cues play in seafloor surface stretching (De Boer, 1992).

The thematic maps of topological parameters for a few example MBES images are shown in Figure 2, with the original images, the slope, the surface roughness, and the curvature, respectively, displayed from top to bottom. The slope of the seamount generally approached a large value with high-level relief amplitude; the slope of the trench bottom basin was relatively small with nearly flat surfaces; and the slope of the island slope deepwater terrace shifted frequently, representing the divergence of the degree of seafloor surface steepness. The surface roughness provides a macroscopic view of the complexity of seafloor surfaces and reflects the degree to which the seabed terrain is susceptible to erosion. Higher surface roughness values corresponded to more complex or eroded seafloor terrain, e.g., around the island slope deep water terrace. Conversely, flat seafloor surfaces experienced less erosion and exhibited lower roughness values. The curvature directly affected the net erosion, reflecting the degree of seafloor surface fragmentation. When the curvature value of the sea mount was relatively small, the degree of fragmentation was the lowest, and the curvature value of the island slope deep water terrace was relatively large, representing a high degree of fragmentation. The curvature directly affected the net erosion, reflecting the degree of seafloor surface fragmentation. When the curvature value of the sea mount was relatively small, the degree of fragmentation was the lowest, and the curvature value of the island slope deep water terrace was relatively large, representing a high degree of fragmentation.




Figure 2 | Extraction of topographic factors from MBES imagery. (A) Multibeam bathymetric topographic mapping, (B) slope, (C) surface roughness, (D) curvature.



We initially utilized basic clustering techniques (K-means) to agglomeratively assign elevation points with highly similar topological parameters into the same group and to deviate from the significantly inconsistent outlier elevation points. We could therefore locate and identify individual notions of landforms and geological structures at certain scales with specific physical attributes and translate them to the complete coverage of bathymetric mapping to estimate the potentially appropriate scales as a whole for reference. The individual and joint morphological cues in combinations have served as the input to assess the clustering performances, in terms of PA, MPA, and MIoU, as is shown in Supplementary Table E1, where the first row is the clustering evaluation of only the bathymetric topographic mapping from MBES, and the second, third, and fourth rows are the evaluation results when introducing the additional morphological cues, respectively, including the slope, surface roughness and curvature. Among them, the clustering performance was superior when both slope and surface roughness were fed as inputs together with the original bathymetric mapping. The comparison of clustering performance with the individual and joint morphological cues for example MBES imaging is shown in Figure 3, with the original example images, the clustering results from bathymetric mapping+slope, +surface roughness, +curvature, and the ground truth listed from left to right respectively. It was shown that some regions of the trench seamount group were quite easily misclassified as island slopes, leading to many mistakenly divided holes. Owing to the complexity and variability of seafloor surfaces, there exist large divergences even within identical seafloor types and possible similarities across distinct seafloor types, all of which would influence the discrimination process. We have tried to integrate the joint morphological cues into the deep learning-based models to improve the accuracy of distinguishing seafloor categories.




Figure 3 | Clustering comparison with joint morphological cues. (A) Bathymetric topographic mapping, (B) +slope, (C) +slope+roughness, (D) +slope+roughness+curvature, (E) ground truth.







4 Network construction



4.1 Basics of DenseNet

The basic Densely Connected Convolutional Networks (DenseNet) embraces the hypothesis that shorter connections exhibit high performance in a substantially deeper network manner (Huang et al., 2017; Jégou et al., 2017). The feature maps of all previous layers are used as inputs for each layer, and its own feature maps are introduced as inputs to all subsequent layers. Therefore, a basic DenseNet comprising   layers will result in   direct connections in a feed-forward fashion. Let   be the non-linear transformation implemented in the   th layer, with the output of the   th layer denoted as  . DenseNet proposes a dense connectivity pattern that introduces direct connections from each layer to all subsequent layers. Consequently, the   th layer receives the feature maps of all previous layers as the input

 

where   refers to the concatenation of the feature maps produced in the previous layers. For ease of implementation, the multiple inputs of  (·) could be concatenated into a single tensor. Since the concatenation operation may not be feasible if the size of the feature maps changes during down-sampling, DenseNet would be further divided into multiple dense blocks, with the transition layers between them for convolution and pooling.




4.2 Backbone network architecture

We used DenseNet121 as the backbone network of our proposed scheme for seafloor surface classification. The non-linear transformation  (·) was initially defined as a composite function of consecutive operations, i.e., Batch Normalization (BN), followed by a Rectified Linear Unit (ReLU) and a Convolution (Conv). The design of a 1×1 convolution was introduced as a bottleneck layer before each 3×3 convolution to improve computational efficiency. The DenseNet121 network configuration was made up of four dense blocks. Before entering the first dense block, the initial convolution layer comprised   convolutions of size 7×7 with step size 2, and the number of feature maps in all other layers followed from the setting  . The transition layers took a 1×1 convolution, followed by a   Average pooling between two contiguous dense blocks. At the end of the last dense block, global Average pooling was performed and then a softmax classifier was applied. The number of feature maps in the four dense blocks was 6, 12, 24, and 16, respectively, and the corresponding size of features was  ,  ,  ,   of the original input.





5 Seafloor surface classification via DenseNet

Our proposed scheme consists of several correlative steps, as follows: (1) Manual annotation: at the beginning, the seafloor stretching annotation of the bathymetric mapping collected from MBES scans is manually labeled as the standard reference. (2) Network construction: an upgraded Densenet121 backbone is established, in aid of the minimalistic transition-up blocks in the upsampling path, the channel attention module, and the spatial pyramid pooling, to explore the potential seafloor stretching categories. (3) Morphological feature fusion: the morphological cues are incorporated into the context of the DenseNet architecture from the extracted topological parameters. (4) The seafloor stretching classification would go through the statistics on potential biogeographic distribution and jointly improve the understanding of delineating the submarine benthic habitats. The flowchart of seafloor surface classification via DenseNet is shown in Figure 4. It should be noted that our proposed scheme could actually be extended to accommodate multiple scales of input seafloor stretching surfaces. It is well known that the parameters for describing the geomorphological formations of seafloor surfaces can be quite sensitive to the scales involved (Wong, 1973; Phillips, 1988; Mahmud and Yusof, 2006; Millar, 2013). We have taken into account the issues of scales and specifically designed the geomorphological modeling via deep learning. We have tried to integrate the site-specific scales and responded to recognize the appropriate spatial scales from the individual physical attributes of the seafloor categories during the reasoning process under the classification criterion.




Figure 4 | Flowchart of seafloor surface classification using DenseNet.





5.1 Upsampling path

DenseNet121 transforms the input into a feature tensor by gradually reducing the spatial resolution and increasing the number of feature maps along a downsampling path. As for the design and the upsampling path, the Tiramisu model has had great success in the naive extension of DenseNet to fully convolutional networks, while mitigating the linear growth of the feature map explosion in very deep neural networks with very few parameters, replacing the convolution operation with a sequence of dense blocks and the transposed convolution referred to as transition-up (TU) blocks, with an approximately 10-fold reduction with respect to the state-of-the-art models (Jégou et al., 2017). In this paper, in order to explore the possibilities of developing smart capabilities in understanding the seafloor stretching morphology for underwater vehicles, we have updated the DenseNet architecture with an upsampling path of a more simplified transition-up process, i.e., the minimalistic transition-up blocks, which could transform the low-resolution features into high-resolution predictions by recovering details from early layers with blending semantics from deeper layers (Kreso et al., 2017). The design of minimalistic TU blocks is introduced to play the role of the upsampling path in DenseNet121. TU blocks blend the smaller and larger representations whose spatial resolutions differ by a factor of 2 from the upsampling and downsampling paths, respectively, via a skip connection. The blending procedure is repeated recursively by simple summation along the upsampling path, with skip connections arriving from the outputs of each dense block instead of the symmetric encoder-decoder network. The final TU block produces logits at the resolution of the DenseNet stem. The dense predictions at the input resolution are finally obtained by 4× bilinear upsampling. The minimalistic design helps lightweight semantic execution with a low memory footprint and low-dimensional feature tensors during upsampling and discourages overfitting to low-level textures, which potentially presents significant online computation capacities in distinguishing seafloor categories for underwater vehicles.




5.2 Channel attention module

We adaptively refined the input feature maps along channels by seamlessly integrating the Convolutional Block Attention Module (CBAM) (Woo et al., 2018) into DenseNet121. The CBAM module sequentially infers channel-wise attention maps, which are multiplied by input feature maps. Unlike the Squeeze-and-Excitation (SE) module (Hu et al., 2018), we have tried to exploit the inter-channel relationships by employing both Average pooling and Max pooling in parallel. Given an intermediate feature map   of size  , with  ,  ,   being the height, width, and channel number of the feature map, respectively, the spatial dimension of the feature map is squeezed as follows:

 

 

where   and   are the outputs of the Average pooling and the Max pooling, respectively, with a size of  . The Average pooling aggregates the spatial dimension to suggest the extent of the seafloor surface stretching, and the Max pooling gathers clues of distinctive seafloor surface features to simultaneously infer finer channel-wise attention. Both descriptors allow the global receptive fields to be embedded.

An excitation operation, where the specific activations govern the excitation of the channels by the dependency, feeds the two descriptors into a shared multi-layer perceptron (MLP) with a hidden layer to produce the channel attention map. To reduce the parameter overhead, the hidden activation size is set to  , where   is the reduction ratio. The output in MLP is recovered to generate the feature vectors of size  . After the shared MLP is applied, the feature vectors are merged by the element-wise summation. In short, channel attention is computed as

 

where   and   respectively refer to the weights of the two layers,   stands for the ReLU activation function, and   denotes the sigmoid function. Finally, the channel attention output   is multiplied with the initial feature map   to retrieve the newly refined features with calibration,

 

where   denotes the element-wise multiplication. The weight coefficient from the channel attention values is broadcast along the spatial dimension during the multiplication to adaptively screen the optimal feature map along the channels.




5.3 Pyramid pooling module

We have further embraced the idea of a kind of spatial pyramid pooling module (SPP) (He et al., 2015) into our DenseNet121 architecture since it may not sufficiently incorporate the momentous global contextual prior for the receptive fields of the seafloor surface stretching, especially on high-level layers. The basic module of the pyramid scene parsing network (PSPNet) is developed to help exploit and enhance the capability of global context-aware features through aggregation along with sub-regions from multiple receptive fields. We have proposed the introduction of a global context with a sub-region context that enriches to distinguish seafloor surface categories in a pyramidal manner, using both the Average pooling and the Max pooling, as is shown in Supplementary Figure H1.

Let the number of channels from the channel attention module be  ; the dimensionality reduction is first performed on the input feature maps by a 1×1 convolution. The Average pooling and the Max pooling simultaneously conclude the feature maps in sub-regions of pyramid scales, with the latter appropriately compensating for the former in detail, and then connect together at pyramid levels along the channel dimension. To maintain the weight of the global seafloor features, a 1×1 convolution layer is applied after each pyramid level. The low-dimensional feature maps are directly upsampled to obtain feature maps of the same size before pooling by bilinear interpolation. Multiple levels of pyramid pooling features are concatenated with the original feature maps before the pooling stage as the final globally enhanced seafloor features, and then output with     convolution for the next upsampling.




5.4 Morphological feature fusion

We further proposed fusion strategies to merge with the morphological cues in the context of DenseNet so as to enhance the semantic understanding among seafloor surface types, as is shown in Supplementary Figures I1 and I2. The first one is that we have attempted to superimpose the morphological features as the input of DenseNet together with the bathymetric seafloor mapping, calibrating the deep-level feature mapping with the help of the channel attention module, enhancing the global feature extraction from the spatial pyramid pooling, and restoring the high-resolution predictions in the up-sampling path for the pixel-level seafloor surface classification. The second strategy is to make an up-sampling of those morphological features through a   convolution as a branch to join with the deep-level feature mapping of the same dimensionality extracted from the DenseNet branch to jointly contribute as the input of the residual block for the subsequent seafloor type prediction. Due to the existence of the identity mapping in ResNet, the residual block could at least copy the previous layer to prevent degradation and simultaneously refine morphological details. In addition, we have evaluated the impact of multiple morphological cues on promoting the descriptiveness and distinguishability of seafloor surface classification.





6 Experimental results and analysis



6.1 Dataset for seafloor surface classification

In our simulation experiment, the developed scheme has been verified by the high-resolution multibeam bathymetric data from the NOAA Office of Ocean Exploration and Research (OER) for the expeditions EX1605L1, EX1605L2, and EX1605L3, with Kongsberg EM302 multibeam echosounders on board the research vessel Okeanos Explorer. The total time of the expedition is 1631.269 h, lasting for 59 days, from the 20th of April to the 10th of July 2016, with a track length of 26703.6897 km and an average speed of 16.33 km/h in the Mariana Trench Marine National Monument and the Commonwealth of the Northern Mariana Islands, as is shown in Supplementary Table K1.

Meanwhile, the submersible ROV Deep Discoverer (D2), equipped with high-definition cameras and a lighting system, was connected to the camera platform Seirios and the research vessel via an umbilical cable, which provided the possibility of visual cues about the benthic habitat and colonization that are difficult to obtain in the deep sea (Cantwell, 2016). The detailed summary of the ROV Deep Discoverer dive log of EX1605L3 is listed in Supplementary Table L1, and it includes the latitude and longitude, bottom time, and maximum depth.

First, we essentially utilized the manually labeled seafloor surface annotation as the standard reference so as to identify eight seafloor stretching categories via DenseNet. The normative standard of our manual annotation is listed in Table 1, where the descriptive morphological formation features are commonly known to systematically evaluate the seafloor surface categories (Nishizawa et al., 2009; Harris et al., 2014). In the beginning, we divided the original MBES images into overlapping sub-blocks based on their relatively independent physical attributes of morphological structures at the given scales. We normalized the above MBES images at multiple scales, with their corresponding morphological cues and manual labeling into the basic uniform size 256×256. Such transformed sub-blocks were varied with multiple processing steps, such as random flip, rotation, translation, etc., to promote the diversity of the samples. The selection of the basic uniform size satisfied a comprehensive view of most seafloor topography in our experiment, allowing for interpretation, classification, and validation under the given average swath width of MBES scans. Once a variety of scales with regard to geomorphological formations of seafloor surfaces have been used, normalization would be taken to adapt to the proposed model. In total, 11,720 sub-blocks were chosen, with 8200 samples for training and 3520 for testing, of which 697 samples were originally labeled to the island slope ridge category, 2765 samples to the island slope category, 1145 samples to the island slope deep water terrace category, 2682 samples to the trench seamount group category, 1690 samples to the trench edge slope category, 1240 samples to the trench bottom basin category, 840 samples to the island platform category, and 661 samples to the slope fault basin category. We could further accumulate and refine the seafloor surface annotation as the ground truth through the acquisition of more MBES images.


Table 1 | Annotation standard for seafloor surface categories.






6.2 Configuration details

The configuration of the supercomputing solutions during the model building, training, and testing process was as follows: NVIDIA TITAN Xp graphics card and GeForce GTX 1080Ti graphics cards, an Intel Core i5-2410M CPU with a main frequency of 2.3GHZ, 32GB of memory cards, an Ubuntu 16.04 operating system, a Tensorflow 1.3.0 deep learning framework, a Python3.5 interpreter, data science libraries including Numpy and Pandas, and netCDF data viewers. For optimization, the best Adam optimizer was adopted, among which the exponential decay rate of the first-order moment estimation   and the second-order moment estimation   were 0.9 and 0.99, respectively, by using the cross entropy as the loss function, the learning rate was initially set to 0.001, with the batch size of 16. It should be noted that we examined the hyper-parameters in our simulation experiment, especially the learning rate and the batch size, to ensure the impact on the convergence of our developed model. When the batch size varied from 8 to 32 and the learning rate varied from 0.0005 to 0.01, it was demonstrated from our experimental results that the selected parameters exhibited quite comparable convergence for our proposed scheme.




6.3 Evaluation metrics

We employed PA, MPA, and MIoU metrics to quantify semantic segmentation performance with the help of manual annotation. Assuming that there are   categories of seafloor surfaces, let   be the total number of image pixels that originally belonged to the   th category but have been incorrectly classified into the   th category, and   be the total number of image pixels that originally belonged to the   th category but have been incorrectly classified into the   th category, with   the total number of image pixels that belonged to the   th category and have been correctly classified into the   th category.

PA refers to the ratio between the amount of properly classified image pixels and the total number, which can be expressed as the following formula:

 

MPA refers to the ratio of the number of correctly classified image pixels on a per-category basis, which is then averaged over the total number of categories,

 

MIoU calculates the average IoU ratio across all categories, which describes the degree of overlap ratio between the intersection and union of categories,

 

 

We further started to evaluate the semantic segmentation performance of our proposed scheme. First, we verified the configuration of a variety of backbone networks, such as ResNet50, ResNet101, and DenseNet121, to determine whether it would be more effective to extract the possibly deeper level features for the seafloor surface stretching by means of the identical upsampling modules. As shown in Supplementary Figure J1, the selection of DenseNet121 initially achieved comparable performance for semantic segmentation of seafloor surface stretching in terms of PA, MPA, and MIoU metrics.




6.4 Ablation studies

We carried out a series of ablation studies to quantitatively investigate the extent to which the progress of semantic segmentation performance could benefit individually from the improvement of the channel attention module and spatial pyramid pooling in our proposed model. The performance verification for each step is listed in Tables 2 and 3 in our ablation studies, respectively, in terms of PA, MPA, and MIoU metrics. The channel attention module combined both global average pooling and global maximum pooling to optimize the generation of the deep-level feature descriptors. We made the comparative evaluation of the baseline Densenet121, with either the global average pooling or the global maximum pooling, as well as with both types of the pooling. In our experimental results, it has been demonstrated that the effectiveness of both types of pooling behaved better in parallel, where the maximum pooling supplied the possible losses derived from the Average pooling. Spatial pyramid pooling was added to the baseline Densenet121 with the channel attention module, using various pooling selections at multiple pyramid scales. It was shown that the Average pooling alone outperformed the maximum pooling alone, while the two complementary poolings in parallel improved the semantic segmentation accuracy more.


Table 2 | Evaluation of the channel attention module in our ablation studies.




Table 3 | Evaluation of the channel attention module in our ablation studies.



We also examined which types of morphological cues are more relevant to the semantic segmentation of seafloor surface categories, together with the features retrieved directly from MBES imagery via Densenet. Table 4 lists the evaluation of the semantic segmentation accuracy by merging multiple morphological cues into the DenseNet backbone network with the embedded channel attention module (C) and spatial pyramid pooling module (S) in the context of two types of feature fusion strategies, including slope, roughness, curvature, slope + roughness, slope + curvature, roughness + curvature, and slope + roughness + curvature. The first mode concatenated the individual or joint morphological cues with multibeam bathymetric seafloor mapping in advance to generate the multi-channel input for DenseNet, and the resulting fused feature maps would be adaptively optimized with the channel attention module, advanced into global feature representation with the spatial pyramid pooling, then restored to high-resolution predictions from up-sampling with the aid of transition-up blocks, outputting the subsequent semantic seafloor classification. In the second mode, the bathymetric seafloor mapping was individually input into DenseNet, with the channel attention module and spatial pyramid pooling employed. Concatenated feature maps of the same dimensionality were extracted from up-sampled morphological cues by convolution from another branch in parallel, and then commonly fed the feature fusion into the residual block to output the seafloor type prediction. From our experimental results, the second mode achieved the overall performance improvement compared to the baseline and the first mode, which to a certain extent plays a role in compensating for the loss in down-sampling, thereby improving the descriptiveness and distinguishability of seafloor surface categories. The morphological cues of slope + roughness exhibited better performance, while the curvature did not show a significant improvement in accuracy. It was inferred that the slope tends to indicate the degree of steepness in seafloor surface stretching, and the surface roughness might display the extent of erosion in the seafloor surface topography, all of which contribute to the semantic segmentation. Also, the curvature reflects the degree of fragmentation, which might not be seen as a very distinguishable index and might lead to misclassification to a large extent.


Table 4 | Evaluation of feature fusion in our ablation studies.



Furthermore, the semantic segmentation accuracy of each individual seafloor surface category was systematically evaluated against the classic Fully Convolutional Network (FCN) (Long et al., 2015) in terms of the IoU measure, as is shown in Table 5. Since IoU describes the degree of overlap between the actual outputs and the expected outputs of each category prediction, the higher the IoU index value, the better the segmentation performance. It could be seen from our experimental results that our proposed scheme has made general progress in distinguishing individual seafloor surface categories from the rest via DenseNet with the channel attention module and spatial pyramid pooling strategies, which tended to enhance the feature mapping capability of the entire network and thus improve the segmentation accuracy accordingly.


Table 5 | Performance of semantic segmentation across categories.



The overall performance evaluation of our developed scheme has been illustrated in Table 6, where the semantic segmentation accuracy calculation, from the baseline Densenet121 with the minimalistic transition-up (TU) blocks (DT), embedded with the channel attention module (DTC) and spatial pyramid pooling module (DTCS), to the coupled feature fusion with the morphological cues (DTCSF), was quantitatively measured step by step in terms of PA, MPA, and MIoU metrics.


Table 6 | Evaluation of the overall network performance.






6.5 Comparison with state-of-the-art methods

We further performed the comparative evaluation with some state-of-the-art models for semantic segmentation of seafloor surface stretching, including FCN-8s, SegNet (Badrinarayanan et al., 2017), RefineNet (Lin et al., 2017), PSPNet (Zhao et al., 2017), DeepLab v3+ (Chen et al., 2018), and our developed scheme, as shown in Table 7. The classic FCN-8s network integrates the multi-layer feature maps during down-sampling in FCN. The SegNet network calls the pooling index at the corresponding encoder in the decoder to upsample the feature map through the unpooling operation. RefineNet explicitly exploits all the information available along the down-sampling process to enable high-resolution prediction through long-range residual connections. PSPNet captures global context through different-region-based context aggregation by the pyramid pooling module to improve network performance. DeepLab v3+ makes use of an encoder-decoder to perform multi-scale information fusion while retaining the dilated convolutions and Atrous Spatial Pyramid Pooling (ASPP) layer of the original DeepLab series. It should be noted that the above segmentation results for seafloor stretching categories were initially generated from the average product of 5-fold cross-validation with our developed model by dividing into mutually exclusive subsets with nearly equal numbers of randomly selected samples. From the experimental results, it was demonstrated that our proposed scheme had achieved a significant improvement in semantic segmentation performance, with PA, MPA, and MIoU metrics reaching up to 89.87%, 82.01%, and 73.52%, respectively. The model also exhibited a high level of stability in terms of PA, MPA, and MIoU metrics with a series of cross-validation rounds.


Table 7 | Comparison of classification performance.



The semantic segmentation of multibeam bathymetric seafloor mapping has been further visualized, as is shown in Figure 5, where the example MBES image, the segmentation results of both FCN-8s and our proposed scheme, and the corresponding labels are listed from left to right, respectively, with the island slope ridge in red, the island slope in green, the island slope deepwater terrace in cyan, the trench seamount group in yellow, the trench edge slope in blue, the trench bottom basin in purple, the island platform in orange, and the slope fault basin in black. From our experimental results, it was demonstrated that our developed scheme visually outperformed the classic FCN-8s, and simultaneously enhanced the details in-between edges, with the ability to preserve the salient features and eliminate redundancy on a global scale, showing its superiority in the descriptiveness and distinguishability of the seafloor surface categories. Some semantic segmentation results of the example multibeam bathymetric seafloor mapping along waypoints of the expedition track around the Mariana Trench are shown in Figure 6, where the location of the waypoint, the original example MBES images, the segmentation results, and the ground truth are listed from left to right.




Figure 5 | Visualization of an example MBES image segmentation result. (A) Example MBES image, (B) FCN-8s, (C) the proposed scheme, (D) ground truth.






Figure 6 | Multibeam bathymetric seafloor mapping along waypoints around the Mariana Trench. (A) Location of waypoints, (B) Example MBES image, (C) segmentation result, (D) ground truth.






6.6 Biogeographic patterns

Furthermore, we made an attempt to focus on a more delicate observation and a preliminary study of how the seafloor surface stretching functions as a submarine benthic habitat and what type of biogeographic pattern distribution of the benthic organisms are present in the extremely deep sea, with the help of both the acoustic sensor on board the research vessel Okeanos Explorer and the optical sensor mounted in the ROV Deep Discoverer. A total of 10,000 underwater images of the dominant resident biological species and their corresponding habitats, at dive depths within a range of 250-5000m, included Rimicaris, Austinograea, Symphurus thermophiles, Bathymodiolus, Phenacolepadidae, Shinkailepas, Thoridae Lebbeus, Lamellibrachia, etc., and were considered as our alternative underwater vision dataset for this preliminary study. The primary benthic species retrieved from the video of each dive by the ROV Deep Discoverer during the EX1605L3 expedition route are recorded in Supplementary Table M1.

We established a global geographical link between the ROV dive path and the MBES bathymetric mapping route. Figure 7 shows the connection between the latitude and longitude of the example ROV dive paths and the location of the MBES imaging survey, including the original example MBES bathymetric mapping, the corresponding seafloor surface categories, the ROV dive paths on Eifuku Seamount and Daikoku Seamount, and the possible typical benthic habitats retrieved from visual cues along the paths, thus linking the seafloor surface topography with the primary benthic biogeographic patterns. We tried to statistically match the corresponding primary benthic habitats and species with the seafloor surface stretching by roughly retrieving the microgeographic cues from each ROV dive, and subdividing the benthic habitats with the visual cues from optical sensing. Figure 8 lists some examples of dominant benthic habitats and species that visually reflect the possible biogeographic patterns that respectively appeared and were distributed at distinct locations of the seamount above Figures 8A–F and the seamount below Figures 8G–L, which also makes it possible to provide an initial insight into the diversity and distribution of the benthic community.




Figure 7 | The connection between the latitude and longitude of Dive8 and Dive9 path and the geographical location of MBES imaging survey. (A) MBES bathymetric mapping, (B) geographical linkage between ROV diving path and the route of MBES bathymetric mapping, (C) segmentation result of MBES imaging, (D) geographical linkage between ROV diving path and segmentation result of MBES imaging, (E) Dive8 diving path maps, (F) Dive9 diving path maps.






Figure 8 | Preliminary study of benthic habitats with both acoustic and optical sensors along the ROV dive path above and below. (A) old hydrothermal chimney, (B) coronaster seastar, (C) crater wall, (D) grouper, (E) volcaniclastics, (F) octocoral fauna, (G) sulfur, (H) Symphurus thermophilus, (I) volcanic rock, (J) Gandalfus yunohana, (K) crater, (L) volcanic smoke.



It could be seen from the visual clues from the ROV dive on Eifuku Seamount that the benthic species, especially fish and octocoral fauna, were unexpectedly diverse, and the typical geomorphology discovered included the crater wall and the hydrothermal chimney structure near the summit, while the visual clues from the ROV dive on Daikoku Seamount demonstrated the high activity of the hydrothermal vents, the possible evidence of the recent eruption, the volcaniclastics, the sulfur pond and the thick volcanic smoke, the plume, and the flatfish communities, e.g., Symphurus thermophilus and Gandalfus yunohana. The extent of the seafloor surface stretching and the estimation of the primary benthic biogeographic patterns reflect the coupling variation of multivariate environmental variables in the deep sea. The associative study derived from the sparse observation statistics through both acoustic and optical sensors not only produces the possibility of capturing the potential relationships between the full coverage of seafloor mapping and the benthic habitats, even the benthic species assemblage maps, but also provides the opportunity to examine the predicted biogeographic patterns with better-described variations and uncertainties towards the distinct geographical characteristics of seafloor surfaces.





7 Conclusion

The extent to which the seafloor surface stretches and the benthic community survives and thrives, strongly reflecting the coupling variation of multivariate environmental factors, is still poorly understood in the extreme deep sea. With access to advanced sensing techniques, especially those related to the deployment of ROVs and AUVs, more attention has been paid to accumulating benthic biogeographic knowledge from these less-mapped or even unknown deep-sea regions. In this paper, an effort has been made to explore how to build online computing strategies for underwater vehicles that enable them to reasonably classify seafloor surface categories and identify the potential biogeographic patterns when underwater vehicles proceed along waypoints, in favor of a deep learning-based framework, DenseNet. We directly utilized multibeam bathymetric mapping from high-resolution MBES scans and manually labeled the seafloor surfaces as the standard references, i.e., island slope ridge, island slope, island slope deepwater terrace, trench seamount group, trench edge slope, trench bottom basin, island platform, and slope fault basin. We initially applied the individual and joint morphological cues in combination, in terms of slope, surface roughness, and curvature, in relation to the formation and evolution processes, to help semantic mapping and localization, which agglomerated assigned elevation points with highly similar topological parameters for the identical seafloor categories and deviated from the significantly inconsistent outlier elevation points. We then established an upgraded Densenet121 backbone from the minimalistic transition-up blocks in the upsampling path, systematically strengthening the dominant feature propagation and encouraging multi-scale feature reuse by employing both the channel attention module and the spatial pyramid pooling, and derived the types of seafloor categories with specific morphological parameters. We integrated the channel attention module by sequentially inferring channel-wise attention maps from both the Average pooling and the Max pooling in parallel. Meanwhile, we applied spatial pyramid pooling to incorporate the momentous global contextual prior by aggregation along with sub-regions from multiple receptive fields in a pyramidal manner. From the experiment results, it was demonstrated that the seafloor stretching classification accuracy of our proposed scheme could reach up to 89.87%, 82.01%, and 73.52% on average in terms of PA, MPA, and MIoU metrics, achieving comparable performances with state-of-the-art deep learning frameworks such as FCN-8s, SegNet, RefineNet, PSPNet, and DeepLab v3+, which permits us to delicately and adaptively distinguish the specific seafloor categories and connect the probable submarine benthic habitats. We also made a preliminary study on the potential biogeographic distribution statistics, showing the premise of deploying underwater vehicles through unbiased means or pre-programmed path planning to quantify and estimate the specific types of seafloor categories and the exhibiting fine-scale biogeographic patterns. The proposed scheme commits to developing smart capabilities embedded in underwater vehicles that could integrate the geometrical, topological, morphological, and biogeographic evidence yielded from MBES and optical sensing and hopefully perform habitat delineation, sampling programs, and other deep-sea tasks with more flexibility and adaptability. In the future, we will tentatively extend our proposed seafloor classification scheme with more advanced deep learning frameworks, such as Transformers, and further implant them in underwater vehicles through lightweight solutions.
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Increasing awareness of the importance of effective communication of scientific results and concepts, and the need for more accurate mapping and increased feature visibility led to the development of novel approaches to visualization of high-resolution elevation data. While new approaches have routinely been adopted for land elevation data, this does not seem to be the case for the offshore and submerged terrestrial realms. We test the suitability of algorithms provided by the freely-available and user-friendly Relief Visualization Toolbox (RVT) software package for visualizing bathymetric data. We examine the algorithms optimal for visualizing the general bathymetry of a study area, as well as for highlighting specific morphological shapes that are common on the sea-, lake- and riverbed. We show that these algorithms surpass the more conventional analytical hillshading in providing visualizations of bathymetric data richer in details, and foremost, providing a better overview of the morphological features of the studied areas. We demonstrate that the algorithms are efficient regardless of the source data type, depth range, resolution, geographic, and geological setting. The summary of our results and observations can serve as a reference for future users of RVT for displaying bathymetric data.
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1 Introduction

Advances in remote sensing technologies in recent decades have allowed an ever-increasing capability to monitor the Earth’s surface - both onshore (Drăguţ and Eisank, 2011; Tarolli, 2014; Telling et al., 2017; Sofia, 2020) and offshore (Lecours et al., 2016; Hughes Clarke, 2018; Micallef et al., 2018; Wölfl et al., 2019). As a result, digital elevation models (hereafter DEMs) have become essential in geoscientific applications. Recent advances in computing and technology facilitate acquisition and processing of large quantities of elevation data and the creation of DEMs in increasingly higher resolutions (Sofia, 2020 and references therein). While the most recent advancements are focused towards quantitative analyses of elevation data and machine learning (Lecours et al., 2016; Maxwell and Shobe, 2022), qualitative analyses are still very important in geomorphological, environmental, archaeological, geographical, and geological studies. In these studies, very often one of the first steps involves the preliminary visual inspection of elevation data which then dictates the selection of the study site and directly impacts the study results. In later stages, a clear visual representation of elevation data is essential for efficiently communicating the results, analyses, and interpretations to the reader. For these reasons, representative and intuitive visualization of elevation data plays an essential role in research- and application-driven studies.

The importance of representative visualization of the Earth’s surface is even more pronounced in offshore (in this manuscript referring to marine, lacustrine and fluvial) environments where visual on-site inspection is rarely possible or very costly, and where the availability and resolution of bathymetric data is very limited compared to elevation data from onshore areas (Weatherall et al., 2015; Mayer et al., 2018; Wölfl et al., 2019). Due to relatively costly acquisition, a great majority of high-resolution bathymetric data is obtained by multibeam sonar in near-shore areas, areas containing important economic resources and at sites intended for larger infrastructural development (Mayer et al., 2018; Wölfl et al., 2019). Due to the relative scarcity of high-resolution offshore elevation data, it is of great importance to extract useful information from bathymetric data to the fullest.

Most commonly, elevation data and morphological features are visualized with the hillshading method in which the lightness or darkness of a surface is determined by the incidence angle between the illumination direction and the surface, resulting in an intuitive representation of the morphology of the Earth’s surface (Kokalj et al., 2011; Zakšek et al., 2011). Some recent publications displaying hillshaded bathymetric data include: Madricardo et al., 2019; Caporizzo et al., 2021; Fabbri et al., 2021; Wu et al., 2021; Aiello and Sacchi, 2022; Li et al., 2022; Piret et al., 2022; Post et al., 2022; Riddick et al., 2022; Sandwell et al., 2022; Streuff et al., 2022; Zheng et al., 2022. Despite the widespread use of the Hillshade, analytical hillshading has inherent limitations due to the directional bias induced by a single light source (Onorati et al., 1992; Smith and Clark, 2005; Zakšek et al., 2011; Kokalj and Somrak, 2019). The two most common problems with hillshading are 1) that morphological features which are parallel to the light source are barely visible (sometimes even invisible), and 2) that directly lit/shaded features are too light/dark to exhibit subtle relief (Zakšek et al., 2011). In order to partially mitigate these limitations, alternative visualizations of bathymetric data and morphological features are being used, among which Slope Gradient prevails by far (some more recent examples include: Walbridge et al., 2018; Watson et al., 2020; Georgiou et al., 2021; Verweirder et al., 2021; Berthod et al., 2022; Lebrec et al., 2022; Manstretta et al., 2022; Puga-Bernabéu et al., 2022). With this method the colour of a surface depends on its steepness. Even though the Slope Gradient visualization is less intuitive than Hillshade (Kokalj et al., 2019), it is still widely used since it is included as a standard function in commonly used GIS software packages. Other visualizations of bathymetric data and morphological features are only used occasionally (Marple and Hurd, 2019; Majcher et al., 2020; Zhou et al., 2022) as they are rarely included in the analytical toolbox of GIS software solutions and require the use of various programming languages for their calculation.

In this paper we present a fresh approach to offshore mapping by exploring the different visualization algorithms provided by the freely available “Relief Visualization Toolbox” software package (hereafter RVT). We assess the suitability of RVT algorithms for visualizing bathymetric data in different settings, resolutions, and regions and try to identify the most suitable algorithms to highlight different natural (i.e. geological) and anthropogenic geomorphic sea-, lake- and riverbed features. To our knowledge, we provide the first summary of the suitability of RVT algorithms for highlighting submerged features. Finally, we try to convince the reader that there are user-friendly simple-to-use alternatives to the Analytical Hillshade that have great potential to more effectively display bathymetric data and allow users to more efficiently communicate their findings and ideas.




2 Methods



2.1 Software

The “Relief Visualization Toolbox” is a freely available software package which was developed by ZRC SAZU and the University of Ljubljana (Kokalj et al., 2011; Zakšek et al., 2011; Kokalj and Somrak, 2019; Kokalj et al., 2019; RVT, 2023). It is compatible with the two most commonly used GIS software solutions and is frequently used in land applications. At the moment, RVT is available as a standalone executable (available at https://www.zrc-sazu.si/en/rvt; last accessed: 22.6.2023), as a plugin for the QGIS GIS software, as a “raster function” for the ArcGIS Pro GIS software, and as a Python package (all three available at https://rvt-py.readthedocs.io/; last accessed: 22.6.2023). For this paper we created the visualizations by utilising the standalone executable, the RVT plugin for QGIS, and the RVT “Raster function” for ArcGIS.

In this work, we focus on the following visualization functions of the RVT Toolbox: “Hillshade” (hereafter HS), “Hillshading from Multiple Directions” (hereafter HSM), “Principal Component Analysis of Hillshading” (hereafter PCAHS), “Simple Local Relief Model” (hereafter SLRM), “Multi-Scale Relief Model” (hereafter MSRM; Orengo and Petrie, 2018), “Sky-View Factor” (hereafter SVF; Zakšek et al., 2011), “Anisotropic SVF” (hereafter ASVF), “Openness – Negative” & “Openness– Positive” (hereafter ONEG and OPOS; Yokoyama et al., 2002), and “Local Dominance” (hereafter LD). All the algorithms used to create the listed visualizations are described in detail in Kokalj et al. (2019) and in Kokalj and Somrak (2019). These references also contain the basic guidelines for setting the algorithm parameters for the creation of individual visualizations. A very basic description of the algorithms is here summarised after Kokalj et al. (2019); Kokalj and Somrak (2019), and RVT (2023): HS – illuminates a surface depending on the incidence angle between the illumination direction and the surface, HSM – a composite image of hillshading from multiple directions, PCAHS – a PCA analysis of hillshaded data from multiple directions, SLRM – a trend-removal algorithm that separates local small-scale features from large-scale landforms, MSRM – as SLRM but at multiple scales, SVF – a graphical representation of the portion of the sky visible from a certain point, ASVF - a modification of SVF which takes into account the directional variability of the brightness of the sky, ONEG - a proxy for diffuse relief illumination resulting in a topography-detrended image based on estimating the mean value of mean nadir value within a defined search radius, OPOS – similar to ONEG but based on estimating the mean value of all zenith angles within a defined search radius, LD - demonstrates how dominant an observer is for a local surrounding area when standing above a certain elevation. For more details the reader is referred to the beforementioned references.

Although “Multi-Scale Topographic Position” and “Slope Gradient” algorithms are also available in the RVT Toolbox, we do not present them in this work. “Multi-Scale Topographic Position” is most commonly used for landscape slope classification (Guisan et al., 1999; De Reu et al., 2013), and is therefore less applicable for visualization and mapping of subtle geomorphic features commonly occurring in bathymetric datasets. On the other hand, “Slope Gradient” is well known and commonly used also in bathymetric applications (as already described in the Introduction), therefore we do not elaborate on it any further in this work.

We tested the suitability of the described algorithms to visualize the following morphologies: narrow linear features with negligible relief, convex linear and elongate features, concave linear and elongate features, linear or curved features with break in slope, circular-rounded convex features, circular-rounded concave features, and features with a corrugated/folded morphology. These general morphologies comprise some of the most common geological, geomorphic, and anthropogenic features that can be found on the sea-, lake- and riverbeds (Table 1).


Table 1 | Most common sea-, lake- and riverbed morphologies and corresponding examples of geological, geomorphic and anthropogenic features.






2.2 Datasets

In order to try to represent the widest possible variety of bathymetric data, we present results from four different datasets (Figure 1) covering different bathymetric ranges, geological & geographical settings, dataset resolutions and source data types. The datasets are from the Gulf of Trieste, the New England Seamount chain, and from lakes Constance (also Bodensee, Lac de Constance, Lago di Costanza, Lai da Constanza) and Lucerne (also Vierwaldstättersee, Lac des Quatre-Cantons, Lago di Lucerna, Lai dals Quatter Chantuns). Table 2 provides the basic information about the used datasets and lists references describing their geological setting. Datasets for the Gulf of Trieste and lakes Constance and Lucerne were created from multibeam sonar soundings, except in the very shallow areas of the Gulf of Trieste, where singlebeam sonar was also used (Slavec, 2012; Trobec et al., 2017). The source data for the New England Seamount chain dataset is composed of direct and indirect measurements – where sonar soundings are available, they are combined with satellite-derived bathymetry (GEBCO, 2021).




Figure 1 | Geographic location of the used bathymetric datasets indicated by dark blue polygons: (A) overview map (EPSG: 4326); (B) inset of the northern Adriatic Sea (EPSG: 3794), (C) inset of Switzerland (EPSG: 2056). Figure was created by using Flanders Marine Institute (2018) and EuroGeographics & UN-FAO (2020) datasets for the seas/oceans extent and administrative boundaries.




Table 2 | Datasets used in this study.







3 Results

This section contains an overview of the visualizations which were created from the four different datasets which were used in this study (Table 2). We show the most striking examples and assess the effectiveness of the different algorithms for highlighting different geomorphic features. We first assess which visualizations are suitable to give a general overview of the bathymetric relief of a research area and then determine which visualizations most effectively highlight the general shapes listed in Table 1. The results of our qualitative assessment are summarized in Table 3 which shows the suitability of the different algorithms for highlighting specific morphological sea-, lake-, and riverbed features.


Table 3 | Suitability of the different algorithms for highlighting specific morphological features (✓ - very suitable, ο - less suitable, x - not suitable).



The abbreviations which are used in the figure captions refer to the: geographic location of the dataset (abbr. explained in Sect. 2.2 and Table 2), used visualization algorithm (abbr. explained in Sect. 2.1), and the used parameters (where applicable). The abbreviations for the latter are: A - azimuth of illumination (in degrees), An - main direction of anisotropy (in degrees); H - height of illumination source (in degrees), Ve - vertical exaggeration (in multiples), D - number of directions of illumination, R - radius for trend assessment (in pixels), and M[min]-[max] - minimum to maximum search radius (in meters). The different parameters are separated by an underscore symbol.



3.1 General morphology of a research area

In order to create a good overview of the general morphology of a research area, the HSM, PCAHS (Figure 2), MSRM (Figure 3), SVF, and ASVF (Figure 4) algorithms are especially effective. However, the general morphology of the research area (especially in very low- or very high-gradient settings) should be taken into account before using HS or HSM as improperly set parameters can completely obscure the relief (e.g. Figures 2A, C).




Figure 2 | Examples of visualizations in a low-gradient setting (dataset from GT): (A) HS A315_H35_Ve1; (B) HS A315_H35_Ve20; (C) HSM D8_H20_Ve1; (D) HSM D8_H20_Ve20; (E): PCAHS D8_H20_Ve20; (F) example of an elevation profile throughout research area (profile location indicated in (D). Note how at low Ve relief features in A and C are barely visible (e.g. dunes in the SW part of the figure; see Slavec, 2012) or even invisible (e.g. the buried meander belt in the central part of the figure; see Trobec et al., 2017; Novak et al., 2020). White arrows in E indicate some examples of relatively subtle linear convex sedimentary bodies.






Figure 3 | Examples of visualization in a mixed high- and low-gradient setting (dataset from LL): (A) HS A315_H35_Ve1 with a bathymetric overlay (“davos” colourbar from Crameri, 2018a; Crameri, 2018b; Crameri et al., 2020); (B) MSRM M7-70. Blue arrows mark the headscarps and frontal bulges of the Chrüztrichter slide (indicated as CS; after Hilbe et al., 2011; Sammartini et al., 2021) and the Weggis slide complex (indicated as WSC; after Hilbe et al., 2011). White arrows indicate a ridge feature. Note the compressional ridges within the frontal bulges of both slides which are exceptionally well highlighted by the MSRM algorithm.






Figure 4 | Examples of visualization in a predominantly high-gradient setting (dataset from LC): (A) HS A315_H40_Ve1; (B) SVF R10_D16; (C) ASVF R10_D16_An315. All three images contain a bathymetric overlay (“lapaz” colourbar from Crameri, 2018a; Crameri, 2018b; Crameri et al., 2020).



In very low-gradient settings, special attention should be given to the Ve parameter, which needs to be higher than 1 in order to adequately highlight subtle relief features (Figure 2). In the example from Figure 2, a few meters high sandwave field is barely visible at low Ve, while a subtle, less than 1 meter deep depression in the seafloor above a buried meander belt is not even recognisable (Figures 2A, C). Both morphological features become much more pronounced when a larger Ve is used (Figures 2B, D). Contrary to the commonly used HS, the HSM, PCAHS, MSRM, SVF, and ASVF reduce the effects of a unidirectional light source (mentioned in Sect. 1). Additionally, the PCAHS algorithm is very effective in highlighting both high- and low-relief features at the same time (Figure 2E). Some additional examples of effective visualizations of low-gradient settings are shown in Figures 3B, 5B, 7B, 9B, 10D, 11B.




Figure 5 | Visualizing narrow linear features with negligible relief (dataset: GT in A, B, NESM in C, D): (A) HS A315_H35_Ve20; (B) OPOS R10_D16 (black arrows indicate some of the more prominent bottom trawling marks (after Slavec, 2012), blue arrows indicate two archaeological features: the northerly shipwreck “barka Aura” and the southerly archaeological site “Koprske šeke” (after RKD, 2023); (C) HS A315_H40_Ve20; (D) MSRM M500-2000 (grey arrows indicate some of the more prominent artifacts at the edges of multibeam tracklines). Note how the MSRM algorithm highlights the submarine canyons in the NW corner of the inset.



In areas of both high and low topographic gradient HS is commonly used as it creates an intuitive overview of the general topographic features of the research area (e.g. Figure 3A). However, subtle topographic features can be overlooked when choosing a (too) low Ve value. Alternatively, very rugged terrain can be too dark due to setting a (too) high Ve value. In such mixed topographical settings the MSRM visualization can be a good alternative since it is very effective in highlighting escarpments in high-relief areas as well as subtle topographic features in low-relief settings. The example in Figure 3B shows well-delineated ridges, escarpments, and mass-transport deposit bodies (cf. Figure 2 from Hilbe et al., 2011 and Figure 2 from Sammartini et al., 2021). Very subtle features in low-gradient settings are also highlighted by this visualization such as the compressional ridges on the frontal bulges of the landslides. Finally, several other “mass-transport deposit-like” morphological features are visible west of WSC (Figure 3B), which could tentatively be a topographic expression of buried mass-movements (already documented in LL by Schnellmann et al., 2002; Schnellmann et al., 2006). Some additional examples of effective visualizations of both low- and high-gradient settings are shown in Figures 2E, 7B, 11B.

Relief in high-gradient settings can be quite effectively portrayed by using HS (e.g. Figure 4A), however a low Ve value should be chosen to avoid overexaggerated shadows produced by high relief. Another useful alternative is the use of the SVF and ASVF algorithms. Examples in Figures 4B, D show that these visualizations highlight more details compared to HS, while still being as intuitive as HS. Some additional examples of effective visualizations in high-gradient settings are shown in Figures 6B, 10B, 11B.




Figure 6 | Visualizing convex linear and elongate features (dataset from LL): (A) HS A315_H20_Ve1; (B) SLRM R20. Black arrows indicate the ridge of the Nase moraine (after Hilbe et al., 2011; Hilbe et al., 2016). Note also how the morphological features of the gullies (indicated by white arrows), mass-movement deposits (MM; after Hilbe et al., 2011) and a fan (F; after Hilbe et al., 2011) are highlighted by the SLRM algorithm. The linearly distributed dots in the top part of both figures are acquisition artefacts.






3.2 Narrow linear features with negligible relief

Narrow linear features with negligible relief are highlighted best by the MSRM, SVF, ASVF ONEG, OPOS, and LD algorithms (Table 3). Compared to HS, these visualizations accentuate subtle features such as trawling marks and edges of multibeam tracks, which are barely visible on HS (Figure 5). While the vertical offset in case of the edges of multibeam tracks can be in the order of a few ten meters in the deep ocean setting (e.g. Figures 5C, D), the example from Figure 5B demonstrates that features can be highlighted by the appropriate algorithm even when the vertical offset amounts to less than a decimetre. Some additional examples with accentuated narrow linear features with negligible relief are included in Figures 7B, 8B, 10D.




Figure 7 | Visualizing concave linear and elongate features (dataset from GT): (A) HS A315_H35_Ve20; (B) LD M5_50. Note how the LD algorithm highlights the channels within the meandering belt and the related abandoned channels – relict oxbow lakes (after Trobec et al., 2017). The algorithm also highlights the sinuous fluvial channel (after Trobec et al., 2017; Novak et al., 2020) in the eastern part of the figure, where the levee is displayed in light grey and the thalweg is clearly visible as a central dark grey linear feature. Several smaller channels scattered throughout the whole extent of the displayed area are also well pronounced by the algorithm in light and dark shades of grey. Note also the archaeological features revealed on the seabed, indicated by blue arrows in (B) (locations after RKD, 2023).






Figure 8 | Visualizing linear or curved features with break in slope (dataset from NESM): (A) HS A315_H40_Ve1, (B) SVF R10 D16. Note how the SVF algorithm highlights the edges – breaks in slope of the seamounts despite of their orientation or width. Additionally, this algorithm also highlights the edges of the tracklines and the gullies and ridges along the slopes of the seamounts. GoS, GrS and MS indicate the Gosnold Seamount, Gregg Seamount and Manning Seamounts, respectively (after Flanders Marine Institute, 2022; IHO-IOC GEBCO, 2022).






3.3 Convex linear and elongate features

Convex linear and elongate features are highlighted best by the PCAHS, SLRM, MSRM, SVF, ASVF, and OPOS algorithms (Table 3). Compared to HS, these visualizations accentuate the highest parts of convex linear features regardless of their orientation. For example, the moraine ridge in Figure 6B is clearly accentuated (by brighter shades of grey) in its NE part as opposed to Figure 6A where this part of the ridge is less discernible due to its lightsource-parallel orientation. Some additional examples with accentuated convex linear and elongate features are included in Figures 2E, 3B, 5D, 7B, 9B, 10D.




Figure 9 | Visualizing circular-rounded convex features (dataset from GT): (A) HS A315_H35_Ve20; (B) SLRM R15. Note how the SLRM algorithm highlights the up to a few ten meters wide shipwrecks (indicated by blue arrows in (A) by darker shades of grey. The shipwrecks from left to right are: vessel “Barka Skale”, barge “Konji I” and vessel “Stojanov bark” (after RKD, 2023).






Figure 10 | Visualizing circular-rounded concave features (dataset from LC): (A) HS A315_H40_Ve1, (B) OPOS R10_D16, (C) HS A315_H40_Ve1, and (D) OPOS R10_D16. Note how the OPOS algorithm in (B) highlights aligned pockmarks on the shoulder (indicated by black arrows) of an old channel of the Rhine (after Wessels et al., 2010). Additionally, in the central part of (B) the algorithm highlights pockmarks within an old channel filled by ripples (after Wessels et al., 2010; Bussmann et al., 2011). In (D) the algorithm was used for highlighting another area of pockmarks in LC (after Wessels et al., 2017). Note that the algorithm was used in both high- (B) and low-gradient settings (D).






3.4 Concave linear and elongate features

Convex linear and elongate features are highlighted best by the HSM, PCAHS, SLRM, MSRM, SVF, ASVF, ONEG, and LD algorithms (Table 3). Compared to HS these visualizations accentuate the deepest parts of convex linear and elongate features regardless of their depth of incision. For example, smaller channels (incised less than 0.5 m) which are barely visible when using HS (Figure 7A) are well pronounced when an appropriate algorithm is used (Figure 7B). The small channels are well accentuated even when compared to the larger and deeper fluvial channels (Figure 7B). The LD algorithm is especially suited for displaying areas containing both incised channels and channels with developed levees (i.e. with convex morphologies; Figure 7B). Some additional examples with accentuated convex linear and elongate features are included in Figures 2E, 4B, C, 5D, 6B, 9B, 10B, 11B.




Figure 11 | Visualizing features with a currogated/folded morphology (dataset from LC): (A) HS A315_H40_Ve1, (B) ONEG R10_D16. The algorithm clearly highlights bedforms in various scales: the shore-parallel megaripples (wavelengths of between 20 and 40 m; after Wessels et al., 2015), the shore-perpendicular bedforms (wavelengths between 50 and 100 m), and the bedforms between and within old channels (wavelengths between 50 and 100 m). Note that the shore-parallel and shore-perpendicular bedforms are situated in a low-gradient setting, while the other group of bedforms is located within medium- to high-gradient settings.






3.5 Linear or curved features with break in slope

Linear or curved features with break in slope are highlighted best by the HSM, PCAHS, SVF, and ASVF algorithms (Table 3). Compared to HS these algorithms highlight the break in slope much more clearly as is demonstrated in Figure 8. Additionally, these features are emphasized regardless of their orientation. For example, the edges of the NW-SE oriented seamounts (e.g. Gosnold Seamount, Gregg Seamount, eastern part of Manning Seamounts) are not very evident in Figure 8A, while they are clearly delineated in Figure 8B. Some additional examples with accentuated linear or curved features with break in slope are included in Figures 3B, 4B, C, 5D, 6B, 11B.




3.6 Circular-rounded convex features

Circular-rounded convex features are well highlighted by all the algorithms (Table 3). Compared to HS, these algorithms highlight the features regardless of how much they protrude from the sea-, lake- or riverbed as is demonstrated with the shipwrecks in Figure 9. For example, the smallest shipwreck in Figure 9 - “Barka Skale” is emphasized by the SLRM algorithm (Figure 9B) despite its relatively modest extent of 24 x 15 m (after RKD, 2023). Considering that the cell size of the used dataset is fairly large (10 x 10 m, see Table 1) this clearly demonstrates the effectiveness of the algorithm even when the features are represented by just a few pixels. Some additional examples of accentuated archaeological features are included in Figures 5B, 7B, 8B. The algorithms work well also when highlighting large-scale circular-rounded convex features, such as seamounts (e.g. Figures 5D, 8B) or outcrops and boulders (Figure 3B).




3.7 Circular-rounded concave features

Circular-rounded concave features are well highlighted by all the algorithms (Table 3). Compared to HS, these algorithms highlight the features regardless of the gradient of the studied area and the relative depth of the features compared to their surroundings (Figure 10). The example in Figure 10 demonstrates how these algorithms pronounce the pockmarks fields compared to the HS algorithm. The algorithms work well in high- (Figure 10B) as well as in low-gradient settings (Figure 10D). Some additional examples with accentuated circular-rounded concave features are included in Figures 2D, E, 4B, C, 7B, 11B.




3.8 Features with a corrugated/folded morphology

Features with a corrugated/folded morphology are highlighted best by the SLRM, MSRM, ONEG, OPOS, and LD algorithms. These algorithms pronounce the corrugated morphology which would otherwise be very subtly expressed by the HS algorithm (Figure 11). Additionally, as already demonstrated in several cases from previous sections, these algorithms highlight features regardless of their orientation. An evident example is demonstrated in the bottom central part of Figure 11B where the NE-SE oriented bedforms are much more pronounced compared to Figure 11A. As is demonstrated in Figure 11, the ONEG algorithm highlights bedforms in both low- and high-gradient settings. Some additional examples with accentuated features with a corrugated/folded morphology are included in Figures 2D, E, 3B, 4B, C, 5D, 6B, 10B, D.





4 Discussion

Visual communication of data, results and interpretation has always been a vital part of geosciences, albeit more often than not subconsciously (Libarkin and Brick, 2002; Alcalde et al., 2017; Morse et al., 2019; Crameri et al., 2020 among others). Especially in recent years with the ever-increasing amount and coverage of the Earth’s surface with high-resolution DEMs it has become even more important to strive towards effective representation and communication of elevation data. This is even more significant in the case of bathymetric data where possibilities for direct observations are severely limited compared to the onshore realm (Weatherall et al., 2015; Mayer et al., 2018; Wölfl et al., 2019). In this sense, the good and proven practices for visualization of land elevation data should be considered, transferred, and implemented also for offshore data.

The algorithms contained in RVT have been used in a variety of studies and applications demonstrated by the extensive list of more than 400 references available on their website (RVT, 2023). More than half of these are represented by archaeological studies, where RVT (and especially SVF) is commonly used for representation of elevation data (some examples include Burigana and Magnini, 2017; Masini et al., 2018; Costa-García et al., 2019; Kokalj and Somrak, 2019; Bernardini and Vinci, 2020; Lim et al., 2020; Lozić and Štular, 2021; Šprajc et al., 2022; Affek et al., 2022; Danese et al., 2022). Use of RVT is much less common in geoscientific studies which represent less than ten percent of the references (RVT, 2023). Among these, RVT is most commonly used to create visualizations in landslide research (Van Den Eeckhaut et al., 2012; Lo et al., 2017; Tsou et al., 2017; Chudý et al., 2019; Knevels et al., 2019; Verbovšek et al., 2019; Guo et al., 2021) and geomorphology (Atkinson et al., 2014; Carrasco et al., 2020; Tóth et al., 2020; Novak and Oštir, 2021; Rolland et al., 2022), while other geoscientific topics are represented by just a few papers (Mateo Lázaro et al., 2014; Djuricic et al., 2016; Favalli and Fornaciai, 2017; Delaney et al., 2018; Favalli et al., 2018; Lkebir et al., 2020; Craven et al., 2021; Delaney, 2022; Jamšek Rupnik et al., 2022). The large discrepancy between the use of RVT in archeological vs geoscientific studies indicates the unrecognised potential for alternative visualization of elevation data in geosciences. An even more striking disparity becomes evident when we consider the type of the input elevation data – to our knowledge only a few instances of the use of RVT for bathymetric data exist in published literature (Craven et al., 2021) and they are mostly limited to archaeological studies (Doneus et al., 2013; Doneus et al., 2020). This highlights the need and potential for (better) alternative visualizations of bathymetric data in geosciences, especially when we consider that the bathymetry of the research area often controls later decision regarding the locations of sampling points/coring or geophysical profiles.

Our work demonstrates that excellent results can be obtained with RVT also with bathymetric data of various resolution and from different geological and geographical settings (Section 3). All the examples shown in Figures 2–11 demonstrate that the algorithms outperform HS in every tested scenario – either when visualizing the general morphology of a study area, or when identifying specific feature shapes. One of the greatest strengths of the algorithms provided by the RVT is the possibility to highlight the feature shape of interest (Table 3). This not only facilitates the communication of observations and interpretations of digital bathymetric models, but also allows more accurate sea-, lake-, or riverbed mapping. Additionally, it has great potential to serve as an aid for locating points of interest for further surveys, not only in geoscientific, environmental, or archaeological applications, but also in search and salvage efforts (e.g. for shipwreck sites, locations of lost cargo, …). The results summarized in Table 3 indicate the most suitable algorithms for highlighting features of interest and provide a reference for future users of RVT in submerged marine, lacustrine and fluvial settings.

The quality of the visualizations produced by the algorithms of the RVT is obviously dependent on the set parameters. In this work we only demonstrate the effects of an improper setting for the Ve parameter, which results in sub-optimal visualizations (Figure 2). However, low-quality visualizations can also result from improper settings of all the other parameters which are listed at the beginning of Section 3. When deciding on the values of the parameters, RVT users should consult the RVT manual (Kokalj et al., 2019) which contains the basic guidelines for parameter determination.

While we focus on the use of the RVT software in this paper, it should be noted that several of the described algorithms are also integrated into other open and licensed software solutions, such as Global Mapper, ArcGIS, Whitebox software, QGIS, etc. with HSM being one of the most wide spread algorithms as it is presently optional in all the mentioned solutions. However, several other algorithms (e.g. ONEG, OPOS, SVF, etc.) are also available in some of the mentioned programs.

Finally, it should be pointed out that the examples demonstrated in his paper are used only for qualitatively improving the visual representation of sea-, lake-, and riverbed features and are prone to the subjective bias. For unbiased results one should revert to quantitative geomorphometric analyses, such as feature extraction and automated classification (see Lecours et al., 2016).




5 Conclusions

This work deals with the visual representation of bathymetric data by using non-standard algorithms with the intention to present a user-friendly alternative to conventional visualization techniques for displaying sea-, lake-, and riverbed morphology. We test out the algorithms on digital bathymetric models which were created from different types of bathymetric data, have different resolutions, cover the shallow-to-abbysal depth range and span through different regions and settings. We identify the best algorithms to display the general morphology of a study area and the optimal algorithms for highlighting geomorphic features of interest. The results of our tests show that the algorithms contained within RVT are far superior to the conventional Hillshade and Slope gradient visualization techniques for bathymetric data. We provide a summary of our observations which can be considered a promotion of the RVT within the offshore and submerged terrestrial scientific community and as a set of guidelines for future users of RVT working in the offshore and submerged terrestrial domains. Our study demonstrates the importance, versatility, and efficacy of RVT for the creation of better and more informative bathymetric data visualizations.
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The mid-ocean rift in the Red Sea is one of the youngest rifting systems on Earth. Only recently, state-of-the-art methods and modern deep-sea instruments have been used to explore this young and unique volcanic system. During the first autonomous underwater vehicle surveys of the Red Sea Rift in Spring 2022, we collected multibeam bathymetry, backscatter, sub-bottom profiler data, and water column data over a 9 km long ridge segment in the Hadarba Deep between 22.49°N and 22.56°N to investigate the volcano-tectonic processes of this ultra-slow spreading segment (12 mm/year spreading rate). The high-resolution hydroacoustic data was used to (1) delineate and quantify the geometry of tectonic structures and individual lava flows, (2) define lava flow morphology and eruption style, (3) estimate relative ages of flows and features, and (4) retrace the evolution of the volcanic activity. In addition, the geochemistry of several young lava flows provides information on the relation between the different magma that supply these eruptions. About 90 eruptive units with variable sedimentary cover have been identified within the 43 km2 mapped region. The oldest lava flows are buried under 3 to 4.2 m of sediment, indicating ages of up to ~30 ka based on average sedimentation rate estimates (~14 cm/ka), while the youngest eruptions are covered by<10 cm of sediment, and are thus younger than 700 years. Three volcanic phases have been identified based on changes in flow morphology and distribution, and tectonic pattern. All three axial phases have an average eruptive frequency of ~100-250 years. The segment displays an overall low tectonic extension (<10% of the total extension) and low vertical offset. Our geomorphological maps, analyses, and statistics reveal a moderately faulted, ultra-slow spreading MOR segment in the Red Sea with a surprisingly large amount of magmatic extension, implying that the segment has been underlined by a large magma supply for at least 15 ka. All these observations provide valuable implications for the formation history of the Red Sea Rift and the formation of ultra-slow spreading crust.
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1 Introduction

The mid-ocean ridge (MOR) system is the longest volcanic chain on Earth and the largest producer of new oceanic crust. Along MOR, accretionary processes are extremely variable, related to changes in spreading rate and magma supply (Perfit and Chadwick, 1998; Dick et al., 2003; Colman et al., 2012; Cannat et al., 2019; Chen et al., 2021). Magma production and thickness and volume of accretion of new oceanic crust increase with the spreading rate (Niu and Hékinian, 1997). In addition, at a constant spreading rate, changes in magma supply are known to affect eruption style, volume, frequency, and tectonic deformation directly responsible for the overall ridge morphology (i.e., axial high, axial valley). This is especially true along slow- and ultraslow-spreading systems (20-40 mm/yr and<20 mm/yr, respectively; Dick et al., 2003) where magma supply is strongly variable through time and unevenly distributed along the spreading segment (Schlindwein and Schmid, 2016), resulting in a wide range of axial morphologies. Periods of limited melt supply are associated with minimal volcanic activity and extensive tectonic extension with the development of deep, asymmetric axial valleys where exposed gabbro and exhumed upper mantle rocks are exposed, as seen in oceanic core complexes (Tucholke et al., 1998; Dick et al., 2003; Cannat et al., 2006; Smith et al., 2008; MacLeod et al., 2011; Escartín et al., 2017). In contrast, periods of enhanced magma supply can locally relate to those of faster-spreading segments (Chen et al., 2023). The melt generally focuses at the segment center, resulting in the construction of large axial dome-shape volcanoes or axial highs, with the emplacement of smooth lava flows (e.g., Escartín et al., 2014: Klischies et al., 2019).

Along both slow- and ultraslow-spreading segments, variability of the melt supply is estimated to follow a cycle of 150-500 ka (Cordier et al., 2010; Rioux et al., 2016; Klischies et al., 2019; Chen et al., 2021). However, due to the challenges of accurately mapping and dating eruptive events, little is known about the short-term evolution of MOR segments (hundreds to few thousand years) or the frequency of eruptions. Models, based on the thickness of the extrusive layer, spreading rate, and average flow volumes indicate that the interval of eruptions exceeds 1000 years on slow-spreading systems (Perfit and Chadwick, 1998; Sinton et al., 2002; Rubin et al., 2012), and could exceed 10,000 ka on ultraslow-spreading segments (Stubseid et al., 2023). However, such estimation is based on a steady-state magma supply and does not take into account variability occurring throughout the magmatic cycle. Geological mapping using high-resolution bathymetric surveys and backscatter, as well as the repeat of those surveys, are key in investigating volcanic events over short-time scales (e.g., Colman et al., 2012; Yeo, 2014; Clague et al., 2017).

Here, we present an analysis of high-resolution (<2 m) bathymetry and backscatter mosaics, sub-bottom profiles, and geochemical data collected within the Hadarba Deep in the Red Sea Rift. Mapping of eruptive units and tectonic features are combined with semi-automatic classification of seafloor roughness and backscatter to characterize and quantify tectonic and magmatic features and study their distribution on the axial high of a young ultra-slow spreading rift. Sediment thickness derived from backscatter mosaics and sub-bottom profiles are used to constrain the eruption time frames. This high-resolution study enabled to (1) assess the variation of the accretionary processes within the last 15 ka, by evidencing eruptive cycles associated with changes in effusion rate, and mode of emplacement, leading to different morphologies, and (2) investigate the frequency of the eruptions in an ultra-slow spreading young ocean context, which is, with a 100’s of years recurrence interval, faster than expected for (ultra)slow-spreading ridges.




2 Geological background

The Red Sea Rift (RSR, Figure 1A) is a young, ~2,250 km long, ultra-slow spreading rift with rates ranging from 8.3 to 14.5 mm yr−1 from North to South (Viltres et al., 2022). One particularity of RSR is the widespread Miocene evaporites overlaying most of the rift in the Northern Red Sea and in the shallow “Inter-Trough Zones” of the central region of the RSR (Izzeldin, 1987; Mitchell et al., 2010), making it difficult to investigate the basement. This has led to multiple interpretations of the nature of the underlying crust and the evolution of the rift. Indeed, several studies argue for a continuous spreading and formation of an oceanic crust since 13 to 15 Ma along the entire rift (e.g., Izzeldin, 1987; Sultan et al., 1993; Augustin et al., 2021; Delaunay et al., 2023; Mitchell et al., 2023). Others postulate that the oceanization is of much younger age (5 Ma; Issachar et al., 2023) and that the basement north of 19.5°N consists of a hyperextended continental crust punctuated by volcanic deeps (e.g., Bonatti, 1985; Ligi et al., 2011; Ligi et al., 2018; Le Magoarou et al., 2021; Saleh et al., 2021; Afifi et al., 2023; Sang et al., 2023). However, while the nature of the crust under the Miocene evaporites is up to debate, it is generally agreed that the uncovered crust, consisting of isolated bathymetric troughs and basins, the so-called “Deeps” in the central RSR consists of oceanic crust (e.g., Tramontini and Davies, 1969; Pautot, 1983; Bonatti, 1985; Haase et al., 2000; Augustin et al., 2014; van der Zwan et al., 2015; Ligi et al., 2018; Augustin et al., 2021; Mitchell et al., 2023; Sang et al., 2023).




Figure 1 | (A) GEBCO map of the Red Sea with locating the Red Sea Rift (black line). The red box locates the Figure 1B. (B) Map of the central Red Sea showing the distribution of the earthquake epicenters (M>2.5) between 1913 to 2023 (white dots). Data extracted from the International Seismological Centre (2023), On-line Bulletin, https://doi.org/10.31905/D808B830 (Adams et al., 1982; Storchak et al., 2017; Storchak et al., 2020). The intertrough zone (ITZ) are shown by arrows. Figure 1C is indicated by the red box. (C) Bathymetric map of the central Red Sea Rift from Thetis Dome to Hatiba Mons. The 60 m resolution data are from Ligi et al., 2015. The white dashed box indicates the position of the 2 m-resolution AUV-bathymetric survey of this study. The faults identifiable from the ship-based bathymetry are marked by black lines. The three main (western and eastern) faults crossing the study area are named W1, W2, and E1. Salt flows are indicated by white arrows.



In these locations, where the ridge axis is exposed and well-defined, the RSR consists of 103-174 km long 2nd-order spreading segments (Figure 1B; Augustin et al., 2016; Augustin et al., 2021). The axis displays numerous morphological features characteristic of slow- and ultraslow-spreading rates (Augustin et al., 2016; cf., Dick et al., 2003; Cannat et al., 2006; Carbotte et al., 2015): deep rift valleys, highly tectonized terrain including steep faults and rifted volcanoes, bent axial volcanic ridges (AVRs) with overlapping spreading centers and other 2nd order non-transform offsets, as well as focused magmatism in dome volcanoes or axial highs. However, ocean core complexes, with exposed peridotites and lower crustal rocks are, to our knowledge, absent from the RSR (Augustin et al., 2021). Only gabbro fragments of unknown tectonic origin were recently sampled in craters from Discovery Deep (central RSR), but are not associated with a core complex (Follmann et al., 2021). Despite being an ultra-slow spreading rift, the Red Sea is associated with a high heat flow (Girdler and Evans, 1977). Studies indicate the presence of bow-shaped, negative S-wave velocity anomaly originating from the Afar anomaly in the southern Red Sea, bending in the direction of the Arabian shield in the central Red Sea and back towards the RSR in the north, which may influence the amount and styles of volcanic activity along the RSR (Chang et al., 2011; Augustin et al., 2016). In addition, the young character of the Red Sea has been suggested to cause higher mantle temperatures (Brandl et al., 2013).

Hadarba Deep (Figure 1C) is located in the central RSR between 22.35°N and 22.55°N. Hadarba Deep lays at a depth of 1400 to 2350 m below sea level (mbsl) and consists of three sub-basins (west, central, and east) separated by two overlapping spreading segments. Volcanic activity along both segments has resulted in the formation of AVRs. The western AVR continues toward the south to the axial high, topped by the Hatiba Mons volcano (11.4 km base diameter, 530 m high), rising to a depth of 735 mbsl (Augustin et al., 2016; van der Zwan et al., in press). The eastern AVR prolongates north into an axial high with a depth of about 1400 mbsl, at the center of the segment between Thetis and Hadarba Deeps, which mark the respective ends of this segment (Figure 1C). High backscatter signals attest to recent volcanic activity along the eastern flank of this AVR (Augustin et al., 2016). This is consistent with the relatively low seismicity (Figure 1B) attributed to recent, high volcanic activity (Metz et al., 2013; Augustin et al., 2016) would attest to an increase in magmatic extension. Crustal thickness at Hadarba Deep is not well constrained: seismic experiments in the central Red Sea (Tramontini and Davies, 1969) indicate a crustal thickness of ~3.3 – 3.7 km along the western AVR of the Hadarba Deep, while crustal thickness estimated from gravimetry data indicates ~5 km in Hadarba Deep with a 1 km crustal thickness increasing to toward the north where the segment (or AVR) reaches its shallowest points (Ligi et al., 2015). Such variations are consistent with melts focusing at a segment center and in agreement with other ultra-slow spreading segments (Snow and Edmonds, 2007). Even so, the crust appears much thinner than some magmatically robust segments (e.g., ~9.5 km at the 50°29’E segment of the Southwest Indian Ridge; Cannat et al., 1999).




3 Data and methods



3.1 High-resolution bathymetry and backscatter

A high-resolution bathymetry and backscatter survey was carried out in February 2022 from the OSS Handin Tide using the 6000 m depth-rated Hugin Superior AUV (autonomous underwater vehicle) provided by FUGRO. The AUV was equipped with a Kongsberg EM2040 Mk2, 200 kHz multibeam echosounder, EdgeTech Subbottom profiler, a CTD (conductivity, temperature, and depth), and a USBL (ultra-short baseline) system for navigation. The AUV flew at a constant altitude of 90 m in bottom-following mode. The area mapped covers 42.7 km2 of the eastern AVR of Hadarba Deep and parts of its sub-circular axial high. The navigation data were post-processed in the software NavLab before being merged with the bathymetry data and post-processed using the software Qimera from QPS. The resulting computed grid has a cell size of 2 m (Figure 2A). Multibeam backscatter was mosaiced in QPS FMGT from the raw data and cleaned in Generic Sensor Format (.GSF) exports (Supplementary Figure 1). The final mosaic has a pixel size of 0.8 m.




Figure 2 | (A) High-resolution bathymetry of the eastern axial volcanic ridge of Hadarba Deep gridded with a 2 m resolution. (B) Map of the backscatter intensity (BI) classified using a quantile method. High BI (yellow) evidences hard terrain, while low BI indicates the presence of soft seafloor (i.e. sediments). (C) Map of the ruggedness index classified using a quantile method. Rough terrains are shown in dark blues, and smooth terrain in grey. (D) Bivariate choropleth map showing the combination of BI and RI.






3.2 Sediment thickness and age estimates

Sub-bottom profiles, with a vertical resolution of 10 cm (given by EdgeTech) were acquired along the AUV track and imported in SonarWiz 7 software from Chesapeake Technology to determine sediment thickness. Sediment thickness extracted from sub-bottom profiles is used to infer the age of the volcanic events. To avoid underestimation on steep slopes, or overestimation linked to sediment pounding, the sediment thickness was extracted from regions with relatively low variations in relief, with no significant change in sediment thickness. Sedimentation rates reported from the central and northern Red Sea are highly variable, as it experiences both pelagic sedimentation, dust input from the continents, and local turbidity currents. In the study area, sedimentation rates are not known, and in the absence of sediment cores, the sediment rate used in this study is estimated from the very limited reference data of the overall Red Sea. Here we apply an average sedimentation rate of 14 ± 3 cm/ka based on data from Stoffers and Ross (1974) and Kuptsov and Palkina (1986). The resolution limit of 10 cm of the sub-bottom profiler is used to infer the maximum age of eruptive units not displaying sediments in the profiles. Where no sediment thickness was determined, relative ages between eruptive units are determined based on the stratigraphic relationships between lava flows, patterns of fracture distribution, and geometry at the flow front as well as backscatter intensity (BI).




3.3 Tectonic features delineation and tectonic strain estimates

Tectonic features are manually digitized based on the bathymetry, derive slope map and backscatter mosaic. Faults are digitized following the fault crest, and fissures are digitized following their centerlines. Tectonic density is calculated using the “Kernel Density estimation” feature of SAGA Next Gen in QGIS using a search radius of 500 m and a pixel size of 10 m.

The tectonic strain was estimated along axis-perpendicular profiles, spaced roughly 500 m apart (Supplementary Figure 2), based on the measurements of fissure width (W), vertical fault throw (D), and dip (α). Fissure width was measured on the backscatter mosaic. Indeed, small fissures (< 4 m wide) are not clearly evidenced in the bathymetric data, and the fissure width is generally overestimated due to the effect of data resolution and interpolation. Fault throw (D) is defined as the depth difference between the top and bottom of the scarp, determined at the slope break with the surrounding seafloor. Fault dip α is defined as the maximum slope value along the scarp to avoid underestimation associated with the presence of mass wasting and/or post-faulting lava flows, along the fault scarp (see method Figure 2 in Le Saout et al., 2022). Horizontal fault heave (H) associated with individual fault is calculated by the equation:

	

The tectonic strain (Ts) along profiles is then calculated from the equation:

	

where Htot is the cumulative horizontal heave (H and W) along a profile, and L is the length of profiles.




3.4 Eruptive unit delineation and classification

Here eruptive units are defined as one flow or several lava flows with similar morphology, emplaced at similar times, therefore corresponding to a given eruptive sequence (Chen et al., 2021). Eruptive units are manually digitized based on abrupt changes in seafloor morphology, flow direction, backscatter intensity, and/or tectonic pattern using the bathymetric map, its derived products (e.g., slope, ruggedness index), and the backscatter mosaic.

Each individual eruptive unit is given a dominant morphology determined from the quantile classification of the ruggedness index (RI) calculated using the “Terrain Ruggedness Index” feature of SAGA Next Gen in QGIS with a search radius of 4 (Figure 2C) and a relative sediment cover based on backscatter intensity (BI, Figure 2B). The seafloor is subdivided into three RI categories: smooth (RI< 0.87), moderately rough (RI: 0.87 to 1.5), and rough (RI > 1.5). Based on BI, the seafloor is classified as: not to slightly sedimented (BI > -20.9 dB), moderately sedimented (BI: -20.9 to -24.85 dB), and fully sedimented (BI< -24.85 dB). Using RI and to a lower-level BI, the eruptive units have been classified into 4 categories: Smooth terrains are dominated by low RI and medium to low sediment cover, i.e., high backscatter (Figure 2D, yellow-light green). The often-flat surface displays lava channels, collapses, and tumuli, while their lava front generally consists of rough seafloor. Sedimented terrains are also dominated by low RI but are characterized by low BI (Figure 2D, dark green). Hummocky terrains are dominated by a high RI, and often form elongate ridges (Figure 2D, light to dark blue). Smooth hummocky terrains are used to describe terrains with a moderate RI. Both hummocky and smooth-hummocky terrain are independent of BI. Flat-topped seamounts constitute a fifth class. They are subcircular, monogenetic edifices (Clague et al., 2000), with smooth-flat tops and rough flanks, that have been classified based on these specific characteristics, independent from BI and RI. Bias in the classification method can come from the proportion of faults and fissures that will increase the calculated RI, and thus the proportion of hummocky terrain, but also increase BI and provide lower apparent sediment cover. However, deformation is relatively low and appears to affect mainly rough terrains.

The volume of eruptive units is calculated assuming a pre-existing horizontal base whose depth is determined by the average depth of the lava flow fronts or by the depth of collapses for enclosed lava flows. The volume is calculated between this surface and the mapped seafloor depth. Due to the assumption of the horizontal base, volumes of lava flow burying pre-existing edifices tend to be overestimated, while eruptive units filling pre-existing depressions are likely to be underestimated. This method also does not account for hollow features in the lava flows (lava tunnels). Nevertheless, a simple positive or negative difference of 1 m would result in volume variations of only 0.3 to 2.5x 106 m3, thus <4% of the estimated volume for all except two of the studied lava flows. These two thin lava flows (S3 and S4) have an uncertainty of up to 25% of the estimated volume.




3.5 Geochemical analysis

Lava fragments of 5 locations on different young lava flows were collected by wax corer. Major elements analyses were carried out with a Jeol JXA-8200 ‘‘Superprobe’’ electron microprobe at GEOMAR, Kiel using an acceleration voltage of 15 kV. Major elements of the glasses were measured with a defocused spot of 5 µm and a beam current of 10 nA. Counting times were 20/10 s (peak/background) for Si, Al, Mg, Ca, Na and P, 30/15 s for Ti, Fe, K, S and Cl and 40/20 s for Mn and F. The average was taken of 12 analyses per sample with 3 analyses for 4 glass chips to assure homogeneity. Mineral point analyses of plagioclase (Pl), clinopyroxene (Cpx) and olivine (Ol) were measured with a beam current of 20 nA and a focused beam spot for Pl, and 1 µm spot for Cpx and Ol. For all elements counting times of 20/10 s were used, apart for Ti and K in Pl and Ti and Cr in Cpx and Ol (30/15 s). For calibration and monitoring of data quality, we used natural reference samples from the Smithsonian Institute (Jarosewich et al., 1980). Relative analytical precision is generally <2.5%, but for the glasses up to 20% for MnO, P2O5 and Cl and up to 30% for SO3 and F; for Pl up to 10% for FeO, MgO and K2O and 25% for TiO2 and for Cpx and Ol up to 25% for MnO and Cr2O3 and up to 75% for K2O and NiO.





4 Results

The study area is located in the eastern region of the Hadarba Deep and encompasses the 24.5 km long 2nd order, eastern segment of Hadarba Deep from its segment center to its southern end (Figures 1, 2). In this region, this ridge segment forms the eastern branch of an overlapping offset with the western AVR in Hadarba Deep that propagates southwards toward Hatiba Mons.



4.1 Fault and fissure geometry and pattern

The 2 m AUV bathymetry reveals numerous faults (n=498) and fissures (n=1488) (Figures 3; Table 1) not detectable on the ship-based bathymetry (Figure 1). Faults are 25 to 3033 m long, averaging 231 m, and the fault scarps have vertical throws ranging from 1 to 130 m, averaging of 20.7 m (Figure 3B), with maximum apparent fault dips ranging from 7° to 85° (mean value: 52°, median value: 54° and maximum dip frequency: 70°; Figure 3C). The major vertical offsets are concentrated on three faults (up to 130 m high) that delineate three long, parallel, major bathymetric steps that extend beyond the AUV data coverage (from west to east: W1, W2 (east dipping), and E1 (west dipping; Figure 3A) and can be delineated on the ship-based bathymetry up to 7.5 km north of the mapped area (Figure 1). This distribution of the deformation resulted in the development of a 3.6-4.5 km wide graben between W1 and E1 (here referred as axial valley), with a 1.5-1.8 km wide inner graben between W2 and E1. Most of the remaining faults are located within this axial valley between W1 and E1, and distributed along those bathymetric steps forming elongated fault systems, as shown by the fracture density map (Figure 3A). Fault scarps are dominantly east-facing (304 east-facing vs. 196 west-facing), but west-facing faults have on average larger vertical throw (27.0 vs 18.0 m respectively; Table 1). In contrast, the fissures (10–780 m long, 1.7 to 15 m wide, and up to 7.7 m deep) show no significant pattern and have generally no correlation with these fault systems. Faults and fissures are dominated by a 142.3° ± 27.36°N orientation, almost orthogonal to the spreading direction [42.9 ± 2.9°N at 22.5°N/37.75°E (Argus et al., 2011); Figure 3A]. While some faults and fissures are oblique to the general trend (i.e., at the northwest corner or on the flat-topped seamount SM4; Figure 4A), their low number does not affect the mean azimuth.




Figure 3 | (A) Fracture density map calculated as a kernel density with a grid size of 10 m and a search radius of 500 m. Faults are marked by black lines with the dipping direction. Fissures are shown in grey. The estimated current ridge axis is indicated by a dashed grey line. The rose diagram in the top right corner indicates the azimuth distribution of the fracture. The mean azimuth of the fractures (F.A. = 142.3°N) is indicated by a red line, and the spreading direction (S.D. = 42.9°N; Argus et al., 2011) is indicated by the bold black line. (B) Cumulative frequency of the fault throw (N=180) binned by 2 m along 17 profiles perpendicular to the ridge axis (Figure S2). The exponential fit follows a power law (y= 199.2-0.05024x, with a r2 of 0.9982. (C) Cumulative fault throws measured along P4-P8 and P10-P17 (Profiles Figure S2) from the estimated spreading axis (0 km). The theoretical cumulative fault throw, for tectonic strain of 5%, 10% and 15% is indicated in green blue, and red respectively for a dip of 54° (dash line) and 70° (strait line). (D) Cumulative extension (faults and fissures), calculated with a dip angle of 70°, along P4-P8 and P10-P17 from the estimated spreading axis (0 km). Dash lines represent a 2.5% (brown), 5% (green), 10% (blue), and 15% (red) theoretical tectonic strain estimated with a fault dip of 70°. (E) Bathymetric profiles of P6 and P12. The axial valley is colored in grey with the proposed axis indicated by a downward-facing arrow. Faults are located by red lines and the region of intense fissuring is highlighted in green.




Table 1 | Fracture statistics, and tectonic strain.






Figure 4 | (A) Geomorphological interpretation of the AUV bathymetry showing the dominant morphology of individual eruptive units, the faults and fissures (black and grey line (respectively) as well as lava channels (dashed arrows), and collapses. The red dots indicate the wax corer samples locations. The lava flows with estimated volume are named on the map. The pie diagram indicates the proportion of each morphology. (B) Example of the proportion of the different classes of ruggedness index of six eruptive units. (C) Relative abundances of lava flow morphologies along the global MOR system with respect to the spreading rate (modified from Chen et al., 2021). Data from this study are shown by the red star. (D) Relative abundances of lava flow morphologies with respect to the magma supply [calculated as crustal thickness x spreading rate; after Sinton et al. (2002)]. Figure modified from McClinton et al., 2013. (E) Range of volumes produced during single eruptive episodes as a function of the spreading rate. Data from Colman et al. (2012); Rubin et al. (2012); Tan et al. (2016), and Clague et al. (2017).






4.2 Tectonic strain

The tectonic strain, estimated along thirteen axis-perpendicular profiles (P4-P8 and P10-P17 from north to south in Figure S2) is shown in Table 1. Cumulative fault throws and, thus tectonic extension were measured within the axial valley, between the top of E1 and W1 fault scarps (Figure 3B). No values were determined along profiles P1-P3 and P9, as they do not capture W1 in their profiles. The calculated apparent extension between E1 and W1 ranges between 2.5% and 11.1%, depending on the profile and the value used for the dip (measured, mean (54°) or most common (70°); Table 1 and Figure 3C). In the absence of a well-defined spreading axis, as can be seen on fast- and some intermediate-spreading segments (e.g., Chadwick and Embley, 1998), the ridge axis is estimated at the center of the graben delineated by W2 and E1, corresponding to the axis of the youngest lava flows and fitting to a change in direction of the major faults (see section 4.3 and Figure 4) to evaluate the extension of the western and eastern side. Figures 3D, E show a clear asymmetry in accommodation of the extension between East and West sides of the ridge axis. Indeed, a similar amount of extension is accommodated over a shorter distance on the east side of the axis, e.g., 100 m of horizontal extension is accommodated over a length of 0.7-1 km on the east versus 1-3.2 km on the west side of the axis (Figures 3D, E). This is clearly evidenced by the overall higher tectonic strain side of the ridge (Figure 3E). The asymmetry is also reflected in the style of the deformation with a larger amount of fissure on the west side of the ridge, which is also shown by the difference between cumulative fault throw and cumulative extension.




4.3 Eruptive units

In total, 90 eruptive units have been identified based on their distinct morphology, tectonic pattern, and/or sediment thickness. Individual flow units vary from 4.6x102 to 6.4x106 m2, of which 41 have a surface exceeding 2x105 m2 (Figure 4; Table 2). Eruptive units consisting of smooth terrains are the most common type (27 eruptive units covering a total surface of 14.8 km2 or ~34.7% of the mapped area). Smooth terrains are observed all over the mapped area; however, they are dominant in the east between W2 and E1. 37% of the smooth eruptive units display lava flow collapses (15 to 600 m in diameter) or inflated structures such as tumuli. Hummocky terrains are the second most common morphology, with 41 eruptive units over a surface of 13.7 km2 (32.2%). They are mainly located in the southwest section of the mapped area forming either elongated units up to 4.2 km long or small individual cones. Smooth-hummocky terrains, with a total of 14 units over 11.0 km2 (25.8% of the mapped area), are mostly observed in the northwest. This category includes SH1, which covers most of the surface of a large dome volcano (3.5 km in diameter; Figure 2A). Flat-topped seamounts are rare, only 4 seamounts covering a surface of 2.2 km2 (5.2% of the mapped area) were identified. They occur along W1 and E1 and west of the axial valley. A small portion of the mapped seafloor (< 1 km2 or<2.1%) has both high RI and low BI (< -26 dB outside of tectonic structures) with no evidence of volcanic structures (i.e., collapses and tumuli). They are considered as sedimented terrains and are only observed south and west of W1, thus outside of the axial valley.


Table 2 | Eruptive units’ characterization.



The eruptive volumes have been determined for sixteen eruptive units characterized by either well-defined flow front or deep collapses enabling estimates of flow thickness. These selected eruptive units are labeled in Figure 4A. Eruptive volumes of 4.2x106 to 146.4x106 m3 have been calculated for smooth eruptive units, 35.45x106 to 38.22x106 m3 for smooth-hummocky units, and 37.6x106 to 206.6x106 m3 for hummocky eruptive units. The four flat-topped seamounts have volumes estimated at 21x106 to 99x106 m3 (Table 2). Several of the measured flows are only partially mapped (i.e., S1, S4, S5, and SH3); thus, their calculated volume is most likely underestimated.




4.4 Lava flow composition

Rock fragments were collected from units S2 (2 locations: from the central cone (S2-c) and the rim (S2-r) of the lava field), S4, S5, and SH2. The glass and mineral chemistry is presented in Figure 5 and Supplementary Table 1. Glasses are of typical mid-ocean ridge basaltic composition and span a narrow range, falling within the fields defined by literature samples of surrounding Red Sea Deeps (Thetis, Hadarba, and Hatiba Deep; Ligi et al., 2012; van der Zwan et al., 2015; van der Zwan et al., 2023a); Figure 5 and Supplementary Table 1). While most of the glasses are homogeneous, sample SH1 shows two distinct compositions for 2 glass chips each (SH2a and SH2b), indicating local variations (within the 30 cm of wax core sampling). These variations within one sample location, as well as the variation within unit S2 (S2-c and S2-r), is larger than the variation between the different lava flows (Figure 5). The samples lay on a fractional crystallization trend of decreasing SiO2 (50.44-49.99 wt%), Al2O3 (14.00-13.24 wt%) and CaO (11.51-10.47 wt%), and increasing TiO2 (1.75-2.32 wt%), Na2O (2.67-2.82), K2O (0.14-0.20 wt%), P2O5 (0.13-0.21 wt%) SO3 (0.32-0.38 wt%) and Cl (0.01-0.04 wt%) with decreasing MgO (6.15-6.82 wt%). Proxies for melt degree (Na8), depth of melting (Fe8), mantle source variation (K/Ti) and hydrothermal influence (Cl/K), are all very homogenous between the samples and fall within the Red Sea fields defined by literature samples (Figures 5B, C; Supplementary Table 1).




Figure 5 | Chemistry of wax corer samples of lava flows S2 center (S2-c), S2 rim (S2-r), SH2 (2 compositions), S4 and S5. (A) Glass CaO composition (wt%) shows a decrease with MgO (wt%) and all samples overlap with literature data from Thetis-Hadarba-Hatiba Trough (RSR field; Ligi et al., 2012; van der Zwan et al., 2015; van der Zwan et al., in press). Petrolog3 crystallisation paths are indicated for pressures of 0.2, 0.8 and 1.6 kbar, calculated with S5 as starting composition, the models of Danyushevsky and Plechov, 2001, for olivine, plagioclase and clinopyroxene, and a QFM buffer. Markings indicate 10% crystallization. (B) Glass composition for Na8 and Fe8 as proxies for melt degree and depth – the Hadarba samples overlap with the RSR field and normal MORB, in between fields defined by samples of the Mid-Atlantic Ridge 23-32°N (MAR) and the East Pacific Rise (EPR) from Langmuir et al., 1992. (C) The Cl/K (proxy for assimilation of hydrothermal crust) and K/Ti (proxy for mantle source fertility) compositions of the Hadarba glasses fall on the lower end of the field defined by Red Sea samples (van der Zwan et al., 2015). (D) Plagioclases have a consistent bytownite composition (E) Olivines samples are all in a narrow range in Fo and NiO content. (F) Pyroxenes have an Augite composition.



Small plagioclase minerals (0.02-1 mm in size) are present in all samples and have a bytownite composition, with limited anorthite (An) content variations between An75-An82. This variation can be observed within a sample, and plagioclase compositions between samples are indistinguishable (Figure 5D). Pyroxenes and olivines are observed in samples S2-c, S4, and S5 as microlites of 0.1-0.2 mm. Olivines have forsterite (Fo) contents of Fo76 – Fo81, while the clinopyroxene have an augite composition (Figures 5E, F). Similar as the plagioclases, the clinopyroxene, and olivine compositions overlap between samples.




4.5 Sediment thickness

Due to the rough terrain, sediment thickness could only be extracted from 40 positions with low relief and constant sediment thickness along the AUV sub-bottom profiles (Supplementary Figure 3), characterizing 21 of the eruptive units. Measured sediment thickness ranges from 0.4 ± 0.1 to 4.2 ± 0.1 m (Figure 6A). Three of the eruptive units have sediment thicknesses below the limit of detection of the sub-bottom profiles, thus< 10 cm. Completely sedimented regions are found to be covered by more than 1.4 ± 0.1 m of sediments. Hummocky terrains have sediment thicknesses ranging from 0.8 ± 0.1 to 2.1 ± 0.1 m but are generally more than 1.6 ± 0.1 m, while smooth terrains cover the full ranges of data from <10 cm (below resolution limit) to 4.2 ± 0.1 m of sediments. The large volcanic dome has measured sediment thickness ranging from 1.2 ± 0.1 to 3.7 ± 0.1 m, with relatively constant sediment thickness on its summit (1.2-1.6 ± 0.1 m) and a general increase observed in its flanks without clear evidence of change in flow units. Sediment thickness estimates are in correlation with variations in backscatter intensity.




Figure 6 | (A) Interpretation of the relative age of the different eruptive units. The eruptive units are regrouped in four volcanic phases (V0-V3), based on backscatter intensity, sediment thickness extracted from sub-bottom profile (indicated by the black numbers), stratigraphic relationships between lava flows, and patterns of fracture distribution. (B) Zoom on the geomorphological interpretation (Figure 4A) showing the chronological order (older to younger, from 1 to 3) of three eruptive units from V1 determined from the fault and fissure pattern. (C) Extract from the backscatter mosaic showing young volcanism in the northeast section of the map.







5 Discussion



5.1 Flow morphology: constraint on eruption dynamics

Flow morphology is commonly used as a proxy to infer the rheological and physical properties of an eruption. Based on the comparison of the determined morphologies with those of similar resolution studies with ground truth data (e.g., McClinton et al., 2013; Chen et al., 2021), smooth terrains seem to be associated with the emplacement of sheet and lobate flows, hummocky terrains with the emplacement of pillow mounds or pillow ridges, while smooth hummocky terrains mark a transition between lobate and pillow flows. Laboratory experiments have shown that the morphology of deep (>1500 m) submarine lava flows is controlled by the lava viscosity, underlying slope, and local flow rates (Bonatti and Harrison, 1988; Gregg and Fink, 1995; Gregg and Smith, 2003). Sheet flows transition toward lobate and pillow flows by increasing viscosity and decreasing extrusion rate and underlying slope. Constraining the underlying slope is challenging as it is locally controlled by volcanic edifices buried by more recent eruptions. Nevertheless, in Hadarba Deep, the regional bathymetry deepens towards the south at an angle of 1.5 to 3.5° (excluding the dome volcano) without clear variations between seafloor morphology, indicating this does not have a major effect. Within our mapped area, only 4 eruptive units were sampled (Figure 4A), and none of them are associated with hummocky terrains. The homogeneous compositions of the basaltic glasses and minerals and the chemistry of the lava flows that fall along fractional crystallization trends point to a role of crystallization to explain the limited spread. Calculation of crystallization pathways at seafloor depth (0.2 kbar), mid-crustal or lower crustal depth (0.8 and 1.6 kbar; assuming a 5 km crust) with Petrolog3 (Danyushevsky and Plechov, 2011) indicate that the limited spread in lava chemistry can be explained by variations in degrees of crystallization of around 20% (depending on the exact depth; Figure 5A). Melting degree and depths (as indicated by Na8 and Fe8, cf. Langmuir et al., 1992) are also consistent between the samples, and similar to other Red Sea samples, overlapping with ‘normal’ mid-ocean ridges not influenced by mantle plumes (Figure 5B). Low K/Ti and little elevated Cl/K, which is on the low end of the Red Sea field, indicate that all magmas have a relatively refractory source, and underwent only little assimilation of hydrothermal crust (Figure 5C; cf. van der Zwan et al., 2015). Therefore, all magmas seem to have had a similar source, underwent similar magmatic processes, and potentially are related to the same event. The overall smooth terrain of these lavas is consistent with their primitive low-viscosity basaltic composition (glass MgO > 6; Pl >An75; Ol >Fo76). In addition, the low crystallinity and lack of phenocrysts (<1 mm crystals) in the samples also imply little crystallization in stagnation levels, in agreement with the high-extrusion rates of low-viscosity lava. However, analyses of the glass samples and their minerals show no significant compositional variations between the lava flows that would explain changes in morphologies between smooth and smooth-hummocky. Similar observations have been made along the Mid-Atlantic Ridge (Cann and Smith, 2005) and Galapagos Spreading Center (McClinton et al., 2013), and on a larger scale for different volcano types in the Red Sea (Augustin et al., 2016), suggesting that extrusion rates influenced flow morphology to a greater extent than the chemistry. Thus, the differences in morphology observed in Hadarba Deep could be used as a proxy for extrusion rates. The transition between smooth to smooth-hummocky and hummocky terrain is likely associated with a decrease in extrusion rates, potentially marking the end of eruptive sequences.




5.2 Eruptive phases and evolution of the eruptive activity over the last ~15 ka

The maximum measured sediment thicknesses (4.2 ± 0.1 m, Figure 6A) and an average sedimentation rate of 14 ± 3 cm/ka (Stoffers and Ross, 1974; Kuptsov and Palkina, 1986), gives a maximum age of 30 ± 9 ka for the mapped area and 15 ± 5 ka within the axial valley (i.e., between W1 and E1). If the volcanic activity was limited at the ridge axis and given the spreading rate in this region (11-12 mm/yr; Argus et al., 2011; Viltres et al., 2022) and the width of the axial valley (~3.5-4.5 km), the maximum age of the crust within the axial trough should reach ~400 ka; or ~800 ka, if we consider that the mapped region corresponds to the eastern tip of an overlapping spreading center and that the total extension could be distributed between the two axes. Such variation between this maximum crustal age and the age of the upper flows is similar to observations made along the Mohns Ridge, where ~50% of the valley floor have ages younger than ~25 ka (Stubseid et al., 2023) and reflect the wide region of crustal generation along slow- and ultraslow spreading ridges (Perfit and Chadwick, 1998; Chen et al., 2021).

Within this timeframe, different eruptive units can be identified based on their morphology (Figures 2, 4), and relative age (Figure 6), as well as the tectonic pattern (Figure 3). They are used to determine eruptive phases and investigate the evolution of the eruptive activity of the study area in Hadarba Deep. Three volcanic phases (V1-V3) have been identified within the axial valley based on recurrent patterns between successive eruptive units and their sediment thickness. Phase V1 is associated with the emplacement of elongated hummocky terrain separated by smooth and smooth-hummocky terrain. It is also associated with the formation of the four flat-topped seamounts. The abrupt variation in fault and fissure distribution between eruptive units (Figure 6B) within this V1 indicates alternation between hummocky eruptions and smooth to smooth-hummocky eruptions, with at least three such cycles evidenced. This would suggest cyclic variations in extrusion rate and possibly magma supply. However, whether the episodes of deformation occur in between individual eruptive events or are limited to a period of lower extrusion rate associated with the waning of magma supply at the end of each phase remains unclear. The sediment thickness varying from 1.5 ± 0.1 to 2.1 ± 0.1 m indicates ages between ~10 ± 4.5 and 15 ± 5 ka. Eruptive units emplaced during this period are primarily at the surface on the southwest section of the study area, but observed all across the axial valley (from E1 to W1), and thus potentially more covered on the eastern side. This, therefore, indicates a period associated with a wide zone of dike injections (exceeding 4.5 km) over the whole axial valley.

Phase V2 appears to mark the last building phase of the dome volcano but can also be found east of E1. The relatively constant sediment thickness at the dome summit (1.2 to 1.4 m) indicates ages between ~8.5± 3 and 10 ± 3.5 ka. While the increase of sediment thickness on its flank (up to 3.7 ± 0.1 m; Figure 6A), could result from the redistribution of sediment down the slope, an initial construction of the edifice anterior to V1 cannot be excluded. V2 is mainly associated with the emplacement of smooth and hummocky smooth terrains with lava channels exceeding 1.5 km but is topped by hummocky terrain, which attests to an overall decrease of volcanic activity toward the end of phase V2. No eruptive units with similar ages have been found south of the volcanic dome, and V2 could mark a regression phase of the volcanic activity with magma focusing towards the segment center (axial high). The eruptive units of V2 have experienced significant deformation, especially along W1, W2, and E1 (Figures 3A, 4A). However, there is no significant variation in the tectonic pattern between the different units of V2, indicating that the deformation of the V2 lava flows is posterior to the last eruption of this volcanic phase.

Finally, phase V3 marks the youngest volcanic phase, indicated by their strongest backscatter signals. Three eruptive units (S1, S2 and S4) have sediment thicknesses of<10 cm, confirmed by limited sediments in the wax cores, and thus are younger than 700 yrs. No ages could be determined for most of the earlier stages of V3, but most eruptive units (70%) appear to be of similar age or younger than S5, which has a thickness of 40 cm, equal to 2.9 ± 1.6 ka. Phase V3 is dominated by the emplacement of smooth terrains (i.e., sheet flows and lobate flows), pointing to elevated extrusion rates. Not dissimilar to V1, V3 seems to have experienced changes in morphology with the occurrence of smooth terrains by high extrusion rates, alternating with periods of slightly decreased extrusion rates forming smooth-hummocky terrains, indicating episodic activity associated with waxing and waning of the magma supply. However, the lower amounts of hummocky terrain point towards overall higher magmatic activity. This is also indicated by the Na8 ( ± 2.4) and Fe8 ( ± 10.5) on the lower end of the mid-ocean ridges spectrum, indicating higher degrees of melt at shallower average depths, more similar to faster-spreading ridges (Figure 5B). High eruption rates are consistent with the absence of extensive magma storage as indicated by their low crystal content and lack of phenocrysts and similar compositions. The narrow distribution of the lava flows across the axial valley, indicates that dikes injections are centered within a much narrower region of the valley (<1.5 km), and lava flow emplacement is mostly constrained by W2 and E1.

Overall, the high proportion of smooth flows (Figure 4), and the low tectonic strain (<10%, Figure 3), are similar to those of intermediate spreading segments (e.g., at 86°W and 92°W along the Galapagos spreading center; McClinton et al., 2013) and those of SWIR 50°28’E (Chen et al., 2021). Together those parameters indicate that the mapped region is part of a magmatically robust segment in concert with it being part of an axial high, and this for at least the last 15 ± 5 ka. However, the above interpretation also shows that the volcanic activity over this period is not steady. The variability between the different volcanic phases indicates periods of (1) lower extrusion rates over the whole axial valley (V1), (2) regression of the volcanic activity toward the axial high, but with local higher extrusion rates (transition V1 to V2), (3) increase of tectonic extension (between V2 and V3), and (3) renewed volcanic activity with higher extrusion rates (V3). This could indicate a decrease of magma supply from V1 to V2, followed by an increase during V3. These variations could also explain changes in the width of the injection zone. Previous studies have shown that periods of robust magma supply dominated by high extrusion rate eruptions develop a narrower well-defined axis, while during periods of lower magma supply, the activity appears unfocused, occurring within the entire width of the axial valley (50°28′E, Chen et al., 2021). In addition to the variations between each volcanic phases, there are also significant changes in flow morphology (i.e., extrusion rates) between eruptive events. Based on the number of observed cycles of morphological changes and the ages of V1 and V2, variations in extrusion rate within the phases show a periodicity of 1-2 ka.




5.3 Eruption frequency

Accurately dating volcanic events along a MOR is challenging, and an eruption history over relevant periods of time is rare. Up to date, only a few repeated eruptions have been directly observed (9°50′N EPR, Axial Seamount (JdFR), and the Coaxial segment of the JdFR), giving intervals of recurrence of 4 to 20 years (Rubin et al., 2012; Clague et al., 2017), while most other information is from indirect methods. Eruption frequency is often estimated by either (1) dating eruptions sequences using radiometry, paleointensity, or estimation of the sediment thickness and sedimentation rate (Bergmanis et al., 2007), (2) calculating the number of meter-wide diking events needed to accommodate the magmatic extension (e.g., Hooft et al., 1996; Curewitz and Karson, 1998; Colman et al., 2012), or (3) based on the time-averaged rate production of the extrusive layer and average flow volume (Perfit and Chadwick, 1998; Sinton et al., 2002; Rubin et al., 2012). This latter method infers that the frequency of eruption decreases with the spreading rate, and recurrence intervals >1000 yr should be expected for a slow- and ultraslow- spreading segment (Rubin et al., 2012).

Assuming a steady state of the magmatic system, the number of distinguishable eruptive units per volcanic phase and sediment ages can be used to calculate an interval of recurrence of ~106 ± 135 yr (in V1), ~115 ± 600 yr (in V2) and ~250 ± 116 yr (last 2.9 ± 1.6 ka of V3). Note that these estimated eruption rates have large errors resulting from the high uncertainty in the sedimentation rate. The three youngest flows (Flow S1, S2, and S4), whose ages are better constrained (<700 ± 200 yr), also indicate an interval of recurrence of<240 ± 50 yr, thus a much higher frequency than expected for ultra-slow spreading segments. Such short intervals could be related to the age uncertainties and the method used to delineate the eruptive units. Indeed, previous studies have shown that disconnected flows could be part of the same eruptive event (e.g., Colman et al., 2012; Yeo, 2014; Yeo et al., 2016; Clague et al., 2017), leading to an underestimation of the frequency. Phase V1 and V2 have a high proportion of disconnected cones or mounds. These smaller edifices might be part of larger eruptive events, and contribute to an overestimation of the eruptive frequency. But in the absence of geochemical information, integrating those smaller edifices into larger events remains challenging. However, in phase V3, while geochemical analyses indicate a possible relation between the lava flows, variations in BI indicate age variations with recurrence interval consistent over 3 ka and 700 yr periods.

The high eruption frequency over the last 15 ka is likely to be related to the long-term magmatic state of the segment. Indeed, the magmatic budget is known to fluctuate not only at the time scale of individual eruptions (Bowles et al., 2014; Clague et al., 2017) but also over a larger time scale. Such variations are known to influence flow morphology and eruption frequency, which become more frequent as the magmatic budget increases (Colman et al., 2012). Faults located ~6.5 km east and west from the current ridge axis may mark the end of the last high-magmatic phase and would indicate a long-term magmatic cycle of ~590 ka, similar to those found along slow- and ultraslow-spreading segments (150-500 ka; Cordier et al., 2010; Rioux et al., 2016; Klischies et al., 2019; Chen et al., 2021). Faults located ~6.5 km east and west from the current ridge axis may mark the end of the last high-magmatic phase and would indicate a long-term magmatic cycle of ~590 ka, similar to those found along slow- and ultraslow-spreading segments (150-500 ka; Cordier et al., 2010; Rioux et al., 2016; Klischies et al., 2019; Chen et al., 2021). Variability in long-term magmatic supply can also be observed off-axis in vertical gravity gradient (VGG) data (Augustin et al., 2021): in contrast to Thetis Dome and Hatiba Mons that form rift-perpendicular ridges indicating long-term magma focusing, the Hadarba segment center shows a patchy VGG pattern pointing to larger variations in magma supply. Nevertheless, considering (1) the consistency of eruption intervals between the phases, (2) the generally very low tectonic strain (<10%, Figure 3E, see 5.4), and (3) the high proportion of smooth terrains even during V1, a relatively large magma supply has been located under this segment, for at least 15 ka, without clear sign of decline. In such magmatically robust segment, a recurrence interval of a few hundred years seems realistic. This would indicate that ultraslow-spreading ridges could sustain robust magmatic activity with high eruption frequency over several kyrs.




5.4 Asymmetry of the tectonic extension at a magmatically robust segment

The eastern axis of Hadarba Deep has a well-defined, ~3.6-4.5 km wide axial valley offset from the rift flanks by 1.5 to 104 m high fault scarps (W1 and E1, Figures 2A and 3A). The shallow axial valley (<105 m deep) and the low tectonic strain between W1 and E1 (<10.9%), require that 90% of the spreading is accommodated by magmatic intrusions, and are thus indicative of a magmatically robust segment (e.g., Sempéré et al., 1993; Hooft et al., 2000; Olive and Dublanchet, 2020), at least in geologically recent time. This is in agreement with the low seismicity (Figure 1B) that has been proposed to indicate an increase in magma extension (Metz et al., 2013; Augustin et al., 2016). The differences in fault patterns and tectonic strain with respect to the current ridge axis (Figure 3), indicate an asymmetry for the accommodation of the extension between W1 and E1. An asymmetry in the extension and fault pattern is not uncommon at a segment end (e.g., Escartín et al., 1999 and references therein). As the study area is the eastern branch of an overlapping spreading center (Figure 1), the asymmetry could indeed be a result of a change in the rheology of the lithosphere, a difference in the spreading rate between the eastern and western flanks, or a difference in the width of the active deformation zone. Potential differences in spreading rate cannot be constrained by the available data, and although there is a lack of large vertical offset outside of the mapped region (Figure 1), it cannot be excluded that the zone of active deformation extends further east and west. Indeed, the active deformation zone on slow- and ultra-slow spreading segments can exceed 15 km (Escartín et al., 1999; Chen et al., 2021), over three times the width of the map region. However, based on the prolongation of W1, W2 and E1, the asymmetry appears to continue north, well outside the overlapping region, into the axial high (Figure 1). Thus, it is unlikely merely related to it being at a segment end. The relationship between the fault pattern and the youngest eruptive unit seems to indicate that at least part of the asymmetry is related to the recent change in volcanic activity. Deformation along E1 and W2 seems to have primarily occurred between the end of V2 and the early phase of V3 when the eruptive activity became more focused on the eastern section of the axial valley. Such relationship, may indicate that the localization of the deformation is controlled by the magmatic activity.





6 Conclusion

The joint analysis of high-resolution AUV bathymetry, backscatter and sub-bottom profile data, and geochemical analysis of lava fragments enables retracing the evolution of Hadarba Deep over the last 15± 5 ka. The geological mapping and interpretation reveal that:

	Change in the seafloor morphology is mainly influenced by extrusion rates. High effusion rate eruptions, resulting in the emplacement of smooth and smooth-hummocky lava flows (i.e., eruptions dominated by lobate and sheet lava flows), are the most common (~60.5% of the eruptions), while low-effusive events (i.e., hummocky terrain and flat-topped seamounts), account for 37.2% of the mapped area.

	Combined with the low apparent tectonic strain (<11%), the high proportion of high effusion rate eruptions, similar to those of intermediate- and fast-spreading segments, indicate a magmatically robust segment.

	Variability between calculated crustal age and maximum sediment thickness indicates that the entire region has been rejuvenated during the last 30 ka.

	While the entire period is likely to be magmatically active, the last 15 ± 5 ka can be separated into 3 volcanic phases (V1-V3) associated with changes in extrusion rates and eruptive axis that are likely controlled by variations in magma supply.

	Eruptions over the last 15 ± 5 ka appear more frequent than general estimates for slow-spreading segments in the order of 100-250 years. This could be the result of the high magmatic activity of the segment.

	Tectonic pattern and geometry indicate an asymmetry in the extension associated with the migration of the magmatic activity toward the east side of the axial valley, suggesting a magmatic control of the extension.
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The Irish continental margin (ICM) encompasses many complex sedimentary basins and diverse geomorphological features displaying bedrock outcrops where a large variety of habitats can be observed. This large area of seabed extends over >400,000 km2 and cannot be mapped manually or in a standardized way. Novel bedrock suitability mapping is applied to the entire ICM to determine potential bedrock outcrop from shallow to deep settings and to improve on the regional near-surface geology of the Irish margin. With the use of ROV video transects covering all the ICM and multibeam echosounder dataset, key terrain variables diagnostic of bedrock outcrop have been derived from bathymetry. A reclassification of each terrain variable was created by identifying the suitable ranges for outcrop occurrence in the variables, corresponding to the most common values occurring where the bedrock is located. Suitable bedrock location in non-surveyed areas have been calculated using these variables with map algebra to develop the novel Bedrock Suitability Index. This high-resolution (25 m2) model indicates that the main features where outcrop could be observed are canyon heads, terraces, or failure scarps, especially noticeable on the Whittard Canyon system. The Bedrock Suitability Index model is validated by video observations of bedrock exposures and is established with 58% level of confidence with 25 m2 resolution on the overall margin over >400,000 km2. The BSI mapping suggests a structural control on bedrock outcrop occurrences, with high BSI correlating with deep structural fabrics of the margin as bedrock outcrop can be found in areas where previously mapped faults have been identified. Bedrock and hard substratum mapping are important components to improve habitat identification and mapping. This less-invasive, low-cost method can be applied with open source software in a relatively simple way of determining where bedrock could be found. It can also be used to refine areas where there will be simply too much data for use to manually classify. Potential bedrock outcrop mapping can be included in a species distribution model.
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1 Introduction

The Irish continental margin (ICM) is at present a passive margin and has a complex geology that is composed of horst blocks, rifted sedimentary basins, and volcanics that are exposed in places by submarine erosion, strong contourite currents, and submarine canyon incision. The location of the continent–ocean transition zones is unclear in places and again complex (Naylor and Shannon, 2005; Shannon et al., 2007; Yang and Welford, 2021). The margin hosts a variety of geomorphological domains supporting a large diversity of habitat from shallow to cryptic fauna. The exposure of bedrock substrate has a strong habitat influence (Wilson M.F.J. et al., 2007; Dunn and Halpin, 2009; Hu et al., 2020) and benthic habitat development (Galparsoro et al., 2015; Dunlop et al., 2020; Keenan et al., 2022).

Bedrock mapping is important for offshore development, as sampling using cost-effective ROV-sidewall drilling is exponentially cheaper than conventional offshore drilling practices. ROV drilling and sampling is also less invasive than common drilling. Moreover, bedrock and rocky outcrop mapping can play an important part in vessel navigation and maritime navigational hazards. Knowing bedrock location in deep settings is also important to increase the knowledge on deep offshore geology and surface geology of challenging accessible areas, to precisely examine regional geology with sampling and dating, and to correlate it with regional seismic profiles, reflectors, and horizons. At present, offshore bedrock mapping has been particularly studied for drilling (Nelson and McBride, 2022), deep-sea mining and hardground [e.g., ferromanganese nodules mapping (Gazis et al., 2018; Peukert et al., 2018a; Peukert et al., 2018b)], habitat mapping (Greene et al., 2007; Zhi et al., 2014; Switzer et al, 2020; Keenan et al., 2022), and species distribution and conservation (Strong et al., 2012; Buhl-Mortensen et al., 2015; Strong et al., 2022; Hao et al., 2023).

To characterize shallow to deep marine habitat, particular substrates or environments, geomorphometry, and the use of terrain attribute in mapping efforts have been increasing in the past few years (Lecours et al., 2015; Lecours et al., 2016). The use of key attributes derived from bathymetry such as rugosity (Gratwicke and Speight, 2005) or Bathymetric Position Index (BPI) (Arosio et al., 2023; Fakiris et al., 2023) indicated/revealed links with habitat/substrate/species distribution and mapping efforts.

Studies based on rugosity modeling over small to medium-size areas showed that mapping hard substratum can help in identifying habitat (Wilson M. F. J. et al., 2007; Dunn and Halpin, 2009; Howell et al., 2016; Keenan et al., 2022). Targeting bedrock outcrop at various depths and general oceanographic settings could indicate different potential favorable habitats and associated fauna development. Recent habitat suitability modeling efforts showed that mid-depth (60–120 m depth) bioconstructors such as Coralligenous Formations in the Mediterranean are favored in outcropping areas, as indicated by benthic morphometric descriptors such as the BPI (Fakiris et al., 2023). Other geomorphologies like cliffs and vertical walls on complex geomorphologic features have also been investigated as host for cold water reef development (Flach, 2003; Miller et al., 2012; Robert et al., 2017; O’Sullivan et al., 2020; Robert et al., 2020; Appah et al., 2021; O’Reilly, 2022), demonstrating that steep, hard substrate can be central for biodiversity hotspots. However, few studies focus on substratum mapping at a regional scale though it is an important component to consider for species mapping (Dunn and Halpin, 2009; Harris and Baker, 2012; Keenan et al., 2022). Past and more recent surveying in the Porcupine Bank Canyon and Whittard Canyon has previously indicated extensive areas of bedrock exposure (Pastouret et al., 1984; de Graciansky et al., 1985; Auffret et al., 1987; Cunningham et al., 2005; Carter et al., 2018; Appah et al., 2021; Strachan, 2021). Ireland has extensive near-vertical outcrop along its continental margin that can be sampled using cost-effective ROV-sidewall drilling (Lim et al., 2018). However, very few studies target direct bedrock observations in very deep settings (Brown et al., 2019; Trotter et al., 2019; Backus et al., 2020; Meredyk et al., 2020) on a regional scale, especially in the deep-sea territory of offshore Ireland. In this way, the near-surface geology of the southern ICM remains poorly known.

As efforts are put in seabed and habitat mapping with national and international programs (Seabed 2030, INFOMAR), it is important to develop methods for mapping inaccessible outcrops and to use techniques that are as less invasive as possible. For deeper and less accessible settings, it seems important to learn to map and deal with large segments of seabed, which has a significant benefit in describing the distribution of habitat as a result. This work presents a semi-automated method, based on terrain attributes, the Bedrock Suitability Index (BSI), to map offshore bedrock exposure confidently at a large scale that can be used for ROV-sampling. The aims here are to allow to characterize offshore basins based on their surface exposure with a new, less-invasive seabed exploration method, and to highlight areas favorable for outcrops on the ICM.




2 Geological setting

The ICM extends south from the Southwest Approaches and Goban Spur, along the Porcupine Bank and up to the Rockall Trough. The Rockall Trough failed rift basin separates the Rockall Bank margin from the mainland margin. The Rockall Bank margin is also contiguous with the Fangorn and Edoras High, Hatton Trough, which extends to the Hatton Bank (Figure 1; Auffret et al., 1987; Naylor et al., 2002; Naylor and Shannon, 2005; Shannon et al., 2007; Yang and Welford, 2021). The complexity of this region results from multiple rifting phases from the late Paleozoic to the Cenozoic related to the opening of the Atlantic Ocean (de Graciansky et al., 1985; Welford et al., 2012; Whiting et al., 2021; Yang and Welford, 2021).




Figure 1 | Bathymetry of the study area, the Irish continental margin with the main geomorphological/sedimentary domains. Bathymetry from INFOMAR and background bathymetry from GEBCO Compilation Group (2022). Location of ROV videos from campaigns SeaRover and CE21010.





2.1 The Southwest Approaches

Southwest Approaches are incised by extensive submarine canyons including the King Arthur Canyon and multi-branched Whittard Canyon, which dominates this part of the margin. Whittard Canyon is a dendritic V-shaped canyon affecting over 150 km of the margin. This canyon displays a semi-circular shaped head with a concave profile (Cunningham et al., 2005). It is composed of four main branches (Western branch, Western middle branch, Eastern middle branch and Eastern branch), and is still active with mainly sediment transport from the head through turbidity currents (Amaro et al., 2016; Carter et al., 2018). Retrogressive erosion widens the canyon branches by wall failures (Amaro et al., 2016), and erosional processes such as slumping or density currents appear to mold the Whittard Canyon’s present-day bathymetry (Robert et al., 2017; Carter et al., 2018). The canyon acts as a preferential pathway for sediment to transit from the margin to the abyssal plain (Zaragosi et al., 2000). The extensive vertical flanks of the canyon form an important habitat for cold water coral, with assemblages different from those of flat sites (Robert et al., 2020). In addition, gullies and terraces of the middle eastern branch, imaged by sonar scan, appear swept clean of sediments and exhibit bedrock outcrops (Bourillet et al., 2006).




2.2 The Goban Spur

The Goban Spur is located south of the Porcupine Seabight and characterized by a steep (up to 40°) escarpment (beginning at −1,800 m) with an N120 direction leading to the Porcupine Abyssal Plain (<−5,000 m) (de Graciansky et al., 1985; Masson et al., 1989; Naylor et al., 2002; Dorschel et al., 2010). The Goban Spur was affected by the Variscan orogeny and subsequent rifting phases that overprinted the peri-Gondwanan basement (Kimbell et al., 2010; Yang et al., 2020). It is defined by complex structures affected by faults that appear geomorphologically as highs, lows, and escarpments.




2.3 The Porcupine Bank

The Porcupine Bank separates the Porcupine Seabight from the Rockall Trough and forms a continental block with steep lateral slopes (>7–4° north to up to > 20° south) extending for more than 800 km (Naylor and Shannon, 2005; Yang et al., 2020; Whiting et al., 2021). At present-day bathymetry, the Porcupine Bank is incised on its southwestern slope by multiple submarine canyons and gullies including the over >100-km Porcupine Bank Canyon formed by upslope–retrogressive slope (Elliott et al., 2006; Dorschel et al., 2010).




2.4 The Rockall Trough

The Rockall Trough, a ~2,500-m deep basin, separates the shallow Rockall Bank and Fangorn High from the Porcupine Bank. The Rockall Bank slope is affected by along-slope and across-slope processes and features like erosional channels, iceberg scours, and slope failures (O’Reilly et al., 2001; Haughton et al., 2005; Shannon et al., 2007; Dorschel et al., 2010; Sacchetti et al., 2011). Cold water coral mounds have been described on the flanks of the eastern Rockall Bank associated with geologic and oceanographic control (Mienis et al., 2006; Shannon et al., 2007).




2.5 The bedrock geology of Ireland’s deep-water territories

New seismic studies on the western Porcupine Bank show details of Atlantic rifting and the oceanic to continental crust transition, highlighting that inherited Caledonian and Variscan crustal structures that influence the geometries of the crustal domains (Whiting et al., 2021; Yang and Welford, 2021). It also shows north-westward increasing volcanism supporting the transition from magma-poor to magma-rich rifting along the Porcupine Atlantic margin, with exhumed mantle domains southwest of Porcupine Bank to Goban Spur (Whiting et al., 2021; Yang and Welford, 2021). More recent surveying in the Porcupine Bank (Strachan, 2021) and in Whittard Canyon (Cunningham et al., 2005; Carter et al., 2018) has indicated extensive areas of bedrock exposure. Bedrock outcrops are mainly observed in the head of the Porcupine Bank Canyon, on escarpment creating bedrock cliffs, along the steeply sloping center margin, or along moderate to steeply sloping seafloors (Strachan, 2021). In the Whittard Canyon, a side-scan sonar survey reveals areas of bedrock exposure located in the eastern branch (Cunningham et al., 2005).





3 Materials and methods



3.1 Multibeam echosounder data

Multibeam echosounder (MBES) data used in this study were provided by the Irish National Seabed Mapping Programme INFOMAR/INSS [INFOMAR, Geological Survey Ireland and Marine Institute (GOTECH, 2002)]. This work contains Irish Public Sector Data (Geological Survey Ireland and Marine Institute) licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. The different concatenate bathymetries were obtained using the Kongsberg Simrad EM120, EM1002 multibeam echo sounder on board RSV Bligh, RSV Siren, and S/V Ocean Surveyor (GOTECH, 2002). The multibeam echo sounder data were processed using CARIS HIPS and SIPS multibeam processing software and the xyz files were gridded in Fledermaus and then the DTM was exported to ESRI asc. Export interpolated Surface as ArcGIS raster (GOTECH, 2002). The multibeam bathymetry and backscatter data were projected to UTM Zone 28N and gridded at 25-m resolution in Esri ArcGIS 10.8.1. The grid used as background bathymetry is from GEBCO Compilation Group (2022).




3.2 ROV videos

The benthic video assessment for bedrock occurrence was made using videos and datasets collected during SeaRover campaigns (Picton et al., 2021) using the Marine Institute’s Remotely Operated Vehicle (ROV) Holland 1 on board ILV Granuaile during SeaRover 2017 (O’Sullivan et al., 2017) and SeaRover 2018 (O’Sullivan et al., 2018), and onboard the RV Celtic Explorer during SeaRover 2019 (O’Sullivan et al., 2019). Data from videos from Autosub6000 AUV (autonomous underwater vehicle) onboard RRS James Cook during CODEMAP2015 cruise (Huvenne et al., 2016) were also used. Bedrock locations identified from past cruises CYMOR 2 (Pastouret et al., 1984), CYAPORC (Auffret et al., 1987) and GEOMANCHE 76/2 (Pautot, 1976) were also used (Figure 1). These videos allow direct recognition of bedrock exposure in various regions, either morphologically or spatially, on the ICM (Figure 1; Supplementary Figure 1). The videos were watched and the seabed substratum, where observed, was classified into classes: mud, pebbles, bedrock, and hardground (Appendices A–C). We were cautious about the apparent geometry and size to determine if the outcrop was in place and to limit the identification of large dropstones. This classification allowed us to indicate the presence or absence of bedrock/outcrops. The USBL from the ROV was retrieved and compared to time code to extract the location of bedrock outcrop transects.

To reduce potential oversampling due to differences in resolutions between MBES data and ROV observation points, the ROV video data were resampled using the Generate Points Along Lines tool in ESRI ArcMap 10.8.1 with 5-m intervals. Some transects were cleaned if the ROV was running in circles or remaining stationary for a long time in one position, resulting in point clustering and oversampling, to simplify the generation of clear ROV navigation line and points.




3.3 Spatial analysis and statistics



3.3.1 Variables/parameters

The quantitative terrain variables derived from the original ICM bathymetric and backscatter data are outlined in Table 1. These bathymetric variables are used as geomorphology descriptors to spatially analyze the seafloor (Lecours et al., 2016; Misiuk et al., 2018). These variables were chosen to delineate seafloor terrain where outcrop was observed in the video transects. From the MBES data, seven variables were calculated on a 3 × 3 cell analysis window based on the most common terrain attribute used in seafloor geomorphometry (Lecours et al., 2016; Ilich et al., 2021; Ilich et al., 2023): (1) Gradient of slope in degree, which is the maximum rate of change in elevation values (Ilich et al., 2023) and gives information about the stability of sediments and local acceleration of currents (erosion, movement of sediments, and creation of bedforms) (Lecours et al., 2016); (2) Seafloor aspect, giving the orientation of the seafloor at a referenced location (flat, N, S, E, and W); (3) Mean curvature [slope of slope, which indicates with a positive value an upwardly convex surface, and with a negative value an upwardly concave surface, and a value of 0 indicates a flat surface; really high values (>4 or <−4) indicates high relief]); it gives information about flows and channeling of sediments/currents (Dolan et al., 2012; Lecours et al., 2016); (4) BPI—Broad scale; (5) BPI—Fine scale; BPI expresses a seafloor position relative to the surrounding locations. BPI > 0 indicates topographic features higher than the surrounding area like crests. BPI < 0 indicates features lower than the surrounding area like troughs; the broad-scale BPI was defined using an inner radius of 1 and an outer radius of 10 and the fine-scale BPI was defined using an inner radius of 4 and an outer radius of 10 (Walbridge et al., 2018); (6) Roughness, calculated as the difference between maximum and minimum values in a rectangular neighborhood (Wilson M. F. J. et al., 2007; Lecours et al., 2017), can be a parameter to predict reef habitats (Jackson-Bué et al., 2022); (7) Rugosity, here estimated as standard deviation of bathymetry, denotes the terrain heterogeneity and is relevant in identifying rock outcrop while limiting the encapsulation of carbonate mound features (Strachan, 2021). These were calculated using a combination of Spatial Analyst tools and Benthic Terrain Modeller (Walbridge et al., 2018) in ESRI ArcMap 10.8.1.


Table 1 | Terrain variables used for bedrock suitability mapping.



The backscatter was used separately from the bathymetric derived layer as a quality assessment to compare with the Bedrock Suitability Index as it is indicative of hard substrate. It was used as further descriptive information in a relative way—as acoustically hard backscatter areas is representative of hard/rocky seabed and acoustically soft backscatter areas seabed dominantly comprise soft and muddy sediment (Siwabessy et al., 2018). The backscatter was gridded independently at 33-m resolution (highest resolution available from the original INFOMAR dataset).




3.3.2 Bedrock Suitability Index

By identifying the suitable ranges for outcrop occurrence in the variables with the interquartile range (IQR) method, corresponding to the most observed variable characterizing bedrock from the variables extracted from the position of observed bedrock on ROV videos (Supplementary Figure 2), it was possible to define the Bedrock Suitability Index and apply it to the rest of the study area. This method was adapted from the case study of the Porcupine Bank Canyon (Strachan, 2021) and applied to the entire ICM.

The most suitable class for reclassification of each terrain variable was created close to the recorded median of terrain variables confirming bedrock occurrence evidenced from video observations ( ± 10% of the IQR from the median). The remaining classes were based on the upper and lower quartiles, extreme values, and outliers. Each terrain variable map was reclassified according to the four ranges from (4) very high to (1) low (McGill et al., 1978):

	4: ± 10% of the IQR from the median.

	3: upper and lower quartiles (25th and 75th percentile).

	2: extreme values (−1.58*IQR and +1.58*IQR).

	1: outliers (minimum value in the data and outliers and maximum value in the data and outliers).



To generate the Bedrock Suitability Index map, queries were made to select pixels that met the IQR classification rules for the selected terrain variables. The reclassified variables were multiplied together with the Raster calculator tool (Supplementary Figure 3). The resulting raster layer was then normalized to provide a value for unsuitable (0) to suitable (100) bedrock terrain [Bedrock Suitability Index (BSI)]. No further filters were applied for this bedrock outcrop suitability occurrence model as forcing a high confidence may lead to outcrop exclusion, and the IQR method has proven useful in classifying terrain variable for bedrock suitability (Serrano et al., 2017; Strachan, 2021).

When generating the BSI maps for the ICM, issues can be observed, e.g., due to the large data coverage and diversity of sources, that were not apparent in the pilot study (Porcupine Bank Canyon, Strachan, 2021). Deeper bathymetries have noisier data (Clarke, 2018). With the size of the study area (>400,000 km2) reaching very deep domains of the ICM (<−5,000 m for the Porcupine Abyssal Plain), considerations had to be made regarding the application of this method at such depths where high noise leads to a poorly confident BSI.

To answer this issue and to reduce the influence of noise in the dataset, the Focal statistic tool from the ArcGIS Toolbox was used. The standard deviation of the BSI was calculated and standardized to a 0 to 1 index (with 0 for high deviation to 1 for low deviation). This was multiplied with the original BSI map, to give less weight to surfaces with high variability (displaying noisy bathymetry in the dataset) and more weight to low-variability areas.

To facilitate the reading of the index and to highlight the high bedrock probability occurrence clusters, a “readable” map has been created by increasing the pixel size by 20, using the “Aggregate” tool with aggregation type “mean” in the ArcGIS toolbox using Supplementary Figure 4. In this way, the Bedrock Suitability Index maps indicate bedrock locations that share the most common terrain parameters with observed bedrock outcrops.




3.3.3 Statistics tests

A principal component analysis (PCA) was performed using the package Factoextra (Lê et al., 2008; Mächler et al., 2012; Galili, 2015; Wickham, 2016) and FactoMineR (Lê et al., 2008) on terrain variables to look at the behavior of each terrain parameter with results shown in Figure 2.




Figure 2 | PCA graph of terrain variables.








4 Results



4.1 Parameters of ICM, IQR, and reclassified maps



4.1.1 Terrain variable and IQR statistics

The general IQR statistics extracted from the ROV video shows that bedrock location on the ICM (Figure 3) would be most suitably found with a moderate slope angle (10° median, Q25 = 6, Q75 = 19); a moderate positive curvature (0.3 median, Q25 = −1.8, Q75 = 1.6); high roughness (14 median, Q25 = 9, Q75 = 25); moderate rugosity (5 median, Q25 = 3, Q75 = 8); high reflectivity (84 dB median, Q25 = 67 dB, Q75 = 99 dB); an east aspect (88 median, Q25 = 37, Q75 = 181); a broad-scale BPI median of 1 (Q25 = −6, Q75 = 5); and a fine-scale BPI median of 0 (Q25 = −4, Q75 = 3).




Figure 3 | IQR statistics of terrain variable for bedrock and not bedrock; boxplot of Roughness, Backscatter, Aspect, BPI broad scale, BPI fine scale, Rugosity, Slope, and Curvature.



It differs from other “not bedrock” type of substratum with less steep slope angle (19° median for not bedrock), smaller but shorter interval between minimum and maximum rugosity (9 median and 75% of values comprise between 2 and 16 for not bedrock), higher curvature values (−0.09 median for not bedrock), roughness (24 median for not bedrock), smaller reflectivity values (108 median for not bedrock), southwest aspect (231 median for not bedrock), higher broad-scale BPI values (−1 median for not bedrock), and similar fine-scale BPI median values (0 median for both not bedrock and bedrock but fine-scale BPI bedrock 75% values comprise between −4 and 3 and 75% of fine-scale BPI “not bedrock” values comprise between 0 and 11). Both Bedrock and “not bedrock type” display similar values (Figure 3).

A PCA test was performed on the bedrock and “not bedrock” location terrain variable dataset to look at these parameters’ pertinence (Figure 2). The PCA graph of bedrock values tend to indicate that the most representative variables for bedrock suitability occurrence in marine settings are roughness, rugosity, and slope, followed by curvature, fine-scale BPI, and broad-scale BPI (with correlation close to 1). Correspondingly, aspect and bathymetry have less influence on bedrock identification (correlation < 0.5). It can be noted that roughness, rugosity, and slope are variable correlated and are anti-correlated with curvature, fine-scale BPI, and broad-scale BPI. On the other side, the PCA graph of “not bedrock” values tend to indicate that all variables are representative (with correlation close to 1). It can be noted that like bedrock parameters, curvature, roughness, rugosity, and slope are variable correlated and are anti-correlated with fine-scale BPI and broad-scale BPI. In contrast to the bedrock values, bathymetry for “not bedrock” seems anti-correlated with fine-scale BPI and broad-scale BPI.




4.1.2 Video assessment

The ROV videos provided by the SeaRover 2017, 2018, and 2019 campaign cruises (O’Sullivan et al., 2017; O’Sullivan et al., 2018; O’Sullivan et al., 2019) provided direct evidence for bedrock exposure in various regions (Figure 1), either morphologically or spatially, on the ICM. To assess the BSI, the locations of bedrock occurrence were compared with the results of the BSI (Figure 4). A total of 25 bedrock outcrop sites have been observed on ROV video at various places over the Irish margin, corresponding to 13 sites displaying BSI values up to 50 and 75, 6 sites displaying BSI values between 50 and 30, and 6 sites displaying BSI values < 30.




Figure 4 | Video assessment of the Bedrock Suitability Index with bedrock and mud ROV video corresponding captures. Bedrock occurrence on the (A) Porcupine Bank, (B) Porcupine Seabight, (C) Fangorn High, and (D) Rockall Bank. Distance between lasers on video captures is 10 cm.



In addition, the location of bedrock recognized on ROV video from the CE21010 cruise and CE22013 cruise (Figure 4) allowed a deeper assessment of the model as these data are independent from the statistical calculations and were used as testing points (Figure 4C). For the CE21010 cruise, on seven dives where bedrock has been observed, four sites display BSI values between 50 and 75, two sites display BSI values of 30, and the last two sites display BSI < 30. For the cruise CE22013 that used the BSI to plan on bedrock outcrop drilling, on 14 dives planned using BSI ≥ 75, bedrock outcrops were found on 10 dives and no bedrock were found on 2 dives, which represents 71% successful use of BSI (Wheeler et al., 2023).

In fine, we obtained 46 total sites where bedrock has been observed on video that coincide with the BSI map with 27 sites displaying ≥75 BSI; thus we obtained (27*100)/46 = 58.7% validation by video observation. This validation by video observations and correlations of predicted bedrock exposures with the BSI provide a confidence level of 58.7%.





4.2 Bedrock Suitability occurrence

The study area has been divided into five zones to look more precisely at the bedrock suitability occurrence. These zones are the Southwest Approaches (including Whittard Canyon and King Arthur Canyon), the Goban Spur, the northern and southern Porcupine Bank, and the Rockall Bank (including Edoras High and Hatton Basin). Each zone depicts a large diversity of locations suitable for bedrock occurrence (Figure 5). It can be noted that the raw BSI displays very high resolution over the overall study area with a precision of the order of decametric sedimentary structure (Figure 6).




Figure 5 | Bedrock Suitability Index zoom on the (A) Eastern branch of Whittard Canyon, (B) Western branch of Whittard Canyon, (C–E) North Porcupine Bank, and (F) Fangorn High. Location on Figure 1.






Figure 6 | Bedrock Suitability Index. High resolution (25 m). Cold colors represent high suitability and warm colors represent low suitability for bedrock occurrence. BSI ≥ 70 is illustrated by dark blue, BSI = 50 by green and 30 by yellow color. Location of the inset maps of Figure 5.





4.2.1 The Southwest Approaches

The Southwest Approaches are marked by many geomorphological features that host a substantial number of high BSI clustered locations. The Whittard Canyon branches and linked gullies, terraces, flanks, talwegs, canyon heads, toes, and edges as well as many retrogressive erosion scars are the features that could display the most bedrock (with high BSI > 70). Here, two morphologies can be observed at a smaller scale: canyon branches (Figure 7) and cross-cutting canyons (Figure 8). The same pattern can be observed on the canyon branches; patches of high reflectivity (Figure 7A) are associated with high roughness (Figure 7C), medium curvature (Figure 7E), and high BPI, either positive or negative (Figure 7B). This characterizes morphologies affected by erosion processes or associated with movements in the canyon like terraces, head, or failure scarps. Accordingly, this parameter association corresponds to patches of high suitability for bedrock occurrence (Figure 7D). On the terrace presented in Figure 8, in three cross-cutting canyons, or relict canyons, as described by Cunningham et al. (2005), high reflectivity can be observed on the talweg and walls of these structures (Figure 8A). As in the eastern canyon branch, talwegs and flanks are associated with high roughness (Figure 8C), with medium positive curvature implying concave surfaces (Figure 8E) and high BPI, positives for talwegs and negative for walls (Figure 8B).




Figure 7 | Bathymetry derivative layers of the eastern branch of Whittard Canyon. (A) Backscatter, (B) Bathymetric Position Index with a broad scale, (C) Roughness, (D) Bedrock Suitability Index, BSI ≥ 70 is illustrated by dark blue, BSI = 50 by green and 30 by yellow color, (E) Curvature. Location on Figure 1.






Figure 8 | Bathymetry derivative layers in the western part of the Whittard Canyon. (A) Backscatter, (B) Bathymetric Position Index with a broad scale, (C) Roughness, (D) Bedrock Suitability Index, BSI ≥ 70 is illustrated by dark blue, BSI = 50 by green and 30 by yellow color, (E) Curvature. Location on Figure 1.



On the Goban Spur (Figure 9), the toes of escarpments, positive topographic reliefs at the edge of the Spur are the most probable locations for bedrock. These peculiar positive reliefs (Figure 9) present patches of high reflectivity that appear to correspond to clusters of high BSI and highlight areas affected by erosion processes (Figure 9A). These high reflectivity patches also display high BPI (Figure 9B), high roughness (Figure 9C), and positive curvature (Figure 9E), depicting a topographically high and heterogeneous submarine relief. It must be noted that the bathymetric data used for the western part of Goban Spur in this study have a 100-m resolution and the noise has been reduced using the standard deviation method described in the methodology (Figure 6).




Figure 9 | Bathymetry derivative layers of a topographic high on the Goban Spur. (A) Backscatter, (B) Bathymetric Position Index with a broad scale, (C) Roughness, (D) Bedrock Suitability Index, BSI ≥ 70 is illustrated by dark blue, BSI = 50 by green and 30 by yellow color, (E) Curvature. Location on Figure 1.






4.2.2 The South Porcupine Bank

The Porcupine Bank is separated from the Porcupine Abyssal Plain by a steep escarpment and is incised by gullies, deep canyons, and failure scars. On the southern part of the Porcupine Bank margin (Figure 10), the highest suitable/probable bedrock (Figure 10D) is located at the toe of the Porcupine Bank escarpment and at the edge of the margin (Figures 10A, B), as well as on the positive reliefs related to failure scars and to mass wasting movements and on topographic highs and lows due to seabed heterogeneity originated from slides, flank collapse, edge destabilization, and gully erosion. This heterogeneity can be seen not only in the high roughness and rugosity (here, on the zoomed area roughness ≈ 11 and rugosity ≈ 3) but also with the positive high BPI (fine scale: 1 and broad scale: 2) that emphasizes the bedrock suitable occurrence on topographic highs. A high reflectivity can be observed on these heavily affected by erosion reliefs (Figure 10A), highlighting the potential for bedrock location as it could imply hard substrate. It must be noted that the bathymetric data bordering the Porcupine Bank area suffers from poor resolution and left many holes in the interpolation of the BSI.




Figure 10 | Bathymetry derivative layers of the south part of the Porcupine Bank slope. (A) Backscatter, (B) Bathymetric Position Index with a broad scale, (C) Roughness, (D) Bedrock Suitability Index, BSI ≥ 70 is illustrated by dark blue, BSI = 50 by green and 30 by yellow color, (E) Curvature. Location on Figure 1.






4.2.3 The North Porcupine Bank

The northern part of the margin is dominated by the northern slope of the Porcupine Bank followed in the north by the eastern Rockall Trough margin connected to the Irish western shelf (Figure 1). It is incised by numerous blind canyons that connect the upper bank with the Rockall Trough in addition to failure scarps and gullies. The same behavior of BSI as observed previously on the South Porcupine Bank can be observed here. The highest BSI is found with geomorphological features like canyons flanks, head, scarp failures, and escarpments (Figure 11). In contrast, the gentle slope of the bank and the talweg of the blind canyons affecting the margin seem to depict lower BSI (Figure 11). By looking closely at the behavior of the terrain parameters of these features (zoom on a canyon Figure 11), the high BSI (>70) corresponds to a moderate curvature (0.5) and gradient (12˚), the moderately high roughness (13 and 4 respectively) indicates terrain heterogeneity (Figure 7C), and the positive broad-scale BPI (2) indicates topographic features higher than the surrounding area, corresponding to either the scarps/flanks and edges of the canyon or mass wasted material originated from these features.




Figure 11 | Bathymetry derivative layers of a canyon affecting the north part of the Porcupine Bank slope. (A) Backscatter, (B) broad-scale Bathymetric Position Index, (C) Roughness, (D) Bedrock Suitability Index, BSI ≥ 70 is illustrated by dark blue, BSI = 50 by green and 30 by yellow color, (E) Curvature. Location on Figure 1.






4.2.4 The Rockall Bank

The Rockall Bank, and particularly the Fangorn High, reveals high reliefs’ round features (Figure 12) with a high reflectivity suggestive of hard substratum (Figure 12A). The high reflectivity also coincides with high roughness (Figure 12C), describing the terrain heterogeneity and positive BPI resulting from these features (Figure 12B), which are highlighted by high bedrock suitability index clusters (Figure 12D).




Figure 12 | Bathymetry derivative layers of the Fangorn High. (A) Backscatter, (B) Bathymetric Position Index with a broad scale, (C) Roughness, (D) Bedrock Suitability Index, BSI ≥ 70 is illustrated by dark blue, BSI = 50 by green and 30 by yellow color, (E) Curvature. Location on Figure 1.








5 Discussion



5.1 Bedrock Suitability Index parameters

The Bedrock Suitability Index has improved bedrock mapping considering the scientific literature, by linking and aggregating multiple variables extracted from direct video observations into a single index. Accordingly, the BSI mapping allows, at a regional scale, us to indicate potential hard substratum occurrence along the ICM (Figure 6). Here, according to the PCA test (Figure 2), the parameters that seem to be descriptors of bedrock, for this model, in deep submarine settings are as follows: roughness, rugosity, slope, curvature, and BPI. The general high roughness and rugosity suggests that outcrops can be observed on the heterogeneous terrain. It seems to agree with previous mesoscale studies about hard substrate mapping using these parameters (Gratwicke and Speight, 2005; Wilson M. F. J. et al., 2007; Wilson S. K. et al., 2007; Purkis et al., 2008; Dunn and Halpin, 2009). The high BPI indicates that this terrain heterogeneity is often associated with topographic highs and lows and is also a good indicator for hard rocky terrain, conforming to studies using these parameters in species and habitat distribution modeling (Howell et al., 2016; Hu et al., 2020). Moreover, medium to high slope and curvature describing these outcrops also highlights the terrain heterogeneity favorable for flows and erosional processes that instigate the outcrops. The high reflectivity shown by the backscatter values also illustrates induration characteristics of potential bedrock occurrence.




5.2 Bedrock outcrop type and associated processes

The bedrock suitability index indicates areas sharing the same geophysical parameters as bedrock outcrops. Here, it also seems to emphasize features affected by erosion processes leading to outcropping. The pilot study site in the upper Porcupine Bank Canyon (Strachan, 2021) has shown good results for the applicability of the Bedrock Suitability index in highlighting bedrock occurrence on mainly cliffs, steep slopes, and rising from gentle slope outcrops. In this wider study, the main morphological features underlining potential bedrock, being classified with high bedrock suitability, are erosion zones associated with (1) downslope and along-slope transport associated with failure scarps, escarpments, canyons heads, talweg, or terraces; or (2) topographic features inherited from deep structural components of the margin such as positive and negative reliefs associated with fault walls.

In the eastern branch of the Whittard Canyon, retrogressive erosion linked to subsequent flows widens the canyons and leads to the instability of the canyon walls (Cunningham et al., 2005; Daly et al., 2018). Canyon development incising the Porcupine Bank has been associated with slope failure (O’Reilly, 2022). Along the Rockall Trough margin, bedrock exposed by multiple slope failure events linked to seismicity have been described (Sacchetti et al., 2011; O’Sullivan et al., 2020; O’Reilly, 2022). These instabilities and erosive processes may lead to an unveiling of the bedrock as the younger sedimentary and more unstable and unconsolidated succession covering is swept away.

In addition, the relict canyon talwegs shown here as potential bedrock location agree with Cunningham et al. (2005)’s observations on the relict canyons implying sub-crop or coarse material with along-slope processes transporting finer sediments to the eastern canyon branches and accumulating coarser material (Figure 10). Moreover, previous studies showed, in the Southwest Approaches canyons, that turbidity currents, mainly in the upper part of the canyons, entail erosion and incisions of the canyon floors (Zaragosi et al., 2000; Cunningham et al., 2005; Bourillet et al., 2006). These active downslope processes infer active erosion within the upper canyons. Here, these erosion processes are highlighted by high suitability for bedrock to occur in the canyon’s head, either in Whittard Canyon or on the northern and southern Porcupine Bank canyons (Figures 7–9).

Large-scale sediment slumps and block failure (Leynaud et al., 2009; Carter et al., 2018) appear to be direct erosion processes affecting the Whittard Canyon walls as well as the Rockall Bank and the northern Porcupine Bank (Faugeres et al., 1981; Elliott et al., 2006; Georgiopoulou et al., 2014). These processes are highlighted here by areas of high BSI overprinting on headwall scar locations and parts of canyon walls (Figures 5A, B, 9).

On the Fangorn High (Figure 12), the round-shaped features underlining potential outcrops might be related to mound constructions or volcanism (Barton and White, 1997; Stoker et al., 2012, CE21010 cruise). The topographic features highlighted by clusters of high suitability for bedrock occurrence in Goban Spur (Figure 11) seem to be related to the deep fault network affecting the southern part of the ICM.




5.3 Structural control on bedrock location

Underlying faults modeling the ICM play a crucial part in the general morphology of this deep offshore territory (Figure 13). The Goban Spur and the Southwest Approaches, which are particularly affected by a deep fault network, display morphological features shaped by the fault scarps like escarpments associated with topographic high and lows. This connection between the deep structure of the margin and its geomorphology can also be observed on the bedrock probability occurrence map (Figures 13A, B).




Figure 13 | Structural settings of ICM (faults in red, personal communication from University College Dublin Fault Group Analysis). Zoom on (A) Southern Irish continental margin, (B) Goban Spur faults and BSI (BSI ≥ 70 is illustrated by dark blue, BSI = 50 by green and 30 by yellow color).



On the northern part of Goban Spur, two conjugated sets of faults with 140° and 50° trend deeply affect the area (Figure 13A). The faults with 140° trend seem to mark escarpment slope toes. Indeed, the layout of the faults determines a limit between high BSI and very high BSI areas (Figure 13B). This can be observed on most fault scarps on the southern Goban Spur, creating a pattern of semi-horst and graben with preferential erosive and outcropping surfaces. The fault layout seems to correspond to the limit of high BSI clusters (Figure 13B). In Figure 13B, clusters of high suitability are located preferentially at the edge and toe of the slope of steep escarpments, as well as on the topographically disturbed seabed. This reinforces the confidence in BSI areas that overlay fault locations. Moreover, as hard surfaces are preferential substrates for important organisms such as cold-water corals, the erosion features and outcrops created by fault scarps create preferential environments to develop deep sea habitats.




5.4 Bedrock and deep habitat mapping

Bedrock or rock boulders can provide excellent habitat for cold-water coral reefs or act as a hard substrate for them to grow over and encompass other species’ important assemblages (Gratwicke and Speight, 2005; Wilson SK et al., 2007; Purkis et al., 2008; Dunn and Halpin, 2009). Indeed, hard substratum seems to be a crucial parameter in species distribution and habitat mapping studies in warm provinces (Caddy, 2007; Casoli et al., 2019; Hu et al., 2020; Keenan et al., 2022), in Arctic to Subarctic regions (e.g., coastal northern Norway: Jonsson et al., 2004; Dunlop et al., 2020), in shallower settings like circa-littoral (e.g., Basque continental shelf: Galparsoro et al., 2015), or in deeper settings like continental slopes (Wilson M. F. J. et al., 2007). In particular, Wilson SK et al. (2007) and Dunn and Halpin (2009) showed with observations that cold-water coral reef habitat and other species assemblages were correlated with rugosity. Cliffs and vertical walls on complex geomorphologic features are favorable to cold-water reef development (Flach, 2003; Robert et al., 2017; Robert et al., 2020; Appah et al., 2021; O’Reilly, 2022).

Here, different areas seem to be favorable for rocky substrate outcropping, especially where along-slope processes are active (presumably bedrock is exposed through erosion at canyon heads, escarpments, etc.) and high BSI occurrence can be observed. Up to 20% of potential occurrences of bedrock can be concentrated in these areas, compared to 5% on the relatively flat seafloor across the margin (Table 2). Eight percent can be found in canyon areas (Table 2). It can be noted that 20% correspond to tectonically induced topographic relief (e.g., in the Goban Spur area, Table 2, Figure 14), located in deep to very deep domains (<−2000 mbsl). It could coincide with deep habitat and rich species diversity, such as benthic communities, crustaceans, echinoderms, polychaetes, as observed on the Goban Spur area at <−2000 mbsl (Flach et al., 1998; Flach and de Bruin, 1999), and particularly sponges, cnidarians, and gorgonian observed on rocky substrates (Tyler and Zibrowius, 1992). Consequently, deep rocky areas located on the Goban Spur region could encompass a large variety of species and, thus, biodiversity hotspots could also be linked to the deep structure of the ICM.


Table 2 | % of BSI ≥ 50% and median BSI of areas presenting morphologies.






Figure 14 | Location of areas described in Table 2. Canyons and fault-related feature areas have been delimited using “feature envelope to polygon” tool in ArcMap based on canyon talweg and fault layout. Canyon talweg layout is from Dorschel et al. (2010).



Accordingly, per Table 2 and BSI mapping, potentially more than 5,000 km2 (e.g., canyon area) could be favorable areas for habitat development and species like cold-water coral reefs on the ICM. As a result, bedrock mapping could identify suitable environments for reefs through morphometric properties and BSI establishment all along the ICM. Spatial distribution of hard substrate appears to be crucial to increase precision in species mapping and could help in habitat protection management.

The high potential for bedrock to occur in canyons, escarpments, or positive topographical features highlights both a preferential substratum for benthic species and locations with enhanced bottom currents. Future research could investigate whether BSI can be applied to map potential areas for benthic and sessile organisms that require both hard substratum and enhanced hydrodynamism.




5.5 Model benefits and limitations

This model could help identify probable bedrock locations at the regional scale (≥ 400,000 km2) up to 25-m resolution and cover huge areas with less precision but good indication. This model is GIS-based and time-efficient, requiring less computer resource usage despite the huge dataset (25-m-resolution grids on more than 400,000 km2).

Nevertheless, the model has its limitations. The intrinsic restrictions of the ROV limit the acquisition of videos in settings deeper than −3,000 m. In addition, video acquisition data on deep vertical and steep walls are scarce. This is reflected on the BSI as a huge part of vertical walls are illustrated with low BSI and seem underestimated as bedrock outcrop potential locations (Figures 5, 6), and because vertical walls can host a variety of habitats, there is no clear delineation between the bedrock occurrence of the vertical wall and sediment zonation. This could be resolved by a new video dataset or ground-truthing points, dedicated on vertical wall stratigraphy mapping. Likewise, there are constraints due to the quality of bathymetric and backscatter data with depth (more noise and reduced beam accuracy in progressively deeper water) (Figures 5, 6); imperfect integration of either position, orientation, or sound speed information can generate false seafloor roughness elements that overprint true geomorphology as demonstrated in Clarke (2018). In addition, there are some caveats when using uncalibrated backscatter values, especially considering different surveys and sources. These concerns were addressed using the Focal statistic tool to reduce the influence of noise in the dataset; standard deviation was multiplied with the original BSI map to give less weight to surfaces with high variability (displaying noisy bathymetry in the dataset) and more weight to low-variability areas (less noise in the dataset).

Morphologically significant rugosity may appear and disappear within a terrain, reflecting the changing imaging geometry rather than the real spatial distribution of natural morphology (Clarke, 2018). The general influence on the BSI leads to areas with more noise like the Feni drift/abyssal plain area, ≤3000-m-depth areas, and less noise in areas with shallower distinct morphological structures like the Whittard Canyon, Fangorn High, or north Porcupine Bank. Another approach would be to apply this model to other regional areas that were covered by large ROV campaigns or to lessen the bathymetric noise with further cleaning.





6 Conclusion

With the study of more than 150 video transects along the continental margin, this work allowed the development of a bedrock suitability index mapping of more than 400,000 km2, showing the most suitable location for hard substrate. Through geomorphometric analysis, this study reveals the relevant terrain parameters depicting suitable bedrock outcrop locations on the ICM. These parameters are roughness, rugosity, curvature, slope, and the BPI. These parameters indicate that bedrock usually occurs on a heterogeneous, sloped seabed. Furthermore, geomorphological features like canyons, scarps, gullies, and terraces illustrate erosional processes for bedrock occurrence, particularly in areas like the Whittard Canyon and Porcupine Bank Canyon. These outcrop locations and morphology can also be determined with the complex history and deep structure of the ICM, especially in the Goban Spur region where fault-related reliefs seem to be favorable domains for bedrock outcropping. Highlighting hard substrate locations at the regional scale could help with marine species protection management as hard substratum appears to be a crucial parameter in habitat development. Wide-scale mapping could also allow characterization of offshore basins based on their surface exposure and thereby allow for an enhanced understanding of the geology of the ICM.
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The loss of marine biodiversity is a major global issue that needs to be prioritised. In Australia, a considerable proportion (48%) of its Exclusive Economic Zone is dedicated to marine protected areas. To effectively manage this network of marine protected areas Australia has recently introduced a Management Effectiveness system. This system is designed to identify, monitor, and manage natural values and the various activities and pressures affecting the Australian Marine Parks (AMPs). Key to this approach is the identification and accurate mapping of the location of these values and pressures acting on the seabed. The AusSeabed program is a national initiative in Australia aimed at improving access to bathymetric data and coordinating efforts to collect such data in Australian waters. This manuscript proposes a novel systematic processing method to create detailed and scalable geomorphometric maps from AusSeabed’s bathymetric data holdings, intended as a standard operating procedure for initial bathymetric data interpretation in the AMPs. Utilising this workflow, we produce seafloor geomorphometry maps across 37 AMPs within which sufficient bathymetric data has been collected. These maps can be used 1) for predictive mapping of biological assemblages; 2) in field sampling design for the collection of ‘ground truthing’ data (e.g. underwater imagery and sediment samples) to validate habitat maps from bathymetric datasets; and 3) as input datasets for subsequent geomorphological mapping with a deeper understanding of seafloor processes. This research highlights the importance of robust geomorphometry classification standards to ensure consistency in mapping Australia’s marine estate in preparation for the Decade of Oceans plans. The Seamap Australia program provides a stepwise approach to advancing Australia’s national collection of bathymetric data into derived products that can enable habitat mapping of Australian waters, providing a foundational tool for the adaptive management of AMPs.
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1 Introduction

Biodiversity loss has been identified by the Global Risks Report 2022 as the third most severe global risk over the next decade following climate action failure and extreme weather. This presents a critical challenge, particularly in the context of marine ecosystems, and in Australia is mirrored in the stewardship of its extensive Australian Marine Park (AMP) network. Over the past sixteen years, the Australian Government has invested significantly in research to identify key ecological values and pressures within the AMP network. This laid the foundations for the advancement of an integrated monitoring and reporting framework, followed by the implementation of a Management Effectiveness (ME) system (Commonwealth Environmental Water, 2013) to adaptively identify, monitor, and manage the natural values and diverse activities impacting the AMPs. Drawing on previous efforts in Australia, such as the monitoring framework for the Great Barrier Reef, and the identification of Key Ecological Features (Monk et al., 2017), this system aims to streamline the management of Australia’s marine assets, and represents a key step in the nation’s ongoing commitment to, and alignment with, global environmental initiatives.

The AusSeabed program, a national initiative launched in 2018, aims to serve by fostering open collaboration within the seafloor mapping community. It embodies the spirit of ‘collect once and use many times’ by coordinating bathymetric data collection in Australian waters and improving access by providing a centralised access point to bathymetric data. This streamlined approach has been instrumental in assessing the extent of Australia’s marine physical data inventory, thereby identifying gaps in ecological data collection and guiding investment opportunities. The data acquired through this program are pivotal for geomorphometric mapping, which lays the groundwork for the systematic analysis and interpretation of seafloor features.

Geomorphometry is a field of study that focuses on quantitatively analysing the shape of digital elevation surfaces using a range of mathematical, statistical, and image processing techniques to measure and describe features. Geomorphometry, or morphometric maps, provide quantitative description of the seafloor’s shape characteristics, while geomorphology augments this surface analysis by interpreting the processes that created these landform features. Over the past decade, the utility of geomorphometric maps has been increasingly recognised, especially as proxies for the distribution of benthic species (Pike, 2000; Harris and Baker, 2012; Lecours et al., 2016; Micallef et al., 2016; Lecours et al., 2018; Lucieer et al., 2018; Lucieer et al., 2019). They facilitate a deeper understanding of the relationship between seafloor features and marine life, providing valuable input to predictive modelling of biological asset distribution.

The global accessibility of bathymetric data has seen significant improvements through initiatives like the Nippon Foundation-GEBCO Seabed 2030 project. This initiative has been instrumental in enhancing our knowledge of the ocean floor, increasing global bathymetric survey coverage from 15 percent to 25 percent coverage between 2019 and 2023. Direct sampling data provides valuable insights into seafloor features and complements existing methods of modeled or interpolated bathymetric data. The first global geomorphology map of the ocean floor was presented by Harris et al. (2014) who analysed and classified a derived bathymetric grid from Shuttle Radar Topography Mission (SRTM) data. Their digital compilation of broad-scale features (>10 km2) has been an important resource for progressing marine ecosystem science [e.g. Walbridge et al. (2018)]; for better understanding deep-sea mineral resources [e.g. Clark et al. (2011)]; and for informing marine policy and management [e.g. Cogan et al. (2009); Colenutt et al. (2013); Furlan et al. (2018)]. The rapid growth of global high-resolution bathymetric data demands more consistent classification schemes and automated processing methods to give context to seafloor features. The understanding and characterisation of seafloor morphology is acknowledged as crucial across various marine science disciplines and stakeholders, as highlighted by Micallef et al. (2016) and others in the habitat mapping community [e.g. Clark et al. (2011); Dove et al. (2020)]. While global initiatives like Seabed 2030 (bathymetry) and Harris et al.’s (Harris et al., 2014) geomorphological mapping provide valuable initial analyses, they often lack the resolution and local context necessary for effective conservation at smaller scales (Wyborn and Evans, 2021), for example in AMPs. The recent rise in predictive modelling of benthic habitats further underscores the importance of seafloor morphological classifications at more local scales (McArthur et al., 2010; Lucieer et al., 2013). These models, increasingly used for visualising potential marine habitats, are particularly valuable in the relatively inaccessible deep-sea environment where a number of biological communities have been identified as vulnerable ‘habitats’. They require an understanding of the factors influencing species distribution and abundance at different scales and how the use of multiple scales of seafloor bathymetry in spatial analysis can improve the model accuracy. Our research addresses these crucial aspects, aiming to advance seafloor morphology research, with a particular focus on ecologically-relevant local scales (Strong et al., 2018; Diesing et al., 2020).

One primary challenge we address is the absence of a standard analytical model for extracting morphological features from bathymetric data. Harris et al. (2014) mapped eleven distinct geomorphological features, but only two classes were automatically extracted (ridges and seamounts), while the remaining relied on a mix of quantitative and qualitative techniques. This approach likely stemmed from the coarse scale of the input data. Global maps constitute a particular problematic form of knowledge that erases local context and are not always suitable for higher resolutions or local scales. The current best global bathymetry, while comprehensive, does not resolve seafloor topography at all length scales. Theoretical studies suggest that bathymetric features as small as 1 km may influence oceanographic mixing, while some of the features that generate internal waves are too small to be visible in satellite altimetry data and can only be captured from acoustic data. We propose a quantitative methodology for adopting a standardised morphological classification using mixed resolution data from the AMP estate as a case study, presented through the Seamap Australia data portal https://seamapaustralia.org/map/.

A second challenge involves the absence of standardised classification hierarchies in morphology mapping, a long-standing issue in biological habitat mapping. In Australia, the Seamap Australia program has been instrumental in aggregating benthic habitat data at a national scale and developing a nationally consistent benthic habitat classification scheme (Butler et al., 2017). Growing a nationally consistent and comprehensive benthic habitat map requires integrating ancillary biological data with bathymetric data that characterises the shape and textures of the seafloor (Figure 1). Our study contributes to these efforts by examining the applicability of the MIM-GA (Norway (MAREANO), Ireland (INFOMAR), UK (MAREMAP), and Australia (Geoscience Australia) (MIM-GA) classification scheme proposed by Dove et al. (2020) as the foundation for our geomorphometry model. We use Whitebox tools to extract 10 key classes from the morphological features glossary by Dove et al. (2020), including Hole, Escarpment, Ridge, Trough, Valley, Saddle, Apron, Slope, Plane and Peak. This methodological approach not only contributes to the understanding of benthic biodiversity within AMPs, but also fosters global collaboration through the standardisation of classification and extraction techniques of seafloor features.




Figure 1 | Type A data- represents remotely sensed collection of bathymetric data which can be used to create geomorphometry maps. Type B data- is ancillary data which is used to characterise the ecological habitats existing on the seafloor substrate. Both Type A and Type B data are required for the creation of a seafloor habitat map.






2 Materials and methods



2.1 Bathymetric data processing

Bathymetric survey data was collated in GeoTIFF format from the open data repositories AusSeabed and the Australian Ocean Data Network (see Supplementary Information 1 for a full list of collated datasets). The source surveys were conducted over varying temporal scales using different sonar techniques and were processed at a range of spatial resolutions (grid size). Bathymetry data was restricted to direct surveys (e.g., by acoustic techniques), with the exception of the Coral Sea, Central Eastern, Gifford, and Christmas Island AMPs where interpolated composite Digital Elevation Models (DEMs) were included, as these were characterised by large-scale features spanning a considerable depth range and benefited from the inclusion of ‘background’ data provided by DEMs. Each dataset was clipped to the boundaries of AMPs prior to processing. This was done using a polygon mask based on 2023 AMP boundaries supplied by the Department of Climate Change, Energy, the Environment and Water [last accessed Aug 2023]. Where required, data was resampled using bilinear method in the ArcMap tool (10.8.1) RESAMPLE. This was done to ensure gridding adequately covered of the surveyed region (i.e. no ‘speckly’ data). A raster catalog was created for each AMP (ArcMap (10.8.1) using the tool CREATE RASTER CATALOG). The catalogue was loaded with all intersecting clipped bathymetry GeoTIFFs, with source data ordered according to gridded resolution (i.e. fine scale data assigned a higher priority). Data was mosaiced into a single raster product for each AMP using the ArcMap tool RASTER CATALOG TO RASTER DATASET (options: Mosaic Operator: FIRST; Resampling Method: BILINEAR). This meant that, where bathymetry datasets overlapped in the mosaic, only the first (higher resolution) data was retained at each location. Mosaic datasets were then exported as GeoTIFF with lossless compression for subsequent morphological feature classification.




2.2 Geomorphometry classification

The morphological features for each AMP were calculated from the bathymetric surface of the seafloor using the geomorphon function in the Whitebox tools package (2.1.5) for R (4.2.1) (Jasiewicz and Stepinski, 2013). The specific search distances and slope thresholds were adjusted between AMPs depending on the data quality and resolution of bathymetry data and also on the particular characteristics of the seafloor (such as slope). This was done to reduce the effects of identified data artifacts that are known to impact seafloor variables derived from acoustic data (Lecours et al., 2017). All of the input parameters for each model for each AMP are provided as Supplementary Information (See Supplementary Information 2). Example code can be found here (https://github.com/jacquomo/Geomorphmetry_SeamapAus). Geomorphons were classified into morphological feature classes as identified in Dove et al. (2020) Seabed Morphology Features Glossary and exported as GeoTIFF for subsequent calculations.




2.3 Depth-based zonation

The ArcMap tool ZONAL STATISTICS AS TABLE was used to calculate the area covered by each geomorphometry class in each AMP using the rasters exported in step 2.2. The Australian Bathymetry and Topography Grid 250m (Whiteway, 2009) was used to generate vector masks of the eight depth zones specified in Parks Australia’s ME ‘common language’ (Hayes et al., 2021) (see https://seamapaustralia.org/map/#d120c916-fe99-474e-9d45-9e7b97e5ae36). Each AMP geomorphometry raster was clipped to the bounds of each depth mask, and ZONAL STATISTICS AS TABLE was performed again on depth-clipped datasets to obtain statistics on the area covered by each geomorphometry class, in each depth zone, for each AMP.




2.4 Summarising morphological characteristics of the AMPs

The R packages ggplot, ggdendro (4.2.1) were used to create the dendrogram, heatmap and the multidimensional scaling plots. In the dendrogram, the y-axis represents Ward’s distance, which is a measure of dissimilarity between clusters. The lower the Ward’s distance, the more similar the AMPs are in terms of morphological characteristics. The x-axis identifies individual AMPs. Each vertical line represents a cluster of AMPs, and the height of the line shows the distance at which they were joined. Shorter lines suggest that the AMPs in that cluster are more similar in terms of their morphological makeup, while longer lines suggest greater dissimilarity.

The heatmap function in R is a statistical tool that can be used to run a Euclidean distance clustering algorithm and produce the dendrogram. In the heatmap each row represents an AMP and each column represents a geomorphometry class. The colour intensity indicates the percentage of each geomorphometry class occurring in the AMP, with darker colours signifying higher occurrence. The cell values are the percentages of each geomorphometry class for the corresponding AMP. This representation shows that certain AMPs are dominated by specific morphological classes, while others are more diverse.

Multidimensional Scaling (MDS) is a technique used to reduce the dimensionality of data while preserving the pairwise distances between observations. Each point in the MDS plot represents an AMP, and the spatial arrangement of the points reflects the similarity or dissimilarity in morphological characteristics between them. Dimension 1 and Dimension 2: These are the two dimensions resulting from the MDS analysis. They are constructed in such a way that the pairwise distances between points in this 2D space approximate the pairwise distances in the original high-dimensional space as closely as possible. The closer the two points are in this space, the more similar their morphological makeup is. Conversely, the further away two points are from one another, the more dissimilar they are.





3 Results

The AMP estate is comprised of 61 AMPs represented across seven Networks around Australia (Figure 2). Heard Island and McDonald Islands is a 62nd (non-AMP) reserve falling in the Australian marine jurisdiction and managed by the Australian Antarctic Division and was included in this analysis. Of these 62 AMPs, 37 were selected for geomorphometry assessment with the selection parameter being that bathymetric data coverage had to equal or exceed 25% of the total AMP area (see Supplementary Information 3). The 37 geomorphometry maps can be viewed as a single layer on the Seamap Australia data portal at https://seamapaustralia.org/map/#3064fc3f-b729-43cc-a8f1-cb071c49f759 [last accessed 20/09/2023], with accompanying bathymetry mosaics available at https://seamapaustralia.org/map/#1c0277fe-e922-417e-a589-0654232fa588 [last accessed 20/09/2023]. The following summary statistics selected for the analysis were identified as most crucial for making informed decisions regarding the improvement of monitoring and managing the AMP network.




Figure 2 | The Australian Marine Park (AMP) estate is comprised of 61 AMPs represented across seven Networks around Australia. See: https://seamapaustralia.org/map/#5d870854-90a9-4aa6-986b-81fb12da2680.





3.1 Summary of geomorphometric characteristics of the AMPs across all depth zones

Overall, when including DEMs, the mean bathymetry coverage in the AMPs across all depth zones was 57.8% (54.8% when excluding DEMs; Table 1). There are notable variations in bathymetry coverage across eight depth zones classified according to Parks Australia’s ME ‘common language’ (Hayes et al., 2021). For example, in the shallow (<30m), mesophotic (30-70m), rariphotic (70-200m) and abyssal (4,000-6,000m) depth zones the mean mapped percentage ranged from 40-59.3% (Table 1), indicating a modest mapping efforts in these regions. Conversely, the upper-slope (200-700m), mid-slope (700-2,000m) and lower-slope (2,000-4,000m) depth zones exhibited notably high mean mapped percentages, reaching 86.4%, 86.1% and 80.5%, respectively (Table 1).


Table 1 | Area occurring within each depth zone summed across the 36 Australian Marine Parks with sufficient bathymetry data (≥25% cover) for geomorphometry analysis (Heard and McDonald Islands excluded from depth analysis).



The most dominant geomorphometry class across all depths of the AMPs was the ‘Plane’ class, followed by ‘Slope’ (Figure 3). Across all AMPs combined, Plane comprised 58.4% of the geomorphometry classification, with Slope accounting for 18.2%. Apron, Saddle, and Valley were the next-most dominant classes, accounting for between 2 and 8% of total mapped coverage but were significantly less common than Plane and Slope.




Figure 3 | Stacked box plot showing the dominant geomorphometry class (% of mapped area) by Australian Marine Park.





3.1.1 Relationships between AMPs across all depths based on similarity in geomorphometry classes

The MDS scatterplot (Figure 4) provides a visual representation of how AMP Networks differ in their geomorphometric characteristics. The South-east and South-west Networks are at similar latitudes and have similar morphological profiles, being comprised of substantially less ‘Plane’ seafloor (45.3 and 42.7% for South-east and South-west Networks, respectively, versus 52.9-75.5% for all other Networks), and a relatively higher occurrence of Ridges (5.9 and 3.4%, versus 0.4-1.5%), Troughs (3.0 and 3.8% versus 1.1-2.5%), and Valleys (6.6 and 8.0% versus 0.5-4.7%). The Indian Ocean Territories Network stands alone, indicating that it has a unique set of morphological characteristics, different from all the other networks.




Figure 4 | Multidimensional Scaling (MDS) plot illustrating similarities and differences in the seafloor morphological characteristics of Australian Marine Parks.



The hierarchical clustering dendrogram showed three primary clusters in AMPs based on their morphological characteristics across all depth zones (Figure 5). Interestingly, these clusters consisted of AMPs from multiple networks. For example, the first cluster consisted of six AMPs from the South-east network (South Tasman Rise, Boags, Franklin, Zeehan and Beagle), two from the South-west network (Abrolhos, Great Australian Bight), two from the North-west network (Mermaid Reef, Ningaloo), two from Temperate East (Cod grounds, Solitary Islands), the Coral Sea AMP and Heard Island and MacDonald Islands reserve. Further exploration of these patterns using a clustered heatmap (Figure 6) provides another avenue for visualising how morphological profiles vary between individual AMPs. This demonstrated that variations in the mapped extents of Plane and Slope geomorphometric classes were the primary drivers of these clusters (Figure 5). For example, Beagle and Solitary Islands, two AMPs from different Networks appearing in the same cluster (cluster #1; Figure 5) were comprised of Slope, Plain: 82%, 1% (Beagle) and 90%, 2% (Solitary Islands). In contrast, Carnarvon Canyon and Tasman Fracture in cluster #3, also from different Networks, were comprised of Slope, Plain: 24%, 51% (Carnarvon Canyon) and 17%, 37% (Tasman Fracture).




Figure 5 | The hierarchical clustering dendrogram showed three primary clusters in AMPs based on their morphological characteristics across all depth zones. Symbols at branch stems indicate the three distinct clusters of AMPs.






Figure 6 | A tabular heatmap for comparing and contrasting the suite of seafloor morphological characteristics of individual AMPs. Morphological class is shown on the X-axis with AMPs on the Y-axis. Symbols adjacent to AMP names show clustering of AMPs as indicated in Figures 5 (dendrogram). Cell numbers indicate the % coverage of each morphological class as a fraction of the total mapped area.







3.2 Summary of geomorphometry characteristics of the AMPs by depth zones

The table in Supplementary Information 4 provides a comprehensive text summary of the depth and geomorphometry profile of each AMP for each of the eight depth zones. In the following section we explore how similarities and differences in these geomorphometry profiles varies between depth zones, using a MDS analysis. Results are presented for two selected depth zones: Mesophotic (<30-70 m) and Upper-Slope (200-700 m).



3.2.1 Geomorphometry characteristics of the Mesophotic (<30-70 m) depth zone

The mesophotic depth zone (30 – 70m) represents 2.1% of the total area of all analysed AMPs, of which 36% is mapped (40% including modelled data). MDS analysis revealed that eight of the AMPs exhibited morphological characteristics quite different to the other 16 AMPs with bathymetry mapping data in that depth zone (Figure 7). These 16 AMPs appear to be dominated by flat plane with small Slope and Apron features, for example Cod Grounds (https://seamapaustralia.org/map/#ec9b6aab-20ae-4dcb-ace6-5467a11eb4e0). In contrast, the eight other AMPs are dominated by higher-profile features such as Ridges and Peaks interspersed with Holes and Valleys, for example Franklin (https://seamapaustralia.org/map/#e73e1dbb-714b-4594-8e13-3885cea3bb77).




Figure 7 | Multi-Dimensional Scaling (MDS) of the Australian Marine Parks based on their morphological characteristics in the Mesophotic depth range (30-70 m). Symbols match those used for Figures 5 and 6 showing the clustering indicated by all-depth dendrograms.






3.2.2 Morphological characteristics of the Upper-Slope (200 - 700 m) depth zone

The Upper-Slope depth zone (200 – 700 m) represents 4.2% of the total area of all analysed AMPs, of which 80% is mapped (86% including modelled data). The MDS plot (Figure 8) shows the points are broadly distributed across the plot, which implies a wide variation in geomorphometry features across different AMPs within this depth zone. In contrast to the plot for the Mesophotic zone which showed distinct clustering of AMPs sharing similar geomorphometric characteristics, in the Upper-Slope zone there are no clear groupings of AMPs with similar seafloor geomorphometry. For AMPs with a high proportion of their area falling within the Upper-Slope zone (e.g. Mermaid Reef; https://seamapaustralia.org/map/#4e653de6-31ff-4084-8359-25fbbb367b5c and Ningaloo; https://seamapaustralia.org/map/#5d612045-b9e1-43b0-9eb7-36f24aa08c6c), it may be necessary to develop customised management strategies tailored to their unique geomorphometry compositions.




Figure 8 | Multi-Dimensional Scaling (MDS) of the Australian Marine Parks based on their morphological characteristics in the Upper Slope depth range (200-700 m). Symbols match those used for Figures 5 and 6 showing the clustering indicated by all-depth dendrograms.








4 Discussion

Our approach identified similarities and differences in morphological features between AMPs within the same Network. In doing so, we identified unique or rare morphological classes across the AMP network. These results also permit rapid quantitative comparisons to be made between AMPs. Incorporating depth into the analysis allowed us to overcome the inherent biases arising from different depth characteristics across AMPs, allow a manager to quickly gauge which AMPs have similar morphological characteristics. This may allow the exchange of effective management strategies among similar AMPs, significantly boosting overall management efficiency. Furthermore, understanding the range of morphological features within specific depth zones of an AMP, in relation to existing knowledge of species and community distributions along these gradients, is vital. Linking morphological features with ecological data is critical for both habitat conservation and species protection. For example, the mesophotic (30-70 m) and rariphotic (70-150 m) zones, which are essential habitats for large fish (Bosch et al., 2021), often face substantial fishing pressure. Understanding the morphological composition of these depth zones, especially those impacted by anthropogenic pressures, can enhance our ability to monitor these species more effectively. This, in turn, is key to achieving better species protection and habitat conservation.

Defining the unique morphological features within specific AMPs can also aid in the development of tailored management and conservation strategies. For example, areas rich in certain features like ridges [which are known to be associated with high biodiversity (Monk et al., 2016)] or trenches (known to be important aggregation points) (Lörz et al., 2012) might need different management practices compared to flat seabed areas. However, it is important to recognise that characterising these features based on their morphology is only an initial step towards a deeper, more nuanced understanding of the seabed’s geomorphological dynamics and associated ecology. Common morphological features may be shaped by different geological and oceanographic processes. For example, structures like ridges and peaks may consist of current dominated soft sediment dunes or igneous bedrock outcrops, even sedimentary paleo shorelines, each associated with supporting different ecological communities (Brix et al., 2022).

The suite of analyses use here helps condense complex geomorphometry data into an easily interpretable form, providing valuable insights to underpin effective management. For example, the clustering AMPs based on the morphological features can be used to prioritise future field planning resource allocation, which in turn can provide evidence-based recommendations for park management. Furthermore, delineating the morphological features of an AMP can aid in the deployment of the most appropriate field-based techniques to collect ground-truthing seafloor data, a key step in progressing geomorphometry and geomorphology maps into validated benthic habitat maps (identified in Figure 1). Alternatively, if resources for monitoring or sampling are limited, the manager might focus on AMPs that are outliers in these plots, as they may have unique characteristics that may require special attention. Different morphological features may require different monitoring technologies and enforcement strategies, such as surveillance systems adapted to rugged terrain, steep seabed or deep valleys. Understanding the complexity of the seafloor in different water depths will also help to estimate the costs of further information gathering.

We acknowledge that the geomorphon approach taken here is limited to 10 classes which is substantially less than proposed in Dove et al. (2020). However, the strength of geomorphon approach is the ability to subjectively evaluate and quickly iterate (in seconds) on how well-aligned the mapped classes reflect the underlying topography. Noise artefacts in the underlying bathymetry mosaics (inherent in all acoustic data and reflective of the inclusive approach taken here with respect to input data) contributed to noise in the resulting morphological classification, and was particularly pronounced in deeper AMPs (e.g. offshore Macquarie Island, southern Tasman Fracture) where bathymetry data coverage was frequently derived from older surveys. Noise in bathymetry data presented as an increased artificial representation of ‘Valley’ and ‘Hole’ geomorphometry, as can be seen for Tasman Fracture, Western Eyre, South-west Corner and Murray AMPs in Figure 3 and at https://seamapaustralia.org/map/#b74070c4-1c69-47f8-bd75-b674859ad3a5. However, at a whole-of-AMP scale, noise had minimal effect on the representation of dominant and rare morphology feature classes, and in some cases the thresholds can be altered to reduce these inherent noise artifacts. The primary objective of this study was to develop a ‘toolkit’ for rapid, preliminary morphological analysis of national bathymetry holdings, offering managers a suite of statistical tools to enhance knowledge and improve management effectiveness of marine assets. Depending on the specific requirements of the analysis, particularly in terms of scale, it may be advisable to omit exceptionally ‘noisy’ or low-resolution data (refer to Supplementary Information 1 for a complete list of input datasets). A more selective approach would inevitably reduce spatial coverage but could enhance the accuracy and reliability of morphological classifications, especially at the level of individual classes.

This ability to quickly iterate using different thresholds and evaluate how well they align with the underlying bathymetric hillshade is not practical in approaches such as those proposed by(Arosio et al., 2023; Huang et al., 2023); which take hours to days to compute at the fine resolution of our current study and at the whole-of-AMP scale. We recognise that this flexibility may reduce the standardisation of geomorphometric classifications when applied across different datasets or AMPs. However, this adaptability is likely to enhance the accuracy of delineation of these classes within a specific AMP and, when applied cautiously, is a powerful technique. Regardless of the approach taken, geomorphometry maps are a highly visual spatial product, particularly when draped over bathymetry hillshade and viewed in combination with seafloor imagery and are invaluable for AMP stakeholder engagement communications. Geomorphometry is the first step in communicating the features present in a bathymetric data set and can aid in the understanding of certain management actions that are being taken, helping to highlight the ecological importance of a region. Managers emphasise the significance of being able to quantitatively categorise their AMP assets. This approach is enabled by the discrete labeling of geomorphometric features, whereas continuous bathymetry data does not offer the same capability beyond simple depth-based zonation. By integrating geomorphometric maps into the workflow as the first output to an AMPs survey, marine scientists and policymakers can make more informed decisions on the potential assets or values contained within their AMPs.

Whilst it is possible to track the use of different techniques used to extract morphological features about the seafloor as identified in various reviews (Lecours et al., 2016), it is much harder to assess their success in extracting morphological features consistently from bathymetric grids at different scales (Lecours et al., 2013), and within regions with incomplete coverage. Walbridge et al. (2018) present a workflow for benthic terrain modeler (BTM) that addresses the ‘call to arms’ over the rapidly increasing volume of high-resolution bathymetric data. The BTM method uses bathymetric data to enable simple characterisation of benthic biotic communities and geologic types and produces a collection of key morphological variables known to affect marine ecosystems and processes. Additionally, (Masetti et al., 2018) presented an approach that co-located bathymetry and backscatter to incorporate substratum type into geomophometry classes. However, the source bathymetric data used in our analysis consisted of 100s of surveys with varying grid resolution (from 0.3 to >200 m, sometimes occurring in a single AMP) and no available harmonised backscatter. We strongly encourage agencies that do acquire backscatter data to process it for this purpose of distinguishing hard versus soft substrata. It is not currently possible to infer substrata at an AMP scale using Australia’s publicly available backscatter data holdings and, importantly, it is important to have an approach that can deal with data that is ‘noisy’ or has varying gridded resolution. The model parameters using in our approach were altered to better capture the fine scale geomorphometry contained within the datasets (see Supplementary Information 1). When dealing with large datasets and batch processing techniques, Whitebox tools package for R (also available through QGIS) permitted the regeneration of consistent and rapid results enabling the researcher to iterate using difference parameters to select the best combination for that particular dataset. Furthermore, the added benefit of using Whitebox tools allows for the geomorphometric layers to be quickly updated as new data becomes available. The bathymetry data collation exercise undertaken in this study revealed that very few AMPs had comprehensive bathymetry mapping data across their entire depth range. Identifying and filling these data gaps could be a priority for future marine surveys and research.




5 Conclusion

Marine geomorphometry provides invaluable insights into the spatial and structural characteristics of the seafloor, playing a pivotal role in the effective management of the AMPestate. By providing a detailed inventory of a region’s geomorphometric features—such as slopes, ridges, and valleys—geomorphometry enables park managers to make informed decisions on conservation strategies, resource allocation, and monitoring programs.

The use of advanced analytical techniques like Multidimensional Scaling (MDS) and cluster analysis enhance our understanding of the unique and common characteristics of different AMPs. These techniques can also help identify which AMPs may require tailored management strategies, particularly in specific depth zones like the Mesophotic and Lower-Slope.

However, it is important to acknowledge some limitations of this approach. Firstly, the quality of geomorphometric output is dependent on the resolution and accuracy of source bathymetric survey and Digital Elevation Model data (if included). Low-resolution data can result in an incomplete or misleading picture of the morphological features present and can be complicated to interpret alongside neighbouring high-resolution data. Secondly, the interpretation of reduced-dimensionality plots, like dendrograms and MDS, requires expertise, and the axes are not always straightforward to interpret. Lastly, while average mapped coverage can provide a general idea of the depth zones that are well-studied, it doesn’t provide a complete picture of the spatial variability within each AMP due to the extent of the data gaps across the AMP network and may skew some of the results (for example, if previous sampling has targeted a particular depth range that is only represented in some AMPs). Marine geomorphometry data serves as a preliminary analysis tool for AMP management but should be used with other data sources and expert judgment to provide a comprehensive and nuanced understanding of critical marine environments. This study initiates and makes preliminary recommendations for systematically applying this approach to AMP management. However, development of a comprehensive toolkit would simplify a broader implementation.

Geomorphometric maps play a role in improving the integrated monitoring and management of marine ecosystems through improved monitoring for a) habitat identification, b) baseline data, and c) data integration. There is a clear demand within the seafloor mapping community for standardised morphological and (where available) geomorphological practices to ensure consistency in mapping the AMPs benthic assets across the vast marine estate. We propose the adoption of a standardised classification model as the first step in interpreting multibeam data collected within the AMP network. This approach would not only facilitate comparisons of seafloor assets across different AMP regions but also serve as a valuable preliminary information source for survey planning. In the process of converting bathymetric datasets into benthic habitat maps, the procedure of consistently identifying morphological features would enhance how surveys are planned and allow direct observational sampling to target representative morphologies ensuring that habitat validation data is equally weighted to morphological proxies underpinning benthic habitat maps.
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Detailed maps of seafloor substrata and morphology can act as valuable proxies for predicting and understanding the distributions of benthic communities and are important for guiding conservation initiatives. High resolution acoustic remote sensing data can facilitate the production of detailed seafloor maps, but are cost-prohibitive to collect and not widely available. In the absence of targeted high resolution data, global bathymetric data of a lower resolution, combined with legacy seafloor sampling data, can provide an alternative for generating maps of seafloor substrate and morphology. Here we apply regression random forest to legacy data in the Gulf of St Lawrence, Canada, to generate a map of seabed sediment distribution. We further apply k-means clustering to a principal component analysis output to identify seafloor morphology classes from the GEBCO bathymetric grid. The morphology classification identified most morphological features but could not discriminate valleys and canyons. The random forest results were in line with previous sediment mapping work done in the area, but a large proportion of zero values skewed the explained variance. In both models, improvements may be possible with the introduction of more predictor variables. These models prove useful for generating regional seafloor maps that may be used for future management and conservation applications.
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1 Introduction

Coastal marine ecosystems face significant anthropogenic pressures due to the goods and services they provide and the ease with which these may be accessed (Halpern et al., 2008). Globally, over 90% of international trade occurs via shipping (Mudryk et al., 2021), and these routes must pass through coastal ecosystems to get to port. Coastal fisheries also represent a significant impact, with fishing effort in many coastal regions increasing over the years and leading to habitat degradation caused by the gear deployed (Stewart et al., 2010). The Gulf of St. Lawrence (GSL) on the east coast of Canada is one of many such ecosystems facing these anthropogenic threats. It includes busy shipping routes that connect the Atlantic Ocean to the Great Lakes, and supports total fisheries landings valued at over 788 million dollars (DFO, 2021). Because of its prominent location, lucrative fishing grounds, and access it provides to inland North America, the GSL is considered one of the most important parts of the Canadian coast (Loring and Nota, 1973). Informed and sustainable management is critical to ensure ecological health of the GSL and continued use of these resources.

Seafloor sediment composition and morphology can act as effective surrogates for understanding biodiversity patterns at the seafloor which can be valuable for marine conservation planning (McArthur et al., 2010; Tecchiato et al., 2015; Wilson et al., 2018). Sessile filter feeders such as sponges often require hard substrate on which to anchor, while fine-grained sediments provide habitat for burrowers. Seafloor morphology may correlate strongly with hydrodynamics and sedimentation (Tecchiato et al., 2015; Miramontes et al., 2019), and can be a useful proxy for understanding spatial patterns of fauna and seafloor substrates. For instance, steep-sloped features such as seamounts and submarine canyons propagate internal tides, which act as efficient mechanisms for food transport (Mohn et al., 2014). Particulate organic matter may be transported along the faces of such morphological features due to the interactions between topography and internal tides, which enables settlement of suspension-feeding cold-water corals.

Morphological features can be defined by the values of their bathymetric derivatives (e.g., slope degree, terrain ruggedness, bathymetric variance, etc.). These derivatives can be calculated from readily available digital elevation models (DEMs). The General Bathymetric Chart of the Oceans (GEBCO; GEBCO Compilation Group, 2021) has created a global bathymetric grid using a variety of datasets. The grid is primarily derived from satellite altimetry measurements, but also includes other modern datasets such as multibeam echosounder data. Legacy datasets are incorporated as well, and in the GSL these legacy bathymetric datasets have been collected for over a century and consist of lead line data and single beam echosounder data (CHS, 2022). As a result, the morphology of the GSL seafloor is generally understood, but a morphological classification scheme has yet to be applied.

Over a period of 10 years, Loring and Nota (1973) collected sediment samples and seafloor images to produce a map of the sediment distribution of the GSL. This interpretation required an expert depth of localised knowledge on the geological history and hydrodynamics of the region (Diesing et al., 2014). The Loring & Nota interpretation considered local hydrodynamics and bathymetry, but the physical oceanographic models (e.g., Wang et al., 2018; Li et al., 2021) and DEMs (e.g., GEBCO Compilation Group, 2021) available today were not available to them at the time. Their sediment map is discretised, with transitions between classes presented as solid boundaries, manually interpreted from the discrete physical seafloor point sediment samples. In reality, sediment boundaries may be gradational rather than abrupt. Mapping sediment as a continuous variable instead of a discrete one may allow for more accurate estimates of species distributions when it is used as a predictor (Wilson et al., 2018). Modern quantitative modelling approaches can offer an alternative way to produce continuous coverage maps depicting gradational changes in substrate parameters, and may additionally be used to infer sediment composition in areas where ground truth validation is not available  (Misiuk and Brown, 2024). This can be achieved by using geospatial models that treat substrate parameters as a response variable to be predicted using continuous coverage environmental data sets (e.g. bathymetry, seabed morphology, physical oceanographic parameters such as current speed and direction, etc.). Machine learning algorithms are increasingly applied to predict sediment parameters with high accuracy (e.g., Diesing et al., 2014; Stephens and Diesing, 2014; Misiuk et al., 2019). Such approaches also show promise for classification of seafloor morphology using bathymetric data and derivatives (e.g., Jasiewicz and Stepinski, 2013; Maschmeyer et al., 2019).

The goals of this paper is to 1) apply a machine learning methodology to predict sediment grain size fractions observed in the GSL legacy dataset using a modern suite of environmental predictors and generate continuous maps of grain size distributions, and 2) apply a morphological classification scheme to the seafloor of the GSL.




2 Materials and methods



2.1 Study area

The GSL (Figure 1) is bordered by the Canadian provinces of Quebec, New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland & Labrador. It connects the St. Lawrence Estuary to the Northwest Atlantic Ocean via the Cabot Strait and the Strait of Belle Isle on either side of Newfoundland. The GSL covers a total area of 240,000 km2 and contains 3,553 km3 of water (Dufour and Ouellet, 2007). It has an average depth of 152 m, with ~25% of the area shallower than 75 m (Environment Canada, 2013). The deepest part of the gulf is the Laurentian Channel, which begins at the St. Lawrence Estuary and flows out into the Atlantic via the Cabot Strait. As the channel reaches the Cabot Strait, it attains a maximum depth of approximately 540 m (GEBCO Compilation Group, 2021).




Figure 1 | Study site - Gulf of St. Lawrence, Canada. Contour lines are drawn at 100 m intervals.



The Laurentian Channel divides the GSL into northern and southern regions. To the south lies a plateau with an average depth of 80 m (Dufour and Ouellet, 2007). On this plateau is Prince Edward Island and Les îles-De-La-Madeleine – a small island chain under Quebec jurisdiction. To the northwest is the St. Lawrence Estuary, divided into upper and lower sections, with the lower section considered as part of the gulf. Eastward from the estuary, Anticosti Island splits the channel into the Laurentian Channel and the Anticosti Channel. The Anticosti Channel connects to the Esquiman Channel to the southeast of the island. The Esquiman Channel enters the gulf from the Strait of Belle Isle between Newfoundland and Labrador.

The GSL was covered by the Laurentide Ice Sheet (LIS) until approximately 11,500 years ago (Casse et al., 2017). The rapid retreat of the LIS at this time heavily influenced changes in sediment deposition due to increased meltwater input into the GSL. In the Laurentian Channel, a >450 m thick Quaternary sedimentary succession has developed primarily due to high sedimentation rates brought on by the LIS retreat and its associated meltwater (Casse et al., 2017). The channel itself developed along a faulted contact zone before being modified by glacial erosion during the Quaternary period (Loring and Nota, 1973; Casse et al., 2017). The deepening of the channel at the Cabot Strait is likely due to forced narrowing by the surrounding terrestrial landforms increasing and deepening the glacial erosion process (Loring and Nota, 1973).

The north shore of the Gulf, from the lower St. Lawrence Estuary to the Strait of Belle Isle, is lined with submarine valleys and canyons (Loring and Nota, 1973; Normandeau et al., 2015). Many of these are pre-Paleozoic in origin, but were further carved by ice while the Esquiman and Anticosti channels were undergoing a transition from fluvial valleys to glacial troughs (Loring and Nota, 1973). The predominance of canyons and valleys along the north shore, especially compared to their near absence on the other shores of the Gulf, can be attributed to a steep slope gradient from shore to seafloor as well as the high volume of sediment that was transported southward during the deglaciation that occurred 11,500 years ago (Normandeau et al., 2015).




2.2 Predictor variables

Seventeen predictor variables were used in the random forest and are provided in Table 1. These predictors were selected based on previous sediment modelling work (Diesing et al., 2014; Stephens and Diesing, 2014; Misiuk et al., 2018; 2019; Bushuev et al., 2023).


Table 1 | Predictor variables used in random forest sediment models.



Bathymetric data were obtained from GEBCO. GEBCO is a global repository of bathymetric data compiled as part of the Nippon Foundation-GEBCO Seabed 2030 Project, which has the goal of mapping the entire seafloor by 2030 (GEBCO Compilation Group, 2021). The GEBCO 2021 data are gridded at 15 arc-second resolution, equivalent to approximately 450 m at the equator. The grid was downloaded for the extent of the GSL and projected to a custom Lambert Conformal Conic projection with a central meridian longitude of 61°W and standard parallel latitudes of 46°N and 50°N. Eight morphometric derivatives were calculated from the bathymetry data using the Benthic Terrain Modeller (BTM) toolbox in ArcGIS Pro 2.7.3 (Walbridge et al., 2018; Goes et al., 2019). These derivatives are bathymetric mean, bathymetric variance, standardised broadscale and finescale bathymetric position indices (BPI), eastness, northness, ruggedness, and slope (Table 1). BPI provides information on relative vertical position of a focal cell (Walbridge et al., 2018). The BPI radius values were selected based on previous work done with the BTM toolbox (Walbridge et al., 2018). Bathymetric mean and variance required a neighbourhood size for calculation. The neighbourhood size is the maximum number of cells used in the calculation of a terrain attribute (Misiuk et al., 2021). The neighbourhood size for variance and mean were selected for consistency with the spatial scale of the BPI measurements. Radius values and neighbourhood sizes used to calculate predictors are provided in Table 1.

Physical oceanographic predictor variables were interpolated using inverse distance weighting to match the resolution of the GEBCO grid. For benthic current magnitude and direction, data were obtained from the Bedford Institute of Oceanography North Atlantic Model (BNAM; Wang et al., 2018). BNAM is used by the Department of Fisheries and Oceans Canada (DFO) to model oceanographic conditions through space and time in the Northwest Atlantic. BNAM predictions were provided at a nominal resolution of 1/12° (approximately 6500 m). For seafloor shear velocity and wave power, model predictions were provided at a nominal resolution of 1/10° (approximately 7800 m; Li et al., 2021).

Euclidean distance from the coast was calculated as a potential proxy for terrestrial sediment input. Distance layers were calculated for both the mainland coast and from islands smaller than 5,000 km2 based on the assumption sediment input from larger islands may differ substantially from smaller islands. Prince Edward Island and Anticosti are larger than 5,000 km2 and were therefore considered “mainland”. The two Euclidean distance variables were calculated at the same resolution as the GEBCO grid from a polygon shapefile of shorelines obtained from Runfola et al. (2020) using the Spatial Analyst toolbox in ArcGIS Pro 2.7.3.




2.3 Surficial sediment data

The original dataset used by Loring and Nota (1973) consisted of approximately 1500 sediment samples that were collected throughout the GSL using a 0.1 m2 Van Veen grab (Loring and Nota, 1973). Of the original dataset, records containing grain size composition for 223 samples were recovered at the Bedford Institute of Oceanography (Figure 2). Data from the remaining of the original 1500 samples could not be located. Of the data recovered, 200 points contained non-zero values for mud, 214 non-zero values for sand, and 50 non-zero values for gravel.




Figure 2 | Distribution of sediment grain size samples from Loring and Nota (1973) that were recovered from the Bedford Institute of Oceanography. Location points are presented as pie charts that indicate the grain size fractions of the given sample.



Spatial autocorrelation for each of the three grain size classes was assessed using Global Moran’s I (Moran, 1950). For a set of locations and an associated attribute, this statistic tests the null hypothesis that the attribute in question is randomly distributed by calculating Moran’s Index with the model residuals. Moran’s Index ranges from -1 to 1. If the value is close to -1, then the spatial distribution of the data is dispersed. If the value is close to 1, then the spatial distribution of the data is clustered. If the value is close to 0, then the spatial distribution of the data is random. The significance of the index value is determined by a z score and p value. The Global Moran’s I test was carried out using the Spatial Autocorrelation tool in the Spatial Analyst toolbox of ArcGIS Pro 2.7.3.




2.4 Sediment modelling using random forest

Legacy sediment data were used to model each of the three grain size fractions using regression random forest to produce a broadscale map of sediment distribution in the gulf. Random forest is a machine learning algorithm that generates multiple classification or regression trees with a randomly selected subset of the provided predictor variables at each node in the tree (Breiman, 2001, 2002). Individual trees are additionally grown using bootstrapped samples of the training data to reduce the variance of the aggregated predictions, and the data not drawn for a given tree (the “out-of-bag” [OOB] observations) may be used to validate the model predictions. This is accomplished by aggregating predictions over all the OOB samples once the full model has been trained. A regression random forest was chosen to model sediment as it is suitable for interpolating large datasets and is robust against issues caused by noisy data and multicollinear or unimportant predictor variables. To generate the random forest model, the randomForest package in R was used (Liaw and Wiener, 2002). Five hundred trees (ntree) and six predictor variables (mtry) at each tree node were used for all three grain size fractions. The ntree value was selected by plotting the OOB error rate against number of trees used and selecting a value of ntree that corresponded to stabilised OOB error values. The mtry value was selected based on a trial-and-error procedure laid out by Breiman (2002), where multiple values are attempted, beginning with the square root of the total number of predictors, and the testing set error is checked for each attempt. The code used to run the random forest models is provided online (https://github.com/emilysklar/sediment_rf).

Model performance was evaluated using root mean squared error (RMSE) and variance explained of the OOB observations. RMSE calculates the root of the average squared difference between predicted and observed values:

	

where yi and ŷi are observed and predicted values of the response, respectively. The variance explained is calculated using the ratio of the mean squared error to the variance of the response observations:

	

Predictor variable importance was evaluated using the mean decrease in residual sum of squares (RSS). The more important a predictor variable is to the model, the more the RSS decreases when it is used at a tree node (Breiman, 2002).

Mud, sand, and gravel percentages of seafloor substrate are compositional, and predicted values at each data point must sum to unity. The additive log-ratio (ALR) transformation was initially applied to enforce a compositional output by modelling two variables that are the log-ratios between percentages of sand and gravel, and mud and gravel (Stephens and Diesing, 2015). A preponderance of zero observations within the gravel class necessitated imputation of small non-zero values to enable logarithmic transformation for a large proportion (~78%) of data points (Lark et al., 2012). We therefore additionally trialled a separate approach wherein the raw data values are modelled separately for each class and the outputs from these models are optimised to a compositional scale after prediction. The ALR models were outperformed by the optimised model outputs, which were selected for all models presented hereafter. Additional details and comparison are provided in Supplementary Material S2. Code for performing the optimisation is provided online (https://github.com/benjaminmisiuk/sNet). After modelling, predicted proportions of mud, sand, and gravel were additionally classified into grain size classes according to Folk (1954).




2.5 Seafloor morphology classification

An automated data-driven approach was used to distinguish morphological features of the GSL. Morphometric features of the bathymetric surface were initially classified using the r.geomorphon tool in GrassGIS (Jasiewicz and Stepinski, 2013), yet the classified output contained a large number of data artefacts relict from the GEBCO bathymetry input raster. To obtain a more interpretable and useable morphological classification, unsupervised classification was used to identify objective morphometric features (Bushuev et al., 2023). Principal components analysis (PCA) is an ordination technique used to obtain a lower-dimensional linearly independent set of features from a high-dimensional collinear input (Ismail et al., 2015; Joliffe and Cadima, 2016; Lever et al., 2017). PCA was applied to bathymetry, bathymetric mean, bathymetric variance, broad- and fine-scale BPIs, and slope raster layers using the RStoolbox package in R (Leutner et al., 2022; Table 1). The first four principal components were retained, which accounted for 94.3% of the variance of the input variables. K-means clustering was then performed on the four principal components to yield 10 clusters (k = 10). K-means is an unsupervised learning algorithm that partitions a pre-defined number of clusters in such a way that within-cluster variance is minimised to the greatest extent possible (Lloyd, 1982; Malik and Tuckfield, 2019). The elbow method (Thorndike, 1953) was initially attempted to determine what the optimal value of k was, but the results were inconclusive. Trial-and-error was then carried out with the k-means clustering being run multiple times, each time with a different value for k, to determine what the optimal number k value was. Each iteration of the model was assessed by qualitatively comparing the output to the GEBCO bathymetric grid for the area. Code for the PCA k-means clustering procedure is available online (https://github.com/esther-bushuev/morphology_clustering).

The 10 k-means clusters were used to identify eight morphological classes in the GSL (Table 2), based on previous work reclassifying morphological clustering outputs (Iwahashi et al., 2018). Classes were determined based on the definitions provided in the literature, box plots of the distribution of values for each predictor variable at each cluster, and by comparing the model output to an output from the r.geomorphon tool. The PCA k-means approach failed to correctly classify canyons and valleys, instead identifying elongated slope features between ridges. The valley class from the r.geomorphon output was therefore supplanted into the model output wherever it occurred. The PCA k-means output was retained at all other locations. The output was compared qualitatively to expert interpretation of the bathymetry raster to evaluate the quality of the classification.


Table 2 | Morphological classifications assigned to the GSL.







3 Results



3.1 Substrate modelling

For all three grain size classes, the Global Moran’s I test failed to reject the null hypothesis that the data was randomly distributed. For mud, the Moran’s Index value was -0.035 with a p-value of 0.571. For sand, the Moran’s Index value was -0.048 with a p-value of 0.422. For gravel, the Moran’s Index value was -0.059 with a p-value of 0.311.

The random forest model for mud had the strongest performance, explaining 79.4% of variance in the mud observations (Table 3). Gravel, which contained the lowest number of non-zero values in the dataset, had the weakest performance, with 19.5% of variance explained by the model. Observed and predicted values for each model are provided in Figure 3. The line of best fit for the mud predictions was closest to the x=y line, while gravel was furthest. This indicates that the gravel model residuals were mostly positive for observed values close to 0, and mostly negative for observed values close to 1.


Table 3 | Model validation statistics for each sediment class.






Figure 3 | Observed and predicted values for the data points in the three random forest sediment models: mud (A), sand (B), and gravel (C). The black line is given by y=x, where the predicted and observed values are the same. The dashed line is the line of best fit between observed and predicted values.



For all three sediment classes modelled, bathymetry, bathymetric mean, and maximum shear velocity were three of the top four most important predictor variables (Figure 4). Broadscale BPI was in the top four for sand and mud, but for gravel the fourth variable was maximum wave power. Mud percentage was highest when bathymetry values were deeper than approximately 300 m, while gravel and sand percentages were lowest in these areas and highest when bathymetry was shallower than approximately 80 m.




Figure 4 | Variable importance, presented as mean decrease in residual sum of squares (RSS), for the mud (A), sand (B), and gravel (C) random forest models.



Modelled grain size fraction distributions and Folk classifications are presented in Figure 5. Gravelly sand was the most common Folk class, comprising approximately 31% of the total modelled area (Figure 5D, Table 4). Muddy sandy gravel was the rarest Folk class, covering <0.01% of the total modelled area.




Figure 5 | Grain size predictions for mud (A), sand (B), and gravel (C) fractions, with Folk classification (D). Contour lines are at 50 m intervals.




Table 4 | Total area and percent cover for each Folk class.






3.2 Morphology classification

Each k-means cluster of the PCA outputs was assigned to a single class except for the plane and escarpment classes, which each comprise two k-means clusters. The two plane clusters plot close together in multidimensional space according to the first three principal components (Figure 6), as do the two escarpment clusters. Interquartile ranges (IQR) of 4 out of the 7 predictor variables additionally overlapped for the two plane clusters (Figure 7). Shallow and deep channel floors also had overlapping IQRs for 4 of 7 predictors, but were retained as separate classes due to their multivariate distance (Figure 6) and the clear division of the clusters at a depth of 375 m. The two escarpment clusters were similar in that their boxplot maxima were higher than any other clusters for all 7 predictor variables, and they often had wider value ranges than any other class (Figure 7).




Figure 6 | The first 3 principal components (PC1, PC2, PC3) of seafloor morphology variables, coloured according to k-means cluster, in a three dimensional plot. (A-C) represent the same plot from three different angles.






Figure 7 | Boxplots indicating the distribution of each predictor variable’s values for each k-means cluster.



Shallow channel floor, deep channel floor, and plane classes were defined by low IQRs and a low median value for slope, bathymetric variance, bathymetric standard deviation, finescale BPI, and broadscale BPI compared to the other classes in the model (Figure 7). These low values imply relatively flat, level features. These classes were differentiated by bathymetry and bathymetric mean. The deep channel floor class was characterised by a bathymetric low with the greatest median depth of any morphology class (407 m). The plane class was a bathymetric high (median cluster depths 57 m and 76 m), and the shallow channel floor was between the deep channel floor and the plane classes (median depth 276 m). The shallow channel floor class was always bordered by morphological classes that, by definition, involve a changing of depth, such as footslopes and slopes (Figure 8).




Figure 8 | Morphology of the GSL. Inset shows a section of the system of canyons and valleys that make up much of the north shore.



The ridge cluster is considered a bathymetric high based on the high median value for bathymetry (114 m) and bathymetric mean (111 m; Figure 7). Ridges also have a high median slope value (2.64°) similar to the escarpment clusters (1.96° and 2.84°; Figure 7). Ridges and escarpments are distinguished by bathymetric variance. The two escarpment clusters indicated higher bathymetric variance than any other clusters, while the median bathymetric variance of the ridge classification was lower.

Footslope and shoulder clusters had similar median values for bathymetric variance, bathymetric standard deviation, and slope. Median bathymetry characterised shoulders as bathymetric highs (68 m), with footslopes being deeper (276 m). This is reflected in Figure 8, where shoulders mainly appear along the edge of planes, a bathymetric high, and footslopes appear along the edges of channel floors, which are bathymetric lows.




3.3 Sediment distribution by morphology class

Mud was the dominant grain size class present in the channel floors, with a median value of approximately 87.5% in both shallow and deep channels (Figures 9, 5A). The channel floor classes contained the lowest proportions of gravel and sand out of any morphological class, with median values of 0.45% for gravel on the deep channel floor and 0.33% for the shallow channel floor (Figures 9, 5C). For sand, median percentage was approximately 11.8% for both floor classes (Figures 9, 5B). Gravel had the highest median proportion on planes, with median values of 27.6%. By contrast, planes had the lowest proportion of mud out of all morphological classes, with median values of 10.5%.




Figure 9 | Box plots depicting the distribution of grain size fractions for each morphological class.



The “gravelly sand” Folk class was present in every morphological class of the GSL, except for the two channel floor classes (Figure 10). Gravelly sand was most common on shoulders, ridges, and escarpments. All three of these morphological classes start at a bathymetric high and slope downward on one side. The two channel floor classes were approximately 97% covered by the “slightly gravelly mud” Folk class. In both channel floor classes, the other Folk classes were “gravelly mud” and “slightly gravelly muddy sand”.




Figure 10 | Percentage of each Folk class predicted within each morphological class.







4 Discussion



4.1 Sediment distribution modelling

Gravel most commonly occurred on the southern plateau, with the random forest model predicting up to approximately 74% gravel in parts of this region. Sand was also predicted here in high proportions, reaching 98% at some locations. Folk classes in the area were mixtures of sand and gravel (Figure 5D). While the data density in the southern plateau is relatively low compared to the rest of the study area (Figure 2), Loring and Nota (1973) also indicated mixtures of gravel and sand, which they had sampled comprehensively. This provides greater confidence in that region despite the lower number of samples available for modelling.

The gravel predictions demonstrated the weakest performance of the three grain size models, with a VE of 19.5%. However, gravel also contained only 50 non-zero samples, while the other two sediment types had over 200, and the RMSE for sand was higher than that of gravel. The VE of the gravel predictions is affected by the high proportion of zero values, which lowers the variance of the dataset. The high number of zeros also skewed the spread of residuals, as these data points could only have positive residuals and no negatives (Figure 3).

Maximum seafloor shear velocity was consistently one of the most important predictor variables in all three models. Shear velocity is known to be influenced by morphology and influences morphology in turn through erosion (Stow et al., 2009; Breitzke et al., 2017). The erosion of morphological features on the seafloor can also contribute to sedimentation rate and thus the sediment class (Stow et al., 2009). In the GSL, the highest values for max shear velocity occurred where the terrain was classified as “plane”, such as the southern plateau, peaking at 0.225 cm/s (Supplementary Figure 13). Areas classified as planes were almost always comprised of sand and gravel Folk classes (e.g., gravelly sand, sandy gravel, etc.). High current velocities directly influence shear velocities, and only sediments of larger grain sizes are deposited under these conditions (Stow et al., 2009). Max shear velocity was reduced in the channels identified here, with values as low as 0.017 cm/s in some places. Slower velocities allow for smaller grain sizes to settle (Stow et al., 2009), corroborating random forest models here that predicted up to 98% mud composition in the channels.

The presence of hard substrate is an important consideration from a benthic ecological perspective, which may support different benthic assemblages (e.g. primarily epifauna) compared to unconsolidated, finer-grained substrata which are dominated by infaunal species (Harris and Baker, 2011). Data used here for sediment grain size models were obtained by physical sampling (e.g., grabs), which limited model predictions to size fractions smaller than cobble. Loring and Nota (1973) noted the presence of outcropping bedrock in the GSL but there were insufficient data on the presence of hard substrata (e.g., exposed bedrock, boulders) for geospatial modelling in our analyses. Future work could aim to model hard substrates in the GSL by obtaining ground truth seafloor imagery data, potentially coupled with additional remote sensing data such as acoustic backscatter. Presence/absence models could then be used to predict hard substrata, and outputs could be integrated with sediment predictions presented here to provide a more comprehensive understanding of substrate distribution in the GSL (e.g., Misiuk et al., 2019).

Legacy data used here were collected over 50 years ago; it is therefore important to consider the possibility of temporal variability in the sediment distribution of the GSL. Geological processes are slow, with sediment accumulation rates in the ocean typically measured at rates of metres per thousand years (Sadler, 1981; Gingerich, 2021). However, anthropogenic disturbance may modify the benthos over shorter time periods (Houziaux et al., 2011; Oberle et al., 2016). Trawlers may dispose of collected sediment in different locations to facilitate future trawling activities (Houziaux et al., 2011). Larger clasts, such as gravels, may thus be replaced over time by finer-grained sediment such as sand. Trawling may also resuspend fine-grained sediment and induce off-shelf sediment transport from continental shelves on par with the volumes transported by river-supplied sediment (Oberle et al., 2016). Dredging may also be conducted, either to maintain proper depth to ensure safe passage of vessels or to collect materials such as gravel and sand for construction (de Groot, 1986). This leads to mass displacement and removal of sediments; in the Canadian Atlantic region, which includes but is not limited to the GSL, 5.7 million m3/yr of sand and gravel were extracted between 1979 and 1983 (de Groot, 1986). Anthropogenic impacts such as these were not considered in our sediment models, and are often neglected when modelling sediment distribution and transport (Oberle et al., 2016).

Correspondence between sediment type and morphology predictions were observed spatially over the GSL. Folk classes that were mixtures of sand and gravel were predominantly associated with planes. Channel floors (both shallow and deep) were dominated by high percentages of mud and the “slightly gravelly mud” Folk class. Sloped bathymetric highs, such as shoulders and ridges, contained high percentages of sand. Many of the predictor variables in the grain size models provided morphological information pertaining to the shape of the seafloor (e.g., broadscale BPI, bathymetric variance). One of the most important predictors, maximum shear velocity, is not a measure of seafloor morphology but is heavily influenced by it. Previous studies have identified the importance of morphological information in sediment distribution models (Stephens and Diesing, 2015; Misiuk et al., 2018; Wilson et al., 2018; Misiuk et al., 2019), but this trend has not previously been formally identified in the GSL with respect to morphological classification.




4.2 Morphology classification

DEMs are frequently used to apply morphological classification schemes to the seafloor and to land, often with the aid of machine learning (e.g., Ismail et al., 2015; Iwahashi et al., 2018; Maschmeyer et al., 2019; Barbarella et al., 2021; Lin et al., 2021), but the application of PCA followed by k-means is relatively new in the context of morphology classification. Expert interpretation may be performed to classify DEMs according to morphology or geomorphology, but can often be both subjective and time-consuming (Barbarella et al., 2019, 2021). Results from this paper demonstrate the efficiency of the PCA k-means clustering method as an objective alternative to expert morphology interpretation and classification.

In the case of the GSL, 10 k-means clusters reduced to 8 classes provided the best results based on localised knowledge of the study area. Reclassifying outputs from an unsupervised k-means clustering in this way, where clusters are grouped together based on predictor statistics, has been done successfully prior to this study (Iwahashi et al., 2018). Because of varying global seafloor morphological complexity, 10 clusters may not be universally applicable for morphological classification schemes. Classes should be selected with care based on peer-reviewed definitions of morphological features and knowledge of the local geological setting, which includes the formational processes that the morphology has undergone in the geologic past. In the GSL, much of the geology is based on the glacial history of the region. Knowledge of the past ice cover in the area and how it evolved explains many features, such as the north shore submarine canyons and the size and orientation of the channels (Loring and Nota, 1973).

Submarine valleys and canyons are both characterised by elongated bathymetric lows that slope upward on both sides to bathymetric highs (Table 3). The valleys and canyons within the study area were often associated with a ridge feature on either side, bordering the bathymetric high of the valley/canyon (Figure 8 inset). The final version of the PCA k-means model was unable to detect valleys and canyons, instead classifying them as alternating slopes and ridges. However, submarine canyons on the north shore of the GSL are well-described (Loring and Nota, 1973; Normandeau et al., 2015) and are visible in bathymetry raster images of the area. It is important to correctly identify these features, as they can act as channels for sediment and nutrient transport into deep water and are therefore crucial to benthic communities (Kenchington et al., 2014). To correct for the inability of the model to detect valleys and canyons, the valley classification from r.geomorphons supplanted the classification from the k-means model. One predictor variable that can provide the model with the necessary information to detect the valley/canyon class is curvature. Curvature can be used to describe concave or convex features and has successfully been used in seafloor classification before (Mitchell and Clarke, 1994; Ismail et al., 2015; Koop et al., 2021). It also has a strong correlation to submarine canyon morphology (Goff, 2001). Introducing curvature to the principal component analysis allowed for the k-means clustering to detect valleys and canyons. However, when trialled here, curvature also amplified data artefacts and classified many “valleys/canyons” that were the size of a single cell scattered throughout the entire GSL. For this reason, curvature was removed from the model. The bathymetric data available for the GSL exists as a mosaic of different data collection methods at different resolutions (GEBCO Compilation Group, 2021) and a shortcoming of deriving curvature from such a DEM is that compilation artefacts may propagate to bathymetric derivatives (Iwahashi et al., 2018). The use of curvature may work in an area where bathymetric data collection is more uniform and from a single source. In other parts of the global ocean, seafloor curvature might also prove useful for classifying morphological features defined as a bathymetric high surrounded by bathymetric lows, such as cones, knolls, or mounds (Dove et al., 2020).





5 Conclusions

Sediment grain size models based on legacy substrate data were developed here for the entire GSL by utilising a machine learning framework. This enabled quantitative geospatial predictions of grain size fractions for the first time in this region, including at areas of scarce ground-truth data. Results from an objective and data-driven morphological classification demonstrated apparent correspondence with predicted sediment classes. Channels were predicted to primarily comprise muds, while planes are likely composed of sand or a sand/gravel mix. The use of r.geomorphons was effective at supplanting the PCA k-means morphology classification where the model failed to correctly identify submarine canyons and valleys. The PCA k-means approach provided a fast and objective method to classifying submarine morphology of the GSL, however, some expert interpretation was still required to assign class labels and assess the feasibility of the model output.
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