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Editorial on the Research Topic

Respiratory microbiome in health and disease
Respiratory diseases, such as COVID-19, pneumonia, asthma, chronic obstructive

pulmonary disease, and lung cancer, etc., are leading causes of death and disability in the

world. With the development of sequencing technology, the critical roles of the respiratory

microbiome in health and disease have been understood (Zhao et al., 2012). As we know, a

diverse and dynamic community of microbiomes colonizes the inter-surface of the

respiratory system. However, compared to the gut ecosystem, fewer studies focus on the

respiratory microbiome and its roles in health and disease. Although a changed respiratory

microbiome is associated with a specific disease and host inflammation, more studies need

to be conducted to broadly investigate the importance of the respiratory microbiome in

health and disease.

A total of 15 original studies published in this Research Topic broaden our knowledge

of the respiratory microbiome. These studies generally reveal the potential relationship

between respiratory microbiome and various diseases, which benefits our understanding of

how the airway microbiota maintain respiratory health and resist disease.

In the past years, the coronavirus disease 2019 (COVID-19) epidemic that spread

throughout the world has impacted our life and health. Revealing the critical roles of

microbiota may contribute to the prevention and treatment the COVID-19. Ferrari et al.

found that Shannon’s entropy and the nasopharyngeal bacterial microbiota (BMN) Factor1

were positively associated with serum anti-RBD-IgG antibody maintenance, suggesting

that BNM composition may influence the immunological memory against SARS-CoV-2

infections. Li et al. examined the changes in stool and oral microbiota from the same

individuals during the pre-pandemic (before March 2020) and early pandemic (May–

November 2020) phases and found that stool and saliva microbiota from the pre-pandemic

to early pandemic periods largely exhibited ecological stability (especially stool microbiota),

with most associations in loss of diversity or changes in composition related to more
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reported health issues and pandemic-associated worries. Ling et al.

assessed longitudinal changes in the upper respiratory microbiome,

its association with disease severity, and potential confounders in

adult hospitalized patients with COVID-19. Among all covariates,

antibiotic treatment had the largest effect on upper airway

microbiota. Longitudinal analysis showed that the upper

respiratory microbiota alpha and beta diversity was unchanged

during hospitalization in the absence of antimicrobial therapy.

Pneumonia, a common lung infection, causes the air sacs, or

alveoli, of the lungs to fill up with fluid or pus in one or both lungs. It

usually is caused by bacteria, viruses, or fungi. In terms of other

diseases, He et al. compared the difference in the lower respiratory tract

(LRT) microbiome between patients with hematopoietic stem cell

transplantation (HSCT), healthy controls (HC), and patients with

community-acquired pneumonia (CAP). The results showed the

diversity of the LRT microbiome significantly decreased in patients

with post-HSCT pneumonia, and the overall community was different

from the CAP and HC groups. At the phylum level, post-HSCT

pneumonia samples had a high abundance of Actinobacteria and a

relatively low abundance of Bacteroidetes. The same was true for non-

survivors compared with survivors in patients with post-HSCT

pneumonia. At the genus level, the abundances of Pseudomonas,

Acinetobacter, Burkholderia, and Mycobacterium were prominent in

the pneumonia group after HSCT. On the other hand, gut-associated

bacteria, Enterococcus, was more abundant in the non-survivors. Some

pathways concerning amino acid and lipid metabolism were predicted

to be altered in patients with post-HSCT pneumonia. Hu et al.

conducted a multi-omics association analysis to detect the

interactions between the oropharyngeal microbiome and the

metabolome in pediatric patients with influenza A virus pneumonia,

and the results indicated that compared to healthy children, children

with IAV pneumonia exhibited significant changes in the

oropharyngeal macrobiotic structure and significantly lower

microbial abundance and diversity. These changes came with

significant disturbances in the levels of oropharyngeal metabolites.

Intergroup differences were observed in 204 metabolites mapped to 36

metabolic pathways. Significantly higher levels of sphingolipid

(sphinganine and phytosphingosine) and propanoate (propionic

acid and succinic acid) metabolism were observed in patients with

IAV pneumonia than in healthy controls. Using Spearman correlation

analysis, correlations between IAV pneumonia-associated

discriminatory microbial genera and metabolites were evaluated. The

results indicated significant correlations and consistency in variation

trends between Streptococcus and three sphingolipid metabolites

(phytosphingosine, sphinganine, and sphingosine). Besides these

three sphingolipid metabolites, the sphinganine-to-sphingosine ratio

and the joint analysis of the three metabolites indicated remarkable

diagnostic efficacy in children with IAV pneumonia. Xu et al.

concluded that metagenomic next-generation sequencing (mNGS) of

bronchoalveolar lavage fluid (BALF) improves the sensitivity of

pathogen detection and provides guidance in clinical practice for

diagnosing lower respiratory tract infections in children. Moreover,

the importance of oral microbiota in other respiratory diseases, such as

periodontitis, chronic obstructive pulmonary disease (COPD), and

comorbid diseases, was classified. Liu et al. found significant

differences in the bacterial community and functional
Frontiers in Cellular and Infection Microbiology 026
characterization of oral microbiota in periodontitis, COPD, and

comorbid diseases. Compared to gingival crevicular fluid, subgingival

plaque may be more appropriate for reflecting the difference in

subgingival microbiota in periodontitis patients with COPD. These

results provide a potential path for predicting, screening, and treatment

strategies for individuals with periodontitis and COPD.

The respiratory microbiota in animals affected by environmental

factors also correlates with respiratory disease (Chai et al., 2022). In

addition to human research, publications in this Research Topic also

detect the microbial characteristics of bovine respiratory tract. Howe

et al., detected the microbial difference between healthy calves and

bovine respiratory disease (BRD) calves and found greater variation in

microbial diversity in the BRD calves. Consensus approaches-based

random forest, DESeq2, and ANCOM-BC2 were successfully applied

to identify signature bacteria. Immigration of the microbiota from the

upper airways to the lungs has been confirmed in humans (Zhang et al.,

2022). In cattle, Zhang et al. found that the microbial connections

among the upper and lower airway were observed in beef cattle

regardless of geography, although the microbial diversity, structure,

and composition in the upper and lower respiratory tract in beef cattle

from China, the United States, Canada, and Italy were significantly

different. Regarding the spatial dissimilarities among the respiratory

niches, the nostril and nasopharynx had a more similar microbiome

compared to the lung communities. Additionally, the major bacterial

immigration patterns in the bovine respiratory tract were estimated,

and some of them were associated with geography.

Except for the associations between the airway microbiota and

respiratory disease, gut microbiota interacting with lung disease and

health is another hot topic, which might provide a new treatment

direction for respiratory disease. Hu et al. found that acute

respiratory distress syndrome (ARDS) altered the gut microbiota

of the patients. This study confirmed that the Escherichia–shigella

genus was effective at distinguishing AP-ARDS from AP-nonARDS,

which could predict ARDS occurrence in AP patients.

The present Research Topic highlights the tight associations

between the respiratory microbiota and disease. It also reveals the

microbe–microbe interaction in the respiratory tract, which is

influenced by multiple environmental factors. These recent

advancements in the field of respiratory microbiome in health and

disease of both animals and humans provide insights into how to

manipulate respiratory microbiota to improve host health in the future.
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the
coronavirus disease 2019 (COVID-19), ranging from asymptomatic conditions to
severe/fatal lung injury and multi-organ failure. Growing evidence shows that the
nasopharyngeal microbiota composition may predict the severity of respiratory
infections and may play a role in the protection from viral entry and the regulation of the
immune response to the infection. In the present study, we have characterized the
nasopharyngeal bacterial microbiota (BNM) composition and have performed factor
analysis in a group of 54 asymptomatic/paucisymptomatic subjects who tested positive
for nasopharyngeal swab SARS-CoV-2 RNA and/or showed anti-RBD-IgG positive
serology at the enrolment. We investigated whether BNM was associated with SARS-
CoV-2 RNA positivity and serum anti-RBD-IgG antibody development/maintenance 20–
28 weeks after the enrolment. Shannon’s entropy a-diversity index [odds ratio (OR) =
5.75, p = 0.0107] and the BNM Factor1 (OR = 2.64, p = 0.0370) were positively
associated with serum anti-RBD-IgG antibody maintenance. The present results
suggest that BNM composition may influence the immunological memory against
SARS-CoV-2 infections. To the best of our knowledge, this is the first study
investigating the link between BNM and specific IgG antibody maintenance. Further
studies are needed to unveil the mechanisms through which the BNM influences the
adaptive immune response against viral infections.
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INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has been infecting millions of people and causing more than five
million deathsworldwide since the endof 2019 (WuandMcGoogan,
2020; WHO, 2021). The SARS-CoV-2 virus infection causes the
coronavirus disease 2019 (COVID-19), ranging in presentation from
asymptomatic to severe lung injury and multi-organ failure,
eventually leading to death (Berlin et al., 2020; Gandhi et al., 2020;
Vicenzi et al., 2020). The host features influence both the severity and
outcomes of SARS-CoV-2 infection (Lauer et al., 2020; Sun et al.,
2020), and the local and systemic immune responsesplay akey role in
the reaction to the viral threat especially in the first stage of disease
(Tay et al., 2020). Most of the infected individuals experience
asymptomatic to mild symptomatic conditions, but only some of
them develop antibodies (Milani et al., 2020a; Milani et al., 2020b).

SARS-CoV-2 binds to the host cells through the interaction
between the receptor-binding domain (RBD), present in the viral
spike (S) glycoprotein, and the angiotensin-converting enzyme 2
(ACE2) on host cells (Hoffmann et al., 2020). Most SARS-CoV-2-
infected individuals produce S- and RBD-specific antibodies during
thefirst2weeksof theprimaryresponse, andRBD-specificantibodies
can neutralize the virus in vitro and in vivo (Rodda et al., 2021).

SARS-CoV-2 virus penetrates the host through the upper
airways, and the nasal barrier is the first defensive line to limit
infection (Tay et al., 2020). In addition to the epithelial layer and
the local immune system, the upper airways harbor a community
of microorganisms, the nasopharyngeal microbiota, which is
pivotal in maintaining mucosal homeostasis and in the
resistance to infections (Man et al., 2017). Growing evidence
shows that the nasopharyngeal microbiota composition may
help to predict the severity of respiratory infections (de
Steenhuijsen Piters et al., 2015; Kumpitsch et al., 2019; Man
et al., 2019). However, the role of the upper airway microbiota in
COVID-19 is far from being understood and likely goes beyond
protection from viral entry to include the regulation of the
immune response to the infection (Di Stadio et al., 2020).

The present study was aimed at characterizing the
nasopharyngeal bacterial microbiota (BNM) by 16S rRNA gene
sequencing in a group of 54 asymptomatic/paucisymptomatic
subjects who tested positive for nasopharyngeal swab SARS-
CoV-2 RNA and/or showed positive serology for anti-RBD-IgG
at the enrolment. We investigated whether the composition of
the BNM collected at the enrolment was associated with serum
anti-RBD-IgG development and maintenance after 20–28 weeks.
This study was part of the UNICORN (“UNIversity against
CORoNavirus”) project, which was conducted among the
personnel of the University of Milan (Milani et al., 2020a;
Milani et al., 2020b, Milani et al., 2021).
MATERIALS AND METHODS

The investigated subjects are a subset of the UNICORN study.
The enrolment criteria and procedures were previously described
(Milani et al., 2021). Briefly, all the participants in the study were
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volunteers working at the University of Milan. In this specific
study, antibiotic consumption up to 1 month before the
enrolment was considered an exclusion criterion. Other
excluding criteria were fever, any symptoms of flu-like
infections or dyspnea at the time of the recruitment or during
the preceding 14 days, prolonged and close contact with any
subjects positive for SARS-CoV-2, or symptoms suggestive of
infection during the previous 14 days. The study was approved
by the ethics committee of the University of Milan (approval
number 17/20; approval date March 6, 2020; amendment date
November 17, 2020) and conducted following the Declaration of
Helsinki. All participants signed an informed consent form.

This investigation includes 54 subjects selected among those
who tested positive for either SARS-CoV-2 RNA nasopharyngeal
swab or serum anti-RBD IgG antibodies in the UNICORN study
population. The present study includes the subjects who donated
the nasal swab within 3 months from the beginning of the
pandemic in Italy (during the first wave of SARS-CoV-2, from
March to June 2020) and whose DNA yield and quality were
acceptable to perform the 16S sequencing (yield > 100 ng; purity
260/280 ratio > 1.8; 260/230 ratio 1.8–2.1).

Nasopharyngeal Sample Collection and
SARS-CoV-2 RNA Detection
Nasopharyngeal swabs were collected from each participant, viral
RNA was extracted, and SARS-CoV-2 RNA was detected as
previously detailed (Milani et al., 2021). Briefly, RNA was isolated
from swabs by using the QIAamp Viral RNA Mini Kit (Qiagen,
Hilden, Germany), according to the manufacturer’s instructions.
SARS-CoV-2 RNA detection was performed by using the multiplex
real-time quantitative PCR test TaqPath COVID-19 CE-IVD RT-
PCR Kit, Thermo Fisher Scientific (Waltham, MA, USA) following
the manufacturer’s instructions. In each extracted sample, 10 µl of
internal control RNA (i.e., MS2 Phage) and an RNA carrier were
added before being stored at −80°C. In the PCR, specific probes
were annealed to three specific SARS-CoV-2 sequences: 1) ORF1ab
with reporter dye FAM; 2) N protein (nucleocapsid) with reporter
dye VIC; and 3) S protein with reporter dye ABY. The MS2 internal
control-specific probe (labeled with the JUN dye) was included to
verify the efficacy of the sample preparation. After RNA was reverse
transcribed into cDNA, samples were amplified using the
QuantStudio 12K Flex Real-Time PCR Instruments (Thermo
Fisher). The data analysis was performed using the “Design and
Analysis Software” (V.2.3.3, Thermo Fisher) setting “Automatic
Threshold.” The reaction was considered only if the MS2 cycle
threshold (Ct) ≤38. If any two of the three SARS-CoV-2 genes were
positive (Ct ≤38), the sample was classified as positive; if only one of
the assays was positive, the test was repeated. If after repetition the
sample tested positive again, the sample was classified as positive for
SARS-CoV-2 RNA. If all three of the assays were negative (Ct =
undetermined), the subject was classified as negative.

16S rRNA Gene Sequencing
DNA from nasopharyngeal swabs was extracted by using
QIAamp® UCP Pathogen Mini (Qiagen, Hilden, Germany)
following the manufacturer’s guidelines. The extracted DNA
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was stored at −20°C and later shipped to the sequencing service
facility Personal Genomics Srl (Verona, Italy) for qualitative and
quantitative checks, PCR amplification, and second-generation
sequencing analysis. Four extraction- and PCR-negative controls
were included in the procedure, but library preparation for these
control samples failed. Libraries were obtained by following the
Illumina 16S Metagenomic Sequencing Library Preparation
(Illumina, San Diego, CA, USA). The bacterial microbiome
was investigated by amplicon sequencing analysis of the 16S
rRNA gene hypervariable regions V3–V4, amplified with the
following oligonucleotides: Pro341F (5′-CCTACGGGNB
GCASCAG-3′) and Pro805R (5′-GACTACNVGGGTATCT
AATCC-3′). Sequencing was performed with the Illumina
MiSeq platform (Illumina) by using a paired-end library of
300-bp insert size.

Upstream Analyses and Operational
Taxonomic Unit Clustering
Raw read quality and statistics were checked using FastQC
v0.11.2 and then imported into QIIME2 v2020.6 (Bolyen et al.,
2019) software for the following analysis. Primer sequences were
removed from each read with cutadapt plugin using the trim-
paired method to improve database read matching. The trimmed
files were then joined using Vsearch’s merge_pairs function with
a minimum overlap length of forward and reverse reads of 80 bp,
to cover the 16S V3–V4 region (Rognes et al., 2016). Then, joined
reads underwent a quality filtering process to exclude from
further analysis those reads with a quality value less than a
PHRED score of 20 on a base-slide window of 3 nucleotides. The
retained joined reads were then grouped into high-resolution
amplicon sequence variants (ASVs) using the Deblur denoiser
plugin with an arbitrary minimum length of 400 bp to be
retained (Amir et al., 2017). Taxonomic assignment was done
through the skylearn-classifier against the SILVA v132_99_16S
database, which had been modified to contain only the V3–V4
16S fragments to improve read matching. Mafft-fast-tree method
and default setting suggested in the QIIME2 pipeline were
applied to align the sequences and to generate rooted and
unrooted trees for phylogenetic analysis.

Downstream Analysis
Downstream analyses were carried out using QIIME2 v2020.62
analyzing the above-described ASV or feature table. Taxonomic
values within each sample and group were assigned to each ASV
fromthephylumto thegenus level.ASVs that failedgenusattribution
were tagged as “Unassigned” followed by the specific family label.
Beforediversityanalysis, all sampleswererarefied to10,000sequences
withaseedof10 inorder toavoid the influenceofdifferent sequencing
depths,asthisnumberofsequenceswastheminimumidentifiedinthe
ASVs table.a-Diversity richness, evenness, and genetic distancewere
calculated using observed ASVs, Shannon, and Faith’s phylogenetic
diversity (Faith’s PD) indices.

Blood Collection and Serum
Anti-RBD-IgG Detection
Blood samples were collected in ethylenediamine tetra-acetic
acid (EDTA) tubes and processed within 2 h of the phlebotomy.
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The detection of specific anti-RBD-IgG antibodies was
performed by an ELISA approach that was previously
described (Mazzini et al., 2021; Milani et al., 2021). Briefly, for
the detection of anti-RBD IgG, ELISA plates were coated with
purified recombinant spike-RBD HEK-derived protein (Sino
Biological, Beijing, China). Serum samples were heat-
inactivated at 56°C for 1 h and diluted at 1:100 in Tris-
buffered saline (TBS)–0.05% Tween 20 5%. Each serum
dilution measuring 100 µl was added to the coated plates with
specific antibodies and incubated for 1 h at 37°C. Then, 100 µl/
well of Goat anti-Human IgG-Fc horseradish peroxidase (HRP)-
conjugated antibody (dilution 1:100,000; Bethyl Laboratories,
Montgomery, TX, USA) was added. After incubation at 37°C
for 30 min, plates were washed and 100 µl/well of 3,3′,5,5′-
tetramethylbenzidine substrate (Bethyl Laboratories) was added
in the dark at room temperature for 20 min. After stopping the
reaction with 100 µl of ELISA stop solution (Bethyl
Laboratories), plates were read at 450 nm, with a cutoff value
established as three times the average optical density (OD) values
from blank wells (background—no addition of analyte).
Borderline samples were defined where one replicate was
under the cutoff and the other was above. Sensitivity was
reported to be 85.7% and specificity 98.1%.

Statistical Analysis
Descriptive statistics were performed on all variables.
Quantitative data were expressed as mean ± SD or as median
[first quartile–third quartile] if not normally distributed.
Categorical data were presented as frequencies and percentages.
Continuous variables were tested for normality and linearity.
Factor analysis was applied to reduce a large dimension of
microbiome data to a smaller number of latent independent
factors to predict microbiome composition at the genus level
(Supplementary Figure S1). A set of 47 genera, excluding a priori
two genera (i.e., “:” and “uncultured”), were selected because they
did not provide any interpretable results. Next, the correlation
matrix of the log-transformed variables was analyzed. Since
Sphingomonas and Streptococcus genera did not correlate (p-
value >0.05) with any other genera and correlation coefficients
were less than |0.25|, they were not included in the factor analysis.
Whether the correlation matrix of the log-transformed relative
abundances of 45 genera was factorable was evaluated by visual
inspection of the matrix as well as statistical procedures, including
Bartlett’s test of sphericity, overall [Kaiser–Meyer–Olkin
(KMO)], and individual measures of sampling adequacy
(Table 1). An overall KMO ≤ 0.50 for the factor analysis and
genera with a measure of sampling adequacy <0.30 (Rajalahti and
Kvalheim, 2011) were considered unacceptable. Thus, 20 genera
were excluded, and the method assumption on the correlation
matrix was verified again considering the remaining 25 genera.
The new correlation matrix was factorable, but six genera
(Staphylococcus, Campylobacter, Clostridium senso stricto 10,
Moraxella, Escherichia-Shigella, and Corynebacterium 1) were
excluded because of their low communality; i.e., they explained
less than 15% of variance each. In the last correlation matrix, all
the assumptions were satisfied, and factor analysis was applied to
obtain the microbiome patterns.
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Exploratory principal component factor analysis was performed
on the correlation matrix of nineteen selected genera to identify a
smaller set of uncorrelated underlying factors. The number of
factors to be included in the analysis was chosen considering the
following criteria: factor eigenvalues > 1, scree-plot construction,
and factor interpretability (Härdle and Simar, 2012). A varimax
rotation to the factor-loading matrix was applied to obtain a
simpler loadings structure and improve the interpretation.
Genera with an absolute rotated factor loading ≥ 0.63 on a given
factor were used to name the factor and are indicated as “dominant
genera” hereafter (Gudgeon et al., 1994). Factor scores, calculated
for each subject and each pattern, indicated how consistent was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 411
each participant’s microbiome with the identified pattern. To
confirm both reproducibility and stability of the identified
independent factors, additional exploratory factor analyses were
carried out to derive factor scores from all genera (n = 45) and 25
genera with KMO ≥ 0.30. Given the reassuring and consistent
results from this check, all the subsequent analyses on the factor
scores derived from the subset of 19 genera were carried out. To
assess the reliability of microbiome patterns and internal
consistency of genera that load more than |0.40| on any factor,
Cronbach’s coefficient alpha for each factor and coefficient alpha
when the item was deleted were calculated. Next, two different
outcomes were focused on. First, whether the microbiome
TABLE 1 | Factorability of the correlation matrix of the log-transformed genera: Bartlett’s test of sphericity and measures of sampling adequacy.

from correlation matrix N=45 from correlation matrix
N=25

from correlation matrix
N=19

Bartlett's test of sphericity: p-value <0.0001 p-value <0.0001 p-value <0.0001

Kaiser-Meyer-Olkin statistic - Overall measure of sampling
adequacy:

0.36 0.69 0.70

Individual measures of sampling adequacy:
< 0.30 Paracoccus, Mesorhizobium, Neisseria,

Lawsonella, Citrobacter, Ralstonia,
Carnobacterium, Dolosigranulum,
Micrococcus, Peptoniphilus, Anaerococcus,
Acinetobacter, Finegoldia, Geobacillus,
Enhydrobacter, Deinococcus, Serratia,
Labrys, Gemella, Thermosinus

– –

0.30 - 0.40 Afipia, Staphylococcus, Escherichia
Shigella, Caldicellulosiruptor, Vibriomonas,
Corynebacterium 1, Sediminbacterium

Staphylococcus –

0.40 - 0.50 Thermus, Clostridium senso stricto 10,
Cutibacterium, Bacillus, Tepidiphilus,
Bradyrhizobium, Moraxella, Campylobacter

Afipia, Vibriomonas,
Campylobacter

Afipia, Vibriomonas

0.50 - 0.60 Thermoanaerobacter, Pseudomonas,
Aeromonas, Enterococcus

Bradyrhizobium,
Sediminbacterium,
Pseudomonas

Bradyrhizobium,
Pseudomonas,
Sediminbacterium

0.60 - 0.70 Gulbenkiania, Thermoanaerobacterium,
Tumebacillus, Fervidobacterium,
Comamonas

Thermus,
Thermoanaerobacterium,
Caldicellulosiruptor,
Clostridium senso stricto
10, Enterococcus

Thermus,
Thermoanaerobacterium,
Caldicellulosiruptor,
Enterococcus

0.70 - 0.80 Burkholderia Caballeronia Parabulkholderia Cutibacterium,
Escherichia Shigella,
Tepidiphilus, Moraxella,
Thermoanaerobacter,
Gulbenkiania,
Tumebacillus,
Aeromonas,
Corynebacterium 1

Thermoanaerobacter,
Tepidiphilus,
Gulbenkiania,
Tumebacillus

0.80 - 0.90 - Comamonas, Bacillus,
Fervidobacterium,
Burkholderia Caballeronia
Parabulkholderia

Aeromonas,
Enterococcus, Bacillus,
Thermosinus,
Thermoanaerobacter,
Comamonas,
Gulbenkiania,
Burkholderia Caballeronia
Parabulkholderia

≥ 0.90 - - -
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influenced the probability of developing IgG antibodies was
verified at both the baseline (i.e., enrolment T1) and the follow-
up (T2). Second, whether the microbiome composition modified
the probability to maintain anti-RBD IgG antibodies at the T2 (i.e.,
20–28 weeks after enrolment) in subjects with IgG+ at the T1
was investigated.

Multiple logistic regression models were applied to estimate
the odds ratios (ORs), and their 95% CI for each microbiome
pattern was estimated with factor analysis, a-diversity indices,
and relative abundance for each taxon at the phylum and genus
levels. One model was fitted for each microbiome pattern. All
multivariable models were adjusted for age, gender, smoking
habit (yes, no, and former), lifestyle (active and sedentary), and
the month of enrolment. Due to the high number of
comparisons, multiple comparison correction methods based
on the Benjamini–Hochberg false discovery rate (FDR) were
applied to calculate the FDR p-value. In the second outcome, the
models were adjusted also for SARS-CoV-2 RNA detection at the
T1 (positive and negative).

To improve the interpretability of microbiome patterns
significantly associated with anti-RBD IgG measured at the T2,
a score adding the relative abundance of the overall four
dominant genera (i.e., Enterococcus, Pseudomonas, Bacillus,
and Burkholderia Caballeronia Paraburkholderia) was created
in the so-called Factor1. A receiver operating characteristic
(ROC) curve was generated to evaluate the diagnostic ability of
the microbiome score to distinguish between participants
maintaining or non-maintaining IgG at T2. The optimum
threshold was selected by Youden’s index as the one that
maximized sensitivity (SE) + specificity (SP) − 1. The area
under the ROC curve (AUC) and the corresponding 95% CI,
SE, SP, and threshold were reported. Statistical analyses and
graphs were performed with SAS software (version 9.4; SAS
Institute Inc., Cary, NC, USA) and R software (version 4.1.2;
Foundation for Statistical Computing, Vienna, Austria).
RESULTS

Study Population
The study population was composed of 54 asymptomatic/
paucisymptomatic subjects who tested posit ive for
nasopharyngeal swab SARS-CoV-2 RNA and/or showed anti-
RBD-IgG antibodies for SARS-CoV-2 at the enrolment (defined
as T1). At the T1, 19 out of 54 subjects presented positive
nasopharyngeal swab for SARS-CoV-2, while 35 tested positive
only for serology of anti-RBD-IgG antibodies. Thus, 6 subjects
were positive for both the nasopharyngeal swab and serology at
the T1 (Supplementary Table S1). At the T2, occurring
approximately 20–28 weeks after the T1, 32 out of 41
individuals with positive serology at the T1 (i.e., 35 IgG-
positive individuals + 6 swab- and IgG-positive individuals)
maintained positive serology. All the participants in the study
were employed at the University of Milan, Italy, at the time of the
enrollment. Subjects who tested positive for SARS-CoV-2 RNA
nasopharyngeal swab were completely asymptomatic at
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 512
enrolment, while subjects who tested positive for serum anti-
RBD IgG antibodies reported completely no symptoms (40.7%),
or mild-to-moderate symptoms (51.9% at least one episode of
upper airway infections; 20.4% with at least one episode of lower
airway infections; 44.4% with at least one episode of fever), which
occurred from October 2019 to 14 days before the enrolment
(none of them with a previous certified COVID-19 diagnosis).
The characteristics of the study population are reported
in Table 2.

Nasopharyngeal Bacterial Microbiota
Composition and a-Diversity
Considering the entire study population, the BNM was
dominated by Actinobacteria (relative abundance mean 30.6%
(SD ± 24.36%), Firmicutes (36.98% ± 17.6%), and Proteobacteria
(30.56% ± 21.28%) phyla (Supplementary Table S2). Of the 47
genera detected, the most represented in the study population
were Corynebacterium (21.95% ± 24.4%), Enterococcus (9.78% ±
7.51%), Staphylococcus (8.15% ± 13.44%), Dolosigranulum
(8 .14% ± 1.65%) , Pseudomonas (9 .23% ± 8.91%) ,
Cutibacterium (6% ± 6.52%), Burkholderia Caballeronia
Paraburkholderia (5.24% ± 4.66%), Bacillus (4.19% ± 3.67%),
Moraxella (3.53% ± 13.94%), and Gulbenkiania (3.35% ± 3.07%)
(Figure 1; Supplementary Table S3). BNM compositional
diversity (a-diversity) was calculated for each sample in the
study. The richness and phylogenetic diversity evaluated in terms
of ASVs showed a mean of 36.85 ( ± 8.15), while the Faith_PD
index mean was 3.02 ( ± 0.58). Shannon index, which combines
estimates of richness and evenness within the samples, had a
mean of 3.42 ( ± 0.90). After univariate analysis, among the 47
genera identified, only Vibrionimonas median relative
abundance was different in the 19 subjects who were positive
for SARS-CoV-2 RNA, compared to the 35 who were negative
(SARS-CoV-2 RNA positive, 0.44%; SARS-CoV-2 RNA negative,
0.04%, p-value = 0.02), and no differences were observed for a-
diversity indices (Supplementary Table S4).

In addition, we performed 16S sequencing in a group of 18
healthy negative control subjects who tested negative for both
SARS-CoV-2 RNA and anti-RBD SARS-CoV-2 IgG at the T1,
were negative for anti-RBD SARS-CoV-2 IgG at T2, and
reported no symptoms attributable to SARS-CoV-2 infection.
However, as not all asymptomatic subjects with positive SARS-
CoV-2 RNA develop IgG (Milani et al., 2020a), we considered
that attributing the negative control status (i.e., assuming no
contact with the virus) on the basis of the result of the IgG
analysis was not adequate. We thus decided to exclude the
“negative control group” from the factor analysis. Nonetheless,
a descriptive analysis is reported in Supplementary Figure S2.

Exploratory Factor Analysis
The correlation matrix of the 19 selected genera (Figure 2;
Supplementary Table S5) was suitable for factor analysis.
Table 1 reports the results of statistical procedures for
checking matrix factorability. Bartlett’s test of sphericity was
significant (p < 0.001). The overall measure of sampling
adequacy was equal to 0.70, indicating that the sample size was
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sufficient, as compared to the number of genera under
consideration. In addition, the individual measures of sampling
adequacy were satisfactory. Table 3 shows the factor-loading
matrix for the three retained microbiome patterns, the
corresponding communality estimates, and the proportion of
explained variance. The retained factor explained 72.34% of the
total variance in the original dataset. The first factor, named
Factor1, had the highest contribution from Enterococcus,
Pseudomonas, Bacillus, and Burkholderia Caballeronia
Paraburkholderia. The second factor, named Factor2, was
characterized by the greatest positive loadings on Comamonas,
Aeromonas, Caldicellulosiruptor, and Gulbenkiania and by the
highest negat ive loadings on Thermoanaerobacter ,
Thermoanaerobacterium, and Tumebacillus. The third pattern,
named Factor3, had the highest factor loadings on
Bradyrhizobium, Vibrionimonas, and Sediminibacterium. All
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 613
the examined genera had at least one-factor loading greater
than |0.40|, thus proving an important role of all genera
included in this analysis.

Effects of Nasopharyngeal Bacterial
Microbiota Composition of Positive
Serology Development/Maintenance
We investigated the effects of the bacterial community
composition and a-diversity on the probability of developing
or maintaining serum anti-RBD-IgG antibodies during the entire
period of the study. No associations were observed either
between the bacterial community composition or between the
a-diversity indices and the probability of developing anti-RBD-
IgG antibodies in the 19 participants with a positive nasal swab
for SARS-CoV-2 RNA at the T1 (Table 4 and Supplementary
Table S6). As a sensitivity analysis, we excluded the three
subjects who were negative for anti-RBD SARS-CoV-2 IgG at
T1 and missing at T2. Results were comparable to those obtained
in the whole group of subjects (Supplementary Table S7). The
calculated ORs and 95% CIs of the effects of the BNM
composition on maintaining a positive serology at T2 in the 41
participants with positive IgG at the T1 and with known
serological anti-RBD-IgG status at the T2 are reported in
Table 5. Shannon’s entropy a-diversity showed a positive
association with serum anti-RBD-IgG antibody maintenance
(OR = 5.75, 95% CI: 1.50–22.01, p = 0.0107). Factor1 pattern
was positively associated with the maintenance of anti-RBD-IgG
antibodies (OR = 2.64, 95% CI: 1.06–6.56, p = 0.0370). To
improve the interpretability of the Factor1 pattern, we created
a score by adding the relative abundance of the four Factor1
dominant genera (i.e., Enterococcus, Pseudomonas, Bacillus, and
Burkholderia Caballeronia Paraburkholderia). This score was
associated with a higher probability of maintaining positive
IgG at the T2 (OR = 1.09, 95% CI: 1.01–1.17, p = 0.0271).
Thus, the probability of maintaining anti-RBD-IgG antibodies
increases by 9% for each increment of 1% in the sum of the
relative abundances of the four dominant genera. When we
considered single genera, only Enterococcus showed a positive
significant association (OR = 1.21, 95% CI: 1.0–1.42, p = 0.0243)
(Supplementary Table S8). A ROC curve was fitted to examine
the prognostic ability of this score in assessing the probability to
maintain anti-RBD-IgG at the T2 (Figure 3). The optimal
threshold score was 23.3% (p = 0.0084), which yielded
maximum discrimination between individuals maintaining or
not the positive IgG (sensitivity 0.63, specificity 0.78).
DISCUSSION

Nasal cavities represent the principal entry and infection site of
SARS-CoV-2, as most of the inhaled air enters the body through
the nose and the nasal epithelium expresses high levels of the
ACE2, which act as the coronavirus receptor (Hou et al., 2020).
Nasopharyngeal microbiota has a critical role in protecting the
host from both viral and pathogenic bacterial infections, thus
cooperating with the nasal immune response (Salzano et al.,
TABLE 2 | Characteristics of the study participants.

All subjects N = 54

Age, years mean ± SD 45 ± 12.0
Gender, N (%)
Male 28 (51.9)
Female 26 (48.1)

BMI, kg/m2, mean ± SD 23.8 ± 4.1
Smoking, N (%)
Never 38 (70.3)
Former 9 (16.7)
Current 7 (13.0)

Education, N (%)
Junior high school 1 (1.9)
High school 10 (18.5)
University 10 (18.5)
Above university 33 (61.1)

Means of transport to and from work, N (%)
Private means of transport 28 (53.9)
Public means of transport 17 (32.7)
Both 7 (13.4)

Time to and from work, N (%)
<1 h 43 (82.7)
1–2 h 9 (17.3)

Lifestyle, N (%)
Sedentary 14 (26.0)
Active 40 (74.0)

Travels (from October 2019), N (%)
Europe (at least one) 21 (38.9)
America (at least one) 6 (11.5)
Oceania (at least one) 0 (0.0)
Asia (at least one) 3 (5.8)
Africa (at least one) 1 (1.9)

Flu vaccine, N (%)
Yes 10 (18.5)
From October 2019
Upper airway infections, N (%)

Yes 28 (51.9)
Lower airway infections, N (%)

Yes 11 (20.4)
Fever, N (%)

Yes 24 (44.4)
At least one of symptoms, N (%)

Yes 32 (59.3)
Continuous variables are expressed as mean ± SD; discrete variables are expressed as
counts (%).
BMI, body mass index.
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2018). In particular, the nasopharyngeal microbiota influences
mucosal homeostasis (Di Stadio et al., 2020) and is involved in
the development of the mucosa-associated lymphoid tissue and
in the modulation of adaptive responses such as the activation of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 714
both cell-mediated and humoral immune responses (Brown
et al., 2013; De Rudder et al., 2020; Dimitri-Pinheiro et al., 2020).

We characterized the BNM composition in a group of
asymptomatic/paucisymptomatic individuals who tested
positive for nasopharyngeal swab SARS-CoV-2 RNA and/or
serum anti-RBD SARS-CoV-2 IgG at the enrolment. In terms
of taxa, the BNM composition was similar to the one reported for
healthy (not infected) populations of adult subjects (Man et al.,
2017; Bomar et al., 2018; Mariani et al., 2018; Budden et al.,
2019). Our results are supported by other previous studies
reporting that patients with mild or asymptomatic COVID-19
were characterized by a bNM similar to that of negative healthy
controls, suggesting that in asymptomatic/paucisymptomatic
subjects who tested positive for SARS-CoV-2 RNA, the BNM
composition apparently is not affected by the viral infection (De
Maio et al., 2020; Rosas-Salazar et al., 2021; Shilts et al., 2022).
The link between BNM composition and SARS-CoV-2 RNA has
been investigated by a growing number of case–control studies
that specifically focused on SARS-CoV-2-positive patients, either
symptomatic or paucisymptomatic, compared to not infected
healthy controls. De Maio and colleagues investigated the BNM
by 16S rDNA sequencing in a group of 40 patients with mild
COVID-19 disease, and no differences were observed in terms of
neither the bacterial composition nor a-diversity between those
who tested positive compared to those who were tested negative
(De Maio et al., 2020). On the contrary, Nardelli et al. reported a
significant reduction of Proteobacteria and Fusobacteria relative
abundances in symptomatic patients, compared to healthy
controls (Nardelli et al., 2021). The study conducted by Rueca
and colleagues reported that Shannon’s a-diversity index was
FIGURE 1 | Descriptive nasopharyngeal bacterial microbiota (BNM) genus-profile composition in the two groups SARS-CoV-2 RNA negative (i.e., negative, N = 35)
and SARS-CoV-2 RNA positive (i.e., positive, N = 19). Here the top 10 most abundant genera are represented. Figure generated by R software (version 4.1.2
https://www.r-project.org/)
FIGURE 2 | Correlation matrix of nineteen genera used in the factor analysis
in the study population (N = 54). Figure generated by R software (version
4.1.2 https://www.r-project.org/).
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reduced only in patients with a severe condition requiring
intensive care compared to controls and paucisymptomatic
patients, thus partially supporting our results with
paucisymptomatic subjects, similar to healthy controls (Rueca
et al., 2021). In a recent study conducted on 103 adult subjects,
ranging from asymptomatic not infective healthy subjects to very
severe SARS-CoV-2-positive patients, BNM composition
changes were associated with the severity of the disease, and in
particular, Corynebacterium consistently decreased as COVID-
19 severity increased (Shilts et al., 2022). In a metagenomic
analysis conducted on 50 patients under investigation for
COVID-19 disease, Mostafa and colleagues did not observe
any significant differences at the genus and family levels but
identified an a-diversity decrease in COVID-19-confirmed
symptomatic patients (Mostafa et al., 2020). The partial
inconsistency of these results might be due to different
limitations, such as the limited number of studies in the field
together with the small samples included in the analyses.
Moreover, some confounders might not have been considered,
such as the different pharmacological treatments and the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 815
possibility that those who were selected as negative healthy
controls might have actually encountered the virus before
the enrolment.

We also investigated whether BNM composition was
associated with the development and/or the maintenance of
serum anti-RBD-IgG antibodies. The observed positive
association between a-diversity and anti-RBD-IgG antibody
maintenance at the T2 suggests that the more diverse the
microbiota composition, the more effective the cross-talk with
the local immune component, favoring the activation of the
systemic adaptive response. Indeed, lower a-diversity and
richness were reported in patients with COVID-19 compared
to subjects who tested negative for SARS-CoV-2 RNA in the
study of Moustafa and colleagues (Mostafa et al., 2020). Since
this field of research is still in its infancy, functional studies are
needed to clarify the mechanisms underlying our observations.

We further applied factor analysis to group all the
microbiome data information into a smaller number of
independent factors able to predict the microbiome
composition at the genus level by considering the relative
TABLE 3 | Factor-loading matrix*, commonalities (COMM), and explained variance for three microbiome patterns identified by factor analysis.

Genera Factor1 Factor2 Factor3 COMM

Aeromonas 0.39 0.63 – 0.55
Afipia 0.16 – 0.42 0.20
Bacillus 0.96 −0.11 0.10 0.94
Bradyrhizobium 0.14 – 0.91 0.84
Burkholderia Caballeronia Paraburkholderia 0.83 0.48 0.10 0.93
Caldicellulosiruptor 0.35 0.63 – 0.54
Comamonas 0.34 0.86 – 0.85
Cutibacterium 0.53 – 0.22 0.33
Enterococcus 0.97 0.17 0.11 0.98
Fervidobacterium 0.52 0.46 – 0.48
Gulbenkiania 0.55 0.66 0.17 0.76
Pseudomonas 0.74 0.13 – 0.56
Sediminibacterium – – 0.80 0.66
Tepidiphilus 0.56 – – 0.32
Thermoanaerobacter 0.22 −0.86 – 0.80
Thermoanaerobacterium – −0.66 – 0.45
Thermus 0.41 0.38 – 0.31
Tumebacillus 0.17 −0.90 – 0.84
Vibrionimonas – 0.13 0.99 0.99
Proportion of explained variance (%) 45.23 21.40 17.06
Cumulative explained variance (%) 45.23 66.63 83.69
J
uly 2022 | Volume 12 | Article
Loadings greater or equal to 0.63 defined dominant genera for each factor and were shown in bold typeface. Loadings smaller than |0.10| were suppressed.
*Estimated from a principal component factor analysis performed on 19 genera. The magnitude of each loading measures the importance of the corresponding genus to the factor.
TABLE 4 | Odds ratios for the estimated contribution of each a-diversity index and microbiome pattern to the probability of developing IgG in the entire period of
the study.

OR 95% CI p-Value R2

a-Diversity indices Faith pd 0.65 0.10 4.03 0.6413 0.26
Observed features 1.02 0.89 1.16 0.7926 0.26
Shannon entropy 0.78 0.24 2.54 0.6780 0.26

Microbiome pattern Factor1 0.69 0.16 2.92 0.6168 0.26
Factor2 0.05 0.001 9.55 0.2633 0.32
Factor3 0.85 0.21 3.53 0.8276 0.26
88
The analysis was performed on 19 participants with positive SARS-CoV-2 RNA at the T1, by a multivariable logistic model adjusted for age, gender, smoking habit, and lifestyle.
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abundances. The factorial analysis allowed us to identify three
different signatures of the BNM. In particular, Factor1 was
mainly characterized by Bacillus, Burkholderia, Enterococcus,
and Pseudomonas, which include several opportunistic strains
that may turn pathogenic and cause infections (Kumpitsch et al.,
2019). Factor2 was mainly characterized by both opportunistic
(such as Aeromonas) and environmental microbiota genera
(such as Caldicellulosibacterium and Comamonas). Factor3
included different genera representative of environmental
microbiota (Adams et al., 2015; Lai et al., 2017; Duan et al.,
2019). In particular, this factor had the highest loading also on
Vibrionimonas, which was the only genus that was found to be
different between SARS-CoV-2 RNA-positive and RNA-negative
subjects after univariate analysis. However, Factor3 was not
associated either with the development or the maintenance of
RBD-IgG antibodies.

Following factor analysis, we observed that the higher relative
abundance of the Factor1 dominant genera was positively
associated with anti-RBD-IgG maintenance. This evidence
suggests that Factor1 components might influence the
activation of the immune response, thus promoting the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 916
adaptive immunity against new unknown pathogens, such as
the SARS-CoV-2 virus. Indeed, several species belonging to the
genus Bacillus, such as Bacillus subtilis, are known stimulators of
the immune system, and their colonization promotes the
increase of immune cell number in the nasal mucosa,
stimulating the activation of the immune response (Yang et al.,
2018; Li et al., 2019). According to this hypothesis, the nasal
microbiota composition was reported to influence the local host
immune response and the severity of symptoms after respiratory
syncytial virus bronchiolitis infection (Lynch et al., 2017;
Sonawane et al., 2019; Mansbach et al., 2020; Schippa et al.,
2020). Indeed, nasopharyngeal-associated lymphoid tissue
(NALT), which directly interacts with the nasopharyngeal
microbiota community, is constituted by a large variety and
number of immune cells, including dendritic cells, macrophages,
and lymphocytes (Pabst, 2015). Moreover, the BNM
composition was demonstrated to influence the efficacy of a
live attenuated influenza vaccine, impacting the host’s adaptive
immune response and thus modulating the vaccine’s therapeutic
efficacy (Salk et al., 2016). Thus, occurring shifts in the
composition of the nasal microbiota may result in pro- or anti-
inflammatory patterns with effects not only on the susceptibility
and on the course of infection but also on the modulation of the
local and systemic immune response.

We acknowledge some limitations of the present study. First,
the small number of samples and the presence of potential
confounders that we did not consider may have hindered the
identification of distinct signatures between the different
subgroups. Second, we did not assess anti-SARS-CoV-2 IgA
antibodies, which play an important role in the local mucosal
immunity. However, our study aimed to investigate whether the
BNM composition might influence long-term immunization,
which is related to IgG antibodies. Third, BNM was assessed
during or after the infection; thus, we cannot exclude that we are
observing the effects of the infection rather than a causal
mechanism of antibody maintenance. Moreover, current
guidelines are recommending to include in the airway
microbiome investigations some negative controls as the gold
standard. In particular, the negative sample results meaning
negative from the sampling methods, the extraction process,
and the PCR step should be included. In the present paper, we
included negative controls to exclude any contaminations
resulting from the extraction and the PCR amplification. A
limitation of the study is that we did not include any sampling
control. However, the main results of the paper describe an effect
of Factor1, which includes strains that are not usually considered
TABLE 5 | Odds ratios for the estimated contribution of each a-diversity index and microbiome pattern to the probability of preserving IgG antibodies at follow-up.

OR 95% CI p-Value R2

a-Diversity indices Faith pd 2.28 0.46 11.24 0.3113 0.18
Observed features 1.09 0.97 1.22 0.1565 0.21
Shannon entropy 5.75 1.50 22.01 0.0107 0.43

Microbiome pattern Factor1 2.64 1.06 6.56 0.0370 0.33
Factor2 0.76 0.32 1.83 0.5436 0.15
Factor3 0.58 0.23 1.43 0.2333 0.19
July 2022
 | Volume 12 | Article 88
The analysis was performed on 41 participants with positive IgG at T1, by a multivariable logistic model adjusted for age, gender, smoking habit, lifestyle, microbiome measured in March or
May/June, and SARS-CoV-2 RNA.
FIGURE 3 | Receiver operating characteristic (ROC) curve for microbiome
score for prediction of the presence of IgG at follow-up. The area under the
ROC curve (AUC) and 95% CI values were annotated.
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of environmental origin. Moreover, due to the pandemic context,
each sampling was performed in a very controlled environment,
to avoid also the SARS-CoV-2 cross-contamination of subjects
(e.g., environmental disinfection after each sampling, and FFP3
masks worn by the operator and by the subjects until sampling).
CONCLUSION

In conclusion, BNM is associated with themaintenance of specific
anti-RBD IgG antibodies in asymptomatic/paucisymptomatic
subjects, suggesting that its composition may be linked to the
prompt immune activation, consequently supporting the
development of immunological memory against new pathogens.
To the best of our knowledge, the present study is the first to
investigate the influence of BNM composition on specific IgG
antibodymaintenance. Further studies are required to confirm the
impact of other viral infections and to unveil the mechanisms
underlying the cross-talk between the BNM and the adaptive
immune response.
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Microbiota profiles in pre-
school children with respiratory
infections: Modifications
induced by the oral bacterial
lysate OM-85
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Luca Ruggiero3, Giovanni A. Rossi4 and Nicola Principi5

1Pediatric Clinic, Department of Medicine and Surgery, University of Parma, Parma, Italy, 2Medicine and
Surgery Department, University of Perugia, Perugia, Italy, 3Fondazione Istituti di Ricovero e Cura a
Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Milan, Italy, 4Department of Pediatrics,
Unit of Pediatrics Pulmonology and Respiratory Endoscopy, G. Gaslini University Hospital, Genoa, Italy,
5Professor Emeritus of Pediatrics, Università degli Studi di Milano, Milan, Italy
To describe microbiota profiles considering potential influencing factors in

pre-school children with recurrent respiratory tract infections (rRTIs) and to

evaluate microbiota changes associated with oral bacterial lysate OM-85

treatment, we analyzed gut and nasopharynx (NP) microbiota composition in

patients included in the OM-85-pediatric rRTIs (OMPeR) clinical trial (https://

www.clinicaltrialsregister.eu/ctr-search/trial/2016-002705-19/IT). Relative

percentage abundance was used to describe microbiota profiles in all the

available biological specimens, grouped by age, atopy, and rRTIs both at

inclusion (T0) and at the end of the study, after treatment with OM-85 or

placebo (T1). At T0, Firmicutes and Bacteriodeteswere the predominant genera

in gut and Proteobacteria, Firmicutes, and Actinobacteria were the

predominant genera in NP samples. Gut microbiota relative composition

differed with age (<2 vs. ≥2 years) for Firmicutes, Proteobacteria,

Actinobacteria (phyla) and Bifidobacterium, Ruminococcus, Lachnospiraceae

(genera) (p < 0.05). Moraxella was more enriched in the NP of patients with a

history of up to three RTIs. Intra-group changes in relative percentage

abundance were described only for patients with gut and NP microbiota

analysis available at both T0 and T1 for each study arm. In this preliminary

analysis, the gut microbiota seemedmore stable over the 6-month study in the

OM-85 group, whose mean age was lower, as compared to the placebo group

(p = 0.004). In this latter group, the relative abundance of Bacteroides

decreased significantly in children ≥2 years. Some longitudinal significant

differences in genera relative abundance were also detected in children of ≥2

years for NP Actinobacteria, Haemophilus, and Corynebacterium in the

placebo group only. Due to the small number of patients in the different

sub-populations, we could not identify significant differences in the clinical

outcome and therefore no associations with microbiota changes were

searched. The use of bacterial lysates might play a role in microbiota

rearrangement, but further data and advanced analysis are needed to prove
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this in less heterogeneous populations with higher numbers of samples

considering the multiple influencing factors such as delivery method, age,

environment, diet, antibiotic use, and type of infections to ultimately show any

associations with prevention of rRTIs.
KEYWORDS

children, microbiota, respiratory infection, dysbiosis, bacterial lysates, OM-85
1 Introduction

Respiratory tract infections (RTIs) tend to recur in the pediatric

population and, in the first years of life, are associated with

increased risk of wheezing illness and asthma (Zomer–Kooijker

et al., 2014). The overuse of antibiotics to treat acute RTIs

contributes to the increase in the rate of antimicrobial resistance

and related lack of efficacy as well as to the disruption of the host

microbiota,which is essential for immunehomeostasis. Botheffects

induce a self-perpetuating vicious cycle of infection–

inflammation–reinfection that potentially leads to chronic

respiratory conditions (Dethlefsen et al., 2008). Because of the

above, solutions to address poor respiratory health in young

children should be sought around pathogen exposure,

commensal colonization, and immune training. Based on the

“hygiene hypothesis”, the “farm-dust” effect, and the more recent

concept of “innate immune training” (Ober et al., 2017; Netea et al.,

2020), it has been suggested that the exposure to some

microorganisms or microbial-derived components administered

orally might influence the development and functions of gut and,

secondarily, airway microbiota, mimicking the protective natural

exposure that is needed for a healthy respiratory system (Esposito

et al., 2018; Rossi et al., 2020). Oral bacterial lysates have been

shown to act as immunomodulators able to shape the immune

response to protect children from RTIs and associated wheezing

(Esposito et al., 2018). An interesting hypothesis is that oral

administration of whole bacteria or bacterial component can lead

to a change in the gutmicrobiota composition by colonization and/

or outgrowth of “good” strains. This could influence the

composition of the airway microbiota either indirectly, by the

migration of bacterial components or metabolites to the lungs to

favor the outgrowth of “good” bacteria, or directly via

microaspiration of these from the gastroesophageal tract to the

airways. These may lead to the re–establishment of a health–

promoting microbiota and have some therapeutic effects

(Gollwitzer and Marsland, 2014). As such, an oral respiratory

inactivate pathogenic bacterial lysate (manufacturing code name

OM–85) could exert its effects by creating the conditionswithin the

mucosal microbiome interface for the growth of beneficial bacteria

or for limiting their outgrowth or repletion. This might, in turn,
02
21
have a positive regulatory effect on airway inflammation such as

shown in animal models of viral/bacterial superinfections and

asthma (Karimi et al., 2009). The efficacy and safety of OM–85

was investigated in the OM–85–Pediatric rRTIs (OMPeR) study

(EudraCT: 2016–002705–19), conducted in pre–school children (n

= 288, age 1 to 6 years) with a history of recurrent RTIs (rRTIs)

(Esposito et al., 2019). RTIs were significantly lower among

patients receiving the standard regimen of OM–85 than among

those given placebo (33% vs. 65.1%, p < 0.0001). OM–85 is an oral

extract of bacterial lysates of 21 strains of eight known respiratory

pathogens, Haemophilus influenzae, Streptococcus pneumoniae,

Klebsiella pneumoniae subsp. pneumoniae and subsp. ozaena,

Staphylococcus aureus, Streptococcus pyogenes, Streptococcus

viridans, and Moraxella catarrhalis. The mechanism of action of

OM–85 has been deeply reviewed and the main immunological

effects have been described, nevertheless, the effect of this lysate on

microbiota composition in children with rRTIs remained to be

unraveled (Rossi et al., 2019). Therefore, a description of both gut

andnasopharynx (NP)microbial composition in this population of

children was performed considering common influencing factors

reported in the OMPeR study demographics, e.g., age, atopy, and

number of RTIs and antibiotics. A particular attentionwas given to

age because children <2 years of age represent a window of

opportunity to manipulate the microbiome and, as pointed out

by Thomas et al., after 3 years of life, the gutmicrobiota is relatively

more stable (Thomas et al., 2015). Furthermore, an exploratory

analysis aimed at identifying any sign of possible microbiota

rearrangement associated with the prophylactic use of OM–85

has been conducted. To our knowledge, this is the first study

describing microbiota profiles in children with rRTIs receiving an

oral bacterial lysate.
2 Materials and methods

2.1 Patient population

Children included in the clinical study OMPeR underwent

biological sampling for both the NP and gut microbiome

analysis. OMPeR was a phase IV, randomized, double–blind,
frontiersin.org
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placebo–controlled, single–center trial, which enrolled 288

patients and aimed at assessing the efficacy and safety of the

oral bacterial lysates OM–85 reducing acute RTIs in pre–school

children affected by rRTI defined as at least six acute episodes in

the previous year. The active immunotherapy was administered

as either 3.5 mg of OM–85 once a day for the first 10 days of the

first 3 months of the 6–month study (group A) or once a day for

the first 10 days of the 6–month study (group C). Matching

placebo was administered to keep the double–blind condition

(group B). The randomization 3:3:1 (OM–85, 10 days for 3

months, placebo or OM–85, 10 days for 6 months) was done at

the beginning of the infective season (September/October), and

the three groups were observed for 6 months. Children with

malformations of the cardiovascular system and the respiratory

tract, with chronic lung, kidney, or liver diseases, with primary

or secondary immunodeficiency, and with cancer, malnutrition,

and severe allergic manifestations such as atopic dermatitis and

asthma were excluded. In addition, patients who received

antibiotics and systemic, inhaled, or oral steroids within 4

weeks before enrollment were not included in the clinical trial

and therefore excluded from our microbiome analysis.
2.2 Biological samples collection,
processing, and DNA extraction

Both stools and NP swabs were collected at visit 2 (day −1,

before the randomization) as baseline, and at V5 (month 6, end

of the study) for microbiome essays. Stools were collected by the

parents at home, as immediate freezing of fresh sample at -80°C

was not possible, the specimens were stored at +4°C in anaerobic

atmosphere for a short period (up to 24 h) and then frozen

at −80°C in the microbiology laboratory of University of Milan,

Pediatrics Clinic. In the same laboratory, NP swabs were

obtained. NP samples were collected by trained personnel

using sterile dry cotton–headed swabs (MASTASWAB MD

559, MAST Diagnostica GmbH, Reinfeld, Germany) by five

circular rubbings about 1 cm from the nares. Secretion and

other material were collected from the soft and moving part of

the nose. After sampling, the swabs were immediately placed

back in the collection tube and stored within 24 h at −80°C. The

samples were processed using the kit for DNA isolation MoBio

PowerLyzer, PowerSoil DNA isolation kit (Mobio, Loker Ave

West, Carlsbad, CA, USA) according to the manufacturer

protocol for extraction. A fecal sample of 200 mg was used,

suspended in 200 ml of sterile water. The specimen was shaken

first using the TISSUE LYZER 30–Hz impulses for 10 s for a total

duration of 2 min. The sample was then centrifuged at 13,000g

for 10 min and the supernatant was discharged. The pellet was

transferred into a GLASS BEAD TUBE together with 750 ml of
buffer Bead sol. The sample was warmed up first for 10 min at

65°C, then for 10 min more but at a temperature of 95°C. After

adding 60 ml of C1 buffer, the sample underwent the proper lytic
Frontiers in Cellular and Infection Microbiology 03
22
process by TISSUE LYZER 30–Hz impulses for 5 min + 5 min

short bead–beating time, for a total of 10 min. The DNA

material extractions were followed by a purification step to

avoid that some constituents (e.g., scatols, fecols, and other

aromatic acids) might inhibit the sequencing reactions. The

commercial sequencing platform kit used for library

generation (16S Illumina) included reagents to bind and

remove known inhibitory compounds (Terranova et al., 2018).

The NP swab samples underwent the processing and extraction

process described by the same manufacturer (Mobio, Loker Ave

West, Carlsbad, CA, USA). In our lab, the swabs were placed in

the extraction tube with 750 ml of Bead sol buffer, and the tube

was vortexed for 20 s. The sample could be then temporarily

stored at −20°C until further processing (Depner et al., 2017).

The sample has been transferred into the GLAS BEAD TUBE

with 60 ml of C1 buffer and it underwent the lytic process by

TISSUE LYZER 30 Hz impulses for 5 min + 5 min short bead–

beating time, for a total of 10 min. Following extraction, DNA

was quantified by Qubit® dsDNAHS Assay Kits (Thermo Fisher

Scientific Inc., Massachusetts, USA).
2.3 DNA sequencing

In our laboratory, we followed the 16S Illumina MiSeq system

protocol (https://support.illumina.com/documents/documentation/

chemistry_documentation/16s/16s–metagenomic–library–prep–

guide–15044223–b.pdf). Briefly, V3–V4hypervariable regions of the

16S rRNA gene were amplified with 16S Amplicon PCR Forward

Primer = 5 ’ TCGTCGGCAGCGTCAGATGTGTATAA

GAGACAGCCTACGGG–NGGCWGCAG and 16S Amplicon

PCR Reverse Primer = 5’ GTCTCGTGGGCTCGGA–GATGTG

TATAAGAGACAGGACTACHVGGGTATCTAATCC. Libraries

were generated by dual indexing strategy using the Nextera XT

v2 Index Kit (Illumina, California, USA). PCR products were

cleaned up using Agencourt AMPure XP beads (Beckman

Coulter Genomics, Minnesota, USA) and DNA quantification

and quality were assessed by Qubit® dsDNA HS Assay Kits and

Bioanalyzer (Agilent Technology, California, USA), respectively.

Equimolar DNA amounts from each sample library were pooled

together. Finally, the pool was sequenced on theMiSeq sequencing

instrument using a 2 × 250 cycle MiSeq Reagent Kit v2 (Illumina,

California, USA). Reagent blank samples were subjected to all the

steps of library preparation, fromDNA extraction to amplification,

to avoid contamination bias. Bioanalyzer assay showed no

amplification product in the blank samples. During the DNA

processing of the raw sequence, data obtained contained

sequences corresponding to sequencing adaptors and primers

used for amplification, as the first step, these segments were

trimmed away. Sequence data with a minimum length of 250

base pairs were processed and analyzed. Quality–control filters

were used to identify such poor–quality reads and purge these from

the data. Only reads with an average quality score of 30 or above
frontiersin.org
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(which represents an expected error rate of fewer than 1 base for

every 1,000 bases) were selected for further analysis. Samples were

rarefied to a read depth of 6,700 to ensure that a reasonable number

of sequence reads have been obtained for each Operational

Taxonomic Units (OTU). We applied the following standards:

sequences with >97% of nucleotide identity were assumed to

correspond to one or few correlated microorganisms (e.g.,

species) while a lower level of identity of >95% was used to

identify sequence clusters of the same genus. These clusters

(OTU) were classified by phylogeny using the classifier from the

Greengenes database (https://greengenes.secondgenome.com/).
2.4 Microbiome library

Thefirst step in ourmicrobiomeanalysiswas the elimination of

data background noise. We used a 10% cutoff. Bacterial taxa that

were present in a few specimens of the same group (<10%) or that

were present in very low concentration once the specimens are put

all together (i.e., for very few reads, e.g., <0.005%of reads inall)were

discharged. The second step was to create the library for each

specimen at T0 and T1, to make intra–group comparisons at

different time points. For fecal samples, we considered the taxa

being represented by at least 2% of all reads per sample. For the NP

samples, we kept the taxa being represented by at least 1% of all

reads per sample (Sarangi et al., 2019). QIIME Software was used

for the initial analysis (Caporaso et al., 2010).
2.5 Data analysis

For this exploratory and descriptive analysis, we chose to

present data as the relative abundance of major taxa. Descriptive

statistics were reported in terms of means with standard

deviations (SD) for quantitative data and in terms of absolute

frequencies or percentages for qualitative data. Non–parametric

Wilcoxon’s signed–rank test for paired quantitative data was

used to compare intra–group data, i.e., between two different

time points: at visit 2 (day −1, before the randomization) as

baseline, and at visit 5 (month 6) at the end of the study.

Unpaired Mann–Whitney U test was used to compare

quantitative data in two different groups, i.e., age groups. For

comparing mean age among the three treatment groups (i.e.,

OM–85/placebo, OM–85, placebo only), Kruskal–Wallis test

followed by Bonferroni post–hoc test was used. For comparing

qualitative data, Chi–square test or Fisher’s exact test in the case

of expected frequencies < 5 was used.
3 Results

Out of the 288 children recruited in the OMPeR study, we

could only collect and analyze 144 stool and 158 NP swabs
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samples at baseline (T0), approximately in half of the whole

population. At the end of the study (T1), microbiota collection

and analysis were performed in stool samples from 98 out of 144

patients and in 137 NP samples out of 158 patients who

provided biological specimens at T0. Samples available at both

T0 and T1 for each patient were used for longitudinal studies on

gut (n = 98) and NP microbiota (n = 137) (Figure 1).
3.1 Age distribution in the study
population and in the microbiota study
subgroups at T0

Because of the strong influence on the microbiota

composition, the age distribution across the studied groups

was first verified. As reported in the demographic table of the

OMPeR original article (Esposito et al., 2019), the three

treatment groups (A, B, and C) were homogeneous for mean

age in years ± SD at admission (3.6 ± 1.6, 3.7 ± 1.5, and 3.8 ± 1.7,

respectively). In contrast, when looking at the 144 patients with

gut microbiota profile available at T0, we found that the mean

age of children receiving OM–85 treatment (A and C) was

significantly lower compared to the placebo group (B) (p =

0.014) (Table 1). The difference was still significant when the

data from active groups (A and C) were combined (p = 0.004)

(Table 2), or when data related to infants and pre–school

children were analyzed separately (p = 0.041) (Table 3).

Similar findings were reported when analyzing the mean age

and the distribution by the same age cutoff (infants and pre–

schoolers) in the 158 children allocated to OM–85 and placebo

groups for which NP microbiota analysis was available at T0

(data not shown).
3.2 Microbiota profiling at T0

3.2.1 Gut microbiota profiling at T0 in the total
population and in the different age subgroups

The gut microbiota analysis at T0 was performed in the total

population (n = 144), and in the <2 (n = 30) and ≥2 years of age

(n = 114) subgroups, regardless of the treatment allocations, as

reported in Figures 2 and 3, respectively.

The composition and relative percentage abundance of phyla

in the gut were comparable with the one described in the

literature for healthy children with Firmicutes being

predominant followed by Bacteroidetes (Figure 2).

In children <2 years of age, Firmicutes were less abundant

compared to what was observed in older children, while vice

versa, Actinobacteria and Proteobacteria were relatively more

abundant. Among genera, Bifidobacterium and Lachnospiraceae

were more abundant in children <2 years of age while

Ruminococcus was less abundant (Figures 3A, B). Other genera
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differed significantly such as Veillonella and Dorea (data not

shown because of their very low relative abundance).

3.2.2 NP microbiota at baseline in the total
population and in the different age subgroups

The baseline NP microbial profiles were analyzed first in the

total population (n = 158), and phyla and genera are reported

in Figure 4.

The relative abundance of phyla was in line with what was

described in the literature in children with highest abundance of

Proteobacteria and Firmicutes followed by Actinobacteria. The

relative abundance of genera was also reported at T0. The profiles

in this case were not statistically different in the different age

subgroups (data not shown).

3.2.3 Distribution of gut microbiota taxa at T0 by
other influencing factors (atopy and prior RTIs)

In the total patient group (n= 144), the baseline gutmicrobiota

profiles were described and evaluated according to the presence or
Frontiers in Cellular and Infection Microbiology 05
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not of atopy and to the number (<3 or ≥3) of RTI episodes over 6

months prior to study entry. The number of atopic children with

stool specimenwas small (n=31) compared to thenon–atopic ones

(n= 113). Themean age in yearswas higher in atopic children (4.11

± 1.5) as compared with the non–atopic ones (3.28 ± 1.56, p =

0.006). The numbers of children who experienced <3 or ≥3 RTI

episodes were respectively 49 and 95 and their mean ages in years

were 3.63 ± 1.73 and 3.37 ± 1.5 (p = 0.43). Because of the very small

numbers, we could not show any statistically significant difference in

the gut microbial profiles at T0 between these patient subgroups.

Furthermore, other influencing factors, such as the type of infections

or the use and type of antibiotics prior to the study could not be

analyzed because such historical data were not available.
3.2.4 Distribution of NPmicrobiota taxa at T0 by
other influencing factors (atopy and prior RTIs)

The baseline profiles were evaluated also for the NPmicrobiota

in the total patient group (n = 158) and described according to the

presence of atopy and to the number of RTI episodes. Themean age
FIGURE 1

CONSORT. Number of gut and nasopharyngeal (NP) samples per treatment allocation (different active treatment groups A and C with OM–85
and group B with placebo) collected and analyzed at T0 and T1.
TABLE 1 Mean (SD) age in years at T0 per randomization group (A, OM–85/placebo, B, placebo, C, OM–85) of all patients with available stool
specimens and gut microbiota analysis (n = 144).

OM–85/Placebo (A) (n = 62) Placebo (B) (n = 67) OM–85 (C) (n = 15) p–value

3.2 (1.6) 3.9 (1.6) 2.9 (1.4) 0.014
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in years for the atopic (n = 30) and the non–atopic (n = 128)

patients was statistically different, being 4.23 ± 1.5 and 3.28 ± 1.56,

respectively (p = 0.0023). As described for the gut microbiota

relative abundance, we could not observe statistically significant

differences in the microbiota relative abundance by atopy.

The number of rRTIs prior to the study was available for 157

out of 158 patients. The mean age was similar in the two groups,

i.e., the 53 patients with <3 RTIs and the 104 patients with ≥3

RTIs. Some differences in the relative abundance of each taxon

were observed (Figure 5A), but only Moraxella was significantly

more enriched in the patients that had experienced <3 RTIs in

the previous 6 months before the study entry (Figure 5B).
3.3 Gut microbiota profiling changes
at T1

3.3.1 Intra–group changes of gut microbiota
profiles over the study (T1–T0)

For such longitudinal study, only 98 gut samples were available

(n=50 OM-85 and n=48 in placebo groups). Some statistically

significant differences in relative abundance of specific taxa were

observed, when comparing the two time points (Figure 6A).While

the relative abundance of Bacteroides genus did not change over

time in the OM–85 group, it decreased significantly in the placebo

group (p = 0.03). In contrast, while no changes were observed for

the Clostridium XIVa andDorea in the OM–85 group, the relative

abundance was increased with borderline significance for

Clostridium XIVa and in a statistically significant manner for

Dorea (p = 0.026) in the placebo group (Figure 6B).

3.3.2 Intra–group changes of gut microbiota
profiles over the study (T1–T0) in the different
age subgroups

The intra–group comparisons of gut microbiota relative

abundance in children <2 and ≥2 years of age were also made.

Only 18 children <2 years of age had gut microbiota profiles at T0

and T1, and of these, 13 were in the OM–85 and only 5 were in the

placebo subgroup. No statistically significant differences could be

seen in this small subgroup of patients (data not shown).
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Differences were observed instead in the ≥2 years of age subgroup

of children (n = 80), of whom 37 were in the OM–85 group and 43

were in the placebo group (Figure 7A). However, statistically

significant differences were detected only in the placebo

subgroup, with relative abundance reduction of Bacteroides and

increase in Streptococcus, Lachnospiraceae_incertae_sedis, and

Clostridium XIVa (Figure 7B). The gut microbiota remained

more stable in this longitudinal study over the 6 months in the

OM–85 subgroup.
3.4 OM–85 and placebo clinical
response in the gut microbiota group

In the 98 patients whose stool samples were collected for gut

microbiota analysis both at T0 and at T1 (n=50 in OM–85 and

n=48 in placebo group), no significant differences were observed

in the mean number of RTIs at the end of the study (OM–85 =

1.56 ± 1.66, placebo = 1.19 ± 1.05, p = 0.62), as well as in the

mean number of antibiotics (OM–85 = 1.10 ± 1.049, placebo

0.96 ± 0.80, p = 0.62) used during the study. The same analysis

conducted using the age cutoff of 2 years showed a statistically

significant higher mean number of RTIs and antibiotic use in the

<2 years old subgroup at T1, as compared to the ≥ 2 years old

subgroup (p = 0.025 and p = 0.013, respectively), but with no

significant difference between OM–85 and placebo (Figure 8).

No association between gutmicrobiota profiles and clinical response

could be made. It should be noted that the mean number of

antibiotics used over the study was very low, as the majority of

RTIswere in theupperRTanddidnot requireantibioticprescription.
3.5 NPmicrobiota profiling changes at T1

3.5.1 Intra–group changes of NP microbiota
profiles over the study (T1–T0)

Analysis of NPmicrobiota of the 137 patients (n=69 inOM-85

and n=68 in placebo groups) at T1 showed a significant decrease in

the placebo group only of Actinobacteria phylum, an increase in

relativeabundanceofHaemophilus in theOM–85group, andanear
TABLE 2 Mean (SD) age in years at T0 per randomization groups receiving active prophylactic treatment (A, OM–85/placebo and C, OM–85) or
placebo (B) of all patients with stool specimens and gut microbiota analysis available (n = 144).

All OM–85 (A + C) (n = 77) Placebo (B) (n = 67) p–value

3.1 (1.5) 3.9 (1.6) 0.004
front
TABLE 3 Number and percentage of patients <2 or ≥2 years of age with stool samples and gut microbiota analysis done at T0 (n = 144).

Age cutoff All active (A + C) (n = 77) Placebo (B) (n = 67) p–value

<2 years [n (%)] 21 (27.3) 9 (13.4) 0.041

≥2 years [n (%)] 56 (72.7) 58 (86.6)
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to significant decrease of Corynebacterium in the placebo group

compared to T0. Precisely, theActinobacteria phylumdecreased in

placebo from 6.60% ± 1.63 to 4.33% ± 1.18 (p = 0.055). In addition,

in the OM–85 group, the relative abundance of Haemophilus was

11.25% ± 22.47 at T0 and increased to 20.61% ± 22.55 at T1 (p =

0.006). In the placebo group, the relative abundance of

Corynebacterium was 6.6% ± 13.45 at T0 and decreased to 4.33%

± 9.71 at T1 (p = 0.05) (Figures 9A, B).

3.5.2 Intra–group changes of NP microbiota
relative abundance over the study in the
different age subgroups

The mean age in years was not homogeneously distributed,

with a lower mean age (p = 0.015) as well as a higher number of

younger children included in the OM–85 group. We observed

some differences in NP microbiota relative abundance at T1 only

in children of ≥2 years (n = 111), in OM–85 (n = 52) and placebo

groups (n = 59), both at the phylum level and the genus level.

The Actinobacteria phylum did not change in the OM–85 group,

but it decreased in the placebo group (7.36% ± 14.24 to 4.38% ±

10.08, p = 0.0136), and Haemophilus increased in the OM–85

group (11.77% ± 22.33 to 22.25% ± 31.08, p = 0.010) while the

Corynebacterium decreased in the placebo group (7.36% ± 14.24

to 4.38 ± 10.08, p = 0.013), as shown in Figures 10A, B.
3.6 OM–85 and placebo clinical
response in the NP microbiota group

No significant difference could be detected between the OM–

85 and placebo group in the mean number of RTIs and the
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number of antibiotics use, during the study in patients with NP

swabs both at T0 and at T1 (n = 137). However, when the

different age groups were compared, a statistically significant

higher mean number and frequency of RTIs and of antibiotic

prescriptions were found in the youngest children, both in the

OM–85 group and in the placebo group (Table 4). No

association between NP microbiota profiles and clinical

response could be made.
4 Discussion

RTIs are common in the pediatrics population, especially in

young children, because of the relative immaturity of the

immune system and the microbiota, as well as the exposure to

respiratory pathogens in childcare facilities and schools. Some

children are more fragile than others, experiencing higher

respiratory morbidity, characterized by RTI recurrence and/or

more severe clinical manifestations. It is known that complex

inter–talks between environmental and host factors such as

immune components and microbiota metabolites move the

needle towards a health or disease status in childhood (Man

et al., 2017).

It has been hypothesized that reducing the risk for RTIs in

infancy could be therapeutically achieved by accelerating early

immune maturation/functional competence via enhancing the

level of appropriate benign microbial–derived signaling to the

developing innate immune system. The “immune training” led

to a state of broad spectrum enhanced resistance to pathogens

(Holt et al., 2019). In addition, a right balance between Th1/Th2
FIGURE 2

Gut microbiota profiles (phyla and genera) in the total population (n = 144) at T0.
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responses is key to avoid more severe LRTIs and sequelae. A few

microbial–derived products have been shown to experimentally

reproduce immune training effects. The bacterial lysate OM–85

has been extensively investigated, and it has shown to enhance

deficient INF responses (Dang et al., 2017) to modulate the

interplay between Th1 and Th2 mechanisms (Huber et al., 2005)

and to potentially play a role in gut microbiota rearrangement

(Rossi et al., 2019).
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The aims of our work were to (a) describe microbiota

profiles in rRTIs of pre–school children, starting with relative

abundance, (b) describe microbiota profile changes associated

with common influencing factors such as age, atopy, and

number or RTIs, (c) describe any possible sign of effect of the

oral bacterial lysate OM–85 when given as prophylaxis on

microbiota relative abundance, and (d) make associations, if

possible, with its clinical efficacy in prevention of rRTIs.
A

B

FIGURE 3

Relative percentage abundance of phyla and genera in the gut microbiota at T0. (A) Comparison between <2 (n = 30) and ≥2 years of age
(n = 114) subgroups, (B) statistically significant differences in relative abundance of specific taxa, Firmicutes, Proteobacteria, and Actinobacteria
(phyla) and Bifidobacterium, Ruminococcus, and Lachnospiraceae (genera) in the two age subgroups (Mann U Whitney test).
frontiersin.org

https://doi.org/10.3389/fcimb.2022.789436
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Esposito et al. 10.3389/fcimb.2022.789436
Performing the sub–analysis of the gut and NP microbiota

derived from the pre–school children included in the OMPeR

clinical study, we realized that the number of stool and NP swabs

collected at T0 and analyzed by 16S rRNA sequencing was

approximately half of the total enrolled population and that the

number of stool samples as well as NP swabs available and

analyzed at both T0 and T1 was smaller. This could negatively

affect the possibility to reach the statistical significance, when

evaluating the results of the study.

Furthermore, in contrast with what was reported in the

OMPeR study original population, the demographic

characteristics were not homogeneously distributed in the

different treatment groups in our studied sub–population.

There was a statistically significant difference in the mean age

for children included in the “gut” and the “NP” samples groups

at T0, with the youngest allocated to the OM–85 treated group,

and this could be a bias to keep in mind when evaluating the

results of our study. It is well known that the age plays a key role

in the microbiota richness in children, indeed, the gut

microbiota is relatively less stable (i.e., more influenced by

factors such as breast feeding, diet, and past infections

antibiotic use) below the 3 years of age (Thomas et al., 2015).

Infancy (i.e., <2 years) might represent a better window of

opportunity to manipulate the microbiota. Also, when

considering the age cutoff of 2 years, a significant higher

proportion of younger children was allocated to OM–85

compared to placebo. As expected, more significant differences

in the relative abundance of phyla and genera were observed at

T0 when comparing microbiota profiles by using the “clinical”
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age cutoff of 2 years. Therefore, we performed all the microbiota

analysis in the total “gut” or “NP” samples, and in the subgroups

of children <2 or ≥2 years to minimize the age bias. The sample

size in these age subgroups was small, and this was particularly

true for the youngest group, which was less represented in the

OMPeR study population according to the eligibility criteria (age

at enrollment from 1 to 6 years). This negatively affected the

analysis especially in group comparisons.

We therefore decided to apply a stepwise approach to our

microbiota analysis to minimize the costs. At T0, in the gut

microbiota, the phylum Firmicutes was predominantly followed

by Bacteroidetes and Actinobacteria phyla, as reported by other

authors (Arumugam et al., 2011). In the NP microbiota,

Proteobacteria and Firmicutes were more represented, followed

by Actinobacteria. Also, these findings were in line with what

was reported in the literature for this age group of children

(Pichon et al., 2017). Our T0 findings confirmed that the gut

microbiota composition is influenced by age, as shown by several

statistically significant differences in the microbiota profiles of

children <2 years vs. ≥2 years of age.

In NP microbiota analysis, at T0, we could identify only a

significant difference in Moraxella spp., which was more

abundant in children who had <3 RTIs during the study, this

was independent of the age, because this was not significantly

different in these two subgroups (<2 or ≥2 years). It is important

to point out that rRTIs in children are usually defined as at least

six to eight over a 12–month period. In the OMPeR study,

pediatrics patients were recruited with a history of ≥6 RTIs in the

previous year. As not all the episodes over the entire 12–month
FIGURE 4

NP microbiota profiles (phyla and genera) in the total “NP sample” (n = 158) at T0.
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period prior to the study were recorded or dated for all the

patients, we defined rRTIs instead by the number of three

episodes over 6 months prior to study. We observed that a

higher relative abundance of Moraxella spp. was associated with

less recurrences. Other authors reported that Moraxella spp.

might be associated with a healthier status in the elderly at risk

for RTIs, while in the pediatric populations, the reports on this

health–associated taxa (Man et al., 2020) are more conflicting as

far as microbiota profile stability and association with RTIs

(Bosch and McFall–Ngai, 2011; Biesbroek et al., 2014; Teo et al.,

2015; Man et al., 2019). The differences in susceptibility to RTIs

likely arise from the complex interplay between mucosa, innate

and adaptive immunity, and airway microbiota (van den

Munckhof et al., 2020).

Other factors might influence or are being associated with

microbiota rearrangements in the pediatric population prone to

RTIs, such as atopy and antibiotic use. The number of atopic

children was overall smaller compared to the non–atopic ones.

The reasons of such imbalance can be found in the exclusion of

asthmatics from the study according to OMPeR eligibility
Frontiers in Cellular and Infection Microbiology 10
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criteria. Because of the above, we could not find any

association of specific microbiota profiles with atopy. In

addition, we could not perform other subgroup analysis by

other influencing factors such as the type of infection and of

antibiotic use because this kind of anamnestic data was

not available.

At T1, the gut microbiota relative abundance showed that

Bacteroides spp. were significantly decreased while Dorea spp.

increased compared to T0 in the placebo group only. Bacteroides

spp. were also statistically decreased in the placebo subgroup of ≥2

years of age, which was the largest age subgroup. Other genera

proved to be less stable in the placebo group compared to OM–85

(increased Streptococcus, Lachnospiraceae_incertae_sedis, and

Clostridium XIV). Despite small numbers, the inter–group

analysis in this subgroup still showed a statistically significant

difference in the change for the Bacteroides (borderline

significance) and for Lachnospiraceae_incertae_sedis spp.

Bacteroides is a Gram–negative, non–spore–forming,

obligate anaerobic bacteria normally found in the human

intestines, mouth, upper respiratory tract, and genital tract.
A

B

FIGURE 5

Relative percentage abundance of phyla and genera in the NP microbiota at T0. (A) Differences of NP microbiota profiles per number of RTIs in
the 6 months prior to the study (n=53 <3 and n=104 ≥3 RTIs), (B) Statistically significant difference in relative abundance of Moraxella spp.
between the two subgroups (Mann U Whitney test).
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Bacteroides expresses polysaccharide A, which can induce

regulatory T–cell growth and cytokine expression that are

protective against inflammation. A lower level of Bacteroides

has been associated with some inflammatory diseases such as

inflammatory bowel diseases (IBDs) (Zhou and Zhi, 2016).

Bacteroides has been considered protective by some authors

(Lazar et al., 2018), while early colonization of Bacteroides

fragilis was associated with asthma risk at 3 years of age (Vael

et al., 2008). Bacteroides fragilis and Bacteroides uniformis have

been identified to exert anti–inflammatory effects in animal

models, and they might be considered as the next generation

of probiotics (O’Toole et al., 2017).
Frontiers in Cellular and Infection Microbiology 11
30
Lachnospiraceae belong to the core of gut microbiota,

colonizing the intestinal lumen from birth and increasing in

terms of species richness and their relative abundances during

the host’s life. In contrast to Bacteroides, Lachnospiraceae are

in greater abundance in the irritable bowel syndrome (IBS)

clone library (Rinninella et al., 2019). Lachnospiraceae might

influence healthy functions, although different genera and

species of this family are increased in diseases. Indeed, some

metabolic syndrome, obesity, diabetes, liver diseases, IBD,

and chronic kidney disease are all inflammatory conditions

involving this family (including Lachnospiraceae_incertae_

sedis or Blautia spp.). In addition, they seemed to play a
A

B

FIGURE 6

Intra–group change of gut microbiota relative abundance in both OM–85 and placebo groups (n=98). (A) Gut microbiota profiles at T0 and T1
for both treatment groups (n=50, OM-85 and n=48, placebo). (B) Statistically significant intra–group differences for genera Bacteroides, Dorea,
and Clostridium XIVa in placebo (Wilcoxon’s signed–rank test). NS: not significant.
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role in depressive syndromes and multiple sclerosis syndrome

(Vacca et al., 2020).

Diet influences the microbiota in older children, and this

factor was not controlled over the study. Furthermore, the role of

gut microbiota specific taxa is still controversial in regard to

health or disease status, and limited data are available for

children with high risk for RTIs.

No direct associations between gut microbiota relative

abundance changes at T1 and clinical response (RTIs and

antibiotic use during the study) could be detected. This can be

explained by a few factors, such as the small samples size for the

microbiota OMPeR sub–analysis, the non–homogeneous age
Frontiers in Cellular and Infection Microbiology 12
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distribution in the treatment groups, and the small sample size

when analyzing the age subgroups. These limitations can also

explain the lack of significant differences for the clinical

endpoints (RTIs and antibiotic use) between OM–85 and

placebo in the sub–analysis, differences detected in the

OMPeR total study population (Esposito et al., 2019).

Furthermore, the mean number of RTIs and of antibiotic use

was very low probably because the majority of RTIs were in the

upper airways and did not require antibiotic prescription.

The NP microbiota relative abundance intra–group analysis

at T1 confirmed a more stable microbiota for the OM–85 group

compared to placebo. Some statistically significant changes were
A

B

FIGURE 7

Intra–group change of gut microbiota relative abundance in both OM–85 and placebo group in the subgroup of children aged ≥2 years (n=80)
(A) Gut microbiota profiles at T0 and T1 for both treatment groups (n=37, OM-85 and n=45, placebo). (B) Statistically significant intra–group
differences in relative abundance of Bacteroides, Streptococcus, Lachnospiraceae_incertae_sedis, and Clostridium XIVa genera in placebo.
(Wilcoxon’s signed–rank test). NS: not significant.
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detected in the placebo group in both the total population and in

the larger group of children ≥2 years of age where we observed a

decrease for the Actinobacteria phylum and Corynebacterium.

Haemophilus increased in the OM–85 group. Actinobacteria and

Corynebacterium seem to be associated with respiratory health,

while a relative high colonization of Haemophilus is associated

with increase of asthma risk (Hufnagl et al., 2020).

As far as the clinical response, when comparing the

frequency of RTIs and antibiotic use between OM–85 and

placebo during the study, there were less children with RTI

and antibiotics in the OM–85 group, but these findings were not

statistically significant. Therefore, it was not possible to make

assoc ia t ions between NP microbiota profi l e s and

clinical outcomes.

The clinical efficacy of OM–85 treatment shown in the

original OMPeR study was lost in our sub–analysis. This was

in contrast with the one observed in the OMPeR total study

population. Indeed, in OMPeR, there were statistically

significant differences in favor of OM–85 for upper RTIs (i.e.,

common cold/viral pharyngitis) as well as for acute otitis media

(AOM). Furthermore, the percentage of patients with recurrent

upper RTIs and AOM favored OM–85. Precisely, the number of

patients with recurrences was approximately 50% among

children given placebo and only 21% among those treated

with OM–85. The reduction of the URTIs and ear

complications, the most frequent ones in the pre–school

pediatric population, was associated with a general lower

respiratory disease burden, measured as missed days of schools

for children and of work for parents. These parameters were

significantly reduced in the OM–85 compared to the placebo

group. The reasons for such discrepancy between clinical

outcomes in our sub–analysis and the OMPeR total

population might be several. Surely, the loss of the effect of the

randomization and the reduced sample size can be pointed out.
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Our work presents some analysis limitations such as the lack

of statistical methods controlling for multiple comparisons and

multivariate analysis to assess sources of variation compared to

the treatments. We did not apply statistical methods controlling

for multiple comparisons because of the relatively small sample

size of the subgroups, also considering the population

heterogenicity. In addition, important microbiota influencing

factors, such as method of delivery, gestational age, food source,

and pets, were not assessed and reported in the OMPeR clinical

trial, with the microbiota assessment only an ancillary study, and

we could have not controlled for them. Furthermore, as far as the

clinical endpoint, we could not confirm any significant difference

between the subgroups, therefore, no further multivariate

analysis to assess sources of variation compared to the

treatments was done. The collaboration for metagenomic

analysis with another research group on expected additional

data will help better define the possible correlation between

OM–85–induced changes in microbiome composition and

clinical results in children with RTIs.

In conclusion, our study, which is registered in EudraCT:

2016–00705–19, is one of the few clinical trials assessing both

gut and NPmicrobiota in pre–school children at risk for RTIs. In

addition, it is, to our knowledge, the first study aimed at

describing the microbiota relative abundance in patients

treated with the oral bacterial lysate OM–85. Other studies

used probiotic and prebiotic , mainly Lactobacil lus ,

Bifidobacterium , and Enterococcus , to modulate gut

microbiota, a promising approach against viral RTIs via host

innate and adaptive immunity regulation (Shi et al., 2021).

Some authors are indeed suggesting that such kind of

compounds themselves might mimic and even rearrange the

gut and, indirectly, airway microbiota (Ober et al., 2017; Rossi

et al., 2019). Others observed that bacterial–derived compounds

might play a role in innate training, as it has been published for
FIGURE 8

Mean number of RTIs and antibiotics used during the study and recorded at T1 in the children (n=98), <2 (n=18) and ≥2 (n=80) years of age
(Mann U Whitney test). RTIs = LRTIs, URTIs, AOM, and otorrhea. URTIs: upper respiratory tract infections, LRTIs, lower respiratory tract infection;
AOM, acute otitis media; NS, not significant.
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FIGURE 9

Intra–group change of NP microbiota composition in both OM–85 and placebo groups (n=137). (A) NP microbiota profiles at T0 and T1 for
both treatment groups (n=69, OM-85 and n=68, placebo). (B) Statistically significant intra–group difference for Actinobacteria,
Corynebacterium in placebo, and Haemophilus in OM-85 (Wilcoxon’s signed–rank test). NS: not significant.
TABLE 4 Mean (SD) number of antibiotic prescriptions and respiratory infections, use of antibiotics (yes, no), and RTI occurrence (yes, no) in
subgroups of children <2 years or ≥2 years during the study in the OM–85 and the placebo groups. .

OM–85 (n = 69) p–value Placebo (n = 68) p–value

<2 years (n = 17) ≥2 years (n = 52) <2 years (n = 9) ≥2 years (n = 59)

Number of antibiotics 1.65 (0.79) 0.92 (0.97) 0.005 1.67 (0.71) 0.90 (0.78) 0.010

Number of RTIs1 2.29 (1.45) 1.29 (1.58) 0.007 1.78 (0.97) 1.09 (1.06) 0.033

Antibiotics: Yes (%) 16 (94.12%) 30 (57.69%) 0.007 F 9 (100%) 39 (66.1%) 0.0495 F

No (%) 1 (5.88%) 22 (42.31%) 0 20 (33.9%)

RTI Yes (%) 16 (94.12%) 29 (55.77%) 0.003 F 8 (88.89%) 41 (69.49%) 0.43 F

No (%) 1 (5.88%) 23 (44.23%) 1 (11.11%) 18 (30.51%)
Frontiers in Cellular and
 Infection Microbiology 14
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front
1 URTIs, LRTIs, AOM, and otorrhea. URTIs: upper respiratory tract infections, LRTIs, lower respiratory tract infections; AOM, acute otitis media. The bold font means that the value is
statistically significant.
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bacilli Calmette–Guerin (BCG) oral vaccine (Netea et al., 2020).

Indeed, Mantovani et al. (Mantovani and Netea, 2020) suggested

that the exposure not only to selected vaccines, but also to

microbial components, can increase the baseline tone of innate

immunity and trigger pathogen–agnostic resistance. Attention

has converged on the importance of intervening at early life/

stages, with the goal of reducing RTI severity and recurrences as

well as preventing the progression to chronicity. To this end, the

training of the immune system in early childhood represents an

important strategy for preventing RTI–related morbidity and

minimizing long–term consequences. Training the immune

system with OM–85 might induce long–lasting changes in
Frontiers in Cellular and Infection Microbiology 15
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host microbiota and possibly in innate immunity, resulting in

an enhanced response to infection by unrelated pathogens.

Further studies are therefore needed in infancy, in a larger

patient population, designed for metagenomics analysis and

ac ros s more v i r a l s ea sons to c l a r i f y i t s ro l e in

microbiota rearrangements.
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FIGURE 10

Intra–group change of NP microbiota relative abundance in OM–85 and placebo groups in the subgroup of children aged ≥2 years (n = 111). (A)
NP microbiota profiles at T0 and T1 for both treatment groups (n=52, OM-85 and n=59, placebo). (B) Statistically significant intra–group
difference in relative abundance for Actinobacteria phylum, and Corynebacterium in placebo and Haemophilus genera in OM-85 (Wilcoxon’s
signed–rank test). NS, not significant.
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Gut and oral microbiota
associations with viral
mitigation behaviors during the
COVID-19 pandemic

Kelvin Li1,2†, Barbara A. Methé1,2*†, Adam Fitch1,2,
Heather Gentry1,2, Cathy Kessinger1,2, Asha Patel1,2,
Vickie Petraglia1,2, Pruthvi Swamy1,2 and Alison Morris1,2

1Center for Medicine and the Microbiome, University of Pittsburgh School of Medicine, Pittsburgh,
PA, United States, 2Division of Pulmonary, Allergy and Critical Care Medicine, Department of
Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center,
Pittsburgh, PA, United States
Imposition of social and health behavior mitigations are important control

measures in response to the coronavirus disease 2019 (COVID-19)

pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2). Although postulated that these measures may impact the

human microbiota including losses in diversity from heightened hygiene and

social distancing measures, this hypothesis remains to be tested. Other impacts

on the microbiota and host mental and physical health status associations from

these measures are also not well-studied. Here we examine changes in stool

and oral microbiota by analyzing 16S rRNA gene sequence taxonomic profiles

from the same individuals during pre-pandemic (before March 2020) and early

pandemic (May-November 2020) phases. During the early pandemic phase,

individuals were also surveyed using questionnaires to report health histories,

anxiety, depression, sleep and other lifestyle behaviors in a cohort of

predominantly Caucasian adults (mean age = 61.5 years) with the majority

reporting at least one underlying co-morbidity. We identified changes in

microbiota (stool n = 288; oral n = 89) between pre-pandemic and early

pandemic time points from the same subject and associated these differences

with questionnaire responses using linear statistical models and hierarchical

clustering of microbiota composition coupled to logistic regression. While a

trend in loss of diversity was identified between pre-pandemic and early

pandemic time points it was not statistically significant. Paired difference

analyses between individuals identified fewer significant changes between

pre-pandemic and early pandemic microbiota in those who reported fewer

comorbidities. Cluster transition analyses of stool and saliva microbiota

determined most individuals remained in the same cluster assignments from

the pre-pandemic to early pandemic period. Individuals with microbiota that

shifted in composition, causing them to depart a pre-pandemic cluster,

reported more health issues and pandemic-associated worries. Collectively,

our study identified that stool and saliva microbiota from the pre-pandemic to

early pandemic periods largely exhibited ecological stability (especially stool
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microbiota) with most associations in loss of diversity or changes in

composition related to more reported health issues and pandemic-

associated worries. Longitudinal observational cohorts are necessary to

monitor the microbiome in response to pandemics and changes in public

health measures.
KEYWORDS

COVID-19, microbiome, ecological stability, saliva microbiota, gut microbiota, 16S
rRNA gene amplicon sequencing
Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused

by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) is a devastating worldwide event that has precipitated

dramatic changes in social and health behaviors in human

populations (Atzrodt et al., 2020). Especially in the early

pandemic phase in 2020 prior to vaccine and other

pharmaceutical prophylaxis interventions, a variety of strategies

were implemented to minimize the spread of the virus including

social distancing, self-isolation, working from home and increased

hygiene measures (Bavel et al., 2020). Substantial efforts have been

underway to understand the impacts of these disruptions and

COVID-19 related worries on human psychology including stress,

and anxiety (Blix et al., 2021), as well as health consequences such

as changes in diet, sleep, and exercise (Arora and Grey, 2020).

Several, longitudinal studies assessed mental health outcomes

within the same individuals before and during the pandemic

and determined that general mental distress increased during the

pandemic (Daly et al., 2020; Pierce et al., 2020) and effects of

COVID-19 on daily life were significant predictors of higher levels

of depression, anxiety, and stress during the pandemic (Haliwa

et al., 2021). However, the impact of these population-wide viral

transmission minimization strategies and other behavioral

changes on the human microbiota of individuals non-

symptomatic for COVID-19 have not been well-studied despite

the substantial and complex interplay between diet, environment

factors and the microbiome in human health and disease.

The human microbiota and its collection of genomes (the

microbiome) is composed of trillions of cells that interact as

microbial communities in multiple ecological niches in and on

the human body through mutualistic or symbiotic relationships

with the host (Gevers et al., 2012; Sender et al., 2016). More than a

decade of research has underscored the multiple, critical roles the

microbiome plays in normal development and maintenance of the

immune, endocrine, and nervous systems, and healthy metabolism.

As the COVID-19 pandemic has progressed, several groups

have speculated on the potential impact of these changes in
02
38
behavior and lifestyle on the microbiome (Domingues et al.,

2020; Burchill et al., 2021; Finlay et al., 2021). In particular, it has

been hypothesized that these changes may include the loss of

microbial diversity due to increased microbial depletion and

reduced transmission resulting from heightened hygiene and

social distancing measures, respectively (Domingues et al., 2020;

Burchill et al., 2021; Finlay et al., 2021). However, this hypothesis

has not been well-studied longitudinally in individuals not

infected with COVID-19. Here we used an ongoing large

observational cohort (MedBio Cohort) with pre- and early

pandemic data and stool and oral specimens from the same

individuals to examine associations between human microbiota

and changes in social behaviors precipitated during an ongoing

pandemic and concomitant changes in public health measures.

Materials and methods

Cohort

Participants were selected without bias from a large ongoing

observational cohort (MedBio) consisting of a collection of

UPMC patient registries and clinical investigations which

facilitates standardized approaches to subject enrollment and

specimen processing across multiple studies. These studies span

a range of chronic illnesses and disease status. The University of

Pittsburgh IRB approved the study, and all participants signed

informed consent.
Sample collection

Early pandemic samples were collected from May 2020

through November 2020. Stool specimens were self-collected

using the DNA/RNA Shield Fecal Collection tubes (Zymo) for

nucleic acid preservation and short-term (two to four weeks)

storage at ambient temperature. Oral specimens were self-

collected using the OMNIgene·ORAL OM-505 devices. 2 mL

of saliva were collected for nucleic acid preservation and short-
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term storage at ambient temperature. Specimens were mailed to

the University of Pittsburgh. Upon receipt, specimens were sub-

aliquoted prior to long-term storage at -80°C.
Early pandemic data collection

During the early pandemic period, subjects participated in

an on-phone interview assessing demographics, medical history,

smoking history, health status, and COVID-19-related behavior

with specimen collection occurring within approximately 10-14

days of the interview. We also administered the General Anxiety

Disorder 7 (GAD7) questionnaire (Johnson et al., 2019), Patient

Health Questionnaire 9 (PHQ-9) questionnaire (Kroenke et al.,

2001), and the Insomnia Severity Index (ISI) (Morin et al., 2011).

The questionnaire consisted of 49 grouped questions:

Demographics (Q1-Q6), Past Health History (Q7-Q12, Q12

was an inventory Q12a-Q12q of comorbidities), Smoking

History (Q13-Q15), Recent Heath History (Q16-Q19), GAD7

Anxiety (Q20), PHQ-9 Depression (Q21), ISI Sleep Survey

(Q22), and Recent Behavior (Q23-Q49). Some questions were

excluded from the statistical analyses as they were either

regarding the accessibility of UPMC medical resources, or the

potential relevance of the question was more directly represented

by an alternative question.

Categorical responses were recoded into ordinal responses

when necessary, so that 0 (reference) was associated with healthy

or no difference. Responses to inventory-style questions were

summed up (Q17 General Ailments). (See Supplemental

material for a PDF version of the questionnaire.) See Table 1.

“Questionnaire Summary Table” for a summary of descriptive

statistics for the subset of responses included in the models.
Other subject information

BMI was estimated by linear interpolation using the closest

bracketing BMI measurements taken before and after the

collection date of the sample. Samples taken before March 15,

2020, were considered pre-pandemic samples, and matching

samples from the same subject collected after March 15, 2020,

were considered early pandemic samples (when “lockdown” and

more intense viral transmission mitigation strategies were in

place). Early pandemic samples were collected from May 2020

through November 2020.
DNA extraction

DNA extraction was performed using the Qiagen Powersoil

Microbiome Kit EP for automated DNA extraction using an

Eppendorf, 5075VTC liquid handling workstation. HEPA
Frontiers in Cellular and Infection Microbiology 03
39
filtration was used during sample processing and the

workstation was UV sanitized between batches. Specimens

were processed per manufacturer’s protocol with the following

modifications: An approximate aliquot of 300ml of specimen was

added to individual bead beating tubes to ensure no carryover

between samples during the bead beating process. Aliquots from

the individual tubes were then transferred to 96-well blocks for

completion of the automated genomic DNA extraction process.

Reagent blanks were included as negative controls. Cells and

genomic DNA from a microbial community of known

composition (ZymoBiomics Microbial Community Standards;

Zymo Research, Irvine, CA) served as positives controls. As a

component of the QC process, positive controls were evaluated

across sample batches to evaluate laboratory and sequencing

performance and compared to historical performance of 16S

rRNA gene sequencing at the Center for Medicine and the

Microbiome (CMM). No significant batch deviation was

identified in this project.
Bacterial community sequencing

Extracted genomic DNA (gDNA) was amplified for the V4

region using Q5 HS High‐Fidelity polymerase (New England

BioLabs, Ipswich, MA) with inline barcode primers design based

on the method of Caporaso (2012) (Caporaso et al., 2012). V4

primer sequences were: 515f 5’-GTGCCAGCMGCCGCGGTAA-3’

and 806r 5’-GGACTACHVGGGTWTCTAAT-3’. Approximately

5-10 ng of each sample were amplified in 25 µL reactions. Cycle

conditions were 98°C for 30 seconds, then 30 cycles of 98°C for 10

seconds, 57°C for 30 seconds, and 72°C for 30 seconds, with a final

extension step of 72°C for 2 minutes. Amplicons were purified with

AMPure XP beads (Beckman Coulter, Indianapolis, IN) at a 0.8:1

ratio (beads:DNA) to remove primer dimers. Eluted DNA was

quantitated on a Qubit fluorimeter (Life Technologies, Grand

Island, NY). Sample pooling was performed on ice by combining

40 ng of each purified band. For negative controls and poorly

performing samples, 20 µL of each sample was used. The sample

pool was purified with the MinElute PCR purification kit (Qiagen,

Germantown, MD). The final sample pool underwent 2 more

purifications: AMPure XP beads to 0.8:1 to remove primer

dimers, and a final cleanup in Purelink PCR Purification Kit (Life

Technologies). The purified pool was quantitated in triplicate on the

Qubit fluorimeter prior to sequencing.

The sequencing pool was prepared as per Illumina’s

recommendations (Illumina, Inc., San Diego, CA), with an

added incubation at 95°C for 2 minutes immediately following

the initial dilution to 20pM. The pool was then diluted to a final

concentration of 7pM + 20% PhiX control (Illumina).

Sequencing was done on an Illumina MiSeq 500‐cycle V2

kit (Illumina).
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Bioinformatics

Sequences from the Illumina MiSeq were deconvolved and

then processed through the CMM in‐house sequence quality

control pipeline, which includes dust low complexity filtering,

quality value (QV<30) trimming, and trimming of primers used

for 16S rRNA gene amplification, and minimum read length

filtering. Using the scripts fastq_quality_trimmer and

fastq_quality_filter from Hannon’s Cold Spring Harbor

Laboratory’s FASTAX-Toolkit (http://hannonlab.cshl.edu/

fastx_toolkit/). Reads were trimmed until the QV was 30 or

higher. Trimmed reads shorter than 75bp or those with less than

95% of the bases above a QV of 30 were discarded. Forward and

reversed paired reads were merged with a minimum required

overlap of 25 bp, proportion overlap mismatch > 0.2, maximum

N’s allowed = 4, and a read length minimum of 125 bp. Forward

and reverse reads were merged into contigs then processed

through the CMM’s Mothur‐based (v1.44.1) (Schloss et al.,

2009) 16S rRNA gene sequence clustering and annotation

pipeline. Sequence taxonomic classifications were performed

with the Ribosomal Database Project’s (RDP) naïve Bayesian

classifier (Wang et al., 2007) (Quast et al., 2013) with the SILVA

16S rRNA database (v138) (Quast et al., 2013).
Data analysis

Questionnaire Analyses. Selected recoded questionnaire

responses (variables), p = 25, were tested with the Shapiro-

Wilk test for normality (H0: values are normally distributed). If

the p-value was >0.2, then the original values were utilized. If

the p-value <0.2, the values were then logarithm transformed

and retested. If the transformation increased the p-value, then

the transformation was accepted. Pearson correlations were

calculated between responses and a Principal Component

Analysis (PCA) was performed. Principal Components (PCs)

which represented at least 5% of the total variance were then

annotated by identifying the variable with the greatest

correlation with the PC. Correlations were reported for those

with p-values < 0.001 after a Bonferroni adjustment, assuming

the number of tests were m = p(p-1)/2 = 300.

Due to the compositional nature of the taxonomic profiles

from 16S rRNA gene sequencing (Gloor et al., 2224), taxonomic

abundances were first transformed using the additive log ratio

(ALR) transformation (Tarabichi et al., 2015). The top 15 taxa,

by average abundance across the experimental samples, were

selected to represent the taxa of interest, and the remaining taxa

were accumulated into the denominator of the ratio, prior to

natural log transformation. Log ratio transformations are crucial

when including multiple taxa into linear models to ensure the

abundances are normally distributed and independent from

each other (Aitchison, 1982).
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Analyses involving the calculation of a diversity index

utilized the Shannon diversity index and the Tail statistic (Li

et al., 2012). The Tail statistic is more sensitive towards the lower

abundance taxa than the Shannon diversity index. Analyses

requiring the calculation of pair-wise compositional distances

between samples used the Manhattan distance, which is also

more sensitive towards differences in the lower abundance taxa

than the Euclidean distance.
Adjusting for differences in sample
collection times

There was a wide range of timespans between the pre- and

early pandemic samples. The median and 95% Prediction

Intervals (PI) time spans for stool were 526 (164, 1094) days

and for saliva, 725 (251, 1046) days. Preliminary analyses to

identify a corrective adjustment suggested that over time, paired

sample distances approached a limit asymptotically. A non-

linear adjustment for each timespan t based on fitting 3

parameters (maximum distance m, rate r, slope s) with the

function: adjustment(t) = m*(1-exp(-t*r))+s*t) was calculated,

but model comparisons revealed the adjustment was not

significantly better than the simpler linear model with an

intercept. This is likely due to the lower bound of the

timespans being restricted between 5-6 months, so any acute

changes to the microbiota composition might have already

reached their limits. The correlation between changes in the

stool and saliva from the same subject were also examined, but

the near 100% correlation of the pre-pandemic to early

pandemic timespans between the two sample types

confounded the analysis.
Models

Three statistical models were used to associate the

microbiota sampling with the questionnaire responses.

The “pre/early pandemic paired” (PEPP) model first

identified subjects with both pre-pandemic and early

pandemic samples, then used the variables of days pre-

pandemic, days early pandemic, pre-BMI, and dBMI (change

in BMI) and questionnaire responses to predict the difference

between the diversity, abundance or the distance (Stapleton

et al., 2021) between pre-pandemic and early pandemic

samples with a linear model.

The “pre/early pandemic cluster transition” (PEPCT) model,

another type of paired analysis, used a combination of clustering

and then logistic regression to associate questionnaire responses

to changes in “microbiome type”. Pre- and early pandemic

samples were first hierarchically clustered together, then

clusters were iteratively identified by increasing cuts (k). At

each cut k, for each of the resultant clusters identified from 1:k,
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the following variables were used to predict the sample’s early

pandemic cluster: questionnaire responses, pre- and early

pandemic days, pre-pandemic BMI and dBMI, and pre-

pandemic cluster identifiers. This analysis identified factors

that could predispose a subject’s sample to change to a specific

early pandemic cluster (“arrive”). Similarly, a “departure”

analysis was performed for each of the pre-pandemic clusters

at each cut k. For each pre-pandemic cluster, member subjects

were divided into those that remained in the same early

pandemic cluster and those that departed. In the departure

analysis, dBMI, pre- and early pandemic days, and the

questionnaire responses were included in the logistic

regression to predict whether a sample stayed in or left the

pre-pandemic cluster. To identify which cluster cut k to report

arrival or departure associations with, the cut k with the most

significant p-value for each factor was selected. Taxonomic

members (cluster unifiers) that differentiate a cluster from

other clusters generated at the same cut, were identified with

an R2 ratio analyses (See Supplemental methods). The R2 ratio

analyses estimate the R2 between two clusters with (full model)

and without (reduced model) a taxon of interest, to identify

whether the taxon of interest contributed to cluster separation. If

the reduced model had a smaller R2 than the full model, then the

taxon left out of the reduced model contributed to cluster

separation. Taxa that consistently contributed to a cluster’s

separation from the other clusters were considered taxa that

defined a cluster’s microbiota “type”.

The “early pandemic cross-sectional” (EPCS) model focused

on the early pandemic samples. The questionnaire responses,

EP-BMI, and days early pandemic were used to predict the

microbiota diversity, inter-sample distancing, or abundance with

a linear model.

See Figure 1, “Variables and Models” for a diagram

illustrating the relationship between variables and the models

that were fit.
Results

Questionnaire

From the 588 questionnaire responders, the mean

respondent’s age was 61.5 years old, although 95% of the

subjects were between 25 and 82 years. 54.5% of respondents

were female and 84.5% were Caucasian. The percent of

respondents with a smoking history (>100 cigarettes in their

lifetime) was 50.2%. The mean and 95% CI of the questionnaire

responses can be found in Table 1, “Questionnaire Descriptive

Statistics Summary”. The breakdown of respondents included in

the pre-pandemic to early pandemic time points (PEPP), pre-

pandemic to early pandemic cluster transition (PEPCT), and

early pandemic cross-sectional (EPCS) models for stool and
Frontiers in Cellular and Infection Microbiology 05
41
saliva analyses can be found in Supplemental Table 1,

“Sample Exclusions”.

Examination of the correlation matrix with Bonferroni

adjusted p-values < 0.001 identified several noteworthy

correlations. See Supplemental Figure 2, “Questionnaire

Response Correlations, Bonferroni Adjusted Significant (p-

value < 0.05)” for the heat map and all pairwise correlations.

Education level was correlated with health (r = 0.23) and

exercise (>1x/week, pre-pandemic r = 0.29, early pandemic

r = 0.25). Exercise pre-pandemic was correlated with early

pandemic exercise with a coefficient of r = 0.6. A clustering of

positive correlations was also identified among immune system

disease, asthma, (sum of) general ailments, GAD7 anxiety,

PHQ9 depression, and ISI sleep. (Sum of) COVID-19 worries

was correlated with diet change (r = 0.24). The number of

cohabitants was correlated with the number of pets (r = 0.24).

Principal Components Analysis (PCA) revealed that the top 5

PCs each captured greater than 5% of the total variance, but the

first 21 (out of 25) PCs would be required to capture 95% of the

variance. The top 5 PCs were most closely correlated with:

PHQ9 depression (r = 0.79), exercise (pre-pandemic) (r =

0.58), ethnicity (r = 0.67), exercise (early pandemic) (r =

0.45), and high blood pressure (r = 0.48).
Statistical analyses of microbiota from
stool and oral samples

Here results are reported first for the analyses of microbiota

from stool then for saliva samples. For each sample type, the

paired analysis results for the pre- and early pandemic samples

are reported first followed by the cross-sectional results for the

early pandemic sample analysis. Both paired and cross-sectional

analyses are comprised of a collection of independent sub-

analyses that fit statistical models using calculated sample

diversity, inter-sample distances, and taxonomic abundances.
Stool specimens for 16S rRNA
gene sequencing

The sample size available for stool was 311 samples available

for the early pandemic cross-sectional analysis and 288 subjects

had both pre- and post-pandemic samples for the

paired analyses.
The pre/early pandemic paired analysis
of stool sample microbiota

The pre/early pandemic paired (PEPP) analysis of stool

sample microbiota was performed on the n = 288 paired pre-

pandemic and early pandemic stool samples taken from the
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same subject. The median and 95% Prediction Interval (PI) of

the pre- and early pandemic days were 342 (25, 912) and 162

(118, 223), respectively. These differences were then associated

with the questionnaire responses from these subjects. The

number of subjects with both samples available were fewer, so

there was less statistical power than the EPCS stool analysis.

Overall composition for the pre-pandemic and early pandemic

stool samples can be found in Supplemental Figure 1, “Paired

Compositional Stacked Bar Plots”.

Diversity was stable between time points.When examining stool

microbiota, the Shannon diversity index did not identify any

significant (p<0.05) associations, but the Tail statistic identified a

negative association with change in BMI (p−val = 0.0232) and

smoking history (p−val = 0.0317). The number of pets was

positively associated with an increase in diversity (p−val =

0.0406). The intercept, representing the difference between pre-

and early pandemic differences in diversity when controlling for

other factors included in the model, was not significantly non-zero

for neither the Tail statistic (b0 = -0.7441, p-val = 0.7341) nor the

Shannon diversity index (b0 = −0.4881, p-val = 0.2297). The

increase of BMI of subjects with paired stool samples was not

statistically significant in the subjects: median dBMI = 0.0, 95% PI =

(-4.326, 3.761).

BMI and health were associated with reduced pre-to-early

pandemic inter-sample distances. An analysis of the distance

(compositional change) between stool sample pairs found a

significant effect of lengthening the distance between pairs (greater

change in composition) for pre-pandemic days (p−val = 0.0023)

and days into the early pandemic (p−val = 0.0265). See Figure 2, Stool
Frontiers in Cellular and Infection Microbiology 06
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and Saliva Pre- and early pandemic MDS Plots. Pre-pandemic BMI

(p−val = 0.0328) and health (p−val = 0.0178) had an effect of

shortening the distance between pairs (composition becomes more

alike). There was a less significant, but potentially noteworthy, effect

of diabetes (p−val = 0.0708) and number of cohabitants (p−val

= 0.0907).

Changes in multiple taxonomic abundances were associated

with immune system disorders and changes in BMI. The number

of days from stool sample collection to the early pandemic

period were positively associated with two taxa. The number of

pre-pandemic days before sample collection was associated with

Fusicatenibacter (p−val = 3.33×10-4), and the number of early

pandemic days before sample collection was associated with

Lachnoclostridium (p−val = 5.13×10-4). Immune system disease

was associated with the increase of Alistipes (p−val = 3.8×10−5),

Lachnospiraceae_uncl (p−val = 1.02×10-3), Bacteroides (p−val =

1.08×10-3), and Faecalibacterium (p−val = 5.72×10-3). Asthma

was associated with an increase of Ruminococcus (p−val =

8.12×10-4). Pre-pandemic BMI was associated with an increase

in Prevotella (p−val = 3.64×10-4), and changes in BMI between

sample collection dates were associated with less Oscillospiraceae

UCG_002 (p−val = 3.84×10-4) and Subdoligranulum (p−val =

4.58×10-3), and more Escherichia_Shigella (p−val = 4.55×10-3).

Diabetes was associated with more Agathobacter (p−val =

9.89×10-3) in the early pandemic. In addition, there were

associations with depression including a decrease in

Lachnospiraceae_uncl (p−val = 2.46×10-3) and an increase of

Prevotella (p−val = 8.78×10-3) with education level in the early

pandemic period.
FIGURE 1

Variables and Models. The left panel (A) summarizes the groups of variables that were utilized in the analyses. Pre-pandemic (PP) (blue) and
Early Pandemic (EP) (beige) variables include the taxonomic profiles from sequencing microbiota samples, BMIs interpolated based on the
sample collection dates, and timespans relative to March 15, 2020. The questionnaire responses were only collected during the early pandemic.
The top right panel (B) illustrates the early pandemic cross-sectional model. Here, only the EP variables: timespan, BMI, and questionnaire were
utilized to build a model to predict the EP stool or saliva microbiota. The lower right panel (C) represents the variables included in the paired
and cluster transition models. Both the PP and EP timespans, as well as questionnaire responses were included in the models. The BMI and
microbiota profiles were included in the model as their relative changes which could be calculated per subject.
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Pre/early pandemic cluster transition
stool analysis identified changes of
cluster membership associated with sex,
COVID-19 worries, asthma, cancer, and
social distancing

A Pre/Early Pandemic Cluster Transition (PEPCT) stool

analysis was performed to identify factors that are associated

with samples changing their cluster membership between pre-

and early pandemic time points. “Departer” samples were

defined as those samples that left their starting pre-pandemic

cluster for another cluster by their early pandemic time point.

“Arriver” samples were defined as those samples that were new

additions to a cluster in the early pandemic time point. When

the hierarchical clustering was cut to k = 3 clusters the departers
Frontiers in Cellular and Infection Microbiology 07
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from the second cluster (cl = 2 of k = 3) consisted of fewer

females (p-val < 0.001). Based on cluster influencer analysis, the

distinguishing taxonomic member of this cluster was

Bacteroides. When the hierarchical clusters were cut to k = 6,

the departers from the second cluster (cl = 2 of k = 6) were

associated with more COVID-19 worries (p-val = 0.006). The

distinguishing members of this cluster were Akkermansia

Oscillospiraceae UCG_002, Bacteroides, Alistipes, Prevotella,

and others. Clusters with arriving samples with significant

associations included (cl = 3 of k = 6) that were associated

with fewer COVID-19 worries (p-val < 0.001). This cluster was

distinguished by Bacteroides , Faecalibacterium , and

Agathobacter. Samples from asthma subjects were associated

with arrival in (cl = 1 of k = 2) (p-val = 0.009). The distinguishing

taxa of this cluster were Prevotella and Prevotellaceae_uncl.
TABLE 1 Questionnaire Descriptive Statistics Summary.

Variable Categories Mean (95% CI: LB, UB) [N] Question ID

1.) Age 61.505 (60.285, 62.726) [582] Q1

2.) Sex Male 0.455 (0.415, 0.497) [266] Q2

Female 0.545 (0.503, 0.585) [318]

3.) Ethnicity Black 0.068 (0.049, 0.091) [40] Q3

Other 0.087 (0.065, 0.112) [51]

4.) Education Level 1 range [0, 5] 2.642 (2.538, 2.746) [586] Q5

5.) Health 2 range [0, 4] 2.342 (2.265, 2.42) [587] Q7

6.) Fever (past year) Yes 0.128 (0.101, 0.158) [72] Q10

7.) Exercise Pre-Pandemic (>1x/week) Yes 0.642 (0.602, 0.681) [377] Q11

8.) High Blood Pressure Yes 0.453 (0.412, 0.494) [265] Q12a

9.) Diabetes Yes 0.116 (0.091, 0.145) [68] Q12b

10.) Sleep Apnea Yes 0.193 (0.162, 0.228) [113] Q12h

11.) Asthma Yes 0.156 (0.127, 0.188) [91] Q12j

12.) Cancer (active treatment) Yes 0.070 (0.051, 0.094) [41] Q12l

13.) Immune System Disease (excluding HIV) Yes 0.281 (0.245, 0.319) [164] Q12n

14.) Smoking History Yes 0.502 (0.46, 0.543) [293] Q13

15.) Sum of Ailments range [0, 10] 1.053 (0.914, 1.191) [588] Q17

16.) GAD7 Anxiety Score range [0, 21] 2.827 (2.512, 3.141) [588] Q20

17.) PHQ9 Depression Score 3 range [0, 24] 2.621 (2.33, 2.912) [588] Q21

18.) ISI Sleep Survey range [0, 28] 11.316 (10.928, 11.705) [588] Q22

19.) Exercise Early Pandemic (>1x/week) Yes 0.708 (0.668, 0.745) [402] Q26

20.) Sum of COVID-19 Worries range [0, 15] 5.184 (4.958, 5.409) [588] Q38, Q39, Q41

21.) Social Distancing 4 Yes 0.930 (0.907, 0.95) [547] Q42

22.) Change in Diet 5 range [0, 4] 0.683 (0.605, 0.762) [584] Q46

23.) Number Cohabitants 6 range [0, 3] 1.434 (1.338, 1.531) [587] Q47

24.) Number of Pets 6 range [0, 3] 0.920 (0.834, 1.005) [587] Q48
1Education Level coding: 0 = “did not graduate from high school” to 5 = “doctorate”.
2Health coding: 0 = “poor” to 4 = “excellent”.
3Last PHQ9 item (suicide) was omitted from questionnaire.
4Either Social Distance or Working From Home.
5Coding: 0 = “not at all” to 4 = “ a lot”.
6Coding: 0 = “none” to 3 = “3 or more”.
This table contains a summary of the variables included in the analyses that were based on the questionnaire responses. The category or range of values, mean, 95% CI, N, and question
identifier have been reported for each variable. Note that the subset of subjects that were used in the stool or saliva analyses depended on matching samples. This table represents the
descriptive statistics from all the questionnaire responders, regardless of whether they could be included in the stool or saliva samples analyses.
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Samples from subjects with cancer, arrived at (cl = 2 of k = 5) (p-

val = 0.005) which was distinguishable by Akkermansia,

Osci l lospiraceae UCG_002 , Prevote l la , Bacteroides ,

Escherichia_Shigella, and others. Arrivers in cluster (cl = 1 of k

= 2) were positively associated with social distancing (p-val =

0.009). See Supplemental Materials for additional descriptions

and figures supporting this analysis. Clusters were considered

from k = 2 to k = 6, after which individual clusters sizes became

too small to associate factors with.
Early pandemic cross-sectional analysis
for stool

The early pandemic cross-sectional (EPCS) for stool focused

on identifying associations between questionnaire responses and

changes in the microbiota, while controlling for age, sex, and

days into the early pandemic.

Differences in diversity were associated with immune system

disease and age. A decrease in diversity was found in association

with immune system disease (Tail: p−val = 3.69 ×10−8; Shannon:

p−val = 1.83×10−6). Age was associated with an increase of

diversity (Tail: p−val = 0.000263; Shannon: p−val = 0.000301).

At less significance, health was associated with increased

diversity (Tail: p−val = 0.0246; Shannon: p−val = 0.0282).

GAD7 Anxiety was associated with increased Shannon
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diversity (p−val = 0.0676). Pre-pandemic exercise was

associated with increased diversity (Tail: p−val = 0.0886;

Shannon: p−val = 0.0689).

Effects on Inter-sample distance were small, but associated

with BMI, age, health, sex, and immune system disease. EPCS

analysis of stool microbiota using PERMANOVA revealed a

number of significant associations, although all the effect sizes

were relatively small with the greatest R2 at 0.0148 for days

into the early pandemic (p-val = 3.704×10−5), followed by

BMI (p−val = 1.5925×10-3), age (p−val = 3.704×10-4), health

(p−val = 5.185×10-04), female (p−val = 3.704×10−5), immune

system disease (p−val = 3.704×10−5), social distancing and

working from home (p−val = 6.2738×10-2).

Differences in taxonomic abundances were associated with sex,

age, immune system disease, and BMI. The EPCS stool microbiota

analysis using taxonomic abundance as a response identified many

significant associations (p-values < 0.001). These included

associations with sex (female): Prevotellaceae uncl (negative, p−val

= 2.84×10−10), Prevotella (negative, p−val = 2.31×10-4), and

Bacteroides (p−val = 7.91×10-4); an association with Age: Alistipes

(p−val = 8.09×10−6); immune system disease: Oscillospiraceae

UCG_002 (negative, p−val = 9.17×10−6), Subdoligranulum

(negative, p−val = 1.57×10−5), Ruminococcus (negative, p−val =

1.62×10-4), Lachnospiraceae_NK4A136_grp (negative, p−val =

6.28×10-4), and Fusicatenibacter (negative, p−val = 8.06×10-4);

days into the early pandemic: Prevotella (negative, p−val =
FIGURE 2

Stool and Saliva Pre- and Early Pandemic Paired MDS plots. These multi-dimensional scaling (MDS) plots illustrate each subject’s taxonomic
compositional similarity between pre- and early pandemic samples in context with the samples of the cohort. The left and right panels
represent the intra-cohort separation of stool and saliva samples, respectively. The green “pre” and blue “early” labels indicate the MDS
estimated locations of pre- and early pandemic samples, respectively. A grey line connects pre- and early pandemic samples from the same
subject. The blue and green circles represent the centroids of the pre- and early pandemic samples. After controlling for questionnaire
responses, the bootstrapped regression identified that pre- vs early pandemic samples had a statistically significant separation (coef = 1.1404, p-
val < 0.0001), but saliva did not (coef = 0.1421, p-val = 0.8461).
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1.58×10-4) and Prevotellaceae_uncl (negative, p−val = 4.88×10-4)

and with BMI: Bacteroides (p−val = 6.24×10-4) and

Lachnoclostridium (p−val = 6.46×10-4).
Saliva specimens for 16S rRNA
gene sequencing

The sample size available for saliva was 218 early pandemic

cross-sectional subjects and 89 subjects for the pre/early

pandemic paired analyses. The decrease of BMI of subjects

with paired saliva samples was not statistically significant:

median dBMI = 0, 95% PI = (-2.434, 3.002). The median and

95% Prediction Interval (PI) of the pre- and early pandemic days

were 520 (55, 907) and 172.5 (117,220), respectively.
The pre/early pandemic paired analysis
for saliva

The Pre/Early Pandemic Paired (PEPP) analysis for saliva

samples identified fewer significant associations (p-value < 0.1)

than the stool samples. Overall composition for the pre-

pandemic and early pandemic saliva samples can be found in

Supplemental Figure 1, “Paired Compositional Stacked

Bar Plots”.

Diversity was stable between time points. While multiple

associations were identified between saliva microbiota and

diversity, only the positive association with immune system

disease when measured by the Tail statistic (p−val = 0.0116)

was strong. Marginally significant associations (p-value < 0.10)

were also found with the Tail statistic that could corroborate

significant associations found in other analyses: education level

(negative, p−val = 0.06866), depression (p−val = 0.071907),

number of cohabitants (negative, p−val = 0.097342), and

anxiety (negative, p−val = 0.098607). The intercept was not

significantly non-zero for Tail (b0 = −3.875, p-val = 0.1759) nor

the Shannon diversity index (b0 = −0.9160, p-val = 0.147).

Pre-to-early pandemic inter-sample distances were

marginally associated with social distancing and COVID-19

worries. The paired distance analysis using saliva samples

identified a positive association with social distancing (p-val =

0.0262) and to a lesser extent, a negative association with

COVID-19 worries (p-val = 0.0754).

COVID-19 worries associated with Oribacterum and

Campylobacter abundances. Increased taxonomic abundances of

saliva microbiota were associated between COVID-19 worries and

Oribacterium (p−val = 0.00299) and Campylobacter (p−val

= 0.00853).

The cluster transition analysis did not yield any significant

associations with p-val < 0.01.
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Saliva cross-sectional analyses

Associations with diversity were marginal except for BMI.

The EPCS saliva microbiota had marginal associations (p-values

< 0.1) with diversity. Early pandemic BMI was associated with

increased diversity (Tail: p−val = 0.015042; Shannon: p−val =

0.01897). High blood pressure was associated with decreased

diversity (Shannon: p−val = 0.08730). Anxiety was associated

with increased diversity (Tail: p-val = 0.02655; Shannon: p-val =

0.05952). Number of pets was associated with less diversity

(Shannon: p-val = 0.05164).

Greater inter-sample distances between subjects were

associated with health and smoking history. The PLCS saliva

microbiota PERMANOVA analysis identified associations with

days into early pandemic (p−val = 0.00030), health (p−val =

0.00030), smoking history (p−val = 0.00278), and less

significantly with COVID-19 worries (p−val = 0.05685) and

the number of pets (p−val = 0.04555).

Differences in taxonomic abundances were associated with health,

high blood pressure, diabetes, COVID-19 worries and asthma. The

PLCS saliva microbiota analysis using taxonomic abundances

identified several associations that could support the underlying

differences in diversity and distancing. Days into the early pandemic

was found to be negatively associated with Streptococcus (p−val <

0.00001), but positively associated with Bergeyella (p−val = 0.00063),

Capnocytophaga (p−val = 0.00165), and Oribacterium (p−val =

0.00912). Health was positively associated with Neisseria (p−val =

0.00007), Alloprevotella (p−val = 0.00613), and Veillonellaceae_uncl

(p−val = 0.00719). High blood pressure was negatively associated

with Capnocytophaga (p−val = 0.00039), Fusobacterium (p−val =

0.00374) and Bergeyella (p−val = 0.00986). Diabetes was associated

with increased Veillonella (p−val = 0.00294). COVID-19 worries

were negatively associated with Lactobacillus (p−val = 0.00501).

Asthma was positively associated with Yersinia (p−val = 0.00557).
Comparison of changes in stool and
saliva microbiota profiles between pre-
pandemic and early pandemic samples
revealed stool microbiota communities
were more stable

An analysis of the cluster membership stability was

performed separately for stool (n=288) and saliva (n=89)

sample types. For each sample type, pre- and early pandemic

samples were hierarchically clustered together. The resultant tree

was then iteratively cut from k = 2 to 7 clusters and resultant

memberships were evaluated. When both pre- and early

pandemic samples were in the same cluster, for a specific k,

then the subjects’ early pandemic samples were considered to

have “remained” in the same cluster as the pre-pandemic
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sample. Figure 3, “Cluster Transition Scatter Plot” illustrates the

cluster member relationships between pre- and early pandemic

samples. The proportion of samples that remained in the sample

cluster is plotted across the cuts (k) in Figure 4, “Samples

Remaining in Pre-pandemic Cluster”. At k = 2, 93.8% of early

pandemic stool samples were clustered with their pre-pandemic

sample, while only 74.2% of saliva samples shared their pre-

pandemic cluster. At k = 7, 48.6% and 28.1% of stool and saliva

samples, respectively, were had their pre-pandemic and early

pandemic samples clustered together. Early pandemic stool

samples were consistently closer to their pre-pandemic

samples than saliva samples.

Please refer to Supplemental Table 2, “Associations with

Stool and Saliva Samples” for a complete table of coefficients and

p-values for all models reported in this Result section.
Discussion

Although effects of COVID-19 pandemic changes in human

social behaviors and hygiene patterns on human microbiota and

their potential interactions with the host have been postulated to

include loss of diversity, they remain largely understudied. An

important outcome of our study design was the ability to

examine matched stool and oral sample pairs from the same

individual taken from the pre-pandemic to early pandemic time

points (PEPP model). Here we examined dynamic changes in

alpha (within sample) diversity, and compositional changes

using both measures of inter-sample distances (beta diversity)

and relative taxonomic abundance. We related these diversity,

distance, and abundance measures to participant questionnaire

responses to determine associations with the microbiota that

may have been potentiated by factors related to pandemic

minimization strategies or implicit subject habits. We also

examined ecological stability through pre-pandemic to early

pandemic cluster transition (PEPCT) analysis. Finally, cross-

sectional analyses of early pandemic (EPCS model) microbiota

profiles from stool and saliva were examined to elucidate

associations with health and lifestyle behavior providing a

“snapshot” of these relationships at a time of heightened

pandemic awareness and for the identification of study

variables that may be proxies of other pre-pandemic behaviors

or other lifestyle characteristics not directly measured in

this study.

Early during the pandemic (2020), it was quickly established

that individuals with certain comorbidities, such as hypertension

or diabetes mellitus (Sanyaolu et al., 2020; Zhang et al., 2020),

were at a greater risk for COVID-19 complications. As a result,

individuals in our cohort (of which over half reported at least

one underlying comorbidity) may have followed the

recommended precautionary guidelines more strictly.

Therefore, effects of the viral transmission strategies may have

resulted in more substantial lifestyle changes in these individuals
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FIGURE 3

Cluster transition plot for Stool at k=6 and Saliva at k=4. Cluster
transition plots provide a visualization of the degree to which an
early pandemic sample’s composition has changed relative to its
pre-pandemic composition to warrant a change in its cluster
membership. Hierarchical clustering and tree cutting (to form
discrete clusters) is inherently an iterative process. In this figure,
only one slice at k = 6, for stool, and k = 4, for saliva (labeled on
the top left of each plot), were selected for illustrative purposes,
although cuts k from 2 to 7 were also calculated. The
dendrogram from hierarchically clustering of pre- and early
pandemic samples are drawn on the top and left margins. The
left margin dendrogram have pre-pandemic samples colored by
their cluster identifier, while early pandemic samples are colored
grey. Similarly, but complementarily, the top margin dendrogram
has early pandemic samples colored by cluster identifier, but
pre-pandemic samples are colored grey. In the field of the plot,
each point represents the intersection of pre- and early
pandemic samples. If both pre- and early pandemic samples are
in the same cluster, then they are colored by their cluster
identity, otherwise they are colored grey. Gridlines are drawn in
the field to help identify cluster boundaries. When pre- to early
pandemic samples have changed less in their composition, their
points will be colored and lie across a diagonal from bottom-left
to top-right. Examples of noteworthy observations from the
stool transition plot includes the number of pre-pandemic
cluster 6 (Bacteroides and Escherichia Shigella) members that
have moved into cluster 4 (Bacteroides, Faecalibacterium) early
pandemic, or that none of the pre-pandemic members of
cluster 1 (Prevotella, Prevotellaceae, and Lactobacillus) have
moved into cluster 6. Comparing the stool and saliva cluster
transition plots provides a visualization of the stronger
coherence of early pandemic samples to their pre-pandemic
counterparts in stool.
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relative to the general population. The analyses of questionnaire

responses did not identify a significant correlation between

social distancing and work-from-home strategies with

COVID-19 worries, as the ability to social distance may have

depended more on socio-economic conditions (Garnier et al.,

2021) rather than personal choice. From questionnaire

responses, social distancing was negatively correlated with age,

but positively correlated with asthma and COVID-19 worries.

Although both saliva and stool taxonomic profiles from

matched pairs trended towards decreased (alpha) diversity, overall,

from the pre-pandemic to early pandemic time points (PEPP)

model, the effect was not statistically significant. In part, this

finding could be due to the relatively early pandemic sampling

dates. Therefore, the associations identified in this study may be

limited to those factors with acute effects. In the paired analyses, the

median days into the early pandemic were 162 days for stool and

172.5 days for saliva. Nonetheless, this is an interesting finding given

that our cohort is older and over half of participants reported at least

one comorbidity, as loss of microbiota diversity is often reported to

be associated with increasing age and chronic disease (Sun et al.,

2021; Ceballos et al., 2021).

Applying the pre-pandemic to early pandemic time points

(PEPP) model to stool microbiota, changes in diversity were

associated with changes in BMI, smoking history, and pet

ownership. From our questionnaire, smoking history was reported,

however changes in smoking habits from the pre-pandemic to early
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pandemic time periods could not be determined. Therefore, it is not

clear why smoking history would decrease diversity during the early

pandemic unless smoking frequency increased for this group, or if it

was a proxy for another behavior. In a separate study, it was reported

that during the “lockdown” phase, alcohol consumption increased,

but more subjects tried to quit smoking (Jackson et al., 2021).

Overall, if we assume that decreased social contact and increased

hygiene measures (e.g., hand washing) can decrease diversity, then

our study suggests that other factors (e.g., household pets) and those

implied but not directly measured (e.g., diet) may offset these

potential losses in diversity. It has also been recognized that

humans can share microorganisms through social interactions,

cohabitation, and exchanges with both the natural and built

environments (Tong et al., 2021; Peimbert and Alcaraz, 2022).

Previous reports have also identified microbiota associations with

pet ownership were also found in conjunction with stool studies

(Kates et al., 2020) and our study suggests that pets may be an

important reservoir of microbes in humans, a relationship that may

be heightened in periods of decreased social contact.

In addition to examining diversity, the pre-pandemic to early

pandemic time points (PEPP) model for stool microbiota profiles

also examined changes to composition as measured by paired

sample distances (beta diversity) or by specific ALR-transformed

taxonomic abundances. The analysis of stool microbiota paired

distances found associations with pre-pandemic BMI, health,

diabetes, immune system pathology, and number of cohabitants.
FIGURE 4

Comparison of Proportion of Subjects Changing Clusters between Stool and Saliva. These two curves illustrate the change in the proportion of
early pandemic samples that remain in the same cluster as their pre-pandemic sample, for stool (blue) and saliva (green) samples. As the
hierarchically clustered samples are cut from k = 2 to 7 clusters, the cluster sizes decrease and become more exclusive. Thus, any two samples
that are in the same cluster when k = 7 are more similar to each other, than when k was smaller, e.g., 2. Across all cuts k, the early pandemic
stool samples tend to be consistently closer to their pre-pandemic mates, than the saliva samples. At k = 2, the proportion of pre- and early
pandemic stool samples that in the same cluster are 93.8%, compared to 74.2% in saliva. At k = 7, 48.6% of stool vs. 28.1% of saliva pre- and
early pandemic samples are collocated in the same cluster.
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Multiple changes in specific taxonomic abundances were associated

with immune system disease, asthma, pre-pandemic BMI and

changes in BMI, diabetes, depression, and education level. These

results are consistent with previous findings such as a 2018 study by

Rothschild and colleagues (Rothschild et al., 2018) which determined

that genetic ancestry or individual polymorphic variants in families

were minor contributors to gut microbiome composition (<2%), in

contrast to more than 20% of the variance in microbiome diversity

attributed to shared environmental, diet and lifestyle factors.

The microorganisms identified by paired sample distances or by

specific ALR-transformed taxonomic abundances using the pre-

pandemic to early pandemic time points (PEPP) model for stool

microbiota profiles were polymicrobial in nature, however the

associations almost exclusively consist of genera assigned to the

dominant phyla found in the human gut, Bacteroidetes and

Firmicutes. This finding suggests that this diverse set of organisms

is likely to be involved in multiple human gut metabolic processes.

These are likely to include the production of short chain fatty acids

(Silva et al., 2020) and secondary bile acids which have been

implicated in neuro-immunoendocrine regulation affecting both

physical and mental health status (Romanı-́Pérez et al., 2021) as

well as other metabolic processes that warrant future investigation.

The pre-pandemic to early pandemic time points (PEPP) model

used to examine saliva microbiota profiles, identified contrasting

associations. Social distancing led to increased changes in

composition, while COVID-19 worries were associated with a

decrease in compositional distance, between samples from the

same individual. The apparent opposition of these associations

exemplifies the complexity of these host behaviors in host-

microbiota interactions. While many studies have focused on the

role of the microbiome in the gut-brain axis, findings in the current

study suggest that saliva microbiota may in part be important

contributors to, or markers of anxiety, stress, and general mental

health. For example, it has been demonstrated that chronic

psychological distress can depress diurnal secretion levels of

salivary glucocorticoid and catecholamines (Miller et al., 2007) as

well as alpha-amylase (Nater et al., 2007). Glucocorticoids, as

corticosteroids, are involved in carbohydrate, protein, and fat

metabolism and exhibit anti-inflammatory activity. As

neurotransmitters, catecholamines, have been shown to moderate

gut microorganisms (Huang et al., 2015) and may perform similar

roles within the oral cavity.

Overall, paired analyses generally found fewer significant

associations with saliva relative to stool microbiota. This result

may in part be attributable to the smaller sample size available for

the saliva analysis. However, biologically this finding may indicate

that the collective effects of the variables measured within the

timeframe of this study were less influential or acted more in

opposition to one another in saliva microbiota relative to their

stool counterparts. In addition, microbiota recovered from saliva

represent an amalgam of habitats in the oral cavity, and the oral

cavity has direct contact with the external environment, all factors

that can result in greater sample variability.
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The pre-pandemic to early pandemic cluster transition

(PEPCT) analysis identified that overall, from the same

subject, the microbiota profiles from both stool and saliva,

from an ecological standpoint (Relman, 2012), were largely

stable from pre-pandemic to early pandemic time periods with

stool more stable relative to saliva. In the stool samples,

departers (samples from individuals that left their pre-

pandemic cluster assignment) were associated with sex

(female) and COVID-19 worries. Most arrivers (samples from

individuals that changed to new early pandemic cluster

assignments) were associated with asthma and cancer and

social distancing. These associations further support the

finding that perturbations to the stool microbiota from the

pre-pandemic to early pandemic period were associated with

individuals reporting more issues with physical health. The

association with COVID-19 worries however, may be an

indicator of possible changes with mental health status or

alternatively, it may be a proxy for other behaviors not

measured directly in this study.

Further the pre-pandemic to early pandemic cluster

transition (PEPCT) analysis provided an opportunity to

identify “local shifts” or changes in microbiota composition

from a subset of the cohort in relation to study variables. For

instance, increased cancer diagnoses were associated with

individuals that departed multiple pre-pandemic clusters but

arrived in one early pandemic cluster for which cluster

influencing bacteria include Akkermansia and Escherichia-

Shigella. Consistent with these findings, Escherichia has been

associated with promotion of colorectal and other cancers

(Dalmasso et al., 2014), while Akkermansia has been linked to

the potentiation of anti-CTLA-4 and anti-PD-1 immunotherapy

(Miller and Carson, 2020). More recently, both microorganisms

(Jayachandran et al., 2020) were found to be increased in

abundance in individuals with stable non-small cell lung

cancer while undergoing immunotherapy (He et al., 2021).

In a contrasting example, the pre-pandemic to early pandemic

cluster transition (PEPCT) analysis was able to provide insights into

specific taxa related to changes in COVID-19 worries Here the

cluster influencers changed from a diverse pre-pandemic set of

bacteria including Akkermansia, Oscillospiraceae UCG_002,

Bacteroides, Alistipes and Prevotella, to a reduced set of cluster

influencers consisting of Bacteroides, Faecalibacterium and

Agathobacter. Bacteroides are well-known for their metabolic

complexity and roles in many important metabolic activities in the

human colon including a prodigious capacity to catabolize complex

host and diet derived carbohydrates, as well as production of

propionate, use of proteins and other nitrogenous compounds,

and transformation of bile acids and other steroids (Zafar and

Saier, 2021). As such, Bacteroides often support many interspecies

cross-feeding interactions including other short chain fatty acid

producers such as Faecalibacterium and Agathobacter (Rodriguez-

Castaño et al., 2019). Faecalibacterium (Li et al., 2008) is an

important producer of butyrate while Agathobacter fermentation
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products include butyrate, acetate, hydrogen, and lactate (Rosero

et al., 2016). The functional significance of these microbiota

compositional patterns in relation to increased COVID-19 related

worries cannot ultimately be determined in this study and they could

also reflect other behaviors such as pandemic-related dietary

changes. However, this shift in microbiota may in part result in

changes in the composition and concentration of the gut short chain

fatty acid pool and other microbially-mediated metabolites

consistent with results from the paired differences analyses (PEPP

models). Among other biological functions, short chain fatty acids

have been identified as a critical mechanism of gut-brain

communication and may be relevant to the increased

psychological distress reflected in greater worries about the

COVID-19 pandemic (Ortega et al., 2022).

When applying the cross-sectional analyses of early pandemic

(EPCS) model to microbiota profiles, contrasting associations were

determined both between sample types (stool and oral) and with the

previously discussed pre-pandemic to early pandemic time points

(PEPP) model from both stool and oral samples. Relationships with

stool microbiota largely corroborated previously identified

microbiota associations with age (Yatsunenko et al., 2012; de la

Cuesta-Zuluaga et al., 2019), anxiety (Foster and McVey Neufeld,

2013), health, exercise (Clauss et al., 2021), and immune system

disease in studies undertaken prior to the COVID-19 pandemic.

According to inter-sample distance measures, lifestyle changes, as

represented by both social distancing and working from home, had a

significant effect on the microbiota composition as a whole.

Interestingly, these effects were not detected in the paired analyses

of pre-pandemic to early pandemic time points. This finding may

suggest that these associations instead serve as proxies for other pre-

pandemic behavioral or other lifestyle characteristics that could be

identified by their subsequent acceptance of advised changes in social

distancing or work-from-home patterns during the early pandemic.

Regardless of analytical method, changes in stool microbiota

diversity and composition from the cross-sectional examinations

were consistently related to age and more immune system

disturbances. In contrast, cross-sectional analyses of early

pandemic microbiota profiles from saliva (EPCS) model, identified

fewer significant associations with diversity and a different set of

variables related to compositional changes offering novel insights

into to the effects of lifestyle and behavioral perturbations on the

microbiota with influences from smoking history, COVID-19

related worries and the number of pets per household.

Strengths of our study include the relatively large number of

subjects with matching pre- and early pandemic samples for

both stool and saliva. The existence of an ongoing microbiome

biospecimen collection and surveillance system, allowed us to

rapidly integrate a COVID-19 study specific design, both quickly

and practically, through sample self-collection and remotely

conducted questionnaires. Analogous to long-term ecological
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monitoring of the environment (Vergin et al., 2013; Karl and

Church, 2014), our findings argue for the importance of long-

term surveillance of the human microbiome to improve the

ability to monitor future potential population-wide

perturbations. Further, the collection of subject covariates (e.g.,

BMI, age, sex, smoking, etc.) that were included into our models

and are crucial to control for in microbiome studies, improved

the confidence of the associations made with the questionnaire

responses. While self-reported responses to questionnaires can

have limitations compared to objective biomarkers (Boparai

et al., 2018), we confirmed that measures of health status were

consistent with clinical records.

We recognize that the study has several limitations. While

the use of 16S rRNA gene sequencing, as a means to estimate the

taxonomic composition of each sample can be conducted

relatively quickly and with use of fewer resources, it does not

measure biological function directly and therefore is limited in

its ability to identify functional interactions with the host.

Additional assays to elucidate potential, latent, and active

metabolic process, through additional multi-omics approaches

such as metagenomics, metatranscriptomics, metabolomics and

personal genomic information, would provide a means to test

more narrowly proposed hypotheses governing the underlying

the associations determined in this study. In addition, given the

rapidly changing nature of the pandemic, there may have been

subsequent changes in the microbiome that we did not capture.

In future works of this nature, the questionnaire could be refined

by including multiple alternatively worded redundant questions

that can be later combined for robustness, and by excluding

some questions that may have ambiguous or unnecessary

distinctions towards hypothetical physiological outcomes. We

also lacked data on diet and other factors that might have

influenced the microbiome.

In conclusion, our study examined changes in stool and saliva

microbiota diversity and composition that may be attributable to

social and lifestyle behavior mitigations from pre-COVID-19 to

early pandemic time points in individuals who were not infected

with SARS-CoV-2. While there was a trend towards a decrease in

stool and saliva microbiota diversity, this change was not

significant between pre-pandemic and early pandemic periods.

Collectively, our analyses support the notion of relative ecological

stability in stool and saliva microbiota taxonomic profiles (with

higher stability found in stool) from the pre-pandemic to early

pandemic periods. Greater changes in microbiota diversity and

taxonomic profiles were associated with more questionnaire

reported health issues including immune system disturbances,

asthma, and cancer, or with greater worries related to the COVID-

19 pandemic. Therefore, managing underlying comorbidities and

psychological distress such as worries about the pandemic may be

important for maintaining beneficial host-microbiome
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interactions. Our study highlights the importance of longitudinal

sampling of large observational cohorts as a valuable tool to

examine the status of the microbiome over time in response to

pandemics and changes in public health measures.
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Characteristics of lower
respiratory tract microbiota
in the patients with post-
hematopoietic stem cell
transplantation pneumonia

Yukun He1, Jia Li1, Wenyi Yu1, Yali Zheng1,2, Donghong Yang1,
Yu Xu1, Lili Zhao1, Xinqian Ma1, Pihua Gong1*

and Zhancheng Gao1*

1Department of Respiratory and Critical Care Medicine, Peking University People's Hospital,
Beijing, China, 2Department of Respiratory, Critical Care, and Sleep Medicine, Xiang'an Hospital of
Xiamen University, School of Medicine, Xiamen University, Xiamen, China
Background: Pneumonia is a leading cause of non-relapse mortality after

hematopoietic stem cell transplantation (HSCT), and the lower respiratory tract

(LRT) microbiome has been proven to be associated with various respiratory

diseases. However, little is known about the characteristics of the LRT

microbiome in patients with post-HSCT compared to healthy controls (HC)

and community-acquired pneumonia (CAP).

Methods: Bronchoalveolar lavage samples from 55 patients with post-HSCT

pneumonia, 44 patients with CAP, and 30 healthy volunteers were used to

detect microbiota using 16S rRNA gene sequencing.

Results: The diversity of the LRTmicrobiome significantly decreased in patients

with post-HSCT pneumonia, and the overall community was different from the

CAP and HC groups. At the phylum level, post-HSCT pneumonia samples had a

high abundance of Actinobacteria and a relatively low abundance of

Bacteroidetes. The same is true for non-survivors compared with survivors in

patients with post-HSCT pneumonia. At the genus level, the abundances of

Pseudomonas, Acinetobacter, Burkholderia, and Mycobacterium were

prominent in the pneumonia group after HSCT. On the other hand, gut-

associated bacteria, Enterococcus were more abundant in the non-survivors.

Some pathways concerning amino acid and lipid metabolism were predicted to

be altered in patients with post-HSCT pneumonia.

Conclusions:Our results reveal that the LRT microbiome in patients with post-

HSCT pneumonia differs from CAP patients and healthy controls, which could
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be associated with the outcome. The LRT microbiota could be a target for

intervention during post-HSCT pneumonia.
KEYWORDS

hematopoietic stem cell transplantation, pneumonia, bronchoalveolar lavage, lower
respiratory tract, microbiome
Introduction

Hematopoietic stem cell transplantation (HSCT) is a

potentially curative method of treating hematologic and

lymphoid malignancies (Harris et al., 2016). Overall survival

following HSCT has significantly improved due to advances in

transplant management (Gooley et al., 2010). The success of

allogeneic HSCT, however, is hindered by certain complications

(Bergeron and Cheng, 2017). Of all the organ-specific

complications that can occur after HSCT, pneumonia is more

complicated and difficult to treat and has been reported in 30-

60% of HSCT recipients (Kader et al., 1994; Kotloff et al., 2004;

Peters and Afessa, 2005; Lucena et al., 2014). Pneumonia,

including community-acquired pneumonia (CAP) and

hospital-acquired pneumonia (HAP), can occur early or late

after the procedure, including during the pre-engraftment

(neutropenic) phase and the early and late post-engraftment

phases (Chi et al., 2013; Ahya, 2017; Bondeelle and Bergeron,

2019). Despite advances in posttransplant prevention support

care, pneumonia remains a leading cause of non-relapse

mortality after HSCT (Nusair et al., 2004; Choi et al., 2014;

Harris et al., 2016; Zhou et al., 2019). A growing body of

evidence suggests that gut microbiota is associated with

pulmonary complications (PCs) after HSCT and transplant-

related mortality (Taur et al., 2014; Harris et al., 2016; Golob

et al., 2017), yet little is known about how lung microbiota is

associated with disease status (Huang et al., 2013).

Advances in molecular methods and the advent of next-

generation sequencing technologies have revealed that the lungs

harbor complex and diverse bacterial communities (Charlson

et al., 2011; Dickson et al., 2017; Huffnagle et al., 2017; Pattaroni

et al., 2018). The potential role of the lung microbiome in

respiratory pathology is increasingly being recognized

(Dickson et al., 2016a; Invernizzi et al., 2020). Several studies

have focused on defining lung microbiome composition in both

healthy (Dickson et al., 2017) and diseased subsets (Dickson

et al., 2014; Jorth et al., 2019; Singanayagam et al., 2019). The

composition of the healthy lung microbiome may be depended

on the neutral distribution of microbes from the oral cavity.

Whereas microbiomes in diseased lungs may be associated

strongly with increased selection of specific microbes,
02
53
potentially reflecting possible microbiome alterations

happening in its source environment at the same time

(Hubbell, 2010; Venkataraman et al., 2015).

The balance of the lower respiratory tract (LRT) microbiome

community in HSCT recipients is affected by multiple factors,

including the impairment of host defenses through myeloablative

conditioning, derangements in pulmonary immune responses, and

multiple treatments, such as corticosteroid usage, and antibiotic

usage (Gooley et al., 2010; Harris et al., 2016; Zinter and Hume,

2021), which collectively shape the respiratory microbiome. While

the importance of the lungmicrobiome has already been proposed

in the context of HSCT recipients with post-HSCT PCs (O’Dwyer

et al., 2018), the characteristics of lung microbiota in HSCT

recipients with pneumonia were less reported due to the complex

conditions after HSCT. Moreover, the differences in lung

microbiota related to the outcomes were undetermined.

Therefore, we hypothesize that patients with post-HSCT

pneumonia possessed lung microbiota that differs from that of

healthy control subjects and CAP patients with normal immune

function and lung microbiota could be differed in different clinical

outcomes of patients with post-HSCT pneumonia.

To clarify the composition and putative function of the lung

microbiota of patients with post-HSCT pneumonia, we applied

16S ribosomal ribonucleic acid (rRNA) gene sequencing to

bronchoalveolar lavage fluid (BALF) samples from 55 patients

with post-HSCT PCs, 44 patients with CAP, and 30 healthy

control subjects (HCs).
Materials and methods

Study population

This study received ethics approval from the Ethical Review

Committee of Peking University People’s Hospital (No.

2016PHB202-01). The study was performed in accordance

with the Declaration of Helsinki. Written informed consent

was obtained from all participants prior to clinical data

collection and sampling.

A retrospective analysis was conducted for 55 patients with

post-HSCT pneumonia (including CAP and HAP). Among
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them, patients who died after treatment were defined as non-

survivors. Additionally, 30 healthy volunteers from the medical

center were enrolled in the HC group voluntarily, and 44

immunocompetent CAP patients were recruited as disease

control subjects. All participants were enrolled from Peking

University People’s Hospital between April 2014 and August

2017. CAP and HAP were defined according to the published

standards (Mandell et al., 2007; Kalil et al., 2016; Cao et al.,

2018). Subjects with other pulmonary diseases, or tumors were

excluded, and healthy volunteers taking antibiotics or hormones

for the last three months were excluded (Charlson et al., 2011).

General participant demographics, including age, gender,

complications, laboratory findings, and clinical treatments,

were collected from medical record system using a standard

form. BALF was detected for routine microbiological

examination, including routine culture, virus quantity

polymerase chain reaction (qPCR), GeneXpert, 1,3-b-D glucan

test, and galactomannan test. Baseline characteristics and clinical

indicators of patients were listed in Table 1 and e-Tables 1-3.
Sample preparation, DNA extraction,
and sequencing

For patients diagnosed with pneumonia, bronchoscopy was

performed as a part of clinical management within 72 h after
Frontiers in Cellular and Infection Microbiology 03
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hospital admission before the ventilation treatments. Detailed

sampling procedures, pretreatment, and storage were performed

as described in previous studies (Zheng et al., 2019; He et al.,

2022). Sampling controls were collected through simulated

bronchoscopy procedures (no patient) using the same

instrument and method. BALF was then centrifuged. Total

DNA was extracted from the BALF precipitate and 500 µL of

the supernatant using the CTAB/SDS method. 16S rRNA genes

of the V3‐V4 region were amplified with pre-validated primers

(Klindworth et al., 2013). Detailed procedure of library

construction was provided in the supplementary materials.

High‐quality libraries were sequenced to 250 bp paired-end

raw reads on the HiSeq2500 platform. The V3-V4 regions

were not amplified in the sampling control. Besides,

contaminants were excluded from this analysis using negative

controls containing only sterile ddH2O and reagents for

extraction and PCR amplification. “Decontam” R package was

applied to further reduce the potential impact of contamination

for low biomass samples using the prevalence method in the

“isNotContaminant” function with thresholds at 0.1 (Davis

et al., 2018; Karstens et al., 2019) (e-Table 4). While all the

steps of sampling, DNA extraction and PCR amplification were

controlled with negative reagents, further analysis was

performed to ensure that the potential risks of contamination

were minimized. The results of this study were compared with

the 92 contamination genera detected in the negative sequencing
TABLE 1 Baseline characteristics and clinical indicators of patients with post-HSCT pneumonia, CAP patients, and health control subjects.

post-HSCT pneumonia (N = 55) CAP (N = 44) HC (N = 30) P-value

Age 34 (28-44.5) 53.5 (37-65.5) 60 (47.5-63.5) <0.001 a,b,

Gender, n, (% male) 40 (72.7) 28 (63.6) 11 (36.7) <0.001

Smokers, n (%) 4 (7.3) 8 (18.2) 0 (0) 0.009

Comorbidities

Diabetes Mellitus, n (%) 6 (10.9) 6 (13.6) 3 (10.0) 0.234

Hypertension, n (%) 15 (32.7) 14 (31.8) 11 (36.7) 0.539

Laboratory Findings

Peripheral blood

WBC (× 109/L) 4.31 (2.80-7.00) 6.40 (5.13-9.73) 6.87 (5.68-8.31) <0.001 a,b

Neutrophils (%) 73.40 (59.80-86.30) 71.87 (63.02-83.02) 61.60 (53.72-64.77) <0.001 a,c

Lymphocytes (%) 16.50 (7.70-27.1) 15.96 (8.92-27.19) 29.98 (24.93-36.83) <0.001 a,c

BAL related

PMN percentages (%) 14.00 (2.00-28.50) 18.00 (1.75-65.50) 1.00 (0.50-2.00) <0.001 a,c

Lymphocyte percentages (%) 33.00 (17.00-53.50) 21.00 (11.00-43.50) 12.00 (8.00-30.75) <0.001 a,

Eosinophil percentages (%) 0.00 (0.00-1.00) 0.00 (0.00-1.00) 0.00 (0.00-1.00) 0.042

Macrophages percentages (%) 42.00 (21.00-67.00) 37.00 (13.50-60.00) 86.50 (64.50-91.00) <0.001 a,c

Inflammatory markers

PCT (mg/L) 0.20 (0.11-0.50) 0.16 (0.05-1.02) 0.05 (0.05-0.09) <0.001 a,c

CRP (mg/L) 30.09 (6.64-76.63) 40.75 (12.12-132.75) 1.37 (0.78-2.81) <0.001 a,c

ESR (mm) 57.00 (27.75-89.00) 39.00 (19.00-61.00) 8.50 (6.00-13.50) <0.001 a,c

PSI 74 (65-88) 72 (51-104) – 0.235
front
a, HSCTvs.HC; b, HSCTvs.CAP; c, CAPvs.HC; HSCT hematopoietic stem cell transplantation; CAP community-acquired pneumonia; CRP, C-reactive protein; ESR, erythrocyte
sedimentation rate; PCT procalcitonin; PSI, pneumonia severity index; PMN, polymorphonuclear leukocyte; WBC, white blood cell.
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blank controls in previous study (Salter et al., 2014). We failed to

detect 61 out of the contaminant genera in our result (e-Table 5).

Among the remaining 31 genera found in our data, 6 genera

were not reported in samples from the respiratory tract but none

had an average relative abundance greater than 0.0002.
Bioinformatics analysis

The high-quality sequencing data was generated by

removing low-quality reads (the quality control rate is less

than 1%), primers, barcodes, and dereplication using

VSEARCH (Rognes et al., 2016). After removing the chimeric

sequences with the UCHIME algorithm (Edgar et al., 2011),

effective reads were obtained and denoised to generate amplicon

sequence variants (ASVs) using unoise3 (Edgar, 2016).

Taxonomy assignment was performed on ASVs based on the

RDP database (v 11.5) (Cole et al., 2014) and the GreenGene

database (DeSantis et al., 2006).The microbiome phenotypes

were predicted by BugBase based on GreenGene annotation

(Ward et al., 2017). PICRUSt2 was used to identify the predicted

associated pathways from the inferred metagenomes of taxa with

the ‘stratified’ mode (Douglas et al., 2020).
Statistical analysis

The abundance-based coverage estimator (ACE) index and

Shannon index were calculated to evaluate alpha diversity using

rarefied data using vegan R package (Jari Oksanen et al., 2020).

The nearest taxon index (NTI) and net-relatedness index (NRI)

were applied to estimate phylogenetic structure of the

community using picante R package (Kembel et al., 2010). The

algorithm was run using 999 randomizations of the community

within the mega-phylogeny applying the “taxa.labels”. Beta

diversity was assessed by permutational multivariate analysis

of variance (PERMANOVA) test, and visualized using principal

coordinate analysis (PCoA). Adonis test was conducted based on

Bray-Curtis distances and Jaccard distances. ASV abundances

were centered with log-ratio transformation prior to analysis.

Differential bacterial taxa among groups were assessed using the

edgeR R package based on centered log-ratio-transformed

genome relative abundance (Robinson et al., 2010). A

multifactorial design within the edgeR R package was used to

adjust confounding factors, such as age, gender, and smoking.

Statistically significant genera differences (LDA > 2, P < 0.05)

associated with different groups were explored using linear

discriminant analysis (LDA) effect size (LEfSe) (Segata et al.,

2011). Spearman’s rho was calculated using the ‘corr.test’

function within the R package. Network analysis was

performed based on read count data at the genus level using

SpeciEasi (Kurtz et al., 2015). The density of the networks was
Frontiers in Cellular and Infection Microbiology 04
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calculated by the “graph.density” function in the igraph

R package.

For clinical indicators, all categorical variables are presented

as numbers (percentages), parametric continuous variables are

presented as the mean ± SD, and nonparametric continuous

variables are presented as median and interquartile ranges

(25th and 75th percentiles). Student’s t-test or analysis of

variance (ANOVA) with post hoc Tukey HSD test were used

to analyze continuous parametric data. Continuous

nonparametric data were analyzed using Mann–Whitney U or

a Kruskal–Wallis test. All categorical data were analyzed using a

chi-square or Fisher’s exact test. All tests were two-sided, p-

values were corrected using Benjamin-Hochberg false discovery

rate (FDR), and p < 0.05 was considered statistically significant.

Statistical analyses were performed using SPSS version

23 software.
Results

Clinical characteristics of the
study population

To explore the clinical characteristics of post-HSCT

pneumonia, we summarized clinical information from 55

subjects. For HSCT patients with pneumonia, the median age

was 34 years old, and 72.7% of them were male. A total of 47.3%

of patients underwent transplantation for acute myelocytic

leukemia (AML). e-Table 1 showed that 18 (32.7%) patients

died. Pneumonia occurred at late post-engraftment phases in 35

(63.6%) patients, and occurred at pre-engraftment (neutropenic)

phase in 4 (7.3%) patients (e-Table 1). The median time from

transplant to the onset of pneumonia was 165 days. The PMN

percentages in the BALF and PCT were significantly elevated in

non-survivors (e-Table 2), suggesting that exacerbated

inflammation may result in poor outcomes in patients with

post-HSCT pneumonia.

Demographic information on the three groups is displayed

in Table 1, along with comorbidities, blood cell counts, BALF cell

counts, inflammatory markers, and the pneumonia severity

index (PSI). Neutrophil percentage, C-reactive protein (CRP),

procalcitonin (PCT) and erythrocyte sedimentation rate (ESR)

levels, and the percentage of polymorphonuclear leukocytes

(PMNs) in the BALF were higher in patients with pneumonia

than in the HC group. In contrast, the lymphocyte percentage in

the peripheral blood and the macrophage percentage in the

BALF were significantly lower. Pathogens were detected in

47.3% of BALF samples with conventional hospital-based

microbiology tests in patients with post-HSCT pneumonia and

65.9% in patients with CAP (e-Table 3). 89.1%, 81.8%, and

54.5% patients with post-HSCT pneumonia received the

antibiotics, antifungals, and Pneumocystis carinii prophylaxis,
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respectively (e-Table 3). Moreover, there was no difference in the

proportion of patients taking antibiotics in the last three months

between the two diseased groups (e-Table 3). and the mortality is

higher in the post-HSCT pneumonia group.
Disturbance of the LRT microbiome

Species accumulation curves and the read counts of samples

revealed that the sequencing was sufficient to describe associated

microbial community (e-Figure 1; e-Table 6). After filtering for

sequence variants in at least two samples with a minimum relative

abundance of 0.05% (Bowerman et al., 2020), 2396 sequence

variants were retained for community analysis. In terms of alpha

diversity, no significant differenceswere observed in theACE index,

whereas the Shannon index showed significant decreases in

diversity in patients with post-HSCT pneumonia compared to

the HC and CAP groups (Figures 1A, B). The mean values of NTI

and NRI in all groups was greater than 0, indicating the samples

clustering in each group (Figures 1C,D).TheNTIvalues in samples
Frontiers in Cellular and Infection Microbiology 05
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with post-HSCT pneumonia were less positive compared to the

CAPandHCsamples,which indicated that phylogenetic clustering

was weakest in the post-HSCT pneumonia samples. The

PERMANOVA test demonstrated that the bacterial community

of the post-HSCT pneumonia group significantly differs from that

of the CAP or HC group (Figure 1E). The Adonis tests based on

Bray-Curtis distances and Jaccard distances revealed that

significant differences existed in both composition and

abundance of tax among groups (Figures 1F, G). Besides, we

found no significant difference in the microbiota composition in

terms of smoking status (p = 0.297) in all subjects and in the HC

group, there is no difference in sex (p = 0.19), age (p = 0.052) or

comorbidity groups. Similarly, antibiotic usage (p = 0.278) or

corticosteroid usage (p = 0.552) had no effect in the microbiota

composition of patients (e-Figures 2A–G). These results indicate

that patients with post-HSCT pneumonia had decreased diversity

and have a different LRTmicrobiome composition compared with

the HC or CAP group.

To determine specific bacterial taxa correlated with patients

with post-HSCT pneumonia, we compared the relative
A B D

E F

G

C

FIGURE 1

Alpha and Beta diversity of the lower respiratory tract microbiome in the post-HSCT pneumonia (HSCT_P), community-acquired pneumonia
(CAP), and healthy controls (HC) groups. (A) Comparison of abundance-based coverage estimator (ACE) index in different groups for
assessment of microbiome richness of three groups. (B) Comparison of Shannon index in different groups for assessment of microbiome
diversity of three groups. * represents p < 0.05 based on Kruskal–Wallis test. (C) Comparison of the mean nearest taxon distance (MNTD) index
in different groups for assessment of phylogenetic diversity of three groups. ** represents p < 0.01 based on Kruskal–Wallis test. (D) Comparison
of the nearest taxon index (NTI) in different groups for assessment of microbiome diversity of three groups. * represents p < 0.05, and **
represents p < 0.0 based on Kruskal–Wallis test. (E) Beta diversity was assessed by PERMANOVA test based on Jaccard distances using principal
coordinate analysis (PCoA). P value of post-HSCT pneumonia vs. CAP and post-HSCT pneumonia vs. HC were both 0.001. (F) Adonis test based
on Jaccard distances. (G) Adonis test based on bray-curtis distances.
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abundances (RA) of microbiota among groups. As shown in

Figure 2A, the five most abundant phyla included

Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and

Actinobacteria. Specifically, post-HSCT pneumonia samples

had a higher RA of Actinobacteria and a relatively low RA of

Fusobacteria and Bacteroidetes. The top 30 genera in RA were

shown in Figure 2B. Obviously, the RA of Sphingomonas, and

prevotella decreased in the post-HSCT pneumonia group

(Figure 2B; e-Tables 7, 8), whereas the RA of Bacillus,

Bifidobacterium, and Enterococcus were significantly increased.

According to the Lefse analysis, the RA of Pseudomonas,

Acinetobacter, Burkholderia, and Mycobacterium were

prominent in the pneumonia group after HSCT (Figure 2C).
Potential function of the
LRT microbiome

Predicted phenotypes based on taxonomic classification

were analyzed with BugBase, which indicated that aerobic

bacteria were more abundant in patients with post-HSCT

pneumonia than in the CAP and HC groups, while the

abundance of anaerobic bacteria was the opposite (e-
Frontiers in Cellular and Infection Microbiology 06
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Figures 3A, B, p < 0.05). Additionally, the results suggested

that Gram-positive bacteria were more abundant in both post-

HSCT pneumonia and CAP groups than in the HC group, while

the abundance of Gram-negative bacteria was lower (e-

Figures 3C, D, p < 0.05).

To explore differences in potential function, we annotated

the 16S reads using PICRUSt2 based on the Kyoto Encyclopedia

of Genes and Genomes (KEGG) (Kanehisa et al., 2021), and

obtained 193 KEGG pathways. Through a Wilcoxon Rank Sum

Test, we found that 99 and 107 pathways may be differentially

expressed in the post-HSCT pneumonia group compared with

CAP and HC groups, respectively (e-Tables 9, 10). The

expression of multiple pathways concerning amino acid

metabolism, such as arginine, histidine, and tyrosine, was

elevated in patients with post-HSCT pneumonia compared to

the two control groups (Figure 3A). The pathways “biosynthesis

of unsaturated fatty acids” and “pyruvate metabolism” were

predicted to be more enriched in patients with post-HSCT

pneumonia (Figure 3B). Compared with the HC group,

pathways associated with “cytokine-cytokine receptor

interaction” were more abundant in patients with post-HSCT

pneumonia, but the predicted “NOD-like receptor signaling”

pathway decreased (Figure 3B). These results suggest that the
A

B

C

FIGURE 2

Taxonomic analysis of lower respiratory tract microbiome in the post-HSCT pneumonia (HSCT_P), community-acquired pneumonia (CAP), and
healthy controls (HC) groups. (A) The relative abundance of microbial communities at the level of phylum among groups. (B) The top 30 genera
in three groups. (C) LDA shows distinct lung microbiome composition associated with HSCT_P, CAP, and HC group. LDA scores as calculated
by LEfSe of taxa differentially abundant in different group.
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predicted microbial functions of amino acids, lipid metabolism,

and inflammatory reactions may change in the patients with

post-HSCT pneumonia.
The LRT microbiome in non-survivors

To explore the structure of the flora in patients with post-

HSCT pneumonia, we compared subgroups within the 55

samples. No significant difference was observed in microbiota

composition or diversity in terms of pathogen detection (e-

Figure 4) or post-HSCT period (neutropenic phase, early and

late post-engraftment phase, e-Figure 5) or outcome (survivors

vs. non-survivors) (Figures 4A, B). However, a higher RA of

Actinobacteria and a lower RA of Bacteroidetes were found in

non-survivors (e-Figure 6), and 45 genera were identified as

differential taxa between survivors and non-survivors (e-

Table 11). The RAs of the genera Enterococcus, Acinetobacter,

Burkholderia, Mycobacterium, and Escherichia all significantly
Frontiers in Cellular and Infection Microbiology 07
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increased in non-survivors, while the RAs of the genera

Neisseria, Bacillus, and Veillonella decreased in non-survivors

(Figure 4C). Among them, the RA of Enterococcus was positively

correlated with PCT levels, and Mycobacterium was positively

correlated with PMN percentage in the BALF numerically

(Figure 4D; e-Table 12). The RA of Veillonella was negatively

correlated with the neutrophil percentage. Through phenotype

prediction, potentially pathogenic and aerobic bacteria were

enriched in non-survivors (e-Figure 7, all p < 0.05).
Discussion

The LRT microbiota is crucial for the host immune system,

and the imbalance between microbial migration and removal is

correlated with alveolar and systematic inflammation (O’Dwyer

et al., 2016). Understanding the composition of the LRT

microbiota under different diseases is essential for identifying

potential mechanisms underlying the pathogenesis of post-
A

B

FIGURE 3

Functional characterization of different groups based on PICRUSt analysis. The abundance of pathways concerning amino acid metabolism among
three groups (A) and the abundance of pathways concerning lipid metabolism and immune reaction among three groups (B). Black stars upon the
boxes indicate significant results for CAP or group compared with post-HSCT pneumonia patients. (* P < 0.05, ** P < 0.01, *** P<0.001,
****P < 0.0001).
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HSCT pneumonia and could offer crucial insights into

therapeutic targets. Although sputum sample is noninvasive

and was used to explore the microbiome in diverse pulmonary

diseases, it is difficult to collect for some patients and all healthy

controls. Besides, the location of the respiratory tract

represented by the sputum sample cannot be determined and

sputum sample is highly likely to be contaminated by the oral

microbiota. On the contrary, BALF has been believed to be a

viable option for the lung microbiome (Cheng et al., 2020). Thus,

in this study, we characterized the LRT microbiome of 55

patients with post-HSCT pneumonia and provided evidence

for significant alterations in the bacterial community, utilizing

the remaining BALF samples from clinical testing.

Previous studies have found that intestinal microbiota and

dental biofilm microbiota dysbiosis occurred during HSCT,

marked by a gradual loss of bacterial diversity (Heidrich et al.,

2021). Our results also showed a significantly decreased alpha

diversity in patients with post-HSCT pneumonia compared to

the CAP and HC groups. The composition of the LRT

microbiome in post-HSCT pneumonia patients was

characterized by a decreased abundance of commensal genera

and an overgrowth of opportunistic pathogens, such as
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Acinetobacter (Du et al., 2021) and Mycobacterium (Meehan

et al., 2021). Thus, under the state of immune defects and

chronic inflammation, the bacterial community was likely to

be seriously altered in patients after HSCT, which elicited

epithelial and luminal inflammation, which may further alter

the conditions in the lung microenvironment, perpetuating

dysbiosis and increasing the susceptibility to infection.

However, although Nearing et al. reported that edgeR and

LEfSe often identified the most significant differential ASVs

than any other tools, they have relatively high false discovery

rate (Nearing et al., 2022).

According to the predicted phenotypes, the abundance of

anaerobic bacteria decreased in patients with post-HSCT

pneumonia, and at the phylum level, a relatively low abundance

of Bacteroidetes was observed compared with the HC group. The

same results were also observed in non-survivors of the post-HSCT

pneumonia group compared to the survivors. Marsland et al.

reported that Bacteroidetes are strictly anaerobic and that most

Bacteroidetes are sensitive to low pH (Marsland and Gollwitzer,

2014). Robustly disturbed and reduced anaerobic bacteria could be

caused by chemotherapy, antibiotics, mechanical ventilation, or

HSCT itself, and inflammatoryresponse could lower the localPHin
A B

D

C

FIGURE 4

Differences in lung microbial composition between survivors and non-survivors of post HSCT pneumonia patients (A) Comparison of Chao1,
ACE, Shannon and Simpson diversity index in different groups for assessment of microbiome alpha diversity of survivors and non-survivors. ns,
no significant differences were observed between the groups. (B) Beta diversity was assessed by PERMANOVA test based on Jaccard distances
using principal coordinate analysis (PCoA) (p = 0.361). (C) Differential genera between survivors and non-survivors using edgeR package. CPM,
counts per million. (D) Spearman’s rho calculated between ASVs and clinical indicators. Black stars within heatmap boxes indicate significant
results (*p < 0.05), Benjamini–Hochberg adjustment for multiple comparisons. ASV abundances were centered with log-ratio transformation
prior to analysis.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.943317
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


He et al. 10.3389/fcimb.2022.943317
the LRT. Antibiotics targeting anaerobic pathogens have been

revealed to increase GVHD-related mortality in humans (Shono

et al., 2016). Therefore, dysbiosis and the decrease of anaerobic

bacteria in the LRT could be the cause of post-HSCT pneumonia

and poor prognosis. However, the exact mechanisms must be

further studied.

The predicted functions of the LRT microbiome were

significantly different among groups. The relative abundances

of microbiome genes associated with histidine metabolism were

increased in patients with post-HSCT pneumonia, and the

bioavailable histidine in the lung could promote Acinetobacter

pathogenesis and serve as a crucial nitrogen source during

infection (Lonergan et al., 2020). The “cytokine-cytokine

receptor interaction” function was predicted to be more

evident in patients with post-HSCT pneumonia, but the

abundance of genes related to “NOD-like receptor signaling”

decreased. This may indicate a stronger inflammatory response

and impaired innate immune responses in the LRT of patients

with post-HSCT pneumonia. However, the predictive ability of

PICRUSt2 is limited and the actual functions can substantially

differ. Meanwhile, inaccuracies in pathway annotation or

assignments of gene function may be present. Thus, further

experiments are required to verify changes in these functions.

Our data further demonstrated that some genera were

correlated with the prognosis of patients with post-HSCT

pneumonia. The RA of Enterococcus was more abundant in

non-survivors, which agrees with recent studies reporting that

the enrichment of gut-associated bacteria in the lung suggested

poor outcomes for critical patients (Dickson et al., 2016b;

Dickson et al., 2020; Martin-Loeches et al., 2020). This

suggests that increased intestinal permeability is involved in

the gut-lung translocation of bacteria and inflammatory

products to distant organs in non-survivors, which should be

investigated further using paired gut and lung specimens.

There are some limitations to our study. First, clinical

heterogeneity is a major concern in patients with post-HSCT

pneumonia (including the primary disease, pretreatment

methods, and transplant types). Meanwhile, nearly all HSCT

recipients were received therapy such as antibiotics,

corticosteroids and cytotoxic drugs inevitably, so the lung

microbiome in the post-HSCT pneumonia group was shaped by

a variety of factors. Thus, the direct cause of the differences in the

lung microbiome between the post-HSCT pneumonia group and

HC group is unclear. Therefore, further experiment is needed to

explore lungmicrobiome characteristics in this population and the

effects of each variability. Second, the causal relationship between

the observed alterations in the LRT microbiome and the

development of post-HSCT pneumonia is uncertain, which

should be further explored using animal models. Third, the 16s

resolution is lower, andonly relative abundancesof specific bacteria

were described, meaning that further research to detection of

absolute abundances of microorganisms are needed. Lastly,

despite the efforts made in contamination control, the potential
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sources of oral or environmental pollution may be not

completely excluded.

Despite these limitations, our study explored the LRT

microbiome in patients with post-HSCT pneumonia and raises

some interesting questions worthy of further investigation. Our

results support the findings of larger cohorts evaluating the value

of the airway microbiome and its immune interactions and

propose potential targets for preventing and treating pneumonia

in post-HSCT patients.
Conclusions

Our results demonstrate that the LRT microbiome in post-

HSCT pneumonia, which is characterized by decreases in species

diversity, the enrichment of pathogens, and reduced biotic

interactions, differs from CAP patients and healthy controls.

The composition of the LRT microbiome is different with

outcomes in patients with post-HSCT pneumonia.
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Multi-omics association analysis
reveals interactions between the
oropharyngeal microbiome and
the metabolome in pediatric
patients with influenza A
virus pneumonia

Qian Hu1, Baiming Liu1, Yanqun Fan2, Yuejie Zheng1,
Feiqiu Wen3, Uet Yu3* and Wenjian Wang1*

1Department of Respiratory Diseases, Shenzhen Children’s Hospital, Shenzhen, China, 2Department
of Trans-omics Research, Biotree Metabolomics Technology Research Center, Shanghai, China,
3Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
Children are at high risk for influenza A virus (IAV) infections, which can develop

into severe illnesses. However, little is known about interactions between the

microbiome and respiratory tract metabolites and their impact on the

development of IAV pneumonia in children. Using a combination of liquid

chromatography tandem mass spectrometry (LC-MS/MS) and 16S rRNA gene

sequencing, we analyzed the composition and metabolic profile of the

oropharyngeal microbiota in 49 pediatric patients with IAV pneumonia and

42 age-matched healthy children. The results indicate that compared to

healthy children, children with IAV pneumonia exhibited significant changes

in the oropharyngeal macrobiotic structure (p = 0.001), and significantly lower

microbial abundance and diversity (p < 0.05). These changes came with

significant disturbances in the levels of oropharyngeal metabolites.

Intergroup differences were observed in 204 metabolites mapped to 36

metabolic pathways. Significantly higher levels of sphingolipid (sphinganine

and phytosphingosine) and propanoate (propionic acid and succinic acid)

metabolism were observed in patients with IAV pneumonia than in healthy

controls. Using Spearman’s rank-correlation analysis, correlations between IAV

pneumonia-associated discriminatory microbial genera and metabolites were

evaluated. The results indicate significant correlations and consistency in

variation trends between Streptococcus and three sphingolipid metabolites

(phytosphingosine, sphinganine, and sphingosine). Besides these three

sphingolipid metabolites, the sphinganine-to-sphingosine ratio and the joint

analysis of the three metabolites indicated remarkable diagnostic efficacy in

children with IAV pneumonia. This study confirmed significant changes in the

characteristics and metabolic profile of the oropharyngeal microbiome in

pediatric patients with IAV pneumonia, with high synergy between the two

factors. Oropharyngeal sphingolipid metabolites may serve as potential

diagnostic biomarkers of IAV pneumonia in children.
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Introduction

Influenza A virus (IAV) is a common pathogen causing

respiratory tract infections in children. Seasonal influenza

epidemics are caused by the H1N1 and H3N2 IAV subtypes

(Fouchier et al., 2005). Most infected children show mild

symptoms, but this infection can lead to severe and life-

threatening lung disease (Iuliano et al., 2018; Ratre et al., 2020).

In children with IAV infection, secondary bacterial infections can

lead to more severe diseases, such as pneumonia, pulmonary

edema, and lung abscess, and morbidity and mortality are also

significantly higher in children with combined Streptococcus

pneumoniae infections compared to influenza alone (Dawood

et al., 2014; Hsing et al., 2022). The potential mechanisms

underlying IAV infection have not been fully explored. Early

detection can considerably improve disease management and

overall survival of children. New evidence suggests that the

pathogenesis of IAV infection involves complicated interactions

among viral invasion processes, the respiratory tract microbiome,

and host mucosal immune responses (Lim et al., 2016; Gounder

and Boon, 2019). During IAV infection, microbiota colonizing

different ecological niches are closely associated with disease

severity, duration, and prognosis (Söderholm et al., 2016). The

oropharyngeal mucosa is colonized by various microorganisms,

such as Streptococcus spp., Neisseria spp., and Rothschild spp.,

which maintain a dynamic balance with the lower respiratory tract

to ensure the physical health of the host. The oropharyngeal

mucosa is an integral part of the mucosal epithelial barrier,

which isolates numerous bacteria, but is a notable site of virus

entrance into the body, proliferation, and transmission (Man et al.,

2017; Shannon et al., 2021).

To date, little is known about the mechanisms underlying

the impact of the microbiota and its metabolites on

inflammatory responses and mucosal immune function in

pediatric patients. A metabolite is an intermediate or final

product of a cellular regulatory process. Therefore, the level of

a macrobiotic metabolite can reflect the cellular biochemical

activities associated with infections (Jaurila et al., 2020). Direct

metabolite testing has become a valuable method for identifying

biomarkers of various diseases and exploring potential

pathogeneses. Metabolite analyses can distinguish active

infections from latent ones, thus addressing the shortcomings

of available diagnostic tests, such as polymerase chain reaction
02
64
(PCR), in disease diagnosis and treatment (Bowler et al., 2017;

Zurfluh et al., 2018). Previous studies have reported that

infections can induce changes in in vivo metabolites and affect

the microbiotic structure, exacerbating respiratory diseases (Gu

et al., 2019; Mendez et al., 2019). The microbiota can participate

in host physiological and pathological processes by converting

nutrients provided by the host into metabolites (Anand et al.,

2016). Through the direct or indirect stimulation of the host

immune system, IAV can disrupt cellular metabolic pathways by

obtaining the components necessary for its self-replication from

host cells (Smallwood et al., 2017).

However, most studies focus on mono-omics, cell culture, or

animal models (Wen et al., 2018; Gierse et al., 2021). Therefore,

the interactions between the microbiome and the respiratory

tract and their correlations with susceptibility to IAV infection

and disease severity in children remain unclear. Therefore, our

objective was to identify changes in the oropharyngeal

microbiome and metabolite profile of pediatric patients and to

analyze the association between the two omics. Our findings may

elucidate the etiology of IAV-related pneumonia in children and

provide more accessible and valuable information for early

risk prediction.
Materials and methods

Study participants and sample collection

Study participants comprised 49 children with IAV

pneumonia hospitalized at Shenzhen Children’s Hospital

(Shenzhen, China) and 42 age- and sex-matched healthy

controls (<16 years of age) who underwent a health

examination from January 2018 to January 2020. The age

difference between the two groups was maintained at <6

months to reduce potential confounding differences in the

metabolome and microbiome between different age groups.

Participants in both study groups were Han Chinese, with

similar dietary habits and geographical proximity (Shenzhen,

China). Participants in the IAV pneumonia group met the

following criteria: 1) epidemiological history, clinical

symptoms, and radiological signs of acute IAV pneumonia

were present; 2) IAV positive status was confirmed using

multiplex kits for the detection of 13 respiratory pathogens
frontiersin.or
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(PCR capillary electrophoresis fragment analysis; Haiers Gene

Technology Co., Ltd., Ningbo, China); and 3) the pediatric

patient joined the clinical pathway for pneumonia immediately

after hospital admission and received unified and standardized

treatment. Furthermore, pediatric patients were included in the

severe pneumonia group based on their clinical symptoms and

whether they were admitted to the Pediatric Intensive Care Unit

(PICU). Exclusion criteria included: 1) The presence of any

medical conditions including acute upper and lower respiratory

tract infections (rhinitis, tonsillitis, bronchitis, and pneumonia,

as well as severe odontogenic, oral, and maxillofacial infections),

within one month before enrollment, may affect the

oropharyngeal microbiota and metabolome. Chronic diseases

include asthma and cystic fibrosis. 2) Nutritional status was

judged by experienced pediatricians according to 2006 child

growth standard (WHO and Multicentre Growth Reference

Study Group, 2006), using weight-for-age growth curves

directly for children under five years and body mass index

(BMI) for children over five years (de Onis et al., 2007). BMI

(kg/m2) = weight/height2. The 5th percentile ≤ BMI < 85th

percentile is defined as normal weight. Malnutrition and obesity

were excluded.3)Use of drugs that affect the microbiome and

metabolome, such as immunosuppressants, probiotics,

traditional Chinese medicine, and glucocorticoids, within 1

month before enrollment. 4) Essential data were missing

because of refusal of laboratory tests after admission. 5)

Patients with delayed consent for enrollment (>24 hours after

hospitalization) (Stewart et al., 2017). The study flowchart, from

enrollment to analysis, is shown in Supplementary Figure 1. The

Medical Ethics Committee of Shenzhen Children’s Hospital of

China Medical University approved this study (registration

number: 202009202). All parents of children who took part in

the study provided us with their written, informed consent.

On the day of the health examination, oropharyngeal

specimens were collected from healthy controls and patients

with IAV pneumonia sterile swabs (155C, COPAN, Murrieta,

CA, USA) within 24 h after hospital admission (Hogan et al.,

2021; Ma et al., 2021). We collected samples in the morning, and

participants refrained from brushing their teeth 12 hours before

sampling, rinsed or drank water two hours before sampling to

remove oral debris, followed by a two-hour fast to reduce the

impact on the oropharyngeal microbiota and metabolome. A

sterile tongue depressor was inserted to fully expose the deep

pharynx. Then the swab was inserted into the pharynx and

rotated twice against the posterior pharyngeal wall or the

pharyngeal-palatal arch, avoiding contact with other areas

such as the tongue, uvula, and gingiva. An experienced

pediatrician or nurse performed all procedures. The

oropharyngeal swab samples were immediately put on ice and

sent to a biological specimen bank, where they were stored at

-80°C until further analysis. Unused swabs were used as blank

controls to assess contamination during the experiment.
Frontiers in Cellular and Infection Microbiology 03
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Oropharyngeal DNA extraction for
microbiome analysis

Using the power soil DNA isolation kit (Mo Bio Laboratories,

Carlsbad, CA, USA) and following the manufacturer’s instructions,

total genomic DNA was isolated from oropharyngeal swab samples

(Wen et al., 2018). A Thermo NanoDrop 2000 spectrophotometer

(Thermo Fisher Scientific, New York, NY, USA) was used to

measure the DNA concentration. 2% agarose gel electrophoresis

was used to confirm the DNA’s integrity and fragment size. Total

DNA was stored in an elution buffer at -80°C until PCR sequencing

was performed.
16S ribosomal RNA gene sequencing
with high throughput

The V3-V4 region of the 16S ribosomal RNA (rRNA) gene

was ampl ified us ing the PCR pr imers (341F : 5 ′ -
C C TACGGGNGGCWGCAG - 3 ′ a n d 8 0 5 R : 5 ′ -
GACTACHVGGGTATCTAATCC-3′). The PCR products were

measured using Qubit (Invitrogen Ltd., Carlsbad, CA, USA) after

being purified with AMPure XT beads (Beckman Coulter

Genomics, Danvers, MA, USA). The Illumina sequencing Library

Quantification Kit (Kapa Biosciences, Woburn, MA, USA) and an

Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara,

CA, USA) were used to confirm the amplicon library before up-

sequencing the qualifying libraries. We performed 2 × 250 bp

double-end sequencing on the NovaSeq 6000 platform (Illumina,

San Diego, CA, USA), using the NovaSeq 6000 SP Reagent Kit (500

cycles); all was done following the manufacturer’s instructions. The

assembled miseq sequence was submitted to NCBI’s open-access

sequence to read the archive.

Sequencing data analysis
Pair-end reads obtained after sequencing were divided into

samples for data separation based on their unique barcode

information. In addition, the primer sequence and barcode

were removed. The raw reads were quality filtered according

to fqtrim (v0.94) (Magoč and Salzberg, 2011), and the double-

ended sequences that passed the primary quality screening were

pairwise linked based on overlapping bases using FLASH

(v1.2.8). The Vsearch software (v2.3.4) was used to identify

and reject chimeric sequences. The feature abundance table and

the feature sequence of the amplicon sequence variants (ASVs)

were obtained using a divisive amplicon denoising algorithm 2

(DADA2). Bioinformatic analysis of the oropharyngeal

microbiome was performed using QIIME 2 software. The

annotation was performed using the SILVA database (Release

138) and the NT-16S database based on the ASV feature

sequence (Quast et al., 2013). The abundance of each species

was determined according to the ASV abundance table. The

confidence threshold for the annotation was >0.7.
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Preparation of oropharyngeal samples
for metabolomics analysis

Ultra-high performance liquid chromatography mass

spectrometry (UHPLC-MS/MS) was used to determine the

metabolite composition of oropharyngeal swab samples.

Oropharyngeal swabs were transferred to Eppendorf (EP)

tubes; 1000 ml of the extraction solution was added to the EP

tube in an acetonitrile: methanol: water ratio of 2:2:1 (V:V:V).

The tubes were then vortexed for 30 s and placed in an ice-water

bath for 30 min of sonication. After removing the swabs, the

supernatant was stored at -40°C for 1 h. The samples were then

centrifuged at 4°C and 13,800 ×g for 15 min, and the supernatant

obtained was transferred to a new injection vial for

onboard detection.
Liquid chromatography
mass spectrometry/mass
spectrometry analysis

In both positive and negative-ion modes, all oropharyngeal

samples were subjected to metabolite separation using a UHPLC

system (Vanquish, Thermo Fisher Scientific). The target

compounds were separated using a Waters ACQUITY UPLC

BEH Amide (2.1 mm × 100 mm, 1.7 µm) liquid chromatography

column. Mobile phase A was an aqueous phase with a pH of

9.75. It contained 25 mmol/L of ammonium acetate and 25

mmol/L of ammonia hydroxide, whereas mobile phase B

comprised acetonitrile. The temperature of the sample tray

was 4°C, and the injection volume was 2mL.
The organic phase was injected into the column at 30°C. The

elution gradients were set to 95% B, 0–0.5 min; 95–65% B, 0.5–

7.0 min; 65–40% B, 7.0–8.0 min; 40% B, 8.0–9.0 min; 40–95% B,

9.0–9.1 min; and 95% B, 9.1–12.0 min. The data was gathered

using Xcalibur (Thermo Fisher Scientific) on the Orbitrap

Exploris 120 mass spectrometer, which can collect primary

and secondary mass spectrometry data in the information-

dependent acquisition mode. Other conditions for the

electrospray ionization source were established as follows:

capillary temperature, 320°C; collision energy, 10/30/60 in

NCE mode; MS/MS resolution, 15,000; full MS resolution,

60,000; auxiliary gas flow rate, 15 Arb; and sheath gas flow

rate, 50 Arb. The spray voltage was set to 3.8 and -3.4 kV for the

positive-ion and negative-ion modes, respectively.
Data analysis

The raw data were transformed into the mzXML format

using the ProteoWizard software. The R package, XCMS

(v3.8.2), was used to perform peak identification, peak

alignment, peak extraction, and integration. The algorithm
Frontiers in Cellular and Infection Microbiology 04
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scoring cutoff value was set to 0.3. The online Human

Metabolome Database and Kyoto Encyclopedia of Genes and

Genomes (KEGG) database were used to compare molecular

weight data (m/z) for the identification of metabolites. The

deviation values were filtered according to the coefficient of

variation, the missing values in the data were filled by one-half of

the minimum value, the individual peaks were filtered, and the

peak area of the internal standard in each sample was

normalized. In over 50% of the samples, missing ions were

considered low-mass ions and were removed. Finally, 9820 peaks

were retained; the raw data were uploaded to the

MetaboLights website.
Statistical analyses

Data were statistically analyzed using R (v3.6.3, R

Foundation for Statistical Computing, Vienna, Austria) and

SPSS (v22.0, Statistical Product and Service Solutions, IBM,

Chicago, IL, USA). Data are presented as mean ± standard

deviation, and the Mann-Whitney U test was performed to

compare two independent samples having a non-normal

distribution. The count data are expressed as the number of

cases or percentages (%), and the Chi-square test was used

to compare groups. The R vegan package was used to

perform the permutational multivariate analysis of variance

(PERMANOVA), and 1,000 permutations were used to

calculate the adonis p-value (Zhou et al., 2020; Frau et al.,

2021). Spearman rank-correlation analysis was used to

determine the associations between the microbiome and

metabolites. The final data set from the LC-MS/MS analysis

was imported into the SIMCA 16.0.2 software package (Sartorius

Stedim Data Analytics AB, Umea, Sweden). The importance of

the variable in the projection (VIP) of the first principal

component of each metabolite was calculated by building an

orthogonal partial least squares discriminant analysis model

(OPLS-DA). Seven-fold cross-validation was used to obtain R2

and Q2 to assess model validity. The Mann-Whitney U test was

used to determine differences between the two groups;

differences defined as p < 0.05 and VIP > 1 were considered

significant. The Benjamini-Hochberg correction method was

used to adjust the P values.
Results

Clinical characteristics

Children <6 years accounted for 89.8% (44/49 cases) of the

patients in the IAV pneumonia group, with children aged 3–6

years accounting for most cases (53.1%, 26/49 cases). No

significant differences were observed between the age, gender,

exposure to cigarettes at home, antibiotics use before sampling,
frontiersin.org
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and child delivery method of the two groups (p > 0.05)

(Supplementary Table 1). Furthermore, PERMANOVA was

performed to adjust for these and found that IAV pneumonia

was the main factor contributing to the difference in microbiota

and metabolome between the two groups (permutated p =

0.001). Moreover, there was no statistically significant

difference between antibiotics on microbiota or metabolome

(permutated p = 0.774 and p = 0.352, respectively). The

average time from the onset of influenza symptoms to hospital

admission was 7.08 ± 3.13 days (Supplementary Table 1).

Seventeen pediatric patients were admitted to the PICU for

further treatment, as required for their disease conditions, and

classified as patients with severe pneumonia.
Oropharyngeal microbiota profile

Oropharyngeal swab samples collected from the 49 pediatric

patients with IAV pneumonia and 42 healthy individuals were

subjected to 16S rRNA sequencing. Two samples (FG20 and

HG20) were removed due to a failure to detect the microbiota,

leaving 89 samples for the final analysis. A total of 5,049,593

high-quality sequences were obtained (average: 58,385

sequences per sample; range: 49,637.50–64,538.50). After

species annotation was performed, 4,133 usable ASVs were

obtained (Supplementary Table 2; average, 176 ASVs per

sample; range: 103.5–225.0), and the data of these ASVs were

subjected to a structural analysis of the oropharyngeal

microbiome. The rarefaction curves for the two groups of

samples leveled or plateaued, indicating that the sequencing

depth was adequate for identifying the features of most bacteria

in the samples and the subsequent structural analysis

(Supplementary Figure 2A–E). The rank abundance

distribution curves suggested that the IAV pneumonia group

had a significant decrease in abundance and microbiota

imbalance compared to the healthy group (Supplementary Figure 2F).

The sequences were analyzed to estimate the alpha and beta

diversity and measure variations in microbial diversity between

the two groups. Alpha diversity analysis indicated significant

intergroup differences in the Shannon index (3.92 ± 1.45 versus

5.39 ± 0.56, p < 0.001), observed species (147.75 ± 72.55 versus

196.53 ± 63.37, p < 0.001), chao1 (150.77 ± 73.40 versus 199.99 ±

65.85, p < 0.001), and Simpson index (0.79 ± 0.22 versus 0.94 ±

0.05, p < 0.001), suggesting significantly lower abundance and

diversity of the oropharyngeal microbiota in the IAV pneumonia

group than in the healthy volunteer group (Figure 1A). Beta

diversity describes the intergroup differences in species. The beta

diversity analysis indicated substantial changes in the

composition and richness of the oropharyngeal microbial

community between the two groups (Bray–Curtis p = 0.001;

Figure 1B). Based on an analysis of similarity, we found that the

differences between groups were significantly greater than those

within groups. We observed a higher beta diversity in the
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oropharyngeal microbiota of children with IAV pneumonia,

indicating that the microbiota structure of the IAV pneumonia

group was more heterogeneous than that of the control

group Figure 1C).
Influenza A pneumonia-associated
changes in the oropharyngeal microbiota

The species abundance table for each taxonomic level was

obtained based on the ASV annotations and abundance tables

for the analysis and comparison of the species composition of

the two groups. The IAV pneumonia group exhibited

significantly differential abundances of 12 bacterial phylum, 12

classes, 33 orders, 46 families, 63 genera, 63 species, and 838

individual ASVs (Supplementary Table 3). At the phylum level,

bacteria belonging to 11 phyla were identified in the healthy

volunteer group, whereas 14 phyla were identified in the IAV

pneumonia group. Firmicutes, Bacteroidota, Proteobacteria,

Fusobacteriota, and Actinobacteria were the dominant

bacterial phyla in both groups (Figure 1D). However,

intergroup differences were observed in the proportions of the

oropharyngeal microbiota represented by these predominant

phyla. The differences in the proportion of Firmicutes were the

most notable (Figure 1E). In the IAV pneumonia group,

Firmicutes represented 53.04% of bacteria, whereas in the

healthy volunteer group, Firmicutes accounted for 21.18%. In

contrast, Bacteroidota and Proteobacteria represented higher

proportions in the healthy volunteer group (28.85% vs. 19.57%

and 31.77% vs. 15.22%, respectively).

Further evaluation of differences between the microbiota at

different taxonomic levels revealed that Firmicutes (p < 0.001)

and Actinobacteriota (p < 0.001) were more abundant in the

IAV pneumonia group than in the healthy volunteer group at

the phylum level. However, the abundance of Proteobacteria (p

< 0.001), Fusobacteriota (p < 0.001), and Bacteroidota (p <

0.001) was significantly higher in the healthy volunteer group

(Supplementary Figure 3A). At the genus level, there were

significant intergroup differences for 63 genera (FDR p <

0.05); the abundance levels of Streptococcus (p < 0.001) and

Actinomyces (p < 0.001) were significantly higher in the IAV

pneumonia group, whereas the abundance levels ofHaemophilus

(p < 0.001), Neisseria (p < 0.001), Alloprevotella (p < 0.001), and

Leptotrichia (p < 0.001) were significantly higher in the healthy

volunteer group (Supplementary Figure 3B). The heatmap of the

relative abundance of the 63 genera, listed in Supplementary

Table 4, is shown in Figure 2. We also analyzed PICU admission;

however, intergroup differences were not observed at any

taxonomic level (all FDR > 0.05).

We generated a cladogram using linear discriminant analysis

(LDA) effect size analysis to identify the oropharynx-specific

microbiota associated with pediatric IAV pneumonia by visually

presenting all strata of differential species in the two groups
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(Figure 3A). Significant differences were observed between the

oropharyngeal microbiota of the two groups in 48 ASVs (LDA >

4), with relatively high abundances of Actinomyces ,

Streptococcus, Lactobacillales, and Veillonellaceae (all LDA

scores log10 > 4) in the IAV pneumonia group. In contrast, the

abundances of Bacteroidales, Porphyromonas, Haemophilus,

Neisseria, Streptobacillus, and Prevotella were significantly

higher in the healthy volunteer group (all LDA scores log10 >

4) than in the IAV pneumonia group. Thirty-two ASVs were

enriched in the healthy volunteer group and sixteen ASVs in the

IAV pneumonia group, suggesting higher abundances in the

healthy volunteer group. These results indicate a lower

abundance of microbiota in the IAV pneumonia group.

Hence, there was a difference in the abundance of the

oropharyngeal microbiota between the two groups (Figure 3B).
General characteristics of the
oropharyngeal metabolome
in each group

We expected that the oropharyngeal microbiota in children

with IAV pneumonia would partially influence oropharyngeal
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metabolic pathways, based on previous mono-omics studies that

demonstrated a high correlation between IAV infection and the

microbiome and metabolome (Ohno et al., 2020; Gierse et al.,

2021). Therefore, LC-MS/MS-based untargeted metabolomics were

used to identify and quantify 591 metabolites from 91 oropharyngeal

samples from the two groups (Supplementary Table 5).
Discriminatory oropharyngeal
metabolites

Significant variations in metabolic phenotypes were detected

between the two groups in the OPLS-DA model, implying that

patients with IAV pneumonia had a distinct metabolic profile

(R2X (cum) = 0.357, R2Y (cum) = 0.985, Q2 (cum) = 0.974, p <

0.001) (Figure 4A). The permutation test revealed no overfitting

and that the OPLS-DA model was remarkably robust(n = 200;

Figure 4B). In order to see the general distribution, we displayed

the results of the differential metabolite screening as volcano plots.

The IAV pneumonia group had relatively high abundances of 86

metabolites and relatively low abundances of 118 metabolites (p <

0.05; VIP > 1; Supplementary Table 6, Figure 4C). Sphingosine, L-

valine, 3,4-dimethylbenzoic acid, and N-acetyl-L-tyrosine were
A B
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FIGURE 1

Diversity and structural analysis of the oropharyngeal microbiota. (A) Alpha diversity differences between the two groups were observed using
the Simpson index, Shannon index, observed species, and chao1. **p < 0.05; ***p < 0.001; F, IAV pneumonia group (red); H, healthy group
(blue). (B) PCoA plot based on the Bray–Curtis distance matrix reflects the difference in bacterial structure between the two groups. F, IAV
pneumonia group (red); H, healthy group (blue). (C) Through unweighted unifrac analysis of similarity, we discovered that the difference
between groups was significantly greater than within groups. F, IAV pneumonia group (yellow); H, healthy group (blue). (D) Relative abundances
of the top 15 phyla in each group. F, IAV pneumonia group (yellow); H, healthy group (blue). (E) The heatmap reflects the similarities and
differences in phylum composition between the two groups in terms of color gradients. IAV, influenza A virus.
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significantly reduced in the IAV pneumonia group, according to a

matchstick graph of differential metabolites. In contrast,

phytosphingosine, sphinganine, succinic acid, pyruvic acid,

propionic acid, and hydroxypropionic acid increased

significantly in the IAV pneumonia group (Figure 4D).
Revealing discriminatory metabolites by
different analytical methods

The identified discriminatory metabolites were usually

functionally similar and biologically complementary to each

other. Hierarchical cluster analysis (HCA) revealed that in the

healthy volunteer group, abundant metabolites were

glycerophosphocholine {PC[16:1(9Z)/20:1(11Z)]}, amino acid

metabolites (beta-tyrosine, L-valine, and N-acetyl-L-tyrosine),

and lipids and lipid-like molecules (bauerenyl acetate,

isohyodeoxycholic acid, lithocholic acid, and alpha-tocopherol

acetate). In contrast, the IAV pneumonia group displayed

relatively high levels of amino acid metabolites (L-arginine,

leucyl-isoleucine, and N-ethylglycine), sphingolipid metabolites

(sphinganine and phytosphingosine), propanoate metabolites

(propionic acid, succinic acid, and hydroxypropionic acid),

and alpha hydroxy acids and derivatives (D-lactic acid).

Significant changes in the oropharyngeal metabolome occurred

in the disease group, with lipid metabolism being the most
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pronounced. Lipid metabolites represented 31.4% of the 204

discriminatory metabolites (64/204; Figure 5). Total

oropharyngeal metabolites were mapped to 47 KEGG

metabolic pathways via KEGG annotation and classification of

metabolites. The enriched metabolites were associated with

propanoate metabolism (4 metabolites), sphingolipid

metabolism (5 metaboli tes) , ABC transporters (23

metabolites), tyrosine metabolism (10 metabolites), and

nicotinate and nicotinamide metabolism (9 metabolites). We

identified the differential metabolic pathways involved in IAV

pneumonia by KEGG annotation. Compared to healthy

controls, metabolic pathway analysis of patients with IAV

pneumonia revealed 36 pathways with differently abundant

metabolites (Figure 6A). The results of the metabolic pathway

analysis are shown in the bubble plots in Figure 6B, where the

differences in propanoate and sphingolipid metabolism are

significant (p < 0.05; Supplementary Tables 7, 8).

Based on previous results and the known importance of the

role of sphingolipid metabolites in viral infectious diseases, we

defined discriminatory metabolites in the sphingolipid metabolic

pathway as potential biomarkers for IAV pneumonia (Avota

et al., 2021). Sphinganine (area under curve [AUC], 0.857; p <

0.001), phytosphingosine (AUC, 0.810; p < 0.001), and

sphingosine (AUC, 0.798; p < 0.001) were significantly related

to IAV pneumonia. A previous study revealed that an elevated

sphinganine-to-sphingosine (Sa/So) ratio indicated a disturbance
FIGURE 2

The two groups have similarities and differences in composition at the phyla and genera levels. The data after Z-transformation showed the
abundance of genera, which was lower in the blue section and higher in the red section. F, IAV pneumonia group (blue); H, healthy group
(green). IAV, influenza A virus.
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in sphingolipid biosynthesis, which was correlated with the

host’s inflammatory response (Antonissen et al., 2015). Our

investigation indicated that the Sa/So ratio (AUC, 0.916; p <

0.001) was also associated substantially with IAV pneumonia.

Furthermore, analysis of the combined diagnosis using

sphingosine, phytosphingosine, and sphinganine yielded an

AUC of 0.939 (p < 0.001), indicating a close correlation

between the three metabolites and IAV pneumonia in

children. Therefore, oropharyngeal sphingolipid metabolites

could serve as another powerful diagnostic tool and

biomarkers for IAV pneumonia in children (Figure 7).
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Multi-omics analysis method reveals the
association between the oropharyngeal
microbiome and metabolites for the
two groups

Based on the results of our study, 10 genera (LEfSe LDA >

4and p <0.05) and 26 metabolites differentially expressed (VIP >1

and p <0.05) were used to verify the changes in the correlation

between genera and metabolites in the oropharynx of children

with IAV pneumonia. Most discriminatory oropharyngeal

metabolites were significantly correlated with differential
A

B

FIGURE 3

Linear discriminant analysis (LDA) and LDA effect size. (A) The cladogram visually indicates the differential species in each level in each group. F,
IAV for abstract pneumonia group (red); H, healthy group (green). (B) Histogram of LDA scores for different abundant genera between groups H and (F)
Red, enriched in the F group; Green, enriched in the H group. F, IAV pneumonia group; H, healthy group; IAV, influenza A virus.
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microbiomes and the trends in their variations were consistent (|r|

>0.3 and p <0.05). The significantly increased abundance of the

genus, Streptococcus, was positively correlated with the

significantly increased metabolites in the IAV pneumonia

group, including sphinganine (r = 0.3255, p = 0.0019),

phy to sph ingos ine ( r = 0 .3560 , p = 0 . 0007) , N-

palmitoylsphingosine (r = 0.3476, p = 0.0009), and L-arginine

(r = 0.5021, p < 0.001), and negatively correlated with the

significantly less abundant metabolites in the IAV pneumonia

group, including b−tyrosine (r = -0.4305, p < 0.001) and PC (16:1

(9Z)/20:1(11Z)) (r = -0.3867, p = 0.0002). Furthermore, the higher

abundance of the genus, Actinomyces, in the IAV pneumonia

group was positively correlated with significantly more abundant

metabolites in this group, including succinic acid (r = 0.3232, p =

0.0020) and propionic acid (r = 0.3416, p = 0.0011). However,

there were no significant correlations between Actinomyces and

phytosphingosine, and between sphinganine and N-

palmitoylsphingosine. Moreover, the genera enriched in the

healthy volunteer group, such as Haemophilus, were positively
Frontiers in Cellular and Infection Microbiology 09
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correlated with the most abundant metabolites from this group,

including b-tyrosine (r = 0.5890, p < 0.001), L-valine (r = 0.5274, p

< 0.001), and prostaglandin F1a (r = 0.4594, p < 0.001), and

negatively correlated with the least abundant metabolites in this

group, including sphinganine (r = -0.4163, p < 0.001) and

phytosphingosine (r = -0.4082, p < 0.001; Figure 8,

Supplementary Table 9).
Discussion

This study confirmed that IAV pneumonia in pediatric

patients is associated with changes in the structure of the

oropharyngeal microbiota and its metabolites and that these

two factors are significantly correlated and consistent in terms of

variation trends. Therefore, we combined two omics to identify

potential biomarkers associated with IAV pneumonia in

children. There are four types of influenza viruses, among

which IAV infection (especially H1N1) causes more severe
A B

DC

FIGURE 4

Metabolite differences between the IAV pneumonia group F and the healthy group H. (A) The OPLS-DA 3D plot of the oropharyngeal samples
from both groups (p < 0.001) are shown. F, IAV pneumonia group (green circle); H, healthy group (blue circle). (B) The OPLS-DA permutation
test indicates good model robustness, with no overfitting (n = 200). (C) Volcano plots showing differences in oropharyngeal metabolites
between children with IAV pneumonia and healthy controls: upregulated metabolites (red circles), downregulated metabolites (blue circles). (D)
Important discriminatory metabolites are displayed on the matchstick diagram. *p < 0.05; ***p < 0.001. The abscissa shows the log-transformed
change multiple, and the dot color depth represents the VIP value size. IAV, influenza A virus.
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FIGURE 5

Hierarchical cluster analysis (HCA) was performed using quantitative values of differential metabolites in two groups. The horizontal coordinates
represent the grouping, and the vertical coordinates represent the differential metabolites in the group. Red indicates high expression, whereas
blue indicates low expression. F, IAV pneumonia group (blue); H, healthy group (green). IAV, influenza A virus.
A B

FIGURE 6

Characteristics of the oropharyngeal metabolome in IAV pneumonia and healthy volunteer groups. (A) Differential Pathway enrichment analysis
based on differential metabolites between the two groups. (B) The crucial pathway with the highest correlation with metabolite differences
between groups F and H was identified following metabolic pathway analysis of differential metabolites. In the bubble chart, each bubble
represents a metabolic pathway. The X-axis and bubble size indicate the size of the impact value of the pathway; the Y-axis and bubble color
indicate the p-value (-lnp) of the enrichment analysis. F, IAV pneumonia group; H, healthy group; IAV, influenza A virus.
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illness in patients (Drews et al., 2019; Gaitonde et al., 2019).

Viruses have applied multiple strategies to evade the host’s

immune response, including an antigenic shift to evade

vaccine protection. Furthermore, first line anti-influenza drugs

are limited in terms of time of administration and drug

resistance; this requires the development of drugs that target

the metabolic mechanisms (Hurt, 2014; Zumla et al., 2016). The

oropharynx is a space shared by the external environment, the

respiratory system, and the digestive system, and serves as a
Frontiers in Cellular and Infection Microbiology 11
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major source of the microbiome in the lower respiratory tract,

explains the striking similarity between the composition of the

microbiota in the oropharynx and that in the lower respiratory

tract (Sahin-Yilmaz and Naclerio, 2011; Bassis et al., 2015). The

oropharyngeal mucosal epithelium is a vital defense barrier of

the human body that can protect directly or indirectly against

invading pathogens. With technological advancements, studies

of oropharyngeal and nasopharyngeal microbiomes and

metabolomes have become feasible (Marangoni et al., 2020;
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FIGURE 7

Sphingolipid metabolites, such as sphinganine (A), phytosphingosine (B), sphingosine (C), the Sa/So ratio (D), and the combination of multiple
indicators (E), were discovered to have high AUCs by ROC analysis and could be used as biomarkers for influenza-induced pneumonia in
children. AUC, area under the curve; ROC, receiver operating characteristic.
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Ma et al., 2021). Pediatric patients and their family members

relatively comply with oropharyngeal swab sampling due to its

non-invasive nature (Huang et al., 2020).

Our study showed significant changes in the composition of

the oropharyngeal microbiota of pediatric patients with IAV

pneumonia, such as a significant decrease in the abundance and

diversity of the microbiota and an increase in the heterogeneity

of the bacterial community structure, which is consistent with

previous findings. (Hanada et al., 2018). The disease group

showed higher Firmicutes at the phylum level, while the

healthy group showed higher Bacteroidota and Proteobacteria.

Studies on the oropharyngeal microbiota in adult patients with

IAV pneumonia have also revealed significantly higher

abundances of Firmicutes and Proteobacteria, consistent with

this study (Leung et al., 2013). At the genus level, the abundances

of Streptococcus and Actinomyces were significantly higher in the

IAV pneumonia group. Previous studies suggest that specific

microbial communities in the respiratory mucosa directly or

indirectly influence the host’s defense against viral infections.

The microbiota can influence viral infections through various

mechanisms, including the promotion of viral replication, such

as stabilization of viral particles, modulation of the host immune
Frontiers in Cellular and Infection Microbiology 12
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response to viral infections, and the promotion of adenovirus

reactivation by metabolites of bacterial short-chain fatty acids

(SCFAs), which cause recurrent respiratory infections in

children (Wang et al., 2021; Wirusanti et al., 2022).In

childhood, IAV infections that are more dependent on innate

immune responses, the immune system preferentially uses T

helper 2 cell (Th-2) responses associated with g d T cells, which

may be less favorable than the Th-1 antiviral immune response

in adults; also, this is influenced to some extent by the gut

microbiome (Sakleshpur and Steed, 2022). Furthermore, viral

infection-induced host antiviral immune responses can disrupt

the microbiota structure and function (Hanada et al., 2018).

Viral infections usually increase glucose uptake and

fermentation processes, thus altering the composition of the

microbiota and clinical symptoms (Shibata et al., 2020). Studies

have shown that IAV inhibits bacterial-induced interleukin-1b
(IL-1b) production and impairs host defense against bacterial

infection. IL-10 production by regulatory T (T Reg) cells has the

potential to induce susceptibility to secondary bacterial

infections, and serum levels of IL-1b and IL-10 are elevated in

children secondary to Streptococcus pyogenes infection one

week after IAV infection, while decreasing with symptom
FIGURE 8

Heatmaps indicate the Spearman rank-correlation coefficients for the relative abundance of differential oropharyngeal microbiota at the genus
level and differential metabolites in children with IAV pneumonia and healthy controls. Positive correlation is depicted using red, whereas
negative correlation is depicted using blue. *p < 0.05; **p < 0.01; ***p < 0.001; IAV, influenza A virus.
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improvement, which seems to indicate that IAV infection and

secondary Streptococcus infection also enhance pulmonary

toxicity in children, but this needs to be confirmed by further

studies (Bedoya et al., 2013; Ochi et al., 2018). According to these

investigations, bacterial-viral interactions play an important role

in disease development (Bai et al., 2022; Mirzaei et al., 2022).

Interestingly, the study discovered that the IAV pneumonia

group had much greater levels of Streptococcus and

Actinomycetes at the genus level. However, in previous studies,

children infected with IAV show a higher abundance of

Streptococcus in the nasopharynx and lower abundances of

Streptococcus and Neisseria in the oropharynx during the early

phase of infection (Wen et al., 2018). Using a decision tree

evaluation by random forest analysis, Zhou et al. (2020)

demonstrated that elevated Ralstonia and Acidobacteria in

oropharyngeal samples could better distinguish between

healthy groups and respiratory infections groups such as IAV

and Mycoplasma pneumoniae infections, consistent with our

study. Existing studies suggested that nasopharyngeal secretions

can drip down the posterior part of the nasal cavity into the

oropharynx or lungs, resulting in migration of nasal microbes

into the lungs. The immune barrier and the indigenous

microbiota in the respiratory tract gradually eliminate nasal

microbes to restore homeostasis (Gu et al., 2019). Entering

virus particles can bind to the respiratory colonization

microbiota and stimulate local microbiota reproduction and

diffusion to the upper and lower respiratory tracts when

infected with IAV; however, this follows viral infection by a

few days and correlates with lower respiratory macrophage loss

(Mina et al., 2015). Dynamic changes in the structure of the gut

microbiota over time and an increase in the abundance of several

bacterial genera, including Acinetobacter and Streptococcus, were

observed on day 7 after infection in mouse models infected with

influenza A (Gu et al., 2019). In children, the vulnerability to

secondary bacterial superinfection often manifests one week

after influenza infection, and much research has sought to

understand the immunological mechanism of IAV exacerbated

by bacterial superinfection (Ochi et al., 2018). In our study, the

mean time to the onset of influenza symptoms was seven days at

the time of admission of children with IAV pneumonia, and the

patients had a significant increase in oropharyngeal

Streptococcus. These studies suggest that the abundance of

oropharyngeal Streptococcus in children is altered following

IAV infection, which may exacerbate lung injury and the

disease. However, more studies are needed to understand how

changes in the microbiota in children affect different responses

of the immune system to IAV infection and the mechanisms by

which lung injury occurs. There is the potential to confer

beneficial immunomodulatory effects through microbiological

interventions and to assist in targeted clinical treatment.

Significant changes in the oropharyngeal metabolome of

study participants with IAV pneumonia were observed, the

most significant changes in lipid metabolism. Pathway
Frontiers in Cellular and Infection Microbiology 13
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enrichment analyses revealed significant changes in

propanoate and sphingolipid metabolism. Previous studies in

human lung epithelial cells and animal models revealed

alterations in lipids, carbohydrates, and related molecules,

nucleosides, and other metabolites following influenza virus

infection, which follows the present findings (Cui et al., 2016;

Tisoncik-Go et al., 2016; Tian et al., 2019). Sphingolipid

metabolites are essential components of the lipid bilayer and

the extracellular fluid. They serve as signaling molecules in

normal cellular physiological processes and pathological

inflammatory conditions (Avota et al., 2021). sphingosine,

sphinganine, and phytosphingosine are categorized as long-

chain sphingolipid bases and are essential in cellular apoptosis

as sphingolipid structural analogs (Nagahara et al., 2005).

Therefore, sphingosine, phytosphingosine, sphinganine, the Sa/

So ratio, and the combination of the three metabolites showed

good diagnostic value in children with IAV pneumonia.

IAV primarily targets mucosal epithelial cells in the

respiratory tract (Lee et al., 2018). Viruses must interact with

cell membranes to attach and infiltrate cells as specialized

intracellular pathogens. Sphingolipid metabolites perform

various functions in virus-host interactions, including the

promotion of virus binding and the entrance, reproduction,

and release of new particles (Konan and Sanchez-Felipe, 2014;

Drake et al., 2017). This study revealed a significantly lower

abundance of sphingosine and significantly higher abundances

of sphinganine and phytosphingosine in the IAV pneumonia

group than in the healthy volunteer group. A previous study

showed that phytosphingosine and sphingosine exert different

levels of antimicrobial activity against several species of bacteria

(Fischer et al., 2012). Adult patients with severe IAV infections

also exhibit changes in the sphingolipid metabolites in their

blood plasma, which is closely associated with respiratory failure

and death. The bronchial mucosal epithelium acts as the host’s

first line of defense against respiratory infections, and

sphingosine is a component of this epithelium. Sphingosine

can inhabit various bacterial species in vivo and in vitro,

serving as a natural antiseptic agent in the airways (Wendt

et al., 2021). Sphingosine expression levels are significantly

reduced in patients with cystic fibrosis and mouse models,

resulting in an increased incidence of pulmonary infections,

which are ameliorated by the sphingosine pathway or by

inhalation of exogenous sphingosine (Grassmé et al., 2017). In

addition, sphinganine protects lung tissue from invading

pathogens, and significantly elevated serum levels of

sphinganine in mouse models infected with SARS-CoV-2 are

correlated with disease severity (Vitner et al., 2022). As a result,

oropharyngeal sphingolipid metabolites may be useful as both

diagnostic and therapeutic targets for childhood IAV

pneumonia. Furthermore, pediatric patients with IAV had

significantly elevated levels of propionic acid and succinic acid,

resulting from propanoate metabolism and lower levels of L-valine.

Propionic acid induces insulin resistance and hyperinsulinemia by
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activating the sympathetic nervous system in mice (Tirosh et al.,

2019). In addition, significantly higher serum levels of propionic

acid were observed in patients with SARS-CoV-2 pneumonia,

which could act as a potential biomarker of metabolic disorders

related to COVID-19 (He et al., 2021). Elevated levels of succinic

acid indicate an increased turn of the TCA cycle, whereas increased

TCA turn rates andmitochondrial dysfunction can lead to oxidative

stress in patients (Bolukbas et al., 2005; Li et al., 2015).

We also performed a multi-omics association analysis and

discovered that discriminatory oropharyngeal microbiota was

closely associated with discriminatory metabolites. For example,

Streptococcus was positively correlated with sphinganine,

phytosphingosine, and N-palmitoylsphingosine, suggesting

that oropharyngeal microbiota and metabolites had consistent

variation trends. Some investigations have discovered a strong

correlation between elevated Streptococcus levels and the change

in sphingolipid metabolites. Previous investigations on

nasopharyngeal samples from infants with severe bronchiolitis

found that the sphingolipid pathway is the most enriched sub-

pathway positively correlated with abundance of Streptococcus

(Stewart et al., 2017). In adult patients with community-acquired

pneumonia, changes in Streptococcus in the respiratory tract

were significantly correlated with pneumonia severity and were

associated with changes in serum metabolites, including

sphingolipid, pyruvate, and inositol phosphate (To et al.,

2016). Studies indicate that the abundance of many species of

Streptococcus has significantly increased in patients with chronic

obstructive pulmonary disease (COPD). The increased

abundance of the glucosyltransferase and LPXTG-anchored

adhesion domain in streptococcus enrichment suggests that the

ability to the stick to surfaces was essential for increased

abundance (Bowerman et al., 2020). Furthermore, bioactive

sphingolipids are becoming evident in the regulation of cell

adhesion, migration, and invasion, with sphinganine,

phytosphingosine and sphingosine modulating bacterial

adhesion, which may be a key point of interaction between

Streptococcus and sphingolipid metabolites (Hannun and

Obeid, 2018; Cukkemane et al., 2015). Metagenomic data

analysis confirmed that Streptococcus produces serine, the

substrate for sphinganine and the fundamental building block

of all sphingolipids; therefore, exogenous serine produced by

Streptococcus can contribute to a significant increase in airway

metabolism (Stewart et al., 2017).However, the mechanisms

involved need to be further explored. Furthermore, in this

study, Lactobacillus and D-lactate in the oropharynx of

children with IAV pneumonia were significantly elevated and

positively correlated. Lactobacillus-produced D-lactic acid in the

oropharynx may play a vital role in inhibiting Streptococcus

colonization and proliferation (Yildiz et al., 2020). These results

demonstrate that pediatric patients with IAV pneumonia show

changes in the oropharyngeal microbiota and its metabolites

during acute infections and that significant correlations between

the oropharyngeal microbiota and oropharyngeal metabolites
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can be identified. Combining these findings, we found that IAV

pneumonia leads to an altered abundance of specific microbiota

in the airways and alters host cell metabolism. On the one hand,

the oropharyngeal microbiota can contribute to the altered

severity of IAV pneumonia by modulating host cell function

and metabolism (e.g., sphingolipid metabolism). However, the

abundance of specific microbiota (e.g., Streptococcus) is altered

following changes in host metabolism. Our findings should

support future research into the potential processes relating

these changes in the microbiota, host immune system, and

airway metabolism to IAV development. These findings are

highly significant for early disease prediction, evaluation,

and intervention.

We adopted a multi-omics analytical approach and revealed

significant changes in the oropharyngeal microbiota and

metabolites, as well as significant correlations between the two

factors in pediatric patients with IAV pneumonia. Oropharyngeal

swabbing serves as a convenient, effective, and non-invasive

sampling method that facilitates scientific evaluation. However,

this study has several limitations. Because our findings are based

on data collected from a single center with a relatively small

sample size, more multicenter studies that use larger datasets are

needed to validate our metagenomic and metabolomic findings.

Furthermore, we performed comparative analyzes between

pediatric patients with IAV infection only and healthy children;

therefore, the generalizability of the findings of our study to

pediatric patients with mixed infections is unclear. In subsequent

studies, other important respiratory viruses should be included in

comparative analyzes to optimize the evaluation of the available

molecular diagnostic approaches. Finally, although the selection

of subjects included in this study was rigorous, ethically,children

with pneumonia are required to receive medication as soon as

possible.There may still be various potential factors affecting the

microbiome and metabolome. In a subsequent investigation, we

will set up a more thorough longitudinal study to reduce

confounders and dynamically track changes in the respiratory

microbiome and metabolome of IAV-infected children.

However, the results of this preliminary study provide

important clues for understanding the respiratory microbiome

and metabolome associations in children with IAV pneumonia

and to explore potential predictors and more effective

treatment options.
Conclusions

This study comprehensively analyzes the mechanism of the

oropharyngeal microbiota and its metabolites compared to

previous mono-omics studies of IAV pneumonia among

pediatric patients. Oropharyngeal samples from pediatric

patients with IAV pneumonia can be successfully differentiated

from those of healthy children using LC-MS/MS-based

untargeted metabolomics and high throughput 16S rRNA gene
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sequencing-based microbiome analysis. Pediatric patients with

IAV pneumonia had significantly lower abundance and diversity

of the oropharyngeal microbiota than healthy children, with

significant changes in the abundance of bacterial species such as

Streptococcus, Rothia, and Haemophilus. Furthermore,

significant intergroup differences in oropharyngeal metabolites

were observed. Among them, the sphingolipid metabolites,

sphingosine, sphinganine, and phytosphingosine were

identified as important discriminatory oropharyngeal

metabolites. These three metabolites, the Sa/So ratio, and the

combination of these three metabolites showed high diagnostic

efficacy in pediatric patients with IAV pneumonia. The

characteristic changes in the oropharyngeal microbiota and

metabolites indicate they can serve as efficient and non-

invasive diagnostic biomarkers, and even therapeutic targets

for pediatric patients with IAV pneumonia. More long-term

confirmatory studies are required in a larger patient population

across different geographic regions and ethnic groups to validate

these hypotheses.
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Oral microbial dysbiosis in
patients with periodontitis
and chronic obstructive
pulmonary disease

Siqin Liu1†, Guofang Xie2†, Meifeng Chen3†, Yukun He4,
Wenyi Yu4, Xiaobo Chen2, Weigang Mao2, Nanxia Liu2,
Yuanjie Zhang2, Qin Chang3, Yingying Qiao3, Xinqian Ma4,
Jianbo Xue4, Mengtong Jin5, Shuming Guo6*‡,
Yudong Hou1*‡ and Zhancheng Gao4*‡

1School of Stomatology, Binzhou Medical University, Yantai, China, 2Department of Stomatology, Linfen
Central Hospital, Linfen, China, 3Department of Respiratory and Critical Care Medicine, Linfen Central
Hospital, Linfen, China, 4Department of Respiratory and Critical Care Medicine, Peking University
People’s hospital, Beijing, China, 5Department of Science and Education, Linfen Central Hospital,
Linfen, China, 6Nursing department, Linfen Central Hospital, Linfen, China
Background: Oral microbiota is closely related to the homeostasis of the oral cavity

and lungs. To provide potential information for the prediction, screening, and treatment

strategies of individuals, this study compared and investigated the bacterial signatures in

periodontitis and chronic obstructive pulmonary disease (COPD).

Materials and methods: We collected subgingival plaque and gingival crevicular

fluid samples from 112 individuals (31 healthy controls, 24 patients with

periodontitis, 28 patients with COPD, and 29 patients with both periodontitis

and COPD). The oral microbiota was analyzed using 16S rRNA gene sequencing

and diversity and functional prediction analysis were performed.

Results: We observed higher bacterial richness in individuals with periodontitis in

both types of oral samples. Using LEfSe and DESeq2 analyses, we found

differentially abundant genera that may be potential biomarkers for each group.

Mogibacterium is the predominant genus in COPD. Ten genera, including

Desul fov ibr io , F i l i factor , Fret ibacter ium, Moraxel la , Odor ibacter ,

Pseudoramibacter Pyramidobacter, Scardovia, Shuttleworthia and Treponema

were predominant in periodontit is . Bergeyel la , Lautropia, Rothia ,

Propionibacterium and Cardiobacterium were the signature of the healthy

controls. The significantly different pathways in the Kyoto Encyclopedia of Genes

and Genomes (KEGG) between healthy controls and other groups were

concentrated in genetic information processing, translation, replication and

repair, and metabolism of cofactors and vitamins.

Conclusions: We found the significant differences in the bacterial community and

functional characterization of oral microbiota in periodontitis, COPD and

comorbid diseases. Compared to gingival crevicular fluid, subgingival plaque
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may be more appropriate for reflecting the difference of subgingival microbiota in

periodontitis patients with COPD. These results may provide potentials for

predicting, screening, and treatment strategies for individuals with periodontitis

and COPD.
KEYWORDS

periodontal disease, COPD, oral microbiome, 16S rRNA, subgingival plaque, gingival
crevicular fluid, inflammation, chronic obstructive pulmonary disease
1 Introduction

The oral microenvironment is complicated and comprises more

than 700 bacterial species (Dewhirst et al., 2010). Among them, 400

species have been identified in periodontal pockets. Oral microbial

dysbiosis is known to impact chronic inflammatory diseases (Thomas

et al., 2021). Microbial migration from the oral cavity appears to be a

significant source of the lung microbiome through microaspiration

and inhalation (Bassis et al., 2015). Thus, the oral microbiota is closely

related to the homeostasis of the oral cavity and lungs.

Periodontitis , a chronic infectious disease caused by periodontal

pathogens, is characterized by the loss of gingiva, bone, and ligament and

deep periodontal pockets between the tooth and gingiva (Kinane et al.,

2017). Periodontitis is a highly prevalent oral disease in China, with a

prevalence of up to 52.8% (Jiao et al., 2021). Emerging evidence has

revealed that periodontitis is closely related to the oral microbiota, which

can increase the risk of the development of chronic inflammatory

conditions, thereby leading to coronary artery disease, systemic lupus

erythematosus, and respiratory disease (Gomes-Filho et al., 2010;

Preshaw et al., 2012; Slocum et al., 2016; Li et al., 2020). Chronic

obstructive pulmonary disease (COPD) is one of the most common

respiratory diseases characterized by progressive and non-reversible

airflow limitation (Barnes et al., 2015a). Recurrent episodes of

exacerbations in COPD lead to significant mortality worldwide (Barnes

et al., 2015b; Caramori et al., 2016; Rabe andWatz, 2017). Disturbed lung

microbiome and abnormal inflammatory reactions are the two main

causes of acute exacerbation of COPD (Mammen and Sethi, 2016).

Gram-negative bacteria, such as Porphyromonas gingivalis,

Treponema denticola, and species are believed to be the main oral

microbiome in the periodontal inflammatory response (Gaeckle et al.,

2020). Compared with the control group, the abundance of

P.gingivalis, Klebsiella pneumoniae, Pseudomonas aeruginosa and

Streptococcus pneumoniae increased in participants with COPD (Tan

et al., 2019). Moreover,Veillonella, Rothia, and Actinomyceswere more

enriched in patients with COPD and periodontitis than in HCs(Lin

et al., 2020). Treating periodontitis significantly reduced exacerbation

frequency in patients with COPD (Kucukcoskun et al., 2013).

Although most recent studies have explored the relationship and

influence mechanism of periodontitis or COPD, research on the

alteration of the oral microbiome in patients with periodontitis,

COPD or both, remains insufficient. Moreover, previous studies

have mainly focused on saliva samples; however, the bacterial

composition differs between saliva and subgingival pockets

(Jakubovics and Kolenbrander, 2010; Jia et al., 2018). As the main
0281
accumulation site of periodontal pathogens, subgingival plaque more

directly reflects the status of the subgingivalmicrobiome.

In this study, we investigated the shared and specific alterations in

the oral microbiomes of participants with periodontitis, COPD, or

both, through 16S rRNA gene sequencing.

2 Material and methods

2.1 Study participants

The present study was approved by the ethics committee of Linfen

Central Hospital (Ethics Approval No. 2021-42-1) and was performed

in accordance with the Declaration of Helsinki. Written informed

consent was obtained from all participants prior to clinical data

collection and sampling.

A total of 112 participants were recruited at Linfen Central Hospital,

including 31 healthy controls (HC group), 24 periodontitis patients

without COPD (P group), 28 COPD patients without periodontitis

(COPD group), and 29 patients with both periodontitis and COPD

(P_COPD group). The diagnosis and assessment of the severity of COPD

were made according to the recommendations of the Global Initiative for

Chronic Obstructive Lung Disease (GOLD) committee (Vogelmeier

et al., 2017). The diagnosis and assessment of the periodontitis were

based on the new classification, Classification of Periodontal and Peri-

implant Diseases and Conditions (Tonetti et al., 2018). Other inclusion

criteria included: (1) aged ≥18 years; and (2) Periodontitis from stage II

to IV, grade B. The exclusion criteria were antibiotic using before during

the last three months, other systemic diseases, administration of

periodontal therapy during the last three months (Cai et al., 2021).

General participant demographics, including age, gender, blood routine

records, pulmonary function test results and clinical treatments were

collected from medical record system using a standard form.
2.2 Sample collection

Before sample collection, the participants were asked to rinse their

mouth for removing the food residues and debris. We obtained oral

samples from four first incisor teeth and four first molar teethof each

participant. The first molars and incisors are the main sites of periodontal

lesions, and we selected 11, 21, 31, 41, 16, 26, 36, 46 as the main sampling

sites based on previous periodontal microbiology studies (Zhou et al.,

2020). Clinical examination was performed before sampling to ensure

that the sampling site clinical attachment loss (CAL) ≥ 3mm, probing
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depth (PD) ≥ 4mm and bleeding on probing. If one of these teeth was

missing, the adjacent tooth was collected. After drying the target sites,

gingival crevicular fluid (GCF) samples were collected with sterile

absorbent paper points from gingival sulcus of each tooth. After

removal of supragingival plaque, subgingival plaque (SP) samples were

collected with sterile Gracey curettes from the buccal and lingual sides of

each tooth. The sample of each participant was collected in the eppendorf

tube. All oral specimens (subgingival plaque and gingival crevicular fluid)

were stored in -80°C until DNA extraction.

2.3 DNA extraction, 16S rRNA gene
amplification, and sequencing

Total bacterial DNA was extracted from oral samples using

SteadyPure Bacterial Genomic DNA Extraction Kit(Accurate

Biotechnology(Hunan)Co,Ltd,China) following the manufacturer’s

instructions. Hypervariable regions (V2, V3, V4, V6-7, V8 and V9)

of the 16S rRNA were amplified using two primer sets in the Ion

16STM Metagenomics Kit (ThermoFisher Scientific, UK). XP beads

were used to purify the amplification products and quantified by

Qubit4 (ThermoFisher Scientific, USA). Purified amplicons were

ligated with barcodes and then generated for the libraries. Then the

libraries were pooled in equimolar amounts on chip 530 and

sequenced to single-end, 250-base-pair reads on an Ion GeneStudio

S5 System (ThermoFisher Scientific, USA) based on Ion Reporter

metagenomics workflow (Ion 16S mNGS). Quality filtering, trimming

and dereplication of raw sequencing reads were conducted

automatically on Ion Reporter metagenomics workflow, relying on

default parameters. Unaligned binary data files (Binary Alignment

Map, BAM) generated by the Ion Torrent PGM were uploaded to Ion

Reporter and analyzed using default settings (Malczynski et al., 2021).

2.4 Statistical analysis

Quantitative variables conforming to normal distribution were

presented as the mean ± SD analyzed by Student’s t test and analysis
Frontiers in Cellular and Infection Microbiology 0382
of variance (ANOVA), while Quantitative variables of non-normal

distribution were presented as median and interquartile ranges (25th

and 75th percentiles) and analyzed by Mann-Whitney U or Kruskal-

Wallis test. Categorical variables were presented as rate or percentage,

and chi-square test or Fisher test were used to analysis. The alpha

diversity was evaluated using the Chao-1, Shannon, abundance-based

coverage estimator (ACE) and Simpson indices, respectively. The beta

diversity has been evaluated through principal coordinates analysis

(PCoA) ordination of variance and compared using Bray-Curtis

dissimilarity. Differential species among groups was explored with the

linear discriminant analysis (LDA) effect size (LEfSe) method (Shi et al.,

2021) and DESeq2 analysis (Lu et al., 2022). The microbiome

phenotypes were predicted by BugBase (Ward et al., 2017). The

BugBase phenotype predictions were implemented using the

online web page https://bugbase.cs.umn.edu/index.html. Prediction of

the abundances of functional categories was conducted using PICRUSt2

(Douglas et al., 2020). Statistics and visualization of functional data

were depicted using STAMP (Chowdhry et al., 2018). P<0.05

was considered as statistically significant.
3 Results

3.1 Clinical characteristics of the study
population

A total of 112 participants were enrolled in our study, and the

basic characteristics of each group are listed in Table 1. There were no

differences among the groups except for gender, age and smoking.

The healthy control (HC) group’s median age was significantly

younger than the diseased groups. The median age of the comorbid

(P_COPD) group was highest. Moreover, the healthy group had a

higher proportion of female participants. Significant difference of

smoking was only existed between healthy control group and

periodontitis group. Gender, age and smoking status were treated as

confounding factors which were corrected in the difference analysis
TABLE 1 Demographical and Clinical Features of Included Subjects.

HC(n=31) P(n=24) COPD(n=28) P_COPD(n=29) p-value

Age 25(23-38) 53.5(47.25-61.25) 61(51.75-67.75) 66(60.5-72.5) <0.005a

Gender,n (%) <0.001b

female 19(61.3%) 9(37.5%) 5(17.9%) 4(13.8%)

male 12(38.7%) 15(62.5%) 23(82.1%) 25(86.2%)

Somkers,n (%)

Current smoker 3(9.7%) 12(50%) 7(25%) 7(24.1%) <0.001c

Former smoker 0 0 7(25%) 15(51.7%) >0.05

Nonsmoker 28(90.3%) 12(50%) 14(50%) 7(24.1%) <0.001d

PD(mm) 2(1-2) 6.33(4.33-6.92) 2(1.25-2) 6.33(5-6.67) <0.001e

BOP% 2.08(2.08-4.17) 78.13(71.35-83.33) 2.08(2.08-4.17) 81.25(68.75-87.5) <0.001f

Stage(%) 0.612

(Continued)
fron
tiersin.org

https://bugbase.cs.umn.edu/index.html
https://doi.org/10.3389/fcimb.2023.1121399
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2023.1121399
(Figure S4A). There were no significant differences in the GOLD

grade and cl inica l indicators between the COPD and

P_COPD groups.
3.2 The oral microbial community in the
periodontal pocket and crevice

All sequencing data for the four groups reached saturation at

approximately 50,000 reads (Figure S1). For alpha diversity, the

Chao1 index in the subgingival plaque (SP) samples from the

periodontitis group was significantly higher than that in the HC

group (Figure 1A, P = 0.0245). In the gingival crevicular fluid (GCF)
Frontiers in Cellular and Infection Microbiology 0483
samples, the Chao1 index of periodontitis group was significantly

higher than that of the COPD group (Figure 1C, P = 0.0068) and

P_COPD group (Figure 1C, P = 0.0063). However, no significant

difference was found in the Shannon, Simpson and ACE indices

among the four groups in the different sample types (Figures 1A, C, P

> 0.05). To evaluate similarities among the four groups, PCoA was

based on unweighted UniFrac distances. Regardless of the SP or GCF

samples, beta diversity was different in the HC and diseased groups

(Figures 1B, D). However, in the SP samples, the bacterial

compositions in the periodontitis, COPD, and P_COPD groups

were indistinguishable (Figure 1B, P>0.05). For the GCF samples,

beta diversity was different between theperiodontitis and P_COPD

groups (Figure 1D).
TABLE 1 Continued

HC(n=31) P(n=24) COPD(n=28) P_COPD(n=29) p-value

II — 9(37.5%) — 8(27.6%)

III — 10(41.7%) — 16(55.2%)

IV — 5(20.8%) — 5(17.2%)

GOLD(%) 0.712

I — — 3(10.7%) 6(20.7%)

II — — 11(39.3%) 10(34.5%)

III — — 9(32.1%) 7(24.1%)

IV — — 5(17.9%) 6(20.7%)

BMI(kg/m2) — — 27.35(23.43-29.3) 23.5(22.1-25.75) 0.007

FVC(L) — — 2.88(2.51-3.56) 2.82(2.34-3.67) 0.943

FEV1(L) — — 1.43(0.99-2.18) 1.34(0.92-2.12) 0.472

FEV1% — — 58.31(35.71-73.54) 53.08(33.56-75.52) 0.576

Peripheral blood

WBC(x109/L) — — 6.3 ± 2.1 6.5 ± 1.7 0.675

RBC(x1012/L) — — 4.7 ± 0.4 4.7 ± 0.4 0.797

HGB(g/L) — — 143.4 ± 11.2 142.8 ± 12.1 0.848

Neutrophil percentages(%) — — 57.2 ± 8.1 58.6 ± 10.4 0.578

Lymphocyte percentages(%) — — 31.1 ± 6.7 30.5 ± 9.9 0.799

Monocytes percentages(%) — — 7.5(6.45-10) 7.7(6.65-9) 0.958

Eosinophil percentages(%) — — 2.3(1.45-3.85) 2.3(1.25-2.85) 0.409

Basophil percentages(%) — — 0.5 ± 0.3 0.5 ± 0.2 0.706

Neutrophil(x109/L) — — 2.99(2.62-5.125) 3.8(2.675-4.67) 0.482

Lymphocyte(x109/L) — — 1.9 ± 0.5 2.0 ± 0.7 0.719

Monocytes(x109/L) — — 0.43(0.375-0.565) 0.54(0.48-0.615) 0.147

Eosinophil(x109/L) — — 0.15(0.08-0.22) 0.12(0.08-0.205) 0.567

Basophil (x109/L) — — 0.03(0.02-0.04) 0.03(0.02-0.05) 0.333
fron
aSignificant difference exists among healthy control group and other groups, significant difference exists between periodontitis group and COPD with periodontitis group.
bSignificant differences exists among healthy control group and other three groups.
c,dSignificant difference exists between healthy control group and periodontitis group.
e,fSignificant difference exists between healthy control group and periodontitis group, significant difference exists between COPD group and periodontitis group, significant difference exists between
COPD group and COPD with periodontitis group.
BMI, body mass index; GOLD, grading of pulmonary function; WBC, white blood cell; RBC, red blood cell; PD, probing depth; BOP, bleeding on probing.
HC, health controls; P, patients with periodontitis; COPD, patients with chronic obstructive pulmonary disease; P_COPD, patients with comorbid diseases.
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Eight phyla, 50 families, 98 genera were detected in the SP

samples . The most abundant genera were Prevote l la ,

Corynebacterium, Capnocytophaga, Fusobacterium, Streptococcus

and Porphyromonas (Figure 2A). Actinomyces, Campylobacter,

Capnocytophaga, Neisseria, Prevotella and Streptococcus were

present in all SP samples (Figure 2B). Nine phyla, 57 families and

118 genera were identified in the GCF samples. The most abundant

genera were Streptococcus , Prevote l la , Fusobac ter ium ,

Porphyromonas, Neisseria and Capnocytophaga (Figure 2C). The

core microbiota of the GCF samples were Actinomyces ,

Campylobacter, Fusobacterium, Leptotrichia, Porphyromonas,

Prevotella, Streptococcus and Tannerella (Figure 2D).

In periodontitis group, we explored the differential taxa among

stages of periodontitis. In both types of oral samples, no significant

difference was found in the alpha diversity analysis and beta diversity

analysis among the different stages of periodontitis. There were no

difference in the taxa among stages of periodontitis (Figure S4B, S4C,

P > 0.05).
3.3 Microbial alterations in different diseases

To further identify the differential taxa among these groups, LEfSe

and DESeq2 analyses were conducted. According to the LEfSe

analysis, in the SP samples, eight genera were predominant in the

HC group, including Actinomyces, Bergeyella, Brachymonas,

Cardiobacterium, Lautropia, Mannheimia, Propionibacterium and
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Rothia. In contrast, the abundance of Haemophilus, Filifactor, and

Moraxella increased in the periodontitis group. The abundance of

Atopobium and Lachnoanaerobaculum were higher in the COPD

group and the abundance of Stomatobaculum, Anaeroglobus,

Bifidobacterium, and Clostridium were higher in the P_COPD

group. (Figure 3A, LDA score (log10) >2, P < 0.05). According to

DESeq2 analysis (Table S1), there were significant differences in the

oral microbiota of the three diseased groups in the SP samples but no

common change among these groups. Twenty-nine genera were

predominant in the periodontitis group, including Filifactor,

Mogibacterium, Scardovia , Murdochiella and Odoribacter.

Abiotrophia and Gemella were more abundant in the COPD group

and the abundance of Cardiobacterium was higher in the P_COPD

group. The abundance of Bergeyella decreased in the periodontitis

and COPD groups. The abundance of Pasteurella and Propionicicella

decreased in the periodontitis group. The abundance of

Desulfobulbus, Soonwooa and Johnsonella decreased in the COPD

group (Figure 3C).

According to LEfSe analysis, in the GCF samples, the abundance

of eight genera: Bergeyella, Cardiobacterium, Kingella, Lautropia.

Propionibacterium, Rothia, Serratia and Staphylococcus were more

abundant in the HC group. Desulfovibrio, Dorea, Filifactor,

Fretibacterium, Moraxella, Pseudoramibacter and Treponema were

more abundant in the P group, while the abundance of

Mogibacterium increased in the COPD group. The abundance of

Phocaeicola and Schwartzia was higher in the P_COPD group.

(Figure 3B, LDA score (log10) >2, P < 0.05). According to DESeq2
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FIGURE 1

Alpha diversity analysis of healthy controls (HC), periodontitis (P) group, chronic obstructive pulmonary disease (COPD) group and comorbid diseases
(P_COPD) group. Chao1, Shannon, abundance-based coverage estimator (ACE) and Simpson indices of each group, (A) in subgingival plaque samples
and (C) in gingival crevicular fluid samples. Under Chao1 index, significant difference between HC and P was observed in subgingival plaque samples,
significant differences between P and COPD, P and P_COPD were observed in gingival crevicular fluid samples. Principal coordinate analysis (PCoA)
among healthy controls (HC), periodontitis (P) group, chronic obstructive pulmonary disease (COPD) group and comorbid diseases (P_COPD) group. (B)
The PCoA plot showed a separation of samples from HC and other diseased groups in subgingival plaque samples. (D) The PCoA plot showed a
separation of samples from HC and other diseased groups in gingival crevicular fluid samples. The samples of P_COPD were separated from P group.*: p
< 0.05 **: p < 0.01.
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FIGURE 2

Relative abundances of the oral microbiota in healthy controls (HC), periodontitis (P) group, chronic obstructive pulmonary disease (COPD) group and
comorbid diseases (P_COPD) group. Stacked bar plots showing relative abundances of the oral microbiota at the genus level (A) in subgingival plaque
samples, (C) in gingival crevicular fluid samples. The correlation network analysis of the core microbiota based on SparCC. The core microbiota was
defined as which covering 100% of all samples. (B) In subgingival plaque samples. (D) In gingival crevicular fluid samples.
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FIGURE 3

Linear discriminant analysis of effect size (LEfSe) of oral microbiota at the genus level enriched in healthy controls (HC), periodontitis (P) group, chronic
obstructive pulmonary disease (COPD) group and comorbid diseases (P_COPD) group. LDA score (log10) <2, P < 0.05) (A) In subgingival plaque samples.
(C) In gingival crevicular fluid samples. DESeq2 analysis of oral microbiota. Oral microbiota with significantly difference from the diseased groups
compared with healthy controls (B) in subgingival plaque samples, (D) in gingival crevicular fluid samples. * The relative abundances of Phocaeicola was
more abundant in CP group, while the relative abundance of Phocaeicola in COPD group was lower than HC groups. ↓, decreased. Spearman’s
coefficient calculated between oral microbiota and clinical indicators. The taxa analyzed were the top 20 genera in terms of abundance (E) in subgingival
plaque samples, (F) in gingival crevicular fluid samples. Black stars within heatmap boxes indicate significant results (*: P ≤ 0.05, **: P ≤0 .01), Benjamini–
Hochberg adjustment for multiple comparisons.
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analysis (Table S2), there were significant differences in the oral

microbiota of the three diseased groups, but no common changes

were observed among these groups. Fifteen genera were predominant

in the per iodont i t i s g roup : Pas teure l la , Phocae i co la ,

Pseudoramibacter, Pseudoramibacter, Pyramidobacter, Scardovia,

Schwartzia , Shuttleworthia, Slackia , Stomatobaculum and

Synergistes. The abundance of Corynebacterium, Bacillus, Ottowia

and Neisseria decreased in the periodontitis group. The abundance of

Serratia decreased in the COPD group. The abundance of Kingella,

Alloprevote l la and Dialister decreased in the P_COPD

group (Figure 3D).
3.4 Association between genera and blood
routine indicators

The observed links between the respiratory microbial community

and disease prompted us to examine the interactions between the taxa

and their clinical features. The taxa analyzed were the top 20 genera

regarding abundance. For SP samples, the relative abundance of

Streptococcus was negatively correlated with neutrophil, white blood

cell and monocyte counts. The relative abundance of Rothia was

negatively correlated with lymphocyte counts. The relative abundance

of Leptotrichia and Campylobacter were positively correlated with the

basophil counts, and the relative abundance of Aggregatibacter and

Neisseria were negatively correlated with the basophil counts

(Figure 3E). In the GCF samples, the relative abundance of Rothia,

Streptococcus, and Haemophilus was positively correlated with the

lymphocyte percentages. The relative abundance of Streptococcus and

Rothia was negatively correlated with the neutrophil percentages, and

the relative abundance of Veillonella was positively correlated with

neutrophil percentages. The relative abundance of Treponema was

positively correlated with neutrophil counts. In addition, the relative

abundance of Leptotrichia was negatively correlated with the

eosinophil percentages (Figure 3F).
3.5 Potential function of oral microbiome

We analyzed the predicted phenotypes based on taxonomic

classification using BugBase. In different sample types, the relative

abundance of aerobic bacteria in the HC group was higher than that

in the diseased groups (Figure S2A, S2F). In comparison, the relative

abundance of anaerobic bacteria was lower in the HC group than that

in the diseased groups (Figure S2B, S2G). The ability to form biofilms

in the HC group was greater than that in the diseased groups (Figure

S2C, S2H). The potential pathogenicity in the HC group was lower

than that in the diseased groups in the SP samples (Figure S2D). In

the GCF samples, the potential pathogenicity in the P group was

lower than that in the other groups (Figure S2I). In addition, in the SP

samples, the relative abundance of gram-positive bacteria in the HC

group was higher than that in the other diseased groups, whereas

gram-negative bacteria showed the opposite trend (Figures S2E, S2J).

Through PICRUSt2, putative biological functions of the

microbiota of the four groups were illustrated. No significant

differences were observed between the GCF samples. As shown in

Figure 4A, the periodontitis group exhibited significantly enriched
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metabolism of cofactors and vitamins (thiamine metabolism,

nicotinate and nicotinamide metabolism), translation, protein

families: genetic information processing (translation factors), amino

acid related enzymes, and carbon fixation in photosynthetic

organisms. The COPD group showed significantly enriched protein

families: genetic information processing (transfer RNA biogenesis,

ribosome, mitochondrial biogenesis, DNA replication proteins,

translation factors), translation (ribosome, aminoacyl-tRNA

biosynthesis, RNA transport), replication and repair (homologous

recombination, mismatch repair, DNA replication), protein families:

metabolism (peptidases and inhibitors, amino acid related enzymes,

peptidoglycan biosynthesis and degradation proteins), glycan

biosynthesis and metabolism(peptidoglycan biosynthesis, other

glycan degradation, other types of O-glycan biosynthesis and

mannose type O-glycan biosynthesis) (Figure 4B). The P_COPD

group showed significantly enriched protein families: genetic

information processing (DNA repair and recombination proteins,

transfer RNA biogenesis, ribosome, chromosome and associated

proteins), protein families: metabolism (amino acid related

enzymes, peptidases and inhibitors, peptidoglycan biosynthesis and

degradation proteins), translation (ribosome, aminoacyl-tRNA

biosynthesis, RNA transport), glycan biosynthesis and metabolism

(peptidoglycan biosynthesis , other glycan degradation,

lipopolysaccharide biosynthesis), metabolism of cofactors and

vitamins(lipoic acid metabolism, porphyrin and chlorophyll

metabolism, riboflavin metabolism, thiamine metabolism) and

other functions (Figure 4C).

The HC group showed significantly enriched signal transduction

(two-component system), lipid metabolism (biosynthesis of

unsaturated fatty acids), and metabolism of other amino acids

(glutathione metabolism, phosphonate and phosphinate

metabolism), compared to the other three groups (Figure S3).
4 Discussion

The alteration of oral microecosystem in patients with systemic

diseases has been the subject of intense research for several years

(Thomas et al., 2021). An increasing amount of evidence from

microbiological studies indicates a significant ecological connection

between oral microecosystems, periodontitis and COPD (Wu et al.,

2022). Here we explored the oral microbiota of SP and GCF in

periodontitis, COPD, comorbid patients, and healthy controls. In this

study, we collected oral microbial samples of two types. Compared

with the GCF, differences in the microbial community compositions

of SP more clearly expressed the varieties of oral microecology in

periodontitis and COPD, indicating that it may be more appropriate

for reflecting the difference of subgingival microbiota between

periodontitis and COPD.

This study observed higher bacterial richness in individuals

suffering from periodontitis in the two types of oral samples,

suggesting that microbial dysbiosis were existed in the process of

periodontitis (Lin et al., 2020).

Using LEfSe analysis, we identified differentially abundant genera

associated with different diseases. In the present study,periodontitis

group had a higher abundance of Desulfovibrio, Filifactor,

Fretibacterium, Moraxella, Odoribacter, Pseudoramibacter,
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Pyramidobacter, Scardovia, Shuttleworthia and Treponema in the two

types of samples. Pseudoramibacter, Pyramidobacter, Scardovia,

Shuttleworthia and Desulfovibrio have been recognized as

periodontitis-associated genera (Colombo et al., 2009; Huynh et al.,

2017; Shi et al., 2018). Treponema denticola, Porphyromonas

gingivalis, and Tannerella forsythia have been designated as ‘red-

complex’ periopathogens and have shown a strong association with

periodontitis (Darveau, 2010). . It has been reported that patients with
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COPD tend to have relatively higher ranked means of Treponema

denticola than healthy participants (Zhou et al., 2020). The COPD

group had a higher abundance of Mogibacterium in both sample

types. The abundance of Abiotrophia, Atopobium, Gemella and

Phocaeicola also increased in SP samples. In the previous studies,

Abiotrophia, Atopobium, Mogibacterium and Phocaeicola were

common periodontitis-associated genera (Mikkelsen et al., 2000;

Camelo-Castillo et al., 2015; Zhang et al., 2015; Coretti et al., 2017).
A

B

C

FIGURE 4

PICRUSt analysis in the KEGG pathways. Functional predictions for the oral microbiome of the diseased groups and healthy control group. Significant
KEGG pathways at level 3 for the oral microbiome of the diseased groups and healthy control group in subgingival plaque samples were identified by
STAMP software. Bar chart showing the functional difference (corrected p-value < 0.05) between periodontitis (A), chronic obstructive pulmonary disease
(B) and comorbid diseases (C) versus healthy controls. PICRUSt, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States;
KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Besides, we found that no study has adequately described the

connection and characteristics of these genera in patients with

COPD; Mogibacterium is associated with persistent generalized

disease (Nibali et al., 2020). . Patients in the P_COPD group had

high proportions of the genera Anaeroglobus, Bifidobacterium and

Clostridium in SP samples and Phocaeicola and Schwartzia in the

GCF samples. Phocaeicola and Schwartzia have been previously

identified in periodontitis (Camelo-Castillo et al., 2015). Bergeyella,

Lautropia, Rothia, Propionibacterium and Cardiobacterium were

more abundant in the healthy participants. Bergeyella was

considered as putative periodontal protectors in periodontal swabs

from the participants (Zorina et al., 2014). Lautropia mirabilis,

Propionibacterium propionicum, Rothia dentocariosa/mucilagenosa

and Cardiobacterium hominis were significantly more prevalent in

the healthy group than in the periodontitis patients (Colombo et al.,

2009; Ikeda et al., 2020).

This study and observed the association between genera and

blood routine indicators. The inflammatory mediators produced by

pathogenic microorganisms promote the development of periodontal

inflammation and enter the systemic blood circulation, which affects

the inflammatory development of systemic diseases (Kumar, 2017).

Here we explored the association between genera and blood routine

indicators. Anaeroglobus geminatus is positively correlated with

different lipid mediators which are related to the inflammatory

process of periodontitis (Lee et al., 2021). We also observed that the

relative abundance of Anaeroglobus was positively correlated with

lymphocyte counts, indicating that dysbiosis of periodontal-

associated microorganisms may accelerate the process of

inflammatory between periodontitis and COPD. In our study, the

relative abundance of Treponema and Filifactor were significantly

increased in periodontitis group. The relative abundance of

Treponema was positively correlated with neutrophil counts in GCF

samples. In the previous study, Filifactor, Treponema, and

Fretibacterium, which were more abundant in patients with

periodontitis, were proved connected with inflammatory mediators

(Lundmark et al., 2019). Treponema sp. and cytokines chitinase 3-like

1, sIL-6Ra, sTNF-R1, and gp130/sIL-6Rb were positively correlated, a
negative correlation was identified between IL-10 and Filifactor alocis.

We discovered that the relative abundance of Streptococcus and

Rothia was negatively correlated with the neutrophil percentages in

the GCF samples. In previous study, as a common microorganism of

the oral cavity, the presence of Rothia mucilaginosa in the lower

airways potentially mitigates inflammation (Rigauts et al., 2022). The

levels of Rothia and Streptococcus were significantly lower in

oropharyngeal microbiota composition, in both the COVID-19 and

flu patients than in the healthy control group, which indicated

oropharyngeal microbiota composition may influence the severity

of the disease and the progression of inflammation (Ma et al.,

2021).The results of our study were similar to previous studies,

which partly proved that alterations of periodontal-associated

microorganisms may impact the progression of inflammation in

respiratory disorders, and indicated that the specific high-

abundance bacteria in the four groups may have vital clinical

significance for the early diagnosis and treatment of periodontitis

and COPD.
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The differences in metabolic pathways and functions caused by

alteration of microbiota were evident in the SP samples. We

performed functional predictions based on the KEGG database.

Genetic information processing and translation were significantly

different between the periodontitis, COPD, and P_COPD groups. It is

worth noting that the functions related to bacteria proliferation were

higher in these groups. This may partly explain the higher diversity

and density of patients with periodontitis and COPD (Shi et al., 2021).

The metabolism of cofactors and vitamins was significantly enriched

in the periodontitis and P_COPD groups. Nicotinate and

nicotinamide metabolism is associated with the important

metabolic pathways in the keystone periodontal pathogen,

Porphyromonas gingivalis (Hutcherson et al., 2016). Thiamine is

essential for several important enzymes involved in carbohydrate

metabolism and associated with the key nutrient for Treponema

denticola survival (Bian et al., 2015). The metabolism of

glutathione, phosphonate and phosphinate was significantly

decreased in the periodontitis, COPD, and P_COPD groups similar

to observations from previous studies. Glutathione is an antioxidant

that can moderate host cell damage and reduce inflammatory

response (Ghezzi, 2011). Treponema denticola is connected to the

catabolism of glutathione to H2S (Chu et al., 2020) and the diseased

periodontal pockets of periodontitis patients have lower glutathione

levels than healthy sites. Glutathione metabolism may be a key

pathway for inflammatory damage in COPD.

This study had several limitations. First, compared to the

healthy and periodontitis groups, fewer female individuals were

recruited for the COPD, and P_COPD groups because of the

difficulty in recruiting older female individuals with COPD.

Second, this study was not a longitudinal study which limited the

exploration of variations in the oral microbiota during disease

progression. Then, the detectable microbial diversity is limited in

our sample types, we used 16S rRNA gene amplification which

limited our ability to identify specific bacteria at the species level.

We will refine this in subsequent studies. Finally, the lower airway

microbiota samples were not collected in this study. Studies on

association between periodontal bacteria and bacteria in the lower

airway are insufficient.
5 Conclusion

The present study discovered that the presence of periodontitis

and COPD altered the compositions and functional characterization

of oral microbiomes. These diversities in microecology were

correlated with the pathological change in diseases. These results

may have vital clinical significance in the screening and treatment of

individuals with periodontitis and COPD.
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Altered gut microbiota in
the early stage of acute
pancreatitis were related
to the occurrence of acute
respiratory distress syndrome
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Liang Gong2, Zihan Yang2, Xiao Song5, Shuyang Zhang3,
Huijun Shu2* and Dong Wu2*
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Union Medical College, Beijing, China, 2Department of Gastroenterology, State Key Laboratory of
Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China, 3Department of Cardiology,
Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union
Medical College, Beijing, China, 4Department of Endocrinology, Peking Union Medical College
Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China,
5Department of Emergency Medicine, Peking Union Medical College Hospital, Peking Union Medical
College, Chinese Academy of Medical Sciences, Beijing, China
Background: Acute respiratory distress syndrome (ARDS) is the most common

cause of organ failure in acute pancreatitis (AP) patients, which associated with

high mortality. Specific changes in the gut microbiota have been shown to

influence progression of acute pancreatitis. We aimed to determine whether

early alterations in the gut microbiota is related to and could predict ARDS

occurrence in AP patients.

Methods: In this study, we performed 16S rRNA sequencing analysis in 65 AP

patients and 20 healthy volunteers. The AP patients were further divided into two

groups: 26 AP-ARDS patients and 39 AP-nonARDS patients based on ARDS

occurrence during hospitalization.

Results: Our results showed that the AP-ARDS patients exhibited specific

changes in gut microbiota composition and function as compared to subjects

of AP-nonARDS group. Higher abundances of Proteobacteria phylum,

Enterobacteriaceae family, Escherichia-Shigella genus, and Klebsiella

pneumoniae, but lower abundances of Bifidobacterium genus were found in

AP-ARDS group compared with AP-nonARDS groups. Random forest modelling

analysis revealed that the Escherichia-shigella genus was effective to distinguish

AP-ARDS from AP-nonARDS, which could predict ARDS occurrence in

AP patients.
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Abbreviations: AP, acute pancreatitis; AP-ARDS, acute

respiratory distress syndrome; AP-nonARDS, acute pan

respiratory distress syndrome; ARDS, acute respiratory d

amplicon sequence variant; BAL, bronchoalveolar lavage

index; ICU, intensive care unit; IQR, interquartil

discriminant analysis; MAP, mild acute pancreatitis
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failure; PCoA, principal coordinate analysis; SAP, sev
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Conclusions:Our study revealed that alterations of gut microbiota in AP patients

on admission were associated with ARDS occurrence after hospitalization,

indicating a potential predictive and pathogenic role of gut microbiota in the

development of ARDS in AP patients.
KEYWORDS

acute pancreatitis, acute respiratory distress syndrome, gut microbiota, disease
prediction, biomarker
Introduction

Acute pancreatitis (AP), one of the most common

gastrointestinal diseases, is an acute inflammatory disease with an

increasing incidence worldwide (Tenner et al., 2013; Greenberg

et al., 2016). In patients with AP, persistent organ failure (OF) can

reach 35% and is a key determinant of mortality (Johnson and Abu-

Hilal, 2004; Shah and Rana, 2020). The most common cause of OF

in AP is acute respiratory distress syndrome (ARDS) (Garg et al.,

2005). ARDS is a type of acute, diffuse inflammatory lung injury

that can lead to a high mortality rate of up to 48% (Schmandt et al.,

2021). Even after five years of rehabilitation, surviving ARDS

patients still suffer from poor long-term quality of life; including

exercise limitation, difficulty in returning to work, and high medical

costs (Herridge et al., 2011). However, missed or delayed diagnosis

of ARDS remains a common and challenging problem worldwide.

Nearly two-thirds of patients had a delayed or missed diagnosis of

ARDS. The miss rate was approximately 40%, and the diagnosis of

half of mild ARDS patients was delayed (Bellani et al., 2020). Early

recognition of ARDS ensures that patients receive appropriate

treatment which relieves lung injury and improves prognosis,

therefore, effective prediction methods for ARDS are urgently

required (Fan et al., 2018; Pan et al., 2018; Bellani et al., 2020).

AP is strongly associated with gut microbiota imbalance and an

impaired epithelial barrier (Besselink et al., 2009). Compared with

the healthy group, the diversity of the gut microbiota decreased;

with a greater abundance of pathogenic bacteria in AP patients and

lower numbers of commensal beneficial genera (Zhang et al., 2018;

Zhu et al., 2019). According to the revised Atlanta classification

2012, AP can be divided into three grades: mild AP (MAP),

moderately severe AP (MSAP) with transient OF, and severe AP

(SAP) with persistent OF (Banks et al., 2013). In AP patients with

different degrees of severity, the dominant gut microbiota also
pancreatitis with acute

creatitis without acute
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fluid; BMI, body mass
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varied; with Bacteroides in MAP, Escherichia-Shigella in MSAP,

and Enterococcus in SAP (Yu et al., 2020). Similar results have been

reported in animal models; gut microbiota-depleted AP rats were

found to have lower levels of inflammatory factors (Zheng et al.,

2019; Li et al., 2020). The degree of gut barrier injury and bacterial

translocation are important prognostic factors for AP (Besselink

et al., 2009).

Disorganized microbiota and damaged intestinal epithelium in

AP patients make it easier for the endotoxin diffusion, immune cell

migration, and bacteria translocation. The lung environment may

be more susceptible to the gut microbiota in patients with AP.

Owing to the increased gut permeability, inflammatory factors and

activated trypsin could function as the gut-lung axis, thus triggering

and promoting lung disease in patients with AP (Shah and Rana,

2020). In addition, gram-negative infections promote release of

endotoxins and these can translocate through high-permeability gut

mucosa and contribute to the development of ARDS in AP patients

(AP-ARDS; “ARDS”mean for ARDS in general, “AP-ARDS”mean

for ARDS in acute pancreatitis.) (Gray et al., 2003). Bacteria can also

translocate from the gut to the lung (Mukherjee and Hanidziar,

2018). Previous studies also found evidence of bacteria

translocation in ARDS patients (Dickson et al., 2016; Dickson

et al., 2020). The composition of gut-associated bacteria,

especially Bacteroidetes and Enterobacteriaceae, increased in the

lower respiratory tract of ARDS patients (Dickson et al., 2016;

Siwicka-Gieroba and Czarko-Wicha, 2020). Further study found

that the increase of Escherichia coli in lung was related to higher

mortality of ARDS patients (Zhang et al., 2021). Studies have

confirmed that the lung microbiota is associated with alveolar

inflammation in ARDS (Dickson et al., 2016). Michihito et al.

revealed that alterations in lung microbiota are correlated with

serum IL-6 levels and hospital mortality in patients with ARDS

(Kyo et al., 2019). Therefore, the gut microbiota may be involved in

the pathogenesis of AP-ARDS, however, the relationship between

the gut microbiota and AP-ARDS remains unknown. If early

changes in gut microbiota in AP-ARDS patients can be found,

they may help in the early recognition of AP-ARDS, promote early

intervention, and even improve patient outcomes.

Therefore, we wanted to investigate the relationship between

gut microbiota and AP-ARDS by comparing the microbiota among

three groups: healthy controls, AP patients without ARDS (AP-

nonARDS), and AP-ARDS patients. By collecting the gut

microbiota at the early stage of AP, we investigated whether gut
frontiersin.org
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microbiota was related to and could help predict and recognize AP-

ARDS. Our study explored the potential effect of the gut-lung axis

in AP-ARDS and provide identify biomarkers for prediction and

early recognition of AP-ARDS.
Methods

Study population

This prospective and observational cohort study was conducted

at Peking Union Medical College Hospital, Beijing, China. Twenty

healthy volunteers and 75 patients were enrolled between June 2018

and July 2021. Ten AP patients were excluded due to history of

comorbidities and medicine intake. All patients fulfilled the AP

diagnostic criteria according to the 2012 revised Atlanta criteria and

were admitted within 24 h of onset (Banks et al., 2013).

The exclusion criteria were as follows: patients with chronic

pancreatitis, immunosuppressive disease, inflammatory bowel

disease, cancer, irritable bowel syndrome, gastroenteritis, or

necrotizing enterocolitis; and use of antibiotics, probiotics,

laxatives, or Chinese herbs within two months before symptom

onset. Informed consent was obtained from all participants. This

study was approved by the Ethics Committee of PUMCH

(Identifier: JS1826; date of approval:20th February 2018. Period of

validity: February 2018 to August 2020)

For all patients, no ARDS was diagnosed during the first fecal

sampling; however, some patients developed ARDS during

hospitalization. Patients were diagnosed with ARDS according to

the Berlin definition (Ranieri et al., 2012). According to PaO2/FiO2

levels, patients with ARDS were divided into three groups: mild

ARDS (MARDS), moderate ARDS, and severe ARDS (Ranieri et al.,

2012). Considering the higher rate of mechanical ventilation in

moderate ARDS and severe ARDS patients (Fan et al., 2018) as well

as the small sample size of severe ARDS group (n=5), we combined

moderate ARDS and severe ARDS as non-MARDS group for

subgroup analysis.
Collection and analysis of
clinical characteristics

Demographic and clinical data were collected from medical

record libraries, including age, sex, body mass index (BMI),

smoking history, drinking history, combined diseases, disease

severity-related scores, local complications, systematic

complications, and clinical outcomes. Definitions of local and

systematic complications can be found in previous studies (Yu

et al., 2020; Hu et al., 2021b; Yu et al., 2021).

Statistical analysis of clinical characteristics was performed

using SPSS Statistics 26.0 (IBM Corp., Armonk, NY, USA). The

mean ± standard deviation (SD) was used to represent the data

distribution. However, when the data did not fit a normal

distribution, the median (interquartile range [IQR]) was used. For

categorical variables, we performed the c2 test or Fisher’s exact test;
while for continuous variables, we performed the nonparametric
Frontiers in Cellular and Infection Microbiology 0393
Mann-Whitney test. A difference was considered significant when

the two-sided p value was less than 0.05.
Sample collection, DNA extraction, and 16S
rRNA gene sequencing

Patients with AP have difficulty defecating owing to fasting and

water deprivation. Therefore, we used rectal swabs for fecal

sampling, as previous studies have described (Yu et al., 2020; Yu

et al., 2021). The fecal samples were immediately collected after

admission, and all samples were collected within 24 h of AP onset.

Then, these samples were stored at − 80°C, and microbial DNA was

extracted as soon as possible. We then performed PCR

amplification, library construction, Illumina (San Diego, CA,

USA) MiSeq sequencing, and sequence quality control, using

previously reported methods (Yu et al., 2020; Yu et al., 2021).
Bioinformatics analysis

Amplicon sequence variant (ASV) analysis was performed

using EasyAmplicon (Version 1.10). We use the -derep_fullength

command in VSEARCH (version 2.15) to create dereplication,

denoised these unique sequences into ASVs by the -unoise3

algorithm in USEARCH (Version 10.0), created an ASVs table

using the -usearch_global command, and then completed the ASVs

classification using the Sintax algorithm command.
Microbiota composition

Alpha diversity analysis, including the Chao and Simpson

indices, was performed using Mothur software (1.30.2). The

dilution curve was plotted using R software to calculate the

microbial diversity at different numbers of sequences. In the beta

diversity analysis, principal coordinate analysis (PCoA) was

performed using the R package vegan (v2.5-6).

Based on taxonomic information, community structure analysis

can be performed at various taxonomic levels. The composition of

microbiota at the phylum, family, genus, and species levels was

determined using the stat package in R software. Relevant analytical

methods were used to detect variation in microbes between the

different groups and pairwise comparisons were calculated using

the Wilcoxon rank-sum test.
Functional annotation

Linear discriminant analysis (LDA) effect size (LefSe; http://

huttenhower.sph.harvard.edu/galaxy) was performed to identify

potential biomarkers in the different groups (LDA score>2,

p<0.05). Microbiota phenotypes were predicted using BugBase,

based on normalized ASVs. The significance of the functional

difference was evaluated using the Wilcoxon rank-sum test in the

BugBase prediction analysis. The Random Forest R package was
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used to build a random forest regression model. We randomly

divided the 65 samples into training sets (70%) and testing sets

(30%) according to the 16S amplicon sequence and clinical

characteristics. Bioinformatics analysis and visualization were

performed using the R software. Detailed analysis methods can be

found in our previous studies (Hu et al., 2021a; Hu et al., 2021b).
Results

Clinical characteristics of AP-ARDS patients

Sixty-five AP patients and 20 healthy individuals were included

in the study. Rectal swabs were collected before the occurrence of

ARDS. Twenty-six patients with AP developed ARDS (AP-ARDS;

mild ARDS: n=12; moderate ARDS: n=9; severe ARDS: n=5) and 39

patients did not (AP-nonARDS). The average diagnosis time of

ARDS was 3.46 ± 1.92 d after AP onset. Table 1 shows the

demographic and clinical characteristics of the two groups.

Demographic characteristics were generally balanced, however,

patients with ARDS had more severe symptoms than those

without ARDS (Table 1). The AP-ARDS group had a higher

proportion of SAP (2.56% vs. 73.08%; p<0.001) and higher disease

severity-related scores compared to the AP-nonARDS group. The

occurrence of acute peripancreatic fluid collection (35.90% vs.
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92.31%; p<0.001), systematic complications, organ failure (10.26%

vs. 100.00%; p<0.001), and ICU admission (0.00% vs. 73.08%;

p<0.001) was also significantly increased in the AP-ARDS group,

except for bowel obstruction and mental status. Furthermore, the

total duration of organ failure (median 0.00, IQR 0.00–0.00; vs

median 85.00, IQR 41.50–276.00; p<0.001); ICU stay (0.00 ± 0.00

vs. 7.15 ± 6.59; p<0.001) and hospital stay (8.26 ± 6.65 vs. 23.04 ±

11.52; p<0.001) were both longer in AP-ARDS group.
Taxonomic features of gut microbiota in
AP-ARDS patients

We analyzed 745,895 reads that were clustered into 1910 ASVs.

No statistically significant differences in the richness and diversity

of the gut microbiota were noted between the AP-nonARDS

and AP-ARDS groups. In the alpha diversity analysis, there were

no significant differences in the Chao index (p>0.05 between any

two groups; Figure 1A). Compared with healthy controls, the

Simpson index decreased in both the AP-nonARDS and AP-

ARDS groups, but no differences were found between the AP-

nonARDS and AP-ARDS groups (Figure 1B). In the rarefaction

curve analysis, the curve tended to plateau as the number of

reads increased, demonstrating that microbiota in the healthy

control, AP-nonARDS, and AP-ARDS groups were abundant
TABLE 1 Demographic and clinical characteristics of health control, AP-nonARDS, and AP-ARDS group.

CONTROL
(n=20)

AP-nonARDS
(n=39)

AP-ARDS
(n=26)

P value (AP-
nonARDS
vs AP-ARDS)

Age (years), mean ± SD 37.20 ± 12.00 44.15 ± 15.02 48.69 ± 13.99 0.135

Male, n (%) 11(55.00) 17(43.59) 17(65.38) 0.085

BMI (kg/m2), mean ± SD 22.80 ± 2.89 26.19 ± 3.63 26.48 ± 3.88 0.794

Smoking, n (%) 9(23.07) 9(34.62) 0.308

Drinking, n (%) 9(23.07) 7(26.92) 0.724

Comorbid abnormalities, n (%)

Hypertension 10(25.64) 13(50.00) 0.044

Diabetes 9 (23.07) 8(30.77) 0.489

Fatty liver 27(69.23) 16(61.54) 0.521

Etiology, n (%) 0.538

Biliary 18(46.15) 9(34.62)

Hypertriglyceridemia 17(43.59) 15(57.69)

Alcohol consumption 4(10.26) 2(7.69)

Disease severity, n (%) <0.001

MAP 21(53.85) 0(0.00)

MSAP 17(43.59) 7(26.92)

SAP 1(2.56) 19(73.08)

APACHE II, mean ± SD 3.13 ± 2.25 9.96 ± 4.17 <0.001

(Continued)
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and evenly distributed (Figure 1C). PCoA for the beta diversity

results clearly distinguished the three groups, but overlap did occur

between the AP-nonARDS group and AP-ARDS group. This

indicated a significant difference in the microbiota structure

between healthy controls and patients with AP, possible

similarities between the AP-nonARDS group and AP-ARDS

group (Figure 1D).

The composition of the gut microbiota was significantly different

among the three groups. At the phylum level, Proteobacteria

and Bacteroidetes were both increased in patients with AP

compared to healthy controls. Proteobacteria showed a gradually

increase with disease progression (Figure 2A). At the family

level, Enterobacteriaceae, Enterococcaceae, Bacteroidaceae,

Clostridiales Incertae Sedis XI, and Prevotellaceae increased, while

Ruminococcaceae decreased in patients with AP compared to healthy

controls. In particular, the abundance of Enterobacteriaceae and

Enterococcaceae increased with disease progression (Figure 2B). At
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the genus level, Escherichia-Shigella, Bacteroides, and Enterococcus

were more abundant in patients with AP, while Bifidobacterium and

Blautia were more abundant in healthy controls. Escherichia-Shigella

and Enterococcus gradually increased while Bifidobacterium decreased

with disease progression (Figure 2C). Compared to the AP-nonARDS

group, 25 ASVs were enriched and 22 ASVs were depleted in the AP-

ARDS group (Figure 2D). Figure 2E shows the top 11 different

bacteria between the AP-ARDS and AP-nonARDS groups at the

species level. Klebsiella pneumoniae (ASV_101, p<0.001; ASV_71,

p<0.001), Prevotella copri (ASV_30, p<0.001; ASV_111, p=0.002), and

Clostridium ramosum (ASV_150, p=0.002) showed a significant

increase; and Bifidobacterium longum (ASV_14, p=0.003) decreased

in the AP-ARDS group compared to the AP-nonARDS group.

Among these microbiota, Clostridium ramosum (ASV_150) showed

a gradual increase in the healthy to AP-nonARDS to AP-ARDS

groups, whereas Bifidobacterium longum (ASV_40) showed a gradual

decrease (Figure 2E).
TABLE 1 Continued

CONTROL
(n=20)

AP-nonARDS
(n=39)

AP-ARDS
(n=26)

P value (AP-
nonARDS
vs AP-ARDS)

SOFA score, mean ± SD; median (IQR) 0.54 ± 0.64;
0.00 (0.00,1.00)

6.12 ± 4.09;
4.00(3.00, 7.25)

<0.001

Balthazar score E, mean ± SD 2.90 ± 1.02 4.04 ± 0.72 <0.001

Local complications, n (%)

Acute peripancreatic fluid collection (APFC) 14(35.90) 24(92.31) <0.001

Pancreatic pseudocyst (PP) 3(7.69) 2(7.69) >0.999

Acute necrotic collection (ANC) 2(5.13) 12(46.15) <0.001

Walled off necrosis (WON) 0(0.00) 2(7.69) 0.079

Infected necrosis 0(0.00) 8(30.77) 0.001

Systematic complication, n (%)

Systemic inflammatory response syndrome (SIRS) 13(33.33) 22(84.62) <0.001

Acute kidney injury 1(2.56) 12(46.15) <0.001

Shock 0(0.00) 10(38.46) <0.001

Liver damage 1(2.56) 11(42.31) <0.001

Myocardial injury 1(2.56) 6(23.08) 0.009

Sepsis 1(2.56) 14(53.85) <0.001

Abdominal compartment syndrome (ACS) 1(2.56) 7(26.92) 0.003

Bowel obstruction 3(7.69) 7(26.92) 0.035

Outcome

Organ failure, n (%) 4(10.26) 26 (100.0) <0.001

Organ failure duration (h), mean ± SD; median
(IQR)

2.59 ± 8.30;
0.00(0.00,0.00)

164.65 ± 159.85;
85.00(41.50,276.00)

<0.001

ICU, n (%) 0(0.00) 19(73.08) <0.001

ICU stay (days), mean ± SD; 0.00 ± 0.00 7.15 ± 6.59 <0.001

Hospital stay (days), mean ± SD 8.26 ± 6.65 23.04 ± 11.52 <0.001

Death, n (%) 0(0.00) 1(3.85) 0.217
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We performed a subgroup analysis according to ARDS severity,

and identified some microbiota showing similar trends. At the

phylum level, Proteobacteria increased in the non-MARDS group

compared to that in the MARDS group (Figure 3A). At the family

level, Enterobacteriaceae increased in the non-MARDS group

(Figure 3B). At the genus level, Escherichia-Shigella was more

abundant in the non-MARDS group (Figure 3C).
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Alterations of gut microbiota in
AP-ARDS patients are associated
with more severe manifestations

LEFSe analysis also revealed that Enterobacteriaceae and Escherichia-

Shigella were dominant in AP-ARDS group while Enterococcaceae and

Enterococcus were dominant in AP-nonARDS group (Figure 4A).
D
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C

FIGURE 1

Diversity analysis of Control, AP-nonARDS and AP-ARDS group. (A) Chao index of a analysis; (B) Simpson index of a analysis. There are significant
differences between the Control group and AP patients, but no significant difference between AP-nonARDS and AP-ARDS group. (C) Rarefaction
curves analysis. (D). Principal coordinate analysis (PCoA). CONTROL, healthy population; AP-nonARDS, AP patients without ARDS; AP-ARDS, AP
patients with ARDS. * P < 0.05; ns: not significant.
D
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FIGURE 2

Gut microbiota composition at (A) phylum, (B) family, (C) genus levels. (D) Different amplicon sequence variants (ASVs) between AP-ARDS and AP-
nonARDS group. (green= depleted in AP-ARDS group; red = enriched in AP-ARDS group; gray = no significantly difference). (E) Relative abundances
of different species between AP-nonARDS and AP-ARDS groups. * P < 0.05; *** P < 0.001; ns: not significant.
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BugBase functional analysis predicted oxygen utilizing, gram

staining, oxidative stress tolerance, biofilm forming, pathogenic

potential, mobile element containing, and oxygen tolerance. Compared

with healthy controls, anaerobic bacteria decreased in the AP-nonARDS

and AP-ARDS groups (CONTROL vs. AP-nonARDS, CONTROL vs.

AP-ARDS, both p<0.001). Although there was no significant difference,

anaerobic bacteria showed a decreasing trend in AP-ARDS compared

with AP-nonARDS (Figure 4B). In contrast, aerobic bacteria increased in

the AP-nonARDS and AP-ARDS groups (Figure 4C).

Spearman correlation analysis was performed to investigate the

relationship between microbiota and clinical outcomes. Two
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subspecies of Klebsiella pneumoniae, ASV_101 and ASV_71, were

positively correlated with multiple clinical characteristics, including

organ failure, bowel obstruction, sepsis, infection, and acute

peripancreatic fluid collection. Prevotella copri (ASV_30) was

positively correlated with the occurrence and duration of organ

failure. Clostridium ramosum (ASV_150) was associated with ICU

admission and length of hospital stay. As a probiotic,

Bifidobacterium longum (ASV_14) negatively correlated with

organ failure, Sequential Organ Failure Assessment score (SOFA

score), and Acute Physiology And Chronic Health II score

(APACHII score) (Figure 4D).
A B C

FIGURE 3

Subgroup analysis of gut microbiota composition at phylum (A), family (B), and genus (C) levels. MARDS, mild ARDS; NonMARDS, moderate ARDS
and severe ARDS.
D

A B C

FIGURE 4

Microbial Function Analysis and Clinical Correlation Analysis. (A). Linear discriminant analysis (LDA) Effect Size (LEfSe) analysis. (B). Relative abundance
of aerobic bacteria in BugBase analysis. (C). Relative abundance of anaerobic bacteria in BugBase analysis. (D). Spearman correlation of clinical
characteristics and different species between AP-ARDS and AP-nonARDS group. * P < 0.05; *** P < 0.001, ns: not significant.
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The progression of AP-ARDS is closely
associated with Enterobacteriaceae

Considering the significant increase in Enterobacteriaceae and

its potential pathogenicity, we performed further analyses of

Enterobacteriaceae. Figure 5A shows the relative abundance of

Enterobacteriaceae increased with disease progression. Further

analysis revealed that almost all genera of the Enterobacteriaceae

family were increased in the AP-ARDS group (Figure 5B). Random

forest identified Escherichia-shigella as the most significant feature

for distinguishing AP-ARDS from AP-nonARDS (Figure 5C).
Discussion

To our knowledge, this is the first study to explore the

relationship between gut microbiota and AP-ARDS and reveals

gut microbiota as a predictive biomarker for ARDS. The 16S rRNA

sequencing analysis revealed differences of microbiota composition

and function between the AP-ARDS and AP-nonARDS groups.

Subgroup analysis suggested that gut microbiota composition was

also related to the severity of ARDS. Before patients were diagnosed

with AP-ARDS, the gut microbiota already had the characteristics

of ARDS in AP patients. This indicates that the gut microbiota can

be a potential biomarker for prediction and early recognition of AP-

ARDS, thereby improving AP-ARDS diagnosis and treatment.

In our characteristics analysis, AP patients with ARDS were

more serious than that in the non-ARDS group. AP-severity-

associated changes in the gut microbiota were also observed in

the AP-ARDS group compared with the AP-nonARDS group.

However, we also observed some microbiota changes that might

be related to the occurrence and development of AP-ARDS. The

enrichment of Enterobacteriaceae and Escherichia-Shigella, and the

reduction of Bifidobacterium were associated with AP-ARDS.
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Previous studies have focused on the lung microbiota of ARDS

patients and found that the composition was affected by the gut

microbiota (Dickson et al., 2016; Dickson, 2018; Dickson et al.,

2020). In our study, similar changes in composition were also

observed in the lung microbiota.

In the normal population, the most dominant phylum in the gut

microbiota is Firmicutes, followed by Bacteroidetes, Actinobacteria,

and Proteobacteria (Bozzi Cionci et al., 2018). In our study, the

composition of healthy controls was consistent with the normal

population; but in AP patients, Proteobacteria significantly

increased with disease severity. Previous studies have found

Proteobacteria overgrowth in patients with AP, particularly SAP

(Zhu et al., 2019; Yu et al., 2020; Zhu et al., 2021). In addition,

Proteobacteria in the lung microbiota are closely associated with

inflammatory lung disease and positively related to alveolar TNF-a
(Dickson et al., 2016). A higher abundance of Proteobacteria was a

distinguishing feature of ventilator-associated pneumonia

(Fromentin et al., 2021). The enrichment of Proteobacteria might

be a biomarker of inflammatory status in patients.

In our study, Enterobacteriaceae and Escherichia-Shigella

were dominant in AP-ARDS patients. The overall levels of

Enterobacteriaceae, and the individual Enterobacteriaceae genera,

increased significantly in patients with ARDS. Escherichia-Shigella,

a genus of Enterobacteriaceae family, is an opportunistic pathogen

and more abundant in the sicker group. Random forest analysis

identified Escherichia-Shigella as the most significant feature for

distinguishing ARDS from non-ARDS. Multiple studies have shown

that gut-associated bacteria in the lung microbiota, especially

Enterobacteriaceae, are more abundant in ARDS patients. The

abundance of Enterobacteriaceae in the lung microbiota was

strongly associated with serum IL-6 level and the development of

ARDS (Dickson et al., 2016; Dickson, 2018; Mukherjee and

Hanidziar, 2018; Kyo et al., 2019). The composition of

Enterobacteriaceae in the lung can help to identify ARDS patients
A
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FIGURE 5

Enterobacteriaceae Analysis and Model Predicting. (A) The relative abundance of Enterobacteriaceae in Control, AP-nonARDS, and AP-ARDS group.
(B) Major genus in Enterobacteriaceae family between AP-nonARDS, and AP-ARDS group. (C) Random forest model predicting. It screened out the
Escherichia-shigella genus as the most significant feature for predicting ARDS.
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(Dickson et al., 2020). The enrichment of gut-associated bacteria

could also be a biomarker for ARDS patients (Fromentin et al.,

2021). Suppression of the gut microbiota could improve the

prognosis of critically ill patients (Silvestri et al., 2012).

At the species level, potentially pathogenic bacteria, including

Klebsiella pneumoniae, Prevotella copri, and Clostridium ramosum,

increased significantly in AP-ARDS patients. Klebsiella

pneumoniae, a common pathogen of the Enterobacteriaceae

family, normally colonizes respiratory tract and gut (Chen et al.,

2021; Wolff et al., 2021). Dickson et al. revealed that Klebsiella

pneumoniae overgrowth in the lung was strongly associated with

ARDS (Dickson et al., 2020). In addition, Klebsiella pneumoniae

infection can influence both the gut microbiome and lung

metabolome (Wu et al., 2020; Jiang et al., 2022). After inoculation

of mice with Klebsiella pneumoniae, the diversity and composition

of the gut microbiota changed and contributed to lung microbiota

dysbiosis within several hours (Jiang et al., 2022). Therefore,

Klebsiel la pneumoniae in the gut may influence lung

inflammation through bacterial translocation. Prevotella could

increase the host sensitivity to intestinal inflammation (Iljazovic

et al., 2021). Prevotella copri is the most well-known of the

Prevotella genus and is positively correlated with many

inflammatory diseases, such as rheumatoid arthritis and

ankylosing spondylitis (Tett et al., 2021). Transplantation of

Prevotella copri induces dysbiosis of inflammatory and immune

functions and can induce arthritis in mice (Maeda et al., 2016; Qian

et al., 2022). Although less well studied, Clostridium ramosum has

been proven to be positively correlated with Covid-19 disease

severity, as well as infection and bacteremia (Zuo et al., 2020).

In our study, the levels of probiotics, such as Bifidobacterium

and Bifidobacterium longum, decreased in patients with ARDS.

Bifidobacterium longumwas negatively correlated with organ failure

and disease severity scores. As a beneficial bacterium,

Bifidobacterium can help maintain gut barrier function, inhibit

bacterial translocation, reduce lung inflammation, and therefore

improve prognosis (Akshintala et al., 2019; Zhu et al., 2019; Zhu

et al., 2021). In the current study, Bifidobacterium decreased in both

AP patients and mice (Chen et al., 2017; Huang et al., 2017; Zhu

et al., 2019; Li et al., 2020). Bifidobacterium longum can inhibit viral-

induced lung inflammation and injury in mice (Groeger et al.,

2020). Supplementation with Bifidobacterium longum has shown

promising benefits for many diseases, such as irritable bowel

syndrome, atopic dermatitis, and obesity (Schellekens et al., 2021;

Fang et al., 2022; Sabaté and Iglicki, 2022). Therefore, probiotics

have been used in the treatment of AP despite controversy.

Previous studies found the enrichment of gut-associated

bacteria in the lung is closely associated with ARDS. However,

whether the changes in the gut and lung microbiota are consistent

has never been studied. In our study, the variation in gut microbiota

in ARDS patients is similar to those seen in lung microbiota in

previous studies, which suggests that changes in the lung microbiota

might be due to the translocation of the gut microbiota in

ARDS patients.

The gut-lung axis is a potential mechanism by which the gut

microbiota influences lung inflammation. Gut microbiota can

influence local immunity, systemic inflammation, and host
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immune suppression (Budden et al., 2017; Mukherjee and

Hanidziar, 2018; Siwicka-Gieroba and Czarko-Wicha, 2020). Gut

microbiota activate immune cells, which can migrate from the gut

to the lung and assist in resisting systemic inflammatory disease (He

et al., 2017; Mjösberg and Rao, 2018), and release metabolites and

endotoxins to influence host immune response (Segain et al., 2000;

Artis, 2008; Lin and Zhang, 2017). Additionally, gut microbiota

dysbiosis damages the integrity of the intestinal barrier and enables

bacterial translocation (Wang et al., 2022). Bacteria in the gut can

translocate to the lung through the lymphatic or blood circulation

systems and thus mediate lung inflammation (Mukherjee and

Hanidziar, 2018). Enterobacteriaceae, Escherichia-Shigella, and

several gut-associated bacteria have been detected in pancreatic

fluid which suggested bacteria translocation could occur in AP

patients and lead to infected pancreatic necrosis (Li et al., 2013;

Hanna et al., 2014; Schmidt et al., 2014). Further studies have

revealed that the composition of the lung microbiota can be easily

changed, even if the immigration of gut-associated bacteria is

transient (Dickson et al., 2016).

Gut microbiota could be transferred to the lung by several

possible mechanisms. First, intestinal mucosal permeability may be

impaired owing to dysbiosis of the microbiota. In our functional

analysis, there was a difference in anaerobic bacterial composition

between the AP-ARDS and AP-nonARDS groups. Dysbiosis of

anaerobic bacteria is correlated with intestinal epithelial integrity

and promotes overgrowth of pathogenic bacteria (Hong et al., 2018;

Zhou and Liao, 2021). The proliferation of pathogenic bacteria can

consume fatty acids, change intestinal pH, inhibit the growth of

probiotics, and damage the gut chemical barrier (Wang et al., 2022).

In addition, the overgrowth of pathogens restricts the function of

immune cells, such as Tregs, Th2, and B cells; promotes the

production of inflammatory factors, such as IL-1b, IL-6, and
TNF-a; and thus damages the gut immune barrier (Zhou and

Liao, 2021; Wang et al., 2022). As a normal pathogen, Escherichis-

Shigella is associated with epithelial cell injury and is strongly

correlated with AP and ARDS severity (Zhu et al., 2019; Pan

et al., 2021). Through reduced butyrate production and increased

oxidative stress, Escherichis-Shigella could penetrate the intestinal

barrier, reach the basolateral layer, and spread rapidly to adjacent

cells (Fokam Tagne et al., 2018; Dong et al., 2020). A second

possible mechanism may involve the lung microenvironment

which is important for bacterial colonization; normally, the

alveolar ecosystem is not appropriate for bacterial reproduction

(Dickson et al., 2017), however, the lung barrier could be damaged

in AP patients. Previous studies have shown that inflammatory

factors can migrate from the gut to the lung, recruit neutrophils in

the blood, and cause lung inflammation (Mjösberg and Rao, 2018;

Zhou and Liao, 2021). The inflammatory cascade amplified the

inflammatory response and provided a more favorable

inflammatory lung microenvironment for bacterial colonization.

In ARDS patients, the influx of nutrient-rich edema and

establishment of stark oxygen gradients will damage the local host

defenses of the lung and make it easier for bacteria to translocate

from the gut to the lung (Dickson, 2018). Therefore, patients may be

more sensitive to disruption of the gut microbiota. However, these

hypotheses have not been fully confirmed.
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The translocation of bacteria from the gut to the lung has

important clinical implications. Previous studies have proposed that

the lung microbiota from bronchoalveolar lavage fluid (BAL) could

help distinguish ARDS. However, rectal swabs are simpler to collect

than BAL, therefore, gut microbiota data are easier to acquire than

the lung; making gut microbiota a better prospect. In addition, our

study found that the gut microbiota changed before the ARDS

diagnosis. Prior to the occurrence of AP-ARDS, the gut microbiota

already had characteristics relating to ARDS. Therefore, gut

microbiota can be an important predictor of ARDS. Among

them, Proteobacteria, Enterobacteriaceae, and Escherichia-Shigella

were also found increased in lung microbiota in previous studies.

These bacteria may help build prediction models for AP-ARDS that

could assist clinicians in decision-making and prevent the

occurrence and development of AP-ARDS.

Considering the potential function of microbiota dysbiosis,

restoring immune competence and disturbing microbiota is a

promising therapy for AP-ARDS (Mukherjee and Hanidziar,

2018). However, the effects of probiotics on patients with AP

remain controversial. Some trials have revealed that probiotic

supplements may have no benefit in the clinical outcomes

of AP patients (Isenmann et al., 2004; Mazaki et al., 2006;

Dellinger et al., 2007; de Vries et al., 2007) and probiotic

treatment may even worsen the prognosis of patients with AP.

Probiotics could cause bacteremia despite the rarity and transfer

of antibiotic resistance from probiotics to pathogenic bacteria

may worsen infection (Salminen et al., 2002; Cannon et al.,

2005; Connolly et al., 2005; Feld et al., 2008). Besselink

et al. illustrated that probiotic supplementation increases the

occurrence of organ failure and mortality in patients with SAP

(Besselink et al., 2008).

According to our study results, this poor response might be

related to the overgrowth of pathogens and a disrupted intestinal

mucosal barrier. For example, Klebsiella pneumoniae infection can

inhibit Bifidobacterium production (Jiang et al., 2022) and the

abundance of Prevotella is negatively associated with Bacteroides

(Tett et al., 2021). Therefore, reducing pathogenic bacteria may

promote the growth of probiotics, reduce barrier damage, and thus

improve the efficacy of probiotic supplements. Targeted antibiotics

are an effective strategy. Germ-free or antibiotic-treated animals are

consistently protected from ARDS, and prophylactic administration

of antibiotics decreases both mortality and multiple organ

dysfunction syndromes, including ARDS (Dickson, 2016;

Dickson, 2018). Supplementation with short-chain fatty acids

(SCFAs) is another effective treatment option. Studies have found

that oral supplementation with SCFAs could decrease susceptibility

to bacterial infection, indicating that adjusting the gut microbiota

could prevent bacterial pneumonia (Seki et al., 2021). These

treatment concepts can be applied for AP patients to prevent

ARDS (Siwicka-Gieroba and Czarko-Wicha, 2020). However,

considering the potential harm caused by probiotics and

antibiotics, targeted therapy should be provided to high-risk

ARDS patients. Therefore, the prediction or early recognition of

ARDS is essential. Collecting gut microbiota in the early stages of

AP could help recognize and diagnose ARDS, and thus guide

clinical management.
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Gut microbiota could help identify high risk population for

developing ARDS. Early identification gives time for appropriate

intervention which could help improve prognosis. However, our

study has some limitations. First, the specific role of microbiota

changes in the disease is unclear. Our study can only provide

correlations and suggest that the microbiota might help predict

ARDS. However, the mechanism by which microbiota causes

pathological conditions remains unknown. Zhang et al. found that

different initial sites of infection could influence lung microbiota in

patients with septic ARDS. ARDS patients with initial intrapulmonary

infection tend to have higher abundance of gut-associated in lung

(Zhang et al., 2022). To determine the specific role of gut-lung axis, it

is better to make a more nuanced classification in the future. Second,

the 16S rRNA sequence analysis could not predict the real

composition and function of the microbiota community because it

is based on the 16S rRNA sequence library. 16S rRNA analysis cannot

completely replace metagenomic analysis but can help guide further

studies. Third, the detection time 16S rRNA is long now. For clinical

application, quick PCR kit target to specific bacteria is still needed.

In conclusion, this is the first study to report the relationship

between gut microbiota and AP-ARDS. Gut microbiota showed a

potential predicting ability for AP-ARDS. Dysbiosis of gut microbiota

is strongly correlated with AP-ARDS. Enterobacteriaceae and

Escherichia-Shigella are important prediction biomarkers for AP-

ARDS. In the future, gut microbiota in early stage of patients with AP

may help predict and allow early recognition of AP-ARDS, aid

therapy planning, and thus improve patients’ quality of life and

reduce morbidity of ARDS in AP patients. Further studies will

improve our understanding of the role of microbiota in ARDS.
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Herridge, M. S., Tansey, C. M., Matté, A., Tomlinson, G., Diaz-Granados, N.,
Cooper, A., et al. (2011). Functional disability 5 years after acute respiratory distress
syndrome. N Engl. J. Med. 364 (14), 1293–1304. doi: 10.1056/NEJMoa1011802

Hong, G., Zheng, D., Zhang, L., Ni, R., Wang, G., Fan, G. C., et al. (2018).
Administration of nicotinamide riboside prevents oxidative stress and organ injury
in sepsis. Free Radic. Biol. Med. 123, 125–137. doi: 10.1016/j.freeradbiomed.2018.05.073

Hu, X., Fan, Y., Li, H., Zhou, R., Zhao, X., Sun, Y., et al. (2021a). Impacts of cigarette
smoking status on metabolomic and gut microbiota profile in Male patients with
coronary artery disease: A multi-omics study. Front. Cardiovasc. Med. 8. doi: 10.3389/
fcvm.2021.766739

Hu, X., Gong, L., Zhou, R., Han, Z., Ji, L., Zhang, Y., et al. (2021b). Variations in gut
microbiome are associated with prognosis of hypertriglyceridemia-associated acute
pancreatitis. Biomolecules 11 (5), 1–16. doi: 10.3390/biom11050695

Huang, C., Chen, J., Wang, J., Zhou, H., Lu, Y., Lou, L., et al. (2017). Dysbiosis of
intestinal microbiota and decreased antimicrobial peptide level in paneth cells during
hypertriglyceridemia-related acute necrotizing pancreatitis in rats. Front. Microbiol. 8.
doi: 10.3389/fmicb.2017.00776

Iljazovic, A., Roy, U., Gálvez, E. J. C., Lesker, T. R., Zhao, B., Gronow, A., et al.
(2021). Perturbation of the gut microbiome by prevotella spp. enhances host
susceptibility to mucosal inflammation. Mucosal Immunol. 14 (1), 113–124.
doi: 10.1038/s41385-020-0296-4

Isenmann, R., Rünzi, M., Kron, M., Kahl, S., Kraus, D., Jung, N., et al. (2004).
Prophylactic antibiotic treatment in patients with predicted severe acute pancreatitis: a
placebo-controlled, double-blind trial. Gastroenterology 126 (4), 997–1004.
doi: 10.1053/j.gastro.2003.12.050
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Microbial characterization
of the nasal cavity in patients
with allergic rhinitis and
non-allergic rhinitis

Yanlu Che, Nan Wang, Qianzi Ma, Junjie Liu, Zhaonan Xu,
Qiuying Li, Jingting Wang*† and Yanan Sun*†

Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of
Harbin Medical University, Harbin, China
Introduction: Although recent studies have shown that the human microbiome

is involved in the pathogenesis of allergic diseases, the impact of microbiota on

allergic rhinitis (AR) and non-allergic rhinitis (nAR) has not been elucidated. The

aim of this study was to investigate the differences in the composition of the

nasal flora in patients with AR and nAR and their role in the pathogenesis.

Method: From February to September 2022, 35 AR patients and 35 nAR patients

admitted to Harbin Medical University’s Second Affiliated Hospital, as well as 20

healthy subjects who underwent physical examination during the same period,

were subjected to 16SrDNA and metagenomic sequencing of nasal flora.

Results: Themicrobiota composition of the three groups of study subjects differs

significantly. The relative abundance of Vibrio vulnificus and Acinetobacter

baumanni in the nasal cavity of AR patients was significantly higher when

compared to nAR patients, while the relative abundance of Lactobacillus

murinus, Lactobacillus iners, Proteobacteria, Pseudomonadales, and

Escherichia coli was lower. In addition, Lactobacillus murinus and

Lacttobacillus kunkeei were also negatively correlated with IgE, while

Lacttobacillus kunkeei was positively correlated with age. The relative

distribution of Faecalibacterium was higher in moderate than in severe AR

patients. According to KEGG functional enrichment annotation, ICMT(protein-

S-isoprenylcysteine O-methyltransferase,ICMT) is an AR microbiota-specific

enzyme that plays a role, while glycan biosynthesis and metabolism are more

active in AR microbiota. For AR, the model containing Parabacteroides

goldstemii, Sutterella-SP-6FBBBBH3, Pseudoalteromonas luteoviolacea,

Lachnospiraceae bacterium-615, and Bacteroides coprocola had the highest

the area under the curve (AUC), which was 0.9733(95%CI:0.926-1.000) in the

constructed random forest prediction model. The largest AUC for nAR is 0.984

(95%CI:0.949−1.000) for the model containing Pseudomonas-SP-LTJR-52,

Lachnospiraceae bacterium-615, Prevotella corporis, Anaerococcus vaginalis,

and Roseburia inulinivorans.
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Conclusion: In conclusion, patients with AR and nAR had significantly different

microbiota profiles compared to healthy controls. The results suggest that the

nasal microbiota may play a key role in the pathogenesis and symptoms of AR

and nAR, providing us with new ideas for the treatment of AR and nAR.
KEYWORDS

allergic rhinitis, non-allergic rhinitis, microecology, 16SrDNA, macrogenome
1 Introduction

The prevalence of Chronic rhinitis (CR) is increasing, and it is

reported that more than 500 million people worldwide suffer from

the disease (Agnihotri and McGrath, 2019). There are two types of

CR: allergic rhinitis (AR) and non-allergic rhinitis (nAR). AR is a

Th2 immune response disease caused by IgE-mediated inhalation of

allergens, with symptoms such as nasal itching, sneezing, runny

nose, and nasal congestion (Sahoyama et al., 2022), which relies on

positive skin prick test (SPT) or specific immunoglobulin E (sIgE)

teats for diagnosis (Roberts et al., 2016). NAR is a heterogeneous

nasal disease with symptoms of nasal itching, sneezing, rhinorrhea,

and nasal congestion, but no systemic allergic symptoms, negative

sIgE and/or SPT, affecting over 200 million people worldwide

(Hellings et al., 2017). At present, the etiologies of AR and NAR

are still being further explored (Bousquet et al., 2008).

The study of microbiomes has revealed the importance of

microbiota in maintaining human health over the last few

decades (Ver Heul et al., 2019). The term “microbiota” refers to

all microorganisms that live in the body, including bacteria, fungi,

viruses, protozoa, and archaea, among others, and are found in large

numbers and varying proportions (Koidl and Untersmayr, 2021).

This ratio is dynamic during the first two years of life, after which it

tends to balance, and early colonization of this “balanced” and

“healthy”microbiota lays the groundwork for lifelong health (Grier

et al., 2018). Although most current research has focused on the gut

microbiota, the role of microbiota elsewhere in the body in human

disease is becoming more recognized (Ver Heul et al., 2019).

According to research, microbial diversity can play a positive or

negative role in allergic diseases. Staphylococcus nasal colonization

was found to be significantly higher in asthmatic patients’

respiratory extracts than in healthy controls, which induced

human nasal epithelial cells to release inflammatory factors and

aggravated Th2 cell-mediated inflammatory response (Durack et al.,

2018). According to research, the abundance of Faecalibacterium in

the intestines of asthmatic children is significantly reduced, and the

short-chain fatty acids it produces inhibit the accumulation of

peripheral Treg cells via HDAC, thereby reducing allergic airway

diseases (Koidl and Untersmayr, 2021). However, no studies have

been conducted to determine whether there are differences in nasal

microbiota between nAR and AR patients. As a result, we used high

throughput 16S rDNA and metagenomic sequencing to compare

the nasal microbiota characteristics of AR, nAR, and healthy
02104
controls. The purpose of this study is to determine nasal

microbiota distribution differences, specific nasal microbiota and

functions related to AR and nAR environmental factors, and

functional analysis of key gene pathways and enzymes.
2 Material and methods

2.1 Research objects and
experimental design

From February 2022 to September 2022, patients were

consulted in the nasal outpatient department of the Second

Affiliated Hospital of Harbin Medical University. 35 cases in the

AR group, 35 in the nAR group, and 20 in the healthy control group

were selected. A total of 95 subjects were sequenced and analyzed

for 16SrDNA of nasal secretions, and 3 were selected in each group.

Macro genome sequencing analysis was carried out. This trial was

approved by the Ethics Review Committee of the Second Affiliated

Hospital of Harbin Medical University (license number: KY2021-

360) and registered with the China Clinical Trial Registration

Center (registration number ChiCTR2200057919). All subjects

and control groups have informed consent, and the case

conforms to the ethical norms of the Helsinki Declaration (World

MA, 2013).

2.1.1 Incorporate the criteria
The control group: (1) healthy people selected for the physical

examination of the Second Affiliated Hospital of Harbin Medical

University and the examination results are normal; (2) there is no

history of allergies or family allergies; (3) There are no allergy-

related symptoms; (4) After a comprehensive physical examination

such as allergen testing, no factors that may cause deviation from

the results of this test have been found; (5) Voluntary participation

in this study.

AR group: (1) Comply with the diagnostic criteria of AR in the

Guidelines for the Diagnosis and Treatment of Allergic Rhinitis

(2022, Revised Edition) (Subspecialty Group of Rhinology et al.,

2022), paroxysmal sneezing, clear water-like runny nose, itch,

sneezing, and other symptoms appear 2 or more, and the daily

symptoms persist or accumulate more than 1 hour; (2) At least one

of the 19 SIgE test result is positive (>=0.35kU/L, household dust

mite, house dust, mulberry tree, cat dandruff, dog dandruff,
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cockroach, amaranth, egg white, milk, shrimp, beef, shellfish, crab,

mango, cashew nuts, pineapple, mixed mold, mixed grass, tree

pollen); (3) 10 allergens to One less SPT result was positive (house

dust mite, dust mite, cockroach, dendritic spores, artemisia annua,

birch, cloves, cat hair, dog hair); (4) Total serum IgE positive

(>100IU/mL); (5) Voluntary participation in this study.

nAR group: (1) Have different degrees of clinical symptoms

such as nasal congestion, runny nose, nasal itching, sneezing, etc.;

(2) All SIgE test results are negative (<35kU/L); (3) All SPT test

results are negative; (4) Total serum IgE negative (<100IU/mL); (5)

Negative for nasal allergen provocation test (NAPT);(6) Participate

in this study voluntarily.

2.1.2 Exclusion criteria
The above subjects met the following exclusion criteria: (1)

Patients on systemic or topical antibiotics, immune agents,

glucocorticoids, and antihistamines within 3 months.; (2) Other

related diseases in the nasal cavity: sinusitis, nasal polyps, benign

and malignant tumors, nasal boils, carbuncles, intranasal infections,

Nose bleeding within 1 month; (3) Other respiratory diseases:

chronic obstructive pulmonary disease, asthma, bronchiectasis,

tuberculosis, pneumonia, pulmonary heart disease, pulmonary

malignant tumors; (4) Hypertension, coronary heart disease,

hyperthyroidism, hypothyroidism, liver and kidney dysfunction,

blood system diseases, etc.; 5) The patient has a history of mental

and neurological diseases; (6) The abnormal examination results of

clinical signs before the trial may deviate the results of this trial

according to the judgment of the researchers; (7) Patients with nasal

irrigation within 2 weeks.
2.2 Nasal symptom score table (TNSS) and
quality of life questionnaire for nasal
conjunctivitis (RQLQ)

Use the total score of nasal symptoms (TNSS) to evaluate the

severity of the symptoms. TNSS score: 0 to 3 (0 = asymptomatic; 1 =

mild; 2 = moderate; 3 = severe). Mild: no symptoms that cause

obvious discomfort; Moderate: Symptoms cause discomfort but do

not affect daily life or interfere with sleep; Severe: Symptoms

interfere with daily activities and sleep status. Add the points of

each symptom, and get a total score is TNSS (Kang et al., 2017).

RQLQ is limited by activity restrictions, sleep disorders, non- Eye/

nasal symptoms, practical problems, nasal symptoms, eye

symptoms, and emotional composition includes a total of 28

items, each dimension is scored separately, and the cumulative

total score is the total score of RQLQ (Juniper et al., 1996; Blaiss

et al., 2022).
2.3 Sample collection

Guide the swab to the lower turbinate area under the nasal

endoscope, rotate at least six times until the swab is saturated,
Frontiers in Cellular and Infection Microbiology 03105
remove it, put it in a liquid nitrogen bottle, and refrigerate at -80°C

for 15 minutes until DNA is extracted.
2.4 16SrDNA and macrogenome
sequencing analysis

2.4.1 16SrDNA sequencing analysis
The genomic DNA of the sample is extracted by CTAB or SDS

method, then use agarose gel electrophoresis to detect the purity

and concentration of DNA, and use sterile water to dilute an

appropriate amount of sample to 1ng/mL. Using diluted genomic

DNA as a template, select the V3-V4 area and use specific primers

with Barcode and high-efficiency high-fidelity enzymes for PCR.

The PCR products that passed the test were purified by magnetic

beads, quantified by enzyme labeling, and mixed with the same

amount of samples according to the concentration of PCR products.

After full mixing, use 2% agarose gel electrophoresis to detect the

PCR products and construct the library. The constructed library

was checked with Qubit and Q-PCR for quantification, and the

qualified library will be sequenced.

2.4.2 Macrogenome sequencing analysis
Use 1% agarose gel electrophoresis (AGE) to analyze the purity

and integrity of DNA, and use Qubit® dsDNA Assay Kit in Qubit®

2.0 Fluorometer (Life Technologies, CA, USA) to check DNA for

quantification. Take an appropriate amount of sample into a

centrifuge tube, and dilute the sample with sterile water until the

OD value is between 1.8-2.0. Take 1mg genome DNA of the sample

and use NEBNext®Ultra, DNA Library Prep Kit for Illumina (NEB,

USA) to construct the library. The genomic DNA was randomly

sheared into fragments with a length of about 350 bp using Covaris

ultrasonic crusher. The obtained fragments were end-repaired, A-

tailed, and further ligated with a sequence adapter. The fragments

with adapters were PCR amplified, size selected, and purified to

construct the library. The constructed library was checked with

Qubit2.0 for quantification, diluted to 2ng/ul, and then the insert

size of the library was detected with Agilent 2100. After the insert

size meets the expectation, the Q-PCR method is used to accurately

quantify effective library concentration (effective library

concentration is>3nM) to ensure the quality of the library.

Quantified libraries will be pooled and sequenced on Illumina

PE150 platforms, according to effective library concentration and

data amount required.
2.5 Statistical analysis

2.5.1 16 SrDNA sequencing statistical analysis
Use the Uparse algorithm to cluster sequences into OTUs and

annotate species, use Qiime software to calculate Chao1, Shannon,

Simpson and ace indexes, draw diluted curves and species

accumulation curves, and analyze differences between Alpha

diversity index groups. R software is used to analyze the
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differences between Beta diversity index groups, including LEfSe

analysis, MetaStat analysis, and t.test_bar_plot analysis to compare

the differences between groups, calculate the Spearman correlation

coefficient values of species and environmental factors and test their

significance. Based on species abundance, the correlation coefficient

value between each genus is calculated using graphviz-2.38.0 to

draw a network diagram, and MeanDecreeAccuracy chose a

meaningful genus to build a random forest model.

2.5.2 Statistical analysis of
macrogenome sequencing

Use MetaGeneMark for ORF prediction, and use Bowtie2

(Bowtie2.2.4) to compare the Clean Data of each sample to the

initial gene catalog for basic information statistics, core-pan gene

Analysis, correlation analysis between samples, and gene number

Wayne diagram analysis. The sequence extracted from the NR

database of NCBI is compared with Unigenes, the LCA algorithm is

used to determine the species annotation information, Krona

analysis is carried out, and then Metastats and LEfSe analysis are

used to find different species between groups. Unigenes were

compared with the KEGG database using DIAMOND software

for annotated gene number statistics, relative abundance profile

display, abundance clustering heat map display, comparative

metabolic pathway analysis, and Metastat and LEfSe analysis of

functional differences between groups based on abundance at each

taxonomic level.
3 Results

3.1 clinical characteristics of the subjects

The mean age of the AR group was 21.03 ± 9.94, the TNSS score

was 10.03 ± 3.67, the RQLQ score was 102.8 ± 29.64; the mean age

of the nAR group was 33.73 ± 10.73, the TNSS score 8.77 ± 2.24,

RQLQ score 89.67 ± 26.43, mean age of control group: 29.7 ± 12.25,

AR group was significantly younger than the nAR group (p<0.001),

and TNSS score and RQLQ score did not differ between the two

groups (p>0.05) (Table 1).
3.2 16SrDNA sequencing analysis

3.2.1 Comparison of microbial diversity among
patients with AR and nAR

A total of 18,364 OTUs were obtained from the three groups by

16SrDNA assay, with 2515 OTUs specific to the AR group and 3512

OTUs specific to the nAR group, and a total of 8476 OTUs in the

two groups. There were fewer specific OTU in the AR group than in

the nAR group (Figure 1A). A total of 98 bacteria phyla and 1476

genera were detected in the three groups. The common dominant

groups were Firmicutes, Actinobacteria, Proteobacteria,

Bacteroidota, and cyanobacteria. In AR and nAR groups, the

average relative abundance of Actinobacteria was lower than that

of the control group (Figure 1B), and the average relative abundance

of Proteobacteria was higher than that of the control group.
Frontiers in Cellular and Infection Microbiology 04106
Staphylococcus, Corynebacterium, Doloigranulum, Cutibacterium,

Moraxella, Lawsonella, Prevotella, Lacticaseibacillus, Pseudomonas,

and an unidentified_Chloroplsat were the top 10 genera with the

highest relative abundance (Figure 1C). There were significant

differences in a-diversity Shannon index and Simpson index

between AR group and nAR group. The results showed that the

microbial diversity of the two groups was significantly different.

There was a significant difference in the Chao1 index and ACE

index between the nAR group and control group, but there was no

significant difference between the AR group and nAR group. The

results showed that there were significant differences in microbial

abundance between the two groups (Figure 1D).

3.2.2 Analysis of microbial b diversity in AR and
nAR groups

The results of LEfSe analysis in b-diversity showed that

the relative abundance of Vibrio, Moraxellaceae, and

Corynebacterium_propinquum was higher within the AR

group, while the relative abundance of Proteobacteria,

Gammaproteobacteria, Clostridia, and Pseudomonadales was

higher within the nAR group (Figure 2A). In the t-test test, the

relative abundance of S. aureus was higher within the AR group,

and the relative abundance of Lactobacillus murinus, Turicibacter

sp H121, Lactobacillus reutrei, Lactobacillus kunkeei, Romboutsia

ilealis, Enterococcus faecium, and Lactobacillus iners was higher

within the nAR group (Figure 2B).
3.2.3 AR group and nAR group have similar
network complex patterns

The modularity, clustering coefficient, and average degree of the

AR group were 0.0956, 0.7359, and 185.54, while in the nAR group,

they were 0.319, 0.622, and 155.43. The two groups had similar

network complexity patterns, but the main focusing nodes of the

two groups were completely different. The focusing nodes of the AR
TABLE 1 Clinical characteristics of AR and non-AR subjects.

Group AR nAR B

Subjects (n) 30 30 20

Gender

Male 14 13 8

Female 16 17 12

Age 21.03 ± 9.94 33.73 ± 10.73 29.7 ± 12.25

SPT (%) 100 0 0

TNSS 10.03 ± 3.67 8.77 ± 2.24 0

Nasal obstruction 3.13 ± 1.07 2.37 ± 1.89 0

Rhinorrhea 2.5 ± 0.97 2.4 ± 1.07 0

Nasal itching 1.87 ± 1.14 1.53 ± 0.9 0

Sneezing 2.53 ± 1.14 2.47 ± 1.07 0

RQLQ 102.8 ± 29.64 89.67 ± 26.43 NA
SPT, skin prick test, TNSS, Total Nasal Symptom Score; RQLQ, Rhinoconjunctivitis Quality
of Life Questionnaire, NA: Not available.
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group mainly included Firmicutes, Gemmatimonadetes,

Planctomycetes, and Nitrospirota (Figure 3A), while the focused

nodes in the nAR group were Proteobacteria, Deferribacteres,

Verrucomicrobiota (Figure 3B).

3.2.4 Environmental factor correlation analysis
The TNSS score was calculated based on the sum of nasal

congestion, nasal leakage, nasal itching, and sneezing and

represents the severity of AR and nAR symptoms, a higher score

means more severe symptoms. the RQLQ score reflects the disease-
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related quality of life status, therefore, we used spearman rank

correlation analysis to correlate age, sex, TNSS and RQLQ scores,

EOS, IgE, and bacterial genus correlations were analyzed.

The results showed that Lactobacillus kunkeei, Corynebacterium

accolens, Lactobacillus murinus, and Romboutsia ilealis were

positively correlated with age; Prevotella bivia and Aerococcus

urinaeequi were negatively correlated with eosinophil (EOS);

Corynebacterium propinquum and Prevotella buccalis were

positively correlated with IgE, and Lactobacillus murinus and

Lactobacillus kunkeei were negatively correlated with IgE
A B

FIGURE 2

Species difference analysis was performed on the nasal flora of patients with allergic rhinitis and non-allergic rhinitis. lefSe analysis screened for
different species with LDA>4 (A), and t.test analysis screened for different species with p<0.05 (B).
D

A B

C

FIGURE 1

Wayne diagrams were made according to OTU (A). bacterial structure comparisons between AR and non-AR at the phylum (B) and genus (C) levels,
including the top ten genera. bacterial diversity comparisons between AR and non-AR patients. Comparison of bacterial alpha diversity indices,
including Shannon, Simpson, Chao1, and ACE (D).
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(Figure 4A), and gender, TNSS, and RQLQ scores were not

significantly correlated with There was no significant correlation

between gender, TNSS and RQLQ scores and flora. When

performing spearman analysis of nasal congestion, nasal leakage,

nasal itching, and sneezing in TNSS with flora, we found that

Corynebacterium accolens was positively correlated with

sneezing (Figure 4B).

3.2.5 Comparison of microbial communities in
patients with moderate and severe symptoms

Based on the TNSS score, we divided 60 AR and nAR patients

into moderate (score 0-7) and severe (8-16) groups and compared

bacterial diversity and community differences to explore the role of

bacterial community structure in the progression of AR. Results

show that diversity was not significantly different, and LEfSe

analysis showed that the mean relative abundance of

Faecalibacterium was higher in the moderate group than in the

severe group, and the mean relative abundance of Ralstonia pickettii

and Cupriavidus was lower than in the severe group, suggesting a

role for specific flora in the progression of the disease (Figure 5).

3.2.6 A predictive model of nasal microbial
distribution for AR and nAR

This is a classicalmachine learningmodel based on a classification

tree algorithm that provides further support for differentiating AR

groups, nARgroups, and control groups. Based on the analysis ofOTU
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features, a random forest prediction model with 5 genera was

constructed. Mean Decree Accuracy selected meaningful genera,

performed 10-fold cross-validation of the model, plotted working

characteristic (ROC) curves, and calculated the area under the curve

(AUC) to score the predictive power.

The results showed that mainly Parabacteroides goldstemii,

Lachnospiraceae bacterium 615, Sutterella-SP-6FBBBH3,

Pseudoalteromonas luteoviolacea, and Bacteroides coprocola were

observed in the models of AR and healthy controls (see Figure 6A)

with an AUC of 0.9733 (95% CI: 0.926-1.000) (Figure 6B); nAR and

healthy controls model was observed mainly for Pseudomonas sp-

LTJR-52, Lachnospiraceae bacterium-615, Prevotella corporis,

Anaeroicoccus vaginalis, and Roseburia inulinivorans (Figure 6C)

with an AUC of 0.984 (95% CI: 0.949-1.000) (Figure 6D), suggesting

that the combined nasal biota has the potential to diagnose AR and

nAR and could potentially be used as a diagnostic biomarker one,

but the random forest model is only a prediction and further trials

are needed to validate it.
3.3 Metagenomic sequencing analysis

3.3.1 Species composition and variability analysis
of AR and nAR groups

By macrogenomics analysis, we obtained a total of 57,140.83

raw data and 56,962.55 post-cleaning data, including 19,771.66 for
A

B

FIGURE 3

The network analysis between bacterial taxa for AR (A) and nAR (B) group. Different node color denotes varied phyla taxa and the weighted node
size was based on the relative abundance. The weighted edges indicate the correlation coefficient.
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the AR group and 18,313.67 for the nAR group. the a-diversity
analysis did not show positive results, which may be related to the

selection of samples. In the species distribution heatmap, we found

that the mean relative abundance of Pseudoalteromonas

luteoviolacea, E.coli and Dolosigranulum was higher in the nAR

group, and the mean relative abundance of Vibrio vulnificus and

Streptococcus pneumoniae was higher within the AR group

(Figure 7A); in the species annotation of the LEfSe analysis, the

mean abundance of Neisseria polysaccharea, Mycobacterium

szulgai and Thioflexothrix within the nAR group was higher than

in the AR group, and Streptococcus sp GMD6S and Acinetobacter

baumannii were lower than AR (p < 0.05) (Figure 7B).
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3.3.2 Differential analysis of specific microbial
functions in AR and nAR groups

To characterize the different functions of the nasal microbiota,

we annotated the KEGG database for macrogenomic functions.

Microbial genes for processing of environmental information,

metabolism of nucleotides, metabolism of amino acids, metabolic

cofactors, and vitamins, metabolism of carbohydrates, metabolism

of lipids, biosynthesis, and metabolism of glycans were found to be

increased within the AR group; in the nAR group, microbial genes

for cell growth and death, processing of environmental information

including signal transduction and interaction of signaling

molecules, transport, and catabolism, processing of genetic
FIGURE 5

Nasal microbiological differences between moderate and severe patients.
A

B

FIGURE 4

Spearman rank correlation analysis was used to correlate age, sex, TNSS, RQLQ scores, EOS, IgE (A), and TNSS score details (B) with bacterial
species. Correlation significance,* denotes p < 0.05 and **p < 0.01.
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information: folding, sorting and metabolism, microbial genes for

biosynthesis and metabolism of glycans were decreased (Figure 8).

3.3.3 Pathway detection of microorganisms in AR
and nAR groups

By performing pathway assays on the AR and nAR groups, we

found that 6-phospho-3-hexuloisomerase, cystathionine beta-

synthase, aspartate–ammonia ligase, farnesyl-diphosphate

farnesyltransferase, and protein-S-isoprenylcysteine O-

methyltransferase were key enzymes specific to the AR group,

whereas threonine aldolase, O-ureido-L-serine synthase,

tryptophan-7-halogenase, and penicillin acylase were key enzymes

specific to the nAR group (Additional file).

3.3.4 Differential analysis of carbohydrase in AR
and nAR groups

Using macrogene annotation from the CAZY database, we

found that the number of genes for the glycosyltransferase

system, carbohydrate esterase system, and glycoside hydrolase

system was significantly increased within the AR group and

decreased within the nAR group compared with healthy controls
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(Figure 9A), and LefSe analysis showed that within the AR group N-

acetylglucosaminyltransferase I, dolichyl-phosphate-mannose—

protein, mannosyltransferase, N-acetylglucosaminyl-proteoglycan

4-beta-glucuronosyl transferase significantly increased within the

AR group and amylo-alpha-1,6-glucosidase, ceramide

glucosyltransferase significantly increased within the nAR

group (Figure 9B).
4 Discussion

The human microbiota is important for the host immune

response, metabolism, and disease progression (Blaser et al.,

2013). In the present study, we discovered that the nasal

microbiota of AR, nAR, and control patients differed significantly

in composition and function at multiple microbial levels.

The average relative abundance of vibrio vulnificus and

Acinetobacter baumanni increased significantly in the AR group.

Vibrio vulnificus is a Gram-negative, halophilic marine bacterium

(Blake et al., 1979). It can activate mTOR by recruiting and

activating neutrophils, monocytes, and macrophages (Weichhart
D

A B

C

FIGURE 6

Prediction model of the airway microbiota for AR status based on the species-level relative abundances using random forests.AR (A) and nAR (C)
group of variable importance ranking plots, MeanDecreeAccuracy measures the degree to which the predictive accuracy of the random forest is
reduced by changing the values of the variables to random numbers. Higher values indicate more important variables. ROC curves of the AR (B) and
nAR (D) model using 5 discriminatory species.
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et al., 2008), activate the NF-kb signaling pathway via TLRs or

NLRs, and induce allergic reactions via GM-CSF, IFNb, IL-27, and
IL-1b production (Xie et al., 2017). Simultaneously, vibrio

vulnificus has an anti-inflammatory effect by inhibiting Kupffer

cell proliferation (Blériot et al., 2015), which is consistent with the

pathogenesis of AR. According to research, Acinetobacter

baumanni activates the Nod-like receptor NLRP3 via caspase-1 to

promote the release of IL-1b and TNFa from macrophages, thereby

inducing asthma (Chai et al., 2022). Simultaneously, Acinetobacter

has several virulence factors, including toxins that form pores, and
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its outer membrane protein A induces dendritic cells to produce

ROS, which can activate NLRP3 and promote immune responses

such as asthma and allergic rhinitis (Kang et al., 2017).

We observed that Lactobacillus murinus, Lactobacillus iners,

and Escherichia coli increased significantly in the nAR patients.

Lactobacillus murinus regulates T lymphocyte activity, which helps

to maintain intestinal immune homeostasis in a mouse model of

colitis (Tang et al., 2015). Lactobacillus murinus and Lactobacillus

iners can stimulate macrophage IL-10 release via TLR2 signaling,

thereby controlling inflammation and preventing immune
FIGURE 8

Differential analysis of specific microbial functions in AR and nAR groups compared by KEGG database.
A

B

FIGURE 7

Differences in bacterial composition between AR and nAR in the heat map (A) and LEfSe analysis (B) by macrogenome sequencing.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1166389
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Che et al. 10.3389/fcimb.2023.1166389
responses (Hu et al., 2022). Through the inhibition of CD23,

Escherichia coli has been shown to promote the transformation

of T and B cell subsets to Th1 cells and reduce IgE-mediated

allergen presentation (Weise et al., 2011). Previous research found

increased numbers of FoxP3+ cells as well as increased production

of anti-inflammatory factors TGF-b and IL-10 in the skin of

Escherichia coli-treated mice (Cukrowska et al., 2002).

Simultaneously, Escherichia coli can increase IgA secretion and

inhibit mast cell degranulation to suppress the immune response

(Dölle et al., 2014). As a result, we believe that vibrio vulnificus and

Acinetobacter baumanni have pathogenic effects in the AR group,

whereas in the nAR group, patients did not show Th2-mediated

allergic reactions due to the anti-inflammatory effects of

Lactobacillus murinus, Lactobacillus iners, and Escherichia coli.

Spearman analysis confirmed that IgE was negatively correlated

with Lactobacillus murinus and Lacttobacillus kunkeei.

Furthermore, studies have revealed that allergy-induced

inflammatory responses occur not only in the IgE/mast cell/basophil

axis, but also in macrophages, neutrophils, platelets, endothelial cells,

complement initiation, neuropeptide release, and can result in

anaphylaxis-like reactions (Cianferoni, 2021). In our study, we

discovered that the relative abundance of Proteobacteria and

Pseudomonadales increased significantly in the nAR group.

Proteobacteria and Pseudomonadales were also found to be

significantly enriched in intestinal CD14+CD11c+ macrophage

samples from Crohn’s disease patients. Its LPS binds to CD14 and

TLR4 to activate the TIRAP-MyD88 pathway, resulting in the release

of inflammatory cytokines, and activation of the TLR4 receptor on the

endosomal membrane can also produce type 1 interferon via the

TRAM-TRIF pathway, inducing even more inflammation (Sekido

et al., 2020). Human microbiota species are largely similar, but their

relative abundance ratio varies with habit anatomic locations and can
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influence and interact with one another. According to Jakubczyk D

et al., intestinal flora imbalance affects the relative abundance of

respiratory tract flora (Jakubczyk and Górska, 2021). In our

experiments, we obtained similar results. The majority of the

bacteria with significant differences in nasal secretions of nAR

patients were intestinal resident bacteria, indicating that nasal and

intestinalmicrobes communicate.As a result, we believe that the rise in

Proteobacteria and Pseudomonadales is one of the primary causes

of nAR.

According to the KEGG database, ICMT is a unique enzyme in

the microbiota of AR patients. The TLR-mediated inflammatory

response is regulated by ICMT and its substrate Ras protein.

Through the MAPK pathway, methylated Ras protein promotes

the production of pro-inflammatory factors IL-1b, IL-1a, IL-5, IL-
9, IL-17, and TGF-b, which are also common inflammatory factors

in AR (Yang et al., 2020). This suggests that we could use ICMT

inhibitors to block Ras methylation and thus prevent the occurrence

of AR, which will be the goal of our next investigation. Through

KEGG functional annotation, we also found that the glycan

biosynthesis and metabolism of microbiota increased in AR

patients but decreased in nAR patients. Glycans on the cell

surface control and participate in cellular interactions and

recognition between functional molecules and cells via

carbohydrate-binding protein (CBP) (Schnaar, 2015). Galectin is the

most common CBP, and it promotes immune cell maturation,

survival, and activation by binding to target glycans on surface

glycoproteins such as TCR, CD45, and CD43 (Rabinovich and

Toscano, 2009). GBP can also inhibit T cell activation and promote

Th1-to-Th2 transition by inhibiting IFNg expression and promoting

the production of cytokines such as IL-4, IL-5, IL-9, IL-10, and IL-13

(Sanjurjo et al., 2022). Therefore, we believe that glycan biosynthesis

and metabolism play a role in the pathogenesis of AR.
A

B

FIGURE 9

Differences between enzymes within the AR and nAR groups in the heat map (A) and LEfSe analysis (B) compared by CAZY database.
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We discovered that Lacttobacillus kunkeei was positively

correlated with age using correlation analysis. In this study, the

average age of onset in the AR group was 21.03 ± 9.94 years, while it

was 33.73 ± 10.73 years in the nAR group. The relative abundance

of Lacttobacillus kunkeei increased in the nAR group, implying that

increased pathogenicity manifested by microbiota changes may be

age-related. Previous studies have shown an association between

Lactobacillus and age, with increased abundance with age (Sanjurjo

et al., 2022) and that Lactobacillus increases levels of the anti-

inflammatory cytokine IL-10 and decreases levels of the pro-

inflammatory cytokines TNF-a and ROS (Hu et al., 2022).

Therefore, we suggest that the gradual increase of Lactobacillus

kunckii with age limits the occurrence of allergic reactions. Using

the TNSS score, we discovered a significant difference in the

composition of the microbiota between the moderate and severe

disease groups. The moderate group had a higher average relative

abundance of Faecalibacterium, which could be related to its anti-

inflammatory effect (Martıń et al., 2017). Faecalibacterium can

secrete MAM, which interacts with the ZO-1 protein to maintain

the integrity of the tight junction complex by connecting cohesin,

occludin, and cytoskeleton protein, thereby preventing systemic

complications caused by pathogens and bacterial toxins entering the

blood (Xu et al., 2020). As a result, Faecalibacterium may be

beneficial in the process of CR disease.

Previous research has shown that random forest analysis can

predict the occurrence of AR (Yuan et al., 2022). Our findings

suggest that combining the detection of Parabacteroides goldstemii,

Sutterella-SP-6FBBBBH3, Pseudoalteromonas luteoviolacea,

Lachnospiraceae bacterium-615, and Bacteroides coprocola can be

used as a diagnostic biomarker for AR, whereas Pseudomonas-SP-

LTJR-52, Prevotella corporis, Anaerococcus vaginalis ,

Lachnospiraceae bacterium-615, and Roseburia inulinivorans can

be used for nAR.

Currently, there is growing interest in the application of

probiotics to modulate microecological balance in the treatment

of AR, defined by the World Health Organization as living

microorganisms that, when administered in adequate amounts,

provide health benefits to the host. This beneficial effect was

initially thought to stem from improved gut microbial balance,

but there is now substantial evidence that probiotics can also

provide benefits by modulating immune function (Cortes-Perez

et al., 2021). In animal models, probiotic supplementation can

protect the organism from spontaneous and chemically induced

colitis by downregulating inflammatory cytokines or inducing

regulatory mechanisms in a strain-specific manner; in animal

models of allergen sensitization and murine models of asthma

and allergic rhinitis, oral probiotics can reduce allergen-specific

IgE production in an allergen-dependent manner by modulating

systemic cytokine production (Ballan et al., 2020), Ahmed et al.

demonstrated the same effect of cetirizine and Lactobacillus casei in

children under 5 years of age with perennial AR. Children given

daily intake of Lactobacillus casei (2 × 109 CFU) or cetirizine (2.5-5

mg) showed significant improvement in baseline AR symptoms in

more than 95% of participants after 6 weeks of intervention

(Ahmed et al., 2019). This validates our results that microbial
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homeostasis imbalance plays a key role in the development of

disease, that regulating microbial diversity will improve the

symptoms of AR, and that the prospect of probiotic applications

needs to be explored in more depth, which provides a direction for

our future research.
5 Conclusion

In conclusion, this study establishes nasal microecological

regulation as a potential therapeutic target for AR and nAR. We

discovered that AR patients differed significantly from nAR patients

and healthy controls in terms of nasal bacterial a and b diversity.

AR is closely associated with an increase in the relative abundance

of vibrio vulnificus and Acinetobacter baumanni, and an increase in

the relative abundance of Lactobacillus iners, Lactobacillus

murinus, and Escherichia coli may also be a key factor in the

occurrence of nAR. The anti-inflammatory effect of probiotics such

as Lacttobacillus kunkeei and Escherichia iners and the antagonism

of ICMT could be a future treatment strategy for AR. Glycan

biosynthesis and metabolism may play a role in the pathogenesis

of AR, which will be investigated further in the following step. The

joint detection of microbiota based on random forest results may

also provide us with new ideas for future AR and nAR diagnosis.
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dominance index predicted the
short-term prognosis of patients
with severe bacterial pneumonia
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Objective: The aim of this study was to explore the predictive value of the ratio of

procalcitonin (PCT) in serum to Simpson’s dominance index (SDI) in

bronchoalveolar lavage fluid (BALF), in short-term prognosis of patients with

severe bacterial pneumonia (SBP).

Methods: This is a retrospective review of case materials of 110 patients with SBP

who selected BALF metagenomic next-generation sequencing technique in the

intensive care unit (ICU) of the Affiliated Hospital of Yangzhou University from

January 2019 and July 2022. Based on the acute physiology and chronic health

status score II, within 24 h after admission to the ICU, patients were divided into a

non-critical group (n = 40) and a critical group (n = 70). Taking death caused by

bacterial pneumonia as the endpoint event, the 28-day prognosis was recorded,

and the patients were divided into a survival group (n = 76) and a death group (n =

34). The SDI, PCT, C-reactive protein (CRP), PCT/SDI, and CRP/SDI were

compared and analyzed.

Results: Compared with the non-critical group, the critical group had a higher

PCT level, a greater PCT/SDI ratio, a longer ventilator-assisted ventilation time

(VAVT), and more deaths in 28 days. Compared with the survivors, the death

group had a higher PCT level, a lower SDI level, and a greater PCT/SDI ratio. The

SDI level was significantly negatively correlated with the VAVT (r = −0.675, p <

0.05), while the PCT level, ratio of PCT/SDI, and ratio of CRP/SDI were

remarkably positively correlated with VAVT (r = 0.669, 0.749, and 0.718,

respectively, p < 0.05). The receiver operating characteristic (ROC) curves

analysis showed that the area under ROC curves of PCT/SDI predicting patient

death within 28 days was 0.851, followed by PCT + SDI, PCT, SDI, and CRP/SDI

(0.845, 0.811, 0.778, and 0.720, respectively). The sensitivity and specificity of
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PCT/SDI for predicting death were 94.1% and 65.8%, respectively, at the optimal

value (11.56). Cox regression analysis displayed that PCT/SDI (HR = 1.562; 95% CI:

1.271 to 1.920; p = 0.039) and PCT (HR = 1.148; 95% CI: 1.105 to 1.314; p = 0.015)

were independent predictors of death in patients.

Conclusion: The ratio of PCT/SDI was a more valuable marker in predicting the

28-day prognosis in patients with SBP.
KEYWORDS

bacterial pneumonia, bronchoalveolar lavage fluid, procalcitonin, Simpson’s dominance
index, predictive
Introduction

Severe bacterial pneumonia (SBP) is one of the main causes of

death in intensive care unit (ICU) patients, with a mortality rate of

15.5%–38.2% (Shi et al., 2019). Corresponding treatment guidelines

recommend that early identification of the causative agent and

treatment is an effective way to improve the patient’s prognosis

(Kalil et al., 2016; Metlay et al., 2019). Patients with SBP have a

severe inflammatory response in the lungs, with a massive release of

inflammatory cytokines and a disruption of the original immune

system balance, which leads to changes in the respiratory flora.

Alterations in the respiratory flora, in turn, further promote disease

progression and poor prognosis (Panzer et al., 2018). Thus, altered

respiratory flora secondary to SBP may increase the risk of death in

patients with pulmonary infections(Guo et al., 2021).

Understanding the composition of the respiratory flora is necessary

to inform clinical decisions. Previous studies (Dima et al., 2019) have

shown that respiratory flora is associated with the development and

progression of several diseases, such as chronic obstructive pulmonary

disease and acute respiratory distress syndrome. Simpson’s dominance

index (SDI) is currently a sensitive indicator for studying differences in

animal, plant, and soil flora, and has been shown to be a natural marker

for bacterial infections in studies involving human respiratory flora

(Langelier et al., 2018). It has been shown (Langelier et al., 2018) that

SDI values are lower in patients with pulmonary infections compared

to uninfected individuals. The more severe the patient’s lung bacterial

infection, the lower the SDI value, as shown by the trend of SDI. The

SDI decreases and PCT increases in SBP, and the ratio of the two

indices (SDI/PCT) theoretically better reflects the predictive ability of

the disease. Therefore, we proposed a method combining SDI and PCT

for the first time exploratively.

The aim of the study was to analyze the ratio of serum PCT in

ICU patients with bacterial pneumonia to SDI values obtained by

the metagenomic next-generation sequencing technique (mNGS),

and then compared with SDI, PCT, C-reactive protein (CRP), and

CRP/SDI to evaluate the value of PCT/SDI in the short-term

prognosis of ICU patients with SBP.
02117
Materials and methods

Patients and study design

Adult patients (aged ≥ 18 years) with bacterial pneumonia

selected for diagnosis with the aid of the bronchoalveolar lavage

fluid (BALF) mNGS technique from the Affiliated Hospital of

Yangzhou University between January 2019 and July 2022 were

retrospectively reviewed. Age, gender, PCT, CRP, mNGS, patient

outcomes and acute physiology, and chronic health evaluation

(APACHE-II) within 24 h of admission were recorded.

Diagnostic criteria for bacterial pneumonia refer to the guidelines

for the diagnosis and treatment of hospital-acquired pneumonia

and ventilator-associated pneumonia in adults in China (2018).

Patients who met criterion 4 or any two or more of the first three

criteria were included, as described below: (1) Newly developed

cough, sputum, or aggravation of existing respiratory symptoms

with purulent airway secretions, with or without chest pain; (2)

body temperature >38°C; (3) peripheral blood leukocyte count

(WBC) >10×109/L or <4×109/L, with or without left shift of

nuclei; (4) lung imaging showing a new or progressive patchy

infiltrative shadow, consolidation, or with or without pleural

effusion. A total of 110 patients were enrolled in the study and

bronchoscopy was performed to obtain BALF samples. The mNGS

of BALF was used to detect bacteria. All patients were treated with

appropriate antibiotics and steroid users were excluded. Based on

APACHE-II within 24 h of admission to the ICU, all patients were

divided into two groups: a non-critical group (APACHE-II <20, n =

40) and a critical group (APACHE-II ≥20, n = 70). The endpoints

were bacterial pneumonia causing death of the patients, and 28-day

prognosis was recorded. According to the endpoint outcomes, the

patients were divided into two groups: a survival group (n = 76) and

a death group (n = 34). This study was approved by the Ethics

Committee of the Affiliated Hospital of Yangzhou University.

Owing to a retrospective study, the ethics committee approved

the waiver of informed consent. All research materials were

conducted anonymously.
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Case definition and positive mNGS result
criteria

Two independent physicians reviewed the anonymized data

material for all patients. The likelihood of the infection source as

suggested by clinical symptoms was determined. The bacteria that

may have caused the infection were then identified based on the

mNGS results. For rare reported bacteria, unless mNGS results were

consistent with the clinical characteristics of the patient, the

detected reads were classified as non-pathogenic bacteria

sequences. This study excluded the case of viral, fungal, and

atypical pathogenic bacteria infections. Finally, an infectious

diagnosis was established.

Owing to the lack of interpretation criteria for mNGS,

the following criteria were used to define positive bacterial

results: (1) Pathogenic bacteria reported in the literature; (2)

≥3 reads of highly pathogenic bacteria at the species level; (3)

>30% relative abundance at the genus level for opportunistic

bacteria; and (4) ≥1 read for Mycobacterium tuberculosis and

non-tuberculous mycobacteria.
Sample processing

BALF was collected in accordance with standard operating

procedures. The Vision Medicals’ Patho-NET technology was

used to remove host gDNA. Then, we obtained up to 600-ml

samples. DNA was extracted using a Pathogen DNA Kit (Tiangen

Biotech, Beijing, China) following the manufacturer’s instructions,

and DNA libraries were constructed by transposase-mediated ways

(Vision Medicals, China). Prior to sequencing, the quality of the

libraries was evaluated using the Qsep1 Biofragment Analyzer

(BiOptic. Co., La Canada Flintridge, CA) to measure adapter and

fragment size. The size of final library was 300 to 500 bp and the

library concentration was greater than 0.5 ng/ml. Finally, the
Nextseq 550 Dx sequencing platform (Illumina, San Diego, CA)

was used for sequencing. High-quality data were obtained by

removing short (less than 40 bp) reads. Human sequence was

removed by mapping to human reference genome (hg38 and YH

sequences) using Burrows–Wheeler Alignment. The remaining

microbial sequence was classified by aligning to Microbial

Genome Databases, which were downloaded from the NCBI

Nucleotide and Genome databases. Finally, multiple parameters

of bacteria, such as relative abundance, were exported, and the

results were interpreted by microbiologists and clinicians.
SDI calculation

The SDI was calculated using the number of bacterial nucleic

acid sequences detected by mNGS with the following formula

(Hunter, 1988):

SDI = 1 −on(n − 1)

N(N − 1)
Frontiers in Cellular and Infection Microbiology 03118
where n is the number of nucleic acid sequences detected for a

strain and N is the total number of nucleic acid sequences detected

for all strains.
Statistical analysis

Mann–Whitney U test (non-normally distributed variables)

and independent-samples t-tests (normally distributed variables)

were utilized to compare the quantitative data between the groups.

Chi-square tests were used to compare categorical variables. The

Spearman method was utilized for correlation analysis. Binary

logistic regression analysis was applied to identify independent

risk factors associated with patient death in 28 days. Receiver

operating curves (ROCs) were used to obtain cutoff values for the

best sensitivity and specificity of factors for patient death in 28 days.

Multivariate Cox regression analysis was carried out to explore

whether the variables can effectively predict the short-term

prognosis of patients. All analyses were performed using SPSS

17.0 (SPSS Inc., Chicago, IL, USA), and figures were constructed

using MedCalc version 20 software (MedCalc Software Ltd.,

Ostend, Belgium). p< 0.05 was considered significant.
Results

Patient characteristics

A total of 110 patients with SBP (70 male and 40 female

patients) with a median age of 65 (62, 71) years were enrolled in

this study. The median SDI, PCT, and CRP for all patients were

0.460 (0.350, 0.588), 5.050 (3.845, 7.813) ng/ml, and 21.320 (16.863,

27.533) mg/L, respectively, and the median duration of ventilator-

assisted ventilation time (VAVT) was 9.0 (7.0, 14.0) days. All

patients were followed up with a 28-day prognosis and 34

patients eventually died. The bacterial test results and clinical

characteristics of patients are shown in Table 1.
Comparison of the indicators between the
critical group and the non-critical group

The critical patients had significantly lower SDI levels; higher

PCT/SDI, PCT, and CRP/SDI values; longer VAVT; and more

deaths compared with the non-survival group (p < 0.01), while the

age, gender, and CRP were not statistically significant (p >

0.05) (Table 2).
Comparison of the indicators between the
death group and the survival group

Patients with death had higher PCT/SDI, PCT, and CRP/SDI

values, and lower SDI values compared with the survival group (all

p < 0.05), while the age, gender, and CRP were not statistically

significant (p > 0.05) (Table 3).
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Correlation of indicators with the VAVT

SDI was negatively correlated with VAVT (Spearman’s

correlation coefficient; r = −0.675, p < 0.001), and PCT, PCT/SDI,

and CRP/SDI were positively correlated with VAVT (Spearman’s

correlation coefficient; r = 0.669, 0.749, and 0.718, respectively, p <

0.001). Gender, age, and CRP were not correlated with VAVT

(Spearman’s correlation coefficient; r = 0.031, −0.020, and 0.080,

respectively, p > 0.05) (Figure 1).
ROC curve analysis for indicators

We included statistically significant PCT, SDI, PCT/SDI, PCT

+SDI, and CRP/SDI in the survival group compared with the death

group in the ROC curve analysis. The results showed that the area

under the ROC curves for PCT/SDI predicting patient death in 28

days was 0.851, followed by PCT+SDI (0.845), PCT (0.811), SDI

(0.778), and CRP/SDI (0.720). Pairwise comparisons of the area

under the ROC curve for each variables showed that SDI ~ PCT/

SDI, Z = 1.191, p = 0.234; SDI ~ PCT, Z = 0.810, p = 0.418; SDI ~

CRP/SDI, Z = 1.910, p = 0.056; SDI ~ PCT+SDI, Z = 1.908, p =

0.056; PCT/SDI ~ PCT, Z = 2.081, p = 0.038; PCT/SDI ~ CRP/SDI,

Z = 0.603, p = 0.547; PCT ~ CRP/SDI, Z = 2.058, p = 0.040; PCT ~

PCT+SDI, Z = 0.974, p = 0.330; CRP/SDI ~ PCT/SDI, Z = 3.531, p <

0.001. When the cutoff value of PCT/SDI was 11.56, the best

sensitivity for predicting patient death in 28 days was 94.1% and

the specificity was 65.8% (Figure 2).
Multivariate Cox regression analysis for
28-day survival in patients with SBP

The survival time is defined as the time from the patient’s

admission to the ICU to death or the end of follow-up. After

removing irrelevant features, age, sex, SDI, PCT/SDI, PCT, CRP/

SDI, and PCT+SDI were taken as independent variables, and

multivariate Cox regression analysis was performed. The
TABLE 2 Various indicators of the critical group and non-critical group.

Indicators Non-critical group (n = 40) Critical group (n = 70) p-value

Gender (male/female) 28/12 42/28 0.294

Age, years 67.5 (62.0, 72.0) 64.0 (62.0, 70.0) 0.076

SDI 0.625 (0.553, 0.663) 0.410 (0.270, 0.460) <0.001*

PCT/SDI 6.090 (5.113, 8.283) 17.010 (11.640, 24.690) <0.001*

PCT, ng/ml 3.775 (3.388, 4.690) 7.120 (4.925, 8.240) <0.001*

CRP/SDI 33.360 (28.900, 42.520) 65.810 (45.753, 97.958) <0.001*

CRP, mg/L 24.165 (22.245, 26.725) 24.170 (21.433, 30.563)(20.125,28.220) 0.177

VAVT, days 7.0 (4.8, 8.3) 11.0 (8.0, 16.8) <0.001*

28-day prognosis(die/survival) 6/34 28/42 0.006*
fron
Continuous variables are presented as median and interquartile range; binary variables are presented as number and percentage. VAVT, ventilator-assisted ventilation time; SDI, Simpson’s
dominance index; PCT, procalcitonin; CRP, C-reactive protein.
TABLE 1 Clinical characteristics and laboratory and bacterial results of
patients.

Characteristics Overall (n = 110)

Gender (male/female) 70/40

Age, years 65.0 (62.0, 71.0)

VAVT, days 9.0 (7.0, 14.0)

Laboratory examination

SDI 0.460 (0.350, 0.588)

PCT, ng/ml 5.050 (3.845, 7.813)

CRP, mg/L 21.320 (16.863, 27.533)

Bacteria

Acinetobacter baumannii 20

Klebsiella pneumoniae 16

Pseudomonas aeruginosa 14

Streptococcus pneumoniae 13

Escherichia coli 11

Burkholderia cepacia 9

Stenotrophomonas maltophilia 7

Aspergillus 5

Staphylococcus aureus 5

Listeria 5

Haemophilus influenzae 4

Mycoplasma 4

Pneumocystis carinii 3

Aerobacter cloacae 1

Mycobacterium tuberculosis 1

Legionella pneumophila 1
Continuous variables are presented as median and interquartile range; binary variables are
presented as number and percentage. VAVT, ventilator-assisted ventilation time; SDI,
Simpson’s dominance index; PCT, procalcitonin; CRP, C-reactive protein.
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multivariate Cox regression analysis showed PCT/SDI and PCT as

continuous variables and were independent risk factors for 28-day

death in patients with SBP (Figures 3A, B).
Discussion

It is now generally accepted that the human body has a complex

micro-ecosystem in all the cavities that are connected to the outside
Frontiers in Cellular and Infection Microbiology 05120
world. The imbalance of the microecosystem in the luminal tract

and the inflammatory state due to bacterial infection are the main

factors for the poor prognosis of patients with severe infections.

Multiple studies on the relationship between intestinal flora and

disease have shown that the incidence of acute respiratory distress

syndrome and ventilator-associated pneumonia is significantly

higher once intestinal flora is imbalanced (Dickson et al., 2020;

Zanza et al., 2022). In many cases, the pathological changes of the

lung, such as parenchymal fibrosis, is considered to be associated
FIGURE 1

Spearman method for correlation of ventilator-assisted ventilation time (VAVT) with indexes. The VAVT by age, gender, Simpson’s diversity index
(SDI), procalcitonin (PCT), C-reactive protein (CRP), PCT/SDI, and CRP/SDI (n = 110). SDI was negatively correlated with VAVT (p < 0.001), and PCT,
PCT/SDI, and CRP/SDI were positively correlated with VAVT (p < 0.001). Gender, age and CRP were not correlated with VAVT (p > 0.05).
TABLE 3 Various indicators of the survivor group and death group.

Indicators Survivor group (n = 76) Death group (n = 34) p-value

Gender (male/female) 52/24 18/16 0.119

Age, years 65.5 (61.0, 71.0) 64.5 (63.0, 69.3) 0.314

SDI 0.485 (0.430, 0.630) 0.320 (0.270, 0.460) <0.001*

PCT/SDI 9.250 (5.800, 16.500) 21.420 (13.798, 33.900) <0.001*

PCT, ng/ml 4.700 (3.640, 5.970) 7.900 (5.403, 9.970) <0.001*

CRP/SDI 44.140 (23.860, 63.070) 76.440 (42.560, 118.008) 0.004*

CRP, mg/L 21.165 (15.030, 27.120) 22.020 (20.120, 29.230) 0.064
fron
Continuous variables are presented as median and interquartile range; binary variables are presented as number and percentage. SDI, Simpson’s dominance index; PCT, procalcitonin; CRP, C-
reactive protein.
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with altered microbial communities in the patient’s lungs (Dickson

and Huffnagle, 2015; Woo et al., 2020). The composition of the

intrapulmonary microbial community varies significantly with the

progression of the disease. ICU patients with SBP often have

advanced age, underlying diseases, and immune deficiencies that

can lead to physiological dysfunction and disruption of the body’s

microecological balance. Previous studies have shown that

alterations in microbial communities increase the incidence of

infectious diseases through their metabolite-mediated immune

regulation (Segal et al., 2017). Further studies suggest that an

imbalanced microbial community increases immune-related

metabolite production pathways, such as the pentose phosphate

pathway and the glycolytic pathway (Hong et al., 2021). As can be

expected, alterations in the intrapulmonary microbial community

play a special role in the recognition and treatment of infectious

diseases. Therefore, simultaneous monitoring of intrapulmonary

microbial communities and inflammatory indicators in patients

with SBP may be of more clinical value.

SDI was proposed by the British scholar Simpson in 1949 as a

measure of the number of biological species within a species

community and the relative abundance among species, the

principle of which can be derived from probability theory

(Simpson, 1949). SDI can reflect the status and role of dominant

species in the community, and the larger its value, the higher the

ecological dominance. According to previous research (Yang et al.,

2018; Pimple, 2020), SDI can elucidate differences in species (flora)

such as animals and plants within a given region; however, most

recent studies have dealt with human respiratory and intestinal flora

(Langelier et al., 2018). Clinical studies have shown (Pimple, 2020)

that a subgroup comparison of 22 adult hospitalized patients after

hematopoietic stem cell transplantation had significantly lower SDI
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values in the infected group relative to the uninfected group (p =

0.017). This is similar to the results of our previous unpublished

study with a small sample. PCT and CRP are commonly used

biomarkers that have the potential to differentiate infectious and

non-infectious inflammatory conditions. For the severity and

prognosis of bacterial pneumonia, in conjunction with other

clinical examination, PCT levels have been shown to be more

advantages than CRP (Covington et al., 2018). The results of this

study showed that the PCT values of patients in the survival and

non-critical groups were significantly lower than those in the death

and critical groups (p< 0.001), while CRP was not significantly

different in any of the groups (p > 0.05). The PCT levels of patients

with bacterial pneumonia were positively correlated with the

VAVT. The greater the PCT value, the more severe the disease

and the higher the risk of death.

Previous research have shown that the ratio of PCT and CRP to

indicators such as serum prealbumin or erythrocyte sedimentation

rate (ESR) has clinical significance in the diagnosis, management, and

prognosis, such as the study by Christopher et al. (2021), which

showed that ESR/CRP helps to determine the duration of

periprosthetic joint infection and informs the physician’s treatment

choice. Another study showed that serum prealbumin/PCT was

negatively associated with time in intensive care and death, and

could be used as an indicator of patient severity and short-term

prognosis (Wang et al., 2022). Given the high and low variability of

PCT, CRP, and SDI in the context of bacterial infection in patients,

the ratio of inflammatory indexes to SDI was used exploratively in

this study. In contrast to PCT for short-term prognosis of patients

with bacterial pneumonia, SDI values were taken independent of a

variety of clinical factors such as renal insufficiency, autoimmune

disease, and neutropenia (Covington et al., 2018). In addition, early
FIGURE 2

Receiver operating characteristic curves. SDI, Simpson’s dominance index; PCT, procalcitonin; CRP, C-reactive protein; AUC, area under the ROC
curves.
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and effective antimicrobial therapy in patients can lead to a decrease

in the accuracy of PCT as an indicator of prognosis. Therefore, PCT/

SDI can be more sensitive to the trend of ratio results. According to

our study data, PCT/SDI and CRP/SDI were higher in the critical

group than in the non-critical group, and the former group had

longer VAVT andmore cases of death within 28 days. The SDI values

of patients in the death group were lower than those in the survival

group, while PCT/SDI and CRP/SDI were higher than those in the

survival group, and PCT/SDI was positively correlated with the

VAVT. SDI was negatively correlated with the VAVT; SDI was

negatively correlated with the VAVT, while age, sex, and CRP were

not statistically significant when compared between groups,

suggesting that PCT/SDI and CRP/SDI were correlated with the

severity of disease in patients with SBP in the ICU.

The ROC curve showed that the area under the curve of PCT/SDI

for predicting 28-day death in patients with SBPwas 0.851, which was

better than PCT (0.811), SDI (0.778), CRP/SDI (0.720), and PCT

+SDI (0.845), indicating that the highest accuracy in determining the

28-day prognosis of patients with SBP was observed with a PCT/SDI

ratio of 11.56, with a sensitivity and specificity of 94.1% and 65.8%,
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respectively. The multivariate Cox regression analysis demonstrated

that PCT/SDI (HR = 1.562; 95% CI: 1.271 to 1.920; p = 0.039) and

PCT (HR = 1.148; 95% CI: 1.105 to 1.134; p = 0.015) were

independent risk factors for the 28-day death of patients with

bacterial pneumonia in the ICU. Given the impact of multiple

diseases on PCT values, such as renal insufficiency, organ

transplantation, and autoimmune diseases, it is reasonable to

confirm that PCT/SDI can be a more sensitive indicator of a

patient’s short-term prognosis (Covington et al., 2018).

Some limitations of the study should be considered. First, given

its retrospective nature, only 110 patients was included. Second,

patients were not divided into subgroups according to their

ventilation mode, such as invasive ventilation and noninvasive

ventilation. These factors may affect the validity of the PCT/SDI

ratio in determining the prognosis of patients with SBP. Third,

considering the study methodology and the cost of SDI, this study

did not perform dynamic monitoring and evaluation of PCT/SDI to

further explore the dynamic change pattern of the index. We expect

the cost of SDI to decrease, so that the sample size can be expanded

to further evaluate PCT/SDI.
B

A

FIGURE 3

Construction of short-term prognostic features of patients with bacterial pneumonia. (A) Twenty-eight-day survival curve for patients with SBP. (B)
Forest plots of multivariate Cox regression analysis for 28-day mortality in patients with SBP. SDI, Simpson’s dominance index; PCT, procalcitonin;
CRP, C-reactive protein.
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Conclusions

In conclusion, although the PCT/SDI ratio is a tool to predict

the 28-day prognosis of patients with SBP and may help to reduce

the impact of various diseases on the monitoring results, the ratio is

not a perfect method to replace PCT for clinical use. However, as a

monitoring method with a sensitivity close to 90%, this method will

still help clinicians to assess the short-term prognosis of patients

with SBP. Given that the accuracy of PCT and CRP are affected by

several factors, the use of antimicrobial drugs can also lead to a

decrease in the accuracy of PCT and CRP results. This study

indicates the high potential value of PCT/SDI ratio as a method

to assess the short-term prognosis of these patients.
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Longitudinal studies on upper respiratory tract microbiome in coronavirus disease

2019 (COVID-19) without potential confounders such as antimicrobial therapy are

limited. The objective of this study is to assess for longitudinal changes in the upper

respiratory microbiome, its association with disease severity, and potential

confounders in adult hospitalized patients with COVID-19. Serial nasopharyngeal

and throat swabs (NPSTSs) were taken for 16S rRNA gene amplicon sequencing

from adults hospitalized for COVID-19. Alpha and beta diversity was assessed

between different groups. Principal coordinate analysis was used to assess beta

diversity between groups. Linear discriminant analysis was used to identify

discriminative bacterial taxa in NPSTS taken early during hospitalization on need

for intensive care unit (ICU) admission. A total of 314 NPSTS samples from 197

subjects (asymptomatic = 14, mild/moderate = 106, and severe/critical = 51

patients with COVID-19; non–COVID-19 mechanically ventilated ICU patients =

11; and healthy volunteers = 15) were sequenced. Among all covariates, antibiotic

treatment had the largest effect on upper airway microbiota. When samples taken

after antibiotics were excluded, alpha diversity (Shannon, Simpson, richness, and

evenness) was similar across severity of COVID-19, whereas beta diversity

(weighted GUniFrac and Bray–Curtis distance) remained different. Thirteen

bacterial genera from NPSTS taken within the first week of hospitalization were

associated with a need for ICU admission (area under the receiver operating

characteristic curve, 0.96; 95% CI, 0.91–0.99). Longitudinal analysis showed that

the upper respiratory microbiota alpha and beta diversity was unchanged during

hospitalization in the absence of antimicrobial therapy.

KEYWORDS

COVID-19, SARS-CoV-2, 16S rRNA, upper airway microbiome, intensive care unit
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1 Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory illness

caused by a novel coronavirus (SARS-CoV-2) (Huang et al., 2020).

The clinical presentation of patients with COVID-19 varies from

asymptomatic to critical, which can result in severe pneumonia,

acute respiratory distress syndrome, multi-organ failure, and death

(Lui et al., 2020). Age and baseline comorbidities such as renal

failure, cardiovascular disease, and obesity have been established as

the major risk factors of severe COVID-19 infection (Dessie and

Zewotir, 2021). Host genetic variants are also associated with

COVID-19 mortality (Pairo-Castineira et al., 2021). Although the

current omicron variant is much weaker than the original variants

of SARS-CoV-2, understanding of host–virus interaction remains

incomplete (Esper et al., 2022).

Recent insight into the role of microbiome in human disease has

opened up potential new therapeutic avenues (Sorbara and Pamer,

2022). Once thought to be sterile, the dynamic microbiome in the

lung has only been recently recognized (Hilty et al., 2010).

Furthermore, asthma, cystic fibrosis, and pneumonia are

associated with changes in lung microbiome different to that of

healthy lungs (Dickson et al., 2016a; Goldman et al., 2018). It

remains controversial whether altered microbiome is the result of

lung disease, contributes to the disease process itself, or both

(Dickson et al., 2014). Nevertheless, modifying the lung

microbiota with probiotics has already shown promise in

reducing exacerbations in cystic fibrosis (Weiss et al., 2010).

Because SARS-CoV-2 is primarily a respiratory infection, upper

airway respiratory dysbiosis-inflammation may play a role in

determining severity of COVID-19. Indeed, it has been shown

that the respiratory tract microbiome is different in patients with

COVID-19 compared with healthy ones (Mostafa et al., 2020; Xu

et al., 2020; Rhoades et al., 2021). Furthermore, some studies have

shown that COVID-19 severity is associated with progressive

changes in upper airway respiratory microbiota (Merenstein et al.,

2021; Shilts et al., 2021; Ventero et al., 2021). However, current

evidence is often conflicting, likely due to small sample sizes and

differences in cohort selection, sampling time points, and site of

sampling (Mostafa et al., 2020; Braun et al., 2021; Llorens-Rico et al.,

2021; Shilts et al., 2021; Wu et al., 2021; Merenstein et al., 2022). In

addition, many studies did not report or account for antimicrobial

use in patients hospitalized for COVID-19 (Ma et al., 2021;

Merenstein et al., 2021; Rueca et al., 2021; Ventero et al., 2021;

Chen et al., 2022). As up to 75% of patients with COVID-19 were

given antimicrobial therapy early on during the pandemic, this may

have affected the respiratory microbiome independent of SARS-

CoV-2 infection (Langford et al., 2021). Last, longitudinal studies of

dynamic changes in COVID-19 respiratory microbiome are scarce

(Llorens-Rico et al., 2021; Merenstein et al., 2021; Ren et al., 2021;

Xu et al., 2021; Candel et al., 2023). We hypothesized that changes

in upper respiratory microbiota in hospitalized patients with

COVID-19 over the course of hospitalization are greatly affected

by treatments such as antimicrobial therapy. Nevertheless, as
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COVID-19 is associated with respiratory inflammation, we

postulate that upper respiratory microbiota may be related to

COVID-19 severity, viral load, and plasma cytokines. The

primary objective of this prospective observational study on adult

patients hospitalized for COVID-19 is to assess for longitudinal

changes in the upper respiratory microbiome during hospitalization

and COVID-19 treatment. The secondary objectives of the study are

to determine association between upper respiratory tract

microbiome and severity of COVID-19 as well as its potential

confounders and to compare SARS-CoV-2 viral load and plasma

cytokine with upper respiratory tract microbiota in COVID-19.
2 Methods

2.1 Study design and subject recruitment

This was a prospective observational study on adult (age ≥ 18

years old) hospitalized patients who tested positive for SARS-CoV-2

on reverse transcription polymerase chain reaction (RT-PCR).

Patients were included if they had at least one nasopharyngeal

swab and throat swab (NPSTS) sample taken during hospitalization

within 3 weeks of hospital admission after informed consent.

Patients who were previously vaccinated against SARS-CoV-2,

received antibiotics 3 months prior to hospitalization, or had

missing data on clinical severity or antimicrobial therapy were

excluded. Samples that were inadequate for DNA extraction and

16S rRNA gene amplicon sequencing for microbiota profiling were

also excluded. Blood samples for cytokine profiling were taken as

early as possible after hospital admission. Mechanically ventilated

intensive care unit (ICU) patients without COVID-19 and healthy

volunteers working in the same hospital environment were

recruited for controls. This study was approved by The Joint

Chinese University of Hong Kong – New Territories East Cluster

Clinical Research Ethics Committee (2020.076).
2.2 Severity of COVID-19

COVID-19 severity was classified as asymptomatic, mild/

moderate, or severe/critical based on the highest severity level at

hospital discharge as previously described (28). Medical records

including clinical notes, imaging, laboratory results, and

observation charts were manually reviewed to determine the

severity of COVID-19 according to the following criteria:

Asymptomatic patients had no symptoms despite SARS-CoV-2

infection. Mild/moderate group included patients who had

symptoms of fever, cough, myalgia, sore throat, and rigors related

to SARS-CoV-2 infection but did not require oxygen therapy.

Severe/critically ill patients with COVID-19 included those who

had dyspnea, respiratory rate ≥ 30, or required oxygen therapy or

mechanical ventilation for SARS-CoV-2 infection due to

respiratory failure.
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2.3 Respiratory sampling

Serial NPSTSs were collected for SARS-CoV-2 viral load

quantification and 16S rRNA sequencing analysis. During the

early COVID-19 pandemic, all patients with confirmed COVID-

19 were hospitalized as part of the Hong Kong public health

strategy. Patients were only discharged after testing negative for

SARS-CoV-2 on RT-PCR. Patients who were asymptomatic or had

mild disease were, sometimes, hospitalized for longer than 2 weeks

despite clinical recovery. Therefore, serial NPSTS samples could be

collected from all severity groups during hospitalization. The time

points used in this study were the first sample within the first week

of hospitalization and the second sample between the second and

third weeks of hospitalization. Samples were stored in −80°C for

0.1–2.5 years until completion of recruitment for further analysis.
2.4 SARS-CoV-2 viral load quantification

Total RNA was extracted from mixed NPSTSs using the

QIAamp Viral RNA Mini Kit (QIAGEN, Hilden, Germany).

Primer–probe set targeting the N gene (2019-nCoV_N1-F: 5′-
GAC CCC AAA ATC AGC GAA AT-3′; 2019-nCoV_N1-R: 5′-
TCT GGT TAC TGC CAG TTG AAT CTG-3′; and 2019-

nCoV_N1-P: 5′-FAM-ACC CCG CAT TAC GTT TGG TGG

ACC-BHQ1-3′) was used to detect SARS-CoV-2 RNA by real-

time RT-PCR as previously described (Lui et al., 2020). The

detection limit of real-time RT-PCR was 694 copies/ml, and

samples were considered negative if Ct values exceeded

39.9 cycles.
2.5 16S rRNA sequencing

Total DNA was extracted from mixed NPSTS using the

QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany) to

characterize respiratory microbiota using 16S rRNA gene

amplicon sequencing. The molecular process, including the

DNA extract ion, 16S PCR amplificat ion, and l ibrary

preparation, were performed at separate locations to avoid

contamination. For quality control, negative controls (blank

DNA extraction and PCR controls) , positive controls

(ZymoBIOMICS Microbial Community DNA Standard, catalog

no. D6305), and technical replicates (randomly selected DNA

samples) were also included. In brief, the 16S rRNA gene

hypervariable V3-V4 region (~450 bp) was targeted (341F: 5′-
CCT ACG GGN GGC WGC AG-3′; 806R: 5′-GGA CTA CNV

GGG TWT CTA AT-3′), with barcodes indexed to each amplicon

set for multiplexing sequencing on an Illumina MiSeq for PE300

reads (Chen et al., 2019). QIIME2 (v2022.2) with the latest SILVA

ribosomal RNA database (v138 SSU Ref NR 99 dataset) was used

to classify amplicon sequence variants (ASVs), with operational

taxonomic table showing the proportion of bacterial reads per

sample at different taxonomic levels after removing reads assigned

to archaea, mitochondria, or chloroplasts.
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2.6 Microbiota data analysis

Data distribution was assessed using Shapiro–Wilk test, and

descriptive statistics such as mean and standard error as well as

median and interquartile range (IQR) were used to summarize data.

A phylogenetic tree was generated by inserting the representative

reads into the SILVA 128 reference tree using the SATe-enabled

phylogenetic placement method. Alpha diversity was assessed using

Shannon, Simpson, richness, and evenness, andWilcoxon rank sum

test was used for assessing the pairwise difference between the

defined groups. Beta diversity was assessed using unweighted and

weighted GuniFrac and Bray–Curtis distance. Principal coordinate

analysis was used to assess beta diversity between different groups

using permutational multivariate analysis of variance

(PERMANOVA) with 9,999 permutations using the adonis2 in

the Vegan R package (v2.6-4). In the effect size analysis using a

single multivariable model, antibiotic-controlled association

between metadata variables, including intubation, ICU, severity,

peak CRP, hospitalized time, antivirus, peak viral load, Charlson

comorbidity index, age, and gender, was tested by adding antibiotics

into the model formula. An exploratory analysis on discriminative

bacterial taxa between patients who required ICU admission and

those that did not was estimated using linear discriminant analysis

(LDA) effect size (LEfSe) with the default setting, with further

comparisons of the relative abundances using nonparametric

Mann–Whitney–Wilcoxon rank sum test and Tukey’s honest

significant difference post-hoc test (Segata et al., 2011). Logistic

regression and receiver operating characteristic (ROC) curve with

the calculation of area under the ROC curve (AUC) were used to

evaluate the potential markers identified for prediction of need for

ICU admission. Delong’s test was used to assess the differences in

AUCs. All other data visualization was performed using the ggplot

package in R. A two-sided p-value < 0.05 or a false discovery rate–

adjusted p-value (padj or q) < 0.1 was used as the threshold for

statistical significance.
2.7 Cytokine profile

A 3 ml of EDTA blood sample was taken from recruited

patients with COVID-19 and immediately cooled and transported

to the laboratory for processing. Plasma was separated by

centrifugation (2,000g for 10 min) at 4°C and stored in 300 µl of

aliquots at − 70°C until analysis. Milliplex human cytokine

multiplex assay using the Bio-plex 200 System (Bio-Rad

Laboratories, Inc. CA, USA) was used to determine levels of 32

cytokines including sCD40L, EGF, Eotaxin, FGF-2, Flt-3L,

Fractalkine, GRO-a, IFN-a2, IFN-g, IL-1b, IL-1RA, IL-3, IL-5,
IL-6, IL-7, IL-8, IL-10, IL-12 p40, IL-12 p70, IL-13, IL-15, IL-18,

IP-10, MCP-1, MCP-3, MDC, MIG, MIP-1b, TGF-a, TNF-a, TNF-
b, and VEGF (Ling et al., 2021). Associations of cytokine factors

with clinical variants and bacterial genera were analyzed by Fit a

Negative Binomial Generalized Linear Model using the glm.nb in

the MASS R package and a Spearman’s rank-order correlation test

using the cor.test in the Stats R package, respectively.
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3 Results

3.1 Cohort characteristics

A total of 314 NPSTS samples from 197 subjects that generated

high-quality 16S sequence reads were analyzed (Figure S1). COVID-19

group consisted of 171 adult hospitalized patients (asymptomatic = 14,

mild/moderate = 106, and severe/critical = 51) (Table 1). Meanwhile,
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11 mechanically ventilated ICU adult hospitalized patients without

COVID-19 and 15 adult healthy volunteers who worked in the same

hospital as healthcare workers or departmental staff were included as

controls. The baseline characteristics of the recruited subjects are

shown in Table 1 and Table S1. Overall, patients with severe/critical

COVID-19 were older and were more likely to have comorbidities.

Peak median viral load was similar across different COVID-19 severity

(Table 1, p = 0.086). Antibiotic use was highest in patients with severe/
TABLE 1 Cohort characteristics.

Asymptomatic Mild/Moderate Severe/Critical Non–COVID-19 ICU Healthy Controls
p

(N = 14) (N = 106) (N = 51) (N = 11) (N = 15)

Median Age, years 32 (25–40) 49.0 (33–61) 66 (57–73) 62 (49–69) 42 (35–48) <0.001

Female Gender (%) 6 (42.9) 60 (56.6) 16 (31.4) 3 (27.3) 10 (66.7) 0.012

Charlson Comorbidity Index

None 11 (78.6) 49 (46.2) 3 (5.9) 2 (18.2) 12 (80.0) <0.001

Mild (1–2) 3 (21.4) 42 (39.6) 20 (39.2) 5 (45.5) 3 (20.0) 0.397

Moderate (3–4) 0 (0) 10 (9.4) 21 (39.2) 4 (36.4) 0 (0.0) <0.001

Severe (≥5) 0 (0) 5 (4.7) 8 (15.7) 0 (0.0) 0 (0.0) 0.036

Comorbidity (%)

Good past health 11 (78.6) 65 (61.3) 14 (27.5) 4 (36.4) 14 (93.3) <0.001

Cardiovascular diseases 2 (14.3) 31 (29.2) 32 (62.8) 6 (54.5) 0 (0) <0.001

Chronic kidney diseases 0 (0) 3 (2.8) 3 (5.9) 0 (0) 0 (0) 0. 616

Chronic lung diseases 1 (7.1) 3 (2.8) 2 (3.9) 0 (0) 0 (0) 0.779

Diabetes mellitus 0 (0) 15 (14.2) 20 (39.2) 3 (27.3) 1 (6.7) <0.001

Immunodeficiency 0 (0) 1 (0.9) 0 (0) 0 (0) 0 (0) 0.93

Liver diseases 1 (7.1) 6 (5.7) 5 (9.8) 1 (9.1) 0 (0) 0.703

Malignancy 0 (0) 2 (1.9) 4 (7.8) 0 (0) 0 (0) 0.222

Bacterial Coinfection (%) 0 (0) 1 (0.9) 9 (17.6) 1 (9.1) – 0.0149

Median Peak Viral Load (Ct) 27.3 (20.3–29.6) 21.5 (17.1–27.6) 20.2 (18.2–25.5) – – 0.086

Treatment (%) b

Antibiotics 1 (7.1) 17 (16.0) 38 (74.5) 10 (90.9) 0 (0) <0.001

Dexamethasone 0 (0.0) 7 (6.6) 47 (92.2) 0 (0) 0 (0) <0.001

Remdesivir 0 (0.0) 9 (8.5) 38 (74.5) 0 (0) 0 (0) <0.001

Lopinavir/ritonavir 0 (0.0) 28 (26.4) 14 (27.5) 0 (0) 0 (0) 0.009

Tocilizumab 0 (0.0) 2 (1.9) 2 (3.9) 0 (0) 0 (0) 0.78

Interferon beta-1b 0 (0.0) 39 (36.8) 23 (45.1) 0 (0) 0 (0) <0.001

Outcomes (%)

ICU admission 0 (0.0) 0 (0.0) 32 (62.7) 11 (100) – <0.001

Vasopressors 0 (0.0) 0 (0.0) 20 (39.2) 4 (36.4) 0 (0) <0.001

Mechanical ventilation 0 (0.0) 0 (0.0) 20 (39.2) 11 (100) 0 (0) <0.001

Hospital mortality 0 (0.0) 0 (0.0) 6 (11.8) 1 (9.1) 0 (0) 0.001
frontie
Bacterial coinfection was defined as positive growth of a bacterial pathogen in respiratory tract or blood culture samples within 48 hours of hospitalization. Values are expressed as median and
(interquartile range) unless otherwise specified.
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critical COVID-19 and non–COVID-19 ICU patients. Use of specific

COVID-19 treatments varied across the spectrum of COVID-

19 severity.
3.2 Upper airway microbiota in earliest
samples of all subjects

We selected the earliest collected NPSTS samples from each

subject (hospitalized COVID-19 = 171, non–COVID-19 ICU = 11,

and healthy = 15) to profile the upper airway microbial

communities. The median time interval between time of

hospitalization and sampling time of first sample was 3 days. A

total of 2,649,726 high-quality 16S rRNA V3-V4 reads were

generated, ranging between 1,026 and 118,093 reads per sample

(13,450 ± 11,799). As shown in Figure 1 and Figure S2, Firmicutes

was the most abundant microbial phyla in the surveyed samples

(mean relative abundance ± SD of 34.70 ± 1.20%), followed by

Bacteroidota (30.06 ± 1.30%), Proteobacteria (17.86 ± 1.32%), and

11 other phyla. Proteobacteria were lower in both hospitalized

COVID-19 (17.70 ± 1.44%, Mann–Whitney U-test, p < 0.01) and

non–COVID-19 ICU (6.52 ± 2.10%, p <0.001) patients compared

with healthy volunteers (27.95 ± 3.62%). In contrast, Bacteroidetes

was higher in both in both hospitalized COVID-19 (30.47 ± 1.30%,

p < 0.001) and non–COVID-19 ICU (44.09 ± 8.78%, p < 0.01)

patients compared with healthy volunteers (30.06 ± 1.30%).

Alpha diversity at the ASV level as measured by Shannon,

Simpson, and evenness was progressively reduced as severity of

COVID-19 increased (Figure 2A, Figure S3A). Similarly, distinct

clustering of the microbial communities from patients with

COVID-19, particularly those with severe/critical severity, from

healthy controls was observed in weighted GUniFrac, unweighted

GUniFrac, and Bray–Curtis distance at the ASV level (p < 0.001).

Antibiotic treatment (yes vs. no) was consistently the most

significant covariate that had the largest effect on the overall

structure of the upper airway microbiota in all beta diversity

metrics (unweighted GUniFrac: R2 = 0.0442, p < 0.001; weighted
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GUniFrac: R2 = 0.0307, p < 0.001; and Bray–Curtis: R2 = 0.0216, p <

0.001) (Figure 2A, Figure S3B, Table S2). Similarly, the microbial

community was also significantly affected by intubation (yes vs.

no) and ICU admission (yes vs. no). The effect of severity (severe/

critical vs. non-severe/critical), peak CRP (≤ 7 vs. > 7),

hospitalized time (≤ 1 vs. ≥ 2 weeks), and antivirus treatment

(yes vs. no) on structure of microbial community was not detected

in all measures of beta diversity (Figure 2A, Figure S3C). Notably,

86.7% (OR = 40.3; 95% CI, 8.3–392.5; p < 0.001) and 62.5% (OR =

14.5; 95% CI, 5.5–40.6; p < 0.001) of hospitalized patients with

COVID-19 who were intubated and admitted to the ICU,

respectively, were treated with antibiotics prior to NPSTS

sample collection in this study.
3.3 Upper airway microbiota in samples
without antimicrobial use

Because antimicrobial use was the most significant factor that

affected upper airway microbiota dysbiosis, we further assessed the

difference in microbiota without the effect of antimicrobials. Removal

of NPSTS samples taken after antimicrobial use resulted in 157

samples from 137 antibiotic-naïve hospitalized patients with

COVID-19 (14 asymptomatic, 98 mild/moderate, and 25 severe/

critical cases), five non–COVID-19 ICU patients, and 15 healthy

volunteers. The median time interval between time of hospitalization

and sampling time of first sample was 3 days. All measures of alpha

diversity were no longer significantly different across COVID-19

severity groups when confounding by antimicrobial was removed

(Figure 2B, Figure S4A). After exclusion of the samples taken after

antimicrobials, microbiota from patients with severe/critical COVID-

19 still showed dispersive distribution by beta diversity analysis when

compared with other groups, but the differences were reduced

(Figure 2B, Figure S4B). After removal of the samples taken after

antimicrobial use, the confounding effect of intubation and ICU

admission on upper respiratory microbiota in COVID-19 was no

longer consistently found (Figure S4C).
FIGURE 1

Comparison of the upper airway microbiota summarized at the phylum level from COVID-19 (n = 171), non–COVID-19 ICU patients (n = 11), and
healthy controls (n = 15). Values in the table are mean abundance ± standard error of the mean. Phyla with a mean total relative abundance < 0.1%
are grouped as others (Deinococcus_Thermus, Chlamydiae, Planctomycetes, and Chloroflexi). Wilcoxon rank sum (MWU) tests for the difference in
relative abundance between hospitalized patients with COVID and healthy controls, and between non–COVID-19 ICU patients and healthy controls
were performed. *p < 0.05, **p < 0.01, and ***p < 0.001.
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3.4 Longitudinal changes in microbiota
during hospitalization

Because upper airway microbiota is significantly confounded by

use of antimicrobial use, longitudinal change in microbiota during

hospitalization was assessed after exclusion of samples taken after

antimicrobial therapy (102 samples). Assessment of these samples

showed that upper airway microbiota alpha and beta diversity did

not change overtime during 2 weeks of hospitalization in antibiotic-

naïve hospitalized patients with COVID-19 and healthy individuals

(Figure 3, Figure S5).
3.5 Association of upper airway microbiota
dysbiosis with clinical features and ICU
admission of patients with COVID-19

Differentially abundant bacterial genera associated with

demographic and clinical variants were characterized using LDA

by LEfSe in the surveyed NPSTS samples from patients with

COVID-19 in an exploratory analysis (n = 171) (LDA score > 2,

p < 0.05) (Figure 4, Table S3). Interestingly, 15 and 10 bacterial

genera showed consistent increase or decrease in the relative
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abundance in patients with antimicrobial use, intubation, and/or

ICU admission. Among these, the enrichment of four bacterial

genera (Enterococcus , Limosilactobacillus, Sneathia , and

Pseudomonas) and the depression of eight bacterial genera

(Al l op r evo t e l l a , Prevo t e l l a , Buty r i v i b r i o , Hespe l l i a ,

Lachnoanaerobaculum, Oribacterium, Solobacterium, and

Centipeda) were also significantly associated with the severity of

patients with COVID-19. Because 63% (32 of 51) of patients with

severe/critical COVID-19 in this study were admitted to the ICU,

we further selected early NPSTS samples prior to antimicrobial use

within the first week of hospitalization (n = 116) to identify bacterial

markers that may be used to predict need for ICU admission

(Figure 5). A total 13 discriminative bacterial genera were

observed using LDA, with Enterobacter, Mageeibacillus ,

Fannyhessea, Scardovia, Howardella, and Bulleidia being higher

but with Alloprevotella, Campylobacter, Leptotrichia, Centipeda,

Hespellia, Catonella, and Acinetobacter being lower in patients

who required ICU admission. The differential abundances of

these 13 bacterial genera in the upper airway tract within the first

week of hospitalization predicted the need for ICU admission with a

combined AUC of 0.95 (95% CI of 0.91–0.99). Comparatively,

prediction based on clinical demographics and comorbidity (age,

gender, and Charlson comorbidity index) only achieved a combined
A

B

FIGURE 2

Alpha (Shannon) and beta (weighted GUniFrac) diversity of upper airway microbiota across cohort groups from all samples (A) and inclusion of only
samples taken prior to antimicrobial therapy (B). Panel (A) included samples from hospitalized patients with COVID-19 (n = 171, including 14
asymptomatic, 106 mild/moderate, and 51 severe/critical), non–COVID-19 patients (n = 11), and healthy controls (n = 15). Panel (B) shows difference
in alpha and beta diversity when samples taken after antimicrobial therapy were excluded, which consisted of hospitalized COVID patients (n = 137,
including 14 asymptomatic, 98 mild/moderate, and 25 severe/critical patients), non–COVID-19 ICU patients (n = 5), and healthy controls (n = 15).
Difference in Shannon index was assessed by pairwise differences between groups using Wilcoxon rank sum test. Principal coordinate analysis was
based on weighted GUniFrac inferred from amplicon sequence variants. Difference in weighted GUniFrac among groups was evaluated using
permutational multivariate analysis of variance (PERMANOVA) with 9,999 permutations. Effect size (R2 value) of covariates on upper airway
microbiota structure in patients with COVID-19 in the multivariable model. Antibiotic-controlled association between metadata variables (intubation,
ICU, severity, peak CRP, hospitalized time, antivirus, peak viral load, Charlson comorbidity index, age, and gender) was tested by adding antibiotics
into the multivariable model formula. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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AUC of 0.71 (95% CI of 0.57–0.85). Combination of clinical and

microbiota (AUC of 0.96 (95% CI 0.93–1.00) did not improve on

the predictive performance compared with the use of microbiota

alone (Figure S6, p = 0.486).
3.6 Upper airway microbiota and
plasma cytokine

Plasma was collected from 90 patients with COVID-19 to

measure the levels of 32 cytokines. Median (IQR) time to

cytokine profiling was 4 (2–8) days after hospital admission.

Using the Negative Binomial Generalized Linear Model, changes

in numerous cytokine factors were significantly associated with

clinical factors (Figure 6). For example, increased IL-5, IL-6, IL-10,

and MIG but deceased MIP-1b were observed in patients with

severe/critical COVID-19 or those admitted to ICU, with

satisfactory AUCs for predictive performance (Table S4). Those

patients with higher IL-6 also had a higher chance of intubation and

antibiotics and/or antivirus use. Older patients or those with higher
Frontiers in Cellular and Infection Microbiology 07131
Charlson comorbidity had higher levels of IL-6, IL-10, IP-10, MCP-

1, and MIG, but lower levels of Fractalkine, IFN-c, IL-12 p70, IL-13,
and TGF-a. To understand the potential of upper airway

microbiota dysbiosis on plasma cytokine levels, Spearman

correlations between bacterial genera and cytokines were explored

(Figure S7, Table S5). Next, we focused on the 13 bacterial genera

that were associated with a need for ICU admission and found that

only Acinetobacter, Hespellia, and Campylobacter were associated

with MIG, IL-18, Fractalkine, and IL-1b after removal of samples

taken after antimicrobial therapy (Figure 7).
4 Discussion

In this prospective, longitudinal observational study on upper

airway microbiota in adult hospitalized patients with COVID-19,

antimicrobial use accounted for most of the observed differences in

microbiota during hospitalization and across severity groups. Alpha

diversity in the upper airway was similar across severity of COVID-

19 in the absence of antimicrobial use. In contrast, beta diversity
A

B

FIGURE 3

Alpha (Shannon index) and beta (weighted GUniFrac) diversity analyses revealed no significant difference in the upper respiratory tract microbiota
between samples collected at different time points from (A) healthy individuals and (B) antibiotic-naïve patients with COVID-19.
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was different between asymptomatic and severe/critical COVID-19

even in the absence of antimicrobial use. Upper airway microbiota

in patients with COVID-19 remained unchanged during 2 weeks of

hospitalization if antimicrobials were not used. Peak viral load was

not associated with upper airway microbiota in COVID-19. Early

hospitalization upper airway microbiota may be associated with

severity of COVID-19.

Many studies have implicated that reduced alpha diversity in

upper respiratory microbiome is a hallmark of higher severity of

COVID-19 (Hernandez-Teran et al., 2021; Ma et al., 2021;

Merenstein et al., 2021; Ren et al., 2021; Shilts et al., 2021;
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Ventero et al., 2021; Bradley et al., 2022; Chen et al., 2022; de

Castilhos et al., 2022; Hurst et al., 2022; Merenstein et al., 2022).

However, mechanical ventilation, duration of ICU admission, and

antimicrobial use account for a substantial portion of the variations

seen in upper respiratory tract microbiome in COVID-19 (Llorens-

Rico et al., 2021; Ren et al., 2021; de Castilhos et al., 2022). Our

study corroborates with these findings, as there was no difference

alpha diversity between severe/critical and asymptomatic COVID-

19 when confounding by use of antimicrobial was removed. These

results are consistent with animal and human non–COVID-19

studies that generally demonstrated that antimicrobial use reduces
FIGURE 4

Linear discriminant analysis (LDA) effect size (LEfSe) identified discriminative bacterial genera associated with clinical variants in hospitalized patients
with COVID-19 (n = 171). Names in red and green indicate bacterial genera with increased and decreased abundance, respectively, that were
commonly associated with antibiotics, intubation, and ICU admission. Differences in the relative abundances of two representative bacterial genera
(Prevotella and Pseudomonas) associated with antibiotics, intubation, ICU admission, and severe/critical COVID-19 are shown in the right panel of
the figure. *p < 0.05, **p < 0.01,and ***p < 0.001.
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FIGURE 5

Linear discriminant analysis (LDA) effect size (LEfSe) showed the potential of 13 discriminative bacterial genera taken within the first week of
hospitalization as predictor for ICU admission in antibiotic-naïve patients with COVID-19 (n = 116). Three clinical factors for ICU prediction included
Charlson comorbidity index, age, and gender. AUC were expressed as AUC (95%CI).
FIGURE 6

Association of cytokine factors with clinical variants in hospitalized patients with COVID-19 (n = 90). The z scores by the Fit a Negative Binomial
Generalized Linear Model analysis using the glm.nb in the MASS R package were shown in the heat map. Relative abundance and receiver operating
characteristic (ROC) analysis and area under the ROC curve (AUC) of IL-6 cytokine associated with ICU admission and severe/critical COVID-19 are
shown in the right panel of the figure. *p < 0.05, **p < 0.01, and ***p < 0.001. AUC were expressed as AUC (95%CI).
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bacterial alpha diversity (Huang et al., 2022; Kwon et al., 2022;

Lekang et al., 2022). However, exclusion or statistical adjustment of

samples for antimicrobial use was often not done or reported in

COVID-19–related microbiome studies (Ma et al., 2021;

Merenstein et al., 2021; Rueca et al., 2021; Ventero et al., 2021;

Chen et al., 2022; Gauthier et al., 2022). As antimicrobial use is

more common as COVID-19 severity increases, this may explain

why many studies reported reduced alpha diversity as COVID-19

severity increased (Langford et al., 2021). Together, careful

considerations on study design and data interpretation are

required when assessing the validity of COVID-19–related

microbiota study results.

Unlike alpha diversity that was mostly related to use of

antimicrobials, we found that beta diversity was different across

severity of COVID-19 even after removal of samples taken after

antimicrobials. Overall, beta diversity of asymptomatic COVID-19

and severe/critical COVID-19 were closet and furthest from that of

healthy individuals, respectively. In this study, Enterococcus in the

upper airway was associated with COVID-19 severity and

mechanical ventilation. Interestingly, this parallels the finding of

increased relative abundance of Enterococcus in lungs of murine

sepsis (Dickson et al., 2016b).

Nevertheless, association between specific bacterial genera and

severity of COVID-19 has been inconsistently reported across

different cohort studies (Merenstein et al., 2022; Candel et al.,

2023). In our exploratory analysis, 13 bacterial genera from the

upper airway microbiota were associated with a need for ICU

admission. Although we were unable to perform internal

validation, the lower abundance of upper airway Alloprevotella

and Campylobacter in patients with COVID-19 requiring ICU

admission found in this study was consistent other reports (Shilts

et al., 2021; Smith et al., 2021; Chen et al., 2022; Hurst et al., 2022).

Along the same lines, we found a lower abundance of Acinetobacter

when COVID-19 severity was higher (Feehan et al., 2021; Smith

et al., 2021). However, this has been inconsistently reported as some

have found a higher abundance of Acinetobacter in upper airway
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microbiota in severe COVID-19 (Ma et al., 2021; Ren et al., 2021;

Chen et al., 2022). Last, we showed that Enterobacter abundance

was relatively higher in patients with COVID-19 admitted to ICU.

Although this was also reported by Chen et al., not all studies

supported the positive correlation between Enterobacter abundance

and COVID-19 severity (Feehan et al., 2021; Chen et al., 2022;

Gauthier et al., 2022). The reasons for these disparities are manifold.

First, most of these studies did not exclude samples that were taken

after antimicrobial therapy that may have confounded their

findings. Second, tracheal intubation itself is associated with

changes in upper and lower respiratory microbial diversity and

may introduce bias in data interpretation (Kelly et al., 2016; Alagna

et al., 2023). Third, there are baseline variations in microbiome

composition and diversity among different ethnicity and geographic

locations (Gupta et al., 2017).

Although some longitudinal studies reported changes in upper

airway microbiota over time, many were confounded by medical

interventions such as antimicrobial use and tracheal intubation

(Llorens-Rico et al., 2021; Merenstein et al., 2021; Ren et al., 2021;

Xu et al., 2021). In contrast, we showed that, in the absence of

antimicrobial use, upper airway respiratory microbiome remained

stable over 2 weeks of hospitalization in COVID-19 and healthy

volunteers. Similarly, although some studies suggest viral load is

associated with respiratory microbiome, we found that upper

airway microbiota was unrelated to peak viral load. This maybe

because we used serial samples to define peak viral load, whereas

viral loads in other studies were determined by a single time point

(Miller et al., 2021). It should be noted that severity of COVID-19 is

more related to duration of viral shedding than peak viral load (Lui

et al., 2020; Zheng et al., 2020).

The positive association between plasma cytokines such as IL-6,

IL-10, IP-10, and MIG with COVD-19 severity is consistent with

previous studies (Chi et al., 2020; Hadjadj et al., 2020; Zhao et al.,

2020; Ling et al., 2021; Ochoa-Ramirez et al., 2022). In addition,

specific correlations between upper respiratory tract microbiota and

plasma cytokine levels were identified. Similar to previous reports,
FIGURE 7

Spearman correlation between bacterial genera and plasma cytokines that are both individually associated with critical COVID-19 (n = 90).
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most of the pairwise associations were not directly between

microbiota and cytokines that were individually associated with

COVID-19 severity (Ren et al., 2021). This may have been due to

confounding by antimicrobial therapy. Indeed, when effect of

antimicrobial therapy was removed, the correlations were

different between upper respiratory tract microbiota and plasma

cytokine. Nevertheless, we found that only three of the 13 bacterial

genera that may predict ICU admission were associated with

plasma cytokines that were themselves associated with critical

COVID-19. Furthermore, neither were the associations

particularly strong. For example, we found that Campylobacter in

the upper respiratory tract was inversely related to MIG and

COVID-19 severity, but the relationship was relatively weak.

Overall, the likely explanation is that plasma cytokine levels may

not directly reflect the local inflammation profile in upper

respiratory tract dysbiosis in COVID-19.

The main strength of this study is the comprehensive matching

between all COVID-19 severity phenotypes, timing and type of

medical intervention, and serial microbiota sampling. This enabled

a robust analysis on relationship between microbiota and COVID-

19 severity after exclusion of samples that may be affected by

medical interventions. However, our study has several limitations.

First, this was a single-center study on patients of Southeast Asian

descent, which may limit the generalizability of our results. Second,

we did not analyze viral or fungal microbiota. Third, we did not

analyze lower respiratory tract samples that may be more closely

related to severity of COVID-19. Fourth, like many COVID-19

microbiome studies, viral culture medium was used during sample

collection rather than fresh sampling, which may have affected the

results (Merenstein et al., 2022). Fifth, we did not analyze

microbiota according to SARS-CoV-2 strain as variant typing was

not performed for all cases. However, the omicron variant first

circulated in Hong Kong only during first half-year of 2022. If

variant type was defined by study recruitment date, then patients

with omicron would represent less than 6% of the study cohort.

Although the omicron variant is associated with less severe

phenotype, our results are unlikely to be significantly confounded

as most of the COVID-19 cases were of alpha and delta variants

(Esper et al., 2022). Furthermore, all included cases were

unvaccinated against SARS-CoV-2. Sixth, although this resulted

in one of the largest studies on respiratory microbiota in COVID-

19, the sample size was still relatively modest and may have limited

the power to detect subtle differences in microbiota. Moreover, the

exploratory findings on association between upper respiratory

bacterial genera and severity of COVID-19 require future

validation. Last, an absolute abundance was not assessed, and a

subsequent compositional approach to assess respiratory

microbiota in COVID-19 may be helpful (Gloor et al., 2017).
5 Conclusion

Upper respiratory microbiota in adult patients hospitalized for

COVID-19 remains stable during the first two weeks of
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hospitalization in the absence of antimicrobial use. Beta diversity is

different across spectrum of COVID-19 severity, whereas alpha

diversity is similar. Early hospitalization upper airway microbiota

may be associated with severity of COVID-19. Peak viral load was

not associated with upper airway microbiota in COVID-19.
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SUPPLEMENTARY FIGURE 1

Study recruitment flow chart showing inclusion and exclusion of
study participants.

SUPPLEMENTARY FIGURE 2

Phylum abundance per subjective (n = 171) including hospitalized COVID-19
patients (14 asymptomatic, 106 mild/moderate, 51 severe/critical), 11

mechanically ventilated adult ICU patients without COVID-19 (non-COVID-

19 ICU), and 15 adult healthy volunteers (Healthy).

SUPPLEMENTARY FIGURE 3

Upper airway microbiota dysbiosis associated with hospitalized COVID-19

patients (n = 171, including 14 asymptomatic, 106 mild/moderate and 51
severe/critical), non-COVID-19 patients (n = 11) and healthy controls (n = 15).
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(A) Comparison of the upper airway microbiota alpha diversity summarized at
the amplicon sequence variant (ASV) level. Pairwise differences between groups

were performed usingWilcoxon rank-sum test. (B) Principal coordinate analysis

based on unweighted and weighted GUniFrac and Bray-Curtis distancemetrics
inferred from ASVs. Beta diversity among groups was evaluated using

permutational multivariate analysis of variance (PERMANOVA) with 9,999
permutations. (C) Effect size (R2 value) of variables on the upper airway

microbiota in the hospitalized COVID-19 patients. Antibiotic-controlled
association between metadata variables (intubation, ICU, severity, peak CRP,

hospitalized time, antivirus, peak viral load, Charlson’s comorbidity index, age

and gender) were tested by adding antibiotics into themodel formula. *p < 0.05,
**p < 0.01, ***p < 0.001 and ****p < 0.0001.

SUPPLEMENTARY FIGURE 4

Upper airway microbiota dysbiosis associated with antibiotic-naïve
hospitalized COVID-19 patients (n = 137, including 14 asymptomatic, 98

mild/moderate, and 25 severe/critical patients), non-COVID-19 ICU patients

(n = 5) and healthy controls (n = 15) at the time when samples were collected.
(A) Comparison of the upper airway microbiota alpha diversity summarized at

the amplicon sequence variant (ASV) level. Pairwise differences between
groups were performed using Wilcoxon rank-sum test. (B) Principal

coordinate analysis based on unweighted and weighted GUniFrac and
Bray-Curtis distance metrics inferred from ASVs. Beta diversity among

groups was evaluated using permutational multivariate analysis of variance

(PERMANOVA) with 9,999 permutations. (C) Effect size (R2 value) of variables
on the upper airwaymicrobiota in the antibiotic-naïve hospitalized COVID-19

patients. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

SUPPLEMENTARY FIGURE 5

Alpha and beta diversity analyses revealed no significant difference in the

upper respiratory tract microbiota between samples collected at different

time points from (A) healthy individuals and (B) antibiotic-naïve hospitalized
COVID-19 patients.

SUPPLEMENTARY FIGURE 6

Predictive performance of 13 discriminative bacterial genera in upper
respiratory tract microbiota and clinical factors (age, gender, Charlson’s

comorbidity index) on need for ICU admission in hospitalized patients with

COVID-19. Samples taken after antimicrobial therapy were excluded in this
analysis. AUC were expressed as AUC (95%CI).

SUPPLEMENTARY FIGURE 7

Spearman correlation between bacterial genera and plasma cytokine in adult

hospitalized COVID-19 patients (n = 90).
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Application of mNGS in the study
of pulmonary microbiome in
pneumoconiosis complicated
with pulmonary infection
patients and exploration of
potential biomarkers

Xingya Yuan1, Linshen Xie1, Zhenzhen Shi2 and Min Zhou1*

1Department of Respiratory Medicine, West China Fourth Hospital, Sichuan University, Chengdu,
Sichuan, China, 2Dinfectome Inc., Nanjing, Jiangsu, China
Background: Pneumoconiosis patients have a high prevalence of pulmonary

infections, which can complicate diagnosis and treatment. And there is no

comprehensive study of the microbiome of patients with pneumoconiosis. The

application of metagenomic next-generation sequencing (mNGS) fills the gap to

some extent by analyzing the lung microbiota of pneumoconiosis population while

achieving accurate diagnosis.

Methods: We retrospectively analyzed 44 patients with suspected pneumoconiosis

complicated with pulmonary infection between Jan 2020 and Nov 2022.

Bronchoalveolar lavage fluid (BALF) specimens from 44 patients were collected

and tested using the mNGS technology.

Results: Among the lung microbiome of pneumoconiosis patients with

complicated pulmonary infection (P group), the most frequently detected

bacteria and fungi at the genus level were Streptococcus and Aspergillus, at

the species level were Streptococcus pneumoniae and Aspergillus flavus,

respectively, and the most frequently detected DNA virus was Human

gammaherpesvirus 4. There was no significant difference in a diversity

between the P group and the non-pneumoconiosis patients complicated with

pulmonary infection group (Non-P group) in pulmonary flora, while P< 0.01 for b
diversity analysis, and the differential species between the two groups were

Mycobacterium colombiense and Fusobacterium nucleatum. In addition, we

monitored a high distribution of Malassezia and Pneumocystis in the P group,

while herpes virus was detected in the majority of samples.

Conclusions: Overall, we not only revealed a comprehensive lung microbiome

profile of pneumoconiosis patients, but also compared the differences between their

microbiome and that of non-pneumoconiosis complicated with pulmonary

infection patients. This provides a good basis for a better understanding of the
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relationship between pneumoconiosis and microorganisms, and for the search of

potential biomarkers.
KEYWORDS

pneumoconiosis, microbiome, metagenomic next-generation sequencing, pulmonary
infection, biomarker
1 Introduction

Pneumoconiosis is a group of lung diseases caused by the

inhalation of inorganic mineral particles, usually because of certain

occupations. Its main pathological features include chronic lung

inflammation and progressive pulmonary fibrosis (Perret et al.,

2017), which can lead to respiratory and/or cardiac failure and

eventually death. Pneumoconiosis is prevalent worldwide, with

more than 60,000 new cases reported worldwide in 2017 (Shi et al.,

2020). With the development and optimization of the industry in

recent years, the pneumoconiosis population has decreased from

23.33% before 1970 to 2.29% in 2020 (Liu et al., 2022). However, the

mortality rate of pneumoconiosis is relatively high (GBD 2017

Disease and Injury Incidence and Prevalence Collaborators, 2018;

GBD 2013 Mortality and Causes of Death Collaborators, 2015),

which is a serious threat to global public health.

Patients with pneumoconiosis are susceptible to microbial

invasion such as Mycobacterium tuberculosis (Jun et al., 2013),

nontuberculous mycobacteria (NTM) (McGrath and Bardsley, 2009)

and Aspergillus(Vangara et al., 2022), leading to pulmonary

infection. And many patients with advanced pneumoconiosis die

of respiratory failure due to pulmonary infections (Barnes et al.,

2019; Qi et al., 2021). Traditional etiologic methods such as

microscopy, smear, and culture have low sensitivity, subjectivity,

and contamination, which can lead to missed or false detection and

affect patient outcomes (Dahyot et al., 2017). It is very important for

patients with pulmonary infections to identify the etiology and use

accurate drugs, especially for patients with lung damage such as

pneumoconiosis. Many studies have revealed that the abundance

and composition of microbial communities vary in different body

habitats, with strong links to health status and human disease

(Dickson et al., 2020; Wu et al., 2020). However, current analysis

of bacterial community diversity in pneumoconiosis mostly uses

sputum culture and 16S rRNA, which are not sufficient for

microbiome analysis, and in most cases, microorganisms cannot

be identified to species level (Mingjing Chen et al., 2017; Zhimin

Ma, 2020; Druzhinin et al., 2022).

Metagenomic next-generation sequencing (mNGS) has the

advantages of broad coverage, unbiased and unpredictable, and

can simultaneously identify bacteria, fungi and viruses in a single

sample (Chiu and Miller, 2019; Chen et al., 2021; D’Humières et al.,

2021). It has been widely used in clinical practice in recent years,

playing an important role in assisting clinical diagnosis, guiding

rational drug use, reducing patient burden, and improving patient

clinical outcome (Qian et al., 2020). In addition, mNGS does not
02139
require culture and pathogen detection results are typically available

within 24-48 hours and are less susceptible to antibiotics than

culture (Miao et al., 2018). Early diagnosis of pneumoconiosis

complicated with pulmonary infection patients is very important

due to the poor prognosis (Barnes et al., 2019; Qi et al., 2021), while

the use of mNGS technique has not been reported for these patients.

This study retrospectively examines pulmonary microbiome

(bacterial, fungal, viral) characteristics in pneumoconiosis patients

with pulmonary infection (P group), compares the pulmonary

microbiome to non-pneumoconiosis patients with pulmonary

infection (Non-P group), analyzes differential microbiome, and

explores potential diagnostic biomarkers of pneumoconiosis.
2 Methods

2.1 Study population

Patients with suspected pneumoconiosis complicated with

pulmonary infection were recruited, the diagnostic criteria for

pulmonary infection was shown in Figure 1 (Cao et al., 2018; Shi

et al. , 2019), and pneumoconiosis was diagnosed with

pneumoconiosis by the Chinese diagnostic standard GBZ 70-2015

and the International Labor Organization’s classification standard

for pneumoconiosis (Honma et al., 2004), Recruitment was carried

out at a single site in West China Fourth Hospital Sichuan

University, Chengdu between Jan 2020-Nov 2022, Patients who

were under 18 years of age, unable to obtain bronchoalveolar lavage

fluid (BALF), and had incomplete information were excluded from

our study. Besides, some of the collected samples have been tested

by G test, GM test or culture before mNGS. Data were collected on

the demographics, underlying diseases and clinical features of the

patients enrolled and were listed in Table 1.
2.2 Specimen collection

BALF was obtained from 44 participants. The purpose of

collecting BALF is to make an etiologic diagnosis of the patient’s

infection. Samples were collected from patients according to

standard procedures (Levy et al., 2018). After local anesthesia of

the patient’s throat, the fiberoptic bronchoscope was introduced.

The lung was lavaged with room temperature sterile saline several

times through the fiberoptic bronchoscope, 20-60 mL each time. 10

mL of the sample was removed from the recovered solution, place 2
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mL of it into a sampling tube with RNA protection solution (Sigma-

Aldrich) and the rest into a sterile nucleic acid-free DNA sampling

tube and store immediately at -80°C.
2.3 Sample DNA and RNA extraction

BALF DNA was extracted using methods previously described

(Mac Aogáin et al., 2021; Ju et al., 2022), take 50 mL of proteinase k

and 1 mL of BALF sample, digest at 60°C for 20 min, and then leave

at 4°C for 5 min to lower the reaction temperature. Transfer the

sample to a sterile test tube and centrifuge briefly followed by DNA

extraction using the TIANamp Magnetic DNA Kit (DP710-t2,

Tiangen, China) according to the manufacturer’s protocol.

Sputum was liquefied by 0.1% DTT (dithiothreitol) for 20 min at

56°C before extraction. The QIAamp Viral RNA Mini Kit (Qiagen)

was used to extract RNA from the BALF (Langelier et al., 2018).

DNA libraries were prepared using the KAPA Hyper Prep Kit

(KAPA Biosystems) according to the manufacturer’s protocol.

Libraries were constructed after Qubit quantification. For RNA

extraction samples, rRNA was removed from total RNA and

libraries were constructed after purification as described for DNA

library construction. Agilent 2100 was used for quality control and

then DNA libraries were sequenced on the Dif seq platform for 50

bp paired end sequencing (Dinfectome Medical Technology Inc,

Nanjing, China).
2.4 Bioinformatics analysis

For pathogen identification, we used an in-house developed

bioinformatics pipeline (Zeng et al., 2022). Briefly, low quality

reads, adapter contamination, duplicated and shot (length <36

bp) reads were removed to generate high quality sequencing data.

Sequences from the human host were identified by mapping to the
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human reference genome (hs37d5) using the bowtie2 software

(Langmead and Salzberg, 2012). Reads that could not be mapped

to the human genome were retained. They were aligned to the

microorganism genome database for pathogen identification. Our

microorganism genome database contained the genome sequences

of bacteria, fungi, viruses, and parasites (can be downloaded from

https://www.ncbi.nlm.nih.gov/) (Wood et al., 2019).
2.5 Interpretation and reporting

The mNGS pathogen detection pipeline was described in

previous studies (Miao et al., 2018; Miller et al., 2019; Qian et al.,

2020; Zeng et al., 2022; Chen et al., 2023; Xu et al., 2023), and the

criteria for detection positivity were as follows: 1) at least one

species-specific read for Mycobacterium tuberculosis, Nocardia and

Legionella pneumophila detection; 2) for other bacteria, fungi, virus,

and parasites, at least three unique reads were needed; 3) pathogens

were excluded if the ratio of microorganism reads per million of a

given sample versus NTC was < 10.
2.6 Statistics analysis

The statistical analysis was carried out using the R software

(v4.2.1) (R Core Team, 2021). Alpha diversity was estimated by

Shannon index and Simpson index based on the taxonomic profile

of each sample. Beta diversity was assessed by Bray-Curtis measure.

PERMANOVA was performed using the R package “vegan” to

analyze the Bray-Curtis distance in different P and Non-P groups.

In all cases, two-tailed analysis was performed and considered.

Differences were regarded as significant at P < 0.05. Differential

relative abundance of taxonomic groups at the genus/species level

between groups was tested using the Kruskal-Wallis rank sum test

(R package “kruskal.test”) (Kruskal and Wallis, 1952). Statistical
FIGURE 1

Inclusion and exclusion flowchart of study.
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analyses and plots were processed by using SPSS statistical software

(IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY,

United States) and GraphPad Prism software (GraphPad Prism

version 8.0.2 for Windows, GraphPad Software, San Diego, CA,

United States).
3 Results

3.1 General information of
study participants

120 patients suspected of pulmonary infection and

pneumoconiosis were screened, 44 eligible patients were included

in the final analysis. Including 25 patients with pneumoconiosis and

19 patients with non-pneumoconiosis, 25 patients with

pneumoconiosis and 19 patients with non-pneumoconiosis
Frontiers in Cellular and Infection Microbiology 04141
underwent bronchoscopy to obtain BALF. In terms of patient

composition, all participants in the study were male and no

female patients were enrolled in pneumoconiosis due to

occupational characteristics. The main types of dusts causing

pneumoconiosis according to clinical data were production dust

(indoor work), mineral dust (coal mine, drilling related work), and

the average number of years patients were exposed to such work

was 10.76 years.
3.2 Characteristics of the pulmonary
microbiome of pneumoconiosis patients

We plotted bar charts based on the frequency of species

detection in pneumoconiosis patients, with the top 10 genera and

top 20 species detected. In BALF samples, 521 bacterial species, 78

fungi species, and 17 viral species were detected in the
TABLE 1 Patient and sample characteristics including biochemical parameters, underlying disease and clinical features.

Pneumoconiosis (P) (n=25) Non-Pneumoconiosis (Non-P) (n=19)

Age(years) (mean ± SD) 51.68 ± 11.51 62.2 ± 14.4

Gender

Male 25 14

Female 0 5

Inflammatory index

WBC(×109/L) (mean ± SD) 8.32 ± 2.41 8.85 ± 5.35

PCT(mg/L) (mean ± SD) 0.21 ± 0.09 0.19 ± 0.07

CRP (mg/L) (mean ± SD) 57.73 ± 78.00 71.86 ± 70.46

Neutrophils(×109/L) (mean ± SD) 6.51 ± 2.49 6.94 ± 5.34

Lymphatic cells(×109/L) (mean ± SD) 1.05 ± 0.59 1.18 ± 0.44

Working years (years) (mean ± SD) 10.76 ± 9.78 /

Underlying disease

Tuberculosis/history of tuberculosis (n) 6 1

Hypertension (n) 5 2

Hepatitis B (n) 3 1

chronic cor pulmonale 3 0

type 2 diabetes (n) 2 2

chronic obstructive pulmonary disease (n) 2 1

Cancer (n) 0 2

Clinical characterization

Fever (n) 6 7

Cough (n) 24 18

Expectoration (n) 23 14

Dyspnea (n) 5 1

Hemoptysis (n) 8 4
SD, standard deviation; Working years, Patient’s years of pneumoconiosis-related work; WBC, White Blood Count; PCT, Procalcitonin; CRP, C-reactive protein; Neutrophils, Neutrophil count,
Lymphatic cells, Lymphocyte count.
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pneumoconiosis patient group. At the genus level, the top three

bacteria detected were Streptococcus (96%), Acinetobacter (80%),

and Prevotella (80%). Aspergillus (76.47%), Candida (35.29%),

Pneumocystis (35.29%) for fungi. At the species level, the top 3

bacterial species detected were Streptococcus pneumoniae (72%,

relative abundance 0.040%), Stenotrophomonas maltophilia (72%,

relative abundance 0.036%) and Rothia mucilaginosa (60%, relative

abundance 0.047%), based on frequency of detection and relative

abundance of species detected. In terms of fungal detections, the top

3 were Aspergillus flavus (52. 94%), Pneumocystis jirovecii (35.29%),

and Schizophyllum commune (35.29%). In addition, we revealed

that herpes viruses were detected more frequently in

pneumoconiosis patients, with Human gamma herpesvirus type 4

detected in 61.54% of all patients, and Human betaherpesvirus type

7 and Human beta herpesvirus type 5 detection rates of 53.85% and

46.15%, respectively. Meanwhile, RNA viruses were found in two

patients, Human coronavirus NL63, Human respiratory virus 3 and

Rhinovirus A, respectively. Specific detections can be found in

Figure 2. Also, we counted the results of conventional

microbiological testing of BALF samples. 22 BALF samples were

cultured, G test and GM test simultaneously, and 15 samples were
Frontiers in Cellular and Infection Microbiology 05142
cultured only, however, all of these results were negative based on

clinical judgment.
3.3 Microbiota analysis between P and
Non-P groups

Analysis of microbiome differences in pneumoconiosis patients

and non-pneumoconiosis patients will help understand the

relationship between microbes and pneumoconiosis and identify

biomarkers relevant to pneumoconiosis diagnosis.

Bar graphs were plotted based on the relative abundance of

detected species, as shown in Figure 3, and the species with the

highest relative abundance at the genus level in the P and Non-P

groups were detected as Streptococcus. Among the top 10 genera in

terms of relative abundance, the relative abundance of

Streptococcus, Prevotella, Mycobacterium and Rothia in the P

group was higher than that Non-P group, while all other genera

had higher relative abundance in the Non-P group, the relative

abundance of Corynebacterium was essentially equal between the

two groups.
B C

D E F

A

FIGURE 2

Lung microbiome of patients with pneumoconiosis complicated with pulmonary infection (BALF). (A) Distribution of bacteria at the genus level.
(B) Distribution of fungi at the genus level. (C) Distribution pie chart of detected bacteria, fungi, and viruses at the species level. (D) Distribution of
bacteria at the species level. (E) Distribution of fungi at the species level. (F) Distribution of Viruses at the species level.
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At the species level, among the top 10 species by relative

abundance, Prevotella melaninogenica, Rothia mucilaginosa,

Streptococcus oralis, Streptococcus mitis were detected in higher

relative abundance in the P group than Non-P group, while the

remaining species had higher relative abundance in the Non-P group.

Among them, Pseudomonas aeruginosa was usually associated with

poor patient prognosis (Wang et al., 2019), whileAbiotrophia defectiva

was normal in the oral, genitourinary, and intestinal tracts, may cause

sometimes serious infections in humans (Li J et al., 2022).

To analyze the differences in species diversity between the

groups, a-diversity and b-diversity were used. The findings

proved that there was no significant difference in ACE, Chao1,

Shannon or Simpson between the two groups (P > 0.05, only the

Shannon Diversity Index results were shown), indicating similar

species variety. The difference in species between groups was

analyzed with b diversity, and P < 0.01, suggesting that there was

a remarkable difference in species between groups and the grouping

was meaningful, as shown in Figure 4.
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We tested species differences between P and Non-P groups at

phylum, genus and species level. No conspicuous differences were

found in the phylum and genus between the groups, However, the

distribution of species differed dramatically. Mycobacterium

colombiense (M. colombiense) and Fusobacterium nucleatum (F.

nucleatum) were evidently different in their presence (Figure 5A),

with the former being detected mainly in pneumoconiosis patients

and the latter mainly in non-pneumoconiosis patients. The study

also used LEfSe analysis to explore species that differed strikingly

between groups (Figure 5B), with only three species differing

between the two groups, including one at the genus level and two

at the species level (i.e. the two different species mentioned above),

the genus Capnocytophaga was enriched in the P group.

Sperman correlation analysis was performed to explore the

correlation between clinical parameters such as patient’s age,

pneumoconiosis years, and inflammatory indicators at admission

with significantly different species and the top 18 species in terms of

relative abundance (for a total of 20 species, Figure 6). Prevotella,
B

A

FIGURE 3

Comparison of the relative abundance of microorganisms between P and Non-P groups. (A) Distribution of bacteria at the genus level in the P and
Non-P groups. (B) Distribution of bacteria at the species level in the P and Non-P groups.
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Actinomyces and Rothia were common colonizing organisms in the

mouth, Prevotella melaninogenica, Prevotella pallens, Actinomyces

odontolyticus, Rothia mucilaginosa and other oral bacteria were

distinctly and negatively correlated with patients ’ age,

pneumoconiosis years and lymphocyte count, which may mean

that the abundance of these microorganisms decreases as

pneumoconiosis progresses. M. colombiense was positively

correlated with years of work related to pneumoconiosis,

suggesting that the likelihood of M. colombiense infection

increased with the progression of pneumoconiosis, while we

observed that the relative abundance of Pseudomonas aeruginosa

was positively correlated with the length of hospitalization of

pneumoconiosis patients, which seemed somewhat unusual and

might be related to the small number of patients enrolled.
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3.4 Comparison of fungi and virus
detection in P and Non-P

The mNGS technology can identify and detect bacteria, fungi

and viruses in the same sample, which is more conducive to a fully

revealed microbiome signature. The top 20 genera/species were

plotted in terms of relative abundance of species detected in the P

group, as shown in the Figure 7. At the genus level, the top four

genera detected were Aspergillus, Candida, Malassezia and

Pneumocystis. Among them, more Malassezia and Pneumocystis

were distributed in the P group, while Aspergillus and Candida were

more dominant in the Non-P group. At the species level, among

the top five detected species, Aspergillus sydowii, Aspergillus

versicolor, Candida albicans were higher in the Non-P group than
B

A

FIGURE 5

Species analysis of differences between P and Non-P groups. (A) Analysis of significant differences species. (B) LEfSe analysis.
BA

FIGURE 4

a and b diversity analysis between P and Non-P groups. (A) Shannon Index analysis. (B) Bray Curtis dissimilarity analysis.
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in the P group, while Aureobasidium melanogenum, Clavispora

lusitaniae were higher in the P group. The viruses detected were

displayed in Figure 7C below, with more viruses detected in the P

group, while Human gammaherpesvirus 4, Human betaherpesvirus

5, Influenza A virus were mainly detected in the Non-P group.

Human gammaherpesvirus 4, Human betaherpesvirus 5, Human

betaherpesvirus 7 and Human betaherpesvirus 6A were mainly

detected in the P group. The Human gammaherpesvirus or

Human betaherpesvirus mentioned above belong to the same

family, Herpesviridae.
4 Discussion

In this study, mNGS technology was used to comprehensively

reveal the pulmonary microbiome of pneumoconiosis patients,

including the characteristics of bacteria, fungi and viruses,

through BALF samples, and compare the differences in the lung

microbiome between the P and Non-P groups so as to compare the

microbial differences between the two groups for the exploration of

potential biomarkers. To our knowledge, this current study is the

first to investigate the lung microbiome of pneumoconiosis patients

using a comprehensive and systematic mNGS technique and is also

the first study to reveal differences in the lung microbiome of

patients with pneumoconiosis versus non-pneumoconiosis.

Due to the chronic progressive disease of pneumoconiosis and

the usual damage to the respiratory mucosa in pneumoconiosis

patients, pneumoconiosis patients have a high probability of the

lower respiratory tract (Xin and Zhang, 2017). Our study is the first

to use mNGS to reveal the lung flora of pneumoconiosis

complicated with pulmonary infection patients. In a previous
Frontiers in Cellular and Infection Microbiology 08145
study, Druzhinin et al. employed 16S to analyze the microbial

composi t ion of sputum samples f rom coal workers ’

pneumoconiosis (CWP) and observed a significant increase in the

abundance of Streptococcus compared to the healthy group

(Druzhinin et al., 2022). In addition, Li et al. analyzed the

intestinal flora of pneumoconiosis patients and demonstrated a

remarkable increase of Prevotella abundance in the pneumoconiosis

group compared to the control group (Li Y et al., 2022). Similarly,

we monitored higher abundance of Streptococcus and Prevotella in

BALF samples from the P group compared to the Non-P group,

however, the differences between both groups were non-significant,

which we analyzed may be related to differences in sample type, as

well as the fact that sputum specimens are susceptible to oral

colonization flora compared to BALF samples.

Infections caused by fungi are gradually increasing in the clinic

due to the irrational use of antibiotics and the increased use of

hormonal drugs. Aspergillus is one of the main pathogens causing

invasive fungal diseases, as well as chronic pulmonary aspergillosis,

may worsen symptoms in advanced chronic obstructive pulmonary

disease (COPD) (Hammond et al., 2020), and is associated with

high mortality (Vandewoude et al., 2004). Aspergillus fumigatus

is the most common agent of invasive aspergillosis and has

been widely studied and reviewed (Dewi et al., 2021; Deng et al.,

2023). However, Aspergillus flavus is the most frequently detected

fungi in our studies of the pulmonary microbiome of

pneumoconiosis patients, it can produce the most carcinogenic

mycotoxin aflatoxins and cause aspergillosis in immune-

compromised patients. Meanwhile, in vivo experimental studies

have shown that the fungi is more toxic than Aspergillus fumigatus

and other Aspergillus species in terms of time to death and initial

inoculum in normal and immunocompromised experimental mice
FIGURE 6

Clinical and microbial correlation analysis, Work years, Patient’s years of pneumoconiosis-related work; P-years, Pneumoconiosis years; WBC, White
Blood Count; PCT, Procalcitonin; CRP, C-reactive protein; NEUT, Neutrophil count; LYC, Lymphocyte count. The symbol * represent significance p
< 0.05.
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(Rudramurthy et al., 2019). The G test is widely used for invasive

fungal infections (Lu et al., 2011; Li et al., 2015), while the GM test

can further identify invasive aspergillosis for early diagnosis (Guo

et al., 2010). In our study, some of the BALF samples were subjected

to both G test and GM test, however, their negative results indicated

the limitations of the traditional testing method to some extent,

while the culture of BALF samples seemed to be unsatisfactory. Due

to the specificity of the pneumoconiosis patient population, most of

the patients have been on long-term antibiotic and antifungal

medication prior to the relevant tests, which we speculate may be

one of the reasons for the unsatisfactory results of the traditional
Frontiers in Cellular and Infection Microbiology 09146
tests, while some studies have reported that the detection rate of

mNGS is relatively less affected by the use of antibiotics compared

to the traditional testing modalities (Miao et al., 2018; Diao et al.,

2021). Beyond this, a combination of guidelines and consensus,

mNGS will be conducted when conventional tests fail to clarify the

pathogen, which may be due to the high cost limitations of

sequencing (Chinese Thoracic Society, 2023). We expect the

reduced cost of mNGS technology in the future to make this tool

more accessible, especially for low resource settings where the

burden of infectious diseases is high and the availability of many

pathogen-specific assays is low (Ramachandran et al., 2022).
B

C

A

FIGURE 7

Analysis of viruses and fungi in P and Non-P groups. (A) Distribution of fungi at the genus level in the P and Non-P groups. (B) Distribution of fungi at
the species level in the P and Non-P groups. (C). Distribution of viruses at the genus level in the P and Non-P groups.
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The high detection rate of Mycobacterium in pneumoconiosis

patients has been confirmed in large number of studies, including

Mycobacterium tuberculosis and NTM (Kim et al., 2009). M.

colombiense is mainly found in patients with pneumoconiosis and

is an emerging species in the complex group of Mycobacterium

avium, characterized by acid resistance, immobility, rod-shaped

structure, and slow growth. It was first isolated and described by

Murcia in 2006, and can be isolated in blood, sputum, and lymph

nodes (Murcia et al., 2006; Tang et al., 2023). The bacterium is

prone to cause severe pulmonary infection in immunodeficient or

immunosuppressed patient (Yu and Jiang, 2021), disseminated

diseases (Pena et al., 2019), ganglionar mycobacteriosis related

diseases (Larry et al., 2019), and disseminated diseases associated

with immunocompetent patients have also been reported (Esparcia

et al., 2008; Tang et al., 2023). Cases of the bacterium have been

reported in Europe, America, and Asia (Vuorenmaa et al., 2009;

Poulin et al., 2013; Gao et al., 2014). However, there is a lack of

attention to this bacterium, and it is often ignored in clinical

diagnosis (Van Ingen et al., 2018). Our study identified for the

first time that M. colombiense was substantially enriched in BALF

samples of P group, which may be related to lung damage of these

patients. The detection of this bacterium requires special attention

as it could be a potential biomarker to distinguish pneumoconiosis

from non-pneumoconiosis. However, this result has not been

reported in previous studies of flora associated with

pneumoconiosis (Druzhinin et al., 2022; Li Y. et al., 2022), which

may be due to differences in sample types. Although our study

inaugurally evaluates the lung microbiota of pneumoconiosis

complicated with pulmonary infection patients and reveals a

notable enrichment of M. colombiense in the P group, further

validation with larger sample sizes still is needed at a later stage

to characterize the lung microbiota of pneumoconiosis complicated

with pulmonary infection patients.

More and more studies have found the relationship between

viruses and human diseases. Viruses may cause serious respiratory

diseases, tumors, and neuropsychiatric related diseases in humans

(Gaglia and Munger, 2018; Bjornevik et al., 2022; Domingo and

Rovira, 2020), where respiratory tract viral infection is one of the

most common diseases in the human worldwide (Zhang et al.,

2020). We found more virus species in pneumoconiosis patients in

this study, suggesting that patients like this may be more susceptible

to viral attack, and the viruses detected were mainly Human

gammaherpesvirus 4 and Human gammaherpesvirus-like viruses.

Like other herpesviruses, the above viruses are double-stranded

linear DNA viruses that exhibit a biphasic lifecycle, which are

carried for life after infection, and overproduce when immunity is

low or compromised, leading to human infection. Studies have

shown that herpesviridae reactivation is associated with worse

clinical outcomes, possibly as a direct cause or as a manifestation

of the outcome of exacerbation of diseases (Huang and He, 2020).

We only detailed the lung viruses in pneumoconiosis patients, and

the relationship between viruses and the development, diagnosis

and treatment of pneumoconiosis patients remains to be explored

in more studies.

Overall, our study analyzed the differences in pulmonary

microorganisms between pneumoconiosis with pulmonary
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infection and non-pneumoconiosis with pulmonary infection

patients and screened for differential flora between the two

groups, such as M. colombiense, F. nucleatum and the genus

Capnocytophaga. These species could be used as potential

biomarkers for the diagnosis of patients with pneumoconiosis

with pulmonary infection. In addition, M. colombiense was also

confirmed to be positively correlated with the number of years of

work related to pneumoconiosis, tentatively suggesting a correlation

between pneumoconiosis and microorganisms. This study

contributes to the understanding of the relationship between

microorganisms and pneumoconiosis and provides potential

biomarkers for the diagnosis of pneumoconiosis with pulmonary

infection, as well as basic data for the investigation of the

pathogenesis of the disease.

This study still has some shortcomings. First, this is a single-

center study and the patients enrolled only represent the lung

microbiome of pneumoconiosis patients around that center. In

addition, the number of patients in this cross-sectional study is

relatively small due to the reduced number of pneumoconiosis

patients and the fact that the patients are scattered in different

hospitals, so more centers are needed to participate and enroll more

patients to study the lung microbiome of pneumoconiosis in depth.
5 Conclusion

In this study, mNGS technology was used to fully expose the

microbiome characteristics of the lungs of patients who had

pneumoconiosis. Among the bacterial microbiota in the lungs of

pneumoconiosis patients, Streptococcus were mainly detected, with

Streptococcus pneumoniae as the main organism. Fungi were mainly

detected in Aspergillus with Aspergillus flavus as the main organism,

and the most frequently detected virus was Human

gammaherpesvirus 4. The P and Non-P groups had different

species at the species level, namely M. colombiense and F.

nucleatum, with the former mainly detected in pneumoconiosis

patients and the latter mainly in non-pneumoconiosis patients. As a

result, we uncovered microbiome characteristics and differences

between pneumoconiosis and non-pneumoconiosis with

pulmonary infection patients, which provides a good basis for

better understanding the relationship between pneumoconiosis

and microorganisms, as well as discovering potential biomarkers.
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Background: Bovine respiratory disease (BRD) is the most devastating disease

affecting beef and dairy cattle producers in North America. An emerging area of

interest is the respiratory microbiome’s relationship with BRD. However, results

regarding the effect of BRD on respiratory microbiome diversity are conflicting.

Results: To examine the effect of BRD on the alpha diversity of the respiratory

microbiome, a meta-analysis analyzing the relationship between the standardized

mean difference (SMD) of three alpha diversity metrics (Shannon’s Diversity Index

(Shannon), Chao1, and Observed features (OTUs, ASVs, species, and reads) and BRD

was conducted. Our multi-level model found no difference in Chao1 and Observed

features SMDs between calves with BRD and controls. The Shannon SMD was

significantly greater in controls compared to that in calves with BRD. Furthermore,

we re-analyzed 16S amplicon sequencing data from four previously published

datasets to investigate BRD’s effect on individual taxa abundances. Additionally,

based on Bray Curtis and Jaccard distances, health status, sampling location, and

dataset were all significant sources of variation. Using a consensus approach based

on RandomForest, DESeq2, and ANCOM-BC2, we identified three differentially

abundant amplicon sequence variants (ASVs) within the nasal cavity,

ASV5_Mycoplasma, ASV19_Corynebacterium, and ASV37_Ruminococcaceae.

However, no ASVs were differentially abundant in the other sampling locations.

Moreover, based on SECOM analysis, ASV37_Ruminococcaceae had a negative

relationship with ASV1_Mycoplasma_hyorhinis, ASV5_Mycoplasma, and

ASV4_Mannheimia. ASV19_Corynebacterium had negative relationships with

ASV1_Mycoplasma_hyorhinis, ASV4_Mannheimia, ASV54_Mycoplasma,

ASV7_Mycoplasma, and ASV8_Pasteurella.

Conclusions: Our results confirm a relationship between bovine respiratory

disease and respiratory microbiome diversity and composition, which provide

additional insight into microbial community dynamics during BRD development.

Furthermore, as sampling location and sample processing (dataset) can also

affect results, consideration should be taken when comparing results across

studies.

KEYWORDS

meta-analysis, respiratory microbiome, bovine respiratory disease, alpha diversity,
differential abundance
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1 Introduction

Bovine respiratory disease (BRD), also referred to as bovine

bronchopneumonia, is the most devastating disease affecting North

American cattle producers (Taylor et al., 2010). BRD is the leading

cause of death in pre-weaned dairy calves (Dubrovsky et al., 2020)

and is one of the leading causes of disease affecting feedlot cattle,

specifically in the first 50 days post feedlot arrival (Timsit et al.,

2016). It accounts for 70-80% of total feedlot morbidity and 40-50%

of total feedlot mortality (Edwards, 2010). The USDA APHIS

Feedlot study estimated that BRD costs, on average, $23.60/case

(USDA-APHIS, 2013). The costs associated with BRD can be

attributed to the cost of treatment and decreased carcass quality

grade. In the early 2000s, BRD was estimated to cost approximately

$800-900 million annually (Brooks et al., 2011), and more recently,

it has been estimated to be between $1-3 billion annually in the

United States (Cozens et al., 2019).

BRD is considered a multifactorial disease complex with

multiple causative agents, the most common being a bacterial

infection, typically with Mannheimia haemolytica, Pasteurella

multocida, Histophilus somni, or Mycoplasma bovis. However, the

commonly isolated bacterial “pathogens” are often found in the

upper respiratory tract (URT) of healthy cattle. Nevertheless,

historically most research has focused on these opportunistic

pathogens. Recently the role of the respiratory microbiome in

BRD has become a major research area of interest. Major

differences exist in the URT and lower respiratory tract (LRT)

microbiomes of beef and dairy cattle with and without BRD (Lima

et al., 2016; Gaeta et al., 2017; Johnston et al., 2017; Zeineldin et al.,

2017; Timsit et al., 2018; Klima et al., 2019; McMullen et al., 2019;

McMullen et al., 2020; Zeineldin et al., 2020; Raabis et al., 2021;

Centeno-Martinez et al., 2022). However, results regarding alpha

diversity (intra-sample diversity) and differentially abundant taxa

are inconclusive.

In human medicine, it is well-accepted that a loss of microbial

diversity in the gastrointestinal tract leads to many diseases (Mosca

et al., 2016). Additionally, in cystic fibrosis patients, reduced

respiratory microbial diversity has been correlated with reduced

respiratory function (van der Gast et al., 2011; Fodor et al., 2012;

Zhao et al., 2012). Moreover, decreased alpha diversity is linked to

COVID-19 infection and severity (Xu et al., 2021). Decreased

richness (Holman et al., 2015; Timsit et al., 2018; McMullen

et al., 2019) and decreased Shannon Diversity Index (Timsit et al.,

2018) have been observed in the URT of calves with BRD compared

to healthy calves. However, several studies have found no significant

difference or pattern of change in alpha diversity metrics between

BRD and healthy calves (Zeineldin et al., 2017; McMullen et al.,

2019; McMullen et al., 2020). Furthermore, it has been observed

that calves that developed BRD had decreased richness at arrival

compared to those that remained healthy (Holman et al., 2015).

However, this has also been disputed, as others observed no

difference (Zeineldin et al., 2017). Many studies report slightly

different results for observed sequence variants, including

observed operational taxonomic units (OTUs) (Holman et al.,

2015), species (Zeineldin et al., 2017; McMullen et al., 2019),

amplicon sequence variants (ASVs), and the number of reads
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(Lima et al., 2016), which can make comparisons among studies

difficult. Furthermore, previous results have varied regarding

differentially abundant and significantly enriched bacterial taxa as

well (Lima et al., 2016; Zeineldin et al., 2017; McMullen et al., 2020;

Zeineldin et al., 2020; Raabis et al., 2021; Centeno-Martinez et al.,

2022; Li et al., 2022).

More and more studies show that meta-analysis is a very

powerful tool to evaluate a scientific question when current

research is heterogenous, if there are conflicting results, or if there

is a lack of consensus regarding a certain scientific question

(Siddaway et al., 2019; Tawfik et al., 2019). As both culture-

dependent and -independent microbiome studies attempt to

describe microbial ecology (Gray and Head, 2008), formal meta-

analyses can likely be used to examine microbiome-associated

metrics and remove the “noise” that may contribute to conflicting

results due to hiding the underlying “biological pattern” (Duvallet

et al., 2017; Nikolova et al., 2021). For example, Nikolova et al.

(2021) performed a meta-analysis to analyze the effect of gut

microbiome alpha diversity associated with numerous psychiatric

conditions (Nikolova et al., 2021). Moreover, Avalos-Fernandez

et al. (2022) conducted a meta-analysis to determine the effect of

respiratory microbiome alpha diversity’s relationship with chronic

lung disease (Avalos-Fernandez et al., 2022). However, analyzing

reported metrics for relative abundance presents some issues, such

as differences in bioinformatic analyses pipelines, classification

databases, and differential abundance method, as all of these can

affect taxonomic classification and relative and differential

abundance results (Edgar, 2018; López-Garcıá et al., 2018; Prodan

et al., 2020; Nearing et al., 2022). Therefore, compiling and re-

analyzing sequences may be a preferred method to examine

individual taxa abundances across studies. As a result, a “formal”

meta-analysis was conducted to examine the development of BRD

on commonly analyzed alpha diversity metrics, including Shannon

Diversity Index, Chao1, and variations of observed sequence

variants (OTUs, species, ASVs, reads), hereon referred to as

“observed features.” Additionally, four datasets [(Nicola et al.,

2017) (Nicola), (Johnston et al., 2017) (Johnston), (Centeno-

Martinez et al., 2022) (Centeno-Martinez), and PRJNA532923

(PRJNA) (Arkansas, U.o, 2019)] of publicly available sequences

were re-analyzed to examine the effect of BRD on individual

bacterial abundances.
2 Materials and methods

2.1 Literature search, data extraction, and
effect size calculation

A detailed literature search was conducted using Preferred

Reporting Items for Systematic Reviews and Meta-analyses

(PRISMA) methods on May 5, 2022, and again on November 21,

2022 (Figure 1) (Moher et al., 2009). The search terms “bovine

respiratory disease” OR “bovine bronchopneumonia” AND

“microbiome OR microbiota” were used to search the following

databases: Agricola, NCBI PubMed, Web of Science, and NCBI

BioProject. Databases were searched to acquire relevant literature
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1223090
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Howe et al. 10.3389/fcimb.2023.1223090
and deposited but not published sequences. A total of 170 records

were pooled, and 88 duplicates were removed. Then, 82 records

were screened for relevance, and 36 were excluded for being not of

interest (i.e., were review papers, not in cattle, not microbiome, etc.).

The remaining 46 records were screened in more detail and were

required to meet the following criteria: compare 16S rDNA

sequences from healthy and BRD cattle and report one of the

three alpha diversity metrics or contain publicly available data.

Finally, 32 records were excluded for not meeting the criteria, and

14 were included in the meta-analysis (Figure 1).

Available data ]i.e., alpha diversity metrics’ (Shannon Index,

Chao1, and Observed features) mean, standard deviation, and the

number of samples in each group (BRD, control)] was extracted

from each study. If the mean and standard deviation values were

not readily presented in the paper, Webplotdigitizer was used to

extract the data from published figures (Rohatgi, 2021). If the only

available figures did not provide the mean and standard deviation

(i.e., boxplot), these values were imputed using the following

website https://smcgrath.shinyapps.io/estmeansd/ using S2 and

the Box-Cox method (McGrath et al., 2020; McGrath et al., 2022)

as it does not assume normality as demonstrated previously

(Avalos-Fernandez et al., 2022). For graphics with error bars, the

average standard error of the mean (SEM) or standard deviation

was used, and the SEM was computed to standard deviation by

multiplying the SEM by the square root of the sample size. Due to

variable alpha diversity metrics reported and lack of available data,

all metrics (Shannon, Chao1, and Observed features) could not be

extracted from all studies. Therefore, studies without the metric of

interest were excluded from the effect size calculation for that

metric. Two records had sequencing data but did not report alpha

diversity metrics. Therefore, these sequences were analyzed using

QIIME2 (as described in section 3.3 below), and the Shannon’s

Diversity Index, Chao1, and Observed ASVs were calculated.

A database containing relevant metadata and data was

constructed (Supplementary Table 1). The SMD of both metrics

was calculated for each record using the escalc function, where 1
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(n1i (sample size), m1i (mean), sd1i (standard deviation) referred to

healthy calves, and 2 (n2i, m2i, and sd2i) referred to BRD calves, in

the R package metafor (v3.8-1) in R (v4.2.1) (Viechtbauer, 2010;

Team, R.C, 2022).
2.2 Meta-analytical model, subset analysis,
and publication bias

A multi-level meta-analytical model was run to determine the

overall effect of BRD on Shannon SMD, Observed features SMD,

and Chao1 SMD and to account for potential non-independence

and heterogeneity introduced by calculating multiple effect sizes for

specific records, as some studies reported metrics of interest for

differing sample locations (upper vs. lower respiratory tract) or time

points (feedlot entry vs. diagnosis, see Supplementary Table 1). This

was accomplished using the rma.mv function in the metafor

package and by setting “random = ~1|paper_num/count”, in

which paper_num is the study number and count is the entry

number (Supplementary Table 1), and the model was fitted using

restricted maximum likelihood (REML).

Subgroup analysis was then conducted to determine if sampling

location (URT vs. LRT) was a source of residual heterogeneity.

Therefore, the previous multi-level model was altered by setting

“mods = ~factor(location)-1”. Forest plots of the Shannon,

Observed features, and Chao1 SMDs were then created using the

forest function in the metafor package (Figures 1–3).

To assess publication bias for the Shannon SMD, a random

effects model was run and used to generate a funnel plot, which
FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) for alpha diversity analysis.
FIGURE 2

SMD of Shannon Diversity Index in Healthy and BRD Calves. Data
located right (blue) or left (pink) of the dotted line indicates that
healthy or BRD calves have higher SMD, respectively. Datapoint size
corresponds to precision. Bars depict 95% confidence interval. I2

indicates total heterogeneity. Values in parentheses indicate
between- and within-group heterogeneity. Middle column indicates
sampling collection time and sample type [transtracheal aspiration
(TTA), transtracheal wash (TTW), bronchoalveolar lavage (BAL),
nasopharyngeal swab (NPS), deep nasal swab (DNS), and nasal
swab (NS)].
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was created using the funnel function in the metafor package.

Additionally, Egger’s regression test was performed using the

regtest function in the metafor package in R. The failsafe number

was calculated using the fsn function in the metafor package

in R.
2.3 Sequencing analysis

The search terms “bovine respiratory disease” OR “bovine

bronchopneumonia” AND “microbiome OR microbiota” were used to

search NCBI BioProject. To be selected, datasets had to be comprised of

16S sequencing data from the bovine respiratory microbiome from BRD

calves and controls, have available metadata indicating which samples

were BRD and controls, and be at least overlapping the V4 region. Four

datasets met these requirements and were downloaded from the SRA

database using prefetch and fasterqdump from the SRA toolkit and were

analyzed by QIIME2 (version 2022.8) as previously described (Wang

et al., 2019; Wang et al., 2021; Wang et al., 2022). Briefly, data from each

dataset were individually imported into QIIME2 (Bolyen et al., 2019).

Demultiplexed paired-end V3V4 sequences were trimmed to the V4

region using cutadapt (Martin, 2011) with the forward primer (515F:

GTGCCAGCMGCCGCGGTAA) and reverse primer (806R:

GGACTACHVGGGTWTCTAAT). The forward and reverse adapters

used were the reverse complements of the reverse and forward primer,

respectively (forward adapter: ATTAGAWACCCBDGTAGTCC;

reverse adapter TTACCGCGGCKGCTGGCAC), and untrimmed

reads were discarded. Then for each dataset, forward and reverse reads
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were joined, reads were filtered, and Deblur was used to further trim and

denoise sequences (Amir et al., 2017). Identical filtering and Deblur

parameters were used for each dataset. The feature table and

representative sequences for each dataset were then merged, and data

were rarefied to 1108 reads. Shannon diversity index, Chao1, and

Observed ASVs were calculated for alpha diversity analysis (see

sections 3.1 and 3.2), and Bray-Curtis and Jaccard distances were

calculated using QIIME2 and visualized using PCoA plots created with

R (v.4.2.1). ASVs were then classified against the Greengenes database

(version 13_8_99), and both relative abundance and count ASV tables

were created. Then, Bray Curtis and Jaccard distances were calculated

using the distance function in the phyloseq R package (v1.40), and

sources of variation were assessed using the anosim function from the

vegan package (v2.6-4) (McMurdie and Holmes, 2013).
2.4 Differential abundance and
taxa interactions

To further investigate the role of BRD on the respiratory

microbiome, differential abundance tests were conducted to

determine control- and BRD-associated ASVs for each sample

type [nasal swabs (NS), nasopharyngeal swabs (NPS),

bronchoalveolar lavage (BAL), and trans-tracheal aspiration

(TTA)]. Only one of the datasets (Centeno-Martinez) included

negative control samples. One ASV (ASV6_Pseudoalteromonas)

was highly abundant in all negative control samples. This ASV

was excluded from NS differential abundance analysis since the

Centeno-Martinez dataset was comprised of only NS samples. A

consensus approach was used to select differentially abundant taxa

for each health status in each sampling location, as recommended

by Nearing et al. (2022) (Nearing et al., 2022). To be classified as a

control- or BRD- associated taxa, ASVs must have been in the top

25 RandomForest predictors and selected as differentially abundant

using both DESeq2 and Analysis of Compositions of Microbiomes

with Bias Correction 2 (ANCOM-BC2) for the respective health

status. Briefly, RandomForest (v4.7-1.1) was performed on the first

500 ASVs from the rarefied relative abundance table; for each

location, a differing number of variables were tried at each branch

(mtry) to attempt to optimize results (Breiman, 2001). For DESeq2

and ANCOM-BC2 analysis, the top 1500 ASVs in the rarefied count

ASV table were converted into a phyloseq object (McMurdie and

Holmes, 2013). For DESeq2 analysis, the phyloseq object was

converted to a DESeq2 object, size factors were estimated with

the argument type = “poscounts”, and taxa with less than 5 reads in

3 samples were filtered out. Then, DESEq2 (v1.36) with the fittype =

“local”, was used to analyze differentially abundant taxa at the ASV

level. ASVs were considered differentially abundant using DESeq2 if

Padj < 0.05 (Love et al., 2014). For ANCOM-BC2 (v1.6.4) analysis,

ASVs with no variances were removed. The following arguments

were set as follows, prv_cut = 0.1, p_adj_method = “hochberg”,

struc_zero = TRUE, neg_lb = FALSE. ASVs were considered

differentially abundant using ANCOM-BC2 if Q < 0.05 (Lin and

Peddada, 2020; Lin et al., 2022).
FIGURE 3

SMD of Observed features in Healthy and BRD Calves. Data located
right (blue) or left (pink) of the dotted line indicates that healthy or
BRD calves have higher SMD, respectively. Datapoint size
corresponds to precision. Bars depict 95% confidence interval. I2

indicates total heterogeneity. Values in parentheses indicate
between- and within-group heterogeneity. Middle column indicates
sampling collection time and sample type [transtracheal aspiration
(TTA), transtracheal wash (TTW), bronchoalveolar lavage (BAL),
nasopharyngeal swab (NPS), deep nasal swab (DNS), and nasal
swab (NS)].
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To further examine bacterial relationships at the species level,

Sparse Estimation of Correlations among Microbiomes (SECOM)

was used to determine both linear and non-linear relationships. The

full rarefied count ASV table (excluding the ASV highly abundant

in negative controls) was converted into a phyloseq object.

Monotonic/linear relationships were quantified using the

Spearman correlation coefficient. The secom_linear function in

the ANCOMBC package (v2.0.2) was used with the following

arguments: pseudo = 0, prv_cut = 0.1, lib_cut = 0, corr_cut = 0.5,

wins_quant = c(0.05, 0.95), method = “spearman”, soft = FALSE,

n_cv = 10, thresh_hard = 0, thresh_len = 100, max_p = 0.05, n_cl =

2. In order to be further analyzed, taxa had to co-occur in at least ten

samples and have P < 0.05. Non-linear relationships were quantified

using the distance correlation coefficient. The secom_dist function

in the ANCOMBC package was used with the following arguments:

pseudo = 0, prv_cut = 0.1, lib_cut = 0, corr_cut = 0.5, wins_quant =

c(0.05, 0.95), R = 100, max_p = 0.05, n_cl = 10, thresh_hard = 0 (Lin

et al., 2022).
3 Results

The literature search resulted in 14 records, including published

studies and unpublished deposited sequences. The final database

consisted of 27 entries. Information for each entry, such as study

sample size, calf age, sample date, and individual study effect sizes

can be found in Supplementary Table 1. The effect size calculated

for both metrics was the standardized mean difference (SMD), also

referred to as Hedges g. This method compares the differences

between two means, is standardized, and bias-corrected because it

takes the sample size into account (Nakagawa et al., 2015). As both

metrics were not available for all records, a total of 24, 20, and 18

effect sizes were calculated from 12, 10, and 10 records for Shannon

SMD, Observed features SMD, and Chao1 SMD, respectively

(Figure 1; Supplementary Table 1).
3.1 Healthy calves have increased
Shannon SMD

The SMD varied considerably for each record for all metrics.

Among them, many records of Shannon SMD were highly positive,

showing that the SMD was greater in healthy calves than in BRD

calves. This observation demonstrated that the healthy calves had

greater microbial diversity. However, there were still many records

with negative SMDs, which signified that the SMD was higher in

BRD calves than in healthy calves (Figure 2). The same trends were

shown in Observed features SMD and Chao1 SMD (Figures 3, 4).

A meta-analytical model determined BRD’s overall effect on the

diversity and richness of the respiratory microbiome. Considering

the non-independence and heterogeneity introduced by calculating

multiple effect sizes from one study, the multi-level meta-analytical

model was selected. In this combined analysis, regardless of

location, the Shannon SMD was significantly higher in healthy

calves than that in calves with BRD (SMD: 0.387, P < 0.05, 95% CI:

0.067 – 0.706). Among them, high heterogeneity was observed
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(I2 = 72.4%) (Figure 2). However, there were no significant

differences between healthy and BRD calves for Observed features

SMD (SMD: 0.247, P > 0.05, 95% CI: -0.044 – 0.539) and only

moderate heterogeneity was observed (I2 = 66.0%) (Figure 3).

Similar results were observed for Chao1 SMD (SMD: 0.295, P >

0.10, 95% CI: -0.143 – 0.733) and high heterogeneity was observed

(I2 = 86.2%) (Figure 4). Shannon SMD was next analyzed for

publication bias because it was the only significant metric

observed. Our result showed that the funnel plot was not

asymmetrical and publication bias did not exist based on Egger’s

regression test (P > 0.1). The fail-safe number (FSN) was also

calculated, indicating the number of insignificant studies needed to

decrease the observed significance to the target significance. The

FSN for the Shannon SMD model was 215, showing that it would

take 215 insignificant results to decrease the observed significance

(P < 0.0001) to the target significance (P = 0.05) (Figure 5).

Additionally, the FSN value was greater than 5k + 10 (where k is

the number of effect sizes calculated) (Robert, 1979). Therefore, it

was concluded that the Shannon SMD lacked publication bias.
3.2 Sampling location (URT vs. LRT) could
not explain residual heterogeneity

It is well known that the structure and composition of the upper

respiratory tract (URT) and lower respiratory tract (LRT)

microbiomes differ (Timsit et al., 2018). In this study, subset

analysis was conducted to determine if the sampling sites affected

the SMD. In the URT, the Shannon SMD was significantly higher in

healthy calves than that in BRD calves (SMD: 0.387, P < 0.05, 95%
FIGURE 4

SMD of Chao1 in Healthy and BRD Calves. Data located right (blue)
or left (pink) of the dotted line indicates that healthy or BRD calves
have higher SMD, respectively. Datapoint size corresponds to
precision. Bars depict 95% confidence interval. I2 indicates total
heterogeneity. Values in parentheses indicate between- and within-
group heterogeneity. Middle column indicates sampling collection
time and sample type [transtracheal aspiration (TTA), transtracheal
wash (TTW), bronchoalveolar lavage (BAL), nasopharyngeal swab
(NPS), deep nasal swab (DNS), and nasal swab (NS)].
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CI: 0.05 – 0.724). Instead, in the LRT, healthy calves tended to have

a higher Shannon SMD compared to BRD calves (SMD: 0.388, P =

0.06, 95% CI: -0.016 – 0.792). Additionally, high heterogeneity still

existed after subgroup analysis (I2 = 72.2%), indicating that the URT

vs. LRT did not explain the heterogeneity observed (Figure 2).

For the Observed features SMD, no differences were observed

between healthy and BRD calves in the URT (SMD: 0.217, P > 0.1,

95% CI: -0.093 - 0.528) or LRT (SMD: 0.339, P > 0.1, 95% CI: -0.152

– 0.831), and moderate heterogeneity was still observed (I2 = 65.5%)

(Figure 3). Similarly, for the Chao1 SMD, no differences were

observed between healthy and BRD calves in the URT (SMD:

0.236, P > 0.1, 95% CI: -0.229 – 0.702) or LRT (SMD: 0.473, P >

0.1, 95% CI: -0.218 – 1.164), and high heterogeneity was still

observed (I2 = 85.9%) (Figure 4).
3.3 Sampling location and dataset are
major sources of microbiome variation

Four datasets [(Nicola et al., 2017) (Nicola), (Johnston et al.,

2017) (Johnston),(Centeno-Martinez et al., 2022) (Centeno-

Martinez), and PRJNA532923 (PRJNA) (Arkansas, U.o, 2019)]

were used for this study because they contained V4 or V3-V4 16S

rDNA sequencing data from the respiratory tract of cattle with and

without BRD and included available metadata to identify controls

or calves with BRD. However, due to the lack of available data for all

time points and unclear metadata, we only used sequences from

samples (BRD vs. control) taken at BRD diagnosis/onset or post-

mortem samples. Thus, no feedlot entry samples were included in

this study. The datasets contained different read numbers; therefore,

all samples were further rarefied to 1,108 reads to better examine

results evenly across samples.
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Both Bray-Curtis and Jaccard distances were calculated and

next visualized using PCoA plots. Furthermore, an Analysis of

Similarity (ANOSIM) was performed to assess sources of variation.

Based on the Bray-Curtis PCoA plot, clustering did not occur due to

different health status (e.g., BRD vs. controls). However, it occurred

when the analysis was done on location within the respiratory tract

and dataset (Figure 6). This observation was further confirmed by

ANOSIM analysis (Table 1). Health status, URT vs. LRT, dataset,

and sampling location were sources of variation. However, the

sampling location (R: 0.6474, P < 0.001) was the most significant

source of variation, followed by dataset (R: 0.6032, P < 0.001).

Health status contributed the least to variation (R: 0.0399, P < 0.05).

Similar results were observed in the analysis of Jaccard distances.

Samples did not cluster based on health status and appeared to

cluster based on dataset or sampling location (Figure 7).

Additionally, ANOSIM analysis of Jaccard distances showed that

all tested variables were significant sources of variation. However,

the main sources were dataset (R: 0.7614, P < 0.001), followed by

sampling location (R: 0.7486, P < 0.001); the health status was the

least important source of variation (R: 0.0475, P < 0.05) (Table 1).
3.4 Control- and BRD- associated ASVs

Our results showed that sampling location was the largest source

of variation based on Bray Curtis distances and the second largest

source of variation based on Jaccard distances (Table 1); therefore,

control- and BRD- associated ASVs were determined based on

sampling site, including nasal (NS) (Centeno-Martinez, Nicola,

PRJNA), nasopharyngeal (NPS) (PRJNA), lung (Johnston),

bronchoalveolar lavage (PRJNA), and trans tracheal aspiration

(TTA) (Nicola). ASV6 was removed from NS differential abundance

analysis because it was highly abundant in the negative controls of the

Centeno-Martinez dataset. A consensus approach was used to

determine differentially abundant ASVs, as recommended by

Nearing et al. (2022). To be considered differentially abundant, an

ASV had to be ranked among the top 25 RandomForest predictors

and be selected as differentially abundant using both DESeq2 and

ANCOM-BC2. Using these criteria, only one sampling location (NS)

contained differentially abundant ASVs. Using DESeq2, 16 ASVs were

identified as differentially abundant in the nasal cavity, and 8 of them

were RandomForest predictors (Supplementary Figures 1A, B). Using

ANCOM-BC2, 3 ASVs were identified as differentially abundant in

the nasal cavity, which overlapped with those identified by

RandomForest and DESeq2. Therefore, the consensus-based

approach allowed us to identify 3 differentially abundant ASVs in

the nasal cavity. ASV5_Mycoplasma was differentially abundant in

BRD calves (DESeq2: log2fold change (lfc): -1.85, padj < 0.05;ANCOM-

BC2: Wcontrol: -4.00, Q < 0.05), and ASV19_Corynebacterium

(DESeq2: lfc: 0.97, padj < 0.05; ANCOM-BC2: Wcontrol: 4.02, Q <

0.05) and ASV37_Ruminococcaceae (DESeq2: lfc: 0.82, padj < 0.05;

ANCOM-BC2:Wcontrol: 3.91, Q < 0.05) were differentially abundant in

controls (Figure 8). Furthermore, the abundance of the three

control- or BRD- associated ASVs were also broken down by

dataset to ensure that they were present in more than one dataset

(Supplementary Figure 2).
FIGURE 5

Publication bias was not detected for Shannon SMD. Asymmetrical
funnel plot indicates lack of publication bias. Blue and pink circles
indicate effect sizes from the lower and upper respiratory tract,
respectively. Egger’s test P > 0.05 and FSN > 130 indicate lack of
publication bias.
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In NPS samples, 4 ASVs were differentially abundant using

DESeq2. Furthermore, two ASVs overlapped with RandomForest

predictors. However, no ASVs were identified as differentially

abundant using ANCOM-BC2 (Supplementary Figures 3A, B).

Similar results were observed in the LRT samples. For example,

for lung samples, 6 ASVs were differentially abundant when

DESeq2 was applied. In this analysis, 1 ASV was found to be

differentially abundant using ANCOM-BC2 While no ASVs

overlapped with each other. Among TTA samples, only 1 ASV
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was differentially abundant using DESeq2, while none were

differentially abundant using ANCOM-BC2. Moreover, no ASVs

were identified as differentially abundant in BAL samples when

both DESeq2 and ANCOM-BC2 were used.
3.5 Linear and non-linear interactions exist
between bacterial taxa in the nasal cavity

To further investigate the possible role(s) of the control- and BRD-

associated ASVs, we used SECOM to analyze both linear and non-

linear relationships between different taxa (at the ASV level). The nasal

cavity was chosen for SECOM analysis because it was the only location

with differentially abundant ASVs and contained multiple datasets for

comparison. ASV5_Mycoplasma, ASV19_Corynebaterium, and

ASV37_ Ruminococcaceae were of interest at the ASV level

(Supplementary Tables 2, 3). It is noted that there can be non-linear

relationships between taxa when no linear relationship exists. However,

if a linear relationship exists, a non-linear one should also; if one does

not, results should be interpreted carefully. Therefore, only linear
B

C D
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FIGURE 6

Principal coordinate analysis (PCoA) plots based on Bray-Curtis distances. (A) illustrates health status [ANOSIM: R: 0.03, P < 0.05 (Table 1)], (B) URT
vs. LRT [ANOSIM: R: 0.47, P < 0.001 (Table 1)], (C) dataset [ANOSIM: R: 0.6, P < 0.001 (Table 1)], and (D) sampling location [ANOSIM: R: 0.64, P <
0.001 (Table 1)]. Legends for each plot indicate sample breakdown.
TABLE 1 Analysis of Similarities (ANOSIM) of Bray-Curtis and Jaccard Distances.

Bray-Curtis R Jaccard R

Health Status 0.0399** 0.04753***

URT vs LRT 0.4711*** 0.5403***

Dataset 0.6032*** 0.7614***

Sampling Location 0.6474*** 0.7486***
**P < 0.01.
***P < 0.001.
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FIGURE 7

Principal coordinate analysis (PCoA) plots based on Jaccard distances. (A) Illustrates health status [ANOSIM: R: 0.047, P < 0.05 (Table 1)], (B) URT vs.
LRT [ANOSIM: R: 0.54, P < 0.001 (Table 1)], (C) dataset [ANOSIM: R: 0.76, P < 0.001 (Table 1)], and (D) sampling location [ANOSIM: R: 0.74, P < 0.001
(Table 1)]. Legends for each plot indicate sample breakdown.
BA

FIGURE 8

Differentially abundant ASVs within the nasal cavity. ASVs were determined differentially abundant if they were selected as a RandomForest
predictors (top 25) and were differentially abundant using both DESeq2 (Padj < 0.05), and ANCOM-BC (Q < 0.05). (A) Top 25 RandomForest
predictors; pink indicates BRD-associated ASV; blue indicates healthy control-associated ASV. (B) Boxplot of DESeq2 counts; Pink indicates
abundance in BRD samples; blue indicates abundance in control samples.
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relationships with overlapping non-linear relationships were reported.

It should also be noted that the non-linear relationship (distance

correlation) was only non-zero and does not have a direction, as it

only described a general dependency between taxa (Lin et al., 2022). As

this was a meta-analysis and combining datasets could introduce lots of

“noise,” the primary goal was to identify general dependencies between

the selected taxa and any ASVs associated with Mycoplasma,

Mannheimia, Histophilus, and Pasteurella. Therefore, the SECOM

distance matrix was primarily used to determine relationships

(Table 2; Supplementary Table 2), and SECOM Spearman2 (p-value

filtering) was used to determine the direction of the relationship

(Table 3; Supplementary Table 3). ASV19_Corynebacterium had a

negative relationship with ASV1_Mycoplasma_hyorhinis (distance:

0.38; r: -0.41; P < 0.05), ASV4_Mannheimia (distance: 0.46; r: -0.31;
P < 0.05), ASV54_Mycoplasma (distance: 0.4; r: -0.41; P < 0.05),

ASV7_Mycoplasma (distance: 0.31; r: -0.28, P < 0.05), and

ASV8_Pasteurella (distance: 0.38; r: -0.4; P < 0.05) and a positive

relationship with ASV376_Mycoplasma (distance: 0.64; r: 0.67; P <

0.05). ASV37_Ruminococcaceae had a negative relationship with

ASV1_Mycoplasma_hyorhinis (distance: 0.31; r: -0.29; P < 0.05),

ASV4_Mannheimia (distance: 0.39; r: -0.3; P < 0.05), and

ASV5_Mycoplasma (distance: 0.3; r : -0.28; P < 0.05).

ASV5_Mycoplasma had a posi t ive re la t ionship with

ASV1_Mycoplasma_hyorhinis (distance: 0.43; r: 0.42; P < 0.05),

ASV10_Histophilus_somni (distance: 0.52; r: 0.50; P < 0.05), and

ASV346_Mycoplasma (distance: 0.88; r: 0.87; P < 0.05) (Tables 2, 3).

Finally, ASV37_Ruminococcaceae had a relationship with

ASV7_Mycoplasma (distance: 0.22; P < 0.05), but the direction could

not be determined (Table 2). Furthermore, ASV19_Corynebacterium

and ASV37_Ruminococcaceae had a positive relationship with each

other (distance: 0.63; r: 0.56; P < 0.05) (Tables 2, 3). These data

indicated that, in the nasal cavity, the healthy control-associated ASVs

potentially interact with the BRD-associated ASV and other

opportunistic pathogens within the nasal cavity and that the BRD

opportunistic pathogens were likely interacting with each other.
4 Discussion

Our study provides the first meta-analysis examining BRD’s

effect on the respiratory microbiome alpha diversity. Overall,

healthy calves had a greater Shannon diversity index of 0.39

standard deviations, indicating that the respiratory microbiome of

healthy calves had increased microbial diversity compared to calves

that developed BRD (P < 0.05). These results agreed with the

previous observations: healthy calves had increased alpha

diversity metrics compared to those with BRD (Holman et al.,

2015; Timsit et al., 2018; McMullen et al., 2019). However, no

difference was observed for either the Chao1 or Observed features

metrics. There could be many reasons for this. First, the Shannon

Diversity Index is a measure of evenness and richness, meaning that

it considers both bacterial presence/absence and bacterial

abundance (Kim et al., 2017). Whereas both Chao1 and Observed

features measure bacterial richness, meaning they only take into

account bacterial presence/absence (Hughes et al., 2001). Therefore,

this might indicate that the abundance of specific bacteria, rather
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than just their presence, accounted for BRD. However, it is also

possible that this difference is not related to disease but rather the

effect of different data analytical methods. Chiarello et al. (2022)

observed that data analysis pipeline significantly influenced

presence/absence indices. Furthermore, richness estimates were

also influenced using either ASVs or OTUs. They also noted that

this affected both the richness metric values and sample ranking

(Chiarello et al., 2022). Therefore, it is possible that the data analysis

method had a greater effect on the richness alpha diversity metrics

(Chao1, Observed features) than on the Shannon Diversity Index.

The effect of data analytical pipeline on alpha diversity SMD could

be addressed by re-analyzing publicly available sequencing data.

However, many of the included studies did not have publicly

available sequencing data and metadata. Future studies should

make all sequencing data and metadata publicly available to

address this question.

Furthermore, the URT of healthy calves had a greater

Shannon diversity index of 0.38 standard deviations than BRD

calves (P < 0.05), and no differences were observed in the LRT

between BRD and healthy calves. This could indicate that the

URT microbiome’s Shannon Diversity Index is more affected by

BRD, but it could also be due to the small sample size for the

LRT. Although the LRT samples had by far the smallest sample

size, the sample size for the entire meta-analysis (total records/

effect sizes) is small, indicating a need for additional research

into the bovine respiratory microbiome and its role in BRD. In

addition, subset analysis based on sampling location did not

explain the high heterogeneity observed for Shannon SMD. This

indicates that other unexplained factors, such as sampling time,

diet, age, and/or management factors, etc., likely also affect the

respiratory microbiome, leading to the observed high residual

heterogeneity. Future meta-analyses should attempt to explain

this heterogeneity if possible. Nevertheless, no publication bias

was observed for the Shannon SMD in this study. Therefore,

although high residual heterogeneity was observed for Shannon

SMD, the lack of publication bias and significant effect size,

especially for the URT, clearly demonstrate that the URT

microbiome Shannon diversity index is higher in healthy

calves than in those with BRD. However, it remains unclear if

the decreased diversity in BRD calves is due to disease

development or if decreased diversity predisposes the calf to

BRD because all sampling time points were analyzed together

due to a lack of available data.

To assess the effect of BRD on the respiratory microbiome,

publicly available sequences with available metadata were compiled

and analyzed as a singular dataset. Previous datasets with available

data could not be included due to a lack of available metadata or the

use of a non-overlapping 16S hypervariable region. Beta diversity

analysis indicated that all tested variables (health status, URT vs.

LRT, sampling location, and dataset) were significant sources of

variation on both Bray Curtis and Jaccard distances. Interestingly,

health status was the smallest source of variation for both beta

diversity metrics, whereas either sampling location or dataset were

the greatest sources of variation. This indicates that sampling

location and other outside influences affect the microbiome more

than health status alone. Chai et al. (2022b) performed a meta-
T
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analysis on metagenomic sequencing data from the bovine

respiratory microbiome. Their results showed that microbial

structure and function were significantly affected by both

geographical location and sampling niche. Therefore, this

indicates that respiratory tract location and environmental

factors, such as diet or climate, likely affect the respiratory

microbiome more than health status alone, as these differed for

each geographic location included in the study (Chai et al., 2022b).

To address these issues, we split samples into individual

sampling locations (NS, NPS, BAL, lung tissue, and TTA) to

examine control- and BRD-associated ASVs. ASVs were

considered differentially abundant using a consensus approach of

RandomForest, DESeq2, and ANCOM-BC2. Nearing et al. (2022)

showed that differing differential abundance analysis methods

yielded differing results and recommended applying a consensus

approach to determine robust biological interpretations (Nearing

et al., 2022). In the nasal cavity, ASV19_Corynebacterium and

ASV37_Ruminococcaceae were identified as healthy control-

associated ASVs, as they were higher in abundance in controls,

and ASV5_Mycoplasma was identified as the only BRD-associated

ASV. While Mycoplasma is present in the microbiome of clinically

healthy cattle also (Chai et al., 2022a), it is clear that

ASV5_Mycoplasma is associated with BRD.

To further evaluate the nasal cavity microbiome, Sparse

Estimation of Correlations among Microbiomes (SECOM) was

used to examine both linear and non-linear relationships between

taxa. Pearson and Spearman correlation coefficients have been

deemed inappropriate for use with microbiome data; however,

SECOM takes into account the sparsity of microbiome data (Lin

et a l . , 2022) . Using SECOM at the ASV-level , both

ASV37_Ruminococcaceae and ASV19_Corynebacterium were

positively correlated with each other and were negatively

correlated with ASV4_Mannheimia and many Mycoplasma ASVs.

Furthermore, ASV19_Corynebacterium was negatively correlated

with ASV8_Pasteurella, and, interestingly, positively correlated with

ASV376_Mycoplasma. It should be noted that Mannheimia,

Mycoplasma, and Pasteurella are not opportunistic pathogens

themselves and that other species exist within these genera as well

(Slack, 2010; Suástegui-Urquijo et al., 2015; Parker et al., 2018).

Ruminococcaceae is a normal and abundant member of the bovine

gastrointestinal tract microbiome (Lopes et al., 2019). It has also

been observed in the upper respiratory tract as well, and it is

thought that its presence is due to contact with feces, manure, or

digesta due to rumination (Amat et al., 2019a; Crosby et al., 2022).

Additionally, Crosby et al. (2022) observed that Ruminococcaceae

abundance was decreased in the upper respiratory tract of cattle

with BRD and speculated that this might be due to decreased

rumination in sick calves (Crosby et al., 2022). Therefore, our

observation of ASV37_ Ruminococcaceae as a healthy control-

associated ASV within the bovine nasal cavity indicates a need for

further research into the role of gastrointestinal tract-associated

microbes in respiratory health. Amat et al. (2019b) observed that

three Corynebacterium isolates from the nasopharyngeal tract of

healthy cattle were able to inhibit the growth of M. haemolytica in

vitro (Amat et al., 2019b). One can assume that Corynebacterium
Frontiers in Cellular and Infection Microbiology 11160
may repress the growth of BRD pathogens in the animal hosts. It is

well established that Corynebacterium is part of normal microbiota

in the bovine nasal cavity and nasopharyngeal tract regardless of

health status (Gaeta et al., 2017; Holman et al., 2017; Nicola et al.,

2017; Zeineldin et al., 2017; McDaneld et al., 2018; Timsit et al.,

2018; Amat et al., 2019a; Chai et al., 2022a). However,

Corynebacterium sp. have often been associated with human

respiratory disease (Yang et al., 2018) and cause disease in cattle,

albeit not in the respiratory tract (Smith et al., 2020; Lücken et al.,

2022). Regardless, our results and Amat et al. (2019b) showed that

Corynebacterium may be involved in maintaining microbiome

stability of the bovine URT and preventing BRD opportunistic

pathogen invasion and colonization. However, additional research

is needed to evaluate the role of Corynebacterium within the bovine

respiratory tract and the role of gastrointestinal microbes in the

upper respiratory tract.

It should be noted that our study has some limitations. First, all

data included in this study was based on 16S sequencing data.

Future studies utilizing shotgun metagenomics, metabolomics, or

quantifying total bacterial load would provide additional insight

into the respiratory microbiome’s role in BRD development and

progression. Additionally, due to a lack of available data, all time

points were analyzed together when analyzing the effect of BRD on

different alpha diversity metrics SMD. However, our multi-level

model attempted to account for the potential non-independence

introduced by calculating multiple effect sizes for some studies.

Although, it should be noted that the inclusion criteria for this study

were very broad; therefore, only broad conclusions can be drawn. It

remains unclear if the decreased Shannon SMD observed in BRD

calves is due to disease development or if decreased diversity

predisposes the calf to BRD. Future studies should aim to make

all data, including sequencing data or calculated alpha diversity

metrics (even if the metric is not significant), publicly available to

aid in answering this question. Moreover, subset analysis based on

sampling location did not explain the high heterogeneity observed

for Shannon SMD, indicating that other unexplained factors exist

that also affect the respiratory microbiome. Future studies should

aim to make all data publicly available and have clear, descriptive

metadata, so future meta-analyses can explain the residual

heterogeneity observed. Additionally, other factors, such as breed,

age, geographical location, climate, and management practices all

affect the respiratory microbiome, and we cannot rule out the effects

of these factors in our study. Future studies comparing the

respiratory microbiome of BRD calves would also need to be

standardized in this field, as in the human microbiome project,

including sample collection, storage, DNA extraction, the

hypervariable region of the bacterial 16S rRNA gene, and

analytical pipelines. The definition and diagnosis of BRD, the

application of antibiotics, and the sampling time after feedlot

arrival should also need to be considered when comparing the

bovine respiratory microbiome between studies. Finally, as

previously noted, the sample size of our study is small, and many

studies could not be included due to either a lack of publicly

available data or unclear metadata. Our study would be

strengthened by the inclusion of additional data, so future studies
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should aim to make all sequencing data and descriptive metadata

publicly available.

5 Conclusion

Our study investigated the effect of BRD on the alpha (intra-

sample) diversity of the cattle respiratory microbiome, which fills

the knowledge gap between respiratory microbiome alpha diversity

and BRD. The multi-level model concluded that healthy calves had

an increased Shannon Diversity Index, and no difference was

observed for richness measures (Observed or Chao1). Overall,

these results indicate that Shannon Index in calves with BRD is

lower than in healthy calves. Furthermore, publicly available

sequences were combined and re-analyzed for four datasets.

ANOSIM, based on Bray-Curtis and Jaccard distances, found

that, although significant, health status was the smallest source of

variation, and sampling location and dataset were the largest

sources of variation, respectively. Additionally, in the nasal cavity,

ASV19_Corynebacterium and ASV37_Ruminococcaceae were

healthy control-associated ASVs, and ASV5_Mycoplasma was the

only BRD-associated ASV. Based on SECOM analysis,

ASV19_Corynebacterium was negatively associated with

ASV4_Mannhe im i a , A SV1_Mycop l a sma_hyo r h i n i s ,

ASV54_Mycoplasma, ASV7_Mycoplasma, and ASV8_Pasteurella,

and positively correlated with ASV376_Mycoplasma, and

ASV37_Ruminococcaceae, the other healthy control-associated

ASV. Taken together, these results indicate that additional

research is needed into the role of Corynebacterium in the bovine

respiratory microbiota and that sampling location and other factors

significantly affect microbial structure and need to be considered.
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SUPPLEMENTARY FIGURE 1

ASVs identified as differentially abundant in nasal cavity using only

RandomForest and DESeq2. ASVs were selected if they were selected as a
RandomForest predictors (top 25) and were differentially abundant using

DESeq2 (Padj < 0.05). (A) Top 25 RandomForest predictors; pink indicates
BRD-associated ASV; blue indicates healthy control-associated ASV.

(B) Boxplot of DESeq2 counts; Pink indicates abundance in BRD samples;
blue indicates abundance in control samples.

SUPPLEMENTARY FIGURE 2

Differentially abundant ASVs in the nasal cavity broken down by health status

and datasets. ASVs were determined differentially abundant if they were
selected as a RandomForest predictors (top 25) and were differentially

abundant using both DESeq2 (Padj < 0.05), and ANCOM-BC (Q < 0.05).
Boxplots formed based on DESeq2 counts. Pink indicates abundance in BRD

samples; blue indicates abundance in control samples.

SUPPLEMENTARY FIGURE 3

ASVs identified as differentially abundant in nasopharyngeal cavity using
RandomForest and DESeq2. ASVs were selected if they were selected as a

RandomForest predictors (top 25) and were differentially abundant using
DESeq2 (Padj < 0.05). (A) Top 25 RandomForest predictors; pink indicates

BRD-associated ASV; blue indicates healthy control-associated ASV.

(B) Boxplot of DESeq2 counts; Pink indicates abundance in BRD samples;
blue indicates abundance in control samples.
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associated with lower respiratory
tract infections in children
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Wenyan Qin2* and Yongping Lin1,3*
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Worldwide, lower respiratory tract infections (LRTI) are an important cause of

hospitalization in children. Due to the relative limitations of traditional pathogen

detection methods, new detection methods are needed. The purpose of this

study was to evaluate the value of metagenomic next-generation sequencing

(mNGS) of bronchoalveolar lavage fluid (BALF) samples for diagnosing children

with LRTI based on the interpretation of sequencing results. A total of 211

children with LRTI admitted to the First Affiliated Hospital of Guangzhou

Medical University from May 2019 to December 2020 were enrolled. The

diagnostic performance of mNGS versus traditional methods for detecting

pathogens was compared. The positive rate for the BALF mNGS analysis

reached 95.48% (95% confidence interval [CI] 92.39% to 98.57%), which was

superior to the culture method (44.07%, 95% CI 36.68% to 51.45%). For the

detection of specific pathogens, mNGS showed similar diagnostic performance

to PCR and antigen detection, except for Streptococcus pneumoniae, for which

mNGS performed better than antigen detection. S. pneumoniae ,

cytomegalovirus and Candida albicans were the most common bacterial, viral

and fungal pathogens. Common infections in children with LRTI were bacterial,

viral and mixed bacterial-viral infections. Immunocompromised children with

LRTI were highly susceptible to mixed and fungal infections. The initial diagnosis

was modified based on mNGS in 29.6% (37/125) of patients. Receiver operating

characteristic (ROC) curve analysis was performed to predict the relationship

between inflammation indicators and the type of pathogen infection. BALF

mNGS improves the sensitivity of pathogen detection and provides guidance

in clinical practice for diagnosing LRTI in children.

KEYWORDS

lower respiratory tract infections, pathogen diagnosis, bronchoalveolar lavage fluid,
metagenomic next-generation sequencing, traditional methods, medication
adjustment, children
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1 Introduction

Lower respiratory tract infections (LRTI) are the deadliest

infectious diseases worldwide and the fourth leading cause of

death (World Health Organization, 2020). Early and accurate

identification of the etiology of LRTI is essential for effective

pathogen targeted therapy. However, pathogen identification is

limited due to the limitations of traditional microbiological

detection. Diagnosis is further complicated by noninfectious

inflammatory syndromes that mimic LRTI (Langelier et al.,

2018a). Currently, traditional detection methods, including

microscopy, pathogen culture and isolation, biochemical testing,

immunology, and polymerase chain reaction (PCR) testing, are

used mainly to identify LRTI pathogens in children. However, these

methods have shortcomings in terms of sensitivity, specificity,

timeliness, and amount of information obtained (Jain et al., 2015;

Zhang et al., 2018; Rajapaksha et al., 2019). Moreover, it is

impossible to quickly identify unknown or rare pathogenic

microorganisms. In the absence of a clear microbiological

diagnosis, clinicians may assume that symptoms are caused by

noninfect ious inflammation and prescr ibe empir ica l

corticosteroids, which can exacerbate occult infections (Wilson

et al., 2014).

Metagenomic next-generation sequencing (mNGS) is a novel

technique for rapid, efficient, and unbiased acquisition of nucleic

acid sequence information that can be used to identify pathogens

in a given sample. Moreover, the advent of rapid mNGS has

extended its applications from laboratory research to clinical

diagnostics (Goldberg et al., 2015). mNGS has been used mainly

to diagnose emerging pathogens and rare infectious diseases (Yao

et al., 2016). For example, in the unusual pneumonia outbreak

reported in Wuhan in December 2019, mNGS was performed

using RNA extracted from patient bronchoalveolar lavage fluid

(BALF), which rapidly identified a novel coronavirus pathogen

(SARS-CoV-2) present in high abundance (Chen et al., 2020).

Rapid and accurate diagnostic methods for detecting pathogenic

microorganisms are extremely crucial for disease control and

treatment. mNGS is already being successfully applied for

pneumonia, meningitis, liver abscess, endometritis, and

endophthalmitis diagnosis using BALF, sputum, cerebrospinal

fluid, pleural fluid, and vitreous humor specimens (Ai et al.,

2018; Langelier et al., 2018b; Moreno et al., 2018; Miller

et al., 2019).

In recent years, the feasibility of mNGS for etiological detection

and identification of respiratory tract infections has been

demonstrated (Miao et al., 2018; Li et al., 2020). However,

numerous challenges remain, including the interpretation of

mNGS results, human genome interference and other common

issues. In addition, there are few studies on BALF mNGS in a large

cohort of children with LRTI, which needs to be addressed. Here,

we summarize the mNGS results for 229 BALF samples from 211

children with LRTI and sought to validate the value of mNGS for

diagnosing children with LRTI based on the interpretation of

sequencing results.
Frontiers in Cellular and Infection Microbiology 02165
2 Materials and methods

2.1 Patients

This study retrospectively analyzed the medical records of 211

children with LRTI who were admitted to the First Affiliated

Hospital of Guangzhou Medical University from May 2019 to

December 2020. The study was approved by the institutional

ethics committee of the First Affiliated Hospital of Guangzhou

Medical University (No. 2021K-40). The medical records contained

patient information, clinical diagnosis and symptoms, results of

mNGS and traditional microbiological assays, information on

relevant clinical laboratory tests and clinical medication

information. The inclusion criteria were as follows: 1) chest

imaging revealing abnormalities; 2) infection symptoms that did

not improve after empirical treatment; patients presenting with

persistent expectoration, fever, and shortness of breath, and patients

with unsatisfactory clinical outcomes; re-examination of chest

imaging showed no improvement, and the etiology needed to be

clarified; and 3) for immunocompromised patients complicated

with septic shock or multiple organ failure, the attending physician

may have advised the use of mNGS. The exclusion criteria were

patients unable to fulfill the required medical follow-up. In this

study, 229 BALF samples from 211 children with LRTI were

assessed using mNGS (DNA and RNA) assays. Resampling for

testing occurred in the following circumstances: 1) results were not

consistent with diagnosis or treatment; 2) infection improved but

was not cured; 3) samples were resampled for mNGS detection in

cases with negative mNGS results but clinical manifestations of

infection; and 4) repeated infection was observed for a long time.

A total of 39 patients were considered immunocompromised

when clinically diagnosed, including 1) patients with blood-related

diseases (e.g., aplastic anemia, thalassemia, and congenital

neutrophil deficiency) or 2) cancers (e.g., solid malignancy and

hematological malignancy), 3) patients who received invasive

surgery (e.g., heart surgery and a patient with tumor resection),

and 4) patients diagnosed with kidney diseases (e.g., uremia and

nephrotic syndrome) or 5) multiple organ failure and other

autoimmune deficiencies (Ramıŕez, 2013; Tecklenborg et al., 2018;

Spoor et al., 2019; Zinter et al., 2019; El Hasbani et al., 2022; Xi et al.,

2022; Zaimoku et al., 2022).
2.2 Flow of BALF sample collection

BALF specimen collection was performed as previously

described with some modifications (Collins et al., 2014; Hogea

et al., 2020). 1) Site selection: Lesion segments were selected for

patients with limited lesions. For diffuse lesions, the right middle

lobe of the lung or the lingual segment of the left upper lobe of the

lung was selected. 2) Local anesthesia: 1-2 mL of 2% lidocaine was

injected into the biopsy hole of the lavage lung segment to perform

local anesthesia; 1-2 mL of 2% lidocaine could also be administered

to patients under intravenous combination anesthesia who had
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strong airway reactions. 3) Saline injection: After the tip of the

bronchoscope was wedged in the opening of the target bronchial

segment or inserted subterminal, sterile saline (37°C or room

temperature) was rapidly injected through the operating channel

in a total volume of 20-30 mL, and multiple injections (3-10 mL

each time) were performed. 4) Negative pressure suction:

Immediately after the injection of saline, BALF was obtained by

suction with an appropriate negative pressure (commonly

recommended below 100-200 mm Hg), and the total recovery

rate was more than 40%. 5) BALF collection: The recovered fluid

contained approximately 10 mL of secretions from bronchial

terminals and alveoli. The potentially contaminated portion from

the front was discarded, and the remaining portion of at least 3 mL

was collected for immediate inspection.
2.3 Traditional methods detection

Simultaneously, sputum, throat swab and blood samples were

collected. All the above samples, including BALF samples, were

immediately subjected to the following laboratory tests. Culture:

Blood agar, Sabouraud dextrose agar, chocolate agar, and

MacConkey agar used to manually inoculate and culture

pathogens were purchased from Autobio Diagnostics Co., Ltd.

(China). Bacteria were cultured at 35°C for 24 to 48 hours, and

fungi were cultured for 7 days. The VITEK® 2 system (France) was

used for automated bacterial and fungal identification. The sample

types included BALF, sputum, blood, pleural effusion, cerebrospinal

fluid, urine, or stool samples. Nucleic acid detection: The processes

were carried out according to the protocols of commercial kits. In

this study, 15 nucleic acid detection kits were used from seven

suppliers; the detection kits were for Mycobacterium tuberculosis

(MTB) and Chlamydia trachomatis (Qiagen, Shenzhen, China),

cytomegalovirus (CMV), Epstein−Barr virus (EBV), enterovirus,

coxsackievirus, human herpes simplex virus 1 (HSV1), and

Mycoplasma pneumoniae (MP) (Daan Gene, China), adenovirus

(HAdV) (Hecin, China), respiratory syncytial virus (RSV) and

influenza virus A/B (Huayin, China), HSV2 (Biot Gene, China),

hepatitis B virus (Amplly, China), and hepatitis C virus (Sansure,

China). The sample types included BALF, sputum, swab, blood,

pleural effusion, cerebrospinal fluid, urine, or stool samples.

Antibody detection: In this study, the MP antibody detection test

kit (passive agglutination method) was purchased from Fujirebio

(Japan). This kit only detects MP antibodies (IgM and IgG) and

does not directly detect MP. Therefore, a positive result does not

confirm MP infection, and comprehensive evaluation of the

patient’s condition should be made by combining clinical

symptoms and test results. The sample type was blood. Antigen

detection: The processes were carried out according to the protocols

of the commercial kits. In this study, five antigen detection kits were

used from four suppliers; the detection kits were for S. pneumoniae

(colloidal gold method) (Abbott, USA), rotavirus (colloidal gold

method) (Wantai, China), Aspergillus spp. (ELISA), Cryptococcus

(ELISA) (Genobio, China), and seven respiratory viruses (namely,

influenza A/B virus, human parainfluenza virus 1-3 (HPIV 1-3),
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RSV, HAdV) (immunofluorescence method) (B&C, China). The

sample types for detecting S. pneumoniae were cerebrospinal fluid

and urine, those for detecting Aspergillus spp. or Cryptococcus were

BALF and blood, those for detecting rotavirus were stool, and those

for detecting the seven respiratory viruses were nasal swabs. The

commercial kits used in this study were all certified and approved

for c l in ica l t es t ing by the China Nat iona l Medica l

Products Administration.

Quality control of the manual culture method: The quality

control strains were Pseudomonas aeruginosa ATCC 27853,

Escherichia coli ATCC 25922, Escherichia coli ATCC 35218,

Staphylococcus aureus ATCC 25923, and Staphylococcus aureus

ATCC 29213. Quality control of automated culture and

identification: conducted every two weeks. The quality control

strains were Staphylococcus sciuri ATCC 29061, Candida albicans

ATCC 14053, Eikenella corrodens BAA-1152, Enterobacter

aerogenes ATCC 13048 and Enterobacter hormaechei ATCC

700323. Positive controls for Hepatitis B/C virus nucleic acid

testing were obtained from Conchestan (China). Controls are

included in the remaining commercial kits used for clinical testing.
2.4 Metagenomic next-generation
sequencing using BALF samples

BALF samples were obtained; 3 mL of BALF was placed in a

sterile sputum container, stored at 4°C, and sent to CapitalBio

(Guangzhou, China) for mNGS detection. DNA from each BALF

sample (0.5 mL) was extracted using a QIAamp DNA Microbiome

Kit (Cat#51704, QIAGEN, Germany), and RNA was extracted using

a QIAamp Viral RNA Mini Kit (Cat#52904, QIAGEN, Germany).

The extracted RNA was reverse transcribed using random primers,

and cDNA was pooled with DNA from the same sample for

sequencing library preparation. The pooled nucleic acid was

enzymatically fragmented to a size of 200-300 bp, and sequencing

libraries were constructed through end repair, adapter ligation and

PCR amplification. Sequencing templates were prepared with

OneTouch2 System (Life Technologies, USA), and after quality

control, sequencing was performed using a BioelectronSeq 4000

sequencer (CapitalBio, China) based on a semiconductor platform

Ion Torrent Proton™ sequencer. A negative control sample

consisting of water was used in each run to monitor

potential contamination.

The original sequencing data were subjected to quality control,

and adapter reads, low quality, reads with N (represents uncertain

base information) > 5, reads with lengths less than 50 bp, or low

complexity were removed. The remaining high-quality sequencing

data were mapped to the human reference genome grch38 for

depletion of human host sequences using Bowtie2 software.

Subsequently, nonhuman sequences were classified by

simultaneous alignment to the genomic sequence databases

downloaded from the NCBI and PATRIC, which contain 13,992

bacterial species, 1,659 fungal species, 13,000 viral species and 287

parasitic pathogens. To judge the suspected pathogens in the

clinical samples, we reviewed data for different types of samples
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from healthy people and calculated relevant reference values,

including the hit read number and coverage of all bacteria, fungi,

viruses and parasites detected. Moreover, pathogens detected in the

negative control sample (water) were removed from the results for

the clinical samples. The final pathogen detection results included a

list of suspected pathogens, the number of hit reads and genome-

level coverage statistics.

Human nucleic acid depletion is one of the challenges of mNGS

(Diao et al., 2021). In this study, the following two methods were

mainly used to remove human nucleic acids. 1) The processed

BALF sample was centrifuged, and pathogens were distributed in

the supernatant and precipitate based on their different structures.

The precipitate contains the majority of human host cells and

pathogens with cellular structures such as bacteria and fungi.

Differential lysis was performed based on the different structures

of human host cells and pathogen cells, and the nucleic acids

released from human host cells were digested using nucleases for

the first depletion of host nucleic acids. This process was repeated

once. 2) The supernatant containing viral nucleic acids and a small

portion of human host cells was subjected to two rounds of

centrifugation to remove as many human host cells as possible.

Then, the pathogen sequences were enriched. After filtering and

deduplication, the average total number of reads was 9,518,921

(320,578-26,524,467). Human reads accounted for an average of

69.96% (6.56%-93.69%); microorganism reads accounted for an

average of 6.70% (0.12%-66.81%); and unmapped reads accounted

for an average of 23.34% (6.06%-60.30%).

mNGS for each BALF cost approximately $600, and the result

could be obtained about 24 hours of the sample’s arrival at the

testing laboratory.
2.5 Criteria for a positive mNGS result

1) Positive indicators of comprehensive interpretation were as

follows: microbial characteristics (cell wall thickness, genome size),

number of detected sequences, genome coverage percent and

estimated concentration (copies/mL). Above the threshold of the

parameter, the organism was judged as a high- or medium-

confidence pathogen. 2) Additional positive indicators were as

follows: bacteria, fungi, or parasites: cover length > 3000 bp;

viruses: cover length > 300 bp. 3) When clinically confirming

pathogenic microorganisms, a comprehensive judgment was

made based on the pathogen, sample, and clinical characteristics.
2.6 Statistical analysis

The sensitivity (TPR), specificity (TNR), positive predictive

value (PPV), and negative predictive value (NPV) were calculated

and compared between mNGS and traditional pathogen detection

methods. Statistical analyses were performed using SPSS software

v.24.0. Pearson’s chi-square test or Fisher’s exact test was used for

discrete variables where appropriate. P values < 0.05 were

considered significant, and all tests were two-tailed.
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3 Results

3.1 Samples and patient characteristics

A total of 211 children with LRTI were the subjects of this study

(Supplementary Table 1). There were 121 males and 90 females.

Their average age was 5.00 ± 4.30 years. Among the 211 patients, 172

were non-immunocompromised, and 39 were immunocompromised

(Table 1). Among the 39 immunocompromised children with LRTI

were diagnosed with nine kinds of diseases, namely, aplastic anemia,

thalassemia, congenital neutrophil deficiency, invasive surgery, solid

malignancy, kidney disease, multiple organ failure, hematological

malignancy, and other autoimmune deficiencies (Table 1;

Supplementary Table 1).
3.2 Comparison of diagnostic
performances between mNGS and
traditional methods in non-
immunocompromised children with LRTI

Supplementary Tables 2, 3 list the etiological detection results

for 172 enrolled non-immunocompromised children with LRTI,

including the results for 186 samples by mNGS, 177 samples by

culture, 165 samples by PCR detection, 136 samples by antibody

detection (serological assay) for MP, 137 samples by antigen

detection for bacteria and fungi, and 154 samples by

antigen detection for viruses. The etiological detection results for

the non-immunocompromised children with LRTI showed 176
TABLE 1 Characteristics of 211 children with LRTI.

Characteristic
mNGS
(n = 211)

Age (years) 5.00 ± 4.30

Sex

Female, n (%) 90 (42.65%)

Male, n (%) 121 (57.35%)

Non-immunocompromised, n (%) 172 (81.52%)

Immunocompromised, n (%) 39 (18.48%)

Aplastic anemia 2 (5.13%)

Thalassemia 3 (7.69%)

Congenital neutrophil deficiency 1 (2.56%)

Hematological malignancy 19 (48.72%)

After invasive surgery 2 (5.13%)

Solid malignancy 3 (7.69%)

Kidney disease 2 (5.13%)

Multiple organ failure 1 (2.56%)

Other autoimmune deficiency 6 (15.38%)
f
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cases to be positive when using BALF for mNGS, with a positive rate

of 94.62% (176/186, 95% CI 91.35% to 97.90%). Seventy-eight cases

were positive based on the culture method, with a positive rate of

44.07% (78/177, 95% CI 36.68% to 51.45%). The culture method is
Frontiers in Cellular and Infection Microbiology 05168
regarded as the gold standard for the clinical diagnosis of bacterial

and fungal infections. Comparing the culture method with the

corresponding mNGS results, the TPR, TNR, PPV and NPV of

mNGS were 98.72%, 7.07%, 45.56% and 87.50%, respectively. A
TABLE 2 Diagnostic performance of mNGS compared with traditional methods for non-immunocompromised children with LRTI.

Pathogen
Sample
number

Corresponding
mNGS positive

Traditional
method positive

Double
positive

Concordance
rate (%)

P
value

PCR

MTB 142 1 2 1 99.30 1

MP 104 12 19 6 81.73 0.242

Chlamydia
trachomatis

23 1 0 0 95.65 1

CMV 65 12 16 8 81.54 0.393

HAdV 79 16 20 12 84.81 0.448

RSV 8 2 1 1 87.5 1

Influenza A
virus

21 1 2 1 95.24 1

Influenza B
virus

20 0 0 0 100.00 /

EBV 30 0 4 0 86.67 0.112

Enterovirus 8 0 0 0 100.00 /

Coxsackie
virus

3 0 0 0 100.00 /

Hepatitis B
virus

1 0 1 0 0.00 1

Hepatitis C
virus

2 0 0 0 100.00 /

HSV 1 2 0 0 0 100.00 /

HSV 2 2 0 0 0 100.00 /

Detection of antibody
(serological assay)

MP 136 10 78 8 47.06 < 0.001

Detection of bacterial
and fungal antigens

S.
pneumoniae

88 36 7 6 64.77 < 0.001

Aspergillus
spp.

67 4 0 0 94.03 0.119

Cryptococcus 68 0 1 0 98.53 0.181

Detection of viral
antigens

Influenza A
virus

153 2 1 1 99.35 1

Influenza B
virus

153 0 0 0 100.00 /

HPIV 1 153 2 2 0 97.39 1

HPIV 2 153 0 0 0 100.00 /

HPIV 3 153 11 3 3 94.77 0.052

RSV 153 11 11 8 96.08 1

HAdV 153 18 8 7 92.16 0.063

Rotavirus 14 0 0 0 100.00 /
front
MTB, Mycobacterium tuberculosis; MP, Mycoplasma pneumoniae; CMV, cytomegalovirus; HAdV, adenovirus; EBV, Epstein-Barr virus; RSV, respiratory syncytial virus; RhV, rhinovirus;
HPIV, human parainfluenza virus; HSV, herpes simplex virus. “Concordance rate” represents the total of the positive and negative concordance rates.
The bold represent significant differences in data and can be replaced with regular fonts in this table.
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total of 95.48% (169/177, 95% CI 92.39% to 98.57%) of the BALF

mNGS results were positive, which was superior to the culture

method (c2= 110.92, P <.001) (Supplementary Table 3). Antibody

detection (serological assay) is the main method for the clinical

diagnosis of MP. The positive rate of the serological assay for MP

was 57.35% (78/136, 95% CI 48.93% to 65.77%). The corresponding

BALF mNGS positive rate was 7.35% (10/136, 95% CI 2.91% to

11.80%), which was lower than that for serological detection (c2=
77.68, P <.001). The concordance rate between mNGS and

serological detection for MP was 47.06%, while the concordance

rate between mNGS and PCR was 81.73%, indicating that there may

be a high false-positive rate for serological detection of MP (Table 2,

Supplementary Table 3). PCR and antigen detection were used for

clinically suspected specific pathogens. Most of the concordance

rates of mNGS and the traditional methods were above 85%. The

positive rates of mNGS and traditional methods (PCR, antigen

detection for viruses) for specific pathogens differed, but there were

no significant differences (Table 2). Antigen detection of Aspergillus

spp. and Cryptococcus, did not differ significantly from mNGS,

while for S. pneumoniae, the positive rate of BALF mNGS was

40.91% (36/88, 95% CI 30.43% to 51.39%), which was superior to

the rate for antigen detection of S. pneumoniae (7.95%, 7/88, 95% CI

2.19% to 13.72%) (c2= 25.88, P <.001) (Table 2).

The results showed no significant differences in the detection of

pathogens between mNGS and PCR or in antigen detection, except

for S. pneumoniae. In addition, BALF mNGS was superior to the

culture method and antigen detection for S. pneumoniae, but the

positive rate for diagnosing MP was lower than that of the

serological assay.
3.3 Comparison of pathogens detected by
the culture method and mNGS in non-
immunocompromised children with LRTI

The culture method is the primary method used in clinical

microbiology laboratories for identifying bacterial and fungal

pathogens of LRTI. Comparison of the results for mNGS and

culture for the identification of suspected pathogens in all 177

samples is shown in Figure 1. mNGS and culture were both positive

for 77 of the 177 samples (43.50%). Seven were both negative

(3.95%), 92 samples were positive only by mNGS (51.98%), and

only one sample was positive by culture (0.56%). For the 77 double-

positive samples, the concordance between mNGS and culture was

assessed as match (34, 44.16%), partly match (9, 11.69%), and

mismatch (34, 44.16%) (Figure 1D). For culture results, 36 kinds of

pathogens were detected, namely, 30 kinds of bacteria and six kinds

of fungi (Figures 1A, B). The most frequently detected bacteria were

Pseudomonas aeruginosa (10/177), Klebsiella pneumoniae (10/177)

and Haemophilus influenzae (10/177), followed by Staphylococcus

aureus (8/177) (Figure 1A). Candida albicans (4/177) was the most

frequently detected fungus (Figure 1B). According to mNGS, 90

kinds of microorganisms were determined, namely, 24 kinds of

viruses, 53 kinds of bacteria, 10 kinds of fungi, oneMycoplasma and

two kinds of Chlamydia (Figure 1). Among the microbes detected,

S. pneumoniae (74/177) was the most frequently detected
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bacterium, followed by Staphylococcus aureus (30/177),

Haemophilus influenzae (25/177), Staphylococcus epidermidis (20/

177) and Pseudomonas aeruginosa (13/177) (Figure 1A). The top six

detected viruses were CMV (25/177), rhinovirus subtype A (RhV-

A) (20/177), HAdV-B (18/177), RhV-C (12/177), human

parainfluenza virus type 3 (HPIV3) and RSV (11/177)

(Figure 1C). Candida albicans (15/177) was the most frequently

detected fungus (Figure 1B). Among all BALF samples, only one

case of MTB was detected (Figure 1A). A total of 38 species of

bacteria and six species of fungi were detected only by mNGS.

Fifteen kinds of bacteria and two kinds of fungi were detected only

by culture. mNGS has a broader spectrum for pathogen detection

and can detect more definite or probable pathogens than culture.
3.4 Comparison of types of pathogens
detected in non-immunocompromised and
immunocompromised children with LRTI

According to the mNGS results, the most frequently detected

pathogens were bacteria, followed by viruses and fungi (Figures 1A–

C, 2A). For the 186 samples from 172 non-immunocompromised

children, except for 10 samples for which no pathogens were

detected, 44.32% of the infected children were diagnosed with

single bacterial, viral, fungal, or Mycoplasma infection (30.11%,

53/176; 11.93%, 21/176; 1.14%, 2/176; 1.14%, 2/176). The mixed

infections observed were mainly bacterial-viral (34.09%, 60/176)

and bacterial-viral-fungal (10.23%, 18/176) (Figures 1, 2B). For the

43 samples from 39 immunocompromised children, except for 4

samples for which no microbes were detected, 41.03% of the

children were diagnosed with single bacterial or viral infections

(25.64%, 10/39; 15.38%, 6/39). Mixed infections were mainly

bacterial-viral (33.33%, 13/39) and bacterial-viral-fungal (17.95%,

7/39) (Figure 2C). Compared with the non-immunocompromised

children with LRTI, the immunocompromised children with LRTI

were more susceptible to mixed infections (58.97% > 55.68%, P =

0.708) and fungal infections (25.64% > 17.05%, P = 0.212); however,

there were no significant differences.
3.5 Medication strategy adjustment
according to mNGS detection

Complete information on medication orders was available for

125 of the 211 patients (Supplementary Table 4). Forty-six patients

underwent medication adjustments within three days of obtaining

the mNGS results. Thirty-two patients had their medication

adjusted within 24 hours based on the mNGS results, and in five

patients, their medication was adjusted within two days of obtaining

the mNGS results. For the 37 patients (29.60%, 37/125) whose

medications were adjusted based on the mNGS results within two

days, the adjustments were as follows: antibacterial drugs were

increased for 13 patients; antibacterial drugs were changed for 10;

antifungal drugs were increased for six; antifungal drugs were

reduced for two; antiviral drugs were increased for three; the

antibacterial drug was replaced and the antifungal drug increased
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FIGURE 1

Results of mNGS and culture for non-immunocompromised children with LRTI. (A) The distribution of bacterial infections in 177 non-
immunocompromised LRTI samples detected by mNGS and culture. (B) The distribution of fungal, Mycoplasma and Chlamydia infections in 177
non-immunocompromised LRTI samples detected by mNGS and culture. (C) The distribution of viral infections in 177 non-immunocompromised
LRTI samples detected by mNGS. (D) The concordance between mNGS and culture for 177 non-immunocompromised LRTI samples. Culture results
were used as the standard. Match indicates that all the pathogens detected by culture were also found by mNGS. Mismatch indicates that all the
microorganisms detected by culture were not found by mNGS. Partly match indicates that some of the pathogens detected by culture were found
by mNGS. MTB, Mycobacterium tuberculosis; NTM, nontuberculous mycobacteria; MP, Mycoplasma pneumoniae; CMV, cytomegalovirus; RhV,
rhinovirus; HAdV, adenovirus; EBV, Epstein-Barr virus; RSV, respiratory syncytial virus; HPIV, human parainfluenza virus; HSV, herpes simplex virus.
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FIGURE 2

Types of pathogens based on mNGS in non-immunocompromised and immunocompromised children with LRTI. (A) Pathogen spectrum of infection in
39 immunocompromised children with LRTI detected by mNGS. (B) Pathogen types of infection in 172 non-immunocompromised children with LRTI
detected by mNGS. (C) Pathogen types of infection in 39 immunocompromised children with LRTI detected by mNGS. CMV, cytomegalovirus; EBV,
Epstein−Barr virus; RSV, respiratory syncytial virus; RhV, rhinovirus; HPIV, human parainfluenza virus; HSV, herpes simplex virus.
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for one, the antiviral drug was reduced and the antibacterial drug

replaced for one; and the antibacterial drug was reduced and the

antifungal drug increased for one. 63.20% (79/125) of cases were

abandoned for adjustment due to consistent results between

previous antibiotic usage and mNGS testing. All 125 patients with

mNGS test and complete medication information on medication

orders were improved and discharged.
3.6 Inflammation indicators predict types
of pathogen infection in children with LRTI

Receiver operating characteristic (ROC) curve analysis was

performed to assess the predictive performance of inflammation

indicators and the type of pathogen infection and to calculate the

area under curve (AUC). In this study, 78 samples, namely, 28

bacterial, 12 viral, and 38 bacterial-viral infection samples with

complete procalcitonin (PCT), C-reactive protein (CRP) and

routine blood data, were used for analysis of inflammation

indicators and types of infectious pathogens (Supplementary

Table 5). Univariate logistic regression analysis showed that

neutrophils (NEUT) were able to distinguish single (bacterial or

viral) and mixed (bacterial and viral) infections, and the AUC value

was 0.711 (Figure 3A). PCT, CRP and eosinophils (EO) were also

able to distinguish bacterial infections from viral infections, with

AUC values of 1, 1 and 0.929, respectively (Figures 3B-D).

Multivariate logistic regression analysis showed that four

indicators, NEUT, lymphocyte (LYMPH), monocyte (MONO)

and basophil (BASO), were able to distinguish single infections

from mixed infections (Figure 3E), with an AUC value of 0.767.

However, there were no significant differences in the logistic

regression analysis, and more samples from children with LRTI

are needed to further study the relationship between inflammatory

indicators and different types of infection.
4 Discussion

For LRTI, early etiological diagnosis is necessary. However,

traditional culture methods are time-consuming and have low

positive detection rates. mNGS is suitable for detecting pathogens

that cannot be identified by other detection technologies and for

patients who do not respond to standard antibacterial treatments

(Li et al., 2020). For rare and slow-growing pathogenic

microorganisms, mNGS has considerable advantages, such as

reducing the time required for diagnosis and confirmation of

mixed infections, facilitating targeted antibacterial therapy, and

improving patient prognosis.

We know that the lung is not sterile and supports the existence

of a different microbiota in the upper and lower compartments

(Cabrera-Rubio et al., 2012). Given its operability, several

noninvasive and invasive procedures have been used to surrogate

or proxy lung tissue for sampling of the pulmonary environment

(Yi et al., 2022). BALF, a common method for sampling the lung

microbiome, is more similar to the lower airway than sputum, and

has limited contamination from the upper airway or oral cavity.
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While other microbial sampling methods include bronchial

brushing and tracheal aspirate, the application range is limited

(Yi et al., 2022). BALF specimen collection in children should be

carried out according to the corresponding standard requirements,

but different medical institutions have their own procedures for

BAL operations. During the collection of BALF samples, it is not

possible to establish a personalized sample collection procedure

based on the type of unknown microbe that causes pediatric lung

infections. For this study, BALF sample collection was adapted from

literature and the Guidelines for Specimen Collection,

Transportation and Detection of Microorganisms in Respiratory

Infections in Chinese Children and modified according to clinical

practice. Approximately 20-30 mL of lavage fluid was used in this

study, with a recovery volume of approximately 10 mL.

Among 229 BALF samples from 211 children with LRTI, 215

(93.89%) tested positive by mNGS. Thirteen patients underwent

resampling tests. No. 4 underwent five mNGS tests, and No. 100

underwent four mNGS tests. The first four tests of No. 4 detected S.

pneumoniae, and the last test did not detect it. mNGS testing can

also indirectly reflect the treatment effect. No. 100 was an

immunocompromised child who tested positive for rubella virus

in all four tests, CMV and S. pneumoniae in three tests, and

Pseudomonas aeruginosa in two tests. Although the pathogens

were detected, the patient eventually died of X-linked

immunodeficiency combined with severe pneumonia.

Additionally, 11 patients underwent two mNGS tests. One patient

tested negative in the first test but tested positive for Enterococcus

faecalis and Staphylococcus epidermidis in the second test. One

patient had completely different pathogen results in the two tests,

while the remaining nine patients had partial overlap in the detected

pathogens. mNGS resampling could quantitatively reflect the

dynamic changes in pathogens and the treatment effect in

patients. For 37 of the 125 patients who underwent mNGS,

medication adjustments were performed to facilitate the

optimization of clinical interventions based on the mNGS results.

This suggests that the clinical value of mNGS using BALF in

children with LRTI is substantial. Indeed, the mNGS detection

method was superior to the culture method and was the same as the

PCR identification method (Table 2), proving its effectiveness and

accuracy in our research (Miao et al., 2018; Chen et al., 2021). BALF

mNGS for MP had a lower positive rate than serological assays.

There are three reasons for this result. One reason is that mNGS

does not perform as well as serological assays for MP detection.

Another reason is that MP might cause infection in other systems of

the patient, such as the central nervous system, cardiovascular

system, hematopoietic system, kidneys, or gastrointestinal system,

and is not present in the LRTI samples (Narita, 2016; Al Busaidi

et al., 2017). The third reason is that the high false-positive rate for

MP in serological assays may affect the comparison of diagnostic

performance between the two methods. The antibodies detected by

MP serology in this study were IgM and IgG and could have

indicated a past MP infection. On the other hand, for a reliable

diagnosis of MP infection, paired sera, that is, acute and

convalescent phase sera, are used to demonstrate a 4-fold titer

increase or decrease. However, convalescent serum is difficult to

obtain from children (Youn et al., 2010). In previous reports, a
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FIGURE 3

ROC curve analysis of inflammation indicators and pathogen types. ROC curve analysis showed that NEUT (A) could be used as an indicator to
distinguish single infections from mixed infections, and PCT (B), CRP (C) and EO (D) could be used as indicators to distinguish bacterial infections
and viral infections. (E) ROC curve analysis showed that NEUT, LYMPH, MONO and BASO could be used in combination with multiple inflammation
indicators to distinguish single infections from mixed infections. In ROC analysis, the sample size for the training set was fifty-nine, and the sample
size for the test set was nineteen for distinguishing single (bacterial or viral) and mixed (bacterial-viral) infections. The sample size for the training set
was thirty, and the sample size for the test set was ten for distinguishing single bacterial and viral infections. PCT, procalcitonin; CRP, C-reactive
protein; NEUT, neutrophils; LYMPH, lymphocyte; MONO, monocyte; EO, eosinophils; BASO, basophil.
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single titer ≥ 1:160 or 1:640 was considered to indicate acute MP

infection (Matas et al., 1998; Kim et al., 2007). In our study, a single

titer ≥ 1:40 was considered to indicate MP infection, possibly

resulting in a high false-positive rate.

In this study, S. pneumoniae, CMV and Candida albicans were

the most common bacterium, virus and fungus in children with

LRTI, as in a previous report (Yang et al., 2022). However, the

complete pathogen spectrum in our study differed from the study by

Yang et al. Analyze the possible reason, our study utilized mNGS for

DNA and RNA codetection, which can better assess the diagnostic

value of mNGS in identifying RNA viruses causing LRTI, such as

RSV, influenza virus, HPIV, and coronavirus. Compared to

previous reports, the pathogen spectrum differs in children and

adults or among different severity levels of disease (Huang et al.,

2020; Li et al., 2020; Tsitsiklis et al., 2022; Xi et al., 2022). For

hospitals with limited testing capabilities, empirical therapy based

on local epidemiological characteristics detected by mNGS

is recommended.

LRTI encompass a large and heterogeneous group of infections

caused by bacteria, viruses, fungi and other etiologies. Inflammation

indicators, such as CRP, PCT, and the white blood cell (WBC)

count, are quantifiable, commonly available, and reflect underlying

biological processes as well as disease severity, and their

combination can characterize some specific infections. For

example, PCT and CRP have been proven useful for helping to

differentiate between pure SARS-CoV-2 or secondary bacterial

infection and guiding the use of antibiotic therapy (Pink et al.,

2021), and the PCT, CRP and WBC count can be combined as

effective indicators for the identification of acute bacterial or

nonbacterial infections in children (Li et al., 2021). Thus, the

combination of multiple inflammation indicators has crucial

clinical value. mNGS is high throughput and unbiased and

simultaneously identifies bacterial, fungal, viral, parasitic, atypical

and novel pathogens (Gu et al., 2019). In contrast, traditional

culture methods can only identify culturable bacteria and fungi.

Although PCR and antigen detection are rapid and accurate for

pathogen identification, it requires prior knowledge or assumption

of the pathogen type, and the detection throughput is relatively

limited (Qian et al., 2020; Diao et al., 2021). Therefore, only mNGS

can completely distinguish different types of pathogen infections.

According to the results of mNGS in this study, the common

infections in children with LRTI were bacterial, viral, and mixed

bacterial-viral infections. In this study, univariate and multivariate

logistic regression were used to assess the relationship between

inflammation indicators and the types of infectious pathogens.

NEUT were used to distinguish single and mixed infections; PCT,

CRP or EO were used to distinguish bacterial and viral infections.

Multivariate logistic regression analysis showed that NEUT,

LYMPH, MONO and BASO could be used to distinguish single

infections from mixed infections. Despite no significant difference,

these measures are feasible and have important clinical value. The

lack of significance might be due to an insufficient sample size. PCT

or CRP has a high AUC value for distinguishing bacterial and viral
Frontiers in Cellular and Infection Microbiology 11174
infections, consistent with previous reports (Simon et al., 2004), but

the inadequate sample size contributed to the exceptionally high

AUC values. More samples from children with LRTI are needed to

further investigate the relationship between inflammatory

indicators and different types of infection.

mNGS is changing the way physicians diagnose and treat

infectious diseases due to its wide range of applications, including

assessing antimicrobial resistance, the microbiome, human host

gene expression and oncology (Chiu and Miller, 2019). Empirical

use of broad-spectrum antibiotics early in the course of treatment

results in false-negatives when using traditional detection

methods, although mNGS is less affected by antibiotic use

(Miao et al., 2018; Diao et al., 2021). mNGS may reveal a

massive amount of clinically irrelevant pathogens in the

diagnosis of pulmonary infections, but it may improve the

diagnostic yield, which might actually benefit clinical decision-

making (Qian et al., 2020). Clinicians should combine traditional

tests, clinical manifestations, immune status, underlying diseases

and antibiotic use to determine the clinical significance of the

microbe. In a subset of patients with underlying diseases or low

immunity, colonization may lead to LRTI (Langelier et al., 2018b;

Diao et al., 2021). Although mNGS is considered a promising

experimental technique, there are several barriers to overcome,

such as depletion of human nucleic acids, discrimination between

colonization and infection, and high cost, before large scale

clinical application (Diao et al., 2021).

This study is not without limitations. The BALF mNGS results

were not confirmed by PCR or other traditional methods; thus, the

results for microorganisms detected by mNGS should be combined

with epidemiological and clinical characteristics before a pathogenic

microbe can be identified. In addition, the sample size was

insufficient to evaluate the relationship between the combination

of inflammation indicators and the types of infectious pathogens

based on the results of mNGS. For mNGS, there is no uniform

standard for modifying or guiding clinical treatment strategies (Li

et al., 2020). Finally, we suggest that mNGS may have high

sensitivity for identifying early pathogens for which detection is

usually time-consuming. With proper patient selection, sample

processing and data interpretation, mNGS is expected to be a

promising technique for the diagnosis and tailored treatment of

clinical infectious diseases.

In conclusion, mNGS was found to be effective for pathogen

diagnosis and informative for medication adjustment in children

with LRTI in this retrospective study. Although mNGS has

limitations, it has advantages compared with traditional methods.

More pathogens can be detected using BALF mNGS, and it is also

suitable for use as a supplementary method.
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Alterations of lower respiratory
tract microbiome and short-
chain fatty acids in different
segments in lung cancer: a
multiomics analysis

Yong Zhang1,2†, Xiangxiang Chen1†, Yuan Wang3†, Ling Li4,
Qing Ju1, Yan Zhang1, Hangtian Xi1, Fahan Wang5, Dan Qiu1,
Xingchen Liu5, Ning Chang1, Weiqi Zhang6, Cong Zhang7,
Ke Wang2*, Ling Li2* and Jian Zhang1*

1Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth
Military Medical University, Xi’an, China, 2National Translational Science Center for Molecular
Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China, 3Department
of Microbiology, School of Basic Medicine of Fourth Military Medical University, Xi’an, China,
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Introduction: The lower respiratory tract microbiome is widely studied to

pinpoint microbial dysbiosis of diversity or abundance that is linked to a

number of chronic respiratory illnesses. However, it is vital to clarify how the

microbiome, through the release of microbial metabolites, impacts lung health

and oncogenesis.

Methods: In order to discover the powerful correlations between microbial

metabolites and disease, we collected, under electronic bronchoscopy

examinations, samples of paired bronchoalveolar lavage fluids (BALFs) from

tumor-burden lung segments and ipsilateral non-tumor sites from 28 lung

cancer participants, further performing metagenomic sequencing, short-chain

fatty acid (SCFA) metabolomics, and multiomics analysis to uncover the potential

correlations of the microbiome and SCFAs in lung cancer.

Results: In comparison to BALFs from normal lung segments of the same

participant, those from lung cancer burden lung segments had slightly

decreased microbial diversity in the lower respiratory tract. With 18

differentially prevalent microbial species, including the well-known

carcinogens Campylobacter jejuni and Nesseria polysaccharea, the relative

species abundance in the lower respiratory tract microbiome did not

significantly differ between the two groups. Additionally, a collection of

commonly recognized probiotic metabolites called short-chain fatty acids

showed little significance in either group independently but revealed a strong

predictive value when using an integrated model by machine learning.

Multiomics also discovered particular species related to SCFAs, showing a
frontiersin.org01177

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1261284/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1261284/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1261284/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1261284/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1261284/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2023.1261284&domain=pdf&date_stamp=2023-10-16
mailto:liling25@fmmu.edu.cn
mailto:wangke@fmmu.edu.cn
mailto:zjfmmu19700227@163.com
https://doi.org/10.3389/fcimb.2023.1261284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2023.1261284
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Abbreviations: LC, lung cancer; NSCLC, Non-Small Ce

Broncho Alveolar Lavage Fluid; NLS(Normal), Norma

(Tumor), Tumor-burden lung segment; SCFAs, Short C

Acetic Acid; PA, Propionic Acid; BA, Butyric Acid; IBA

Valeric Acid; IVA, Isovaleric Acid; CA, Caproic Acid.

Zhang et al. 10.3389/fcimb.2023.1261284

Frontiers in Cellular and Infection Microbiology
positive correlation with Brachyspira hydrosenteriae and a negative one with

Pseudomonas at the genus level, despite limited detection in lower airways. Of

note, these distinct microbiota and metabolites corresponded with clinical traits

that still required confirmation.

Conclusions: Further analysis of metagenome functional capacity revealed that

genes encoding environmental information processing and metabolism

pathways were enriched in the lower respiratory tract metagenomes of lung

cancer patients, further supporting the oncogenesis function of variousmicrobial

species by different metabolites. These findings point to a potent relationship

between particular components of the integrated microbiota-metabolites

network and lung cancer, with implications for screening and diagnosis in

clinical settings.
KEYWORDS

lung cancer, lower respiratory tract microbiome, metagenomic sequencing, short chain
fatty acids, machine learning
Introduction

A growing body of evidence implies that perturbations of the

compositions within the human microbiome exert great influence

on a broad array of human diseases, including a set of cancer types

(Cullin et al., 2021; Sepich-Poore et al., 2021; Yang et al., 2023). As a

widely accepted perspective, gut microbiota, due to vast microbial

coverage and quantity within the digestive tract, is confirmed to

shed bidirectional light on lung cancer by crosstalk between

microbiota and host cells (Liu et al., 2019; Dong et al., 2021;

Dohlman et al., 2022). Compared with remote modulation by gut

microbiome-released metabolites, microbiota in local pulmonary

microecological environments, which were previously considered to

be sterile, is gradually receiving widespread attention in

oncogenesis, development, and drug resistance of lung cancer

(Routy et al., 2018; Tsay et al., 2018; Patnaik et al., 2021; Zitvogel

and Kroemer, 2021). Importantly, colonization of microbes in the

lungs, especially those in the lower respiratory tract, features much

lower bacterial biomass but higher relative diversity, which may be

reversed with elevated bioburden and descending bacterial diversity

followed by several taxa in a significant proportion in suppurative

and infectious diseases (Lanaspa et al., 2017; Man et al., 2017; Singh

et al., 2017). However, only limited research focused on the

potential role of the lower respiratory tract microbiome in the

initiation and development of lung cancer and further studies are

still needed for a detailed exploration of this.

Analysis of the lower respiratory tract microbiome is still

intractable, partially due to the complexity of sample detection
ll Lung Cancer; BALF,

l lung segment; TBLS

hain Fatty Acids; AA,

, Isobutyric Acid; VA,

02178
and the low biomass planted in the local respiratory tract, impeding

the accuracy and sensitivity of bacterial community processing and

sequencing (Drengenes et al., 2019). Different from conventional

16S rRNA gene sequencing, metagenomics seems more effective in

eliminating latent hosted and operational contamination, making it

an alternative to further uncover the microbial composition of the

lower respiratory tract microbiome (Kurian et al., 2020; Fromentin

et al., 2021; Lamoureux et al., 2022). Of note, although characterized

with significantly lower bacterial communities than those detected

by oropharyngeal swabs or washes, sputum samples, and bronchial

aspirates from the upper airway, bronchoalveolar lavage fluids

(BALFs) are usually given preference to sequence lower

respiratory tract microbiome and their metabolites (Glendinning

et al., 2017; Tsang et al., 2021).

Short-chain fatty acids (SCFAs), which are chemically

composed of a carboxylic acid moiety and a small hydrocarbon

chain under six including acetic, propionic, and butyric acids, are a

subset of intermediate fatty acid metabolites mainly produced by

anaerobic bacteria in the intestinal tract during the fermentation of

fibers and dietary carbohydrates. SCFAs perform a beneficial

function in the maintenance of health and in guarding against

cancers (Sivaprakasam et al., 2016; Mirzaei et al., 2021; Van Der Hee

and Wells, 2021). Mechanically, SCFAs are known to modify

extensive cellular processes by direct activation of G protein-

coupled receptors (GPCRs) (Kim et al., 2013), inhibition of

histone deacetylases (HDACs) (Shen et al., 2017), and

stabilization of the hypoxia-inducible factor (HIF) signaling

pathway (Shen et al., 2017) in a ligand-receptor interaction by

regulating epithelial homeostasis and stimulating anti-tumor

immune activity (Trompette et al., 2014; Kim et al., 2016; Zou

et al., 2018; Matsushita et al., 2021). Intriguingly, with the further

exploration of the microbiome in a liquid layer on the surface of the

respiratory tract and alveoli, it has been observed that lower

respiratory tract-derived SCFAs might also be involved in the
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modulation of the host metabolism and immunity homeostasis. The

inhibitory function of SCFAs on lung cancer deserves

additional attention.

In order to address the correlation of lower respiratory tract

microbiome and SCFAs, as well as their potential interaction with

lung cancer, we investigated the microbial communities and SCFAs

of the lower respiratory tract by metagenomic and targeted

metabolome sequencing in BALF from tumor-burden lung

segments and ipsilateral non-tumor sites of the same lung cancer

patients. Employing an in-depth multiomics combined analysis, we

aimed to validate the predictive role of SCFAs and specific

microbiota in tumorigenesis and their predictive effects in the

diagnosis and prevention of lung cancer in clinical practice.
Materials and methods

Study design and participant recruitment

The study cohort consisted of a subset of hospitalized subjects

enrolled in our Clinical Humoral Biological Sample Library. We

collected 128 cases that, according to their CT scanning

characteristics, were suspected lung cancer (LC) cases, and

excluded the inappropriate patients in light of our clinical

research design (#2021LC2115). Details of inclusion and

exclusion criteria and workflow are displayed in Table 1; Figure
Frontiers in Cellular and Infection Microbiology 03179
S1. A final diagnosis of LC depended on pathological characteristics

of tissue samples from electronic bronchoscopy-mediated needle

aspiration biopsy after BALF collection. At enrollment, we included

patients with lung cancer who had not been treated with

pharmacological interventions for the previous 3 months, such as

anti-tumor regimes, antibiotics, probiotics intake, and other

potential preparations that might affect local and extensive

microbial compositions. Exclusion criteria included patients with

concomitant infectious or inflammatory respiratory diseases,

tumor-associated obstructive pneumonia, and patients using

glucocorticoid drugs in the preceding 6 months. All patients fully

understood the objectives and were volunteers for potential

inspection risks. Each subject signed an informed consent

approved by the Ethics Committee of the First Affiliated Hospital

of the Air Force Medical University; the Academic Integrity

Supervision Committee of Air Force Military Medical University

carried out supervision of the whole course within the study.
Sample collection and preservation

Samples processed for microbiota analysis were collected from

patients consulting for medical assistance in our center who needed

electronic bronchoscopy-mediated needle aspiration biopsy to reach

a definite diagnosis. Before that, bronchial and alveolar lavage fluid

was obtained from normal lung segment (NLS) and tumor-burden

lung segments (TBLS) successively within the same lung lobe. Each

lavage was treated with preheated sterile physiological saline for 50-

60ml, maintaining a stable recovery rate of >60%. All samples

intended for microbial analysis were under centrifugation at 4°C

12000rpm for 40 min. Centrifugal sedimentation and supernatant

were segregated and restored at -80°C for microbial and targeted

metabolomics analysis concurrently until processing. All processes

strictly abided by sterile operating standards.
DNA isolation and shotgun
metagenomics sequencing

BALF precipitation samples (1-3mg) were weighed in 2 ml

microcentrifuge tubes and placed on ice. Total DNA from the lower

respiratory tract microbiotas was extracted using the QIAamp Fast

DNA Stool Mini Kit (QIAGEN, Germany) per the manufacturer’s

instructions (see the QIAamp Fast DNA Stool Mini Kit Handbook,

www.qiagen.com/handbooks). The degradation degree and

potential contamination of the DNA were analyzed using 1%

agarose gels. The DNA purity was determined using the

NanoPhotometer® spectrophotometer (IMPLEN, CA, USA).

DNA samples were further diluted with sterile water to an OD

value between 1.8 and 2.0, measuring with the Qubit® dsDNA

Assay Kit in Qubit® 2.0 Fluorometer (Life Technologies, CA, USA).

One microgram of qualified DNA was used to construct the library

via NEBNext® Ultra DNA Library Prep Kit for Illumina (NEB,

USA). DNA samples were fragmented to 350 bp by sonication, and

then the DNA fragments were end-polished, A-tailed, and ligated

with the full-length adaptor for Illumina sequencing with further

PCR amplification. Libraries were analyzed for size distribution
TABLE 1 Demographic and clinical characteristics of the cohort.

Variable Number (Mean ± SD or %)

Age (yrs) 63.59 ± 8.95

Sex (male,%) 20 (74.07)

BMI (kg/m2) 23.12 ± 2.35

Smoking status (Yes,%) 15 (55.56)

Pathological types (%)

Adenocarcinoma 12 (44.44)

Squamouscarcinoma 9 (33.33)

Small cell lung cancer 5 (18.52)

Others 1 (3.70)

Mutations (%)

EGFR 7 (25.93)

Others 2 (7.40)

None 18 (66.67)

Clinical stages (%)

I 0 (0)

II 2 (7.41)

III 2 (7.41)

IV 16 (59.25)

Unknown 7 (25.93)
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using the Agilent2100 Bioanalyzer (Agilent, USA) and quantified

via real-time PCR to keep size distribution of DNA fragments

>3nM. The libraries were then sequenced on an Illumina PE150

HiSeq platform.
Preprocessing of sequencing results and
metagenomic assembly

Raw data obtained from the Illumina PE150 sequencing

platform were preprocessed by Readfq (V8, https://github.com/

cjfields/readfq) to obtain clean data for subsequent analysis. The

clean data were utilized for assembly analysis with MEGAHIT

software (v1.0.4-beta in a –presets meta-large (–end-to-end, –

sensitive, -I 200, -X 400) parameter settings, and the Scaftigs were

obtained by breaking the resulted scaffolds from the N junction. All

the sample details on the quality of their assemblies are present in

Table S1.
Gene prediction and abundance analysis

The Scaftigs (≥ 500 bp) were submitted to predict the open

reading frame (ORF) using MetaGeneMark (V2.10; http://

topaz.gatech.edu/GeneMark/) to filter out the excessive

information with a length less than 100nt, and CD-HIT software

(V4.5.8; http://www.bioinformatics.org/cd-hit/) to eliminate

redundancy. Clean data of each sample was aligned to the initial

gene catalog by using Bowtie2 (V2.2.4; https://bowtie-

bio.sourceforge.net/bowtie2/) to calculate the number of reads of

the genes on each sample alignment, with parameter settings: –end-

to-end, –sensitive, -I 200, -x 400. Genes with reads ≤2 in each

sample were filtered out to finally determine the gene catalog

(Unigenes) for subsequent analysis (Tables S2, S3). Based on the

number of reads aligned and the length of the gene, the abundance

of each gene in each sample was calculated by the following

formula:

Gk −
rk
Lk

� 1

on
i=1

ri
Li

in which r is the number of gene reads on alignment, and L is

the length of the gene (Qin et al., 2010). Based on the abundance of

each gene in the gene catalog in each sample, basic information

statistics, core-pan gene analysis, correlation analysis between

samples, and Venn diagram analysis of gene number

were performed.
Species annotation

The obtained unigenes were used to blast the sequences for the

bacteria, fungi, archaea, and viruses, which were extracted from the

NR database (V20180102; https://www.ncbi.nlm.nih.gov/) of NCBI
Frontiers in Cellular and Infection Microbiology 04180
using DIAMOND software (V0.9.9.110; https://github.com/

bbuchfink/diamond/). We used the lowest common ancestor

(LCA) algorithm to obtain the number of genes and abundance

information for each sample in each taxonomic hierarchy

(kingdom, phylum, class, order, family, genus, and species).

DIAMOND software was also used to blast unigenes to

functional databases, including the KEGG (V20180101; http://

www.kegg.jp/kegg/) databases, for the blast results, and the best

blast hit was used for subsequent analysis.
Advanced analysis of metagenomic data

According to the alignment results, the relative abundance at

different functional levels was calculated (the relative abundance at

each functional level was equal to the sum of the relative abundance

of genes annotated at that functional level). The gene number table

of each sample at each taxonomy level was derived from the result

of functional annotation and gene abundance table. The number of

genes with a certain function in a sample was equal to the number of

genes whose abundance was non-zero among the genes annotated

with this function. Based on the abundance table at each taxonomy

level, annotated genes statistics, relative abundance overview, and

abundance clustering heat map were carried out, combined with

PCA and NMDS analysis of dimension reduction, ANOSIM

analysis of inter-/intra-group differences based on functional

abundance, metabolic pathway comparative analysis, as

well as Metastat and LEfSe analysis on the inter-group

functional difference.
Quantification of BALF metabolites

SCFA contents in BALF supernatant were detected by Metware

Biotechnology Co., Ltd. (Wuhan, China) with gas chromatography-

tandem mass spectrometry analysis. Briefly, BALF samples were

thawed and vortexed for 1 min prior to analysis. A total of 50mL of

samples were mixed with 100mL of phosphoric acid (0.5% v/v)

solution, vertexing for 3 min and ultrasonicating for 5 min. After

that, the mixture was centrifuged at 12000 rpm for 10 min at a

temperature of 4°C. The supernatant was collected and used for GC-

MS/MS analysis. Agilent 7890B gas chromatograph coupled to a

7000D mass spectrometer with a DB-5MS column (30m length ×

0.25mm inner diameter × 0.25mm film thickness; J&W Scientific,

Folsom, CA) was used. Helium was used as the carrier gas, at a flow

rate of 1.2mL/min. Injections were made in the spitless mode, and the

injection volume was 2mL. The oven temperature was held at 90°C for

1 min, raised to 100°C at a rate of 25°C/min, raised to 150°C at a rate

of 20°C/min, and held at 150°C for 0.6 min. Then, the temperature

was further raised to 200°C at a rate of 25°C/min and held at 200°C

for 0.5 min. After running for 3 min, all samples were analyzed in

multiple reaction monitoring mode. The temperature of the injector

inlet and transfer line were held at 200°C and 230°C, respectively.
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Random forest and machine learning
prediction models

The random forest algorithm was applied to elucidate the

influence of candidates on lung cancer prediction by repeated

cross-validation. Further analyses were carried out in R software

(v3.5.2). The LASSO logistic regression model was performed to

select the most useful prognostic risk factors for SCFA candidates in

BALFs collected from lower respiratory tracts. All samples were

identified using dummy variables. We used R software version 3.6.1

and the “glmnet” package (R Foundation for Statistical Computing,

Vienna, Austria) to perform the LASSO logistic regression analysis.
Statistical analysis

The significance of the differences between groups was analyzed

using the Wilcoxon rank-sum test and ANOSIM with P value< 0.05

(5% level of probability) with VEGAN of R package being

considered to be significant and denoted as follows: *P<0.05,
**P<0.01, and***P<0.001. The statistical significance was adjusted
for multiple testing using FDR correction with the cutoff adjusted p-

value< 0.05 unless otherwise stated. The receiver operating

characteristic curve (ROC) analysis was performed using the R

project, and the discriminative power of the predictor was assessed

by calculating the area under the receiver operating characteristic

curves (AUC). A variable with an AUC above 0.7 was considered

useful. Significant differences between corresponding subgroups

were determined via an unpaired t-test and a false discovery rate

approach using the two-stage linear step-up procedure with a false

discovery rate (Q) of 1%. Testing conditions were analyzed

individually, without assuming a consistent SD. Statistical

analysis was performed with GraphPad Prism (V9.0.0 for

Windows; www.graphpad.com).
Frontiers in Cellular and Infection Microbiology 05181
Results

Study group enrollment
and clinical characteristics

From May 2022 to December 2022, we collected 128 patients

with highly suspected lung cancer based on computed tomography

scanning (CT) with typical malignant imaging features, including

solitary or multifocal mass nodular shadow, unsmooth edges with a

burr, and microvascular insertion, in light of independent judgment

from our Pulmonary Nodule Diagnosis and Treatment Center.

Typical CT scanning and corresponding 3D view of the targeted

lesion within a representative patient among this cohort was

displayed as follows (Figures 1A, B). All subjects were evaluated

to undergo lung malignant lesion biopsy after bronchoalveolar

lavage in adjacent normal segments of the ipsilateral lobe and

tumor-burden lung segment via electronic bronchoscope

(Figure 1C). After the exclusion of benign lesions and other

interference factors of sample acquisition, only those patients

with pathological diagnoses of malignancy were successfully

enrolled, with follow-up sequencing and analysis being carried

out (Figure 1D). The demographics of the participants are shown

in Table 1 and specific inclusion criteria and other exclusion criteria

are displayed as a flowchart in Figure S1. Since the samples were

also taken as the self-control of the same patient, we did not set up a

blank control group in this study.
Lower respiratory tract
microbiome diversity decreased
in tumor-burden segments

To determine compositional diversity between tumor-burden

lung segment (TBLS) and ipsilateral normal lung segment (NLS),
A B D

C

FIGURE 1

Study group enrollment and clinical characteristics. (A) Chest CT scan images in lung and mediastinal windows of a representative patient in the
same slice. Red arrow, suspected malignant lesion. R, right; L, left. (B) 3D reconstruction of lung lesions within the vulnerable segment. Indicated
annotations are listed on the right. (C) Sample collection scheme and corresponding processes. (D) Representative images of HE staining in the
patient mentioned above. Scale bar, 200mm (10×) and 50mm (40×, inset).
frontiersin.org

http://www.graphpad.com
https://doi.org/10.3389/fcimb.2023.1261284
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fcimb.2023.1261284
we drafted those precipitations of BALF samples collected from

corresponding pulmonary segments or subsegments profiling with

shotgun metagenomics sequencing, generating 1.3Gbp of

sequencing data on average, and further analyzed their alpha

diversity indices for the subset of final enrolled samples.

Consequently, multidimensional scaling (MDS), an ordination

plot based on Bray-Curtis dissimilarities, revealed distinct lower

respiratory tract microbial compositions among both groups at the

species level (Stress=0.1311; ADONIS P**=0.001; ANOSIM

P**<0.001), with the majority of TBLS samples overlapping with

the NLS subjects (Figure 2A). Additionally, the alpha-diversity

comparison of indicated groups also demonstrated low taxonomic

abundance in the TBLS-BALF subgroup by Simpson index

(**P<0.001, Wilcoxon rank sum test), which had no significance
Frontiers in Cellular and Infection Microbiology 06182
in the Shannon index (Figure 2B). Across the board, however, the

lower respiratory tract microbiome at both the phylum and genus

levels rarely fluctuated no matter which samples we sequenced

(Figures S2A, B, 2E, F). Other beta diversity analyses seemed to

reach the same conclusion as mentioned above (Figures S2C, D).

These results suggested a perspective that despite restricted loaded

biomass, minor alterations in the lower respiratory tract microbiota,

especially several key species, facilitated a microbiota prone to

oncogenesis and tumor development.

To further explore the differences among species that presented

spatially in NLS and TBLS at the time of microscopic examination,

we identified 18 differentially abundant microbial species in the

comparison between both groups (FDR P<0.05, Wilcoxon rank-

sum test) (Figure 2C). Meanwhile, linear discriminant analysis
A B

D E

C

FIGURE 2

Relative abundances in lower respiratory tract microbiome and comparison of diversity analysis. (A) MDS plot of normal and tumor-burden lung
segments in the same lung cancer patients based on the lower respiratory tract microbial compositions using Bray-Curtis dissimilarities
(Stress=0.1311; ADONIS P=0.001; ANOSIM P<0.001). Intra-patient samples are linked to each other. (B) Alpha-diversity comparison of indicated
groups by the Shannon index (No significance, Wilcoxon rank sum test) and Simpson index (**P<0.001, Wilcoxon rank sum test). (C) Heatmap of
differentially abundant species detected in the comparison of two groups within each sample. (D) Distribution diagram of the LDA score in both
groups and results of the LEfSe analysis based on the LDA score to screen the candidate biomarkers. (E) Cladogram based on different candidates
from (D). The red and blue nodes represent the microorganisms that mattered most in each group. MDS, multidimensional scaling. Normal, normal
lung segments; Tumor, tumor-burden lung segments. NS, no significance.
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effect size (LefSe) was performed to uncover the potential the

tumor-related species biomarkers. We compared the microbiota

compositions of the above candidates by the LDA score of the

species (log10) to enlighten the distribution diagram of species

differences (Figure 2D), finding that the relatively abundant

microbial species were differentiated in TBLS and NLS (Figure

S3A). CIRCOS plot of taxonomic abundance within each sample

also verified the outcomes mentioned above (Figure S2G). A species

co-abundance network among this differential genus between both

lung segments further suggested that the high abundance of C.

jejuni in TBLS might promote the dominance of Firmicutes and

impede Bacillota by their intra-phylum positive associations along

with the negative associations with Bacillota species (Figure S3B).

Particularly, a Cladogram based on differential candidates also

revealed that specific taxa related to lung cancer differed from

those in normal lung segments, characterized by genus enrichment

of Campylobacter, Enterobacter, Debaryomyces, and Fusobacterium

in tumor-burden lung segments, which were replaced by Bacillus,

Klebsiella, and Acinetobacter in normal lung segments (Figure 2E

and Table S4), indicating the consistency of pathogenic microbial

genus from biological evolutional perspectives. Collectively, these

results further illustrated that compositional variations existed in

cancer-loaded segments, some of which were quite distinct from

those in healthy lower respiratory tract. Given the transient and

significantly variable nature of normal lung microbiota in a

relatively open environment (Dickson et al., 2015), the presence

of a specific community could signal an ongoing pathological

process providing bacteria with nutrients, a process that also

deserves additional attention.
Conjoint predictive value of
multicomponent SCFAs in
tumoral associations

Except for the direct cytotoxic effects of the majority of viruses

and quite limited bacteria species, metabolites accounted for the

interaction between microorganisms and hosts (Bhatt et al., 2017;

Sepich-Poore et al., 2021). Short-chain fatty acids derived from the

intestine are important protective lipid metabolites released by

anaerobic or facultative anaerobic microbiomes to regulate distant

primary tumors (Kim et al., 2016). Despite the extensive literature

on the inhibitory function of gut microbiome-derived SCFAs,

several lower respiratory tract microbiota at the distal end of the

tumor lesion could utilize SCFAs to regulate the local ecological

environment (Jin et al., 2018; Yue et al., 2020). Correspondingly, to

examine the dominant SCFAs in lung cancer blockade, except for

the influences from the gut microbiome, we further detected SCFAs

in BALF samples mentioned above to screen out the predictive

components of SCFAs in lung cancer initiation or those associated

with clinical diagnosis. To our surprise, SCFAs were generally

expressed at a low level in the lower respiratory tract and were

slightly increased in the TBLS group but with no significance

(Figure 3A). This outcome seemed difficult to confront in light of

the probiotic effects of SCFAs in preventing tumor process, and
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inevitable bias or other unknown correlated noise could have

contributed to the outcome. If anything, the release of SCFAs-

oriented from the lower respiratory tract within different lung

segments of the same lung cancer patient was prone to be

identical, regardless of the differentiated microbial composition,

which was in line with previous studies.

From a practical perspective, however, exploring the predictive

value of a single metabolite under sophisticated circumstances in

lower airways seemed unacceptable, due to the potent interactional

multiplicities between the microbiome and the host. Thus, we

reconstructed a machine learning-based multivariate prediction

model to clarify the predictive function of SCFAs. LASSO

regression coefficient profiles of the seven SCFA candidates

showed that priorities for prediction were given to combined

metabolites of three SCFAs, namely, CA, VA, and IBA

(Figures 3B, S4A), which was also confirmed by the Random

forest prediction model and ROC curve based on repeated cross-

validation from SCFA candidates (Figures 3C–E, S4B). Despite

restricted accuracy of under 50%, the predictive value of this

combined model should be highlighted, probably because it

presented a new lung cancer diagnostic approach based on

metabolic exhalation detection, deserving further validation in

clinical settings.
Metagenomic and targeted metabolomic
analysis with clinical characteristics

The production of SCFAs bears a tight correlation with

anaerobic or facultative anaerobic microbiome in guts, supported

by sufficient findings that the fluctuation of microbial metabolites

may be attributed to microbiome compositional diversity (Asnicar

et al., 2021). Next, we implemented an integrated analysis of the

candidate microbial species and SCFAs, in order to screen out

dominant SCFA-associated microbes in tumor-burden lower

respiratory tract. As a consequence, CCA profiling showed that

the potential correlation between SCFAs and differential microbes

mattered in tumor-burden segments with merely low efficiency

(Figure 4A), partially due to restricted abundance and sample

capacity. Heatmap of microbial species and SCFAs might present

explicit correlations of differential microbes and SCFAs (Figure 4B),

indicating a positive SCFA correlation with Brachyspira

hydysenteriae and a negative connection with Pseudomonas at the

genus level. These results further illustrated that the microbial-

metabolic prediction model facilitated cancer screening and

diagnosis by bronchoscopy-dependent BALF examination, which

still deserves detailed evaluation in a large-scale population.

Furthermore, as to significant correlations with clinical

characteristics mentioned in other studies (Ubachs et al., 2021),

we found that SCFAs and differential microbes were bound up with

various clinical factors (Figures 4C, D), including sex, smoking

status, TNM stages, and tumor gradings, although these

correlations might be triggered indirectly by other unverified

factors. Owing to the lack of experimental verifications of

indicated candidates correlated with these characteristics,
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additional preferences should be given in clinical studies to further

demonstrate the underlying role of the lower respiratory

tract microbiome.
Microbial metabolite-mediated host cell
signaling activated in TBLS

The Bray-Curtis dissimilarities based on KEGG pathway

abundances illustrated the marginally separate clusters of NLS and

TBLS (ANOSIM, **P<0.01) (Figure 5A). The KEGG pathway

enrichment analysis of the metagenomic data showed that activated

pathways in TBLS overlapped with those in NLS, whereas minor

differences were detected only in environmental information

processing and metabolism-related cascades, including cellular

community-prokaryotes, signaling transduction, membrane

transport, metabolism of cofactors and vitamins, and carbohydrate

metabolism (Figures 5B, S5A, B). It is reasonable to speculate that

microbe-mediated host interactions were achieved by microbial

metabolites, which might induce oncogenesis or other tumor

processing in a complicated microenvironment in lower respiratory

tracts, further validated by a restricted proportion of functional

cascades based on the KEGG pathways (Figures 5C, S5C). These
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results were also in accordance with various previous works that

showed that the utilization of complex metabolites to induce local

chronic inflammatory stimulation may be one of the dominant

factors in microbial-mediated tumor development and progression

(Hosseinkhani et al., 2021).
Discussion

In this study, we aimed to address the compositional

discrepancy between the microbial components detected in BALF

samples obtained from healthy lung segments and tumor-burden

lung segments in the same patient by electronic bronchoscopy

mediated invasive sampling approach, focusing on adults with

untreated lung cancer. Our findings confirmed niche specificity of

microbiota in malignant lesions loaded segments and normal

bronchial surface but indicated that the architecture of the

bacterial communities in two types of different segments slightly

differed with quite limited differential bacterial abundance, which

might contribute to oncogenesis in a dynamic process. Of the

intermediate metabolites of lipid metabolism detection, our

observations collectively supported that the specific original

microbiota related closely with the production and release of
A

B

D

E

C

FIGURE 3

Difference analysis of SCFAs in the lower respiratory tract. (A) Relative detection (mg/ml) of indicated SCFAs in BALF samples collected from
corresponding groups. P values are listed on each histogram. (B) LASSO regression coefficient profiles of the seven variables within SCFAs. Each line
represents a variable. Lambda.min, the vertical dotted line at 3; Lambda.1se, the vertical dotted line at 2. (C) Accuracy of random forest prediction
model based on repeated cross-validation from SCFA candidates. (D) Variable importance ranking in the effective SCFAs random forest prediction
model with Mean Decrease Accuracy and Gini, respectively. LASSO, least absolute shrinkage, and selection operator. (E) ROC curve of SCFA-based
LASSO predictive model, AUC=0.993.
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A

B

C

FIGURE 5

Relative abundance of KEGG pathway in lower respiratory tract microbiome. (A) MDS plot of samples based on KEGG pathway abundances using
Bray-Curtis dissimilarities (Stress=0.0834; ADONIS P=0.02; ANOSIM P<0.001). (B) Relative abundance of candidate pathways at Level 1 and Level 2
in healthy and tumor-burden lung segments, respectively. (C) Distribution of differentially abundant KEGG pathways (FDR, Wilcoxon rank-sum test)
detected in the comparison of corresponding samples. ** means P<0.01.
A B

DC

FIGURE 4

Metagenomic and metabolomic combined analysis and indicated correlation with clinical characteristics. (A) CCA biplot of the candidate microbial
species and SCFAs. Each microbial sample is marked in the plot. (B) Heatmap of the correlation between candidate microbial species and SCFAs.
(C, D) Heatmaps of potent correlation between candidate microbial species, SCFAs, and clinical information of enrolled cohort, respectively.
*P<0.05, **P<0.01, and***P<0.001. CCA, Canonical correspondence analysis.
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SCFAs in this cohort, recognizing that the dominance of a set of

candidate species in tumor-burden lung segments might be the

main genus of bacteria producing SCFAs, supporting that a single

metabolite weakened the predictive value and that a combined

model would be a priority. Additionally, our analyses by multiple

approaches consistently found that microbiota willingly promotes

oncogenesis by activating host cell signaling by microbial

metabolites, including SCFAs. This finding might be opposite to

those of previous studies, suggesting that this deserves experimental

verifications and clinical analysis in detail.

Commensal microbial dysbiosis has been regarded as a primary

carcinogenic factor to carcinogenesis and progression by bilateral

interaction between microbiota and the host, including microbes in

tumor-resident intracellular microbiota (Fu et al., 2022), intra-

tumoral extracellular microbiota (Nejman et al., 2020), gut

microbiome (Sepich-Poore et al., 2021), and those in localized

microenvironment. Technically, the outburst of metagenomic

sequencing dispelled the cloud overhead that the lower

respiratory tract is sterile (Teague et al., 1981), accelerating the

extensive explorations of lower respiratory tract microbiomes in

lung carcinogenesis and malignant biological behaviors. Various

studies have reported the frequent association of Streptococcus,

Staphylococcus, Pseudomonas, and Veillonella in lung cancer (Fu

et al., 2022), which could be altered dynamically by primary lesion

types and progression, metastatic sites formation, and

complications accompanied in clinical settings (Garg et al., 2017).

In accordance with other microbe-mediated oncogenesis, the lower

respiratory tract microbiome is also prone to trigger tumor

initiation by inducing DNA damage, activating oncogenic and

inflammatory pathways, breaking anti-tumor immunity balance,

and most likely, releasing microbe-oriented cytotoxic metabolites

(Sepich-Poore et al., 2021). Segal’s studies illustrated that the

exposure of airway epithelial cells to tumor-associated microbes

upregulated ERK and PI3K pathways by lower airway

transcriptome in patients with cancer, possibly by activating IL-17

inflammatory phenotype (Tsay et al., 2018). In our study, we found

that the abundance of Campylobacter jejuni, also detected by other

groups (Canning et al., 2013; Zheng et al., 2021), shared a close

connection with lung cancer, and several species were also

sequenced in normal segments, which perhaps dressed up as

probiotics in localized microenvironment. Unfortunately, as the

same with other studies, we failed to demonstrate the specific

oncogenic or anti-oncogenic roles of these diverse microbiota in

lung cancer due to the lack of appropriate models in vivo and the

complexity of microbial pathogenesis. Given that the majority of

studies on lower respiratory tract microbiome concentrated on its

potential relevance with lung cancer clinically (Table S5), in-depth

studies are still needed to shed light on mechanical insights, owing

to microbial compositional diversity and differential pathogenicity

of lower respiratory tract microbiome.

SCFAs are mainly generated by non-digestive and fermentable

carbohydrates from the gut microbiome, some of which can also be

produced by host cells during normal cellular processes, performing

as widely recognized protective metabolites in multiple cancer

types. With total intestinal concentration exceeding 100mM,

SCFAs released by the gut microbiome exert beneficial effects on
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gastrointestinal cancer and can also mediate tumoral inhibition of

distant organs by large amounts of SCFA influx into the

bloodstream via several gut axes (Liu et al., 2021). As to lung

cancer, the lower respiratory tract microbiome should also be

viewed as a vital source of SCFAs besides intestinal tracts, even if

with a quite limited concentration, which is in line with the

perspective that elevated SCFAs in the cancer group act as a sign

of abnormal bacterial growth in the damaged lung (Dickson et al.,

2015). Unfortunately, few studies have focused on the

determination of respiratory microbiota-derived SCFAs in

mediating lung cancer, which limits the understanding of their

possible functions in the maintenance of respiratory immunity

homeostasis. Based on the above, our study examined the

concentration of SCFAs from BALF samples in different lung

segments, finding that a slight difference of SCFAs was detected

in tumor-burden lung segments compared to healthy segments,

which was in agreement with previous findings (Yue et al., 2020).

After excluding the detection errors induced by lavage liquids,

machine learning profiles supported that the results that

integrated prediction models of SCFA candidates, including VA,

CA, and IBV, were more important compared to a single agent in

lung cancer screening and diagnosis. It is still well-established that

the lower respiratory tract microbiota is linked to lung cancer either

directly via secreted SCFAs that stop the disease’s progression or by

producing other substances on host cells that start metabolic

reprogramming. However, more research is necessary to fully

understand this association’s powerful mechanical effects.

As to the crucial prerequisite for revealing the compositional

role of the microbiome, accurately measuring the low biomass

microbiota in the lower airways is still challenging in the deep

sequencing era (Huang and Boushey, 2015). Bacterial DNA density

is at least 100 times lower in the lower respiratory tract than in the

upper airways, compromising accuracy due to potential sampling

and processing contamination (Dickson et al., 2017; Schneeberger

et al., 2019). In this study, we standardized protected sampling of

the lower respiratory tract to minimize artificial and systematic

contamination, including homogeneous samples of ipsilateral lung

segments from the same patient to reduce individual differences,

strict aseptic technique processes and materials to restrict man-

made interferences, and precise sequencing data of metagenomic

and metabolic detection to lower confounding bias to a certain

extent. Cohorts from the same center additionally ensured a

uniform approach for operating processes from healthy segments

to tumor-burden ones, as well as for electronic bronchoscope

evaluation. Additionally, the simultaneous processing, storage,

and testing of the two sets of samples reduced unanticipated

growth and metabolic activity. Briefly, except for inevitable noises

from collecting sequence, such as bronchoalveolar lavages in

tumor-burden segments after those in healthy ones and

microbiota compositional diversities in different lung segments in

the same patient, the uniformity of sample collection and

processing greatly reduces systematic errors and further

guarantees the accuracy of a realistic composition of the lower

respiratory tract microbiota and corresponding metabolism in lung

cancer compared with healthy controls. Even though a degree of

cross-contamination was inevitable, the confounding factors have
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been minimized in the design and actual implementation of

this study.

Another issue that deserves additional attention is the causality

between malignant lesion formation and microbial composition

alteration in a spatiotemporal dynamic manner. Due to the

abnormal outward proliferation that breaks through the basement

membrane, the distal end of alien organisms in the airway was

prone to be in a relatively hypoxic state (West, 1978), which may

facilitate the proliferation of anaerobic bacteria and weaken the

aerobic bacterial content accordingly. The dominant presence of

specific bacterial genera, especially anaerobic or facultative

anaerobic organisms, causes ripples throughout the tumor partly

and even entirely via abnormal production of bacterial metabolites.

This restrictive interaction makes tumors settle at a certain stage

and forms a specific tumor microenvironment, which can be

switched by perturbation of microbiota or rapid changes in tumor

cell load. On the other hand, unrelenting nutrient transformation

within the local microecological environment surrounding tumors

inevitably contributes to competition between microorganisms and

host cells, leading to dynamic changes in both species and quantity

of microbial community. Although tumor cell-mediated nutritional

deprivation undermines the energy supply of the microbial

community, the slight variations induced by the imbalance of the

microbiota in the lower respiratory tract still matter in tumor

progression as a non-negligible biological point. According to our

study sampling the microbiome and targeted metabolites at a

restricted time, dynamic monitoring based on different stages of

tumor progression still requires additional attention from large-

scale examinations, which should aim to further uncover in detail

microbial dysbiosis-mediated oncogenesis or vice versa.

Several limitations may shadow the outcomes of this study. First,

restricted participants in a single center probably magnified the

selective bias, leading to a distanced state from genuine microbial

communities and metabolites in the lower respiratory tract with its

densely packed low biomass. Additionally, due to successive sample

collection from different lung segments in the same lung cancer

patient and lack of negative control from healthy subjects and those

with benign respiratory disease, BALFs were prone to be affected by

operational sequence, inducing nuances of microbial composition

and metabolic content. Furthermore, a complex composition of

various microbiota-released metabolites detected from BALF in the

lower respiratory tract was not distinguished in this study, which was

liable to weaken the protective role of SCFAs. Finally, the dynamic

interaction between the host and microbiota via metabolites makes it

challenging to determine the actual source of these microbiota-

oriented metabolites, leading to confounding bias in our data. In

vitro experiments detaching from the whole dimmed the holistic

influence on lung cancer, inspired by complicated microbial and

microbe-host interactions.
Conclusions

In our 28-participant-enrolled cohort, the lower respiratory

tract microbiome and relative SCFAs detected in paired
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bronchoalveolar lavage fluids from normal lung segments and

tumor-burden lung segments of the same patient were

investigated. We found that different regions of the same patients’

lower respiratory tract microbiomes exhibit distinct signals.

Furthermore, neither group’s SCFAs had any value as a single

predictor, but combined analysis may be able to forecast the

connection of SCFAs to oncogenesis. Additionally, by the

production of specific metabolites, such as SCFAs, some

microbial species in lung regions with tumor load were able to

influence oncogenesis or serve as a predictor. Therefore, self-control

studies of extended samples may be advantageous for future studies

intended to clarify the preventative, diagnostic, and therapeutic

significance of lower respiratory tract microbiota contributing to

tumor blocking.
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SUPPLEMENTARY FIGURE 1

Workflow of study cohort enrollment with inclusion and exclusion criteria.

SUPPLEMENTARY FIGURE 2

Microbial composition and diversity comparison within each sample. (A, B)
Relative abundance of the lower respiratory tract microbiota in the indicated

groups at phylum and genus level, respectively. (C, D) 3D PCA and PCoA
analysis plot of lower respiratory tract microbiome in normal and tumor

burden lung segments. PCA, principal component analysis. PCoA, principal

coordinates analysis. (E, F) Relative abundance of the lower respiratory tract
microbiota in each sample at phylum and genus level, respectively. (G)
CIRCOS plot of taxonomic abundance among each samples.

SUPPLEMENTARY FIGURE 3

Differential microbiota comparison and co-occurrence network. (A) Box

plots of relative abundance within indicated significant differential

microbiota among both groups. (B) Microbial co-occurrence network of
different candidates from Figure S3A. Each node represents a species and

edges correspond to significant species-species associations. The size of
each node is proportional to the mean relative abundance at the phylum

level. The 95% credible criteria were used to assess significance, and
estimated correlations were then fi l tered with the correlation

coefficient≥0.4 in a line thickness-dependent format. Color labels are

marked by orange (pos i t ive corre la t ion) and blue (negat ive
correlation), respectively.

SUPPLEMENTARY FIGURE 4

Key parameter supplementation of LASSO and Random Forest. (A) Profiles of
LASSO regression regarding partial likelihood deviance and misclassification
error. The lines indicate the 95% confidence interval of the regression, and the

dotted line represents the optimal number of variables. (B) Representative
OOB error estimate based on random forest among indicated groups. OOB,

out-of-bag.

SUPPLEMENTARY FIGURE 5

Relative abundance of KEGG pathways in both groups. (A, B) Relative
abundance of KEGG levels 1 and 2 within both groups. (C) Distribution

diagram of the KEGG pathways based on LDA score among indicated groups.
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The spatial dissimilarities and
connections of the microbiota in
the upper and lower respiratory
tract of beef cattle
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Feilong Deng1,2, Ying Li1* and Jianmin Chai1,2*

1Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of
Life Science and Engineering, Foshan University, Foshan, China, 2Division of Agriculture, Department
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Bovine respiratory disease (BRD) causes morbidity and mortality in cattle. The

critical roles of the respiratory microbiota in BRD have been widely studied. The

nasopharynx was the most popular sampling niche for BRD pathogen studies.

The oral cavity and other niches within the respiratory tract, such as nostrils and

lung, are less assessed. In this study, oropharyngeal swabs (OS), nasal swabs (NS),

nasopharyngeal swabs (NP), and bronchoalveolar lavage (BAL) were collected

from calves located in four countries and analyzed for investigation of the

dissimilarities and connections of the respiratory microbiota. The results

showed that the microbial diversity, structure, and composition in the upper

and lower respiratory tract in beef cattle from China, the USA, Canada, and Italy

were significantly different. The microbial taxa for each sampling niche were

specific and associated with their local physiology and geography. The signature

microbiota for OS, NS, NP, and BAL were identified using the LEfSe algorithm.

Although the spatial dissimilarities among the respiratory niches existed, the

microbial connections were observed in beef cattle regardless of geography.

Notably, the nostril and nasopharynx had more similar microbiomes compared

to lung communities. The major bacterial immigration patterns in the bovine

respiratory tract were estimated and some of them were associated with

geography. In addition, the contribution of oral microbiota to the nasal and

lung ecosystems was confirmed. Lastly, microbial interactions were

characterized to reveal the correlation between the commercial microbiota

and BRD-associated pathogens. In conclusion, shared airway microbiota

among niches and geography provides the possibility to investigate the

common knowledge for bovine respiratory health and diseases. In spite of the

dissimilarities of the respiratory microbiota in cattle, the spatial connections

among these sampling niches not only allow us to deeply understand the airway

ecosystem but also benefit the research and development of probiotics for BRD.

KEYWORDS

respiratory microbiota, bovine respiratory disease, geography, oral cavity, nostrils,
nasopharynx, lung
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Introduction

Bovine respiratory disease (BRD), causing huge economic costs

worldwide, is one of the most common diseases in beef cattle (Chai

et al., 2022a). The respiratory microbiota in cattle associated with

disease has been confirmed, and several bacterial pathogens in BRD

have been identified, such as Mycoplasma bovis, Mannheimia

haemolytica, Histophilus somni, and Pasteurella multocida (Nicola

et al., 2017; McMullen et al., 2020b). However, since the

physiological and biochemical environments of different niches

along the bovine respiratory tract result in the dissimilarities of

microbial compositions, these opportunistic pathogens do not have

great agreement with BRD onset (Dickson et al., 2016; Cirone et al.,

2019). Moreover, the variation of geographic climate causes changes

in the respiratory microbiota even in healthy cattle (Chai et al.,

2022b), resulting in challenges to understanding the microbial

ecology, and identifying pathogens and probiotics. Therefore, a

deep investigation into the spatial dissimilarity and connection of

the respiratory microbiota in healthy cattle is necessary and

provides insights into bovine respiratory disease.

Nasopharynx is the most frequent sampling niche used to

investigate bovine respiratory microbiota (Holman et al., 2015;

Amat et al., 2019; Holman et al., 2019; McMullen et al., 2020a;

Zeineldin et al., 2020). Notably, the upper airway microbiota

associated with respiratory diseases has also been widely

investigated in humans (Wang et al., 2020; Losol et al., 2021;

Wang et al., 2022). Microbiota colonizing in other niches, such as

nostrils and lungs, are less studied but also important as the

physiological environment of the whole respiratory tract is

changed in BRD cattle (Man et al., 2017; Fahkrajang et al., 2021).

A study found different microbial structures and dominant bacteria

between the upper and lower respiratory tract in Piedmontese

calves (Nicola et al., 2017), indicating that niche physiology

influences the microbial community. Thus, investigation of nasal

and lung microbiota in healthy or BRD calves is also necessary to

elucidate respiratory homeostasis or dysbiosis. It was previously

suggested that bovine nasal bacterial communities provide a

potential pen-side diagnostic testing for BRD (Centeno-Martinez

et al., 2022). In the meantime, the dispersal of the microbiota within

the respiratory system exists as shared bacterial taxon among

different niches of the bovine respiratory tract was observed

(McMullen et al., 2020a), and oral microbiota being one of the

main sources of lung community was reported in humans

(Venkataraman et al., 2015) and determines two microbiota

pneumo-types associated with health status (Zhang et al., 2022).

In cattle, the pathogens in the lungs could be from the nostrils or

mouth based on the theory that “disease enters by the mouth”.

Similarly, the genera associated with common BRD pathogens such

as Mycoplasma, Mannheimia, and Pasteurella are observed in the

nostrils and oral cavity in healthy and BRD cattle (Nicola et al.,

2017; McMullen et al., 2020a). All these imply that the microbial

composition of the nostril and mouth is critical to the lung

microbiome community in cattle. However, to our knowledge,
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there are fewer studies to specifically investigate spatial

dissimilarity and connection of the bovine respiratory microbiota.

In this study, bovine respiratory samples from China, the

United States, Canada, and Italy were collected to estimate the

geographic effects, and the dissimilarities among niches, including

oropharynx, nostrils, nasopharynx, and lungs were determined.

Notably, the microbial connection or migration from the upper

airway or mouth to the lungs in bovines were first confirmed and

characterized, which provides the fundamental knowledge for

understanding the bovine respiratory system.
Materials and methods

The experiment protocol was approved by the Animal Ethics

and Humane Animal Care of the Foshan University.
Sample collection

A total of thirteen steers, twelve to eighteen months old, of two

breeds (Gayal (Bos gaurus frontalis): n=5 and Zebu (Bos taurus

indicus): n=8) from Yunnan province, China were selected in

October 2022 (Supplementary Table S1). All steers were clinically

healthy and did not receive any recorded therapeutic or

prophylactic antibiotic treatments. In this study, all calves were

sampled using oropharyngeal swabs (OS), nasal swabs (NS),

nasopharyngeal swabs (NP), and bronchoalveolar lavage (BAL).

OS was collected by swirling two Puritan Opti-Swabs (Puritan

Medical Products Co. LLC, Guilford, Maine) in the end and over

the tongue until saturation. NS were collected by swirling swabs in

the right nostril until saturation. NP was collected by inserting a

double guarded culture swab (Jorgensen Labs, Loveland, Colorado)

up the nares until reaching the nasopharynx where the swab was

advanced through the guard, rotated against the nasopharyngeal

mucosa, then retracted back into the guard and removed from the

nares. For a BAL sample, a tube (MILA International, Florence, KY)

was passed through the nares, guided through the larynx into the

trachea, and advanced until resistance was met. Sterile 0.9% saline

was administered in aliquots of 60 ml (up to 240 ml) and aspirated.

All samples were transported on dry ice to the laboratory, and

stored at −80°C pending further processing.

Simultaneously, our study collected public datasets published by

Nicola et al. (Nicola et al., 2017), Holman et al. (Holman et al., 2017;

Holman et al., 2018; Holman et al., 2019),McMullen et al. (McMullen

et al., 2020a), Zeineldin et al. (Zeineldin et al., 2017b) and Centeno

−Martinez et al. (Centeno-Martinez et al., 2022) (Supplementary

Table S2). These datasets contained 400 respiratory tract samples

from healthy calves, which contained 18 OS samples, 160 NS samples,

87 NP samples, and 135 BAL samples, collected in different countries.

In the meantime, these calves were from different elevations which

was described in Supplementary Table S1. All sequences were

downloaded from the NCBI SRA database.
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DNA extraction and next-
generation sequencing

All samples were thawed on ice and DNA was extracted using a

commercial DNAKit (Omega Bio-tek, Norcross, GA, U.S.) according

to the manufacturer’s instructions. Sterile Opti-Swab Amies buffer

was taken through the extraction process representing a negative

control. Total DNA quality was analyzed using a NanoDrop 2000 UV

spectrophotometer (ThermoFisher, Waltham, MA, USA) and 1%

agarose gel electrophoresis. The V3 - V4 region of the bacterial 16S

ribosomal RNA genes were amplified by PCR (95°C for 3 min,

followed by 30 cycles at 98°C for 20 s, 58°C for 15 s, and 72°C for 20 s

and a final extension at 72°C for 5 min) using indexes and adaptor-

linked universal primers (338F: ACTCCTACGGGAGGCAGCA;

806R: GGACTACHVGGGTWTCTAAT). PCR reactions were

performed in 30 mL mixtures containing 15 mL of 2 × KAPA

Library Amplification Ready Mix, 1 mL of each primer (10 mM),

and 50 ng of template DNA and ddH2O. All PCR products were

normalized and quantified by a Qubit 2.0 Fluorometer (Thermo

Fisher Scientific, Waltham, MA, USA). Amplicon libraries were

mixed using all qualified products and sequenced with an Illumina

HiSeq platform at Biomarker Technologies Corporation

(Beijing, China).
Sequence processing

The software package QIIME2 (version 2020.6) (Bolyen et al.,

2019) was applied to analyze the next-generation sequencing data

from the Illumina MiSeq platform. After fastq files were imported

together into QIIME2, the Deblur program was used to process the

raw reads. Deblur, a novel sub-operational-taxonomic-unit

approach, uses error profiles to obtain putative error-free

sequences, resulting in high-quality amplicon sequence variants

(ASVs) (Amir et al., 2017). After the quality filtering step was

completed, high-quality reads were normalized to minimize the

effects of sequencing depth on alpha and beta diversity measures.

The Bray-Curtis and Jaccard distance metrics were calculated to

investigate the dissimilarities in community structure. The ANalysis

Of SIMilarity was employed to compare the significance of beta

diversity. Then, clean reads were classified using the Greengenes

reference database (13-8 version) (DeSantis et al., 2006) which

classifies 99% similarity. A bacterial ASVs table was generated using

the QIIME2 command.
Statistical analyses

Determination of alpha and beta diversity was performed in the

QIIME2 platform. Alpha diversity (Shannon index) was calculated

using the Kruskal-Wallis test to explore the difference between

different groups. Beta diversity was evaluated using Bray-Curtis

(Bray and Curtis, 1957) and Jaccard (Chao et al., 2005) distances.

The analysis of similarities (ANOSIM) was performed to calculate

the P value and correlation coefficient (R-value), and explored

similarity and dissimilarity between members of different groups.
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For all analyses, statistical significance was determined at p < 0.05.

The algorithm of linear discriminant analysis (LDA) effect size

(LEfSe) was performed using the non-parametric Kruskal–Wallis

and pair Wilcoxon rank sum tests to determine the features with

significantly different abundances between groups. The LEfSe’s

threshold on the logarithmic score of LDA was set to 4.0, the

remaining settings were default parameters. All figures were

generated with the ggplot2 and pheatmap packages in R

(Wickham, 2011).

To analyze the microbial associations among niches

(oropharynx, nostrils, nasopharynx, and lung), we first detected

the shared bacterial taxa among them. Then, using Pearson

correlation between niches, the microbial community similarity

was calculated by accounting for both the rank order of ASVs and

the magnitude of relative abundances. Subsequently, the important

taxa were deeply analyzed to reveal micro aspiration.
Results

Sample characteristics and
sequencing analysis

A total of 441 samples from our lab and publicly available

datasets were included in this study. The characteristics of the

samples are summarized in Table S2. The beef cattle were from four

geographic locations, including China, the USA, Canada, and Italy.

The respiratory microbial samples were collected from oropharynx,

nostrils, nasopharynx, and lung using oral swabs (OS), nasal swabs

(NS), nasopharyngeal swabs (NPS), and bronchoalveolar lavage

(BAL). A total of 25,991,588 high-quality reads were generated with

an average of 58,937 reads per sample. After rarefaction of sample

reads to 2000, a total of 19,295 ASVs from 428 samples were

included for downstream analysis, which identified 644 genera. The

other thirteen samples with sequence read numbers below 2000

were excluded from further analysis.
The respiratory microbiota in beef cattle is
affected by geographic locations and
sampling niches

The microbiota from the upper (U) and lower (L) respiratory

tract in the beef cattle associated with geography was found. The

beef calves from China, the USA, Canada, and Italy showed

significant differences in the U and L microbial diversity

(Figure 1A). The U airway microbiota diversity from Canada was

significantly lower than that from China and the USA. The L

microbial diversity in cattle from China was the greatest followed

by the USA, Canada, and Italy had the least. In the meantime,

except in China, the U alpha diversity was significantly higher (p <

0.05) compared to the L in the calves from the same country.

Regarding the beta diversity based on Bray-Curtis distance, the

geography affecting the microbial structure in the U and L was also

observed (Figure 1B). The U airway microbiota in cattle from the

USA showed a distinct cluster compared to other countries
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(ANOSIM, USA vs China: R = 0.767; USA vs Italy: R = 0.625, P =

0.001 for both). Similarly, the L airway microbial structure was also

influenced by geographic locations. Moreover, the differences

between the U and L airway microbiota in the same country were

also observed (Supplementary Table S3).

Next, the microbial composition in the U and L respiratory

tracts of cattle from different countries was estimated. At the

phylum level, the dominant bacteria were Proteobacteria

(33.99%), Firmicutes (18.90%), Tenericutes (16.07%),

Actinobacteria (15.90%), and Bacteroidetes (10.84%) across all

samples. Notably, in the U airway, Proteobacteria was greater in

China, the USA, and Canada compared to Italy, while Tenericutes

was higher in Italy (Figure S1). For the L respiratory tract,
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Tenericutes was higher in Italy followed by Canada, China, and

the USA. Higher Actinobacteria were observed in the USA and

Canada. In addition, across the four countries, the L airway had

lower abundances of Proteobacteria but higher abundances of

Tenericutes compared to the U airway.

At the genus level, the five most predominant genera were

Mycoplasma (19.87%), Microbacteriaceae unclassified (7.71%),

Aggregatibacter (6.95%), Moraxellaceae unclassified (2.50%), and

Moraxella (2.48%) across all samples (Figure 1C). The relative

abundances of top taxa among the four countries were

significantly different. For example, Mycoplasma had the highest

abundance in the U and L airways of cattle from Italy followed by

Canada, the USA, and China. Aggregatibacter had high abundance
B

C

A

FIGURE 1

Microbial diversity and structure of the respiratory tract in different countries. (A) Alpha diversity (Shannon index) of the upper and lower respiratory
tract in different countries. The letters on the box, which was the same between different groups mean that the difference is not significant (p >
0.05). On the contrary, the difference is significant (p < 0.05). (B) The principal coordinate analysis (PCoA) is based on the beta diversity (Bray–Curtis)
of microbes in each sample (a point represents a sample) of different countries. (C) The composition of the top 20 microbes of the genus level in
the average relative abundance of the respiratory tract in different countries. ***_U means the upper respiratory tract microbes of *** cattle; ***_L
means the lower respiratory tract microbes of *** cattle (*** indicates any one of China, USA, Canada, and Italy).
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in the U airway of cattle from the USA and Canada, but abundant in

the L airway of cattle from the USA and Italy. Microbaceriaceae

unclassified were greater in both the U and L airways of cattle from

the USA, Canada, and Italy.Moraxella was enriched in the U airway

of cattle from Canada but lower in other niches of cattle from other

countries. Moreover, the different microbial compositions between

the U and L airways were also observed. For instance, Mycoplasma

was higher in the L airway of cattle from all four countries,
Frontiers in Cellular and Infection Microbiology 05194
Microbaceriaceae unclassified had a similar pattern especially in

cattle from the USA and Canada.

The bovine airway bacterial features influenced by geography

were identified by using LEfSe (Figure 2). Porphyromonadaceae

unclassified, Porphyromonas, Plesiomonas, Helcococcus, and

Clostridium were abundant in the U airway of cattle from China

(Figure 2A). The U airway of USA cattle had a high abundance of

Corynebacterium,Microbacteriaceae unclassified, Pseudoalteromonas,
B

A

FIGURE 2

The featured microbes of the calve respiratory tract in different countries identified by LEfSe analysis. (A) The featured microbes of the upper
respiratory tract identified. (B) The featured microbes of the lower respiratory tract identified. Samples were collected from four countries. The
general accounting for > 0.1% of the average relative abundance of each genus were selected for LEfSe analysis. Genera in this figure were
significant (p < 0.05), had an LDA Score > 4, and set the less strict multi-class analysis, which was considered a significant effect size.
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and Acinetobacter. The bacteria, including Aggregatibacter and

Moraxellaceae unclassified, were enriched in the U airway of

Canadian cattle. Mycoplasma, Chitinophagaceae unclassified,

Psychrobacter, and Sphingomonas were over-represented in the U

airway of cattle from Italy. The same analysis for the L airway

microbiota among four countries was also performed (Figure 2B).

Some gut microbiotas, including S24_7 unclassified, Lactobacillus,

Peptostreptococcaceae unclassified, Ruminococcaceae unclassified,

Lachnospiraceae unclassified, and Bacteroides, were enriched in the

L airway of cattle from China. Mycoplasma was over-represented in

the lungs of cattle from Italy, and Aggregatibacter, Prevotella, and

Corynebacterium were abundant in USA cattle.
Distribution of the main microbes in
different niches

As the physiology of different respiratory niches influences the

microbial composition, LEfSe analysis and correlation analysis were

performed to screen out the signature microbes for the major niches

(OS, NS, NP, and BAL) along the bovine respiratory tract

(Figures 3, S2). In Chinese cattle, Aggregatibacter, Moraxella,

Streptococcus , Weeksellaceae unclassified , Haemophilus ,

Flavobacteriaceae unclassified, and Pasteurellaceae unclassified had

higher abundances in the OS (Figure 3). In the NS, only the

Enhydrobacter genus was more abundant. In the NP, the

abundance of Corynebacterium, Microbacteriaceae unclassified,

Janibacter, and Kineosporiaceae unclassified was greater. In BAL,

bacterial genera, including Mycoplasma, Prevotella, Lactobacillus,

Akkermansia, Ruminococcaceae unclassified, Lachnospiraceae

unclassified, Ruminococcus, Oscillospira, Pseudomonadaceae

unclassified, Parabacteroides, and Faecalibacterium, were more

abundant. In Canadian cattle, Aggregatibacter, Streptococcus,

Fusobacterium, Pasteurellaceae unclassified, and Weekselllaceae
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unclassified had higher abundance in the OS. In the NS,

Moraxella, Moraxellaceae unclassified , Chitinophagaceae

unclassified , Ruminococcaceae unclassified , Macrococcus ,

Planococcaceae unclassified, Demequina, Lactobacillus, and

Solibacillus were more abundant. In the NP, the abundance of

Psychrobacter, Acinetobacter, and Pseudomonadaceae unclassified

was higher. In the BAL, the abundances of Mycoplasma,

Microbacteriaceae unclassified, Streptomyces, Corynebacterium,

Plesiomonas, Aerococcus, and Micrococcus were high.

Moreover, some signature bacteria for one niche were found

across countries. For example, Aggregatibacter and Streptococcus

were abundant in the OS of both Chinese and Canadian cattle

(Figure 3), and they were also identified as OS signatures in the

LEfSe outputs using all samples from four countries (Figure S2).

Mycoplasma abundant in the BAL had a similar pattern. Overall,

although the niche-specific microbiota was associated with

geography, shared microbiotas were found and detected in all

four niches.
The spatial dissimilarities and connections
of the microbiota in the respiratory tract of
beef cattle

After the different microbial compositions in the niches along

the bovine respiratory tract were characterized, the spatial dynamics

of the bovine respiratory microbiota from the same cattle were

estimated. When excluding the geographic effects, distinct

microbial structures between the oral cavity, upper, and lung were

also observed, which had a similar pattern in samples of different

countries (Figures 4A–C). For example, regarding the beta diversity

based on Bray-Curtis distance, in the different geographies,

microbiota in different niches showed distinct clusters

(Figures 4A–C) (ANOSIM, in Canada, NS vs BAL: R = 0.365; in
FIGURE 3

Abundance profile of featured microbes in different ecological niches in the respiratory tract of cattle in China and Canada. The average value of the
relative abundance of the single bacteria was compared after making the logarithm in different niches. The red box represents featured microbes
that have the highest relative abundance in this niche. The featured microbes were selected based on the results of LEfSe analysis (LDA > 2) across
various niches and the significant co-efficient relationship (Pearson rank correlation coefficient > 0.4 or < -0.4) with specific bacteria. OS
(Oropharynx); NS (Nasal); NP (Nasopharyngeal); BAL (Bronchoalveolar lavage).
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China, NS vs BAL: R = 0.285; in Italy, NS vs BAL: R = 0.529, P <

0.05, Supplementary Table S4). However, regardless of the

countries, bigger differences between NP and BAL were observed

compared to NS and BAL (Supplementary Table S5). Moreover,

oropharyngeal microbiota seemed to be independent of the

respiratory microbiota in beef cattle as it showed a large distance

from NS, NP, and BAL.

Next, we sought to analyze the microbial associations among

niches (oropharynx, nostrils, nasopharynx, and lung) as shared

bacteria taxa existed and the anatomical connections may lead to
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microbial migration within the respiratory systems. We assessed the

similarities between niches by measuring the Pearson correlation

between sampling niches, thus accounting for both the rank order

of ASVs and the magnitude of relative abundances between

sampling sites being compared. In the Canadian beef cattle, the

correlation between OS vs NS was higher than OS vs NP and OS vs

BAL (Pearson, OS vs NS: R = 0.41; OS vs NP: R = 0.36; OS vs BAL:

R = 0.37) (Figures 4D–F). The NS microbiota was highly correlated

with that of the NPS (r=0.68, p<0.001) (Figure 4G). The correlation

between NPS and BAL microbiota (r=0.50, p<0.001) was greater
B C

D E F

G H I

A

FIGURE 4

Associations between microbes in different niches of the respiratory tract. (A–C) The principal coordinate analysis (PCoA) is based on the beta
diversity (Bray–Curtis) of microbes in each sample between different niches in different countries. The Connected points represent samples from the
same animal. The length of the line reflects the similarity between samples, and the longer lines represent the lower similarity. (D–I) The correlation
of the respiratory tract microbes in different niches in Canadian samples. Each point corresponds to the average relative abundance of a feature
across all animals for each of the respiratory tract sampling niches. To measure correlation, Pearson’s r was calculated based on the features
abundance of two niches.
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than that between NS and BAL microbiota than that of BAL

(r=0.48, p<0.001) (Figures 4H, I), which is consistent with the

ANOSIM data based on microbial structure. In the other countries,

the microbial similarities between niches had a similar pattern

(Figure S3). Overall, the microbial connection within the

respiratory tract of beef cattle existed although we observed the

microbial dissimilarities among niches.
The microaspiration in the respiratory tract
of beef cattle

To deeply understand the microbial connection within the

respiratory tract of beef cattle, the microaspiration of the major

taxa were assessed. As we observed, Mycoplasma associated with

bovine respiratory disease existed in four sampling niches of the

Canadian beef cattle and increased from the oropharynx and upper to

the lung although its abundances were different (Figure 5). A similar

pattern was also observed in the cattle from China and Italy (Figure

S4A). In the meantime, Streptococcus migration among niches was

the same among countries with high abundance in OS followed by

NS, BAL, and NPS (Figures 5D, E, S4B). In contrast, the

microaspiration of other major respiratory microbiota among

countries were different. In Chinese beef cattle, Moraxella was

higher in the oral cavity followed by NS, NPS, and lung

(Figure 5B). However, in Canada, it was higher in NS and NPS

followed by oral and lung (Figures 5C, S4B). Other important

respiratory microbiota, such as Pasteurellaceae unclassified,

Moraxellaceae unclassified, Microbacteriaceae unclassified,

Mogibacteriaceae unclassified, Corynebacterium, Pseudomonadaceae

unclassified, and Roseburia were abundant in the upper airway or

oropharynx, but their abundance in lung varied among countries

(Figures S5, S6). The microbiota commonly found in the gut showed

higher abundances in NS and NPS followed by OS and BAL, such as

Ruminococcaceae unclassified and Turicibacter (Figures 5F, G, S4B,

C). Other gut microbiotas, including Prevotellaceae unclassified,

Clostridium, Lactobacillus, Lachnospiraceae unclassified, and

Bifidobacterium, were more enriched in the oral cavity or the upper

respiratory tracts regardless of country (Figure S7).
Network analysis to reveal the microbial
interactions among respiratory niches

The microbial interactions were determined using network

analysis (Figures 6, S8). When using Chinese and Canadian

bovine airway microbial samples, four and seven modules were

observed respectively. In the meantime, more edges and nodes were

found in airway samples of Chinese cattle compared to that of

Canadian bovines. Interestingly, in both countries, the featured

microbes within the same niche exhibited a stronger correlation in

the same module. For example, in China cattle, genera for BAL

identified by LEfSe that correlated with other commensal

microbiotas formed a module, including Mycoplasma ,

Lactobacillus, Akkermansia, Ruminococcaceae unclassified,

Lachnospiraceae unclassified, Ruminococcus, Oscillospira, and
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Pseudomonadaceae unclassified (Figure 6). In addition, these

signature microbiotas were identified as the bridge nodes to

connect different modules. The BAL signature microbiotas for the

bovines from Canada, including Corynebacterium, Aerococcus,

Micrococcus, were the key nodes to bright two modules.

Additionally, network analysis using all four countries’ samples

showed that the niches’ effects on the bacterial interaction were

slight (Figure S8). All these results indicated that geographic effects

on the bovine respiratory microbiome system were greater than

niche effects, and the signature microbiota affected the

microbial interactions.
Discussion

Investigation of the respiratory microbiota in healthy bovines

aid in understanding the critical roles of the microbiota in health

and provide microbial insights for prevention and diagnosis of

BRD. Until now, the nasopharynx has been the most popular

sampling site to investigate bovine respiratory microbiota

(McMullen et al., 2020a), but microbiota colonization in the

nostrils and lungs is less studied and important. In this study, we

found that significant differences in the respiratory microbial

composition and structure of the bovine were associated with

geography and sampling niches. Despite the greater variations of

the upper and lower airway microbiota being observed, geographic

effects on both were also identified. It is confirmed that geography

influenced the physiological and biochemical environments of the

bovine respiratory tract; however local physiology of niches also

shaped its microbial community. The abundant bacteria for each

respiratory niche were identified, and they were associated with

geography. In the meantime, shared taxa among these sampling

niches were found, indicating that microaspiration might exist in

the bovine airway. However, the spatial connection of the bovine

airway microbiota is still less studied. This study determined the

spatial dynamics of the respiratory microbiota from the nostrils to

the nasopharynx to the lung and found that NS and NPS microbiota

were more similar compared to the lung community. The oral

microbiota also showed similarities to the respiratory microbiota. In

addition, the spatial connection of the bovine respiratory

microbiota from worldwide geographic locations was also

characterized, which allows us to understand the microaspiration

of the microbiota deeply. This study elucidated the fundamental

knowledge of the bovine respiratory microbiota.

Geography serving an important role in affecting the bovine

respiratory microbiota has been confirmed in our previous study

(Chai et al., 2022b). In this study, we also found that either the

upper or lower airway microbiota in the beef cattle from China

(Asia), Canada and the United States (North America), and Italy

(Europe) had different diversities and composition. Calves living in

worldwide geographic locations experienced environmental

variations, including feed strategy, diet, altitude, temperature, etc.

In this study, the dominant bacteria varied across the four countries.

For instance, Mycoplasma was abundant in the upper and lower

airway of Italy cattle but lower in other countries, and Moraxella

was enriched in the upper airway of cattle from Canada but lower in
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other niches of cattle from other countries. Previously, a study

found that, in Canada, the most prominently identified bacteria in

the bovine nasopharynx were Mycoplasma, Lactococcus, Moraxella,

Histophilus, and Pasteurella, while Mannheimia, Mycoplasma,

Moraxella, Psychrobacter, and Pseudomonas were the top five

genera in the nasopharynx of calves from the United States (Lima

et al., 2016; McMullen et al., 2018). Thus, it’s not surprising that

bovine airway microbiota from three continents showed differences.
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In addition, the current study first characterized the altitude effects

on the bovine airway microbiota. We found that more significant

differences in airway microbiota among cattle from 200 m, 500 m,

1000 m, and 1500 m masl were observed although breed and diet

effects may exist. Thus, geography or external environment may

have a greater influence on the bovine airway microbiota. Further

studies need to deepen the environmental effects, which might

benefit the probiotics production from high-altitude cattle.
B C

D E
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A

FIGURE 5

The characteristics in abundance change of the featured microbes. (A) Model diagram of the relative abundance change of a single bacterium
(Mycoplasma) at different niches in the respiratory tract of animals. (B–G) The change of the relative abundance of the featured microbes with
different niches in different countries. A yellow point represents a sample. The Connected points represent samples from the same animal.
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Anatomical niches within the respiratory tract have different local

environments (Chai et al., 2022a). Differences in microbial

composition and structure in the upper and lower respiratory tract

of bovine were found in the current study. The bovine nostrils had

higher abundances of Enhydrobacter, Corynebacterium,

Pseudoalteromonas, and Phascolarctobacterium, while the dominant

genera in the nasopharynx were Psychrobacter, Moraxella,

Pseudomonadaceae unclassified, Ruminococcaceae unclassified,

Roseburia, Moraxellaceae unclassified, and Acinetobacter. In the

lungs, we classified Streptomyces, Plesiomonas, Turicibacter,

Microbacteriaceae unclassified, and Mycoplasma. Previous studies

reported dominant genera in the bovine nasal cavity, such as

Psychrobacter, Aggregatibacter, Sphingomonas, Corynebacterium,

and Coprococcus (Nicola et al., 2017; McDaneld et al., 2018). The

nasopharynx (the region near the caudal aspect of the nose) colonized

with Pseudomonas, Psychrobacter, Actinobacillus, Clostridium,

Acinetobacter, Bacillus, Proteus, Bifidobacterium, Rathayibacter,

Cellulomonadaceae, Corynebacterium, Jeotgalicoccus, and

Planomicrobium (Gaeta et al., 2017; Holman et al., 2017; Zeineldin

et al., 2017a; Timsit et al., 2018; Amat et al., 2019). In the clinically

healthy bovine lungs, previous studies found the generaMycoplasma,

Moraxella, Pasteurella, Mannheimia, Bacteroides, Clostridium,

Bibersteinia, and Prevotella (Nicola et al., 2017; Zeineldin et al.,

2017b; Klima et al., 2019). Overall, except for the variations among

cattle or studies, the bacterial composition and abundances among

the three popular sampling niches (nostrils, nasopharynx, and lungs)

in the bovine are different but shared taxon could be observed.

Investigation of the global microbial ecosystem in calves allows us to

identify BRD pathogens well.

Microbial movement or dispersion within the respiratory tract

is new and essential research direction as it could potentially explain

the contribution of the upper airway microbiota to the lung

microbiota and the respiratory health to disease (Zeineldin et al.,

2019; Chai et al., 2022a). This study found that microbial

communities in the nostrils and nasopharynx were correlated
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with those in the lungs regardless of geographic effects. One

recent study concluded that nasopharyngeal microbiota may serve

as the primary source for the lung microbiota in healthy calves since

the nasopharyngeal region shared a similar bacterial composition

with the lungs compared to other sampling niches (McMullen et al.,

2020a). Similarly, bacterial overlaps between the upper and lower

tracts in cattle have also been reported (Nicola et al., 2017; Zeineldin

et al., 2017b; Timsit et al., 2018), indicating microbial aspiratory

within the bovine respiratory tract. In healthy subjects, microbiota

from the upper airway could enter the lungs via an active and

continuous process in several ways, such as inhalation of air, direct

mucosal dispersal, and microaspiration (Dickson et al., 2014).

Furthermore, an adapted island model was applied in healthy

humans, and the hypothesis is that the lung microbiome and its

growth rate are more affected by microbial entry and removal

processes than by the effects of the local growth environments.

However, for ruminants, there is no specific statistical model to

investigate the respiratory microbial movement. Thus, the current

study mapped the relative abundance of the major microbiota along

the bovine airway. We found that immigration of some microbiotas

was similar in different countries, such as Mycoplasma and

Moraxella abundant in the upper airway rather than the lungs.

However, geography affecting the microaspiration of a specific

bacterium was also observed. For example, the abundances of

Pasteurellaceae and Microbacteriaceae were high in the upper air

way but varied among countries in lung communities. Overall, the

microaspiration of the bovine respiratory microbiota existed and

some bacteria showed same immigration pattern no matter

whatever geographies, which may help us explain the common

pattern of respiratory microbiome in the world.

Oral microbiome in cattle is starting to be studied as its

importance in humans has been confirmed (Dickson and Huffnagle,

2015; Dickson et al., 2016). The specific ruminating activity in cattle

may cause more oral microbiota to enter into the lungs (Glendinning

et al., 2017). Moreover, social grooming may cause oral bacteria to
BA

FIGURE 6

Network analysis of interactions between genus level interactions in the respiratory tract of cattle in (A) China and (B) Canada. Each node denotes a
particular genus within the network and the different colors denote the featured bacteria in different niches. Each line (edge) represents a significant co-
efficiency relationship (Pearson rank correlation coefficient in China > 0.5 or < −0.5 and in Canada > 0.4 or < −0.4). The network has divided all bacteria
into communities of different colors through modularization. OS (Oropharynx); NS (Nasal); NP (Nasopharyngeal); BAL (Bronchoalveolar lavage).
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migrate into the upper airway. All these movements of microbiota are

relevant to our understanding of pathogenesis in bovine health and

disease (Segal and Blaser, 2014). In this study, the major bacterial

signatures, including Aggregatibacter, Streptococcus, Pasteurellaceae

unclassified, Clostridium, Ruminococcus, Lactobacillus, Prevotellaceae

unclassified, and Bifidobacterium, were identified for the bovine oral

cavity. A previous study found that Pasteurellaceae, Moraxellaceae,

and Neisseriaceae associated with the BRD pathogens were detected in

the oral cavity of calves (Barden et al., 2020). Another study found that

Pseudomonas, Burkholderia, and Actinobacteria were the most

prevalent bacteria in the mouth of healthy cattle, but Prevotella,

Fusobacterium, and Porphyromonas were significantly increased in

cattle with periodontitis (Borsanelli et al., 2018). Although the

dominant species may be different, shared taxa were observed

compared to these studies. Our results also found that some oral

bacteria were associated with the upper and lower airway microbiota

in cattle, which showed a similar pattern to a previous study

(McMullen et al., 2020a). For example, Moraxella and

Mogibacteriaceae unclassified were higher in both the oral cavity

and nostrils. Considering cattle often lick their noses and can

actually reach farther into their nostrils than other species, this is

not surprising. However, the composition of the oral microbiome and

its association with the bovine respiratory microbial communities is

still largely unknown. The oral and oropharyngeal microbiome for

health and BRD calves should be further investigated.
Conclusions

Bacterial 16S rRNA gene sequencing demonstrated that

geography affected both the upper and lower respiratory microbiota

in bovine. The factors related to geography, including altitude and

temperature, may contribute to microbial changes. Although the

dominant genera among countries were different, shared taxa were

observed, indicating that the similarities in research on bovine

respiratory microbiota may elucidate the microbial roles in health

and disease. Beyond the most popular sampling niche (nasopharynx)

in the current studies, the microbiome in nostrils and lungs showed

their specifications, which should be further investigated for better

understanding of bovine respiratory disease. In addition to the effects

of geography and niche on the bovine airway ecosystem, the common

taxa and their immigration pattern were characterized in this study,

providing some insights into bovine respiratory microbiome and

health. Moreover, oral microbiota with its specific composition

compared to the respiratory microbiome was associated with the

nostril and lung microbial community in cattle. Therefore, all the

results in this study support the notion that bacterial isolations or

probiotics could be administrated into the bovine mouth or nostrils

to improve lung community.
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